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Preface

It is with great pleasure that we present the proceedings of the 6th Interna-
tional, Symposium on Visual Computing (ISVC 2010), which was held in Las
Vegas, Nevada. ISVC provides a common umbrella for the four main areas of
visual computing including vision, graphics, visualization, and virtual reality.
The goal is to provide a forum for researchers, scientists, engineers, and prac-
titioners throughout the world to present their latest research findings, ideas,
developments, and applications in the broader area of visual computing.

This year, the program consisted of 14 oral sessions, one poster session, 7
special tracks, and 6 keynote presentations. The response to the call for papers
was very good; we received over 300 submissions for the main symposium from
which we accepted 93 papers for oral presentation and 73 papers for poster pre-
sentation. Special track papers were solicited separately through the Organizing
and Program Committees of each track. A total of 44 papers were accepted for
oral presentation and 6 papers for poster presentation in the special tracks.

All papers were reviewed with an emphasis on potential to contribute to the
state of the art in the field. Selection criteria included accuracy and originality
of ideas, clarity and significance of results, and presentation quality. The review
process was quite rigorous, involving two – three independent blind reviews fol-
lowed by several days of discussion. During the discussion period we tried to
correct anomalies and errors that might have existed in the initial reviews. De-
spite our efforts, we recognize that some papers worthy of inclusion may have
not been included in the program. We offer our sincere apologies to authors who
contributions might have been overlooked.

We wish to thank everybody who submitted their work to ISVC 2010 for
review. It was because of their contributions that we succeeded in having a
technical program of high scientific quality. In particular, we would like to thank
the ISVC 2010 Area Chairs, the organizing institutions (UNR, DRI, LBNL,
and NASA Ames), the government and industrial sponsors (Air Force Research
Lab, Intel, DigitalPersona, Equinox, Ford, Hewlett Packard, Mitsubishi Electric
Research Labs, iCore, Toyota, Delphi, General Electric, Microsoft MSDN, and
Volt), the international Program Committee, the special track organizers and
their Program Committees, the keynote speakers, the reviewers, and especially
the authors that contributed their work to the symposium. In particular, we
would like to thank Air Force Research Lab, Mitsubishi Electric Research Labs,
and Volt for kindly sponsoring four “best paper awards” this year.

We sincerely hope that ISVC 2010 offered opportunities for professional
growth.

September 2010 ISVC 2010 Steering Committee and Area Chairs
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Abstract. Ontology-based software and image processing engine must

cooperate in new fields of computer vision like microscopy acquisition

wherein the amount of data, concepts and processing to be handled must

be properly controlled. Within our own platform, we need to extract

biological objects of interest in huge size and high-content microscopy

images. In addition to specific low-level image analysis procedures, we

used knowledge formalization tools and high-level reasoning ability of

ontology-based software. This methodology made it possible to improve

the expressiveness of the clinical models, the usability of the platform for

the pathologist and the sensitivity or sensibility of the low-level image

analysis algorithms.

1 Introduction

Usually in medical imaging, after the acquisition step, computer vision researchers
propose new algorithms dedicated to a specific task like the segmentation of the
liver out of MRI images or the counting of cells over stained images. For macro-
scopic natural images also, dedicated softwares for face recognition for instance
have already been successfully delivered on the market so far. But, when consid-
ering new devices from satellite to microscopy imaging systems, the resolution and
size at which images are acquired provide huge amount of biological and natural
data to process in a parallel way, within a limited frame time and more or less on
a pervasive mode in the near future [1].

For instance, the digitalization of biopsy images is raising new issues due to
the exploration of what is called Whole Slide Images (WSI). For one patient,
the amount of visual data to process over this WSI is about eight gigabyte.
Various biological objects must be detected and segmented in order to infer any
aid to the pathologist for the diagnosis. The spatial relationships between these
different objects must be used as well to improve the efficiency of the automatic
analysis of the data. As a matter of fact, if a WSI in histopathology is about a
50 000 by 40 000 pixels size image, it is now common to produce satellite images

� Corresponding author.
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at very high resolution of about 30 000 by 30 000 pixels size (see the Pleiades
satellite resolution).

It is not reasonable to systematically plan the design of image analysis al-
gorithm on the fly as new needs are required. In any case, it will take time
and money to improve the capacity of automatic annotation of these images.
Ontology-driven interface and processing can be an alternative to this engi-
neering constraints. First, systematically involving ontological descriptions on a
platform improves the interaction standards with the novice end-user and also
within the software designer team by modeling the knowledge and the objects
in a formal way. Second, high-level reasoning based on the formalized concepts
can provide an alternative way to detect biological objects. Last, it provides the
end-user (like the pathologist) a semantic way to specify a query based on the
results of the image analysis modules currently available in the system. From a
pattern recognition point of view, it can help to lower the false alarm rate by
adding high-level constraint rules or to improve the correct detection rate within
a fixed time frame constraint by triggering the image analysis algorithms only
on specific areas in the image defined by high-level spatial relationships rules for
instance.

The ontology contribution is particularly relevant in the field of pathology and
clinical imaging where a mental database is constantly used by the physician
either coming from books or from his/her acquired experience over years of
visual inspection of clinical data. This is the reason why our research work -even
though aimed at being quite generic however- is however dedicated to a specific
application and a platform we designed to automatically grade breast cancer out
of histopathological images [2].

This work proposes to leverage the high-level reasoning and knowledge formal-
ization ability of ontology-based softwares to make annotation of high-content
images more efficient and interactive. Few works have operationally explored
this kind of idea among which we can mention [3,4].

Section 2 focuses on the low-level image analysis modules currently available
in our system. Section 3 elaborates on the ontology part of the system and
illustrates the use of the reasoning capability to infer new results or control the
low-level image engine. Section 4 gives and discusses elements of quantitative
assessment of the ontology-driven strategy before drawing a conclusion in the
last section.

2 Low-Level Image Annotation

The low-level image processing aims at outlining and describing general biologi-
cal objects in the histopathological image. The current platform uses images from
breast cancer biopsies. Three characteristics are used in breast cancer grading
according to the Nottingham Grading System [5]:

– tubular formation of cells around lumina: the better formed the tubular
formations are, the lower the cancer grade is;
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– nuclear pleomorphism, that comes from nuclei features (area, mean and stan-
dard deviation intensity and circularity or roundness features): the bigger the
nuclei are, the less regular their shape is and the less uniform their texture
is, the higher the cancer grade is.

– mitosis number: the more mitoses are present in the image, the higher the
cancer grade is.

Currently in our application, three different kinds of biological objects are de-
tected to be able to provide an image with a cancer grade: the nuclei, the lumina
and the invasive areas.

Nuclei segmentation. The nuclei detection module proceeds in two steps. First
nuclei seeds are identified and then each detected nucleus is automatically seg-
mented to extract geometric and radiometric features about it. The nuclei seeds
extraction follows two processing steps: the regions of interest detection and then
the nuclei identification (see Figures 1(b) and (c)).

(a) (b) (c)

Fig. 1. Nuclei identification - (a) Regions of interest detection, (b) nuclei identification

(coarse nuclei separation), (c) nuclei identification based on a distance map

The region of interest detection step locates the part of the images that con-
tains the nuclei. Usually, cells are grouped together all around lumina and form
what is called tubules. This step creates a mask to locate nuclei clusters that
contain useful information. The following processing chain is performed: (1) Au-
tomatic image thresholding in order to distinguish the nuclei from the image
background; (2) Morphological closure in order to group close nuclei together;
(3) Removal of small objects not useful for ulterior processing or studies (see
Figure 1(a)). The nuclei identification step proceeds by similar morphological
filtering operators before drawing a distance map over which points within the
nuclei area being the furthest from the boundaries are identified as the nuclei
seeds (see Figure 2(a)). The nuclear boundaries are extracted using a snake-based
method described in [6]. Patches of images that contain nuclei are extracted and
are subjected to a polar transform of the coordinate system. After a first process-
ing that constructs the first lace close to the real nuclei boundaries, the iterative
snake algorithm outlines the nuclei boundary (see Figure 2(b)). Then geometric
and radiometric features can be extracted over each detected nucleus.
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(a) (b) (c)

Fig. 2. An example of (a) seeds detection and (b) nuclei segmentation at high magni-

fication x40 (c) invasive area detection at low magnification x1.2

Lumina and Invasive Area segmentation. The low-level detection of the lumina
uses mathematical morphology tools . The invasive ROI detection is currently
casted as a classification problem whereby we exploited the relationship between
human vision and neurosciences [7]. As the low-level processing part is not the
core of this paper, we just give an illustration of the obtained results in our plat-
form for the low-level detection of the invasive areas (see Figure 2(c)). The idea is
now to exploit these biological landmarks to perform reasoning and knowledge
management over the microscopy slide, as the extraction of all the biological
concepts in an exhaustive way is not possible.

3 Ontology-Driven Image Analysis

The algorithms briefly described in the previous section are actually standard
low-level ones based on signal analysis: they allow a “black-box” detection of
biological structures useful to draw a diagnosis based on a medical protocol. Yet,
medical protocols or knowledge are constantly evolving or refining and can be
very specific to an expert mental database as well, so that developing a complete
image analysis platform in a complex field as histopathology is very costly and
versatile in terms of engineering.

One way to overcome this issue and to facilitate the design of such complex,
evolving platform as well is to work at a higher semantic level. For that purpose,
the ontology framework constitutes a powerful tool for formalizing knowledge
and for reasoning. In fact, the ontology is used to make the engineering of our
heterogeneous knowledge database: medical knowledge but also image processing
results coming from the image engine.

With this in mind, a few applications have been developed so far on our
grading platform to experiment the benefits of articulating ontology capabilities
with image processing outcomes. They correspond to two generic objectives of
our research work:

– Consistency-checking annotation: to improve the specificity rate;
– Image Analysis Engine Triggering Control: to improve the sensibility rate

within a limited response time.
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Before illustrating these two concepts, the next subsection draws a brief technical
description of the core anatomical ontology for breast cancer grading we already
built up.

3.1 Anatomical Ontology: OWL

An ontology is a system of knowledge representation of a domain in the form of
a structured set of concepts and relationships between these concepts. An ontol-
ogy is expressed in the form of a XML graph and produces reasoning through a
rule language. Our Breast Cancer Ontology (BCO) is based on two languages:
OWL-DL (Web Ontology Language Description Logics) to describe the ontology
and SWRL (Semantic Web Rule Language) to write and manage rules for the
reasoning part. Technically, OWL and SWRL are specifications of the W3C1,
OWL is an extension of RDF (Resource Description Framework) used in the de-
scription of classes and types of properties, SWRL combines OWL and RuleML
(Rule Markup Language) to produce the rules for the reasoning. The anno-
tated images are described with the Wide Field Markup Language (WFML)2

specific to the histopathology field (see Figure 4). Finally, the query language
SPARQL (Simple Protocol And RDF Query Language) is used for querying in
Java. SPARQL has been chosen for its ease of use and the very good integration
of the API in Java. A thorough description of this ontology-based platform can
be found in [8,9].

3.2 Rules and Reasoning

Once the anatomical and medical core concepts are formalized, we can feed our
WFML database with new annotations based on a reasoning process.

Consistency Checking Annotation. Usually in the bio-medical field, the
objects of interest are described by the biologists with high-level descriptions.
However, the image analyzers use signal-based definition of these concepts. Sub-
sequently, it is not uncommon to have the opportunity to cross both ways of
defining a biological structure, like for the mitosis for instance. On an ideal
platform, we will get two ways for defining mitoses:

– a low-level - in a sense implicit - signal-based extraction providing a set of
results Rsignal, usually by statistical learning;

– an explicit high-level description corresponding to a SWRL rule like the one
expressed in the Protégé3 platform in Figure 3 and potentially providing
a set of results Rknowledge, and where Circularity and Roundness are the
standard shape features.

1 World Wide Web Consortium.
2 A XML language produced by the company TRIBVN for its platform ICS

Framework.
3 http://protege.stanford.edu/

http://protege.stanford.edu/


6 A. Othmani, C. Meziat, and N. Loménie

Fig. 3. A SWRL rule for mitosis description in our BCO (Breast Cancer Ontology)

within the Protégé platform

In the case that Rsignal is currently available on the platform, we can check the
consistency of this result set by the semantic rule expressed in Figure 3 in the
way Mechouche et al. proceeded for brain annotation issues [3]. This semantic
checking will provide a set of results Rsignal×knowledge lowering the false alarm
rate and subsequently improving the specificity rate of the image engine.

In the case that an image analysis module detecting the nuclei is currently
available but not a mitosis detector, the platform can use the semantic rules
defined by the pathologist on the fly to enrich the annotation WFML file by
reasoning and providing a knowledge-based result set Rknowledge to this kind
of semantic query. The basic principle of this case study is the following: from
an original WFML file containing annotations about nuclei, we seek those cor-
responding to mitoses based on the semantic rule in Figure 3 and enrich the
annotation file whenever it detects a mitosis. Technically, the WFML is parsed
to retrieve information for each nucleus. The OWL file in the Protégé platform
is powered by the list of nuclei in order to use the logic reasoning engine. This is
the reason why we need a matching procedure between the WFML Files (specific
to our application) and generic OWL Files (to benefit from the reasoning capa-
bility) as described in Figure 4(a). A reasoning procedure is then performed with
the SPARQL query language which defines the syntax and semantics necessary
to express queries on RDF type Database (Figure 4(b)).

Then the nuclei that are recognized as mitoses are modified in the WFML file by
changing the annotation from a nucleus NP (standing for Nuclear Pleomorphism)
into Mitosis (see Figure 5 for the global overview of the annotation updating pro-
cess and Figure 6 for the WFML-based annotated resulting images4).

Image Analysis Engine Triggering Control. Another issue of high-content
image annotation is the limited response time we must fit in. The ability to
control the image analysis triggering over the While Slide Image can help to
improve the sensibility rate of the platform under the time constraint.

From rule R1 for instance defined in first order logic in Equation 1, we can
trigger the image analysis algorithms to detect the neoplasm as an invasive area,
then locate formally the border of the neoplasm using a formalization of the
spatial relation Border (see Figures 7 and 8).

R1 : Mitosis(X) → ∃NeoplasmN/X ∈ Border(N) (1)

4 In the ICSTM Technology interface from TRIBVN S.A., the image format is a SVS for-

mat involving both a pyramidal TIFF multiscale description and WFML description

file for the annotations currently available in the database (http://www.tribvn.com/

http://www.tribvn.com/
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(a) (b)

Fig. 4. (a) Matching between WFML and OWL files (b) SPARQL query sample

Fig. 5. Mitosis detection process

For the location of the border, we model the spatial relationship “ Around” as a
landscape resulting from mathematical morphology operators such as dilations
[4,10] (see Figure 8). If a request is sent to the system to detect mitoses, we can
scan the WSI image by image or does trigger that detector where this is relevant
regarding the spatial relations constraints we are currently formalizing in the
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(a) (b)

Fig. 6. (a) WFML before Mitosis Detection corresponding to step 3 in Figure 5 (b)

WFML after Rule-based Mitosis Detection corresponding to step 8 in Figure 5

Fig. 7. A SWRL rule for the expression of the spatial relationship constraint of Eq. 1

within the Protégé platform

knowledge base according to the pathologist experience. The processing of the
request is the result of a reasoning step that can evolve as new rules are added.
For example, it triggers the rule R1 which is linked to mitoses. By doing this, we
save between five and ten-fold increase in processing time which is of dramatic
importance for WSI exploration. In addition, this kind of spatial relationship
rules can help to check the consistency of Rsignal results.

(a) (b) (c)

Fig. 8. An example of (a) invasive area detection at low magnification and (b) of

its instantiated “Around” region after various morphological based filtering like (c)

dilation and erosion of the invasive area
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4 Results and Discussion

The preliminary assessment of the ontology-driven annotation was achieved by
quantifying the improvement of the grading platform specificity and sensibility
rate related to the mitosis detection based on the previous ideas. The database
is made of several histopathological samples as listed in Figure 9.

Query with intensity. As quantified in Figure 9(a), all mitoses (TP=9) are de-
tected but the detection is not very specific, there are a lot of false alarms. For
253 cells on average per frame, the algorithm returns 5 mitoses on average, sensi-
tivity is equal to 1, all true mitoses were detected among the 5 mitoses returned.
This could be a good diagnosis aid for histopathologists who can focus on the
study of detected mitoses instead of having to analyze all the cells. This will
reduce the workload and save time, which is of utmost importance in this field
regarding the size of the images. The pathologist’s task is complex and requires a
lot of experience and we noticed an important point: real mitoses were detected
by the semantic procedure but were not identified by the pathologist.

Query with intensity and geometrical constraints. A normal cell has a regular
shape almost round or oval while a mitosis has an irregular shape and tends
to divide. The test consists in reducing the false alarm rate and increasing the
specificity by adding geometric constraints (see Figure 9(b)). In half the cases
the algorithm becomes more specific, false alarms are reduced but the sensitivity
may decrease in some cases. Of course, this result is very dependent of the low-
level image processing algorithms. If the outlines of cells are correctly detected
specificity gets better and sensitivity is maintained, the algorithm is efficient. In
addition the algorithm works better on images with a grade NGS (Nottingham
Grading System) equals to 1 than image with a NGS equals to 3. The reason is
that cells are less deformed for grade 1, the algorithm is less dependent on the
quality of segmentation and just need to locate each cell.

A detailed test. The image in Figure 10 contains 258 cells and 3 mitoses. A
pathologist detects three mitoses. By testing with the intensity without geomet-
ric constraints only six mitoses (N194, N170, N14, N82, N210, N224) are detected
among which three true mitoses (N210, N224, N14). By testing with geometrical
constraints like Circularity ≤ 0.75 and Roundness ≤ 0.65, only 2 mitosis are
detected, one of the three true mitosis is not detected. The algorithm detects
the mitosis N224 and N210 but not the mitosis N14. These results show that
the algorithm with geometric constraints is more specific but that it decreases
sensibility.

Furthermore, a qualitative assessment about usability by the novice end-user
(that is the pathologist in our case) remains to be drawn. However, the formal-
ization of the knowledge is a definite asset that the clinical world requires (see
the European-based virtual physiological human project) for sharing and reusing
tools that are developed worldwide [11]. In addition, for internal development
requirement, the need for knowledge engineering in clinical and medical imaging
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(a) Ontological intensity constraints (b) Ontological intensity and geometry

constraints

Fig. 9. Query results

(a) Manual annotation (b) Low-level image annotation

(c) High-level image annotation (d) A zoomed-in area of the (c) image

Fig. 10. Detailed test image
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fields is gaining momentum in order to be able to share issues and experience be-
tween the various key players of the platform design, from the imaging researcher
to the clinician expert.

5 Conclusion

We experimented and made preliminary assessment of the articulation between
ontology-based platforms and image analysis engine in a field where images con-
tain a lot of complex, documented information, partly in the form of a mental
database acquired by experience over years of practice. We showed that formal-
izing the knowledge can lead to improvement of image analysis results both in
terms of specificity and sensibility of the pattern recognition system by involving
semantic reasoning procedures. The new amount of visual data available in fields
like satellite or bio-clinical imaging definitely calls for new paradigms whereupon
knowledge engineering and computer vision issues must cooperate for the end-
user benefits. In particular, digitized pathology is a growing market like digitized
radiology has been over the previous couple of decades but with more than ever
increased requirement for interoperability and expressiveness in the modeling
[12]. Ontology-driven and reasoning based software engineering should play a
key role for these new issues within the visual computing paradigm. In the next
phase of our research program, we will consolidate the spatial relation reasoning
part for the image analysis engine control.
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Abstract. Attribute-filtering, relying on the notion of component-tree, enables
to process grey-level images by taking into account high-level a priori knowl-
edge. Based on these notions, a method is proposed for automatic segmentation
of vascular structures from phase-contrast magnetic resonance angiography. Ex-
periments performed on 16 images and validations by comparison to results ob-
tained by two human experts emphasise the relevance of the method.

Keywords: vessel segmentation, mathematical morphology, component-trees, mag-
netic resonance angiography.

1 Introduction

For a long time, mathematical morphology has been involved in the design of vessel
segmentation methods1 by only considering low-level operators (see, e.g., [7,5]). The
ability of high-level operators to be efficiently considered for medical image processing
has been pointed out in recent works [6], especially in the context of vessel segmenta-
tion [12,16,1]. The usefulness of such mathematical morphology operators –including
those based on component-trees– is justified by their intrinsic capacity to model mor-
phological information, and then to enable anatomical knowledge-guided approaches.

The notion of component-tree [15,9,4] associates to a grey-level image a descrip-
tive data structure induced by the inclusion relation between the binary components
obtained at the successive level sets of the image. In particular, it has led to the devel-
opment of morphological operators [2,15].

Thanks to efforts devoted to its efficient computation [2,15,13], component-trees
have been considered for the design of various kinds of grey-level image processing
methods, including image filtering and segmentation [9,19,18], some of them being
devoted to the analysis of (bio)medical images: CT/MR angiography [21], confocal
microscopy [14], dermatological data [11]. Some of these methods are automatic, can
filter complex objects in 3-D images [21,14], or take into account complex anatomical
knowledge [11]. However none of them fuses all these virtues. The challenges to be
faced towards the development of efficient medical image segmentation methods based

1 A whole state of the art on vessel segmentation is beyond the scope of this article. The reader
may refer to [10] for a recent survey.

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 13–22, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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on component-trees then consists in simultaneously dealing with automation and com-
plexity requirements.

Based on advances related to the use of component-trees in this difficult context
[17,3], a method has been developed for the segmentation of phase-contrast magnetic
resonance angiography (PC-MRA). Indeed, such data –non invasive, non-irradiant, and
then harmless for the patients– are often considered in clinical routine, but generally
not in the literature devoted to vessel segmentation. The low SNR and resolution of
PC-MRAs however justify the use of segmentation methods in order to simplify their
analysis.

The remainder of this article is organised as follows. Section 2 provides background
notions on component-trees. Section 3 describes the proposed vessel segmentation
method. Section 4 provides experimental results and validations. Section 5 summarises
the contributions, and describes further works.

2 Component-Trees

Let I : E → V (we also note I ∈ VE) be a discrete grey-level image (with E ⊂ Zn and
V = [[a, b]] ⊂ Z), as illustrated in Fig. 1(a).

Let X ⊆ E be a binary image. The connected components of X are the equivalence
classes of X w.r.t. a chosen adjacency relation. The set of the connected components of
X is noted C[X].

Let v ∈ V . We set P(E) = {X ⊆ E}. Let Xv : VE → P(E) be the thresholding function
defined by Xv(I) = {x ∈ E | v ≤ I(x)} for all I : E → V (see Fig. 1(b–f)).

Let v ∈ V and X ⊆ E. We define the cylinder function CX,v : E → V by CX,v(x) = v
if x ∈ X and a otherwise. A discrete image I ∈ VE can then be expressed as I =
∨

v∈V
∨

X∈C[Xv(I)] CX,v, where
∨

is the pointwise supremum for the sets of functions.
Let K = ⋃v∈V C[Xv(I)]. The inclusion relation ⊆ is a partial order on K . Let v1 ≤

v2 ∈ V . Let B1, B2 ⊆ E be the binary images defined by Bk = Xvk (I) for k ∈ {1, 2}. Let
C2 ∈ C[B2] be a connected component of B2. Then, there exists a (unique) connected
component C1 ∈ C[B1] of B1 such that C2 ⊆ C1 (see Fig. 1(b–f)). In particular, we
necessarily have B2 ⊆ B1.

Based on these properties, is can be easily deduced that the Hasse diagram of the
partially ordered set (K ,⊆) is a tree (i.e., a connected acyclic graph), the root of which
is its supremum Xa(I) = E. This tree is called the component-tree of I (see Fig. 1(g)).

Definition 1 (Component-tree). Let I ∈ VE be a grey-level image. The component-
tree of I is the rooted tree (K , L,R) such that: K = ⋃v∈V C[Xv(I)] (namely the nodes);
R = sup(K ,⊆) = Xa(I) (namely the root); L (namely the set of edges) is composed of
all pairs (X, Y) ∈ K × K verifying (i) Y ⊂ X and (ii) ∀Z ∈ K , Y ⊆ Z ⊂ X ⇒ Y = Z.

In Fig. 1(g), K is the set of white rectangles, R is the one located at the highest level,
and L is visualised by the set of black lines (linking the elements of each pair).

Component-trees enable the storage, at each node, of attributes, i.e., elements of
information related to the binary connected components associated to the nodes. For
instance, in Fig. 1(g), the size of the connected component has been added at each cor-
responding node. In this (simple) example, the considered attribute is a single numerical
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Fig. 1. (a) A grey-level image I : [[0, 9]]2 → [[0, 4]]. (b–f) Threshold images Xv(I) (white points)
for v varying from 0 (b) to 4 (f). (g) The component-tree of I. Its levels correspond to increasing
thresholding values v. The root (v = 0) corresponds to the support (E = [[0, 9]]2) of the image.

value. It is however possible to consider any kinds of –quantitative or qualitative– at-
tributes, provided they can be conveniently modelled. It is also possible to store several
elements of information, no longer leading to scalar attributes but to vectorial ones [17].

3 Segmentation Method

The proposed method (summarised in the flowchart of Fig. 2) consists in (i) determining
the characteristic properties of the structures of interest (vessels) thanks to a supervised
learning process (Subsection 3.1), and (ii) using this knowledge to automatically pro-
cess images via their component-tree (Subsection 3.2).

3.1 Learning Process

This first step (see Fig. 2(a)) enables to extract from one (or possibly several) ground-
truth data (i.e., correctly segmented images) a set of characteristic parameters chosen
from a given set of criteria.

The learning step takes as input (i) a ground-truth image Ig ∈ VE , (ii) its segmentation
Bg ⊂ E, and (iii) a function A : P(E) → Ω, associating to each possible node of the
component-tree of Ig, a feature vector in the parameter space Ω induced by a chosen set
of criteria. It provides as output a subset ω ⊂ Ω of the parameter space, characterising
the nodes of the component-tree of Ig which enable to fit at best the segmentation Bg.

Let (K , L,R) be the component-tree of Ig. Let S = {⋃X∈C X}C⊆K be the set of all the
binary images which can be generated from the set of nodes K . We need to determine
the “best” binary image which may be computed from K w.r.t. Bg. This requires to
define a distance d on P(E) enabling to compare Bg and the binary images of S. The
best binary image B̂ can be set as B̂ = arg minB∈S{d(B, Bg)}. We define such a distance
d by d(B, Bg) = α.|B \ Bg| + (1 − α).|Bg \ B|, with α ∈ [0, 1]. It aims at finding a best
compromise (parametrised by α) between the amount of false positives/negatives of B
w.r.t. Bg.
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Fig. 2. Summary of the method (dark grey: processes; light grey: data). (a) Learning process. (b)
Segmentation process.

Based on these definitions, a minimal set B̂ can be extracted from S (in linear time
O(|K|)). Then, an adequate set of nodes K̂ ⊆ K associated to B̂ (i.e., such that

⋃
X∈K̂ X =

B̂) has to be determined. Let Ĉ = {X ∈ K | X ⊆ B̂} ⊆ K (note that the nodes of Ĉ gener-
ate a set of subtrees of the component-tree (K , L,R) of Ig). The set B̂ can be generated
by any set of nodes K̂ ⊆ Ĉ verifying

⋃
X∈K̂ X =

⋃
X∈Ĉ X = B̂. Two main strategies can be

considered: by setting K̂+ = Ĉ, any node included in B̂ is considered as a useful binary
connected component, while by setting K̂− = {X ∈ Ĉ | ∀Y ∈ Ĉ, X � Y}, only the roots
of the subtrees induced by Ĉ are considered as useful. The first (resp. second) strat-
egy is the one considering the largest (resp. smallest) possible set of nodes/connected
components among Ĉ.

Once a set of nodes K̂ has been defined, the determination of the subset of character-
ising knowledge ω ⊂ Ω has to be performed. The determination of ω can be expressed
as a clustering problem consisting in partitioning Ω into two classes thanks to the sam-
ples A(K̂) = {A(N)}N∈K̂ (corresponding to the attributes of the structures of interest)
and A(K \ Ĉ) = {A(N)}N∈K\Ĉ . This process can, for instance, be carried out by usual
classification tools, such as the Support Vector Machine (SVM) [20].

3.2 Segmentation Process

This second step (see Fig. 2(b)) enables to segment the structures of interest from an
image, based on the characterising properties modelled by the set of knowledgeω ⊂ Ω.
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(a) (b)

(c) (d)
(e)

Fig. 3. (a,b) Cerebral PC-MRA (this image has been used as ground-truth): (a) sagittal slice,
(b) maximum intensity projection. (c–e) Ground-truth segmentation of (a): vessels and artifacts
(Bv ∪ Ba) (c); vessels only (Bv) (d), 3-D visualisation of vessels (Bv) (e).

The segmentation step takes as input an image I ∈ VE and a subset ω ⊂ Ω character-
ising the structures to be segmented in I. It provides as output a segmentation B ⊆ E of
these structures of interest.

Let (K , L,R) be the component-tree of I. We define K f = {N ∈ K | A(N) ∈ ω}. The
setK f is composed of the nodes which satisfy the characterising properties modelled by
ω, and are then considered as the parts of the image to be preserved by the segmentation
process. We can finally reconstruct the segmentation result as B =

⋃
N∈K f

N.

4 Experiments and Results

4.1 PC-MRA Segmentation

The proposed methodology has been considered for the segmentation of cerebral PC-
MRAs. Such images (see Fig. 3(a,b)) are composed of three kinds of semantic elements:
low-intensity background, high-intensity artifacts and high-intensity vascular signal.

Input/Output. The method processes PC-MRA images I ∈ VE (with E = [[0, 255]]3

and V ⊂ N). The learning step requires a ground-truth image Ig ∈ VE (Fig. 3(a,b)), and
its segmentation Bv ⊂ E (vessels) and Ba ⊂ E (artifacts) (Fig. 3(c–e)). The segmentation
step provides as output a fuzzy segmentation S ∈ [0, 1]E of the vessels visualised in I.
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Multiscale Approach. In order to deal with the complexity of the structures of interest,
the segmentation method can be applied in a multiscale fashion. The image is then
processed as a collection of subimages obtained from an octree decomposition, thus
enabling to “break” complex structures into smaller –and easier to characterise– ones.
In order to improve the behaviour of the method at the border of these subimages, it
can be convenient to consider two shifted octree decompositions of the image. In such
a context, if the octrees have d levels, any point x ∈ E of the image belongs to 2d
subimages, the sizes of which vary from 2563 to (256/2d−1)3. (Note that this octree
decomposition also has to be considered in the learning step, resulting in a distinct set
ω for each one of the d subimage sizes.) This value 2d can be seen as a redundancy
factor of the multiscale segmentation method. In our case, the value d has been set to 4.

By opposition to the initially proposed strategy, the variant proposed here does not
provide a binary result B ⊆ E. Indeed, overlaps induced by multiscale and redundancy
may lead to ambiguous results for any point x ∈ E. A grey-scale segmentation S ∈ RE

can however be obtained by setting S (x) = s(x)/2d, where s(x) ∈ N is the number
of nodes which contain x (among the component-trees induced by the 2d subimages
where x appears) and which have been classified as being vascular. This segmentation S
(which can be assimilated to a fuzzy segmentation, although not normalised) provides,
for each point x ∈ E, a value which can be seen as a “vesselness” score.

Learning Step: Presegmentation. In order to perform the learning step, it is first
required to choose the best segmentation results w.r.t. the ground-truth segmentations Bv

and Ba and the distance d. Several results have then been computed, for various values
of α (which determines the authorised ratio between false positives/negatives) sampled
in [0, 1]. The most satisfying sets B̂v and B̂a have then been chosen by a human expert,
based on a visual analysis. (Note that in the current experiments, the corresponding
value of α was 0.9 for Bv and 0.4 for Ba.) The associated sets of nodes K̂v and K̂a

have been defined as K̂−v and K̂−a , respectively. Indeed, it has been chosen to give a
higher importance to the shape of the structures than to their grey-level profile (since
only the roots of the component-trees induced by the best segmentation results are then
considered, see Subsection 3.1).

Learning Step: Parameter Estimation. In order to determine a set ω characterising
the high-intensity vascular signal from the background noise and the high-intensity ar-
tifacts, a three class SVM classification has been applied on the component-trees of
Ig, using the parameter space Ω induced by the following attributes: moment of iner-
tia, flatness (computed from the eigenvalues of the inertia matrix of I), intensity, size,
volume (related to the grey-level profile of the image at the node), contrast (distance
between the node and the closest leaf in the component-tree), distance to the head (com-
puted thanks to the morphological image associated to I). Among these attributes, some
“simple” ones (e.g. intensity, size) are considered in order to enable the classification
between the background noise and the high intensity structures (vessels and artifacts),
while some more sophisticated ones (e.g. moment of inertia, flatness) are assumed to en-
able the discrimination between vessels and artifacts, since they are dedicated to shape
characterisation [8].



Attribute-Filtering and Knowledge Extraction for Vessel Segmentation 19

Segmentation Step. The obtained set ω ⊂ Ω has then been used to determine the
desired set of nodesKs(k, l) ⊆ K from each set of component-trees of I, for each octree
decomposition k = 1, 2, and at each level l = 1 to d. From these sets of nodes, it has
been possible to build a segmented grey-level image Is : E → R defined by

Is(x) =
1

2d

2∑

k=1

d∑

l=1

|Ks(k, l) ∩ {X | x ∈ X}| (1)

In particular, Is(x) = 0 (resp. � 0, resp.� 1) means that x never matches a vessel (resp.
matches at least once a vessel, resp. often matches a vessel) in the segmentation result.

4.2 Results

Technical Details. The method has been applied on a database composed of 17 PC-
MRAs (Philips Gyroscan NT/INTERA 1.0 T, TR = 10 ms, TE = 6.4 ms), of millimetric
resolution (see Fig. 3(a,b)). One image has been considered for the learning step (Ig)
while the other 16 ones have been considered for quantitative validations.

With a standard PC (Intel Quad Core i7 860, 4GB RAM), the average computation
time for the method is 3 min/image for the learning step (which only requires to be
carried out once), and 4 min/image for the segmentation step.

Validations. The 16 MRAs have also been interactively segmented by two human
experts. These results S 1

e , S
2
e ⊂ E are generally slightly different. Indeed, the mean of

the maximal sensitivity (resp. minimal sensitivity) between S 1
e and S 2

e is 87.2% (resp.
68.3%). This tends to mean that the accurate segmentation of such images (presenting
a very low SNR) is a complex and error-prone task, even for experts. Based on this
uncertainty, we set V = S 1

e∩S 2
e , V = E\(S 1

e∪S 2
e), and V? = (S 1

e\S 2
e)∪(S 2

e\S 1
e), assumed

to be the vascular, non-vascular, and ambiguous areas, according to these ground-truths.
For each MRA, let S ⊂ E be a visually satisfactory segmentation obtained from Is

(by interactive thresholding of Is, which requires only a few seconds; we provide in
Tab. 1 the threshold value λ such that S = Is(λ)). Let TP = |V ∩ S |, AP = |V? ∩ S |,
FP = |V ∩ S |, the true, ambiguous and false positives of S w.r.t. the ground-truth,
respectively. Let TN = |V \ S |, AN = |V? \ S |, FN = |V \ S |, the true, ambiguous
and false negatives of S w.r.t. the ground-truth, respectively. In the standard case (i.e.,
when V? = ∅), the formulae for sensitivity (Sen) and specificity (Spe) are given by
Sen = TP/(TP + FP) and Spe = TP/(TP + FN). Here, since V? � ∅, we can only
compute intervals [Sen−, Sen+], [Spe−, Spe+] ⊆ [0, 1] providing the potential sensitivity
and specificity values induced by the uncertainty on the ground-truth. The bounds of
these intervals are straightforwardly given by

Spe+ = (TP + AP)/(TP + FN + AP) (2)

Spe− = TP/(TP + FN + AN) (3)

Sen+ = (TP + AP)/(TP + FP + AP) (4)

Sen− = TP/(TP + FP + AP) (5)
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(a)

(b)

(c)

Fig. 4. (a) MRA (I) and (b) its grey-level segmentation (IS ) viewed as a MIP (line 15 in Table 1).
(c) Binary segmentation (S ) viewed as a 3-D object (line 11 in Table 1, λ = 40.3).

Table 1. Quantitative analysis of the segmentation results (see text)

λ Spe (%) Sen (%) d(S ,V) λ Spe (%) Sen (%) d(S ,V)
1 100 [49.3, 79.8] [77.6, 85.0] 2.8 ± 7.7 9 80 [39.9, 57.7] [75.8, 77.3] 2.0 ± 4.3
2 50 [51.7, 77.5] [80.4, 85.5] 1.5 ± 5.2 10 150 [38.8, 62.9] [63.7, 68.7] 3.8 ± 7.6
3 120 [47.7, 66.6] [79.3, 77.0] 4.0 ± 10.8 11 50 [48.7, 74.8] [80.6, 87.9] 1.7 ± 5.1
4 80 [46.8, 66.0] [88.5, 87.3] 1.8 ± 5.0 12 50 [43.2, 68.9] [83.1, 89.5] 1.6 ± 4.9
5 80 [33.3, 64.1] [83.3, 87.4] 2.3 ± 5.9 13 80 [33.9, 65.2] [62.9, 73.1] 4.8 ± 10.3
6 100 [34.6, 58.9] [86.4, 89.0] 3.6 ± 11.2 14 100 [35.7, 63.4] [71.2, 74.3] 2.5 ± 6.5
7 80 [28.5, 46.6] [71.2, 75.7] 2.1 ± 4.2 15 150 [36.6, 65.2] [67.1, 77.8] 2.7 ± 6.2
8 80 [43.3, 65.2] [68.4, 74.5] 3.5 ± 8.1 16 100 [36.0, 65.4] [62.1, 66.7] 5.5 ± 11.5
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From a quantitative point of view (see Tab. 1 for intervals [Sen−, Sen+], [Spe−, Spe+]
and mean point-to-set distance between S and V , in mm), the measures can appear as
low. If this can be partially explained by possible segmentation errors (the main errors
generally result from the loss of the smallest vessels, composed of small connected com-
ponents less accurately modelled by the considered attributes), it also results from the
quality of the ground-truths (which contain several errors, as aforementioned). More-
over, the proposed segmentations are grey-level ones (see Fig. 4(a,b)), which can be
thresholded to favour either sensitivity or specificity. The binary segmentation obtained
by such a thresholding (see Fig. 4(c)) also emphasises the ability of the method to pro-
vide qualitatively satisfactory results. Finally, one has to note that the experts provided
results in approximately one hour by using interactive tools, vs. a few minutes for the
method.

5 Conclusion

Based on the notion of component-tree, a method has been proposed for the segmenta-
tion of angiographic data. It takes advantage of a priori knowledge, thanks to a learning
process enabling to define characteristic properties of vessels. This knowledge is, in
particular, embeddable in the component-tree structure of the images to be processed.

The validations performed on phase-contrast images tend to emphasise the relevance
of the proposed methodology, in particular by comparison to segmentations performed
by human experts (from both qualitative and time-consumption points of view). It has
to be noticed that vessel segmentation method, although being fast and automated, how-
ever still presents a few weaknesses, especially in the detection of small vessels.

In order to improve its robustness, further works will focus on the following points:
(i) automatic choice of the pertinent parameters enabling to determine the Ω space (en-
abling to initially consider a larger set of potential parameters), (ii) incremental im-
provement of the learning process (by taking into account the segmentations performed
by the method) and (iii) use of parameters of high level (for instance shape descrip-
tors). Points (i) and (ii) will require to develop solutions to reinject the evaluation of
the segmentations in the learning/segmentation process, while point (iii) will require
to develop solutions to compute (or at least approximate) complex attributes with a
satisfactory algorithmic cost.
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Abstract. We have developed a new semi-automated method for seg-

menting images of biological cells seeded at low density on tissue culture

substrates, which we use to improve the generation of reference data for

the evaluation of automated segmentation algorithms. The method was

designed to mimic manual cell segmentation and is based on a model of

human visual perception. We demonstrate a need for automated meth-

ods to assist with the generation of reference data by comparing several

sets of masks from manually segmented cell images created by multi-

ple independent hand-selections of pixels that belong to cell edges. We

quantify the differences in these manually segmented masks and then

compare them with masks generated from our new segmentation method

which we use on cell images acquired to ensure very sharp, clear edges.

The resulting masks from 16 images contain 71 cells and show that our

semi-automated method for reference data generation locates cell edges

more consistently than manual segmentation alone and produces better

edge detection than other techniques like 5-means clustering and active

contour segmentation for our images.

1 Introduction

Optical microscopy is an important technique used in biological research to study
cellular structure and behavior. The use of fluorescence stains and other label-
ing reagents enables fluorescence microscopy by allowing cell components to be
clearly visible on a darker background [1]. The Cell Systems Science Group at
NIST has developed a high contrast cell body fluorescence staining technique
that highlights cell edges [2]. The cell morphology (i.e. spread area) can then be
measured and used to determine regions-of-interest (ROI) for quantifying other
fluorescent probes that report on cellular behavior. This technique is often com-
bined with automated microscopy which provides the ability to collect cell images
from a large number of fields in an unbiased fashion [3]. Data generated from
these images represent a sample of the distribution of responses from a cell pop-
ulation and provide a signature for that cell population. These distributions of
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copyright.
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responses are generated from individual cell measurements and provide informa-
tion about the noise processes that are inherent in biological mechanisms. This
information is critical for developing accurate biological mathematical models.

Automated segmentation routines are required to extract cell response data
from the large number of cell images typically acquired during a study. To en-
sure that segmentation routines are robust and accurate, their results can be
compared to reference data that invariably must come from expert manual seg-
mentation. However, manual cell edge detection (i.e. segmentation) cannot be
used to generate the large amount of reference data needed to thoroughly eval-
uate automated algorithms due to the tedious nature of the task. Although it is
well known that such hand-selection leads to some level of error, this error has
not been critically analyzed and the extent of the error has not been quantified.
Furthermore, because a certain amount of error is expected due to the tedious
nature of the task, a method more rigorous than one dependent upon the contin-
uous application of human attention and hand-eye coordination would eliminate
much of this error if it can be proven to be as just as effective. In this paper we
examine the differences between the two sets of manually segmented masks of
71 cells. We present an analysis of the differences between these data sets. We
then present our semi-automated method for computing reference data and com-
pare our results to manual segmentations. The data reveal the cell morphologies
most at risk of error during manual segmentation. Our results suggest that this
approach can be used to generate cell masks that are similar to the manually
segmented masks but appear to track the cell edges in a more consistent fashion.
As a result, human effort is shifted from the tedious manual identification of the
entire cell boundary to the correction of the automated identification of much
smaller regions of the cell boundary. This new technique is useful for generat-
ing reference quality data from a large number of images of cells seeded at low
density for high-quality comparison and analysis of segmentation algorithms.

2 Data Description

Images of two different cell lines whose cells differ in size and overall geometric
shape were prepared. These images consist of A10 rat smooth vascular muscle
cells and NIH3T3 mouse fibroblasts stained with a Texas Red cell body stain [1].
We examined 16 fixed cell images, 8 images from each cell line that represent the
variability observed in a culture. Each image is comprised of multiple individual
cells and cell clusters (typically less than 3 cells) that were treated as single
cells. Exposure times of 0.15 s for the A10 cells, and 0.3 s for the NIH3T3 cells
were used with Chroma Technology’s Texas Red filter set (Excitation 555/28,
#32295; dichroic beam splitter #84000; Emission 630/60, #41834).1 Three ex-
posure times were selected to produce a large intensity to background ratio and
1 Certain trade names are identified in this report only in order to specify the experi-

mental conditions used in obtaining the reported data. Mention of these products in

no way constitutes endorsement of them. Other manufacturers may have products

of equal or superior specifications.
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to produce a similar ratio for the two cell lines. Optimal filters and high exposure
conditions result in maximizing signal to background ratios and saturating the
central region of each cell. The sample preparation for this data is designed to
minimize ambiguity in segmentation. Example images of A10 cells and NIH3T3
cells are shown in Figure 1.

Fig. 1. Example images of A10 cells (left) and NIH3T3 cells (right) used to find refer-

ence data

Fig. 2. Comparisons of manual segmentations: A10 (left), NIH3T3 (right), zoomed in

on a few cells of each image of Figure 1, to show differences in hand selections of cell

edges

3 Manual Segmentation Procedure

For each of our 16 images, two individuals independently segmented the images
by hand using ImageJ [4]. Manual segmentation was performed as follows: Using
the zoom function for maximum resolution, the edges of cells are marked pixel by
pixel with the pencil tool set at width = 1. After the edge is manually selected a
hole filling routine creates the masks. Cells touching the border of an image are
disregarded. The estimation of the cell edges is different for each individual and
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depends on how a person sees and interprets the edge pixels. These differences are
visible when comparing the two sets of masks in Figure 2 and will be quantified
in the following section.

4 Comparison of Hand-Selected Data Sets

Various metrics have been used to evaluate segmentation algorithm performance.
The commonly used Jaccard similarity index [5], compares a reference mask T
(truth) with another mask E (estimate), and is defined as:

S = |T ∩ E|/|T ∪ E|, (1)

where 0.0 ≤ S ≤ 1.0. If an estimate matches the truth, T ∩ E = T ∪ E and S =
1. If an algorithm fails, then E = 0 and S = 0. However, S cannot discriminate
between certain underestimation and overestimation cases. For example, if the
true area = 1000, then both the underestimated area of 500, and the overesti-
mated area of 2000 yield the same value for the similarity index S = 500/1000
= 1000/2000 = 0.5. For our algorithm evaluation work we use a pair of bivariate
metrics that can distinguish between underestimation and overestimation.

We define these metrics as follows. To compare the reference mask T, with a
estimate mask E:

TET = |T ∩ E|/|T |, 0.0 ≤ TET ≤ 1.0 (2)

TEE = |T ∩ E|/|E|, 0.0 ≤ TEE ≤ 1.0 (3)

Each similarity metric varies between 0.0 and 1.0. If the estimate matches the
reference mask, both TET and TEE = 1.0. TET and TEE were designed to
be independent and orthogonal. This bivariate metric divides performance into
four regions: Dislocation: TET and TEE are small; Overestimation: TET is
large, TEE is small; Underestimation: TET is small, TEE is large; and Good:
both TET and TEE are large. Figure 3 shows a plot of TET vs. TEE for the
manually segmented 71 cells. On this plot, a perfect agreement between the two
sets of masks corresponds to a point on the plot at (1.0,1.0).

Figure 3 shows that the two hand-selected data sets agree better for the A10
cells than for the NIH3T3 cells. To identify edge features that may be responsible
for the reduced agreement between manual segmentation masks of the NIH3T3
cells, we use a metric which we call the extended edge neighborhood, outlined
more fully in an accompanying paper [6]. This metric describes the fraction of
cell pixels at the edge of the cell that are at risk for being selected differently
by a segmentation method. It is a product of the pixel intensity gradient at the
edge of a cell and the overall geometry of the cell. We use the pixel intensity
gradient at the cell edge to determine a physical edge thickness on the image,
and determine a band of pixels surrounding the cell within this band. The ratio
of the number of pixels in this band around the cell to the total number of cell
pixels describes the ratio of pixels at risk during segmentation. Briefly, the edge
thickness is determined by estimating the number of physical pixels on the image
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Fig. 3. TET vs. TEE for two manually segmented data sets, cell line 1 in blue, cell

line 2 in cyan

that represent a cell edge, calculated using a quality index (QI) calculation [7].
The quality index ranges from 0.0 to 2.0, with a perfectly sharp edge at a value
of 2.0. We define the thickness of a perfectly sharp edge to be equal to 1.0 pixel
unit, or in this case 2.0/QI, which is how we define the edge thickness in general:

Th = 2.0/QI (4)

We approximate the number of pixels at the edge by multiplying the edge thick-
ness, Th, by the cell perimeter, and then define our new metric, the ratio of
pixels at the edge to the total number of pixels, the extended edge neighborhood
(EEN), as:

EEN = (P × Th)/area (5)

The extended edge neighborhoods for all 71 cells are shown in Figure 4, where
again the A10 cells and NIH3T3 cells are plotted separately. Populations of cells
with a lower extended edge neighborhood value (A10 cells) correspond to the cells
where comparisons of manual segmentation results have lower variability. This
includes larger rounder cells, with a smaller perimeter-to-area ratio. The thin,
more spindly NIH3T3 cells, with a larger perimeter-to-area ratio, have higher
extended edge neighborhood values for cells with the same edge characteristics
as the A10 cells.

5 Selection of Reference Data for Segmentation
Comparison

Dependable reference data is needed to be able to compare segmentation meth-
ods. In order to develop a semi-automatic method to trace the cell edges that
mimics manual segmentation, we analyzed the pixel characteristics under the
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Fig. 4. Extended edge neighborhoods for the 71 cells in this study, A10 cells in blue,

NIH3T3 cells in cyan

human-generated outlines. We assume that a background pixel will be similar in
intensity to its surrounding background pixel neighbors, i.e. ratios of neighbor-
ing background pixel intensities should be close to 1.0. A larger difference will
exist between a background pixel value and an adjacent cell edge pixel; i.e., we
expect to find pixel intensity ratios well below 1.0. In the case of the fluorescent
microscopy images, the background has relatively low pixel intensities and the
pixels at the edge of the cells have higher intensities. A low ratio of neighboring
pixel intensities will thus imply that two pixels are very different and that the
higher intensity pixel might be an edge pixel.

Figure 5 shows an example of how we isolate background pixels to compare
neighboring pixel values. We use a 2-step process to eliminate all pixels from the
image that are not in the background. First, we threshold with a low value to
overestimate the cell edge, and thus include the entire cell, shown in Figure 5 on
the left. Then we dilate the edges so that the background pixels are completely
separated from the cells, shown on the right of Figure 5. Also shown are the
small clusters of brighter pixels that are also eliminated from the background.
Background pixels include all pixels outside of the blown up boundaries. For
each pixel intensity, u[j], we find the minimum value of the ratio of any neigh-
boring intensity u[j] to u[i], min(u[j]/u[i]). We use 8-pixel neighborhoods for the
ratio calculations. These ratio values, shown on the top row of Figure 6, are
consistently above 0.7 and are close to 1.0, as expected.

We now compare the plot of ratios from background pixels with a plot a
ratios collected from pixels selected as edge pixels in the manual segmentations.
Figure 7 shows the set of pixels marked in red that were used for the lower plot
of Figure 6. For the hand selected edge pixels, most of the minimum neighbor
ratio values are less than 0.7. Occasionally, pixels are selected by hand that do
not appear to align with the cell edge. These pixels will appear as a point on the
plot above the 0.7 level. This is due to the manually generated outlines not being
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consistent all over the edges. The inset of Figure 7 shows some pixels that were
outlined as part of the edge but the surrounding eight neighbors have similar
pixel intensities (ratio higher than 0.7).

Fig. 5. Edge detection by threshold (left), Dilated edges including cells that touch the

borders (right)

Fig. 6. Ratio between every background pixel from Figure 5 and its background pixel

neighbors on the left; Minimum of eight-neighbor-ratio for all edge pixels in the manual

outline on the right

Our localized ratio segmentation technique takes advantage of this intensity
difference at the cell edge. It is a very simple algorithm with only one parameter
(the threshold value for the minimum pixel ratio) and has a very fast execution
time. Our algorithm tests all pixels in the image with an intensity below a
certain threshold, including all background pixels and pixels at the cell edge and
inside the cell edge. The cutoff intensity we use is based on a 5-means clustering
segmentation. Five-means clustering consistently under-estimates the cell area,
as described in a paper currently in process [8]. To ensure that we include a
broad band of pixels around the cell edge, we use an upper cutoff value that is 1
standard deviation above the 5-means clustering lowest centroid value, assuming
that the lowest centroid represents the image background. The masks resulting
from our new method were surprisingly good at representing the actual cell
images, as we will show below.
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Fig. 7. Human manual outlines under study

There is much literature on the ability of the human visual system to discern
changes in brightness in the visual field. The method described here, where edge
pixels are identified by comparing ratios of neighboring pixel intensities, may be
related to the Weber-Fechner Law which describes human detectible intensity
changes over a background level. Our results suggest that manual segmentation
produces edges at pixels where an immediate neighboring pixel exists with an
intensity that is lower by a factor of approximately 0.7 or more and that our
method simulates some parts of the human visual system for identifying edge
pixels [9] [10] [11]. The algorithm for this technique that identifies edge pixels is
given in Appendix A. We describe our method as a semi-automated procedure
for two reasons. The first is that it is expected that for a given image set, a
human user would adjust the image properties, such as brightness and contrast,
of a few representative images to ensure concurrence between the segmentation
results and the perceived edges of the cells.

The second reason for calling this a semi-automatic technique is that the
resultant segmentation masks must be human verified to assure accuracy. This
verification, however, can be done much more rapidly than manual segmentation
and consists of a rapid visual inspection. Segmentations that do not pass visual
inspection can be discarded or manually edited. The intent is that our method
will be embedded within an overall human-supervised laboratory protocol that
generates reference data for evaluating fully automatic segmentation techniques
which would not need such human intervention.

6 Comparison of Individual Cell Masks

We compared the semi-automated reference masks with masks from manual
segmentation, using two sets of bivariate metrics. This allowed us to compare
our semi-automated results with the range of results from the hand-selected
masks. The first pair of bivariate metrics compares our method, set E, to the
intersection of the manual segmentation masks ∩Mi, for the manual sets, Mi:

TEE∩ = ∩Mi ∩ E/E (6)
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TET∩ = ∩Mi ∩ E/ ∩ Mi. (7)

The second pair of bivariate metrics compares the semi-automated data, E, to
the union of the manual segmentation masks, ∪Mi:

TEE∪ = ∪Mi ∩ E/E (8)

TET∪ = ∪Mi ∩ E/ ∪ Mi. (9)

These two sets of metrics serve to bracket the algorithm within the range of
manual segmentation variability. A segmentation mask should fall in the range of
the manual segmentations if it overestimates the intersection and underestimates
the union of these sets. This is the case, seen in the plots of TEE∩ vs TET∩
and TEE∪ vs. TET∪, shown in Figure 8. The results clearly show that the
semi-automated reference data lie within the bracket that represents the hand-
generated data. When masks from this new technique are compared with the
intersection of the hand-selected masks, the fraction TET∩ is close to 1.0, or
most of the pixels of the new mask are present in the intersection. When the
masks are compared with the union of the hand-selected sets, the fraction TEE∪
is close to 1.0, or most of the pixels in the new mask are present in the union of
the hand-selected masks.

Fig. 8. Results of comparing segmentation masks with both the intersection and the

union of the two manually segmented cells, for our local ratio-based method, for 5-

means clustering, and for active contours

We compare these results to a comparable analysis looking at the differences
between the hand-selected masks and a 5-means clustering segmentation of the
16 images. The results for this analysis are shown in Figure 8B. When the 5-
means clustering masks are compared with the intersection or with the union
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of the hand-selected masks, the fractions and are both close to 1.0, or most of
the pixels of the 5-means clustering masks are contained within the intersection
and within the union of these sets. The 5-means clustering masks are seen to
underestimate both the intersection and union of the two hand-selected sets,
whereas our semi-automatic method was larger than the intersection and smaller
than the union of the hand-selected sets. Our new method produced masks
that lie inside the bracket of hand-selected data, unlike the 5-means clustering
sets. We show the same type of analysis for masks created using a sparse field
active contour segmentation [12], which underestimate with respect to both the
intersection and union of the manually segmented masks.

Figure 9 also visually compares the segmentation of our new method with a
manual selection, the result of a 5-means clustering segmentation, and a segmen-
tation performed using a Canny edge method. By examining the small details
of each mask, the consistency of our new method is clear. The mask from the
Canny edge method fails to capture the hole seen in the upper left of the other
three masks. The bottom right section of cell edge is missing a segment in both
the 5-means and Canny edge masks. In the manually segmented cell edge, bright
pixels are clearly seen outside of the right border, while our new method consis-
tently selects pixels that appear to be on the edge.

Fig. 9. Comparison of four segmentations: A: our new method; B: manual segmenta-

tion; C: 5-means clustering; D: Canny edge detection

7 Conclusions

Evaluating algorithms for biological cell segmentation depends upon human cre-
ated reference data which is assumed to be close to the truth. Manually selecting
pixels for a reference image is a long and tedious process, and it is error prone for
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that reason. We have found that the expected precision in hand-selecting refer-
ence data varies both with the pixel intensity gradient at cell edges and with the
size and shape of the imaged cell. For large round cells, hand-selection is a fairly
repeatable process. For smaller, more spindly, cells with complex geometries, or
for any cell where the thickness of the cell edge is large and the clarity not sharp,
there can be large differences in hand-selected segmentation masks over repeated
assessments. For very small cells, for which the number of pixels near the edge
of the cell is a large fraction of the entire set of cell pixels, these differences can
be large enough to confuse and complicate the issues of segmentation analysis.

Manually generated reference data is too time-consuming to be used in large
scale segmentation studies. Our new semi-automated method for determining
reference masks from cells with very sharp edges consistently reproduces the
geometry expected by human observers and can be used to collect reference
data sets for large-scale segmentation algorithm performance studies. It relieves
much of the tedium of selecting individual edge pixels and makes more effective
use of human supervision in selecting reference data. The masks generated are
a better approximation to the hand-selected reference data than those created
using 5-means clustering.
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Appendix A: Matlab Code for Segmentation Algorithm

for j = 2:nb_columns-1
for i = 2:nb_rows-1
% if the pixel(i,j) is definitely a background pixel, skip it
if I2(i,j) < 6000, continue, end

% if pixel(i,j) is definitely a cell, fill it
if I2(i,j) > 10500, segmented_image(i,j) = 1; continue, end

% Check the 8 neighbors of pixel(i,j)
% if they meet the selected criterion.
% If one neighbor does ==> that pixel(i,j) is a cell pixel

if I2(i-1, j-1)* Ratio < I2(i,j), segmented_image(i,j) = 1;
continue, end

if I2(i, j-1)* Ratio < I2(i,j), segmented_image(i,j) = 1;
continue, end

if I2(i+1, j-1)* Ratio < I2(i,j), segmented_image(i,j) = 1;
continue, end

if I2(i-1, j)* Ratio < I2(i,j), segmented_image(i,j) = 1;
continue, end

if I2(i+1, j)* Ratio < I2(i,j), segmented_image(i,j) = 1;
continue, end

if I2(i-1, j+1)* Ratio < I2(i,j), segmented_image(i,j) = 1;
continue, end

if I2(i, j+1)* Ratio < I2(i,j), segmented_image(i,j) = 1;
continue, end

if I2(i+1, j+1)* Ratio < I2(i,j), segmented_image(i,j) = 1;
continue, end

end
end

http://www.shawnlankton.com/2008/04/active-contour-matlab-code-demo


A Non-rigid Multimodal Image Registration
Method Based on Particle Filter and Optical

Flow

Edgar Arce-Santana, Daniel U. Campos-Delgado, and Alfonso Alba

Facultad de Ciencias, Universidad Autónoma de San Luis Potośı,
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Abstract. Image Registration is a central task to many medical image

analysis applications. In this paper, we present a novel iterative algorithm

composed of two main steps: a global affine image registration based

on particle filter, and a local refinement obtained from a linear optical

flow approximation. The key idea is to iteratively apply these simple

and robust steps to efficiently solve complex non-rigid multimodal or

unimodal image registrations. Finally, we present a set of evaluation

experiments demonstrating the accuracy and applicability of the method

to medical images.

1 Introduction

One of the most important stages in medical image analysis is the registration
(alignment) of images obtained from different sources [1], [2]. For instance, image
registration is a common pre-processing stage during the development of atlases,
the analysis of multiple subjects, and the study of the evolution of certain dis-
eases or injuries. Generally speaking, image registration is the problem of finding
a geometrical transformation which aligns two images. Solutions to this problem
can be divided in two classes: rigid and non-rigid. Rigid image registration meth-
ods assume that a single global transformation is applied equally to each pixel
in the image, reducing the problem to finding only the few parameters which
describe the global transformation. While rigid or affine registration is widely
used, it presents serious drawbacks when one of the images shows complex de-
formations with respect to the other, for example, when both images belong
to different subjects. On the other hand, non-rigid (also called elastic) regis-
tration methods estimate a transformation for each pixel, incorporating only
weaker smoothness assumptions in order to make the problem well-posed. These
methods are more general than rigid methods; however, they are also more com-
putationally demanding, and difficult to implement and calibrate. An extensive
and comprehensive survey can be found in [3], [4].

Registration methods can also be classified as unimodal, where it is assumed
that pixel intensities between both images are similar, and multimodal, which

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 35–44, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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are capable of aligning images coming from different types of sensors (e.g., MRI
and PET), or with inhomogeneous illumination and contrast. The most popular
multimodal registration methods are based on the maximization of the mutual
information (MI) between both images, a method which was originally proposed
by Viola and Wells [5], and also by Collignon and Maes [6]. These mehods, how-
ever, were originally described for rigid transformations; hence, recent research
has mostly focused on multimodal elastic registration [7], [8], [9], [10]. Most of
these methods deal with two difficulties: (1) find a model for the joint probability
between both images (e.g., Parzen windows), which is required for the computa-
tion of the MI, and (2), propose an optimization algorithm (usually a complex
one) capable of dealing with the non-linearities of the MI when expressed in
terms of the joint probability model. Other approaches use landmarks and ra-
dial basis functions (RBF) to model local deformations as in [11], which require
to detect some characteristic as edges and evaluate RBF.

A recent work [12] proposes a very different approach for MI-based rigid reg-
istration methods: instead of modeling the MI with a differentiable function (so
that it can be optimized with continuous methods), a stochastic search is per-
formed, where the MI is simply seen as a measure of similarity for each solution
in a relatively large population. In this case, the authors employ a technique
called Particle Filter (PF), which is commonly used for parameter estimation in
dynamical systems. This new approach results in a simple yet robust method to
perform multimodal affine registration with great accuracy.

This work builds from [12] to present a new approach to solve the non-rigid
image registration problem. The key idea behind the proposed method lies in a
two-step iterative algorithm, where we first compute the global affine registration
between both images (using the PF approach), and then refine this transforma-
tion locally for each pixel using a very simple optical flow approximation. The
aligned candidate image is then used as the input candidate image in the fol-
lowing iteration until convergence is reached. This iterative process produces a
multi-stage algorithm where each stage is efficient, and easy to implement and
tune, yet powerful enough to achieve complex non-rigid unimodal and multi-
modal registrations. The paper is organized as follows: Section 2 describes the
methodology and some mathematical properties; Section 3 demonstrates the
methods through some experiments and results; and finally, in Section 4, our
conclusions are presented.

2 Methodology

This section describes the proposed algorithm in detail, and provides some math-
ematical insight about the convergence of the method. For the rest of this paper,
we will use the following notation: I1(x) and I2(x) are, respectively, the reference
and candidate images, both of which are observed in a finite rectangular lattice
L = {x = (x, y)}. For simplicity’s sake, we will only deal with the 2D case,
but the method can be easily extended to 3D volumes. The problem consists
in finding a smooth transformation field Tx that aligns I2 with I1, i.e., so that
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Ĩ2(x) = I1(x) where Ĩ2(x) = f(I2(Tx(x))), and f is an unknown tone transfer
function. Here we propose a solution based on a two-step iterative approach
where, at each iteration t, a high-precision affine registration technique is used
to find a global transformation matrix M (t), and then an efficient optical flow al-
gorithm is applied to refine the transformation locally for each pixel; specifically,
the desired transformation T

(t)
x is obtained as

T (t)
x (x) = M (t)x + v(t)(x), (1)

where v(t) is the optical flow field.
This method is generalized to the multimodal case by using Mutual Informa-

tion (MI) as similarity function during the affine registration stage. Once the
affine transformation is found, an adequate tone transfer function f (t) is ap-
plied to match the grayscale levels between both images, so that the optical flow
constraint holds.

Our method can be summarized in the following steps:

1. Let t = 0.
2. Initialize I

(0)
2 with the candidate image I2.

3. Find an affine transformation matrix M (t) that aligns I
(t)
2 with I1 using a

(possibly multimodal) affine registration method.
4. Estimate Î2(x) = I

(t)
2 (M (t)x) using, for instance, bicubic interpolation.

5. Find a pixel-wise tone transfer function f (t) that adequately maps gray levels
in I1 to their corresponding gray values in Î2. Let Ĩ2 = f(Î2).

6. Estimate the optical flow field v(t) between I1 and Ĩ2(x).
7. Obtain I

(t+1)
2 (x) as I

(t)
2 (M (t)x + v(t)(x)).

8. Increase t and go back to step 3 until a convergence criteria is met.

Steps 3, 5, and 6 are described below in more detail.

2.1 Algorithm Details

The key idea behind the proposed method is to efficiently perform a complex
elastic registration from simple and robust building blocks, which can be tested,
tuned, and optimized independently. Each particular block has been chosen to
achieve a good balance between simplicity, efficiency, and accuracy. Here we
discuss some of our particular choices.

Affine registration by particle filter: Registration methods based on MI
have proven to be very robust for both uni-modal and multi-modal applications.
One difficulty, however, is that the inherently non-linear definition of the MI
results in algorithms which often require complex optimization techniques which
are either computationally expensive (e.g., Markov Chain Monte Carlo (MCMC)
methods), or sensitive to the initial parameters (e.g., gradient descent methods).
A recent approach, introduced in [12], employs instead a stochastic search known
as Particle Filter (PF) [13] to estimate the optimal parameters of the affine
transformation. An overview of this algorithm is as follows:
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1. Generate a random initial population S1 = {s1
j} of Ns parameter vectors

(particles). We specifically use seven affine parameters: rotation angle, scal-
ing along X and Y, translation along X and Y, and shearing along X and
Y.

2. Let k = 1. Follow the next steps until convergence is met:
(a) For each particle sk

j ∈ Sk, compute the likelihood function γ(sk
j | I1, Î2),

which in this case is given by

γ(s | I1, Î2) =
1√
2πσ

exp

⎧⎪⎨
⎪⎩−

(
H(I1) − MI(I1, Î2)

)2

2σ2

⎫⎪⎬
⎪⎭ , (2)

where H(I1) is the entropy of I1, MI(I1, Î2) is the MI between I1 and
Î2, and Î2(x) = I2(Msx), with Ms the transformation matrix defined by
parameter vector s.

(b) Normalize the likelihoods to obtain the weights wk
j = γ(sk

j | I1, Î2)/Z,
where Z =

∑
j γ(sk

j | I1, Î2), so that
∑

j wk
j = 1. Note that wk can now

be seen as a distribution over Sk.
(c) Obtain an intermediate population Ŝk by resampling from population

Sk with distribution wk [13].
(d) Generate the next population Sk+1 by stochastically altering each par-

ticle in the intermediate population. In this case, each particle follows a
random walk profile given by:

sk+1
j = ŝk

j + νj j = 1, . . . , Ns, (3)

where ŝk
j ∈ Ŝk, and νj ∼ N (0, Σk); here, Σk is a diagonal matrix of

standard deviations of the noise applied to each parameter. To enforce
convergence, we apply simulated annealing to Σk by letting Σk+1 = βΣk

at each iteration with 0 < β < 1.
(e) Increase k.

3. Based on the normalized weights {wk} for the last population, obtain the
final parameter estimators s∗ as the population average: s∗ =

∑
j wk

j sk
j .

Some of the advantages of the PF approach are:(1) it allows complex and non-
linear likelihood functions to be used, without seriously affecting the complexity
of the method, (2) it is robust to its initial parameters, and (3) it can be easily
generalized to the 3D case.

Estimation of tonal transfer function: Once the global transformation ma-
trix M is known, optical flow can be used to refine the transformation at each
pixel in order to achieve an elastic registration. In the multi-modal case, however,
the brightness consistency constraint (also known as optical flow constraint) [14]
may be violated, preventing the optical flow algorithm to estimate the correct
displacements. To deal with this obstacle, one may choose an adequate tone
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transfer function f(i) to match the gray levels between image I1 and the regis-
tered candidate Î2(x) = I2(Mx). In particular, we compute f(i) as a maximum
likelihood estimator from the joint gray-level histogram of I1 and Î2, given by

hi,j =
∑
x∈L

δ (I1(x) − i) δ
(
Î2(x) − j

)
, (4)

where δ is the Kronecker delta function. The tone transfer function is thus com-
puted as

f(j) = argmax
i

p(I1(x) = i | Î2(x) = j) ≈ arg max
j

{hi,j}. (5)

Note, however, than in the unimodal case, it is possible that the estimated
transfer function differs significatively from the identity, introducing spurious
correlations which may affect the performance of the optical flow estimation
method. When the input data is known to be unimodal, we suggest to simply
use the identity function.

Optical flow estimation: Our approach for optical flow estimation is based
on a discrete reformulation of the classical Horn-Schunck method [14]. Consider
a first order Taylor expansion of Ĩ2(x + v(x)) around x:

Ĩ2(x + v(x)) ≈ Ĩ2(x) + ∇xĨ2(x)v′(x), (6)

where v′ denotes the transpose of v, so that one can write the optical flow
constrain as

I1(x) = Ĩ2(x) + ∇xĨ2(x)v′(x). (7)

Equation 7 is ill-posed; therefore, additional regularization constraints must be
introduced to obtain a unique solution. Both constraints are typically expressed
by means of an energy function U(v) that must be minimized. For efficiency
reasons, we chose a quadratic penalty function for both constraints, so that
U(v) is given by

U(v) =
∑
x∈L

∥∥∥∇xĨ2(x)v′(x) + Ĩ2(x) − I1(x)
∥∥∥2

+ λ
∑

<x,y>

‖v(y) − v(x)‖2 , (8)

where the sum in the second term ranges over all nearest-neighbor sites < x,y >
in L, and λ is a regularization parameter which controls the smoothness of the
resulting flow field. The gradient in the first term is computed by applying an
isotropic Gaussian filter to Î2 and computing the symmetric derivatives with the
kernel (0.5, 0,−0.5).

Since U(v) is quadratic in the unknowns, it can be solved very efficiently by
the Gauss-Seidel method [15].
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2.2 Mathematical Properties of the Problem Formulation

In general, from its proposed formulation, the nonlinear transformation field Tx

that aligns I2 with I1 is sought under the following optimality condition

max
Tx

MI (I1(x), I2(Tx(x))) . (9)

This previous formulation has important robustness properties and capability
to handle multimodal registration. However, the optimization problem in (9) is
highly nonlinear and its solution involves a complex multivariable search. Hence,
as it was mentioned at the beginning of this section, the transformation field Tx

is assumed with the special structure in (1). Furthermore, it is considered that
the optical flow field v(t) can be represented as a linear combination of unknown
vector fields v̂(j) j = 1, . . . , N , i.e.

v(t)(x) =
N∑

j=1

αj v̂(j)(x) αj ∈ R, ∀j. (10)

Therefore, in order to solve (9), an iterative algorithm is proposed to construct
T

(t)
x :

T (t)
x (x) = M(t)T (t−1)

x (x) + v(t)(x) t = 1, 2, . . . (11)

Let us assume that T
(−1)
x (x) = x, then it is satisfied in the iterative process

T (1)
x (x) = M(1)x + v(1)(x) (12)

T (2)
x (x) = M(2)T (1)

x (x) + v(2)(x) (13)
...

T (t)
x (x) =

⎡
⎣ t∏

j=1

M(t−j+1)

⎤
⎦

︸ ︷︷ ︸
M(t)

x +
t∑

j=1

[
t−j∏
i=1

M(t−i+1)

]
v(j)(x)

︸ ︷︷ ︸
αj(t)v̂(j)(x)

(14)

where
∏b

i=a M(i) = M(b)M(b−1) · · ·M(a) for a ≤ b, and
∏b

i=a M(i) = I for
a > b. Therefore, at t-th iteration, the resulting transformation field T

(t)
x (x) has

the structure highlighted in (1) and (10). In addition, note that the iterative
construction of Tx(x) in (11) can be interpreted as the response of a linear time-
varying system under the input vector field v(t)(x). Consequently, in order to
guarantee the convergence (stable response) of (11) [16], it is sufficient to satisfy

M(t) → I & v(t) → 0, as t → ∞ (15)

where I denotes the identity matrix and 0 the zero matrix, in order to guarantee

‖M(t)‖ ≤ γ ∀t (16)
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and γ > 0. Therefore, we may define as convergence conditions:

‖M(t) − I‖ < ε1 & ‖v(t)(x)‖ < ε2, (17)

given ε1, ε2 > 0.
Hence the proposed algorithm suggests to solve iteratively the two-stage op-

timization problems:

I.- The rigid transformation M(t) through the optimization process

J
(t)
1 = max

M(t)
MI
(
I1(x), I2

(
M(t)T (t−1)

x (x)
))

. (18)

II.- And the linear optical flow v(t)(x) by the following minimization problem

J
(t)
2 = min

v(t)(x)

∑
x∈L

∥∥∥∇xĨ2

(
M(t)T (t−1)

x (x)
)

v
′(t)(x) + Ĩ2(M(t)T (t−1)

x (x))−

I1(x)‖2 + λ
∑

<x,y>

∥∥∥v(t)(y) − v(t)(x)
∥∥∥2

. (19)

Note that if {J (t)
1 } and {J (t)

2 } represent increasing and decreasing convergent
sequences with respect to t, respectively, then conditions in (15) will be satisfied,
since there is a continuity property of the parameters of T

(t)
x (x) with respect to

the cost functions in the optimization processes.
Assume that the iterative algorithm stops at t = N , then the optimal (locally)

transformation is given by

T ∗
x(x) = M∗x + v∗(x) (20)

where

M∗ =
N∏

j=1

M(N−j+1) (21)

v∗(x) =
N∑

j=1

[
N−j∏
i=1

M(N−i+1)

]
v(j)(x), (22)

which are carried out by the method proposed here.

3 Results

In this section, we present two different kinds of results. The first one corresponds
to the registration of images having similar gray values, so that the transfer
function f(.) (see Section 2) is the identity. These kinds of experiments are
important in the medical field, since for example tumors or vital organs may be
monitored. Rows in Fig. 1 show a set of TC-images, these rows correspond to the
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Fig. 1. Chest TC-images: A) Reference Image; B) Moving Image; C) Superimposed

Non-registered Images; D) Superimposed Registered Images

Fig. 2. Superimposed image registration: I.A) MRI-images before registration; I.B)

MRI-images after registration; II.A) T1-GdDTPA and T2-images before registration;

II.A) T1-GdDTPA and T2-images after registration

axial, sagittal, and coronal views from the chest of the same subject. The images
in column A) are the reference; meanwhile, column B) shows the moving images.
The difference between these two columns corresponds to posture and breathing
in two different intervals of time. We can see in the superimposed images in
column C) the difference between the images to register; the reference image is
displayed using the red channel, while the moving image uses the green channel;
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therefore, those pixels where the images coincide should look yellow. Column D)
shows the non-rigid image registration obtained by the proposed method. Notice
how some structures have been deformed in order to achieve a good matching,
reducing the pixels in red or green, and incrementing the matching pixels in
yellow explained by a good elastic registration; the image size (in pixels) for the
axial, sagittal, and coronal views are respectively 247 × 242, 268 × 242, and 268
× 244; and the registration times were 214, 231, and 231 seconds. All the these
experiments were performed on a PC running at 3.06 GHz.

The following set of experiments concern to the case of multimodal image
registration. Panel I in Fig. 2 shows the registration of anatomical (spin-echo)
MRI images of two different subjects; observe how the different structures in
the center of the Fig. 2-I.A) are aligned after the registration (2-I.B)). Similar
results are shown in Panel II in Fig 2, which corresponds to the alignment of a
T1-weighted MRI-image, with a contrast agent (gadolinium diethylene triamine
pentaacetic acid), with a T2-weighted image from the same subject.

In all the experiments described above , we used the same set of parameters;
the values of the main parameters are defined in Table 1.

Table 1. Main parameter values of the non-rigid registration algorithm

Particle Filter

Particles Likelihood-σ PF-Iterations Displacement-σ Angle-σ Scale-σ Shearing-σ

200 H(I1)/6 150 2 0.2 0.02 0.02

Optical Flow

Iterations λ Smoothing-σ

200 2000 0.5

4 Conclusions

We presented a new iterative algorithm which is mainly based on two building
blocks: 1) a global affine registration, and 2) a linear optical flow. The key idea
behind this approach is to efficiently perform a complex elastic registration from
these simple and robust building blocks. The affine registration was carried out
by an accurate algorithm based on the particle filter [12], meanwhile the sec-
ond block can be solved very efficiently by a Gauss-Seidel method. We provided
the mathematical properties which support the problem formulation, and estab-
lish some convergence conditions. Finally, we presented experiments where the
algorithm proved to be efficient, and accurate to estimate complex 2D elastic
unimodal and multimodal registrations.

Acknowledgements. This work was supported by grant PROMEP/UASLP/-
10/CA06.
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Abstract. In neurobiology, morphological change of neuronal structures such 
as dendrites and spines is important for understanding of brain functions or 
neuro-degenerative diseases. Especially, morphological changes of branching 
patterns of dendrites and volumetric spine structure is related to cognitive func-
tions such as experienced-based learning, attention, and memory. To quantify 
their morphologies, we use confocal microscopy images which enables us to 
observe cellular structure with high resolution and three-dimensionally. How-
ever, the image resolution and field of view of microscopy is inversely propor-
tional to the field of view (FOV) we cannot capture the whole structure of  
dendrite at on image. Therefore we combine partially obtained several images 
into a large image using image stitching techniques. To fine the overlapping re-
gion of adjacent images we use Fourier transform based phase correlation 
method. Then, we applied intensity blending algorithm to remove uneven inten-
sity distribution and seam artifact at image boundaries which is coming from 
optical characteristics of microscopy. Finally, based on the integrated image we 
measure the morphology of dendrites from the center of cell to end of each 
branch. And geometrical characteristics of spine such as area, location, perime-
ter, and roundness, etc. are also quantified. Proposed method is fully automatic 
and provides accurate analysis of both local and global structural variations of 
neuron. 

1   Introduction 

Morphological analysis of neurons is not only important for studying the normal de-
velopment of brain functions, but also for observing neuropathological changes. 
Therefore considerable attempts have been made to identify and quantify neural 
changes at a cellular level. However, to date, most biologists in the neuroscience field 
still use semi-automatic methods to identify and quantify neural changes. Even in the 
recent studies conducted in the field of cellular biology [1, 2], quantification of  
dendrite was carried out manually. In [1], a clear acetate sheet with concentric rings, 
                                                           
* Corresponding author. 
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was placed over the printed datasets; it was oriented such that the cell soma and the 
innermost rings, were aligned over each other. The points of intersection between the 
dendritic branches and the concentric circles (60 µm apart) were used to identify  
the number of dendritic segments.  

In neuroscience, dendrites and spines are the most frequently observed structures in 
a neuronal cell. Dendrites are the tree-like structure and they grow up to several mi-
crometers in length. Spines are small protrusions formed on the surface of a dendrite. 
They are smaller in size than dendrites, with their head volume ranging from 0.01 to 
0.8 µm. Therefore high sampling rate and magnification are required to capture them. 
However, it is found that the field of view (FOV) decreases with an increase in the 
optical magnification. Therefore to get a complete view of a specimen, a number of 
image tiles are acquired and they are then reconstructed into one large image. This 
image combining technique is called tiling, mosaicing, or stitching.  

Previously developed techniques or existing software for image mosaicing were 
mostly focused on stitching of 2D photographs for panorama image generation never-
theless of increasing need for 3D image stitching. Furthermore these skills were used 
to correct perspective and lens distortion concerning high-order transformation mod-
els [5]. In case of microscopic images, however, optics is mechanically fixed on 
equipment and there is no need to correct lens distortion or scale transformation. 
Rather, due to the optical characteristics, intensity attenuation problem should be 
concerned which intensity signal weakens along depth. It is not feasible to simply 
apply 2D photograph stitching techniques because of the several reasons mentioned 
above. Non-commercial software VIAS (Volume Integration and Alignment System) 
creates a single volume from multiple image volumes,; however, in uses olnly the 
projected images along the X-, Y- and Z-axes to deal with 3D volume images. This 
makes the stitching procedure fast but provides erroneous results. Moreover a user 
manually positions adjacent images to approximate alignment, and then, an auto-
alignment process is applied for fine-tuning. This procedure can lead an increase in 
the number of intra-, and inter-observer variability errors. With HCA-vision local 
information can be missing because of the application of the binarization process 
before mosaicing.  

 

Fig. 1. Structure of Hippocampal Neuron: Tree-like dendrites and dendritic spines 
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In this paper, we explain the manner in which several images can be integrated into 
one large mosaic image; we also describe an automatic quantification method for 
analyzing the morphology of dendrites and spines.  

2   Deformable-Model-Based Segmentation of Dendritic Spines 

2.1   Phase-Correlation-Based Image Stitching 

We assume that all the image tiles to be stitched overlap each other, and we only 
consider the translation transform between them because they are acquired only mov-
ing the microscope stage horizontally. To compute translational offsets between  
images we use the Fourier transform based phase correlation method.  

Applying the phase correlation method to a pair of images produces image which 
contains a single peak. The location of this peak corresponds to the relative shift be-
tween the images.  

Real images, however, contain several peaks indicating different translational off-
sets with high correlation. Moreover, each peak describes many possible translations 
due to the periodicity of the Fourier space. To determine the correct shift, we select 
the n highest local maxima from the inverse Fourier transform and evaluate their 
possible translations by means of cross correlation on the overlapping area of the 
images. Then, the peak with the highest correlation is selected to indicate the  transla-
tion between two images.  

When two images ( , )aI x y , and ( , )bI x y are given and they are related by trans-

lational transform about a horizontally and b vertically, the result of the Fourier trans-
form is denoted as ( , )A u v ,and ( , )B u v , respectively, and their relationship is  

expressed as { }( , ) ( , ) exp ( )B u v A u v i au bv= − +  as follows:   

Then phase correlation matrix is computed (eq.1)   

*

*

( , ) ( , )
( , )

( , ) ( , )

A u v B u v
Q u v

A u v B u v
=                                             (1)  

( , ) ( , )Q x y x a y bδ= − −                                              (2)  

It is theoretically represented by a single peak whose location defines the correct 
translation vector between the images. Phase correlation uses the fast Fourier trans-
form to compute the cross-correlation between the two images, generally resulting in 
large performance gains. Applying the phase correlation method to a pair of images 
produces an image that contains a single peak. The location of this peak corresponds 
to the relative translation between the two images. Translational shift in the image 
domain corresponds to linear phase change in the Fourier domain. 

2.2   Intensity Blending on Image Boundaries  

Even after tiling, images have uneven intensity distributions, shading, and seam arti-
facts in overlapping regions, because confocal microscopy uses an optical source. 
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Therefore, to compensate for the brightness difference between tiles, we apply an 
intensity blending technique to all overlapping areas of adjacent tiles. The simplest 
way to achieve this compensation is to average the intensity values in the transition 
zone. However, this produces a blurred result. Therefore, we use an inverse-weighted 
blending method. This method involves the use of an exponentially weighted factor 
that is determined on the basis of the distance of the current pixel coordinate from its 
own tile boundary. On the basis of the distance from the pixel position, we create a 
weighting map for each tile that has high influence on the central pixels and no influ-
ence on the pixels at the edge of the image.  

3   Quantitative Analysis of Dendritic Arbor, Spine Density and 
Spine Morphology  

Using an integrated stitching image, we construct a dendrogram which is a graphical 
structure of dendrite networks by analyzing the branching features of dendrites. Then, 
in magnified mosaic image, we measure various shape features of spines, such as their 
area, diameter, perimeter, and length, etc. and we classify them into three categories.  

The structure of both the neuron backbone and the dendritic spines show that they 
exhibit synaptic and neurological functions [10, 11]. For example, the dendrogram 
increases in size and exhibits a complicated structure when neural signal transmission 
is active and vice-versa. Furthermore, morphological changes in the spine are key 
indicators of brain activities; for example, the spine transforms into a mushroom 
shape when it transmit a synaptic signal.  

3.1   Graph Reconstruction of Dendrite Networks 

For measuring the neuronal growth rate, we construct a graph model to concisely 
capture the neuron geometry and topology for a dendrite and quantify the morphology 
of a single spine. Dendrites are tree-like structures that are represented in terms of 
their total length and the total number of branches they contain. First, we apply un-
sharp mask filtering [12] to enhance the boundary of the images, because the optical 
source of fluorescence microscope causes blurred artifacts and uneven intensity dis-
tributions. Then we convert the filtered image to a binary one using a local adaptive 
thresholding method. On this binary image, we extract the skeleton of a dendrite area 
by applying a thinning method. After extracting the skeleton of the dendrite area we 
construct a tree-like graph structure. We simply identify each skeletal point as a 
branch point, end point, and other skeletal points by analyzing 26 neighboring voxels. 
A branch point is defined a point that has more than three neighbouring skeletal 
points; and end point is defined as a voxel with only one neighbouring point. Each 
end point and branching point of a dendrite are assigned to a graph node. This graph 
model is called a dendrogram; it is used to analyze the structure of the neuron back-
bone. The neuronal growth is expressed in terms of the dendritic length and the total 
number of branches using the dendrogram.  
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3.2   Quantitative Representation of Single Spine Profile and Its Classification 

Once the dendrites are detected in the previous step, we distinguish spines from them. 
To extract the boundaries of the spines, we use a deformable-model-based segmenta-
tion approach. The end points of each branch are used as seed points to generate the 
initial curve, which then evolves using a geodesic active contour method.  

However, it is difficult to separate the individual spine are when spines are either 
too close or they overlap each other. We apply a watershed algorithm to overcome 
this difficulty; this algorithm is efficient in separating or merging adjacent objects. 
Then, each spine is represented quantitatively with various morphological features 
such as area, location, perimeter, roundness (shape factor), and spine length. Using 
these parameters, we can classify spines into three general types, namely, thin-, stub-
by-, and mushroom-shaped spines.  

For each spine, we compute the following features:  
 
 Area: The number of pixels in the object. To calculate the area of object i, we 

use the connected component labeling method. Connected components label-
ing scans an image and groups its pixels into components based on pixel  
connectivity 

 Location: The X, Y coordinates of the geometric center of mass of the spine. 
The center of mass is represented by a relation of area size and first moments 
of object. 

     

i
i

i

M
L

A
= , where iM is first moments of area iA of object i. 

 Perimeter: The length of the boundary of the object. Chain coding is used to 
follow the outer edge of the object. It follows the contour in a clockwise man-
ner and keeps track of the directions as it goes from one contour pixel to the 
next. 

 Roundness (shape factor): The ratio of the area of the shape to the area of a 
circle having the same perimeter. For a circle, the ratio is one; for an infinitely 
long and narrow shape, it is zero. 

2

4 i
i

i

A
R

P

π ×= , where iA is the area and iP  is the perimeter of object i. 

 Spine length: For continuous skeletons, the spine length can be measured by 
counting the number of pixels between each endpoint and branch point. For 
discontinuous skeletons, the endpoint of the branch is extracted and then 
tracked along the branch. If the branch is connected to the backbone, then the 
number of pixels from endpoint to the branch point will be calculated. When 
the branch point cannot be identified because the skeletons are discontinuous, 
spine length is calculated as the distance between the endpoint and backbone 
(Fig 2). 
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                           (a)                                                 (b) 

 
(c)                                                  (d) 

Fig. 2. Spine length calculation; (a) and (b) are images of the skeleton of dendrites and spines: 
(a) when all skeletons are connected, (b) spine’s skeleton is unconnected, (c) and (d) illustrate 
the calculation methods of spine length for each case 

Finally, we classified spines into three general types: thin, stubby, and mushroom 
using following method.  

 

Fig. 3. Flowchart of spine pattern classification 
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4   Experimental Results 

The cells used in this study are dendritic spines in a hippocampal neuron of CA1 in an 
E18 rat. Images of the neurons were labeled with green fluorescent protein (GFP) and 
obtained with an Olympus IX-71 inverted microscope with a 60x 1.4 N.A. oil lens 
using a CoolSNAP-Hq CCD camera. We used 8 data sets for the experiments, each 
consisting of 7 or more partially overlapping image tiles approximately 512 
× 512× 24 voxels at a resolution of 0.21× 0.21× 1.0 µm.  
 

 
(a)  

 
(b) 

Fig. 4. Acquired images and stitching result  

 

Fig. 5. Stitching Results and magnified view on image boundary 
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To validate stitching accuracy we observe image boundaries of integrated image. 
As shown in Fig. 5. dendrite branches and spines are all well connected.  

 

 

 

Fig. 6. Dendrogram and result of spine classification in ROI (purple rectangle) 

Table 1. Dendrom Analysis 

Total branch Numbers Dendritic length  (µm) Density 
(the number of spines/µm) 

121 18 9 

Table 2. Single Spine’s Morphological Analysis  

Area 

(µm
2
)  

Diameter 
(µm)  

Perimeter 
(µm)  

Roundness  
Length 
(µm) 

Class  

0.3 0.08 1.3 0.4 1.5 thin 

5   Conclusion and Future Works  

We have developed an automated image stitching and neuronal morphology analysis 
technique. We merged several partial microscopic images into one large integrated 
image and quantified the branching pattern of dendrites and the morphological char-
acteristics of each spine. Using the proposed technique, we widened the field of view 
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to capture the entire structure of a neuron, from soma to its branch tips. This makes it 
possible to carry out a follow-up study of live neurons from their genesis. We also 
provided the quantitative morphological characteristics of spines located in every 
dendritic branch. Simultaneous observation of the branching pattern of a neuron and 
the spines’ shape is beneficial to neurobiologists who study mechanisms of cognitive 
function or development of neurodegenerative diseases. Thus far, our method was 
applied to control data so that the shapes of the spines did not change dynamically. In 
future, we intend to use cells with various simulations such as electrical stimulation or 
drugs that speed up or regress the growth of neuron.  
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Abstract. With a greater number of real-time graphics applications

moving over to parametric surfaces from the polygonal domain, there

is an inherent need to address various rendering bottlenecks that could

hamper the move. Scaling the polygon count over various hardware plat-

forms becomes an important factor. Much control is needed over the

tessellation levels, either imposed by the hardware limitations or by the

application. Developers like to create applications that run on various

platforms without having to switch between polygonal and paramet-

ric versions to satisfy the limitations. In this paper, we present SD-2

(Semi-uniform, 2-Different), an adaptive tessellation algorithm for trian-

gular parametric surfaces. The algorithm produces well distributed and

semi-uniformly shaped triangles as a result of the tessellation. The SD-2

pattern requires new approaches for determining the edge tessellation

factors, which can be fractional and change continuously depending on

view parameters. The factors are then used to steer the tessellation of

the parametric surface into a collection of triangle strips in a single pass.

We compare the tessellation results in terms of GPU performance and

surface quality by implementing SD-2 on PN patches.

1 Introduction

Rendering of parametric surfaces has a long history [1]. Early approaches consist
of direct scanline rasterization of the parametric surface [2]. Modern GPUs have
the ability to transform, light, rasterize surfaces composed of primitives like
triangles and more recently also to tessellate them. Tessellation in particular
can save bus bandwidth for rendering complex smooth surfaces on the GPU.

The proposed triangle tessellation approaches can be distinguished either by
the hardware stage they employ or by the geometric tessellation pattern. Ap-
proaches originating from triangular subdivision surfaces use a 1-to-4 split of the
triangle, as seen in [3] and [4]. For greater flexibility of the refinement, factors
are assigned to the edges of each triangle, which results in three different tes-
sellation factors for an arbitrary triangle. Tessellation patterns for this general
case go back to several authors after [5], for example, in [6] optimized for a hard-
ware implementation, and in [7] for a fast CUDA implementation. Fractional
tessellation factors target the discontinuity problems with integer factors during

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 54–63, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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animations, whose abrupt changes are visible in the shading and other interpo-
lated attributes. With fractional tessellation factors and a tessellation pattern
continuously depending on them, the changes are less abrupt with the view.

The interior patch is tessellated uniformly with one of the tessellation factors
and the two other edges have to be connected accordingly. This can be achieved
by a gap-filling strip of certain width, see Figure 1. We call this process as
stitching the gaps.

4

1

2

1

88

Fig. 1. Gap-filling strips connect the two border curves resulting from different tessel-

lation factors [7]

Shading artifacts can be visible as the tessellation is strictly regular in the
interior part and highly irregular in the strips. This can be mitigated by choosing
not too different tessellation factors. Also the recently presented DirectX 11
graphics system [8] contains a tessellation stage with a tessellator for triangular
and quadrangular domains, steered by edge and interior fractional tessellation
factors. The tessellator’s architecture is proprietary though.

Non-uniform, fractional tessellation [9] adds reverse projection to the evalua-
tion of the tessellation pattern to make it non-uniform in parameter-space but
more uniform in screen-space.

In a recent work, [10] keeps a uniform tessellation pattern and snaps missing
vertices on the border curve to one of the existing vertices at the smaller tessella-
tion factor. This is a systematic way to implement gap-filling but it is restricted
to power-of-two tessellation factors and 1-to-4 splits of the parameter domain.
Figure 2 gives an illustration of the uniform tessellations with snapped points
in black. For largely different tessellation factors, the resulting pattern can be
quite irregular.

In this work, we restrict the edge tessellation factors in such a way that only
two different tessellation factors can occur in each triangle. For such cases, a
tessellation pattern can be used, which is much simpler and more regular than
in the three different case (Section 3). The tessellation code can output the
resulting triangles as triangle strips, which makes this approach also suitable
for an inside hardware implementation. We will demonstrate this advantage by
implementing the pattern in a geometry shader (Section 3.3). In Section 3.2,
we analyze which assignments are possible with two different factors and show
that many important cases are contained, i.e., factors based on the distance to
the camera eye plane and to the silhouette plane. We show visual results and
GPU metrics obtained with our implementation in Section 4. Finally, we give
conclusions and future work in Section 5.
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4
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Fig. 2. Semi-uniform tessellation by snapping edges of larger tessellation factor (black

points) to the nearest point of the smaller tessellation factor [10]

2 Locally Defined Triangular Parametric Surfaces

Vlachos et al. [11] propose curved PN triangles for interpolating a triangle mesh
by a parametric, piecewise cubic surface. This established technique generates
a C0-continuous surface, which stays close to the triangle mesh and thus avoids
self-interference.

A parametric triangular patch in Bézier form is defined by

p(u, v, w) =
∑

i+j+k=n

n!
i!j!k!

uivjwkbijk (1)

where bijk are the control points of the Bézier triangle and (u, v, w = 1− u− v)
are the barycentric coordinates with respect to the triangle [12]. Setting n = 3
gives a cubic Bézier triangle as used in the following construction.

At first, the PN scheme places the intermediate control points bijk at the po-
sitions (ib300 + jb030 + kb003)/3, i + j + k = 3, leaving the three corner points
unchanged. Then, each bijk on the border is constructed by projecting the in-
termediate control point bijk into the plane defined by the nearest corner point
and its normal.

Finally, the central control point b111 is constructed moving the point b111

halfway in the direction m−b111 where m is the average of the six control points
computed on the borders as described above. The construction uses only data
local to each triangle: the three triangle vertices and its normals. This makes it
especially suitable for a triangle rendering pipeline.

3 Semi-uniform, 2-Different Tessellation

Semi-uniform 2-Different (SD-2) is our proposed pattern for adaptive tessellation
where the tessellation factors on the three edges of a triangle are either all
same or only two different values occur. As parametric triangular surfaces are
composed of patches, it is necessary to do a tessellation of patches. In order to
change the tessellation based on various criteria, the computation of suitable
tessellation factors and an adaptive tessellation pattern for them is necessary. In
the following sections, we describe both these components.
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3.1 Edge Tessellation Factors Based on Vertex/Edge Criteria

For adaptive tessellation of a triangular parametric, normally tessellation factors
are computed per vertex or per edge. If computed per vertex then they are
propagated to tessellation factors per edge. Given the three edge tessellation
factors (fu, fv, fw), the subdivisions of the three border curves into line segments
are given by p(0, i/fu, (fu − i)/fu), i = 0 . . . �fu�, p(j/fv, 0, (fv − j)/fv), j =
0 . . . �fv�, and p(k/fw, (fw − k)/fw, 0), k = 0 . . . �fw�. A gap-free connection
to the mesh neighbors is guaranteed by a tessellation that incorporates these
conforming border curves.

An assignment of edge tessellation factors can be based on criteria like vertex
distance to the camera eye plane, edge silhouette property, and/or curvature
approximations using normal cones [4].

3.2 Edge Tessellation Factors for the 2-Different Case

For our following tessellation pattern, we need that in the edge tessellation factor
triple (f∗

u , f∗
v , f∗

w) only two different values f∗
u = f∗

v and f∗
w occur.

Approximation of an arbitrary tessellation factor assignment (fu, fv, fw), fu �=
fv, fv �= fw, fu �= fw by a 2-different one (f∗

u , f∗
v , f∗

w) is a non-local problem.
Therefore, we avoid the general case and guarantee that the tessellation factor
calculation never produces 3-different factors for the edges of a triangle. Then
SD-2 can be used for a faster and simpler tessellation.

Let d : V (M) → R be a level function on the vertices of the mesh, which
means d is strictly monotone increasing on shortest paths {v0 = x ∈ I, . . . , vl =
y}, i.e. d(vi−1) < d(vi), from a vertex x ∈ I in the set I = {x ∈ V (M) :
∀y d(x) ≤ d(y)} of minimum elements. Given a level function d, it is easy to
derive a tessellation factor assignment f∗, which is only 2-different, as follows
f∗({s, e}) := g(min{d(s), d(e)}) with a normally monotone, scalar function g.
Note that the level function is only used to impose an order on the mesh vertices,
which is easy to compute based on the vertex coordinates.

We give examples of tessellation factor assignments below, which are con-
structed with the help of a level function as described.

Distance from the camera eye plane. The smallest distance dp to a plane,
for example, the camera eye plane, naturally is a level function, as defined
above. A semi-uniform edge tessellation factor assignment (f∗

u , f∗
v , f∗

w) for a tri-
angle then is f∗

edge := g(min{d(sedge), d(eedge)}) with a linear function g1(d) :=
fmax

dmax−d
dmax−dmin

+ fmin
d−dmin

dmax−dmin
or a quadratic function g2(d) := fmax−fmin

(dmin−dmax)2 (d−
dmax)2 + fmin mapping the scene’s depth range [dmin, dmax] to decreasing tessel-
lation factors in the range [fmin, fmax].

Silhouette refinement. Silhouette classification is usually done based on a
classification of the vertices into front-facing (nt(e − v) ≥ 0) and back-facing
(nt(e − v) < 0) using the vertex coordinates v, vertex normal n and the camera
eye point e. The distance function dsilh to the silhouette plane is a level function
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Fig. 3. Tessellation pattern for 2-different factors, which is composed of a bundle of

parallel lines, intersected by a second bundle of radial lines towards the tip vertex. In

the top row, for a fractional example: fu = fv = 2.5, fw = 2.5; in the bottom row, for

integer examples: fu = fv = 3, fw = 3 and fu = fv = 3, fw = 5.

as defined above. But the function nt(e − v) is easier to compute by just using
the vertices and vertex normals of the mesh. It is not a level function though, but
an edge is crossed by the silhouette plane in case the two incident vertices are
differently classified. Each triangle can have exactly 0 or 2 such edges. An edge
tessellation factor assignment with just two values, a for an edge not crossed by
the silhouette, and b for an edge crossed by the silhouette, can be used to refine
the silhouette line and present full geometric detail at the silhouette.

The edge tessellation factor assignments based on a level function can be di-
rectly computed inside a GPU shader. We show examples of this in Section 4.
On the contrary, the edge tessellation factors obtained by a curvature approx-
imation in the patch vertices can not be made 2-different for arbitrary meshes
easily. Computing an approximation is possible though on the CPU.

3.3 Adaptive Tessellation Pattern with 2-Different Factors

In case of triangles with only two different edge tessellation factors fu = fv and
fw, it is possible to tessellate in an especially simple way. Our tessellation pattern
is composed of a bundle of parallel lines w = i/fu := wi, i = 0, . . . , �fu�, which
are intersected by a second bundle of radial lines from the tip vertex (0, 0, 1) to
((fw − j)/fw, j/fw, 0), j = 0, . . . , �fw�. The intersections with the parallel line i
are in the points ((1 − wi)(fw − j)/fw, (1 − wi)j/fw, wi), j = 0, . . . , �fw�. This
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// reorder control points/normals (b000/n000, b030/n030, b003/n003)

// so that fu=fv on u,v isolines

void calcUVValues(float diff, float same) //fu=fv=same, fw=diff

{

float line; // counter that traverses along the diff edge

float line1; // counter that traverses along the same edge

float incS = 0.5*(1.0/same - (same - floor(same))/same); // remainder for same fractional

float incD = 0.5*(1.0/diff - (diff - floor(diff))/diff); // remainder for diff fractional

vec2 diff1, diff2; // pair of u,v values on the diff edge

float u, v;

float par; // keeps track of the current location on the same edge

for (line=0; line < diff; ++line)

{

diff1.u = (line -incD)/diff;

if (diff1.u < 0.0)

diff1.u = 0.0;

diff1.v = 1.0 - diff1.u;

diff2.u = (line+1.0 -incD)/diff;

if (diff2.u > 1.0)

diff2.u = 1.0;

diff2.v = 1.0 - diff2.u;

u = 0.0;

v = 0.0;

//Use PN evaluation code to calculate the point and the normal

//In GLSL use EmitVertex()

for (line1=0; line1<same; ++line1)

{

/* evaluate the point on the second radial line */

par = (line1+1.0 -incS)/same;

if (par > 1.0)

par = 1.0;

v = diff2.y*par;

u = diff2.x*par;

//Use PN evaluation code to calculate the point and the normal

//In GLSL use EmitVertex()

/* evaluate the point on the first radial linee */

v = diff1.y*par;

u = diff1.x*par;

//Use PN evaluation code to calculate the point and the normal

//In GLSL use EmitVertex()

}

//Finish the triangle strip

//In GLSL call EndPrimitive()

}

}

Fig. 4. Pseudo code used for generating the barycentric coordinates in SD-2 tessellation

pattern is very flexible as it works also with fractional factors fu = fv and fw.
In the fractional case, the remainders (fu −�fu�)/fu and (fw −�fw�)/fw can be
added as additional segments. In case the subdivision is symmetric to the mid-
edge, it can be generated in arbitrary direction. We achieve this by shrinking the
first segment and augmenting the last segment by the half fractional remainder
0.5(1/fu−(fu−�fu�)/fu) and 0.5(1/fw−(fw−�fw�)/fw) respectively. Otherwise,
it has to be generated in a unique direction, for example from the nearest to the
farthest vertex, which complicates things a lot. Concerning the distribution of
lines, it is also possible to place them non-uniformly by a reverse projection
according to [9]: u′ = u/z1

(1−u−v)/z0+u/z1+v/z2
, w′ = w/z0

w/z0+u/z1+(1−u−w)/z2
where

z0, z1, z2 are the vertex depths of the triangle.
Figure 3 shows an example of the construction for fractional values fu = fv =

2.5, fw = 2.5, and for integer factors fu = fv = 3, fw = 3 and fu = fv = 3,
fw = 5.
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It is possible to output all triangles between two adjacent radial lines or two
adjacent parallel lines as a triangle strip, which reduces vertex repetition consid-
erably and is beneficial on some hardware architectures. This property becomes
a great advantage at the silhouettes where the triangles have edge tessellation
factors (fu = fv � fw) or (fu = fv � fw) and the tessellation can be emitted
with a minimum number of strips. For edge tessellation factors (fu = fv, fw), we
give the pseudo code for barycentric coordinates (u, v, w = 1−u−v) on triangle
strips along radial lines in Figure 4.

4 Results

The method can use any triangular parametric surface, however we have chosen
the PN triangles scheme. We compare SD-2 with uniform tessellation of the PN

Fig. 5. Results of SD-2 refinement for improving the silhouette

Fig. 6. Comparison of SD-2 and stitching methods using reflection lines
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Fig. 7. Results of SD-2 refinement for continuous LOD based on the distance to the

camera eye plane. From left to right, the original mesh, and adaptive tessellations

generated by a linear level function with fmax = 7, fmin = 2, dmax = 1 and dmin = 0.

Table 1. Performance for silhouette refinement with max tessellation factor 7 and

triangle strips

Model Base Mesh Uniform PN f = 7 PN SD-2 PN Stitch
Name Triangles FPS/Primitives FPS/Primitives FPS/Primitives

Sphere 320 121.0/15680 153.0/12952 122.0/12184

Violin Case 2120 19.5/103880 24.5/83932 19.9/75446

Cow 5804 7.0/284396 9.5/222586 7.4/200383

patches as well as the stitching pattern methods described in [5], [6] and [7].
We compare frame rate and number of primitives generated on the GPU. For
demonstration purposes, we have implemented all methods as geometry shaders.
The SD-2 method clearly outperforms the other two and it can be clearly seen
that there is a significant boost in frame rate for SD-2 by switching over to
triangle strips. See Tables 1 and 2 for the concrete values on a PC with Windows



62 A. Amresh and C. Fünfzig

Table 2. Performance for silhouette refinement with max tessellation factor 7 and not

using triangle strips

Model Base Mesh Uniform PN f = 7 PN SD-2 PN Stitch
Name Triangles FPS/Primitives FPS/Primitives FPS/Primitives

Sphere 320 60.0/15680 65.0/12952 65.0/12184

Violin Case 2120 7.5/103880 16.0/83932 16.0/75446

Cow 5804 3.2/284396 4.0/222586 4.0/200383

Vista, 32bit, and NVIDIA 9800 GTX graphics. For surface interrogation, we
render a series of reflection lines on the final surface and look at the smoothness
of these lines. In general, smoother reflection lines indicate better surface quality.
Reflection lines are much smoother for SD-2 in the adaptive region compared to
the stitching method, see Figure 6.

5 Conclusions

In this paper, we have described, SD-2, a tessellation pattern for fractional edge
tessellation factors with only two different values per triangle. Under continuous
changes of the tessellation factors, the pattern fulfills all the requirements on the
continuity of tessellation changes. This is especially important for the sampling
of geometry and applied texture/displacement maps during animations. The
scheme is especially simple to implement, and it is suitable for triangle output
in the form of triangle strips.

In terms of adaptivity, it can cover the most important cases, where the edge
tessellation factors are derived from a level function on the mesh vertices. Then,
the edges can be directed and 2-different edge tessellation factors can be assigned
based on the minimum (or maximum) vertex on each edge. We have shown
results in terms of speed and quality with an implementation of the pattern and
the edge tessellation factor assignment in the geometry shader of the GPU. This
shows that the approach is also suitable for a future hardware implementation.
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Abstract. Fast, reliable, and feature preserving automatic decimation

of polygonal models is a challenging task. Exploiting both local volume

and normal field variations in a novel way, a two phase decimation algo-

rithm is proposed. In the first phase, a vertex is selected randomly using

the measure of geometric fidelity that is based on normal field variation

across its one-ring neighborhood. The selected vertex is eliminated in

the second phase by collapsing an outgoing half-edge that is chosen by

using volume based measure of geometric deviation. The proposed algo-

rithm not only has better speed-quality trade-off but also keeps visually

important features even after drastic simplification in a better way than

similar state-of-the-art best algorithms; subjective and objective com-

parisons validate the assertion. This method can simplify huge models

efficiently and is useful for applications where computing coordinates

and/or attributes other than those attached to the original vertices is

not allowed by the application and the focus is on both speed and qual-

ity of LODs.

1 Introduction

Recent advances in technology and the quest of realism have given rise to highly
complex polygonal models for encoding 3D information. Despite the enhance-
ment in graphics acceleration techniques, fast reliable and feature preserving
decimation of polygonal models is a challenging task. Based on the application
requirements, existing simplification techniques can be classified into three cat-
egories: quality simplification [1], fast simplification [2], and simplification with
best speed-quality trade-off [3], [4], [5], [6].

The algorithm discussed in this paper is concerned with the class of simpli-
fication algorithms where the focus is on better quality of approximations and
less simplification time, and recomputing the vertex attributes such as texture
coordinates, colors, etc. is not allowed or there is no straightforward method of
interpolation. Though, so far QSlim [3] and Memoryless Simplification (MS) [4]
are identified as the best algorithms in respect of speed-quality trade-off, both
the algorithms can’t preserve important shape features, especially after drastic
reduction of polygon count, e.g. see the close-up of right eye of David model in
Figure 1. The normal field and volume based algorithm (GeMS) [7] produces
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Fig. 1. Close-up of the right eye of David model (#Faces: 7,227,031) and its approxi-

mations (consisting of 50,000 faces) generated by the four methods

LODs of acceptable quality and is relatively better in preserving visually impor-
tant features but it is not as efficient as QSlim and MS.

Motivated by the fact that volume based error measure [4] results in better
quality approximations whereas the one based on normal field variation and
volume loss [7] better preserves visually important features, we propose an algo-
rithm - VNSIMP - that exploits both volume loss and normal field variation in a
novel way. In contrast to QSlim, MS and GeMS where simplification of a model
proceeds by selecting and collapsing half-edges according to their significance,
VNSIMP selects vertices according to their importance, and removes them by
collapsing the least significant respective incident half-edges. The importance of
a vertex is defined using the normal field variation across its one-ring neighbor-
hood. After a vertex is liable to be removed, it is eliminated by collapsing one
of the outgoing half-edges, which is decided by a measure of geometric devia-
tion that is based on volume loss caused by the collapse. A comparison with
the help of standard evaluation tool - Metro - reveals that VNSIMP generates
better quality LODs in terms of symmetric Hausdorff distance in less time than
QSlim, MS and GeMS. Its memory over-head is small like MS and it is compara-
ble with GeMS in preserving significant shape features automatically but better
than QSlim and MS.

The remainder of this paper is organized as follows. In Section 2, we discuss in
detail the new measures of geometric distortion. Section 3 describes the two phase
simplification algorithm. Quality and efficiency of the algorithm is discussed and
it is compared with the sate-of-the-art best algorithms in Section 4. Section 5
concludes the paper.

2 Measures of Geometric Deviation

VNSIMP selects vertices randomly for removal according to their importance;
after selection, a vertex is removed by collapsing one of its outgoing half-edges. In
this section, first the measure of importance of a vertex is elaborated, then detail
of the error measure, which finds the outgoing half-edge resulting in minimum
volume loss, is presented.

2.1 Metric for Vertex Selection

Normal field of a surface model plays fundamental role in its appearance and
it has been used for constraining the geometric distortion in different geometry
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processing tasks [2], [8], [9], [10]. The Poincar-Wertinger- Sobolev inequality im-
plies that minimizing the normal field distortion ensures the minimization of the
geometric deviation [9]. Normal field variation truly represent the importance of
a vertex. In view of this evidence in support of the strength of normal field, we
use the normal field variation across one-ring neighborhood of a vertex for defin-
ing its importance. The normal field variation over NFv, the set of triangular
faces incident on v, can be defined as follows:

∑
t∈NFv

∫
Δt

nt(s)ds =
∑

t∈NFv

Δtnt

where nt and Δt are, respectively, the unit normal and the area of the triangular
face t. According to triangular inequality

∥∥∥∥∥
∑

t∈NFv

Δtnt

∥∥∥∥∥ ≤
∑

t∈NFv

‖Δtnt‖ .

Since ‖Δtnt‖ = Δt so ∥∥∥∥∥
∑

t∈NFv

Δtnt

∥∥∥∥∥ ≤
∑

t∈NFv

Δt

or ∑
t∈NFv

Δt −
∥∥∥∥∥
∑

t∈NFv

Δtnt

∥∥∥∥∥ ≥ 0. (1)

In case v is flat i.e. all faces in NFv are coplanar, then left-hand-side of inequality
(1) is zero, otherwise it is greater than zero depending on how much the vertex
v departs from being flat. This expression defines a measure of significance of a
vertex as follows:

V C(v) =
∑
ti

Δti −
∥∥∥∥∥
∑
ti

Δtinti

∥∥∥∥∥ (2)

where the summation is over all faces in NFv. Note that V C(v) = 0 when a
vertex is flat and it gets larger values depending on the degree of departure of
a vertex from being flat i.e. according to its level of significance. The value of
V C(v) is used for selecting a vertex randomly.

2.2 Metric for Half-Edge Collapse

Once a vertex is selected for removal according to its cost (2), it is eliminated
by half-edge collapse operation (see Figure 2(b)). This decimation operation is
simple to implement and is easy to invert, so it is most suitable for applications
like visualization of 3D information across networks. Half-edge collapse can also
simplify dealing with vertex attributes that have no straightforward method of
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Fig. 2. (a) Half-edge collapse hi : (v, vi) → vi and the volume loss caused by a typical

triangle t(v, v1, v2). (b) Half-edges with v0 as origin.

interpolation. For instance, many meshes come with vertex normals, texture co-
ordinates, colors, etc., and half-edge collapse frees one from having to recompute
such attributes at the position of the new vertex.

A vertex can be removed by collapsing any one of the outgoing half-edges
(see Figure 2(b)); we eliminate it by collapsing the half-edge hi ∈ NHEv (the
set of outgoing half-edges) that causes minimum geometric distortion in its local
neighborhood - this half-edge is termed as optimal half-edge and is denoted by
ho.

For finding ho we employ a measure, similar to the one in [4], that ensures
that the loss of volume is minimum. A half-edge collapse hi(v, vi) �→ vi causes
each triangle t ∈ NFv to sweep out a tetrahedron, see Figure 2(a). The volume
of this tetrahedron represents the volume loss due to the movement of t as a
result of half-edge collapse and is indicative of the geometric deviation. As such
the geometric deviation introduced due to face t(v, v1, v2) is defined as follows

TC(t) =
1
6
[(v1 − v) × (v2 − v) · (vi − v)]2 (3)

In view of this, the geometric error introduced due to half-edge collapse hi(v, vi) �→
vi is defined as follows

HC(hi) =
∑

t∈NFv

TC(t) (4)

For each half-edge hi ∈ NHEv, we compute HC(hi) and choose the one as
optimal half-edge ho for which HC(ho) is minimum. Note the difference between
our idea of using volume measure and that of Lindstrom et al. [4]; Lindstrom
uses it for global ordering of edges whereas we employ it for local decision of
determining the optimal half-edge once a vertex is chosen for removal.

3 Two Phase Simplification Algorithm

The proposed algorithm employs a simplification framework that is similar to
multiple-choice approach [11]. The algorithm involves two degrees of freedom to
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Table 1. Simplification times (in seconds to simplify to 10000 faces)

Model Model Size VNSIMP MS QSlim GeMS

#Vertices #Faces

Oilpump 570,018 1,140,048 7.711 13.156 21.312 25.454

Grago 863,210 1,726,420 11.245 18.664 27.187 35.398

Blade 882,954 1,765,388 12.875 20.347 28.750 37.128

Satva 1,815,770 3,631,628 25.957 40.547 67.438 80.484

David 3,614,098 7,227,031 61.387 93.457 151.650 164.757

Statuette 4,999,996 10,000,000 82.887 125.664 228.453 245.757

be fixed: to select a vertex for decimation and to determine the corresponding
optimal half-edge. The first phase fixes the vertex to be eliminated. The second
phase finds the optimal half-edge ho corresponding to the selected vertex. The
pseudo code of the algorithm is given below.

Algorithm VNSIMP
Input: M = (V, F ) - Original triangular mesh consisting

of the set of vertices V , and the set of faces F
numf - the target number of faces,

Output: An LOD with the given budget of faces
Processing

Step-1 Select a vertex randomly
Randomly choose m vertices v1, v2, · · · , vm, compute cost of each
vertex using equation (2) and select v ∈ {v1, v2, · · · , vm} such that
V C(v) = min {V C(v1), V C(v2), · · · , V C(vm)} .

Step-2 Find optimal half-edge and collapse
(a) For each half-edge hi ∈ NHEv, compute cost using equation

(4) and select the optimal half-edge ho ∈ NHEv such that
HC(ho) = min {HC(hi) | hi ∈ NHEv} .

(b) Collapse ho : (v, vo) → vo, if it does not create foldovers, by elim-
inating faces incident on the edge e = {v, vo} and substituting
vo for every occurrence of v in left-over faces in NFv.

Step-3 Repeat Steps 1 and 2 until the number of faces in the decimated
mesh is numf .

For identifying foldovers, we use the usual test that checks whether the normal
vector of any face in FNv turns through an angle greater than 90o after collapse.
For results presented in this paper, m is 24.

4 Results and Discussion

In this section, we discuss the results and evaluate the performance of VNSIMP
by comparing it with similar state-of-the-art best decimation algorithms MS,
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Fig. 3. Plots of Symmetric Hausdorff distance for (top-left) oilpump model, (top-right)

grago model, (bottom-left) blade model and (bottom-right) Satva model

Fig. 4. Original oilpump model (#faces:1,140,048) and its LODs (each consisting of

20000 faces) generated by the four methods

QSlim, and GeMS. The four simplification algorithms (VNSIMP, MS, QSlim and
GeMS) are scaled using four parameters: running time, memory consumption,
quality of the generated LODs, and the preservation of salient features at low
levels of detail. Huge models of varying complexities - oilpump, grago, Satva,
David and statuette models - have been used as benchmark models; the statistics
of these models are given in Table 1. The experimental environment used for this
study consists of a system equipped with Intel Centrino Duo 2.1GHz CPU and
2GB of main memory, and C++ has been used as a programming development
tool.

Table 1 lists the execution times of the four algorithms to reduce each bench-
mark model to 10000 faces. It indicates that VNSIMP outperforms MS, QSlim
and GeMS in terms of running time. VNSIMP is about 1.5 times faster than
MS and about 3 times faster than both QSlim and GeMS. The decimation
framework used in MC algorithm selects r vertices randomly, computes cost of
each vertex, chooses the vertex with minimum cost and removes it by collapsing
the optimal half-edge. The cost of a vertex is assumed to be the cost of the
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Fig. 5. Original grago model (#faces:1,726,420) and its LODs (each consisting of 20000

faces) generated by the four methods

Fig. 6. Original blade model (#faces:1,765,388) and its LODs (each consisting of 20000

faces) generated by the four methods

corresponding optimal half-edge and its calculation involves the computation of
the cost of 6 half-edge operations, see Figure 2(b), assuming that the valence
of each vertex is 6. It means that the selection of a vertex and its removal re-
quires the computation of the cost of 6r half-edge operations. In contrast, the
two-phase decimation framework used in VNSIMP does not need to compute
the cost of 6 half-edge operations to calculate the cost of a vertex, it is directly
calculated using equation (2) and can be roughly assumed to be equivalent to
the computation of the cost of one half-edge operation. So, the selection of a
vertex out of r randomly selected vertices involves the computation of the cost
of r half-edge operations. For removing the vertex , the selection of the optimal
half-edge involves the computation of the cost of 6 half-edge operations. In this
way, selection and removal of a vertex by VNSIMP involves the computation
that is equivalent to the calculation cost of r + 6 half-edge operations. In case
n vertices are removed, the computational costs of MC algorithm and VNSIMP
will be 6nr and n(r + 6) respectively.

For evaluating the quality of the LODs generated by VNSIMP, the LODs
created by the four methods are compared employing Symmetric Hausdorff dis-
tance (SHD) that is widely used for thorough comparison of polygonal models
in graphics community because it provides tight error bounds and does not dis-
count local deviations. To avoid any kind of bias, symmetric Hausdorff distance
has been calculated using well-known Metro tool [12]. Plots of the symmetric
Hausdorff distances for 5 LODs of four benchmark models created by the four
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Fig. 7. Original Satva model (#faces:3,631,628) and its approximations (each consist-

ing of 40000 faces) generated by the four methods. Models have been shown partly.

Fig. 8. Original David model (#faces:7,227,031) and its approximations (each consist-

ing of 40000 faces) generated by the four methods. Models have been shown partly.

simplification algorithms are shown in Figure 2. On average VNSIMP improves
over MS, QSlim and GeMS by 46.84% 43.64% and 24.27%, respectively, in terms
of SHD for oilpump model, 24.88% 20.97% and 18.62% for grago model, and
50.32% 45.63% and 46.32% for Satva model. In case of turbine blade model, the
performance of VNSIMP is similar to that of MS, QSlim and GeMS at low levels
of detail but it performs better at higher levels of detail.

For visual comparison, low resolution LODs generated with the four algo-
rithms of the benchmark models have been presented in Figures 4, 5, 6, 7, 8,
and 9. A close look at these figures shows that the LODs generated by VNSIMP
are comparable with those produced by the other three algorithms. VNSIMP
preserves visually important high frequency information in a better way and
keeps the semantic meaning of the surface model even after drastic reduction.
For example, the high resolution detail like eyes of a huge David model (consist-
ing of 7.2 million faces) is better preserved by VNSIMP (see Figure 1) even after
drastic simplification (50,000 faces, 0.69% of original) whereas other algorithms
fade out this information. Also have a look at Figure 10 that shows the close-up
of a portion of a huge Statuettes model consisting of 10 million triangular faces
and its LODs (consisting of only 100,000 triangular faces) generated by MS,
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Fig. 9. Original Statuettes model (#faces:10,000,000) and its approximations (each

consisting of 100000 faces) generated by the four methods

Fig. 10. Close-up of a small region of statuettes model, shown in Figure 9 and its

approximations generated by the four methods

QSlim and GeMS; in this case the detail features like eye and beak of the bird,
and other small detail is relatively better preserved by VNSIMP. Note that per-
formance of GeMS in terms of preserving high resolution detail is comparable
with that of VNSIMP, but its execution time is about three times of that of
VNSIMP.

VNSIMP consumes almost as much memory as MS and GeMS. As such, it
is enough to compare the memory overhead of VNSIMP and QSlim. VNSIMP
consumes about 44% less memory than QSlim, because VNSIMP needs not to
keep error quadrics like QSlim or any other kind of geometric history.

5 Conclusion

Though simplification is well-searched area, still there is space for improvement.
The idea of using normal field deviation and volume measure in measuring simpli-
fication error has been around for a while, however in this paper these measures
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have been used in a novel way for developing a simple and reliable automatic
simplification algorithm for applications where good time-accuracy trade-off is
important and the presence of vertex attributes does not allow the creation
of new vertices. Thorough comparison with similar state-of-the-art algorithms
such as MS, QSlim and GeMS, which are known for their good time-accuracy
trade-off, demonstrates that it is more efficient than MS, GeMS, and QSlim in
terms of execution time. It has less memory overhead than QSlim. It creates
LODs which are better than those produced by other algorithms in terms of
symmetric Hausdorff distance and preserves salient shape features in a better
way as compared to MS and QSlim. The ability of preserving detail features of
a surface model of VNSIMP is comparable with GeMS. To sum-up, VNSIMP
has better quality-speed trade-off than similar best stat-of-the-art algorithms.
The proposed algorithm involves two degrees of freedom i.e. to select a vertex
and to fix the corresponding optimal half-edge. Selecting a vertex dominates
the simplification process. We employ normal field variation as a measure for
selecting vertices. Even better measures can be further investigated for better
simplification results.

References

1. Yan, J., Shi, P., Zhang, D.: Mesh simplification with hierarchical shape analy-

sis and iterative edge contraction. Transactions on Visualization and Computer

Graphics 10, 142–151 (2004)

2. Boubekeur, T., Alexa, M.: Mesh simplification by stochastic sampling and topo-

logical clustering. Computers and Graphics 33, 241–249 (2009)

3. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metric. In:

Proc. SIGGRAPH 1997, pp. 209–216 (1997)

4. Lindstrom, P., Turk, G.: Evaluation of memoryless simplification. IEEE Transac-

tions on Visualization and Computer Graphics 5, 98–115 (1999)

5. Hussain, M., Okada, Y.: Lod modelling of polygonal models. Machine Graphics

and Vision 14, 325–343 (2005)

6. Hussain, M.: Efficient simplification methods for generating high quality lods of 3d

meshes. Journal of Computer Science and Technology 24, 604–inside back cover

(2009)

7. Southern, R., Marais, P., Blake, E.: Gems: Generic memoryless polygonal simpli-

fication. In: Proc. Computer Graphics, Virtual Reality, Visualization and Interac-

tion, pp. 7–15 (2001)

8. Cohen, D.S., Alliez, P., Desbrun, M.: Variational shape approximation. ACM

Transactions on Graphics 23, 905–914 (2004)

9. Guskov, I., Sweldens, W., Schroeder, P.: Multiresolution signal processing for

meshes. In: Proc. SIGGRAPH 1999, pp. 325–334 (1999)

10. Sorkine, O., Cohen-OR, D., Toledo, S.: High-pass quantization for mesh encoding.

In: Proc. Symp. on Geometry Processing 2003, pp. 42–51 (2003)

11. Wu, J., Kobbelt, L.: Fast mesh decimation by multiple-choice techniques. In: Proc.

Vision, Modeling, and Visualization 2002, pp. 241–248 (2002)

12. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: Measuring error on simplified sur-

faces. Computer Graphics Forum 17, 167–174 (1998)



Lattice-Boltzmann Water Waves
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Abstract. A model for real-time generation of deep-water waves is sug-

gested. It is based on a lattice-Boltzmann (LB) technique. Computation

of wave dynamics and (ray-traced) rendering for a lattice of size 10242

can be carried out simultaneously on a single graphics card at 25 frames

per second. In addition to the computational speed, the LB technique is

seen to offer a simple and physically accurate method for handling both

dispersion and wave reflection from obstructing objects.

1 Introduction

The goal of this effort is to provide the mathematical basis for a particularly
simple, real-time computational model of deep-water waves. Computation of
wave dynamics and a ray-traced rendering of the wave height field can be carried
out simultaneously, in real-time, on a single NVIDIA GTX 480 graphics card.

The model is based on a lattice-Boltzmann method. Lattice-Boltzmann (LB)
methods are a class of cellular automata (CA), a collection of computational
structures that can trace their origins to John Conway’s famous Game of Life [1],
which models population changes in a hypothetical society that is geographically
located on a rectangular lattice. In Conway’s game, each lattice site is labeled
as populated or not, and each lattice site follows only local rules, based on
nearest-neighbor populations, in synchronously updating itself as populated or
not. Although the rules are only local, global behavior emerges in the form of
both steady-state population colonies and migrating colonies who can generate
new steady-state colonies or destroy existing ones.

In a general CA, arbitrary graphs and local rules for vertex updates may be
postulated, but those that are most interesting exhibit a global behavior that has
some provable characteristic. Lattice-Boltzmann methods employ synchronous,
neighbor-only update rules on a discrete lattice, but the discrete populations
at each lattice point have been replaced by continuous distributions of some
quantity of interest. The result is that the provable characteristic is often quite
powerful: the system is seen to converge, as lattice spacing and time step ap-
proach zero, to a solution of a targeted class of partial differential equations
(PDEs).

Lattice-Boltzmann methods are thus often regarded as computational alter-
natives to finite-element methods (FEMs), and as such they have have provided
significant successes in modeling fluid flows and associated transport phenomena
[2–6]. They provide stability, accuracy, and computational efficiency comparable
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to FEMs, but they offer significant advantages in ease of implementation, paral-
lelization, and an ability to handle interfacial dynamics and complex boundaries.
The principal drawback to the methods, compared to FEMs, is the counter-
intuitive direction of the derivation they require. Differential equations describ-
ing the macroscopic system behavior are derived (emerge) from a postulated
computational update (the local rules), rather than the reverse.

The paper is organized as follows. After discussing related work in the next
section, we describe our computational model (the local rules) in Section 3. In
Section 4, we derive the wave equation directly from the postulated local rules.
Section 5 contains a brief discussion of dispersion and wave number spectra,
and Section 6 describes initial conditions. A principal benefit of our approach
is the ease with which we can handle wave reflections, and we describe this in
Section 7. Finally, we provide implementation details in Section 8 and conclusions
in Section 9.

2 Related Work

The graphics literature on physically-based modeling and rendering of water
flow is extensive. Foundational work by Kass and Miller [7], Foster and Metaxas
[8], Foster and Fedkiw [9], and Stam [10], among others, has led to numerous,
visually stunning examples of water flow on small to medium scale, such as
water pouring into a glass or water sloshing in a swimming pool. Large-scale,
deep-water simulations appropriate for oceans or lakes, which is our focus here,
usually avoid full-scale, 3D Navier-Stokes solutions and instead employ 2D spec-
tral approaches to simulate displacement of the free surface. Mastin et al. [11]
was probably the first. In this case weights in frequency space are obtained by
sampling from models fitted to observed spectra, e.g., Hasselmann et al. [12],
and then applying a fast Fourier transform to construct the height field. As seen
in the work of Jensen et al. [13], this approach can offer real-time performance
suitable for interactive gaming [14]. The principal drawback to FFT-based ap-
proaches is their inability to handle obstructions, i.e., wave/object interactions.
Hinsinger et al. [15] also achieve visually impressive results in real-time using
an adaptive sampling, procedural approach that includes dispersion, but again,
they do not consider wave obstructions.

In a somewhat complementary approach, Yuksel, House, and Keyser [16] focus
on obstructions. They use wave particles, which are dynamically blended cosine
segments, to provide extremely effective, real-time wave-object interaction. They
do not include dispersion, and so their technique is not appropriate for deep-
water waves. Nevertheless, they provide impressive demonstrations of large-scale,
open water simulations by augmenting their technique with those of Tessendorf
[17, 18].

Applications of lattice-Boltzmann methods to water flow are also numerous.
Salmon [19] provided an early application to ocean circulation modeling, in par-
ticular, a “reduced-gravity” model in which a homogeneous, wind-driven layer of
fluid overlays a denser layer that remains at rest. More recently, Thürey et al. [5]
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use a full, multi-phase 3D LB model to create impressive animations that include
object/free-surface interaction for open water. As yet this approach is
computationally-intensive, even for relatively small grids. They report 80 seconds
per frame for a 1203 grid.

Our approach is most closely related to the iWave system of Tessendorf [18],
in that we apply 2D site updates based on local information. Our updates are
based on a collision matrix, whereas iWave uses a convolution kernel applied
over a 13 × 13 or larger neighborhood. The total computational effort is re-
markably similar. The advantage of our approach is the flexibility it offers in
handling wave-object interaction. iWave uses a grid bit mask to indicate object
position, and its update operation simply forces wave height to zero at masked
sites. A fortuitous consequence of its kernel, which controls damping of the sec-
ond derivative of height, is that zeroing the height removes this damping and
yields a visually effective simulation of reflection. The additional flexibility we
offer includes selected directional reflection, damping energy in response to vary-
ing restitutional characteristics of the obstruction, changing wave numbers for
harmonics, and simulating semi-porous surfaces.

3 The Computational Model

Although 3D grids are common in LB models, we seek to achieve real-time
performance, and so we restrict our development to a 2D, rectangular grid with
four, unit-length directions, ci, i = 1, ..., 4, and a single zero-length direction, c0,
as shown in Figure 1. Although 2D, rectangular grids can generate anisotropic

Fig. 1. Model grid

flows for certain LB models, we will see that anisotropy is avoided here through
a careful choice of the site collision matrix.

We assume a lattice spacing, λ, a time step, τ , unit velocity v = (λ/τ), and
velocity vectors vi = vci, i = 0, ..., 4. We further assume that h(r, t), the wave
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height at site r and time t, comprises 5 directional flows,

h(r, t) =
4∑

i=0

fi(r, t) (1)

where fi(r, t), represents the mass flow at location r at time t moving in direction
ci. The velocity field is then

u(r, t) = (
4∑

i=0

vifi(r, t))/(
4∑

i=0

fi(r, t))

and the momentum tensor is

Παβ =
4∑

i=0

viαviβfi(r, t),

where α, β ∈{x,y}. Note that for the limited set of directions we use, viαviβ =
v2δαβ , and so Π is diagonal.

The fundamental system update equation (basis for simulation) is given by:

fi(r + λci, t + τ) = fi(r, t) + Ωi · f(r, t), i = 0,1, ..., 4 (2)

where Ωi is the ith row of a matrix Ω : �5 → �5, which is a collision matrix
in the sense that Ωi,j represents the deflection of flow fj into the ith direction.
Once Ω is specified, equation (2) is, essentially, the entire computational model.
Starting with initial conditions, we apply (2) synchronously to all lattice sites
and then generate the new wave height field at time t = t + τ by (1).

The choice of Ω determines the properties of the system. Some important
constraints on this choice can be specified immediately. From (2) we have:

– conservation of mass:
∑4

i=0 Ωi · f(r, t) = 0
– conservation of momentum:

∑4
i=0 viΩi · f(r, t) = (0, 0)

The principal constraint is that the limiting behavior of (2) as λ, τ → 0 should
be a recognizable wave equation.

We choose to specify

Ω =

⎛
⎜⎜⎜⎜⎝

−4K 2 − 4K 2 − 4K 2 − 4K 2 − 4K
K K − 1 K − 1 K K
K K − 1 K − 1 K K
K K K K − 1 K − 1
K K K K − 1 K − 1

⎞
⎟⎟⎟⎟⎠ (3)

where K ∈ (0, 1/2] is a parameter. We will see that this choice ultimately yields
a limiting wave equation with speed (phase velocity) v

√
K. For now we note that

0 is a triple eigenvalue of Ω and that the eigenvectors e0 = (2−4K, K, K, K, K),
e1 = (0, 1,−1, 0, 0), and e2 = (0, 0, 0, 1,−1) span the null space.



78 R. Geist et al.

4 Derivation of the Wave Equation

In this section, we show that the limiting behavior of (2) as λ, τ → 0 is indeed
the well-known wave equation. Intermediate results include the continuity equa-
tion, which is a statement of conservation of mass, and the Euler equation of
hydrodynamics, which is a statement of conservation of momentum. It should
be noted that, although this derivation is essential in verifying that our model is
physically correct, model implementation does not depend upon the derivation
in any way.

4.1 The Continuity Equation

We begin with a standard Chapman-Enskog expansion [2]. If we apply a Taylor
expansion to the basic update equation (2) we obtain:

[(λci, τ) · ∇]fi(r, t) +
[(λci, τ) · ∇]2

2!
fi(r, t) + ... = Ωi · f(r, t) (4)

As noted, we want to consider the limiting behavior here as λ, τ → 0; they can,
of course, approach at different rates, but we assume they do not. Specifically,
we write

t =
s

ε
where s = o(ε)

r =
q

ε
where q = o(ε)

and where the limit of interest is ε → 0. Then

∂

∂t
= ε

∂

∂s

∂

∂rα
= ε

∂

∂qα
for α ∈ {x, y}

So
∇ = (∂/∂rx, ∂/∂ry, ∂/∂t) = ε(∂/∂qx, ∂/∂qy, ∂/∂s) (5)

We also assume that the solution, f(r, t), is a small perturbation on this same
scale about some local equilibrium, i.e.,

f(r, t) = f0(r, t) + εf1(r, t) + ε2f2(r, t) + ... (6)

To qualify as a local equilibrium, f0 must carry the macroscopic quantities of
interest, that is,

h(r, t) =
4∑

i=0

f0
i (r, t) (7)

and

u(r, t) = (
4∑

i=0

vif
0
i (r, t))/(

4∑
i=0

f0
i (r, t)) (8)
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For the chosen Ω, these two conditions uniquely determine f0. Since f0 is an
equilibrium, it is in the null space of Ω, and so we can write f0 = Ae0+Be1+Ce2.
Then (7) and (8) together provide 3 independent equations in A, B, and C. The
result is:

f0
i (r, t) =

{
h(r, t)(1 − 2K) i = 0

(h(r, t)/2)
[
K + (vi · u(r, t))/v2

]
i = 1, 2, 3, 4 (9)

The continuity equation is now at hand. We insert (5) and (6) into (4), then
sum (4) over i = 0, 1, ..., 4, divide by τ , and equate coefficients of ε1. We obtain

(
∂

∂qx
,

∂

∂qy

)
·

4∑
i=0

vif
0
i (r, t) +

∂

∂s

4∑
i=0

f0
i (r, t) = 0

and so, after multiplying by ε,

∂h(r, t)/∂t + ∇r · [h(r, t)u(r, t)] = 0 (10)

4.2 The Euler Equation

If we multiply (4) by vi = (vix, viy), sum over i = 0, 1, ..., 4, divide by τ , and
again equate coefficients of ε1, we obtain a pair of equations:

∂

∂s

4∑
i=0

viαf0
i (r, t)+

∂

∂qx

4∑
i=0

viαvixf0
i (r, t)+

∂

∂qy

4∑
i=0

viαviyf0
i (r, t) = 0 α ∈{x,y}

(11)
where the right hand side vanishes due to conservation of momentum. This pair
can be expressed as

∂

∂t
[h(r, t)u(r, t))] + ∇r · Π0(r, t)) = 0 (12)

where Π0 denotes the momentum tensor based on the local equilibrium, f0. This
is the Euler equation. We have already observed that the momentum tensor is
diagonal, and now the explicit expression for f0 in (9) allows an important
simplification. We have Π0

xx = Π0
yy = Kv2h(r, t), and so

∂

∂t
[h(r, t)u(r, t))] + Kv2∇rh(r, t) = 0 (13)

4.3 The Wave Equation

If we differentiate (10) with respect to t, differentiate (13) with respect to r, and
subtract, we obtain

∂2h(r, t)/∂t2 − Kv2∇2
rh(r, t) = 0 (14)

the classical wave equation with wave speed v
√

K.
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To this point, our derivation is similar in spirit to that of Chopard and Droz
[2], but we have avoided the complexity of their approach by using an explicit
collision matrix and a single time scale, rather than the more conventional,
relaxation equation with multiple time scales. Note that although (14) gives us
only a constant-speed wave, that speed is controllable by selection of the collision
matrix parameter, K.

5 Dispersion and Wave Number Spectra

In the standard model of deep-water waves, wave speed (phase velocity) is given
by
√

g/k, where g is the gravitational constant and k is the wave number, the
spatial analogue of frequency with units m−1 [20]. Note that phase velocity,√

g/k, yields wave frequency
√

gk. If Ω(K) denotes the collision matrix of (3),
then given a target wave number, k, we can use Ω(g/(v2k)) in the update equa-
tion (2) to achieve the desired wave speed. An accurate model of a large body
of water is likely to have multiple wave numbers per site. Such composite waves
disperse with time according to their component wave numbers. Since (2) de-
scribes only local, per site collisions, our strategy is to adjust Ω per wave number
to control speeds.

If the wave numbers present in a given wave height field, h(r), are not evident
from the height field construction, it is straightforward to estimate them. If
the underlying process is wide-sense stationary, then the lag r auto-covariance
function of the wave height field is given by

R(r) = E[h(x)h(x + r)]

where E is the expected value operator. The wave number spectrum is then the
Fourier transform

φ(k) =
1

(2π)2

∫
R(r)e−ik·rdr

which carries the amount of energy in, and hence importance of, the waves at
each wave vector. The wave number is the modulus of the wave vector. If the
wave height field is specified on a lattice, we can use the sample auto-covariance
sequence and estimate the wave number spectrum as its discrete Fourier trans-
form (DFT).

In the absence of obstructions, water waves can maintain their speeds (and
hence wave numbers) for great distances, sometimes hundreds of miles [20]. To
update a composite wave at any given site, we need to apply multiple update ma-
trices, Ω(K), one to each wave component. We thus maintain total site density,
h(r), in terms of its wave-number-indexed components,

h(r, t) =
∑

k

4∑
i=0

fi,k(r, t) (15)

and we apply Ω(g/(v2k)) to update the fi,k(r, t) as in (2). In the absence of
obstructions that change wave numbers (described in Section 7), we can treat
the wave-number-indexed components independently.
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This opens the issue of how many wave numbers will be needed for visually
accurate representation of interesting surfaces. If the height field is centered
on a lattice of edge dimension N , then by symmetry alone we need at most
N(N + 2)/8 wave numbers, one for each lattice point in a 45-degree octant. Of
course, some circles about the origin will contain more than one such lattice
point. The number of distinct radii among all circles through all lattice points
is asymptotically 0.764 × (N/2 − 1)2/

√
2log(N/2 − 1) [21] (cited in [22]). To

represent all of them would require both excessive storage and computation
time.

Instead, we observe that if we restrict our reflection model (Section 7) to first
and second order effects, wave numbers will either remain constant or double
on each update. Thus logN wave numbers (powers of 2 in lattice units) should
suffice, which yields a total update effort of O(N2logN), identical to that of the
fast Fourier transform.

6 Initial Conditions

Initial conditions can be arbitrary, but if the goal is to model naturally occur-
ring water waves, we are obliged to begin with a height field that is a reasonable
representation of such. Thus, we initially ignore any wave obstructions and be-
gin with a known solution to the general wave equation, in particular, a finite,
weighted sum of cosine functions,

h(r, 0) =
1

N2

∑
k

w(k)e2πik·r (16)

where the weights, w(k), are specified in frequency space, and the height field is
given by the (inverse) DFT. For the field to be real, we must have the conjugate
w∗(k) = w(−k), where positions are interpreted mod N . We follow Tessendorf
[17] and enforce this constraint by taking

w(k) = w0(k) + w∗
0(−k) (17)

where k = |k| and w0(k) is calculated from the targeted wave number spectrum,
φ(k). The Phillips spectrum [23] is a standard choice. We use a slightly modified
version and instead take

w0(k) = (C
√

e−1/k2/k2)(N(0, 1) + iN(0, 1))((k/k) · D) (18)

where N(0, 1) denotes a random sample from a standard normal distribution, D
is the wind direction, and C is a scaling constant.

We can write (16) in terms of individual wave numbers as

h(r, 0) =
∑

k

∑
|k|=k

1
N2

w(k)e2πik·r (19)
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and again treat each wave number independently. Comparing (15), we see that
for each site, r, and each wave number, k, we need to specify values fi,k(r, 0) so
that ∑

|k|=k

1
N2

w(k)e2πik·r =
4∑

i=0

fi,k(r, 0) (20)

The specification of these values is otherwise open, but we find the most com-
pelling wave action to arise if we first decompose the wind direction, D, into its
associated positive lattice directions, fi1 and fi2 . We then select that vector, k,
having maximum dot product, D · k, and distribute the entire left hand side of
(20) to fi1 and fi2 in proportion to the components of k.

7 Obstructions

In addition to their computational simplicity, a widely recognized advantage of
LB methods over conventional (finite element, finite difference) methods is their
ability to handle complicated boundary conditions. We can represent the colli-
sion of a wave with an obstruction by simply reflecting the directional density,
dissipating its amplitude, and if harmonics are desired, doubling its wave num-
ber. For example, if r is a site adjacent to an obstruction at r + (λ, 0), then the
update at r at time t, which would have routed density to f1,k(r + (1, 0), t + τ)
will instead route a possibly reduced amount to f2,k+s(r − (1, 0), t+ τ), where s
is either 0 or k. The flow reduction, if any, represents energy dissipation.

8 Implementation

We implemented both the lattice-Boltzmann wave model and a ray-tracing ren-
derer in OpenCL. They can be executed simultaneously on a single NVIDIA
GTX 480. Individual frames from a sample animation are shown in Figure 2.
For this animation, we used a 1024× 1024 grid with 16 wave numbers, and we
were able to render 1024× 768-pixel frames at 25 frames per second.

The OpenCL kernel for the wave model is nearly trivial, as should be ex-
pected from the update equation (2). The only item of note is that the direc-
tional density storage, which requires WIDTH×DEPTH×DIRECTIONS floats,
is implemented as

#define store(i,j,k) ((i)*(WIDTH*DIRECTIONS)+(k)*WIDTH+(j))

so that the WIDTH index, rather than the DIRECTIONS index, varies most
rapidly in linear memory. There are 5 directions, but the width is usually a large
power of 2, and so this storage alignment allows the NVIDIA architecture to fully
coalesce accesses to device (card) memory, which is important to performance.

The ray-tracing renderer is based largely on the approach developed by Mus-
grave [24], as this algorithm lends itself well to GPU computation. Unlike kd-tree
traversals of large sets of triangles, there is no control-flow based on the direc-
tion of the cast ray, which allows all rays to follow the same execution path
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Fig. 2. Frames from sample animation
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until a potential hit is encountered. The increased coherence allows the GPU to
compute a larger number of rays in parallel, thereby enabling real-time frame
rates.

The entire lattice-Boltzmann grid represents a height map. This height map
is stored in the red component of a texture object, since NVIDIA’s architecture
caches accesses to textures. A modified Bresenham Digital Differential Analyzer
(DDA) algorithm [25] is then used for the traversal. Once a potential intersection
point is found, triangles representing the cell that is intersected are generated
from the height map, taking advantage of the spatial locality of the texture
cache. A standard ray-triangle intersection test is used. Once all rays have been
tested for intersection against the water surface, intersection tests for the channel
markers and the beach ball are carried out using traditional ray-tracing methods
for reflection, refraction, transmission, and occlusion with respect to the water.

9 Conclusions

We have suggested a new technique for modeling deep-water waves that is based
on a two-dimensional, lattice-Boltzmann method. It includes wave dispersion
and offers a flexible facility for handling wave-object interaction. Modeling and
rendering can be carried out simultaneously, in real-time, on a single graphics
card.

Extensions currently under investigation include wave interaction with boats
or other partially submerged, moving objects and wave interaction with porous
materials.
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Abstract. We present a texture-based approach that hatches color pho-

tographs. We use a Delaunay triangulation to create a mesh of triangles

with sizes that reflect the structure of an input image. At each vertex

of this triangulation, the flow of the image is analyzed and a hatching

texture is then created with the same alignment, based on real pencil

strokes. This texture is given a modified version of a color sampled from

the image, and then it is used to fill all the triangles adjoining the ver-

tex. The three hatching textures that accumulate in each triangle are

averaged, and the result of this process across all the triangles form the

output image. This method can produce visually pleasing hatching sim-

ilar to that seen in colored-pencil strokes and oil paintings.

1 Introduction

Hatching, an artistic technique used to create tonal or shading effects by drawing
closely spaced parallel lines, is one of the most interesting topics in NPR. Many
researchers have presented various hatching techniques that can render 3D trian-
gular meshes or re-render photographs using strokes or line segments [1–4]. The
hatching patterns can also be found in researches on line illustrations [5–7], pencil
drawings [8–15] and oil paintings [16–21]. Even color pencil drawings [11, 13, 14]
and oil-paintings [17, 21] exhibit some hatching patterns.

In this paper, we present a texture-based hatching approach to the re-rendering
of color photographs. Our scheme is inspired by Lee et al. [22] who create
monochrome pencil drawings on triangular meshes. We have extended this work
to the re-rendering of color photographs with hatching. Our scheme produces
a color image with hatching patterns similar to those found in a color pencil
drawing or an oil painting. Our basic strategy is to build a color hatching tex-
ture and to apply it at a vertex of a triangular mesh in which the input image
is embedded. This mesh is constructed by the Delaunay triangulation of adap-
tively sampled points in the image. The color hatching textures are constructed
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Fig. 1. An overview of our hatching algorithm. The contents of the dotted boxes A
and B are explained in Sections 3 and 2 respectively.

from a base hatching texture made from real strokes. During the hatching step,
we build a color hatching texture with a color selected from the input image at
each vertex of the triangular mesh. We modify the sampled color to emulate the
color found in actual drawings. The pixels inside the triangles which meet at
each vertex are drawn using the textures. The direction in which each texture is
drawn is selected with the aim of improving the understanding of the shapes in
the image. An overview of our scheme is shown in Fig. 1.

We will now survey some of the more significant related work on color pen-
cil drawing and oil painting that include hatching patterns in their results. In
some work on color pencil rendering [11, 13, 14], hatching effects are generated
using line integral convolution (LIC) [13], using strokes along contours [14], and
paper textures may be also simulated [11]. Yamamoto et al. [13] simulated the
overlapping effect of two different color pencils and hatching patterns of uni-
form direction inside a region. They segmented an image into several regions
and generated particles of two different colors in each region. They then applied
LIC to create hatching patterns, which are overlapped using the Kubelka-Munk
model. However, since all the regions in the image are re-rendered using only
two different pencil colors, the results are not visually pleasing. Matsui et al. [14]
developed a scheme that re-renders a color photograph as a color pencil drawing
by drawing strokes that follow the boundaries of regions in the image. They
extracted the boundaries of regions in the image, and generated strokes along
the boundary curves. The colors of the strokes are sampled from the image and
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again mixed using the Kubelka-Munk model. Murakami et al. [11] presented an
algorithm that generates strokes that mimic pastels, charcoals or crayons using
multiple illuminated paper textures. They captured the texture of paper and
simulated the stroke effects on the paper in various ways. By applying colored
strokes to their paper model, they produce realistic color drawing effects. But
none of these techniques can produce the effects of color pencils with sharp tips.

Some of the research on painterly rendering [17, 21] has involved hatching
effects. Hays and Essa [17] presented a painterly rendering scheme in which
strokes are drawn in directions estimated using an RBF (radial basis function).
Hatching patterns are created by capturing the stroke textures produced by
artists’ brushes. However, the results of this work have a limited ability to convey
shape information, since the stroke-generation process does not have any shape
information. Zeng et al. [21] presented a painterly rendering scheme in which an
image is parsed to determine the size and the type of brushes to use. Our scheme
achieves similar results, although we use a triangular mesh.

Our approach offers several advantages: First, the use of different hatching
patterns produces a range of effects, which can suggest media as diverse as
color pencils and oil painting. Second, embedding input images in triangular
meshes allow us to control the scales of hatching patterns to conform to the
shapes of objects in the image. Less important regions, such as the backgrounds,
are embedded in large triangles and more important regions in small triangles;
then we apply coarser hatching patterns to the less important regions and finer
patterns to more important regions. Third, we can improve the effects of hatching
by modifying the colors that we extract from the image. For example, reducing
the saturation of the sampled color creates a texture suggestive of pencil drawing,
whereas increasing the saturation suggests oil painting.

The rest of this paper is organized as follows: In Section 2 we explain how the
sampled color is modified and how color hatching textures are created with the
sampled color. In Section 3 we describe how a color hatching texture is applied
to an input image embedded in a triangular mesh. In Section 4 we explain how
our scheme is implemented and present several results. Finally, we conclude our
paper and mention some plans for future research direction in Section 5.

2 Generating Color Hatching Textures

A color hatching texture is generated by rendering a base texture with the target
color. We build a base texture by capturing and overlapping real strokes [22].
We define the tone of a hatching texture to be the average intensity of all the
intensities in the texture, and its range to be a pair consisting of the maximum
and minimum intensity across the texture. The tone and the range of a base
texture are denoted by t0, t0m and t0M . Fig. 2 (a) illustrates a base texture with
its tone and range.

2.1 Color Modification

Different artistic media tend to be used in ways which give the colors in the
resulting picture a particular relationship with those in the scene. Therefore,
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Fig. 2. Histogram control to achieve a hatching texture of a required tone: (a) base

texture; (b) darkest and brightest textures; (c) required texture of tone t′ and range

(t′m, t′M )

we modify the color extracted from the input image before we build a color
hatching texture. Let Cp be the color sampled at a pixel p of the input image
in RGB format with components in the range of (0, 1). We convert Cp to HSV
format (Hp, Sp, Vp). We then modify Cp by changing Sp and Vp. We use nine
different variations on Cp, selected from the combinations expressed by {Sp +
δ, Sp, Sp − δ} × {Vp + δ, Vp, Vp − δ}, as shown in Fig. 3 (a). Out of these, we
set the modified color (H ′

p, S
′
p, V

′
p) to (Hp, Sp − δ, Vp) to represent pencil, and to

(H ′
p, S

′
p, V

′
p) = (Hp, Sp + δ, Vp + δ) to represent oils. The extent of the changes,

δ, is in the range (0.1, 0.3). Empirically, we use 0.3. Note that the modified value
is clamped to keep it in the range (0, 1). The RGB format of the modified color
C′

p is reconstructed from (H ′
p, S

′
p, V

′
p).

2.2 Color Hatching Textures

We build three individual monochrome hatching textures for R′
p, G′

p and B′
p,

and then merge them into a color hatching texture as shown in Fig. 3 (b). If we
assume R′

p = t′, then our target texture has a tone of t′ and a range of (t′m, t′M ),
where the subscripts m and M denote the minimum and the maximum of the
histogram, respectively. Whereas previous techniques build a series of textures
by overlapping strokes or textures [2, 22–24], we use a histogram-based approach
to create textures of different tones. The darkest and brightest hatching textures
respectively have tones of td and tb, and ranges (tdm, tdM ) and (tbm, tbM ), as shown
in Fig. 2 (b). A texture of the required tone and range can be constructed by
manipulating the histogram of the texture, although the range of a texture is
reduced as it becomes darker or brighter. The new range (t′m, t′M ) is estimated
from the ratio between the tone and the original range. Then an intensity t0i ∈
(t0m, t0M ) sampled from the base texture is converted to t′i ∈ (t′m, t′M ) to match
the intensity of the target texture. If t′ > t0, then t′m and t′M are determined as
follows:

t′M = t0M + (tbM − t0M )
t′ − t0

tb − t0
, t′m = t0m + (tbm − t0m)

t′ − tm

t0 − tm
.
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Fig. 3. (a) Eight modified colors: the center color is the original, (b) A color C′ ap-

plied to a monochrome hatching texture. The corresponding color hatching texture is

composed from three color components with different textures.

But if t′ < t0, then t′m and t′M are determined as follows:

t′M = tdM + (t0M − tdM )
t′ − tm

t0 − td
, t′m = tdm + (t0m − tdm)

t′ − td

t0 − td
.

Having obtained t′m and t′M , other intensities t0i > t0 or t0j < t0 of a base texture
can be converted to t′i and t′j in the target hatching texture using the following
formulas:

t′i = t′ + (ti − t0)
t′M − t′

t0M − t0
, t′j = t0 − (t0 − tj)

t′ − t′m
t0 − t0m

.

We illustrate the relationships between the tones and histograms in Fig. 2 (c).

3 Drawing Color Hatching Textures

Before re-rendering the input image using color hatching textures, we smooth
the input image using the mean-shift scheme [25].

3.1 Adaptive Delaunay Triangulation

The first step in drawing the color textures is to embed the input image into a
triangular mesh, which requires the following steps:

1. Sample n0 points on the image using a Poisson disk distribution, and then
use Delaunay triangulation to build an initial triangular mesh. We set n0 to
be 100.
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2. In each triangle having at least one vertex on an important pixel, we generate
a new point at its center. We decide whether a pixel is important using the
DoG (difference of Gaussian) filter in [26]. If the evaluated DoG value of a
pixel is greater than a threshold, then that pixel is labeled as important.

3. Apply Delaunay triangulation to the modified set of points.
4. Repeat Steps 2 and 3 until the image is triangulated appropriately. An

appropriate triangulation means that the triangles are not too tiny to ig-
nore the hatching effects and not too large to ignore shape information. In
practice, the triangulation only has to be performed for three or four times.

The final result of this procedure is a triangular mesh which reflects the structure
of the input image. Fig. 4 (a) shows three stages in the triangulation of a test
image, and Fig. 4 (b)shows how the result is affected by the triangulation.

(a) (b)

Fig. 4. Triangulation of images: Hatching results on a coarse uniform mesh without

modifications, a mesh modified to reflect the structure of the image, and a fine mesh

without modification

Fig. 5. Merging the textures drawn inside the triangles which share three vertices

3.2 Estimating Drawing Directions

The directions in which the hatching textures are drawn are determined at the
vertices of the embedding triangular domain by performing an edge tangent
flow (ETF) algorithm [26] at the pixels in which each vertex is located. This
produces similar drawing directions to these seen in real pencil drawings. These
are usually drawn in on of three styles: (i) along contours or feature lines, (ii)
in locally uniform directions, or (iii) in random directions. The directions on
important vertices follow style (i), since the ETF’s computed at the matching
pixels follow contours or feature lines and the vertices are located densely. Since
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Fig. 6. Re-rendered images (1)
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Fig. 7. Re-rendered images (2)



94 H. Yang, Y. Kwon, and K. Min

the unimportant vertices are coarsely distributed, their ETF’s correspond to a
locally uniform flow, and therefore follows style (ii).

3.3 Drawing Textures on a Triangular Mesh

We mimic the procedures in [22]. At each vertex v, we locate a pixel p that
contains v. The color at p, which is Cp, is modified to C′

p using the scheme
described in Section 2. The C′

p is then used in generating the color hatching
texture. The pixels inside triangles which have v as one of their vertices are filled
with the hatching texture. Therefore, every pixel inside a triangle is drawn three
times using the different textures generated from each of its vertices. The colors
from the three textures are averaged at each pixel. Fig. 5 shows this process.

4 Implementation and Results

We implemented our algorithm on a PC with an Intel Pentium QuadCoreTM

Q6600 CPU and 4G Byte of main memory. The programming environment was
Visual Studio 2008 with the OpenGL libraries. We selected five photographs
containing the images of a child, flowers, an animal and a landscape. Each of these
photographs was re-rendered using our scheme, with the level of triangulation
set to 3. The original images and resulting hatched images are shown in Figs. 6
and 7. The resolutions of the images and their computation times are given in
the captions of 6 and 7.

5 Conclusions and Future Plans

We have presented a texture-based hatching technique for re-rendering a color
image in order to give the impression of a color pencil drawing. The input image
is embedded into an adaptive triangular mesh, and color hatching textures, cre-
ated by applying an modified colors from the image to a monochrome hatching
texture, are drawn into the triangles of the mesh.

Our results have the favor of an artistic rendering, but it is not possible to
produce clearly identifiable pencil drawing or oil painting effects by controlling
the parameters currently available. We plan to solve this problem by extending
the range of the strokes from the pencil strokes of various thickness and shapes
used in this paper to other types of strokes, such as those made by artists’
brushes and watercolor pencils.
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Abstract. A novel linear algorithm to estimate the camera pose from known 
correspondences of 3D points and their 2D image points is proposed based on 
the angle constraints from arbitrary three points in 3D point set. Compared with 
Ansar’s N Point Linear method which is based on the distance constraints be-
tween 3D points, due to more strict geometric constraints, this approach is more 
accurate. Simultaneously some strategies of choosing constraint equations are 
introduced so that this algorithm’s computational complexity is reduced. In or-
der to obtain more accurate estimated pose, we propose the singular value de-
composition method to derive the parameters from their quadratic terms more 
exactly. Finally, the experiments show our approach’s effectiveness and accu-
racy compared with the other two algorithms using synthetic data and real  
images. 

1   Introduction 

The estimation of the camera pose from 3D-to-2D point correspondences is the well-
known PnP problem. The solution of the PnP problem is widely used in the field of 
computer vision, robot navigation, photogrammetry, augmented reality (AR) and so 
on. The key technique in AR is the registration of the virtual object in the real scene. 
It requires effective and stable camera pose estimation in the real scene, so the re-
search on the algorithm which can determine the camera pose fast and effectively is 
essential. 

In this paper, our approach estimates the camera pose from the angle constraints 
connected by arbitrary three points in 3D point set. Ansar’s N Point Linear (NPL) 
method[1] presents a linear algorithm based on the constraints from the distances 
between 3D points, his basic idea is using the well known linearization technique 
named “relinearization” which was first presented in CRYPTO’ 99 by Kipnis and 
Shamir[2] to solve some special overdetermined quadratic equations. The main idea 
of “relinearization” is to deal with the overdetermined quadratic equations as linear 
equation system. The solution of this equations system is weighted sum of basic solu-
tions and the weight of each basic solution can be finally determined by the correla-
tion between those quadratic terms. Compare with the distance constraints, the angle 
constraints applied are more strict geometric constraints. The overdetermined con-
straint equations deduced by angle constraints are also quadratic equations which can 
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be solved by the ‘‘relinearization’’ method. Since the detected corresponding 2D 
image points are noisy, the coefficients of quadratic equation systems are also noisy 
and the noise can be propagated to the solution of quadratic terms. So we develop a 
method which uses the singular value decomposition (SVD) to reduce the parameter 
noise when we deduce the parameters from their quadratic terms. The application of 
this method effectively improves the pose estimation accuracy. 

2   Relative Work 

In the research field of computer vision and augmented reality, camera pose estima-
tion is a basic and significant research area. According to the different direction of 
coordinate transformation, we classify the pose estimation algorithms into two catego-
ries: 3D-3D-2D and 2D-3D-3D. 

The 3D-3D-2D algorithms transfer the 3D points in the world coordinate into 3D 
camera coordinate using rotation matrix R and translation vector T, and then produce 
the constraint equations between 3D points in the camera coordinate and their pro-
jected 2D image points. These constraint equations can directly solve the pose pa-
rameters (rotation matrix R and translation vector T). Most of these algorithms were 
nonlinear which must be solved by iterative approaches. Lowe [6] and Haralick [7] 
applied Gauss-Newton methods to solve the nonlinear optimization problems. Lu et 
al. [8] proposed an effective iterative algorithm which were proved to be globally 
convergent and can attain the orthonormal rotation matrix. In this category, the direct 
linear transform (DLT) [9] is a well known linear algorithm which required at least 
six points to calculate the intrinsic and extrinsic parameters simultaneously, but it 
ignored the orthonormality constraints on the rotation matrix.  

The 2D-3D-3D algorithms directly recover the point parameters in the 3D camera 
coordinate and apply the known corresponding 3D points in the world coordinate to 
determine the pose parameters from 3D-to-3D point correspondences. In this cate-
gory, Fiore [5] directly recovered the point depths in the camera coordinate, and then 
transferred the problem to a pure rotation problem using the SVD with at least six 
points. Quan and Lan [3] applied the distance constraints between 3D points and 
deduced a four-degree polynomials equation system. Then they considered the 
nonlinear overdetermined equation as linear equation system and obtained the basic 
solution set of the linear system by the SVD. The weight of each basic solution was 
finally estimated according to the correlation between quadratic form variables. The 
basic principle in Ansar’s NPL method was similar with Quan and Lan’s algorithm. 
Ansar derived a set of quadratic equations according to distance constraints. When the 
number of points 4n ≥ , the number of equations is ( 1) 2n n −  and the overdetermined 
quadratic equations can be solved by the “relinearization” method. It’s valuable to 
mention that Morenno-Noguer et al. [4] proposed an algorithm named Epnp which 
represented each reference point as a weighted sum of four control points both in 
world coordinate and camera coordinate. This algorithm’s computational complexity 
is ( )O n  with at least six points. 
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3   Our Algorithm 

3.1   Notation 

In our approach we define three coordinates: (a) 3D world coordinate, the space point 

in this coordinate can be represented as [ ]T

Wi Wi Wi WiP x y z= ; (b) 3D camera coor-

dinate, the space point in this coordinate can be represented as [ ]T

Ci Ci Ci CiP x y z= ; 

(c) 2D image plane coordinate, the corresponding projected point on the image plane 

can be represented as [ ]T

Ii i iP u v= . The camera intrinsic matrix is 

0

0

0

0

0 0 1

u

v

f u

A f v

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦  

In the camera coordinate, the vector form the camera optical center to the image point 
can be denoted as  

0 0 1

T

i i
i

u v

u u v v
p

f f

⎡ ⎤− −
= ⎢ ⎥
⎣ ⎦  

Under the ideal pinhole imaging model, the point CiP , its corresponding projected 

image point and the camera optical center are collinear. Then we can obtain 

Ci i iP pρ= , 

Where iρ is a scale factor. 

In this paper, a set of n ( 4n ≥ ) correspondences of ( 1... )WiP i n=  and ( 1... )IiP i n=  

is known and we assume the camera intrinsic matrix A  was calibrated. Then ip  can 

be calculated. If the factor ( 1... )i i nρ =  can be estimated, then ( 1... )CiP i n=  can be 

recovered. 
Deriving quadratic equation system in n variables ( 1... )i i nρ =  from the distance 

constraint between points or angle constraints of arbitrary three points in 3D point set, 
we can apply the “relinearization” method to recover ( 1... )CiP i n= . Finally, the cam-

era pose can be determined from the correspondence of ( 1... )WiP i n=  and 

( 1... )CiP i n= . 

3.2   Basic Constraint  

3.2.1   The Distance Constraint 
Ansar’s NPL and Quan’s methods used the distance constraint shown as Figure 1. 
The distance ijd  between WiP and WjP  is calculable and equal to the distance between 

CiP  and CjP  in the camera coordinate. Let CiP and CjP to be denoted as i ipρ , j jpρ  re-

spectively, the constraint equation of scale factors will be as follows: 

ij i i j jd p pρ ρ= −
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O

IiP IjP

ijd

Image plane 

Camera optical center 

CiP
CjP

 

Fig. 1. The distance constraint between two point CiP and CjP . The distance ijd  from CiP to CjP  

is invariable in world coordinate and camera coordinate. CiP and CjP can be denoted 

as i ipρ and j jpρ respectively. 

Let 2
ij ijb d= , then, 

( ) ( ) ( ) ( ) ( )2 2 2
T T T T

ij i i j j i i j j i i i j j j i j i jb p p pp p p p p p pρ ρ ρ ρ ρ ρ ρ ρ= − − = + −
 In the equation above, ijb , ip  and jp can be figured out from known information. 

Let T
ij i jP p p= , we can simplify the equation as follows: 

2 2 2 0ii i jj j ij ij ijP P P bρ ρ ρ+ − − =  (1)

For n points, the number of the constraint equation will be 2 ( 1) 2nC n n= − . 

CjP
CiP

IjPIiP

O

jkiθ

kijθ
ijkθ

CkP

IkP Image plane 

Camera optical center  

Fig. 2. The constraint based on angle. ijkθ , jkiθ , kijθ  respectively represent the angles 

Ci Cj CkP P P∠ , Cj Ck CiP P P∠ , Ck Ci CjP P P∠  which are invariables. CiP , CjP , CkP can be denoted as 

i ipρ , j jpρ , k kpρ respectively. 

3.2.2   The Angle Constraint 
The angle constraint is shown in Figure 2. Points i, j and k are arbitrary three points 
from n points. They can be denoted as CiP , CjP , CkP  in camera coordinate and WiP , 

WjP , WkP  in world coordinate respectively. The angles connected by the three points 

are invariable so we can obtain three equations as follows: 
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Wi Wj Wk Ci Cj CkP P P P P P∠ = ∠  

Wk Wi Wj Ck Ci CjP P P P P P∠ = ∠  

Wj Wk Wi Cj Ck CiP P P P P P∠ = ∠  

They can also be expressed by the invariable angles between the vectors ij , jk , ki  in 
the camera coordinate and the world coordinate. The constraint equations then become 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T
k k i i i i j j Wk Wi Wi Wj

T T
i i j j j j k k Wi Wj Wj Wk

T T
j j k k k k i i Wj Wk Wk Wi

p p p p P P P P

p p p p P P P P

p p p p P P P P

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

− − = − −

− − = − −

− − = − −

 (2)

Take the angle ijkθ for instance, and let ( ) ( )T
ijk Wk Wj Wi WjC P P P P= − − , which can be calcu-

lated based on known 3D world coordinates of these points. Then deduce the con-
straint equations of ( 1... , 1... )i j i n j nρ ρ = =  as follows: 

0ik ik ij ij jk jk jj jj ijkP P P P Cρ ρ ρ ρ− − + − =  (3)

For the n points, if we find all the constraint equations, we can attain 
33 ( 1)( 2) 2nC n n n× = − −  equations. But these equations are not all independent. So 

we give a strategy to choose the special ( 1) 2n n −  constraint equations which can be 

used to figure out the camera pose. The strategy is combined by two categories of 
constraint equations. In the first category, the complete graph connected by n-1 points 

1 2 1( , ... )nV V V −  have 2
1 ( 1)( 2) 2nC n n− = − −  connections. The vertices of each connec-

tion and the nth point nV  can create an angle constraint equation and take nV  as the 

vertex of the angle. In the second category, choose an arbitrary Hamiltonian circuit 
from the graph of n-1 points 1 2 1( , ... )nV V V − . Each two connected edges of the Hamilto-

nian circuit can deduce an angle constraint equation and the number of this kind of 
constraint is 1n − . Then, the sum of the constraint equation is 2

1 1 ( 1) 2nC n n n− + − = − . 

Take 5n =  for example, the set of points is 1 2 3 4 5{ , , , , }V V V V V . The Figure 3 shows 

the chosen strategy of the constraint equations. In Figure 3 (a), the dotted lines repre-
sent the complete graph connected by the 1n −  points 1 2 3 4{ , , , }V V V V . Then we can 

choose the angles 1 5 2 1 5 3 1 5 4 2 5 3 2 5 4 3 5 4{ , , , , , }V V V V V V V V V V V V V V V V V V∠ ∠ ∠ ∠ ∠ ∠ . 
 

 
(a)first category of constraints (b)second category of constraints 

Fig. 3. The strategy of choosing the angle constraint, when n=5 

1V

4V

3V

2V

1V

4V

3V

2V5V
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In the figure 3 (b), we can easily choose the Hamiltonian circuit 

1 2 3 4 1V V V V V→ → → →  and the angles 1 2 3 2 3 4 3 4 1 4 1 2{ , , , }V V V V V V V V V V V V∠ ∠ ∠ ∠ .The 

amount of the angles is ( 1) 2 10n n − = . 

We can produce a system of ( 1) 2n n −  quadratic equations in n variables 

( 1... )i i nρ =  as Ansar’s NPL method. The system can be denote as 

( 1) ( 1) ( 1)
1 1 1

2 2 2

0n n n n n nM L− + +⎛ ⎞ ⎛ ⎞× + + ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

× =  
(4)

Where ( 1) ( 1)
1

2 2

n n n nM − +⎛ ⎞× +⎜ ⎟
⎝ ⎠

is the coefficients matrix of the quadratic equation system, and 

( 1)
1 1

2

n nL +⎛ ⎞+ ×⎜ ⎟
⎝ ⎠

is the quadratic term variables which can be represented as 

( )12 13 1, 11 22 ,

T

n n n nL ρ ρ ρ ρ ρ ρ ρ−=  

Kipnis and Shamir proposed an algorithm named “relinearization” in CRYPTO’ 99 
which can solve this kind of overdetermined quadratic equations, in which the number 
of the equations is 2nε , where 0 1 2ε< < . The principle of the algorithm is consider-

ing the quadratic terms like ( 1... , 1... )i j i n j nρ ρ = =  in our approach as independent 

variables. The number of such variables is ( 1) 2n n + in our system. Consider 1ρ = as 

a variable then Equation (4) is a homogenous linear system in ( 1) 2 1n n + +  variables. 

The number of independent equations is ( 1) 2n n − , which is less than ( 1) 2 1n n + + . 

Then the solution of the linear system is weighted sum of 

( )( 1) 2 1 ( 1) 2 1n n n n n+ + − − = +  basic solutions which can be denoted as 

1

1

n

i i
i

L vλ
+

=

=∑  (5)

where ( 1 1)iv i n= +…  are basic solutions of the linear system, ( 1 1)i i nλ = +… are the 

weight of each basic solution. Actually, the variables from the set 
of ( 1... , 1... )i j i n j nρ ρ = =  are correlated. We can produce the constraint equations of 

( 1 1)i i nλ = +…  according to the correlations of these variables. For example, we 

know ab cd ac bdρ ρ ρ ρ= , and then the constraint equation can be expressed as 

( ) ( )
1 1 1

1 1 1

0
n n n

ab cd ac bd ab cd ab cd ac bd ac bd
ii i i i i ij i j j i i j j i

i i j i

v v v v v v v v v v v vλ λ
+ + +

= = = +

⎛ ⎞
− + + − − =⎜ ⎟

⎝ ⎠
∑ ∑ ∑  (6)

where ( 1... 1, 1... 1)ij i j i n j nλ λ λ= = + = + . And we can produce a set of equations 

because of the correlations of ( 1... , 1... )i j i n j nρ ρ = = . The linear equations system 

combined by the equation like Equation (6) has ( 1)( 2) 2n n+ + variables 

( 1... 1, 1... 1)ij i n j nλ = + = + . In Table 1, we demonstrate the number of equations  
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from different constraint forms of ( 1... , 1... )i j i n j nρ ρ = = . When n>=4, 
2 2 4

1( 2 ) ( 1)( 2) 2n n nC nC C n n−+ + > + + . 

We can solve the liner equation system directly by using the SVD method and de-
rive the weights iλ .Substitute iλ  into equation (5), we attain the value of ijρ  and 

finally deduce the scale factor ( 1... )i i nρ = . Using the equation Ci i iP pρ= , we can 

recover 3D camera points and estimate the rotation matrix R and translation vector T 
from correspondence of two set of ( 1... )WiP i n=  and ( 1... )IiP i n= . 

Table 1. The number of equations in variables ( 1... 1, 1... 1)ij i n j nλ = + = +  

(a, b, c, d are different numbers from 1 to n) 

Constraint form The number of constraint equations 

aa bb ab abρ ρ ρ ρ=  2 ( 1)

2n

n n
C

−=  

aa bc ab acρ ρ ρ ρ=  2
1

( 1)( 2)

2n

n n n
nC −

− −=  

ab cd ac bd ad bcρ ρ ρ ρ ρ ρ= =  4 ( 1)( 2)( 3)
2

12n

n n n n
C

− − −=  

3.3   Parameter Modification Method 

Actually, the detected 2D image points are noisy and the noise is propagated 
to T

ij i jP p p= . Then, the coefficients of the quadratic equation in (4) and (6) contain 

noise. We can just obtain the approximated solution of ijρ  and ijλ . There are different 

choices which can deduce ( 1... )i i nρ = from ijρ  or deduce ( 1... 1)i i nλ = + from ijλ . 

For instance, we can obtain 1ρ from 11ρ± or from 12 13 23ρ ρ ρ± . But 11ρ is not 

exactly equal to 12 13 23ρ ρ ρ , we can just write the approximately equa-

tion 11 12 13 23ρ ρ ρ ρ≈ . Then 1ρ  is slightly different depend on the different  

deduced formula. In this paper, we present a method which can reduce the noise to 
derive iρ  and iλ . 

We produce the matrix M ρ , which denote as 

11 12 1

12 22 2

1 2

n

n

n n nn

M ρ

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (7)
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Ideally due to the correlation between the element ( 1... , 1... )ij i n j nρ = =  in M ρ , we 

can easily know the rank of  M ρ  is ( )rank M ρ =1. But actually approximated solu-

tion of ijρ  destroys the correlation, and then ( ) 1rank M ρ ≠ . Decompose the matrix 

M ρ  by the SVD method, and then we have TM UDVρ = , where the matrix D is 

diagonal matrix with nonnegative real numbers on the diagonal. The diagonal entries 
of D are known as singular values of M ρ  and D has the property that 

( ) ( )rank M rank Dρ = . To reduce the noise of M ρ , we can retain the biggest singular 

value and set the other smaller singular values to zeros. As follows we deduce the 
new singular value matrix D∗

 from D , where 

1

2

0 0

0 0
,

0 0 n

d

d
D

d

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

     

1 0 0

0 0 0

0 0 0

d

D∗

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (8)

Then, we can derive the noise reduced matrix of M ρ  as 

TM UD Vρ
∗ ∗=  (9)

The elements of M ρ
∗  are ( 1... , 1... )ij i n j nρ∗ = = which can be consider as the modifica-

tion of ( 1... , 1... )ij i n j nρ = = . Then *
1ρ can be represented as 11ρ∗ or 12 13 23ρ ρ ρ∗ ∗ ∗ , 

where 11 12 13 23ρ ρ ρ ρ∗ ∗ ∗ ∗= . We can apply the same method to deduce 
* ( 1... 1)i i nλ = +  from ijλ . 

4   Experiment Results 

4.1   Synthetic Experiments  

In the synthetic experiments, we produce the synthetic data as follows: randomly 
produce n points ( 1... )CiP i n=  in the camera coordinate and create translation vector T 

and rotation matrix R from random Euler angles. We can calculate the 3D world co-
ordinates ( 1... )WiP i n=  of the points. For the calculated camera, the projected 2D 

image points ( 1... )IiP i n=  can also be determined. We add Gaussian noise to the ac-

tual image points ( 1... )IiP i n=  and produce the 2D image points ' ( 1... )IiP i n= . Then, 

we can test the pose estimation algorithm using the input 3D world 
points ( 1... )WiP i n=  and their corresponding 2D image points with noise. 

In our experiments, we assume the camera effective focal lengths are 800uf =  

pixel, 800vf =  pixel, the image resolution is 640 480×  and the principal point is 

0 0( , ) (320,240)u v = . We produce 100n =  points in the camera coordinate, in which 
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the ranges of these points are [ 3.2,3.2]cx ∈ − , [ 2.4,2.4]cy ∈ − , [4,8]cz ∈ . Four algo-

rithm are compared, including Ansar’s NPL, Morenno-Noguer’s Epnp, our approach 
named NPLBA (N Points Linear Based on Angle Constraints) and the algorithm 
NPLBA+SVD (using the algorithm NPLBA and the SVD method to reduce the pa-
rameter noise). 

We compare three kinds of error, re-projection error, rotation error and translation 
error. The re-projection error is defined as 

100
*

1

100Ii Ii
i

RMS P P
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑

 
The rotation error is defined as 

*

R

R R
E

R

−
=

 
The translation error is defined as 

*

T

T T
E

T

−
=

 

where *( 1...100)IiP i = , *R , *T  respectively represent the re-projection points, the 

rotation matrix and the translation vector estimated by different pose estimation algo-
rithm. ( 1 100)IiP i = … , R and T are true values of 2D image points, the rotation matrix 

and the translation vector. represents the calculation of the matrix norm.  

Experiment 1(dependence on the number of points): We vary the number of the 
points from 6 to 12 for all four algorithms and add 1 1×  pixels Gaussian noise to all 
the synthetic image points. We do 100 trials for each algorithm and the mean re-
projection, rotation and translation errors are demonstrated in figure 4. The result 
shows that NPLBA+SVD has the least re-projection and rotation errors, its translation 
error is slight greater than Epnp’s but less than NPL’s. 
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(a) Re-projection error (b) Rotation error (c)Translation error 

Fig. 4. Mean re-projection, rotation and translation errors using different number of points 

Experiment 2(dependence on noise level): We add different image noise with vari-
ances from 0.5 to 3.5 in pixel for all four algorithms and the number of point is 7 here. 
We also do 100 trials for each circumstance for each algorithm and obtain the mean 
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re-projection, rotation and translation errors which are shown in figure 5. The experi-
ment in the figure 5 demonstrated that NPLBA+SVD has the least re-projection and 
rotation errors and its translation error is nearly the same level with Epnp’s, but less 
than NPL’s. We can also find that the algorithm NPLBA is more accurate than NPL, 
and the error of NPLBA+SVD is less than NPLBA which demonstrated the effective-
ness of the SVD method to reduce the parameter noise. 
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(a) Re-projection error (b) Rotation error (c)Translation error 

Fig. 5. Mean re-projection, rotation and translation errors using different image noise levels 

4.2   Real Image  

The real image data was obtained from Professor Janne Heikkilä’s Camera Calibra-
tion toolbox for matlab. We can load these data on the website: 
http://www.ee.oulu.fi/~jth/calibr/. The real image shown in figure 6(a) was captured 
by an CCD camera (Sony SSC-M370CE) whose resolution was768 × 576 pixels and 
the actual physical size was 6.2031mm × 4.6515mm. According to the camera pa-
rameters provided in the literature [11], we have the principal point at 

0 0( , )u v =(367.3353,305.9960) and the focal length f =8.3459mm and the scale factor 

us =1.00377723. We can deduce the effective focal uf =1037.3 pixels, vf =1033.5 

pixels. Using the calibration toolbox we obtain the accurate pose as follows 

[ ]
    0.7151    0.0318   -0.6983

   -0.2082    0.9633   -0.1694 0.6378 100.2466 316.7065

    0.6673    0.2665    0.6954

T
R T

⎡ ⎤
⎢ ⎥= = − −⎢ ⎥
⎢ ⎥⎣ ⎦  

We consider these estimated pose as real camera pose. 
In this experiment, the 3D world coordinates of the circular center points and their 

corresponding 2D image points are know as a prior. Randomly choose six points from 
the point set as the input of the algorithm. The Figure 6(b) shows the re-projection 
point using the algorithm NPLBA+SVD, where the stars represent the real image 
points and the circles represent the re-projection point on the image plane. These  
two categories points are closed to each other, which demonstrate the algorithm’s 
feasibility. 

Table 2 shows the compared experiment results using real image. The results are 
the average error of 1000 trials for each algorithm. It is shown that the algorithm 
NPLBA+SVD has the minimum re-projection error and rotation error. And its transla-
tion error is slightly greater than Epnp’s but less than NPL’s. We can also find that 
NPLBA has less re-projection error, rotation error and translation error than NPL’s. 
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So we can obtain the same conclusion as the synthetic experiments, in which we can 
conclude that the SVD method to reduce noise is effective and the NPLBA is more 
accurate than NPL. 

 

 

 
 

 
(a) Real Test Image (b) Reprojection 

Fig. 6. Real image experiments. (a) the real model using in the experiment, in which the center 
points of the white circles are know as the 3D points in the world coordinate; (b) the stars rep-
resent the real image points and the circles represent the re-projection points in the image plane 
using NPLBA+SVD. 

Table 2. The pose estimation errors using 6 points for different algorithm 

 Epnp NPL NPLBA NPLBA+SVD 
RMS(pixels) 5.2929 7.1052 5.3151 4.4522 

RE (%) 2.81 3.23 2.60 1.90 

TE (%) 2.00 4.48 4.26 4.06 

5   Conclusion 

This paper presents a linear camera pose estimation algorithm based on the angle 
constraints of vectors connected by two points. These angle constraint equations are 
deduced by the invariables of the angle connected by arbitrary three points in 3D 
point set. We can choose the equations applying some strategies to reduce the compu-
tational complexity. Compared with Ansar’s NPL which based on the distance con-
straints between 3D points, our algorithm uses more strict geometric constraints 
which lead to more accurate estimated pose. In order to reduce the parameter noise 
when we deduce the parameters from their quadratic terms, an effective SVD method 
is proposed. Synthetic data and real image experiments demonstrate the feasibility 
and accuracy of our algorithm. 
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Abstract. We present a feature-preserving 3D thumbnail system for

efficient 3D models database browsing. The 3D thumbnail is simplified

from the original model so it requires much less hardware resource and

transferring time. With topology-preserved 3D thumbnails, the user can

browse multiple 3D models at once, and view each model from different

angles interactively. To well preserve the topology of the original model,

we propose an innovative voxel-based shape decomposition approach,

which identifies meaningful parts of a 3D object, the 3D thumbnail is

then created by approximating each individual part with fitting primi-

tives. Experimental results demonstrates that the proposed approach can

decompose a 3D model well to create a feature-preserving 3D thumbnail.

1 Introduction

The number of 3D models grows rapidly due to the popularity of various ap-
plications. Conventional 3D search engines display static 2D thumbnails on the
search page for easier browsing. For capturing the best shot of a 3D object, these
2D thumbnails are pre-captured manually, which is very time-consuming. Some
researchers attempted to develop systems that can take the best snapshot for a
3D object automatically [1]. This fixed selection rule does not work well for all
objects and the result can just as easily capture the wrong features. Yet it is
usually impossible to display every important features from a fixed angle.

In this work, we present an innovative feature-preserving 3D thumbnail cre-
ation system that helps users browse 3D models efficiently. That is, users can
browse multiple 3D models with pre-generated 3D thumbnails, and view each
thumbnail from different viewpoints interactively. Usually, to render complicated
3D models simultaneously demands much hardware resource and transfer time
that degrades the system performance significantly. The system performance can
be improved by rendering the simplified models, i.e. the 3D thumbnails, which
requires much less hardware resource and transfer time.

We have developed two approaches to generate a 3D thumbnail; namely, mesh-
based and voxel-based approaches. The mesh-based thumbnail creation approach
was examined in our previous work [2]. Although many techniques for the mesh-
based simplification of 3D models were proposed before, most of them did not
address the issue of feature-preserving simplification. For example, the limbs and

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 108–119, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the body are important features in a 3D human model, but the existing mesh
simplification techniques tend to meld them together. Thus, we proposed a new
mesh decomposition technique to preserve the topology of the original model.
We first identify significant parts of a 3D model and then simplify each part.
The framework in [2] was built upon the surface-based mesh decomposition
method [3]. However, the technique in [3] are limited in some scenarios. For
example, while an animal mesh can be decomposed into a main body and several
protruding limbs successfully, some meaningful parts, such as the head and the
neck, cannot be decomposed furthermore. In addition, a decomposed mesh may
become fragmented if its adjacent parts were taken apart, which resulted in
inaccurate size measurement.

In this work, we develop a voxel-based approach to improve the decomposi-
tion result. We convert a 3D polygonal model into a 3D binary voxel grid, then
extract its rough skeleton with the thinning operation. The main challenge in
the voxel-based approach is that the skeleton obtained using 3D thinning oper-
ations or other skeletonization algorithms contains defects that tend to result
in a messy 3D thumbnail. To address this problem, we develop the two-phase
decomposition process to refine the skeleton. In detail, the skeleton is first de-
composed into multiple groups roughly and the voxelized model is decomposed
into parts accordingly in the first phase. In the second phase, the skeleton and
the voxelized model is re-decomposed more precisely based on the previous re-
sult. Finally, the 3D thumbnail will be created by approximating each part with
fitting primitives. The significance of this work lies in the two-phases decom-
position procedure, where a volumetric model is used in shape decomposition
and simplification to overcome several issues associated with the mesh-based ap-
proach. The proposed voxel-based approach can decompose a model and extract
its skeleton more accurately, and the decomposed model is not fragmented as
compared to surface-based approaches. Generally, the resulting 3D thumbnails
can well represent the features of the 3D objects.

The rest of this paper is organized as follows. Related works are reviewed in
Sec. 2. The framework of the whole system is presented in Sec. 3. The first-phase
and the second-phase shape decomposition processes are described in Sec. 4 and
5, respectively. Performance evaluation of obtained results is conducted in Sec. 6.
Finally, concluding remarks and future research directions are given in Sec. 7.

2 Review of Previous Work

Various mesh/shape decomposition algorithms were developed to decompose
the mesh into small parts based on properties of interest. Shamir [4] provided
a thorough survey on mesh decomposition techniques, which can be classified
into two major categories depending on how objects are segmented; namely,
segmentation is done based on 1) semantic features or 2) geometric primitives.

Methods in the first category is to mimic human perception in psychology or
shape recognition to retrieve meaningful volumetric components. Katz and Tal [5]
introduced a fuzzy-based cutting method to decompose meshes into meaningful
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components, where over-segmentation and jaggy boundaries between sub-objects
can be avoided. Further performance improvement can be achieved using multi-
dimensional scaling, prominent feature point representation and core extraction.
Lin et al. [3] proposed another decomposition scheme built upon cognitive psy-
chology, where the protrusion, the boundary strength and the relative size of a
part were taken into account. Liu et al. [6] developed a part-aware surface met-
ric for encoding part information at a point on a shape. These methods focus on
human perception and shape analysis in stead of math formulations. Theories aris-
ing from psychology, e.g. the minimal rule, separate theory and visual salience are
used to analyze crucial components for shape decomposition.

Methods in the second category conduct decomposition based on geometric
properties of meshes such as planarity or curvature to create surface patches.
Cohen-Steiner et al. [7] proposed an error-driven optimization algorithm for ge-
ometric approximation of surfaces. They used an idea similar to the Lloyd algo-
rithm and reduced the approximation error by clustering faces into best-fitting
regions repeatedly. Other types of proxies were employed to replace mesh patches
by Wu and Kobbelt [8] so that their scheme can be more effective for spheri-
cal, cylindrical and rolling ball blends. Attene et al. [9] proposed a hierarchical
face-clustering algorithm for triangle meshes with various fitting primitives in
an arbitrary set.

In the practical implementation, we may involve one or more segmentation
methods as described above. No matter which category a method belongs to,
each method has its own strength and weakness. It is not proper to claim the
superiority of an algorithm just because it works well for a certain type of models
since it could be deprecated when being applied to others.

3 System Overview

An overview of the proposed thumbnail creation system is depicted in Fig. 1. The
main difference between this work and our previous work [2] is that a voxel-based
shape decomposition scheme is proposed instead of the mesh-based approach.
In this work, the polygonal model is first rasterized into a binary 3D voxel grid
and the coarse skeleton is extracted from the volumetric model by the thinning
operation, using the tools [10] and [11] respectively. For the rest of the paper, we
use object voxels to represent the volumetric model and skeleton voxels to denote
the thinning skeleton as shown in Fig. 2(a). After voxelization and thinning, the
first-phase shape decomposition process is used to decompose the skeleton and
object voxels. The first phase also provides information to the second phase to
adjust the skeleton by eliminating detected defects in the thinning result. The
decomposition results can then be fine-tuned in the second phase. The remaining
modules include:

1. Parts extraction and pose normalization
We decompose the original model into several significant parts, and the PCA
transformation is applied to each part for pose normalization.



Feature-Preserving 3D Thumbnail Creation 111

Fig. 1. Overview of the proposed system

2. Body measurement
The body measurement (i.e. the radius of the surrounding surface) of each
part is taken along its principal axes.

3. Primitive approximation
The 3D thumbnail is created by approximating each individual part with
fitting primitives and all parts can be put together with the reverse PCA
transformation.

The shape descriptor and thumbnail descriptor are generated offline for each
model, so the thumbnail can be downloaded and rendered online efficiently. The
above steps are built upon [2]. In the following two sections, we will focus on the
two-phase decomposition process, which is the main contribution of this work.

4 First-Phase Decomposition

The first-phase decomposition divides the skeleton voxels into multiple groups
and then partitions the object voxels accordingly. The decomposition processes
of both the skeleton voxels and object voxels are as described below.

4.1 Decomposition of Skeleton Voxels

The skeleton voxels obtained from the thinning operation are a bunch of discrete
voxels in the 3D grid. To extract a meaningful skeleton from them to represent a
3D model, we define a rule to link discrete voxels. First, we classify the skeleton
voxels into three categories:

– EndSK : the voxel which has only one neighbor;
– JointSK : the voxel which have more than two neighbors;
– NormalSK : the voxel which has exactly two neighbors.
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Fig. 2. An example to illustrate skeleton classification and decomposition: (a) object

voxels representing a volumetric model are shown in light blue, and skeleton vox-

els classified as EndSK , JointSK , and NormalSK are shown in red, yellow, and black,

respectively; (b) skeleton voxels are decomposed into multiple groups and shown in dif-

ferent colors; (c) turning points (PeakSK) representing local peaks are shown in purple

dot; (d) the first-phase shape decomposition result; (e) the ideal shape decomposition

for the base part is shown in red

The classification task is easy. That is, we can simply check the 26-adjacent
voxels in a 3 × 3 × 3 grid. Once skeleton voxels are classified, we link adjacent
skeleton voxels that belong to the same group. We start to create a group with
one of the EndSK or JointSK voxels and link it to the next adjacent voxel until
another EndSK/JointSK is met. As a result, all skeleton voxels can be linked
and divided into different groups such as the example shown in Fig. 2(b).

After all skeleton voxels are linked, we extract the turning point so that the
model can be decomposed more precisely. The turning point of a skeleton, de-
noted by PeakSK , represents the local peak of the skeleton and can be extracted
by analyzing the curve of the skeleton. Fig. 2(c) shows an example of extracted
turning points. It is worthwhile to point out that we do not partition the skeleton
with turning points in the first-phase decompostion since this will complicate the
following process. The usage of the turning points will be discussed in Sec. 5.2.

4.2 Decomposition of Object Voxels

After the decomposition of skeleton voxels, object voxels which represent the
volumetric model can be decomposed accordingly. Although each object voxel
could be assigned to its nearest skeleton voxel by computing their Euclidean
distance, this do not work well in general. For example, the distance from a
finger tip to anther finger tip is not equal to their Euclidean distance since there
is no straight path between them. Thus, we define the distance between object
voxel Vj to skeleton voxel Ki as

d(Vj , Ki) = ‖Vj , Ki‖ , if a straight path VjKi exists
= infinity , otherwise.

To check if a straight path exists between Vj and Ki, we create a line segment
VjKi. Voxels along this line segment can be derived by interpolation. If there is
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an empty voxel lies within VjKi, the distance between them are set to infinity.
Accordingly, object voxels can be assigned to different parts according to their
belonging skeleton voxels.

The object voxels are classified into two types based on the relationship with
their neighbors; namely, surface and interior voxels. The object voxel that does
not have 26 neighbors in a 3×3×3 grid is called a surface voxel. Otherwise, it is
an interior voxel. Since our objective is to estimate the radius of the surrounding
surface along the skeleton, our interest lies in the decomposition of surface voxels.
Furthermore, we would like to reduce the computational complexity. Based on
the above two reasons, we focus only on the decomposition of surface voxels and
ignore interior voxels. Finally, an example of the first-phase decomposition result
is shown in Fig. 2(d), where each surface voxel is assigned to its nearest skeleton
voxel to form a group of the same color.

After the first-phase decomposition, each skeleton voxel, Ki, has a associated
list, List(Ki), recording its associated surface voxels. This list is used to calculate
the average radius, Radius(Ki), of its surrounding surface. The information of
the associated surface voxels and the average radius will be used in the second-
phase decomposition.

5 Second-Phase Decomposition

The skeleton of a muti-tubular objects, such as animals, normally has its pro-
truding skeletons intersecting with the base skeleton. There are two kinds of mis-
decomposition in the first-phase: Object voxels which belong to the base part
are mistakenly assign to adjacent protruding parts, and vice versa. Comparing
Fig. 2(d) to the ideal decomposition in Fig. 2(e), a portion of the main body is
mistakenly classified to the arm while the main body is mistakenly divided at
the middle. The protruding skeleton that cuts across the boundary makes the
surrounding area ambiguous and difficult to decompose. To address the problem,
the base part and the protruding parts of a 3D model will be identified in the
second-phase decomposition. The decomposed skeleton voxels are re-adjusted
by invalidating the redundant segment and extending the base skeleton which
was mistakenly divided at the intersection. Afterwards, the object voxels will be
re-decomposed accordingly.

5.1 Identification of Base Part

To identify the base part, we define weighted accumulated distance for each part
Pi as

ρ(Pi) = dE(cen(Pi), cen(P ))×s(Pi)+Σ∀j 	=i(dP (mid(Pi), mid(Pj))×s(Pj)), (1)

where cen(Pi) and cen(P ) are the center of mass of Pi and the model P , re-
spectively, dE() is the Euclidean distance, s(Pi) is the number of object voxels
belonging to Pi, and mid(Pi) is the skeleton voxel of Pi that is closest to cen(Pi).
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Fig. 3. The base part identification procedure: (a) the path along the skeleton from one

part to another, where the green dots represent centers of different parts; (b) identified

base part shown in red

Since the distance between two parts is not equal to their Euclidean distance,
we define the the distance from Pi to Pj as

dP (mid(Pi), mid(Pj)) = ‖path(mid(Pi), mid(Pj))‖, (2)

where path(mid(Pi), mid(Pj)) contains all the skeleton voxels along the path
from the mid(Pi) to mid(Pj), and ‖.‖ is the path length. The idea is illustrated
in Fig 3(a).

Thus, the base part which is closer to all other parts can be identified by find-
ing the part with the minimal accumulated distance. The experimental results
of this algorithm are shown in Fig. 3(b).

5.2 Adjustment of Decomposed Skeleton Voxels

To adjust the skeleton, we first constrain the segment of the protruding skeleton
to its own region. Second, we extend the base skeleton by merging the protruding
skeleton selectively. Finally, the protruding part is further fine-tuned by the usage
of turning points. An example is illustrated in Fig. 4.

Adjusting Protruding Skeleton. For a protruding skeleton whose orienta-
tion is different from the base skeleton (i.e. the angle between their orientations
is larger than a threshold), we aim to find its boundary and invalidate its segment
that goes beyond the boundary. The boundary can be detected using the prop-
erty that the surrounding surface radius along the protruding skeleton toward to
the base part increases dramatically such as the surrounding surface along the
arm as shown in Fig. 2(c). The corresponding skeleton voxel is called the cutting
point. Then, skeleton voxels from the cutting point to the intersection with the
base part should belong to the base part rather than the protruding part.

In practice, the surrounding surface radius can vary and it is difficult to define
a normal range of the surface radius throughout the entire protruding part. To
address this problem, we narrow down the search region for the boundary by
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Fig. 4. The adjustment of decomposed skeleton voxels: (a) the result from the first-

phase decomposition; (b) invalidating the segment of the protruding skeleton that

goes beyond its boundary; (c) extending the base skeleton by merging a segment of a

protruding skeleton, (d) dividing groups into sub-groups by PeakSK . As shown in the

example, the protruding parts such as the legs and the neck of the crane model are

decomposed into subgroups with the selected turning point.

considering the surrounding surface radii along the base skeleton. That is, the
average radius δ1 along the base skeleton is the minimum threshold and the
largest base radius δ2 is the maximum threshold of the search region. Now,
consider a protruding part that has successive skeleton voxels { SK1, SK2,
. . . , SKn }, and SKn is the end voxel that is connected to the base part. We
calculate the Euclidean distance from each skeleton voxel to SKn. Only the
skeleton voxel whose distance to the base part is within the search range [δ1,
δ2] will be examined to see if it is the cutting point. That is, if the successive
skeleton voxels { SKi, . . . , SKj } has the distance to the base within [δ1, δ2],
we search for the cutting point among SKi to SKj. If no cutting point is found
in this region, we cut at SKj instead.

After the cutting point is selected, all skeleton voxels from the cutting point to
the joint of the base skeleton are removed from the protruding part. The surface
voxels previously assigned to these invalidated skeletons are re-assigned to one
of the closest base skeletons. Fig. 4(b) is an example of improved decomposition
result by adjusting protruding skeletons (i.e. the skeleton of the leg).

Extending Base Skeleton. For each protruding group whose orientation is sim-
ilar to the base group, we aim to merge the base skeletons which was partitioned
inaccurately, such as the front body in Fig. 4(a). The decision of mergence/disjoint
is made based on two criteria. One is to find the protruding boundary, where the
surrounding surface radius increases dramatically. The other is to determine the
turning point along the skeleton. Even if the radius deviation along the protrud-
ing skeleton is small, the base part should not be extended to the position where
the protruding part starts to bend, such as the boundary between the crane’s neck
and the body as shown in Fig. 4(c). As a result, the search region for the cutting
point is from the joint to the closet turning point. If there is no cutting point found
in the region, we cut at the turning point.

Fine-Tuning of Protruding Parts with Turning Points. As the final step,
we divide each protruding group into subgroups according to the curvature of
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Fig. 5. Comparison of skeletons obtained with the thinning operation and the refined

skeleton

its skeleton. If the joint between two subgroups is bended, we can detect the
turning point and divide them accordingly. For example, the leg part in Fig.
4(c) will be further divided into a leg and a foot as the result shown in Fig.4(d).

5.3 Re-decomposition of Object Voxels

Finally, a re-decomposition process is carried out for object voxels. Here, we do
not need to re-calculate the closest skeleton voxel for each object voxel. Object
voxels that belonged to invalidated skeleton voxels in the first phase have already
re-assigned to the closest base skeleton in the second phase, and the assignment
of all other object voxels is not changed since they still belong to the same closest
skeleton voxel. Instead, we only need to assign the new group id to each object
voxel according to the skeleton re-decomposition result. Each object voxel is
assigned to the same group as its associated skeleton voxel.

6 Experimental Results

In the experiments, we applied the proposed two-phase decomposition approach
to a collection of 3D models. All of the models were pre-converted into the same
obj format, normalized to the same range, and voxelized to the corresponding
volumetric models. In the voxelization process, the smaller size the voxel is cho-
sen (higher resolution), more features can be captured. However, it demands
larger memory and its thinning result tends to contain more noise. We decided
to use a grid of size 80 × 80 × 80 since it captures the most important features
with a reasonable amount of memory while unnecessary details could be rea-
sonably discarded. In addition, the thinning process may take very long time
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Fig. 6. Thumbnail results obtained by the proposed voxel-based approach, where the

original 3D models are decomposed into multiple parts and each part is approximated

by a fitting primitive

to conduct for higher resolution models. For example, it took about 27 mins to
finish thinning a bunny model which was voxelized into 500 × 500 × 500 grid.
On the other hand, it took less than 1 sec for thinning of the same model which
was voxelized into 80 × 80 × 80 grid.

The experiment was run on a desktop computer with an Intel Core 2 Duo 2.53
GHz CPU, and 4G RAM. The first phase decomposition took 0.83 sec and the
second phase decomposition took 0.35 sec on the average. Assigning object voxels
to different parts in the second phase took much less time than the first phase
since we only re-assigned the object voxels whose associated skeleton voxels were
invalidated. The average processing time for create a thumbnail descriptors with
our voxel-based approach was about 3.6 second.

The two-phase decomposition process refines the skeleton obtained from the
thinning algorithm. The protruding skeleton that goes beyond the boundary is
removed, the base skeleton is extended and each part is segmented more accu-
rately. Fig. 5 shows the improvement of the skeleton re-decomposition result,
both the original skeleton decomposition and the improved skeleton decomposi-
tion result are illustrated. All identified base parts are shown in red color and
protruding parts are shown in different colors. Each model is decomposed into its
significant parts more accurately with the two-phase decomposition procedure.
Except for the decomposition process, the other modules described in Sec. 3 re-
main the same as those in [2]. The significant parts of a model were approximated
by fitting primitives individually.

Several created thumbnails, each of which consists of 90 primitives, are shown
in Fig. 6. The thumbnail results generated by the proposed voxel-based approach
preserve more details of the original models. Some subgroups that could not be
separated by the surface-based approach can be separated now. Fig. 7 shows
several examples whose significant parts are still well preserved even when the
models are greatly simplified.

We compare the surface-based approach in [2] and the voxel-based approach
in this work in Fig. 8. Although the surface-based approach can identify the
main body and several protruding parts as shown in Fig. 8(a1). It has two main
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Fig. 7. Thumbnails approximated by a different number of primitives by the voxel-

based approach, where subparts are not as easily breakable as those obtained by the

surface-based approach as presented in [2]

shortcomings. First, the surface-based decomposition is less precise; namely,
some meaningful parts which do not directly protrude from a base part cannot
be further decomposed. For example, the foot and the head cannot be further
separated from the leg and the neck, respectively. Second, the decomposed mesh
may not represent the shape well for measurement since it become fragmented
while its adjacent parts were taken apart. For example, there are missing pieces
in the simplified crane model as shown in Fig. 8(a2). Its skeleton and the body
measurement extracted from the base part leans toward the upper body due to
the missing pieces on the bottom as shown in Fig. 8(a3). These shortcomings
are resolved by the proposed voxel-based approach. Figs. 8 (b1)-(b3) show the
improvement of the skeleton and the body measurement using the voxel-based
approach. Besides, the file size of a created thumbnail is similar as we described
in [2] since the 3D thumbnail is constructed with the same primitive in both
approaches; The size of a thumbnail composed of 90 primitives is about 8KB.

Finally, it is worthwhile to point out one shortcoming of the proposed voxel-
based approach. The decomposition result is highly affected by the qualify of the
skeleton obtained in the beginning stage. If the skeleton does not represent the
correct structure of an 3D model well, the proposed approach fails to decompose
the model. Please see the last two thumbnails in Fig. 5. First, the skeleton in
the middle part of the cactus model is skewed, and it does not have the same
direction as the upper part and the lower part. Thus, the base part of the cactus
fails to extend to the right direction. Second, the alien model has two big holes

Fig. 8. The comparison of the surface based approach (a) and the voxel-based approach

(b). (a1) The mesh decomposed by the surface-based technique [3]; (a2) the bottom view

of the decomposed base part with several pieces missing; (a3) the extracted skeleton

and the body measurement; (a4) the resultant thumbnail shows the base part is leaning

upward, since the bottom pieces are missing; (b1) the volumetric shape decomposed

by the voxel-based approach; (b2) the improved skeleton and body measurement; and

(b3) the improved resultant thumbnail.
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in the face and the skeleton obtained with thinning cannot capture this feature
correctly. As a result, one half of the face is missing in the created thumbnail.
To improve these thumbnail results, we need a better skeletonization technique
for 3D models, which is a future research item.

7 Conclusion and Future Work

An innovative voxel-based two-phase decomposition approach was presented to
resolve limitations encountered in [2]. In this work, the skeleton is decomposed
into multiple groups and then the volumetric model is decomposed into signifi-
cant parts accordingly. The significant parts of a 3D model can be well-preserved
by its thumbnail representation even the original model is greatly simplified.
As compared with the surface-based approach in [2], the voxel-based approach
can represent the shape of each part better and decompose the model more
accurately.

There are three possible future extensions of this work. First, in the case that
the skeleton of a 3D model extracted by the thinning process fail to represent
the structure of the object, the decomposition result can be severely affected.
More advanced skeletonization techniques are needed to extract a finer skeleton.
Second, different primitive types can be used in primitive approximation for
performance comparison. Last, the textures of 3D models can also be considered
as possible enhancement.
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Abstract. We present a novel framework to reliably learn scene entry

and exit locations using coherent motion regions formed by weak tracking

data. We construct “entities” from weak tracking data at a frame level

and then track the entities through time, producing a set of consistent

spatio-temporal paths. Resultant entity entry and exit observations of

the paths are then clustered and a reliability metric is used to score the

behavior of each entry and exit zone. We present experimental results

from various scenes and compare against other approaches.

1 Introduction

Scene modeling is an active area of research in video surveillance. An important
task of scene modeling is learning scene entry and exit locations (also referred to
as sources and sinks [1]). Understanding where objects enter/exit a scene can be
useful for many video surveillance tasks, such as tracker initialization, tracking
failure recovery (if an object disappears but is not near an exit, it is likely due
to tracker failure), camera coverage optimization, anomaly detection, etc.

In this paper we offer a novel approach for learning scene entries and exits
using only weak tracking data (multiple short/broken tracks per object). Most
existing approaches for learning scene entries and exits rely on strong tracking
data. Such data consists of a set of reliable long-duration single-object trajec-
tories. When an object enters the scene, it needs to be detected and tracked
until it leaves the scene resulting in a single trajectory capturing the path of
the object. Here, the beginning and end of the trajectory correspond to a scene
entry and exit observation, respectively. Given enough of these trajectories, the
set of corresponding entry and exit observations could be clustered into a set of
entry and exit locations. However, collecting such a set of reliable trajectories
can be cumbersome, slow, and expensive, especially for complex and crowded ur-
ban environments where tracking failures are common. Further, for many strong
trackers, real-time multi-object tracking in highly populated scenes is not feasi-
ble. Alternatively, randomly selecting one of many objects in the scene to track
and accumulating these trajectories over time could be unreliable as the sampled
trajectories may not be representative of the true scene action (missing the more
infrequent entries/exits). Such an approach also requires a long duration of time
to accumulate enough trajectories.

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 120–131, 2010.
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To compensate for these issues, we instead employ data produced from a
weak tracker, which provides multiple and frequently broken “tracklets”. We
use a modified version of the Kanade-Lucas-Tomasi (KLT) tracker [2] for our
work in this paper. Such trackers are capable of locally tracking multiple targets
in real-time, and are thus well suited for busy urban environments. Using a
weak tracker provides a simple way to detect and track all motion in the scene,
though the produced tracklets are more challenging to analyze than reliable
trajectories produced by a strong tracker. As an object moves through the scene
it may produce multiple tracklets that start and stop along its path. Thus,
instead of one reliable trajectory representing the motion of an object, there is
a set of multiple and frequently broken tracklets. The goal of our approach is
to build a mid-level representation of action occurring in a scene from multiple
low-level tracklets. We attempt to cohere the tracklets and construct “coherent
motion regions” and use these regions to more reliably reason about the scene
entry/exit locations. A coherent motion region is a spatio-temporal pathway of
motion produced by multiple tracklets of one underlying entity. Here, we define
an entity as a stable object or group of objects. Thus, an entity may be a person,
group of people, bicycle, car, etc.

Our approach first detects entities at a frame level. Next, we track the detected
entities across time via a frame-to-frame matching technique that leverages the
underlying weak tracking data from which the entities are constructed. Thus, en-
try and exit observations are derived from entities, not individual tracks, entering
and exiting the scene. We then cluster the resulting entry/exit observations and
employ a convex hull area-reduction technique to obtain more spatially accu-
rate clusters. Finally, we present a novel scoring metric to capture the reliability
of each entry/exit region. We evaluate our method on four scenes of varying
complexity, and compare our results with alternative approaches.

2 Related Work

Most existing work on learning entry and exit locations relies on strong tracking
data. In [3], trajectory start and end points are assumed to be entry and exit ob-
servations, respectively. They cluster these points via Expectation-Maximization
(EM) to obtain the entry and exit locations. Using a cluster density metric, they
label clusters with low density as noise and discard them, leaving a final set of
entry and exit locations. In [1] an EM approach is also used to cluster trajectory
start and stop points, and they also attempt to perform trajectory stitching to
alleviate tracking failures. Such approaches, however, are not applicable to weak
tracking data. In [4] a scene modeling framework is described in which they
cluster trajectories to learn semantic regions. Only entry and exit observations
that exist near the borders of semantic regions are considered when learning
entry and exit locations. A similar constraint is also employed in [5] where they
only consider states (which they define as a grid area of the scene and motion
direction) near the borders of an activity mask to be eligible to be entry or exit
states, though their state space may be constructed from weak tracking data.
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Weak tracking data has been used for many applications in computer vision.
Some applications employ a low-level per-frame feature clustering as we do to
detect entities. In [6] weak tracking is used to perform person counting. They first
condition the short and broken trajectories to smooth and extend them. Then,
for each frame they perform trajectory clustering on the conditioned trajectories
to associate trajectory observations existing through that frame. Using clustering
constraints such as a defined person size, they leverage the number of clusters
to obtain a final person count. A similar approach is used in [7], though the
clustering problem is formulated in a Bayesian framework.

Both [8] and [9] attempt to leverage the idea of a “coherent motion region”
from trajectories, though in [8] their regions are constructed using a user-defined
bounding box that represents the size of a person. In [9], they define a coherent
motion region as a consistent flow of motion which they learn via trajectory
clustering, however the trajectories they cluster are collected over a long time
window and may be the result of motion occurring at very different times.

3 Framework

Our framework first involves entity detection in each frame using weak tracking
data, followed by entity tracking, where we associate entities frame-to-frame,
producing a set of hypothesized entity entry and exit observations.

3.1 Entity Detection

For a given frame, there exists a set of track observations (assuming there is ob-
ject motion in the frame). The first step in our approach is to cluster these track
observations, and thus learn a set of entities for each frame. Trajectory cluster-
ing approaches are used in both [6] and [7], but given the complexity of such
trajectory clustering techniques, and their sensitivity to parameter selection, we
instead use a modified version of mean-shift clustering [10].

Given a set of tracklet observations in a frame of interest, we perform a mod-
ified mean-shift clustering as follows. For an observation point p∗ = (x, y), we
wish to find the nearest density mode from other observation points pi. Each
iteration of mean-shift clustering will move p∗ closer to the nearest mode, and
is computed as

p∗new =
∑n

i=1 pi · wvel · K( |pi−p∗|
h )∑n

i=1 wvel · K( |pi−p∗|
h )

(1)

where K is a kernel (we use the Gaussian kernel), h is the kernel bandwidth, and
wvel is a velocity weight (to ensure that only points moving in similar directions
as p∗ are clustered together) computed as

wvel =

{
1

1+exp(− cos(φ)
σ )

if |φ| < π
2

0 otherwise
(2)
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(a) (b) (c) (d)

Fig. 1. Our mean-shift clustering approach (a) and (c) compared to the trajectory

clustering approach in [4] (b) and (d)

Here, φ is the velocity angle between p∗ and pi (velocity is computed using obser-
vations in the previous two frames), and σ defines the rate of weight transition
(we use σ = 0.07 for our experiments). Thus, only points that are spatially close
and traveling in similar directions will seek to the same mode.

We also introduce a blend parameter to the velocity weight computation in
Eqn. (2). Rather than using the initial velocity of p∗ for each iteration (as it seeks
to the nearest mode), we start with the initial velocity of p∗ and slowly blend
it with the velocity of valid surrounding points as it converges toward a mode.
Doing so ensures tighter convergence among points, as computing velocities over
such a short window is subject to noise. To compute the velocity of p∗ at iteration
k, we use dxk

p∗ = (1 − α) · dxp∗ + α · dxavg and dyk
p∗ = (1 − α) · dyp∗ + α · dyavg.

Here, dxavg and dyavg are weighted averages of the velocities of nearby points
computed as

dxavg =

∑n
i=1 dxpi · wvel · K( |pi−p∗|

h
2

)∑n
i=1 wvel · K( |pi−p∗|

h
2

)
(3)

where dyavg is computed in the same manner. The blend parameter α is a linear
function of the mean-shift iteration number (increasing from 0 to 1). Points that
converge to the same mode are defined as belonging to the same entity. The
outcome is a set of point clusters (entities), which we then track. Two examples
are shown in Fig. 1 (a) and (c).

We compared our modified frame-based mean-shift clustering technique to
detect entities to the trajectory clustering technique used in [4], which uses Spec-
tral Clustering on a trajectory similarity matrix built using a modified Hausdorff
distance metric to obtain a set of trajectory clusters. The trajectory clustering
approach occasionally produced unexpected results, as seen in Fig. 1 (b) and
(d). In Fig. 1 (b), it over-clusters the object on the sidewalk into three enti-
ties, while our mean-shift approach clusters it as one entity (see Fig. 1 (a)).
In Fig. 1 (d), [4] under-clusters the two objects on the left, while over cluster-
ing the object on the right. Each approach would sometimes over-cluster and
under-cluster, though our approach performed in a more reliable manner over-
all. Further, our mean-shift clustering approach only has one main parameter -
the kernel bandwidth. The trajectory clustering approach is very sensitive to its
parameter settings.
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3.2 Entity Tracking

After detecting entities, we next associate them frame to frame. This problem
can be formulated as an ad-hoc blob tracking problem, though it can leverage
the underlying weak tracking data that formed the entities. We use the following
graph-based assignment to associate entities. Let Va be the set of entities that
exist in frame a, and Vb be the set of entities that exist in the subsequent frame
b. We construct a bipartite graph G(V, E) where V is the vertex set, E is the
edge set, and V = Va ∪Vb. We connect vai to vbj with an edge eij , if the vertices
(entities) are connected by at least one shared trajectory from the underlying
weak tracking data. Unlike [11], we do not perform any adjustments to these
entity interactions. Thus, entities are free to interact with splits, merges, or any
combination of the two from frame to frame. We define an entity exit event as
an entity from Va that has no edge connecting it to Vb. Likewise, we define an
entity entry event as an entity from Vb that is not connected to an entity in
Va. If an entity from one set (Va or Vb) shares a tracklet with multiple entities
from the other set, we consider this to be an “interaction” (e.g. split, merge).
Entity tracks between entries, exits, and interactions correspond to the coherent
motion regions. The set of coherent motion regions that begin due to an entity
entering the scene correspond to likely entry observations. Likewise, the set of
coherent motion regions that end due to an entity exiting the scene correspond
to likely exit observations. The set of coherent motion regions that begin with
an entry observation and end with an exit observation are especially useful, as
they correspond to entities that were able to be tracked reliably from the time
they entered the scene until they exited. For such cases, we are able to strongly
associate their entry and exit observations, however, we do not require such
entity tracks. Figure 2 (a) shows the original weak tracking entry observations,
and (b) shows the resultant entity entry observations using our framework.

4 Entries and Exits

From our entity detection and tracking framework described above, we accumu-
late a set of entity entry/exit location observations. We now explain how we learn
entry/exit “regions” from these observations, and how we score each region.

We first perform standard mean-shift clustering on our set of entry locations
(and then exits) using the same kernel bandwidth as was used in Sect. 3.1. The
result is a set of entry (and exit) clusters. We choose mean-shift clustering over
an EM approach (as in [3]) for a few reasons. Mean-shift clustering is able to
localize on cluster modes automatically, without knowledge of the number of
clusters, as would be required with an EM approach. Model selection techniques
such as Bayesian Information Criterion (BIC) [12], for an EM approach, may still
sometimes suffer from over fitting (as explained in [13]). Further, the mean-shift
clusters better represent the shape of non-Gaussian regions.

After clustering the data we attempt to remove outliers in each cluster, and
localize on the area of highest density within each cluster. To accomplish this we
first determine the convex hull of each cluster. We then area-reduce the convex
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hull by removing unreliable observations. We compute a density score for the
points in each cluster via kernel density estimation [14] using only the points in
the cluster. We then remove points one at a time in ascending order of density
score, and compute the change in area of the new convex hull after each point is
removed (the removal of outlier points will cause a large reduction of convex hull
area). Thus, we have a distribution of convex hull area changes (from remov-
ing each point). We compute the variance of this distribution (assuming a zero
mean), and select observations greater than σ = 1.5 standard deviations away.
Of the cluster points that produced these outlier convex hull area changes, we
choose the point with the highest density score, and discard all cluster points
with lower density scores. Thus, we have a new set of points which better repre-
sent the true mass of the cluster. To generalize the shape of this new region, we
compute a kernel density surface using the new set of remaining points, deter-
mine the point who is lowest on the density surface, and slice the surface at that
density value. The perimeter of the slice outlines the final entry or exit region.
Thus, unlike [3], our entry and exit clusters reflect the true spatial density and
distribution of their underlying observations (which may not be Gaussian).

4.1 Entry/Exit Zone Reliability

We now describe how we validate our entry and exit regions to distinguish reliable
entries and exits from those that are the result of noise or partial scene occlusions.
In [3], they compute an entry/exit region density and then label regions with
density below an arbitrary threshold as noise. Such an approach will not work
well if scene traffic is imbalanced, as entries/exits with low popularity (and thus
low density), may be regarded as noise. Also, if a scene is very noisy, this method
may also classify noise as being a good entry/exit region. We define a good entry
region as one with entity tracks emanating out of it, and a good exit region as
one with entity tracks flowing into it. Entry regions whose entry-only tracks (or
exit regions whose exit-only tracks) exhibit bidirectional activity are unreliable
regions, and may be the result of areas with a high rate of tracking failure,
partial scene occlusions, or scene noise (trees or other such movement that the
tracker may pick up). Further, for entry regions, other tracks in the scene should
not intersect the region in the same emanating direction that defines the region
(i.e., the entry region should not be a “through” state). Such a scenario would
indicate that another entry region exists behind the current one. The same idea
holds for exit regions. Thus, we attempt to capture both the consistency of the
entry/exit entity tracks that define each region, as well as the consistency of the
interaction between other entity tracks and each entry/exit region.

Using the entry/exit entity tracks that define each region, we learn the distri-
bution of directions that these tracks leave (for entries), and enter (for exits), the
region by quantizing the angle that each track intersects the region into one of b
bins (we use b = 8 in our experiments). This histogram is normalized to provide
a probabilistic measure for the directions that entry/exit tracks leave/enter each
region. From this distribution r, we compute a directional consistency function
r̂, which accounts for any symmetry of the entity track distribution for each
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entry and exit region in the following manner. For a bin i with probability r(θi),
every other bin probability r(θj) is subtracted from r(θi), in a weighted manner
such that bin angles that are directly opposite of i receive high weight (as they
correspond to bi-directional behavior), and bin angles close to i receive lower
weight. For a region k,

r̂k(θi) =
max

[
0,
∑b

j=1 wij · (rk(θi) − rk(θj))
]

∑b
j=1 wij · rk(θj)

(4)

where wij is an angle similarity weight that give more emphasis to angles corre-
sponding to bidirectional behavior with respect to θi, and is computed as

wij =

{
exp(1 + cos(|θi − θj|)) if cos(|θi − θj |) < 0
0 otherwise

(5)

Thus, θj is ignored if it is within 90 degrees of θi, and most heavily weighted
when it is exactly opposite of θi. For a region k,

∑b
i=1 r̂k(θi) is 0 when the

tracks leaving an entry (or entering an exit) are completely symmetric (and thus
strongly bi-directional), reflecting that the region is unreliable, and

∑b
i=1 r̂k(θi)

is 1 when a region is completely non-symmetric, and thus reliable.
In addition to this directional consistency measure, we also need to capture

the way in which other tracks interact with each entry or exit region. We com-
bine the previous directional consistency measure (Eqn. (4)) with an interaction
component to compute a total reliability score, ψ, for each region k

ψk =

(
b∑

i=1

r̂k(θi)

)
·
(

1 − min

[
1,

∑b
i=1 r̂k(θi) · Mk(θi)∑b
i=1 r̂k(θi) · Nk(θi)

])
(6)

Here, Nk is the number of entity tracks that define an entry/exit region k, and
Nk(θi) is the number of entity tracks that leave an entry (or enter an exit) region
k at angle i. Similarly, Mk is the number of other entity tracks in the scene that
intersect an entry/exit region, and Mk(θi) is the number of those entity tracks
that intersect and entry/exit region k at angle i. As described earlier, for a
reliable region these tracks should not intersect an entry region in the same
direction as the entry tracks that leave it (or intersect an exit region in the
same direction as its tracks exit). The first term

∑b
i=1 r̂k(θi) is the directional

consistency term for the entry/exit region and acts as a prior (Eqn. (4)). This
score will dominate the total score if Mk = 0 (no tracks intersect the region k).
If Mk > 0, and the intersecting tracks support the region as being reliable, then∑b

i=1 r̂k(θi)·Mk(θi) ≈ 0. If however there are tracks that intersect the region and
contribute evidence that the region may be unreliable (due to tracking failures,

the region being partially occluded, etc.),
∑ b

i=1 r̂k(θi)·Mk(θi)∑
b
i=1 r̂k(θi)·Nk(θi)

will approach 1 as
the number of discrediting intersecting tracks approaches Nk, and grow large
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(a) (b) (c) (d)

Fig. 2. (a) Weak tracking entries, (b) entity entries, (c) potential entry regions, and

(d) entries with reliability score Ψ > 0.75. [Best viewed in color]

if the number of tracks > Nk, penalizing the region score. If Nk is 0, then we
define the region as unreliable. Lastly, we compute a final region score as

Ψk =
1

1 + exp(−ψk−μ
σ )

(7)

where μ and σ should be determined based on the scene noise, tracking reliability,
etc. For our experiments we used μ = 0.5 and σ = 0.15. Formulating the final
score as such allows for noise tolerance, and makes the model able to adapt to
scenes with different noise levels. Figure 2 (c) shows entry regions detected for
a scene, and (d) shows the resultant reliable entry regions (Ψ > 0.75).

In addition, we also compute a popularity score, Popularity = Nk, for an
entry/exit region k (number of entry/exit tracks that define the region).

5 Experiments

We performed experiments to compare our learned entry/exit regions to those
using other approaches. We employ data from four scenes of varying complexity
captured from cameras mounted on four and eight story buildings, at a resolution
of 640 × 480. The duration of the datasets used were 1 hour (Scene 4), 2 hours
(Scene 1), and 3 hours (Scenes 2 and 3). We also show how our framework may
be used to learn relationships between entries and exits in the scene.

5.1 Entry/Exit Region Evaluation

We compared our results to the methods described in [3] and [5] (as [5] also uses
weak tracking data to determine entries/exits). In [5], they partition the scene
into a grid of states, where each state is defined by a grid cell location and motion
direction. They then map each tracklet to a set of states. They define an entry
and exit weight metric to score each state si as WE = Cstart ·max(0, 1− Cin

Cstart
)

(entry weight), and WX = Cstop · max(0, 1 − Cout

Cstop
) (exit weight). Here, Cstart

is the number of tracklets that start in state si, Cin is the number of tracklets
that transition into si, Cstop is the number of tracklets that stop in state si,
and Cout is the number of tracklets that transition out of state si. Low weight
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Scene 1-4 entries Popularity Scene 1-4 exits Popularity

Fig. 3. Entry and exit regions (using our proposed method) with a reliability score

Ψ > 0.75 and popularity > 10 tracks. [Best viewed in color]

entry and exit states can then be removed to obtain a final set of entry and
exit states. They also use a binary activity mask to force entry/exit states to be
on the border of the scene activity, though we do not employ this technique to
allow for a fair comparison (neither our method, nor the method in [3] have such
constraints). In [3], they use EM to cluster entry and exit track points. They
then use a density metric to determine which clusters to keep, computed as W/E
where W is the ratio of points belonging to a cluster, and E is the area of the
Gaussian ellipse, calculated as E = π · I1 · I2 where I1 and I2 are the eigenvalues
of the covariance matrix. We used our entity track entry/exit observations as
input for this method, as it is intractable and noisy (see Fig. 2 (a)) to learn
entries/exits using weak tracking (tracklet) start/stop observations.

For our method, we chose a reliability score threshold of Ψ > 0.75 to select
a set of final entry/exit states. We also remove any remaining regions with a
popularity score less than 10. Results from our method can be seen in Fig. 3.
We display those regions along with the strongest track entry/exit angle for
each region. We also display entry/exit region popularity by the strength of the
entry/exit region color. It is worth noting that we experimented with various
kernel bandwidth (h) values (from 10 to 20), and found the results did not vary
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significantly. For our experiments we used h = 13. For the method described
in [5], we display states with an entry/exit weight at least 0.75 of the max
entry/exit weight. The states are displayed by arrows over a scene grid denoting
the state location and direction. For the method described in [3], we clustered
the entity entry and exit observations using EM, with a relatively large number
of clusters (as they do). We display entry/exit regions with density scores >
0.01 of the of the maximum density score (produced the best results). Results
for these two alternative methods can be seen in Fig. 4.

For Scene 1, our method was able to learn all expected entry and exit regions.
The methods in [5] and [3] both learn incorrect entries/exits due the streetlight
occlusion in this scene. Our method is able to recognize this as a partial scene
occlusion due to the motion symmetry and entity tracks intersecting the region.
Further, [5] fails to learn the entry/exit on the top right of the scene, and [3]
learns various noise clusters which result from the KLT tracker picking up bushes
in the scene that move due to wind. The motion of such action is inconsistent,
and thus is flagged by our method as being an unreliable region.

For Scene 2 our method was able to learn the desired entry/exit regions with
the exception of the region in the top left of the scene. This is due to the region
being difficult to track, and as such this region exhibits symmetric behavior.
The method in [5] also does not learn this region. Both [5] and [3] again learn
entry/exit regions that result from the streetlight occlusion in this scene. Also, [3]
also tends to over-cluster many valid regions, and both methods learn noisy
regions in the middle of the scene.

In Scene 3, all of the regions that we learn are valid entry/exit regions, though
we also learn one exit region corresponding to activity at a picnic table. For this
scene, [3] fails to learn the ramp entry and exit on the top left of the scene (due
to low traffic) and learns a few noisy entry regions near a bush. The method
in [5] also fails to learn the ramp entry and exit on the top left, as well as the
exit on the top of the scene and one of the building exits. Further, [5] learns a
noisy entry and exit region near the streetlight occlusion.

For Scene 4 our method learns all expected regions with the exception of the
top left sidewalk. Again, this is due to this region being difficult to track. The
method from [5] also fails to learn this region as an entry, and [3] only learns it
as an exit. Further, [3] fails to learn the parking garage entry/exit regions as well
as the building entry region, and it also over-clusters the entry near the top of
the scene. In addition, [5] fails to learn the building and parking garage entries
and exits, as well as the entry near the top of the scene. It also learns various
noisy regions in the middle of the scene.

Choosing a robust density threshold proved to be a difficult challenge for [3].
A threshold that works well for one scene may not generalize for other scenes,
as seen in the results. Also, neither method enforces entry/exit directional con-
sistency, and thus may learn very noisy entries/exits (method [3] in Scene 1),
or regions that result from partial scene occlusion (e.g., streetlight examples in
Scenes 1, 2, and 3). Overall, the proposed approach produced the best results.
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Entries from [3] Exits from [3] Entry states from [5] Exit states from [5]

Fig. 4. Entry and exit regions using the method in [3] (cols 1 and 2). Entry and exit

states using the method in [5] (cols 3 and 4). [Best viewed in color]

5.2 Semantic Scene Actions

In addition to using our method to learn scene entries and exits, we can also learn
relationships between entries and exits. This is possible using the set of coherent
motion regions that begin with an entry and end with an exit observation. This
information could be used to see where people go without caring about the actual
path they take. The top entry/exit relationships for Scenes 2-4 can be seen in

Scene 2 Scene 3 Scene 4

Fig. 5. Strongest activities from various scenes displayed as arrows from entry regions

to exit regions. [Best viewed in color]



Learning Scene Entries and Exits Using Coherent Motion Regions 131

Fig. 5. We were able to learn the relationships via entities constructed from weak
tracking data using our framework. Such analysis usually requires large amounts
of strong tracking data.

6 Conclusion

We proposed a novel framework to learn scene entries and exits using weak track-
ing data. We described a method that forms weak tracking data into coherent
motion regions by detecting entities at a frame level and tracking the entities
through time, resulting in a set of reliable spatio-temporal paths. We also intro-
duced a novel scoring metric that uses the activity in the scene to reason about
the reliability of each entry/exit region. Results from multiple scenes showed that
our proposed method was able to learn a more reliable set of entry/exit regions
as compared to existing approaches. This research was supported in part by the
US AFRL HE Directorate (WPAFB) under contract No. FA8650-07-D-1220.
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Adding Facial Actions into 3D Model Search to Analyse 
Behaviour in an Unconstrained Environment 

Angela Caunce, Chris Taylor, and Tim Cootes 

Imaging Science and Biomedical Engineering, The University of Manchester, UK 

Abstract. We investigate several methods of integrating facial actions into a 3D 
head model for 2D image search. The model on which the investigation is based 
has a neutral expression with eyes open, and our modifications enable the 
model to change expression and close the eyes. We show that the novel ap-
proach of using separate identity and action models during search gives better 
results than a combined-model strategy. This enables monitoring of head and 
feature movements in difficult real-world video sequences, which show large 
pose variation, occlusion, and variable lighting within and between frames. This 
should enable the identification of critical situations such as tiredness and inat-
tention and we demonstrate the potential of our system by linking model  
parameters to states such as eyes closed and mouth open. We also present evi-
dence that restricting the model parameters to a subspace close to the identity of 
the subject improves results. 

1   Introduction 

Face tracking is an important area in car safety but is notoriously difficult in such an 
unconstrained environment because of the continuously changing lighting, harsh 
shadows, pose variation, and occlusion, particularly if the camera is mounted behind 
the steering wheel (Fig. 1).  Monitoring the driver’s emotional state and attentiveness 
adds a further level of complexity.  We present here investigations into extending a 
successful face tracking system [1] to include facial actions with a view to analysing 
behaviour. 

In [1], a 3D matching approach was presented that performed at least as well as an 
established 2D AAM based system [2] on large datasets of near frontal images [3, 4], 
and surpassed it on large rotations.  The sparse 3D shape model, based on the active 
shape model [5], had a neutral expression with eyes open and mouth closed. Using 
examples of independent facial actions in the eye and mouth areas, we have con-
structed a model of facial actions and we show that by integrating this with the 
method in [1] the model parameters can be linked to states such as the openness of the 
eyes and mouth.  This gives a single system via which pose, identity, behaviour, and 
attentiveness can be monitored. 

Our approach to integrating facial actions varies from that of other authors in sev-
eral ways. In [6] the authors include expression examples in the training set for a 
single model capable of facial actions, whereas we have treated them separately.  In 
[7], Amberg et al. used a combined model strategy where the ID was built using PCA 
on neutral faces and the expression modes were concatenated onto this model having  
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Fig. 1. Some example search results on real in-car videos. These frames illustrate the feature 
actions which can be handled as well as occlusion, variable lighting, and extreme pose. 

been generated by performing PCA on the observed expression deformations.  Simi-
larly in [8] authors used the same principle but with a modeling method equivalent to 
PCA. This assumes that the deformations are transferrable between individuals.  We 
also make this assumption but create a completely independent action model and 
show that improved results are obtained when this model is kept separate from the ID 
model. The same notion of transferrable actions is applied in [9] where the model 
shape is fixed and only parameters controlling pose and ‘animation units’ are esti-
mated in the search. The ‘animation units’ are similar to the independent facial ac-
tions used in the building of our model except that we build a second model of the 
same form as the identity model and allow the identity parameters to vary also during 
search.  This means that the model can be applied, without prior knowledge, to any 
set of still images or video and can be modified, as we will show, to learn the identity 
of the subject over time.  

2   Search Method 

The basic search system uses a sparse 3D shape model based on [5] for pose invari-
ance, and continuously updated view-based local patches for illumination compensa-
tion.  The model has a neutral expression eyes open and mouth closed and was built 
from a subset of 238 vertices from 923 head meshes (Fig. 2). Each mesh was created 
from a manual markup of photographs of an individual (Fig. 2). A generic mesh was 
warped [10] to fit each markup and therefore the vertices are automatically corre-
sponded across the set, unlike other systems where the models are built from range 
data and correspondence must be approximated [7, 8, 11, 12]. 

The co-ordinates of the vertices for each example were concatenated into a single 
vector and Principal Component Analysis was applied to all the point sets to generate 
a statistical shape model representation of the data.  A shape example x can be repre-

sented by the mean shape IDx  plus a linear combination of the principle modes of the 

data concatenated into a matrix PID: 
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ID ID IDx = x + P b     (1) 

 
where the coefficients bID are the model parameters for shape x.  We use the subscript 
ID for identity since this model has a neutral expression. 

 

Fig. 2. The model is built using manual markups.  Each subject is marked in front and profile to 
create a 3D point set (3 left).  A mesh is then warped to match each subject and a subset of 
vertices on features of interest is extracted from each mesh (right).  

The search is initialized using the Viola-Jones (V-J) face detector [13] on each still 
image or at the start of a sequence.  The 3D shape model is placed within the box 
adopting its default (mean) shape and either 0° rotation or a fixed angle based on prior 
knowledge, for example if the camera is located below the head in a car.  On each 
frame after the first in a sequence, the search is initialised with the shape and pose 
from the previous frame, unless the search fails in which case the model is reinitial-
ised on the same frame using the V-J detector and default attributes. 

 

Fig. 3. The patches are generated from the mean texture (left). The appearance of the patches 
changes to match the current pose of the model (right).  

Each model point has a view-based local patch similar to [14] but continuously up-
dated to reflect the exact model pose at each iteration. The patches are sampled from 
an average texture generated from 913 subjects (Fig. 3). Variation in the texture is not 
modelled. The target location for most points is found by comparing the normalised 
patch to a neighbourhood around each point. However, points currently at approxi-
mately 90 degrees to the viewing angle search along a profile for the highest edge 
strength as their new target. 

The search is performed iteratively over several resolutions, low to high, com-
pleted at each before moving on to the next.  Once each point has a new 2D target 
location the current z co-ordinate of the model is used to estimate the depth of the 
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target point. This assumes an orthogonal projection. Finally, the shape model is fitted 
in 3D in a 2 stage process extended from the 2D case [5]. 

3   Facial Actions Model 

It is difficult to obtain corresponded 3D head data for a spectrum of emotions, so we 
chose to build a more versatile model of facial actions.  Only 8 examples were used to 
build the model:  Mouth open; Eyes closed; Smile; Mouth turned down; Brow raised; 
Brow lowered; Grimace; and neutral (Fig. 4).  These were all created by modifying 
the same neutral head mesh used to generate the examples in the identity model.  This 
meant that they were automatically corresponded with those examples as well as each 
other.  Using a single example of each facial action assumes that they are transferrable 
between individuals.  After construction utilising 99.5% of the variance in the data the 
model had 5 modes of variation which, by observation, had the primary functions: 
mouth open; brow raise/lower; smile; grimace; and eyes close (Figure 4). 

 

Fig. 4. (Left): The neutral mesh (top left) was modified to create facial actions. (Right): The 5 
action model modes corresponded broadly to: mouth open; brow raise; smile; grimace; and 
eyes closed. The size of the point indicates the relative amount of movement the shade is the 
direction – dark and light points move oppositely. A reference point set is shown bottom right. 

4   Integration Methods 

We investigated two ways to combine these models: either as a single model incorpo-
rating identity and facial actions; or as two separate models. 

4.1   Combined-Model  

To build a single model of the form (1) which combines both aspects into one matrix 
PC it is essential that the columns of PC be orthogonal so that the model can be fitted 
as in [5] and so that any action components in the identity matrix PID are removed.  
To do this the columns of the identity model are orthogonalised (PIDO) with respect to 
those of the actions model (PA) using the Gramm-Schmidt method. 
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⎡ ⎤⎣ ⎦ID C C C A IDox = x + P b ; P = P P    (2) 

 
The parameter vector bc contains parameters for both action and identity.  The mean 
of the combined model is taken from that for identity. 

4.2   Alternating ID and Action  

An alternative novel method was devised which uses the two models separately by 
alternating between them.  At each iteration two model fits are made but only one 
search.  First the ID model is used to search the image and then to fit to the target, 
next the action model is fitted to the same target.  However, the mean of the actions 
model is replaced in the action fit by the current result from the identity fit and then 
the result from the action fit is incorporated into the identity model mean for the next 
identity fit (at the next iteration).  This is summarised in the following model equa-
tions showing the forms of the models used at each iteration K: 
 

(1) (1) (1); =K K K K K-1
ID ID ID A Ax = x + P b x x + P b      (3) 

 
(2) (2) (2); =K K K K K

A A ID ID IDx = x + P b x x + P b      (4) 

 

Where K(1) and K(2) refer to the 1st and 2nd fit at each iteration, K
ID ID IDx + P b  is the 

current identity result and is used as the action model mean, K-1
ID A Ax + P b  is devised 

from the current action result and is used as the identity model mean, and 0
Ab  is the 

zero vector.  By alternating the models in this way the expression component does not 
have to be removed from the identity model and the risk of being trapped in a local 
minimum is reduced. 

4.3   Search Regimes  

Apart from using the combined model we examined several variations for the 2-step 
approach.  In [1] the authors used only a subset of 155 vertices for search although all 
238 were considered during fitting.  We examined this case and the case where all 
points were used to search.  We also considered alternative schemes where the actions 
model was included at all resolutions or only introduced at the highest (last) resolu-
tion.  Table 1 shows the full list of methods. 

5   Driver Monitoring and ID Smoothing 

Model search was performed on difficult real-world data displaying extreme poses, 
occlusion, and variable lighting – both within and between frames (Fig. 1).  Since 
each video was of a single subject we also investigated the possibility that restricting 
the model parameters around the observed identity of the driver may improve the 
search. 
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To do this we used a running mean and variance on the identity parameters b: 
 

2 1; var ( ) 1 ; (1 )
t
jrt t t t

j j r rt t
r r

v
b b j m w aw a w

w w
−= = − = = + −

t
t rb

b …     (5) 

 
1 2(1 ) ; (1 ) 1t t t t t

jr jr ja a w v av a b w j m−= + − = + − =t t-1 t
r rb b b …     (6) 

 
where m is the number of identity modes, r indicates running totals and a is the pro-
portion carried forward at each frame, in this case 0.9.  The weights wt are based on 
the match value of the model at time t, and vt

jr is an intermediate variance calculation.  
The model parameters were restricted, by truncation, to lie within an ellipsoid about 
the estimated mean.  Table 1 shows a full list of two-step search methods. 

Table 1. List of two-step methods with the labels from Figure 8  

Method  Actions model at: 
1    (ActNIDS) All resolutions 
2    (ActHiNIDS) 

155 points 
Highest resolution 

3    (AllPtsNIDS) All resolutions 
4    (AllPtsActHiNIDS) 

No ID smoothing 

238 points 
Highest resolution 

5    (Act) All resolutions 
6    (ActHi) 

155 points 
Highest resolution 

7    (AllPts) All resolutions 
8    (AllPtsActHi) 

ID smoothing 

238 points 
Highest resolution 

6   Video Search Results 

A qualitative examination of the action model parameters vs the action in the videos 
indicates that there is a strong link between some parameters and different states of 
the driver.  Figure 5 shows the link between the ‘brow’ and ‘blink’ modes and the eye 
state of the driver. 
 

 

Fig. 5. The action parameters for brow and eyes are closely linked to the eye state in a sequence 
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In a similar way Fig. 6 shows the relationship between the parameters for mouth 
open and grimace and the video sequence.  As with the eyes open parameter in Fig. 5 
the mouth state is not described by the mouth open parameter alone, broadly speaking 
both parameters have to be low valued for the mouth to be open.   

 

Fig. 6. The relationship between action parameters and mouth state 

Figures 5 and 6 indicate that by devising appropriate classifiers the various states 
of the driver could be quantified.  The next sections describe the development of a 
classifier and a quantitative examination of driver search results. 

7   Training the Eye-State Classifier 

We used the systems in 4.1 and 4.2 to search a data set of images where the subjects 
were posed, some with eyes closed, in front of a uniform background.  A qualitative 
examination of the results for the two-step method indicated that it worked better on 
some individuals than others. In almost every case the model had correctly located the 
features of the face (eyes, nose, mouth) but had not always successfully closed its 
eyes. In order to build and test a discriminant vector we used only results where the 
eye-state was correct. The combined model (section 4.1) only displayed closed eyes 
on 4 of the relevant images, in general the upper eyelid was placed close to the eye-
brow instead, opening the eyes wide. This meant that a classifier could not be built 
and this method was not considered further. 

The model parameters from half of the sample were used to devise a simple 2-class 
linear classifier for eyes closed.  Fisher’s formula (7) was used. 

 

ˆ ( );= −-1
W 1 2 W 1 2w S m m S = S + S    (7) 

 
where Si is a scatter matrix, SW is the within groups scatter, and mi is the mean vector.  
The classification is based on the projection of the model parameters onto this vector 
and the centre point was adopted as the threshold: 
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The vector from search method 4 was used to vary the parameters of the action 
model.  Fig. 7 shows a representation of this discriminant mode, which illustrates 
movement consistent with blinking. 

 

Fig. 7. (Left) The discriminant mode for blinking. The size of the point indicates how much it 
moves relative to the other points and the light and dark colours indicate opposite directions. A 
reference point set is also shown (right).  

The discriminant vector was then used to classify the other half of the data.  The 
results for all methods (1-4) were similar with the average percentage of correct clas-
sifications at 94.6%, false positives at 5.1% and false negatives at 0.3%. The number 
of false positives may be reduced by moving away from the simple centrepoint 
threshold but this was not investigated on this data. 

From these results it was not possible to decide conclusively on the best two-step 
method. To do this the training and test data were pooled and used to build a dis-
criminant vector for each method (1-4) and these were used on real world data as 
described in the next section.   

8   Detecting Closed Eyes 

A 2000 frame video, with 1753 frames where the driver was visible, was labelled so 
that the frames where the driver’s eyes were closed were so marked.  The parameter 
values for each frame were projected onto the discriminant vectors and the ROC 
curve was plotted for various methods (Fig. 8). This graph shows that, in general: 
methods where the actions model is introduced at the highest resolution (darker lines) 
perform better; using all points is better than a reduced set; and ID smoothing also 
gives an improvement.  Method 8, which does all these things, produces the best re-
sults. A good compromise between sensitivity and false alarm rate is achieved where 
the true positive rate (TPR) is 80% and the false positive rate is 10%. When the false 
alarm frames were examined two things were noted: many of the false alarms were at 
extreme pose angles; and many were neighbouring the true positive frames, in other 
words they were an extension of the ‘blink’. Preliminary investigations show that by 
defining contiguous frames as a blink it is possible to increase the true positive rate to 
90% and reduce the number of false alarms by 69%. Authors sometimes report on 
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blinks and sometimes on frames. Our results do not match the performance quoted in 
[15] on frames, although the experimental protocol is unclear which makes compari-
son difficult, but they surpass those in [16] on similar in-car data reporting on blinks.  
Other authors have reported better ‘blink’ results but in controlled situations such as 
office or simulator environments [17, 18]. Our results are also comparable to those 
obtained using the latest texture based discriminative approach in [19] where the 
‘Eyes Open’ ‘accuracy’ was quoted as 92.52% on the PubFig database.  If we define 
accuracy as (True Positives + True negatives)/Total we obtain 89% but the in-car 
video includes full-frame images with harsh shadows and large amounts of lighting, 
occlusion, and pose variation not generally found in images of public figures.  The 
advantages of this technique over such an approach are that there is no pose normali-
sation step [19], or need for multiple pose-related classifiers, since our model works 
under rotation and can thus report at large deviations from front, whilst providing the 
pose information itself. 

 

Fig. 8. (Left): ROC curves based on thresholds for blink frames. ActHi indicates the action 
model was introduced at the highest resolution only, otherwise at all resolutions. AllPts indi-
cates that 238 points were used to search otherwise 155. NIDS indicates that there was no ID 
smoothing.  (Right): Blink frame true positive and false alarm rates vs estimated headings.  

We also looked at the effect of heading on sensitivity and false alarm rate.  We in-
cluded only the detections where the driver’s heading was estimated to be between a 
range of angles and found that at 55 degrees the TPR for frames was at its maximum 
(80%) but the False Positives were reduced at around 6% (Fig. 8).  Since the driver is 
likely to be active, although possibly distracted, at larger poses than this, it is more 
crucial to correctly monitor eye state at reduced extremes.  These results indicate that 
not only is the number of false positives more acceptable in the frontal range but also 
that correct detections are still being made even at angles of over 50 degrees.  In [20], 
although closed eye detection rates were higher, the authors acknowledged that no 
examples were rotated through more than 30 degrees.   

9   Discussion 

We have shown that a 3D model built from independent facial action examples can be 
integrated with an identity model in a novel two-step strategy to monitor the state of a 
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subject with a view to analyzing behaviour.  Our investigations have shown that a 
simple linear discriminant vector, based on the action model parameters, can quantify 
eye state, which is crucial in a driver monitoring application.  Our results are compa-
rable to those obtained using other techniques including texture based discriminative 
approaches.  Evidence indicates that the results can be improved in a video sequence 
by restricting the identity model parameters to a subspace defined by the observed 
mean and variance for that subject.  Indications are that the parameters of the action 
model are related to other states such as mouth open and future work will investigate 
the possibility of a more comprehensive analysis of the driver using this technique. 

The results presented in this paper were obtained using a non-optimised debug sys-
tem taking between 1 and 2 seconds to process a single image.  We now have a modi-
fied and optimized version of the system which can search live webcam images at up 
to 30 FPS on a quad processor machine. 

By combining the discriminant values and other information, such as pose and 
feedback from controls, it should be possible to monitor a driver, or other subject, to 
forestall critical situations.  Future work will include developing techniques to utilize 
these parameters along with temporal information to identify and predict micro and 
macro states. 
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Abstract. Recent methods for human action recognition have been ef-

fective using increasingly complex, computationally-intensive models and

algorithms. There has been growing interest in automated video analysis

techniques which can be deployed onto resource-constrained distributed

smart camera networks. In this paper, we introduce a multi-stage method

for recognizing human actions (e.g., kicking, sitting, waving) that uses

the motion patterns of easy-to-compute, low-level image features. Our

method is designed for use on resource-constrained devices and can be

optimized for real-time performance. In single-view and multi-view ex-

periments, our method achieves 78% and 84% accuracy, respectively, on

a publicly available data set.

1 Introduction

The problem of human action recognition from video is fundamental to many
domains, including automated surveillance and semantic searching of video col-
lections. As computers have become increasingly powerful, proposed solutions
have grown equally in sophistication by introducing complex underlying mod-
els. For a traditional system with a camera (or set of cameras) connected to a
powerful server, the complexity of the model and processing required for model
building and analysis is, generally speaking, no longer an issue. However, in the
emerging area of distributed smart cameras, where individual nodes have lim-
ited computing resources, it is important to use models which are efficient in
computing time and space.

In this paper, we present a multi-stage method for human action recognition
based on aggregating low-level image features. Our approach was motivated by
observing output from marker-based motion capture. Even without a skeletal
overlay, it is usually apparent what action is being performed just by observ-
ing the movement of the markers. Figure 1 shows four keyframes of a video
obtained by calculating Harris corners in each frame. Compared to the output
from motion capture, there are two noticeable differences. First, not all of the
points discovered are related to the action of interest. Second, the points are not
stable; a feature in one frame may disappear in subsequent frames. In spite of
these issues, our goal is to explore whether or not these sets of low-level features
can be used as the basis for discriminative human action recognition.
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Fig. 1. Keyframes of low-level feature points of someone kicking

The primary contribution of this work is the development of a multi-stage
method using low-level features for human action recognition. For each stage,
we aim to make design decisions which minimize processing and storage, so that
this method can be deployed on networks of resource-constrained distributed
smart cameras. We show that this approach provides good performance on the
publicly-available IXMAS data set [1].

2 Related Work

The literature on human motion analysis and action recognition is vast; see [2,3]
for recent surveys. There is a large diversity of approaches – from the well-known
temporal templates of Bobick and Davis [4] which model actions as images that
encode the spatial and temporal extent of visual flow in a scene to approaches
which try to fit high dimensional human body models to video frames (e.g., [5]).

Most related to our approach are methods based on using sets of local fea-
tures (e.g., [6]). Some approaches use optical flow vectors as the basic feature for
action recognition [7,8]. Gilbert et al. [9] introduce a method which learns com-
pound features using spatio-temporal corner points. Laptev and Lindeberg [10]
use optic flow and Gaussian derivatives to create several different local descrip-
tors. The work of Mori and Malik [11] is similar to our hierarchical approach in
that higher-level features are built from edge points. However, this method uses
computationally-expensive methods for aggregation and matching.

3 Method

Our hierarchical approach to action recognition starts with low-level features
computed directly from the video frames. We classify each feature based on the
low-level detector used, and we extend recent methods in 2D image classification
to our work in action recognition.

3.1 Low-Level Image Features

Our choice of feature representation is based on the premise that the motion
of some set of informative points (even in the presence of noise) is sufficient for
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human action recognition. Finding points of interest in images and video is a
fundamental problem in image processing and computer vision; there is much
work on interest point detection [12,13].

– Algebraic Corners [14]: Corner points are defined by the intersection of two
linear contours detected by fitting edge points to hyperbolas.

– Canny Edges [15]: These features are edge points that remain after a multi-
phase filtering and contour extension process.

– Fast Radial Interest Points [16]: Interest points are obtained using image
gradients to find areas of high radial symmetry.

– Harris Corners [17]: Corner points are defined as edge points with large
variations in two orthogonal directions.

– Scale-Space Extremal Points: This is the interest operator of the well-known
SIFT [18] feature descriptor. These are points of locally extreme values after
a difference of Gaussians filter in scale space.

Fig. 2. Comparison of interest point operators. (a) shows a sample frame from a video

of a person pointing. The next five images show the feature points selected by: (b)

Harris corner detection, (c) Canny edge detection, (d) the scale-space extremal point

interest operator of SIFT, (e) Algebraic corner detection, and (f) Fast Radial detection.

Figure 2 shows a sample frame from a video of a person pointing and the
output of the 5 interest point operators (in order from left-to-right): Harris
corner detection, Canny edges, scale-space extremal points used by the SIFT
keypoint detector, Fast Radial interest points, and Algebraic Corners. The set
of points differed based on the interest operator used. Empirically, we observed
that, for most actions, it was generally possible to determine the action taking
place, regardless of the interest operator. In Section 4, we show action recognition
results for various combinations of these features.
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3.2 Modeling Feature Point Sets

For each input video, we now have a 3D point cloud of features. To compactly
model these feature sets, we take the approach of recent methods from 2D image
classification (e.g., [19,20]). We extend the approach of Lazebnik et al. [20] for
use with 3D (x, y, t) data in action recognition.

The method in [20] models an image, represented as a set of quantized im-
age features, as a hierarchical pyramid of histograms. At each level, l, where
l = 0, . . . , L for some user-provided number of levels, L, an image is successively
divided (in half in each dimension) into a series of increasingly finer grid boxes.
For each grid box, a histogram of the distribution of features is maintained.
Comparing two images then becomes a series of histogram intersection opera-
tions for corresponding bins in the pyramid. Intuitively, images which are closely
related should have more matches at the smaller-sized bins of the pyramid. We
extend this process for 3D data of video.

Fig. 3. Illustration of computing spatial pyramids. This figure follows the progression

from raw point cloud, (a) to bin partitioning (b) and histogram construction (c).

Figure 3 illustrates the process for converting a 3D point cloud of quantized
features into a histogram pyramid. Figure 3(a) shows the input to the process.
Using the notation of [20], we represent the set of 3D quantized (with C classes)
feature points from two input videos as X and Y . For a given level, l, of the
pyramid, the video volume is partitioned into N = 23l bins. Figure 3(b) illus-
trates this partition at the first level. The number of feature points from X and
Y located in any given bin i is represented by the histograms H l

X(i) and H l
Y (i)

respectively, as shown in Figure 3(c) for a single bin. The histogram intersection
function [21] defines the number of matches between X and Y at a level l as:

I(H l
X , H l

Y ) =
23l∑
i=1

min (H l
X(i), H l

Y (i)). (1)

Levels of finer resolution are weighted more heavily, so the result of the histogram
intersection is scaled by 1

2L−l . This leads to the pyramid match kernel [19]:

κL(X, Y ) =
1
2L

I0 +
L∑

l=1

1
2L−l+1

Il (2)
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where the histogram intersection function (Equation 1) at level l is written as
Il for convenience. Finally, we perform this operation separately, for each of
the C feature types. The sub-vectors of X and Y for points in class c (where
c = 1, . . . , C) are denoted by as Xc and Yc. The final kernel is then the sum of
the pyramid match kernels for each class:

KL(X, Y ) =
C∑

c=1

κL(Xc, Yc). (3)

Figure 4 illustrates the histogram pyramid matching process for two input videos
after they are transformed to the pyramid representations.

This approach of modeling feature sets using spatial pyramids has benefits
both in terms of efficiency and for use in discriminative action classification.
First, the pyramids can be efficiently constructed, in a manner similar to building
a kd-tree. Second, it has been shown [19] that the method of computing pyramid
similarity using histogram intersection (Equation 3) results in a Mercer kernel.
This allows us to use this similarity method with powerful (yet computationally

Fig. 4. Histogram Pyramid Matching. This figure illustrates the histogram pyramid

matching process for two input videos after they are transformed to the pyramid rep-

resentations.
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efficient in the evaluation phase) kernel-based classification methods, such as
support vector machines [22].

4 Experiments

For the results in this section, we used the Inria XMAS Motion Acquisition Se-
quences (IXMAS) dataset [1] of multiple actors performing a variety of common
actions (e.g., waving, punching, sitting). This data was collected by 5 calibrated,
synchronized cameras. We tested our approach by performing both single- and
multi-view experiments.

For each video in our training set, we calculate feature points using the various
feature transforms described in 3.1. Table 1 lists the implementation details
and parameter settings used for each method. To remove noise points from the
training data, we filter out any points outside the silhouette of the actor. Finally,
we create spatial pyramids (Section 3.2) experimenting with various numbers
of levels for the pyramids. We account for scale- and duration-invariance by
limiting the spatial extent for the spatial pyramids to a bounding box enclosing
the calculated regions of motion, rather than original size of the video.

Table 1. Implementation details for each feature detection method

Feature Implementation Parameter Settings

Algebraic Corners Authors’[14] code Curvature:1E-4, Fit Err:2, Window Sz:6

Edge Dist.:0.3, Corner Angle:0.05

Canny Edges Matlab edge function method:‘canny’

Fast Radials Peter Kovesi [23] Radii:[1 3 5], Alpha:2

Harris Corners Peter Kovesi [23] Sigma:1, Thresh:10, Radius:2

SIFT VL Feat Library [24] Default Settings

4.1 Parameter Estimation and Feature Selection

The two major free parameters to our system are the size of the histogram
pyramids and the combination of low-level features used. The number of levels, L,
in the histogram pyramids affects the dimensionality of the pyramids constructed
and has an impact on the balance of efficiency and accuracy. The combination of
features had a slight impact on efficiency, but mainly affects the overall accuracy
as some combinations outperform others. We empirically tested various values
of L and combinations of features using the IXMAS data.

Number of pyramid levels. The number of histogram bins grows exponentially
with the number of the number of levels L. To determine the number of levels
that provide the best trade-off between efficiency and accuracy, we ran experi-
ments for increasing values of L using a variety of low-level features and action
examples from the IXMAS data set. For, L = 1, . . . , 4, the classification accu-
racies were 8.7%, 49.5%, 74.5%, and 76% for an experiment using Canny edges,
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Harris corners, and Fast Radials. The diminishing returns on accuracy suggests
that using L > 4 would not give us enough improvement to warrant the signifi-
cant degradation in time efficiency.

Feature Selection. To determine the optimal combination of features, we per-
formed several experiments using various combinations of features. Using 10 of
the actions in the data set and 7 of the actors as training data, we measured
the classification accuracy on the data from 5 different actors. We tested each
feature individually. As shown in Table 2, Harris Corners and Canny Edges
achieved the highest accuracies. We then tested a variety of combinations of
features. The combination of Canny Edges, Harris Corners, and Fast Radials
was the most accurate in our preliminary experiments, and is used in the full
classification task.

Table 2. Classification accuracy for individual and combinations of features

Feature Accuracy Feature(s) Accuracy

Algebraic Corners(AC) 70% AC/CE/HC 73.5%

Canny Edges(CE) 71.5% CE/HC/FR 75%

Fast Radials(FR) 68.5% AC/CE/FR/HC 74.5%

Harris Corners(HC) 72.5% CE/FR/HC/SIFT 73.5%

SIFT 54% CE/FR/HC/SIFT 73%

4.2 IXMAS Data Results

To test our approach, we used the Inria IXMAS data set. We selected 10 of
the actions (checking watch, crossing arms, scratching head, sitting, standing,
waving, punching, kicking, walking, and picking up) and split the 36 actors into
training and testing sets of 18 actors each.

For classification, we use the Matlab support vector implementation and the
histogram pyramid match kernel (Equation 3). We employ a one-versus-one
scheme for multi-class classification where, for k action classes,

(
k
2

)
pairwise

binary classifiers are constructed. To classify a new action, each classifier makes
a prediction, and the class with the highest total is selected.

For the videos in our testing set, we did not assume that robust foreground-
background segmentation would be available. However, using an online motion
localization method, similar to [25], we could filter noise points distant from
the action of interest. Once we found the region of motion in the space-time
volume, we use the maximal extents in the x-, y-, and t- directions to delineate a
bounding box similar to the method for the training set. No additional filtering
of the distractor points that were located within these bounds was performed.

Our first experiment tests the single-view classification accuracy of our ap-
proach. Figure 5 shows the resulting confusion matrix. Each row represents the
instances of the predicted class and each column represents the instances of the
actual class. For each class, the true positive rate is shown along the diagonal of
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the matrix with the color of each cell also representing the value (warmer colors
represent higher numbers.) For each action, our method predicted the correct
class a majority of the time and for certain actions, the accuracy was above 90%.

Next, to assess the use of this method in a distributed smart camera network,
we performed a multi-camera simulation. Each action was captured by 4 cameras
placed around an actor. Similar to the previous experiment, single-view action

Fig. 5. Confusion Matrix for single-view experiment

Fig. 6. Confusion Matrix for multi-camera simulation
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recognition was performed on video from each camera. Then, the results of the 4
cameras were aggregated by simply selecting the mode (i.e., each camera “voted”
for an action and the majority action was selected). The results are shown in
Figure 6. We achieved 100% accuracy on 3 of the 10 actions, and the accuracy
of each class increased compared to the single-view version, sometimes quite
significantly. The overall accuracy using this simple aggregation scheme was
84%, which is competitive with the 93% and 95% accuracy rates on this data
reported in [1] and [26], respectively. However, those multi-view methods both
use computationally-intensive 3D integration models.

5 Conclusion and Future Work

In this paper, we presented a method for efficiently aggregating low-level features
for discriminative human action recognition. Our long term plans are to deploy
this method onto a network of resource-constrained distributed smart cameras.
In order to achieve this, we need to address issues of robust motion localiza-
tion, view-independence, and more robust multi-view aggregation. The results
of this preliminary work are promising in that very high recognition rates can
be achieved using these low-level features and a simple aggregation approach.
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Abstract. Crowd behavior analysis is a challenging task for computer

vision. In this paper, we present a novel approach for crowd behav-

ior analysis and anomaly detection in coherent and incoherent crowded

scenes. Two main aspects describe the novelty of the proposed approach:

first, modeling the observed flow field in each non-overlapping block

through social entropy to measure the concerning uncertainty of under-

lying field. Each block serves as an independent social system and social

entropy determine the optimality criteria. The resulted in distributions

of the flow field in respective blocks are accumulated statistically and the

flow feature vectors are computed. Second, Support Vector Machines are

used to train and classify the flow feature vectors as normal and ab-

normal. Experiments are conducted on two benchmark datasets PETS

2009 and University of Minnesota to characterize the specific and overall

behaviors of crowded scenes. Our experiments show promising results

with 95.6% recognition rate for both the normal and abnormal behav-

ior in coherent and incoherent crowded scenes. Additionally, the similar

method is tested using flow feature vectors without incorporating social

entropy for comparative analysis and the detection results indicate the

dominating performance of the proposed approach.

1 Introduction

Due to the high growth in population, places such as trains stations, airports,
and subways became highly congested, whereas in social, religious and political
events, mass gathering of people are observed. Consequently, the main challenge
is human safety and to avoid catastrophic situations [1]. For computer vision
community, crowd behavior analysis is an attractive research area with challeng-
ing issues due to high object densities, self-evolving mechanism and non-uniform
dynamics of the crowd.

The conventional approaches in computer vision seem to work for low density
scenes aiming to capture subject-based activities, for example, abandon baggage
detection [2] which are likely to fail in crowded scenes. The objective of crowd be-
havior analysis is very diversified (i.e. sparse [3] crowd density analysis to coarse
level analysis [4] [5]). A general overview and an insight from the perspective
of different commodities in crowd analysis is given by Zhan et al. [6]. Various
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Fig. 1. (a). An example scene showing normal behavior whereas the detection re-

sults(bottom) are marked with yellow circles. (b). Shows a sample frame for abnormal

event and the red circles depict the abnormal behavior.

approaches are proposed for modeling the recurrent characteristic of crowd dy-
namics, which can be categorized into two types namely model based approaches
and event based approaches.

In the model based approaches, an earlier work is proposed by Andrade et
al. [7] to model the eccentric states of individual’s interactions using ergodic
HMM for constrained environments. Mehran et al. [8] estimate the social force
on motion flow based advected particles and simulate the normal interaction
forces on these particles, implicitly. Anomalous situations are detected when the
particle interaction forces are deviated from the pre-trained model. Kratz and
Nishino [9] used Hidden Markov Model (HMM) to detect abnormal events in
crowded scenes, but useful information about the motion patterns is lost in their
proposed cuboid based windowing strategy because the coherent meaningful
features are separated in different cuboids. One notable point is that development
of such models require a list of the behavior patterns to indicate most likely
situations. In the event based approaches, some earlier works [10][11] attempted
to detect and track the objects across the intervals to determine the crowd
activities. Albio et al. [12] addresses the crowd density and the abnormality
detection problem by computing the statistical characteristics of corner points.
Similar problem is addressed by [13] in which a probabilistic model is computed
using orientation and density of flow patterns. Recently, Wu et al. [3] capture
the dynamics of subjects in high density crowded scenes that are taken from
a distance. The captured flow field is used to advect and track the particles
overlaid onto frame. However, the resulting tracks are highly inconsistent and
discriminating between usual and unusual events is extremely difficult.

Throughout the literature, the anomaly detection is treated as a context-
sensitive term which merely rely on instantaneous motion features. Consequently,
capturing the certain motion properties in situations where the crowded scene
contains any number of concurrent and sparse human activities are extremely dif-
ficult. Therefore observed flow field tends to result in uncertain information and
lead to the plausible outcome. For example, in coherent crowds (i.e. marathon)
the object may move with common dynamics which is relatively easy to model.
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But many scenes (i.e. shopping centers) contain completely random motion of
objects resulting in a complicated dynamics and difficult to model the overall
dynamics. However, it is found that for an appropriate modeling of scenes, the
reliable flow patterns can play an important basis for supporting effective detec-
tion of anomalies. Unfortunately, none of these approaches [9] [8] [3] considered
uncertainty in the observed optical flow and overlooked the limitations of optical
flow techniques [14].

In this paper, we construct a novel top-to-down framework for analyzing the
crowd behavior by incorporating social entropy. The effectiveness of the proposed
approch is demonstrated by identifying the specific and overall behaviors using
Support Vector Machines (SVM) as shown in Fig. 1. The main contributions are:
first we obtain the reliable flow field through social entropy and compute the flow
feature vectors by statistically aggregating the underlying reliable flow field in
corresponding blocks; second, we are able to localize the specific and overall
behaviors with SVM in coherent and incoherent crowded scenes. The paper is
structured as: section 2 presents the proposed approach. Experimental results
and discussions are presented in section 3. Finally, the concluding remarks are
sketched in section 4.

2 Proposed Approach

In our proposed approach, we give a generic formulation and its concept to
deplete the flow field uncertainties which faithfully reveals the characteristics
of crowd dynamics by incorporating social entropy. The concept social entropy
is originated from the field of social sciences and used in Social Entropy The-
ory [15]. Social entropy empirically determines a quantitative metric to emulate
the system’s information with a high degree of accuracy. The reliable flow field
inside blocks are modeled statically resulting in unique feature vectors, whereas
SVM is used to characterize the governing crowd dynamics as normal or ab-
normal behavior. Fig. 2 shows the various stages followed in the design of the
proposed framework.

2.1 Pre-processing

In pre-processing, we build the initial background model which is generated by
using Gaussian Mixture Model (GMM). The foreground is extracted robustly
with background subtraction, whereas the background model is updated through
MDI [16] for each time step. However, currently, we are not handling the problem
of shadows.

2.2 Block Formation

Abrupt and independent activities in crowded scenes result in incoherency, which
collectively defines the self-organizing nature of crowd. Each frame is sectioned
into N by M blocks of size (i.e. size = 16), which is selected after conducting
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Fig. 2. Overview of the proposed approach for behavior detection in crowds

empirical studies over the dataset (i.e. PETS 2009). In parallel, a grid of two by
two is placed over the detected ROI which we refer as points of interest (POI).
Optical flow[17] is measured on each POI instead of computing holistically for
example in [8] (note. ideally each block of size = 16, contains POI = 64 on
which the optical flow is computed). This supports a fast mechanism of compu-
tation and avoids information redundancy; however, Andrade et al.[7] performed
a median filtering and use PCA to reduce the feature space. By doing so, each
region represents an independent system, and we can capture the local activities
without discriminating overall frames. Next, for each block, a two dimension
level of information is computed containing the optical flow vector and the flow
density:

Ft = [B1, ..., Bn] , B(i,t) = {f1, ..., fk} , fk = (o, ρ)

where Ft contains n blocks B(i,t), i = {0, 1, ....n} at time t. Each block contains
k POIs which we consider as a 2D distribution of flow vector o = (u, v), and
flow magnitude ρ =

√
u2 + v2 in the rest of our paper.

Our main contention in obtaining the local motion pattern is that by using
global information of motion flow field, it is difficult to reveal the required level of
detail, which can differentiate the coherent and incoherent dynamics. However,
it is found that due to the limitation of optical flow technique, flow field is not
reliable and uncertain [14]. For this purpose, we formalize social entropy on each
block, which is explained in the following section.

2.3 Social Entropy

To address this issue, we begin by describing each of our block B(i,t) as an
independent social system and use social entropy as an optimization strategy
to handle the uncertain [14] flow field distribution. Social entropy provides the
context of crowd behaviors allowing us to define quantitative metric for flow field
uncertainty in both aspects (i.e. the normal and abnormal behavior). Later, the
distribution of homogeneity (i.e. certain in terms of normal and abnormal) and
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Fig. 3. (a). Shows the normalized distribution (PDF ) of flow field based on training

samples. (b). Green curve indicates the probability p of the flow field fk whereas in (c).

Red curve shows the corresponding Shannon’s entropy H of respective probabilities pi.

heterogeneity (i.e. uncertain in terms of normal and abnormal) of behaviors are
evaluated on the training samples as shown in Fig. 3(a) while social entropy is
applied to determine the certain and uncertain ranges of flow fields thus lead to
reliable measure of system behavior.

In the following, a mathematical basis for calculating the social entropy of
normal and abnormal flow characteristics for our social system during training
process is described. We argue that measured uncertainty in the underlying social
system reflects the uncertain behavior of the computed flow field which results
in the incorrect characterization of crowd behavior. The uncertainty metric is
computed using Shannon [18] information entropy H as:

H = −
C∑

i=1

pilnpi (1)

where 2D distribution fk in each block (i.e. B(i,t)) is categorized into normal
and abnormal motion flows (i.e. Behavior category C = 2) and pi determines
the probability of certainty and uncertainty as shown in Fig. 3(b). As a result,
low entropy H is observed in the distributions pi that are sharply peaked around
few values, whereas those that are spread more evenly across many values will
have higher entropy H . On this basis, we obtained a lookup table in Fig. 3(c)
substantiating the reliable and unreliable instances of fk in each block during
the testing phase.

Categorization of Certain fk : when entropy H is minimum, it depicts 100%
probabality of certainty. In Fig. 3(c), we are able to select our potential flow field
fk which falls in the entropy range from (0 − 0.6).

Categorization of Uncertain fk : Unlike above postulate, if H is above
0.6, the flow field is recognized as an uncertain outcome fk due to noise and
limitation of the optical flow technique.
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PETS 2009 UMN

Fig. 4. Test sequences of PETS 2009 and UMN datasets: Normal (top) and abnor-

mal(bottom)

2.4 Feature Vector Computation

From the above section, we obtain reliable flow field inside each block B(i,t). A
discrete value provides weak evidence of crowd behaviors, so instead, we apply
the statistical measure on the computed reliable flow field (i.e. ok and ρk) on
POIs in each block and aggregate it into a flow feature vector VB(i,t) . Feature
extraction for crowd behavior analysis is described as follows.

VB(i,t) = fk = (ok, ρk) (2)

2.5 Behavior Detection

In computer vision, event classification and identification using discriminative
techniques through learning from experimental data (i.e. feature space) have
considerably been studied. Among many conventional parametric classifier, SVM
offers an effective way to optimally model data. SVM learner defines the hyper-
planes for the data and maximum margin is found between these hyper-planes.
Radial Basis Function (RBF) Gaussian kernel (k(x, y) = e−‖x−y‖2/2σ2

) is used
in the proposed approach which has performed robustly with the given number
of features and obtained better results as compared to other kernels [19].

Using SVM as a classifier with flow feature vectors, we are able to distinguish
specific and overall normal and abnormal dynamics in crowded scenes unlike
in [8]. As discussed earlier, the computed flow feature vectors reveal the reliable
characteristics in the scene which are localized as normal and abnormal behaviors
by SVM.

3 Experiments and Discussion

The proposed approach is tested on publicly available datasets from PETS
2009 [20] and University of Minnesota (UMN) [21]. Fig. 4 shows the samples
of test sequences. Ideally, the normal situation is represented by the usual walk
of the large number of people, whereas the abnormal situations (i.e. running,
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scenario training set frames
S1.L1 13-57 220
S1.L1 13-59 240
S1.L2 14-06 200
S1.L3 14-17 90
S1.L3 14-33 343

GT
DR

Frame 100

GT
DR

Frame 222

GT
DR

Frame 337

Fig. 5. On the left, tables presents the training process, and on the right figure shows

the detection results on PETS 2009. The left frames indicate absolute normal (yellow)

behavior, the middle frames show the transition (green) and the right frames depict

absolute abnormal (red) behaviors along the dotted time-line in each row.

panic and dispersion) are observed when individuals or group of individuals de-
viate from the normal behavior. There is a major distinction between these two
datasets, for example, in PETS 2009, the abnormality begins gradually unlike
UMN dataset, which makes PETS more challenging due to the transitions from
normal to abnormal situations.

The PETS S3 which comprise our test set contains different crowd activities
such as walking, running and dispersion. For learning, table given in Fig. 5 de-
scribes the scenarios of the training sets used in the training process. A qualitative
presentation, indicating the ground truth (GT) and the detection result (DR) in
each row for normal, transition (i.e. the crowd behavior is neither absolute nor-
mal nor absolute abnormal) and abnormal situations in the sequences, is shown
in Fig. 5. The color-bars define the respective crowd behaviors and timings of the
occurrences whereas the incorrect localizations of the crowd behaviors are marked
with respective colors of false detections in Fig. 5. The detection results of crowd
behaviors are demonstrated in Fig. 6 where the normal behaviors are marked as
yellow and abnormal behaviors are highlighted with red squares in frames. The
transition situation is inferred from the percentage of normal and abnormal

Table 1. Confusion Matrix: Pro-

posed Approach

Event Normal Abnormal
Normal 95.8 4.2

Abnormal 0.8 99.2

Table 2. Confusion Matrix: Unrefined Flow

Features

Event Normal Abnormal
Normal 82.0 18.0

Abnormal 14.6 85.4
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Sequence 1

Sequence 2

Sequence 3

Sequence 1

Sequence 2

Sequence 3

Sequence 1

Sequence 2

Sequence 3

Fig. 6. Shows the detection results on PETS 2009. Left (yellow) frames shows the

normal behavior detection, the middle (green) frames shows the certain ratio of normal

and abnormal behavior and right (red) frame depicts the abnormal behaviors.

behaviors. The results show that the proposed approach is capable of locating the
specific and overall abnormalities in the regions which are occupied by the crowd.

To validate the performance of our proposed approach for the detection of
the crowd dynamics, we conduct the similar experiments using the flow feature
vectors without incorporating the social entropy called unrefined flow feature
vectors keeping all the parameters of the classifier same. Table. 1 shows the
confusion matrix of the probability of normal and abnormal behavior analysis
for each class. The calculated results indicate that the proposed method out-
performs the similar method based on unrefined flow feature vectors as shown
in Table. 2. The diagonal elements in the confusion matrices represent the per-
centage probability of recognition for each class in the group. Misclassification
between the classes is shown by the non-diagonal elements which are observed
due to a prominent motion field at object leg parts as compared to body and
head of the objects.

We evaluate the diversity of proposed approach by conducting experiments on
another dataset by UMN, which contains 11 different videos of different scenarios
showing normal and escape cases. The confusion matrix in Table. 3 shows the
detection probability of crowd behaviors using the proposed method. Besides, we
conduct experiments using unrefined flow feature vectors for comparative analy-
sis as shown in Table. 4 which clearly indicates the performance of the proposed
work. The results in Fig.7 demonstrates the detection of crowd behaviors for
normal and panic situations in the crowd.
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Sequence 1

Sequence 1

Sequence 2

Sequence 2

Sequence 3

Sequence 3

Sequence 4

Sequence 4

Fig. 7. Shows the detection results on UMN dataset. Top frames show the normal

behavior detection indicated by yellow squares and bottom frames depict the abnormal

behaviors marked with red squares. It is observed that in escape sequences due to

sudden dissipation the transition situation does not occur.

Table 3. Confusion Matrix: Pro-

posed Approach

Event Normal Abnormal
Normal 90.3 9.7

Abnormal 2.8 97.2

Table 4. Confusion Matrix: Unrefined Flow

Features

Event Normal Abnormal
Normal 80.2 19.8

Abnormal 21.6 78.4

4 Conclusion

In this paper, we introduce a method to analysis the crowd behaviors incorpo-
rating the social entropy using SVM. A top to down methodology is adapted
which capture the crowd characteristics based on flow features whereas the un-
certainties in flow data inside each block are dealt with social entropy. Later, the
flow feature vectors are classified with SVM to detect and localize the specific
and overall behavior in the crowd. The results show that the proposed approach
is capable of detecting the governing dynamics of the crowd and captures the
transition’s period successfully with 95.6% detection rate and outperform when
compared to similiar approach using unrefined flow feature vectors.
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Camera-Based Fall Detection
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Abstract. Camera based fall detection represents a solution to the

problem of people falling down and being not able to stand up on their

own again. For elderly people who live alone, such a fall is a major risk.

In this paper we present an approach for fall detection based on multiple

cameras supported by a statistical behavior model. The model describes

the spatio-temporal unexpectedness of objects in a scene and is used to

verify a fall detected by a semantic driven fall detection. In our work a

fall is detected using multiple cameras where each of the camera inputs

results in a separate fall confidence. These confidences are then combined

into an overall decision and verified with the help of the statistical be-

havior model. This paper describes the fall detection approach as well as

the verification step and shows results on 73 video sequences.

1 Introduction

Nowadays, the future aging population and demographic change calls for new,
innovative systems for health care [1]. In this paper we address the problem
of elderly falling at home. Elderly have an increased risk of falling and studies
have shown that an immediate alarming and helping heavily reduces the rate of
morbidity and mortality [2]. Widely used systems are based on mobile devices to
be worn by the users. This “push-the-button” solution has the drawback that it
requires the user’s capability and willingness to raise the alarm. A camera-based
system is a less intrusive and more flexible solution, able to detect different kinds
of events simultaneously.

In the past, a number of approaches have been proposed for camera-based fall
detection. One group of methods is based on the detection of the characteristic
temporal sequence of fall actions. This is accomplished by training parametric
models like Hidden Markov Models using simple features, e.g. projection his-
tograms [3] or the aspect ratio of the bounding box surrounding the detected
human [4,5]. However, such systems need a lot of labeled training data and their
applicability is further limited due to the high diversity of fall actions and the
high number of different negative actions which the system should not classify
as fall. Another group of methods explicitly measures the human posture and
motion speed between consecutive frames. The underlying assumption is that a
fall is characterized by a transition from a vertical to a horizontal posture with
an unusually increased speed, in order to discern falls from normal actions like
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sitting on a chair or lying on a bed. In this manner, in the past various features
have been used for camera-based fall detection, including the aspect ratio of the
bounding box [6] or orientation of a fitted ellipse [7] for posture recognition and
head tracking [8] or change rate of the human’s centroid [9] for motion speed. In
order to derive a decision for a fall or no fall from the extracted features, para-
metric classifiers like Neural Networks [10] or empirically determined rules are
applied [8,9,11]. A more general approach for abnormal event detection has also
shown to be able to implicitly detect fall events in home environments [12]. How-
ever, approaches which do not explicitly detect a fall event have the drawback,
although being adaptive, of classifying every unknown event (i.e. not learned
from the training data) as suspicious. In general, representing and handling the
vast amount of possible different actions at home is more complex than explicitly
detecting a specific event like a fall.

From our point of view, a more efficient way for introducing learned behavior
into the system is to learn zones of usual activity. In [13] this idea was raised
for the monitoring of elderly in home environments. Their system uses overhead
tracking to automatically learn zones of usually little motion (e.g. bed, chair).
Such a learned model gives a strong clue for fall detection: for instance, lying on
the floor is much more suspicious than lying on the bed.

In this paper, we extend this idea by combining such a statistical behavior
model with individual fall detection in a multiple camera network. In the first
stage of the system, features describing human posture and motion speed are
extracted to derive confidence values for a fall event for each camera. In the
second stage, the outputs from the first stage are combined with a statistical
behavior model (called accumulated hitmap) that represents the likelihood that
activity occurs in the specific scene area. In the final step, individual camera
confidence values are fused to a final decision. Thus, we gain robustness by both
using information from multiple cameras and by including a model describing the
usual areas of activity in the scene. All steps of the overall method are basically
focused on simplicity, low computational effort and therefore fast processing
without the need of high-end hardware.

The remainder of this paper is structured as follows. Section 2 describes our
methodology in detail. Experiments on a dataset of 73 video sequences are re-
ported and discussed in Section 3. Section 4 gives a conclusion.

2 Methodology

Fig. 1 shows the method’s workflow. For each camera the moving objects are
extracted for feature computation. The features are then used to detect three
different states (“standing”, “in between” and “lying”). By using a feature called
“motion speed” computed in previous frames, a confidence value is computed
for each camera input for fall detection. A voting algorithm combines the four
confidences to a final decision. The detection of such a fall is verified with a
statistical behavior model called accumulated hitmap which describes the local
frequency of foreground objects in the scene. The accumulated hitmap is also
computed from each camera input and combined for the verification step.
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Fig. 1. The workflow of the presented fall detection method

In the following, the individual steps of our fall detection approach are de-
scribed in detail.

2.1 Human Silhouette Extraction

Segmentation of the person from the background is the first step in our fall
detection process. The Colour Mean and Variance approach has been used to
model the background [14]. Motion detection has been applied with the NRGB
colour space in order to remove shadows from the segmentation result. The
detection has been done using the RGB+NRGB combination described in [15].
The resulting blobs (connected components) are then filtered by size to remove
noise and small objects from the labeled foreground image due to the fact, that
we are only interested in moving persons. The humans in the videos are tracked
by a simple assignment of blobs in frame t and frame t + 1 using the distance
of the blobs computed from the center of mass. The result of human silhouette
extraction is a mask with a rough silhouette of the human in each camera frame,
i.e. a set of silhouette pixels Pc,i, where c is the camera index and i is the frame
index.

2.2 Posture Estimation

The goal of the posture estimation step is to decide if the person is in an upright
position. The goal of low computational effort renders, for instance, sophisti-
cated model-based approaches for posture recognition infeasible. Therefore, pos-
ture estimation is kept simple and estimates basically the general orientation
of the human body, i.e. standing/vertical or lying/horizontal. Based on empiri-
cal experiments, we have chosen a set of features for posture recognition which
needs low computational effort for extraction but offers a comparatively strong
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discriminative power. In particular, the following features are extracted at every
frame with index i from the set of pixels Pi representing the person:

– Bounding Box Aspect Ratio (Bi): The height of the bounding box sur-
rounding the person divided by its width.

– Orientation (Oi): The orientation of the major axis of the ellipse fitted to
the person, specified as the angle between the major axis and the x-axis.

– Axis Ratio (Ai): The ratio between the lengths of the major axis and the
minor axis of the ellipse fitted to the person.

Please not that these features are not view-invariant: for instance, a high value
for Bi could arise from a person standing but also from a person lying on the floor
in direction of the camera’s optical axis. Therefore, we propose a multiple camera
system that is able to overcome the influence of weak features extracted from
non-optimal views through a final fusion step. This step is described in Section
2.5. Inspired by Anderson et al. [11], we define three posture states in which
the person may reside: “standing”, “in between” and “lying”. Sets of primarily
empirically determined fuzzy thresholds in the form of trapezoidal functions
[16] are assembled to interpret the intra-frame features and relate them to the
postures. Thus, each feature value results in a confidence value in the range
[0, 1] on each posture, where the confidences of one feature sum up to 1 for
all postures. These are then combined to assign a confidence value for each
posture which is determined by a weighted sum of all feature confidences. The
membership functions for the orientation Oi are exemplarily shown in Fig. 2.

2.3 Fuzzy-Based Estimation of Fall Confidence Values

From the computed confidence values for the different postures, for every frame
a confidence value for a fall event is computed. The motion speed of the person
can be exploited for fall detection since unintentional falling causes a certain
motion speed of the body. Therefore, we compute a motion speed feature Mi

at every frame i which expresses the amount of change that happens between
consecutive frames,

Mi = |Pi\(Pi ∩ Pi−1)| / |Pi| (1)

Fig. 2. Membership functions for the three postures and the intra-frame feature Oi
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We combine this feature with the estimated posture confidences under the as-
sumption that a fall is defined by a relatively high motion speed, followed by a
period with a “lying” posture. Thus, the confidence for a fall event at frame i
is computed as the motion speed Mi multiplied by the confidence values for the
posture “lying” for the next k frames.

2.4 Combination with Learned Accumulated Hitmap

A accumulated hitmap is a matrix which counts consecutive foreground pixels.
Each foreground pixel from a binary image increases the corresponding point in
the hitmap by 1. The idea of computing a hitmap stems from [17] where each
pixels’ foreground frequency is modeled. The hitmap at a given pixel position
is increased as long as the pixel in the input image is classified as a foreground
pixel. The values in the hitmap therefore specify the duration of stay of objects
in the scene at a given position. The pixels in the hitmap have to be decreased if
the corresponding pixel in the input image is no foreground pixel anymore. Due
to noise and misclassifications, the pixel value at a given position in the hitmap is
decreased after a waiting period of n frames of consecutive background pixels in
the input image. In Fig. 3 one frame of an image sequence and the corresponding
trained hitmaps are illustrated. Lighter pixels correspond to higher frequented
areas.

In the training stage the hitmap is continuously computed and the maximum
value at each pixel position is stored. In the classification stage, the trained
hitmap is used as a reference for normality in the scene and compared with the
current computed hitmap in order to detect unexpected situations. The attribute
of the hitmap is that it detects an unexpectedly long abidance of foreground
objects according to the trained map. Due to the reason, that frequenting an area
where the trained hitmap is almost zero, should be detected instantly compared
to a longer stay of a person in an area where the trained hitmap has higher values,

Fig. 3. Four camera views (top row) and the corresponding trained hitmaps (bottom

row)
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the pixels are weighted using the following equations. At first, the difference of
the non-weighted hitmaps is computed:

Hdiffx,y =
∣∣Htx,y − Hox,y

∣∣ (2)

where Htx,y is the trained hitmap and Hox,y is the current computed hitmap
at position (x, y). The difference is then weighted with the information of the
trained hitmap:

Hunexpx,y = (1 +
α

max(Ht) − Hox,y

)(
Hdiffx,y

2 ) (3)

if Hox,y > Htx,y and 0 otherwise, where Hox,y = max(Ht)−1 if Hox,y ≥ max(Ht).
max(Ht) is the maximum value in the trained hitmap and α is a regulating
parameter set to the value of 50 for out dataset of fall detection sequences. The
basis of the equation has its limits at 1 and at (1 + α). This means that higher
values of the current hitmap Hox,y raise the value of the basis and the exponent
is additionally higher for small values of Htx,y . The exponent has been found
empirically and has the property to quickly find unexpected behavior in areas
of low frequency.

The computation of the bounding box aspect ratio, orientation and axis ratio
sometimes lacks of accuracy due to an incorrect human silhouette extraction.
Therefore the values of the features can cause false positives which also happens
when a person is occluded by desks, chairs or other objects. The accumulated
hitmap is used to verify a fall, detected by the previously mentioned fall de-
tection. Therefore the sum of Hunexpx,y in the area of the bounding box which
encloses the detected person is computed. A fall is affirmatively verified if the
fall confidence surpasses a defined threshold and the hitmap sum surpasses a
defined threshold in one of the frames before or after the current frame. In our
setup we defined this verification window to be as long as four seconds (two
seconds before and two seconds after the frame which has to be verified). The
fall confidence threshold is chosen at a lower level (e.g. 0.5) for the combination
with the hitmap compared to the initial fall detection approach in order to get
more false alarms which will then be verified by the hitmap. The threshold for
the verification using the hitmap depends on the size of the blobs in the image
and was found empirically. The idea of the verification window is illustrated in
Fig. 4.

Fig. 4. Verification window in case of a detected fall
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2.5 Multiple Camera Fusion

The detection of a fall with the described features requires a viewing angle
where the feature values of a standing person differ from the feature values of
a lying person. The second view from left in Fig. 5 shows a view where the
orientation of a lying person and a standing person are similar. Therefore we use
a multiple camera setup with four cameras. The combination of the results from
the cameras is done as follows. The detection is computed for each camera and
an alarm is fired if one of the results is higher than a defined threshold (i.e. fall
confidence=0.9). This fall is then verified by the average of the hitmap values
in the surrounding frames as described in Section 2.4. The average is computed
for each frame and compared to a defined threshold.

3 Experiments

In order to thoroughly evaluate our fall detection method, test sequences were
acquired that follow the scenarios described by Noury et al. [18]. Hence, a test
set consisting of various types of falls as well as various types of normal actions
was created. Four cameras with a resolution of 288×352 and frame rate of 25 fps
were placed in a room at a height of approx. 2.5 meters. The four camera views
are shown in Fig. 3. Five different actors simulated the scenarios resulting in a
total of 49 positive (falls) and 24 negative sequences (no falls).

For the given test set, the parameter k defining the considered time period
of the “lying” posture for fall detection (see Section 2.3) was set to 10 seconds.
Please note that in a real scenario this parameter has to be set to a higher value.
In our simulated falls the lying periods are considerably shorter than they would
be in case of a real fall event, for obvious reasons.

Since our method delivers confidence values for a fall event as well as a hitmap
value in every tested frame, we report its sensitivity and specificity in the form of
ROC curves by varying the two thresholds. For generation of the ROC curve, true
positives and false positives were counted as the number of positive and negative
sequences, respectively, where a fall confidence and a hitmap value above the
thresholds could be found. The performance of fall detection is compared to the
combination with the accumulated hitmap and to the hitmap itself. The results
are shown in Fig. 6.

In Fig. 6 and 7, FD HM shows the performance of the accumulated hitmap
for detecting falls, FD represents the performance of fall detection without the

Fig. 5. Four camera views of a video sequence
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Fig. 6. ROC curves from the evaluation of 73 video sequences using the multiple camera

fusion

verification of the accumulated hitmap, and FD comb shows the performance
with verification of the fall detection using the accumulated hitmap. The eval-
uation is done using multiple camera fusion as described in Section 2.5. We
compared our results using the multiple camera fusion with the results of the
algorithms using a single camera (see Fig. 7). We observe a similar performance
for the fall detection approach using the verification step compared to the multi
camera fusion because the false positives from the fall detection are negatively
verified from the hitmap for moving persons, since the hitmap is zero for moving
persons. False positives from fall detection where a person is standing or sitting
are positively verified from the hitmap since the hitmap values increase in such
cases and therefore result in false positives. Our results approve the idea of veri-
fying the detected fall since the fall detection and the hitmap approach perform
worse when only one camera is used but the combined approach performs similar
compared to the multiple camera setup. The bad performance of fall detection
using only the hitmap on the single camera setup (e.g. 35% false positives at a
true positive rate of 10%, see Fig. 7) can be explained as follows. The hitmap
is evaluated by a simple threshold. High values of the hitmap represents if a
person is sitting, standing or lying for 10 seconds or more. If the threshold is
taken below these cases and above falls where persons are only lying for a few
seconds, most of the falls are not detected but the sitting and standing persons
are detected as falls, which results in this form of the ROC curve in Fig. 7.

The results show that the combination of the fall detection and the hitmap
outperforms the individual approaches using multiple camera fusion as well as
for a single camera setup. However, a problem of the accumulated hitmap is, that
it is high for lying persons as well as for persons standing or sitting on the same
position for a unexpectedly long time. A long time in this case is when the hitmap
values exceed the trained hitmap values in the area of the persons location.
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Fig. 7. ROC curves from the evaluation of 73 video sequences using a single camera

Therefore the hitmap approach should not be used for fall detection without a
combination of other features. Fall detection without verification as described
in this work lacks of accuracy due to problems in the segmentation process.
The viewing angle of the camera is also important for the mentioned features
to achieve a sufficient discriminative power of the chosen features to correctly
classify different postures. However, a person can fall in different directions,
therefore a multi camera system is needed to find falls for every orientation of
the body. The evaluated ROC curves shown in Fig. 6 and 7 demonstrate that the
performance of proposed fall detection approach is similar for a single camera
system and a multi camera system.

4 Conclusions and Outlook

This paper showed a new methodology for fall detection with a multiple camera
setup and verification using a statistical behavior model. The verification step
improves the classification rate of falls for the multiple camera setup as well as
for a single camera setup. The results on the multiple camera setup shows a
huge improvement of the fall detection and the hitmap alone but not on the
combination using the verification. In future work we intend to compute three
dimensional volumes of the hitmap for the verification of falls for a further im-
provement in robustness and classification rate. Alternatively, more sophisticated
fusion strategies will be investigated in order to better exploit the power of using
multiple cameras and having multiple decisions.
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Abstract. Multispectral datasets are becoming increasingly common.

Consequently, effective techniques to deal with this kind of data are

highly sought after. In this paper, we consider the problem of joint vi-

sualisation of multispectral datasets. Several improvements to existing

methods are suggested leading to a new visualisation algorithm. The

proposed algorithm also produces colour images, compared to grayscale

images obtained through previous methods.

1 Introduction

Following the increased need of applications such as remote sensing, multispec-
tral datasets are becoming increasingly common. Consequently, effective tech-
niques to deal with this kind of data are highly sought after, and the development
of segmentation and classification techniques based on specific properties of re-
flection spectra of different objects has been a very active research area in recent
years. There is a natural necessity for manual verification of correctness of the
results obtained by such algorithms, as well as a necessity for manual choice of
areas to be processed.

For example, in the context of remote sensing, a multispectral dataset can
be seen as a set of grayscale images representing the same area. Each image of
this set corresponds to a small band of the registering spectra. The number of
bands varies but may be greater than 200. However, the dimensionality of our
human visual system is only 3 [1], and we are therefore not well equipped to
perceive such datasets directly. This problem also arises for joint visualisation of
images of different origins or modalities, for example visualising physical sensing
of micro-samples obtained using fluorescence microscopy [2].

In this paper, we address the fundamental problem of compound representa-
tion of multispectral datasets, i.e. sets of N grayscale images I(x, y) = (In(x, y)),
n = 1, . . . , N in a form suitable for human perception. That is, we present an ef-
fective method for multispectral visualisation. Importantly, such a visualisation
is required to preserve local contrast. Moreover, our proposed algorithm pro-
duces colour images, compared to grayscale images obtained through previous
methods.

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 173–180, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 Related Work

The simplest method for visualising multispectral data is to let the user choose
three images from the dataset and unite them into one falsecolour image. How-
ever, it is clear that this approach is far from optimal, and that especially when
the number of images in the set is large, the number of channels the user is
unable to visualise simultaneously is still large.

Another popular method uses averaging to obtain resulting grayscale images.
For this, the user specifies a vector of averaging weights λ = (λ1, . . . , λN ). The
resulting grayscale image G(x, y) is then obtained by G(x, y) = I(x, y) · λ. This
procedure corresponds to projecting an image vector onto the vector λ. The
disadvantage of this method however is the possibility of losing contrast. If
the vectors I(x1, y1) and I(x2, y2) for neighbour points satisfy the condition
I(x1, y1) − I(x2, y2) ⊥ λ than after averaging we have G(x1, y1) = G(x2, y2)
even if the norm of the difference ‖I(x1, y1) − I(x2, y2)‖ is large. Of course,
one can choose some other weight vector, but it seems impossible to effectively
choose such a vector for all points in a general case.

One can attempt to reduce that disadvantage by choosing the weight vector
depending on statistical analysis of the source dataset. One way to achieve this
is using principal component analysis (PCA). Considering the source dataset as
the set of vectors in some N -dimensional vector space, the weight vector is then
chosen as an eigenvector corresponding to the largest eigenvalue of the covariance
matrix of that set of vectors [3].

PCA-based techniques are among the most popular method for processing
multispectral datasets. However, in PCA-based visualisations, there is also the
possibility of losing local contrast. Let us consider an example with a model
dataset of 9 images as input. In every image the intensity of pixels equals 0
for the whole image, except for a small square where the intensity equals 1.
The areas of squares are completely disjoint. Hence, one should expect to see 9
squares in the visualisation. However, applying PCA-based visualisation results
in an image, shown in Fig. 1, where one of the square is “eliminated” (the bottom
right square in Fig. 1).

Fig. 1. PCA-based visualisation of a dataset of 9 images each containing a square
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Moreover, PCA performs a projection on some diagonal in N -dimensional
vector space. The cosine of the angle between this diagonal and any axis has the
asymptotics cos θ ∼ 1/

√
N while N → ∞. So if N is big enough, the diagonal is

almost orthogonal to the choosen axis and the contribution of the corresponding
image to the resulting grayscale image is very low [4].

3 Local Contrast Concept

The critique of visualisation methods for multispectral datasets presented in
Section 2 is based on the observation of inconsistency between the source dataset
and the resulting grayscale image. To construct a visualisation method which
ensures to preserve local contrast, some authors use a formal definition of the
local contrast concept.

The definition of local contrast for grayscale images is based on the gradient
of a scalar function. A similar definition for a set of grayscale images, i.e. a vector
function, can be derived [5]. Given a set of images I(x, y), for every point there
is a square form defined by a matrix

C(x, y) =
(

Cxx(x, y) Cxy(x, y)
Cxy(x, y) Cyy(x, y)

)
, (1)

where Cξη(x, y) =
∑N

i=1
∂Ii

∂ξ
∂Ii

∂η . The value of this form at point (x0, y0) on the
vector (u, v) is the variation of the vector function I in direction (u, v) at point
(x0, y0). The largest variation is achieved in the direction of the eigenvector
corresponding to the largest eigenvalue λmax of C. Such an eigenvector with
length equal to

√
λmax may be interpreted as an analogy to the gradient of a

scalar function. However, in contrast to the gradient there is no way to define
the increasing direction of the vector function. Thus, there exists a problem with
regards to the ambiguity of direction, i.e. a problem of signs.

The above concept of local contrast for a set of grayscale images was used by
some authors to develop a template algorithm for multispectral visualisation [6,
7]. This approach consists in general of the following steps:-

1. Using the source dataset, compute the field of square forms C(x, y) and com-
pute the corresponding vector field P (x, y) (the so-called pseudo-gradient
field). P (x, y) are principal eigenvectors of the form C(x, y) with length
equal to the square root of the corresponding eigenvalues.

2. Solve the problem of signs.
3. Construct a grayscale image G(x, y) such that ∇G is similar to P in some

sense.

The parameters of this template method are the chosen way to solve the sign
problem and the employed measure of similarity between two vector fields to
obtain the resulting grayscale image. Usually, the measure of similarity is in-
troduced as an error function E(x, y) which expresses the difference between
vector fields P and ∇G at point (x, y). The total error is then computed as



176 V. Sokolov et al.

EΣ =
∫∫
Ω

E(x, y)dxdy, where Ω is the domain on which the source dataset is

defined. Hence, the third step of the visualisation is reduced to the minimisation
of EΣ in the space of scalar functions of two variables where G is from.

As for the problem of signs, a common approach is to solve it with the
help of some other vector field R(x, y) called the reference field. To provide
an appropriate direction to the vectors of P one should multiply P (x, y) with
sign (P (x, y) · R(x, y)) at every point (x, y).

In [6] the authors use the gradient of spectral intensity of the source dataset
as the reference vector field to solve the problem of signs. As error function they
define

Es(x, y) = |G(x, y) − P (x, y)|2 . (2)

For simplicity, we refer to this measure of similarity as linear measure since the
corresponding Euler-Lagrange equation is the Poisson equation which is linear.

In [7] a similar method was proposed, and a solution to the problem of signs
introduced for the case N = 3. First, an orthonormal basis in the N -dimension
vector space is chosen, and the vectors in this basis are ordered in a manner
that reflects their significance. Then one projects the source set of images onto
the vectors of this basis, and a set of images {Jn(x, y)} , n = 1, . . . , N is thus
obtained. The directions of the vectors from P with respect to the gradient of J1

are then obtained at the points where the magnitude of that gradient is greater
than some threshold. At the points where the vector ∇J1 is small, a similar
procedure is employed with the help of J2 and so on. If the vector of the pseudo-
gradient field is not related to any of ∇Ji, i = 1, . . . , N , then the contrast at
this point is small and any random direction of that vector is acceptable. The
measure of vector field similarity is the same as in [6]. The authors noted the
appearance of a smooth gradient in areas where the source dataset images were
uniform. As a possible way to eliminate this, the authors proposed to use some
non-linear measure. In a new variant of such a measure they introduced the error
function

Eg(x, y) = −exp
{−Es(x, y)/2σ2

}
, (3)

with some σ.

4 On the Problem of Signs

As noted above, the problem of signs arises while obtaining the pseudo-gradient
field P . Let us consider the manner of solving this problem, which was proposed
in [6]. At every point the spectral intensity S(x, y) =

√
I2(x, y) is computed.

Then, they relate the field P with the field ∇S. If the structure of the source
dataset is such that there are two areas with a common boundary which have
equal spectral intensities but different distributions of that intensity over the
bands, then |∇S| at the common boundary of these areas approximately equals
0. This leads to a strong dependence of the pseudo-gradient vector direction at
the common boundary on noise. The final pseudo-gradient field constructed in
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such a manner may demonstrate gaps along that boundary, which in turn leads
to a significant warp of the resulting grayscale image.

Let us consider the test dataset introduced in [7], i.e. a Mondrian-like dataset
with uniform areas of different colour but of equal intensity and triples of regions
such that there is a boundary between every two regions in a triple. An example
image is shown in Fig. 2.

Fig. 2. Sample Mondrian-like image

Fig. 3 demonstrates the resulting images obtained using different approaches
to solve the problem of signs. The left image (a) illustrates the use of spectral
intensity ordering, while the right image (b) gives the result of [7]. It is easy
to see that the latter is of higher quality. Hence, the approach presented in [7]
proves to be more robust for solving the problem of signs.

(a) Spectral intensity ordering (b) Sequential ordering

Fig. 3. Visualisation results illustrating the problem of signs

We propose the following method. We use principal component analysis to
obtain an orthonormal eigenbasis in the colour space of the source dataset. Then,
we use the obtained basis in the manner proposed in [7] to solve the problem
of signs. Consequently, this approach leads to a more accurate pseudo-gradient
field.
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5 Non-linear Measures

Let us consider the non-linear measure Eg(x, y) proposed in [7]. We imple-
ment this measure using the gradient descent method. The grayscale image
obtained using the linear measure (Fig. 3(b)) was used as initial approxima-
tion. In Fig. 4(a), the result of the minimisation with σ = 0.01 · Imax, where
Imax is the dynamic band of the source image is presented. We can see that
many artefact boundaries appear in the resulting image in areas of uniformity.
Obviously, this points to a shortcoming in the structure of this measure.

(a) Gaussian error (b) Relative error

Fig. 4. Non-linear measure results

A good measure can be characterised as one that (1) reaches a maximum if
the source boundaries and obtained boundaries are the same, (2) prevents an
appearance of strong boundaries in places where they are weak, and (3) prevents
disappearance of boundaries in place they are strong.

Let us consider a measure of relative error as relative difference of two vector
fields Er(x, y) defined by

Er(x, y) =
|∇G(x, y) − P (x, y)|2

|∇G(x, y)|2 + |P (x, y)|2 + α2
. (4)

Clearly, the first requirement is satisfied: if |∇G(x, y) − P (x, y)|2 is small, the
error is small. The two other requirements are satisfied too as in these cases
the value of error is near to 1. This method was implemented using gradient
descent, and the grayscale image obtained with the linear measure, i.e. the image
of Fig. 3(b), was used as the initial approximation.

In Fig. 4(b) the result of minimisation with α = 0.007 · Imax is shown. We
can notice a significant improvement in comparison with the linear method of
Fig. 3(b)).

6 Colour Visualisation

A visualisation which produces a grayscale image as output, although sufficient
in certain cases as those given in Figs. 2 to 4, does not use the human visual
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system to its full ability. We therefore propose a method whose output is a colour
image. Our approach proceeds in the following steps:-

1. Using one of the visualisation methods which preserve local contrast, obtain
the grayscale image Y (x, y).

2. Obtain a normalised vector of averaging weights such that the averaging of
the source set with these weights produces a grayscale image which is similar
to Y (x, y). To obtain such a vector we use the minimisation of the functional

F (λ) =
∫∫
Σ

D(x, y)dxdy, (5)

where

D(x, y) =

∣∣∣∣∣
N∑

i=1

λi

|λ|∇Ii(x, y) − ∇Y (x, y)

∣∣∣∣∣
2

. (6)

The minimisation is implemented using gradient descent, and the initial
approximation is taken as λ = (1, . . . , 1).

3. Project the source dataset onto the subspace which is orthogonal to the
obtained vector of weights. As result, we have a set of (N − 1) images. For
that purpose, (N − 1) vectors which form the orthonormal basis of < λ >⊥

are constructed. The corresponding (N−1) images are obtained by projecting
the source dataset on these vectors.

4. Project the obtained set onto the first and second eigenvectors of the PCA
decomposition and construct a colour image defined by three planes in Lαβ
colour space. The plane L is the image Y (x, y) and planes α and β are two
other obtained images. The Lαβ colour space is related to the RGB colour
space by [7]

L =
R + G + B

3
, α =

R − G√
2

, β =
R + G − 2B√

6
. (7)

The result of this method is presented in Fig. 5 where it is apparent that all nine
squares of the test dataset are clearly visible in the resulting image. Moreover,
these squares are of different colours. This corresponds to the fact that all these
squares are in different planes of the source dataset.

In theory, the planes α and β may be constructed using some method preserv-
ing local contrast, but this is not rational with respect to the properties of human
colour vision. The chrominance of object surfaces depends more on the proper-
ties of the object than on lighting [8], but the observable luminance depends
only on the conditions of lighting and observation. As the result of adaptation
to these physical laws, the vision subsystem performs relatively poorly in the
estimation of absolute values of luminance but demonstrates robust differenti-
ating of chrominance components. Therefore, the presented scheme provides a
“similar” view of the areas with the same spectral composition as the human
visual system.
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Fig. 5. Proposed visualisation of the dataset as in Fig. 1

7 Conclusions

In this paper, we considered an improved variant of a multispectral visualisation
algorithm preserving local contrast. We furthermore proposed a visualisation
algorithm which produces a colour image as output. The resulting algorithm
allows the user to take advantage of their tri-chromatic vision system in a more
adequate way.
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Color Gamut Extension by Projector-Camera
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Abstract. The color gamut of printing devices is generally smaller than

that of imaging devices. Therefore, vivid color images cannot be repro-

duced on printed materials. This paper proposes a color gamut extension

system for printed images by using a projector-camera system. The pro-

posed system can capture a printed image using a video camera and

extend the color gamut of the printed image by super-imposing a com-

pensation image obtained from a projector device on the printed image.

The compensation image is produced in the hue, saturation, and value

(HSV) color space for iteratively adjusting the saturation and brightness

values toward the boundary of the color gamut in the projector-camera

system at each pixel. The feasibility of the proposed system is verified

by experiments performed using real printed images.

1 Introduction

The range of colors produced in a given device is defined by the chromaticity
and maximum luminance of the primaries; a display or a projector is typically
associated with three colors [red, green, and blue (RGB)], and a printer with
four colors (cyan, magenta, yellow, and black). This range of colors produced
by a device is known as the “device color gamut.” In recent years, new display
technologies such as plasma display panels (PDPs) and liquid crystal displays
(LCDs) have emerged; these technologies are capable of producing vivid colors
that exceed the color gamut of standard technologies. On the other hand, most
currently available printer devices including multi-primary color printing device
have a smaller color gamut than light-emitting devices. Although several gamut
extension algorithms, which map colors from a smaller source gamut to a larger
destination gamut, have been developed [1],[2],[3],[4], it is impossible to represent
colors that exceed the destination color gamut.

Recently, adaptive projection systems or the so-called “projector-camera sys-
tems” have been developed and applied used in various applications [5],[6],[7],[8],
[9],[10],[11]. Tsukada et al. proposed a projector color reproduction method that
enabled the true reproduction of colors when images were projected onto a col-
ored wall rather than a white screen [5]. Grossberg proposed a method for con-
trolling an object such that it resembles another object [6]. From the viewpoint of
geometrical compensation, Bimber proposed a general correcting method for ge-
ometrical distortion when a non planar screen is used [7]. Renani et al. evaluated
the performance of the screen compensation algorithms [8]. Fujii [9] constructed
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a coaxial projector camera system whose geometrical distortion is independent
of the screen shape. For realizing geometric compensation from the viewpoint of
the user, Johnson proposed a real-time modification method for the projection
image that involved feature tracking of the image [10]. These methods aim to
cancel the projection distortion and color non uniformity for the projection of im-
ages on a textured, non planar screen. However, not only compensation method
but also opposite techniques that enhance the non uniformity can aid human
visual perception. Amano proposed an interesting technique that enhanced the
appearance of color images [11]. However, this technique could not treat the
color space with sufficient precision.

This paper proposes a gamut extension system for a printed image by dynamic
feedback using a projector-camera system. The proposed system can extend the
color gamut of a captured printed image by super-imposing a compensation
color image, which is produced in hue, saturation, and value (HSV) color space,
obtained from the projector device on the printed image.

2 Projector-Camera System

Figure 1 shows a system setup of the proposed gamut extension system. A com-
pensation image is displayed on a target printed image using a Panasonic TH-
AE300 projector (RGB 8bit, 1024 × 768 resolution) and the target image is
captured using a Panasonic NV-GS200 camera (RGB 8bit, 720 × 480 resolu-
tion). The calibration and compensation algorithms are run on a Windows OS
computer with 2GHz Intel Celeron CPU. A target printed image is irradiated
by the standard D65.

In the projector-camera system, we need to know the geometric mapping
between points in the projector and the image planes. We note that a projector-
camera system can be designed such that the geometric mapping between the
displayed and acquired images is fixed and is unaffected by the location or the
shape of the scene. This is achieved by making the optics of the projection
and the imaging systems coaxial. Although our system is not a coaxial one,
the camera is placed on the projector as shown in Fig. 1. Hence, the geometric
mapping between the camera and projector must be modeled with a mapping.
We also need to know the color mapping between the projector and the camera.
In this section, we explain calibration algorithms.

2.1 Geometric Calibration

To determine the geometric mapping, we use a calibration algorithm proposed
by Zhang in Ref.[12]. Zhang’s calibration method requires a planar checkerboard
grid to be placed at different orientations in front of the camera. In our system,
four planar checkerboard patterns (Black, Red, Green, Blue colors) are pro-
jected on a screen. Figure 2 shows projected patterns used in our calibration.
Four colors will be also used in the color calibration in Sec.2.2. The algorithm
extracts corner points of the checkerboard pattern for computing a projective
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Fig. 1. A projector-camera system for the gamut extension

Fig. 2. Projected four calibration patterns (Black, Blue, Red, Green)

transformation (Fig. 3(a)). Afterwards, the camera interior and exterior param-
eters are recovered using a closed-form solution, while the third- and fifth-order
radial distortion terms are recovered within a linear least-squares solution. A
final nonlinear minimization of the reprojection error, solved using a Levenberg-
Marquardt method, refines all the recovered parameters. After recovering the
camera parameters, the camera lens distortions are corrected as shown in Fig.
3(b). Finally, geometric transformation is performed by the transparent trans-
formation (Fig. 3(c)).

2.2 Color Calibration

Color calibration is usually performed by using an absolute standard such as
a color chart. However, the absolute compensation of color is not necessary in
the projector-camera feedback system. The color only has to match it between
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(a) Extracted corner points (b) Corrected camera distortion (c) Corrected geometry

Fig. 3. Process of the geometric calibration

projector and camera devices. In the case that an accurate color reproduction is
required, we have to consider a lot of nonlinear characteristics of devices. How-
ever, such a calibration method by considering a lot of nonlinearities takes much
computational costs. Since our system is assumed to be used in various envi-
ronments, it is preferable to complete the calibration quickly. In this study, the
calculation cost has priority more than strict accuracy. Therefore, color mapping
is modeled with a linear mapping between the projector output RGB values and
the camera input RGB values. Let us assume that the projector and the camera
each have three color channels with 8 bit intensities P and C as follows:

P =

⎡
⎣Rp

Gp

Bp

⎤
⎦ , C =

⎡
⎣Rc

Gc

Bc

⎤
⎦ . (1)

Let γp and γc be the gamma function of the projector and the camera devices.
Then the linear RGB values of both devices can be expressed as

P̂ =
(
R̂p, Ĝp, B̂p

)T

= ((Rp/255)γp , (Gp/255)γp , (Bp/255)γp, )T ∈ [0, 1]3, (2)

Ĉ =
(
R̂c, Ĝc, B̂c

)T

= ((Rc/255)γc, (Gc/255)γc , (Bc/255)γc, )T ∈ [0, 1]3. (3)

Then we assume that the relationship between both RGB values is characterized
by a 3x4 color mixing matrix A as

Ĉ = A

[
1
P̂

]
, Â =

⎡
⎣ rK rR rG rB

gK gR gG gB

bK bR bG bB

⎤
⎦ . (4)

The matrix A becomes homogeneous form for representing the natural illu-
minant. In order to estimate the elements of the matrix A, we use captured
four checkerboard colors P̂ K = (0, 0, 0)T , P̂ R = (1, 0, 0)T , P̂ G = (0, 1, 0)T ,
P̂ B = (0, 0, 1)T in Fig. 2. Here, we can calculate the elements {rK , gK , bK} in
the matrix A which represents an ambient light by projecting P̂ K = (0, 0, 0)T

and capturing the checkerboard color ĈK from Eq.(4). Through the same pro-
cedure, we can obtain all elements in the matrix A by projecting P̂ R, P̂ G and
P̂ B.



Color Gamut Extension by Projector-Camera System 185

3 Gamut Extension Algorithm

In this section, we propose a color gamut extension algorithm using the projector-
camera system. Let P ∗(t) and P̂

∗(t)
be an 8bit RGB vector projected to a printed

material at time t and its linear RGB vector, respectively. As the initial projec-
tion, we set a gray image in the linear RGB space as P̂

∗(0)
= (0.5, 0.5, 0.5).

When the RGB intensities P ∗(t) are projected on the printed material, the color
camera captures the reflected intensities as RGB vector C(t+1) at each pixel.
The RGB vector is transformed into the linear RGB vector Ĉ

(t+1)
in the cam-

era color space by Eq.(3). The RGB vector Ĉ
(t+1)

is further mapped into the
projector-color space as follows:[

1

P̂
(t+1)

]
= A+Ĉ

(t+1)
, (5)

where A+ represents the Moore-Penrose pseudoinverse of A. In the projector
color space, we perform the gamut extension for obtaining more vivid color. The
color vector P̂

(t+1)
in the projector RGB space is transformed into HSV color

space as follows: ⎡
⎣H

S
V

⎤
⎦ = F

(
P̂

(t+1)
)

, (6)

where F means Smith’s nonlinear conversion function from RGB to HSV [13].
The HSV stands for hue (H), saturation (S), and brightness value (V ). Though
there are many hue-based spaces, the authors adopt the HSV color space which
is the most common cylindrical-coordinate representation of points in an RGB
color model. The model is based more upon how colors are organized and con-
ceptualized in human vision in terms of other color-making attributes, such as
hue, lightness, and chroma; as well as upon traditional color mixing methods. In
the HSV color space, we extend the saturation and brightness with preserving
the hue angle, and obtain the extended vectors (H ′, S′, V ′) as follows:

H ′ = H, S′ = αS, V ′ = βV, (7)

where α and β mean extending factors for saturation and brightness, respectively.
Then the extended colors are returned back to RGB projector space as

P̂
′(t+1)

= F−1

⎛
⎝
⎡
⎣H ′

S′

V ′

⎤
⎦
⎞
⎠ , (8)

where F−1 means the conversion function from HSV to RGB. Then a feedback
gain matrix G is designed as

G = diagP̂
′(t+1)

diag P̂
(t+1)−1

(9)
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The gain factors are designed as the ratio between before and after gamut ex-
tensions and represented by the diagonal elements of the matrix G. Then the
linear RGB vector P̂

∗(t+1)
for the projection at time t+1 is calculated as

P̂
∗(t+1)

= GP̂
∗(t)

. (10)

As the result, the RGB vector P ∗(t+1) with 8 bit intensities for the projection
at time t + 1 is calculated as

P ∗(t+1) = 255

⎡
⎢⎢⎣

R̂
∗ 1/γp
p

(t+1)

Ĝ
∗ 1/γp
p

(t+1)

B̂
∗ 1/γp
p

(t+1)

⎤
⎥⎥⎦ . (11)

If any elements of P ∗(t+1) exceeds 8 bit range, the extended color is out of
gamut and we keep the previous output of the projector as P ∗(t+1) = P ∗(t).
The dataflow of the proposed algorithm is summarized in Fig. 4. The right side
of the dotted line shows processing in the camera color space, and the left side
shows processing in the projector color space.

4 Experiments

The feasibility of the proposed system was evaluated by experiments which were
performed in a seminar room under the Iluuminant D65. The distance between
the projector-camera device and a screen was 700 mm and the size of the pro-
jected checkerboard patterns for the calibration was A4 size. The proposed algo-
rithm was implemented on the computer by C++ language. Test samples were

Fig. 4. The dataflow pipeline for the proposed algorithm
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prepared by decreasing saturation and brightness of original pictures, and those
samples were printed out on plain white papers using an inkjet printer (EPSON
PM-A820).

At first, system calibration was performed by projecting four checkerboard
patterns as shown in Fig.2. We investigated the error of the camera and geo-
metric calibration by super-imposing the printed checkerboard pattern and a
projected pattern. As the result, the error of the geometric calibration was less

(a) Before gamut extension (b) After gamut extension (c) Compensation image

Fig. 5. Result of color gamut extension for “Balloon”

(a) Before gamut extension (b) After gamut extension

Fig. 6. Result of color gamut extension for “Beach”
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than 2 pixels. It took about 20 seconds for the calibration. After performing the
calibration, we set a printed test sample on the screen. The proposed gamut
extension algorithm has two parameters α and β as extending factors defined
in Eq.(7). In our experiment, we determined those parameters as α = 1.35 and
β = 1.1 empirically.

Figure 5 shows a result of the gamut extension for an image “Balloon”. All im-
ages were captured by a digital camera. Figure 5(a) shows the results of project-

ing flat-gray uncompensated initial image P̂
∗(0)

on the original printed image,
and Fig. 5(b) shows the gamut extended image by projecting a compensation
image. By comparing Fig. 5(b) with Fig. 5(a), we can confirm that a vivid color
image which exceeds the printer color gamut was obtained by super-imposing
the generated compensation image onto the printed image. The compensation
image is shown in Fig. 5(c). The compensation image with P ∗(t) at each pixel
was automatically generated by the proposed algorithm iteratively in Fig. 4.
In this sample, Fig. 5(b) was obtained through 5 iterative processing. In this
test sample, the mean saturation S increased from 0.30 to 0.65 and the mean
brightness V increased from 0.40 to 0.55.

Figure 6 shows another test sample “Beach”, which is a postcard. We con-
firmed that each color was appropriately extended beyond the printer gamut.

5 Conclusions

This paper has proposed a color gamut extension system for printed images
by using a projector-camera system. The proposed system captured a printed
image using a video camera and extended the color gamut of the printed image
by super-imposing a compensation image obtained from a projector device on
the printed image. The compensation image was produced in the HSV color
space for iteratively adjusting the saturation and brightness values toward the
boundary of the color gamut in the projector-camera system at each pixel. The
feasibility of the proposed system was verified by experiments performed using
real printed images.

The proposed algorithm works independently for each pixel. Therefore, the
color contrast decreases when the pixel of similar hue is adjoined. Spatial gamut
mapping might be required for obtaining more appropriate results and their
solution remains as a future work.
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Abstract. This paper presents a new automatic method to significantly

attenuate the color degradation due to shading in color images of the hu-

man skin. Shading is caused by illumination variation across the scene

due to changes in local surface orientation, lighting conditions, and other

factors. Our approach is to estimate the illumination variation by mod-

eling it with a quadric function, and then relight the skin pixels with

a simple operation. Therefore, the subsequent color skin image process-

ing and analysis is simplified in several applications. We illustrate our

approach in two typical color imaging problems involving human skin,

namely: (a) pigmented skin lesion segmentation, and (b) face detection.

Our preliminary experimental results show that our shading attenua-

tion approach helps reducing the complexity of the color image analysis

problem in these applications.

1 Introduction

Interpret the shading of objects is a important task in computer vision. This
is specially true when dealing with human skin images, because the color of
structures can be significantly distorted by shading effects. The occurrence of
shading depends mainly on the color of the object and the light illuminating
them. However, roughness of the surface, the angles between the surface and both
the light sources and the camera, and the distance of the surface from both the
light sources and the camera, can also significantly influence the way the scene
is processed [1]. Specifically, human skin images are impacted by these factors
and the analysis of these images can become difficult if the uneven illumination
is not correctly understood and corrected.

In teledermatology, for example, often a standard camera color image contain-
ing a skin lesion is transmitted to a specialist, or analyzed by a pre-diagnosis
system, without special attention to the illumination conditions [2][3]. However,
these conditions can affect the quality of the visualization, and impact on the
physician diagnosis, or limit the efficiency of the pre-screening system. Pigmented
skin lesions typically have low diagnosis accuracy if the illumination condition is
insufficient. These lesions usually are darker than healthy skin, and automatic
approaches to segment such lesions tend to confuse shading areas with lesion
areas. As a consequence, the early detection of malignant cases is more difficult
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without removing shading effects from the images. Considering that melanoma
is the most dangerous type of pigmented skin lesion, and that this disease re-
sults in about 10000 deaths in 40000 to 50000 diagnosed cases per year (only
considering the United States of America [4]), any contribution to improve the
quality of these images can be an important step to increase the efficiency of
pre-diagnosis systems, and to help to detect cases in their early-stages.

Another important human skin color imaging application that is severely af-
fected by shading effects is face detection. In this case, color images containing
human skin are used in head pose estimation or in face recognition systems,
and shading effects may occlude some important features of the face (e.g., eyes,
nose, head geometry). Usually, it is not feasible to control the illumination con-
dition during image acquisition, and an automatic preprocessing step to mitigate
these effects is an important contribution to these systems efficiency, as will be
illustrated later.

In this paper, we propose an new automatic approach to attenuate the shad-
ing effects in human skin images. In Section 2, we describe the algorithm that
executes this operation. In Section 3, some preliminary experimental results of
our method are shown, focusing on the benefits of this operation for the color
image analysis of pigmented skin lesions and face images. Finally, in Section 4
we present our conclusions.

2 Our Proposed Shading Attenuation Method

Our method for shading effect attenuation improves on the approach proposed
by Soille [5]. He proposed to correct the uneven illumination in monochromatic
images with a simple operation:

R(x, y) = I(x, y) / M(x, y), (1)

where, R is the resultant image, I is the original image, M = I • s is the
morphological closing of I by the structuring element s, and (x, y) represents a
pixel in these images. The main idea behind Soille method is to use the closing
operator to estimate the local illumination, and then correct the illumination
variation by normalizing the original image I by the local illumination estimate
M . The division in Eq. 1 relights unevenly illuminated areas, without affecting
the original image characteristics. Unfortunately, it is often difficult to determine
an efficient structuring element for a given image, specially for human skin images
that have so many distinct features, such as hair, freckles, face structures, etc.
In this way, the results tends to be unsatisfactory for this type of images, as can
be seen in Figs. 1(b)-(c).

Our method modifies the Soille approach by providing a better local illumina-
tion estimate M . In order to provide this local illumination estimate, we start by
converting the input image from the original RGB color space to the HSV color
space, and retain the Value channel V . This channel presents a higher visibility
of the shading effects, as proposed originally by Soille.
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Fig. 1. Shading attenuation in a pigmented skin lesion image : (a) Input image; (b)

Morphological closing of Value channel by a disk (radius = 30 pixels); (c) Unsatisfactory

shading attenuation after replacing the Value channel by R(x, y), as suggested by Soille

[5]; (d) Local illumination based on the obtained quadric function; (e) 3D plot of the

obtained quadric function; (f) Shading attenuation by using our approach.

We propose an approach inspired on the computation of shape from shading
[1]. The human body is assumed to be constituted by curved surfaces (e.g. arms,
back, faces, etc.) and, in the same way humans see, digital images present a
smoothly darkening surface as one that is turning away from the view direction.
However, instead of using this illumination variation to model the surface shape,
we use this information to relight the image itself.

Let S be a set of known skin pixels (more details in Section 3). We use this
pixel set to adjust the following quadric function z(x, y):

z(x, y) = P1x
2 + P2y

2 + P3xy + P4x + P5y + P6, (2)

where the six quadric function parameters Pi (i = 1, ..., 6) are chosen to minimize
the error ε:

ε =
N∑

j=1

[V (Sj,x, Sj,y) − z(Sj,x, Sj,y)]2 , (3)

where, N is the number of pixels in the set S, and Sj,x and Sj,y are the x and
y coordinates of the jth element of the set S, respectively.

Calculating the quadric function z(x, y) for each image spatial location (x, y),
we have an estimate z of the local illumination intensity in the image V . Re-
placing M(x, y) by z(x, y), and I(x, y) by V (x, y) in Eq. 1, we obtain the image
R(x, y) normalized with respect to the local illumination estimate z(x, y). The
final step is to replace the original Value channel by this new Value channel, and
convert the image from the HSV color space to the original RGB color space.
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As a consequence of this image relighting, the shading effects are significantly
attenuated in the color image. Figs. 1(d)-(e) illustrate the results obtained with
our shading attenuation method.

3 Experimental Results and Discussion

As mentioned before, our method is initialized by a set of pixels S known to be
associated with skin areas. In this section, we discuss how to select this set of
pixels S in two typical applications of human skin color image analysis, namely,
the segmentation of pigmented skin lesions and of faces in color images. Our goal
is to show that our shading attenuation approach helps in the analysis of these
images, making the processing steps simpler.

3.1 Pigmented Skin Lesion Segmentation in Color Images

In this application, the focus is in the image skin area that contains the lesion.
As consequence, during image acquisition, the lesion is captured in the central
portion of the image, and is surrounded by healthy skin. Therefore, we assume
the four image corners to contain healthy skin. This assumption is common in
dermatological imaging, and also has been made by other researchers in this
field [6] [7]. Therefore, we use 20 × 20 pixel sets around each image corner, and
determine S as the union of these 1600 pixels (i.e. the four pixel sets).

Many methods have been proposed for analyzing pigmented skin lesions in
dermoscopic images [8]. However, dermoscopes are tools used by experts, and
there are practical situations where a non-specialist wishes to have a qualified
opinion about a suspect pigmented skin lesion, but only standard camera imaging
is available on site (i.e., telemedicine applications). In the following discussion
we focus in this situation that justifies the use of telemedicine and standard
camera imaging. To illustrate the effectiveness of our method, we compare the
segmentation results in pigmented skin lesions with and without the application
of our method. Usually, pigmented skin lesions correspond to local darker skin
discolorations. The segmentation method used is a well known thresholding pro-
cedure based on Otsu’s method [9]. This algorithm assumes two pixel classes,
usually background and foreground pixels (specifically in our case, healthy and
unhealthy skin pixels), and searches exhaustively for the threshold th that max-
imizes the inter-class variance σ2

b (th):

σ2
b (th) = ω1(th)ω2(th) [μ1(th) − μ2(th)]2 , (4)

where, ωi are the a priori probabilities of the two classes separated by the thresh-
old th, and μi are the class means. To segment the input color images, we de-
termine a threshold th for each one of the RGB channels, and establish a pixel
as lesion if at least two of its RGB values are lower than the computed thresh-
olds. At the end, we eliminate possible small segmented regions filtering the
thresholding result with a 15 × 15 median filter.
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In Fig. 2, we present some pigmented skin image segmentation examples.
These pigmented skin lesions images are publicly available in the Dermnet
dataset [10]. Although our segmentation method is very simple, the applica-
tion of the shading attenuation method increases its efficacy. In this way, the
feature extraction and the classification procedure (typically the next steps in
pre-diagnosis systems) have higher probability to produce accurate results.

Fig. 2. Examples of pigmented skin lesion segmentation. In the first and second

columns, the original images and their respective segmentation results. The third and

fourth columns show the resulting images after the application of our shading attenu-

ation method, and the respective segmentation results.

Our method may fail in some situations, as illustrated in Fig. 3. The situations
illustrated in Fig. 3 are: (a) our method is adequate to model and attenuate the
global illumination variation (which changes slowly), but tends to have limited
effect on local cast shadows; and (b) our approach tends to fail on surface shapes
that are not locally smooth, since the quadric function is not able to capture the
local illumination variation in this case. In such cases, the segmentation method
may confuse healthy and unhealthy skin areas. Possibly, better results could be
achieved in such cases by acquiring the images in a way that surface shapes are
smoother and illumination varies slowly across the scene.

3.2 Face Segmentation in Color Images

A face can be found in virtually any image location. In this case, the selection
of the initialization pixel set S it is not as trivial as in the pigmented skin lesion
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Fig. 3. Illustrations of cases where our shading attenuation method tends to fail, such

as cast shadows (first line) and surface shapes not well modeled by quadric functions

(second line). The first and second columns show the original images and their respec-

tive segmentation results. The third and fourth columns show the resulting images after

the application of our shading attenuation method, and the respective segmentation

results.

(a) (b) (c)

Fig. 4. Illustration of skin pixels localization using Eq. 5 : (a) Input image; (b) Binary

mask; and (c) adjacent pixels identified as human skin.

segmentation problem. Therefore, we obtain the initialization pixel set S based
on previously known color information [11]. A pixel is considered to be associated
to a skin region in an RGB face image if :

R > 95 ∧ G > 40 ∧ B > 20 ∧ (5)
max(R, G, B) − min(R, G, B) > 15 ∧
|R − G| > 15 ∧ R > G ∧ R > B,

where, ∧ denotes the logical operator and.
In Fig. 4, we present an example of the initialization skin pixels set S obtained

with Eq. 5. Although this criterion to determine pixels associated to skin color
is used often [11], it can be very imprecise in practical situations, specially when
there is image shading. However, its use here is justifiable since all we need is
a set of adjacent image pixels with skin color (i.e. likely to be located in skin
regions) to initialize our error minimization operation (see Eqs. 2 and 3), and
erroneous pixels should not influence significantly the final result.

Once S has been determined, the shading effects in the face image can be
attenuated. To demonstrate the efficacy of our method in this application, we
show the face segmentations with, and without, shading attenuation using a
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known Bayes Classifier for the pixels based on their corrected colors [11]. A pixel
is considered skin if:

P (c|skin)
P (c|¬skin)

> θ, (6)

where θ = κ × 1 − P (skin)
P (skin)

. (7)

In Eq. 6, the a priori probability P (skin) is set to 0.5, since we use the same
number of samples for each class (i.e. 12800 skin pixels and 12800 non-skin
pixels). The constant κ also is set to 0.5, increasing the chance of a pixel be
classified as skin, and P (c|skin) and P (c|¬skin) are modeled by Gaussian joint
probability density functions, defined as:

P =
1

2π|∑ |1/2
× e−

1
2 (c−μ)T ∑−1(c−μ), (8)

where, c is the color vector of the tested pixel, and μ and
∑

are the distribution
parameters (i.e., the mean vector and covariance matrix, respectively) estimated
based on the training set of each class (skin and non-skin).

The constant κ also is set to 0.5, increasing the chance of a pixel be classified
as skin, and P (c|skin) and P (c|¬skin) are modeled by Gaussian joint probability
density functions, defined as:

P =
1

2π|∑ |1/2
× e−

1
2 (c−μ)T ∑−1(c−μ), (9)

where, c is the color vector of the tested pixel, and μ and
∑

are the distribution
parameters (i.e., the mean vector and covariance matrix, respectively) estimated
based on the training set of each class (skin and non-skin).

Figs. 5 and 6 illustrate some face segmentation examples. These face images
are publicly available in the Pointing’04 dataset [12]. The images in Fig. 5 show
four different persons, with different physical characteristics and different poses
(i.e. angles between their view direction and the light source), resulting in differ-
ent shading effects. Clearly, the skin pixels, and consequently the face, is better
segmented after we apply our shading attenuation method in all these different
situations. In Fig. 6, we present four examples of the same person, just vary-
ing her head pose (the angle between her view direction and the light source). It
shall be observed that even when the face is evenly illuminated, the face is better
segmented after using our shading attenuation method. However, inaccuracies
may occur near facial features partially occluded by cast shadows (e.g. near the
nose and the chin). Based on these results, it should be expected that algo-
rithms that extract facial features (e.g., eyes, mouth and nose) would perform
their tasks more effectively, which helps in typical color image analysis problems
such as head pose estimation or face recognition.
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Fig. 5. Face segmentation examples. In the first and second columns are shown the

original images, and their respective segmentation results. In the third and fourth

columns, are shown images after the application of our shading attenuation method,

and their respective segmentation results.

Fig. 6. Face segmentation examples for the same person varying its head pose. In the

first and second columns are shown the original images, and their respective segmen-

tation results. In the third and fourth columns, are shown images after the application

of our shading attenuation method, and their respective segmentation results.
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4 Conclusions

This paper presented a method for attenuating the shading effects in human
skin images. Our preliminary experimental results indicate that the proposed
method is applicable in at least two typical color image analysis problems where
human skin imaging is of central importance. In the case of pigmented skin lesion
segmentation, our shading attenuation method helps improving the lesion detec-
tion, and, hopefully, contributes for the early identification of skin cancer cases.
We also studied the application of our shading attenuation method as a tool to
increase the robustness of face segmentation, and our experiments suggest that
potentially it can contribute to improve the efficiency of head pose estimation
and facial recognition systems. We plan to further develop our approach using
more complex quadric functions, and do a more extensive testing of our shading
attenuation method in typical color imaging applications.
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Abstract. Brightness and color constancy is a fundamental problem faced in com-
puter vision and by our own visual system. We easily recognize objects despite
changes in illumination, but without a mechanism to cope with this, many object
and face recognition systems perform poorly. In this paper we compare approaches
in computer vision and computational neuroscience for inducing brightness and
color constancy based on their ability to improve recognition. We analyze the rel-
ative performance of the algorithms on the AR face and ALOI datasets using both
a SIFT-based recognition system and a simple pixel-based approach. Quantitative
results demonstrate that color constancy methods can significantly improve clas-
sification accuracy. We also evaluate the approaches on the Caltech-101 dataset to
determine how these algorithms affect performance under relatively normal illu-
mination conditions.

1 Introduction

Perceptual constancy is the tendency to perceive objects in an invariant manner despite
changes in illumination, orientation, distance, position, and other factors. It greatly
enhances our ability to visually discriminate items in our environment and has been
studied extensively by psychologists and neuroscientists. Many algorithms have been
developed to make the features in an image more invariant. Here, we focus on color and
brightness constancy for discrimination.

Algorithms for color constancy have been developed for multiple reasons. The ma-
jority of algorithms, such as Retinex [1], have been designed primarily to enhance
photographs taken under various illuminants. Their ability to improve object and face
recognition has been infrequently investigated, despite the fact that this is a very im-
portant trait for an image recognition system to have. A deployed facial identification
system that can only identify people under ideal lighting conditions would be of little
practical use. Some methods attempt to attain a degree of invariance by using training
on labeled images with varying color and illumination. However, this is an ideal situa-
tion and labeled training data of the same object/person under different lighting is not
always available.

In many cases, color constancy algorithms are evaluated for their qualitative perfor-
mance, i.e., how well an image is restored to normal lighting conditions. However, a
color constancy method may have poor qualitative performance, yet still preserve im-
portant differences while weakening superficial ones. Even a qualitatively poor method
may aid in image classification.

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 199–210, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In this paper we review a variety of simple color constancy and contrast normaliza-
tion techniques that could be readily used in an object recognition system. We compare
both algorithms from both computer vision and computational neuroscience, which has
not been previously examined. We then conduct experiments using a classifier applied
directly to the image pixel channels immediately after applying color constancy algo-
rithms. We also investigate how the approaches perform in a state-of-the-art descriptor-
based framework by extracting SIFT descriptors from images and using the Naive
Bayes Nearest Neighbor framework [2] for classification.

2 Methods

We have focused on color constancy algorithms that are simple, fast, and easy to im-
plement so that they can be widely adopted by the image recognition community. A
sophisticated and computationally intensive approach, like Local Space Average Color
[3], is unlikely to be adopted by the object recognition community as a pre-processing
step. We briefly review the methods we evaluate since some of them are not well known
in the computer vision community. We also propose the Retina Transform.

2.1 Cone Transform

For humans and most vertebrates, color constancy begins with the retina where photore-
ceptors transduce light into neural signals. Our visual system copes with a 10-billion
fold change in ambient light intensity daily, yet the activity of retinal ganglion cells,
the output neurons of the retina, varies only 100-fold [4]. The photoreceptors modulate
their responses using a logarithm-like function, which plays a role in luminance adapta-
tion. These transformations are used by many computational neuroscientists in models
of vision [5,6,7] to compensate for luminance and color changes across multiple orders
of magnitude in natural images.

We adopt a simple model of the photoreceptors found in computational neuroscience
[5,6,7]. First, we convert an image from RGB color space to LMS color space [8], ap-
proximating the responses of the long-, medium-, and short-, wavelength cone photore-
ceptors, which is done using the transformation⎛

⎝L
M
S

⎞
⎠ =

⎛
⎝0.41 0.57 0.03

0.06 0.95 −0.01
0.02 0.12 0.86

⎞
⎠
⎛
⎝R

G
B

⎞
⎠, (1)

where R, G, and B are the red, green and blue dimensions in RGB color space. Negative
values are set to 0 and values greater than 1 are set to 1. This is followed by the nonlinear
cone activation function applied each channel

Icone(z) =
log(ε) − log(ILMS(z) + ε)

log(ε) − log(1 + ε)
, (2)

where ε > 0 is a suitably small value and ILMS(z) is the image in the LMS colorspace
at a particular location z. We use ε = 0.0005 in our experiments. Essentially equation
2 is a logarithm normalized to be between 0 and 1. Although this method has been
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used by many computational neuroscientists, this is the first time that its discriminative
effects have been evaluated.

2.2 Retina Transform

The Cone Transform discussed in Section 2.1 only captures the functionality of the
retina’s photoreceptors. The other cells in the retina transform this representation into
a variety of opponent channels and a luminance channel, which are transmitted to the
brain via retinal ganglion cells (RGCs) [4]. We developed a simple retina model to
investigate its effect on discrimination. We are only modeling the retina’s foveal RGCs,
which encode the highest resolution information. We first apply the Cone Transform
from Section 2.1 to the image. Then, the following linear transform is applied to the
three Cone Transform channels

⎛
⎜⎜⎜⎜⎝

O1

O2

O3

O4

O5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

1√
2

0
1√

4γ2+2

1√
4γ2+2

− 2γ√
4γ2+2

− γ√
2γ2+4

− γ√
2γ2+4

2√
2γ2+4

1√
γ2+1

− γ√
γ2+1

0

− γ√
γ2+1

1√
γ2+1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ Lcone

Mcone

Scone

⎞
⎠ , (3)

where γ > 0 is the inhibition weight. The RGC opponent inhibition weight is generally
less than excitation [9], so we use γ = 0.5 throughout our experiments. O1 contains
ambient luminance information, similar to magnocellular RGCs [10]. O2 and O3 con-
tain blue/yellow opponent information similar to koniocellular RGCs [10], and O4 and
O5 contain red/green opponent information similar to parvocellular RGCs [10]. After
applying Equation 3, the RGC output is computed by applying an elementwise logistic
sigmoid, a common neural network activation function, to each of the channels.

2.3 Retinex

Perhaps the most well known color constancy algorithm is Retinex [1], which attempts
to mimic the human sensory response in psychophysics experiments. Retinex is based
on the assumption that a given pixel’s lightness depends on its own reflectance and the
lightness of neighboring pixels. We use the Frankle-McCann version of Retinex [1].
Unlike the other methods, Retinex is a local approach; it performs a series of local
operations for each pixel and its neighbors. Refer to [1] for details. We test Retinex in
both LMS and RGB color space.

2.4 Histogram Normalization

Histogram normalization, or equalization, adjusts the contrast of an image using the im-
age’s histogram allowing the values to be more evenly distributed [11], i.e., it spreads
out the most frequent intensity values. While this approach works well for greyscale
images, applying it to each channel of a color image could greatly corrupt the color



202 C. Kanan, A. Flores, and G.W. Cottrell

balance in the image. We instead first convert the image to Hue, Saturation, and Value
(HSV) color space and then apply histogram normalization only to the value (bright-
ness) channel. This avoids corruption of the image’s color balance.

2.5 Homomorphic Filtering

Homomorphic Filtering [12,13] improves brightness and contrast by modifying an im-
age’s illumination based on the assumption than an image’s illumination varies slowly
and that reflectance varies rapidly. It computes the Fast Fourier Transform (FFT) of an
image’s element-wise logarithm and then does high pass filtering to preserve reflectance
while normalizing low-frequency brightness information. The image is restored using
an inverse FFT and exponentiating. Like histogram normalization, we apply homomor-
phic filtering to the Value channel in HSV color space and then convert back to RGB
color space.

2.6 Gaussian Color Model

Geusebroek et al. [14] developed the Gaussian Color Model derived using Kubelka-
Munk theory, which models the reflected spectrum of colored bodies. Abdel-Hakim
and Farag [15] advocated its use as a preprocessing step prior to running SIFT on each
channel and [16] also found it worked well. While the model’s derivation is sophisti-
cated, it is implemented using a linear transform⎛

⎝E1

E2

E3

⎞
⎠ =

⎛
⎝0.06 0.63 0.27

0.30 0.04 −0.35
0.34 −0.6 0.17

⎞
⎠
⎛
⎝R

G
B

⎞
⎠, (4)

where R, G, and B are the red, green and blue dimensions in RGB color space.

2.7 Grey World

Grey World [17] assumes that the average red, green, and blue values in an image are
grey. A typical way of enforcing the grey world assumption is to find the average red,
green, and blue values of the image v = (μR, μG, μB)T . The average of these three
values determines an overall grey value for the image g = (μR + μG + μB)/3. Each
color component is then scaled by how much it deviates from the average, the scale
factors are s = ( g

μR
, g

μG
, g

μB
)T . Qualitatively, this method only works well if there are

a sufficiently large number of different colors exhibited in a scene [3]. Despite this, it
may still be beneficial for discrimination.

2.8 Opponent Color Space

Van de Sande et al. [16] examined several algorithms to improve color descriptors. Two
of the approaches seemed to work fairly well, the Gaussian Color Model discussed in
Section 2.6, and an approach based on opponent channels similar to the algorithm we
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proposed in Section 2.1. Changing to Opponent Color Space is done using the linear
transform
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⎠ , (5)

where R, G, and B are the red, green, and blue components of the image. O1, the
red-green opponency channel, and O2, the blue-yellow opponency channel, contain
representations that are shift-invariant with respect to light intensity [16]. O3 contains
the intensity information, which lacks the invariance properties of the other channels.

3 Experiments: Simple System

Before testing each of the preprocessing techniques discussed in Section 2in a descriptor-
based object recognition system, we evaluated them using simple 1-nearest neighbor and
linear support vector machine1 (LSVM) [18] classifiers. We applied these classifiers di-
rectly to the preprocessed pixels by treating the images as high dimensional vectors. We
use the RGB and LMS images as control methods. All images are resized to make the
smallest dimension of the image 128, with the other dimension resized accordingly to
preserve the image’s aspect ratio. The pixel values of all images are normalized to be
between 0 and 1 by dividing by 255. The default standard RGB color space is converted
to linear RGB space by undoing the gamma correction if necessary.

3.1 ALOI

The Amsterdam Library of Object Images (ALOI) dataset [19] is a color dataset with
1,000 different small objects and over 48,000 images (768 × 576). Illumination direc-
tion and color is systematically varied in this dataset, with 24 illumination direction
configurations and 12 illumination color configurations. We train on one image per cat-
egory with uniform illumination conditions and test on seven images per category with
altered lighting conditions (see Fig. 1).

Our results on ALOI are given in Figure 2. Almost all preprocessing methods had the
effect of increasing classification accuracy, sometimes as much as by almost 20% in the
case of Cone Transform over LMS alone. For this dataset, Grey World decreased perfor-
mance, presumably due to the lack of sufficient color variation. A significant increase
in classification accuracy is seen when using Retinex, Cone Transform, Homomorphic
Filtering, and Histogram Normalization.

3.2 AR Face Dataset

The Aleix and Robert (AR) dataset2 [20] is a large face dataset containing over 4,000
color face images (768 × 576) under varying lighting, expression, and dress condi-
tions. We use images from 120 people. For each person, we train on a single image

1 We used the LIBLINEAR SVM implementation, available at:
http://www.csie.ntu.edu.tw/˜cjlin/liblinear/

2 Available at: http://cobweb.ecn.purdue.edu/˜aleix/aleix_face_DB.html

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://cobweb.ecn.purdue.edu/~aleix/aleix_face_DB.html


204 C. Kanan, A. Flores, and G.W. Cottrell

Fig. 1. Sample images from ALOI dataset [19]. Leftmost column is the training image (neutral
lighting), the other columns correspond to test images.
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Fig. 2. Simple system results on the ALOI dataset. Histogram normalization, Retinex, and the
Cone Transform all improve over the baseline RGB approach.

with normal lighting conditions and test on six images per individual that have irreg-
ular illumination and no occlusions (see Fig. 3 ). Our results are given in Figure 4.
For both nearest neighbor and LSVM classifiers, Retinex, Homomorphic Filtering, and
Grey World improve over the RGB baseline.

4 Experiments: Descriptor-Based System

Our results in Section 3 help us determine which of the methods we evaluated are supe-
rior, but object recognition systems generally operate on descriptors instead of the raw
pixels. To test these approaches in a state-of-the-art recognition system we adopt the
Naive Bayes Nearest Neighbor (NBNN) framework [2]. NBNN is simple and has been
shown to be better than using more complicated approaches, such as bag-of-features
with a SVM and a histogram-based kernel [2]. For example, using only SIFT descrip-
tors NBNN achieves 65.0% accuracy on the Caltech-101 dataset [21] using 15 training
instances per category compared to 56.4% in the popular Spatial Pyramid Matching
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Fig. 3. Sample images from the AR dataset [20]. The leftmost column is the training image (neu-
tral lighting) and the other columns correspond to test images.
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Fig. 4. Simple system results on AR dataset

(SPM) approach [22]. NBNN relies solely on the discriminative ability of the individual
descriptors making it an excellent choice for evaluating color normalization algorithms.

NBNN assumes that each descriptor is statistically independent (i.e., the Naive Bayes
assumption). Given a new query image Q with descriptors d1, . . . ,dn, the distance to
each descriptor’s nearest neighbor is computed for each category C. These distances
are then summed for each category and the category with the smallest total is chosen.
The algorithm can be summarized as:

The NBNN Algorithm
1. Compute descriptors d1, . . . ,dn for an image Q.

2. For each C, compute the nearest neighbor of every di in C: NNC(i).
3. Ĉ = arg minC

∑n
i=1 Dist (i, NNC (i)).

As in [2], Dist (x, y) = ‖dx − dy‖2 + α ‖�x − �y‖2, where �x is the normalized loca-
tion of descriptor dx, �y is the normalized location of descriptor dy , and α modulates
the influence of descriptor location. We use α = 0 for all of our experiments except
Caltech-101, where we use α = 1 to replicate [2].

All images are preprocessed to remove gamma correction as in Section 3. We then
apply a color constancy algorithm, followed by extracting SIFT [23] descriptors from
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each channel of the new representation and concatenating the descriptors from each
channel. For example, for the Cone Transformation, 128-dimensional SIFT descriptor
is extracted from each of the three channels resulting in a 384 dimensional descriptor.
We use same SIFT implementation, VLFeat3 [24], throughout our experiments. After
all descriptors are extracted from the training dataset, the dimensionality of the descrip-
tors is reduced to 80 using principal component analysis (PCA). This greatly speeds up
NBNN, since it stores all descriptors from all training images. The remaining compo-
nents are whitened, and the post-PCA descriptors are then made unit length.

As in Section 3, we also extract SIFT descriptors from images without applying a
color constancy algorithm as a control method, using both RGB and LMS color spaces.
We conduct experiments on ALOI [19] and AR Faces [20]. We also look at perfor-
mance on Caltech-101 [21] to determine if any of the approaches are detrimental under
relatively normal lighting conditions.

4.1 ALOI

We use the same subset of ALOI [19] that was used in Section 3.1. The results on ALOI
are provided in Fig. 5. Retinex, the Cone Transform, and Homomorphic Filtering all
improve over the RGB baseline. Note that the type of classifier interacts significantly
with the color constancy method used, suggesting that the classifier type needs to be
taken into account when evaluating these algorithms.
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Greyworld
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Fig. 5. Results on the ALOI dataset using each of the approaches discussed with NBNN and SIFT
descriptors

For direct comparison with the experiment in [16], we also test the accuracy of each
approach as a function of lighting arrangement (between one and three lights surround-
ing each object are on). For this experiment, we use the “l8c1” image in ALOI as the

3 Code available at: http://www.vlfeat.org/

http://www.vlfeat.org/
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training instance, and test on the other seven lighting arrangements. Results can be seen
in Fig. 6. Note the high performance achieved by Retinex and the Cone Transform. Our
results are comparable or better to those in [16] for the three approaches in common:
RGB, Opponent Color Space, and the Gaussian Color Model. This is likely because
we used the NBNN framework, while [16] used the SPM framework [22]. While, [16]
found that RGB was inferior to Opponent and the Gaussian Color models, we found
the opposite. This is probably because the portion of the image that is illuminated nor-
mally will be matched very well in the NBNN framework, whereas the SPM framework
will pool that region unless a sufficiently fine spatial pyramid is used; however, in [16] a
1×1, 2×2, and 1×3 pyramid was used. Fig. 6 shows why Retinex, the Cone Transform,
and Greyworld perform well, showing that they are resistant to lighting changes.

l1c1 l651 l2c1 l3c1 l8c1 l4c1 l7c1 l5c1
85

90

95

100
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ur
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y

 

 

Retina Transform
Greyworld
Retinex (LMS)
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Gaussian Color Model
Opponent Color Space
Retinex (RGB)
Cone Transform
LMS
Histogram Norm.
Homomorphic Filt.

Fig. 6. Results for ALOI as a function of lighting arrangement at increasingly oblique angles,
which introduces self-shadowing for up to half of the object

4.2 AR Face Dataset

The same subset of AR [20] used earlier in Section 3.2 is used with NBNN. The results
are shown in Fig. 7. Retinex, the Cone Transform, and the Retina Transform all improve
classification accuracy compared to the RGB baseline.

4.3 Degradation of Performance under Normal Conditions

Sometimes making a descriptor more invariant to certain transformations can decrease
its discriminative performance in situations where this invariance is unneeded. To test
this we evaluate the performance of each of the preprocessing algorithms on the Caltech-
101 dataset4 [21] using NBNN. We adopt the standard evaluation paradigm [2,22]. We
train on 15 randomly selected images per category and test on 20 images per category,

4 Available at:
http://www.vision.caltech.edu/Image_Datasets/Caltech101/

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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Fig. 7. Results on the AR dataset using each of the approaches discussed with SIFT-based de-
scriptors and NBNN

unless fewer than 20 images are available in which case all of the ones not used for
training are used. We then calculate the mean accuracy per class, i.e., the mean of the
normalized confusion matrix’s diagonal. We perform 3-fold cross validation and report
the mean. Our results are given in Fig. 8. Retinex in RGB color space performed best,
achieving 66.7± 0.4% accuracy. For comparison, using greyscale SIFT descriptors [2]
achieved 65% accuracy in the NBNN framework. The Gaussian Color Model, Oppo-
nent Color Space, and Histogram Normalization all degrade performance over the RGB
baseline.

5 Discussion

Our results demonstrate that color constancy algorithms can greatly improve discrim-
ination of color images, even under relatively normal illumination conditions such as
in Caltech-101 [21]. We found that both the Opponent and Gaussian Color represen-
tations were not effective when combined with the NBNN framework. This conflicts
with the findings of van de Sande et al. [16]. This is probably due to differences in our
approaches. They only used descriptors detected using a Harris-Laplace point detector
(a relatively small fraction) and used the SPM framework, whereas we used all descrip-
tors and the NBNN framework. Using all of the descriptors could have caused more
descriptor aliasing at regions that were not interest points.

We generally found that the only method to take the local statistics of an image
into account, Retinex [1], was one of the best approaches across datasets for both the
simple and descriptor-based systems. However, this superiority comes with additional
computational time. In our MATLAB implementation we found that Retinex with two
iterations required 20 ms more than just converting to a different color space. This is a
relatively small cost for the benefit it provides.
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Fig. 8. Results on the Caltech-101 dataset using each of the approaches discussed

SIFT features [23] exhibit similar properties to neurons in inferior temporal cortex,
one of the brain’s core object recognition centers and it uses difference-of-Gaussian fil-
ters, which are found early in the primate visual system. Likewise, for the SIFT-based
NBNN framework we found that the biologically-inspired color constancy algorithms
worked well across datasets, unlike non-biologically motivated approaches like his-
togram normalization which performed well on some, but not all datasets.

6 Conclusion

We demonstrated that color constancy algorithms developed in computer vision and
computational neuroscience can improve performance dramatically when lighting is
non-uniform and can even be helpful for datasets like Caltech-101 [21]. This is the first
time many of these methods, like the Cone Transform, have been evaluated and we
proposed the Retina Transform. Among the methods we used, Retinex [1] consistently
performed well, but it requires additional computational time. The Cone Transform also
works well for many datasets. In future work we will evaluate how well these results
generalize to other descriptors and object recognition frameworks, use statistical tests
(e.g. ANOVAs) to determine how well the models compare instead of only looking at
means, investigate when color is helpful compared to greyscale, and examine how each
of the color constancy methods remaps an image’s descriptors, perhaps using a cluster
analysis of the images to see how the methods alter their separability.
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the Temporal Dynamics of Learning Center, G.W. Cottrell, PI and IGERT Grant #DGE-
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Abstract. Illumination changes and their effects on scene appearance pose seri-
ous problems to many computer vision algorithms. In this paper, we present the 
benefits that a chromaticity-based approach can provide to illumination com-
pensation. We consider three computationally inexpensive illumination models, 
and demonstrate that customizing these models for chromatically dissimilar re-
gions reduces mean absolute difference (MAD) error by 70% to 80% over 
computing the models globally for the entire image. We demonstrate that mod-
els computed for a given color are somewhat effective for different colors with 
similar hues (increasing MAD error by a factor of 6), but are ineffective for 
colors with dissimilar hues (increasing MAD error by a factor of 15). Finally, 
we find that model choice is less important if the model is customized for 
chromatically dissimilar regions. Effects of webcamera drivers are considered. 

1   Introduction 

The wide proliferation and relatively low cost of USB webcameras make them attrac-
tive sensors for inexpensive computer vision platforms. Such platforms are useful for 
many applications including video surveillance, tracking, and recognition. Algorithms 
in these applications often rely on a degree of perceptual constancy to function prop-
erly. They observe trends in color pixel values to learn the appearance of background, 
and to identify features of interest. Illumination change is a common problem that 
such vision algorithms must face. Changes in lighting intensity, spectrum, or physical 
position alter the appearance of otherwise unchanged pixels, and can affect how a 
scene is perceived. It is desirable to compensate for illumination changes to improve 
the robustness of vision algorithms. Before illumination compensation can be per-
formed, however, it is necessary to quantify the effects of lighting changes on images. 

The purpose of this work is to determine the sensitivity of illumination change 
models to chromaticity, with the aim of improving illumination compensation tech-
niques. Prior work in the field has discussed the problems of modeling illumination 
change globally—using one set of model parameters across the entire image—and has 
described the benefits of dividing images into arbitrary tiles. By considering each tile 
individually, the effects of spatially varying illumination and surface reflectance can 
be accommodated. In this paper, we propose that the effects of illumination changes 
have a significant dependence on surface color, and that the effectiveness of illumina-
tion models can be improved by segmenting the image into chromatically dissimilar 
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regions and separately computing compensations for each region. Spatial regionaliza-
tion combined with chromatic regionalization will likely lead to additional benefits, 
but is not a requirement and we do not examine the compound effects here.  

A set of color targets is illuminated by a controllable light source, and sets of im-
ages are taken with a webcamera under varying intensity levels and spectra. Choice of 
illumination model, chromatic regionalization of model parameters, and the webcam-
era’s driver settings are examined for their effects on the effectiveness of illumination 
compensation. These controlled illumination experiments show that the choice of 
illumination model becomes less important when such chromatic regionalization is 
used. Computing illumination compensation models for each chromatic region re-
duces error by 70% to 80% on average as compared to applying a global compensa-
tion model across the entire image. Applying a model customized for one color to a 
color of different hue results in 15 times the error of that color’s custom model. These 
trends can guide the development of computationally efficient illumination compensa-
tion techniques for webcamera-based vision platforms. 

The rest of this paper is organized as follows. Section 2 discusses related work in 
the field of color and illumination change. Section 3 describes the experimental setup 
and evaluates several illumination models, driver settings and chromatic regionaliza-
tion. Section 4 summarizes conclusions and describes future experiments. 

2   Related Work 

Illumination changes are generally categorized into two types: internal changes in-
volve changes to the intensity or spectrum of the light source, while external changes 
result from the physical movement of the source with respect to the scene. Several 
studies have provided insight on the nature of scene response to internal illumination 
change. In particular, the choice of illumination model has received considerable 
attention as a tradeoff between computational complexity and accuracy.  

Finlayson et al. [1] show that under certain conditions, several color constancy 
theories can be achieved by a diagonal matrix transform if an appropriate change of 
basis is applied to the sensor response function. Mindru et al. [2] test diagonal and 
affine transformations on images of a scene that are subjected to changes in lighting 
and viewpoint. They propose that the affine model best reduces error most consis-
tently, and is worth the additional computational complexity. Gros [3] tests eight 
illumination models on images of a static scene in RGB space. A least median squares 
algorithm is used to find the optimum global parameter values for each model, and the 
error remaining between image pairs after compensation is calculated. For the case of 
intensity change, multiplication of the pixel triple by a single coefficient are found to 
be sufficient to account for most of the change, with more complicated models reduc-
ing the error marginally further. Spectral changes in the illumination source require 
models that adjust each color channel independently of the others.  

Several approaches have been taken toward illumination compensation, motivated 
by a variety of applications. Photometric stereo [4] and physical models tend to re-
quire several training images of each scene of interest under specific known lighting 
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conditions [5] or camera settings [6]. Human interaction with the system can also aid 
in color recognition to refine a model [7]. Spatially local statistics [8], [9] are compu-
tationally efficient but can fail in the presence of occlusions and interlaced textures. 
Features less sensitive to illumination such as special color spaces [10], [11] and 
edges [12], [13] can still vary, and are most often used as cues in conjunction with 
other approaches. Many illumination compensation techniques have been designed 
recently for skin tones and facial recognition [14], [15], but applications in image 
retrieval [16], object tracking [17], and video compression [9] have also motivated 
work in the field. The work presented in this paper provides a foundation for chro-
matically-oriented illumination compensation in color video processing. 

3   Experimental Setup 

This section describes the physical setup of the experiments, followed by analyses of 
the resulting data. The experiments used a fixed-focus Logitech USB webcamera on a 
stationary mount, as would be used in a surveillance application. A target was con-
structed consisting of twenty color chips (five hues with four saturations each) placed 
on a sheet of dark foamboard (Fig. 1a). The color target was oriented perpendicularly 
to the camera’s optical axis, with the camera positioned 1.5 meters away. A light 
source was constructed using nine standard, independently controllable light fixtures 
(Fig. 1b). A plastic diffuser was used to diminish shadows, and the experiment was 
conducted in a dark room without external light sources. Lights were turned on three 
at a time to provide three consistent, discrete intensity levels. In addition, three bulb 
types were used (two incandescent, one fluorescent) to produce changes in spectrum. 
Bulb information is given in Table 1. The light source was located coaxially with and 
3 meters behind the camera, and elevated 0.5 meters to reduce glare. A light meter 
was used to ensure that the light distribution across the target was uniform. 

During the first stage of data collection, the webcamera’s driver is set to automatic 
until the gain, exposure, contrast, and white balance settings stabilize. This step is 
performed on a mid-intensity scene. The driver is then switched to static operation, so 
the same settings are used for all subsequent image captures. Ten images are captured 
for each intensity level and bulb type, after allowing 10 minutes between each transi-
tion to allow the light source to reach steady state. The second stage of data collection 
repeats this process with the driver left on automatic, allowing the webcamera to 
adjust for each scene. The 10-image sequences are captured after the driver stabilizes. 

3.1   Target Color Consistency 

Sensors based on CMOS and CCD technologies are subject to many noise sources: 
temperature fluctuations, support electronics and the digital conversion process can all 
introduce noise into the final image. These effects can cause minor differences be-
tween images taken of an otherwise static scene. Thus, temporal and spatial averaging 
steps are used to minimize noise effects in our analysis of illumination changes.  
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Fig. 1. (a) Color chips arranged on target.  (b) Light board featuring a 3x3 arrangement of light 
fixtures, and detached diffuser. The Logitech camera is visible in the bottom right. 

Table 1. Information about the light bulbs used in controlled illumination experiments 

Type Power (W) Output (lum) Note
A Incandescent 60 630 Full Spectrum
B Incandescent 52 710 Soft White
C Fluorescent 13 825 Soft White  

 

 
The image sets are first tested for color consistency in the absence of illumination 

changes. Each set of 10 images is averaged together, and the average standard devia-
tion if the images in each set is found to be less than 1.6% in RGB space. One average 
image is generated for each illumination condition, and is used in subsequent experi-
ments. The color chips shown in Fig. 1a are chosen to provide manageable regions of 
reasonably consistent colors. Computations are performed on 40 x 40 pixel windows 
within each chip, chosen to exclude the text and labels visible on the chips. 

3.2   Model Effectiveness and Chromatic Locality 

Three mathematical models are tested for their effectiveness at illumination change 
compensation. We limit the set of evaluated models to those lowest in computational 
cost. These models are shown in Equations 1-3, where P is the 3x1 RGB pixel being 
transformed, D is a 3x3 diagonal matrix, and T is a 3x1 translation vector. Models are 
computed in RGB space. For each lighting transition, a least mean square algorithm is 
used to compute the optimum parameters (α, β, γ, x, y, and z) for each model. First 
the parameters of each model are tuned for global application across the image. The 
image is compensated by transforming each pixel by the model being tested. Then the 
mean absolute difference (MAD) is computed between the compensated image and 
the original. The calculation for MAD is shown in Equation 4, where N is the number 
of pixels in the regions being compared; R, G, and B represent the pixel components, 
and subscripts 1 and 2 denote the regions being compared. We accept MAD as a  
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suitable metric for evaluating model performance, as our interests lie primarily in 
compensation to assist downstream object detection and tracking algorithms. Next, 
the models are optimized for and applied to each of the 20 color chips in the target, 
and the MAD is computed between each pair of compensated and original chips. 

=P*D (αR, βG, γB) . (1)

P+T=(R+x, G+y, B+z) . (2)

D*P+T=(αR+x, βG+y, γB+z) . (3)

∑
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Table 2 shows the average MADs for the cases of no model applied, models applied 
globally, and models customized for individual color chips. Three lighting transitions 
are tested in which three, six, and nine identical lights are turned on—for example, 
transitioning from three lights to six lights (3-6) of the same type. Data is presented 
for the webcamera driver set to static operation, and for the driver set to automatic 
adjustment. Table 3 is organized in the same fashion and shows data for changes in 
light spectrum where A (full spectrum incandescent), B (soft white incandescent), and 
C (soft white fluorescent) denote light bulb types with different spectra. 

Table 2 shows that in the case of globally calculated models, model selection has a 
significant impact on goodness-of-fit. The D*P+T model consistently results in the 
lowest error, and all three global models noticeably degrade as the magnitude of the 
intensity change increases. However, computing model parameters separately for each 
color not only achieves 70% to 80% lower error than the globally applied models, but 
also achieves a more consistent error rate regardless of the model used or the magni-
tude of the intensity change. Enabling the automatic driver measurably improves 
globally applied models, and does not significantly affect the performance of color-
wise models, which still achieve 40% to 50% lower error than the globally computed 
models. This indicates that it is no more difficult to compensate for simultaneous 
changes in intensity and driver settings than it is to compensate for intensity change 
alone. Thus, from a steady-state point of view, it is reasonable to leave the automatic 
driver enabled to improve the camera’s dynamic range. 

To obtain the data in Table 3, we compare images taken under illumination from 
different light bulb types but similar intensities (e.g., 6 type A bulbs versus 6 type B 
bulbs). We see from the Uncompensated MAD row that the raw image differences 
caused by spectrum changes are lower in magnitude than those caused by the intensity 
changes. However, the automatic webcamera driver does little to mitigate the effects 
of the spectral changes. For changes in spectrum, optimizing the models based on 
chromatic region achieves 70% to 80% lower MAD error than the globally optimized 
models. Also, the global models gain little benefit from the automatic driver. 
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Table 2. Effectiveness of illumination models and color regionalization on reducing MAD 
error caused by intensity changes. Number pairs 3-6, 6-9, and 3-9 denote the magnitude of the 
intensity transition (ex: transitioning from 3 bulbs to 6 bulbs of the same type). 

3-6 6-9 3-9 3-6 6-9 3-9
Uncompensated MAD 145.2 101.7 246.9 24.4 18.4 10.4

D*P 28.8 25.6 41.9 10.1 7.3 8.1
P+T 21.2 19.9 32.2 9.3 6.5 8.1
D*P+T 12.4 18.8 22.8 7.8 5.9 7.5
D*P 4.3 4.3 4.5 4.7 3.9 4.6
P+T 4.8 4.9 5.3 4.5 4.0 4.6
D*P+T 4.2 4.3 4.6 3.7 3.5 3.7

76% 79% 84% 52% 42% 45%

Driver Static

Avg Error Reduction

Driver Automatic

Global

Chromatic 
Regions

 

Table 3. Effectiveness of illumination models and color regionalization on reducing MAD 
error caused by spectrum changes. Letter pairs A-B, B-C, and A-C denote the bulb type transi-
tion (ex: transitioning from type A bulbs to the same number of type B bulbs). 

A-B B-C A-C A-B B-C A-C
Uncompensated MAD 34.7 39.6 42.6 38.5 42.0 41.7

D*P 24.5 30.7 33.9 26.9 24.3 27.5
P+T 18.6 26.3 27.5 19.8 19.3 19.1
D*P+T 17.4 23.8 25.4 18.3 17.2 17.7
D*P 9.8 8.9 6.7 10.0 8.2 8.6
P+T 5.0 5.0 5.1 5.1 4.6 4.4
D*P+T 4.1 4.3 4.5 4.4 3.9 3.8

70% 78% 81% 71% 73% 75%

Driver Static

Avg Error Reduction

Global

Chromatic 
Regions

Driver Automatic

 

3.3   Specificity of Model Parameters to Color 

We observe that color-specific models achieve much better results than applying a 
model tuned to an entire image. Presumably, this effect is because a globally com-
puted model is a compromise between the many colors and surfaces present in a 
scene. Next we wish to verify how color-specific the parameters of the illumination 
models are. We conduct this experiment by again applying a least mean square algo-
rithm to compute the optimum parameters for each of three models for each color 
chip in the target. This time, the optimum models for each chip are applied to each of 
the other chips, and the MAD error is calculated between each compensated chip and 
its instance in the original image. This demonstrates how well the model parameters 
for each color work for each of the other colors. For compactness, we only show the 
chipwise results for the D*P model as a representative sample (Table 4), followed by 
the average results over all chips for each model (Table 5). 

Table 4 shows the chip color for which the models are computed (G, B, P, R, Y in-
dicate green, blue, purple, red, and yellow respectively, while the number indicates 
the saturation). The Self-Correct column shows the MAD error for the model applied 
to the chip for which it was optimized. The Similar Hue column shows the average 
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MAD error resulting from the model being applied to other chips of similar hue (i.e., 
the model for G1 applied to G2, G3 and G4). The Dissimilar Hue column shows the 
average MAD error resulting from the model being applied to the remaining chips. 

Table 4. Effectiveness of color-specific illumination models on reducing the MAD error of 
various surface colors. This table represents an average over all intensity and spectrum changes. 

Chip Self-Correct Similar Hue
Dissimilar 

Hue
G1 4.4 19.0 53.7
B1 4.2 12.8 53.1
P1 3.6 17.5 46.9
R1 4.2 18.3 54.3
Y1 4.0 22.7 68.9
G2 4.2 17.1 54.8
B2 3.9 10.7 44.4
P2 4.4 11.2 40.2
R2 3.5 15.7 53.8
Y2 4.5 24.9 62.2
G3 4.7 18.4 62.3
B3 3.6 13.1 47.7
P3 3.6 13.4 36.5
R3 4.1 14.3 65.2
Y3 6.4 21.1 77.9
G4 4.7 18.9 44.0
B4 3.6 10.9 41.9
P4 3.9 10.4 38.5
R4 5.3 23.8 83.0
Y4 5.2 20.0 74.2  

 

 
The data supports our initial hypothesis—that optimum illumination models de-

pend heavily on surface color, and that even with spatially uniform lighting, globally-
tuned models are insufficient to compensate all of the colors and surfaces in a scene. 
Models achieve low error rates when applied to the color for which they are tuned 
(similar to error in Table 3). The models work better for surfaces of similar hue than 
for surfaces of different hues. Table 5 shows the data for 3 illumination models, and 
for 4 separate lighting transitions: dim to medium intensity (3-6), dim to bright inten-
sity (3-9), dim spectrum changes (transitions between 3 bulbs of each type), and 
bright spectrum changes (transitions between 9 bulbs of each type). Regardless of the 
illumination change type, corrections do well when applied to the chromatic regions 
for which they are calculated. As intensity changes increase in severity, compensation 
effectiveness decreases for Similar Hue and Dissimilar Hue regions. Error increases 
by an average factor of 6 when chromatically optimized models are applied to colors 
of similar hue, and by an average factor of 15 when models are applied to colors of 
dissimilar hue. The diagonal transformation D*P proves most effective for Similar 
Hue regions during intensity changes, while the translation P+T is most effective for 
Similar Hue regions during spectrum changes. 
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Table 5. The average MAD error of chromatically-optimized illumination models applied to 
identical, similar and dissimilar colors. Data is shown for small and large intensity changes, and 
for changes in spectrum with low intensity (3 bulbs) and with high intensity (9 bulbs). 

AVG 
MAD

STD 
MAD

AVG 
MAD

STD 
MAD

AVG 
MAD

STD 
MAD

AVG 
MAD

STD 
MAD

Self Correct 4.4 0.9 4.5 1.0 8.5 6.2 6.7 3.9

Similar Hue 22.5 14.7 27.9 17.0 41.4 41.4 41.6 37.9

Dissimilar Hue 58.1 17.7 75.6 20.4 140.4 198.5 99.8 120.0

Self Correct 5.0 1.2 5.3 1.5 5.0 0.9 5.1 1.2

Similar Hue 24.3 20.5 30.4 26.1 22.1 16.1 26.7 22.3

Dissimilar Hue 37.8 12.6 48.7 13.6 39.7 10.3 45.4 11.6

Self Correct 4.3 0.9 4.6 1.1 4.3 0.7 4.5 1.0

Similar Hue 38.0 20.7 43.5 23.2 32.4 17.5 36.1 18.9

Dissimilar Hue 90.5 41.5 104.3 48.7 82.1 32.2 89.8 36.1

D*P

P+T

D*P+T

Intensity (3-6) Intensity (3-9) Spectrum (Dim) Spectrum (Bright)

 

3.4   Realistic Scene Application 

To test these observations on a more realistic scene with a wider diversity of surfaces, 
we capture new sets of images of a scene populated with various objects positioned at 
various angles (Fig. 2). A square region was selected from each of 12 objects in the 
scene (3 each of blue, red, green, and yellow). The objects differ in saturation and 
surface reflectance. Table 6 shows the results of applying each chromatic region’s 
illumination change model to similar and dissimilar chromatic regions, formatted 
similarly to Table 5. Observations drawn from previous data hold for this scene as 
well. Models applied to surfaces with Similar Hue in the scene of Fig. 2 are slightly 
less effective than for the controlled surfaces of Fig. 1b due to differences between 
chromatic regions in surface reflectance and orientation. 

 

Fig. 2. Realistic scene featuring a diversity of colors, surface reflectances, and orientations 
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Table 6. Average MAD error from applying three illumination models to the chromatic regions 
for which they were computed, chromatic regions with similar hue, and chromatic regions with 
dissimilar hue. Here, the models were applied to various surfaces in a realistic scene (Fig. 2).  

AVG 
MAD

STD 
MAD

AVG 
MAD

STD 
MAD

Self Correct 4.0 1.8 4.1 1.8

Similar Hue 17.8 8.2 23.8 9.5

Dissimilar Hue 68.4 14.1 83.7 12.1

Self Correct 6.0 2.4 7.3 3.0

Similar Hue 40.1 11.8 53.8 16.9

Dissimilar Hue 68.0 12.2 93.8 16.7

Self Correct 5.5 2.3 6.7 2.9

Similar Hue 48.9 21.9 57.9 24.7

Dissimilar Hue 101.8 25.9 121.5 30.5

P+T

D*P+T

Intensity (3-6) Intensity (3-9)

D*P

 

4   Conclusions and Future Work 

In this paper we show the significance of color to illumination changes in images 
captured by low-cost webcameras. Three illumination models are evaluated for their 
effectiveness in accounting for changes in lighting intensity and spectrum. The more 
complicated D*P+T model results in the smallest error out of the three models tested. 
However, by computing model parameters independently for each chromatically 
distinct region (without necessarily dividing the image into arbitrary spatial tiles), 
MAD error is reduced by an average of 70% to 80% compared with that achieved by 
globally calculated models. Furthermore, chromatic regionalization drastically re-
duces the variation in error due to model choice. This suggests that the least computa-
tionally expensive model (P+T) could be chosen in some applications to improve 
runtime performance in exchange for an acceptable penalty to accuracy. We have 
demonstrated that colors with different hues have significantly different illumination 
change responses, and that applying a chromatically optimized model to a color of 
dissimilar hue increases MAD error by an average factor of 15. Finally, we have  
presented evidence that a webcamera’s automatic driver does not generally increase 
the complexity of illumination corrections. The driver does not reduce illumination 
compensation effectiveness for spectrum changes, and helps stabilize images after 
intensity changes. 

This work explicitly tests the color dependency of illumination change in a way we 
have not seen in prior literature, and provides a compelling argument for using color 
regionalization in illumination modeling. Work is currently underway to exploit these 
relationships in a comprehensive compensation algorithm using automatic color  
regionalization. 
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Study on Image Color Stealing in Log-Polar Space 

Hiroaki Kotera 

Kotera Imaging Laboratory 

Abstract. This paper proposes a cluster-to-cluster image color transform algo-
rithm. Suntory Flowers announced the development of world's first blue rose 
“APPLAUSE”. Since roses lack the blue pigment, it was long believed to be 
impossible. The key to success lies in the introduction of blue gene from pansy 
into rose. In the previous paper, PCA matching model was successfully applied 
to a seasonal color change in flowers, though it’s not real but virtual. However, 
the tonal color transitions between the different color hues such as red rose and 
blue pansy were not so smooth but unnatural because of spatially independent 
color blending. In addition, the clear separation of blue or purple petal colors 
from greenish backgrounds is not always easy too. The paper improves the color 
transform algorithm in the two points, firstly, the clear color separation by in-
troducing a “complex log” color space and secondly, the smoothed tonal color 
transition by introducing a “time-variant” matrix for PCA matching. The pro-
posed algorithm is applied to ROI (Region Of Interest) image color transform, 
for example, a blue rose creation from red rose by continuous color stealing of 
pansy blue.  

1   Introduction 

Image segmentation plays an important role in many applications. Color clustering is a 
low-level task in the first stage of color image segmentation. The color of nature 
changes with passing time. Natural images are composed of clustered color objects 
with similarity to be shared each other. A concept of color transfer between two images 
was introduced by Kotera’s PCA matching model [1] and advanced by Reinhard [2] as 
“scene color transfer” model. “Color stealing” by Barnsley [3] was a new concept of 
Fractal-based color sharing and used for synthesizing a new image by picking up a 
region color in one image and moving it into another image. Mochizuki [4] applied this 
idea to CG as “stealing autumn color”. Our previous papers [5][6] extended the PCA 
matching model to a time-variant color transform and applied to imitate a seasonal 
color change in flowers. The model worked well for transferring a petal color in the 
source image into a different petal color in the target image, provided that the hue 
change between the source and target petal clusters is gentle. 

Recently, Suntory Flowers succeeded in the development of world's first blue rose 
“APPLAUSE”. Since roses lack the blue pigment, it was long believed to be impossi-
ble. The key to success lies in the introduction of blue gene from pansy into a source 
rose. Hearing this exciting news, we tested the PCA matching model to create a bluish 
rose from reddish roses by stealing a pansy blue. Of course, it’s not a real but a virtual 
flower. Though, the color transitions in hue and tone were not so smooth but unnatural 
when the source and target images have a large difference in their color tones. This 
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unnaturalness comes from the spatially-independent color blending between source and 
target clusters. In addition, it’s not always easy to separate bluish or purple petals 
clearly distinguishing from the greenish background. 

This paper improves the color stealing algorithm by introducing the new ideas of 

a) “log-polar mapping” for clear segmentation of petal area by k-means clustering.  
b) “time-variant PCA matching matrix” for smoothed color transitions from source 

to target.  
 

Fig.1 overviews the proposed color stealing model and its application to creating a 
unique bluish rose from red, pink, orange, or yellow roses. 

 

Fig. 1. Overview of segmentation-based image color stealing model 

2   Pre-processing Filtering for K-Means Clustering 

In practice, k-means clustering algorithm has been conveniently used for unsupervised 
image segmentation. Since k-means has a drawback in nonuse of spatial information, 
JSEG [7] introduced an excellent post-processing of region growing and region merg-
ing to avoid over segmentations. Instead of post-processing, this paper introduces a 
joint spatial-range bilateral filter to the k-means clustering as a pre-processing to make 
smooth the textural regions.  

2.1   Joint LAB-Range Bilateral Filter 

Before segmentation, {L*, a*, b*} images are pre-processed by a bilateral filter to 
make the “texture” area smooth without degrading the edge sharpness. The filtered 
pixel value IF (q) at central position q is given as a weighted sum of its surround pix-
els at p, where the spatial filter GS works active or inactive if the range filter GR has a 
high value for the low-gradient areas or a low value for the high-gradient edges.    
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The normal joint LAB-range bilateral filter is given by 
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Here, CIELAB values of I(p)=L*(p), a*(p), b*(p) at pixel position p are assigned. 

2.2   Joint LAB-Range vs. Joint Hue-Range Bilateral Filter 

Since the each object in the image is considered to have its own surface color-hue, the 
range-filter GR may be better replaced by the hue functions H(p) and H(q) as 
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Now the hue range is normalized to 0 ≤ H(p) ≤ 1 and an achromatic zone is set around 0 
< |a*|, |b*|< δ for small positive value δ to avoid any artifacts in gray area. In compar-
ison with normal k-means, the pre-processing bilateral filter clearly improves the 
segmentation accuracy as shown in Fig.2. Though the joint hue-range bilateral filter 
seems to be a little bit better, the joint LAB-range bilateral filter is easy to use from a 
point of simplicity and computation costs.  

 

Fig. 2. Effect in bilateral filter for image segmentation by k-means clustering 
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3   Color Mapping to Complex Log-Polar Space 

3.1   Motivation for Using Log-Polar Transform  

Schwartz’s complex-logarithmic model [8] is known as a topographic Log-Polar 
Transform (LPT) of visual field onto the cortex. Though LPT is a space-variant image 
encoding scheme used in computer vision, here it’s applied to the better separation of 
image color clusters from a point of mapping characteristics of LPT.    

Two-dimensional log mapping function maps a complex number z to another com-
plex number log (z) as ,   , | |   ,    (4)  ,   √ 1                        (5) 

It maps the Cartesian coordinates (x, y) to the log-polar space notated as (u, v).  
Since the origin itself is a singularity, the CBS (Central Blind Spot) model is in-

troduced not to have the negative radii by setting the blind spot size ρ as ,  ,                               (6) 

Considering the discrete log-polar space with R rings and S sectors for integer numbers 
of 1, 2, ,  and 1, 2, , , we get the following relations [9] as ⁄ /                              (7) ∆ 1                      (8) ∆ 2 ⁄ ,     ∆                      (9) 

Since the source data points (x, y) in a sector area ∆ , ∆   are mapped to the new 
coordinates (u, v), points on the circles around the origin with equal radii are placed at 
the parallel vertical lines. While, points on the lines outward from the origin separated 
by equal angle are mapped onto the parallel horizontal lines. 

Now assigning the (x, y) coordinates to the (a*, b*) values, the colors on the linear 
line with the same hue angle are mapped to the same horizontal line and shifted to the 
vertical directions for the different hue angles. As well, the colors on the circle with 
the same chroma (radius) are mapped to the same vertical line and shifted to the hori-
zontal directions for the different radii. 

3.2   Complex Log-Polar Transform in CIELAB Color Space 

Applying this method to CIELAB color space, Eq. (4) is replaced by , , | |  ,   (10) 

Where, angle θ denotes the color hue in uniform perceptual color space CIELAB.   
L* value is also converted to the same logarithmic scale with the offset bias μ as 

                           (11) 

Now, {L*, a*, b*} colors are mapped to new complex log-polar space {w, u, v}. 
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Fig.3 illustrates how the Munsell 1600 color chips are mapped onto log-polar space. 
It’s shown that the chips with similar color hues tend to be mapped onto the horizon-
tal lines separated vertically depending on their hue angles and the chips with similar 
radii from the center onto the vertical lines separated horizontally depending on their 
chroma values. Hence, the purplish/bluish petal colors may be better separated from 
the greenish back in the LPT space rather than normal CIELAB space. 

 

Fig. 3. Complex log-polar mapping of Munsell colors (1600 chips) 

3.3   Cluster Separability in Complex Log-Polar Space 

Fig.4 shows the segmentation results for typical roses by k-means with bilateral filter. 
In the case of segmentation into K=2 classes, most of vivid color petals are well se-
parated from the background without LPT. While some of the dull-hued purplish or 
bluish petals were hard to separate clearly in normal CIELAB space. When the image 
colors are mapped onto complex LPT space, their clusters are occasionally relocated 
to be easier for segmentation. Of course, the complex LPT is not always superior to 
normal CIELAB but may be selected as the occasion demands. We need any criterion to 
judge which space has the better separability for the given color clusters.  

As a measure of goodness in clustering, the invariant criterion function is estimated 
based on the scatter matrices [10] as follows. 

The scatter matrix for the k-th cluster in subset Dk is described as 
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Where, Nk denotes the number of pixels in class k. 
The within-cluster scatter matrix SW is given by the sum of Sk as 
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While, the between–cluster scatter matrix SB is defined by 
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The total scatter matrix ST is the sum of SW and SB as given by 
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Note that ST doesn’t depend on how the set of samples is partitioned into clusters. The 
between-cluster scatter SB goes up as the within-cluster SW goes down. Now, we can 
define an optimum partition as the criterion that minimizes SW or maximizes SB.  

The criterion function for the cluster separability is defined by  
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Fig.5 shows a comparative sample for the segmentation in normal CIELAB vs. com-
plex LPT spaces. The complex LPT outperforms the normal CIELAB space in its 
clear separation of petals with the higher JB/W scores. 

 

Fig. 4. Segmentation results for typical roses by k-means with bilateral filter 

 

Fig. 5. Advantage of complex LPT for separating dull-hued bluish or purplish petals 
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4   Segmentation-Based Color Stealing 

4.1   Cluster-to-Cluster Principal Component Matching 

The key to color transfer between two different objects in source and target images is 
based on “cluster-to-cluster” PCA color matching algorithm [11] as follows. 

First, the source color vector SX in image S and the target color vector DX in image T 
are projected onto the vectors SY and TY in the common PCA space by Hotelling 
Transform as  { } { } vectors mean Eand Ewhere,

,
:
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           (17) 

SA and TA are the eigen vectors of covariance matrices SCX and TCX for SX and TX.  
Thus the covariance matrices SCY and TCY for SY and TY are diagonalized as given 
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Where,{ }iλS and { }iλT are the eigen values of SY and TY.   

Second, the source color vector SY and the target color vector TY are mapped onto 
the same PCA axes and SY is transformed to match TY by the scaling matrix SST as 
follows.  ( ) ( )
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Connecting Eq. (17) to Eq. (19), the colors {SX} in the source cluster S is transformed 
to the set of destination colors {DX} that is approximately matched to the colors {TX} 
in the target cluster T by the matrix MC. MC matches the color hue by cluster rotation 
and the variance by scaling as   ( )( )( )ASAM
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                  (20) 

4.2   PCA Matching to Time-Variant Blended Cluster 

In the previous paper [5][6], the PCA matching model was applied to a time-variant 
sequential color transfer to imitate a seasonal color change in flowers. A time-varying 
median image is created by matching the source cluster S to that of blended median 
cluster R just as the same method as cross dissolving [12]. The median cluster R is 
given by stealing the pixels from the segmented target image by the ratio of αn and 
blending them with the source S by the ratio of (1-αn) as follows.   N,,,nN/nforn nnn L10;)1()( ==+−= ααα TSR              (21) 
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The conventional cross dissolving method causes a double exposure artifact due to the 
mixture of independent pixels between the source and target images, while the PCA 
matching algorithm gives a better time-variant color change from S to T by just subs-
tituting an every blended cluster R for the target T. Indeed, since the color transfer is 
limited to the segmented areas in S and T, .the colors in source cluster S changes 
gradually approaching to those in the target cluster T with suppression of double ex-
posure artifact. However this extension model didn’t always create smooth tonal color 
changes between the images different color hues such as reddish and bluish roses, 
though, of course, it worked well between the similar color hues. 

4.3   Color Stealing by Time-Variant PCA Matching Matrix 

An improved algorithm is proposed to make the smoother color transitions between 
any two images. Instead of time-variant color blending function in Eq. (21), the 
time-variant PCA color matching matrix MC is modified to be variable according to 
the time-variant ratio of αn as  ( ) ( ) N,,,nN/nforn nCnnC L10;1 ==+−= ααα MIM           (22) 

MC(n) changes from I to MC according to the time sequence n=0 ~ 1, where I denotes 
3 x 3 identity matrix.  

Substituting MC(n) for MC in Eq. (20), the colors {SX} in the source cluster S is 
transformed to the destination colors {DX} with time sequence n, finally matching to 
the colors {TX} in the target cluster T like as  ( )
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Fig.5 illustrates the basic concept of time-variant PCA matching matrix model.   

 

Fig. 6. Time-variant PCA matching matrix model for color stealing 
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5   Experiments on Blue Rose Creation by Stealing Pansy Blue 

In 2004, Suntory Flowers Limited announced the successful development of the 
world's first blue rose "APPLAUSE", with nearly 100% blue pigment in the petals. 
Because roses lack blue pigment, their biotechnology research since 1990, introduced 
a blue gene from pansies into roses. 

Now the proposed time-variant PC matching matrix model is applied to create a 
blue rose from a red rose by stealing the bluish colors from pansy as same as Suntory, 
though this is, of course, not a real but a virtual effect in computer color imaging. 

The results are compared with the conventional cross resolving method and our 
previous time-variant blending model. The proposed time-variant PCA matching 
matrix model clearly resulted in the smoother color transitions in the hue and grada-
tion of intermediate (median) images as shown in Fig.7. 

 
(a) Comparison in time-variant color stealing model to create blue Yuzen 

 
(b) Creation of blue Cherish by proposed color stealing model  

Fig. 7. Creation of Blue Rose by stealing Pansy Blue 
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6   Conclusions 

The paper proposed a novel approach to a segmentation-based ROI image color 
transformations. Image segmentation is the basis for Computer Vision, but there is no 
royal road to the unsupervised clustering. K-means is a most popular algorithm for 
separating the color object with unique surface-hue without any learning samples.  

Firstly, the pre-processing by joint LAB-range bilateral filtering proved to be very 
effective for separating the petal area from the complex background.       

Secondly, paying our attention to the hue-oriented image color distributions, the 
color separability in clusters is newly discussed from a point of Schwartz’s complex 
LPT mapping. Since the pixel colors on the same linear hue lines with different hue 
angles are mapped onto the same horizontal lines but separated vertically, such color 
clusters are remapped to be more separable. Although the LPT is a well-known 
space-variant image encoding scheme useful for computer vision but hasn’t any mea-
ningful relation to the geometrical design in color space, it resulted in the distinct 
cluster separability for the segmentation of dull-hued cold color roses better than the 
normal CIELAB space. The invariant criterion on the cluster separability is estimated 
by using the scatter matrices and the complex LPT outperforms normal CIELAB space 
with the higher JB/W scores. 

However, the k-means clustering in LPT space is not always superior to normal 
CIELAB but is image-dependent. In order to switch on/off the LPT according to the 
image color distribution, a quick pre-estimation tool for the cluster separability is 
necessary and is left behind as a future work. 

Lastly, the segmentation-based cluster-to-cluster PCA color matching algorithm has 
advanced by introducing a time-variant matching matrix. The proposed color stealing 
model is successfully applied to a time-variant virtual blue rose creation from usual 
reddish or warm color roses, resulting in the smoothed color transitions.   
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Abstract. SIFT is one of the most popular algorithms to extract points

of interest from images. It is a scale+rotation invariant method. As a con-

sequence, if one compares points of interest between two images subject

to a large viewpoint change, then only a few, if any, common points will

be retrieved. This may lead subsequent algorithms to failure, especially

when considering structure and motion or object recognition problems.

Reaching at least affine invariance is crucial for reliable point correspon-

dences. Successful approaches have been recently proposed by several

authors to strengthen scale+rotation invariance into affine invariance,

using viewpoint simulation (e.g. the ASIFT algorithm). However, almost

all resulting algorithms fail in presence of repeated patterns, which are

common in man-made environments, because of the so-called perceptual

aliasing. Focusing on ASIFT, we show how to overcome the perceptual

aliasing problem. To the best of our knowledge, the resulting algorithm

performs better than any existing generic point matching procedure.

1 Introduction and Related Works

One of the first steps in many computer vision applications is to find corre-
spondences between points of interest from several images. Applications are e.g.
photography stitching [1], object recognition [2], structure from motion [3], robot
localization and mapping [4], etc. Points of interest belong to “objects” viewed
from different camera positions. Thus, their definition ought to be insensitive
to the aspect of the underlying object. Besides, it is desirable to attach vectors
to these points which describe a surrounding patch of image, in order to find
correspondences more easily. Ideally, these vectors should not change across the
views. In the pinhole camera model, 3D objects are transformed via projective
mappings. However, the underlying object is generally unknown. With the ad-
ditional assumption that points of interest lie on planar structures, points and
descriptors should be invariant to homographies. Since affine mappings are first-
order approximations of homographies, this weaker invariance is often considered
sufficient.

In his groundbreaking work [2], D. Lowe explains how to extract scale+rotation
invariant keypoints, the so-called SIFT features. Some authors have tried to reach
affine invariance (see e.g. MSER [5], Harris / Hessian Affine [6] and the survey [7],
or [8] for semi-local descriptors). Although these latter methods have been proved
to enable matching with a stronger viewpoint change, all of them are prone to

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 231–242, 2010.
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fail at a certain point. A more successful approach has been recently proposed
by several authors (e.g. [9–11]), in which viewpoint simulation is used to increase
scale+rotation to affine invariance. These papers demonstrate that this dramati-
cally improves the number of matches between two views compared to MSER or
Harris/Hessian Affine, even with a strong viewpoint change.

Let us explain viewpoint simulation, and especially Morel and Yu’s ASIFT [10]
which we aim at improving. In ASIFT, affine invariance of image descriptors
is attained by remarking from Singular Value Decomposition that any affine
mapping A (with positive determinant) can be decomposed as

A = λRψ

(
t 0
0 1

)
Rφ (1)

where λ > 0, Rψ and Rφ are rotation matrices, φ ∈ [0, 180o), t � 1.
Since SIFT is scale+rotation invariant, a collection of affine invariant (ASIFT)

descriptors of an image I is obtained by extracting SIFT features from the
simulated images It,φ with

It,φ =
(

t 0
0 1

)
Rφ(I). (2)

Indeed, the location of the SIFT keypoints is (nearly) covariant with any scale
and rotation change λRψ applied to It,φ, and the associated descriptor does
(almost) not change. From [10], it is sufficient to discretize t and φ as: t ∈
{1,

√
2, 2, 2

√
2, 4} and φ = {0, b/t, . . . , kb/t} with b = 72o and k = �t/b · 180o.

The next step is to match ASIFT features between two images I and I ′. A
two-scale approach is proposed in [10]. First, the It,φ and I ′t′,φ′ are generated
from downsampled images (factor 3), then SIFT features extracted from each
pair (It,φ, I ′t′,φ′) are matched via the standard algorithm from [2], namely that
nearest neighbours are selected provided the ratio of the Euclidean distance be-
tween the nearest and the second nearest is below some threshold (0.6 in ASIFT).
The deformations corresponding to the M pairs (M typically set to 5) that yield
the largest number of matches are used on the full-resolution I and I ′, giving
new SIFT features that are matched by the same above-mentioned criterion. The
obtained correspondences are then projected back to I and I ′, provided already-
placed correspondences are at a distance larger than

√
3. This strategy is used

to limit the computational burden and also prevents redundancy between SIFT
features from different deformations. A subsequent step consists in eliminating
spurious correspondences with RANSAC by imposing epipolar constraints.

Lepetit and Fua [9] use the same decomposition as in eq. (1). Since their points
of interest are invariant neither to scale nor to rotation, they have to discretize
or randomly sample the whole set of parameters λ, t, ψ, φ.

Let us also mention Molton et al. work [11]. Small planar image patches are
rectified through homographies in a monocular SLAM application. In this frame-
work, an on-the-fly estimation of the camera motion and of the 3D normal of the
patch is available. Thus there is no need to generate every possible rectification,
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making it effective in a real-time application. This provides a richer description
of the 3D scene than with standard point features.

Aim and organization of the article. As noted in [10], ASIFT fails when con-
fronted to repeated patterns. In this work we propose to secure ASIFT against
it. Section 2 explains why repeated patterns are important and call for a special
treatment in every image matching applications. Section 3 describes the pro-
posed algorithm. We also improve the selection of the relevant simulated images
and the back-projection step, while enabling non nearest neighbour matches.
Experiments are presented in Section 4. The proposed algorithm has also an
increased robustness to large viewpoint changes.

2 Perceptual Aliasing and Point Matching

Perceptual aliasing is a term coined by Whitehead and Ballard in 1991 [12].
It designates a situation where “a state in the world, depending upon the con-
figuration of the sensory-motor subsystem, may map to several internal states;
[and] conversely, a single internal state may represent multiple world states”. In
computer vision applications and especially point of interest matching, invariant
features make it possible to overcome the first part of the perceptual aliasing. A
viewpoint invariant feature such as ASIFT is indeed supposed to give a unique
representation of the underlying 3D point, whatever the camera pose. However,
repeated patterns are also uniquely represented although they do not corre-
spond to the same 3D point. This makes almost all point matching algorithms
fail when confronted to repeated patterns, except when explicitly taking them
into account in an ad hoc application (e.g. [13]). Some authors even get rid of
them at an early stage (e.g. in [14], patterns occurring more than five times
are a priori discarded). The problem is of primary importance since repeated
patterns are common in man-made environments. Just think of two views of a
building: correctly matching the windows is simply impossible when considering
only invariant descriptors. Additional geometric information is needed.

The problem is all the more relevant as in most applications, matching (or
sometimes tracking) points of interest usually consists in two independent steps:
1) point of interest matching by keeping the “best” correspondence with respect
to the distance between the associated descriptors, then 2) correspondence prun-
ing by keeping those that are consistent with a viewpoint change. A popular
choice for step 1) is nearest neighbour matching, which yet gives false correspon-
dences, partly because of perceptual aliasing. The nearest neighbour has indeed
no reason to be a correct match in case of repeated patterns. Step 2) is often
a RANSAC scheme, which keeps only the correspondences consistent with the
epipolar geometry (fundamental or essential matrix) or with a global homogra-
phy (for planarly distributed points or for a camera rotating around its optical
center). Since ASIFT uses this two-step scheme to match simulated images, it is
not able to retrieve from perceptual aliasing. If the images mostly show repeated
patterns, ASIFT even simply fails as in Section 4, Figures 5 and 6.
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We have recently proposed [15] a new one-step method to replace both above-
mentioned steps 1) and 2). It is a general algorithm to match SIFT features
between two views, and it is proved to be robust to repeated patterns. The
present contribution is to incorporate it into the ASIFT algorithm. Let us briefly
describe the method (which is a generalization of [16]). Considering N1 points of
interest xi with the associated SIFT descriptor Di from image I, and N2 points
of interest x′

j with descriptor D′
j from image I ′, one aims at building a set of

correspondences (xi, x
′
j)(i,j)∈S where S is a subset of [1 . . .N1]× [1 . . .N2], which

is the “most consistent set with respect to a homography” among all possible sets
of correspondences. Let us note that the model in [15] also copes with general
epipolar geometry; we will see in Section 3 why we focus on homographies. The
consistency of S is measured in [15] as a Number of False Alarms (NFA) derived
from an a contrario model (see the books [17, 18] and references therein):

NFA(S, H) = (min{N1, N2} − 4) k!
(

N1

k

)(
N2

k

)(
k

4

)
fD(δD)kfG(δG)k−4 (3)

where:
– the homography H from I to I ′ is estimated from four pairs from S,
– k is the cardinality of S,
– δD = max(i,j)∈S dist(Di, D

′
j) where dist is a metric over SIFT descriptors,

– fD is the cumulative distribution function of δD and is empirically estimated
from I and I ′, yielding an adaptive measure of resemblance,

– δG = max(i,j)∈S max{d(x′
j , Hxi), d(xi, H

−1x′
j)} where d is the Euclidean

distance between two points,
– fG is the cumulative distribution function of δG.

Several possibilities for dist are investigated in [15]. We choose here to use the
cemd-sum metric introduced in [19], based on an adaptation of the Earth’s
Mover Distance for SIFT descriptors. In particular, it is proved to behave better
with respect to the quantization effects than the standard Euclidean distance.

For the sake of brevity, we elaborate here neither on the statistical model
giving fG and fD nor on the definition of the NFA and kindly refer the reader
to [15]. Let us simply say that fD(δD)kfG(δG)k−4 is the probability that all
points in S are mapped to one another through H (with precision δG), while
simultaneously the associated descriptors are similar enough (with precision δD),
assuming that points are independent. If this probability is very low, then the
independence assumption is rejected following the standard hypothesis testing
framework. There must be a better explanation than independence, and each
pair of points probably corresponds to the same 3D point. The advantage of this
framework is that it automatically balances the resemblance between descriptors
and the geometric constraint. Considering a group with a very low probability,
all of its descriptors are close to one another (photometric constraint) and each
of its points projects close to the corresponding point in the other image via H
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(geometric constraint, which is not covered at all by nearest neighbour match-
ing). Mixing both constraints makes it possible to correctly associate repeated
patterns. Additionally, it is permitted to match non-nearest neighbours, provided
they satisfy the geometry. As we will see in Section 4, this provides a number of
correspondences that are never considered in standard SIFT matching.

Now, instead of measuring the probability fD(δD)kfG(δG)k−4 (of a false pos-
itive in hypothesis testing) which naturally decreases as k grows, the NFA is
introduced in the a contrario literature. One can prove (see [15, 17–19] for fur-
ther information) that a group such that NFA ≤ ε is expected to appear less
than ε times under independence hypothesis (hence the term Number of False
Alarms). Thus, comparing groups of different sizes via the NFA is sound. As
noted in [15], small groups can win over large ones if they are very accurate
(that is, descriptors are very similar and points are nearly perfectly related by
a homography).

Since the combinatorial complexity of the problem is very large, a heuristic-
driven search based on random sampling is given in [15], in order to reach the
group S with the (hopefully) lowest NFA. Let us also mention that this method
does not need application-specific parameters.

Remark that Hsiao et al. [20] have very recently proposed to use ASIFT
for 3D object recognition, improving pose estimation when facing strong view-
point changes, thanks to the numerous point correspondences. As in [15] for
2D/2D matching, they solve correspondences between 3D points and 2D points
by simultaneously taking account of photometric resemblance and pose consis-
tency. Their algorithm is thus robust to repeated patterns.

3 Improving ASIFT

We explain here how we modify the ASIFT algorithm by incorporating the NFA
criterion (yielding the Improved ASIFT algorithm, I-ASIFT in the sequel). The
basic idea is to replace the nearest neighbour matching between generated im-
ages with the matching algorithm of [15], i.e. seek the group of correspondences
consistent with a homography, with the lowest NFA. The back-projection of the
matching features to the original images is also improved. The algorithm for
both Improved ASIFT and Standard ASIFT is explained in Figure 1, where
the proposed modifications are highlighted. A running-example is provided on
Figure 2. Figure 3 compares with standard SIFT matching and ASIFT.

Let us discuss the modifications. First, we replace in step 3 the nearest neigh-
bour criterion by the above-mentioned method. The reason to use homography
constraint is that when simulating affine transformations, one expects that some
of them will correctly approximate homographies related to planar parts of the
scene (possibly related to virtual planes, in the sense that points may be dis-
tributed on a plane which has no physical meaning). Then, each group of corre-
spondences between simulated images should correspond to points lying over a
planar structure, and consequently be associated via a homography. In standard
ASIFT, the number of groups (i.e. of considered pairs of generated images) is
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Data: two images I and I ′.

1. For both images, generate the new collection of images It,φ and I ′
t′,φ′ (eq. (2)):

I-ASIFT - use t, t′ ∈ {1,
√

2, 2} and φ, φ′ as in ASIFT (the range of t is the
same as in [20], sufficient if the viewpoint change is not too extreme)
ASIFT - first low resolution, then full resolution simulation only for a limited
number of (t, φ), (t′φ′), as explained in Section 2.

2. Extract the SIFT features from the generated images.

3. Match the SIFT features between the pairs of generated images:
I-ASIFT - for each pair (It,φ, I ′

t′,φ′) extract the group of point correspon-
dences with the lowest NFA (eq. (3), see discussion).
ASIFT - for each pair from the limited set of step 1, match each feature from It,φ

to its nearest neighbour in I ′
t′,φ′ , provided the ratio between the distances to the

nearest and to the second nearest neighbour is below 0.6

4. Back-project the matched SIFT keypoints from the It,φ’s and I ′
t′,φ′ ’s to I and I ′:

I-ASIFT - keep groups with log(NFA) < −50, then sort them increasingly
along their NFA. Starting from the first group, back-project a pair of
matching features only if each feature do not fall in the vicinity of any
already-placed feature. The vicinity is defined as the back-projection
in I (resp. I ′) of the circle around the feature extracted from the simu-
lated images, with radius equal to the SIFT scale (minimum � 2 pixels).
ASIFT - back-project the matching features only if there is no already-placed feature
at a distance less than

√
3 pixels.

5. Discard possible false correspondences:
I-ASIFT - use a contrario RANSAC [16] to check consistency with
epipolar geometry or to homography, depending on the case of interest.
ASIFT - use a contrario RANSAC to check consistency with epipolar geometry
only (not mentioned in [10], but mandatory in the implementation from [21]).

Output: a set of corresponding points of interest between I and I ′.

Fig. 1. Improved ASIFT (I-ASIFT) and Standard ASIFT (ASIFT)

limited a priori to five. In our framework, it would lead to select correspon-
dences from a fixed number of planar pieces. On the contrary, we keep groups
with log(NFA) below −50. This amounts generally to keeping between 5 (fully
planar scene) and � 70 (multi-planar scene) groups. There is no need to keep
a larger number of groups since groups with the largest NFA would be made of
redundant points or would be made of a few inconsistent points filtered by the
final RANSAC.

To improve the back-projection of step 4, we propose to use the NFA as a
goodness-of-fit criterion. As remarked by Hsiao et al. [20], viewpoint simulation
methods give anyway a large number of correspondences, some of them being
concentrated in the same small area. The NFA criterion balances the size of a
group and its accuracy as explained earlier. It seems to us that favouring groups
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with the lowest NFA is sounder than systematically favouring large groups. In ad-
dition, when back-projecting points we thoroughly select correspondences from
their scale in order to prevent accumulations in small areas (note that our crite-
rion is stricter than the one in ASIFT). Getting correspondences uniformly and
densely distributed across the 3D scene is important for structure and motion
applications (as in [20]).

Let us remark that repeated patterns bring specific problems that RANSAC
cannot manage. As remarked in [15], if the repeated patterns are distributed
along the epipolar lines, then it is simply impossible to disambiguate them from
two views (as in Figure 6, ACM+F). Theoretically, I-ASIFT could also suffer
from it. However, it would require that: 1) one of the group consists in a bunch
of shifted patterns consistent with a homography (as in group 51 on figure 2), 2)
this group is large enough and has a very low NFA (otherwise most points are
redundant with already-placed points), and 3) points are along the associated
epipolar lines (otherwise they are discarded by the final RANSAC). Thus I-
ASIFT is more robust to this phenomenon.

4 Experiments

We compare the proposed I-ASIFT, noted I-ASIFT+F (resp. I-ASIFT+H) when
the final RANSAC is based on fundamental matrix (resp. homography), with:

– standard SIFT matching (that is, nearest neighbour + distance ratio con-
dition, between 0.6 and 0.8 to give the best possible results), followed by the
RANSAC from [16]. We note this algorithm NNR+F if RANSAC imposes epipo-
lar geometry (fundamental matrix), or NNR+H for homography constraint;

– the a contrario matching algorithm from [15], which permits SIFT matching
with repeated patterns, noted ACM+F or ACM+H;

– ASIFT, whose implementation is kindly provided by Morel and Yu [21].
We use Vedaldi and Fulkerson’s code for SIFT [22]. The reader is kindly asked
to zoom in the pdf file.

Figure 4 is an assessment on a pair of images with a very strong viewpoint
change. NNR and ACM simply fail here, Harris/Hessian Affine and MSER give
less than 2 matches (see [10]). Viewpoint simulation is thus needed. I-ASIFT
provides more correspondences than ASIFT, which are distributed in a dense
fashion while ASIFT accumulates them in small areas. This is mainly caused by
the distance ratio threshold set to 0.6 in ASIFT, which discards too many corre-
spondences in some generated image pairs. However, using a higher value leads
to a larger rate of outliers, especially when considering large perspective defor-
mations. The more sophisticated matching in I-ASIFT automatically adapts the
resemblance metric between descriptors from each pair of simulated images.

Figure 5 shows an experiment with almost only repeated patterns which can
still be disambiguated after a careful examination. In this case, ASIFT fails.
More precisely, it gives some good correspondences, but they are buried in a
large amount of false matches, and cannot be retrieved with the final RANSAC.
NNR does not give any correspondence. Since the viewpoint change is not too
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group 1: log(NFA) = −589; 53 points group 2: log(NFA) = −427; 46 points

group 3: log(NFA) = −373; 34 points group 4: log(NFA) = −361; 33 points

group 51: log(NFA) = −319; 13 points

Fig. 2. Running example. Top: 210 correspondences found with I-ASIFT. Each green

ellipse is the backprojection in the original images of the circle with a radius equal

to the SIFT scale in the simulated image. Below (groups 1 to 4): correspondences

from the four pairs (It,φ, I ′
t′,φ′) corresponding to the groups with the lowest NFA. One

can see that these groups actually correspond to points over a quite small piece of

plane. In this experiment, 65 such groups are kept (with log(NFA) < −50). The last

10 groups yield only 14 correspondences. As a comparison, the four groups shown here

yield 116 correspondences. With our scheme, points from group 3 (resp. 4) redundant

with those of group 1 (resp. 2) are not back-projected to I and I ′. Note that points

on the wall or on the carpet are scattered among several groups. Indeed, the strong

induced homographies need to be approximated with several affine mappings. In group
51, the matching algorithm is trapped by perceptual aliasing: descriptors are alike but

the correspondences are consistent with a homography “by chance”. 10 points from

this group are back-projected, but all of them are discarded by the final RANSAC

imposing consistency to epipolar geometry.
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Fig. 3. Running example. Left: SIFT matching (nearest neighbour + ratio set to 0.8),

cleaned by the same RANSAC as in ASIFT [16]. Right: ASIFT. 97 matches are found

for SIFT, 153 for ASIFT. For a fair comparison, ASIFT was run with the same res-

olution as I-ASIFT (no downsampling). Some points on the carpet are not correctly

matched. A bunch of wrong correspondences can indeed be seen on the foreground,

because of repeated patterns falling by chance near the associated epipolar lines.

Fig. 4. The Creation of Adam (from [10, 21]). Left: ASIFT. 100 matches. Right: I-

ASIFT+H. 124 matches are retrieved with t in the range {1,
√

2, 2, 2
√

2, 4} as in ASIFT.

49 groups are kept. The range {1,
√

2, 2} (which we use for all other experiments of

this article with I-ASIFT) still gives 29 matches (19 groups), not shown here.

Fig. 5. Flatiron Building. Left: ACM+H finds 21 matches, 13 of which are nearest

neighbours, 5 are second nearest neighbours, the 3 remaining matches are between 3rd

and 7th nearest neighbours. Right: I-ASIFT+H finds 44 matches, 29 of which are

nearest neighbours, 7 are 2nd nearest, the 8 remaining matches are between 3rd and

6th nearest neighbours. 15 groups are kept.

strong, ACM+H still finds 21 correspondences, all correct. I-ASIFT+H finds 44
correspondences, all correct. One can see that the NFA criterion (eq. (3)) permits
us to match features which are not nearest neighbours (30% in I-ASIFT+H). Of
course, such correspondences are never considered in standard SIFT matching.

Figure 6 is another experiment with repeated patterns. To the best of our
knowledge, I-ASIFT is the only generic point matching algorithm able to retrieve



240 N. Noury, F. Sur, and M.-O. Berger

Fig. 6. Synthetic Cube. Top left: ASIFT. 101 correspondences, almost half of them

are not correct. Many matching patterns are actually shifted. Top right: I-ASIFT+F.

192 correspondences. A careful examination proves that almost all are correct. Only

102 among them are nearest neighbours, the others match between 2nd and 8th nearest

neighbours. 49 groups are kept. Middle left: ACM+H. 83 matches (only 40% of them

are nearest neighbours), patterns of the “dominant” plane are correctly retrieved (ho-

mography constraint). Middle right: ACM+F. 102 matches (55% are nearest neigh-

bours). False correspondences can be seen. This is simply unavoidable with two-view

geometry, since in this experiment many wrongly associated repeated patterns (correct

for the photometric constraint) lie along the corresponding epipolar lines (thus correct

for the geometric constraint). Bottom left: NNR+H. 19 matches, corresponding to

shifted patterns. Bottom right: NNR+F. 42 matches, many of them are not correct.

a large number of correct correspondences over the three visible sides of the cube.
This is a highly desirable feature for structure and motion applications. One can
also see that the ACM+H method (used in step 3 of I-ASIFT) is able to cope
with repeated patterns. Let us remark that in this experiment we get one of the
consistent solutions. However, we cannot eliminate the hypothesis that the cube
has been rotated by 90o. In some cases, a certain amount of perceptual aliasing
cannot be reduced from the information contained in images.

Figure 7 shows that I-ASIFT is also more robust to strong viewpoint changes
than ASIFT. It is due to the proposed strategy consisting in back-projecting
features from simulated images, which automatically selects a large number
of groups of correspondences consistent with a local homography, contrary to
ASIFT where most correspondences actually come from the same pair of simu-
lated images. NNR+F and ACM+F do not give any set of correspondences.
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Fig. 7. Leuven Castle: two distant images from M. Pollefeys’ sequence. Left: ASIFT.

94 matches, only among points from the same façade. Note that repeated windows

yield false correspondences with the fourth window in the second image (which is

not present in the first one.) Right: I-ASIFT+F. 118 matches (24% are not nearest

neighbours), distributed over the whole building. Except for two, all of them are correct.

The fundamental matrix is then estimated over the retrieved set of correspondences.

The epipolar lines (in yellow in the right images) corresponding to some handpicked

points (from the left images) prove that I-ASIFT permits to reliably estimate the

camera motion. The points associated to the handpicked ones are indeed less than 1

pixel away from the corresponding epipolar line. In contrast, the camera motion cannot

be retrieved from ASIFT. As a comparison, MSER gives 5 matches, and Harris/Hessian

Affine 20-30 matches mainly between wrongly associated repeated patterns. (code from

Mikolajczyk et al.’s www.featurespace.org).

5 Conclusion

The main contribution of this article is to change the matching paradigm of
ASIFT (namely nearest neighbour matching) to a more sophisticated one which
aggregates sets of correspondences consistent with a local homography. It is
not limited to nearest neighbour and yields dramatic results when confronted
to repeated patterns. The resulting algorithm is also more robust than ASIFT,
MSER, or Harris/Hessian Affine to large viewpoint changes, showing promising
capacities for Structure From Motion applications.
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Abstract. In this article, we present a fast pedestrian detection system

for driving assistance. We use current state-of-the-art HOG and LBP

features and combine them into a set of powerful classifiers. We propose

an encoding scheme that enables LBP to be used efficiently with the

integral image approach. This way, HOG and LBP block features can

be computed in constant time, regardless of block position or scale. To

further speed up the detection process, a coarse-to-fine scanning strategy

based on input resolution is employed. The original camera resolution is

consecutively downsampled and fed to different stage classifiers. Early

stages in low resolutions reject most of the negative candidate regions,

while few samples are passed through all stages and are evaluated by

more complex features. Results presented on the INRIA set show com-

petetive accuracy performance, while both processing and training time

of our system outperforms current state-of-the-art work.

1 Introduction

The ability of driver assistance and automotive safety systems to handle dan-
gerous traffic situations highly depends on the quality of their environmental
perception. The detection of pedestrians is of special interest in this context, be-
cause they are the most vulnerable road users. From a detection point of view,
finding persons in images is among the most challenging tasks in object recog-
nition due to the high variability of human appearance. Furthermore, ressource
issues are important, because a car safety system should be able to detect rele-
vant pedestrians as soon as possible.

Most image-based recognition approaches today use sliding window tech-
niques, thus solving the problem of object localiziation by image patch classifi-
cation. In a moving camera environment, the window sizes and positions depend
on the real world distances of objects. Scanning procedures considering only rel-
evant positions are commonly referred to as ”smart sliding windows”. Current
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research in pedestrian classification is mainly focused on improving accuracy and
speed.

The complexity of the pedestrian class is handled via strong machine learning
methods by computing discriminative features inside an image region. The first
approach that showed excellent results was the work of Dalal/Triggs [1] who
used local histograms of oriented gradients (HOG) as features and a linear sup-
port vector machine classifier. While HOGs (and similar gradient based features
like edge orientation histograms (EOH) [2]) proved to be be very accurate for
pedestrian recognition [3], [4], they also have weaknesses: Due to the nature of
the histogram, image regions with different content can lead to a similar gradi-
ent histogram. Therefore, more features have been used in addition to HOGs to
overcome these disadvantages, the most noteable being the local binary pattern
(LBP) [5], [6]. Authors succeeded in utilizing more discriminant features, but
usually coming at high computation costs [7],[8].

To deal with speed issues, several concepts have been introduced in the last
years. Most commonly, boosted classifiers in a rejecting cascade structure can
speed up sliding window techniques significantly, since the detection of one or
more pedestrians in an image is a rather rare event [9],[10]. Additionally, boosting
as feature selection provides an efficient way to choose discriminant features from
a large feature pool [11]. However, training time is often very high, since the
boosting process can be seen as a a search for the optimal features/classifiers
to reach a certain training goal. For most boosting algorithms, the majority of
computed features and weak classifiers trained is never used in the final classifier.
Another promising speedup mechanism is the use of different resolutions in a
coarse-to-fine strategy. In works like [12], [13], classification of subregions in
an image is performed as a multiple stage process. By computing simple to
complex features in coarse-to-fine resolutions, the full sliding window approach
can be thinned out and thus accelerated. The outcomes of these approaches have
similarities to rejecting cascades, but use the training data in a more efficient
and time saving way.

In this paper, we propose a multiresolution system that detects pedestrians
in different sizes using HOG and LBP features, which currently appear to be
the most powerful feature types for pedestrian recognition. A general system
overview is given in Figure 1 (a). We show that the performance is compete-
tive while the execution and training time is reduced significantly compared to
current state-of-the-art works.

2 Approach

Previous studies have shown that using different types of features for pedestrian
classification can achieve a great improvement. Ideally, complementary features
can mutually compensate for their particular flaws and make the whole process
more robust. In the following section, we give an overview of the two feature
types used and some detail on efficient implementation.
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Fig. 1. (a) Multiscale detection in multiple resolutions. Each resolution r is obtained by

downsampling factor αr. The detection process starts in the lowest resolution, regions

classified as positives are passed to the next resolution stage. (b) Block grids for three

descriptors in different sizes (image patches are upscaled).

2.1 Feature Extraction in Multiple Scales

In order to detect pedestrians in various distances from the camera (near to
far), features must be extracted at several sizes, called scales throughout this
article. This could be achieved by resizing the input image and shifting a detector
window with constant size. However, since the number of scaling steps is usually
quite high (covered distances range from 0m to 40m), it is expensive to compute
all features for every step, even if the images get smaller. To reduce the number
of feature computations, we desire a feature representation that allows us to
scale block features rather than the input image itself. Therefore, we make use
of the concept of the integral image or integral histogram ([14]) for both types
of features. This mechanism allows for rapid block sum computation in constant
time for any scale size. It is especially helpful for sliding windows, since evaluated
image regions usually have strong overlap. In practice, grids of block features are
resized and shifted across the image in different scales. Note that although the
overall system uses multiple resolutions, different scales still must be evaluated
at each resolution. As a result, actual feature computation is done only for a few
downscaling resolutions, whereas the scales in between are obtained by direct
scaling of features.

Usually, integral images are computed globally for the whole image. However,
in a multiresolution approach it makes sense to provide each resolution stage
with a mask image of the previous outcoming regions. This way, the integral
image feature computation is ideally performed only on small image areas. The
following subsections show how integral images can be utilized for HOG and
LBP features.

Histograms of Oriented Gradients (HOG). HOG features originate from
the work of Lowe [15] and have been successfully used in pedestrian classification
by Dalal/Triggs [1]. It seems to be one of the best features for capturing edge
and shape information, while being sensitive to noisy background edges and clut-
ter. In the original approach, pixel gradients are extracted from a spatial grid of
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Fig. 2. An additional center block is used for approximation of center pixel weighting

7 × 15 = 105 overlapping blocks. Each block consists of four 8 × 8 pixel cells,
for which orientation histograms with 9 bins are computed. Four cell vectors are
concatenated to one block vector and normalized at feature level, all block vectors
together form the final feature vector for one instance. As stated before, we make
use of integral images in our approach similar to the one proposed in [10]. An
important parameter in the original approach is the spatial pixel weighting,
which is difficult in the integral image approach since spatial information on
pixel level is usually lost. To overcome this limitation, we use an additional
cell in the center of the original 16x16 pixel blocks. Its histogram is distributed
among the four covered cells as depicted in Figure 2. Due to the integral image,
the additional center cell computation consumes only little extra time. Note
that the feature dimension remains the same, as the additional center cell only
influences the histogram values of the four cell vectors, but otherwise is not
included in the feature vector.

We trained a detector as in [1] with the additional center cell weighting. As
Figure 4(a) shows, this procedure performs better than the original approach
on the INRIA set. Thus we were able to transform the original HOG descriptor
into a more efficient structure. To use the detector in different scales, we are now
able to resize the inner HOG blocks and positions rather than the image.

Local Binary Patterns (LBP). LBP features originate from texture analysis
and were introduced by Ojala et al. in [16]. In its basic form, the LBP is a
simple and efficient texture descriptor that encaptures intensity statistics in a
local neighborhood.

LBP features can be computed efficiently and are invariant to monotonic
graylevel changes, which makes them a good complementary feature for a HOG
detector. LBPs describe relations between a center pixel value and pixels sur-
rounding it in a circle. A LBP is usually denoted LBPP,R, where R is the radius
of the circle to be sampled and P is the number of sampling points. The bit
pattern is transformed into a decimal code by binomial weighting:

LBPP,R(x, y) =
P−1∑
i=0

bi2i (1)

Following the suggestions of Wang et al. [6], the best LBP variant in combi-
nation with blocks of 16x16 pixels turned out to be LBP8,1. An illustration
of LBP8,1 is given in Figure 3 (a). One problem with LBP is that although it



Speeding Up HOG and LBP Features 247

Fig. 3. (a) Basic LBP feature processing. (b) Only uniform patterns are used, and

every pattern falls into the same bin as its inverse pattern.

can be computed efficiently, the actual feature is formulated as a histogram
of LBP pattern frequencies inside a block region. Thus, memory consumption
can become quite large since there are 256 possible values for an 8 bit pattern
of LBP8,1. As stated in [16], most patterns occuring in natural images can be
formulated as uniform patterns : They form the subset of LBPs with at most two
transitions between 0 and 1. Uniform patterns also appear to be most suitable
for classification because they are robust and insensitive to noisy image data. For
LBP8,1, there are 58 uniform LBPs in total. In [5], the authors present encoding
schemes that describe the patterns in terms of angle and length to further reduce
dimension space. However, [6] outperformed their approach at the cost of using
all 58 dimensional data.

In order to reduce the complexity and still maintain the good accuracy of
HOG-LBP, we found out that the dimension of 58 can be reduced by treating
every uniform bit pattern equally to its bit inverse representation without loss of
discriminative power. Exceptions are the two bit patterns 00000000 and 11111111
which are highly discriminative and also very common in real world images since
the latter describes completely homogenous areas. Starting from originally 256
different values, the use of uniform patterns and the inversion operation on 56 of
58 patterns leaves us with (58− 2)/2 + 2 = 30 values to distinguish. The feature
extraction process is illustrated in Figure 3 (b). To construct a block LBP feature,
all non-uniform patterns are neglected, and the remaining ones are sorted into
bins. For each bin we use an integral image for quick calculation. Although it may
seem to be ressource consuming, the practical combination of multiresolution and
masking techniques ensure that the LBP integral images must only be computed
globally on the low resolution images. After L2 normalization for each separate
block, the block vectors are concatenated into one LBP feature vector.

We implemented the HOG-LBP detector of [6] (without occlusion handling)
with the reduced dimensionality, while all other parameters were the same as in
the original approach. Figure 4(b) shows that the performance of our HOG-LBP
detector with only 30 different LBPs is comparable to the results of [6]. The final
detectors we build using LBP features are designed as grids of non-overlapping
blocks. Block sizes differ depending on the training resolution, but we make sure
that the size for one cell block is not below 12 pixels (see Table 1 for details).
Also, the blocks are arranged in a non-overlapping manner, as it was shown that
overlapping achieves no better discriminance.
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2.2 Multiresolution Framework

The multiresolution approach is based on the idea that most of the candidate
regions in an image do not contain interesting structures, and that many of
them can be sorted out even in a low resolution. The detection process starts by
consecutively downsampling the input image (see Figure 1 (a)), starting from res-
olution r = 0 to the lowest resolution. In each resolution r, only regions classified
as positive samples are passed on to the next stage. Note that this multiresolu-
tion approach also includes a multiscale approach, meaning that multiple scales
of regions are evaluated in each resolution. The idea of this is quite similar to the
idea behind cascaded classifiers, where usually few simple features in the first
stages reject most of the input regions. This information must be derived from
the complete training data during boosting. The training process of a multires-
olution classifier set is much simpler and faster, since the input training data of
early stages consists only of low resolution images and simple detectors.

We construct our multiresolution HOG-LBP detector following the training
algorithm of [13]. In short it can be summarized as follows (assume resolutions
from r = 0..n), with slight modifications:

– Train a classifier for the lowest resolution r = n, using the downsampling
ratio αn for both positive and negative training images

– For each resolution:
• Adapt the stage threshold of the previously trained classifier until a user

defined target quality criterion is met
• Create the training set for the current classifier by using false positive

detections of all classifiers trained so far plus a fixed negative training
set

• Train a classifier in the current resolution set, using the downsampling
ratio αn for both positive and negative training images

• Inner Bootstrapping: Run the current classifier on the training set and
retrain b times, using false positives as negative training input.

In this algorithm, some parameters must be chosen manually beforehand, for
instance the target rates of each stage or the total number of resolutions used.
In our case, we did not set target rates but trained each classifier with a fixed
number of two rounds of bootstrapping. The training led to a multiresolution
classifier set of only three classifiers. It should be mentioned that the sizes and
resolutions chosen were influenced by the fact that training and testing was done
using the INRIA test set. For further application areas, different descriptor sizes
and resolutions might be more appropriate. Table 1 gives some details about the
descriptor parameters and size ratios. The detector grids of the three different
training sizes are visualized in Figure 1 (b). The images are upscaled for illus-
tration, but actually have the sizes given in Table 1. As downsampling factor
we used α = 0.625. Note that for each classifier (except the very first one), a
bootstrapping routine is performed several times. In contrast to the original al-
gorithm, we performed bootstrapping for classifiers 1 and 2 also on the whole
training set, not only on the misclassified samples of previous stages. This may
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seem redundant as the later stages might never receive these additional samples
by the early stages. However, as in practice the training set size is limited, classi-
fiers using strong features like HOG and LBP can run into an overlearning state
quickly, which is why additional samples help the generalization performance.

Table 1. Multiresolution HOG-LBP

LBP LBP LBP HOG HOG HOG

Resolution patch size cell size block size detector size cell size block size detector size

1 24x48 (12,12) (12,12) (2, 4) (8,8) (16,16) (2,5)

2 48x96 (16,16) (16,16) (3, 6) (8,8) (16,16) (4, 9)

3 64x128 (16,16) (16,16) (4, 8) (8,8) (16,16) (7,15)

3 Experimental Results

All experiments were conducted on the INRIA database. It consists of 1208
pedestrian images for training and 563 for testing plus their left-right reflec-
tions, all scaled to 64x128 pixel size. In addition, there are negative images
containing no persons for both training and testing. Training was performed by
downsampling the training images in the way listed in Table 1. All classifiers are
linear support vector machines (SVM), a maximum-margin classifier which is
well suited for high-dimensional data. Also, the negative examples went through
the same downsampling process (linear sampling). We tested the performance
on the INRIA set in two basic experiments: First, we used the integral image
approach on the negative test images, meaning that we resized the detector win-
dows and left the images unchanged. However, since this procedure differs from
the way INRIA data is usually tested, we performed a second experiment to en-
sure comparability. In the second setting, we used the same testing methodology
as in [1], where a fixed detector window is shifted across the resized negative
images. The resulting DET curves were basically identical, which shows that
the proposed feature scaling is generally applicable and unbiased towards larger
negative image samples.

3.1 Accuracy

The DET curve plot in Figure 4(b) shows the detection-error-tradeoff for our
multiresolution system and selected state-of-the-art systems. The different points
of the multiresolution classifier curve were created by stepwise linear modification
of the threshold of each classifier stage. The curve shows that the combination
of HOG and LBP features in a multiresolution framework can compete with the
current state-of-the-art HOG-LBP. Figure 5 shows the output regions of each
classifier stage on INRIA test images. The last stage classifier (in the highest
resolution) is basically the one proposed by [6] (except for the mentioned mod-
ifications), which means that its accuracy is not harmed by the early rejecting
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Fig. 4. Classification performance on the INRIA test set

classifiers. As stated before, interestingly this behavior was achieved without
tuning of threshold parameters. Further optimization of learning parameters
such as stage thresholds could result in better performance. The results show
that the combination of HOG and LBP feature descriptors also work in lower
resolutions. The gap between multiresolution HOG-LBP and the original HOG-
LBP can partly be explained by the fact that we employed a L2 normalization
scheme for both LBP and HOG, since experiments showed that the original L1
square norm performed weaker than L2 normalization when using LBP30.

Fig. 5. Screenshots of the detection results of three stages on INRIA test set
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3.2 Training/Testing Speed

The training of the proposed system took less than an hour for all three clas-
sifiers, including bootstrapping. This is faster than reported training times for
recent cascade methods in the dimension of several days [10]. Although training
and bootstrapping has to be done three times instead of one time in a mono-
lithic detector, the negative bootstrapping sets are much smaller, which again
leads to fewer memory consumption and less training time. Table 2 shows some
insights on the detection time of the system measured on a 3GHz DualCore PC
with 3GB RAM. All times are given in ms and were obtained on 320x240 im-
ages using a sparse scan with a stride of 8 pixels. The first two columns give an
idea of the complexity of the feature extraction times if each stage had to eval-
uate every incoming region without rejection. It can be seen that especially the
high resolution detector would be time consuming, as it uses the most complex
detector grid. The rightmost columns resemble the system behavior in prac-
tice, where little time is spent evaluating the most interesting regions. In other
words, a complete fullscan in the lowest resolution rejects about 94.46% of the
search windows on the INRIA set while achieving a detection rate of 99.28%. In
practice, the system runs roughly at 15Hz.

Table 2. Detection times [ms] for a sparse scan of an 320x240 image

Resolution Baseline time Hierarchical classification time

HOG LBP HOG LBP

24x48 32 21 32 21

48x96 55 42 3 6.5

64x128 144 87 5 17

4 Conclusions

We proposed a fast system for pedestrian detection with very good accuracy.
To achieve good classification performance, we extracted strong local HOG and
LBP block features from grid descriptors in different resolutions. Utilizing the
integral image method, feature extraction of block features inside a region was
performed in constant time. We trained multiple classifiers in a coarse-to-fine
rejecting strategy, which showed similar speedup effect like rejecting cascades.
The approach was tested on the well-known challenging INRIA person set and
showed competetive results regarding accuracy. Although we use the system for
the detection of pedestrians, the general idea can be applied to the detection of
other object classes as well.
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Abstract. For an effective vision-based HCI system, inference from nat-

ural means of sources (i.e. hand) is a crucial challenge in unconstrained

environment. In this paper, we have aimed to build an interaction sys-

tem through hand posture recognition for static finger spelling Ameri-

can Sign Language (ASL) alphabets and numbers. Unlike the interaction

system based on speech, the coarticulation due to hand shape, position

and movement influences the different aspects of sign language recogni-

tion. Due to this, we have computed the features which are invariant to

translation, rotation and scaling. Considering these aspects as the main

objectives of this research, we have proposed a three-step approach: first,

features vector are computed using two moment based approaches namely

Hu-Moment along with geometrical features and Zernike moment. Second,

the categorization of symbols according to the fingertip is performed to

avoid mis-classification among the symbols. Third, the extracted set of two

features vectors (i.e. Hu-Moment with geometrical features and Zernike

moment) are trained by Support Vector Machines (SVM) for the classi-

fication of the symbols. Experimental results of the proposed approaches

achieve recognition rate of 98.5% using Hu-Moment with geometrical fea-

tures and 96.2% recognition rate using Zernike moment for ASL alphabets

and numbers demonstrating the dominating performance of Hu-Moment

with geometrical features over Zernike moments.

1 Introduction

Human Computer Interaction (HCI) is emerged as a new field which aims to
bridge the communication gap between humans and computers. An intensive re-
search has been done in computer vision to assist HCI particularly using gesture
and posture recognition [1][2]. Many pioneering techniques have been proposed
to solve the research issues however a natural mean of interaction still remains
and yet to address.

Sign language recognition is an application area for HCI to communicate with
computers and is categorized into three main groups namely finger spelling, word
level sign and non-manual features [3]. In sign language, Hussain [4] used Adap-
tive Neuro-Fuzzy Inference Systems (ANFIS) model for the recognition of Arabic
Sign Language. In his approach, gloves are used for detection of fingertip and
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Fig. 1. Shows the framework of posture recognition system

wrist location with six different colors. Similarly, another approach is proposed
by Handouyahia et al. [5] which presents a recognition system based on shape de-
scription using size functions for International Sign Language. Neural Network is
used to train alphabets from the features computed for sign languages. However,
the computed features in their proposed approach are not rotation invariant.

Other approach includes the Elliptic Fourier Descriptor (EFD) used by Malas-
siotis and Strintzis [6] for 3D hand posture recognition. In their system, orien-
tation and silhouettes from the hand are used to recognize 3D hand postures.
Similarly, Licsar and Sziranyi [7] used Fourier coefficients from modified Fourier
descriptor approach to model hand shapes for the recognition of hand gestures.
Freeman and Roth [8] suggested a method by employing orientation histogram to
compute features for the classification of gesture symbols, but huge training data
is used to resolve the rotation problem. Through out the literature, it is observed
that the coarticulation such as hand shape, position and remains a fundamental
research objective in vision based hand gesture and posture recognition systems.

The main contribution of the paper can be elaborated in two aspects: two
set of invariant feature vectors are extracted to handle the coarticulation is-
sues and the performance analysis of these feature vectors are demonstrated;
and the symbols are categorized according to the detected fingertip by com-
puting the curvature analysis to avoid the mis-classification among the posture
signs. The remainder of the paper is organized as follows. Section 2 demonstrates
the posture recognition system for ASL. Experimental results are presented in
section 3 to show the performance of proposed approaches. Finally, the conclud-
ing remarks are sketched in section 4.

2 Posture Recognition System

In this section, components of proposed posture recognition systems are pre-
sented as shown in Fig. 1.

2.1 Pre-processing

The image acquisition is done by Bumblebee2 camera which gives 2D images
and depth images. The depth image sequences are exploited to select region of
interest for segmentation of objects (i.e. hands and face) where the depth lies in
range from 30 cm to 200 cm (i.e. in our experiments) as shown in Fig. 2(a). In this
region, we extract the objects (i.e. hands and face) from skin color distribution



Utilizing Invariant Descriptors for Finger Spelling ASL Using SVM 255

HL

HR

Face

(b) (c)(a)

Fig. 2. (a) Original Image with selected depth region (b) Results of Normal Gaussian

distribution using the depth Information (c) Detected hands and face

and are modeled by normal Gaussian distribution characterized by mean and
variance as shown in Fig. 2(b). We have used Y CbCr color space because skin
color lies in a small region of chrominance components where as the effect of
brightness variation is reduced by ignoring the luminance channel. After that,
skin color image is binarized and the contours are extracted by computing chain
code representation for detection of hands and face as shown in Fig. 2(c).

2.2 Feature Extraction

Two different approaches are employed and analyzed in the proposed approach
for the extraction of posture features and are described in the following section.

Hu Moments and Geometrical Feature Vectors: In the first approach, Hu-
Moment (i.e. statistical feature vector (i.e. FV)) FHu and geometrical feature
vectors FGeo are computed for posture recognition and is formulated as:

FHu,Geo = FHu ∧ FGeo (1)

Statistical FV: Hu-Moments [9] are derived from basic moments which describe
the properties of objects shape statistically (i.e. area, mean, variance, covariance
and skewness etc). Hu [9] derived a set of seven moments which are translation,
orientation and scale invariant. Hu invariants are extended by Maitra [10] to be
invariant under image contrast. Later, Flusser and Suk [11] derived the moments
which are invariant under general affine transformation. The equations of Hu-
Moments are defined as:

φ1 = η20 + η02 (2)

φ2 = (η20 − η02)
2 + 4η2

11 (3)

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2 (4)

φ4 = (η30 + η12)
2 + (η21 + η03)

2 (5)

φ5 = (η30 − 3η12) (η30 + η12) [(η30 + η12)
2 − 3 (η21 + η03)

2] +

(3η21 − η03) (η21 + η03) [3 (η30 + η12)
2 − (η21 + η03)

2] (6)

φ6 = (η20 − η02) [3 (η30 + η12)
2 − (η21 + η03)

2] + 4η11 (η30 + η12) (η21 + η03)(7)
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φ7 = (3η12 − η03) (η30 + η12) [(η30 + η12)
2 − 3 (η21 + η03)

2] +

(3η12 − η30) (η21 + η03) [3 (η30 + η12)
2 − (η21 + η03)

2] (8)

These seven moments are derived from second and third order moments. How-
ever, zero and first order moments are not used in this process. The first six Hu-
Moments are invariant to reflection [12], however the seventh moment changes
the sign. Statistical FV contain the following set:

FHu = (φ1, φ2, φ3, φ4, φ5, φ6, φ7)
T (9)

where φ1 is the first Hu-Moment. Similar is the notation for all other features in
this set.
Geometrical FV: Geometrical FV consist of circularity and rectangularity, and
are computed to exploit hand shapes with the standard shapes like circle and
rectangle. This feature set varies from symbol to symbol and is useful to recognize
ASL signs. Geometrical FV is stated as:

FGeo = (Cir, Rect)T (10)

Circularity Cir and rectangularity Rect are measures of shape that how much
object’s shape is closer to circle and rectangle respectively. These are defined as:

Cir =
Perimeter2

4π × Area
, Rect =

Area

l × w
(11)

Length l and width w are calculated by the difference of largest and smallest
orientation in the rotation. Orientation of object is calculated by computing the
angle of all contour points using central moments. Statistical and geometrical
FV set are combined together to form a feature vector set and is defined as:

FHu,Geo = (φ1, φ2, φ3, φ4, φ5, φ6, φ7, Cir, Rect)T (12)

Zernike Moments: Teague [13] examines that Cartesian moment can be re-
placed by orthogonal basic set (i.e. Zernike polynomial), resulting in an orthog-
onal moment set. The magnitudes of Zernike moments are invariant to rotation
and reflection [14]. However, translation and scaling invariance can easily be
achieved like central moments.

Apq =
(p + 1)

Π

∑
x

∑
y

I(x, y) [Vpq(x, y)] , x2 + y2 ≤ 1 (13)

where I(x, y) is image pixel and p and q defines the moment-order. Zernike
polynomials Vpq(x, y) are defined in polar form Vpq(r, θ) as:

Vpq(r, θ) = Rpq(r)e−jqθ (14)

where Rpq is a radial polynomial and is defined as:

Rpq(r) =

p−|q|
2∑

s=0

(−1)s(p − s)!rp−2s

s!
(

p+|q|
2 − s

)
!
(

p−|q|
2 − s

)
!

(15)
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Fig. 3. (a) It shows clusters (i.e. C1 and C2) whose threshold is above
√

2. (b) Maximum

local extreme selected contour point (i.e. SP1 and SP2) from these clusters. Red points

show values above threshold
√

2 (i.e. candidates for fingertips).(c) Red points show the

selected contour points (i.e. SP1 and SP2). Distance is calculated from center point (CP)

and normalization is done. (d) Normalized values greater than 0.5 are detected as fin-

gertip (i.e. peak) marked by red point. Yellow marks represent values less than 0.5.

We have used Zernike moments upto 4th order moment. The feature vector set
for Zernike moment is as under:

FZernike = (Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9)
T (16)

Normalization: The normalization is done for features to keep them in a partic-
ular range and is defined as:

cmin = μ − 2σ , cmax = μ + 2σ (17)

nF i = (Fi − cmin) / (cmax − cmin) (18)

nFHu,Geo is the normalized feature for Hu-Moment with geometrical FV . cmax

and cmin are the respective maximum and minimum values used for the normal-
ization of these features. Similar is the case of Zernike moments (i.e.nFZernike).

2.3 Fingertip Detection for Categorization

Given the contour of detected hand, curvature is estimated by considering the
neighbor contour points to detect the fingertip [15]. Mathematically, curvature
gives the ratio of length (i.e. sum of distances that a curve has) and displacement
measures the distance from the first to last point if curve covers a straight line.
It is computed from the following equation:

curv (k) = length/displacement (19)

length =
i=(k+n/2)∑
i=(k−n/2)

‖(Pi − Pi+1)‖ (20)
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Table 1. Confusion Matrix of one

Detected Fingertip

Sign A B D I H/U

A 99.8
98.98

0.0
0.02

0.0
0.0

0.0
0.8

0.2
0.2

B 0.0
0.1

98.18
96.3

1.0
1.6

0.0
0.0

0.82
2.0

D 0.0
0.0

0.0
2.0

98.67
96.1

1.33
1.9

0.0
0.0

I 0.58
2.0

0.0
0.0

0.8
2.1

98.62
94.62

0.0
0.38

H/U 0.0
0.0

3.08
2.6

0.0
0.4

0.24
0.8

96.68
96.2

Table 2. Confusion Matrix of Two Detected

Fingertips

Symbol C L P Q V Y

C 98.65
96.95

0.25
0.3

0.0
0.0

0.75
0.1

0.0
0.2

0.35
0.65

L 0.38
1.2

98.5
96.2

0.0
0.0

0.76
1.6

0.0
0.2

0.36
0.8

P 0.0
0.0

0.0
0.1

98.74
95.5

1.26
3.2

0.0
0.0

0.0
1.2

Q 0.0
0.0

0.0
0.5

3.78
4.2

96.22
94.4

0.0
0.0

0.0
0.9

V 0.2
0.0

0.0
0.0

0.0
0.0

0.0
1.3

99.35
97.4

0.45
1.3

Y 0.0
0.0

0.0
0.1

0.0
0.25

0.0
1.05

0.7
1.3

99.3
96.3

displacement =
∥∥(Pk−n/2 − Pk+n/2

)∥∥ (21)

where k is the boundary point of object at which curvature curv(k) is estimated,
n is total number of pixels used for curvature estimation, and Pi and P(i+1) are
the objects boundary points.

The principle objective is to find high curvature values from contour points
which results in detection of peaks from hands contour and tends to represent
the fingertip. We have adaptively determine number of contour points (i.e. after
conducting empirical experiments) by exploiting the depth information which
provides information about the distance of object from the camera. In this way,
a candidate for the fingertip is selected when curvature value is greater than

√
2.

Experimental results show contour of left hand with threshold greater than√
2. In Fig. 3(a), there are two clusters named C1 and C2 and maximum value

from these clusters is selected using maximum local extreme value. The resulted
points are marked as a fingertip (i.e. SP1 and SP2) as shown in Fig. 3(b). It is
observed that both the peaks (i.e. ∩) and valleys (i.e. ∪) can be inferred as a
fingertip. Therefore, the next step is to remove valleys from being detected as a
fingertip. For this purpose, selected contour points (i.e. SP1 and SP2) are taken
and their distances are computed from the center point CP of object as shown in
Fig. 3(c). The normalization is done and these points are scaled ranging from 0
to 1. We pick the points whose values are greater than 0.5 for fingertip detection.
In Fig. 3(d), red mark represents the fingertip whereas the yellow mark points
to a valley (not a fingertip). In this way, fingertips are successfully detected for
the categorization of symbols using above defined criteria.

Four groups are formed for ASL alphabets according to number of detected fin-
gertips (i.e.Group I with no fingertip,Group II with one fingertip,Group III with
two fingertips and Group IV with three fingertips). Numbers are not grouped
with alphabets because some numbers are similar to alphabets, so it is hard to
classify them together (i.e. ‘D’ and ‘1’ are same with small change of thumb).
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Table 3. Confusion Matrix of

Fingertips (i.e. all)

FT/ 1 2 3 4
Gr.
0 99.8 0.2 0.0 0.0
1 1.2 96.8 2.0 0.0
2 0.0 0.0 95.1 4.9
3 0.0 0.0 0.9 99.1

Table 4. Confusion Matrix of ASL Numbers

Nr. 0 1 2 3 4 5 6 7 8 9
0 99.8

99.1
0.2
0.9

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

1 0.3
1.1

99.4
97.7

0.3
1.2

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

2 0.0
0.0

0.0
0.98

98.3
96.52

0.4
0.6

0.0
0.0

0.0
0.0

1.3
1.9

0.0
0.0

0.0
0.0

0.0
0.0

3 0.0
0.0

0.0
0.0

0.4
1.0

98.2
96.6

0.9
1.3

0.0
0.0

0.5
0.6

0.0
0.0

0.0
0.5

0.0
0.0

4 0.0
0.0

0.0
0.0

0.0
0.8

0.2
1.2

98.2
94.6

1.6
3.4

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

5 0.0
0.0

0.0
0.0

0.0
0.0

0.0
1.0

2.4
3.8

97.6
95.2

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

6 0.0
0.0

0.0
0.0

0.8
1.6

0.6
1.2

0.0
0.0

0.0
0.0

98.6
97.2

0.0
0.0

0.0
0.0

0.0
0.0

7 0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.7
1.3

98.3
96.5

0.6
1.6

0.4
0.6

8 0.0
0.0

0.0
0.0

0.0
0.0

0.4
0.3

0.0
0.0

0.0
0.0

0.2
0.8

0.4
0.8

98.4
97.6

0.6
0.8

9 0.0
0.0

0.0
0.0

0.0
0.0

0.5
0.8

0.0
0.0

0.0
0.0

0.0
0.0

0.4
1.75

0.5
1.35

98.6
96.1

2.4 Classification

Classification is the last step in posture recognition where a posture symbol is
assigned to one of the predefined classes. In proposed approach, a set of thir-
teen ASL alphabets and ten ASL numbers are classified using Support Vector
Machines (SVM). SVM [16][17] is a supervised learning technique for optimal
modeling of data. It learns decision function and separates data class to maxi-
mum width. SVM learner defines the hyper-planes for data and maximum mar-
gin is found between these hyper-planes. Because of the maximum separation of
hyper-planes, it is also considered as a margin classifier. We have used Radial
Basis Function (RBF) Gaussian kernel which has performed robustly with given
number of features and provided optimum results as compared to other kernels.

3 Experimental Results

A database is built to train posture signs which contain 3600 samples taken from
eight persons on a set of thirteen ASL alphabets and ten numbers. Classification
results are based on 2400 test samples from five persons and test data used is
entirely different from training data. As Zernike moments nFZernike and Hu-
moments with geometrical FV nFHu,Geo are invariant to translation, rotation
and scaling, therefore posture signs are tested for these properties.

3.1 ASL Alphabets

Thirteen alphabets are categorized into four groups according to fingertips and
are presented as follows:

Group I: There is no misclassification between ‘A’ and ‘B’ because these two signs
are very different. Precisely, statistical FV show correlation in Hu-Moments for
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Frame 42Frame 4 Frame 50 Frame 70 Frame 80

Frame 85 Frame 95 Frame 145 Frame 315Frame 191

Frame 333 Frame 343 Frame 353 Frame 372 Frame 380

Fig. 4. Sequence starts with recognition of posture signs ‘A’ till frame 90 with different

orientations and back and forth movement. Similarly, posture sign ‘B’ is recognized

from frame 91 to frame 372. ‘D’ is the last recognized sign in sequence.

features (i.e. φ3,φ4,φ5,φ6,φ7) whereas in Zernike moments, features (i.e. Z4,Z8,Z9)
are very different for these posture symbols. Discrimination power of SVM can be
seen from this behavior and it classifies posture signs ‘A’ and ‘B’ correctly.

Group II: Table 1 shows confusion matrix of classes with one fingertip detected
for Hu-Moment with geometrical FV (i.e. above in fraction 99.8

98.98 ) and Zernike
moments (i.e.below in fraction 99.8

98.98). It can be seen that from first approach,
alphabet ‘A’ results in least misclassification whereas ‘H’/‘U’ has the maximum
misclassification with other posture alphabets. Misclassifications between ‘B’ and
‘H/U’ are observed in Hu-Moment features during back and forth movement.

Group III: Confusion matrix of group with two detected fingertips is shown in
Table 2. During experiments, it is seen that highest misclassification exists be-
tween ‘P’ and ‘Q’ signs because of their shape and geometry. Besides, statistical
FV in this group lies in similar range and thus possesses strong correlation which
leads to misclassification between them. Similar is the case of Zernike moments.

Group IV: The posture sign ‘W’ is always classified because it is the only element
in this group.

3.2 ASL Numbers

The classes for ASL numbers are tested for translation, orientation and scaling,
and are shown in Table 4. It is found that the least misclassification of number
‘0’ with other classes because its geometrical features are entirely different from
others. Highest misclassification exists between numbers ‘4’ and ‘5’ as the simi-
larity between these signs (i.e. thumb in number ‘5’ is open) is very high. Zernike
moments also give similar results as the first approach. Average recognition rate
for ASL numbers are 98.6% and 96.4% from Hu-Moment with geometrical FV
and Zernike moments respectively.
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Fig. 5. (a) and (b) Shows the feature vectors values and classification probability for

Hu-Moment with circularity and rectangularity. (c) and (d) shows the feature vectors

and classification results for Zernike moment.

3.3 Misclassification of Fingertip Groups

The fingertip probability classification of a group with other groups is shown
in Table 3. It is observed that the misclassification exists in neighboring groups
and is due to the reason that only +/- 1 detected fingertip is wrong or wrongly
detected for posture signs. A strong misclassification between the detected finger-
tips of group III and group IV can be seen in Table 3. Wrong fingertip detection
from group III leads to the detection of three fingertips and thus ’W’ is recog-
nized from posture sign. Similarly, if two fingertips are detected in group IV, it
leads to the classification from group with two fingertips detected class signs.

3.4 Test Sequences

Fig. 4 presents the sequence in which detected posture signs are ‘A’, ‘B’ and ‘D’.
In this sequence, first posture sign changes from ‘A’ to ‘B’ is occurred in frame 90
followed by another symbol change at frame 377 from ‘B’ to ‘D’. The symbols
in this sequence are tested for rotation and scaling, and it can be seen that
Hu-Moment with geometrical FV doesn’t affect much under these conditions.
However, in our case, Zernike moments are affected under rotation which leads
to misclassification. Moreover, it is observed that Zernike moments are most
robust to noise than Hu-Moment with geometrical FV. Fig. 5(a) and (b) presents
feature values of Hu-Moment with geometrical FV and classification probabilities
of this approach for test sequence samples. Moreover, Zernike moments features
and classification probabilities are presented in Fig. 5(c) and (d).

Fig. 6(a) presents the sequence in which classified posture symbols are ‘W’,
‘A’, ‘Y’, ‘D’ and ‘V’. Classification probabilities of Hu-Moment with geometrical
features and Zernike moments are shown in Fig. 6(b) and (c) respectively. It
can be seen from the graphs that classification errors are occured due to wrong
fingertip detection and thus results in classification of symbol in a different group.
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Fig. 6. (a) Presents the sequence in which recognized posture symbols are ‘W’,

‘A’,‘Y’,‘D’ and ‘V’. (b) shows classification probabilities of Hu-Moment with geomet-

rical features and (c) shows classification probabilities of Zernike moments.

Results show that recognition rate of feature vector computed from Hu-Moments
with the geometrical features (i.e. 98.5%) dominate the performance over recog-
nition outcome of feature vectors measured from Zernike moments (i.e. 96.2%).

4 Conclusion

In this paper, we have proposed a three-step approach for recognition of ASL
posture signs. Two moment based approaches are analyzed and their features are
extracted which are invariant to translation, orientation and scaling. Besides, the
fingertip is detected for ASL alphabets and used as a measure to categorize thus
avoids the misclassifications of posture signs. SVM is applied for recognition of
ASL signs and recognition results of both approaches are computed and analysed.
The recognition results based on Hu-Moment with geometrical FV outperforms
the other approach using feature vectors computed with Zernike moments.
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Abstract. In this paper, the well-known SIFT detector is extended with

a bivariate feature localization. This is done by using function models

that assume a Gaussian feature shape for the detected features. As func-

tion models we propose (a) a bivariate Gaussian and (b) a Difference of

Gaussians. The proposed detector has all properties of SIFT, but pro-

vides invariance to affine transformations and blurring. It shows supe-

rior performance for strong viewpoint changes compared to the original

SIFT. Compared to the most accurate affine invariant detectors, it pro-

vides competitive results for the standard test scenarios while performing

superior in case of motion blur in video sequences.

1 Introduction

The precise detection of feature points in an image is a requirement for many
applications in image processing and computer vision. In most cases, feature
points are used to establish correspondences between different images containing
the same scene captured by a camera. These corresponding points can be used to
perform measurements to reconstruct the geometry of the observed scene [1] or
to detect objects. To obtain reasonable and comparable feature points, the image
signal surrounding the feature position is analyzed and distinctive characteristics
of this region are extracted. These characteristics are usually assembled to a
vector which describes the feature. This vector, called descriptor [2], is used
to establish correspondences by calculating a similarity measure (L2 distance)
between the current descriptor and the feature descriptors of a second image.
Feature detection and correspondence analysis is more challenging if the baseline
between the cameras capturing the images is large. The region description of
corresponding features before and after the viewpoint change should be the same.
Several methods have been proposed in the literature to model invariants, such as
brightness change and rotation [3, 4], scale change [2, 5, 6], affine transformation
[7–12], and perspective transformation [13].

For viewpoint changes, the mapping between the local regions of two images
can be modeled by an affine transformation. This is motivated by the assumption
that the scene surface is locally planar and perspective effects are small on local

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 264–275, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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regions [11]. Based on affine normalization, the Harris-Affine [8] and Hessian-
Affine [9] detectors determine the elliptical shape with the second moment matrix
of the intensity gradient. In [14], maximally stable extremal regions (MSER)
are constructed using a segmentation process. Then, an ellipse is fit to each
of these regions. Although these detectors initially do not select features in an
affine scale space, their evaluation shows excellent performance for significant
viewpoint changes [11, 15].

Extensive work has been done on evaluating feature point detectors and de-
scriptors [9, 11, 16–18]. Commonly, the most important criterion for affine invari-
ant detectors is the repeatability criterion [9, 18]. For evaluation, the reference
test set of images offered in [11] is widely used. The data set contains sequences of
still images with changes in illumination, rotation, perspective, and scale. Using
this data set, the most accurate localization of affine invariant features is per-
formed by the Harris-Affine, Hessian-Affine, and MSER detector [15]. However,
their performances depend on the image transformation emphasized throughout
the specific test sequence and the type of texture present in the images.

Since the results of different detectors lead to differently structured features,
the detectors are categorized by the type of features they detect. In [15], these
categories for the affine invariant feature detectors are corner detectors (Harris-
Affine), blob detectors (Hessian-Affine), and region detectors (MSER). For com-
puter vision challenges like object detection, the combination of complementary
features can be used to increase the performance [11, 19, 20].

Fig. 1. Examples of motion blurred image content. From left to right: input image,

Hessian-Affine, MSER, SIFT, and our approach DoG-Affine. Harris-Affine provides no

feature for this image (part of the sequence shown in Figure 5).

The SIFT detector performs very well under moderate affine distortions. It
has been shown [12] that in this case the repeatability rates are better than
those from affine invariant detectors. However, the performance of SIFT de-
creases under substantial viewpoint changes. Also, elliptically shaped features
are not localized accurately. Hence, our motivation is to enhance the affine in-
variant properties of SIFT while preserving its performance for moderate affine
distortions. This is done without building an affine scale space pyramid, but by
using a modified localization scheme that assumes (a) a bivariate model and (b)
a Gaussian shape for the features located in the scale space. These two character-
istics can also increase the stability of the detection in images with motion blur
as shown in Figure 1. In this example, an elliptical description of the feature is
preferable to represent the region. The detection of Harris-Affine, Hessian-Affine,
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and MSER lead to only a few features. In video sequences taken by a moving
camera, motion blur is prevalent even if it is not visible to the human eye [21].

This work shows that our approach for determining the feature localization in-
creases the performance of the SIFT detector in case of strong viewpoint changes
as well as motion blur. The contributions of this paper are

– the extension of the SIFT detector with a bivariate localization procedure,
– the comparison of the extended detector to the most accurate state of the

art affine invariant feature detectors using synthetic and natural images, and
– the evaluation of the detectors using a structure from motion approach with

naturally motion blurred images.

In the following Section, the SIFT detector is briefly presented. In Section 3, the
proposed affine invariant extension of SIFT is derived. Section 4 shows experi-
mental results using synthetically constructed and real image data. In Section
5, the paper is concluded.

2 The SIFT Detector

The Scale Invariant Feature Transform provides distinctive feature points which
can be used to establish correspondences between images with the same scene
content. The resulting features are invariant to illumination, rotation, and scale
changes between the analyzed images. The SIFT detector demonstrates superior
performance in this field. However, affine invariance that is commonly used to
approximate the perspective distortion resulting from a viewpoint change is not
modeled.

The workflow of SIFT using an image as input data is shown in Figure 2.
First, feature points are characterized as extrema in the Difference of Gaussians
pyramid of the image. The Difference of Gaussians pyramid is used as an ap-
proximation of the Laplacian pyramid, which has been proven to provide stable
scale invariant features. In the next step, the localization is refined by an inter-
polation of the 26 surrounding grid points with x-, y-, and scale - coordinates.
The interpolation is done by fitting a second order function to the Difference of
Gaussians output. It provides subpel and subscale accuracy of the localization of
a feature point. After the localization, features are rejected that do not fulfill the
critera of (a) minimal contrast, and (b) maximal ratio of principal curvatures.
This guaranties the repeatability stability of the accepted features. In order to
apply an orientation parameter to a feature, the main orientation of the sur-
rounding image gradients is estimated. If the orientation estimation procedure
leads to ambiguous results, multiple features with the same coordinates, but dif-
ferent orientation are constructed. Finally, a 128 dimensional vector is computed
using the surrounding gradient orientations. This vector is called descriptor. It
is used to establish the correspondence to a feature in the other image. Corre-
spondences between two images are found by associating feature points with a
minimal distance between their descriptors.
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Detection of

Scale-Space Extrema

Localization of

Features

Orientation

Assignment

Descriptor

Calculation Features

Image
Image

Fig. 2. Workflow diagram of the detection of image features with the SIFT detector.

The part modified in our approach is marked with a dotted box border.

3 Bivariate Feature Localization

In order to estimate the localization parameters of a feature, a parabolic in-
terpolation of the Difference of Gaussians signal is used by SIFT based feature
detectors [2, 6, 10, 16]. If the neighborhood of a feature in the input image
has Gaussian shape, the output of the Difference of Gaussians filter has Differ-
ence of Gaussians shape [22]. Therefore, the approach of interpolating with a
parabolic curve is suboptimal and can lead to localization errors. This motivates
the approximation of a scale space extremum using a Gaussian (Section 3.1) or
a Difference of Gaussians (Section 3.2). Thereby, we can expect a better approx-
imation for features with a Gaussian shape. An example result compared to the
other affine invariant detectors for a Gaussian feature is shown in Figure 3.

3.1 Gaussian Function Model

The Gaussian function model we propose with the covariance matrix Σ =
(

a2 b
b c2

)
and its determinant |Σ| = det(Σ) is the following

Gx0,Σ(x) =
rG√|Σ| · e

− 1
2 ((x−x0)

�Σ−1(x−x0)) (1)

Here, x0 = (x0, y0) ∈ [−1; 1] is the subpel position of the feature point. The
parameters a, b, c define the surrounding elliptical region and rG is a peak value
parameter. The parameter vector pG = (x0, y0, a, b, c, rG) determines a member
of the function model.

3.2 Difference of Gaussians Function Model

If we assume a Gaussian image signal Gx0,Σ surrounding a feature point as in
Equation (1), the correct response of the Difference of Gaussians filter is a Differ-
ence of Gaussians function with modified standard deviations σ. This motivates
the following Difference of Gaussians regression function

Dx0,σ = rD(Gx0,Σσ − Gx0,Σkσ
) ∗ Gx0,Σ

= rD(Gx0,Σσ+Σ − Gx0,Σkσ+Σ) (2)

with Σσ =
(

σ2 0
0 σ2

)
and the standard deviation σ of the detected scale of the

feature. Like in equation (1), rD is a peak value parameter.
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Fig. 3. Different results of feature localization of an elliptical Gaussian blob obtained

by the Harris-Affine, Hessian-Affine, MSER, and our approaches Gaussian-Affine and

DoG-Affine (from left to right). The right three images show desirable results.

Like the Gaussian function (Section 3.1), the Difference of Gaussians function
can be described by a six-dimensional parameter vector pD = (x0, y0, a, b, c, rD).

3.3 Optimization and Computational Complexity of the Approaches

The bivariate Gaussian (Section 3.1) and the Difference of Gaussians function
models (Section 3.2) evaluate 9 and 27 pixel values, respectively. A member of the
function model is determined by a parameter vector p = (x0, y0, a, b, c, r). The
parameter vector p is identified through a regression analysis which is initialized
with the fullpel position, a circular shape Σ = E, and a peak level parameter
equal to 1. To obtain the optimal parameter vector, the distance between the
pixel neighborhood and the model function is minimized using the Levenberg-
Marquardt algorithm.

Convergence. As only the feature localization scheme of SIFT is modified,
the original SIFT and the proposed localization approaches use the same fullpel
features selected in the scale space pyramid as input. Nevertheless, some features
are rejected after the localization by SIFT that are considered valid using our
approaches and vice versa. The overall numbers of features per image Nf are
approximately equal as shown in Table 1 for the Graffiti sequence. The number
of features that are localized with our methods but discarded by SIFT, are 173
and 210 for Gaussian-Affine and DoG-Affine, respectively.

Computation Time. The computation time of the two approaches using
the same SIFT implementation basis1 is shown in Table 2. Here, The Graffiti
(Section 4) sequence is processed. The overall time needed is divided by the
number of detected features. Compared to the original SIFT (o-sift), the com-
putational overhead of Gaussian-Affine (gauaff) and DoG-Affine (dogaff) is a
factor of 2.7 and 7.1, respectively. While the Difference of Gaussians function
model appears to be mathematically correct, the Gaussian-Affine provides a
good approximation.

1 http://web.engr.oregonstate.edu/~hess/

http://web.engr.oregonstate.edu/~hess/
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Table 1. Detected number of features of the original SIFT (o-sift) and our approaches

Gaussian-Affine (gauaff) and DoG-Affine (dogaff). About 200 of the features localized

by our methods are rejected by the original SIFT - detector as shown in the columns

gauaff \ o-sift and dogaff \ o-sift, respectively.

o-sift gauaff gauaff \ o-sift dogaff dogaff \ o-sift
Nf 1148 1234 173 1270 210

Table 2. The computation time used per feature for the original SIFT (o-sift) and our

approaches Gaussian-Affine (gauaff) and DoG-Affine (dogaff)

o-sift gauaff dogaff
0.97ms 2.67ms 6.91ms

4 Experimental Results

For the evaluation of our approaches, we use the following input data:

– synthetic test images to prove the accuracy of our approaches for Gaussian
shaped features (Figure 4)

– natural image set with viewpoint changes to evaluate the competitiveness
compared to the most accurate affine invariant detectors [11]

– natural motion blur images to show the improvement in a structure from
motion approach (Figure 5)

As pointed out in [15], the most accurate affine invariant feature point detectors
are the Hessian-Affine [10] (hesaff), the Harris-Affine [9] (haraff), and Maximally
Stable Extremal Regions (MSER) [14] (mseraf). Hence, these detectors will serve
as benchmarks for the comparison with our detectors Gaussian-Affine (Section
3.1) and DoG-Affine (Section 3.2), denoted as gauaff and dogaff. The input
data description used for the evaluation follows in Section 4.1. The results are
presented in Section 4.2.

4.1 Data Construction

Synthetic Image Data. The synthetic test images are constructed using ellip-
tical Gaussian blobs with varying size and orientation determining the covariance
matrix Σ0. The image size is 64× 64. Some examples are shown in Figure 4. The
elliptical region is defined by the center position (x0, y0) and the ground truth

covariance matrix Σ0 =
(

a2
0 b0

b0 c2
0

)
. Gaussian noise is added to the images. All

resulting covariance matrices estimated in the results section will be invariant
to a global scale factor. Therefore, a normalization is applied to the covariance
matrix results.
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Fig. 4. Some examples of the synthetic test images with varying size (left) and angle

(right) determined by the covariance matrix Σ0

Reference Image Data Set. For the evaluation with natural images, the well-
known Mikolajczyk data set2 is used. The data set provides image pairs with a
camera performing a rotational movement, or observing a planar scene. Thus,
all detected feature ellipses in one image can be mapped to the corresponding
feature ellipses in the other image by a homography. The estimated homography
matrices are also provided within the data set. These images are widely used by
the computer vision community, especially for evaluating feature descriptors.

Natural Motion Blur Images. To obtain natural motion blured images, a
sequence is captured from a moving vehicle. Radial distortion is compensated.
The scene content consists of rigid geometry. The level of motion blur as well
as the viewpoint angle increases with a decreasing distance of camera and scene
structure. Some images of the sequence (94 frames) are shown in Figure 5.

Fig. 5. Some example frames f0, f30, f60, f90 of the natural motion blur sequence (94

frames). The motion blur level on the sidewalk is higher than on the wall.

4.2 Results

Synthetic Images. The methods lead to different results regarding the localiza-
tion and the amount of detected features as shown in Figure 3. The subjectively
best results are obtained by MSER and our approaches Gaussian-Affine and
DoG-Affine, which are very similar (see Figure 3). For an objective evaluation of
the synthetic images, the Surface Error [9] is calculated. The surface error is a
percentage value that is minimal if a detected ellipse area is exactly matching the
ellipse determined by the ground truth values. For the evaluation, the detected
covariance matrices are normalized. This avoids the results being dependent on
a global scale of the features. If multiple features are detected, the best of them
2 www.robots.ox.ac.uk/~vgg/research/affine/index.html

www.robots.ox.ac.uk/~vgg/research/affine/index.html
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is chosen. For the evaluation, Gaussian noise of 30 dB is added to the images.
The results are shown in Figure 6. Our detector DoG-Affine provides the best
results for this type of features with added noise. The Gaussian-Affine detector
yields nearly the same results with slightly increased error. Harris-Affine, a cor-
ner detector, results in the highest Surface Errors of the four detectors. Ellipses
with small sizes of ≤ 2.5 are not detected by Hessian-Affine.
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Fig. 6. Surface Error for the test signals shown in Figure 4 with varying angle alpha and

varying size. Gaussian noise of 30 dB is added to the images. From left top to bottom

right: Harris-Affine, Hessian-Affine, MSER, and our approach DoG-Affine. Contour

lines are displayed in the ground plane. Together with the legend at the top right of

each diagram, they indicate the error level.

Natural Image Pairs with Viewpoint Change. The image data sets pro-
vide image pairs with associated homography matrices that map all features of
one image to the corresponding features in the other image. For the evaluation,
the repeatability criterion with default parameters is used [9]. A correspondence
is deemed correct, if the surface error between the ellipses of the features is be-
low 40 %. The repeatability value is the ratio of correct correspondences and
the minimal number of feature points detected in the first and the second im-
age. The detectors SIFT, Gaussian-Affine, and DoG-Affine use the same default
SIFT threshold values [6]. The evaluation results are shown in Figure 7. On top,
the repeatability values between the first and the other images are displayed.
The bottom row shows the number of correct matches. It can be seen that our
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Fig. 7. Results of the Graffiti sequence (left) and the Wall sequence (right) demon-

strating perspective change. On top, the repeatability curves are shown, the bottom

diagrams show the number of correctly detected feature pairs.

detectors Gaussian-Affine and DoG-Affine provide better results for strong view-
point change than the original SIFT approach. MSER performs best for these
still images with well-bounded textures. For most natural images in this setup,
the Gaussian-Affine provides slightly better repeatability results than the DoG-
Affine approach. Overall, our approaches provide competitive accuracy, MSER
and Hessian-Affine provide slightly better repeatability rates. This result is also
valid for the other test scenarios [11], which are not shown here.

Motion Blur Sequence. The test scenario for the motion blur images evalu-
ates a structure from motion technique like in [1] to demonstrate the usability
of the feature detectors in the field of multiview scene reconstruction. Resulting
from the camera motion, blurring occurs as well as a moderate viewpoint an-
gle between consecutive frames. The motion blur level as well as the viewpoint
angle increase with a decreasing distance between scene content and camera po-
sition. For the comparison, feature point sets are generated for each of the tested
detectors. For the reconstruction of the scene, feature correspondences are es-
tablished using the SIFT descriptor [6]. Then, the outliers are removed using the
fundamental matrix and the RANSAC algorithm [23]. Finally, the cameras Ak

and 3D object points Pj are estimated and refined using incremental bundle ad-
justment [1, 24]. The incremental bundle adjustment minimizes the reprojection
error, which is defined by the distances between an estimated 3D object point Pj
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Fig. 8. Structure from motion results using different detectors for the natural motion

blur sequence for each frame k. Harris-Affine, Hessian-Affine, MSER, Gaussian-Affine,

DoG-Affine. Left: mean reprojection error [pel], right: Number of valid 3D object points

until frame k. haraff and hesaff fail in frame ks = 2.

projected by the estimated camera matrix Ak and the detected positions of cor-
responding 2D feature point pj,k in the images k (see e.g. [24]).

RMSE =

√√√√ 1
JK

J∑
j=1

K∑
k=1

d(pj,k, AkPj)2 (3)

The RMSE is used for the evaluation which is shown for each frame k in Figure
8, left. The number of valid reconstructed object points J for each k is shown in
Figure 8, right. It can be seen that the proposed detectors Gaussian-Affine and
DoG-Affine provide a more accurate reconstruction of the scene than the original
SIFT detector. The reconstruction with DoG-Affine provides a smaller RMSE
than with Gaussian-Affine, but about 11% less object points. The estimation
using Harris-Affine, Hessian-Affine, or MSER fails after an early frame ks in
the bundle adjustment step. In Table 3 the failure frame number ks, the overall
RMSE and the number of object points in the sequence for each detector are
shown. The main reason for the failure is that the motion blurred sideway region
is not represented by sufficiant accurate features as shown in Figure 1.

Table 3. Detection results of the natural motion blur sequence (see Figure 5, 94

frames). After frame number ks the bundle adjustment diverges if ks < 94. The overall

resulting number of valid object points is denoted with J .

haraff hesaff mseraf o-sift gauaff dogaff
ks 2 2 52 94 94 94
J 30 31 641 2760 2962 2627

RMSE − − 0.278 0.325 0.309 0.301
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5 Conclusion

In this work, an extension to the SIFT detector is proposed which enables the
detection of elliptical structures in the Difference of Gaussians gradient signal.
Therefore, the subpel estimation technique of the original SIFT detector is ex-
changed by a regression analysis using two proposed function models, a Gaussian
and a Difference of Gaussians. These function models provide features that are
rejected by SIFT. The resulting feature detector has all properties of the widely
respected SIFT detector, but provides invariance to affine transformation and
motion blur while preserving the stable convergence behavior.

The accuracy of the approach is proved using synthetically constructed image
data with added Gaussian noise. For the viewpoint change scenario, our approach
shows superior performance compared to SIFT, while being competitive to state
of the art affine invariant feature detectors. The natural motion blur images show
superior structure from motion reconstruction results for our approach compared
to all other detectors regarding accuracy and stability.
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13. Köser, K., Koch, R.: Perspectively invariant normal features. In: IEEE Interna-

tional Conference on Computer Vision (ICCV), pp. 1–8 (2007)

14. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from max-

imally stable extremal regions. In: British Machine Vision Conference (BMVC),

vol. 1, pp. 384–393 (2002)

15. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. In:

Foundations and Trends in Computer Graphics and Vision, vol. 3 (2008)

16. Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image

descriptors. In: International Conference on Computer Vision and Pattern Recog-

nition (ICCV), pp. 506–513 (2004)

17. Schmid, C., Mohr, R., Bauckhage, C.: Comparing and evaluating interest points.

In: IEEE International Conference on Computer Vision and Pattern Recognition

(ICCV), pp. 230–235 (1998)

18. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. In-

ternational Journal of Computer Vision (IJCV) 37, 151–172 (2000)

19. Mikolajczyk, K., Leibe, B., Schiele, B.: Multiple object class detection with a gen-

erative model. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), vol. 1, pp. 26–36 (2006)

20. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering ob-

jects and their location in images. In: IEEE International Conference on Computer

Vision, vol. 1, pp. 370–377 (2005)

21. Vatis, Y., Ostermann, J.: Adaptive interpolation filter for h.264/avc. IEEE Trans-

actions on Circuits and Systems for Video Technology 19, 179–192 (2009)

22. Cordes, K., Müller, O., Rosenhahn, B., Ostermann, J.: Half-sift: High-accurate

localized features for sift. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) Workshop, Miami Beach, USA, pp. 31–38 (2009)

23. Fischler, R.M.A., Bolles, C.: Random sample consensus: A paradigm for model

fitting with application to image analysis and automated cartography. Communi-

cations of the ACM 24, 381–395 (1981)

24. Thormählen, T., Hasler, H., Wand, M., Seidel, H.P.: Merging of feature tracks

for camera motion estimation from video. In: 5th European Conference on Visual

Media Production (CVMP), pp. 1–8 (2008)



Linear Dimensionality Reduction through
Eigenvector Selection for Object Recognition

F. Dornaika1,2 and A. Assoum3

1 University of the Basque Country, San Sebastian, Spain
2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

3 LaMA Laboratory, Lebanese University, Tripoli, Lebanon

Abstract. Past work on Linear Dimensionality Reduction (LDR)has em-

phasized the issues of classification and dimension estimation. However,

relatively less attention has been given to the critical issue of eigenvector

selection. The main trend in feature extraction has been representing the

data in a lower dimensional space, for example, using principal component

analysis (PCA) without using an effective scheme to select an appropriate

set of features/eigenvectors in this space. This paper addresses Linear Di-

mensionality Reduction through Eigenvector selection for object recogni-

tion. It has two main contributions. First, we propose a unified framework

for one transform based LDR. Second, we propose a framework for two

transform based DLR. As a case study, we consider PCA and Linear Dis-

criminant Analysis (LDA) for the linear transforms. We have tested our

proposed frameworks on several public benchmark data sets. Experiments

on ORL, UMIST, and YALE Face Databases and MNIST Handwritten

Digit Database show significant performance improvements in recognition

that are based on eigenvector selection.

1 Introduction

In most computer vision and pattern recognition problems, the large number
of sensory inputs, such as images and videos, are computationally challenging
to analyze. In such cases it is desirable to reduce the dimensionality of the
data while preserving the original information in the data distribution, allowing
for more efficient learning and inference. In order to understand and analyze
the multivariate data, we need to reduce the dimensionality. If the variance of
the multivariate data is faithfully represented as a set of parameters, the data
can be considered as a set of geometrically related points lying on a smooth
low-dimensional manifold. The fundamental issue in dimensionality reduction is
how to model the geometry structure of the manifold and produce a faithful
embedding for data projection. During the last few years, a large number of
approaches have been proposed for constructing and computing the embedding.
We categorize these methods by their linearity. The linear methods, such as
principal component analysis (PCA) [1], multidimensional scaling (MDS) [2] are
evidently effective in observing the Euclidean structure. The nonlinear methods
such as locally linear embedding (LLE) [3], Laplacian eigenmaps [4], Isomap [5]
focus on preserving the geodesic distances.
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Linear dimensionality reduction (LDR) techniques have been increasingly im-
portant in pattern recognition [6] since they permit a relatively simple mapping of
data onto a lower-dimensional subspace, leading to simple and computationally
efficient classification strategies. Although the field has been well developed for
computing the dimension of mapping for the supervised and unsupervised cases,
the issue of selecting the new components in the new-subspace has not received
much attention. In most practical cases, relevant features in the new embedded
space are not known a priori. Finding out what features to use in a classification
task is referred to as feature selection. Although there has been a great deal of work
in machine learning and related areas to address this issue these results have not
been fully explored or exploited in emerging computer vision applications. Only
recently there has been an increased interest in deploying feature selection in ap-
plications such as face detection, vehicle detection, and pedestrian detection.

The main trend in feature extraction has been to represent the data in a lower
dimensional space computed through a linear or non-linear transformation satis-
fying certain properties. The goal is to find a new set of features that represents
the target concept in a more compact and robust way but also to provide more
discriminative information. Most efforts in LDR have largely ignored the feature
selection problem and have focused mainly on developing effective mappings
(i.e., feature extraction methods).

In this paper, we propose a feasible approach to the problem of linear dimen-
sionality reduction: how many and which eigenvectors to retain. Our proposed
method can be seen as an extension of [7]. In [7], the authors use PCA and fea-
ture selection for the task of object detection. They demonstrate the importance
of feature selection (eigenvector selection) in the context of two object detection
problems: vehicle detection and face detection. However, our proposed work dif-
fers from [7] in three aspects. First, we address Linear Dimensionality Reduction
and feature selection for object recognition—a more generic problem than ob-
ject detection. Second, our study is not limited to the use of the classical PCA.
Third, we propose a novel scheme for selecting eigenvectors associated with a
concatenation of two linear embedding techniques.

The remainder of the paper is organized as follows. Section 2 briefly describes
some backgrounds on Linear Dimensionality Reduction schemes as well as on
feature selection. Section 3 presents the proposed approach for the estimation
of embedding through feature selection. Section 4 presents some experimental
results obtained with several benchmark data sets.

2 Backgrounds

2.1 Linear Dimensionality Reduction

All Linear Dimensionality Reduction schemes (including the most recent ones)
compute a matrix transform that maps the original data samples to a new sub-
space. In general, this computation is carried out by solving an eigen decom-
position problem. Let W be the matrix formed by concatenating the relevant
obtained eigenvectors. The linear transform is given by WT . The dimension of
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each eigenvector is equal to that of the original data samples. Estimating the
number of the relevant eigenvectors (the columns of matrix W) is usually carried
out using some classical schemes (e.g., using the percentage of retained variabil-
ity) or by performing a series of experiments on a given validation dataset (e.g.,
plotting the recognition rate versus the number of retained eigenvectors). How-
ever, how many and which eigenvectors to retain from the global set of computed
eigenvectors is still an open problem. It has been argued that many discarded
eigenvectors by classical schemes can have much discriminative information. In
this study, we propose a unified framework that selects the most appropriate
eigenvectors for a given classification problem. Among all the subspace learn-
ing methods, PCA and LDA are two most famous ones and have become the
most popular techniques for biometrics applications such as face recognition and
palmprint recognition. PCA is a popular method for unsupervised linear dimen-
sionality reduction [8]. It projects the original data into a low-dimensional space,
which is spanned by the eigenvectors associated with the largest eigenvalues of
the covariance matrix of all data samples. Turk and Pentland [1] proposed the
first application of PCA to face recognition. Since the basis vectors constructed
by PCA had the same dimension as the input face images, they were named
”Eigenfaces”. Unlike PCA, LDA is a supervised method which takes full con-
sideration of the class labels. While PCA seeks directions that are efficient for
representation, LDA seeks directions that are efficient for discrimination. LDA
is a supervised technique which has been shown to be more effective than PCA
in many applications. It aims to maximize the between-class scatter and simul-
taneously minimize the within-class scatter. In many cases, the concatenation of
PCA and LDA has proven to improve the recognition performance as well as to
solve the possible singularities of LDA (Small Sample Size problem). Without
loss of generality, we apply our proposed frameworks for LDR with eigenvector
selection on the linear embedding techniques: PCA, LDA, and PCA+LDA.

2.2 Feature Selection

In a great variety of fields, including pattern recognition and machine learning,
the input data are represented by a very large number of features, but only few
of them are relevant for predicting the label. Many algorithms become compu-
tationally intractable when the dimension is high. On the other hand, once a
good small set of features has been chosen, even the most basic classifiers (e.g.
1-nearest neighbor, 1NN) can achieve desirable performance. Therefore, feature
selection, i.e. the task of choosing a small subset of features which is sufficient
to predict the target labels well, is critical to minimize the classification error.
At the same time, feature selection also reduces training and inference time and
leads to a better data visualization as well as to a reduction of measurement
and storage requirements. Roughly speaking, feature selection algorithms have
two key problems: search strategy and evaluation criterion. According to the
criterion, feature selection algorithms can be categorized into filter model and
wrapper model. In the wrapper model, the feature selection method tries to di-
rectly optimize the performance of a specific predictor (classification or clustering
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algorithm). The main drawback of this method is its computational deficiency.
In the filter model, the feature selection is done as a preprocessing, without try-
ing to optimize the performance of any specific predictor directly [9]. This is
usually achieved through an evaluation function and a search strategy is used to
select a feature subset that maximizes this evaluation function. A comprehensive
discussion of feature selection methodologies can be found in [10,11].

3 Eigenvector Selection for Object Recognition

We propose two frameworks for LDR: i) the first framework addresses the linear
dimensionality reduction given by one matrix transform (e.g., the PCA trans-
form), and ii) the second framework addresses the linear dimensionality reduc-
tion given by the concatenation of two matrix transforms (e.g., PCA+LDA or
PCA+Locality Preserving Projection (LPP) [12]).

3.1 One Transform Based LDR

In this section, we propose a generic scheme for eigenvector selection. The pro-
posed scheme can be used by any LDR technique. In our study, this scheme will
be used with PCA and LDA. We will adopt a wrapper technique for eigenvector
selection. The evaluation strategy will be directly encoded by the recognition
accuracy over validation sets. Without any loss of generality, the classifier used
after Linear Dimension Reduction and eigenvector selection will be the KNN
classifier. This classifier is one of the oldest and simplest methods for pattern
classification and it is one of the top 10 algorithms in data mining [13]. The
adopted search strategy will be carried out by a Genetic Algorithm (GA). We
use a simple encoding scheme in the form of a bit string (a chromosome) whose
length is determined by the total number of eigenvectors. Each eigenvector is
associated with one bit in the string. If the ith bit is 1, then the ith eigenvector
is selected, otherwise, that eigenvector is ignored. Each string thus represents a
different subset of eigenvectors.

Evaluation Criterion. The goal of feature selection is to use less features
to achieve the same or better performance. Therefore, the fitness evaluation
contains two terms: (1) accuracy and (2) the number of features selected. The
performance of the KNN classifier is estimated using a validation data set which
guides the GA search. Each feature subset contains a certain number of eigen-
vectors. If two subsets achieve the same performance, while containing different
number of eigenvectors, the subset with fewer eigenvectors is preferred. Between
accuracy and feature subset size, accuracy is our major concern. We used the
fitness function shown below to combine the two terms:

Fitness = c1 Accuracy + c2 Zeros (1)

where Accuracy corresponds to the classification accuracy on a validation set
for a particular subset of eigenvectors, and Zeros corresponds to the number of
eigenvectors not selected (i.e., zeros in the individual). c1 and c2 are two positive
coefficients with c2 << c1. In our implementation, c1 was set to 104 and c2 to 1.
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Fig. 1. Evaluating the fitness of a given individual string in the Genetic Algorithm.

The matrix W denotes the whole set of eigenvectors. The matrix W′ denotes a putative

subset of eigenvectors. The corresponding recognition rate will be used for computing

the fitness of the string (Eq. (1)).

Fig. 2. Evaluating the fitness of a given individual string in the Genetic Algorithm for

the two transform based LDR

Search Strategy: A Genetic Algorithm. Genetic Algorithms (GAs) are
biologically motivated adaptive systems based on natural selection and genetic
recombination [14]. In the standard GA, candidate solutions are encoded as fixed
length vectors–strings. The initial population of solutions is chosen randomly.
These candidate solutions are allowed to evolve over a certain number of genera-
tions. At each generation, the fitness of each string is calculated; this is a measure
of how well the string optimizes the objective function. Subsequent generations
are created through a process of selection, recombination, and mutation. In all
of our experiments, we used a population size of 100. The maximum number of
generations is set to 50 generations.



LDR through Eigenvector Selection for Object Recognition 281

Figure 1 illustrates how the fitness of every individual string is evaluated using
training and validation sets. The matrix W denotes the whole set of eigenvectors.
The matrix W′ denotes the selected subset of eigenvectors. The corresponding
recognition rate will be used as the first term in Eq. (1) in order to compute the
fitness of the string.

3.2 Two Transform Based LDR

In the previous section, we have described the linear dimensionality reduction
through feature selection when the linear embedding is given by one single matrix
transform. In this section, we describe our proposed framework for eigenvector
selection whenever the linear embedding is given by the concatenation of two
matrix transforms. Our proposed framework is generic in the sense that it can be
used with any pair of linear dimensionality approaches. However, for the sake of
clarity and without loss of generality, we assume that the first linear embedding
is given by PCA and the second linear embedding is given by LDA. Note that
when face images are mapped using this concatenation we get the embedding
of Fisherface. One possible solution is to perform classical PCA and LDA in
sequence. The feature selection scheme is then invoked in order to select the
most appropriate eigenvectors for both linear transforms using the concatenated
selected features. However, this scheme does not take into account the fact that
the second embedding (in our case it is LDA) is already built on the total set
of eigenvectors of the first embedding (in our case it is PCA). Thus, we propose
a novel flexible selection scheme that is summarized in Figure 2. In this case,
we design a chromosome with two fields. The first field is associated with the
PCA eigenvectors (its size is set in the same manner of the one transform based
DLR) and the second field is associated with the LDA eigenvectors (the size is
fixed to the number of classes minus one). As can be seen, for every subset of
selected PCA eigenvectors there will be a different global set of LDA eigenvectors.
In other words, for a given training set, the global PCA matrix is fixed but the LDA
matrices (global and subset) will depend on the solution encoded by the current
chromosome. Once again, the best chromosome is searched for by maximizing the
fitness measure (1) over a validation set. To this end, we use the same Genetic
Algorithm.

4 Experimental Results

4.1 Benchmark Data Sets

The data sets used are ORL face data set, UMIST face data set, YALE face data
set and MNIST handwritten digit data set1. The ORL data set contains 400 face
1 ORL, UMIST, YALE, and MNIST data sets can be retrieved respectively from

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

http://www.shef.ac.uk/eee/research/vie/research/face.html

http://see.xidian.edu.cn/vipsl/database_Face.html

http://yann.lecun.com/exdb/mnist/

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.shef.ac.uk/eee/research/vie/research/face.html
http://see.xidian.edu.cn/vipsl/database_Face.html
http://yann.lecun.com/exdb/mnist/
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images of 40 individuals. Each individual has 10 gray images with size 92×112.
The UMIST data set contains 575 gray images of 20 different people. The size
of each image is 112×92 pixels. The YALE face data set contains 165 images of
15 persons. Each individual has 11 images of size 320×243 pixels. The MNIST
Handwritten Digit data set is composed of 70000 sample digits. Each digit has
6000 examples for training and 1000 examples for testing. In our experiment,
only one tenth of MNIST data set is used. The details of these data sets are
described in Table 1. Some samples of these data sets are shown in Figure 3.

Table 1. Details of benchmark data sets

Data set Data set size (N) Sample dimension (D) Nb. classes (C)

ORL 400 10304 40

UMIST 575 10304 20

YALE 165 77760 15

MNIST 7000 784 10

ORL UMIST

YALE MNIST

Fig. 3. Some samples in ORL, UMIST, YALE, and MNIST data sets

4.2 Method Comparison

We empirically evaluate the improvement obtained by our proposed frameworks
on the above data sets. We have performed a number of experiments and com-
parisons to demonstrate the importance of eigenvector selection for object recog-
nition based on linear embedding. First, recognition experiments are conducted
on the data sets using the classical Linear Dimensionality Reduction schemes,
i.e. using the top eigenvectors, followed by the KNN classifier (K=3). Second,
recognition experiments are conducted on the same data sets using the Linear
Reduction schemes with feature selection. In this scheme, we use ten fold cross-
validation scheme. For each fold, 70 % of the samples are used for training and
the remaining samples are used for testing. For all data sets used, we retained
the top 150 eigenvectors obtained by the classical PCA. The top 150 eigenvectors
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Table 2. Average recognition rates obtained with four data sets

PCA PCA with FS PCA+LDA PCA+LDA with FS

ORL 91.7% 97.8% 95.7% 100%

UMIST 95.7% 99.4% 98.7% 100%

YALE 78.4% 97.3% 97.5% 99.8%

MINST 85.0% 93.7% 77.2% 93.6%
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Fig. 4. Recognition rates using linear dimensionality reduction schemes applied on

ORL data set. The blue bars correspond to the classical dimensionality reduction

schemes, and the red bars to their use with feature selection (eigenvector selection)

paradigm (Section 3.1).
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Fig. 5. Recognition rates using linear dimensionality reduction and Feature Selection

applied on UMIST dataset. The blue bars correspond to the PCA dimensionality re-

duction scheme. The red bars correspond to its use with the feature selection paradigm

(Section 3.1).

correspond to an average variability (over ten training sets) of 96.5% , 97.7%,
99.9%, and 97.6% for ORL, UMIST, YALE, and MNIST data sets, respectively.

Figure 4 shows the recognition rate for ORL data set for all 10 partitions. The
two plots correspond to the PCA and LDA schemes, respectively. The blue bars
correspond to the classical linear mapping (150 dimensions for PCA, 39 dimen-
sions for LDA). The red bars correspond to the mapping obtained by the same
linear methods with Feature Selection (Section 3.1). As can been seen, the use of
feature selection paradigm has improved the recognition rate. Figures 5 and 6 illus-
trate the recognition rate obtained for UMIST and YALE data sets, respectively.
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Fig. 6. Recognition rates using linear dimensionality reduction and Feature Selection

applied on YALE dataset. The blue bars correspond to the PCA dimensionality re-

duction scheme. The red bars correspond to its use with feature selection paradigm

(Section 3.1).
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Fig. 7. The selected eigenvectors for YALE data set and for 10 folds. In this array, a

white dot means that the corresponding eigenvector has been selected. As can be seen,

in almost all folds the first three eigenvectors have not been selected.

We observe that the improvement obtained with YALE data set is larger than the
one obtained with other data sets. This is due to the fact that, in the YALE data
set, the face images are affected by several types of variability (e.g., non uniform
lighting and facial expressions) such that the classification based on the classical
mapping with the top eigenvectors did not show a performance having the same
order of magnitude as the ones obtained for the other data sets. This was proven by
the fact that the feature selection paradigmhas not selected the top three eigenvec-
tors which correspond to illumination variations (Figure 7). Table 2 summarizes
the average recognition rate over the 10 partitions for the four data sets. The last
column corresponds to the proposed two transform based LDR (Section 3.2). As
can be seen, the second framework has provided high recognition rates for face
datasets (C � 15).

5 Conclusion

In this paper, we presented two unified frameworks for identifying relevant eigen-
vectors for LDR based multi-class recognition problems. The first framework
uses one matrix transform. The second framework uses the concatenation of
two matrix transforms. The procedure of eigenvector identification is based on
maximizing the recognition rate with a genetic algorithm. Experiments are con-
ducted on four benchmark data sets using the linear embedding given by PCA
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and LDA. These experiments have shown that the recognition rate obtained by
the two proposed frameworks has increased and that the compression of data is
improved. We have found that this holds true for LDA embedding whenever the
number of classes is greater than 10.
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Abstract. This paper describes a method to minimize the immense

training time of the conventional Adaboost learning algorithm in object

detection by reducing the sampling area. A new algorithm with respect

to the geometric and accordingly the symmetric relations of the ana-

lyzed object is presented. Symmetry enhanced Adaboost (SEAdaboost)

can limit the scanning area enormously, depending on the degree of the

objects symmetry, while it maintains the detection rate. SEAdaboost

allows to take advantage of the symmetric characteristics of an object

by concentrating on corresponding symmetry features during the detec-

tion of weak classifiers. In our experiments we gain 39% reduced training

time (in average) with slightly increasing detection rates (up to 2.4% and

up to 6% depending on the object class) compared to the conventional

Adaboost algorithm.

1 Introduction

This paper introduces an extension of the object detection framework proposed
by Viola and Jones [1] in which the well established Adaboost algorithm [2, 3]
is utilized to form a strong classifier.

Adaboost in one of its various forms is widely used in many tasks of object
detection. Applied by the framework of Viola and Jones it allows high detection
rates in real-time classification. Because of its economic consumption of process-
ing power it is a good choice for applications, such as face detection, on mobile
devices like digital cameras and camera phones. One drawback of the algorithm
is the extensive training phase, due to the huge number of weak classifiers and
the iterative training.

Our contribution is to reduce this problem by exploiting symmetric object
characteristics, since symmetries can be observed all over nature [4], see also
Figure 1. Not only constructed objects (e.g. buildings, cars, etc.) have axes of
symmetry but also humans, animals and plants. We want to take advantage
of this phenomenon by exploiting this fact in the learning and detection phase
of the conventional Adaboost algorithm. In the experiments we demonstrate the
applicability of our method on two example scenarios. The first scenario is the
optical inspection of SMD-components while our second scenario approaches face
detection.

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 286–295, 2010.
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Fig. 1. Objects with symmetric characteristics: left: SMD-component symmetry, mid-

dle: face symmetry, right: animal symmetry

This paper is structured as follows: In the next section all required tools for
boosting are briefly described. In section 3 the modified symmetry-enhanced
Adaboost algorithm will be defined in detail. The final section presents the
experimental results on SMD-components and face detection and a comparison
to the conventional Adaboost algorithm for object detection as proposed by
Viola and Jones [1].

2 Adaboost Algorithm

Adaptive Boosting (short: Adaboost), a machine learning algorithm proposed
by Freund and Schapire [2, 3] is the foundation for our work. This algorithm is
based upon the boosting theory of Kearns developed in 1988 [5]. In collaboration
with Vazirani [6] the theory was enhanced and finally elaborated by Freund and
Schapire in 1995 to the popular Adaboost algorithm.

2.1 Adaboost by Freund and Schapire

Adaboost combines multiple weak classifiers to one strong classifier in the fashion
of a weighted sum. These weights are determined during a round-based training
phase. In each round a given weak classifier is evaluated on the training set
resulting in higher weights for better performing classifiers. An important aspect
of Adaboost is that also weights are assigned to the training examples. These
weights are adapted after each round to increase the influence of incorrectly
classified examples. The only required inputs besides the number of rounds in
the training phase are a collection of positive and negative image examples as
well as the set of weak classifiers.

Adaboost yields good results in various object detection applications but has
the shortcoming of an extensive training phase.

Several variants of boosting algorithms have been developed in the last years,
e.g. LPBoost, SoftBoost, MILBoost, FloatBoost or S-Adaboost [7–11]. LPBoost
focuses on minimizing the generalization error by maximizing the soft margin.
Its drawback is to determine a good upper bound for the number of iterations.
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SoftBoost [8] overcomes this problem by applying a relative entropy regulariza-
tion yielding in an upper bound that is logarithmic in the number of examples.
But the generalization error of SoftBoost decreases only slowly at the begin-
ning of the training. Entropy Regularized LPBoost [7] adds the same relative
entropy regularization to LPBoost and thus combines its high performance with
a good upper bound. In contrast to Adaboost MILBoost [9] introduces a cost
function which is combined with the feature selection. A backtrack mechanism
is provided by FloatBoost [10] that allows to remove weak classifiers having low
performance after each iteration step of Adaboost. In S-Adaboost [11] the Di-
vide and Conquer Principle is utilized to allow Adaboost to divide the input
space into subspaces of e.g different classification difficulty and to classify them
using dedicated strong classifiers. A non-linear combination of these classifiers
joins the advantages of simpler but more general and stronger but more specific
classifiers.

Whereas these methods concentrate on the weighting functions iteration [7, 8]
and feature analysis [9, 10], we propose to integrate geometric prior information
in the feature selection to speed up the training phase. Assuming a symmetry
property in the training of object classes is a simple but effective way to reduce
the enormous sampling size and to exploit properties of natural objects. There-
fore, our method is completely different to earlier approached modifications.
But our contribution can easily be applied to the above mentioned adaptions of
Adaboost to further enhance the performance.

2.2 Framework by Viola and Jones

Based on the algorithm of Freund and Schapire [2], Viola and Jones introduced
Adaboost into the field of face detection [1]. They boosted weak classifiers using
Haar-like features and the representation by integral images. Viola and Jones
achieved excellent results, furthermore their framework is working in real-time.

The name Haar-like feature comes from their similarity to Wavelet trans-
formations with Haar basis functions. Haar-like features are simple rectangle
features, which are a good choice to represent weak classifiers in boosting. Each
feature is described by a position (offset) and a +1/-1-profile. Figure 2 shows
some typical features for object detection.

The integral image offers a fast computation of rectangle feature values. For
each image location (x,y) the sum of pixels above and to the left of (x,y) is
pre-calculated and stored. Using integral images the Haar-like features can be
computed in an very efficient way.

To deal with the huge amount of weak classifiers in the training phase they
proposed an algorithm that searches in each training round over the set of pos-
sible weak classifiers and selects the one with the lowest classification error by
passing only a single time through a sorted list. For more information about the
feature selection mechanism see [1].
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3 Symmetry Enhanced Adaboost

3.1 Comprising of Symmetric Object Characteristics by Inserting
Symmetry Features

Many natural objects have symmetric characteristics. Faces can be divided into
two halves by inserting one symmetry axis. Other objects from nature for exam-
ple flowers, butterflies or snowflakes can be divided into several segments. Even
viruses are showing a very high symmetry in several axes. Regarding SMD-
Components we can divide each picture into four quadrants by inserting two
symmetry axes. We want to benefit from this symmetry to reduce the training
time and to stabilize the detection rate of Adaboost. We make the assumption
that each selected classifier in an image section implicates at least one symmet-
ric classifier. Reflected along one of the symmetry axes this symmetric classifier
should hold a similar low classification error. In that way the best classifier se-
lected in each round is used to detect a symmetric classifier in a reduced, mirrored
search area. Furthermore to refuse classifiers providing higher error rates we ap-
ply a threshold to assure that the symmetric classifier produces a classification
error nearby the original feature. By setting the threshold in our experiments
to 0.025 the classification error of the symmetric classifier is only allowed to be
0.025 higher than the error of the original classifier. The classification error is
computed as the sum of the weights of the misclassified examples images. As
these weights are normalized, the classification error is within the range [0, 1].
It must be taken into consideration that the position of the object differs from
picture to picture in little variabilities. Thus a variance in x- and y-direction is
inserted. This variance extends the sampling area of the symmetric object area
to a few pixel in both directions.

Fig. 2. Examples of a detected feature and its corresponding symmetry feature

Hence a possible deviation in the position of the object can be adjusted, and
the algorithm has more flexibility in choosing the best corresponding classifier.
By this idea the symmetric characteristics of objects are utilized to reduce the
sampling area. The sampling of only half or quarter of the image suffices in our
application, while features are placed in the other image area by computing the
symmetries.

The reflected features are based on features found in the reduced sampling
area. In our application we use one symmetric axis in the vertical position for
SMD- and face detection. In order to get the corresponding symmetric features
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we must reflect only the vertical features. Line- and horizontal features can stay
in their configuration. But in the case of two symmetric axes we need to apply
a reflection to vertical and horizontal features. Figure 2 shows four examples of
a feature and its corresponding symmetry feature detected by SEAdaboost in
faces and SMD-Components.

3.2 Modified Algorithm

Based on the notation in [1] the SEAdaboost algorithm can be summarized as
follows:

– Given: Labeled images (x1, y1), ..., (xm, ym), with yj ∈ {1, 0}
– Select optimal symmetry axis of images (x1, y1), ..., (xm, ym)
– Initialize weights w1,j = 1

2n , 1
2l if yj = 0,1 respectively, with n denoting the

number of negative and l of positive images,
– For round number r = 1, ..., R:

1. Normalize weights wr,j :

wr,j =
wr,j∑m

k=1 wr, k
(1)

2. Select best weak classifier in the image region limited by the symmetric
axis with respect to the error:

κr = min
∑

k

wk |h(xk, f, p, τ) − yk| (2)

3. Define hr(x) with minimal error κr:

hr(x) = h(x, fr, pr, τr) (3)

4. Select best symmetric weak classifier with respect to the error and the
variance ψ in x- and y-direction:

κr,sym = min
∑

k

wk |h(xk, f, p, τ, ψ) − yk| (4)

5. Define hr,sym(x) with minimal error κr,sym and respect to a threshold
ρ:

hr,sym(x) = h(x, fr,sym, pr,sym, τr,sym, ψ, ρ) (5)

6. Update the weights:

wr+1,j = wr,j · χ1−λj
r · χ(1−λj,sym)βr

r,sym , (6)

χr =
κr

1 − κr
and χr,sym =

κr,sym

1 − κr,sym

with

λj =

{
0 , if xj classified correctly by the weak classifier
1 , else.
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and with

λj,sym =

{
0 , if xj classified correctly by the symmetric weak classifier
1 , else.

and with

βr =

{
1 , if κr,sym < κr + ρ

0 , else.

– The strong classifier is:

Z(x) =

{
1 , if

∑R
r=1 δrhr(x) + δr,symhr,sym(x) ≥ 1

2

∑R
r=1 δr + δr,sym

0 , else.
(7)

with δr = log 1
χr

, δr,sym = βrlog
1

χr,sym

After preprocessing and selecting the optimal symmetry axes the labeled image
examples are initialized, i.e. the weights of each positive and negative image
example are set with respect to the respective training set size. In the beginning
of each round the image weights are normalized (1).

Afterwards the algorithm searches in every round for the best weak classifier,
in an area limited by at least one symmetric axis (2). Searching means to select
the best classifier that splits the images in two labeled groups and thereby pro-
duces the lowest error. One great advantage of this mechanism is that we only
need to pass a single time through a sorted list by calculating an error based on
the image weights. More information about the feature selection mechanism is
given in [1].

Once a weak classifier is detected and defined (3), the regarding feature is
reflected and moved to the symmetric area (4). In this area we search with
respect to a variance for the corresponding symmetric classifier. As shown in
Figure 2 the symmetric classifiers can be moved from the reflected position by
several pixels.

Optimally, the algorithm selects two weak classifiers each round, whereas the
selection of the symmetry classifier is subject to restrictions. This classifier should
only be selected and defined (4,5), if the produced classification error is at maxi-
mum given by the threshold ρ added to the error of the already selected classifier.
If the classifier cannot fulfill this condition, it is rejected. In that way the op-
timal weak classifiers with respect to the weights of the example images are
selected.

In the next step the weights of the example images are updated regarding its
classification success by the newly selected weak classifiers. This provides the
opportunity to prefer incorrect classified images in the following rounds. After
the step of updating the weights the next round starts.
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Finally after the expiration of round R the algorithm forms a strong classi-
fier by a linear combination of the selected (conventional and symmetric) weak
classifiers. Each weak classifier is weighted by its own produced error in (2) and
(4). The strong classifier can be applied to unseen images.

4 Experimental Results

We evaluate SEAdaboost in two fields of application, face detection and the
optical inspection of SMD-components. Whereas for faces, the training data are
obviously faces vs. non-faces, for SMD-components it is different, since we want
to detect wrong positioned or missing components, as well as components with
defect solder joints, see Figure 3.

Fig. 3. Detection of different faces (credits to AT&T Laboratories, Cambridge) and

non-faces / SMD-components and SMD-components with different kinds of failures

One challenge in the classification of SMD-components is given by image ex-
amples, which contain reflections of other components nearby. The difficulty in
the training of these examples lies in classifying defects of solder joints correctly,
while detecting reflections as those. With regard to the face detection we need
to locate faces in different poses or with different expressions. Furthermore our
method should be robust to changing backgrounds or illumination/lighting dis-
parities. For the face detection training we use the AT&T database of faces.
Therefore we give credits to AT&T Laboratories Cambridge. The database con-
tains ten different images each of 40 people varying in the lighting, facial expres-
sions (open / closed eyes, smiling / not smiling) and facial details (glasses / no
glasses). The images were taken against a dark homogeneous background with
the people in an upright, frontal position.

We divided our image bases into a training and validation set using a 67/33
ratio. Crowther and Cox [12] illustrated that especially for small bases like our
set of SMD-components a split containing only a small part for validation is not
recommendable. They suggested to select a ratio between 50/50 and 70/30.
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We demonstrate the difference between the classification results of the con-
ventional Adaboost and SEAdaboost, i.e. we show the minimization of training
time in Table 1.

Table 1. Experimental results of face- and SMD-detection in comparison. The SEAd-

aboost achieves the highest detection rate while the training time reduces significantly.

Application Algorithm Training time Hit-rate Rounds

Face Adaboost 34.0 hours 89.56% 18

Face SEAdaboost 21.0 hours 90.72% 18

SMD Adaboost 36.0 hours 91.6% 10

SMD SEAdaboost 23.0 hours 97.5% 10

By incorporating the idea of symmetry in the conventional Adaboost algo-
rithm and the thereby reduced sampling area, Symmetry enhanced Adaboost
effectively stabilizes learning results. In the scenario of face detection our method
increases the detection rate slightly between 0.2% and 2.5% and in application on
SMD-components between 2.4% and 6.0% depending on the number of training
rounds.

The dependency of the detection rate from the number of training rounds
respectively training time is shown for both object classes in Figure 4 and 5.
The test results indicate significantly, that the detection rate increases with a
higher number of training rounds for all implemented algorithms.

Fig. 4. Rounds/training time vs. detection rate applied to faces. With a higher number

of rounds, the detection rate increases.

The sets of corresponding symmetry classifiers allow the detection of objects
by smaller features which can be fitted tighter to the significant regions in images.
Figure 6 demonstrates that the region around the eyes is represented by the
symmetric features more precisely than by a conventional three-rectangle feature.
Also small rotations of the object can be better compensated.
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Fig. 5. Rounds/training time vs. detection rate applied to SMD-components. With a

higher number of rounds, the detection rate increases.

Fig. 6. Regions around the eye detected by SEAdaboost exploiting a pair of symmetric

two-rectangle features and by Adaboost using a conventional three-rectangle feature

The training time was lowered significantly by almost 40%. In spite of the
reduction of the object sampling area, SEAdaboost further improves the classi-
fication results. Obviously the conventional Adaboost algorithm would achieve
the same detection accuracy by increasing the number of training rounds, but
with the drawback of an extended training time.

5 Conclusions

In this paper Symmetry enhanced Adaboost (SEAdaboost) was described, a
method to minimize the immense training time of the conventional Adaboost al-
gorithm, while minor increasing the detection rate. The basic idea behind SEAd-
aboost is to exploit symmetries of objects, which are often present in certain
object classes. We applied our algorithm to the field of face detection and clas-
sification of SMD-components. Our experimental results show that SEAdaboost
reduces the learning phase drastically. The training time is reduced by almost
40%, while the detection rate could be slightly improved. Thus SEAdaboost
qualifies to detect objects with symmetrical characteristics (e.g. components,
faces). An application of SEAdaboost to objects with asymmetric characteris-
tics would lead to a higher training time and high error rates of the symmetry
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features. However this effect could be used to make a statement concerning the
object symmetry exploiting the weights of the symmetry features. Thus an appli-
cation of SEAdaboost would also be of great convenience to estimate an object
symmetry.

Our approach can easily be combined with other extensions, such as LPBoost,
SoftBoost, MILBoost, FloatBoost or S-Adaboost [7–11].
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Abstract. Occluding contour (OC) plays important roles in many computer vi-
sion tasks. The study of using OC for visual inference tasks is however limited,
partially due to the lack of robust OC acquisition technologies. In this work, ben-
efit from a novel OC computation system, we propose applying OC information
to category classification tasks. Specifically, given an image and its estimated oc-
cluding contours, we first compute a distance map with regard to the OCs. This
map is then used to filter out distracting information in the image. The results are
combined with standard recognition methods, bag-of-visual-words in our exper-
iments, for category classification. In addition to the approach, we also present
two OC datasets, which to the best of our knowledge are the first publicly avail-
able ones. The proposed method is evaluated on both datasets for category clas-
sification tasks. In all experiments, the proposed method significantly improves
classification performances by about 10 percent.

1 Introduction

Occluding contour (OC) is well known to play important roles in many vision tasks [1,
2]. Unlike regular photograph, an occluding contour image removes the effects of il-
lumination, texture, and appearance while maintaining important edge and silhouette
information. In computer vision, researchers have been seeking to develop new contour-
based visual inference algorithms for many years [4]. In many visual inference tasks, a
big challenge is to locate foreground object boundaries from the sea of all kinds of edge
contours. Despite the known importance of OC, acquiring high quality OC in complex
environment has been a long-standing challenging task [2].

In this paper we study the method and efficacy of using OC information for visual
category classification, which is among the most important vision tasks [17]. We first
use a novel multi-flash based OC acquisition device to get the initial OC estimation.
This step provides us occluding contours that are more accurate than those from other
existing methods. Once the OC data is ready, they can be used to improve visual infer-
ence tasks such as category classification.

The basic idea is to use occluding contours for feature filtering. Similar strategy
appeared in [3]. Regions that are close to an OC are more likely to contain valuable
shape related information and less pruning to distracting texture noises. Therefore, OC
can be used to trim local visual features and then prepare a “purified” shape-related
feature set for high level vision tasks such as visual recognition, detection, tracking,

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 296–305, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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etc. Specifically, for an image and its estimated OC image, a distance map is generated
from the occluding contours. The distance map is used to filter out distracting local
features in the image. The improved feature set is then combined with standard bag-of-
visual-words model for visual category classification.

Another contribution of this paper is the benchmark datasets, which are the first such
datasets to the best of our knowledge. We designed two datasets with both color images
and OC images. The first dataset simulates the ideal occluding contours by manually
picking OCs from normal edges maps (Canny edges [5]). In contrast, the occluding
contours in the second dataset are automatically computed from the OC-Cam intro-
duced in Section 2. We conducted category classification experiments on both datasets.
In all experiments, the OCs information in the proposed method could significantly help
improve classification performances.

The rest of the paper is organized as follows. Section 1.1 summarizes related work.
Then, we introduce the OC acquisition device in Section 2. After that, the proposed
OC-based category classification method is described in Section 3. Section 4 presents
the experiments. Finally, Section 5 concludes the paper.

1.1 Related Work

As mentioned above, OC image could eliminate many distracting effects while main-
taining important edge and silhouette information. To acquiring OCs, traditional pas-
sive image processing methods are often not robust enough to classify scene edges (e.g.,
occluding contours vs. material or texture edges) [8]. In particular, when foreground ob-
jects are surrounded by complicated background, it would be highly difficult to identify
the occlusion boundaries.

Recent advances in computational photography have suggested that active illumi-
nation techniques can utilize shadows to effectively extract occlusion boundaries. For
example, aerial imagery techniques can first detect shadows in a single intensity im-
age and then infer building heights by assuming the ground geometry and surface re-
flectance models [11–13]. It is also possible to strategically cast shadows onto scene
objects to recover their geometry [19]. In our work, shadows of objects are produced by
multi-flash camera, which we refer readers to [18] for a complete review of this device.

In computer vision, researchers have been seeking to develop contour-based visual
inference algorithms for many years. For example, contour information has been widely
used in object recognition and localization tasks [4, 7, 15, 16, 20]. Most previous
studies either assume that shapes of target objects are known, or work directly on the
contours obtained from low- or middle-level edge extraction processes. Our work is
different in that we explicitly use occluding contours achieved through the hardware
directly.

Among many visual inference tasks, we choose visual category classification to
demonstrate the effectiveness of using OCs. Category classification is an important re-
search topic and has been attracting a large amount of research attention recently [17].
Our method is closely related to the bag-of-visual-words model [10, 21], which have
been demonstrated excellent performance on several benchmark datasets [22, 23]. The
proposed method can be viewed as an extension of these methods in the aspect of fea-
ture selection.
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Fig. 1. The Occluding Contour Camera (OC-Cam) system design. (a) An OC-Cam uses one high
resolution infrared camera and a pair of high speed visible light cameras. They are surrounded by
multiple rings of controllable infrared LED lights. (b) The infrared camera and the LEDs form a
multiple-flash camera.

Fig. 2. Examples of occluding contours achieved by the OC-Cam system. Left: original normal
images. Middle: corresponding OC images. Right: result of Canny edges [5] for comparison.

2 Extracting Occluding Contours

In this section we briefly introduce the occluding contour acquisition devices used in
this study and the postprocessing steps. It is worth noting that both acquisition and
postprocessing are fully automatic.

2.1 Occluding Contour Camera

Our solution for acquiring the OC data is to construct a novel Occluding Contour Cam-
era (OC-Cam). The OC-Cam extends the previously proposed multi-flash camera that
composes of a single image sensor with four flashes evenly distributed about the cam-
era’s center of projection, as shown in Figure 1. To acquire the contour data, the multi-
flash camera takes successive photos of a scene, each with a different flash turned on.
The location of the shadows generally abuts depth discontinuities and changes along
with the flash position. All the depth edge pixels hence can be detected by analyzing
shadow variations. For example, turning on the left flash will result in the shadows to
the right of the depth edge. We can then traverse the image horizontally and identify the
pixels that transition from the non-shadow region to the shadow region.

The major limitation of the multi-flash camera is that it is difficult to determine the
proper camera-flash baseline, i.e., the distance the flash lies from the center of projection
of the camera. For example, the shadows may appear detached from the boundary when
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Fig. 3. Left: original normal images. Middle: original occluding contours. Right: results after
postprocessing.

the baseline is too large or may disappear when the baseline is too small. Since our goal
is to acquire the occluding contours for various types of objects, it is important that
we dynamically adjust the flash baseline, e.g., for acquiring both the internal and the
external occluding contours of the object.

To achieve this goal, our OC-Cam mounts multiple rings of flashes around the central
camera to support dynamic flash-camera baselines. In our implementation, we synchro-
nized the LED flashes and the central viewing camera using the APIs provided by the
PointGrey Research. The APIs allows the programmer to configure the camera, trigger
image capture and also gives the programmer access to general purpose registers on the
camera that can act as input/output ports depending on the configuration. Specifically,
we use these registers as a four bit output port to send signals to the flash hardware.
During the capture process each shot will take one picture at the given frame rate while
at that time one of the flashes is illuminating the scene. For moderate frame rates such
as twenty frames per second, synchronizing the flash sequence with the shutter is ex-
tremely important.

In order to control multiple rings of flashes with the same four bit port architecture,
we further modify the control hardware: instead of using each bit to directly control a
given flash, all flashes will be triggered sequentially from one bit. To do this, the pulse
from one bit on the port will increment a counter. The output of the counter is fed into
a decoder that indexes each flash. Therefore, the binary output from the counter can
select an output line on the decoder which triggers the appropriate flash. We then use
another bit to control which ring of flashes is used. Several images from the system are
shown in Figure 2.

2.2 Postprocessing

The original OC image contains noises and irrelevant broken lines, hence a postprocess-
ing is needed for further usage. First, an image filter with certain threshold (100/255 in
gray level in the experiments setting) is convolved with the original image to produce
binary image where black pixels indicate edge and white pixels indicate irrelevant back-
ground. Then the morphologic operators, closing and opening, are conducted on the
image successively. Intuitively, closing joins the broken lines into connected line com-
ponents (2x2 neighborhood pixels in the experiment setting) while opening removes
those connected components less than certain amount of pixels in area (100 pixels in
the experiments setting). Figure 3 shows some results of the postprocessing.
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Fig. 4. Flow chart of OC guided category classification

3 Category Classification Using Occluding Contours

In this section we explore how to bring the rich shape information carried in OCs into
category classification tasks. The overview of the process is shown in Figure 4.

3.1 Feature Filtering Using Occluding Contours

We propose to advance the state-of-the-art visual recognition algorithms by exploring
the role of OCs as a feature filter. Specifically, OCs can help high-level vision tasks
to get “purified” shape related features. This “purified” feature set in turn leads to im-
proved object representation.

Let an input image be I : Λ → [0, 1], where Λ ⊂ R
2 is the grid I defined on. The

feature extraction of I is represented by a process F(I), which results in a set of local
features. Without loss of generality, we denote the feature set as

F(I) = {(xi, fi)}, (1)

where xi ∈ R
2 indicates the position of the ith feature and fi ∈ R

nf indicates the nf -
dimensional feature descriptor. Specifically, in our experiment SIFT [14] is used, such
that nf =128.

The OC image of I is then denoted as Ioc : Λ → [0, 1]. Our task is to use Ioc to trim
F(I). A natural strategy is to use Ioc directly by eliminating any feature (xi, fi) such
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(a) (b) (c) (d) (e)

Fig. 5. Use occluding contours for feature filtering. (a) The original image. (b) The original image
with local features. (c) The OC image. (d) The distance map. (e) Original image with filtered local
features.

that xi is within a distance of an OC pixel. Precisely, the new feature set G is defined
by:

G(F(I), Imask) = {(xi, fi) ∈ F(I) : Imask(xi) < τ}, (2)

where Imask(x) is the distance transform map of Ioc(x) and τ is the distance threshold.
In particular our experiment uses Euclidean distance. In the new feature set G, feature
descriptors will stay close to occluding contour therefore provide better description of
the target objects. An example of the filtering process is shown in Figure 5.

3.2 Category Classification Using Bag-of-Visual-Word Model

We follow the idea of Bag-of-Visual-Word approach [21] to represent the images
as histogram of visual words. The independent features are generated by SIFT 128-
dimensional feature descriptor. After that the alphabet of visual words, i.e. codewords
dictionary, is formed by k-means clustering. The new image thus could be represented
by histogram of visual words in the alphabet. The main difference here is that we ap-
ply the OC information to filter out irrelevant features whenever possible, as shown in
Figure 4.

The discriminative method Support Vector Machine (SVM) is used in our approach
as classifier. For implementation, we choose the LibSVM package [6] and a Gaussian
kernel defined by

K(si, x) = exp
(
−||si − x||2

2σ2

)
, (3)

where si denotes support vectors, x represents the feature representation (histogram of
visual words) of the input image and σ is the covariance parameter for the Gaussian
kernel.

4 Experiments

To evaluate the proposed method, two datasets are created containing both color images
and corresponding OC images. The proposed method is conducted on both datasets in
comparison with the original bag-of-visual-word method. In the following, we use BOW
as abbreviation for the bag-of-visual-word and BOW+OC for the proposed method.
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Fig. 6. Example images misclassified by the standard BOW but correctly classified using our
proposed BOW+OC method

Table 1. Category classification experiments on the Category-16 dataset

Method BOW BOW+OC
Classification rate (%) 43.57±1.97 49.82±2.27

4.1 Synthetic Occluding Contours

We first create a dataset containing 16 categories selected from the Caltech 256 dataset
[9]. Each of the 16 categories contains 20 images. For each image in the dataset, we
generate a “simulated” occluding contour image by first using Canny edge detector and
then manually removing non-occluding contours. In other words, for each image I in
the dataset, there is a corresponding OC mask Ioc. In the rest of the paper we call this
dataset Category-16.

To demonstrate how OCs can help with category classification tasks, both BOW and
BOW+OC frameworks are conducted on the Category-16 dataset. For the experiment,
we randomly divide the dataset into training and testing sets, with 10 of total 20 images
per category for training and the rest for testing. The experimental result is summarized
over 5 random splits. The average classification rate is listed in Table 1. It shows that
OC, even when used in a very simple way, can substantially improve recognition rate.
Fig. 6 shows several examples that are misclassified by BOW but correctly classified by
BOW+OC.

4.2 Real Dataset with Complicated Background

Another dataset we build contains five categories: car, cow, cup, dog and horse. Each
of the five categories contains 24 images (accompanied with OC images) taken from
six different objects. For every object, images are shot from four poses: 0◦, 90◦, 180◦

and 270◦ horizontal rotating from the default pose. For each image in the dataset, we
generate the occluding contour image from the device introduced in Section 2. There-
fore every image I in the dataset has a corresponding gray level OC image Ioc. In the
rest of the paper we call this dataset Category-5. Figure 7 shows example images of this
dataset. We will make this dataset publicly available after publishing this paper.

Similar to the experiment on the synthetic dataset, both BOW and BOW+OC frame-
works are conducted on the Category-5 dataset to demonstrate how OCs can help with
the category classification tasks. To make experiment result consistent, we still ran-
domly divide the dataset into training and testing sets, with 12 of total 24 images per
category for training and the rest for testing. The experimental result is summarized
over 100 random splits. The average classification rate is listed in Table 2. The result
has shown that OC method has significant improvement in recognition rate: around
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Fig. 7. Example images of the Category-5 OC dataset, six objects per class and one image pair
(color image and OC image) per object

Fig. 8. Example images misclassified by the standard BOW but correctly classified using our
proposed BOW+OC method

Table 2. Category classification experiments on the Category-5 dataset

Method BOW BOW+OC
Classification rate (%) 56.17±7.78 66.50±8.22

10%. Examples in Figure 8 show some examples that are misclassified by BOW but
successfully classified by BOW+OC.
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Fig. 9. Example images misclassified by the BOW+OC but correctly classified using standard
BOW method

The above two experiments show clearly that OC information can be used to im-
prove the performance of visual classification. It is also worth studying when the pro-
posed method “hurts” the performance. In Figure 9 we show some examples which are
misclassified by BOW+OC but successfully classified by BOW. One possible reason
of misclassification by BOW+OC could be that sometimes it over-eliminates feature
descriptors from the image. The setting of τ , i.e. the distance threshold, currently is
determined empirically. This problem becomes noticeable when the input images are of
certain types: background is solo-colored, background is uniformly textured, etc. These
types share one property in common: feature descriptors are aggregated close to the
object and are little scattered around the background in the OC image. Receiving those
images as input, the BOW+OC method might eliminate some valuable feature descrip-
tors around the object hence reduce the recognition rate while on the other hand standard
BOW method will benefit from keeping all features. Though the limitation it appears in
these scenarios, BOW+OC actually satisfied our expectation: when the standard BOW
method can handle object classification in uniform background but suffer from compli-
cated background, BOW+OC performs much better recognition rate according to the
experimental results above.

5 Conclusions and Future Work

This paper investigates using the shape information from Occluding Contour (OC) to
improve visual inference tasks, with focus on category classification. To this end, a new
method is proposed that uses occluding contours as a feature filter to improve the im-
age representation used in category classification. The improved representation is then
combined with the bag-of-visual-words model for classification tasks. The proposed
method clearly improves the performance on two datasets.

The applications of occluding contours are by no means limited to category classi-
fication. In fact, we expect the study in this paper to motivate rich future work toward
different fields in computer vision, such as object localization. The datasets presented
in this paper can therefore serve as benchmarks for future study as well. Aside from
application of OC information in visual inference, we are also interested in improving
the process of OC acquisition.
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Abstract. Visualization of high-dimensional data is difficult to realize

and manipulate with 2D display. For example, visualizing time-varying

volume data (4D) with volume rendering and animation has spatial and

temporal shielding, and data of 5 or more dimensions cannot be visual-

ized on 2D display with existing methods. In this paper, we propose a

method that expands high-dimensional data onto a 2D image plane. The

proposed method uses the self-similarity of the fractal shape and achieves

multi-scale high-dimensional data visualization on 2D display. With this

method, we can visualize the entire domain of high-dimensional data

without occlusions. Also, one-to-one correspondence in the elements of

high-dimensional data and its 2D expansion enables us to manipulate

high-dimensional data with 2D expanded result as an interface.

1 Introduction

Volume data visualization is one of the most important issues in the field of scien-
tific visualization. Volume rendering and animation are often used in visualizing
volume data (3D) or time-varying volume data (4D) on 2D display. However,
with these methods, the visualization results are view and/or time dependent
images, which have spatial and temporal shielding. And, in case of higher (5D,
6D, · · ·) dimensional data, we can’t visualize the data with existing scientific
visualization methods. But, in the field of information visualization, there are
various 2D and 3D-based methods [1] for visualizing complex hierarchical and/or
large-scale data. It is useful to apply their features in the subject of scientific
visualization.

In this paper, we propose a method that expands high-dimensional data into a
2D fractal shape. The proposed method provides view and/or time independent
visualization and enables the display of data of 5 or more dimensions. It also
enables multi-scale visualization of data with self-similarity of fractal. Therefore,
we can get the result images clearly and the images show where to focus, thus
the proposed method reduces the cognitive load. Furthermore, we can combine
the proposed method with existing scientific visualization methods, and grasp
data from various perspectives.
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2 Previous Studies

2.1 Scientific Visualization Methods

One of the major 3D-based methods for scalar volume data is volume rendering.
The basic techniques of volume rendering were developed in 1988 (Levoy [2];
Drebin [3] et al.; Sabella [4]; Upson and Keeler [5]) and have since been modified
and extended [6]. This method directly visualizes the entire volume onto an image
plane using a ray-casting algorithm. Volume rendering is suitable for grasping
the spatial distribution and continuity of values or for recognizing shapes because
the 3D structure is directly projected onto the image plane.

On the other hand, one limitation of the volume rendering method is that it
is view-dependent in that it is based on light transport models and the human
visual system. The visualization result changes according to the position and
direction of the viewpoint, and must be re-calculated whenever the viewpoint
is translated or rotated. Volume rendering may be referred to as a 3D-to-2D
method, that is, the visualization target is a 3D volume and the result is a 2D
image. This reduction of dimension is carried out by ray casting. However, the
combination of view-dependency and casting causes a shielding problem. Fur-
thermore, it should be noted that in volume rendering, the contributions of each
sampling point on a casting ray are totaled, which means that the full uniqueness
of the structure cannot be reproduced by volume rendering because each voxel is
not visualized individually. By rendering volume data from various viewpoints,
we can interpret its properties more easily. The rendering parameters must also
be adaptable. Therefore, a manipulation system for rotating, translating, and
scaling the viewpoint, and parameter adjustment functions are essential for the
application of volume rendering.

2.2 Information Visualization Methods

In the information visualization field, there is also a range of 2D- or 3D-based
visualization methods. However, these methods are not intended for scientific
visualization. There are numerous information visualization techniques, and a
number of bold and novel concepts have xbeen reported, some of which might be
applied to the field of scientific visualization. The advantages and disadvantages
of 2D- and 3D-based methods discussed above actually more strongly affect
information visualization methods.

The tree map [7] is a 2D-based method for representing hierarchical data
structures. Hierarchy is indicated by a nested set of rectangles. Two types of
node attributes can be visualized concurrently by assigning them to rectangle
area and color. This method provides an overview of the node structure and data
attributes and is free from occlusion. The Heiankyo-view [8] is a modification of
a tree map that optimizes the alignment and packing of icon nodes.

There have been few attempts to introduce fractal concepts to information
visualization. In fractal views [9], a multi-resolution visualization method main-
tains the total amount of displayed information nearly constant by considering
the Hausdorff dimension of the data structure.
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2D- and 3D-based methods have also been combined in the field of informa-
tion visualization. Tory et al. examined the effectiveness of 2D/3D combination
displays for orientation and relative positioning tasks [10]. They reported that
3D displays with appropriate cues (e.g., shadows) could be most effective for ap-
propriate navigation and relative positioning. On the other hand, combination
2D/3D displays are useful for precise navigation and positioning. Harald et al.
[11] combined 2D and 3D scatter plots with interactive focus + context features
to overcome the problems of 3D point cloud visualization. The interaction of 2D
and 3D scatter plots is accomplished by brush stroke user inputs.

The Value and Relation (VaR) display [12] is a 2D map visualization method
for large data sets with hundreds of dimensions. Using this method, as its name
suggests, not only the value of multi-dimensional large scale data but the rela-
tionships among the dimensions can be visualized, and so users grasp the associ-
ations among dimensions easily. In the VaR display, data values are represented
as glyphs, which are produced by pixel-oriented [13] or alternative techniques
such as the X-ray scatter plots. Dimensional relationships are reflected in the
positions of the glyphs, and the positions are decided using an MDS algorithm
[14] or Jigsaw map [15]. Using the VaR display, users can interactively detect
patterns within large data sets.

3 2D Expansion Visualization Method of Volume Data

In this section, we showe the existing expansion method inspired by information
visualization techniques [16]. This method visualizes volume data with an octree
structure onto 2D image by expanding voxels into a fractal shape, which is called
the Sierpinski carpet (SC) . The 2D visualization solves the occlusion problems
in 3D visualization.

3.1 Resolution and Elements of Volume Data and Sierpinski Carpet

The volume data for resolution n (R = n) consists of 8n elements (voxels) . We
define that R = n indicates the volume data is divided into 2n components on
each dimension. Figure 1 shows the elements of the volume data for R = 1, 2, 3.

And the SC for R = n also consists of 8n elements (squares) . We define that
the SC of 8 elements corresponds to R = 1, and by applying the subdivision
scheme, the resolution of the SC increases by one. Figure 2 shows the elements
of the SC for R = 1, 2, 3. Then we utilize the correspondence of the number of
elements in volume data and in the SC for R = n.

3.2 2D Expansion of Volume Data

The SC has the same number of elements as that of the original volume data for
the same resolution, we can achieve 2D expansion of volume data by defining a
mapping rule for each element in the volume data and the SC. Figure 3 shows
the mapping rule for R = 1. For higher resolution volume data, the expansion



Fractal Map: Fractal-Based 2D Expansion Method 309

can be done by applying the mapping rule for R = 1 recursively. In addition, the
mapping rule for R = 1 can be applied to volume data and SC locally, and we can
obtain multi-resolution visualization result. Thus, we can display whole octree
structure of volume data using the SC. And, by using multi-resolution method,
we can cull unnecessary information and it’s easier to focus to where should be
noted, so that the cognitive load would be reduced. Furthermore, the expansion
method can cooperate with the existing methods like volume rendering, and since
each sub-square in SC is a one-to-one corresponded with each voxel in volume
data, by pointing to a sub-square, we can assign any voxel in the volume data
and apply numerical functions like subtraction of the pointed value from values
of a whole area. And we convert scalar value of each element of volume data to
color in RGBA. Then, we decide each element of SC has the same RGB value
to the corresponding element of volume data and an alpha value of 1.0 (each
element of volume data has an alpha value depending on its scalar value). By
setting colors this way, we can compare expanding and volume rendering result.

Fig. 1. Octree structure of voxels when R = 1, 2, 3

Fig. 2. Sierpinski carpets when resolutions R = 1, 2, 3

4 2D Expansion Visualization Method of
High-Dimensional Data

In the previous section, we explained the method that can expand volume data
(3D) to 2D image. In this section, we explain the extension method that can
expand higher dimensional data. The proposed method is realized via using
combinational fractal shapes which is made by combining from two basic fractal
shapes.
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Fig. 3. Left: An example of expansion rule for volume data with R=1, Right: An

example of multi-resolution expansion

4.1 Dimensions, Resolution and Elements of High-Dimensional
Data

m (m ≥ 2) dimensional data for R = n consists of 2mn elements. We define R=n
for m dimensional data that indicates the m dimensional data is divided into 2n

on each dimension. For example, m = 2, 3, 4, 5, 6 dimensional data have 4n, 8n,
16n, 32n, 64n elements. 2mn elements can be transformed as Eq. 1 according to
whether dimension is even (m = 2k, k ≥ 1) or odd (m = 2k + 1) .

2mn =
{

4kn (m = 2k)
(8 · 4k−1)n (m = 2k + 1) (1)

4.2 Combinational Fractal Shapes, Resolution and Elements

The fractal shape divided evenly into four squares recursively (F4, Fig. 4) and
the SC for R = 1 consists of 4 and 8 elements. By combining together these two
fractal shapes for R=1, fractal shapes which of a new count of elements can be
created. For example, when we replace each square of the SC with F4 for R = 1,
we obtain the fractal shape which has 32 elements for R = 1 and 32n elements
for R = n (Left part of Fig. 5) . Similarly, when we replace each square of the SC
with F4 for R = k + 1, we obtain the fractal shape which has 8 · 4k−1 elements
for R = 1 and (8 ·4k−1)n elements for R=n. And, in the case of the fractal shape
for R = 1 which is same as F4 for R = k, the fractal shape has 4k elements for
R = 1, (4k)n elements for R = n (Right part of Fig. 5 shows an example with
k = 2) . Note that these numbers for R = n ((8 · 4k−1)n and (4k)n) correspond
to the numbers in Eq. 1.

4.3 2D Expansion of High-Dimensional Data

We obtained the fractal shapes which have same counts of elements with high-
dimensional data. Then, high-dimensional data can be expanded onto a 2D image
by giving the mapping rule for R = 1 and applying the rule recursively. Figure 6
shows an example of the mapping rule for 4D data. Moreover, as with the 3D to
2D mapping rule showed in section 3, the mapping rule can be applied locally,
and we can also obtain multi-resolution visualization result of high-dimensional
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Fig. 4. 4 split fractal shapes (F4) for R = 1, 2, 3

Fig. 5. 32 and 16 split fractal shapes for R = 1 and subdivided locally

Fig. 6. An example of mapping rule for time-varying volume data (4D)

data. Other useful features (cooperating with the existing methods, retrieving
positions of original high-dimensional data and applying numerical functions)
are also available.

5 Application Examples of 2D Expansion Visualization

In this section, we showe the application examples, visualization of 3D pressure
data obtained in numerical simulation of airflow such as that behind a model car
[17], the pressure data with time variation (4D) and 5D lattice random walk.

5.1 Visualization of 3D Pressure Data

Figure 7 shows the visualization example of 3D Pressure Data. In this exam-
ple, we obtained non-spatial shielding result and with the cooperation of volume
rendering, we can grasp and manipulate the data with an understanding of 3D
figuration. In this application, we got multi-resolutional result according to the
variance assigned with “Split Ratio Bar”, controlled color appearance with “Min
Max Bars”, subtracted the value of the selected region on 2D result. And this
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Fig. 7. An example of visualization application for 3D data and its workflow. We

subtracted the value of the selected region and highlight the regions of higher values

with “Min Max Bars”.

Fig. 8. An example of visualization application for 4D data

Fig. 9. 5D mapping rule



Fractal Map: Fractal-Based 2D Expansion Method 313

step = 0 step = 5 step = 25 step = 50t 0 t 5 t 25 t 50

Fig. 10. 5D random walk visualization. Black points are walking elements.

application uses blank spaces of SC for visualizing the average value. We can
recognize easily where is the high pressure part using 2D expansion without
view dependence. Also, by subtracting the value of selected region, we can find
the regions where of bigger values. For example, when we select the average
value of all the areas, we can find the regions where of bigger value than the
average value. With the 2D expansion result and use of it as an interface, we can
manipulate and grasp 3D figuration and its value of the data without overlooking
and misunderstanding of data values.

5.2 Visualization of Time-Varying 3D Pressure Data

Figure 8 shows the visualization result of time-varying 3D pressure data. We
obtained the result which has no spatial shielding and temporal shielding by
applying the proposed method for 4D data. As well as the previous subsection,
we can get multi-resolutional result and control the color appearance.

5.3 Visualization of 5D Lattice Random Walk

As an example of application for high dimensional data, figure 10 shows the
visualization result of 5D lattice random walk. 5D random walk is the expansion
version of 1D, 2D and 3D random walk. 5D version has directions of movement
in 5D space. We set 3000 elements at coordinate (0, 0, 0, 0, 0) which is the initial
position and the elements will walk to the positions of which the coordinate is
composed by integers from 0 to 7. In this application, we set a 5D mapping rule
as following. Since 5D data for R = 1 has 32 elements, when some coordinate of
element is (d1, d2, d3, d4, d5)(d1, d2, d3, d4, d5 =

{
0, 1

}
), we assign a number(d1 +

2d2 + 22d3 + 23d4 + 24d5) as ID to the element. And these elements are mapped
into a 5D fractal shape for R = 1 as figure 9. According to this rule, an element
from original 5D data which is far away from (0, 0, 0, 0, 0) is set to a position in
5D fractal shape which is far from a position of ID=0. Since the rule is applied
recursively, in a case of a bigger R, similarly to the case for R = 1, an element
of a big offset from (0, 0, 0, 0, 0) will be also mapped to a position far away from
the position of ID=0 on the SC in the overall view. We observed the diffusion
of elements at figure 10.
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6 Discussion

We discuss the features of the proposed method in this section. In the proposed
method, we utilize the features of fractal shapes and visualize high-dimensional
data as 2D image. And we can achieve visualizing all the areas of high-dimensional
data without view and time dependence, get the result reflecting the hierarchy of
high-dimensional data, and reduce cognitive load with multi-resolution visualiza-
tion. Furthermore, by using the result of 2D image as an interface, direct pointing
to a region of high-dimensional data and manipulating the regional values are real-
ized. Additionally, the proposed method can cooperate with the existing methods,
and we can grasp the data multilaterally. With recursive application of the map-
ping rule for R = 1, the result for R = n has same properties with R = 1 in an
overall view. So we can obtain effective visualization result with a proper determi-
nation of the mapping rule for R = 1. However, the proposed method has also its
limitation. Continuity of data positions is lost in 2D expanding, thus grasping the
figuration of high-dimensional data is difficult. Therefore, the proposed method
is considered more useful in a task of grasping values distribution according to
positions than in a task of grasping the figuration.

7 Conclusion

In this paper, we proposed a fractal-based 2D expansion method for high-
dimensional data visualization. Utilizing the features of fractal shapes enables us
to visualize hierarchical and multi-resolution data. The proposed method can be
used in visualization of 3D and 4D data without view and time dependence and
enables the visualization of data of 5 or more dimensions on 2D display. But, the
proposed method has also its limitation. It is difficult to grasp the figuration of
data. But, this limitation can be supplemented with cooperation of the existing
methods.

In case of visualizing the data which has spatial and time dimensions, such
as the time-varying volume data, it is difficult to track the temporal changes,
because the proposed method expands spatial and temporal dimensions together.
In the future, we will develop a dimension reduction visualization method for
high-dimensional data which expands dimensions separately.
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Abstract. We extend our previous work on the exploration of static metabolic
networks to evolving, and therefore dynamic, pathways. We apply our visualiza-
tion software to data from a simulation of early metabolism. Thereby, we show
that our technique allows us to test and argue for or against different scenarios for
the evolution of metabolic pathways. This supports a profound and efficient anal-
ysis of the structure and properties of the generated metabolic networks and its
underlying components, while giving the user a vivid impression of the dynamics
of the system. The analysis process is inspired by Ben Shneiderman’s mantra of
information visualization. For the overview, user-defined diagrams give insight
into topological changes of the graph as well as changes in the attribute set as-
sociated with the participating enzymes, substances and reactions. This way, “in-
teresting features” in time as well as in space can be recognized. A linked view
implementation enables the navigation into more detailed layers of perspective
for in-depth analysis of individual network configurations.

1 Introduction

Metabolic networks, the set of chemical compounds and their interactions that con-
stitute life in the most basic sense, are the best studied biological networks. With the
plethora of genomic, proteomic and metabolomic data available it becomes possible to
study cell behavior. However, to understand the underlying principles of life and gaining
further insights about the metabolism of cells for the use in biotechnological applica-
tions, e.g., pharmaceutical target prediction or metabolic engineering, we need tools to
model and analyze the metabolic processes, pathways, and networks. There exist suc-
cessful means for the reconstruction of metabolic networks from annotated genomes
[1], the analysis of these networks in terms of elementary pathways [2], and description
of their behavior with the help of ODE models [3]. Further insight into the development
of kinetic models of metabolic networks addressing rate laws of the involved enzymes
is provided in [4]. The situation becomes more difficult when we want to explain the
evolutionary mechanisms of these systems, i.e., the formation of metabolic pathways
or the emergence of complex network properties. Although, several scenarios exist that
provide some insight into the evolution of metabolic pathways [5], only few aspects
are well understood. Especially, the first steps in early metabolism evade observation
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by conventional approaches. To this end, Ullrich et al. [6] developed a multi-level com-
putational model to study the transition to life: the evolution of metabolic pathways
from catalyzed chemical reactions. The simulation approach implements components
on different scales in a more realistic manner than has been done so far.

In this work we introduce a plug-in for exploring dynamic graphs extending the
existing graph visualization software previously described in [7]. The implementation
of the extension was primarily driven by the given data and the requirements stated by
the scientists providing it. These include

1. Overview of the complete series of evolving metabolic networks, i.e. involvement
of metabolites, reactions and enzymes, and evaluation of key properties, e.g. quan-
tity (concentration) and activity (participation in pathways)

2. Analysis of dynamics in the network’s topology and attribute set. Compare net-
works of different time steps and analyze topology dynamics in more detail.

3. Elementary pathway analysis of selected network generations. Time series analysis
of attributes associated with selected node.

For the analysis of the simulation results, an efficient visualization system tailored
to suit our needs is of utmost importance. The main function of the software intro-
duced in this article lies in the analysis of metabolic networks in general and studying
the evolution and dynamic behavior of metabolism in particular. This is achieved by
providing an insightful overview on different scales (e.g., on the metabolite-, pathway-,
or network-level) and different angles (e.g., dynamics in topology vs. attribute dynam-
ics) of the vast amount of extracted information. Being able to observe all components
(individually or together) for the entire simulation time in one representation gives us
a much deeper understanding of the system’s dynamics than any statistical analysis or
static view can provide. By means of one sample simulation, we show the possibilities
of the tool and which potential general insights we can gain.

2 Related Work

To deal with large biochemical networks several methods and tools have been devel-
oped. Simple approaches try to visualize the complete network on the screen and use
zooming and panning for navigation. Examples are common graph drawing or network
analysis tools [9,10]. Other approaches, such as KGML-ED [11], improve the navigation
between single pathways by providing an hierarchical overview and functions to zoom
into the top nodes of the hierarchy, or by extending the pathway by connected pathways
within the same frame. Our own recent development [7] realized a grid-based visual-
ization approach for metabolic networks supported by a focus&context view. This view
is based on a Table Lens method [12], which provides multiple foci and together with
the grid-layout the preservation of the user’s mental map, see below. A good overview
on open problems and challenges in biological network visualization is provided by the
papers [7,13]. They provide a comprehensive list of related work, however not focused
on the visualization of dynamic biochemical pathways. Oldiges et al. [14] address the
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specific problem of metabolic network model visualization. However, their article is
particularly related to the numerical analysis of dynamic biochemical systems with less
emphasis on the visual analysis of the dynamics of the network topology. To the best of
our knowledge, there is no other visualization tool that focuses on this specific task.

In general, the visualization of dynamic graphs is a well-known area in the graph
drawing community [15]. Dynamic graph drawing addresses the problem to layout
graphs, which evolve over time by adding and deleting edges and nodes. This results in
an additional esthetic criterion known as preserving the mental map [16]. Ad-hoc ap-
proaches compute a new layout for the entire graph after each time step using algorithms
developed for static graph layout, see for example those presented in the book [9]. In
most cases this approach produces layouts which violate the mental map. In our own
work, we follow the basic idea of the so-called Foresighted Layout (FL) of dynamic
graphs [17]. Given a sequence of n graphs, a global layout is computed, which induces
a layout for each of the n graphs. The FL-algorithm is generic in the sense that it takes
a static graph drawing algorithm as a parameter. It optimally preserves the mental map.
An algorithm for drawing a sequence of graphs online, i.e., where the graph sequence
to be laid out is not known in advance, was presented by Frishman and Tal [18].

The general design of our plug-in is based on standard coordinated and multiple
view visualization techniques. An excellent starting point for related work of this kind
of visualization techniques is the annual conference series on Coordinated & Multiple
Views in Exploratory Visualization (CMV) or the work of Roberts [19]. In our case, the
coordination between the different views is mainly done by brushing techniques. The
work of Moody et al. [20] focuses on the visualization of dynamic networks in general
and the evolution of social networks in particular. The authors state two common ap-
proaches: plotting network summary statistics as line graphs over time and examining
separate images of the network at each point in time. Our work has been inspired by
these two techniques.

3 The Model

In this section we introduce a computational model of early metabolism for studying the
emergence and evolution of catalyzed chemical reaction networks. The model consists
of a graph-based artificial chemistry allowing for realistic kinetic behavior and a proto
cell-like entity that inhabits the artificial chemistry and that is exposed to changes (e.g.,
mutations, source) and selection against other proto cells.

The artificial chemistry of this model is motivated by the chemist’s intuition of
molecules and chemical reactions. Consequently, molecules are modeled as labeled
graphs, with atoms as nodes and bonds as edges. Given this representation, it is easy to
see that chemical reactions can be understood as graph transformations, or in computer
science terms, as simple graph rewriting rules. Metabolic networks are expanded using
a stochastic network generator inspired by Faulon [21]. For simplicity, reaction rates
were computed here based on topological indices (Wiener number [22]) of the educt
and product molecules of the reactions. The simulation takes two molecules as steady
input, namely, the sequential and cyclic form of glucose.
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The proto cell contains a simple cyclic genome with several RNA- genes encoding
for a particular reaction type (graph rewriting rule) through a sophisticated genotype-
phenotype mapping [23]. The genome is subject to mutation, deletion, duplication and
horizontal gene transfer events. Therefore, reactions can occur, change and disappear
from the proto cell or even get copied to a neighbor. In each generation, only half
of all proto cells is selected and generates an identical copy. There is steady influx
of metabolites from the environment and out flux of produced metabolites in way of
biomass production. The constitution of either may change during the course of the
simulation.

The metabolism of a proto cell is evaluated by analyzing the stoichiometric matrix
and fulfilling steady-state and inequality constraints to compute the set of elementary
pathways [1].

4 The Data

The simulation is run as an adaptive walk over 100 generations. In the analysis of the
simulation results, several types of information on different levels are processed. Most
importantly, the structure of the metabolic network in form of a bipartite labeled graph
is stored in a GraphML [24] file. Metabolites and reactions are the nodes of the graph.
An edge leading from a metabolite to a reaction indicates that the respective metabo-
lite is an educt in the reaction, an edge from a reaction to the metabolite node marks
the metabolite as product. The labels for reactions are unique identifiers giving insight
to their function. The metabolite label is its canonical SMILES string [25], a unique
structural representation that is easily readable for chemists. Further, the concentration
(number of molecules) for each metabolite is included in the network information.

In addition to the network information, flux information—the set of elementary path-
ways through the network—is made available to our visualization tool in a simple text
file. Extremal nodes are listed. These represent the metabolites transferred into the cell
and those that are used as biomass or excreted into the environment, respectively. For
each reaction it is noted whether it is present in a particular elementary pathway or not
(0 or 1).

All types of information are generated for each generation. Since the simulation has
several parameters and input options, the data can be very diverse in size and number of
files as well as complexity. Here lies also one important merit of this visualization tool.
Choosing an ”interesting” simulation run for further analysis from the range of possible
simulations. The visualization of all levels and generations combined allows an efficient
decision process that is of particular importance in a development and testing stage.

5 The Visualization Framework

In this chapter we focus on different visualization techniques implemented to support
the data analysis process. In this context, mental map preservation is a key require-
ment for analyzing dynamic networks [16]. Changes in the graph drawing from one
network generation to the next should be minimal if the topological changes are small.
We achieve the requirement of mental map preservation by following the idea of [17]
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and create a foresighted layout by constructing the Set Union graph Ĝ = (V̂ , Ê) with
V̂ =

⋃n
i=1 Vi and Ê =

⋃n
i=1 Ei where (Vi,Ei)= Gi are the networks after i generations (see

Figure 1). After the preceding cycle removal, we lay out Ĝ using Sugiyama’s method
for directed acyclic graphs [26,27]. This layout method is suitable for our visualization,
because the constructed graph contains very few cycles, and the general direction of
fluxes through the network is suggested by the graph drawing, i.e., from top (source) to
bottom (sink). To emphasize the importance of extremal nodes—metabolites existing in
the cell with no reaction producing them (source metabolites) and metabolites with no
reaction consuming them (biomass production)—we connect them to a global source
or sink node, i.e, the resulting acyclic graph becomes a so-called st-graph [9]. The set
union graph contains the elements of all time steps. Layouting this graph ensures the
nodes’ positions to remain constant when changing to a different network generation.

Fig. 1. Set Union Graph laid out using Sugiyama layout algorithm. The reaction nodes (rectan-
gles) are colored according to their first appearance (red: earlier, blue: later).

The three requirements stated in the introduction meet Ben Shneiderman’s mantra of
information visualization [28]. In the following we describe the visual analysis process
based on the scheme “Overview first, zoom and filter, details on demand”.

5.1 Overview

After construction of the Set Union Graph and associating the flux information with the
graph elements, the primary objective of the overview visualization is to give the user a
general idea of the network elements—metabolites, reactions and enzymes—involved,
their life time, and the development of fundamental attributes associated with the net-
work elements over time (see Figure 2). When presenting the Set Union Graph (a), a
given node coloring scheme distinguishes between older and newer nodes. The time of
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first occurrence of a node in the network determines its color. The node appearing first
is red, the node appearing last is blue. Node colors in between are interpolated using
the color scale depicted in Figure 7(c), third from left. The user may choose, whether
this scheme is applied to reaction nodes, to molecule nodes, or both.

Fig. 2. Graphical User Interface of the Dynamic Graph Analysis plug-in. Overview visualiza-
tion: Time Series Charts of selected attributes (d,e) display attribute dynamics over time. Interval
Charts (f,g) represent the dynamic topology of the graph in terms of life times of metabolites,
enzymes, and reactions. In (g), horizontal bars depicting the nodes’ life time have been overlaid
with the attribute Fluxes through node. The Graph Scene (a) shows the Set Union Graph with
the applied node coloring scheme. As for Zoom and Filter, the user may select different network
generations (b) to apply the set operators for filtering elements.

Further insight into the life times of metabolites and reactions give the interval dia-
grams depicted in Figures 2(e,f). Except for the artificially inserted environment nodes
(global source and sink), each row represents a node in the graph. Horizontal bars de-
pict the life time and may be overlaid with additional information, e.g. node degree,
fluxes through that node, and concentration for metabolite nodes. In addition to inter-
val diagrams, time series charts (d,e) summarize selected attributes and display their
dynamics over time. The user can again choose the subset of nodes to be taken into
account (metabolites, enzymes, or reactions) and the attribute set (node number, node
degree, number of elementary fluxes through a node, and concentration values), and
combine these time series in any way for comparison.

5.2 Zoom and Filter

In this analysis step, the user wants to detect “interesting features” in the overview and
select individual networks for further inspection. Interesting in an evolving metabolic
network may be periods of stabilities or instabilities in a topological sense—appearance
of new reactions or metabolites—as well as in terms of flux behavior—changes of as-
sociated attributes.

The straightforward approach is to simply browse the time line. For that purpose, we
have implemented a linked view connecting the diagrams of the overview visualization
with the dynamic graph in the Graph Scene. The screen shot of the software given in
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Fig. 3. Linked View realization facilitates browsing different graph snapshots in time. The blue
arrows indicate the current position in time, red arrows indicate the selected node in the current
generation. These components of the graphical user interface are also sensitive to user input and
can be used for navigation. Selecting a node in the Graph Scene (r.h.s.) highlights the associated
row in the appropriate interval chart as well as the associated point in time in all charts. The
five diagrams given on the l.h.s. display the following data. Top: Life time diagram of reactions
overlaid with the number of pathways through each reaction node. Life time diagram of metabo-
lites overlaid with each node’s degree. Bottom: Time series chart giving number of nodes, edges,
and nodes-to-edges-ratio. Time series chart of summarized node degree (minimum, maximum,
average) over all metabolites. Node degree histogram of the currently displayed graph generation.

Fig. 4. Semantic Zoom: Below a certain level-of-detail threshold, the chemical structure of the
molecule is shown instead of the totals formula

Figure 3 gives an impression on that type of navigation. The user may jump directly
to that time point of interest by clicking into any of the displayed diagrams to further
inspect the associated network. For each point in time, the current attributes are visual-
ized in the nodes. For metabolites, the concentration values are depicted by the “filling
level” of the node. Additionally, the node sizes and edge widths represent the number
of elementary pathways these elements participate in.

For comparing different network generations from a topological point of view, the
user may select a number of time steps and apply operators on the node and edge sets
of the chosen graph to filter certain elements of the super graph. Set operators include
AND, OR, and DIFF for the symmetrical difference between different network snap-
shots. This is used for detecting subset relations and selecting appearing or disappearing
elements (see Figure 2b).
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Finally, we have extended the semantic zoom capability in our visualization tool. As
the user increases the level of detail, the chemical structures of metabolites is rendered
within the associated nodes (see Figure 4).

5.3 Detailed View

In this section, the user takes a closer look on the emergence of individual elementary
pathways (fluxes) in a single network evolution step. The aim is to further investigate
elements being more or less likely to participate in pathways through the metabolic
network and to identify individual elementary pathways. As described in the previous
section, the user has identified reactions and metabolites preferred to form pathways as
well as key enzymes with high activity. Again, interactivity plays a crucial role in this
analysis step. There are two methods of operation: First, the user can select any number
of elementary pathways to be highlighted in the Graph Scene displaying the current net-
work generation. Second, the previously identified key elements can be selected in the
Graph Scene for highlighting all associated elementary pathways. See the screen shot
given in Figure 5. We again implemented set operators on the selected nodes applied
for the flux visualization. We found that this is a highly flexible and intuitive way to
detect pathways running through all the selected elements – AND operator, at least one
of the selected elements – OR, or none of the selected elements – NOT.

Concerning the attribute dynamics associated with an enzyme, reaction, or metabo-
lite, we take advantage of the linked view implementation depicted in Figure 3 to dis-
play the attribute development of the selected node over time. Selecting a different node
instantly updates the displayed time series of the chosen attribute.

Fig. 5. Details on Demand: Interactive flux analysis for one chosen time step (here: t=99). In-
dividual elementary pathways can be selected for visualization. All pathways through molecule
C6O5 are highlighted.
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Fig. 6. A series of simulated metabolic networks after 11, 31, 67, and 100 generations. The
squares represent reactions, circles represent metabolites. Node size and edge width encode for
the number of minimal pathways in which the respective object is involved. Note the dark gray
“filling level” of the metabolite nodes depicting the current concentration value.

6 Results

In this analysis we wanted to investigate the early steps in the formation and evolution of
metabolic pathways and interpret our findings in terms of existing evolutionary scenar-
ios. We will focus on three popular theories, that can be compared nicely to our results.
One of the first theories proposed on this matter is backward or retrograde evolution
[29], stating that pathways evolved upwards, in the need of finding beneficial substrates
due to depletion of metabolites. Contrary, forward evolution [30] suggests the oppo-
site direction of pathways evolution. Due to ever further processing of molecules for
energy production, pathways evolve in such a way that ancient enzymes are upstream
along the pathway, while younger enzymes are further downstream. The third scenario
is the patchwork model [31], which explains the formation of new metabolic pathways
through recruiting of enzymes from already existing pathways.

The four snapshots in Figure 6 showing the metabolic network at different points in
time are aligned to the union graph over all generations. Thus, we can see that in the first
steps the reactions upstream in the network are added. The pathways are formed further
in this forward direction. Looking at the last generation, basically all pathways from
source to sink follow the forward evolution scenario, with older (red) enzymes being at
the top (upstream) and younger (blue) enzymes more at the bottom (downstream). This
observation is further established through the interval graph for all chemical reactions
in Figure 7. The reactions are here ordered according to their position in the graph.
There is a clear trend of older reactions being on the top and younger ones following
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Fig. 7. Life time diagram of metabolites (a) and reactions (b). Their position in the diagram (y-
axis) reflects the associated nodes’ positions in the graph layout. Reactions close to the source
metabolites are in upper positions, reactions close to the sink metabolites are placed at the bottom.
In (c), our scenario (first bar) can be compared to the three evolution models: retrograde evolution,
forward evolution, patchwork model.

more downstream. If we compare the colored bars (Figure 7c) showing the enzyme
age distribution for our results and the three scenarios mentioned above, the pathway
evolution again seems to explain our results best. Therefore, it appears that in the early
phase of metabolic evolution, forward evolution is dominant.

We turn now to the evolution of general properties of the metabolic networks from
our simulation. The numbers of metabolites and chemical reactions (see Figure 8a) de-
velop with almost the same rate. This indicates that most metabolites are only involved
in exactly one reaction. Combining this reasoning with the observation that the max-
imal node degree of metabolites increases significantly more than their average node
degree (see Figure 8b), we can conclude that our metabolic networks evolved one or
only a few highly connected metabolites, so called hub-metabolites, and probably has a
scale-free node-degree distribution, typical for real-world metabolic networks. Another
observation is the steady increase of the average enzyme connectivity while the average
metabolite connectivity converges. The explanation for the latter is the high number
of metabolites involved in only one reaction. A similar trend will likely arise in more
complex stages for enzyme connectivity as well.
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Fig. 8. Tracking selected attributes over time. (a) Number of metabolites (green) and reaction
nodes (red). (b) Node degree (maximum and average) of metabolites (green) and enzyme nodes
(red).
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7 Conclusion and Future Work

We have presented an extension to our existing graph visualization system to support
the exploration and analysis of dynamic metabolic networks. The development process
was intensively accompanied by the scientists providing the data and was found to
be extremely helpful to understand the underlying mechanisms of metabolic network
and biochemical pathway evolution. The visualization could reveal general properties
of the considered systems in terms of network topology, but also answered specific
questions on the evolution of metabolic networks and the emergence of pathways within
the network.

We found that interactivity plays a crucial role in the analysis process. It was suc-
cessfully implemented using the linked view method for intuitive navigation in time as
well as within a selected network configuration. We intend to examine more simulation
runs with different parameter configurations to compare the results and to gain a deeper
understanding of metabolic network evolution.

For laying out the constructed set union graph, the Sugiyama method has proven
to produce the best results. The layout algorithm was a suitable choice due to the fact
that the considered network contained only a few number of cycles, and therefore, the
observed elementary pathways followed the general direction from top (source nodes)
to bottom (sink nodes). The major disadvantage of this layout method is the amount of
space required for the drawing. The number of graph elements in the super graph was
small enough for a feasible application of this layout algorithm. Datasets with more
generations can become very large and too complex for using the applied graph layout.
However, there is room for improvement, since many elements in the super graph do
not overlap in time and may therefore occupy the same position reducing the total space
for the layout.
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vol. 2265, pp. 501–512. Springer, Heidelberg (2002)

25. Weininger, D.: SMILES, a chemical language and information system. 1. introduction to
methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988)

26. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical sys-
tems. IEEE Trans. Systems, Man, and Cybernetics 11, 109–125 (1981)

27. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing directed graphs.
IEEE Trans. Software Eng. 19, 214–230 (1993)

28. Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualiza-
tions. In: VL, pp. 336–343 (1996)

29. Horowitz, N.H.: On the evolution of biochemical syntheses. Proc. Natl. Acad. Sci. USA 31,
153–157 (1945)

30. Cordon, F.: Tratado evolucionista de biologa. Aguilar Ediciones, Madrid (1990)
31. Jensen, R.A.: Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30,

409–425 (1976)



Interpolating 3D Diffusion Tensors in 2D Planar
Domain by Locating Degenerate Lines

Chongke Bi1, Shigeo Takahashi1, and Issei Fujishiro2

1 Graduate School of Frontier Sciences, The University of Tokyo, Japan
2 Department of Information and Computer Science, Keio University, Japan

Abstract. Interpolating diffusion tensor fields is a key technique to visualize the
continuous behaviors of biological tissues such as nerves and muscle fibers. How-
ever, this has been still a challenging task due to the difficulty to handle possi-
ble degeneracy, which means the rotational inconsistency caused by degenerate
points. This paper presents an approach to interpolating 3D diffusion tensors in
2D planar domains by aggressively locating the possible degeneracy while fully
respecting the underlying transition of tensor anisotropy. The primary idea behind
this approach is to identify the degeneracy using minimum spanning tree-based
clustering algorithm, and resolve the degeneracy by optimizing the associated ro-
tational transformations. Degenerate lines are generated in this process to retain
the smooth transitions of anisotropic features. Comparisons with existing inter-
polation schemes will be also provided to demonstrate the technical advantages
of the proposed approach.

1 Introduction

Recent development of visualization techniques for tensor fields has provided an ef-
fective means of understanding biological tissues especially in medical applications.
Diffusion tensor magnetic resonance imaging (DT-MRI) is such an example where the
associated tensor fields are obtained by measuring the motion of water molecules.

In general, a tensor field is obtained as a grid of tensor samples, and thus requires ap-
propriate interpolation of such discrete samples to explore the structures of underlying
features. For interpolating diffusion tensor fields, it is important to retain the smooth
transition of anisotropic features inherent in the given tensor fields, especially around
degenerate points, where at least two of three eigenvalues are equivalent [1]. Zheng et
al. [2] proved that degenerate line, which connects degenerate points (the detail will be
introduced in Section 4), is the most stable topological structure for 3D tensors, while
degenerate points are unstable. However, existing interpolating schemes cannot obtain
these degenerate lines to retain the smooth transition of anisotropic features. Figure 1
describes such limitations. Figure 1(a) presents a diffusion tensor field containing two
degenerate points, and a degenerate line is obtained using our scheme, as shown in
Figure 1(e). However, in Figures 1(b) and (c), we cannot observe such degenerate line
while discontinuities appear in Figure 1(d). Note that the color of each ellipsoid indi-
cates the anisotropy of the corresponding tensor value, which is represented by the FA
value (Eq. (4)) of the tensor.
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(a) (b) (c) (d) (e)

Fig. 1. Interpolating a diffusion tensor field containing two degenerate points. (a) Original tensor
samples. Results with the (b) component-wise, (c) Log-Euclidean, (d) geodesic-loxodrome, and
(e) proposed interpolation scheme.

This paper presents an approach to interpolating diffusion tensor fields by locating
degenerate points and generating degenerate lines. The main idea is to cluster discrete
tensor samples with similar anisotropy and orientation using a minimum spanning tree
strategy, in order to locate degenerate points, which are connected by degenerate lines.
Figure 1(e) presents the result that a degenerate line is obtained between the two degen-
erate points, which is the primary advantage of the proposed method over the existing
interpolation schemes. In this paper, we introduce our method to interpolate 3D tensors
in 2D planar domain, which is an initial step of our research in 3D tensor fields.

The remainder of this paper is organized as follows: Section 2 introduces several
mathematical prerequisites for diffusion tensors, and then provides a brief survey on
related work. Our approach for interpolating tensor fields is detailed first for 1D do-
main in Section 3, and then for 2D cases even with tensor degeneracy in Section 4.
The effectiveness of the proposed approach is presented through the comparison with
existing interpolation schemes in Section 5, followed by the conclusion of this paper in
Section 6.

2 Related Work

A 3D diffusion tensor can be represented by three real eigenvalues λ1 ≥ λ2 ≥ λ3 > 0,
together with the corresponding eigenvectors e1,e2, and e3 that form an orthonormal
basis, which can be visualized as an ellipsoid as shown in Figure 2(a). The shape of the
ellipsoid depends on the eigenvalues, which are defined as tensor anisotropy. Several
metrics for evaluating such anisotropy have been proposed [3], which include linearity
(Cl), planarity (Cp), sphericity (CS), and Fractional Anisotropy (FA) as follows:

Cl = (λ1 −λ2)/(λ1 + λ2 + λ3), (1)

Cp = 2(λ2 −λ3)/(λ1 + λ2 + λ3), (2)

Cs = 3λ3/(λ1 + λ2 + λ3), (3)

FA =

√
3
(
(λ1−λ̄ )2 +(λ2−λ̄ )2 +(λ3−λ̄ )2

)
√

2
(
λ 2

1 + λ 2
2 + λ 2

3

) ,

where λ̄ = (λ1 + λ2 + λ3)/3. (4)
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(a) (b)

Fig. 2. Sign ambiguity of eigenvectors. (a) A tensor can be represented by an ellipsoid. The di-
rections of the coordinate axes are represented by the arrows. Different colors are assigned to the
axes for representing the magnitudes of eigenvalues. (b) Three other possible definitions of the
tensor in (a).

Note that Cl +Cp +Cs = 1 and 0 ≤Cl ,Cp,Cs,FA ≤ 1.
As described in the literature [4], the history of tensor interpolation methods started

with naı̈ve schemes as usual, including component-wise interpolation of tensor matri-
ces. These methods, however, incur undesirable change in the tensor anisotropy, and
cannot generate degenerate lines between degenerate points, as seen in Figure 1(b). In
addition, positive-definiteness of the tensor matrix may not be preserved since the linear
interpolation has been applied to each component of the tensor matrix in this scheme.

To alleviate this problem, Batchelor et al. [5] defined a distance function so that we
can interpolate the tensors by tracking the corresponding geodesic path on a nonlin-
early curved space. Their approach still incurs undesirable transition of the anisotropic
features along the interpolated tensors when the associated rotational angle is relatively
large. Furthermore, Fletcher et al. [6] modeled the space of diffusion tensors as a Rie-
mannian symmetric manifold and introduced a framework for the statistical analysis of
that space. However, their methods suffer from high computational costs because the
geodesic path invokes long iterative numerical computations.

Recently, Arsigny et al. [7] developed a Riemannian metric called Log-Euclidean to
provide a faster computational algorithm. This has been accomplished by transforming
tensor samples into their matrix logarithms so that we can perform the tensor interpo-
lation using Euclidean operations. However, it still incurs unnecessary change in the
anisotropy of the interpolated tensors, as shown in Figure 1(c). Kindlmann et al. [8]
presented a novel tensor interpolation method called the geodesic-loxodrome, which
discriminates between the isotropic and anisotropic components of the tensors first and
then interpolates each component individually. This accomplishes high quality interpo-
lating results, however, at the cost of longer computation times again. The method may
also incur undesirable discontinuity over the domain when its boundary has redundant
rotation of the tensor orientation, as shown in Figure 1(d).

Any of the aforementioned approaches tried to transform tensor matrices to some
specific nonlinear space and perform the interpolation by finding an optimal transition
path between the tensors in that space. However, less attention has been paid to the
eigenstructures of the tensor matrices. Merino-Caviedes et al. [9] developed a method
for interpolating 2D diffusion tensors defined over the 2D planar domain, where they
constitute a 3D Euclidean space spanned by the two eigenvalues and the angle between
the primary eigenvector and the x-axis of the 2D domain. Hotz et al. [10] presented a
sophisticated model based on the eigenstructures of the 2D diffusion tensors. In this
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Fig. 3. Interpolating a 1D diffusion tensor field

work, they linearly interpolated between each pair of the eigenvalues and the corre-
sponding pair of eigenvectors component-wise separately. They also located degener-
ate points over 2D triangulated domain. Readers can refer to a more complete survey
in [11].

3 Interpolating 1D Tensor Fields

3.1 Eigenstructure-Based Tensor Representation

In this paper, an approach to interpolating diffusion tensors by employing an
eigenstructure-based representation is proposed. Nonetheless, such interpolation scheme
has not been fully tackled so far, because it cannot provide a unique description of a
tensor.

This comes from the fact that each tensor has sign ambiguity in its eigenvector direc-
tions since both Aei = λiei and A(−ei) = λi(−ei)(i = 1,2,3) hold simultaneously, where
A represents the matrix representation of the tensor. Thus, even when we suppose that
the three eigenvalues suffice the condition λ1 ≥ λ2 ≥ λ3 > 0, and the associated eigen-
vectors are all normalized to unit vectors to form a right-handed coordinate system, we
still have four different representations for a single tensor, as shown in Figure 2.

For interpolating 1D tensor fields, we first establish the correspondence between each
adjacent tensor samples, and then individually interpolate between each pair for seeking
the smooth transition of tensor anisotropy values and its associated orientations.

3.2 Optimizing Correspondence between Tensors

Suppose that we have two tensor samples DS and DT , while their normalized eigenvec-
tors are represented as {eS

1,e
S
2,e

S
3}, and {eT

1 ,eT
2 ,eT

3 }, respectively. The rotation matrix R
that transforms between DS and DT can be formulated as:

R = (p1eT
1 , p2eT

2 , p3eT
3 )(eS

1,e
S
2,e

S
3)

−1, (5)

where pi(i = 1,2,3) is defined to be the sign of each eigenvector ei, in such a way that
pi = ±1(i = 1,2,3) and ∏3

i=1 pi = 1. The rotation angle θ between DS and DT is given
by:

θ = arccos |(trR−1)/2|, (6)

where trR is the trace of R. We assume θ ∈ [0,π/2], to remove redundant rotation.
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3.3 Interpolation Using Eigenvalues and Eigenvectors

Having fixed the eigenvector directions of two tensor samples, we interpolate their cor-
responding eigenvalues and eigenvectors individually. Suppose that we calculate the
interpolated tensor DM at the ratio of t : (1− t) in the range [0, 1] between DS and
DT , as shown in Figure 3. We calculate the three eigenvalues λ M

i (i = 1,2,3) of DM

by linearly interpolating between the eigenvalues of DS and DT , and three eigenvectors
eM

i (i = 1,2,3) by linearly interpolating the associated rotation angle between them as:

λ M
i = (1− t)λ S

i + tλ T
i , and (7)

(eM
1 ,eM

2 ,eM
3 ) = Rt(eS

1,e
S
2,e

S
3). (8)

4 Interpolating 2D Tensor Fields

In order to extend the previous formulation to 2D planar domains, we need to handle
the following two important technical issues:

1. In 2D cases, the rotational transformation depends on two parameters that define
the parameterization of the 2D planar domain. We have to take care of the order of
applying the rotation matrices since the rotations do not commute with each other.

2. We need to remove the rotational inconsistency around degenerate points.

4.1 Combination of Rotations for 2D Cases

For the noncommutative multiplication of rotation matrices, we alleviate the problem by
employing Alexa’s formulation on linear combination of transformations [12], which
enables us to handle the multiplication of rotation matrices as their linear sum. For
example, in the square region confined by the discrete tensor samples D00,D01,D11,
and D10, where the region is defined as a 2D parametric domain (s, t) ∈ [0,1]× [0,1]
(Figure 4). If we denote Alexa’s commutative multiplication operator by ⊕, we can
define the tensor D at parametric coordinates (s, t), using the bilinear interpolation as:

R = Rs(1−t)
x ⊕R(1−s)t

y ⊕Rst
xy, (9)

where, Rx, Ry, and Rxy represent the rotation matrices between D00 and D01, D00 and
D10, and D00 and D11, respectively. Now the eigenvectors of D can be obtained by
applying R to those of D00.

4.2 Locating Tensor Degeneracy

For 3D diffusion tensors, a tensor is defined as a degenerate point if at least two of three
eigenvalues are equivalent [1]. Zheng et al. [2] proved that the most stable topological
structure for 3D diffusion tensors is a degenerate line which connects degenerate points
in tensor fields. We define the square containing a degenerate point as a degenerate cell.

We will introduce how to locate the position of degenerate points. Since each de-
generate point is contained in some degenerate cell, we can locate degenerate cells
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Fig. 4. Interpolating a 2D diffusion tensor field

instead of degenerate points. A minimum spanning tree (MST)-based clustering algo-
rithm is employed so that we can group tensor samples (or clusters) that share similar
anisotropic values and their associated orientations. This is accomplished by introduc-
ing the following dissimilarity metric that evaluates the proximity between the neighbor
tensor samples:

d(DS,DT ) = α|Cl
S −Cl

T |+ β |Cp
S −Cp

T |+ γ(|θS,T |/(π/2)), (10)

where,Cl
S and Cl

T represent the Cl values of the two tensor samples DS and DT , and Cp
S

and Cp
T are the corresponding Cp values. In addition, θS,T is the minimal rotation angle

between the right-handed coordinate systems defined by the two sets of eigenvector
directions. This is calculated by selecting one representation for each tensor (Figure 2).
This metric satisfies the fundamental axioms for metric spaces, and tries to evaluate
both the differences in the anisotropy and the rotational angle between two tensors. Our
experiments suggest that the parameter setting α = 4, β = 2 and γ = 1 is reasonable
for this purpose because we are more likely to group high anisotropic tensor samples in
earlier stages of this clustering process. Figure 5(a) shows such an example, where we
find the most similar pair of samples among the candidate adjacent pairs and connect the
pair with MST-based clustering. We continue this process until all the tensor samples
fall into a single cluster as shown in Figure 5(b).

After finishing this process, we can identify the pair of adjacent tensor samples as
a degenerate pair if their rotation angle is more than π/2. By counting the number
of degenerate pairs, we can locate degenerate cells. This is because a degenerate cell
contains an odd number of degenerate pairs (Figure 6). Figure 5(c) shows such an exam-
ple, where two degenerate points are located. However, from the interpolated result in
Figure 5(d), we find that the rotational inconsistency exists just on the degenerate pairs
between the two degenerate points. Therefore, we should introduce degenerate lines to
remove the rotational inconsistency and connect the degenerate points.

4.3 Rotational Inconsistency Around Degenerate Points

The main idea of resolving the rotational inconsistency is to transform aforementioned
degenerate pairs into non-degenerate ones. For this purpose, we optimize the rotational
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(a) (b) (c) (d)

Fig. 5. MST-based clustering in tensor field: (a) Original tensor samples (b) The final MST that
covers all the tensor samples. (c) Degenerate points (green points) and degenerate pairs (blue
lines) obtained through the MST-based clustering algorithm. (d) Interpolated result obtained
through the MST-based clustering algorithm only.

Fig. 6. Configurations of degenerate pairs in a unit square. A pair of tensor samples is drawn in
blue if it is degenerate, and the square is shaded in red if it contains a degenerate point.

transformation between the two end tensor samples. This is achieved by selecting one
of the two tensors, and changing the order of its eigenvectors to minimize the rotational
angle in between.

Figure 7 illustrates this process. We focus on a degenerate pair indicated by the red
segment in Figure 7(a), and try to transform it into non-degenerate one. We basically
select one of the two tensors (circled by a broken circle in red in Figure 7(a)) as the one
that has not been visited yet, while the tensor with low anisotropy is more likely to be
selected if both are unvisited. The order of its eigenvectors is then rearranged in order
to minimize the rotational angle between these two tensors where the first and second
eigenvectors are exchanged in this case. Finally, we label the adjusted tensor as visited,
and check the incident pairs as represented by the yellow segments in Figure 7(b),
because the change in the tensor representation may transform the neighbor pairs into
degenerate ones. Now we select another degenerate pair and repeat this process, as
shown in Figure 7(c), until all the degenerate pairs are resolved into non-degenerate
ones.

Actually, our method tries to introduce isotropic tensors in the region between the
neighbor degenerate pairs, and these isotropic tensors constitute of degenerate lines.
This has been finished by optimizing the rotational angle between the two end tensors on
degenerate pairs. Therefore, our method is able to remove the rotational inconsistency
by generating degenerate lines, as shown in Figure 7(d).

Furthermore, degenerate lines do not affect the anisotropy of the region without de-
generate pairs. The reason is that the orders of the eigenvalues of all the tensors in such
region change at the same time. For example, there is no degenerate pairs in the right-
most and bottommost cell in Figure 7(a). Before we transform the degenerate pairs into
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(a) (b) (c) (d)

Fig. 7. Generating degenerate lines by resolving degenerate pairs of tensor samples: (a) Find one
of the remaining degenerate pairs in red, and transform it into non-degenerate one. (b) Check if
the pairs around the selected tensor sample have redundant rotations. (c) If they exist, select them
and transform them into non-degenerate ones. We continue this process until all the remaining
degenerate pairs are resolved. (d) Result after rotational inconsistency has been resolved, where
a degenerate line is generated between the two degenerate points.

non-degenerate ones, all the orders of their eigenvalues are {λ1, λ2, λ3}. After we fin-
ish transforming the degenerate pairs into non-degenerate ones, all the orders of their
eigenvalues are changed into {λ2, λ1, λ3}. Therefore, the anisotropy of interpolated
tensors in such region will not be affected, as shown in Figure 7(d).

5 Results and Discussions

In this section, we demonstrate the effectiveness of our approach in the 2D tensor fields
without degenerate points and with degenerate points, respectively. We also compare
the results of our approach with those obtained by other existing schemes.

Figure 8(a) presents a 2D case where 6×6 discrete tensor samples guide the under-
lying “X”-like shape. No degenerate points are included in this dataset. Figures 8(b),
(c), and (d) show interpolated tensor samples obtained using the component-wise, Log-
Euclidean and our schemes, respectively. The two conventional schemes unexpectedly
incur low anisotropic features around the crossing of the two anisotropic line features,
while our method can still maximally preserve the underlying anisotropic structures.

Figure 9 shows results of interpolating a real human brain DT–MRI dataset (256×
256× 30). Figure 9(a) is the 17th axial slice of the original dataset, which is down-
sampled into 128× 128, and Figure 9(b) is the zoom-up view of the region boxed in
a square in Figure 9(a) where two fibers intersect with each other. To interpolate the
tensor samples in this region, a degenerate line should be obtained to separate these two
fibers. Figures 9(c), (d), (e), and (f) show the interpolation results with the component-
wise, Log-Euclidean, geodesic-loxodrome, and our schemes, respectively. The results
show that our scheme can produce a degenerate line composed by lower anisotropic ten-
sors, which separates these two fibers, and our scheme can also respect the anisotropic
features of the two fibers. However, neither of the component-wise or Log-Euclidean
schemes can respect the underlying anisotropic features of the left fiber appropriately.
The geodesic-loxodrome scheme can fully respect the anisotropy of the two fibers. Un-
fortunately, all these three schemes cannot generate the degenerate line to separate the
two fibers.
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(a) original samples (b) component-wise (c) Log-Euclidean (d) our scheme

Fig. 8. Interpolating a 2D diffusion tensor field. (a) Original tensor samples. Results with the (b)
component-wise, (c) Log-Euclidean, and (d) our interpolation schemes.

(a) original samples (c) component-wise (e) geodesic-loxodrome

(b) zoom-up view of the target region (d) Log-Euclidean (f) our scheme

Fig. 9. Human brain DT–MRI dataset: (a) Original data samples. (b) The zoom-up view of the re-
gion where two anisotropic features intersect. Interpolation results obtained using (c) component-
wise, (d) Log-Euclidean, (e) geodesic-loxodrome, and (f) our interpolation schemes.

6 Conclusion

An approach to interpolating diffusion tensor fields through the analysis of the asso-
ciated eigenvalues and eigenvectors has been presented in this paper. Compared with
other existing interpolation schemes, the present approach can maximally respect the
underlying anisotropy of the given dataset, especially in the tensor fields containing
degenerate points. In our method, degenerate points can be connected by degenerate
lines, which are the most stable topological structure for 3D tensors, by employing



Interpolating 3D Diffusion Tensors in 2D Planar Domain 337

MST-based algorithm. We also solve the non-commutative property of matrix compo-
sition by taking advantage of Alexa’s linear combination of transformations [12].

However, the present approach may not be able to effectively handle noisy datasets,
where such anisotropic features are rather scattered over the data domain. We are cur-
rently working on extending our 2D scheme to 3D so as to enable ones to perform
detailed analysis of complex fiber structures.
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Indented Pixel Tree Plots
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Abstract. We introduce Indented Pixel Tree Plots (IPTPs): a novel pixel-based
visualization technique for depicting large hierarchies. It is inspired by the vi-
sual metaphor of indented outlines, omnipresent in graphical file browsers and
pretty printing of source code. Inner vertices are represented as vertically ar-
ranged lines and leaf groups as horizontally arranged lines. A recursive layout
algorithm places parent nodes to the left side of their underlying tree structure
and leaves of each subtree grouped to the rightmost position. Edges are repre-
sented only implicitly by the vertically and horizontally aligned structure of the
plot, leading to a sparse and redundant-free visual representation. We conducted
a user study with 30 subjects in that we compared IPTPs and node-link diagrams
as a within-subjects variable. The study indicates that working with IPTPs can
be learned in less than 10 minutes. Moreover, IPTPs are as effective as node-link
diagrams for accuracy and completion time for three typical tasks; participants
generally preferred IPTPs. We demonstrate the usefulness of IPTPs by under-
standing hierarchical features of huge trees such as the NCBI taxonomy with
more than 300,000 nodes.

1 Introduction

Designing tree visualizations that scale up to millions of elements and that still give
a clear impression of hierarchical structures and substructures, their sizes, as well as
their depths globally and locally will speed up exploration tasks for hierarchical data
in various application areas. For instance, the field of software visualization is a rich
source for hierarchical data since software artifacts are hierarchically structured and
can additionally be associated with attributes such as the developer who did the latest
changes or the size of each software artifact. As another example, taxonomies in biology
are used to classify various species into a hierarchical order. These may be enriched by
an additional attribute such as the family or order name of the species.

There are many tree visualization techniques, including node-link diagrams, layered
icicle plots, tree-maps, or hybrid representations consisting of at least two of them. In
this paper, we propose a different kind of tree representation that makes use of indented
outlines. The IPTPs can be classified as a one-and-a-half dimensional visualization ap-
proach since it is sufficient to read such plots from left to right to understand the hierar-
chical semantics similar to reading a text fragment.

IPTPs focus on clearly displaying the structure, the size, and the depth of a tree
in a sparse and redundant-free way. IPTPs draw inner vertices as vertically arranged
lines and leaf groups as horizontally arranged lines. Using this metaphor, edges are rep-
resented only implicitly by the vertically and horizontally aligned structure of the plot.

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 338–349, 2010.
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Adding explicit links to the plot would be a possible extension. However, this would not
convey extra information and hence, could be considered as superfluous (chart junk) ac-
cording to Tufte [1]—information in a graphical display that can be left away without
affecting the understandability and readability.

The hierarchy is recursively encoded into an IPTP by placing parent nodes to the
left of their underlying tree structure and by grouping leaf nodes together to the right-
most position of the plot. Consequently, each node in the hierarchy can be mapped to
a representative position on the horizontal axis. This allows us to attach an attribute
to each node in an aligned way and hence, allows for better comparisons among these
attributes. This task would be difficult to impossible for tree-maps, layered icicle plots,
or node-link diagrams.

To evaluate the readability of IPTPs, we conducted a user study that compares IPTPs
to node-link diagrams by measuring completion time and accuracy for three different
tasks in a within-subjects experiment. Finally, to illustrate a typical application, we
apply the IPTP technique to the NCBI taxonomy that contains several hundred thousand
nodes.

2 Related Work

IPTPs are inspired by the indented outline visual metaphor for displaying hierarchical
data structures. Indented outline approaches are popular in file browsers such as Mi-
crosoft Explorer. An interactive approach was proposed by Engelbart and English [2]
as early as forty years ago. Software developers use the principle of indentation in their
everyday programming work—in an automatic and unconscious way.

In general, there is a huge body of previous research on hierarchy visualization [3].
Node-link diagrams are the most widely used approach. For example, Battista et al. [4],
Herman et al. [5], and Reingold and Tilford [6] use conventional node-link diagrams
to depict relationships between hierarchically ordered elements. Several variations ex-
ist for node-link diagrams that use different orientations of these rooted node-link di-
agrams. Attaching an attribute to all of the nodes—for example a text label—using
node-link diagrams may lead to overlaps in the display. Moreover, a simultaneous com-
parison of all attributes is problematic since these are not aligned in the same way.

Radial node-link approaches place nodes on concentric circles, where the radii of the
circles depend on the depths of the corresponding nodes in the tree [4,5,7]. Although
this technique leads to a more efficient use of space, it is more difficult to judge if
a set of nodes belongs to the same hierarchy level. This apparent drawback of radial
diagrams can be explained by the fact that the human visual system can judge posi-
tions along a common scale with a lower error rate than positions along identical but
non-aligned scales, as demonstrated in graphical perception studies by Cleveland and
McGill [8]. IPTPs align nodes on the same depth on a horizontal line, which makes
this judgment easier. Balloon layouts are another strategy to display hierarchies in the
form of node-link diagrams: they show the hierarchical structure clearly but suffer from
space-inefficiency for large and deep hierarchies [5,9] and make these judgments more
difficult due to the smaller radii for deeper subtrees. Moreover, it is difficult to attach an
attribute to each node for comparisons between hierarchy levels.
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Tree-maps [10] are a space-filling alternative for displaying hierarchies. One draw-
back of tree-maps is the fact that hierarchical relationships between parent and child
nodes are hardly perceived in deeply nested hierarchical structures. Nesting can be indi-
cated by borders or lines of varying thickness—at the cost of additionally needed screen
space. Tree-maps are an excellent choice when encoding quantitative data attached to
hierarchy levels but IPTPs are more useful when comparing hierarchical data.

Layered icicle plots require substantial amounts of image space: they use as much
area for parent nodes as the sum of all their related child nodes together. A benefit of
this representation is that the structure of the displayed hierarchy can be grasped easily
and moreover, this type of diagram scales to very large and deep trees. Variations of this
idea are known as Information Slices [11], Sunburst [12], and InterRing [13]. These di-
agrams make use of polar coordinates, which may lead to misinterpretations of nodes
that all have the same depth in the hierarchy. As another drawback, all icicle-oriented
techniques require separation lines between adjacent elements allowing differences in
hierarchy levels and nodes to be perceived. In contrast, IPTPs do not need such separa-
tion lines, resulting in a more compact representation, and attaching labels to the nodes
is easier with our technique.

3 Visualization Technique

IPTPs only map vertices to graphical primitives; edges are present only indirectly—
visible through the arrangement of the primitives for the vertices. Inner vertices are
mapped to vertically aligned lines, whereas leaf vertices are mapped to single square
objects. This asymmetric handling of inner and leaf vertices leads to a better separation
of both types of visual hierarchy elements. Parent–child relationships are expressed by
indentation of the corresponding geometric shapes with respect to the hierarchy levels
of the respective parent and child vertices.

On the technical level, we use graph terminology to describe an information hi-
erarchy. Then, the hierarchy can be considered as a special case of a directed graph
T = (V,E), where V denotes the set of vertices (i.e., nodes) and E ⊆V ×V denotes the
set of edges (i.e., links) that express parent–child relationships directed from a parent
to a child node.

3.1 Plotting Algorithm

Algorithm 1 provides the pseudo code of the plotting algorithm. Rendering is initiated
by calling Indented(r,0,0), with the root vertex r ∈ V . The algorithm plots the hier-
archy T = (V,E) recursively as follows. The recursion is used to traverse and render
all children of the current vertex: {v ∈ V | (r,v) ∈ E}. The depth parameter d is incre-
mented by one each time the recursion enters a deeper hierarchy level. Simultaneously,
the horizontal position n is updated by the size of the underlying sub-hierarchy. The
recursion stops at the level of leaf vertices.

The following functions implement the actual rendering process:

– drawLeaf(n, d): Leaf vertices are rendered as squared boxes. The parameter n is re-
sponsible for the horizontal placement of a box representing a leaf vertex, whereas
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Algorithm 1. IPTPs

Indented(r, n, d):
// r: vertex where plotting starts
// n: current horizontal position (integer)
// d: current level (depth) of hierarchy (integer)

C := {v ∈V | (r,v) ∈ E}; // set of child vertices of r
if |C |> 0 then

// inner vertex
drawInnerVertex(n, d);
for all v ∈C do

// traverse children
n := Indented(v, n+1, d +1);

end for
else

// leaf vertex
drawLeaf(n, d);
n := n+1; // advance horizontal position

end if
return n; // horizontal end position

the parameter d is used to place it vertically. In general, we paint the upper left
corner of the box at coordinates (n · sizeh,d · sizev).

– drawInnerVertex(n, d): Inner vertices are rendered as vertical rectangles to make
their visual encoding significantly different from the visual encoding of leaf ver-
tices. The upper left corner of the vertical rectangle is rendered at coordinates
(n · sizeh,d · sizev) and the lower left corner at coordinates (n · sizeh,(d + 1) · sizev).

The above rendering routines assume a uniform grid of graphical primitives of squared
shape. The primitives may be associated with pixels, leading to a pixel-based plot. For
smaller hierarchies, “fat pixels” can be used: each graphical primitive covers a square
of pixels so that the elements of the plot are enlarged. We use sizev as a parameter that
describes the vertical size of the representation of inner vertices; sizeh describes the
horizontal size of each graphical object (inner and leaf vertices alike) and, additionally,
the height of the square representation of leaf vertices.

The parameter sizev may be adjusted depending on the depth of the hierarchy, as to
make good use of vertical image space. The same holds for parameter sizeh in the hori-
zontal direction. Optionally, the initially squared objects for leaf nodes can be vertically
flattened, see Figure 1.

The geometric arrangement assumes that the plot is rendered from left to right for the
vertices (i.e., the root vertex is placed leftmost) and from top to bottom for increasing
depth level of the hierarchy. If needed, the plot could be rotated by 90 degrees, leading
to a vertical arrangement of vertices and horizontal mapping of depth levels.

Figure 1 (b) illustrates the IPTP for a hierarchy example. The same hierarchy is also
shown as a traditional node-link diagram in Figure 1 (a) to compare both approaches side
by side. For example, the root node is located at the top of the node-link diagram, whereas,
in the IPTP, it is visually encoded by the leftmost and topmost vertical rectangle.
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(a) (b) (c)

Fig. 1. A hierarchy visualized as (a) node-link diagram; (b) IPTP; (c) IPTP with color gradient

We can see from Figure 1 (b) that an IPTP is interpreted from right to left. Inspecting
a number of leaf nodes always means to first orientate to the left to examine their parent
node, then looking upwards and again to the left to detect the grandparent node. Inner
nodes at the same depth of the hierarchy can be detected by inspecting the whole hor-
izontal line of a specific hierarchy level. A single subtree can be explored by detecting
its root node and searching for the next element on the same vertical position in the plot
that is located to the right. All elements in between belong to this subtree.

3.2 Recursive Hierarchical Ordering

Transforming an unordered hierarchy into an IPTP may lead to many leaf vertices
spread all across the plot. This may be problematic since the pixel-based encoding
would result in dispersed single pixels that are hard to perceive. To increase the vi-
sual coherence of the plot, we therefore group leaf vertices within the same hierarchy
level and place them to the right of all inner vertices within this hierarchy level. This
layout principle leads to pixel-based horizontal lines when many leaf nodes belong to
the same hierarchy level. The length of those horizontal lines can be judged easily and
hence, levels with many leaf vertices can be readily detected.

3.3 Additional Visual Features

The basic plotting method can be enriched by further visual components for better read-
ability or scalability. We discuss the use of color gradients, image scale-down, and high-
resolution sampling for hierarchies beyond pixel resolution.

Color Coding. Color can be applied to group hierarchy levels of the same depth in
the IPTPs, leading to a clearer visual separation of deeper levels in the hierarchy. In
our implementation, we use a discrete color gradient to support a user in classifying
hierarchical elements by their depth.

In addition, neighboring depth levels may be indicated by horizontal background
stripes of two cyclic shades of gray, chosen according to d mod 2.

Figure 1 (c) shows a visual variant of an IPTP by applying a color gradient and
adding horizontal background stripes to the black colored plot in Figure 1 (b). As a
benefit, leaf nodes can be detected between subsequent inner nodes in the plot even if it
is scaled down beyond pixel size.
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Horizontal and Vertical Scaling. The hierarchical structure remains clearly visible
even if the plot is scaled to a much higher resolution. This holds for both the horizontal
and vertical direction. Huge hierarchies can be explored by just inspecting static images
without the need for interactive features such as scrolling vertically or horizontally,
typically required in other visualization techniques.

Interaction. Our implementation supports interactive features such as expanding and
collapsing of hierarchy levels, filtering and querying, exploration support for hierarchy
relationships, details on demand, or applying different color scales.

4 User Study

In a user experiment, we firstly investigated the readability of IPTPs compared to node-
link diagrams (NLDs), both without color gradient and interactive features. The user
study was within-subjects. We chose node-link diagrams as source of comparison be-
cause they are the most widely used, well established, de-facto standard for hierarchy
visualization [14]. Each test of the visualizations included three dataset sizes and three
tasks. Questions were designed so that subjects had to answer in forced-choice fashion.

4.1 Stimuli and Tasks

A stochastic algorithm generated all datasets synthetically. The dataset construction was
parameterized by the size of the hierarchy in terms of the number of vertices and the
maximal depth. One constraint was that the presentation space was identical for both
techniques. The experiment included three tasks:

– T1: Finding the least common ancestor of two leaf vertices
– T2: Checking the existence of an identical sub-hierarchy elsewhere in the plot
– T3: Estimating which of two sub-hierarchies was the larger one

All tasks are important when exploring attributes that are attached to all hierarchy levels
since patterns in the set of attributes may be caused by corresponding hierarchy levels
that may show similar hierarchical patterns. We chose the tasks as a result of a pilot
study.

4.2 Study Method

We chose a within-subjects user study design with 30 participants. They had to answer
questions that where recorded by an operator. Subjects could additionally mark prefer-
ences and provide comments by filling in questionnaires.

Environment Conditions and Technical Setup. The user experiment was conducted
in a laboratory that was insulated from outside distractions. All visualizations were pre-
sented on a 24 inch Dell 2408 wfp ultrasharp TFT screen at a resolution of 1920×1080
pixels with 32bit color depth. To avoid wrong results the subjects’ responses were
recorded by an operator pushing two specially marked keys on a PC keyboard. We as-
sume that the delay associated with the operator for every task execution and recording
loop was approximately the same amount of time (fault tolerance < 100ms).
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(a) (b)

Fig. 2. Example stimuli from the study: (a) node-link diagram with color-coded target elements;
(b) corresponding IPTP

Subjects. Thirty (23 male, 7 female) subjects were recruited. Sex was not considered
a confounding factor for this study. Twenty-seven participants were undergraduate stu-
dents of our university and three were graduate students. Twenty-three subjects were
computer scientists and seven were engineers. The average age was 27 years (minimum
22, maximum 53). Subjects were paid e 10 for participating in the user experiment.
Twelve stated that they were familiar with visualization techniques or had attended a
lecture with this topic. Eighteen stated that they were not familiar with visualization
techniques. All participants had normal or corrected-to-normal color vision, which we
confirmed by an Ishihara test and a Snellen chart to estimate visual acuity.

Study Procedure. First, subjects had to fill out a short questionnaire about age, field
of study, and prior knowledge in visualization techniques. Then, they read a two-page
instruction manual on IPTPs and node-link diagrams. After the participants were given
time to read this tutorial, we did a practice run-through of the user tasks. The time
duration of the complete training was 10 minutes. During this practice test, subjects
could ask questions about the visualization technique and clarify potential problems or
misinterpretations. We also used the practice test to confirm that the subjects understood
both IPTPs and node-link diagrams.

Then, we continued with the main evaluation that took between 15 and 20 minutes
depending on the fitness of the subject. There was a “Give Up” option, but it was not
used by the subjects. Tasks, tree sizes, and visualization types were randomized and
balanced to compensate for learning effects. Each participant had to perform T1, T2,
and T3 for each tree size and visualization type. One task consisted of seven trials per
tree size. The time limit for every trial was 20 seconds.

In T1, the child nodes were marked by red colored circles in case of node-link di-
agrams, and by red colored triangles in case of IPTPs. Two possible ancestors were
colored in green and blue, see Figure 2. In T2, one sub-hierarchy was marked with a
red starting node. In T3, the starting nodes of two sub-hierarchies were marked green
and blue. Subjects had to respond with “blue” or “green” (T1 and T3) and “yes” or
“no” (T2). Completion times and correctness of answers were recorded for the seven
trials. This procedure resulted in a total of 126 measurements for each participant since
we showed the combination of two visualization techniques, three tasks, three dataset
sizes, and seven trials.
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After the main evaluation, subjects were given a second questionnaire in which they
marked their preferences in using one of the two visualization techniques. Finally, par-
ticipants were given the opportunity to provide open, unconstraint comments.

4.3 Study Results

Task Completion Time. To compare the completion times concerning their signif-
icance we analyzed the data task-pairwise with the paired t-test. Table 1 shows the
averaged completion times over all 30 subjects with standard deviation and t-test values
t. Also, the best technique for every series of measurements is identified. There were 5
timeouts over all measurements and all subjects. We rated each timeout with 20 seconds
in the data analysis.

When comparing IPTPs to node-link diagrams over all dataset sizes, the average and
median of all time measurements is approximately equal in T1 and T2. None of the
t-tests indicated significant differences.

For T3, both techniques differ: For the small and large datasets, node-link diagrams
are significantly faster to read. For the medium dataset, IPTPs are superior close to
significance level (t = 0.07). It is interesting that the relative performance of the two vi-
sualization techniques varies in such a non-monotonic way with dataset size, indicating
that a clearly superior technique cannot be identified.

We discuss the results of our study for the completion times when participants solved
task T1 in more detail since we found there the most interesting behavior. Figure 3
shows a parallel coordinates plot for the completion times for T1. The axes are or-
dered from left to right by the dataset sizes and annotated by the seven trials for small,
medium, and large sized tree data. Green squares indicate that the task was answered
correctly by this participant whereas red squares show incorrect answers.

One can easily see that the tasks for the yellow colored IPTPs are frequently an-
swered correctly in less than 1,000 milliseconds and the fastest answer was given after
200 milliseconds. A few participants needed more than 5,000 milliseconds to answer.
The blue colored polylines for the node-link diagrams show a different behavior. The

Table 1. Comparison of task completion times. Each table element shows best technique, t-test
values, and average completion times (in milliseconds) with standard deviation in parentheses.

Task 1 Task 2 Task 3

Small NLDs IPTPs NLDs
t 0.45 0.17 0.002
NLDs 1995 (545) 5328 (1634) 3576 (1215)
IPTPs 2016 (934) 5090 (1293) 4514 (1473)

Medium IPTPs NLDs IPTPs
t 0.37 0.21 0.07
NLDs 2110 (541) 5930 (1723) 5107 (2183)
IPTPs 2059 (987) 6156 (2018) 4500 (1166)

Large IPTPs/NLDs IPTPs NLDs
t 0.49 0.41 < 0.001
NLDs 2388 (562) 8685 (3001) 3325 (926)
IPTPs 2386 (1315) 8603 (2181) 3976 (1257)
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Fig. 3. Parallel coordinates plot showing the completion times and the correctness of answers for
task T1 and for seven trials of each dataset size

shortest time for an answer is 980 milliseconds and there are not as many outliers with
more than 5,000 milliseconds. The standard deviation is much smaller here. The par-
allel coordinates plot shows that task T1 was solved consistently in less than 1,000
milliseconds for IPTPs by a subgroup of the participants. This indicates that these par-
ticipants used IPTPs more efficiently than node-link diagrams. We conjecture that these
participants have well adopted IPTPs.

Accuracy. When performing T1 and T3, subjects had a higher accuracy with node-link
diagrams. The difference was significant for the large dataset (for both T1 and T3) and
the small dataset (only for T3). The pattern recognition in T2 had a higher accuracy
in the IPTPs regarding to the average accuracy. However, those differences were not
statistically significant.

Subjective Preferences. In a questionnaire, subjects could give their preferences when
using the IPTPs or the node-link diagrams for exploring small and large datasets (see
Table 2). Additionally, more general questions are documented in Table 3.

Subjects tended to prefer node-link diagrams for small datasets. When exploring
large datasets, they significantly found IPTPs more useful. Table 3 shows the results

Table 2. Subject preferences: average rating in Likert scale (1 = IPTPs, 2 = NLDs) including
standard deviation in parentheses

Question Rating Preference

Q1: Which visualization do you prefer for small datasets? 1.76 (0.43) NLDs

Q2: Which visualization do you prefer for large datasets? 1.26 (0.45) IPTPs

Table 3. General questions. Average rating in Likert scale (1 = I agree, 5 = I disagree) for each
visualization technique.

Question IPTPs NLDs t

Q3: The visualization was helpful to me. 2 (1.14) 1.9 (0.91) 0.410

Q4: I enjoyed this visualization. 2.3 (1.10) 1.9 (0.92) 0.083

Q5: I found the visualization motivating. 1.8 (0.95) 2.46 (0.90) 0.005
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of questions Q3 to Q5. For Q3, both visualization techniques are rated head-to-head.
Participants enjoyed using node-link diagrams (Q4) more than IPTPs (non-significant),
but found IPTPs more motivating to use (Q5, significant).

In the last part of the user study, subjects could provide open comments. Thirteen
subjects stated that they expected their results in reading IPTPs to further increase with
more training. They also expressed their belief that learning the IPTPs is possible in
a 10-minutes tutorial. Thirteen subjects said that the node-link diagrams were already
very well-known from their academic studies and are intuitive because of their natural
shape. Seven felt that size approximation could more easily be done in IPTPs. Seven
stated that ancestor identification is comparable in both techniques.

Our last question asked what subjects associated when they saw IPTPs for the first
time during the tutorial. Most of the subjects responded with associations to bar code
labels, brackets in computer languages, and “something that must be high-tech”.

4.4 Discussion

The comparison of the task completion times of IPTPs and node-link diagrams shows
that the readability of the IPTPs is approximately the same as that of the node-link
approach. The t-test results showed significant differences for only few cases.

The accuracy in the task execution is more accurate for node-link diagrams than for
IPTPs with respect to T1 and T3. IPTPs reach a higher accuracy rate when subjects as-
certain the existence of an identical sub-hierarchy elsewhere in the diagram. Therefore,
we believe that correct pattern identification is one of the big advantages of IPTPs.

As subjects were used to node-link diagrams, they understood the basic rules of IPTPs
within a short time of introduction, and could use this new approach afterwards to per-
form the given tasks with a comparable speed with respect to that of node-link diagrams.
Subjects stated that their speed and accuracy would increase with more training.

Another very interesting aspect of IPTPs concerns the cognitive and perceptual pro-
cesses when performing task T1. To get more insight into the strategical solution of this
task with more than two target objects, we will extend the user experiment by using eye
tracking techniques.

5 Application

The National Center for Biotechnology Information (NCBI) uses a taxonomy that con-
tains the names of all organisms that are represented in the NCBI genetic databases
with at least one nucleotide or protein sequence [15]. We demonstrate the usefulness of
IPTPs by understanding hierarchical features of huge trees such as the NCBI taxonomy
with some 324,000 nodes in a static diagram, which may be difficult when the same
dataset is visualized in a tree-map, a layered icicle plot, or a node-link diagram. Fur-
thermore, the plot can be scaled down immensely and the hierarchical structure remains
still visible.

Figure 4 shows an IPTP of this dataset with a maximum depth of 40. The plot is
color-coded by a blue-to-red color gradient and horizontally arranged gray stripes are
added to enhance the perception of hierarchy levels. Since this plot is scaled down
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Fig. 4. An IPTP for the NCBI taxonomy in a blue to red color gradient

vertically to a high extent—more than 200 elements per pixel—a horizontal pixel-based
line indicates that there are very many leaf nodes in the corresponding hierarchy level.

Several horizontally arranged lines in Figure 4 can be detected at the right side in the
plot. A detail-on-demand request shows that they belong to the Bacteria branch and are
labeled by environmental samples and unclassified bacteria miscellaneous.

Another apparent anomaly in this visualization can be detected near the middle of
the horizontal axis where the hierarchy is very deeply structured. A detail-on-demand
request shows that there are many elements in a subhierarchy of depth at least 36. All
other subhierarchies in this taxonomy are not as deep as this part. We apply a filter-
ing function for all elements of that depth and select the least common ancestor of all
of those remaining subhierarchies. We obtain the inner node that belongs to the Perci-
formes species.

6 Conclusions

We have introduced IPTPs—a pixel-based visualization technique suitable for repre-
senting large hierarchies. Its key elements are the visualization of inner vertices as
vertical lines and leaf vertex groups as horizontal lines. Edges are represented only
implicitly through the layout of the plot, leading to a compact visual representation.
In particular, there is no need for additional graphical elements such as separator lines
in layered icicle plots, the nesting indicators in tree-maps, or the geometric link ele-
ments in node-link diagrams. Another advantage is that both inner and leaf vertices are
mapped to unique horizontal positions. Therefore, annotations or other visual informa-
tion may be aligned below the plot and can easily be associated with inner and leaf
vertices. Moreover, attributes may be compared for all hierarchy levels simultaneously.

We evaluated IPTPs by a controlled user study that compared our plotting approach
with node-link diagrams. There is no clear picture whether IPTPs or node-link diagrams
are superior and almost all timing and accuracy results are in very similar ranges. How-
ever, the participants preferred the IPTPs. An interesting finding is that a basic and
working understanding of the new visual representation can be learned in less than 10
minutes. We believe that further exposure and experience with IPTPs may improve the
users’ proficiency. This conjecture needs to be tested by a future long-term study that
is beyond the scope of this paper. Similarly, further application examples in addition to
biological hierarchies could be investigated in more depth.
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Abstract. Currently, visualization tools for large ontologies (e.g., pathway and 
gene ontologies) result in a very flat wide tree that is difficult to fit on a single 
display. This paper develops the concept of using an enhanced radial space-
filling (ERSF) layout to show biological ontologies efficiently. The ERSF tech-
nique represents ontology terms as circular regions in 3D. Orbital connections 
in a third dimension correspond to non-tree edges in the ontology that exist 
when an ontology term belongs to multiple categories. Biologists can use the 
ERSF layout to identify highly activated pathway or gene ontology categories 
by mapping experimental statistics such as coefficient of variation and overrep-
resentation values onto the visualization. This paper illustrates the use of the 
ERSF layout to explore pathway and gene ontologies using a gene expression 
dataset from E. coli.  

1   Introduction 

Linking high-throughput experimental data with hierarchical ontologies that relate 
biological concepts is a key step for understanding complex biological systems. Bi-
ologists need an overview of broader functional categories and their performance 
under different experimental conditions to be able to ask questions such as whether 
degradation pathways have many highly expressed genes, or which biological process 
categories are overrepresented in the data. These needs pose many unique require-
ments on the visualization of biological ontologies, such as being able to visualize an 
overview of an ontology mapped with experimental data and clearly show the non-
tree connections in ontology. 

Current tools which visualize biological ontologies normally employ the traditional 
WindowsTM Explorer-like indented list, as are found in EcoCyc[1] and AmiGO[2], or 
node-link based layouts, e.g., OBOEdit[3] and BinGO[4]. These kinds of layouts are 
well suited for tens of nodes, however quickly become cluttered if hundreds of nodes 
are shown simultaneously. As a result, users often collapse the ontology to reduce its 
visual complexity, and only expand small portions when needed. The tradeoff of this 
abstraction is the loss of context of the overall ontology structure. Moreover, biologi-
cal ontologies are not pure tree structures, but are directed acyclic graphs (DAG), i.e., 
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they contain non-tree edges where many child nodes having multiple parents. Current 
software tools are not suitable for tracing such connections. 

To address these problems, we propose the enhanced radial space-filling (ERSF) 
algorithm that uses an intuitive orbit metaphor to explicitly visualize non-tree edges, 
and make them appear differently than the major hierarchic structure. The ERSF is 
implemented in a software package based on the Google Earth API. To the best of our 
knowledge, this is the first application to use 3D RSF in biology and the first algo-
rithm to visualize non-tree edges on a RSF plot. 

Some preliminary results that demonstrate the use of ERSF for a single ontology 
dataset have been published in a workshop proceeding [5]. This work focuses on the 
visualization benefits of the ERSF layout on multiple datasets in terms of user re-
quirements. The platform is also extended to visualize general ontology structures and 
multivariate data. Moreover, we here conducted an initial user test and summarize this 
feedback in Section 4. 

The contributions of our ERSF-based software to information visualization area 
are: 

 Applying the radial space-filling layout to a common but challenging visualiza-
tion task in biology field. 

 Enhancing the radial space-filling technique with orbits metaphor for visualizing 
non-tree edges in hierarchic dataset. 

 Mapping key summary statistics from experimental high-throughput data on the 
hierarchical visualization and links with traditional parallel coordinate views. 

This paper is organized as follows: Section 2 describes the properties of the biological 
datasets, lists the requirements for the visualization and assesses the related work. 
Section 3 d the ERSF layout. Section 4 reveals some interesting findings from the 
initial user testing. 

2   Background 

2.1   Ontology Data Description 

An ontology is a formal explicit description of concepts, or classes in a domain of 
discourse [6]. Biologists use ontologies to organize biological concepts. The Gene 
Ontology (GO) [2] is a controlled vocabulary of gene and gene products across all 
species. The Pathway Ontology (PO) [7] is a recent concept that provides a controlled 
vocabulary for biological pathways and their functions. PO, like many other ontolo-
gies, is hierarchical data, but it is not a pure tree structure because several pathways 
may have multiple parents. Both ontologies are actually directed acyclic graphs. To 
facilitate the visualization, we first construct a spanning tree in the ontology, and then 
define the connections in the spanning tree as tree edges and all remaining edges as 
non-tree edges or cross links. The non-tree edges are of particular interest since they 
represent pathways that perform multiple functions. 

We illustrate this application with the E. coli Pathway Ontology from EcoCyc [1]. 
The EcoCyc PO contains 442 nodes, where 289 of them are pathways or leaves. It 
also contains 508 edges, where 67 (13.2%) are non-tree edges. PO’s for other species 
are slightly different, however, they are of similar scale. Another feature typical of a 
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PO is that the height of the hierarchy is normally low, e.g., 6 for E. coli, which results 
in a very large width/height ratio (289/6=48.1). 

Another dataset we focus on is the Gene Ontology (GO) Slim [8], which are im-
portant subsets of GO that contain around 100 terms. 

Besides studying PO structure, in day-to-day research, biologists need to make 
sense of system-wide experimental data and wish to understand how the experimental 
conditions affect the underlying biology. One typical type of experimental data is 
transcriptomics (often referred to as gene expression data), which describes the abun-
dance of gene transcripts during an experiment. Other experimental data types include 
metabolomics and proteomics. For gene expression data, the original data is typically 
a data matrix where each row describes a gene, and each column records the expres-
sion level of genes under a certain condition, e.g., a point, treatment, or replicate.  

2.2   Visualization Requirements 

Based on the data described above and tasks biologists perform, the basic require-
ments for visualization of PO are to: 

 View the whole ontology on a single screen to gain a global feeling for the data 
and the main hierarchical structure. 

 View ontology details by navigation and/or interaction (zoom, pan, rotation). 
 Map attributes on the ontology so that they are easily visible. 
 Clearly show non-tree connections. 

2.3   Related Work 

The most widely-used representation for ontology structure is the WindowsTM Ex-
plorer-like tree view, or indented list. One implementation of indented list (Class 
Browser) is evaluated in [9] with three other methods (Zoomable interface, Focus + 
Context, and Node-link/tree). The indented list lacks the ability to show non-tree 
edges. Users presented with indented list naturally think the underlining data is a pure 
tree structure.  

Node-link graph and treemaps [10] are also widely used to visualize ontology. 
OBO-Edit [3] combines an indented tree browser (Tree Editor) and a graphical tree 
drawing (Graph Editor) which uses the node-link based layout from GraphViz[11]. 
BinGO[4], a Cytoscape plug-in for analyzing Gene Ontology, uses the default 2D 
hierarchic layout from Cytoscape. The node-link based layout is very good at showing 
simple hierarchical structures (e.g. contain less than 50 nodes). However when the 
number of entities increases, those layouts become very cluttered and incomprehensi-
ble. Fig. 1 shows the result of our PO dataset using these layout methods. We can see 
that the whole hierarchic structure and non-tree edges are not obvious in these views. 
Due to the cluttered layout for a large number of entities, researchers normally con-
fine their view to a limited subset of the whole structure, and are thus unable to gain 
the global knowledge. 
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Fig. 1. The Pathway Ontology of E.coli from EcoCyc is shown in Cytoscape using circular 
layout (top left), organic layout (top right), and hierarchic layout (bottom). The ontology con-
tains 442 nodes and 508 edges. The hierarchical structure can hardly be seen. 

Treemap based systems [10] are able to visualize the whole GO with mapped data 
in one screen, and are suitable for identifying regions of interest. However, the hierar-
chical structure is hard to see in a treemap since it is a nesting-based layout which 
overplots the parent nodes with their children nodes [12]. Another limitation of tree-
map is that it lacks a meaningful representation of non-tree edges, a key requirement. 
As observed in [6], treemaps and other space-filling layouts normally duplicate nodes 
which have multiple parents. If the node being duplicated is a non-leaf node, the 
whole substructure rooted at this node will be duplicated as well. Thus duplicating 
nodes in hierarchic dataset may greatly increase a graph’s visual complexity. Duplica-
tion also causes confusion for the user. For example, when user finds two regions 
have similar visual patterns in a treemap, they may think that they have discovered 
two groups of genes functioning similarly. Unfortunately, they often turn out to be the 
identical GO terms being drawn twice. 

Besides the visualization methods mentioned above, Katifori et al. [6] have also 
presented many tools and layout algorithms to visualize ontologies and graphs in 
general. For example, a hyperbolic tree [13] can handle thousands of nodes. However, 
in a hyperbolic tree visualization, it is difficult to distinguish between tree and non-
tree edges among hundreds of edges since they are all represented as links. Another 
disadvantage is that hyperbolic trees are not space efficient, and normally only a cou-
ple of pixels are used for each node. Therefore attributes (like gene expression data) 
mapped on nodes become hard to distinguish and interpret. 

Space-filling methods are considered very space-efficient and are good for map-
ping attributes on node regions. Despite the disadvantages of rectangular space-filling 
(such as treemap), evaluations [14] find that radial space-filling (RSF) methods [15] 
are quite effective at preserving hierarchical relations. 



354 M. Jia et al. 

3   Enhanced RSF Design 

3.1   Visualizing an Ontology as a Tree 

For explanatory purpose, we first assume the ontology as a pure tree structure that 
does not have any non-tree edges, and explain how the traditional RSF technique can 
visualize this simplified data.  

In the RSF drawing, each circular region represents one node in the tree. The node 
represents an ontology term, and can either be a pathway (leaf) or a category (non-
leaf). For the ease of explanation, we will interchangeably use the words ontology 
term, node, and region. 

The height of each region is set as proportional to the height of the subtree rooted 
at that node. For color, initially we used structure-based coloring [15] to convey addi-
tional hierarchical information, where the leaf node regions are colored according to 
the color wheel and the non-leaf node regions are colored as the weighted average of 
its children’s color. However, during the initial user testing, several users pointed out 
that the drawing is full of saturated color, and it is hard to distinguish orbits from the 
main drawing. To solve this problem, we propose and provide an option to use orbit-
based coloring where every category regions are white and highly transparent. 

Fig. 2a shows a small tree with eight leaf nodes and five non-leaf nodes, labeled as 
graph G1. Fig. 2b shows the result of using RSF in 3D on graph G1. Non-leaf nodes 
correspond to pathway categories. 

Fig. 2. Graph G1 shows hierarchical relationships among leaf nodes (pathways) and non-leaf 
nodes (pathway categories), drawn in hierarchic layout in Cytoscape (a) and the radial space-
filling layout (b) 

3.2   Visualizing Pseudo Ontology with Non-tree Edges 

As noted earlier, RSF cannot support non-tree edges. To better meet the visualization 
requirements, we proposed the enhanced RSF layout, or ERSF, which uses orbits to 
represent non-tree edges. Fig. 3a shows graph G2, which adds four non-tree edges to 
G1. The ERSF drawing of G2 is shown in Fig. 3b where the spanning tree is drawn 
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using traditional RSF. The metaphor of “satellite orbits” represents non-tree edges as 
circular links. For each child node, which has at least two parents, one orbit circle is 
drawn on the layer of that node. The parent that connects the node in the spanning tree 
is the major parent and other parents are minor parents. The region of each node is 
placed under the region of its major parent as in RSF. For every minor parent, a green 
edge from the center of its region to the orbit of the child is called the ‘downlink’. The 
intersections between downlinks and orbits are called access points, which are repre-
sented by red dots. 

Fig. 3. Graph G2 is drawn using hierarchic layout in Cytoscape (a) and the Enhanced Radial 
Space-Filling (ERSF) layout using orbit-based coloring (b). In the hierarchic layout, red dashed 
lines represent non-tree edges. In the ERSF layout, orbits with blue and green radial links rep-
resent non-tree relations. For example, the green line extruded from B contains two red-dots: 
the inner one intersects with red orbit of A1 and the outer one intersects with green orbit of 
AA2. These orbits mean that B is the minor parent of both A1 and AA2. 

To help viewers find and visually trace interesting non-tree edges, the orbits need 
to be distinguishable from one another. In order to do this, the orbits are first re-
stricted to span in the middle area of each layer, thus leaving a visually apparent gap 
between orbits in adjacent layers. To distinguish orbits in the same layer, we make the 
orbit the same color as the child region originating the orbit. 

3.3   Visualizing Pathway Ontology Dataset 

The PO data from E.coli is presented with the ERSF view in Fig. 4. Compared to  
Fig. 1 where the same dataset is shown by node-link based layout, it is clear that 
ERSF can show some patterns on the overview. For example, the most orbits are 
concentrated on the third layer, and one category (methylglyoxal detoxification) con-
tains many children in other categories because its green uplink intersects many light 
blue orbits. 

The orbit-based coloring allows users to visually trace the orbits. For example, the 
category amino acids degradation (on left) intersects with one orange orbit. To find 
the child of this orbit one can visually trace the orbit along the circular curve or di-
rectly glance at the orange regions on the right side, and find the child region which 
originates the outer-most orbit. The red dot serves as a “shortcut” for this specific 
task. For instance, users can click on the red dot on the intersection of category amino 
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acids degradation and the orbit and then a pop-up dialog will indicate that it connects 
to child superpathway of threonine metabolism. 

It is also clear that three pathways in the category cell structures biosynthesis are 
also the children of another category fatty acids and lipids biosynthesis. When a user 
wants more information about those non-tree edges, he can rotate and zoom the view. 

 

Fig. 4. The hierarchical structure of the ontology is clearly shown in ERSF method using orbit-
based coloring. There are many pathways that belong to at least two categories. This kind of 
multiple inheritance information is difficult to see in other visualization methods. 

3.4   Mapping Experimental Values on Ontology 

The strategy of a biological scientist evaluating experimental data is to look for which 
parts of the network show significantly different measurements across different condi-
tions. Questions such as ‘Which pathways or categories are most changed under an-
aerobic stress?’ can be addressed by mapping the values onto the whole Pathway 
Ontology. 

We use animation to show the values of a series of experiments. For instance, one 
time-series experiment with 4 time points is presented as animation of 4 frames. 

To analyze the gene expression data, we initially map the average expression value 
on color, and map the variation on height. The visual results of two frames are shown 
in Fig. 5a and Fig. 5b. The first frame shows the value of one replicate in controlled 
condition, while the second frame shows that of the treatment condition. 
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Fig. 5. Average expression values and coefficient of variation are shown for each condition. 
Color gradient represents values for gene expression, from green (low) to red (high). Two 
conditions are compared. The orange and red colors in condition 1 show that these categories 
have much higher expression values in condition 1 (a) than in condition 2 (b). The differences 
between these two conditions are more obvious when using animation. (c), (d) show the details 
in the glycine biosynthesis categories. When the view is tilted (e), the categories with high 
variation are shown by their higher height. 

Users can tilt the view to see the height of each region (Fig. 5e). In this view, one 
category (unusual fatty acid biosynthesis) stands out, because its and its descendents 
have very high variation and expression values. This discovery demonstrates the 
benefit of using 3D to show these two attributes together. Another similar interesting 
discovery is pathway alanine biosynthesis III, which also has very high variation but 
very low expression values.  

By switching between these two conditions, we notice that most of the pathways 
and categories have a greenish color under the treatment, which indicates lower  
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expression values in the treatment condition than in the controlled condition. This is 
an interesting trend, since in most experiments the treatments normally have greater 
values. To confirm this trend, we can map the difference between these two condi-
tions directly on the ontology. We can also map many other attributes onto the color 
and height of the ERSF drawing, e.g. statistical significance p-value. 

4   Initial User Testing 

To get some initial feedback from the users, we conducted a pilot user testing involv-
ing four users who are PhD students or postdocs in biology field. The goal is to better 
understand the needs of the biologist-users and to test the effectiveness of the ERSF. 

Users were presented with several tasks in two categories: understand the ontology 
and the gene expression data. One typical user task is to find the pathways which 
belong to multiple categories. In order for the users to provide the most realistic and 
valuable feedback, they worked in a relaxed setting where the tasks were not timed. 

All users who participated in the pilot user test preferred the ERSF solution to the 
traditional indented list and node-link based layout. They think the ability to show the 
whole ontology structure is an important feature, and is especially useful for the sys-
tem scale experimental dataset. The reason is that knowing which parts of the whole 
system the experiment affected is an important goal in their research. However, this is 
hard to do if they are only presented with a small subset of the system. Moreover, 
users generally gave up on some time-consuming tasks. For example, finding the 
pathways that belong to at least two categories is extremely difficult using indented 
lists and node-link based layouts. 

Another interesting phenomenon is that although ERSF provides a 3D view of the 
ontology, users mostly view it from the top down orientation, which is essentially a 
2D ERSF layout. Therefore, when users were given the choice to map an attribute to 
either color or height, all of them prefer mapping the most important attribute to 
color. Some possible reasons include: biologists are used to traditional 2D tools, and 
height is hard to interpret precisely due to foreshortening [16]. Nevertheless, the 3D 
view provides the benefit of mapping two variables simultaneously (color and height). 
This ability is important for some tasks that may lead to interesting discoveries, e.g. 
finding pathways that both have high variation and high expression value. 

5   Discussion 

Fig. 4 shows that visualizing the ontology using ERSF has several advantages. First, 
this design clearly distinguishes between spanning tree relationships and non-tree 
edges. Second, compared to treemaps with a crosslink overlay [17], there are much 
fewer edge-crossings and the drawing is neater since orbits and links are circular and 
radial respectively. Third, all downlinks of a parent share only one link edge, thus the 
total length of those edges is the same as the length of the longest link. This property 
reduces the graph’s visual complexity, especially when one node is the minor parent 
of many other child nodes.  

Another benefit of using ERSF is that it does not duplicate nodes, which reduces 
the visual complexity compared to normal RSF. For the EColi PO dataset, ERSF 
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reduced 67 duplicated nodes out of 442 nodes (15.2%). For the GO Slim dataset, 
since many nodes that have multiple parents are categories, RSF duplicates the whole 
subtree rooted at those nodes. On the contrary, ERSF reduced 38 duplicated nodes out 
of 112 nodes (33.9%).  

When mapping the node experimental data onto regions’ height, e.g. in Fig. 5, it is 
cumbersome to render the orbits because the orbits may be occluded by higher re-
gions. It is also difficult to follow the orbits when the regions color is mapped by 
experimental values. As a result, the orbits are not shown by default when mapping 
attributes onto regions. 

The Pathway Ontology dataset shown here contains around 500 nodes, and can be 
gracefully drawn in one screen. Our suggestion is to limit the data size to 1000 nodes 
since otherwise the peripheral regions will become as thin as one pixel in width and 
are difficult to be distinguished. We also noticed that in our dataset, the percentage of 
non-tree edges is relatively low (from 10% to 20%). The edge bundling method pro-
posed in [18] may be helpful for dataset with high percentage (e.g. above 40%) of 
non-tree edges. As a result, we suggest that the ERSF method is best suited for visual-
izing medium-sized multivariate hierarchic data (contains 100 to 1000 nodes) and 
with medium-to-low percentage of multiple inheritances. 

6   Conclusion and Future Work 

This work focuses on effective visualization of hierarchic ontologies in biological 
research. To satisfy the visualization requirements, we propose the enhanced radial-
space filling (ERSF) method which arranges ontology regions circularly in a 3D space 
and uses orbits to represent the non-tree edges. To facilitate the study of large-scale, 
system-level experimental data, we provide various and customizable ways to map 
data and statistical results on the ERSF visualization. 

The proposed ERSF algorithm has two major advantages over traditional methods 
in biological data visualization. First, it provides easy visual identification and naviga-
tion of non-tree edges in ontology without duplicating nodes. Second, it allows large 
scale experimental data to be mapped and navigated on the context of the hierarchical 
structure of the ontology, which may lead to discoveries on a system level. 

Initial testing by users has shown the tool to be preferable to their current working 
solutions, which have been based on indented lists and node-link layouts. A larger 
quantitative user study is planned in the near future. 

The proposed ERSF method can also be adapted to visualize other types of hierar-
chic data, e.g., company hierarchy and software inheritance diagrams.  
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Abstract. We propose a new method for the visualization of spectral

images. It involves a perception-based spectrum segmentation using an

adaptable thresholding of the stretched CIE standard observer color-

matching functions. This allows for an underlying removal of irrelevant

channels, and, consequently, an alleviation of the computational bur-

den of further processings. Principal Components Analysis is then used

in each of the three segments to extract the Red, Green and Blue pri-

maries for final visualization. A comparison framework using two differ-

ent datasets shows the efficiency of the proposed method.

1 Introduction

Most of today’s visualization devices are based on the paradigm that a combi-
nation of three primary colors (roughly red, green and blue) is sufficient for the
human eye to characterize a color [1]. However, in many applications such as
remote sensing, medical or art imaging, measuring the electromagnetic behavior
of a scene has to be made with more spectral precision. Analogously to the need
for a high spatial resolution for an enhanced separation of the different elements
of a scene, a high spectral resolution allows for a better estimation of its re-
flectance, and thus, a better characterization of its color properties, regardless
of the conditions of acquisition (illuminant, acquisition device). Spectral imaging
consists of acquiring more than three spectral components from a scene, usually
dozens, each one of them representing a reduced range of wavelengths, for better
spectral precision (analogously to a pixel covering a small area of the space).

However, multispectral display devices are not yet of common use and the
RGB strategy is still the most widespread. Therefore, when it comes to the
task of visualizing a spectral image on a traditional computer screen, only three
channels can be used, which implies a dimensionality reduction.

Tri-stimulus representation of multi and hyperspectral images for visualiza-
tion is an active field of research which has been thoroughly investigated over the
past decades. One of the most common approaches is probably the one referred
to as true color. It is basically achieved by use of the CMF-based band transfor-
mation: each primary (R,G and B) is the result of a distinct linear combination of
spectral channels in the visible range of wavelengths (400-700nm). Even though
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it generally yields a natural visual rendering, this approach does not adapt itself
to the data at all, therefore, noise and redundancy are not accurately handled.

Another very common approach for dimensionality reduction is Principal
Components Analysis (PCA), which has been extensively used for visualization
purposes. In [2], Durand and Kerr proposed an improved decorrelation method,
aiming at maximizing both the Signal-to-Noise-Ratio (SNR) and the color con-
trast. Later, Tyo et al. [3], investigated PCA for N-to-3 dimensionality reduction
towards the HSV colorspace. An automatic method to find the origin of the HSV
cone is also proposed in order to enhance the final color representation. Tsagaris
et al. [4] proposed to use the fact that the red, green and blue channels, as
they are interpreted by the human eye, contain some correlation, which is in
contradiction to the underlying decorrelation engendered by the PCA. For that
reason, the authors proposed a constrained PCA-based technique in which the
eigendecomposition of the correlation matrix is forced with non-zero elements in
its non-diagonal elements. Scheunders [5] proposed to achieve a spatial decorre-
lation by first performing a simple image segmentation before using PCA and
neural-network-based transformation in each region, distinctively. In [6], Du et
al. compared seven feature extraction techniques in terms of class separability,
including PCA, Independent Components Analysis (ICA) and Linear Discrimi-
nant Analysis (LDA).

However, due to the correlation matrix computation and manipulation, PCA
is known to have a poor computational efficiency. For that reason, Jia et al. [7]
proposed to segment the image’s spectrum into contiguous subgroups of bands,
in order to divide the complexity of PCA. Their method takes advantage of
the block-structure of the correlation matrix of the spectral image to find the
different subgroups. Zhu et al. [8] investigated spectral segmentation techniques
(equal subgroups, correlation coefficients and RGB-based) together with ICA
for visualization purposes. Segmented PCA is also investigated in [9], including
equal subgroups, maximum energy and spectral-signature-based partitionings.
However, none of these spectrum segmentation methods accurately handles the
human perception of color. Moreover, we believe that gathering only contiguous
bands and not allowing a band to belong to several segments is very restrictive
and does not allow for an accurate exploitation of the perceptual correlation
between the three primary colors.

In this paper, we propose an efficient visualization technique for the visualiza-
tion of spectral images. It involves a fast perception-oriented spectrum segmenta-
tion, based on a thresholding of the CIE standard observer CMF. Three segments
are formed and each one can then be used for the extraction of the Red, Green and
Blue components. Segments are allowed to overlap and to be non-contiguous, so
that a band can belong to several segments. Depending on the value of the thresh-
olding parameter, a certain amount of bands is excluded, hence an underlying
removal of irrelevant channels, and, consequently, an alleviation of the compu-
tational burden of further processings. In the remainder of this paper, the spec-
trum segmentation technique is first presented and the dimensionality reduction
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problem is briefly tackled. Then, the experimental framework is detailed and re-
sults are subjectively and objectively discussed before conclusion.

2 The Proposed Method

2.1 Spectrum Segmentation

Spectrum segmentation aims at regrouping spectral channels so that bands of
a same group are considered similar in some way. This allows for an alleviation
of the computational burden of the feature extraction, in a divide-and-conquer
fashion. In the related works mentioned in the previous section, segmentation
is performed based on different criteria that we do not believe to allow for a
good handling of human perception of color. Therefore, we propose to measure
similarity taking such property into account. At this aim, we propose to use
the CIE 1964 Supplementary Standard Colorimetric Observer Color Matching
Functions (CMF) [10] which are descriptors of the chromatic response of the
human eye (see figure 1).

Fig. 1. The stretched CMF principle: In strong colors, the original functions. In light

colors, the same ones stretched to fit a larger range of wavelengths.

The CMF are usually used to linearly combine spectral channels towards a tri-
stimulus representation corresponding to how a human eye would see the scene
[11]. In other words, each spectral channel i ∈ [1..N ] is associated with three
weighting coefficients x(i), y(i), z(i) roughly corresponding to its contributions
to the perception of the red, green and blue. For clarity purposes, let us use the
following notations WR

i = x(i), WG
i = y(i), WB

i = z(i).
We propose to interpret this statement as follows: the higher the weighting

coefficient W p
i , the higher the relevance for i to be a good representative of p.

Consequently, we propose to cluster the CMF coefficients into two classes, by
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means of a binarizing threshold τ . Coefficients above τ depicts the relevant wave-
lengths for band selection. We note the ensemble of the corresponding channels
Segτ

p , p ∈ {R, G, B}.
The spectrum segmentation is performed using normalized functions so that

maxi(W
p
i ) = 1, ∀P . Figure 2 illustrates the technique as well as the role of τ .

Fig. 2. The role of τ , example on the red function for τ = 0.2 and τ = 0.7. In both

cases, the grey segments highlight the removal areas.

A problem appears when the spectral image contains channels outside the
visible range of wavelengths (400-700nm). Indeed, the CMF are designed only
for this part of the electromagnetic spectrum. As a solution to this, Jacobson
et al. [12] proposed to stretch the CMF so that the entire image spectrum is
covered, no matter what wavelengths it ranges in. This stretched CMF principle
is illustrated by figure 1, for an image covering the range [300..1000] nanometers.
In the case of a non-constant spectral sampling step, either the lacking channels
must be replaced by interpolation methods, or the CMF coefficients must be
adjusted. For computational ease, we recommend the latter solution.

Eventually, three segments are obtained, depending on the binarization thresh-
old: Segτ

R, Segτ
G and Segτ

B in which the feature extractions for the red, green
and blue channels will be performed, respectively.

Consequently, for a growing value of τ , the size of segments gets smaller and:

τ1 > τ2 → Segτ2
p ∈ Segτ1

p , ∀p ∈ {R, G, B} (1)

According to its nature, τ allows for the moderation of the aforementioned hy-
pothesis. If it is set to 0, the hypothesis is rejected and band selection is totally
unconstrained. On the contrary, if τ = 1, the hypothesis is considered perfectly
relevant and there is no need to proceed with band selection since, in that case,
the size of each segment is reduced to 1. As will be seen and discussed in the
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results section, τ also allows one to moderate the natural aspect of the represen-
tation, and hence can be manually adjusted, according to the user’s need.

2.2 Dimensionality Reduction

Dimensionality reduction aims at finding a small set of bands which most ac-
curately represents the whole spectral image. In this work, we used Principal
Components Analysis (PCA), also known as Principal Components Transform
(PCT) or Karhunen–Loève Transform (KLT). PCA is based on the eigendecom-
position of the correlation matrix of the data, that is, in our case, the correlation
matrix of a group of spectral channels. It is well-known the first PC contains
generally more than 95% of the data energy. Therefore, we extract the first PC
of each one of the three subgroups created by the previous step. Eventually, we
obtain three highly-informative channels which are used for RGB visualization.

3 Experiments and Results

Since the spectrum segmentation part is the core of our method, we propose
to use several different segmentation techniques coupled with PCA in order to
focus on the partitioning aspect. The other techniques we used are the following:

– The ”equal subgroups” partitioning investigated for instance by Zhu et al.
[8] simply consists of creating three contiguous subgroups of equal size.

– The ”correlation-based” segmented PCA proposed by Jia et al. [7] consists of
taking advantage of the block structure of the correlation matrix of spectral
images. It achieves partitioning by segmenting the correlation matrix into
three contiguous subgroups.

– The ”maximum energy” segmented PCA, proposed by Tsagaris et al. [9]
consists of partitioning the spectrum in a way that maximizes the eigenvalue
corresponding to the first PC in each contiguous subgroup.

Objective comparison of the results has been achieved by considering two
aspects:

– The natural rendering, in order to measure how appealing it can be for hu-
man vision. The evaluation of this criterion is quite challenging since there
is no consensus on what is a natural color or a natural contrast, even though
there have been some attempts to define those [13]. We propose to use a
pseudo true color representation of the image as a reference for natural
rendering. Even if a true color image is generally obtained by neglecting
the non-visible ranges of wavelengths, we used the stretched CMF to com-
pute the latter representation, in order to make the comparison relevant. As
for a comparison metric, we used the euclidean norm in the CIE L*a*b*
colorspace, also known as the CIE76 ΔE∗

ab. Transformation to the L*a*b*
colorspace was achieved by first converting reflectance data to XYZ vectors
and then L*a*b* vectors by using a D65 standard illuminant for white point
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estimation. We insist on the fact that these representations are used only
to assess the natural rendering, by supposing that they represent the best
possible natural results. However, as stated in the introduction, using only
the CMF does not allow for an accurate handling of the intrinsic properties
of the image, since it is a data-independent transformation. This metric will
be referred to as NR (Natural Rendering).

– The perceptual class separability, in order to measure the visual informative
content of the representation, as suggested by Du et al. in [6]. At this aim,
we manually selected 20 pixels by class, in each image. A class has been
defined as a distinct visual feature (see description of the datasets). Then,
each class centroid has been identified and projected in L*a*b*. The ΔE∗

ab

distances between each couple of centroids have then been averaged. This
metric will be referred to as ICPD (Inter-Class Perceptual Distance).

For our experiments, we used two different spectral images:

– ’Oslo’ is a 160 bands remote sensing hyperspectral image, it represents a
urban area in the neighborhood of Oslo (Norway). It was acquired with the
HySpex VNIR-1600 sensor, developed by the Norsk Elektro Optikk (NEO)
company in Norway. The sensor ranges from the early visible (400nm) to
the near infrared (1000nm) with a spectral resolution of 3.7 nm. more infor-
mation can be found on the constructor’s website [14]. Based on a human
expertise, we considered 5 classes in this image: vegetation, road, roof tops
(two kinds) and cars.

– ’Flowers’ is a 31 bands multispectral image from the database used in [15].
The sensor ranges only in the visible spectrum (400-720nm) with a 10nm
spectral resolution. Three classes are present in this image: flower, leaves
and background.

Figure 3 shows the pseudo true color representations of the images and results
are presented on figures 4-7. Tables 1 and 2 gives the average perceptual distances
with the pseudo true color references. Ranges of the colorspace are: L∗ ∈ [0..100],
a∗ ∈ [−110.. + 110] and b∗ ∈ [−110.. + 110].

We can see that the results from the presented technique are more natu-
rally contrasted and thus allow for a more accurate interpretation by the hu-
man expert/enduser. As a result, the NR values are considerably better for the
CMF-based segmentation than for the three other techniques. The worst natural
renderings are obtained with the Maximum-ernergy-based segmented PCA. The
evolution of the thresholding parameter does not yield any constant increase or
decrease of the NR rate, however, we can see that the worst result is obtained for
τ = 1 on both images. This reveals that, by constraining too much the spectrum
segmentation, the quality of the results lowers. Still, our results show that the
CMF-based technique allows for the closest representations to the pseudo true
color versions. Regarding the class-separability results, the maximum-energy-
based segmented PCA gives the best results. The CMF-based method comes
second and gives its best results for τ = 1. However, considering the major im-
provement of NR brought by our approach, this latter gives an overall much
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(a) (b)

Fig. 3. Pseudo true color representations of the test images

(a) (b) (c)

Fig. 4. RGB visualization of the ’Oslo’ image according to different spectrum segmen-

tation techniques: (a) Equal subgroups (b) Correlation-based (c) Maximum Energy

Table 1. Results for the ’Oslo’ image

Segmentation technique NR ICPD

Equal subgroups 53.76 205.22

Correlation-based 90.87 226.72

Maximum energy 101.03 243.21

CMF-based, τ = 0.1 7.65 222.01

CMF-based, τ = 0.5 14.40 227.36

CMF-based, τ = 0.8 11.96 224.55

CMF-based, τ = 1 19.62 242.45

better tradeoff between both metrics. Subjectively, if we look at the flower in
figure 6c, even if the perceptual class-separability is obviously high, the one in
7d is much less disturbing and allows for a better quicker understanding of the
endmembers of the scene.
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(a) (b)

(c) (d)

Fig. 5. RGB visualization of the ’Oslo’ image according to the CMF-based segmented

PCA with τ = 0.1, 0.5, 0.8 and 1, respectively

(a) (b) (c)

Fig. 6. RGB visualization of the ’Flowers’ image according to different spectrum seg-

mentation techniques: (a) Equal subgroups (b) Correlation-based (c) Maximum Energy

The main drawback coming with an increase of the thresholding parameter
is the loss of spectral channels, and thus the loss of information, which is done
independently to the data itself. For that reason, one can see τ as a tradeoff
parameter, allowing for the balance between natural constancy and visual infor-
mative content.
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(a) (b)

(c) (d)

Fig. 7. RGB visualization of the ’Flowers’ image according to the CMF-based seg-

mented PCA with τ = 0.1, 0.5, 0.8 and 1, respectively

Table 2. Results for the ’Flowers’ image

Segmentation technique NR ICPD

Equal subgroups 12.37 101.34

Correlation-based 13.34 109.71

Maximum energy 22.50 117.42

CMF-based, τ = 0.1 4.24 94.48

CMF-based, τ = 0.5 1.73 96.33

CMF-based, τ = 0.8 3.81 100.73

CMF-based, τ = 1 5.70 112.30

4 Conclusion

A new method for the visualization of spectral images involving a spectrum seg-
mentation technique based on a thresholding of color-matching functions has
been introduced. Contrary to other spectral segmentation techniques, it allows
for an underlying removal of irrelevant bands for visualization and thus allows
for computational burden alleviation. The thresholding parameter allows for
balancing the following hypothesis: the higher the color matching coefficient,
the higher the relevance for the corresponding band to be a good representa-
tive of the corresponding primary. It also allows for balancing between natural
constancy of the representation and the amount of bands to be removed. The



370 S. Le Moan et al.

results obtained by the presented technique are more naturally contrasted and
thus make interpretation easier and quicker. Moreover, they contain a high class
separability which reveals the presence of important visual information.
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Abstract. In this paper we extend the classical marching cubes algo-

rithm in computer graphics for isosurface polygonisation to make use

of new developments in the sparse field level set method, which allows

localised updates to the implicit level set surface. This is then applied

to an example medical image analysis and visualisation problem, using

user-guided intelligent agent swarms to correct holes in the surface of a

brain cortex, where level set segmentation has failed to reconstruct the

local surface geometry correctly from a magnetic resonance image. The

segmentation system is real-time and fully interactive.

1 Background

The level set method, introduced in [1], has shown great promise for medical
image analysis [2,3,4]. However, threshold based techniques suffer when classes
(e.g. tissue types) have inhomogeneous voxel intensities across the input image.
In some cases the areas showing error are immediately apparent in a 3D rendering
of the final segmentation. It would then be advantageous to allow for manual
identification followed by autonomous correction of these areas in an efficient
and fully interactive manner.

1.1 The Level Set Method

We can define an implicit surface as an isosurface embedded in a scalar field,
{p | φ(p) = 0} - the zero-level set of φ. We further assume that φ < 0 indicates
inside and φ ≥ 0 indicates outside a volume and that the surface is advected in
the normal direction. Then we arrive at the level set equation:

∂φ(p)

∂t
= |∇φ(p)|F (p) (1)

where F is an arbitrary function controlling the speed of surface points.
Updating the values of φ at each point in space requires a numerical technique

to evolve the zero-level set from an initial specification. In the naive case, the
whole of space must be evaluated at each iteration, giving (in three dimensions)

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 371–380, 2010.
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O(n3) complexity, rather than just the area of interest - the O(n2) surface.
Algorithms have been developed to overcome these issues by only performing
updates on regions near the surface, rather than integrating over the entire
space. The most well-known is the narrow band approach [5,6]. This method has
since seen several developments that trade accuracy for efficiency by reducing the
width of the band, along with algorithmic changes. In-particular, the sparse field
method [7] has been widely adopted, especially for interactive-rate applications
[8,9] and is used in this work.

In order to allow local and interactive modification of the level set surface, the
sparse field algorithm needs to be modified. A modified sparse field algorithm
that allows local modification of the level set surface is described in [10]. The
level set method works particularly well with the marching cubes algorithm,
as the signed distance scalar field provides the required inside/outside corner
statuses. That is, each lattice node stores its distance to the object’s surface,
with nodes inside the object having negative (or positive, if so defined) sign. By
looking for adjoining nodes with opposite sign we can find those edges that the
object’s surface bisects. With this information we can construct a triangle mesh
representative of the isosurface, as detailed below.

2 An Extended Marching Cubes Algorithm

In order to visualise the local modification of the level set surface, we also require
a method of rendering the surface in 3D as it is being updated. To reconstruct
a surface from volumetric data, the original marching cubes method divides
the data volume into grid cells and polygonises each cell individually. Each cell
is defined as 8 corners that together form a cube, with the specific triangle
configuration determined by which edges of the cell are bisected by the surface.
That is, a continuous surface is approximated by finding the bisection points
along each edge of each cell that the surface cuts through. To determine how
the bisection points should be connected to form a triangle mesh, the marching
cubes method makes use of two look-up tables. The first look-up table takes
a bitwise encoded index of corner inside/outside status (8 bits) and returns a
bitwise encoded list of edge vertices (12 bits), with each ‘on’ bit corresponding
to an edge vertex that must be calculated. The second look-up table details
how those vertices should be linked together to form the final triangle mesh
polygonisation of the cell.

As with the level set method, the naive marching cubes implementation has
O(n3) time complexity. By exploiting a narrow band data structure the com-
plexity is reduced to O(n2). If we are only modifying a few localised areas on the
surface, whilst the majority of the surface remains static, we would like to forgo
the necessity of cycling through the entire band just to update these regions.
Therefore, we have further modified the method to reduce the complexity to
O(1) for a single small region, or O(n) for n such regions. We have integrated
this new marching cubes algorithm with the localised sparse field algorithm in
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Fig. 1. Illustration of the vertex index look-up grid, G. Each grid point p stores three

indices
{G(p,0), G(p,1),G(p,2)

}
, one for each cardinal direction. Each index acts as a

reference to a vertex in the V vertex array.

[10], allowing for real-time visualisation of deformations by agent swarms, even
for large surfaces.

2.1 Selecting Modified Mesh Fragments

We create a lattice of mesh fragments, M, each element of which contains a
polygonisation covering a set of φ lattice nodes. In other words, we break up the
complete mesh into smaller fragments and only repolygonise those fragments that
are responsible for one or more of the cells that have been modified (e.g. by agents
deforming the surface), rather than repolygonising the whole surface/space.

To find and repolygonise invalidated mesh fragments, we maintain the mesh
fragment lattice as well as a matching lattice of boolean flags B in memory,
which are initially all false. As input we require a set of φ points that have
been invalidated (i.e. changed in value), X ⊂ Z

3. We start by defining an empty
array of fragment locations U ⊂ Z

3. We then cycle through all the points in
X to find which fragments have been invalidated and append them to U . Since
each fragment covers multiple φ lattice points, the B lattice is required to en-
sure no duplicate fragment locations are added to U . Now we have the set of
invalid mesh fragments U , we reconstruct all marked fragments, M(p∈U), and
reset corresponding boolean flags, B(p∈U) = false. Reconstruction of a fragment
proceeds by polygonising each cell that it covers, one at a time.

Each fragment stores an array of vertices V ⊂ R
3 ×R

3 (position and normal),
which is shared amongst all cells of the fragment, allowing vertices to be reused
rather than recalculated, where possible. In addition, each fragment stores a
triangle array, T ⊂ Z

3 - a list of 3-tuple indices referencing vertices in V . The
procedure for polygonising each cell is detailed in the following subsection.
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2.2 Polygonising a Cell

The first step in polygonising a cell is to calculate the index i into the look-up
tables: ξ, the edge table; and Λ, the triangle table (available, for example, from
[11,10]). The next step is to compute the vertices (bisection points) lying along
the edges of the cell. This results in a 12 -element array, v ⊂ Z - one element for
each edge of the cell being polygonised, with each element storing an index into
the vertex array V , or a NULL value if a vertex is not required along that edge.
The vertices are then connected to form the triangle list. Each of these steps are
detailed below.

Calculating Indices into the Look-Up Tables: each corner of the cell is
tested in a specific order and the index - an 8-bit value i - is modified in a bitwise
fashion depending on the result. We first test each corner in turn, setting the
respective bit in i to 1 if that corner is inside the volume, and 0 otherwise. When
i is resolved from a bit string into an integer we get our index into the look-up
tables. The 12-bit value stored in the edge look-up table at ξ(i) can then be used
to rapidly determine which edge vertices are required. First, we must define the
12 element array v for this cell. If a bit in ξ(i) corresponding to a given edge is
switched on, then the proper polygonisation of this cell requires a vertex that is
positioned along that edge.

Fetching/Calculating an Edge Vertex: by defining a cell edge as a start
point, p ∈ Z

3, and a direction, d ∈ {0, 1, 2}, we can define a lattice G that stores
an index into V for each positive cardinal direction, as shown in Fig. 1. If the
vertex has already been created and added to V , then its index will be stored
in G and we can simply return the value at G(p,d). Otherwise we must calculate
the vertex, append it to the vertex array V , and store its index in G for future
queries. The use of G allows us to reuse vertices rather than duplicate them for
every triangle that shares this vertex in this and neighbouring cells. By using
G we can ensure in O(1) time that no unnecessary recalculations are performed
and allow the use of index buffers in the graphics device memory, reducing the
(typically large) memory footprint.

The calculation of a new vertex v, such that vpos gives the vertex position
and vnorm gives the vertex normal, is performed by linearly interpolating the
values of φ at the two endpoints of the edge, such that φ(vpos) = 0. Similarly we
can calculate the vertex normal using ∇φ at each endpoint. Once v is calculated
we append it to the end of the vertex array V and update the look-up lattice
at G(p,d) with the index of this vertex (which is simply the size of the array V
minus 1).

Triangulating a Cell: each triangle is defined as a 3-tuple, τ ∈ Z
3, of indices

referencing vertices stored in V . Triangles are defined using the second look-up
table, Λ, where Λ(i) gives the triangle list for this particular cell configuration
and each element j of Λ(i), Λ(i,j) ∈ {0, 1, . . . , 10, 11}, gives an index into v.
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Fig. 2. A partial polygonisation of an arbitrary isosurface. A sample set of the triangle

mesh configurations given in the look-up table Λ are combined to show how they fit

together to create a coherent triangle mesh.

Let (a, b, c) = (Λ(i,j), Λ(i,j+1), Λ(i,j+2)). The next triangle required to polygonise
this cell is constructed from the indices stored in the array v, such that τ =
(v(a), v(b), v(c)). τ is then appended to the mesh fragment’s triangle array, T . We
then increment, j ← j + 3, to the next triangle and repeat until all triangles
for this cell are fetched, as flagged by some NULL value at Λ(i,j). Figure 2
shows how several triangle mesh configurations for individual cells join to create
a representative triangle mesh hull of the entire isosurface.

Once all these steps are complete, U determines which fragments need updat-
ing in the graphics hardware, using the fragment’s arrays V and T directly as
vertex and index buffers, respectively.

Figure 3 shows the results of a simple experiment contracting a cube under
mean curvature flow. The cumulative time taken to search for and repolygonise
affected mesh fragments is plotted over 1500 time steps for different sized frag-
ments. The largest 100x100x100 fragment covers the entire 100x100x100 lattice,
so is the equivalent of performing the marching cubes algorithm on the entire
lattice, creating a single mesh fragment as in the naive marching cubes method.
It is clear that the smallest fragment sizes perform significantly better, tending
to zero seconds per update as the zero-level set becomes smaller.

A mesh fragment size of 50x50x50 (giving eight fragments) actually performs
slightly worse than simply polygonising the entire φ lattice as a single mesh. The
target shape is centred in the lattice, so the extents reach into all eight regions
and as a result all eight fragments must be repolygonised every frame. This shows
an associated overhead involved in breaking the mesh into fragments, mostly as
a result of repeated effort at the border between fragments where vertices are
not shared and must be recalculated.

3 Level Set Image Segmentation

For our example we are using user-directed agent swarms to correct a level set
segmentation of a MR brain scan. This initial segmentation result is obtained
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Fig. 3. Cumulative time taken in seconds, over 1500 time steps, to find and repoly-

gonise affected mesh fragments during contraction under mean curvature flow. The

experiment takes place in a 100x100x100-node lattice with a 50x50x50 box centred

within the lattice, which then undergoes mean curvature flow. Each curve represents

mesh fragments of varying size, from 100x100x100 (labelled x100) - the entire lattice

as in the naive marching cubes method, down to 3x3x3 (labelled x3) - the smallest

workable size.

using the standard sparse-field level set method [7]. We define a simple threshold
based speed function for use in the level set equation:

F (p) =
1
2
(
(1 − α) D(p) + α κ(p)

)
(2)

Where: κ = ∇• ∇φ
|∇φ| is the mean curvature, implemented using the difference of

normals method (covered very nicely in [15]); and:

D(p) = 2
( |μ − I(p)|n

εn + |μ − I(p)|n
)
− 1 (3)

Where: I is the input image, assumed to be greyscale, such that ∀p, I(p) ∈ [0, 1];
μ is the ideal value; ε is the acceptable error; and n controls the steepness of the
distribution. This function gives a value in [−1, 1), negative when the data point
is within the threshold and positive otherwise. With our choice of signed distance
representation (positive outside and negative inside the volume) a negative value
for D indicates an outward expansion.

To summarise, we have a global ideal voxel intensity and a threshold. Within
that threshold the surface expands, although mediated by a small curvature
to smooth over noise and prevent leaks. Similarly, outside of the threshold the
surface contracts, similarly mediated by the curvature term. The result of this
global ideal-value-and-threshold approach gives a nice approximation, when the
various free parameters are chosen well, and is relatively fast computationally.
However, even after tuning the parameters until they produce the best possible
segmentation, it is apparent that this approach is weak when confronted with
intra-class inhomogeneity across voxel intensities. In this case the surface prema-
turely stops expanding in some areas. When viewed in 3D we clearly see ‘holes’
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(a) Ground truth (b) SPM [12]

(c) FSL [13] (d) Level set

Fig. 4. A 3D rendering of the segmentation of grey matter from a BrainWeb [14]

simulated MR image. Images show results using different software packages, as well as

the hand-segmented ground truth. All clearly show holes in the superior end of the

segmentation, including the ground truth.

in the surface. The 3D view shows these holes much more clearly than a 2D
slice-by-slice comparison.

Figure 4 shows the superior end of the final segmentation result from three
segmentation methods, the SPM [12] and FSL [13] software packages, our level
set implementation, plus the ground truth. The ground truth, FSL and SPM
volumes are stored as fuzzy objects. For these volumes, the surface is extracted as
the 0.5-curve, providing the best balance between under and over classification,
whereas the level set surface is extracted as the zero-curve (zero level set). We can
see in all cases the segmentation suffers from holes in the final surface extraction,
with the ground truth actually being the worst offender.

We would like to enable users to interactively guide the correction of these
holes in real-time. Using mechanisms found in previous work on situating virtual
swarms in a deformable environment [16,17,10,18], we embed multiple agents on
the surface, whose movements are weighted toward areas that the user identifies
with a click of the mouse. The surface in that area is corrected by the swarm,
with the results of the swarm’s modifications immediately visible to the user
in real-time, thanks to our extensions to the marching cubes algorithm. The
following section details the methods we used to embed the agents and have
them interactively modify the surface about a user-selected location.
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4 Populating the Zero-Level Set with Agent Swarms

Agents can be situated on the zero-level surface with an R
3 position and velocity,

moving across and modifying the surface using interpolation methods from/to
the Z

3-located φ lattice nodes. This is quite straightforward since the level set
representation allows us to locate the surface in space and calculate the surface
normal at any point very easily. Fetching the φ value at a given R

3 location can
use standard trilinear interpolation. This easily extends to calculating interpo-
lated surface normals or any other numerical value as required for movement
and sensory information.

Modifying the surface (that is, the zero-layer φ nodes) at a given R
3 location

is less straightforward. To do this, we update the values at all zero-layer points
within a given range of the agent’s position x by a value A(x), weighted by
distance from the agent using a normalised 3D Gaussian distribution. In other
words, A(x) gives the amount to raise/lower the surface by.

The decision each iteration by each agent on whether to raise/lower the surface
uses population-level sampled averages of voxel intensity and standard deviation,
so that decisions on surface modifications can be made on a local basis and adapt
as the user directs the agents around the surface. For specifics on the A function
used in this example see [18]. The φ locations modified by the agents are stored
each frame and passed as the X parameter to our marching cubes algorithm as
detailed in Sect. 2.1.

For movement across the surface, a movement potential function P (x) is spec-
ified that represents the ‘forces’ pulling agents in certain directions. The function
P does not in general produce a valid movement direction vector along the sur-
face, so it must be resolved to lie along, that is, tangential to, the zero-level
isosurface. Also, the agents will tend to ‘drift’ from the zero-curve over time and
could overshoot the narrow band and end up in undefined territory, so a term
must be added to compensate for this:

x ←− x +
∥∥P −∇|φ| (∇|φ| • P )

∥∥− ε∇|φ| (4)

where 0 < ε � 1 controls the strength of the pull back onto the zero-curve and

∇|φ| =
(

∂|φ|
∂x i + ∂|φ|

∂y j + ∂|φ|
∂z k

)T

.
Again, for implementation details of the P function used in this example see

[18].

5 Results and Discussion

Figure 5 shows the result of running the semi-autonomous swarm surface cor-
rection algorithm on a simulated MR image taken from BrainWeb [14]. A grey
matter level set segmentation created using a sub-optimally low threshold was
populated by 200 agents. Lowering the threshold results in more and larger holes
in the segmentation than the optimal choice (which still exhibits holes, but less
obviously so). The user need only click the mouse whilst pointing in the general
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(a) (b)

Fig. 5. Image showing level set surface with visible holes at the superior end of a grey

matter segmentation. These holes are repaired by 200 agents directed by a non-expert

user. (a) shows the initial surface, with multiple visible holes; (b) shows the final surface

with these holes corrected.

(a) (b)

Fig. 6. A level set segmentation and swarm based correction of grey matter from a

real T1 MRI scan, as opposed to a BrainWeb simulation: (a) shows a portion of the

initial level set surface; and (b) shows the swarm corrected surface

area of interest and the agents very rapidly ‘fill’ nearby holes. To show how this
methodology is not restricted to idealised BrainWeb images, a further illustra-
tion is shown in Fig. 6, where the process of level set segmentation and swarm
correction is applied to a real T1 MR image of a brain.

The test platform is an Intel Xeon 3GHz CPU, with 4GB RAM and a NVIDIA
Quadro FX 5800 GPU. As a straightforward marching cubes mesh visualisation
tool, the system achieves between 14000 and 15000 FPS when rendering a grey
matter segmentation from a 181x217x181 MR image. Once 200 agents are added
and moving without modifying the surface, the system runs at between 1800 and
1900 FPS. Whilst repairing a surface this figure is reduced to between 100 and
300 FPS. More specifically, when agents are coded to raise or lower the surface
randomly with a 0.1 probability, that is, on average each agent raises or lowers
the surface every 10 time steps, the result runs at 110 FPS. When this probability
is raised to 0.5 the result is 55 FPS. The non-linear correlation is due to agents
modifying overlapping regions, meaning less level set surface points and thus
associated marching cubes mesh fragments need be processed.
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Abstract. We propose a novel Multiple Instance Learning (MIL) frame-

work to perform target localization from image sequences. The proposed

approach consists of a softmax logistic regression MIL algorithm using

log covariance features to automatically learn the model of a target that

persists across input frames. The approach makes no assumptions about

the target’s motion model and can be used to learn models for mul-

tiple targets present in the scene. The learned target models can also

be updated in an online manner. We demonstrate the validity and use-

fulness of the proposed approach to localize targets in various scenes

using commercial-grade surveillance cameras. We also demonstrate its

applicability to bootstrap conventional tracking systems and show that

automatic initialization using our technique helps to achieve superior

performance.

1 Introduction

Object tracking is one of the most studied problems in the field of computer
vision. Tracking of pedestrians is an end application in itself, or can be used for
collecting trajectories for higher level behavior analysis. Traditional techniques
for following particular targets in surveillance settings which use active PTZ
cameras involve a security operator driving a joystick (to control the PTZ cam-
era) and adjusting it to follow the target of interest. For handing off the task to
an automatic tracker, the operator would have to stop and select the target (e.g.,
with a bounding box) for the tracker to initialize. While on the one hand, learn-
ing the target model from a single frame is not robust, requiring the operator to
click on multiple successive frames is also very impractical. Moreover, due to the
fast and real-time nature of these tasks, such initializations are both unreliable
and require significant training. They also require the ability to control multiple
input devices for driving the camera (joystick) and clicking on the video feed
(mouse). In this situation, an automatic technique to learn target models that
is both robust for tracking and intuitive to operate is needed.

In a typical surveillance setting, an intuitive way for an operator to initialize
a tracker would be to use the joystick to loosely follow the person of interest and
then have the system automatically learn the intended target, and then continue

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 381–392, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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tracking the target. Since the system now has a robust model that has been
automatically learned using the target’s persistent appearance features, it can
use this model to reliably track the target in future frames. Towards this end,
we propose an attention-based technique to learn target models using a machine
learning approach. (Note that the attention nature of this method allows the
target to be anywhere in the scene/image and therefore does not assume any
particular motion model on the part of the target). A limitation of supervised
learning is that it requires labeling of the individual instances, which are typically
hard to obtain (this is also the case in our setting, as explained later). Multiple
instance learning (MIL) is a variant of supervised learning where it relaxes the
granularity at which the labels are available. Therefore, in MIL settings, the
instances are grouped into “bags” which may contain any number of instances
and the labeling is done at the bag level. A bag is labeled positive if it contains
at least one positive instance in it. On the other hand, a bag is labeled negative if
it contains all negative instances. Note that positive bags may contain negative
instances.

In our problem formulation, we model images containing the target of interest
as bags, and regions within the images as instances. The MIL framework is
therefore well suited to this task because it is guaranteed that at least one
instance in the bag/image contains the object of interest, and it is much more
efficient (faster and cheaper) to label bags/images instead of individual image
regions. Therefore, we take image patches from areas of motion in the image
(when the camera is not moving) and create a positive bag using all of these
instances. At the same time, we sample image patches from the non-moving areas
and create a negative bag from these instances. (Another option is to collect all
patches from the input image and build a positive bag, and use patches from
a background image of the same/similar region to construct a negative bag.)
By repeating this for every frame, we are guaranteed that every positive bag
contains at least one patch containing the target of interest and at the same
time ensures that the target is absent from all the negative bags. By training
a MIL algorithm based on logistic regression, we learn a target model that can
be used to classify every instance (image patch) from a new incoming frame as
target or not with a certain probability. We then use this probability map over
the image and threshold it to update the model for the target.

2 Related Work

While there has been much work in the areas of pedestrian detection and visual
tracking separately, not much work has been done in automatic localization from
the point of view of initialization of a tracker based on visual attention. Pedes-
trian detection approaches such as [1] are generally view specific and are therefore
unsuitable for our domain since PTZ cameras overlooking a large area can have
a wide range of pedestrian views (from fronto-parallel to top-down). Moreover,
such approaches are not applicable for finding the most persistent pedestrian in
the scene (the target to be tracked), which is what is required to initialize an
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object tracker in our operator-joystick setting. In the area of object tracking,
popular approaches include appearance-based techniques such as Mean-shift [2]
and Covariance tracking [3], and filtering and association-based approaches such
as a Kalman filter [4] and particle filter [5]. All of these approaches require good
target localization and initialization for them to work well, and assume that a
good initial target model is provided.

In the area of Multiple Instance Learning, the original work of [6] proposed
to learn axis-parallel rectangles for modeling target concepts. Since then there
have been various algorithms proposed including Diverse Density (DD) [7], EM-
DD [8], and SVM techniques [9]. More recently, in a comparison study of MIL
algorithms, Multiple instance logistic regression [10] has been shown to be the
state-of-the-art MIL algorithm, especially for image retrieval tasks. Our contri-
bution is an adaptation of such a logistic regression based MIL algorithm based
on the softmax function and a new application problem.

3 Multiple Instance Learning

In order to learn the target model from a sequence of images and localize the target
of interest within a new image, we wish to build a discriminative classifier which
can output the probability p(y = 1|x) indicating the posterior probability that the
target is present (y = 1) in the image patch x. In a MIL framework, the input data
is obtained in the form of positive bags (B+) and negative bags (B−) containing
instances. More formally, the input is presented as {(X1, y1), (X2, y2), ..., (Xn, yn)}
where Xi = {xi1, xi2, ..., xim} denotes bag i containing m instances and has a cor-
responding bag label yi ∈ {0, 1}. Each instance xij is a feature vector calculated
for an image patch j from bag i. The bag labels are obtained from the instances
in the bags. More specifically, a bag is labeled positive if it contains at least one
positive instance. A bag is labeled negative if it contains all negative instances.

Using a likelihood formulation, the correct bag classifier/labeler will maximize
the log likelihood of labels over all the bags (given the MIL constraints)

logL =
n∑
i

log p(yi|Xi) (1)

where p(yi|Xi) is the probability of the bag i (given its instances) having label
yi. As we can see, since the above likelihood formulation is expressed in terms of
bag probabilities and what we want is to learn an instance-level classifier (for an
instance/patch x), we will use a combining function to assemble instance-level
probabilities into a bag probability. This is done using the softmax combining
function as follows.

From the definition of positive and negative bags, we can formally express the
notion of bag label in terms of its instance labels as

yi = max
j

(yij) (2)
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which states that the label of a bag is the label of the instance within it which has
the highest label (i.e.,{0, 1}). Notice how this formulation conforms to the defini-
tion of positive and negative bags and encodes the multiple instance assumption.
Here, we incorporate a probabilistic approximation of the max operator called
softmax, in order to combine these instance probabilities in a smoother way, so
as to allow all instances to contribute to the bag label. This softmax function

is defined as: softmax(a1, ..., am) =
m∑

j=1

(aj exp(αaj)) /
m∑

j=1

exp(αaj). α is a con-

stant that controls the weighting within the softmax function such that softmax
calculates mean when α=0 and max when α → ∞.

The bag-level probabilities for positive and negative bags are now defined as

p(yi = 1|Xi) = softmax(ti1, ..., tim) , p(yi = 0|Xi) = 1 − p(yi = 1|Xi) (3)

where tij = p(yij = 1|xij) are the instance level probabilities being combined
to obtain the bag probabilities p(yi|Xi). Thus, if one of the instances is very
likely to be positive, the nature of the softmax combining function is such that
its estimate of the bag’s “positive-ness” will be very high, since it gives an
exponentially higher weight to such an instance, and consequently the weighted
average of all the instances will also be high. Here, α controls the proportion
of instances in the bag that influence the bag label. Therefore, if one has an
estimate of the proportion of positive to negative instances in the positive bags
(noise-level), one can appropriately tune α to reflect this, and hence learn more
robust models than by simply using the max operator.

Next, to model these instance-level probabilities tij , we employ a logistic for-
mulation given as

tij = p(yij = 1|xij) =
1

1 + exp(−w · xij)
(4)

where the parameter vector w (to be learned) models the target of interest, so
that the probability p(yij = 1|xij) calculated with Eqn. 4 would be high for
an image patch xij that contains the target, and low for a patch that does not
contain the target.

Now, using Eqns. 4 and 3 in Eqn. 1 along with a regularization term on w,
we can express a maximum likelihood formulation (in terms of the parameter
vector w to be learned) as

ŵ = arg max
w

∑
i∈B+

log

⎛
⎜⎜⎝

m∑
j=1

tij exp(αtij)

m∑
j=1

exp(αtij)

⎞
⎟⎟⎠+

∑
i∈B−

log

⎛
⎜⎜⎝1 −

m∑
j=1

tij exp(αtij)

m∑
j=1

exp(αtij)

⎞
⎟⎟⎠− λ

2
wTw

(5)

where the regularization term is obtained by using the following prior on the
parameter vector w,

p(w) ∼ N (0, λ−1I) , λ > 0 (6)
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to give better generalization performance [11]. To optimize Eqn. 5, we use a
gradient-based optimization technique using the BFGS method [12].

The parameter vector ŵ obtained from the optimization algorithm thus rep-
resents the learned target model. Therefore, when presented with a new image,
the probability that an image patch within it (with feature vector x) contains
the learned target can be calculated from Eqn. 4 using ŵ.

4 Image Features and Instance Model

We adopt a variation of covariance matrix features to obtain a feature vector xij

for each image patch instance in our formulation. Covariance features have been
shown to be robust appearance-based descriptors for modeling image regions [3].
The covariance matrix representation CR for a given image patch R of size W×H
in our framework is calculated as

CR =
1

WH

WH∑
k=1

(fk − μR)(fk − μR)T (7)

where fk = [x y r g b Ix Iy] is a 7 dimensional feature vector using a combination
of position, color, and gradient values at each pixel location in the image patch
R, and μR is the mean feature vector within the image patch.

We require a Euclidean distance based feature representation for Eqn. 4
whereas distances between covariance matrices are based on their eigenvalues [3].
Therefore, we use the property from [13] that eigenvalues of matrix logarithm of
a covariance matrix CR are equal to logarithms of eigenvalues of CR. Therefore,
the covariance matrix descriptor can be transformed to a feature vector repre-
sentation by first calculating the matrix logarithm of CR to obtain Cl and then
stringing out the elements of the matrix Cl to obtain a vector Cv [13]. Moreover,
since the matrix logarithm Cl is a symmetric matrix, it is fully specified by its
bottom triangular part. Therefore, the feature vector Cv only needs to have the
bottom triangular part of Cl, with the off-diagonal elements scaled by

√
2 to

compensate for their double presence in the matrix. In our case, the 7x7 dimen-
sional covariance matrix reduces to a 28 dimensional feature vector. We then use
these log covariance-based features to model the instances xij corresponding to
each image patch.

5 Target Localization Algorithm

The first step in our localization approach is to extract image patch instances
from a sequence of images and use them to construct positive and negative
bags. Given an input image sequence such as Fig. 1(a), we first detect regions
of motion in each image by standard frame differencing (with the assumption
that the target is moving). For each image, we then extract image patches from
a reasonably large sample of the pixel locations marked as belonging to the
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motion region (the patch size can be predetermined or multiple sizes/aspect-
ratios can be used). We construct a positive bag for this image using these
instances since it is guaranteed to have at least one instance patch containing
the desired target. Note that with this technique, instances corresponding to
other parts of the scene in motion (trees, cars, noise pixels, etc.) would also be
added, but that is acceptable since a positive bag can contain negative instances.
At the same time, we sample a similarly large number of pixel locations from
the (non-moving) background and extract image patches from these locations to
construct the corresponding negative bag. Notice that this method ensures that
no instance in this bag will contain the target. We similarly repeat this process
for each of the input frames. This way it is guaranteed that at least one instance
corresponding to the desired target is present in each of the positive bags and at
the same time, absent from all the negative bags, thus satisfying our Multiple
Instance assumption.

Once the positive and negative bags are constructed, we train the MIL classi-
fier to learn the target concept by using the aforementioned optimization method.
We initialize the weight parameter vector w uniformly at random between (-1, 1).
The algorithm converges when the maximum change in the weight vector is less
than a fixed small threshold ε.

Online Update: An important aspect of the proposed learning approach is that
the learned target concept can be updated in an online manner with each new
incoming frame instead of having to retrain the classifier using all the positive
and negative bags collected from the beginning. We use the assumption that
the target appearance does not change much with the new frame and hence
would result in only a small change in the target model. Once we receive a
new incoming frame, we create a positive and negative bag using the method
described in Sect. 5 and run the gradient optimization algorithm, but this time
with the weight vector initialized to the previously learned target model. Once
the algorithm converges, we obtain the new weight vector reflecting the updated
target model.

Multiple Targets: Another advantage of the proposed approach is its ability
to learn multiple target concepts (if present across the input bags). Since it could
be the case that more than one target is present across all input frames, there
could potentially be multiple target models to be learned by the algorithm.
Therefore, the proposed approach tests for multiple targets by using the first
learned concept to remove all corresponding target instances from the positive
bags, and then retrains to learn the next strongest concept, and so on for each
remaining target. More specifically, once the algorithm converges and learns the
first target model, it then uses Eqn. 4 with this model for every instance from
every positive bag to calculate its probability of being the target. It then classifies
each instance as positive (target) if this probability lies above a fixed threshold
σ. We then update every positive bag by removing from it all the instances
classified as being positive. This ensures that none of the positive bags contain
even a single instance corresponding to the learned target. It is important that
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(a) Training

(b) Testing

Fig. 1. (a) Image sequence input to MIL. (b) Probability surfaces overlaid on incoming

frames showing target localization (best viewed in color).

the threshold σ be picked conservatively so as to eliminate every true positive
instance, even at the cost of eliminating a few false positives if necessary (we
set σ=0.75). Since all instances corresponding to the first target have now been
removed, re-running the optimization algorithm learns the next strongest target
concept (if such a valid target is present). This process is repeated until all valid
target concepts have been learned. To test whether a valid target concept has
been learned or not, we calculate the log likelihood of the learned model on the
input set of positive and negative bags. An extremely low value of the combined
likelihood over all the bags indicates that the learned model is degenerate and
there was no target concept left to learn.

6 Experiments

In this section, we present various experiments to demonstrate the proposed
approach for target localization, apply it to a unique target detection and auto-
locking system, demonstrate its sufficiency for learning appearance-based models
to bootstrap object tracking systems, and finally, compare its performance with
other manual initialization techniques.

6.1 Automatic Target Localization

Given a sequence of input images, we first constructed a set of positive and nega-
tive bags according to the technique described in Sect. 5 with patch size of 75x25
pixels. We then ran the MIL algorithm to learn a concept corresponding to a
target that was common across all positive bags and absent in each of the neg-
ative bags. The parameters of the learning algorithm were set as α=3, ε=10−5,
and λ=10−2. The validity of the learned target concept was checked by calcu-
lating the likelihood of the learned model across all input bags. Next, for every
new incoming frame, the target model was evaluated against the input image
at every possible location. This results in a probability surface corresponding to
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(a) Training

(b) Testing

Fig. 2. (a) Input image sequence containing 2 valid targets. (b) Probability surfaces

for incoming frames showing unique target detected at a later instant.

the new incoming frame indicating the probability of the target being present at
each particular location. Figure 1(a) shows the sequence of input frames used to
learn a target model. Figure 1(b) shows the probability “heatmap” overlaid on
new input frames, representing the probability surface p(y = 1|x) for each patch
x across the image. As seen in the figure, the target (in blue) present across all
input images was detected and localized by the algorithm. After this, a new pair
of positive and negative bags was created for the new input frame using the on-
line update technique described in Sect. 5. The target model was then updated
using the MIL algorithm and the updated model was used to evaluate the next
incoming frame. This process was repeated with every new frame. Figure 1(b)
shows the results of target localization using model update in the new input
frames. Notice also that the other person (wearing black pants) was not learned
by the algorithm since that person was not present in all of the frames, thus not
satisfying the MIL criterion.

6.2 Auto-locking for Unique Target Detection

A useful feature of the proposed approach with the online update is its ability
to continue updating all the target models (if there are multiple targets present
in the scene satisfying the MIL criterion), and continue this process until a
unique target is detected and localized in the scene. This is possible because the
likelihood evaluation from the optimization algorithm can be used to identify
the number of target models learned. Thus, this feature is useful in a system
which can continuously update multiple target models until only the single most
persistent target remains in the scene and then use that model for active tracking.
We demonstrate this ability here.

As seen in Fig. 2(a), there were 2 targets present in the scene satisfying the
MIL criterion. Therefore, the algorithm learned 2 corresponding target models
and these were then used for localization with the incoming frames as shown in
Fig. 2(b) (note that a probability surface corresponding to each learned model
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Fig. 3. Localization results from two other sequences involving multiple targets

is obtained separately, but they are shown here overlaid on the same image for
compactness). Further, with each new incoming frame, the target models were
updated online and eventually, when incorporating a frame where one of the
targets is no longer present, the MIL criterion is violated and consequently the
only single remaining target model was updated, as shown in the last two frames
in Fig. 2(b). Even if the other target later re-enters the scene, they will not be
localized, as the MIL criterion requires the target to be persistent across all
frames from the beginning. Figure 3 shows correct localization results from 2
other sequences involving multiple targets and distractors.

6.3 Sufficiency of Learned Models for Tracking

Once a unique target is detected, the next step is to use the probability surface
for localizing the target and build an appearance model that can then be used
for tracking. We present experiments that demonstrate that the target models
learned using the proposed approach can be used with commonly used tracking
methods such as covariance and mean-shift tracking.

We use the probability surface generated by the MIL algorithm and thresh-
old it to extract the extents of the target which can then be used to build an
appearance-based model for tracking. Figure 4(a) shows the probability surface
for a particular input frame. We then picked a threshold of 0.5 on the probability
surface and used this to extract the area of the learned target model. Figure 4(b)
shows the thresholded area of the target corresponding to Fig. 4(a), and the as-
sociated image chips in Fig. 4(c) show the results for various other input frames.
Note that they all roughly correspond to the same area (target’s torso and legs).

We then calculated the width and the height extents of the thresholded area
and fit a bounding box around the region. This bounding box was then used to
learn an appearance-based model of the target and bootstrap different trackers.
This bounding box (mostly around the target’s torso and legs) captured the ap-
pearance features that remained most persistent across input frames, as opposed
to a larger bounding box around the entire body (including head, hands, and
feet), which could potentially include several background pixels. We evaluated
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(a) (b) (c)

Fig. 4. (a) Probability surface. (b) Thresholded surface showing identified target area.

(c) Image chips showing region used to learn appearance model for target tracking.

Target Covariance tracking

Target Mean-shift tracking

Fig. 5. Results from bootstrapping (a) covariance tracker (b) mean-shift tracker using

a model learned from the proposed approach

this approach with both covariance and mean-shift trackers. Figure 5(top) shows
a few frames from tracking a target using a covariance tracker, and Fig. 5(bottom)
shows the results using the mean-shift tracker. In both cases, the appearancemodel
learned using the proposed approach is reliable and sufficient to bootstrap stan-
dard object trackers.

6.4 Comparison with Manual Initialization

Using a standard test sequence, we next performed three experiments to compare
the performance of our automatic localization and tracker initialization with
typical manual initialization techniques to demonstrate the applicability of our
approach. In the first experiment, we initialized a covariance tracker by manually
specifying the location of the target and the size of the bounding box around the
target in the first frame. In the second experiment, instead of manually marking
the target in only the first frame, we marked its locations in each of the first 5
frames and computed a manifold mean of the covariance matrix representations
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(a) Manual - 1 frame

(b) Manual - 5 frames

(c) Proposed

Fig. 6. Tracking results for (a) manual initialization with just 1 frame, (b) manual

initialization using 5 frames, and (c) automatic initialization using proposed approach

from all 5 frames, and then used this model to manually initialize the covariance
tracker. Even though this scenario is unrealistic in practical settings (where one
cannot expect to manually select the target in every frame), we performed this
experiment for a fair comparison with the proposed approach since our automatic
localization uses an initial set of frames. (Note that the covariance tracker used
a model update every frame). The third experiment involved tracking the target
after automatically learning the target model using the proposed approach.

The results of each of the three experiments are shown in Fig. 6. As seen in
Fig. 6(a), the manual initialization with a single frame performs poorly and loses
the target within a few frames (as expected). The second experiment produces
better results since it computes an average model across the 5 frames and con-
sequently the model learned is less noisy. However, even in this case, we can see
that the target is lost after a few frames (see Fig. 6(b)). In the third experiment
(where the target is automatically localized), the target is tracked the longest
(see Fig. 6(c)). The strength of employing a MIL formulation here (as opposed
to a supervised approach) is that the task of identifying the best representation
of the target present in the frame (and one that is also the most persistent across
all frames) is ambiguous, and hence is pushed into the MIL framework. Conse-
quently, our MIL approach outperforms the alternate initialization methods.

7 Summary and Future Work

We proposed a novel MIL framework to perform target localization from image
sequences in a surveillance setting. The approach consists of a softmax logistic
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regression MIL algorithm using log covariance features to automatically learn
the model of a target that is persistent across all input frames. The learned
target model can be updated online and the approach can also be used to learn
multiple targets in the scene (if present). We performed experiments to demon-
strate the validity and usefulness of the proposed approach to localize targets
in various scenes. We also demonstrated the applicability of the approach to
bootstrap conventional tracking systems and showed that automatic initializa-
tion using our technique helps achieve better performance. In future work, we
plan to explore the applicability of this approach to multi-camera systems for
learning models from multiple views of targets.

Acknowledgement. We gratefully acknowledge the support of the U.S. Depart-
ment of Energy through the LANL/LDRD Program under LDRD-DR project
RADIUS for this work.
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Abstract. Dealing with multi-object tracking in a particle filter raises

several issues. A first essential point is to model possible interactions

between objects. In this article, we represent these interactions using a

fuzzy formalism, which allows us to easily model spatial constraints be-

tween objects, in a general and formal way. The second issue addressed

in this work concerns the practical application of a multi-object track-

ing with a particle filter. To avoid a decrease of performances, a par-

titioned sampling method can be employed. However, to achieve good

tracking performances, the estimation process requires to know the or-

dering sequence in which the objects are treated. This problem is solved

by introducing, as a second contribution, a ranked partitioned sampling,

which aims at estimating both the ordering sequence and the joint state

of the objects. Finally, we show the benefit of our two contributions in

comparison to classical approaches through two multi-object tracking

experiments and the tracking of an articulated object.

1 Introduction

Sequential Monte Carlo methods, also known as particle filters, have been widely
used in the vision community. Their natural dispositions for tracking purposes,
their reliability to deal with non linear systems and their easiness of implementa-
tion have certainly contributed to this success. Dealing with possibly numerous
interacting objects requires to represent the interactions between objects and to
employ an efficient algorithm whatever the number of objects to track. We focus
here on these two classical issues.

As a first contribution, we propose to introduce fuzzy spatial constraints be-
tween objects into the particle filter. This allows easily modeling potentially
complex interactions between objects. To our knowledge, spatial constraints in
a particle filter framework have only been used in specific ways, in a non fuzzy
formalism (e.g. [1]). Fuzzy spatial constraints have shown a real interest in var-
ious domains, such as clustering [2], brain segmentation in 3D MRI images [3]
or graph reasoning over fuzzy attributes [4].

The adaptation of particle filters to track several objects has been extensively
addressed in the literature, in many different ways. Among these, the authors
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in [5] proposed a Jump Markov System to model the number of objects, the as-
sociation hypothesis between observations and objects and the indivual states.
In [6], the authors use one particle filter and model interactions between ob-
jects and measures using a Joint Probabilistic Data Association Filter (JPDAF)
framework. In [7], the distribution of the association hypotheses is computed
using a Gibbs sampler. On another hand, as pointed out in [8], the importance
sampling, used in particular in particle filters, suffers from the problem of the
curse of dimensionality. This means that the particle filter requires a number
of particles that exponentially increases with the number of objects. This ren-
ders the practical use of a particle filter for multiple object tracking difficult
as soon as the number of objects is greater than three. Therefore, the authors
in [9,10] proposed a particle filter that avoids this additional cost using a parti-
tioned sampling strategy, based on a principle of exclusion (i.e. specifying that
a measurement may be associated to at most one object). This is performed by
partitioning the state space, typically considering one element of the partition
per object, according to a specific ordering of the objects that we call scenario,
and to select particles, using a weighted sampling, that are the most likely to
fit with the real state of the object. The considered order matters since it can
lead to unsuitable behaviors of the filter, such as loosing tracks, for example
when the first considered object is hidden. In fact, as pointed out in [11] and
as we will detail further in this article, using a specific order to estimate the
state may also have many bad effects, which can be explained by a phenomenon
of impoverishment of the particle set. In [11], the joint filtering distribution is
represented by a mixture model, in which each mixture component describes a
specific order and is estimated using a partitioned sampling technique. This idea
has also been used in [12] for multi-cue fusion purposes. However, the number of
particles allocated to each component is fixed, that may degrade performances of
the filter when the chosen orders are not relevant [11]. In this article, we propose
to jointly estimate the order in which objects are processed and states of the
objects, in a so called ranked partitioned sampling strategy. This allows us to
consider the whole set of possible orders and to automatically prune irrelevant
scenarios.

This paper is organized as follows. Section 2 presents the fuzzy spatial con-
straint formalism and its introduction into a probabilistic framework. Section 3
describes the multi-object tracking based on a particle filtering modeling. Then
in Section 4, we recall the principle of the partitioned sampling before intro-
ducing our ranked partitioned sampling in Section 5. We finally show results in
Section 6 by considering two classical multi-object tracking experiments and the
tracking of an articulated object.

2 Modeling Fuzzy Spatial Constraints

In this section, we propose to model explicitly interactions between objects via
fuzzy spatial relations defined over one, two or more objects indicating to which
degree the relation is satisfied. They will be considered as constraints the ob-
jects should satisfy during the tracking process, to a non-zero degree, and are
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therefore called fuzzy spatial constraints. Each relation is considered as a lin-
guistic variable, taking a small number of linguistic values [13]. The granularity
of this representation can be defined by the application. The semantics of each
linguistic value is defined by a fuzzy set on the variable domain. Fuzzy spatial
constraints may be defined by unary fuzzy operators, such as the concept of the
size of an object (which may take the values small, medium, large, ...); by binary
operators, such as the concept of relative orientation (is to the right of, is to
the left of, ...); by ternary operators, such as the concept of local disposition
(is the first of, is in the middle of, is the last of ); and more generally n-any
operators. In this paper, we focus on binary, ternary and quaternary operators,
considering concepts of intersection, distance, angle and alignment. Fuzzy spa-
tial constraints may be fixed during the tracking process (the topology of the
configuration of the objects is fixed, although known imprecisely), may evolve
during the time (fuzzy spatial concepts gradually change their values), or may
be defined over time (considering imprecise fuzzy spatio-temporal constraints).
Here we only consider time-independent spatial relations but we believe that the
two last types of constraints may be of interest too.

1

π/4 (a) (b)

1

m (c) (d)

Fig. 1. Spatial fuzzy relations illustrated (a,c) in the variable domain and (b,d) in

the image domain with respect to the center point. Figures (a,b) represent the value

north-east of the concept of orientation and figures (c,d) the value medium distance m
of the concept of distance.

Let x∗
t be an hypothetic state of an object and x̃t = (x̃1

t , . . . , x̃
L
t ) be the

vector state of L objects already processed at time t. We now define a fuzzy
membership function μ(x∗

t ; x̃t) ∈ [0, 1] which describes to which degree an object
configuration x∗

t satisfies the spatial constraints imposed by x̃t. Denoting by K
the number of spatial constraints we consider, we define μ as:

μ(x∗
t ; x̃t) =

K

Ξ
k=1

μk(x∗
t ; x̃t) (1)

with Ξ a fusion operator, for example a t-norm (fuzzy conjunction) [14], and
μk ∈ [0, 1] the membership function of the kth spatial constraint. For example,
considering a binary fuzzy relation, μk is defined as:

μk(x∗
t ; x̃t) =

L

ψ
l=1

μk
l (x∗

t ; x̃
l
t) (2)

with ψ a fusion operator, for example a t-norm, and μk
l ∈ [0, 1] the membership

function of the kth spatial constraint between the current object and object l.



396 N. Widynski, S. Dubuisson, and I. Bloch

The shape of the function μk may be fixed by the application. In our experi-
ments, we consider a triangular one to generate the orientation north-east and a
trapezoidal one for the distance medium, respectively illustrated in Figures 1(a)
and 1(b). In a similar way, considering ternary constraints, μk is defined as:

μk(x∗
t ; x̃t) =

L

ψ
l1=1

L

ψ
l2=l1+1

μk
l1,l2(x

∗
t ; x̃

l1
t , x̃l2

t ) (3)

with μk
l1,l2

∈ [0, 1] the membership function of the kth spatial constraint between
the current object and objects l1 and l2. Finally, we introduce the fuzzy spatial
constraints into a probabilistic framework, by defining the function φ(x∗

t ; x̃t) as:

φ(x∗
t ; x̃t) ∝ μ(x∗

t ; x̃t)γ (4)

with γ ∈ R
+ a fixed parameter and μ(x∗

t ; x̃t) the membership function of the
spatial constraints defined in Equation 1. Examples of constraints will be defined
in Section 6. The function φ allows passing from a possibilistic semantic to a
probabilistic one and will be integrated in a dynamic model in a particle filtering
framework (see Section 4).

3 Particle Filtering for Multi-object Tracking

In this article, we consider that the number M of objects is known. Let us con-
sider a classical filtering problem and denote by xt ∈ X the hidden joint state
of a stochastic process at time t: xt = (x1

t , . . . ,x
M
t ) with xi

t ∈ X
∗ the unknown

state of the ith object, and by yt ∈ Y the measurement state extracted from the
image sequence. The temporal evolution of xt and the measurement equation are
given by xt = ft(xt−1,vt) and yt = ht(xt,wt), where vt and wt are independent
white noises. The non-linear Bayesian tracking consists in estimating the poste-
rior filtering distribution Pr(xt|y1:t) through a non-linear transition function ft

and a non-linear measurement function ht. The resulting filtering density func-
tion can be expressed by p(xt|y1:t) ∝ p(yt|xt)

�
X

p(xt|xt−1) p(xt−1|y1:t−1)dxt−1.
Particle filters are used to approximate the posterior density function (pdf ) by
a weighted sum of N Dirac masses δ

x
(n)
t

(dxt) centered on hypothetic state re-

alizations {x(n)
t }N

n=1 of the state xt, also called particles. Then, the filtering
distribution Pr(dxt|y1:t) is recursively approximated by the empiric distribu-
tion PN (dxt|y1:t) =

�N
n=1 w

(n)
t δ

x
(n)
t

(dxt), where {x(n)
t } is the nth particle and

w
(n)
t its weight. If an approximation of Pr(dxt−1|y1:t−1) is known, the process

is divided into three main steps:

1. The diffusion step consists in estimating p(xt|y1:t−1) by propagating the par-
ticle swarm {(x(n)

t−1), w
(n)
t−1}N

n=1 using an importance function q(xt|x(n)
0:t−1,yt).

2. The update step then computes new particle weights using the new obser-

vation yt, as: w
(n)
t ∝ w

(n)
t−1

p(yt|x(n)
t )p(x

(n)
t |x(n)

t−1)

q(xt|x(n)
0:t−1,yt)

, such that
�N

i=1 w
(n)
t = 1.
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3. Resampling techniques are employed to avoid particle degeneracy problems.

When needed, the data association problem may be handled by estimating both
the objects and a vector of visibility of those [9,15]. This involves a measurement
process dependent on the visibility of the objects. This point will be discussed
in Sections 5 and 6.1.

The presented particle filter algorithm uses, by essence, an importance sam-
pling procedure while simulating according to a density function q(xt|x(n)

0:t−1,yt).
In practice, this means in particular that an increase in the dimension of xt sys-
tematically induces an increase in the variance of the particle weights, leading
to possibly fatal impoverishment of the particle set. In the case of multi-object
tracking, where xi

t and xj
t are two states evolving in the same space X

∗, it has
been shown [10] that N2 particles are necessary to achieve the same level of
tracking performance than when tracking a single object with N particles. To
tackle the dimensionality problem, the authors in [10] propose, instead of di-
rectly sampling from the joint configuration of the objects, to decompose the
vector state of the objects by partitioning the state space, and then handling
one object at a time. This is called partitioned sampling and presented in the
next section.

4 Partitioned Sampling (PS)

The Partitioned Sampling (PS), introduced in [9,10], divides the joint state space
X into a partition of M elements, i.e. one by object, and for each of them, applies
the transition (dynamics) and performs a weighted resampling operation.

Weighted Resampling. A weighted resampling operation transforms a par-
ticle set {x(n)

t , w
(n)
t }N

n=1 into another one while keeping the distribution intact.
Weights {ρ(n)}N

n=1 are called importance weights and are designed such that
ρ(n) = g(x(n)

t )/
�N

m=1 g(x(m)
t ). The strictly positive function g is called weight-

ing function, and aims at resampling the particles set according to the peaks of
g. Finally the particle set {x̃(n)

t , w
(n)
t /ρ(n)}N

n=1 is obtained by selecting particles
{x(m)

t }N
m=1 with probabilities {ρ(m)}N

m=1.

Partitioned Resampling. Denoting by ∼ gi the weighted resampling opera-
tion of the ith object, by ∼ the resampling procedure according to the particle
weights {w(n)

t }N
n=1, and by fi the dynamics process of the object i, possibly con-

ditioned by objects already generated x1:i−1
t , the partitioned sampling operation

is summarized in Figure 2(a).
Although any weighting function gi should asymptotically keep the posterior

unchanged, the objective of this step is to obtain an accurate representation of
the posterior. Then, considering a factorization of the likelihood such that it
allows us to deal with each object independently, i.e. p(yt|xt) =

�M
i=1 pi(yt|xi

t),
then the likelihood hi = pi(yt|xi

t) of the object i appears to be a natural choice
and leads to the diagram proposed in Figure 2(b).
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p(xt|y1:t)p(xt−1|y1:t−1) p(yt|xt)∼ fi ∼ gi

(a)

p(xt|y1:t)p(xt−1|y1:t−1) ∼ ∼hifi

(b)

Fig. 2. (a) Diagram of the Partitioned Sampling procedure and (b) diagram of the

Partitioned Sampling procedure using the likelihood as weighting function

Additionally, we propose to integrate the fuzzy spatial constraints modeled
in Section 2. The simplest way to do it consists in introducing the interaction
density function defined in Equation 4 into the dynamical model, leading to
fi = p(xi

t|xi
t−1)φ(xi

t;x
1:i−1
t ). This model can be viewed as the pairwise Markov

Random Field prior used in [16,1,12]. However, in a more general perspective,
it is often impossible to directly generate samples from φ(xi

t;x
1:i−1
t ). Then, we

consider fi = p(xi
t|xi

t−1) whereas the likelihood integrates the interaction term,
i.e., hi = pi(yt|xi

t)φ(xi
t;x

1:i−1
t ). This procedure does not affect the posterior

since it can be seen as an importance sampling step [1].

Discussion. The partitioned sampling is a very efficient sampling method since,
by alleviating the dimension problem, it considerably reduces the computation
cost. However, as discussed in [11], the order of the considered objects has a
direct impact on the performance of the tracker. This is due to the M successive
weighting resampling procedures performed by the algorithm. Hence, objects
placed at early stages will be prone to more impoverishment effects than the
others. On the other side, objects placed at the end may suffer from a lack of
diversity even before being considered, which may also lead to tracking errors.

The method presents an additional difficulty. If occlusions occur, one may
quite rightly handle visible objects first, and hence adopt a dynamic order strat-
egy of the objects. The solution proposed in [9] is called Branched Partitioned
Sampling (BPS), and consists in adding to the global estimation a vector of
visibility, and then recursively grouping together particles with an identic real-
ization of this vector, generating an hypothesis tree. This solution has however
a major drawback: considering a tracking problem with M objects, the method
possibly divides particles into M ! hypotheses, which looses the interest of the
partitioned sampling since the particles no longer try to survive over a large set
of N particles but over possible irrelevant sets of N/M ! elements.

The Dynamic Partitioned Sampling (DPS), proposed in [11], uses a mixture
model to represent the posterior distribution. Each mixture component repre-
sents a specific order of processing of the objects. In their experiments, the au-
thors used M permutation sets, deterministically defined, each one owning N/M
particles. This strategy improves Partitioned Sampling results since it alleviates
impoverishment effects, especially when occlusions occur. However, using a fixed
small subset of possible permutations might not be robust. Moreover, splitting
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particles into several sets has the same drawback than the Branched Partitioned
Sampling, since particles evolve into subsets.

To overcome these problems, we propose a new sampling strategy, called
Ranked Partitioned Sampling (RPS), which jointly estimates the state of the
objects and the estimation of the order of processing of the objects. Objects
with highest confidence are considered in earlier stages of the scenarios. Each
scenario is then confronted to each of the others, implicitly pruning unlikely
branches. The adapative choice of the order of processing aims at limiting the
impoverishment effect.

5 Ranked Partitioned Sampling (RPS)

Let ot = (o1
t , . . . ,o

M
t ) be an ordered sequence of processing, i.e. a permutation

over M objects. Then oi
t is a random variable that indicates the position of the

object i in this ordered sequence. We call a scenario the inverse permutation
o−1

t considered at a particular instant t, which we denote by st = (s1
t , . . . , s

M
t ).

Hence the kth component of a scenario is defined such that sk
t �

�M
i=1 i δk

oi
t
, with

δb
a the Kronecker function that equals 1 if a = b, 0 otherwise, and indicates the

object processed at the step k. We first consider fixed probabilities of transition
of the positions:

p(sh
t = i|sk

t−1 = i) � p(oi
t = h|oi

t−1 = k) � αk,h ∀i ∈ {1, . . . , M} (5)

By first considering objects placed in the earliest stages at time t − 1, the joint
transition distribution of ot is:

p(ot|ot−1) = p
�
os1

t |os1

t−1

� M�
k=2

p
�
osk

t |osk

t−1 � k,os1

t , . . . ,osk−1

t

�
(6)

with sk � sk
t−1, the time subscript being omitted to simplify notations. The last

conditional distribution in Equation 6 depends on the probabilities of transitions
of positions defined in Equation 5 and inaccessible positions of already considered
objects:

p
�
osk

t = h|osk

t−1, {osu

t }k−1
u=1

�
=

�
1 −

k−1�
j=1

δh

osj

t

	�
αk,h +

1
M − k + 1

k−1�
j=1

α
k,osj

t

	
(7)

The first term in the product ensures that the probability is set to 0 if the
position h has already been assigned, whereas the last term uses probabilities
of transition of the assigned positions to balance the distribution in a uniform
way. We decompose the joint transition density so that p(xt,ot|xt−1,ot−1) =
p(xt|xt−1,ot)p(ot|ot−1). Conditioned by the sequence order defined by ot, the
transition density of the vector state xt is decomposed considering first the
objects placed in the earliest stages:

p(xt|xt−1,ot) �
M�

k=1

p(xsk
t

t |xsk
t

t−1,x
s1

t
t , . . . ,xsk−1

t
t ) (8)
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However, following the choices made in Section 4, we set the dynamic process
to fsk

t
= p(xsk

t
t |xsk

t
t−1). In the same way, the likelihood is defined as p(yt|xt,ot) ��M

k=1 psk
t
(yt|xsk

t
t ). To summarize, at a time t, for each particle, the algorithm first

generates a scenario, and then, at position k of the process (scenario), it proposes
a new state of the object sk

t using dynamics, and computes the likelihood before
resampling all the particles. The approximation of the joint filtering distribution
of xt,ot is obtained once the M positions have been computed. By setting hsk

t
=

psk
t
(yt|xsk

t
t )φ(xsk

t
t ;xst

1:st
k−1

t ), we obtain the diagram in Figure 3.

∼ ∼fsk
t

hsk
t

otp(xt−1,ot−1|y1:t−1) p(xt,ot|y1:t)

Fig. 3. Diagram of the Ranked Partitioned Sampling procedure using the likelihood as

weighting function

There are many ways to deal with hidden objects. A current choice is to esti-
mate a visibility vector and then proposing scenarios according to it. However,
in this paper, we implicitly consider that an object at a position i is always less
visible than a object at position i − k, with 0 < k < i.

6 Experiments

6.1 People Tracking

We consider a public sequence [17], from which we extracted 260 frames where
three pedestrians walk and occult each other. Let xi

t = (xi
t, yi

t)T be the unknown
state of object i, with (xi

t, y
i
t)

T the 2D center of a person. Dimension of the
rectangles surrounding persons are fixed. The dynamics is a random walk, i.e.
xi

t = ft(xi
t−1,v

i
t) = xi

t−1 + vi
t with vi

t ∼ N (02×1, Σ). For the BPS, we modeled
a visibility vector, where the transition probability from state visible to state
hidden was fixed to 0.2, and the transition probability from state hidden to state
visible to 0.5. These probabilities have been fixed empirically, in a way that they
give priority to the state visible, although being flexible enough to deal with
sudden occlusions. For the RPS, we implicitly consider the visibility of an object
by its position in the processing order, then no spatial constraint is necessary
for this first experiment. For both methods, visible objects are considered first,
although in the RPS the visibility vector is not modeled since the scenario vector
determines the visibility of an object. The likelihood of an object is based on
a distance between a color model histogram and a candidate histogram defined
by the particle [18]. However, only the visible part of the object is considered to
avoid penalizing hidden or partially hidden objects.

Results using N = 500 particles are illustrated in Figure 4. Rectangles in red
correspond to the estimation of objects (i.e. the Monte Carlo expected value).
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Fig. 4. People tracking results at times 5, 24, 99, 205, 212 and 259. First row: branched

PS [9], second row: ranked PS (proposed approach).

As mentionned in Section 4, in the BPS, the particles may be divided into M !
sets, which may maintain scenarios where the visibility hypotheses are wrong.
Moreover, the visibility vector is not well adapted in the case where the number
of objects is greater than two, since it does not solve anymore the data associa-
tion problem. These two points explain the difference of the results obtained by
the BPS and the RPS (see e.g. second and last images). Figures 5(b) and 5(c)
show the overall superiority of the RPS over the BPS. Figure 5(d) presents the
posterior probabilities obtained by the RPS for a person to be considered first
in the processing order induced by ot, where a low probability indicates that
the person is likely to be partially hidden. We can appreciate the probabilities
estimated for example at times 24, 99, 205 and 212 that are consistent with the
sequence (Figure 4).

(a) (b) (c) (d)

Fig. 5. (a) Indices of the pedestrians present in the scene (b) RMSE of the branched

PS, (c) RMSE of the ranked PS (proposed approach) and (d) posterior probabilities

obtained by the RPS for a person to be considered first in the processing order

6.2 Ant Tracking

This test sequence has been successfully studied in [1], using a MCMC-Based
particle filtering approach. The state of the object i, xi

t = (xi
t, y

i
t, θ

i
t)

T , contains
the 2D position (xi

t, yi
t)T and the object orientation θi

t. Dynamics of position
and orientation are random walks. We used for this experiment an exclusion
fuzzy spatial constraint: using a fuzzy semi-trapeze, two ants must not overlap
more than 10% of their own areas, and from 5% the degree of satisfaction of the
constraint starts to decrease. The likelihood is a simple background substraction.
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Fig. 6. Ant tracking results. First row: RPS without spatial constraints, second row:

PS with spatial constraints and last row: RPS with spatial constraints.

Figure 6 shows results using a RPS with and without spatial constraints, and
a PS with spatial constraints. Estimated positions of the ants are represented in
red. N = 500 particles were used for this sequence of 750 frames. The benefit of
using a simple spatial constraint is very clear here (several ants are not tracked
without spatial constraints, while they are successfully tracked with such con-
straints). The PS and the RPS give global comparable results since all possible
processing orders lead to almost identical results. Then the RPS performs as
well as the PS when the order does not significantly matter and the number of
objects is small enough to not suffer from an impoverishment effect.

6.3 Hand Tracking

We finally consider a problem of tracking an articulated object. The state of
the object i, xi

t = (xi
t, yi

t, θ
i
t)T , contains its 2D center position (xi

t, yi
t)T and

orientation θi
t. Each finger shape is fixed and expressed by vectors of 6 2D-

control points, located on the basis of fingers, on the middle and on the fingertips.
Dynamics of position and orientation are random walks. The difficulty of this
application is that fingers may be partially or totally hidden. We then would like
to track the hand by preserving a global consistency of the shape using fuzzy
spatial constraints. Although they might be automatically learnt, we consider
here fixed spatial relations between the fingers. For instance, we used four fixed
fuzzy spatial constraints: angle, distance, alignment and exclusion. We defined
two values of the binary constraint of angle, with an uncertainty expressed by
a trapezoidal template of length support π/4: nearly −π/8, and nearly π/8;
two values of the binary constraint of distance: close and far ; one ternary or
quaternary (it depends on the number of objets already processed) constraint
of alignment: using a linear regression, fingers cannot move away from a fixed
distance threshold; and one binary constraint of exclusion: no overlap between
fingers is allowed. The likelihood is obtained by computing gradient values over
normal lines of regular points of a finger B-spline [19].
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Fig. 7. Hand tracking results. First row: RPS without spatial constraints, second row:

PS with spatial constraints and last row: RPS with spatial constraints.

The results are illustrated in Figure 7 and were obtained using N = 2000
particles, over a sequence of 800 frames. Results using a simple partitioned sam-
pling strategy were generated using a random sequence order (in this particular
sequence, fixed sequence order gave not quite as good results). RPS without spa-
tial constraints fails as soon as a finger is hidden. The RPS obtains better results
than the PS thanks to the estimation of the scenario, which allows estimating
first fingers that are trusted, the visible ones, and then the other ones, which are
then more constrained by the fuzzy spatial relations.

7 Conclusion

This article presents two contributions. First, we introduced fuzzy spatial con-
straints into a multi-object tracking based on particle filtering. This novel infor-
mation allows us to easily handle constraints between objects in a unified frame-
work. As a second contribution, the multi-object particle filter uses a ranked
partitioned sampling strategy, which, like the partitioned sampling, tackles the
problem of dimensionality by sequentially performing a weigthed resampling
step in single object state spaces. Moreover, the simulation order proposed in
the RPS is adaptive, which makes the tracking more robust and alleviates the
impoverishment effect, while keeping a computation time identical to the PS
one.
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Abstract. We introduce a new method for integrated tracking and seg-

mentation of a single non-rigid object in an monocular video, captured

by a possibly moving camera. A closed-loop interaction between EM-like

color-histogram-based tracking and Random Walker-based image seg-

mentation is proposed, which results in reduced tracking drifts and in

fine object segmentation. More specifically, pixel-wise spatial and color

image cues are fused using Bayesian inference to guide object segmenta-

tion. The spatial properties and the appearance of the segmented objects

are exploited to initialize the tracking algorithm in the next step, closing

the loop between tracking and segmentation. As confirmed by experi-

mental results on a variety of image sequences, the proposed approach

efficiently tracks and segments previously unseen objects of varying ap-

pearance and shape, under challenging environmental conditions.

1 Introduction

The vision-based tracking and the segmentation of an object of interest in an
image sequence are two challenging computer vision problems. Each of them
has its own importance and challenges and can be considered as “chicken-and-
egg” problems. By solving the segmentation problem, a solution to the tracking
problem can easily be obtained. At the same time, tracking provides important
input to segmentation.

In a recent and thorough review on the state-of-the-art tracking techniques [1],
tracking methods are divided into three categories: point tracking, silhouette
tracking and kernel tracking. Silhouette-based tracking methods usually evolve
an initial contour to its new position in the current frame. This can be done using
a state space model [2] defined in terms of shape and motion parameters [3]
of the contour or by the minimization of a contour-based energy function [4,
5], providing an accurate representation of the tracked object. Point-tracking
algorithms [6, 7] can also combine tracking and fine object segmentation using
multiple image cues. Towards a more reliable and drift-free tracking, some point
tracking algorithms utilize energy minimization techniques, such as Graph-Cuts
or Belief Propagation on a Markov Random Field (MRF) [8] or on a Conditional

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 405–416, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Random Field (CRF) [9, 10]. Most of the kernel-based tracking algorithms [11–
13] provide a coarse representation of the tracked object based on a bounding
box or an ellipsoid region.

Despite the many important research efforts devoted to the problem, the de-
velopment of algorithms for tracking objects in unconstrained videos constitutes
an open research problem. Moving cameras, appearance and shape variability of
the tracked objects, varying illumination conditions and cluttered backgrounds
constitute some of the challenges that a robust tracking algorithm needs to cope
with. To this end, in this work we consider the combined tracking and segmen-
tation of previously unseen objects in monocular videos captured by a possibly
moving camera. No strong constraints are imposed regarding the appearance
and the texture of the target object or the rigidity of its shape. All of the above
may dynamically vary over time under challenging illumination conditions and
changing background appearance. The basic aim of this work is to preclude track-
ing failures by enhancing its target localization performance through fine object
segmentation that is appropriately integrated with tracking in a closed-loop al-
gorithmic scheme. A kernel-based tracking algorithm [14], a natural extension
of the popular mean-shift tracker [11, 15], is efficiently combined with Random
Walker-based image segmentation [16, 17]. Explicit segmentation of the target
region of interest in an image sequence enables reliable tracking and reduces
drifting by exploiting static image cues and temporal coherence.

The key benefits of the proposed method are (i) close-loop interaction between
tracking and segmentation (ii) enhanced tracking performance under challeng-
ing conditions (iii) fine object segmentation (iv) capability to track objects from
a moving camera (v) increased tolerance to extensive changes of object’s ap-
pearance and shape and, (vi) continual refinement of both the object and the
background appearance models.

The rest of the paper is organized as follows. The proposed method is pre-
sented in Sec. 2. Experimental results are presented in Sec. 3. Finally, Sec. 4
summarizes the main conclusions from this work and future work perspectives.

2 Proposed Method

For each input video frame, the proposed framework encompasses a number of
algorithmic steps, tightly interconnected in a closed-loop which is illustrated
schematically in Fig.1. To further ease understanding, Fig.2 provides sample
intermediate results of the most important algorithmic steps.

The method assumes that at a certain moment t in time, a new image frame
It becomes available and that a fine object segmentation mask Mt−1 is available
as the result of the previous time step t − 1. For time t = 0, Mt−1 should be
provided for initialization purposes. Essentially, Mt−1 is a binary image where
foreground/background pixels have a value of 1/0, respectively (see Fig.2). The
goal of the method is to produce the current object segmentation mask Mt.
Towards this end, the spatial mean and covariance matrix of the foreground re-
gion of Mt−1 is computed, thus defining an ellipsoid region coarsely representing
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EM-like Color-Based
Object Tracking
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for Foreground Object & Background Labels
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Using Bayesian Inference

Random Walker-Based
Fine Object Segmentation

Object Tracking Object Segmentation

Segmented
Object Mask

Mt-1

Image Frame
It

Affine Propagation of
Object Shape

Fig. 1. Outline of the proposed method

the object at t − 1. Additionally, a color-histogram-based appearance model of
the segmented object (i.e., the one corresponding to the foreground of Mt−1) is
computed using a Gaussian weighting kernel function. The iterative (EM-like)
tracking algorithm in [14] is initialized based on the computed ellipsoid and ap-
pearance models. The tracking thus performed, results in a prediction of the
position and covariance of the ellipsoid representing the tracked object. Based
on the transformation parameters of the ellipsoid between t− 1 and t, a 2D spa-
tial affine transformation of the foreground object mask Mt−1 is performed. The
propagated object mask M

′
t indicates the predicted position and shape of the

object in the new frame It. The Hausdorff distance between the contour points
of Mt−1 and M

′
t masks is then computed and a shape band, as in [4, 9], around

the M
′
t contour points is determined, denoted as Bt. The width of Bt is equal

to the computed Hausdorff distance of the two contours. This is performed to
guarantee that the shape band contains the actual contour pixels of the tracked
object in the new frame. Additionally, the pixel-wise Distance Transform like-
lihoods for the object and background areas are computed together with the
pixel-wise color likelihoods based on region-based color histograms. Pixel-wise
Bayesian inference is applied to fuse spatial and color image cues, in order to
compute the probability distribution for the object and the background regions.
Given the estimated Probability Density Functions (PDFs) for each region, a
Random Walker-based segmentation algorithm is finally employed to obtain Mt

in It.
In the following sections, the components of the proposed method are de-

scribed in more detail.
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Fig. 2. Sample intermediate results of the proposed method. To avoid clutter, results

related to the processing of the scene background are omitted.

2.1 Object Tracking

This section presents the tracking part of the proposed combined tracking and
segmentation method (see the bottom-left part of Fig.1).

EM-Like Color Based Object Tracking: The tracking method [14] used in
this work is closely related to the widely-used mean-shift tracking method [11,
15]. More specifically, this algorithm coarsely represents the objects’ shape by
a 2D ellipsoid region, modeled by its center θ and covariance matrix Σ. The
appearance model of the tracked object is represented by the color histogram of
the image pixels under the 2D ellipsoid region corresponding to θ and Σ, and
is computed using a Gaussian weighting kernel function. Provided Mt−1 and
It−1, θt−1, Σt−1 the object appearance model can be computed for time t − 1.
Given a new image frame It where the tracked object is to be localized, the
tracking algorithm evolves the ellipsoid region in order to determine the image
area in It that best matches the appearance of the tracked object in terms of a
Bhattacharrya coefficient-based color similarity measure. This gives rise to the
parameters θt and Σt that represent the predicted object position and covariance
in It.

Affine Propagation of Object Shape: The tracking algorithm presented
above assumes that the shape of an object can be accurately represented as
an ellipse. In the general case, this is a quite limiting assumption, therefore
the objects’ appearance model is forced to include background pixels, causing
tracking to drift. The goal of this work is to prevent tracking drifts by integrating
tracking with fine object segmentation.
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To accomplish that, the contour Ct−1 of the object mask in Mt−1 is prop-
agated to the current frame It based on the transformation suggested by the
parameters θt−1, θt, Σt−1 and Σt. A 2D spatial, affine transformation is de-
fined between the corresponding ellipses. Exploiting the obtained Σt−1 and Σt

covariance matrices, a linear 2 × 2 affine transformation matrix At can be com-
puted based on the square root (Σ1/2) of each of these matrices. It is known
that a covariance matrix is a square, symmetric and positive semidefinite ma-
trix. The square root of any 2 × 2 covariance matrix Σ can be calculated by
diagonalization as

Σ1/2 = QΛ1/2Q−1, (1)

where Q is the square 2 × 2 matrix whose ith column is the eigenvector qi of Σ
and Λ1/2 is the diagonal matrix whose diagonal elements are the square values
of the corresponding eigenvalues. Since Σ is a covariance matrix, the inverse of
its Q matrix is equal to the transposed matrix QT , therefore Σ1/2 = QΛ1/2QT .
Accordingly, we compute the transformation matrix At by:

At = QtΛ
1/2
t Λ

−1/2
t−1 QT

t−1. (2)

Finally, C′
t is derived from Ct based on the following transformation

C′
t = At(Ct − θt−1) + θt. (3)

The result indicates a propagated contour C′
t, practically a propagated object

mask M
′
t that serves as a prediction of the position and the shape of the tracked

object in the new frame It.

2.2 Object Segmentation

This section presents how the pixel-wise posterior values on spatial and color
image cues are computed and fused using Bayesian inference in order to guide
the segmentation of the tracked foreground object (see the right part of Fig.1).

Object Shape Band: An object shape band Bt is determined around the
predicted object contour C′

t. Our notion of shape band is similar to those used
in [4, 9]. Bt can be regarded as an area of uncertainty, where the true object
contour lies in image It. The width of Bt is determined by the Euclidean, 2D
Hausdorff distance between contours Ct−1 and C

′
t regarded as two point sets.

Spatial Image Cues: We use the Euclidean 2D Distance Transform to compute
the probability of a pixel xi in image It to belong to either the object Lo or
the background Lb region, based on its 2D location xi = (x, y) on the image
plane. As a first step, the shape band Bt of the propagated object contour
C′

t is considered and its inner and outer contours are extracted. The Distance
Transform is then computed starting from the outer contour of Bt towards the
inner part of the object. The probability P (Lo|xi) of a pixel to belong to the
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object given its image location is set proportional to its normalized distance
from the outer contour of the shape band. For pixels that lie outside the outer
contour of Bt, it holds that P (Lo|xi) = ε, where ε is a small constant.

Similarly, we compute the Euclidean Distance Transform measure starting
from the inner contour of Bt towards the exterior part of the object. The proba-
bility P (Lb|xi) of a pixel to belong to the background given its image location is
set proportional to its normalized distance from the inner contour of the shape
band. For pixels that lie inside the inner contour of Bt, it holds that P (Lb|xi) = ε.

Color Based Image Cues: Based on the segmentation Mt−1 of the image
frame It−1, we define a partition of image pixels Ω into sets Ωo and Ωb indicating
the object and background image pixels, respectively. The appearance model of
the tracked object is represented by the color histogram Ho computed on the Ωo

set of pixels. The normalized value in a histogram bin c encodes the conditional
probability P (c|Lo). Similarly, the appearance model of the background region is
represented by the color histogram Hb, computed over pixels in Ωb and encoding
the conditional probability P (c|Lb).

Probabilistic Fusion of Image Cues: Image segmentation can be considered
as a pixel-wise classification problem for a number of classes/labels. Our goal
is to generate the posterior probability distribution for each of the labels Lo

and Lb, which will be further utilized to guide the Random Walker-based image
segmentation. Using Bayesian inference, we formulate a probabilistic framework
to efficiently fuse the available prior image cues, based on the pixel color and
position information, as described earlier. Considering the pixel color c as the
evidence and conditioning on pixel position xi in image frame It, the posterior
probability distribution for label Ll is given by

P (Ll | c, xi) =
P (c | Ll, xi)P (Ll | xi)∑N
l=0 P (c | Ll, xi)P (Ll | xi)

, (4)

where N = 2 in our case. The probability distribution P (c | Ll, xi) encodes the
conditional probability of color c taking the pixel label Ll as the evidence and
conditioning on its location xi. We assume that knowing the pixel position xi,
does not affect our belief about its color c. Thus, the probability of color c is only
conditioned on the prior knowledge of its class Ll following that P (c | Ll, xi) =
P (c | Ll). Given this, Eq.(4) transforms to

P (Ll | c, xi) =
P (c | Ll)P (Ll | xi)∑N
l=0 P (c | Ll)P (Ll | xi)

. (5)

The conditional color probability P (c | Ll) for the class Ll is obtained by the
color histogram Hl. The conditional spatial probability P (Ll | xi) is obtained
by the Distance-Transform measure calculation. Both of these calculations have
been presented earlier in this section.
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Random Walker Based Object Fine Segmentation: The resulting poste-
rior distribution P (Ll | c, xi) for each of the two labels Lo and Lb on pixels xi

guides the Random Walker-based image segmentation towards an explicit and
accurate segmentation of the tracked object in It.

Random Walks for image segmentation was introduced in [18] as a method
to perform K-way graph-based image segmentation given a number of pixels
with user (or automatically) defined labels, indicating the K disjoint regions in
a new image that is to be segmented. The principal idea behind the method is
that one can analytically determine the real-valued probability that a random
walker starting at each unlabeled image pixel will first reach one of the pre-
labeled pixels. The random walker-based framework bears some resemblance to
the popular graph-cuts framework for image segmentation, as they are both
related to the spectral clustering family of algorithms [19], but they also exhibit
significant differences concerning their properties, as described in [17].

The algorithm is formulated on a discrete weighted undirected graph G =
(V, E), where nodes u ∈ V represent the image pixels and the positive-weighted
edges e ∈ E ⊆ V xV indicate their local connectivity. The solution is calculated
analytically by solving K-1 sparse, symmetric, positive-definite linear systems of
equations, for K labels. For each graph node, the resulting probabilities of the
potential labels sum up to 1.

In order to represent the image structure by random walker biases, we map
the edge weights to positive weighting scores computed by the Gaussian weight-
ing function on the normalized Euclidean distance of the color intensities be-
tween two adjacent pixels, practically the color contrast. The Gaussian weighting
function is

wi,j = e−
β
ρ (‖ci−cj‖)2 + ε, (6)

where ci stands for the vector containing the color channel values of pixel/node
i, ε is a small constant (i.e ε = 10−6) and ρ is a normalizing scalar ρ =
max(‖ci − cj‖), ∀i, j ∈ E. The parameter β is user-defined and modulates the
spatial random walker biases, in terms of image edgeness. The posterior proba-
bility distribution P (Ll | c, xi) computed over the pixels xi of the current image
It suggest the probability of the pixels to be assigned to the label Ll. Therefore,
we consider the pixels of highest posterior probability values for the label Ll as
pre-labeled/seeds nodes of that label in the formulated graph.

An alternative formulation of the Random Walker-based image segmentation
method is presented in [16]. This method incorporates non-parametric probabil-
ity models, that is, prior belief on label assignments. In [16], the sparse linear
systems of equations that need to be solved to obtain a real-valued density-
based multilabel image segmentation are also presented. The two modalities of
this alternative formulation suggest for using only prior knowledge on the belief
of a graph node toward each of the potential labels, or using prior knowledge in
conjunction with pre-labeled/seed graph nodes. The γ scalar weight parameter
is introduced in these formulations, controlling the degree of effectiveness of the
prior belief values towards the belief information obtained by the random walks.
This extended formulation of using both seeds and prior beliefs on graph nodes
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is compatible with our approach considering the obtained posterior probabil-
ity distributions P (Ll | c, xi) for the two segmentation labels. The two Random
Walker formulations that use prior models, suggest for a graph construction sim-
ilar to the graph-cut algorithm [20], where the edge weights of the constructed
graph can be seen as the N-links or link-terms and the prior belief values of the
graph nodes for any of the potential labels can be considered as the T-links or
the data-terms, in graph cuts terminology.

Regardless of the exact formulation used, the primary output of the algorithm
consists of K probability maps, that is a soft image segmentation per label. By
assigning each pixel to the label for which the greatest probability is calculated,
a K-way segmentation is obtained. This process gives rise to object mask Mt for
image frame It.

3 Experimental Results and Implementation Issues

The proposed method was extensively tested on a variety of image sequences.
Due to space limitations, results on eight representative image sequences are
presented in this paper. The objects tracked in these sequences go through ex-
tensive appearance, shape and pose changes. Additionally, these sequences differ
with respect to the camera motion and to the lighting conditions during image
acquisition which affects the appearance of the tracked objects.

We compare the proposed joint tracking and segmentation method with the
tracking-only approach of [14]. The parameters of this algorithm were kept iden-
tical in the stand-alone run and in the run within the proposed framework. It
is important to note that stand-alone tracking based on [14] is initialized with
the appearance model extracted in the first frame of the sequence and that this
appearance model is not updated over time. This is done because in all the
challenging sequences we used as the basis of our evaluation, updating the ap-
pearance model based on the results of tracking, soon causes tracking drifts and
total loss of the tracked object.

Figure 3 illustrates representative tracking results (i.e., five frames for each
of the eight sequences). In the first sequence, a human hand undergoes complex
articulations, whereas the lighting conditions significantly affect its skin color
tone. In the second sequence, a human head is tracked despite its abrupt scale
changes and the lighting variations. In the third sequence the articulations of a
human hand are observed by a moving camera in the context of a continuously
varying cluttered background. The green book tracked in the fourth sequence
undergoes significant changes regarding its pose and shape, whereas light reflec-
tions on its glossy surface significantly affect its appearance. The fifth sequence
is an example of a low quality video captured by a moving camera, illustrating
the inherently deformable body of a caterpillar in motion. The sixth and seventh
sequences show a human head and hand, respectively, which both go through
extended pose variations in front of a complex background. Finally, the last, low
resolution sequence has been captured by a medical endoscope. In this sequence,
a target object is successfully tracked within a low-contrast background.



Object Tracking and Segmentation in a Closed Loop 413

Each of the image sequences in Fig.(3) illustrating human hands or faces as
well as the green book sequence consists of 400 frames of resolution 640 × 480
pixels, captured at a frame rate of 5-10 fps. The resolution of each frame of
the image sequences illustrated in the second and the fifth row is 320 × 240
pixels. The last image sequence depicted in the Fig.(3), captured by a medical
endoscope consists of 20 image frames of size 256 × 256 pixels each.

The reported experiments were generated based on a Matlab implementation,
running on a PC equipped with an Intel i7 CPU and 4 GB of RAM memory.
The runtime performance of the current implementation varies between 4 to 6
seconds per frame for 640 × 480 images. A near real-time runtime performance
is feasible by optimizing both the EM-like component of the tracking method
and the solution of the large sparse linear system of equations of the Random
Walker formulation in the segmentation procedure.

Each frame shown in Fig.(3) is annotated with the results of the proposed
algorithm and the results of the tracking method proposed in [14]. More specif-
ically, the blue solid ellipse shows the expected position and coarse orientation
of the tracked object as this results from the tracking part of the proposed
methodology. The green solid object contour is the main result of the proposed
algorithm which shows the fine object segmentation. Finally, the result of [14]
is shown for comparison as a red dotted ellipse. Experimental results on the full
video datasets are available online1.

In all sequences, the appearance models of the tracked objects have been built
based on the RGB color space. The object and background appearance models
used to compute the prior color cues are color histograms with 32 bins per
histogram for both the object and the background. Preserving the parameter
configuration of the object tracking algorithm as described in [14], the target
appearance model of the tracker is implemented by a color histogram of 8 bins
per dimension.

The Random Walker segmentation method involves three different formula-
tions to obtain the probabilities of each pixel to belong to each of the labels of
the segmentation problem, as described in Sec. 2.2. The three options refer to the
usage of seed pixels (pre-labeled graph nodes), prior values (probabilities/beliefs
on label assignments for some graph nodes), or a combination of them. For the
last option, the edge weights of the graph are computed by the Eq.(6), where
the β scalar parameter controls the scale of the edgeness (color contrast) be-
tween adjacent graph nodes. The pixel-wise posterior values are computed using
Bayesian inference as described in Sec. 2.2 and are exploited to guide segmenta-
tion as seed and prior values in terms of Random Walker terminology. Each pixel
xi of posterior value P (Ll | xi) greater or equal to 0.9 is considered as a seed
pixel for the label Ll, thus as a seed node on the graph G. Any other pixel of
posterior value P (Ll | xi) less than 0.9 is considered as a prior value for label Ll.
In the case of prior values, the γ parameter is introduced to adjust the degree of
authority of the prior beliefs towards the definite label-assignments expressed by

1 http://www.ics.forth.gr/~argyros/research/trackingsegmentation.htm

http://www.ics.forth.gr/~argyros/research/trackingsegmentation.htm
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Fig. 3. Experimental results and qualitative comparison between the proposed frame-

work providing tracking and segmentation results (blue solid ellipse and green solid

object contour, respectively) and the tracking algorithm of [14] (red dotted ellipse).

See text for details.
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Table 1. Quantitative assessment of segmentation accuracy. See text for details.

Segmentation option Precision Recall F-measure

Priors 93,5% 92,9% 93,1%

Seeds 97,5% 99,1% 98,3%

Priors and Seeds 97,5% 99,1% 98,3%

the seed nodes of the graph. In our experiments, the β parameter was selected
within the interval of [10− 50], whereas the γ ranges within [0.05 − 0.5].

In order to assess quantitatively the influence of the three different options
regarding the operation of the Random Walker on the quality of segmentation
results, the three different variants have been tested independently on an image
sequence consisting of 1, 000 video frames. For each and every of these frames
ground truth information is available in the form of a manually segmented fore-
ground object mask. Table 1 summarizes the average (per frame) precision, recall
and F-measure performance of the proposed algorithm compared to the ground
truth. As it can be verified, although all three options perform satisfactorily, the
use of seeds improves the segmentation performance.

4 Summary

In this paper we presented a method for online, joint tracking and segmenta-
tion of an non-rigid object in a monocular video, captured by a possibly moving
camera. The proposed approach aspires to relax several limiting assumptions
regarding the appearance and shape of the tracked object, the motion of the
camera and the lighting conditions. The key contribution of the proposed frame-
work is the efficient combination of an appearance-based tracking with Random
Walker-based segmentation that jointly enables enhanced tracking performance
and fine segmentation of the target object. A 2D affine transformation is com-
puted to propagate the segmented object shape of the previous frame to the new
frame exploiting the information provided by the ellipse region capturing the seg-
mented object and the ellipse region predicted by the tracker in the new frame.
A shape-band area is computed indicating an area of uncertainty where the
true object boundaries lie in the new frame. Static image cues including pixel-
wise color and spatial likelihoods are fused using Bayesian inference to guide
the Random Walker-based object segmentation in conjunction with the color-
contrast (edgeness) likelihoods between neighboring pixels. The performance of
the proposed method is demonstrated in a series of challenging videos and in
comparison with the results of the tracking method presented in [14].

Acknowledgments

This work was partially supported by the IST-FP7-IP-215821 project GRASP.
The contributions of FORTH-ICS members I. Oikonomidis and N. Kyriazis to
the development of the proposed method are gratefully acknowledged.



416 K.E. Papoutsakis and A.A. Argyros

References

1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput.

Surv. 38, 13 (2006)

2. Isard, M., Blake, A.: Condensation: Conditional density propagation for visual

tracking. International Journal of Computer Vision 29, 5–28 (1998)

3. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection

and tracking of moving objects. IEEE Transactions on PAMI 22, 266–280 (2000)

4. Yilmaz, A., Li, X., Shah, M.: Contour-based object tracking with occlusion han-

dling in video acquired using mobile cameras. IEEE Transactions on PAMI 26,

1531–1536 (2004)

5. Bibby, C., Reid, I.: Robust real-time visual tracking using pixel-wise posteriors. In:

Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303,

pp. 831–844. Springer, Heidelberg (2008)

6. Khan, S., Shah, M.: Object based segmentation of video using color, motion and

spatial information. In: IEEE Computer Society Conference on CVPR, vol. 2, p.

746 (2001)

7. Baltzakis, H., Argyros, A.A.: Propagation of pixel hypotheses for multiple objects

tracking. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Pa-

jarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming,

D. (eds.) ISVC 2009. LNCS, vol. 5876, pp. 140–149. Springer, Heidelberg (2009)

8. Yu, T., Zhang, C., Cohen, M., Rui, Y., Wu, Y.: Monocular video fore-

ground/background segmentation by tracking spatial-color gaussian mixture mod-

els. In: IEEE Workshop on Motion and Video Computing (2007)

9. Yin, Z., Collins, R.T.: Shape constrained figure-ground segmentation and tracking.

In: IEEE Computer Society Conference on CVPR, pp. 731–738 (2009)

10. Ren, X., Malik, J.: Tracking as repeated figure/ground segmentation. In: IEEE

Computer Society Conference on CVPR, pp. 1–8 (2007)

11. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans-

actions on PAMI 25, 564–577 (2003)

12. Tao, H., Sawhney, H., Kumar, R.: Object tracking with bayesian estimation of

dynamic layer representations. IEEE Transactions on PAMI 24, 75–89 (2002)

13. Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for

visual tracking. IEEE Transactions on PAMI 25, 1296–1311 (2003)

14. Zivkovic, Z., Krose, B.: An em-like algorithm for color-histogram-based object track-

ing. In: IEEE Computer Society Conference on CVPR, vol. 1, pp. 798–803 (2004)

15. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using

mean shift. In: IEEE Computer Society Conference on CVPR, vol. 2, p. 2142 (2000)

16. Grady, L.: Multilabel random walker image segmentation using prior models. In:

Proceedings of the 2005 IEEE Computer Society Conference on CVPR, vol. 1, pp.

763–770 (2005)

17. Grady, L.: Random walks for image segmentation. IEEE Transactions on PAMI 28,

1768–1783 (2006)

18. Grady, L., Funka-Lea, G.: Multi-label image segmentation for medical applications

based on graph-theoretic electrical potentials. In: Sonka, M., Kakadiaris, I.A., Ky-

bic, J. (eds.) CVAMIA/MMBIA 2004. LNCS, vol. 3117, pp. 230–245. Springer,

Heidelberg (2004)

19. von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17,

395–416 (2007)

20. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. In-

ternational Journal of Computer Vision 70, 109–131 (2006)



Optical Flow Estimation with Prior Models
Obtained from Phase Correlation

Alfonso Alba1, Edgar Arce-Santana1, and Mariano Rivera2

1 Facultad de Ciencias, Universidad Autónoma de San Luis Potośı,
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Abstract. Motion estimation is one of the most important tasks in com-

puter vision. One popular technique for computing dense motion fields

consists in defining a large enough set of candidate motion vectors, and

assigning one of such vectors to each pixel, so that a given cost function

is minimized. In this work we propose a novel method for finding a small

set of adequate candidates, making the minimization process computa-

tionally more efficient. Based on this method, we present algorithms for

the estimation of dense optical flow using two minimization approaches:

one based on a classic block-matching procedure, and another one based

on entropy-controlled quadratic Markov measure fields which allow one

to obtain smooth motion fields. Finally, we present the results obtained

from the application of these algorithms to examples taken from the

Middlebury database.

1 Introduction

Optical flow is the apparent velocity of a moving object in a two-dimensional
image. This does not always correspond to the true velocity of the object in
the 3D scene; for example, when an object approaches the viewer along the
camera axis, its 3D velocity vector is parallel to this axis, but the optical flow
field will correspond to a radial pattern where each pixel seems to be moving
from the center outwards. Nevertheless, optical flow has numerous applications
in computer and robot vision, autonomous vehicle navigation, video encoding,
and video stabilization, among others. Formally, each point in the 3D moving
scene is projected to a point x(t) = (x(t), y(t)) in the 2D image plane, where
t denotes time. Therefore, one can define the optical flow v(x, t) as v(x, t) =
dx/dt. Discretization of t leads to the alternative definition v(x, t) = x(t) −
x(t − 1).

Numerous methods have been proposed in the literature for the estimation
of optical flow; some of these are based on gradient estimation [1], global en-
ergy minimization [2], and block matching [3]. For a comprehensive overview
and comparison of the most relevant methods, please refer to [4] and [5]. The

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 417–426, 2010.
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Middlebury College also hosts an evaluation website where newly proposed al-
gorithms can be evaluated using standard datasets [6]. In general, most methods
can be classified either as local or global. Local methods try to solve the problem
individually for each pixel, considering only the pixel in question and its neigh-
borhood. In contrast, global methods typically propose a global error function of
the form U(v) = M(v) + R(v), where M(v) is a matching term that penalizes
differences between f(x) and g(x+v(x)) (also called the optical flow constraint),
and R(v) is a regularization term which enforces smoothness of the flow field
by penalizing abrupt changes in v(x), particularly in those areas where v(x)
is assumed to be homogeneous (e.g., areas which belong to the same object).
Minimization of U(v) is usually a non-trivial task which is commonly achieved
by iterative techniques, such as gradient descent, Gauss-Seidel, or Markov Chain
Monte Carlo (MCMC) methods, which are computationally intensive.

Most of the proposed methods, especially those which produce dense results
(i.e., one motion vector per pixel), suffer from a high computational cost, which
seriously limit their application to realtime systems. At the moment of writing,
the top-ranking method in the Middlebury database requires 16 minutes to com-
pute the flow field of the Urban scene [7], and only one of the reported algorithms
is capable of near-realtime performance (8 fps), but it requires specialized GPU
hardware [8]. Moreover, since optical flow is typically computed between two
consecutive frames of a video sequence, processing at high frame rates is desir-
able because it increases the reliability in the detection of fast-moving objects
and non-translational movements.

One popular approach for the realtime estimation of optical flow, consists in
defining a large enough set of candidate motion vectors, and then applying some
combinatorial optimization scheme for choosing the most adequate candidate for
each pixel, so that a given cost function is minimized. For example, in a block
matching approach, typical penalty functions are the sum of absolute differences
(SAD), sum of squared differences (SSD), and cross-correlation. Other popular
optimization methods used include: Bayesian estimation, graph cuts, and belief
propagation. Under this approach, the choice of the initial candidate vector set
plays an important role: if the set is too small, the algorithm may be unable to
recover long displacements and the results will lack precision due to the limited
number of choices; if, on the other hand, the candidate set is too large, the al-
gorithm will be computationally more expensive and the penalty function may
be more sensitive to occlusions and homogeneous regions (the aperture prob-
lem) due to the presence of spurious candidates. A common solution consists
in quantizing the search space using a equally-spaced grid of vectors with in-
teger coordinates and a maximum displacement of D along each direction; for
example, motion-based video encoding typically uses D between 7 and 15. This
solution, however, is far from optimal, since the number of candidate vectors
increases quadratically with respect to D; for instance, with D = 7, the opti-
mization algorithm would have to choose among 225 candidates per block or
pixel, and it would still be unable to recover larger displacements.
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This work introduces a novel method to adequately choose a small set of
integer-valued candidate vectors which approximately coincide with the true
displacements between two images, drastically reducing the computation time
during the cost optimization process, while allowing large displacement ranges to
be used. The proposed method, which is based on the computation of multiple
maxima in the phase correlation function of the two images, is introduced in
Section 2.1. In sections 2.2 and 2.3, full algorithms are presented using different
combinatorial optimization methods which achieve varying results in terms of
quality and computational cost. Section 3 presents results obtained from the
application of these algorithms to scenes from the Middlebury database. Finally,
some conclusions are drawn in Section 4.

2 Methodology

The phase-only correlation (POC) function r(k) between two functions f(x)
and g(x) is defined as the inverse Fourier transform of their normalized cross-
spectrum; that is,

r(x) = F−1

{
F (k)G∗(k)
|F (k)G∗(k)|

}
, (1)

where F−1 denotes the inverse Fourier transform, F and G are the Fourier
transforms of f and g, respectively, and G∗ denotes the complex conjugate of
G. It can be easily shown that if g(x) = f(x − d), then r(x) = δ(x + d), where
δ is the Dirac impulse function; this means that one can easily estimate the
displacement between f and g as d̂ = argmax{r(x)}. In practice, the POC
function is rarely an impulse due to the presence of noise, occlusions, border
effects, and periodic textures which introduce spurious correlations; however, it
is still robust enough for a variety of applications. For instance, this method
has been successfully used for rigid image registration [9] [10] [11] [12], motion
estimation [13], and stereo disparity estimation [14] [15]. Various interpolation
schemes have also been devised to achieve subpixel accuracy [16] [17].

While most authors use the POC function to estimate a single motion vector
for each pixel, here we propose using POC to obtain a small candidate set for
all pixels in a large region of the image. This method is based on the hypothesis
that the most significant maxima of the phase-only correlation function between
two images in a video sequence are related to the displacement vectors of the
objects in the scene.

2.1 Estimation of Prior Models Using Phase Correlation

Let f(x) and g(x) be two consecutive images in a sequence and L = {0, . . . , Nx−
1}×{0, . . . , Ny−1} be a finite rectangular lattice of size Nx×Ny where the images
are observed. We first divide L into smaller overlapping sub-lattices L1, . . . , LQ

so that any two corresponding points between both images belong to at least one
of the sub-lattices. For example, if the largest expected displacement magnitude
is D, it makes sense that the size of the sub-lattices must be at least (2D + 1)×
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(2D+1). In particular, we use equally-sized sub-lattices of size W ×H , where W
and H are powers of 2, so that efficient FFT algorithms can be used to estimate
the POC function; the separation between sub-lattices is approximately W/2 in
the horizontal direction, and H/2 in the vertical direction; this overlap ensures
that a given pixel in one image and its correspondent in the other image will
always belong to at least one, but no more than four sub-lattices.

We then compute the POC function rq(x) between both images at each sub-
lattice Lq. Specifically, we obtain sub-images fq(x) = f(x − xq) and gq(x) =
g(x − xq) for x ∈ {0, . . . , W − 1} × {0, . . . , H − 1}, where xq is the upper-left
corner of Lq, and compute rq as

rq(x) = F−1

{
Fq(k)G∗

q(k)
|Fq(k)G∗

q(k)|
}

, (2)

where Fq and Gq are the Fourier transforms of fq and gq, respectively.
The next step is to obtain a set of motion vector candidates from rq , against

which all pixels in Lq will be tested. We do this simply by choosing the M most
significant positive maxima from rq. Although other selection schemes can be
used, we found this simple method to perform best. One must keep in mind
that rq(x) may be a circularly shifted version of the true POC function, so that
peaks observed in the right half of the image correspond to candidate vectors
in the second and third quadrants (negative x), and peaks in the bottom half
correspond to candidates in the third and fourth quadrants (negative y).

With this methodology, one can obtain a candidate set Dq = {v1, . . . ,vM}
for each sub-lattice Lq, or alternatively, a candidate set Dx =

⋃
q:x∈Lq

Dq, for
each pixel x, whose cardinality will be between M and 4M . One can also obtain
the full candidate set as D =

⋃
q Dq.

2.2 Optical Flow Estimation Using Block-Matching

Once the candidate set is known, one must find, for each pixel x the best motion
vector v̂(x) ∈ |Dx|, according to some matching criteria. This can be done by
minimizing a penalty function ρ which measures the differences between pixel
values at x in f , and pixel values at x + v in g. This minimization can thus be
expressed in the following way:

v̂(x) = arg min
d∈Dx

{ρ(f(x) − g(x + d))} . (3)

Unfortunately, the approach described above does not introduce any regulariza-
tion constraints, resulting in very noisy estimations. A better approach consists
in minimizing the total penalty in a given neighborhood around pixel x. For
example, using a square-shaped window W = {−w, . . . , w} × {−w, . . . , w} as
neighborhood results in the following minimization problem:

v̂(x) = arg min
d∈Dx

{∑
r∈W

ρ(f(x − r) − g(x + d − r))

}
, (4)
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for all x ∈ L. The matching window size w directly affects the granularity of
the results. Small windows produce noisy displacement fields, mainly due to
ambiguities in homogeneous regions, whereas large windows will blur object’s
borders and are more sensitive to projective distortions between the images (e.g.,
non-translational movements). Some authors suggest using multiple or adaptable
windows. Note that, regardless of the window size, the sum between the brackets
can be computed very efficiently using integral images [18] or aggregate cost
techniques.

Typical choices for the penalty function ρ are the L1 norm, ρ(x) = |x|, the
L2 norm, ρ(x) = |x|2, and the total-variation approximated function ρ(x) =√

x2 + ε2 [19], which is a differentiable version of the more robust L1 norm.
However, since our combinatorial approach does not require the penalty function
to be differentiable, we have chosen a slightly more robust function based on a
truncated L1 norm, given by

ρ(x) = min{|x|, κR}, (5)

where R is the dynamic range of the image and κ is a parameter between 0 and 1.

2.3 Smooth Optical Flow Estimation Using EC-QMMFs

The block-matching approach described above assigns one of the motion vector
candidates to each pixel, which results in a piecewise constant flow field. Since
there are only a few candidates, this is equivalent to performing a hard segmen-
tation of the reference image with respect to the motion of each object. Although
this approach is computationally very efficient (see results below), there are var-
ious drawbacks: first, it does not provide a natural mechanism for adding more
complex constraints, such as edge preserving smoothness, which are key to ob-
tain competitive results in terms of precision. Second, the POC function can
only capture integer displacements; it is possible, however, to apply interpola-
tion methods to obtain or refine candidates with sub-pixel accuracy, but this
does not prevent a block-matching scheme from producing over-quantized re-
sults. Finally, there are applications where one would like a soft-segmentation
instead of a hard one; that is, instead of answering the question what motion
vector corresponds to pixel x?, we would like to answer the question what is the
probability of motion vector v being the best for pixel x? in order to make more
informed decisions.

With this in mind, we propose a different estimator for the motion vector v(x)
assigned to each pixel, given by a linear combination of all candidate vectors:

v(x) =
∑
d∈D

bd(x)d. (6)

where bd(x) is the weight of candidate d at pixel x, and
∑

d∈D bd(x) = 1 for
all x. Computing these weights is a very ill-posed problem, so one must impose
certain constraints to obtain an unique solution. For instance, one would like
the weight field bd to be spatially piecewise smooth, so that similar weights are
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observed across regions which belong to the same object. Smoothness constraints
can be easily handled if we assume that b follows a Markovian model; e.g., the
weights b(x) for a given pixel x depend (probabilistically) on the weights of those
pixels in a neighborhood of x.

On the other hand, note that b(x) can be seen as a probability distribution
(i.e., a probability measure) over the candidate vectors for each pixel x. If, for
some pixel x, the distribution b(x) is nearly uniform (i.e., highly entropic), then
the estimator in Eq. 6 will approach zero as the number of candidate vectors
increase. This is because given a sufficiently large candidate set, each candidate
will more likely be in the opposite direction to some other. For this reason, one
would like the measures b(x) to have low entropy.

One efficient model which allows one to control the degree of smoothness of a
field of probability measures, while maintaining control over their entropy, is the
Entropy-Controlled Quadratic Markov Measure Field model (EC-QMMF) [20].
The model is described by the energy function U(b) of the field b, given by

U(b) = −
∑
x∈L

∑
d∈D

b2
d(x)

[
− log b̂(x) − μ

]
+ λ

∑
<x,y>

β<x,y> ‖b(x) − b(y)‖2
, (7)

subject to

bd(x) ≥ 0, d ∈ D, x ∈ L, (8)∑
d∈D

bd(x) = 1, x ∈ L, . (9)

Here, b̂ is the normalized likelihood measure, given by

b̂d(x) = exp{−ρ(f(x) − g(x + d))/(κR)}/Z(x), (10)

where Z(x) is a positive normalization constant chosen so that
∑

d b̂d(x) = 1, μ
is a hyperparameter which controls the entropy of the b(x), λ is regularization
parameter that controls the degree of smoothing. The sum in the second term
of Eq. 7 (the regularization term) ranges over all nearest-neighbors < x,y >.
Finally, the coefficients β<x,y> are used to reduce oversmoothing at the objects’
edges by locally modulating the regularization parameter λ: for a given ε < 1,
we set β<x,y> = ε if there exists an edge in I1 between pixels x and y; otherwise,
we let β<x,y> = (1 − ε).

An important property of the EC-QMMF energy function (Eq. 7) is that it
is quadratic on its unknowns; therefore, it can be minimized very efficiently by
solving a linear system with constraints. Constraint (9) may be handled using the
method of Lagrange multipliers, so that the system remains linear. Constraint
(8) is handled simply by setting any negative bd(x) to zero and renormalizing
b(x) after each Gauss-Seidel iteration (see [20] for details). Note that, one can
set bd(x) = 0 for all d /∈ Dx, and only update bd(x) for d ∈ Dx during the
Gauss-Seidel iterations, making the minimization process more efficient.
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3 Preliminary Results

We have implemented the algorithms described above in C using the OpenCV
library [21] to perform some of the computations. Our aim is not to compete
with state of the art methods in terms of quality or accuracy, but to show how
the computation of multiple POC peaks may provide a way to derive efficient
optical flow algorithms capable of obtaining usable results for realtime or near-
realtime applications. Since the well-known Middlebury evaluation system [6]
focuses on accuracy, and does not provide information about the test platform
of each of the reported methods (which may vary from slow Matlab code to fast
GPU or FPGA implementations), we decided not to include our Middlebury
results in this work, and performed instead a quantitative comparison between
our method and the OpenCV implementations of the classic Lucas-Kanade (LK)
[1] and Horn-Schunck (HS) [2] methods. While these are not state-of-the-art
methods, they are relatively efficient and provide a good comparison baseline
under the same test platform. All tests have been performed in an Intel Core2Duo
workstation running at 2.4 Ghz with 2 Gb of RAM; however, the code has not
been thoroughly optimized to take advantage of parallel processing (e.g., by
means of SSE2 instructions and multi-threading). In the case of the EC-QMMF
method, we were not aiming for realtime performance; therefore, we applied an
additional median filter to the magnitude and angle of the resulting flow field.

The parameters used for the estimation of the candidate set (Section 2.1) are:
sublattice size W = H = 128, number of candidates per sublattice M = 6, and
maximum displacement magnitude D = 32. For the block matching approach we
use a matching window of size w = 7. The penalty function used is the truncated
L1 norm (5) with κ = 0.2. For the EC-QMMF approach, we use ε = 0 (no regu-
larization at the edges), λ = 3 and μ = 1, and perform 20 and 100 iterations of
the Gauss-Seidel method. For the OpenCV algorithms, we have used a 15 × 15
window for the LK method, and λ = 0.001 for HS, with 1000 iterations.

Our results are summarized in Table 1, where the following methods are com-
pared: Lucas-Kanade in OpenCV (LK), Horn-Schunck in OpenCV (HS), Block
Matching with prior models (P1), and EC-QMMF with prior models and 20
Gauss-Seidel iterations (P2) or 100 iterations (P3). For each test scene from the
Middlebury database [6], we compute the average end-point error (in pixels),
the average angular error (in degrees), and the computation time (in seconds).
Figure 1 shows the resulting flow fields obtained with the proposed approaches.
Note that the Block Matching approach with prior POC models (Algorithm P1)
provides a similar computational performance than OpenCV’s LK implementa-
tion, but with a much improved accuracy. It is worth noting that, at the time
of publication, the computation times reported in the Middlebury database for
the Urban sequence (from the evaluation set) typically range from a few sec-
onds to several minutes, with only two methods reporting times of less than one
second (0.12 and 0.97 s); however, these two methods are based on GPU imple-
mentations. On the other hand, our block-matching based method can process
the Urban scene in 0.275 s, and is capable of processing 320 × 240 sequences at
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Table 1. Comparative results using the Middlebury test set as benchmark. Methods

tested are Lucas-Kanade (LK), Horn-Schunck (HS), and the proposed algorithms using

prior models obtained from the POC function: Block Matching (P1), EC-QMMF with

20 iterations (P2), and EC-QMMF with 100 iterations (P3).

End-point error (pixels)

Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus

LK 1.443 2.872 3.543 3.166 0.497 8.424 7.471 3.620

HS 1.521 2.815 3.444 3.111 0.469 7.922 6.899 3.369

P1 0.452 0.543 1.027 0.632 0.412 1.765 2.086 0.565

P2 0.449 0.530 0.998 0.658 0.373 1.673 2.042 0.477

P3 0.434 0.516 1.007 0.679 0.359 1.607 1.963 0.443

Angular error (degrees)

Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus

LK 34.97 61.16 51.02 50.69 14.54 54.68 61.85 56.70

HS 37.08 60.77 49.61 46.61 13.97 49.24 60.80 52.20

P1 9.60 7.09 10.83 7.14 11.79 13.15 17.29 7.24

P2 9.55 6.78 10.87 7.66 10.15 13.10 16.82 5.03

P3 9.27 6.62 10.95 7.67 9.89 12.48 16.32 4.44

Processing time (seconds)

Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus

LK 0.118 0.160 0.158 0.120 0.117 0.158 0.158 0.090

HS 2.465 4.377 5.559 3.201 3.366 5.497 6.829 3.398

P1 0.107 0.162 0.139 0.104 0.103 0.144 0.141 0.053

P2 2.200 2.751 3.680 3.421 2.075 4.922 4.727 1.218

P3 6.857 7.991 10.255 9.645 6.658 14.523 14.434 4.080

Fig. 1. Results obtained with Block Matching and EC-QMMF (100 iterations) using

prior models obtained from phase correlation
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25 fps in a typical PC without careful optimization. The EC-QMMF approach
demands considerably more computational resources, however, it is still fairly
efficient and also incorporates additional control over the smoothness and edge
definition of the resulting fields, providing a viable platform for the development
of efficient high quality motion estimation methods.

4 Conclusions

In this work, a technique for the estimation of prior models (motion vector
candidates) for combinatorial optical flow estimation algorithms is presented.
These models are obtained from the maxima of the phase-only correlation in
a relatively large area of the image. Our hypothesis that the estimated models
correspond to the true displacements is verified experimentally with satisfactory
results. The main advantage of the proposed method is that it may provide a
very reduced set of candidates (either for each pixel, region, or for the full image),
making the optimization process significatively more efficient in computational
terms. Although our preliminary tests were performed in a typical dual core PC,
implementation on parallel architectures such as FPGAs or GPUs is expected
to run at high frame rates.

Acknowledgements. This work was supported by grant PROMEP/UASLP/-
10/CA06. A. Alba was partially supported by grant PROMEP/103.5/09/573.

References

1. Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Appli-

cation to Stereo Vision. In: Proc. of Imaging Understanding Workshop, pp. 121–130

(1981)

2. Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. Artificial Intelligence 17,

185–203 (1981)

3. Essannouni, F., Haj Thami, R.O., Salam, A., Aboutajdine, D.: An efficient fast

full search block matching algorithm using FFT algorithms. International Journal

of Computer Science and Network Security 6, 130–133 (2006)

4. Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. In-

ternational Journal of Computer Vision 12, 43–77 (1994)

5. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database

and evaluation methodology for optical flow. Technical Report MSR-TR-2009-179,

Microsoft Research (2009)

6. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M., Szeliski, R.: Middlebury

stereo vision page (2007), http://vision.middlebury.edu/flow/

7. Sun, D., Roth, S., Black, M.J.: Secrets of Optical Flow Estimation and Their

Principles. In: Proc. IEEE CVPR 2010. IEEE, Los Alamitos (2010)

8. Rannacher, J.: Realtime 3D motion estimation on graphics hardware. Bachelor

thesis, Heidelberg University (2009)

9. De Castro, E., Morandi, C.: Registration of Translated and Rotated Images Using

Finite Fourier Transforms. IEEE Transactions on Pattern Analysis and Machine

Intelligence 9, 700–703 (1987)

http://vision.middlebury.edu/flow/


426 A. Alba, E. Arce-Santana, and M. Rivera

10. Reddy, B.S., Chatterji, B.N.: An FFT-Based Technique for Translation, Rotation,

and Scale-Invariant Image Registration. IEEE Transactions on Image Processing 5,

1266–1271 (1996)

11. Keller, Y., Averbuch, A., Moshe, I.: Pseudopolar-based estimation of large transla-

tions, rotations, and scalings in images. IEEE Transactions on Image Processing 14,

12–22 (2005)

12. Keller, Y., Shkolnisky, Y., Averbuch, A.: The angular difference function and its

application to image registration. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 27, 969–976 (2005)

13. Chien, L.H., Aoki, T.: Robust Motion Estimation for Video Sequences Based on

Phase-Only Correlation. In: 6th IASTED International Conference on Signal and

Image Processing, pp. 441–446 (2004)

14. Takita, K., Muquit, M.A., Aoki, T., Higuchi, T.: A Sub-Pixel Correspondence

Search Technique for Computer Vision Applications. IECIE Trans. Fundamen-

tals E87-A, 1913–1923 (2004)

15. Muquit, M.A., Shibahara, T., Aoki, T.: A High-Accuracy Passive 3D Measure-

ment System Using Phase-Based Image Matching. IEICE Trans. Fundam. Elec-

tron. Commun. Comput. Sci. E89-A, 686–697 (2006)

16. Foroosh, H., Zerubia, J.B., Berthod, M.: Extension of phase correlation to subpixel

registration. IEEE Transactions on Image Processing 11, 188–200 (2002)

17. Shimizu, M., Okutomi, M.: Sub-pixel estimation error cancellation on area-based

matching. International Journal of Computer Vision 63, 207–224 (2005)

18. Viola, P., Jones, M.: Robust Real-time Object Detection. International Journal of

Computer Vision 57, 137–154 (2002)
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Conservative Motion Estimation from Multi-image 
Sequences 

Wei Chen 
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Abstract. Motion estimation in image sequences is a fundamental problem for 
digital video coding. In this paper, we present a new approach for conservative 
motion estimation from multi-image sequences. We deal with a system in 
which most of the motions in the scene are conservative or near-conservative in 
a certain temporal interval with multi-image sequences. Then a single conserva-
tive velocity field in this temporal range can across several successive frames. 
This system can be proved to be fully constrained or over-constrained when the 
number of frames is greater than two. A framework with displaced frame dif-
ference (DFD) equations, spatial velocity modeling, a nonlinear least-squares 
model, and Gauss-Newton and Levenberg-Marguardt algorithms for solving the 
nonlinear system is developed. The proposed algorithm is evaluated experimen-
tally with two standard test image sequences. All successive frames except the 
last one (used for reference frame) in this conservative system can be synthe-
sized by the motion-compensated prediction and interpolation based on the  
estimated motion field. This framework can estimate large scale motion field 
that across more than two successive frames if most of the motions in the scene 
in the temporal interval are conservative or near-conservative and has better 
performance than the block matching algorithm. 

1   Introduction 

Motion estimation in image sequences is a fundamental problem for digital video 
coding. Many methods for motion estimation have been proposed based on the con-
servative constraint of the optical flow intensity accompanied by some smoothness 
constraints or additional assumptions [1] – [14]. Almost all digital video algorithms 
employ motion estimation for reduction of the temporal redundancy in the video sig-
nal and increasing the compression efficiency. 

Most of these works impose spatial smoothness of the velocity field on the system 
with alternative form of the optical flow conservative constraint equations, cost func-
tions, and optimization strategies [1] – [14]. Recently, several new frameworks have 
been presented for the motion estimation in term of conservative constraint of optical 
flow intensity [15]-[18]. An innovative approach to motion determination based on a 
conservative mechanical model is proposed by Chen [17]. The motion fields are rec-
ognized as the velocity field and displacement field, and the displacement field is 
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proved to be equivalent to a conservative velocity field. Furthermore, the inverse 
problem for determining the conservative velocity in an image sequence has been 
proved to be fully constrained without any additional smoothness constraint. One of 
the numerical approaches to conservative velocity estimation proposed is based on 
theories and equations suggested by Chen [17]. 

In this paper, we consider the case in which the motion estimation is based only on 
multi-image sequences (more than two successive frames) for the application of video 
coding. To obtain higher compression ratio, the motion field estimation should across 
as much multiple temporal frames as possible so that all previous or latter frames can 
be reconstructed by the motion-compensated prediction and interpolation given start 
or final frame. In this case, all intermediate frames between the start and final frames 
are dropped for the removal of temporal redundancy. However, the dropped frame 
information in a short temporal range may be useful for the motion estimation. It is 
clear that the system for the purpose of the digital video compression can provide a 
condition with more than two successive frames to form a fully constrained system. 
We can find more than one displaced frame difference (DFD) equations on a fixed 
pixel point from more than two successive frames if the motion of all moving objects 
in the scene is conservative or near-conservative. Then these DFD equations contain a 
unique conservative velocity field that crosses all these frames in this conservative 
system.  

This new approach for motion estimation with data of multi-image sequences is 
developed based on a framework proposed in the author’s previous work [15], [16] 
with a new nonlinear inverse model. 

This paper is organized as follows: In section 2, a set of system equations are de-
rived. In Section 3, we apply the new technique to two test video image sequences 
used in computer vision. Finally, conclusions are drawn in last section. 

2   Optical Flow Estimation 

Efficient frameworks for the motion estimation based only on two successive image 
frames have been proposed in the author’s previous works [15]-[18]. In this paper, we 
are concerned with the estimation of the projected displacement or conservative ve-
locity field for a conservative system from more than two successive frames if most 
of motion in the scene is conservative or near-conservative. 

2.1   The DFD Equations  

Assuming I(x, y, t) is the image intensity at a position coordinate (x, y) at time t, the 
temporal integral form of the optical flow conservative constraint can be expressed by 
the DFD equations for two or more image sequences [1]. The DFD equations are 
defined by 

)1(0)(),)(,)(( 111 MstItvttjuttiIDFD ijsijsijsijs ≤<∀=−−+−+= .         (1) 

where Iij(t) = I(i, j, t), uij = uij(t1) = u(i, j, t1) and vij = vij(t1) = v(i, j, t1) are optical flow 
intensity, two components of conservative velocities on pixel points at time t = t1,  
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s ∈ [2, …, M], and M is the number of successive frames. The number of two compo-
nent velocity uij and vij at a fixed pixel point is equal to two. Since the number of the 
DFD equations (1) for all s ∈ [2, …, M] is equal to M – 1, the system is fully con-
strained or over-constrained if M > 2 for the conservative velocity field. 

The DFD system equations on all pixels indicate that the system is nonlinear. Since 
there exist many local minimum solutions under lower degrees of the over-constraint 
[19], a spatial velocity field modeling is necessary. 

 

Fig. 1. Spatial interpolation points marked by blue dots and nodes marked by yellow and red 
with {p, q} and {k, l} indices in an image scene, respectively 

2.2   Velocity Field Modeling 

A set of the DFD equations in (1) provides sufficient number of equations to solve the 
conservative velocity field if M > 2. This is a nonlinear system problem and can be 
solved by a successful framework proposed by Chen [18]. 

Any two-dimensional function can be expressed by a Lagrange’s bilinear polynomial 
[15] 
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and nx and ny are the number of interpolation points on x and y directions, and quan-
tized indices on nodes are functions of x and y are given by 
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where ⎣ ⎦  denotes an integer operator [15]. 
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The two component velocity field on pixel points with horizontal and vertical co-
ordinates x and y in an image can be expressed by the following bilinear polynomial 
functions with first order continuity that holds for all Nx × Ny image globally 
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All velocity off nodes (blue color points shown in Fig. 1) can be calculated by equa-
tion (3) using the velocity on node points expressed as upq and vpq.  

We define a parameter n which controls the degree of the over-constrained system 
by 

)2(1 >≥== Mnnn yx
. 

All velocity vectors vij in (3) are no longer independent variables for n > 1 except on 
node points and all independent velocities on nodes are connected with each other in 
whole image scene by equation (3).  

We can control the number of interpolation points related to the resolution of the 
displacement field and the degree of the over-constrained by adjusting the parameter 
n ≥ 1 to When the parameter n is equal to one, all node points and pixel positions are 
overlapped together and the system becomes a fully constrained (M = 3) or over-
constrained system (M > 3). The degree of the over-determined DFD equations for the 
nonlinear least-squares can be controlled by the adjustable parameters nx, ny, and M. 

A nonlinear least-squares model described in the next section is used to solve  
the over-constraint system with velocity field upq and vpq on nodes as optimized  
parameters. 

2.3   Global Optimization 

A cost function that is a sum of the total errors of the DFD in (1) based on least-
squares principle is given by 
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where i and j go over all pixels in Nx × Ny image (i ∈ [0, Nx] and j ∈ [0, Ny]) and M > 
2. Minimizing the cost function in (4) for given indices k and l for all node points in 
an image, we find the following independent system equations 
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To solve the nonlinear least-squares problem, we employ Gauss-Newton iteration 
methods with Levenberg-Marguardt algorithm. This Levenberg-Marguardt method 
can improve converge properties greatly in practice and has become the standard of 
nonlinear least-squares routines.  
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Fig. 2. An example of the motion vector positional distribution on a Claire image (352 × 288) 
by the block-based model and the proposed framework with 16 × 16 block size (n = 16) 

Furthermore, employing a principle similar to that of the Gauss-Seidel iteration al-
gorithm, we make use of updated values of ukl and vkl as soon as they become avail-
able during the iteration processing. Since there exist many local minimum solutions 
under lower degrees of the over-constrained [17], an algorithm of progressve 
relaxation of pyramid constraint that adapts a variable resolution of the velocity 
structure during the iterations is employed in this algorithm [18].  

Fig. 2 shows an example of the motion vector positional distributions on an image 
by the block matching algorithm (vectors on blocks) [1], [2], [6], [7] that has been 
utilized in video coding and the proposed framework (vectors on nodes located on the 
corner (node) of the blocks) with 16 × 16 block size (n = nx = ny = 16). The block 
matching algorithm estimates a single motion vector for each block and assumes that 
this vector is uniform within the block. The vector field by the block-based model is 
not continuous. However, the velocities on nodes estimated by the current framework 
are continuous and globally optimized, and all velocity vectors on pixel points can be 
changed and calculated by the modeled field function (3). If the block size is n × n 
with dimension Nx × Ny images, then the number of transmitted or stored motion vec-
tors for both proposed and block matching estimators are equal to (Nx / n + 1) × (Ny / 
n + 1) and (Nx / n) × (Ny / n), respectively. Using almost the same number of the ve-
locity vectors in a fixed block size for both approaches, the current framework (the 
velocity field with C1 continuity obtained by global optimal strategies) can provide 
much higher accuracy performance than the block-based model (the velocity field 
with C0 continuity obtained by local searching strategies). 

2.4   Motion-Compensated Processing 

Motion-compensated prediction (MCP) and interpolation (MCI) are a fundamental 
component of most proposed or adopted standards in digital video coding. A new 
approach for the motion-compensated processing has been proposed in the author’s 
previous work [19]. There are three major factors that can determine the quality of 
interpolated images: the accuracy of motion estimation, dynamic motion modeling, 
and the use of appropriate MCI equations. Motion estimation from image sequences  
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provides an initial velocity field which describes spatial variations of the motion in 
the scene. The dynamic motion model can determine the motion field evolution ver-
sus time in a temporal interval based on the initial velocity field. Finally, the motions 
in the scene observed by the optical flow intensity have to be described by an appro-
priate equation which is employed for synthesizing the MCI images [19]. 

In this paper, all computations of the MCP and MCI are based on the framework 
proposed in the author’s previous work [19]. 

3   Experiments 

In this section, we demonstrate experimental results to evaluate the performance of 
the estimator using the algorithms proposed in this paper. We apply the proposed 
estimator to two standard video sequences Taxi and Claire. The Peak Signal-to-Noise 
Ratio (PSNR) of the resulting DFD in (1) between original frame and predicted frame 
is used to evaluate how good the motion estimations for the video image sequences 
are. All estimated conservative velocity fields in this paper are based on raw data 
image sequences without any filter processes. 

Methods of the motion estimation have been proposed with a wide range of com-
putational complexities depending on the applications [1]-[14]. We are concerned 
with the applications for reduction of the temporal redundancy in the video signal and 
increasing the compression efficiency in this paper. For convenience, we compare the 
proposed estimator to the block matching estimator because both estimators utilize 
almost the same number of motion vectors for motion field estimation. 

A Claire image sequence (196 × 196) with frames from 25 to 27 on left of the first 
row is shown in Fig. 3. The motion fields are estimated with 2 × 2 and 4 × 4 block 
sizes (n = 2 and 4) by the proposed method and block matching algorithm (using 
frame 25 and 27) from the image sequences. The synthesized MCP25 image with the 
PSNR = 45.0 dB and 43.8 dB by comparison with the original frame 25 is shown in 
Fig. 3, respectively. All interpolated images MCI25+1/2, MCI26, and MCI26+1/2 as shown 
in Fig. 3 are interpolated by suggested framework [19].  

The last test case uses the Taxi image sequences as shown in Fig. 4. The velocity 
fields are estimated from the six successive frames form 1 to 6 with different block 
sizes (4 × 4 and 8 × 8) by current estimator (with all frames) and block matching 
algorithm (with frame 1 and 6). The synthesized MCP1 image with the PSNR = 39.2 
dB and 37.0 dB by comparison with the original frame 1 is shown in Fig. 4, respec-
tively. All interpolated images from MCI2 to MCI5 as shown in Fig. 4 are recon-
structed by suggested framework [21]. 

The MCP images showed in Fig. 3 and 4 demonstrate that MCP images always 
have higher accuracy PSNR than the interpolated MCI intermediate images between 
start frame and final frame for a smaller block size. Because of the quantization errors 
and the motions in the scene are not exactly conservative, the MCI images have a 
little lower PSNR values than the MCP1 image. These alignment errors of the moving 
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Fig. 3. A Claire image sequence with frame from 25 to 27 (196 × 196), the motion fields are 
estimated by current method and block matching algorithm with different block sizes (2 × 2 and 
4 × 4) as the motion estimation parameters, MCP and MCI motion pictures synthesized by the 
proposed framework [19], and inter-frame difference images of MCI25+1/2 – MCP25 and 
MCI26+1/2 – MCI26  

objects in the scene between the original and synthesized images caused by speed and 
path differences can be visually missed. Humans are sensitive only to the distortions 
of the moving objects, artifacts, and dirty window effects in the motion pictures, but 
are less sensitive to the alignment errors of the moving objects in the scene caused by 
acceleration (or deceleration) or path in a very short temporal interval. 

Both synthesized images using motion fields estimated by proposed framework 
and block matching algorithm indicate that the first motion field is more accurate than 
the second one. Dirty window effects and observable distortions of the moving ob-
jects can be found in all MCI images synthesized by block matching algorithm as 
shown in figures 3 and 4. However, clear motion pictures have been synthesized with 
motion fields estimated by current work. 
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Fig. 4. Taxi image sequences (256 × 191 × 6). Motion fields are estimated by the proposed 
method and block matching algorithm with different block sizes (4 × 4 and 8 × 8) as the motion 
estimation parameters. Synthesized motion pictures are synthesized by the proposed framework 
[19]. 

4   Conclusion 

Estimation of motion in image sequences is a fundamental problem for digital video 
coding. In this paper, we present a new approach for conservative motion estimation 
from multi-image sequences.  

We deal with a system in which most of the motions in the scene are conservative 
or near-conservative in a certain temporal interval with multi-image sequences. Then 
a single conservative velocity field in this temporal range can across several succes-
sive frames. The number of unknown two component velocity uij and vij at a fixed 
pixel point is equal to two. Since the number of the DFD equations (1) is equal to M – 
1, the system is fully constrained or over-constrained if M > 2 for the conservative 
velocity field. A framework with displaced frame difference (DFD) equations, spatial 
velocity modeling, a nonlinear least-squares model, and Gauss-Newton and Leven-
berg-Marguardt algorithms for solving the nonlinear system has been developed.   

The proposed algorithm has been evaluated experimentally with two standard test 
image sequences. All successive frames except the last one (used for reference frame) 
in this conservative system can be synthesized by the motion-compensated prediction 
and interpolation based on the estimated motion field. This framework can estimate 
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large scale motion field that across more than two successive frames if most of the 
motions in the scene in the temporal interval are conservative or near-conservative 
and has better performance than the block matching algorithm. 
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Abstract. To enable the precise detection of persons walking or running

on the ground using unmanned Micro Aerial Vehicles (MAVs), we present

the evaluation of the MCT algorithm based on intensity as well as gradi-

ent images for optical flow, focusing on accuracy as well as low computa-

tional complexity to enable the real-time implementation in light-weight

embedded systems. Therefore, we give a detailed analysis of this algo-

rithm on four optical flow datasets from the Middlebury database and

show the algorithm’s performance when compared to other optical flow

algorithms. Furthermore, different approaches for sub-pixel refinement

and occlusion detection are discussed.

1 Introduction

For the fast and precise preparation of search and rescue missions after major
chemical accidents, the information about the position of persons trying to es-
cape the poisoned area is of essential importance. Here, we are working on a light
weight computer vision system that can be deployed in unmanned Micro Aerial
Vehicles (MAVs) for the detection of persons walking or running on the ground.
Therefore, we analyzed a correspondence algorithm originally designed for high
accuracy in real-time stereo vision, the Modified Census Transform (MCT) on
gradient and intensity images (IGMCT) [1], on its performance in optical flow
for the precise computation of the objects’ 3D movement in two following im-
ages. In this work, we present an optimization of the algorithm’s parameters for
optical flow as well as an evaluation of its accuracy when compared to other
popular optical flow algorithms.

For the evaluation we are using two well known optical flow algorithms that are
still often considered for real-time applications, even if they cannot be considered
state-of-the-art any more, proposed by Lucas and Kanade [2] as well as Horn
and Schunk [3]. For the comparison with a recently published algorithm, we are
also using the algorithm published by Ogale and Aloimonos [4]. Furthermore, we
are presenting the results for the Sum of Absolute Differences (SAD) algorithm,
implemented in the framework as the IGMCT, as well as the overall results for
the MCT on intensity images only.

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 437–448, 2010.
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2 Related Work

To determine the Optical Flow in real time it is often enforced to implement
algorithms on dedicated hardware like Field-Programmable-Gate-Arrays (FP-
GAs) or Application-Specific-Integrated-Circuits (ASICs). Because of the heavy
computational load software solutions are usually less attractive for real-time
implementations. To reach a fast calculation speed for either retrieving vector
maps for the optical flow or the disparity map in stereo vision, region-based
matching algorithms are highly preferred. Here, two very popular algorithms
are the SAD and the Census Transform. An overview of correlation/distance
measures for region-based matching can be found in [5].

In [6] Claus et al. proposed an FPGA implementation of the Census Transform
for optical flow. They used a ternary decision for the Census Transform instead
of a binary as introduced in [7]. They used an 8-neighborhood at two distances
for the transformation. The resulting vector field is sparse. So the Optical Flow
is calculated for a defined number of features. The whole system is implemented
as a System-on-Chip (SoC) using an XC2VP30 FPGA from Xilinx with two
embedded PowerPC processor cores. With an image resolution of 640x480, a
search window of 15x15 and approximately 17000 features they reached a frame
rate of about 45 fps.

In [8] Barron-Zambrano et al. implemented three different techniques using
FPGAs. A correlation-based approach using SAD, a differential-based technique
as proposed in [2] and an energy/frequency-based approach. Here, the algo-
rithms’ parameters in their simulations were: an 8x8 pixels search window and
4x4 reference window for the SAD algorithm, a 4-point central difference mask in
space and time (5x5x5 window) for the differential method and 5x5 spatial mask
for the Gabor filter, and 5 frames in time. The design was implemented using
Xilinx tools 9.2i targeted to a Virtex-4 XC4LX160ff1513-12, one of the three FP-
GAs available in the DNK8000PCI DiniGroup FPGA prototyping board. They
reached a frame rate of 50 fps at an image resolution of 200x200.

The hardware implementation of the SAD algorithm of Fukuoka and Shibati
in [9] reached a frame rate of about 1300 fps at an image resolution of 68x68
pixels.

Another Optical Flow implementation in [10] uses a cross-correlation algo-
rithm. A fast calculation is achieved by parallel processing using MMX/SSE
technology of modern general purpose processors. The calculations were per-
formed on a Pentium 4 processor with 2.8 GHz and 512MB RAM, achieving a
frame rate of 10 fps at an image resolution of 640x480 pixels.

3 Gradient-Based MCT for Optical Flow

The Census Transform, originally proposed by Zabih and Woodfill [7] is a non-
parametric transformation of dedicated blocks from the intensity image into
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bit vectors. The Census Transform has various advantages like illumination
invariance, when compared to other matching methods like Sum of Absolute
Differences (SAD) or Sum of Squared Differences (SSD). It has a good tradeoff
between quality and resource usage, especially because a hardware implementa-
tion requires only simple logic elements and allows parallelized computation.

The Census Transform is realized with a comparison function ξ (eq. 1) which
transforms the intensity values into 0 or 1. This function compares the intensity
value of the center pixel i1 with the other pixels i2 in the neighborhood.

ξ(i1, i2) =

{
1 | i1 > i2

0 | i1 ≤ i2
(1)

The result of the comparison function is then concatenated to a bit vector (eq.
2). The length of the bit vector is the same as the size of the transformed block,
defined as st.

TCensus(I, x, y, st) =
⊗
[n,m]

ξ[I(x, y), I(x + n, y + m)] (2)

n, mε[−st − 1
2

,
st − 1

2
] (3)

After the transformation of the intensity image the matching costs have to be
estimated. Here, for two bit vectors the costs are determined by their hamming
distance (eq. 4). The variable t1 is the Census Transformed bit vector of I1(x, y)
and t2 is a bit vector in I2 at position (x + dx, y + dy). The matching costs have
to be calculated for all disparities dx and dy.

CCensus(t1x,y , t2x+dx,y+dy
) = hdist(t1x,y , t2x+dx,y+dy

) (4)

To improve the transformation, the incorporation of gradient images is desirable.
Unfortunately, the original Census Transform is not capable to handle blocks
with a saturated center value, which is considerably often the case in gradient
images, especially near edges in the intensity images. Here, the Modified Census
Transform (MCT) (eq. 5), originally proposed by Froeba and Ernst [11] for face
recognition algorithms, leads to significant advantages as proposed in [1], since
it compares the average intensity in a block instead of the center pixel. Here, we
apply the MCT on x- and y-gradient images using Sobel filters. To enable a fast
implementation only the absolute gradients are calculated.

TMCT (I, x, y, st) =
⊗
[n,m]

ξ[I(x, y), I(x + n, y + m)] (5)

Using gradient images and intensity image for matching procedure not only
extends the information processed by the algorithm, it also extends the compu-
tational costs by a factor of 3. To reduce the complexity we decided to reduce
the MCT computation to a sparse one using a sequential sparse factor of 2.
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Hereafter, the calculated matching costs are aggregated (eq. 6) over a quadratic
block with size sa. The aggregation allows robust results but also smoothes the
vector field.

ax,y,d =
∑

n

∑
m

cx+m,y+n,d (6)

n, mε[−sa − 1
2

,
sa − 1

2
] (7)

To reduce the complexity of the cost aggregation we use Integral Images [12] for
constant processing time, independent of the block size sa.

II(x, y) =
x∑

x′=0

y∑
y′=0

I(x′, y′) (8)

The block sum can be calculated easily by adding, respectively subtracting four
values (eq. 9).

II(x, y, sa) = II(x + h, y + h) − II(x + h, y − h)−
II(x − h, y + h) + II(x − h, y − h)

(9)

h =
sa − 1

2
(10)

After the cost aggregation the minimal matching costs have to be found and the
corresponding disparity has to be identified. However, this vector field is only
pixel-accurate. To improve the results and gain sub-pixel accuracy a sub-pixel
refinement is implemented in the algorithm. Based on the fact that Optical Flow
calculates two-dimensional disparities, it is necessary to fit a two-dimensional
geometrical structure. For this reason we analyzed two approaches. The first one
is to fit a paraboloid, as Krsek et al. did in [13], but for other purpose. Another
approach as shown in [14] is to fit parabolas, one for the horizontal and one
for the vertical refinement. For the refinement the matching costs are used. The
paraboloid equation (eq. 11) is solved using the eight neighbored matching costs
(eq. 12 and 13).

ax2 + by2 + cxy + dx + ey + f = z (11)

XAT = z (12)

⎛
⎜⎝

x2
1 y2

1 x1y1 x1 y1 1
...

x2
n y2

n xnyn xn yn 1

⎞
⎟⎠
⎛
⎜⎜⎜⎝

a
b
...
f

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝

z1

...
zn

⎞
⎟⎠ (13)
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The equation system is solved with least squares method (eq. 14).

XT XA = XT z (14)

With the solved parameters a...f the coordinates where the minimum occurs,
can be calculated with eq. 15.

xsub =
ce − 2bd

− c2 + 4ab
, ysub = − 2ae − cd

−c2 + 4ab
(15)

The parabola fitting [14] can be performed in a much easier way, leading to a
highly reduced computational complexity. It is only necessary to calculate the
minimum of the horizontal and vertical fitted parabola (eq. 16).

d̂sub =
y0 − y2

2y0 − 4y1 + 2y2
(16)

After the vector field has been refined it is necessary to detect the occlusions
in the image. The Optical Flow can only be estimated when regions are visible
in both images. If an object disappears from the first to the second image this
region has to be marked as occluded. For this reason two methods are imple-
mented which make an occlusion detection possible. One method, the left/right
consistency check is a preferred one in Stereo Vision. For the consistency check
the Optical Flow has to be calculated two times, once from first to the second
image and once from the second image to the first. In case that a region is not
occluded the vectors will have the same direction but different algebraic signs.
Occluded regions will be matched to different regions. The calculation of the
angular error and a defined threshold makes the occlusion detection possible:

κ(OF12, OF21) =

⎧⎪⎨
⎪⎩

occluded, AE(OF12(x, y),−OF21(x + u(OF12(x, y)),
y + v(OF12(x, y))) > ε

else OF12(x, y)
(17)

Another method to detect occlusions and mismatched areas is to calculate con-
fidence values. Confidence values are measures how good a determined disparity
can be trusted. It calculates the difference between the absolute minimal costs
and second lowest minima. For better real-time capabilities, the minimal costs
and the neighborhood, defined over a block size are simply excluded from this
new minimum search.

δ(cminold
, cminnew) =

{
occluded, cminnew − cminold

< ε

else d(cminold
)

(18)

4 Parameter Optimization and Experimental Results

To compare the algorithms the evaluation database of Baker et al. in [15] is
used. Four datasets with ground truth are used for this evaluation. The images
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are called Dimetrodon, RubberWhale, Grove2 and Venus dataset and are online
available.1 For comparison the average angular error (AAE) and the endpoint
error (AEP) are calculated. Furthermore the good matches of certain thresholds
(AE: 10◦, 5◦, 2.5◦; EP: 1, 0.5 pixels) are estimated.

For optimization purposes the parameters of all algorithms (except from Ogale
and Aloimonos [4]) have to be varied. The algorithm of Horn and Schunck [3] has
two parameters, the lagrange factor and the number of iterations. The software
implementation out of the openCV2 library is used for the evaluation. The test
series has shown that with 12800 iterations and a lagrange factor of 0.0001 the
best results are achieved. As the test series ended at 12800 after a quadruplica-
tion of iterations the improvement was marginal. The algorithm reached for the
RubberWhale dataset adequate results but failed at the others (fig. 1).

0 10 20 30 40 50 60 70 80 90 100

Dimetrodon

Grove2

RubberWhale

Venus

Matches in %

AE 10 AE 5 AE 2,5 EP 1 EP 0,5

Fig. 1. Analysis of good matches with optimized parameters of the algorithm of

Horn/Schunck [3]

For the Lucas/Kanade algorithm [2] we also used an openCV implementa-
tion. Here, only one parameter has to be optimized. The block size for grouping
pixels can varied from 3 to 15. Bigger block sizes lead to run-time errors in the
implementation. At a window size of 15, the best results were achieved. In fig.
2 the good matches are presented. The algorithm, as that of Horn/Schunck [3]
delivers only for the RubberWhale dataset appropriate results and fails at the
others.

The third algorithm from Ogale/Aloimonos [4] is evaluated with a precompiled
code, which is available online3. This code only delivers pixel-accurate results,
but the results are much better than the algorithms evaluated before as can be
seen in fig. 3.

The SAD algorithm, a very popular matching algorithm, has no transfor-
mation and only one parameter besides the disparity range. After the absolute
difference is calculated the aggregation block size can be chosen. For an aggre-
gation block size of 15 pixels the best results are achieved.

1 http://vision.middlebury.edu/flow/data/
2 http://opencv.willowgarage.com/wiki/
3 http://www.cs.umd.edu/~ogale/download/code.html

http://vision.middlebury.edu/flow/data/
http://opencv.willowgarage.com/wiki/
http://www.cs.umd.edu/~ogale/download/code.html
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Matches in %

AE 10 AE 5 AE 2,5 EP 1 EP 0,5

Fig. 2. Analysis of good matches with optimized parameters of the algorithm of Lu-

cas/Kanade [3]

0 10 20 30 40 50 60 70 80 90 100

Dimetrodon

Grove2

RubberWhale

Venus

Matches in %

AE 10 AE 5 AE 2,5 EP 1 EP 0,5

Fig. 3. Analysis of good matches of the algorithm of Ogale/Aloimonos [4]

Calculating the Optical Flow using the MCT, applied on the gradient and
intensity images leads to the best results. This algorithm needs more computa-
tional resources than, i.e., the SAD algorithm, because of the required transfor-
mation step. The parameters are the Census block size, over which the bit vector
is generated, and the aggregation block size. The best results are achieved with
a Census block size of 3 pixels and an aggregation block size of 25 pixels. With
this large block size robust results are possible but it also smoothes the vector
field. The weighting factor between gradient and intensity Census is 2:1.

The evaluation of the two sub-pixel refinement methods has shown that the
paraboloid fitting (2D) produced better results. The problem that paraboloid
fitting brings with it, is that due to solving the equation with least squares
method results bigger than 1 or smaller than -1 can appear. In this case the result
is out of borders and the parabola fitting (1D) [14] is used instead. For real-time
implementations this strategy would lead to a higher computational complexity.
The results of the comparison are shown in Tab. 1 for all four datasets. For
the first three datasets the improvement for the angular matches is good. A
higher accuracy could be gained. The Venus images are modified stereo images.
Therefore the improvement isn’t so big according to the other sets.
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Fig. 4. Analysis of good matches of the SAD algorithm
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Fig. 5. Analysis of good matches of the IGMCT algorithm

Table 1. Comparison of the sub-pixel refinement ”parabola fitting” and ”paraboloid

fitting”

Ø[degrees,pixel] matches [%]
Dimetrodon AE EP 10◦ 5◦ 2, 5◦ 1 pixel 0,5 pixel

1D 10,6419 0,2179 90,1192 62,1942 24,3574 95,0479 92,2981
2D & 1D 10,1427 0,2051 92,4958 66,7442 28,3889 94,9848 93,0607

Impr. -0,4992 -0,0128 2,3766 4,55 4,0315 -0,0631 0,7626
Grove2 AE EP 10◦ 5◦ 2, 5◦ 1 pixel 0,5 pixel

1D 4,7915 0,3324 94,3984 78,1621 50,1979 95,8662 91,9681
2D & 1D 4,3935 0,3165 94,3851 87,3669 55,0426 95,8066 92,6038

Impr. -0,3980 -0,0159 -0,0133 9,2048 4,8447 -0,0596 0,6357
RubberWhale AE EP 10◦ 5◦ 2, 5◦ 1 pixel 0,5 pixel

1D 6,7783 0,1782 92,4424 78,8183 31,0470 96,6530 95,1949
2D & 1D 6,4642 0,1677 91,7989 80,6242 42,9291 96,7867 95,2686

Impr. -0,3141 0,0105 -0,6435 1,8059 11,8821 0,1337 0,0737
Venus AE EP 10◦ 5◦ 2, 5◦ 1 pixel 0,5 pixel
1D 4,9614 0,3429 95,0056 89,9812 78,4254 95,7863 94,0520

2D & 1D 4,8601 0,3422 95,4693 91,6241 78,6341 95,5971 93,6497
Impr. -0,1013 -0,0007 0,4637 1,6429 0,2087 -0,1892 -0,4023
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For comparison of all tested algorithms the average errors and matches over
all four datasets are calculated and displayed in Tab. 2. The IGMCT delivers
the best results except the AE-matches with threshold 2, 5◦ where the intensity
Census is a bit better. For the comparison of all tested algorithms the average
errors and matches over all four datasets are calculated and displayed in Tab. 2.
The IGMCT delivers the best results except the AE-matches where the intensity
Census is a bit better. For visual comparison of the different algorithms the
estimated Optical Flows for all tested algorithms for the RubberWhale dataset
are displayed in Fig. 6 through 9 using the color coding from Baker et al. [15].

Table 2. Comparison of all tested Optical Flow algorithms (Average over all four

datasets)

Ø[degrees,pixel] matches [%]
Algorithm AE EP 10◦ 5◦ 2, 5◦ 1 pixel 0,5 pixel

HS [3] 35,54 1,89 21,08 12,92 6,96 35,31 25,38
LK [2] 43,38 2,11 20,23 8,56 2,66 34,97 25,69
OA [4] 9,18 0,42 81,28 48,59 26,88 95,18 75,60
SAD 10,23 0,49 84,29 69,16 41,77 90,85 84,58
IMCT 7,45 0,30 90,50 76,73 49,45 94,85 91,12

IGMCT 6,79 0,27 92,99 77,29 46,00 95,84 93,38

(a) GT. (b) HS [3]. (c) LK [2].

(d) OA [4]. (e) SAD. (f) IGMCT.

Fig. 6. Optical Flows for the RubberWhale dataset with ground truth
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(a) GT. (b) HS [3]. (c) LK [2].

(d) OA [4]. (e) SAD. (f) IGMCT.

Fig. 7. Optical Flows for the Grove2 dataset with ground truth

(a) GT. (b) HS [3]. (c) LK [2].

(d) OA [4]. (e) SAD. (f) IGMCT.

Fig. 8. Optical Flows for the Dimetrodon dataset with ground truth
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(a) GT. (b) HS [3]. (c) LK [2].

(d) OA [4]. (e) SAD. (f) IGMCT.

Fig. 9. Optical Flows for the Venus dataset with ground truth

5 Conclusion

Even if the MCT on the intensity images already produces very accurate results
for a real-time algorithm, the use of the gradient images further reduces the
average angular error by 0,66. Here, the average endpoint error is nearly equal
for both algorithms. However, the correct matches within a maximum deviations
within 1 and 0,5 pixels show a considerable improvement. For the maximum
deviation of 1 pixel, the resulting accuracy of 95,84% is even 0,66% higher than
the result of the pixel accurate Ogale and Aloimonos algorithm, a state-of-the-
art non-real-time algorithm. However, the use of a sparse transform enables a
resource efficient implementation of the IGMCT on real-time embedded systems
at nearly the same computational costs as the original Census Transform. For the
detection of occluded regions, the consistency check produced the best results.
Here, the high image quality of the Middebury datasets enforces very dense
results and the confidence value can be considered to be very useful in real-
world images taken with industrial cameras. Taking into account that today’s
DSPs often incorporate a bit count operation further reduces the performance
requirements for the calculation of the Hamming Distance, making the IGMCT
a good choice not only for hardware-based, but also for software-based real-time
implementations.



448 P. Puxbaum and K. Ambrosch

Acknowledgements

The work leading to the proposed results were funded by the KIRAS security
research program of the Austrian Ministry for Transport, Innovation and Tech-
nology (www.kiras.at).

References

1. Ambrosch, K.: Mapping Stereo Matching Algorithms to Hardware. PhD thesis,

Vienna University of Technology (2009)

2. Lucas, B., Kanade, T.: An iterative image registration technique with an appli-

cation to stereo vision. In: Proceedings of Imaging Understanding Workshop, pp.

121–130 (1981)

3. Horn, B., Schunck, B.: Determining optical flow. MIT - Artificial Intelligence Memo

No.572 (1980)

4. Ogale, A., Aloimonos, Y.: A roadmap to the integration of early visual modules. In-

ternational Journal of Computer Vision: Special Issue on Early Cognitive Vision 72

(2007)

5. Giachetti, A.: Matching techniques to compute image motion. Image and Vision

Computing 18 (2000)

6. Claus, C., Laika, L., Jia, L., Stechele, W.: High performance fpga based optical

flow calculation using the census transformation. In: The Intelligent Vehicles Sym-

posium (2009)

7. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual cor-

respondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151–158.

Springer, Heidelberg (1994)

8. Barron-Zambrano, J., Torres-Huitzil, C., Cerda, M.: Flexible architecture for three

classes of optical flow extraction algorithms. In: International Conference on Re-

configurable Computing and FPGAs, pp. 13–18 (2008)

9. Fukuoka, Y., Shibata, T.: Block-matching-based cmos optical flow sensor using

only-nearest-neighbor computation. In: IEEE International Symposium on Circuits

and Systems, pp. 1485–1488 (2009)

10. Sadykhov, R.K., Lamovsky, D.V.: Fast cross correlation algorithm for optical flow

estimation. In: Proceedings of the 7th Nordic Signal Processing Symposium, pp.

322–325 (2006)

11. Froeba, B., Ernst, A.: Face detection with the modified census transform. In: Pro-

ceedings of the Sixth IEEE Conference on Automatic Face and Gesture Recognition

(2004)

12. Viola, P., Jones, M.: Robust real-time face detection. International Journal of Com-

puter Vision (IJCV) 57
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Depth Assisted Occlusion Handling in Video Object 
Tracking 

Yingdong Ma and Qian Chen 

Centre for Digital Media Computing 
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Abstract. We propose a depth assisted video object tracking algorithm that util-
izes a stereo vision technique to detect and handle various types of occlusions. 
The foreground objects are detected by using a depth and motion-based seg-
mentation method. The occlusion detection is achieved by combining the depth 
segmentation results with the previous occlusion status of each track. According 
to the occlusion analysis results, different object correspondence algorithms are 
employed to track objects under various occlusions. The silhouette-based local 
best matching method deals with severe and complete occlusions without as-
sumptions of constant movement and limited maximum duration. Experimental 
results demonstrate that the proposed system can accurately track multiple ob-
jects in complex scenes and provides improvements on dealing with different 
partial and severe occlusion situations. 

1   Introduction 

Detection and tracking of moving objects is a very important research area of com-
puter vision and has a wide range of applications. Many researchers have investigated 
object tracking and different approaches have been developed. These approaches can 
be classified into four groups: tracking by statistical method [1, 2], region-based 
tracking [3], feature-based tracking [4] and appearance-based tracking [5]. Many of 
these approaches can achieve good results in some cases, such as when the target has 
distinct colour distribution from the backgrounds. However, multiple objects tracking 
is still a difficult task due to various problems, including inaccurate motion vector 
estimation, variation of the non-rigid object appearance, and confusions in multiple 
targets’ identities when their projections in the camera image are close. 

Depth information has been used for object tracking in recent years. This exploits 
the advantages of a stereo-vision system’s ability to segment objects from a cluttered 
background, separating objects at different depth layers under partial occlusion, and 
adding depth feature to enhance object appearance models. While some tracking 
methods focus on the usage of depth information only [6], other depth-based object 
tracking approaches make use of depth information on better foreground segmenta-
tion [7], plan view construction [8], object scale estimation [9], and enhanced object 
shape descriptors [10]. Depth information is also used as a feature to be fused in a 
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Bayesian network or a maximum-likelihood model to predict 3D object positions 
[11]. 

To our knowledge, depth information is not widely used in occlusion analysis and 
occlusion handling. Firstly, the depth map is often much noisier than the correspond-
ing grey-level or colour image. The quality of depth map is also sensitive to texture-
less areas and the distance from the camera. These disadvantages of depth data make 
it more suitable for combining with other appearance features to enhance the object 
model in a tracking system. Secondly, when occluding objects have similar disparity 
ranges due to close interaction, they cannot be separated by depth-based segmentation 
methods. Moreover, the depth information can be totally lost when severe and com-
plete occlusion occurs. In this work, we present a depth assisted multiple objects 
tracking algorithm which focuses on addressing three fundamental challenges: stable 
object segmentation from cluttered background; depth assisted occlusion analysis and 
depth-based occlusion handling. 

2   Stereo Assisted Moving Object Detection 

In this work, a pair of calibrated CCD cameras is used to get the left and right images.  
Disparity estimation is implemented using a dense stereo matching technique. Firstly, 
candidate points are found in the right image which match points in the left image. 
Secondly, the Sum of Absolute Differences (SAD) of the candidate point pairs is 
calculated within a rectangular window. Two points are regarded as corresponding 
points if their minimum SAD is less than a threshold. The disparity between the cor-
responding points is then calculated as described in [12]. 

Foreground Object Segmentation: In order to recover the depth information from a 
disparity map, a depth density image is generated by transforming the depth informa-
tion on the XY plane (disparity map) to the XZ plane. Points are projected to the XZ 
plane according to their horizontal position and their grey level, where X is the width 
of the depth map and the range of Z is [0, 255]. Because an object has similar grey 
level in the disparity map, the influence of the 3D points of this object is cumulative 
on the depth density image. The depth density image will contain large values in areas 
with a high density of 3D points. 

Foreground object regions segmentation is performed based on the depth density 
image using a region growing method. After a morphological opening and closing 
operation to remove noisy points and connect nearby points, all 8-orientation-
connected points are grouped as one object. The disparity map is segmented accord-
ing to the depth density image. The x-coordinates of each connected component in the 
depth density image shows the location and width of each foreground object. All 
corresponding points in the disparity map are labelled as different objects according 
to their grey level. 

Due to the stereo matching ambiguity or depth discontinuities at textureless areas, 
depth maps are often much noisier than their corresponding colour images. Moreover, 
stable obstacles in the depth map should be removed to save computation time in the 
tracking step. We use the motion masks generated by change detection to refine the 
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Fig. 1. Depth-based segmentation. (left to right) The input left colour frame, The Disparity 
map, The Depth density image, Depth-based object detection.  

silhouette of segmented objects. These segmented object regions are then used in the 
following sections for object tracking. Fig.1 shows the depth-based segmentation 
examples. 

3   Depth Assisted Object Tracking 

We analyse the occlusion situations in the current frame according to the depth seg-
mentation results and the occlusion rate of each track in the previous frame. The 
tracking system uses different strategies to achieve accurate tracking according to the 
occlusion analysis result. The flowchart of the tracking system is shown in Fig.2. 

 

 

Fig. 2. Flowchart of the depth assisted tracking system 
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3.1   Depth Assisted Occlusion Analysis 

The proposed depth assisted occlusion analysis method judges the occurrence and end 
of partial occlusion based on two clues. The first clue comes from the depth density 
image and the second one is each object’s occlusion rate from the previous frame. Let 

k
iR denotes the ith foreground object region in frame k. If there are no vertical over-

lays between the corresponding blob of k
iR and other foreground blobs in the depth 

density image, region k
iR is labelled as a candidate non-occlusion object.  

The occlusion state of region k
iR  is also checked by means of occlusion rate. An 

occlusion rate k
iγ is assigned to each segmented moving object region, which records 

the percentage of occluded part of each object in the previous frame. 
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where RN  is the number of pixels in region R. id is the average disparity value of 

region iR , where larger id means object region iR is closer to the camera. ijR is the 

overlaid area between iR and the jth object‘s silhouette jS . All 0
iγ are initialized to 

zero for non-occluding objects. When partial occlusion occurs in the first frame, the 
occlusion rate of an occluded object is initialized as the ratio between its bounding 
box area and the bounding box area of the entire occluding region. 

According to the above two conditions, various occlusions are predicted following 
these rules: 

 
1. Non-occlusion: there is no overlaid part between each pair of foreground blobs in 

the current u-projection image and all 1−k
iγ have the value of zero. 

2. Partial occlusion occurs: all 1−k
iγ have the value of zero and there is overlaid part 

between at least one pair of foreground blobs in the current u-projection image. 

3. Serious/Full occlusion occurs: the value of any 1−k
iγ is larger than 0.6 

4. End of partial occlusion: there is no overlaid part between each pair of foreground 
blobs in the current u-projection image. Each blob corresponds to one object and at 

least one 1−k
iγ has non-zero value. 

5. End of full occlusion: a partial occluded foreground region matches to a track 
whose occlusion rate is 1.0 in the last frame 

3.2   Video Tracking under Partial Occlusion 

The video objects correspondence under non-occlusion is achieved through the short-
est three-dimensional Euclidean distance between tracks in the previous frame and 
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object regions in the current frame. Once a foreground objects region k
iR finds its 

corresponding track, the track is updated using the object’s silhouette k
iS . 

An occlusion is detected when two or more foreground object regions in the depth 
density image starts to overlay each other. Partial occlusion occurs when objects get 
close or one pass in front of others. It can be divided into two types based on the dis-
parity ranges of the occluding objects: occlusion in different disparity layers and oc-
clusion in one disparity layer. In the later case, occluding objects cannot be segmented 
as individual objects by using the depth-based segmentation. We use an Iterative 
Silhouette Matching algorithm (ISM) to tackle this problem. After object correspon-
dence, tracks and their occlusion rate are updated using their corresponding object’s 
silhouettes. 

Partial Occlusion in Different Disparity Layers. When occluding objects have 
different disparity layers, they can be segmented in the depth map and be sorted in 
descending order by means of their disparity ranges. Object correspondence under 
different disparity layers is based on silhouette matching. The distance matrix 

),( jiD
k
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bluegreenred NNN ×× . Fig.3 shows an example of partial occlusion tracking under 

different disparity layers. 
 

     

Fig. 3. Partial occlusion tracking under different disparity layers. (left to right) three tracks 
from the last frame, depth map segmentation result and matching result. 

Partial Occlusion in One Disparity Layers. When occluding objects have similar 
disparity range, the proposed segmentation method will label these objects as one 
foreground region. Various algorithms, including Maximum-likelihood [13], fuzzy k-
means [14], and K nearest neighbourhood classifier [15], have been developed to 
estimate the separate object’s locations. To achieve better object separation, we  
propose an depth-based ISM algorithm to separate occluding objects. Assuming that 
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there are n occluding objects k
O in the object region k

occlusionR , their corresponding 

tracks in the previous frame are 1−k
S . The algorithm has the following operations: 

1. According to the depth ordering of 1−k
S , find the corresponding component of 

the track with the largest depth, 1−k
foremostS (i.e. the smallest distance from the cam-

era), within k
occlusionR using the colour histogram-based silhouette matching algo-

rithm. Label it as k
foremostO .  

2. Remove k
foremostO from k

occlusionR . Replace the track with the one which has the 

next largest depth and find its corresponding component within the remaining 

area of k
occlusionR . 

3. Repeat step two until all tracks in k
O find their corresponding regions in k

occlusionR .  

4. Update the occlusion rate and depth order for each object. If two or more objects 
have similar average disparity ranges, update their depth order according to their 

occlusion rate: the smaller k
iγ an object has, the closer the object is to the camera 

Fig.4 shows an example of partial occlusion in one disparity layer. 
 

      

Fig. 4. Partial occlusion in one disparity layer. (left to right) the depth map and its segmentation 
result, in which two persons are labelled as one object region; two tracks from the last frame 
and their matching result. 

3.3   New Object, Splitting and Severe Occlusion Handling 

The idea of severe occlusion handling is that full occluded objects will reappear later 
as partial occluded objects behind their occluder. We propose a severe occlusion 
handling algorithm without motion restriction on the occluded objects and no limited 
maximum duration of occlusions but we assume that the shapes of these objects do 
not change sharply during severe or full occlusion. 

Let },,,{ 21
k
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k
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ij SSSS …= be the severe or full occluded tracks and the foremost 

track is iS . If a partial occluded foreground region in a later frame, k+n, cannot find 

the matching track and its occluder is nk
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where nk
occlusionR

+  is the object region, ),( yxT is the transformation parameters, N is the 

number of pixels in p
jS , and I denotes the current frame. The silhouette of each ijS for 

splitting handling is the one in frame p, which has minimum non-zero occlusion rate. 
If more than 50 percent of the foreground object region is within the local best match 

area of p
jS , a splitting of jS is detected. The occlusion rate of jS is updated using (1) 

and remove jS from the full occlusion list ijS . Otherwise, the foreground object re-

gion indicates a new object and updates its occlusion rate accordingly. 

4   Experimental Results 

The proposed tracking algorithm has been tested on some video sequences. The input 
to the algorithm is a pair of video sequences and the output is a set of video objects 
that are labelled using bounding boxes with different colours over time in the left 
video sequence. These test videos are recorded from two fixed CCD cameras, which 
are set up at different locations, including an office, a laboratory, and a reception area. 
In these video sequences, various types of occlusions are involved: partial occlusion 
in different disparity layers, partial occlusion in one disparity layer, and short-term 
severe occlusion. Non-occlusion is also included in some video sequences for  
completeness. 

The algorithm is implemented using C on a personal computer with 3.0GHz CPU 
and 2GB memory. The video resolution is 640×480 pixels (24 bits per pixel). For a 
typical partial occlusion scenario, an average computational time of 0.237s per frame 
is achieved. 

4.1   Tracking without Occlusion 

An example of tracking objects that are not occluded is shown in Fig.5. In this se-
quence a person walks in the scene, places a box, and leaves the scene. This example 
illustrates the ability of the proposed algorithm handling deformable objects and split-
ting. The splitting occurs at frame 45 and frame 46. However, due to the shadows on 
the floor, two foreground objects are segmented as one object in the depth map. The 
box is labelled as a new object at frame 51. From then on, the person and the box are 
tracked as two individual objects. 

4.2   Tracking under Partial Occlusion in Different Disparity Layers 

We demonstrate the tracking of partially occluded objects in Fig.6. In this example, 
partial occlusion occurs at the beginning and continues throughout the sequence. 
Three persons in this sequence make different movements: the person on the left 
makes random movement on a chair; the person in the middle dynamically changes 
his disparity range by moving fore-and-aft and the person on the right rotates 
throughout the sequence. In most of the frames, they have different disparity ranges. 
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Fig. 5. Example of tracking objects that are not occluded. From top to down, the frame numbers 
are 24, 42, and 51, respectively. First and second column: the input left frame and the corre-
sponding depth map. Third column: the depth map segmentation results. Fourth column: the 
video tracking results. 

The proposed segmentation method can successfully detect them under partial occlu-
sion. All of them are coherently labelled over time even though the visual feature of 
the foremost human head changes drastically. 
 

    

    

Fig. 6. Tracking results with partial occlusion in different disparity layers. From top to down, 
left to right, the frame numbers are 1, 5, 15, 20, 25, 30, 35, and 40, respectively. 

4.3   Tracking under Partial and Severe Occlusion 

Tracking under partial and complete occlusion is illustrated in Fig.7. The partial oc-
clusion occurs at frame 24 and finishes at frame 52 due to the close interaction be-
tween two persons in a disparity layer closer to the cameras. The occlusion rate of the 
occluded person exceeds 0.6 at frame 47, where the tracking system enters the severe 
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occlusion mode. The person with red bounding box walks in a farther disparity layer 
and pauses for a while behind others. He is completely occluded by others from frame 
31 to 36 and under partial occlusion from frame 37 to 41. From frame 42 to 52, he is 
under complete occlusion again. Fig.8 shows his silhouettes before, under, and after 
partial occlusion. 

In most of the frames where partial or severe occlusion occurs, the proposed depth 
map segmentation method can detect foreground objects despite the cluttered back-
ground. But it groups objects, which have similar disparity ranges, into one region as 
shown in Fig.4. This example illustrates the robustness, and importance of using the 
proposed silhouette matching algorithm. With silhouette matching algorithm, partially 
occluded objects in one foreground region are tracked successfully. 

 

    

    

Fig. 7. Tracking under partial and severe occlusion. The frame numbers are 20, 24, 30, 33, 37, 
41, 45, and 49,  from top to down, left to right, respectively. 

            

Fig. 8. Silhouette of the far most person for frame 20, 22, 24, 26, 27, 28, 30, 37, 39, 41, 54, and 
56, from left to right 

As an algorithm comparison, the video sequence as shown in Fig.7 is used to test 
other tracking techniques. In Fig.9, the results are obtained from the template match-
ing method proposed by Nguyen and Smeulders [16] whereas Fig.10 illustrates the 
tracking results of Porikli and Tuzel’s work [17], which is based on the mean shift 
algorithm. In both of the two tests, the foreground objects are segmented using the 
background subtraction method. Before partial occlusion occurs, the templates of 
each person in the scene are recorded. The template matching technique works well in 
the case of non-occlusion and partial occlusion due to the updating of template by an 
appearance filter but failed under severe occlusion. The far most person is missed 
from frame 41 to frame 49, where severe occlusion occurs. From frame 44 to frame 
48, the person with green bounding box is also missed due to the same reason. From 
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frame 50, the template matching method can recover from the severe occlusion and 
matches all three persons again. 

The tracking results of the mean shift algorithm are illustrated in Fig.10. The oc-
cluded persons are lost when severe occlusion occurs. After splitting, the far most 
person is matched again as his location does not changed during severe occlusion. 
However, the mean shift algorithm combines the person with green bounding box 
with the foremost person, and after splitting in frame 49, labels him as a new object. 

 

    

Fig. 9. Tracking results of template matching method proposed by Nguyen and Smeulders 
[16]. The frame numbers are 42, 45, 49, and 54, from top to down, left to right, respectively. 

 

    

Fig. 10. Tracking results of the mean shift algorithm proposed by Porikli and Tuzel [17]. The 
frame numbers are 20, 30, 43, and 54, from left to right, respectively. 

 

Fig. 11. Comparison of three tracking algorithms 

Fig.11 shows the performance evaluation of three tracking algorithms in terms of 
the recall measure, which shows how much relevant object pixels the proposed algo-
rithm has extracted. The algorithm comparison starts from frame 24, the frame before 
occlusion, and stops at frame 54, where the occlusion ends. The pixels of objects 
under full occlusion are considered as correct corresponding pixels and those belong-
ing to wrong labelled objects are regarded as wrong corresponding pixels. From 
Fig.11, we can observe that the proposed depth assisted tracking algorithm achieves 
better tracking performance than other approaches. 
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4.4   Object Tracking with and without Depth Map Segmentation 

Fig.12 illustrates the object segmentation results with and without depth map segmen-
tation. When stationary foreground objects and the background have similar colours, 
spatial and temporal based methods cannot guarantee correct segmentation results. As 
shown in Fig.12 (f), the person far away from the camera is missed in several frames 
due to the cluttered background and the small amount of movement that he makes. 
However, with the proposed depth map segmentation, the correct object masks can be 
obtained. 
 

   
          (a)                  (b)        (c) 

   
      (d)                  (e)        (f) 

Fig. 12. Object segmentation with and without depth map. (a) Colour frame. (b) Disparity map. 
(c) Depth-based segmentation. (d) Motion mask. (e) Depth-motion-MRF model based segmen-
tation. (f) Motion and colour based segmentation. 

5   Conclusion 

In this work, we introduce a novel depth assisted object tracking algorithm aimed at 
improving the robustness and accuracy to different types of occlusion. The proposed 
algorithm consists of four components, including depth-based object segmentation, 
depth assisted occlusion analysis, depth-based partial occlusion handling and depth-
ordering based severe occlusion handling. The main contribution of this algorithm is 
to utilize depth information in these components to handle various occlusion situa-
tions effectively and robustly. The new methods developed to address different track-
ing problems can be summarized as follows. 

Firstly, the depth density image based object detection method is introduced to  
extract foreground regions, which are further refined by motion detection masks. 
Secondly, the segmented object regions along with the occlusion rate of each tracks in 
the previous frame form the basis of the depth assisted occlusion analysis method. 
Thirdly, different object tracking strategies are employed according to the various 
occlusion situations.  Finally, when severe and full occlusion occurs, with the help of 
depth ordering of each track, the local best matching method is effective and robust 
for splitting handling. 

The experimental results presented have confirmed the performance of our pro-
posed object tracking algorithm under different challenging occlusion situations. 
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Abstract. An experimental analysis of three acquisition scenarios for
face recognition at a distance is reported, namely: close, medium, and
far distance between camera and query face, the three of them consider-
ing templates enrolled in controlled conditions. These three representa-
tive scenarios are studied using data from the NIST Multiple Biometric
Grand Challenge, as the first step in order to understand the main vari-
ability factors that affect face recognition at a distance based on realistic
yet workable and widely available data. The scenario analysis is con-
ducted quantitatively in two ways. First, we analyze the information
content in segmented faces in the different scenarios. Second, we analyze
the performance across scenarios of three matchers, one commercial, and
two other standard approaches using popular features (PCA and DCT)
and matchers (SVM and GMM). The results show to what extent the
acquisition setup impacts on the verification performance of face recog-
nition at a distance.1

Keywords: Biometrics, face recognition, at a distance, on the move.

1 Introduction

Face and iris are two of the most relevant biometrics used nowadays in many
user recognition applications [1,2]. A new research line growing in popularity is
focused on using these biometrics in less constrained scenarios in a non-intrusive
way, including acquisition “On the Move” and “At a Distance” [3]. Imagine a
scenario where the people do not have to stop in front of a sensor to acquire a
picture of the face: simply, they walk through an identification bow. This kind
of scenarios are still in their infancy, and much research and development is
1 P. T. is supported by a FPU Fellowship from Univ. Autonoma de Madrid. Part of

this work was conducted during a research stay of P.T. at Univ. of Kent funded
by the European Action COST2101. This work has been partially supported by
projects Bio-Challenge (TEC2009-11186), Contexts (S2009/TIC-1485), TeraSense
(CSD2008-00068) and "Cátedra UAM-Telefónica".

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 461–468, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



462 P. Tome et al.

needed in order to achieve the levels of precision and performance that certain
applications require.

The new field of biometrics at a distance is enabled mainly thanks to: 1)
recent advances in sensing technology [2], and 2) new algorithms and methods
to deal with varying factors (e.g., illumination, movement, pose, distance to the
camera), which in this case are less controlled than the ideal situations commonly
considered in biometrics research.

As a result of the interest in these biometric applications at a distance, there
is now a growing number of research works studying how to compensate for
the main degradations found in uncontrolled scenarios [4]. Nevertheless, there
is almost no experimental knowledge about the main variability factors found
in specific scenarios, which may help in devising robust methods for biometrics
at a distance tailored to specific applications of practical importance. The con-
tribution of the present paper is toward this end, by analyzing quantitatively
three scenarios of face recognition at a distance, namely: close, medium and far
distance between subject and camera. This analysis is conducted quantitatively
at two levels for the considered scenarios: 1) main data statistics such as infor-
mation content, and 2) performance of recognition systems: one commercial, and
two other based on popular features (PCA and DCT) and matchers (SVM and
GMM).

The scenarios under study are extracted from the NIST Multiple Biometric
Grand Challenge [5], which is focused on biometric recognition at a distance
using iris and face. In particular, we use a subset of this benchmark dataset
consisting of images of a total of 112 subjects acquired at different distances
and varying conditions regarding illumination, pose/angle of head, and facial
expression.

a) Close distance b) Medium distance c) Far distance 

Fig. 1. Example images of the three scenarios: a) close distance, b) medium distance,
and c) far distance

The paper is structured as follows. Sect. 2 describes the dataset and scenar-
ios under study. Sect. 3 analyzes the main data statistics of the scenarios. Sect. 4
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studies the performance of the three considered recognition systems on the dif-
ferent scenarios. Sect. 5 finally discusses the experimental findings and outlines
future research.

2 Scenario Definition

The three scenarios considered are: 1) “close” distance, in which the shoulders
may be present; 2) “medium” distance, including the upper body; and 3) “far”
distance, including the full body. Using this three general definitions we marked
manually all the 3482 face images from the 147 subjects present in the dataset
NIST MBGC v2.0 Face Stills [5]. Some examples images are depicted in Fig. 1. A
portion of the dataset was discarded (360 images from 89 subjects), because the
face was occluded or the illumination completely degraded the face. Furthermore,
although this information is not used in the present paper, all the images were
marked as indoor or outdoor.

Finally, in order to enable verification experiments considering enrollment at
close distance and testing at close, medium, and far distance scenarios, we kept
only the subjects with at least 2 images in close and at least 1 image in both
of the two other scenarios. The data selection process is summarized in Table 1,
where we can see that the three considered scenarios result in 112 subjects and
2964 face images.

Table 1. Number of images of each scenario constructed from NIST MBGC v2.0 Face
Visible Stills

Num. Close Medium Far Discarded Totalusers distance distance distance images
147 1539 870 713 360 3482

At least 2 images At least 1 imagesper user per user
112 1468 836 660 2964

3 Scenario Analysis: Data Statistics

3.1 Face Segmentation and Quality

We first segmented and localized the faces (square areas) in the three acquisition
scenarios using the VeriLook SDK discussed in Sect. 4.1. Segmentation results
are shown in Table 2, where the segmentation errors increase significantly across
scenarios, from only 1.43% in close distance to 82.57% in far distance. Segmen-
tation errors here mean that the VeriLook software could not find a face in the
image due to the small size of faces and increment of variability factors. For all
the faces detected by VeriLook, we conducted a visual check, where we observed
3 and 10 segmentation errors for medium and far distance, respectively.
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Table 2. Segmentation results based on errors produced by face Extractor of VeriLook
SDK

Close Medium Far Discarded Totaldistance distance distance
Num. Images 1468 836 660 360 3324

Errors 21 151 545 848
Errors(%) 1.43% 18.06% 82.57%
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Fig. 2. Histograms of face sizes for each scenario (side of the square area in pixels)

All the segmentation errors were then manually corrected by manually mark-
ing the eyes. The face area was then estimated based on the marked distance
between eyes.

The resulting sizes of the segmented faces are shown in Fig. 2, where we
observe to what extent the face size decreases with the acquisition distance. In
particular, the average face size in pixels for each scenario is: 988 × 988 for close,
261 × 261 for medium, and 78 × 78 for far distance.

Another data statistic we computed for the three scenarios is the average face
quality index provided by VeriLook (0 = lowest, 100 = highest): 73.93 for close,
68.77 for medium, and 66.50 for far distance (see Fig. 3, computed only for the
faces correctly segmented by VeriLook). As stated by VeriLook providers, this
quality index considers factors such as lightning, pose, and expression.

3.2 Information Content

The entropy of the face images in the different acquisition scenarios represents
a quantitative assessment of the information content in the gray levels of the
images. In principle, an image acquired in controlled conditions (illumination,



Acquisition Scenario Analysis for Face Recognition at a Distance 465
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Fig. 3. Histogram of face quality measures produced by VeriLook SDK

clean background, neutral pose, ...) would have less entropy than other image
acquired at a distance in uncontrolled conditions. In Fig. 4 (top), this effect
is patent: the farther the distance the higher the entropy. When considering
only the information within the segmented faces, as shown in Fig. 4 (down),
the opposite occurs: the farther the distance the lower the entropy. These two
measures (increase in entropy of the full image, and decrease in entropy of the
segmented faces), can therefore be seen, respectively, as a quantitative measure
of the scenario complexity increase due to background effects, and the reduction
in information within the region of interest due to acquisition scenario change.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

50

100

150
Entropy of full image

Close distance

Medium distance

Far distance

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

50

100

150

200
Entropy of segmented image

Close distance

Medium distance

Far distance

0.896

0.92

0.948

0.904

0.8860.868

Fig. 4. Histograms of entropy for full images (top) and segmented faces (down) for the
three scenarios with their corresponding average value
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4 Scenario Analysis: Verification Performance Evaluation

4.1 Face Verification Systems

– VeriLook SDK. This is the commercial face recognition system provided by
Neurotechnology2.

– PCA-SVMsystem.This verification system uses Principal Component Anal-
ysis (PCA). The evaluated system uses normalized and cropped face images of
size 64 × 80 (width × height), to train a PCA vector space where 96% of the
variance is retained. This leads to a system where the original image space of
5120 dimensions is reduced to 249 dimensions. Similarity scores are computed
in this PCA vector space using a SVM classifier with linear kernel.

– DCT-GMM system. This verification system also uses face images of size
64 × 80 divided into 8 × 8 blocks with horizontal and vertical overlap of
4 pixels. This process results in 285 blocks per segmented face. From each
block a feature vector is obtained by applying the Discrete Cosine Transform
(DCT); from which only the first 15 coefficients (N = 15) are retained. The
blocks are used to derive a world GMM Ωw and a client GMM Ωc [6]. From
previous experiments we obtained that using (M = 1024) mixture components
per GMM gave the best results. The DCT feature vector from each block is
matched to both Ωw and Ωc to produce a log-likelihood score.

4.2 Experimental Protocol

Three main experiments are defined for the verification performance assessment
across scenarios:

– Close2close. This will give us an idea about the performance of the systems
in ideal conditions (both enrollment and testing using close distance images).
About half of the close distance subcorpus (754 images) is used for develop-
ment (training the PCA subspace, SVM, etc.), and the rest (714 images) is
used for testing the performance.

– Close2medium, and close2far protocol. These two other protocols use as train-
ing set the whole close distance dataset (1468 face images). For testing the
performance of the systems, we use the two other datasets: 836 medium dis-
tance images for close2medium, and 660 far distance images for close2far.

4.3 Results

In Fig. 5 we show the verification performance for the three considered scenar-
ios: close2close, close2medium, and close2far. We first observe that VeriLook is
the best of the three systems in close2close with an EER around 7%. At the
same time, this commercial system is the most degraded in uncontrolled condi-
tions, with an EER close to 40% in close2far, much worse than the other two
2 http://www.neurotechnology.com/

http://www.neurotechnology.com/
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VeriLook SDK close2close: EER−DET = 7.25
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Fig. 5. Verification performance results for the three scenarios and three systems
considered

much simpler systems. This result corroborates the importance of analyzing and
properly dealing with variability factors arising in biometrics at a distance.

We also observe in Fig. 5 that the GMM-based system works better in far
distance conditions than the other systems, although being the less accurate
in close2close and close2medium. This result demonstrates the greater gener-
alization power of this simple recognition approach, and its robustness against
uncontrolled acquisition conditions.

Based on this observation, we finally conducted a last experiment simplify-
ing the DCT-GMM complexity in order to enhance its generalization power,
seeking for a maximum of performance in the challenging close2far scenario.
The verification performance results are given in Table 3 as EER for decreas-
ing DCT-GMM complexity (N = DCT coefficients, M = Gaussian components
per GMM). The results indicate in this case that decreasing the recognition
complexity (i.e., improving the generalization power) of this simple recognition
method does not help in improving its robustness against uncontrolled condi-
tions. In other words, the DCT-GMM recognition complexity initially considered
(N = 15, M = 1024), is the most adequate for the close2far scenario studied
here.
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Table 3. Verification performance of the DCT-GMM system for different configurations

EER M Gaussians
N Coeff. close2close close2medium close2far

DCT 1024 128 8 1024 128 8 1024 128 8
15 12.17 14.62 20.06 26.45 29.06 36.19 31.01 32.52 38.74
10 13.22 15.97 19.62 26.09 28.72 34.90 29.80 32.83 38.58
5 17.66 19.80 22.15 31.72 34.60 35.43 33.46 37.07 39.37

5 Discussion and Future Work

An experimental approach towards understanding the variability factors in face
recognition at a distance has been reported. In particular, we have conducted a
data-driven analysis of three realistic acquisition scenarios at different distances
(close, medium, and far), as a first step towards devising adequate recognition
methods capable to work in less constrained scenarios. This data-driven analysis
has been made for a subset of the benchmark dataset NIST MBGC v2.0 Face
Stills.

Our analysis has been focused on: 1) data statistics (segmented face sizes,
quality and entropy measures), and 2) verification performance of three systems.
The results showed that the considered systems degrade significantly in the far
distance scenario, being more robust to uncontrolled conditions the most simple
approach.

Noteworthy, the scenarios considered in the present paper differ not only in
the distance factor, but also in illumination and pose (being the illumination
variability much higher in far distance than in close distance). Based on the
data statistics obtained and the performance evaluation results, a study of the
effects of such individual factors is source for future research.
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Abstract. Iris recognition from surveillance-type imagery is an active

research topic in biometrics. However, iris identification in unconstrained

conditions raises many proplems related to localization and alignment,

and typically leads to degraded recognition rates. While development

has mainly focused on more robust preprocessing, this work highlights

the possibility to account for distortions at matching stage. We propose

a constrained version of the Levenshtein Distance (LD) for matching of

binary iris-codes as an alternative to the widely accepted Hamming Dis-

tance (HD) to account for iris texture distortions by e.g. segmentation

errors or pupil dilation. Constrained LD will be shown to outperform

HD-based matching on CASIA (third version) and ICE (2005 edition)

datasets. By introducing LD alignment constraints, the matching prob-

lem can be solved in O(n ·s) time and O(n+s) space with n and s being

the number of bits and shifts, respectively.

1 Introduction

Unconstrained iris recognition is a relatively new branch in iris-based identifica-
tion. It is driven by the demands to push biometric image acquisition towards
an extraction of biometric signals with the subject of interest moving or be-
ing at-a-distance from biometric sensors. Advantages of such systems comprise
better usability, higher throughput, and the ability to acquire biometric measure-
ments without required cooperation. While iris recognition in reasonably con-
strained environments provides high confidence authentication with equal error
rates (EERs) of less that 1% [1], a reduction of constraints is quite challeng-
ing. First-generation prototype iris identification systems designed for stand-off
video-based iris recognition, e.g Sarnoff’s Iris-on-the-move [2], or General Elec-
tric’s Stand-off Iris Recognition system [3], have proven the feasibility of iris
recognition from surveillance-type imagery. But also the need for better segmen-
tation techniques than usually applied in still-image iris recognition to account
for distortions like motion blur, defocusing or off-axis gaze direction has been
identified as a main issue. Challenges like the Iris Challenge Evaluation (ICE)
and Multiple Biometric Grand Challenge (MBGC) have provided standardized
datasets to aid in finding solutions to these problems.

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 469–478, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



470 A. Uhl and P. Wild

Most publications regarding iris recognition in unconstrained environments
aim at more sophisticated preprocessing techniques to successfully localize and
segment images of the human eye. Proença et al. [4] identify the critical role of
segmentation and observe a strong relationship between translational segmenta-
tion inaccuracies and recognition error rates. Matey et al. [5]. assess the effect
of resolution, wavelength, occlusion and gaze as the most important factors for
incorrect segmentation and give a survey of segmentation algorithms. While iris
boundaries have been modeled as circles, ellipses and more complex shapes, still
whatever model is used, the processing chain of almost all iris recognition algo-
rithms resembles Daugman’s standard approach [6] very close: After successful
determination of the inner and outer pupil centers, the iris-ring texture of a
person’s eye is unwrapped and further processed by feature extraction mod-
ules. Refinements of this model usually refer to more sophisticated generation
of noise-masks determining pixels containing eyelashes, eyelids, or other types
of distortions. The majority of feature extraction approaches extracts binary
output (iris-codes) from the obtained normalized textures [1], and employs the
fractional Hamming Distance (HD) over different bit shifts (to account for rota-
tional alignment) between iris-codes in order to determine a degree of similarity
at matching stage. Indeed very few studies have proposed new or compared dif-
ferent binary similarity and distance measures, and it is common agreement,
that HD is the best method for this task.

Similarity measure selection is a problem encountered in various fields. Cha et
al. [7] compare several binary vector similarity measures including a new variable
credit similarity measure (altering credit for zero-zero and one-one matches) for
iris biometric authentication. Their proposed metric improved and generalized
HD measures by introducing weights in order to give greater importance to
error pixels in a neighborhood of error pixels. However, in order to determine
parameters, a separate training stage is needed and the trained contributing
factor was reported to vary considerably depending on the application data.
A more exhaustive hierarchically clustered summary of binary similarity and
distance measures can be found in Choi et al. [8].

In this paper, we propose the use of the Levenshtein Distance (LD) [9] for iris
matching in order to tolerate segmentation inaccuracies and distortions caused
by the linearity of Daugman’s normalization model [6]: Each iris point is mapped
into a doubly dimensionless coordinate system to account for elastic deformation
of the iris texture. Yuan et al. [10] identified drawbacks of this iris normalization
model and confirm claims in [11] that a linear stretching seems not enough to
catch the complex nature of pupil dilation. The novelty of our aproach lies in
considering deformation at the matching - and not at normalization - stage. We
perceive a significant improvement of recognition accuracy using this method
compared to traditional HD at only moderate additional time overhead. Im-
provements to common implementations of LD computation, i.e. alignment con-
straints, are suggested and evaluated for two different open iris databases with
respect to recognition accuracy and time complexity. As a by-product of our
evaluation, we also highlight the impact of shifts on iris recognition accuracy.
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The remainder of this paper is structured as follows: An introduction to LD
and its application in iris recognition is given in Sect. 2. Experimental setup,
employed feature extraction algorithms and datasets are presented in Sect. 3.
Evaluations are discussed in Sect. 4 and Sect. 5 concludes this work.

2 Levenshtein Distance in Iris Recognition

The Levenshtein Distance dates back to the 1960s [9] and is a well-known clas-
sical distance measure in pattern recognition for sequences of possibly different
length. The idea to use LD for biometrics is not new, e.g. Schimke et al. [12]
employ an adapted version of LD based on event-string modelling and a nearest
neighbor classifier for online signature verification. In this work, we assess the
usability of LD for iris recognition in order to cope with imperfect normalization
of iris textures. We employ LD at the matching stage to enhance iris recognition
accuracy, as outlined in Fig. 1.
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Fig. 1. System Architecture: the basic operation mode of the proposed system

The inherent idea of LD is to employ inexact matching allowing a sequence to
exhibit additional or lack parts of another similar sequence. Similarity is defined
by an optimal transformation of one sequence into the other by three operations:
INS (insert), DEL (delete) and SUB (substitute). Each operation is associated
with a cost, cINS and cDEL are scalar values, cSUB (a, b) is a function depend-
ing on the symbols a, b ∈ {0, 1} at specific positions of the two sequences to
be compared (in iris recognition we consider binary sequences only). Typically,
cSUB (a, b) = 0 ⇔ a = b for symbol b replacing a. The LD is also called Edit Dis-
tance and can be calculated by Dynamic Time Warping (DTW) [13], a dynamic
programming algorithm to align the sequences. Let A ∈ {0, 1}m and B ∈ {0, 1}n
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be binary sequences of length m and n (as we apply LD to iris-codes of fixed
length, typically m = n holds). DTW uses a matrix D of size (m + 1)× (n + 1),
which is incrementally computed:

D[0, 0] := 0 (1)
∀i > 0 : D[i, 0] := D[i − 1, 0] + cDEL, (2)
∀j > 0 : D[0, j] := D[0, j − 1] + cINS , (3)

∀i, j > 0 : D[i, j] := min(D[i − 1, j] + cDEL,

D[i, j − 1] + cINS ,

D[i − 1, j − 1] + cSUB (A[i], B[j])). (4)

The invariant maintained throughout the algorithm is, that the subsequence
A[1..i] can be transformed into B[1..j] using a minimum of D[i, j] operations.
The Levenshtein Distance of A and B is LD(A, B) := D(m, n). A traceback al-
gorithm is used to find the optimal alignment, i.e. an alignment path results from
joining nodes and depending on the local direction an optimal (not necessary
unique) sequence of transformation operations is derived, see Fig. 1. However,
as the matching stage needs the distance measure only, we can avoid a storage
of the entire matrix and reduce space complexity from O(n2) (assuming n = m
in our application domain) to O(n) with column-wise computation. Still, time
complexity stays at O(n2) with this modification, which is not useful for com-
mercial applications. The traditional HD dissimilarity measure needs O(n · s)
time and O(n + s) space with s being the number of bit shifts, which is usually
a very small constant number.

In order to further reduce LD time requirements, we define additional con-
straints: Computations are restricted to an evaluation region S on matrix D
shaped as a stripe from top-left to bottom-right (see Fig. 1), i.e. technically we
define S := {(x, y) : |x − y| ≤ s} and set:

∀(i, j) /∈ S : D[i, j] = 0. (5)

By this modification, we enforce a maximum local deviation of the patterns by
s shifts. Like in the previously refined implementation, we keep track of the
last column only. The resulting final algorithm solves the matching problem in
O(n · s) time and O(n + s) space with n and s being the number of bits and
shifts, respectively. It is worth to notice, that the last optimization does no longer
deliver the exact Levenshtein Distance. However, it is a very natural constraint
to give an upper limit on relative shifts, since it should not be too difficult to
get estimators for eye tilt (e.g. localization of eye lids).

Finally, in order to obtain a normalized distance value, we note that for m = n
the condition LD(A, B) ≤ HD(A, B) holds, and we therefore divide the result by
the code size n. Note, that for LD the triangle inequality holds. The advantage of
LD over traditional HD lies in its ability of non-linear alignment. For this reason,



Enhancing Iris Matching Using LD with Alignment Constraints 473

it is widely accepted in computational biology, e.g. to estimate alignments of
DNA.

3 Experimental Setup

In order to test the performance of the proposed iris matching technique, we
employ existing iris recognition systems and replace the iris matching module by
the implementation outlined in Sect. 2, see Fig. 1. The transparent application in
existing iris biometric solutions (no re-enrollment of the user gallery is necessary)
is a key advantage of the proposed approach. All used system components as
well as employed biometric databases are described in more detail as follows.

3.1 Databases

For experimental evaluation we employ two different iris databases:

– CASIA: we select all 1307 left eyes out of a collection of 2655 NIR illuminated
indoor images with 320×280 pixel resolution of the open CASIA-V3-Interval1

iris database. This dataset reflects performance on high quality input.
– ICE : this dataset contains all 1425 right eyes out of 2953 NIR illuminated

images with 640× 480 pixel resolution of the open ICE-20052 iris database.
We selected this test set for lower quality input, as some images have notice-
able blur and occlusions.

In case of the CASIA dataset, 4028 genuine (intra-class) and 15576 imposter
(inter-class) comparisons were executed, for the ICE database results refer to
12214 genuine and 7626 imposter comparisons, i.e. we matched all genuine pairs,
but only the first template between users.

3.2 Normalization

Depending on the type of input data, we employ two different iris normalization
techniques. For the processing of CASIA images, we use a custom normalization
software applying Canny edge detection and Hough circle detection to localize
inner and outer pupil boundaries. This localization is followed by Daugman’s
rubber sheet model [6] using a circular boundary model to transform the iris
texture into a rectangular 512 × 64 pixel area. Finally, the texture is enhanced
using blockwise brightness estimation.

While the first method was tuned to deliver accurate segmentation for the
CASIA dataset, we obtained the open iris recognition software OSIRIS3 (ver-
sion 2.01) in order to segment images of the ICE dataset (OSIRIS also comes
1 The Center of Biometrics and Security Research, CASIA Iris Image Database,

http://www.sinobiometrics.com
2 National Institute of Standards and Technology, Iris Challenge Evaluation (ICE)

2005, http://iris.nist.gov/ice/
3 BioSecure Project, Open Source for IRIS reference system,

http://svnext.it-sudparis.eu/svnview2-eph/ref_syst/Iris_Osiris

http://www.sinobiometrics.com
http://iris.nist.gov/ice/
http://svnext.it-sudparis.eu/svnview2-eph/ref_syst/Iris_Osiris
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with an official evaluation on ICE-2005). The OSIRIS segmentation module uses
again a cicular Hough transform, but also an active contour approach to detect
the contours of iris and pupil. In order to get similar input textures for the
feature extraction module, we employed adaptive histogram equalization after
normalization on the 512×64 pixel sized textures with a window size of 32 pixels.

3.3 Feature Extraction

The first feature to be extracted is a custom implementation of the iris-code
version by Ma et al. [14]. This algorithm extracts 10 one-dimensional horizontal
signals averaged from pixels of 5 adjacent rows from the upper 50 pixel rows.
Using dyadic wavelet transform, each of the 10 signals is analyzed, and from
a total of 20 subbands (2 fixed bands per signal), local minima and maxima
above a threshold define alternation points where the bitcode changes between
successions of 0 and 1 bits. Finally, all 1024 bits per signal are concatenated and
yield the resulting 10240 bits code.

The second applied feature is based on row-wise convolution with Log-Gabor
filters, following an implementation by Masek4 resembling Daugman’s feature
extraction approach. Again, rows are averaged to form 10 signals of 512 pix-
els each. The bit-code results from quantizing the phase angle of the complex
response with two bits and sticking together all 10240 bits.

3.4 Matching and Decision

In order to assess the performance of our adapted version of the Levenshtein Dis-
tance (Constrained LD), we compare its recognition accuracy as well as average
matching time requirements with the traditional Hamming Distance (Minimum
HD), as used in commercial systems today [1]. The latter employs the fractional
HD (i.e., the number of disagreeing bits of both codes divided by the total num-
ber of bits) over a number of bit shifts, and returns the minimum as a degree
of dissimilarity between iris codes. Finally, the decision module compares the
outcome with a threshold to classify the match as either genuine or imposter.

4 Experimental Results

The following subsections will cover each a specific research question. Unless
otherwise noted, LD refers to the in Sect. 2 introduced constrained version in
our tests and HD refers to the minimum fractional HD over a fixed number of
shifts. Experiments are carried out in verification mode using the equal error rate
(EER) and receiver operating characteristics (ROC) as the main performance
indicators.

4 L. Masek: Recognition of Human Iris Patterns for Biometric Identification, Master’s

thesis, University of Western Australia, 2003.
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4.1 Does LD Enhance Iris Recognition Accuracy Compared to
Traditional Minimum HD?

We have tested Constrained LD and Minimum HD on CASIA and ICE datasets
using two different algorithms: Ma and Masek. From the obtained EERs sum-
marized in Table 1 we can see, that LD clearly outperforms HD in all tested
combinations. All rates refer to a fixed maximum amount of 20 shifts in or-
der to ensure a fair comparison between LD and HD with respect to rotational
tolerance. However, it seems that the feature extraction algorithm influences
the amount of improvement. For Ma, relative EER improvements were more
pronounced than for Masek on both databases: up to 40 percent improvement
(from 8.6% to 4.96% EER in case of ICE) could be achieved. A possible expla-
nation of this behaviour can be found in the manner this algorithm defines its
iris-code bits: the alternating zero and one chains seem ideally suited for non-
linear LD alignment. Still, even for Masek relative EER improvements of up to
10 percent (from 6.08% to 5.49% EER in case of ICE) could be reported for LD.
It is remarkable that even in case of very high HD accuracy on CASIA (0.58%
EER for Ma, 0.89% EER for Masek) LD can push forward recognition rates (to
0.44% EER for Ma, 0.81% for Masek). Whereas the EER reflects only a single
point of operation, the better performance of LD over HD becomes even more
visible, if we take a closer look at the ROC curves for ICE and CASIA datasets
in Figs. 2, 3. Almost all LD curves are clearly superior to HD, except the one

Table 1. EERs of HD versus LD (20

shifts)

EER ICE CASIA

(%) Ma Masek Ma Masek

Minimum HD 8.60 6.08 0.58 0.89

Constrained LD 4.96 5.49 0.44 0.81

Table 2. Average Matching Times of

HD versus LD (20 shifts)

AMT ICE CASIA

(ms) Ma Masek Ma Masek

Minimum HD 0.73 0.73 0.99 0.97

Constrained LD 4.07 3.71 4.04 3.66
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for Ma on CASIA, which also depends on the selected maximum shift count, as
will be investigated in the next research question. Table 2 lists matching times.

4.2 Which Tradeoff Exists between the Maximum Number of
Shifts, Time Complexity and Recognition Accuracy?

From Table 2 we can see, that LD requires additional matching time, however
it theoretically lies in the same complexity class like HD. LD is on average 4-5
times slower than HD over different combinations of algorithms and datasets
(results refer to the execution on a single processor at 2.8 GHz). While a single
match using HD takes less than 1 ms, LD-based matching needs approximately
4 ms in case of 20 bit shifts. While assessing the performance of LD we noticed,
that the number of shifts has an important impact on both recognition accuracy
and certainly average matching time (due to additional comparisons). From the
implementations it is easy to derive, that for both HD and LD in case of small
bit shifts, doubling the number of shifts also results in approximately twice as
much matching time. From the Figs. 4, 5 we can see, how larger maximum shifts
cause inter-class (imposter) as well as intra-class (genuine) distributions to shift
to the left, for both LD and HD.

The number of shifts is essential in order to cope with angular displacement
of two iris textures to be matched. Furthermore, as shifts should be executed on
iris-codes and not on iris-textures in order to avoid multiple extraction of features
with resulting time overhead, it is important to consider the bit sampling rate
with respect to texture pixels. In our tested algorithms the number of bits per
texture row is equal to the number of pixels per row. A bit shift of one thus
corresponds with shifting the texture a single pixel to the left or right. Fig. 6
illustrates the impact of shift count on recognition accuracy for the CASIA
dataset. It is worth noticing, that for all algorithms a significant improvement of
performance is achieved at around 7 and 14 shifts. Furthermore, we can see that
for very few bit shifts, LD performs worse than HD, which makes sense, since
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in order to benefit from the better non-linear alignment, we need at least an
amount of shifts in the order of angular displacement of genuine pairs. Finally,
Fig. 7 illustrates the resulting tradeoff between EER and average matching time.

5 Conclusion

In this paper we presented an adapted version of LD as a novel matching tech-
nique for iris recognition. Mislocation of pupil and iris centers cause significant
and irrecoverable mapping distortions, which can not be overcome with simple
HD-based matching. Even with accurate segmentation algorithms, inaccuracies
are likely to occurr in unconstrained biometrics. Due to its transparent integra-
tion, LD is a useful matching technique to tolerate non-linear deformations of iris
textures and has been shown to reduce recognition rates drastically (from 8.6%
to 4.96% EER for Ma in case of the challenging ICE dataset). Given a sufficient
number of bit shifts, all tested algorithms and datasets reported a superior per-
formance of LD over HD. With the introduction of alignment constraints, LD is
only 4-5 times slower than HD with an equal amount of shifts. Existing work in
unconstrained iris biometrics has mainly concentrated on normalization issues
so far, while alternative matching techniques have largely been neglected. We
demonstrated and highlighted the ability to tolerate distortions at the matching
stage in this work.
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Abstract. We present a fuzzy multiscale segmentation algorithm aimed at hand 
images acquired by a mobile device, for biometric purposes. This algorithm is 
quasi-linear with the size of the image and introduces a stopping criterion that 
takes into account the texture of the regions and controls the level of coarsen-
ing. The algorithm yields promising results in terms of accuracy segmentation, 
having been compared to other well-known methods. Furthermore, its proce-
dure is suitable for a posterior mobile implementation. 

1   Introduction 

Nowadays, one area of interest which is undergoing a continuous development is 
Biometrics [1].  Within the field of Biometrics, one of the techniques most widely 
used is related to the recognition of a person through their hand [2], since, as finger-
print, this physical characteristic is different for each person. Then, in order to carry 
out this identification, it will be necessary to separate first the required object (hand) 
from the background of the image. In that regard, image segmentation is the branch of 
image processing theory [18] that studies different techniques with the main aim of 
separating an object from the background within a digital image [3]. Specifically, this 
article presents an image segmentation algorithm aimed at segmenting hand images 
acquired by a mobile phone, being part of a whole biometric technique oriented to 
mobile devices for daily applications (bank account access, pin codes and the like). 

In the literature, there are a wide number of algorithms that address the segmenta-
tion problem from different mathematical approaches [4]. One family of segmentation 
algorithms that have experienced a great development in recent years are those based 
on multiscale aggregation [5].  These methods try to segment an image by finding the 
objects directly, that is, finding the regions that compose the image instead of focus-
ing on detecting the possible existing edges. Moreover, recent results obtained by 
these algorithms have shown improvement compared to other methods [11], like the 
Normalized Cuts method [12] and Mean-Shift method [13]. 

Within the family of multiscale aggregation methods, there are also a wide range of 
algorithms that differ in the type of mathematical operations applied to image pixels. 
The algorithms based on Segmentation by Weighted Aggregation (SWA [6]) have 
shown good results by means of similarities between intensities of neighboring pixels 



480 Á. García-Casarrubios et al. 

[7] and with measurements of texture differences and boundary integrity [8]. Other 
approaches include more complicated operations, such as Gradient Orientations His-
tograms (GOH [9]), or more straightforward grouping techniques based on the inten-
sity contrast between the boundary of two segments and the inside of each segment 
[10]. Moreover, thanks to its definite structure, SWA methods may be even used in 
conjunction with other approaches [20]. 

Even though our algorithm presents a structure based on SWA methods, there are 
several differences that must be taken into account: 

− SWA algorithms identify each segment by one representative node [9], so that all 
the pixels which form the segment are strongly connected to that representative 
node. However, in our algorithm segments are identified by a number of character-
istic measures. These measures gather information of each segment by computing 
the average intensity, variance and position centroid. 

− SWA methods start the aggregation process by selecting a few seed nodes [9], 
satisfying the condition that all pixels are strongly connected to at least one seed 
node. In contrast, our algorithm builds the first scale by the direct formation of the 
first segments, so that they are formed by a few pixels similar to each other. 

− SWA methods transfer information between scales through the interpolation coef-
ficients pik, where pik represents the probability that node i belongs to the segment 
represented by the node k [19]. However, in our algorithm there is no need to com-
pute any interpolation coefficient, because the segments in each scale collect the 
information of the segments from the previous scales. In addition, we use Delaunay 
triangulation [14] to include spatial information, so that it provides in each scale 
the segments that are more likely to be grouped. This considerably reduces the 
computational cost, since the number of weights to calculate is much smaller than 
the number of interpolation coefficients used in SWA methods. 

2   Problem Statement 

Given an image I containing M x N pixels, a graph G = (V, E, W) is constructed, 

where nodes iv V∈  represent pixels in I, edges 
ije E∈  connect pixels vi and vj ac-

cording to a defined neighborhood system (namely a 4-connected structure) and 
weights wij are associated with each edge eij , indicating to what extent two nodes vi 
and vj are similar. This implementation proposes the use of fuzzy logic for wij defini-
tion. 

The idea of segmentation consists of dividing image I into T segments. Let 

ts V⊆  (with 1,2,...,t T= ) be a segment gathering a set of pixels with similar 

properties in terms of
ijw . Concretely, the aim of this document consists of dividing 

the image I into T = 2 segments, distinguishing hand from background. However, 
sometimes it is difficult to achieve a result of T = 2 segments, and thereby it is impor-
tant to isolate completely the hand in one only segment, even though the background 
may be formed by several segments. 

Therefore, the problem is stated as follows: divide a given image I into segments st 
with 1,2,...,t T= , so that the hand is completely isolated in one segment from the 
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background. Next section 2.1 will explain how nodes from V are assigned to segments 
st through different scales. 

2.1   The Algorithm 

Before starting with the main procedure of segmentation, some considerations on 
image I must be stated. Image I is obtained from a mobile device (section 3) and it 
represents a color image constructed by the RGB color space [15]. However, since the 
purpose of our algorithm is segmenting hand images, it is evident that the use of tech-
niques for human skin detection might be useful. In that regard, we propose the use of 
the Lab color space (abbreviation for CIE 1976 L*, a*, b*) [16]. Empirically, we 
found that the best results are obtained with the use of layer b, so I b← . Notice that 
the calculation of the layer b from a RGB image is a complicated process that is be-
yond the scope of this article, see [16] for more information about this conversion. 

In Fig. 1 we present the steps followed in the construction of the algorithm’s struc-
ture and they will be explained below. 

1. If we consider G[s] the representation of the image in the scale s, then G[0] = I. In 
this first scale, weights wij are calculated according to the following Gaussian-like 
fuzzy distribution (Eq. 1): 
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where Ii and Ij are the image intensities of I at positions i and j, and σ > 0 is a parame-
ter responsible for accuracy in terms of segmentation, because if σ → ∞ , then 

1ijw → . In our algorithm, for the sake of accuracy, this parameter is fixed to σ = 0.01. 

Once the graph G is obtained, the aggregation algorithm proceeds by sorting every 
pair of nodes (namely vi and vj) according to their weight wij in descending order. In 
other words, first pairs (those with higher values regarding wij) are more similar, and 
therefore they deserve to belong to the same segment. Taking into account that an 
unassigned segment si is denoted by si = 0, the aggregation process is carried out until 
every node in V is assigned to a segment, according to Eq. 2. 
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where labels si and sj are assigned to nodes vi and vj indicating to which segment they 
belong, according to three possible situations: 

− If both nodes have not been assigned yet, then both nodes are assigned to the new 
segment sq, being q ≤ M x N. 

− If in a given edge eij, only one of the nodes has been assigned to a certain segment 
label (si or sj depending on the case), then both nodes are assigned to that segment. 

− If in a given edge eij, both nodes have been assigned to a segment label, then both 
nodes remain assigned to the corresponding segment. 
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1. Formation of the segments in the first scale

2. Computation of the representative data of 
each segment

3. Set the structure in the new scale

4. Formation of the segments of any scale by 
using the stopping criterion

Does the number of 
segments vary from the 

previous scale?

Extract the segmented image

No

Yes

 

Fig. 1. Flow chart of the algorithm’s structure 

2. As it was mentioned in section 1, our algorithm does not identify each segment by 
a unique representative node. In contrast, it carries out that identification through 
measures that collect the characteristic information of each segment. Those meas-
ures are: position centroid ξ (Eq. 3), average intensity μ (Eq. 4) and variance 

2σ (Eq. 5). The centroid position is calculated based on the physical position of 

nodes within image I and is used later to find the neighbors of every segment.  
Considering that a node vi has two components (xvi,yvi), the centroid is computed as 
follows: 

( )
ii ss yx ,=ξ  (3)

where xsi and ysi represent the coordinate locations of nodes within segment si. 
Similarly, average intensity is obtained by averaging the node intensities in vsi, as 

follows: 

( )
is

vi I=μ  (4)

where vsi indicates the set of nodes within segment si. 
Finally, the variance provides information about the texture of the segment, as it 

takes into account its dispersion. The variance is calculated, based on previous Eq. 4: 
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where Nsi represents the number of nodes from V in segment si. 
Therefore, from the second scale, a segment si is defined as a three-vector compo-

nent si = (ξi, μi, 2
iσ ), facilitating in subsequent scales the recursive procedure, where 

the representative data of the segments in a scale s become the nodes in the new scale 
s+1. 

3. Due to the aggregation process shown before, the 4-neighbor structure is not con-
served, so it is necessary to build a new structure for each scale. This new structure 
is created by the Delaunay triangulation [17], which establishes a network based on 
the centroids ξi computed in the previous scale. Although the number of neighbors 
cannot be fixed for each node of the new scale, this algorithm provides a quick way 
to set every node's neighbors based on their proximity. 

4. In order to calculate the weights associated to the new edges, the same Gaussian-
like fuzzy distribution shown before (Eq. 1) is used, although in this case it com-
putes the average intensities of the corresponding segments, µi and µj. 

One problem that is encountered when using the aggregation process mentioned 
above is that it does not stop aggregating nodes until it reaches the end of the list of 
edges, which means that nodes connected by weak edges (at the bottom of the list) 
would be added. To solve this problem, we propose the introduction of a stopping 
criterion that takes into account the texture of the segments. So, if this stopping crite-
rion is not satisfied by a pair of nodes, they will not be aggregated under the same 
segment. Thus, two nodes vi and vj of any scale will be aggregated only if the follow-
ing condition is satisfied: 

kjiij +⋅≤ 222 σσσ  (6)

where 2
ijσ  represents the variance of the likely aggregate from nodes vi and vj, 2

iσ  and 
2
jσ  represent the cumulative variances of the nodes vi and vj, and k is a constant set 

based on empirical results (section 4) that controls the level of coarsening, i.e. the 
number of remaining segments at the end of the process. 

This condition will yield better results regarding segmentation, although k must be 
tuned to obtain T = 2 segments, since the algorithm get blocked in a point where no 
more segments are aggregated, and therefore T ≥ 2, in general. As future work, this 
requirement must be refreshed dynamically in order to obtain T = 2 segment labels 
automatically. 

3   Database Acquisition 

An important aspect of a segmentation algorithm regards the data involved to validate 
the proposed approach. Since this document presents a segmentation algorithm ori-
ented for mobile devices, it is obvious that the data must be acquired with the selected 
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device. In other words, the data acquisition consists of images acquired by an iPhone 
Mobile device. The dimensions of each image are 2 Mega-pixels and 1600 x 1200 
pixels, with a resolution of 72 dpi. Furthermore, each image was taken with the hand 
open, considering a distance of 15-30 cm between the device and the hand. The data-
base gathers 50 users of a wide range of ages (from 16 to 60) and containing different 
races. Moreover, the images were taken under uncontrolled illumination settings  
and hands were not required to be placed on a platform. The image acquisition proce-
dure requires no removal of objects such as rings, bracelets, watches and so forth, so 
that the image is taken non-invasively. The database is publicly available at 
http://sites.google.com/site/engb2s/databasehand. 

4   Results 

The evaluation of a segmentation method is a difficult task. In Fig. 2 the reader  
may observe the degree of accuracy achieved when segmenting the hand from the 
background. 

 

Fig. 2. Eight visual examples of the algorithm’s performance 

Apart from the obvious way of a direct observation, some quantitative evaluation 
methods have been used in order to validate our algorithm. 

First, the performance of the segmentation has been assessed based on the ratio F-
Measure [11] (Eq. 7), which compares our algorithm with ground truth segmenta-
tions. These ground truth segmentations were obtained by manually segmenting the 
images into two classes, foreground and background. 

2RP
F

R P
=

+
 (7)

where R (Eq. 8) and P (Eq. 9) are the Recall and Precision values of a particular seg-
mentation, according to [11]. 

number of true positives

number of true positives + number of false negatives
R =  

(8)
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number of true positives

number of true positives + number of false positives
P =  

(9)

In Fig. 3 (left) the results of the F-Measure for different images and the values of the 
constant k (stopping criterion) are provided. Notice the high scores achieved, validat-
ing the accuracy of the algorithm. 

In addition, we have simulated the blurry effect that occurs sometimes when taking 
a photograph (Fig. 3 - right). For that, the original images were eroded by motion 
filters that approximate, once convolved with an image, the linear motion of a camera 
by L pixels, with an angle of θ degrees. Notice that, in spite of the erosion, the scores 
are over 96%. Moreover, if the original images are eroded by a Gaussian filter of 
variance σ2 ≤ 20, the scores are still over 90%. 

Furthermore, it is provided a comparison with two well-known methods (Fig. 4), 
“Normalized cuts and image segmentation” (implementation in MATLAB available1) 
[12] and “Efficient graph-based image segmentation” (according to our implementa-
tion) [10], resulting in an outperformance by our approach. It is remarkable that our 
algorithm allows the implementation of a light software program, which is proved by 
the fact that it performs considerably well with relatively large images (800x600 pix-
els computed in 36 seconds), whereas the software implementations of other algo-
rithms, like Normalized Cuts, only perform well with smaller images (160x160 pixels 
in 13 seconds). In fact, computing a small image (160x160 pixels) with our method 
took only 4 seconds, meaning that our algorithm is over 3 times faster than the Nor-
malized Cuts algorithm. The implementation of this algorithm has been carried out on 
a PC Computer @1.8 GHz, with MATLAB 7 R14. A mobile oriented implementation 
remains as future work. 

        

Fig. 3. Accuracy of the algorithm (left) and performance when eroding the original image with 
a filter that approximates the linear motion of a camera by L pixels, with an angle of θ degrees 
(right) 

                                                           
1 MATLAB implementation at http://www.cis.upenn.edu/~jshi/ 
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                 Original Image          Our Method        Eff. Graph-Based Segm.   Normalized Cuts 

 

Fig. 4. Results of applying our method compared to other state of the art algorithms 

5   Conclusions 

We have introduced a multiscale algorithm for image segmentation and aimed for 
biometric purposes. 

The algorithm uses a process of recursive aggregation in order to group the pixels 
and segments which share the most number of properties. In this article we have fo-
cused on the gray intensity and the Lab color space, but the structure of the method is 
designed to introduce as many features as the user may like, such as second order 
statistical measures. These properties are computed recursively by weights between 
pixels and segments, taking into account that fuzzy techniques are used for their con-
formation. Moreover, the algorithm is flexible enough to allow the user to introduce 
new fuzzy functions in order to calculate the weights. 

We have also presented a stopping criterion that computes the texture of each seg-
ment and controls the level of coarsening by adjusting the parameter k. 

In addition, one remarkable feature of the algorithm presented is the lack of inter-
polation matrix, which contributes to the lightness and fastness of the method. This 
lack of the interpolation matrix is in certain way compensated by the introduction of a 
Delaunay Triangulation algorithm, which is responsible for the assignment of 
neighbors in every scale. Moreover, we have introduced the concept of using the 
centroid of a segment as a way of representing its spatial properties and, therefore, 
allowing the Triangulation algorithm to create every new graph properly. 

We have also introduced a new fast grouping technique that works with the repre-
sentative properties of each segment. This algorithm receives the graph obtained by 
the Triangulation method and assigns every segment of the current scale to a new one 
of the next scale, taking into account that the weight between a pair of segments de-
termines the likelihood of those segments to be grouped. 

Finally, we have evaluated the efficiency of our quasi-linear algorithm and we have 
compared it to the “Normalized Cuts” algorithm and to the “Efficient-graph based 
segmentation” method, turning out that our algorithm drew better results. 
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It is remarkable that our algorithm allows the implementation of a light software 
program, which is proved by the fact that it performs considerably well with relatively 
large images (800x600 pixels computed in 36 seconds), whereas the software imple-
mentations of other algorithms, like Normalized Cuts, only perform well with smaller 
images (160x160 pixels in 13 seconds). In fact, computing a small image (160x160 
pixels) with our method took only 4 seconds, meaning that our algorithm is over 3 
times faster than the Normalized Cuts algorithm. 
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Abstract. This paper reports an experimental analysis of footsteps as
a biometric. The focus here is on information extracted from the time
domain of signals collected from an array of piezoelectric sensors. Results
are related to the largest footstep database collected to date, with almost
20,000 valid footstep signals and more than 120 persons, which is well
beyond previous related databases. Three feature approaches have been
extracted, the popular ground reaction force (GRF), the spatial average
and the upper and lower contours of the pressure signals. Experimental
work is based on a verification mode with a holistic approach based on
PCA and SVM, achieving results in the range of 5 to 15% EER depending
on the experimental conditions of quantity of data used in the reference
models.

1 Introduction

Footstep signals have been used in different applications including medicine [1],
surveillance [2], smart homes [3] and multimedia [4]. Footstep recognition was
first suggested as a biometric in 1977 [1], but it was not until 1997 when the first
experiments were reported [5]. Since then the subject has received relatively little
attention in the literature compared to other biometrics, even though it possesses
some worthwhile benefits: unobtrusive, unconstrained, robust, convenient for
users, etc.

Different techniques have been developed using different sensors, features and
classifiers as described in [6]. The identification rates achieved of around 80-
90% are promising and give an idea of the potential of footsteps as a biometric
[7,8]. However, these results are related to relatively small databases in terms of
number of persons and footstep signals, typically around 15 people and perhaps
20 footsteps per person [5]; this is a limitation of the work to date.

A database is an essential tool to assess any biometric; therefore, this paper
reports experimental results of footsteps as a biometric on the largest footstep
database to date, with more than 120 people and almost 20,000 signals, enabling
assessment with statistical significance.

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 489–498, 2010.
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Regarding the sensors employed to capture the footstep signals, two main
approaches have been followed in the literature: switch sensors [9,10,11] have
been used with a relatively high sensor density (ranging from 50 to 1024 sensors
per m2) in order to detect the shape and position of the foot. On the other
hand, different types of sensors that capture transient pressure [5,12,13,14,15]
have been used with relatively low sensor density (typically 9 sensors per m2),
more focused in the transient information of the signals along the time course.

The capture system considered here uses a high density of approximately 650
piezoelectric sensors per m2 which gives a good spatial information and measures
transient pressure.

This paper is focused on the analysis of the temporal information of the
footstep signals. In this sense the most popular feature extracted in the related
works is the ground reaction force (GRF), in some cases used in a holistic manner
[5], and in other cases geometric measurements are extracted from the GRF
[12,15,16]. In our previous works [8,17,18] geometric and holistic features were
compared obtaining in all cases better results for the holistic approach. In this
paper, the GRF profiles are compared with other features in a holistic manner
and also a fusion of them is carried out obtaining verification results in the range
of 5 to 15% of EER depending on the experimental conditions. The experimental
protocol is focused on the study of the influence of the quantity of data used in
the reference models.

The paper is organized as follows. Section 2 describes the footstep signals
used and the feature extraction process, focused on time information. Section 3
describes briefly the database, Section 4 presents the experimental results; and
finally conclusions and future work are presented in Section 5.

2 Description of the Signals and Feature Extraction

2.1 Footstep Signals

As mentioned above, the capture system considered here uses piezoelectric sen-
sors with a relatively high density, and therefore footstep signals collected contain
information in both time and spatial domains. This is in contrast to previous
related works, e.g. [12,10,11]. In fact, footstep signals collected here contain in-
formation in four dimensions namely: pressure, time, and spatial positions X and
Y. The sensors are mounted on a large printed circuit board and placed under a
conventional mat. There are two such mats positioned appropriately to capture
a typical (left, right) stride footstep. Each mat contains 88 piezoelectric sensors
in an area of 30 × 45 cm.

Figure 1 shows three different 3D plots for an example of a footstep signal
reflecting its three stages: Figure 1(a) shows the differential pressure for an in-
stant in the first stage of the footstep, i.e. when the heel strikes the sensor mat,
Figure 1(b) shows the same but for an instant in the second stage of the footstep,
i.e. when the whole foot rests over the sensors, and Figure 1(c) the same but for
an instant in the third stage of the footstep, i.e. when the heel leaves the surface
and the toes push off the sensor mat. It is worth noting that the output of the
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Fig. 1. Spatio-temporal footstep signal in the different stages. a) The derivative of the
pressure against the position X and Y at the first stage of footstep. b) The same but for
second stage of footstep signal. c) The same but for third stage of the footstep signal.

piezoelectric sensors is the differential pressure in time; thus, it can be seen in
Figure 1(c) that there are negative values.

In this paper, the focus is on the analysis of the information of the footstep
signals contained in the time domain, leaving the analysis of the spatial domain
for further work.

2.2 Feature Extraction and Matching

This section describes the time domain features that are used to assess footsteps
as a biometric. Figure 2(a) shows an ensemble of signals from a single footstep.
Each signal represents the differential pressure against time for each of the 88
sensors in one mat. An energy detector across the 88 sensors is used to obtain
the beginning of each footstep to align the signals.

The most popular time domain feature in related works is the ground reaction
force (GRF) [5,7,12,15,16]. Figure 2(b) shows the GRF profile for the example
footstep considered here. In this case, as the piezoelectric sensors provide the
differential pressure, the GRF is obtained by accumulating for each sensor signal
across the time, and then an average of the 88 single profiles is computed to
provide a global GRF. Formally, let si[t ] be the output of the piezoelectric sensors
i, where t are the time samples being t = 1,...,Tmax and i are the sensors i =
1,...,88. Then the global GRF (GRFT ) is defined by:

GRFT [t] =
1
88

88∑
i=1

(
t∑

τ=0

(si[τ ])) (1)

Apart from the GRF, two other feature approaches are studied here. The first
comes from a spatial average [13,19] of the 88 sensors of the mat to produce a
single profile. An example is shown in Figure 2(b).
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Fig. 2. Feature extraction in time domain for a footstep signal. (a) Differential pressure
against time for the 88 sensors. (b) Normalised ground reaction force profile from (a)
as defined in Equation 1, and normalised spatial average of the 88 sensors as defined
in Equation 2. (c) Upper and lower contour profiles from (a) as defined in Equations 3
and 4 respectively.

save[t] =
1
88

88∑
i=1

(si[t]) (2)

The second approach uses the upper and lower contour coming from the maxima
and minima of the sensors for each time sample, as shown in Figure 2(c). These
two signals are then concatenated into one contour signal.

sup[t] =
88

max
i=1

(si[t]) (3)

slo[t] =
88

min
i=1

(si[t]) (4)

Equations 1 to 4 lead to a high dimensionality in the time domain with a vector of
8000 samples per footstep. Data dimensionality is further reduced using principal
component analysis (PCA), retaining more than 96% of the original information
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by using the first 120 principal components for each feature approach. Regarding
the classifier, a support vector machine (SVM) was adopted with a radial basis
function (RBF) as the kernel, due to very good performance in previous studies
in this area [7,8].

3 Database and Experimental Protocol

The database collected, apart from footsteps, contains another three biomet-
ric modes: speech, face and gait. These modes were included in order to assist
in the labelling of the footstep signals, as the collection was an unsupervised
process. The speech mode was used to carry out an automatic labelling of the
database. A novel iterative process was developed using an identification strat-
egy, labelling the data with the highest confidence first and leaving the data with
less confidence for the last iterations [20].

Regarding the experimental protocol followed to assess footsteps as a biomet-
ric, special attention has been paid to the partitioning of the data into three
sets, namely Reference data and two test sets. The first test set, called Devel-
opment was used to set the parameters of the system such as the features, the
PCA components and the SVM classifier. Then the unseen Evaluation test set
is comprised of the last 5 signals collected from each person. It is worth noting
that in this paper the data used in the different sets keeps the chronological time
of the collection. Therefore, for each user the reference data is comprised of the
first data provided, and the data used in the Evaluation set is the last collected.
This is a realistic approach reflecting actual usage in contrast to previous related
works [8,9,10].

The influence of the quantity of data used to train and test the system is a key
factor in any performance assessment; while common in more established bio-
metric modes this aspect is not considered in many cases of footstep studies, for
example in [5,12,13], due to limited numbers of data per person in the databases.
Different applications can be simulated using different quantities of data in the
reference models. In the present work we simulate two important applications:
smart homes and access control scenarios. In the case of a smart home there
would be potentially a very large quantity of reference data available for a small
number of persons, while in security access scenarios such as a border control,
limited reference data would be available, but potentially for a very large group
of people.

A characteristic of the database considered here is that it contains a large
amount of data for a small subset of people (>200 signals for 15 people) and a
smaller quantity of data for a larger group of people (>10 signals for 60 people).
This reflects the mode of capture which was voluntary and without reward.
The assessment of the system is carried out in several points or benchmarks
considering different amounts of reference data.

For example, Table 1 shows the quantity of data used in benchmark B1 (using
40 signals in the reference models and 40 models) for the different data sets of
Development and Evaluation. Each signal from the test sets is matched against
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Table 1. Database configuration for benchmark B1 (40 signals per reference model)

all the 40 reference models defined. As can be seen in the table, the total number
of stride signals in the database is 9,990, i.e. 19,980 single (right and left) signals
in total. As a result, the number of genuine matchings is 6,697 and 200 for De-
velopment and Evaluation respectively; and the number of impostor matchings
are 276,383 and 21,800 for Development and Evaluation respectively. Similarly,
other benchmark points have been defined with different number of models and
signals per model. Profile results of these other benchmark points can be seen
in Figure 3.

4 Experimental Results

This section describes the assessment of the time domain features described in
Section 2 following the protocols defined in Section 3.

Figure 3(a) shows the EER against the different quantities of stride footstep
signals used to train the reference models, bearing in mind that the number
of reference models decreases as defined by the top abscissa axis. For example,
the points on the left of the figure relate to 75 reference models using only
1 footstep signal to train each model; whereas points on the right relate to 5
reference models with 500 signals to train each model.

The figure shows EER results for the three feature approaches, i.e. the GRF,
the spatial average, and the contour. Also a fourth plot in the figure shows
the result of the fusion at the feature level of the three approaches, carried out
concatenating the features of the single approaches after PCA. These results are
generated for stride footsteps, which are comprised of concatenated right and
left footstep signals.

All four plots have a similar overall shape with (i) an initial steep fall from
approximately 35% EER to 15-20% EER when using 1 to 10 footsteps for train-
ing, (ii) a smooth knee curve when increasing the number of signals used in the
reference models from 20 to 80 where the error rates change less rapidly from
18 to 13% for the cases of GRF and spatial average, from 15% to 11% for the
case of the contour and from 13% to 9% for the case of the fusion of the three
approaches; and (iii) relatively flat profiles where error rates are around 10% for
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(a) Time Features (b) Comparison Right/Left/Stride

Fig. 3. (a) Four plots of EER against number of stride signals used to train the reference
models for concatenated (stride) footsteps. (b) EER against number of signals used to
train the reference models with the fusion of the three feature approaches in the time
domain for single (right and left) and stride footsteps.

the three feature approaches (11% for the GRF) and around 5% EER for the
case of the fusion when using 500 signals in the reference models.

This shows that in all cases the performance saturates when the number of
signals per model exceeds approximately 80 footsteps. Also, errors as low as 5%
are viable, especially with further system optimisation. It should be emphasized
that: (i) these results relate to features extracted from the time domain only, no
spatial information is considered here, and (ii) the number of trials varies along
the abscissa axis.

It is interesting to note that the GRF and the spatial average features give
similar performance, while the contour features provide the best results of the
three approaches more accentuated in the left part of the figure, i.e. when using
10 to 100 signals to train the reference models. Also, the fusion outperforms
the three single approaches. This approach provides the best results for footstep
recognition using time domain features. The following results of this section
relate to the fusion of the three feature approaches in the time domain.

Figure 3(b) shows the EER against different quantities of reference data for
the case of the single footsteps (right and left) and the stride for the fusion of the
three time domain feature approaches. As can be seen the three plots follow the
same trend, but there is a significant improvement of performance when using
the stride compared to the single footsteps (right and left), reducing the EER
by an average of 3%.

Figure 4 analyses in more detail the case of benchmark B1 (i.e. using 40 signals
per reference models and 40 models) comparing results obtained for the Develop-
ment (Fig. 4(a)) and Evaluation (Fig. 4(b)) sets. In both cases there is a superior
performance for the case of the stride footstep with an average relative improve-
ment of 25%. It is interesting to see such a significant performance degradation
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Fig. 4. DET curves for fusion of the three features approaches. (a) Results for bench-
mark B1 for the Development set, and (b) for the Evaluation set.

between the Development and the Evaluation. As described in Table 1, in both
datasets there is a common reference data. As described, in these experiments the
time sequence of the collection is kept, i.e. data used in the test sets was collected
later in time than data used to train the reference models. Therefore data used
in the Development set is closer in time to the reference than data used in the
Evaluation set, and therefore more likely to be more similar. This explains the
degradation observed in the Evaluation set.

Results achieved here are better compared to those obtained in the related
works. Also, it is worth noting that the experimental setup here is the most
realistic at least in two factors: (i) it considers the largest footstep database
to date, and (ii) it keeps the time lapse between reference and test data, in
contrast to most previous works, for example [8,9,10], which randomize the time
sequence of the data in the experiments. The randomization makes reference and
test datasets more similar and therefore it is possible to achieve artificially good
results.

5 Conclusions and Future Work

This paper studies footstep signals as a biometric based on the largest footstep
database to date with more than 120 people and almost 20,000 signals. Foot-
step signals collected contain information in both time and spatial domains, in
contrast with previous related works.

This paper focuses on the analysis of the time information of the signals.
Features such as the popular ground reaction force, together with two others
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approaches named the spatial average and the contour are compared and fused
following a holistic approach with PCA and SVM.

The experimental protocol is designed to study the influence of the quantity
of data used in the reference models, simulating conditions of possible extreme
applications such as smart homes or border control scenarios. Results in the
range of 5 to 15% EER are achieved in the different conditions for the case
of the stride footstep for the fusion of the three feature approaches, which are
better than previous works, and with a much more realistic experimental setup.

The time gap between reference data and test is an important point to consider
in further work as we have observed a significant degradation of the performance
in the Evaluation set which is comprised of the last data collected in the database.

Also, the analysis of the spatial information of the footstep signals and a
fusion with the time domain information are very interesting lines for further
research.
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Abstract. One of the most recent trends in biometrics is recognition by ear ap-
pearance in head profile images. Determining the region of interest which con-
tains the ear is an important step in an ear biometric system. To this end, we 
propose a robust, simple and effective method for ear detection from profile im-
ages by employing a bank of curved and stretched Gabor wavelets, known as 
banana wavelets. A 100% detection rate is achieved here on a group of 252 pro-
file images from XM2VTS database. The banana wavelets technique demon-
strates better performances than Gabor wavelets technique. This indicates that 
the curved wavelets are advantageous here. Also the banana wavelet technique 
is applied to a new and more challenging database which highlights practical 
considerations of a more realistic deployment. This ear detection technique is 
fully automated, has encouraging performance and appears to be robust to deg-
radation by noise. 

1   Introduction 

Biometrics concerns the recognition of individuals based on a feature vector extracted 
from their anatomical and/or behavioral characteristic, and plays a vital role in secu-
rity and surveillance systems. Any automatic biometric system needs detection and 
partitioning process to extract the region of interest from the background. 

Ear as a biometric identifier has attracted much attention in the computer vision 
and biometric communities in recent years. Ear, which is characterized by the appear-
ance of the outer ear, lobes and bone structures is frequently used in biometric. Ear 
identification has some advantages over other biometric technologies for various 
reasons. An ear contains a large number of specific and unique features that assist in 
human identification. It contains a rich and stable structure that does not change sig-
nificantly over time [1]. An ear can be remotely captured without any knowledge or 
consent of the person under examination. It also does not suffer from changes in facial 
expression. These properties make ears very attractive as a biometric identifier. As a 
result, the ear biometric is suitable for security, surveillance, access control and moni-
toring applications. 

Iannarelli [2] performs two early studies suggesting ears are unique to individuals 
and supporting the use of an ear as a biometric modality. There are some studies 
which show how the ear can be used for recognition, using 2D and 3D images [1, 3]. 
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The 2D approaches use the ear as a planar structure affixed to the head. Alternatively, 
3D approaches can be used and this has so far been achieved with range scan data. 
Ear detection is the most important step in an ear recognition system, and the detec-
tion quality will therefore affect directly the performance of the whole recognition 
system. 

Recent approaches mostly focus on ear recognition without a fully automated  
method for ear detection [1, 3]. However automated schemes have recently been pro-
posed for ear detection prior to recognition. Some researchers have focused on 2D [4, 
5, 6] and 3D [7, 8] ear detection. The two most sophisticated approaches in 2D ear 
detection are proposed in [4] and [5]. Islam et al. [4] modifies the cascaded AdaBoost 
approach to detect the ear from 2D profile images in a learning method by using a 
training data of ear images. They report good results on large size databases. However 
if the ear image is rotated with the respect to the training data or if its appearance is 
different from the ears in the training data, their method could fail to detect the ear, 
because the training data does not contain example test data in such cases. Forming a 
database of rotated ears will require much more storage than that required for a tech-
nique which is inherently immune to change in feature orientation. Arbab-Zavar et al. 
[5] propose an ear detection algorithm based on the elliptical shape of the ear by using 
a Hough transform. Their method is robust with occlusion; however their ear detec-
tion algorithm only works under some specific conditions applied to the images of the 
database to avoid errors caused by the presence of nose and/ or spectacles. 

We contend that it is prudent to continue investigating approaches which consider 
the ear as a planar surface. This will allow for application in access control and sur-
veillance, and for acquisition from documents. The ear plane is not aligned to that of 
the head, but it is chosen as such we can consider the ear to be on a flat surface. For 
ear detection, we shall need to locate the ear in a profile image automatically with an 
algorithm which is robust at the presence of noise. It therefore appears appropriate to 
investigate a technique which depends on the general structure of the ear. 

We employ a bank of banana wavelets, which are generalized Gabor wavelets, to 
extract curvilinear structures. In addition to the frequency and orientation, banana 
wavelets are also characterized with properties associated with the bending and curva-
ture of the filter. The ear is an image structure mainly contains features which are 
similar to those of banana wavelets. These features then appear well matched to the 
general structure of the ear which has many curvilinear structures, particularly in the 
region of the helix (the uppermost part of the ear) and the tragus (which are the lower 
parts). 

This paper is structured as follows. Section 2 gives a brief background on banana 
wavelet filters. Section 3 describes our new technique to detect the ear. The extraction 
results are provided in section 4. Finally, the conclusions are presented in section 5. 

2   Banana Wavelets 

Banana wavelets are a generalization of Gabor wavelets and are localized filters de-
rived from a mother wavelet [9], particularly suited to curvilinear structures. 
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A banana wavelet bB is parameterized by a vector b  of four variables, i.e. 
( )scf ,,,α=b  where f , α , c and s  are frequency, orientation, curvature, and size 

respectively. This filter is built from a rotated and curved complex wave function 

( )yxF ,b  and a Gaussian ( )yxG ,b  function rotated and curved in the same way as 

( )yxF ,b  [9]: 

( ) ( ) ( )( )bbbb DCyxFyxGyxB −⋅⋅= ,,, γ  (1)
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empirically, xσ and yσ are the scales of the Gaussian filter in x and y directions re-

spectively, and 2
x

eDC
σ−

=b  is the bias of the banana wavelets. 
Any image can be represented by the banana wavelet transform allowing the  

description of both spatial frequency structure and spatial relations. The convolution 
of the image with complex banana filters with different frequencies, orientations, 
curvatures, and sizes, captures the local structure points of an object. 

3   Ear Detection 

We argue that any ear contains curvilinear structures such as helix, anti-helix and 
inter-tragic notch. The essence of our ear detection technique is to initially calculate 
the magnitude of the filter responses ( )bx0 ,AI by convolving a banana wavelet bB  
with an image I and then to find the positions where this magnitude has local maxima, 
i.e.: 

( ) ( )( )⎟
⎠
⎞

⎜
⎝
⎛= bxbx

x
,maxarg, 00

0

FIAI  (2)

where ( ) ( )( )00 *, xbx b IBFI =  and 0x  is the position of a pixel in an input image I . 

A banana wavelet bB produces a strong response at pixel position 0x  when the local 

structure of the image at that pixel position is similar to bB . An input ear image and 
the response magnitudes, which are calculated by convolving the input image with the 
filters depicted in Fig. 1, are shown in Fig. 2. In this figure, white pixels represent 
high values in the response magnitudes. Therefore there are local maxima (high-
lighted) at those positions where ear has similar curvature, orientation, and size to 
those of the corresponding banana wavelet. 
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Fig. 1. (a)-(h) 8 filters used in this work 
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Fig. 2. (a) Input image, and (b)-(i) after convolution with 8 banana filters 

A position of interest is selected by considering two conditions: i) the response 
magnitude has to represent a local maximum ( 1 Q ) and ii) its value should be greater 

than a certain threshold ( 2 Q ):  

( ) ( ) ( )00 ,,:1 xxbxbx NAIAIQ ii ∈≥  (3)

( ) ( )00 ,:2 xbx TAIQ ⋅> λ  (4)

where λ  is a constant, ( ) ( ) ( )( )00 ,25.0 xx IEIET +⋅= , ( ) ( )∑ ∑=
∈ ∈I B

AIIE
x b

bx, , 

( ) ( )
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,, 0
xx b

bxx
N B

AIIE , and ( )0xN  represents a square window with center 0x  

and length of side w . 
In addition to the conditions (Q1) and (Q2), the spatial arrangement of the posi-

tions of local maxima should match a template representing the ear structure (Fig. 3 



 Shaped Wavelets for Curvilinear Structures for Ear Biometrics 503 

 

illustrates this template). Locations of the local structure points in this template are 
general for any ear. For example, the convolution of filter 4 with any ear, produces a 
strong response at the top middle part as illustrated in Fig. 2-e. 
 

  

Fig. 3. The ear template Fig. 4. Regions of interest 

To reduce computational burden, the ear detection process starts with a coarse 
search by applying the banana wavelets to the whole image to extract the regions of 
interest containing curved lines in order to perform a finer search for the ear within 
these regions (Fig. 4). These regions are much smaller than the whole image and 
therefore the fine search performed by applying the banana wavelets to these regions, 
requires less computational demand. 

In the fine search, the regions of interest are divided into a group of smaller neigh-
borhoods and convolved with a bank of banana filters (8 filters in this paper are cho-
sen, as shown in Fig. 1) to calculate positions corresponding to local maxima in each 
neighborhood. The neighborhood with maximum number of positions matching the 
ear template and meeting conditions (Q1) and (Q2) is considered as the neighborhood 
containing the ear. In the case that many overlapping neighborhood windows are 
detected, only one region is selected which contains maximum percentage of over-
lapped windows. Our technique is generic and applicable to any database. The pa-
rameters of the 8 filters are chosen by experiments (Table 1). R and C in the table are 
the number of rows and columns of the banana wavelet filters, respectively, which are 
used in the convolution process between banana wavelet filters and the image. 

Table 1. Parameter Settings for the Banana Wavelets 

 f  α  c  s  R  C  

Filter 1 0.05 4/π  0.1 1 50 50 
Filter 2 0.28 2/π  0.05 1 30 15 
Filter 3 0.28 4/3π  0.05 1 30 30 
Filter 4 0.28 π  0.05 1 30 50 
Filter 5 0.28 4/5π  0.05 1 30 30 
Filter 6 0.28 2/3π  0.02 1 50 30 
Filter 7 0.28 4/7π  0.03 1 30 30 
Filter 8 0.28 π2  0.05 1 20 40 
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4   Results 

Our primary purpose is to evaluate success in ear detection. The efficiency of banana 
wavelet technique is tested using a database of 2D images selected from the XM2VTS 
face profile database [10]. Our database consists of 252 images from 63 individuals 
with four images per person collected during four different sessions over a period of 
five months to ensure the natural variation between the images of the same person. 
The images selected are those where the whole ear is visible in a 720×576 24-bit 
image. The ears in the database are not occluded by hair but there are few images with 
some occlusion by earrings. This is the same subset of the XM2VTS face profile 
database used by Hurley et al. [11] and Arbab-Zavar et al. [5]. 

The new technique correctly detects all the ears in the images in the database (the 
detection rate was 100%). Some results of detection using banana wavelets are shown 
in Fig. 5. The system is fully automatic and it does not require any manual interfer-
ence for ear detection. As such the approach appears suitable for real time biometric 
applications. The parameters used in these results are 1=xσ , πσ 2=y , 08.0=γ ,  

8.1=λ , and 7=w . 
Banana wavelet filters can capture the curved structures better than Gabor wavelet 

filters. To show this, Gabor wavelet technique is applied to the same subset of the 
XM2VTS face profile database with the same filter sizes, orientations and frequencies 
as those of banana wavelet filters (the same parameters in Table 1, except that curva-
ture c was set to zero). The detection rate obtained by Gabor wavelets is 97.2%. 

Banana wavelet technique is robust to degradation of images such as the motion 
blur, partly shown in Fig. 5-a. It is also accurate and robust to some rotations (note the 
large subject rotation in Fig. 5-b). In addition to that, the technique is robust at pres-
ence of earrings and/or glasses, as shown in Fig. 5-c. 

 

   

   

(a) Blurred ear (b) Rotated ear (c) Ear occluded by earrings 

Fig. 5. Samples of ear detection using our technique 
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It also appears robust to noise. The accuracy of detection in presence of noise is 
more than 98% when the noise standard deviation σ  is quite high. These results are 
illustrated in Fig. 6. Here, images are contaminated by additive zero mean Gaussian 
noise with various noise variances. Here, the technique is successful until σ  = 500 in 
which case a region containing the eye is erroneously selected (see Fig. 6-f). 

 

 

(a) 0% noise 

 

(b) σ  = 100 

 

(c) σ  = 200 

 

(d) σ  = 300 

 

(e) σ  = 400 

 

(f) σ  = 500 

Fig. 6. Samples for the results at presence of noise 

The results of the noise analysis are provided in Fig. 7. Here, for noise-free images 
the detection rate is 100%. As expected, the detection rate drops with increasing 
noise. The analysis of the database is shown in Fig. 7 where at σ  = 100 the recogni-
tion rate is still above 98% but this drops to under 80% when σ  = 200. This is actu-
ally quite a severe level of noise, as shown in Fig. 6-c. In much worse cases, i.e., 
beyond the level experienced in surveillance video footage, as shown in Fig. 6-f de-
tection rate drops to about 10%. The graph also shows the performance of the Gabor 
wavelet. As the noise increases, the advantages associated with using curvature be-
come masked by the noise and in cases of severe noise the Gabor wavelet is more 
successful than the banana wavelets. 

We also apply banana wavelet technique to detect the ears from a new database 
[12] from which a selection of images is shown in Fig. 8. The advantage of this data-
base is that, it has a lot of variations of ear orientation, size, color skin, and lighting 
condition, allowing investigation of the performance of our technique on a data ac-
quired in a more realistic scenario (see Fig. 8). The database is acquired as subjects 
walk past a camera triggered by a light beam signal, and other biometrics are acquired 
at the same time. As the acquisition is largely uncontrolled, subjects sometimes pre-
sent the whole head without occlusion and other combination with partial or large 
occlusion, and partial or sometimes the head is even absent. 
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Noise standard deviationσ  

Fig. 7. Detection rate for banana wavelets technique and Gabor wavelets technique in the pres-
ence of noise 

Table 2 shows the results of applying banana wavelet technique to the new data-
base. The same parameters determined by analysis of the XM2VTS database are used 
in this analysis. As such, the approach is not tuned for this new database (and sce-
nario) and it is likely that these results could be improved further.  We do believe that 
the structure of the results will remain similar, in that some subjects’ ears will remain 
concealed by hair, and that in a walk-through scenarios it is difficult to acquire images 
which consistently capture the whole ear. 

 

 

 

(a) Group A (b) Group B (c) Group C (d) Group D (e) Group E 

Fig. 8. Samples from the new database: (a)-(e) show the groups according to Table 2  
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Table 2. Results of applying banana wavelet filters to the new database 

 Number of samples Success ear detection 
Group A: whole head, no occlusion 885 85% 
Group B: whole head, small occlusion 308 65.3% 
Group C: partial head, no occlusion 653 79% 
Group D: partial head, small occlusion 208 44.7% 
Group E: large occlusion 383 17.8% 

5   Conclusions 

This paper demonstrates how banana wavelets can be used to find the ear from head 
profile images for biometric purposes. The complexity of the task has been reflected 
in the fact that ear images can vary in appearance under different viewing and illumi-
nation conditions. The experiments show that the system is effective for ear detection, 
which the proposed technique correctly detects all the test images selected from the 
XM2VTS database. The technique accrues advantages of noise tolerance and relative 
immunity to noise. It does not depend on a controlled lighting conditions or skin col-
or; it therefore appears suitable for general applications. The technique proposed here 
is applied to a more complex database which the acquisition of this database is largely 
uncontrolled. The result of the ear detection for the new database is good enough 
according to the uncontrolled conditions, and shows the expected performance in 
occlusion. The performance of the banana wavelets technique is compared with that 
of Gabor wavelets technique which shows that banana wavelets can capture the 
curved structures better than Gabor wavelets. Finally, the technique proposed here is 
fully automated and does not require any help to detect the ear. The success of our 
technique relies on the fact that the selected curvilinear structures are general for any 
ear. We look forward to using this new approach as a primer for recognition purposes. 
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Abstract. Manifold learning is a novel approach in non-linear dimensionality 
reduction that has shown great potential in numerous applications and has 
gained ground compared to linear techniques. In addition, sparse representa-
tions have been recently applied on computer vision problems with success, 
demonstrating promising results with respect to robustness in challenging sce-
narios. A key concept shared by both approaches is the notion of sparsity. In 
this paper we investigate how the framework of sparse representations can be 
applied in various stages of manifold learning. We explore the use of sparse re-
presentations in two major components of manifold learning: construction of 
the weight matrix and classification of test data. In addition, we investigate the 
benefits that are offered by introducing a weighting scheme on the sparse repre-
sentations framework via the weighted LASSO algorithm. The underlying ma-
nifold learning approach is based on the recently proposed spectral regression 
framework that offers significant benefits compared to previously proposed 
manifold learning techniques. We present experimental results on these tech-
niques in three challenging face recognition datasets.  

Keywords: Face recognition, manifold learning, sparse representations. 

1   Introduction 

Dimensionality reduction is an important initial step when extracting high level 
information from images and video. An inherent assumption is that data from a high 
dimensional space can be reliably modeled using low dimensional structures. Tradi-
tional techniques such as Principal Components Analysis (PCA) and Linear Discrimi-
nant Analysis (LDA) use linear subspaces as the low dimensional structures for signal 
modeling [12]. However, certain limitations of linear subspace methods suggest the 
investigation of non-linear dimensionality reduction techniques.  

Manifolds are non-linear structures that have gained considerable attention in re-
cent years. In manifold learning, the objective is to identify the intrinsic dimensionali-
ty of the data and project it into a low dimensional space that can reliably capture 
important characteristics while preserving various geometric properties, such as the 
geodesic distances or the local neighborhood structure. In general, we may think of a 
manifold as a low dimensional surface embedded in an ambient higher dimensional 
space. Manifolds arise when there is a smooth variation of some key parameters that 
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define the system’s degrees of freedom, and are usually far less in number than the 
dimension of the space where the signal is initially described. In other words, the 
parameters that characterize the generation of the manifold are sparse with respect to 
the support set of the signal [1]. Manifold learning has been successfully applied in 
various computer vision problems such as face recognition [14], activity recognition 
[18], pedestrian detection [19] and structure-from-motion [20] among others.  

Sparse representations (SRs) are another type of signal representation that has re-
ceived considerable attention in the past few years. SRs were initially applied in 
signal reconstruction, where it was shown that signals, such as images and audio, can 
be naturally represented in fixed bases using a small number of coefficients [15], [16]. 
As far as computer vision applications are concerned, SRs have been very successful 
in extracting useful information based on the assumption that although images are 
high dimensional by nature, collections of images, e.g. human faces in various poses, 
can be reliably represented by a small number of training examples [11].  

From the above discussion, it becomes evident that manifold learning and sparse 
representations share similar motivation in the context of computer vision, although 
they are different in terms of signal reconstruction. It is therefore natural to ask wheth-
er these two approaches can be combined in order to obtain better results. The contri-
bution of this paper lays in the investigation of the connections between the sparse 
representations and the manifold learning in terms of face recognition accuracy. More 
specifically, we examine the application of the sparse representation framework for 
both the generation of the weight matrix as well as the subsequent classification. 
Although these two approaches have been explored independently [11] and [9], they 
have not been examined in combination. In addition, we also examine a weighting 
scheme that introduces a distance based parameter on the sparse representation frame-
work. The sparse representation framework is evaluated using the spectral regression 
framework that offers better modeling capabilities for manifold learning compared to 
linearized techniques [9]. 

The rest of the paper is organized as follows. The concepts of manifold learning 
and sparse representations are presented in Sections 2 and 3 respectively. The notion 
of sparsity and how it is applied for the weight matrix construction is explored in 
Section 4. Experimental results and discussion are provided in Section 5. The paper is 
concluded in Section 6. 

2   Manifold Learning 

Manifold learning techniques can be divided in two categories: non-linear and linear 
approximations. Non-linear dimensionality reduction, including Isometric Feature 
Embedding (Isomap) [3], Local Linear Embedding (LLE) [4] and the graph Laplacian 
Eigenmap (LE) [5], reduce the dimensionality of the data while preserving various 
geometric properties such as the geodesic distances or the local neighboring structure. 
Most algorithms of this nature represent the training data through a distance matrix 
(based on the adjacency graph) and achieve dimensionality reduction by applying 
eigenanalysis on this distance matrix.  

A critical issue related to non-linear embedding methods such as Isomap, LLE and 
LE, is the out-of-sample extension problem, where the lack of a straightforward 
extension of the mapping to new data (testing) limits the applicability of the methods. 
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More recent methods try to overcome the out-of-sample problem by constructing a 
linear approximation of the manifold. The benefits of linear approximations are 
mostly expressed in terms of savings in computational time, although in some cases 
very promising results have been reported. Methods in this category include locality 
preserving projections (LPP) [7] and neighborhood preserving embedding (NPE) [8].  

A major limitation of these methods is the requirement for solving a large scale 
eigen-decomposition which makes them impractical for high dimensional data model-
ing. In the spectral regression framework (SR) [23] Cai et al. proposed an efficient 
approach that tackles this problem by recasting the learning of the projection function 
into a regression framework. Formally, given a data set , the first step of 
SR is the construction of a weight matrix , , where each data sample is 
connected (given a non-zero weight) to another data sample if it is one of its nearest 
neighbors or belongs to the surrounding  ball. In the second step, the diagonal degree 
matrix ∑  and the Laplacian  are calculated. The optimal low 
dimensional projection  of the high dimensional training data points  is given by 
the maximization of the following eigen-problem 

  (1) 

Once the low dimensional representation of the input data is found, new testing data 
are embedded by identifying a linear function such that  

 , … , (2) 

where the linear projection function  is a matrix whose columns are the eigenvectors 
obtained by solving the following eigen-problem 

  (3) 

In SR however, the last step, which is the most expensive, is replaced by the solution 
of a regression problem given by 

 max  
(4) 

In SR the optimal solution to Eq. (4) is given by the regularized estimator 

 (5) 

 

Once the embedding function has been learned, classification of new test points is 
usually performed using the k-nearest neighbors (kNN) classifier. In addition to the 
desirable general properties of the kNN, such as the guarantees in the error rate [2], 
kNN has been widely adopted by the manifold learning community because of two 
main reasons. First, it is closely related to the local linear assumption used in  
the generation of the manifold embedding and, second, kNN is an instance-based 
classifier that does not require training and thus can be used in unsupervised settings. 
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Furthermore, approximate kNNs have been proposed [13] that can deal with large 
datasets with moderate requirements in terms of classification speed and memory.  

Despite these benefits, kNN presents a number of drawbacks that may compromise 
the classification accuracy. The major limitation stems from the choice of k which is 
typically selected via cross-validation. Nevertheless, even if a globally optimal value 
for k is found, the lack of an adaptive neighborhood selection mechanism may result 
in a poor representation of the neighborhood structure.  

3   Sparse Representations 

Sparse representations (SRs) were recently investigated in the context of signal 
processing and reconstruction in the emerging field of compressed sensing [15], [16]. 
Formally, assume a signal  is known to be sparsely represented in dictionary 

 i.e.  where  and . The goal is to identify the non-
zero elements of  that participate in the representation of . An example could be the 
case where  represents the face of a particular individual and  is the dictionary 
containing the representation of all faces in the database as in [11]. The individual 
may be identified by locating the elements of the dictionary that are used for recon-
struction, or equivalently the non zero elements of . The solution is obtained by 
solving the following optimization problem 

 arg s. t. (6) 

This problem is NP-hard and therefore difficult to solve in practice. In the pioneering 
work of Donoho [16] and Candes [15], it was shown that if the solution satisfies 
certain constraints, such as the sparsity of the representation, the solution of the 
problem in Eq. 6 is equivalent to the solution of the following problem known as 
LASSO in statistics 

 arg s. t. (7) 

This Sparse Representations approach (SRs) has been recently applied in various 
computer vision problems including face recognition [10] and image classification 
[17]. When noise is present in the signal, a perfect reconstruction using Eq. (7) may 
not be feasible. Therefore, we require that the reconstruction is within an error con-
stant and Eq. (7) is reformulated as  

 arg s. t.  (8) 

The LASSO algorithm can be efficiently applied for solving the problem in Eq. (8), 
but it assumes that all elements are equally weighted. This approach, called first order 
sparsity, only deals with the question of how to sparsely represent a signal given a 
dictionary. However, other means of information could also be used in order to 
increase the performance of LASSO or adjust it towards more desirable solutions. 
One such case is the weighted LASSO [25]. In the weighted LASSO, each coefficient 
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is weighted differently according to its desired contribution. Formally, the optimiza-
tion of the weighted LASSO is similar to Eq. (8) and it is given by 

 arg s. t.  (9) 

where  is a vector of weights. In this paper, we examine the effects of the solution of 
Eq. (9) when  corresponds to the distance between the sample  and the individual 
dictionary elements . 

Regarding the use of the SRs for classification, the notion of sparsity was proposed 
in [11] for face recognition based on a well known assumption that the training 
images of an individual’s face span a linear subspace [12]. Although this approach 
achieved excellent results, it required that the class labels were available during 
classification. In an unsupervised setting, the class label information is not available 
and therefore an alternative approach has to be applied. In this paper we use the 
coefficient with the maximum value as the indicator of the training sample that is 
most similar to the test example analogous to a nearest neighbor approach. Formally 
the class of an unknown sample  is given by  where  is the 
dictionary element found in Eq. (9) i.e. max  .  
4   Sparse Graphs 

As discussed in Section 2, the first step in manifold learning is the generation of the 
adjacency graph. Recently, the ℓ1-graph was proposed, which employs the concept of 
sparse representations during graph construction. The objective in ℓ1-graph is to 
connect a node with the nodes associated with the data points that offer the sparsest 
representation. One could select the weights of the edges connecting  to other 
vertices by solving the following ℓ1 minimization problem 

 arg , . . (10) 

where , … , 0, , … . In this case, the weights of the graph corres-
pond to the coefficients of the linear approximation of each data point with respect to 
the rest of the training set. ℓ1-graphs offer significant advantages compared to the 
typical nearest neighbor graphs, the most important of which is that there is no need 
to specify k, the number of neighbors. The adaptive selection of neighborhood size 
can more accurately represent the neighborhood structure compared to nearest neigh-
bors. In addition, the ℓ1-graph is more robust to noise and outliers, since it is based on 
linear representations that have shown promising results under difficult scenarios such 
as illumination variation. Furthermore, ℓ1-graphs encode more discriminative infor-
mation, especially in the case where class label information is not available. 

In [9], L. Qiao et al. applied the ℓ1 - graph construction approach in a modified ver-
sion of the NPE and reported higher recognition accuracy compared to state-of-the-art 
manifold learning algorithms using typical weight graphs for face recognition. The 
approach was later extended to semi-supervised manifold learning in [6]. A similar 
approach was also presented in [10] where the authors applied the ℓ1-graph in  
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subspace learning and semi-supervised learning. In all three works the nearest neigh-
bor was used for the classification scheme of the test data.  

In addition to the simple sparsity constraint that only deals with the cardinality of 
the solution, we propose the application of the weighted LASSO in order to take 
distances into account. We therefore propose to replace Eq. (10) by Eq. (9) where 
each weighting coefficient is given by ,  where  is the dictionary 
element (training example) associated with the coefficient . We investigated differ-
ent choices for the distance metric and report the results using the Euclidean distance.  

5   Experimental Results 

The goal of the experimental section is to investigate how the SRs framework can be 
used in conjunction with manifold learning for face recognition as discussed in the 
previous sections. In order to evaluate the classification accuracy that is achieved by 
this combination, we performed a series of experiments on three publicly available face 
recognition datasets: the Yale, the AT&T and the Yale-B. The YALE dataset [22] 
contains 165 face images of 15 individuals, 11 images per individual. These images 
contain faces in frontal poses with significant variation in terms of appearance (expres-
sions, glasses etc). The second one is the AT&T dataset [21] which contains 400 
images of 40 individuals. The images included in the AT&T dataset exhibit variation 
in expression, facial details and head pose (20 degrees variation). The Yale-B [24] 
dataset contains 21888 images of 38 persons under various pose and illumination 
conditions. We used a subset of 2432 of nearly frontal face images in this experiment.  

We note that all images were resized to 32x32 pixels and the pixel values were 
rescaled to [0,1]. The results are presented in Table 1-11 and correspond to the 
average classification accuracy after a 10-fold cross validation. In these tables, col-
umns indicate the method used for the generation of the weight matrix using Eq. (1). 
These techniques are the typical nearest neighbor graph (NN-Graph) using 2 neigh-
bors (as used in [9]), the sparse representation technique for weight matrix construc-
tion (ℓ1-Graph) and the weighted sparse representations (w ℓ1-Graph). The rows 
indicate the method used for classification. These methods are the 1-nearest neighbor 
(NN), the sparse representation classification (SRC) using Eq. (8) and the weighted 
sparse representations using the weighted LASSO (wSRC) using Eq. (9).  

Tables 1-4 present the classification results on the Yale dataset. Based on these 
results a number of observations can be made. First, we observe that regarding the 
method used for graph construction, the ℓ1-Graphs and the wℓ1-Graphs achieve 
significantly higher accuracy compared to the NN-Graph, especially when the NN is 
used as the classifier. The increase in accuracy observed using the NN classification 
ranges from 13% to 22% depending on the number of training examples available. 
This indicates that using either the ℓ1-Graph or the wℓ1-Graph can provide significant 
benefits, especially when computational constraints prohibit the application of the 
SRC or the wSRC classifiers during testing. Regarding classification, we observe that 
the SRC and the wSRC achieve much higher recognition accuracy compared to the 
NN classifier, particularly when the NN-Graph is used for the weight matrix genera-
tion. As for the weighting extension of the sparse representations, we observe that the 
results are similar to the ones obtained without the weighting scheme.  
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Table 1. Classification results on Yale with 2 training examples/class 

YALE - 2 NN-Graph ℓ1-Graph w ℓ1-Graph 
NN 39.39 44.90 44.80 
SRC 47.68 47.46 47.43 

wSRC 47.14 47.00 46.97 

Table 2. Classification results on Yale with 3 training examples/class 

YALE - 3 NN-Graph ℓ1-Graph w ℓ1-Graph 
NN 42.83 50.45 50.53 
SRC 53.15 52.80 52.68 

wSRC 52.65 52.83 52.56 

Table 3. Classification results on Yale with 4 training examples/class 

YALE - 4 NN-Graph ℓ1-Graph w ℓ1-Graph 
NN 44.78 54.53 54.64 
SRC 57.13 57.90 57.67 

wSRC 57.52 57.77 57.39 

Table 4. Classification results on Yale with 5 training examples/class 

YALE - 5 NN-Graph ℓ1-Graph w ℓ1-Graph 
NN 46.13 56.68 56.60 
SRC 60.73 60.86 60.71 

wSRC 60.68 60.86 60.88 
 
The results for the AT&T dataset are presented in Tables 5-8 for the cases of 2, 4, 6 

and 8 training examples per individual. We observe that similarly to the Yale dataset, 
using either the ℓ1-Graph or the wℓ1-Graph can provide significant increase in accura-
cy, especially for the case of the NN classifier. We further notice that the wℓ1-Graph 
performs better than the ℓ1-Graph, although the increase in accuracy is minimal.  

Table 5. Classification results on AT&T with 2 training examples/class 

AT&T - 2  NN-Graph ℓ1-Graph w ℓ1-Graph 
NN 57.90 69.93 68.45 
SRC 77.14 76.12 76.34 

wSRC 75.00 74.76 74.76 

Table 6. Classification results on AT&T with 4 training examples/class 

AT&T - 4 NN-Graph ℓ1-Graph w ℓ1-Graph 
NN 74.06 82.20 82.77 
SRC 89.54 89.31 89.55 

wSRC 89.10 89.00 89.06 



516 G. Tsagkatakis and A. Savakis  

Table 7. Classification results on AT&T with 6 training examples/class 

AT&T - 6 NN-Graph ℓ1-Graph w ℓ1-Graph 
NN 84.84 89.34 89.40 
SRC 92.43 93.25 93.40 

wSRC 92.96 93.37 93.56 

Table 8. Classification results on AT&T with 8 training examples/class 

AT&T - 8 NN-Graph ℓ1-Graph w ℓ1-Graph 
NN 91.43 93.62 93.81 
SRC 95.31 95.93 95.87 

wSRC 95.41 95.93 96.00 
 
 
The classification results for the YaleB dataset are shown in Tables 9-11 for 10, 20 

and 30 training examples per individual. We note that the YaleB dataset is more 
demanding due to its larger size. Regarding the performance, we again observe the 
superiority of the ℓ1-Graph and the wℓ1-Graph for the weight matrix construction and 
the SRC and wSRC for the classification. However, we notice that there is a signifi-
cant increase in terms of accuracy when the weighted sparse representation is used. 
We can justify this increase in accuracy by the fact that the larger number of training 
examples offers better sampling of the underlying manifold in which case the use of 
distances provide more reliable embedding and classification.  

Table 9. Classification results on YALE-B with 10 training examples/class 

YALEB - 10 NN-Graph ℓ1-Graph w ℓ1-Graph 
NN 74.92 84.90 84.95 
SRC 82.10 85.84 86.18 

wSRC 82.39 86.23 86.33 

Table 10. Classification results on YALE-B with 20 training examples/class 

YALEB - 20 NN-Graph ℓ1-Graph w ℓ1-Graph 
NN 84.76 87.60 87.96 
SRC 87.06 89.17 90.10 

wSRC 87.90 90.62 91.05 

Table 11. Classification results on YALE-B with 30 training examples/class 

YALEB - 30 NN-Graph ℓ1-Graph w ℓ1-Graph 
NN 87.83 89.56 90.03 
SRC 89.01 90.26 90.50 

wSRC 90.50 91.99 91.75 
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6   Conclusions 

In this paper, we investigated the use of manifold learning for face recognition when 
the sparse representations framework was utilized in two key steps of manifold 
learning: weight matrix construction and classification. Regarding the weight matrix 
construction, we examined the benefits of the sparse representation framework instead 
of the traditional nearest neighbor approach. With respect to classification, we com-
pared the recognition accuracy of a typical classification scheme, the k-nearest neigh-
bors, and the accuracy achieved by the sparse representation classifier. In addition, we 
investigated the effects of introducing a distance based weighting term in the sparse 
representation optimization and examined its effects on the weight matrix construc-
tion and the classification. 

Based on the experimental results, we can make the following suggestion regarding 
the design of a manifold based face recognition system. When sufficient computa-
tional resources are available during the training stage, using the sparse representation 
framework will always lead to significantly better results especially when resource 
limitations during the testing phase prohibit the application of the more computation-
ally demanding sparse representation framework for classification. On the other hand, 
when the available processing power during testing is adequate, then the sparse 
representation classification outperforms the nearest neighbor while the method used 
for graph construction plays a less significant role.  

References 

1. Baraniuk, R.G., Cevher, V., Wakin, M.B.: Low-dimensional models for dimensionality 
reduction and signal recovery: A geometric perspective. To appear in Proceedings of the 
IEEE (2010) 

2. Cover, T.M.: Estimation by the nearest neighbor rule. IEEE Trans. on Information 
Theory 14(1), 50–55 (1968) 

3. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear 
dimensionality reduction. Science 290, 2319–2323 (2000) 

4. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimen-
sional manifolds. Journal of Machine Learning Research 4, 119–155 (2003) 

5. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data repre-
sentation. Neural Computation 15(6), 1373–1396 (2006) 

6. Qiao, L., Chen, S., Tan, X.: Sparsity preserving discriminant analysis for single training 
image face recognition. Pattern Recognition Letters (2009) 

7. He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information 
Processing Systems, vol. 16, pp. 153–160 (2003) 

8. He, X., Cai, D., Yan, S., Zhang, H.J.: Neighborhood preserving embedding. In: IEEE Int. 
Conf. on Computer Vision, pp. 1208–1213 (2005) 

9. Qiao, L., Chen, S., Tan, X.: Sparsity preserving projections with applications to face rec-
ognition. Pattern Recognition 43(1), 331–341 (2010) 

10. Cheng, B., Yang, J., Yan, S., Fu, Y., Huang, T.: Learning with L1-Graph for Image Analy-
sis. IEEE Transactions on Image Processing (2010) (accepted for publication) 

11. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via 
sparse representation. IEEE Trans. on Pattern Analysis and Machine Intelligence 31(2), 
210–227 (2009) 



518 G. Tsagkatakis and A. Savakis  

12. Belhumeur, P., Hespanda, J., Kriegman, D.: Eigenfaces versus Fisherfaces: Recognition 
Using Class Specific Linear Projection. IEEE Trans. Pattern Analysis and Machine Intelli-
gence 19(7), 711–720 (1997) 

13. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor 
in high dimensions. Communications of the ACM 51(1), 117–122 (2008) 

14. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using laplacianfaces. 
IEEE Trans. on Pattern Analysis and Machine Intelligence, 328–340 (2005) 

15. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruc-
tion from highly incomplete frequency information. IEEE Trans. on Information 
Theory 52(2), 489–509 (2006) 

16. Donoho, D.: Compressed sensing. IEEE Trans. on Information Theory 52(4), 1289–1306 
(2006) 

17. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Supervised dictionary learning. 
In: Advances in Neural Information Processing Systems, vol. 21 (2009) 

18. Elgammal, A., Lee, C.S.: Inferring 3D body pose from silhouettes using activity manifold 
learning. In: IEEE Conf. on Computer Vision and Pattern Recognition, vol. 2 (2004) 

19. Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on Riemannian ma-
nifolds. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1713–1727 (2008) 

20. Rabaud, V., Belongie, S.: Linear Embeddings in Non-Rigid Structure from Motion. In: 
IEEE Conf. on Computer Vision and Pattern Recognition (2008) 

21. AT&T face database, http://www.cl.cam.ac.uk/research/dtg/attarchive/ 
facedatabase.html 

22. Yale Univ. Face Database, 
http://cvc.yale.edu/projects/yalefaces/yalefaces.html 

23. Cai, D., He, X., Han, J.: Spectral regression for efficient regularized subspace learning. In: 
Proc. Int. Conf. Computer Vision, pp. 1–8 (2007) 

24. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From Few to Many: Illumination 
Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Trans. Pattern 
Analysis and Machine Intelligence 23(6), 643–660 (2001) 

25. Zou, H.: The adaptive Lasso and its oracle properties. Journal of the American Statistical 
Association 101(476), 1418–1429 (2006) 



Face Recognition in Videos Using Adaptive
Graph Appearance Models

Gayathri Mahalingam and Chandra Kambhamettu

Video/Image Modeling and Synthesis (VIMS) Lab.

Department of Computer and Information Sciences,

University of Delaware, Newark, DE, USA

Abstract. In this paper, we present a novel graph, sub-graph and super-

graph based face representation which captures the facial shape changes

and deformations caused due to pose changes and use it in the construc-

tion of an adaptive appearance model. This work is an extension of our

previous work proposed in [1]. A sub-graph and super-graph is extracted

for each pair of training graphs of an individual and added to the graph

model set and used in the construction of appearance model. The spatial

properties of the feature points are effectively captured using the graph

model set. The adaptive graph appearance model constructed using the

graph model set captures the temporal characteristics of the video frames

by adapting the model with the results of recognition from each frame

during the testing stage. The graph model set and the adaptive appear-

ance model are used in the two stage matching process, and are updated

with the sub-graphs and super-graphs constructed using the graph of the

previous frame and the training graphs of an individual. The results indi-

cate that the performance of the system is improved by using sub-graphs

and super-graphs in the appearance model.

1 Introduction

Face recognition has long been an active area of research, and numerous algo-
rithms have been proposed over the years. For more than a decade, active re-
search work has been done on face recognition from still images or from videos of
a scene [2]. A detailed survey of existing algorithms on video-based face recog-
nition can be found in [3] and [4]. The face recognition algorithms developed
during the past decades can be classified into two categories: holistic approaches
and local feature based approaches. The major holistic approaches that were
developed are Principal Component Analysis (PCA) [5], combined Principal
Component Analysis and Linear Discriminant Analysis (PCA+LDA) [6], and
Bayesian Intra-personal/Extra-personal Classifier (BIC) [7].

Chellappa et al. [8] proposed an approach in which a Bayesian classifier is used
for capturing the temporal information from a video sequence and the posterior
distribution is computed using sequential importance sampling. As for the local
feature based approaches, Manjunath and Chellappa [9] proposed a feature based
approach in which features are derived from the intensity data without assuming
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any knowledge of the face structure. Topological graphs are used to represent
relations between features, and the faces are recognized by matching the graphs.
Fazl Ersi and Zelek [10] proposed a feature based approach in which Gabor
histograms are generated using the feature points of the face image and are used
to identify the face images by comparing the Gabor histograms using a similarity
metric. Wiskott et al. [11] proposed a feature based approach in which the face is
represented as a graph with the features as the nodes and each feature described
using a Gabor jet. A similar framework was proposed by Fazl-Ersi et al. [12] in
which the graphs were generated by triangulating the feature points.

Video-based face recognition has the advantage of using the temporal infor-
mation from each frame of the video sequence. Zhou et al. [13] proposed a prob-
abilistic approach in which the face motion is modeled as a joint distribution,
whose marginal distribution is estimated and used for recognition. Li [14] used
the temporal information to model the face from the video sequence as a sur-
face in a subspace and performed recognition by matching the surfaces. Kim et
al. [15] fused pose-discriminant and person-discriminant features by modeling a
Hidden Markov Model (HMM) over the duration of a video sequence. Stallkamp
et al. [16] used K-nearest neighbor model and Gaussian mixture model (GMM)
for classification purposes. Liu and Chen [17] proposed an adaptive HMM to
model the face images. Lee et al. [18] represented each individual by a low di-
mensional appearance manifold in the ambient image space. Park and Jain [19]
used a 3D model of the face to estimate the pose of the face in each frame and
then matching is performed by extracting the frontal pose from the 3D model.

In this paper, we propose a novel adaptive graph based approach that uses
graphs, sub-graphs, and super-graphs for spatially representing the faces for face
recognition in a image-to-video scenario. The graphs, sub-graphs and super-
graphs are constructed using the facial feature points as vertices which are la-
beled by their feature descriptors. An adaptive probabilistic graph appearance
model is built for each subject, which captures the temporal information. Adap-
tive matching is performed using the probabilistic model in the first stage and
a graph matching procedure in the second stage. The appropriate appearance
model is updated with the results of recognition from the previous frame of the
video sequence, and the associated graph model set is updated with the sub-
graphs and super-graphs generated using the graph of the previous frame and
the model graphs.

2 Face Image Representation

In this section, we describe our approach in representing the face images. In our
approach, the face image is represented by a graph which is constructed using the
facial feature points as vertices. The vertices are labeled by their corresponding
feature descriptors which are extracted using the Local Binary Pattern (LBP)
[20], [21]. Every face is distinguished not by the properties of individual fea-
tures, but by the contextual relative location and comparative appearance of
these features. Hence, it is important to identify those features that are concep-
tually common in every face such as eye corners, nose, mouth, etc. The feature
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points are extracted by using a similar approach as [1], where the authors extract
the features points using a modified Local Feature Analysis (LFA) [22] which
constructs kernels that spatially represent a pixel in the image. A subset of ker-
nels are extracted that correspond to discriminative facial features using Fisher
scores. Figure 1 shows the feature points extracted from the image and a frame
of the video sequences. The images are ordered according to their resolution from
high to low.

Fig. 1. First 150 Feature points extracted from the training image (first pair of images)

and the testing video frames (second & third pair of images)

2.1 Feature Description with Local Binary Pattern

A feature descriptor is constructed for each feature point extracted from an
image using Local Binary Pattern (LBP).

The original LBP operator proposed by Ojala et al. [20] labels the pixels of
an image by thresholding the n × n neighborhood of each pixel with the value
of the center pixel, and considering the result value as a binary number. The
histogram of the labels of the pixels is used as a texture descriptor. The LBP
operator with P sampling points on a circular neighborhood of radius R is given
by,

LBPP,R =
P−1∑
p=0

s(gp − gc)2p. (1)

where

s(x) =
{

1 if x ≥ 0
0 if x < 0 (2)

The LBP operators with at most two bitwise transitions from 0 to 1 or vice versa
were called as uniform patterns by Ojala et al. which reduced the dimension
of LBP significantly. In our experiments, we use LBPu2

8,2 which represents an
uniform LBP operator with 8 sampling points in a radius of 2 within a window
of 5 × 5 around the pixel which give a 59 element vector.

3 Adaptive Graph Appearance Model

An adaptive appearance model is constructed for each subject using the set of
feature points and their descriptors from all the images of the subject. The ap-
pearance of a graph is another important distinctive property and is described
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using the feature descriptors of the vertices of the graph. In our approach, we
construct a graph appearance model by modeling the joint probability distri-
bution of the appearance of the vertices of the graphs of an individual. The
probabilistic appearance model is constructed using the feature descriptors from
all the images of a subject which makes it easy to adapt to the changes in the
size of the training data. The model can easily be adapted to the changes in the
training set as it is constructed using the feature descriptors. The adaptation
is performed at the matching stage where the result of recognition from each
frame is adapted to the appropriate appearance model. Given N individual and
M training face images, the algorithm to learn the model is described as follows:

1. Initialize N empty model sets.
2. For each individual i with Mi images

a. For each image Ij
i , (jth image of the ith individual)

∗ Extract feature points and corresponding feature descriptors (sub-
section 2.1).

∗ Construct image graphs (subsection 3.1) and add it to the ith model
set.

b. For each pair of graphs in the ith model set
∗ Extract the feature points for sub-graph and super-graph (subsection

3.2).
∗ Construct the sub-graph and super-graph using the extracted feature

points (subsection 3.2) and add it to the ith model set.
c. Construct the appearance model for the ith individual using the ith

model set.

The appearance model denoted as Φn is constructed by estimating the joint
probability distribution of the appearance of the graphs which is modeled using
Gaussian Mixture Model (GMM) [23]. GMMs can efficiently represent heteroge-
neous data and capture dominant patterns in the data using Gaussian compo-
nents. Mathematically, a GMM is defined as:

P (F |Θ) =
K∑

i=1

wiN(X |μi, σi) (3)

where

N(X |μi, σi) =
1

σi

√
2π

exp− (X−μi)
2

2σ2 (4)

and Θ = wi, μi, σ
2
i

K

i=1 are the parameters of the model, which includes the weight
wi, the mean μi, and variance σ2

i of the K Gaussian components. In order to
maximize the likelihood function P (F |Θ), the model parameters are re-estimated
using the Expectation-Maximization (EM) technique [24]. For more details about
the EM algorithm see [24].
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3.1 Image Graph Construction

The most distinctive property of a graph is its geometry, which is determined by
the way the vertices of the graph are arranged spatially. Graph geometry plays
an important role in discriminating the graphs of different face images. In our
approach, the graph geometry is defined by constructing a graph with constraints
imposed on the length of the edges between a vertex and its neighbors. We
propose a graph generating procedure that generates a unique graph with the
given set of vertices for each face image. At each iteration, vertices and edges are
added to the graph in a Breadth-first search manner and considering a spatial
neighborhood distance for each vertex. This generates a unique graph given a
set of feature points. The following proof illustrates the uniqueness property of
the graph generated.

Theorem 1. Given a set of vertices V , the graph generation procedure generates
a unique graph G(V, E).

Proof. Proof by contradiction. Let there be two graphs G1(V, E1) and G2(V, E2)
generated by the graph generation procedure, such that G1 �= G2. In other
words, E1 �= E2. Without loss of generality, let us assume that there exists an
edge e ∈ E1 which connects two vertices u and v, where u, v ∈ V , and e �∈ E2.
This implies that the Euclidean distance between u and v is greater than the
threshold, and hence e �∈ E1 as well. Hence, E1 = E2 ⇒ G1 = G2. Hence the
proof.

3.2 Common Sub-graph and Super-graph

The graph representation effectively represents the inherent shape changes of
a face and also provides a simple and powerful matching technique. Including
the shape changes and the facial deformations caused by pose changes in the
model improves the recognition rate. In our approach, we capture these shape
changes due to change in pose of the face by constructing a common sub-graph
and super-graph using the set of graphs of an individual. The common sub-graph
and super-graph are defined in our system as follows;

Definition 1. Given two graphs G1 and G2, the sub-graph H of G1 and G2 is
defined as

H = {v|v ∈ G1 ∩ G2,� cos(f1(v), f2(v)) ≈ 1, f1(v) ∈ G1, f2(v) ∈ G2} (5)

where v is the vertex, e is the edge, and f(v) is the feature descriptor of v.

The sub-graph includes those vertices that have spatial similarity and vertex
similarity in G1 and G2.

Definition 2. Given two graphs G1 and G2, the super-graph H of G1 and G2

is defined as
H = {v|v ∈ G1 ∪ G2} (6)

where v is the vertex, e is the edge, and f(v) is the feature descriptor of v.
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The sub-graphs and super-graphs are constructed for each pair of graphs of
the images of a subject using a similar approach to construct the graph of an
image. The sub-graph and super-graph essentially capture the craniofacial shape
changes and the facial deformations due to various poses of the face.

4 Adaptive Matching and Recognition

We use a two stage adaptive matching procedure to match every frame of the
video with the trained models and graphs. The first stage of matching involves
the computation of a Maximum a Posterior probability using the test graph
G(V, E, F ) with vertex set V and set of feature vectors F and is given by,

Pk = max
n

P (G|Φn). (7)

where Pk is the MAP probability of G belonging to model set k.
The MAP solution is used to prune the search space for the second stage

of matching in which we use a simple deterministic algorithm that uses cosine
similarity measure and spatial similarity constraints to compare the test graph
with the training graphs. The appropriate GMM is adapted by the result of
recognition and is used for matching subsequent frames. The recognition result
is considered correct if the difference between the highest score and the second
highest score is greater than a threshold. This measure of correctness is based on
the idea proposed by Lowe [25], that reliable matching requires the best match
to be significantly better than the second best match. The appropriate model
set and the GMM is updated with the result of recognition from each frame.
The update involves adding the graph of the frame to the model set, along with
the sub-graphs and super-graphs generated using the graph of the frame and the
graphs in the model set. The entire matching procedure is given as follows;

1. For each frame f in the video sequence
a. Construct the image graph G using the extracted feature points and

their descriptors.
b. Compute the MAP solution for G belonging to each appearance model

and select k model sets (10% in our experiments) with highest probabil-
ity.

c. Compute similarity scores between G and the graphs from k model sets
using cosine similarity measure.

d. Update the appropriate GMM and the model set with G using the like-
lihood score and similarity scores.

2. Select the individual with the maximum number of votes from all the frames.

An iterative procedure is used to find the similarity between graphs. Given two
graphs G and H with |H | ≤ |G|, we use spatial similarity (spatial location
of a vertex in H and G) and vertex similarity (vertices with similar feature
descriptors) to match H with a subgraph of G that maximizes the similarity
score. At each iteration, vertex u ∈ H is compared with v ∈ G such that u
and v have high spatial and vertex similarity. The procedure is repeated with
neighbors of u and v. The spatial constraint imposed on the vertices reduces the
number of vertex comparisons and allows for faster computation.
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5 Experiments

In order to validate the robustness of the proposed technique, we used the UTD
database [26]. The UTD database consists of a series of close and moderate
range, videos of 315 subjects and also their high resolution images in various
poses. The neutral expression close range videos and the parallel gait videos
were used in our experiments. The high resolution images of each subject were
used as training set. Figure 2 shows sample video frames of both the close-range
and moderate-range videos from the UTD database.

The preprocessing steps include extracting the face region and resizing it
to 72 × 60 pixels. We extracted 150 feature points from each image and their
corresponding feature descriptors were computed using 5 × 5 window around
each point. The dimension of the feature vectors are reduced using PCA from
59 to 20 retaining 80% of the non-zero eigenvalues. Graphs including sub-graphs
and super-graphs are generated for the images of each individual. The maximum
spatial neighborhood distance of each vertex was set to 30 pixels. A GMM with 10
Gaussian components is constructed for each individual using the set of graphs.
K-means clustering is used for initializing the GMM.

(a) Sample video frames from UTD

dataset in close-range

(b) Sample video frames from UTD

database in moderate-range

Fig. 2. Sample video frames from the UTD video datasets

During the testing stage, we randomly selected a set of frames from the videos
of a subject. A graph is generated for each frame after preprocessing the frame.
The likelihood scores are computed for the test graph and the GMMs and the
training graphs are matched with the test graph to produce similarity scores,
and the appropriate GMM is updated using the similarity and likelihood scores.
The threshold is determined by the average of the difference in likelihood scores
and similarity scores between each class of data. Though the threshold value is
data dependent, the average proves to be an optimum value. The performance
of the algorithm is compared with video-based recognition algorithm in [17] (de-
noted as HMM) which handles video-to-video based recognition. In addition to
this, we compare the performance by considering the effects of temporal infor-
mation and spatial information individually and when combined. We denote the
above two approaches as AGMM and Graphs respectively, and the proposed
approach as AGMM+Graphs. The results are tabulated in the Table 1. Fig-
ure 3 shows the Cumulative Match Characteristic curve obtained for various
algorithms (AGMM+Graphs, AGMM and HMM).
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Table 1. Comparison of the error rates with different algorithms

HMM AGMM Graphs AGMM+Graphs

UTD Database (close-range) 24.3% 24.1% 21.2% 16.1%
UTD Database (moderate-range) 31.2% 31.2% 26.8% 19.4%

(a) CMC curve for close-range videos

of UTD database

(b) CMC curve for moderate-range

videos of UTD database

Fig. 3. Cumulative Match Characteristic curves for close-range and moderate-range

videos

A few observations were made from the error rates and the CMC curves. The
first observation is that the recognition performance is improved by the spa-
tial representation using the sub-graph, and super-graph representations. It is
evident from the results that the account of spatial and temporal information
together improves the performance of the system in case of matching high reso-
lution images with that of low resolution videos. This observation can be made
from the error rates of the HMM approach and our approach. The inclusion
of spatial information in addition to the temporal information provided by the
HMM or AGMM improves the performance of the system. The second observa-
tion is that the close-range videos of the UTD database has lower error rates
than the moderate-range videos. This is due to the fact that the frame of the
video sequence mostly contains the face region thus gathering more details of
the facial features than the moderate-range videos. The third observation is that
the adaptive appearance model along with the update to the graph model sets
improves the performance significantly from our previous work [1]. This is due
to adding graphs, sub-graphs and super-graphs to the model set and the ap-
pearance model that is spatially similar to those generated for each frame of the
individual. Also, the chance of updating the incorrect appearance model is low
due to the abundant spatial information available from the graphs. The fourth
observation is that the performance of the system is affected by the amount of
training data given for each individual. The lack of sufficient training images of
a subject affect the performance of the system. This eventually leads us to the
conclusion that the system’s performance can be improved in the case of video-
video based face recognition where the training set is a set of videos which has
more number of frames with the wealth of spatial and temporal information.
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The effect of various parameters on the performance was also tested. From
our experiments, we observed that the parameters do not significantly affect the
performance of the system. For example, increasing the maximum Euclidean
distance between two vertices of a graph to a value greater than the width
or length of the image will have no effect as this does not change the spatial
neighborhood of a vertex in the graph. Hence, a lower threshold value of half
the value of the width of face region was set to ensure a connected graph. The
Gaussian components of a GMM represented heterogeneous data of the training
set which are basically various facial features (e.g. eyes, nose, mouth, etc.). Hence,
the 10 Gaussian components were sufficient to represent the heterogeneous facial
features.

6 Conclusion

In this paper, we proposed a graph based face representation for face recognition
from videos. The spatial characteristics are captured by constructing graphs
for each face image and extracting the common sub-graphs and super-graphs
from the set of graphs of each subject. An adaptive graph appearance model is
generated that incorporates the temporal characteristics of the video sequence.
A modified LFA and LBP were used to extract the feature points and feature
descriptors, respectively. A two stage adaptive matching procedure that exploits
the spatial and temporal characteristics is proposed for efficient matching. The
experimental results show that graph based representation is robust and gives
better performance. As a future work, we would like to test the system on video-
video based face recognition and other standard databases with benchmarks.
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Abstract. The estimation of left ventricle motion and deformation from series 
of images has been an area of attention in the medical image analysis and still 
remains an open and challenging research problem. The proper tracking of left 
ventricle wall can contribute to isolate the location and extent of ischemic or in-
farcted myocardium. This work describes a method to automatically estimate 
the displacement fields for a beating heart based on the study of the variation in 
the frequency content of a non-stationary image as time varies. Results obtained 
with this automated method in synthetic images are compared with traditional 
gradient based method. Furthermore, experiments involving cardiac SPECT 
images are also presented. 

1   Introduction 

Left ventricular contractile abnormalities can be an important manifestation of coro-
nary artery disease. Wall motion changes may represent ischemia or infarction of the 
myocardium [1]. Quantifying the extent of regional wall motion abnormality may aid 
in determining the myocardial effects of coronary artery disease. It would also sim-
plify the analysis of wall motion changes after diagnostic and therapeutic interven-
tions and permit comparison of different imaging techniques to assess their diagnostic 
accuracy. For this reason, the proper tracking of left ventricle wall can contribute to 
isolate the location and extent of ischemic or infarcted myocardium and constitutes a 
fundamental goal of medical image modalities, such as Nuclear Medicine. 

Cardiac Single-Photon-Emission Computerized Tomography (SPECT) provides 
the clinician a set of 3D images that enables the visualization of the distribution of 
radioactive counts within the myocardium and surrounding structures. Defects on the 
distribution of some radionuclides such as 201TI and 99mTc-MIBI in the myocardium 
indicate a muscle hypoperfusion [2]. Electrocardiographic gating of SPECT (gated-
SPECT) images provides the additional ability to track the wall motion and wall 
                                                           
*
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thickening associated with myocardial infarcts by acquiring sets of volumes in differ-
ent phases of the cardiac cycle [3].  

The tracking of structures in time series images has been studied by the computer 
vision community, especially in the areas of non-rigid motion, segmentation and sur-
facing mapping. The goal is to obtain a displacement field that establishes a corre-
spondence between certain points in the structure at time t and time t+1. Generally 
speaking, the common methods to obtain velocity vector fields lie within feature 
matching, gradient, and spatio-temporal frequency techniques. The matching tech-
nique is not suitable when the sequence of images involves deformable structures. 

This work describes a method to automatically estimate the displacement fields for 
a beating heart based on the study of the variation in the frequency content of a non-
stationary medical image as time varies. Results obtained with this automated method 
in synthetic images are compared with a traditional gradient based method. Further-
more, preliminary results with cardiac SPECT images are also presented. The remain-
der of this paper is organized as follows. Section 2 offers an overview of methods for 
the tracking of structures in time series images. A new spatial-temporal frequency 
approach to estimate cardiac motion is also presented in this section. In Section 3 we 
present experimental evaluation with numerical phantoms and real images. This paper 
concludes with Section 4. 

2   Methods 

In this section some methods for the tracking of structures in time series images are 
presented. Particular attention is given to gradient-based method and spatial-temporal 
frequency based approach. 

2.1   Feature Matching Approach 

The feature matching technique is useful for the determination of shape and surface 
orientation from motion and for tracking applications. However, it is very sensitive to 
ambiguity amongst the structures to be matched. This is particularly true for structures 
submitted to non-rigid motion, as in the case of medical images, where the geometri-
cal relationships between object points may be distorted. Moreover, the matching 
process involved in verifying the correspondences among structures in the correspon-
dence model can suffer from combinatorial explosion [4]. 

Recent methods to track features in images estimate their temporal behavior by 
stochastic filters and in each image the predicted state of each feature is matched with 
the segmented feature’s data. Consequently, to successfully accomplish the tracking 
of features along images the following steps should be employed: a stochastic filter; a 
matching strategy; a methodology to segment the features from each image; an effi-
cient model to perform the management of the tracked features; and a stochastic ap-
proach to learn the dynamic model of the features from the tracked motion [5,6]. 
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2.2   Gradient-Based Approach 

The gradient-based method or the differential method was introduced by Fennema 
and Thompson [7] and developed by Horn [8] as the Optical Flow (OF) equation. 
This method is based on the assumption that the intensity of image elements is  
conserved between the images. The equation formulated in the continuum is the well-
known motion constraint equation: 

. 0=++ tyx EvEuE  (1) 

where,  , yx EE and  tE  are the image derivatives in yx,  and t directions, u  and v   
are the components of the local velocity vector v  along the directions x and y ,  
respectively.  

In cardiac SPECT images using a radionuclide such as 201TI and 99Tcm-MIBI, the 
principal structure is the myocardium, therefore it is a reasonable assumption that the 
total intensity of voxels within the ventricle is conserved between successive frames, 
and the motion of connected tissue within the myocardium should be smooth. 

Eq. (1) is usually called the Optical Flow Constraint (OFC) and in order to evaluate 
the flow velocity v , Horn introduced a smoothness constraint in addition to the fun-
damental constraint. Using this method and the extension to three dimensions, the ve-
locity flow field can be obtained by minimizing the functional: 
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where zyxzyxzyx llllvvvvuuuu  and,,,,,,,,,, ,  are the components of the local velocity 
vector v  and its partial derivatives along the directions x  , y , and z  respectively. The 
first term is the OFC, the second is a measure of the Optical Flow field smoothness, and 
α is a weighting factor that controls the influence of the smoothness constraint. The 
functionally Eq. (2) is minimized by using the calculus of variations [9], which leads to 
a system of three coupled differential equations from the Euler-Lagrange equations: 
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These equations can be easily decoupled, and an interactive solution can be defined 
using discrete approximation of the Laplacian operator with a finite difference method. 
Therefore, the following set of equations is used to estimate the 3D OF components at 
each time instant  



532 M. Gutierrez et al. 

 

  

( )

( )

( )
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

+++

+++
−=

+++

+++
−=

+++

+++
−=

+

+

+

2222
1

2222
1

2222
1

zyx

t
n

z
n

y
n

xznn

zyx

t
n

z
n

y
n

xynn

zyx

t
n

z
n

y
n

xxnn

EEE

ElEvEuEE
ll

EEE

ElEvEuEE
vv

EEE

ElEvEuEE
uu

α

α

α

  (4) 

where n  is the iteration index; zyx EEE ,,  are the partial derivatives of the image inten-
sity in the directions yx,  and z , respectively; tE  is the partial derivative in time; 

vu ,  and l  are the mean velocities in each direction for the voxels in a neighborhood of 
a given voxel; and α  is a weighting factor. Velocity components in the yx,  and z  
directions for each voxel are computed as the solution of a linear algebraic system of 
equations whose coefficients are determined by the spatial and temporal derivatives 
given by Eq. (4). The linear system described in Eq. (4) can be solved by methods like 
Conjugate Gradient methods [10] or Algebraic Reconstruction techniques [11]. 

2.3   Spatial-Temporal Frequency Based Approach 

The spatio-temporal frequency (STF) based approach to optical flow derivation encom-
passes all methods which are based upon some underlying spatio-temporal frequency 
image representation [12,13]. The major motivation for considering the use of the STF 
image representation as a basis for computing optical flow comes from the literature on 
mammalian vision. In particular, recent investigations have demonstrated that many 
neurons in various visual cortical areas of the brain behave as spatio-temporal frequency 
bandpass filters [14,15]. 

In the field of non-stationary signal analysis, the Wigner-Ville Distribution (WVD) 
[16] has been used for the representation of speech and image. Jacobson and Wechsler 
[17] first suggested the use of the WVD for the representation of shape and texture 
information. In particular, they formulated a theory for invariant visual pattern recogni-
tion in which the WVD plays a central role. Given a time-varying image ),,( tyxf , its 

WVD is a 6-dimensional function defined as: 

( ) . e ,,,,,),,,,,(
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ftyxf

++
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where   and ,, tyx are the pixel position in space and time and tyx www  and ,, are the 
frequency components in   and ,, tyx directions, respectively. In Eq. (5) the term on the 
left is the pseudo-correlation function, where * denotes complex conjugation. 

. ),,().,,(),,,,,( τβατβατβα −−−+++= ∗ tyxftyxftyxRf  (6) 

For the special case where a time-varying image is uniformly translating at some con-
stant velocity v  with components vu   and   along the directions x  and y , respectively, 
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the image sequence can be expressed as a convolution between a static image and a 
translating delta function. 

. ),(*),(),,( vtyutxyxftyxf −−= δ    (7) 

Using the convolution and windowing properties of the WVD, we obtain: 

. ),,,()(),,,,,( yxftyxtyxf wwvtyutxWwvwuwwwwtyxW −−++= δ             (8) 

The WVD of a linearly translating image with constant velocity v  is everywhere zero 
except in the plane defined by }0):),,,,,{( =++ tyxtyx wvwuwwwwtyx , for fixed 

  and vu . Equivalently, for an arbitrary pixel at yx,  and t , each local spatial and tem-

poral frequency spectrum of the WVD is zero everywhere except on the plane defined 
by }0):),,{( =++ tyxtyx wvwuwwww .  

From Eq. (5) the WVD assigns a three-dimensional spatio-temporal frequency spec-
trum to each pixel over which the image is defined. However, the WVD assigns a 3D 
spectrum with interference due to cross correlation when more than one frequency is 
present [16]. 

In order to smooth the spectrum of WVD a filter must be introduced. In this work 
we adopted a Hanning filter to smooth the spectrum. 
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To reduce the effects of the cross-terms we also used the Choi-Williams distribution 
(CWD) [16]. The CWD was introduced with the aim of controlling the cross-terms 
encountered in Wigner-Ville distribution. The exponential kernel introduced by Choi 
and Williams is defined as: 
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From the Eq. (10), if a small σ is chosen, the Choi-Williams distribution approaches 
the Wigner-Ville distribution, since the kernel approaches to one. On the other hand, 
for large σ more cross-terms are suppressed and auto-terms are affected. 

The spatial orientation of the smoothed 3D frequency spectrum is completely gov-
erned by the pixel velocity, whose components can be obtained through a simple mul-
tiple linear regression model [18]. 

. evwuwbw yxt +++=              (11) 

Eq. (11) is a linear regression extension where tw  is a linear function of two independ-

ent variables yx ww  and  . The values of the coefficients vub   and  ,  are achieved by 

solving the following linear system: 
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where n  is the number of pixels, 
kk yx ww ,  and 

ktw are the frequency components in 
each direction and vu   and  are the velocity components on yx   and directions, re-
spectively.  

3   Experimental Evaluation 

3.1   Numerical Phantom Simulations 

The velocity vector along three frames of 3D images was computed by the gradient and 
frequency-based methods at each voxel of a mathematical phantom. The phantom con-
sists of a cylinder with 74 pixels in diameter and 5 pixels in length. Each cylinder’s 
cross-section comprises voxels with intensity function described below: 

( ) ( ) ( )[ ]. sinsin,, 21 yxzyxE ωωβγ ++=   (13) 

where ),,( zyxE  is the intensity of the voxel in the spatial position zyx ,,  of the 

voxel space, γ  and β  are constants, and 1ω and 2ω are the spatial frequencies.  

The cylinder was submitted to translation and rotation with known velocities and 
the Root Mean Square Error (RMSE) was used as a measure of error between the esti-
mated and the real velocities. In the computation of Eq. (4) and Eq. (10), α and σ pa-
rameters where fixed with values 10 and 1, respectively. These values where main-
tained fixed for the experiments with simulated and real images. 
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Tables 1 and 2 show the results obtained after applying translation to the cylinder using 
different velocities between each image frame. In these Tables, u  and v  are the actual 
velocities (pixels/frame) in x and y directions respectively, û  and v̂  are the mean es-
timated velocities (pixels/frame) and rmsε  is the RMSE expressed as percentages. 

Table 3 shows the results obtained after applying rotation to the same phantom us-
ing the gradient and frequency-based methods. In Table 3, ω  and ω̂  are the real and 
estimated angular velocities (degree/frame), respectively, and rmsε  is the RMSE  
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expressed as percentages. These results show that the method has a satisfactory per-
formance for translation and rotation when the velocities applied to the phantom are 
less than 2 pixels per frame, corresponding to speeds around 200 mm/s which are 
higher than typical heart wall speeds. 

Table 1. Results obtained after translation in a section of the cylinder using the gradient-based 
method (velocities in pixels/frame) 

u  v  û  v̂  
rmsε (%) 

1 0 0.9308 0.0002 7.13 

2 0 1.9741 0.0012 11.10 

1 1 0.9747 0.9585 6.86 

1 2 1.1635 1.9095 14.13 

Table 2. Results obtained after translation in a section of the cylinder using the frequency-
based method and two different distributions (velocities in pixels/frame) 

 
  

Wigner-Ville Choi-Williams 

u  v  û  v̂  rmsε (%) û  v̂  rmsε (%) 

1 0 0.9012 0.0000 11.87 0.9482 -0.0007 7.12 

2 0 1.8022 -0,0004 12.29 1.8874 0.0002 8.21 

1 1 0.9018 0.8562 15.32 0.9448 0.9266 8.96 

1 2 0.9050 1.7209 16.39 0.9467 1.8714 8.73 

Table 3. Results obtained after rotation movement in a section of the cylinder by the gradient 
and frequency based methods and two different distributions (velocities in degrees/frame) 

 Frequency-based method 
Gradient-based method 

Wigner-Ville Choi-Williams 
ω  ω̂  rmsε (%) ω̂  rmsε (%) ω̂  rmsε (%) 

2 1.9441 8.09 1.7900 23.80 1.8600 25.97 

5 5.1011 9.56 4.4500 21.45 4.8050 14.71 

7 6.9944 20.27 6.1950 20.94 6.8200 12.43 

3.2   Real Images 

The proposed method was applied to gated perfusion studies MIBI-99mTc obtained 
from a dual-head rotating gamma camera (ADAC Vertx+ with a LEAP Collimator). 
The acquisition process is synchronized with the electrocardiogram and the cardiac 
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cycle can be divided into 8 or 16 frames per cycle. A total of 64 projections were ob-
tained over a semi-circular 180˚ orbit. All projection images were stored using a 
64x64, 16 bits matrix. All transverse tomograms were reconstructed with a thickness 
of one pixel per slice (6.47 mm). The volume of transverse tomograms was re-
oriented, and sets of slices perpendicular to the long axis (obliques) and of slices par-
allel to the long axis (coronals and sagittals) were created.  

The dense displacement fields were obtained from a series of 2D gated SPECT 
slices. Fig.1 depicts the results obtained for one oblique SPECT slice at systole and 
diastole.   

 

Fig. 1. An oblique slice of a SPECT study at systole (left) and diastole (right). Both images 
include the superimposition of the dense displacement field that delineates the non-rigid motion 
performed by the cardiac structures, estimated by the Spatial-temporal frequency based  
approach 

4   Conclusions 

This work described a method based on a spatial-temporal frequency analysis to esti-
mate dense displacement fields from time-varying images. The method was applied in 
sequences of synthetic and gated SPECT images to obtain the dense displacement 
field that delineates the non-rigid motion of cardiac structures. 

The majors motivations for considering this kind of motion representation were: (1) 
in non-rigid motion, the image frequency components change with time; (2) some in-
vestigations on mammalian vision have demonstrated that many neurons in various 
visual cortical areas of the brain behave as spatio-temporal frequency band-pass filters. 

The synthetic phantom experiments have shown that the proposed method has a sat-
isfactory performance for translation and rotation when the velocities applied to the 
phantom are less than 2 pixels per frame, values corresponding to speeds around 200 
mm/s which are higher than typical heart wall speeds. A qualitative analysis with a 
series of images from a SPECT study and its corresponding velocity vector field has 
shown that the spatio-temporal frequency approach could detect complex motion such 
as contraction and rotation.   



 A Spatial-Temporal Frequency Approach to Estimate Cardiac Motion 537 

 

Although this is a work in progress, we believe that the proposed method will allow 
a better understanding of the heart’s behavior. Further research includes: 1) to establish 
a training phase to estimate the parameters α and σ in Eq. (2) and Eq. (10), respec-
tively, to reduce the errors associated with the velocity measurements; 2) to extend the 
experimental evaluation with realistic phantoms; 3) to understand the information from 
a physiological viewpoint. 
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Abstract. In this paper, we present a graph-based multi-resolution ap-

proach for mitosis extraction in breast cancer histological whole slide im-

ages. The proposed segmentation uses a multi-resolution approach which

reproduces the slide examination done by a pathologist. Each resolution

level is analyzed with a focus of attention resulting from a coarser res-

olution level analysis. At each resolution level, a spatial refinement by

semi-supervised clustering is performed to obtain more accurate segmen-

tation around edges. The proposed segmentation is fully unsupervised by

using domain specific knowledge.

1 Introduction

Breast cancer is the second leading cause of cancer death for women. Its inci-
dence increases substantially and continuously while the mortality rate remains
high despite earlier detection and advances in therapeutic care. The identifi-
cation and the use of reliable prognostic and therapeutic markers is a major
challenge for decision-making regarding therapy. Proliferation has been shown
to be the strongest prognostic and predictive factor in breast carcinoma, es-
pecially in patients lacking lymph node metastases [1]. This parameter is daily
taken into account by the pathologist for establishing the histopathological grad-
ing of breast carcinomas, using enumeration of mitotic figures, through the lens
of the microscope. The recent use of immunohistochemical staining of mitosis
is able to facilitate their detection. Nevertheless, the visual counting method
remains subjective and leads to reproducibility problems due to the frequent
heterogeneity of breast tumors [2].

The recently introduced microscopical scanners allow recording large images
of the whole histological slides and offer the prospect of fully automated quantifi-
cation for a better standardization of proliferation rate appraisal. If the advent of
such digital whole slide scanners has triggered a revolution in histological imag-
ing, the processing and the analysis of breast cancer high-resolution histopatho-
logical images is a very challenging task. First, the produced images are relatively
� This work was supported under a research grant of the ANR Foundation (ANR-06-

MDCA-008/FOGRIMMI).
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huge and their processing requires computationally efficient tools. Second, the
biological variability of the objects of interest makes their extraction difficult. As
a consequence, few works in literature have considered the processing of whole
slide images and most of these works rely only on machine learning techniques
[3,4].

In this work, we present a graph-based multi-resolution segmentation and
analysis strategy for histological breast cancer whole slide images. The proposed
strategy is based on a top-down approach that mimics the pathologist interpre-
tation under the microscope as a focus of attention. The proposed segmentation
performs an unsupervised clustering at each resolution level (driven by domain
specific knowledge) and refines the associated segmentation in specific areas as
the resolution increases. The whole strategy is based on a graph formalism that
enables to perform the segmentation adaptation at each resolution.

The paper is organized as follows. A description of the considered images is
presented in Sect. 2. In this Section, we also describe the visual analysis process
performed by pathological experts to evaluate mitotic figures proliferation and
their inherent multi-resolution approach. Our graph-based formulation for image
segmentation is presented in Sect. 3 and its integration into a multi-resolution
segmentation strategy is detailed in Sect. 4. Sect. 5 presents visualization tools
of extracted mitosis. Last Section concludes.

2 Image Description

2.1 Breast Cancer Histological Whole Slide Images

Breast cancer tissue samples are sectioned at 5 μm thickness and stained with
an immunohistochemical (hematoxylin and eosin) method. A ScanScope CS R©
(Aperio, San Diego, CA) digital microscopical scanner is then used to digital-
ize each slice at 20x magnification scale and the resulting digital images are
compressed with a quality of 75% following the JPEG compression schema.

To facilitate the visualization and the processing, scanned samples acquired
by the scanner are directly stored as an irregular pyramid where each level of
the pyramid is an under resolved version of the highest resolution image (the
pyramid base).

The usual size of a compressed whole slide image is about 100∼500 Megabytes
after compression. However, the resulting whole slide images are too large in size
to be processed or visualized as a whole. Therefore, the whole slide image is tiled
by the scanner to ease both its processing and visualization: each resolution level
of the pyramid is split into image tiles in a non-overlapping layout.

2.2 Visual Analysis Process

Within the last decade, histologic grading has become widely accepted as a
powerful indicator of prognosis in breast cancer. The majority of tumor grading
systems currently employed for breast cancer combine nuclear grade, tubule
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formation and mitotic rate. In general, each element is given a score of 1 to
3 (1 being the best and 3 the worst) and the score of all three components
are added together to give the breast cancer grading. The usual breast cancer
grading scheme is the Elston-Ellis criterion [5] and is based on three separated
scores:

– Gland (tubule) formation: one scores the proportion of whole carcinoma that
forms acini (1: <75%; 2: 10-75%; 3: <10%).

– Nuclear pleomorphism: one scores the nuclear atypia according to size, shape
and chromatin pattern (1: none; 2: moderate; 3: pronounced).

– Mitotic count: one scores the number of mitotic figures per 10 consecutive
high power fields (1: 0-9 mitoses; 2: 10-19 mitoses; 3: > 19 mitoses).

The final grading is obtained by adding the three scores. The total score is in
the range 3-9 and the final obtained grading is:

– Grade 1 if total score is 3-5.
– Grade 2 if total score is 6-7.
– Grade 3 if total score is 8-9.

In this work, we are interested in helping pathologists to establish an accurate
mitotic count. Indeed, with the Elston-Ellis criterion, a pathologist bases its
scores only on ten consecutive high power fields. This can be lesser representative
than having a score established according to the whole preparation which was of
course too tedious for pathologists under a classical microscope until now. With
the advent of fast whole slide image scanners, it is now possible [6]. Our study
drives towards this direction.

2.3 Multi-resolution Approach

Whole slide images (WSI) are usually huge in size. Fortunately, they are stored
as a pyramid of tiled images that enables to process them in a hierarchical way
[7]. As a consequence, a multi-resolution segmentation method is a natural ap-
proach for segmenting whole slide images. Moreover, such a strategy reproduces
the analysis done by the pathologists under the microscope: regions of inter-
est are determined at low resolution while cellular classification is performed
at high resolution. The proposed multi-resolution segmentation method is based
on a top-down segmentation that mimics pathologist interpretation according to
specific domain knowledge. Fig. 1 illustrates the identification (by a pathologist)
of mitosis in breast cancer slides stained with hematoxyline and eosine.

3 Graph-Based Segmentation

3.1 Preliminaries on graphs

A graph is a structure used to describe a set of objects and the pairwise relations
between those objects. The objects are called vertices and a link between two



542 V. Roullier et al.

Whole slide image
Tissue Lesion Tumorous cells Mitotic figures

Fig. 1. Illustration of the visual analysis process performed by a pathologist expert.

Each decision is performed at a higher resolution than the previous one in the region

of interest. Each interior square in an image is magnified in a subsequent image. In

the second square, the tissue is detected. In the third square, the pathologist separate

tissue and lesion. The third square allows to detect tumourous cells and the last, mitotic

figures.

objects is called an edge. A weighted graph G = (V, E, w) is composed of a
finite set V = {u1, . . . , uN} of N vertices, a set of edges E ⊂ V × V , and
a weight function w : E → R

+. An edge of E, which connects two adjacent
neighbor vertices u and v, is noted (u, v). In the rest of this paper, the notation
v ∼ u means that vertex v is an adjacent neighbor of vertex u. We assume that
the graph G is simple, connected and undirected. This implies that the weight
function w is symmetric i.e. w(u, v) = w(v, u) if (u, v) ∈ E and w(u, v) = 0
otherwise. Let H(V ) be the Hilbert space of real valued functions on the vertices
of a graph. Each function f : V → R of H(V ) assigns a real value f(u) to each
vertex u∈V . Similarly, let H(E) be the Hilbert space of real valued functions
defined on the edges of the graph. For the case of images, nodes are pixels, edges
connect neighbor pixels with 8-adjacency.

3.2 Discrete Operators on Graphs

Let us recall some basic definitions. We consider that a graph G = (V, E, w)
and a function f ∈ H(V ) are given. The weighted difference dw : H(V ) →
H(E) of a function f on an edge (u, v) linking two vertices u, v ∈ V is defined
as (dwf)(u, v) =

√
w(u, v)

(
f(v) − f(u)

)
. This operator leads us to define the

directional derivative of f , over an edge (u, v), as ∂vf(u) = (dwf)(u, v). Then,
the weighted gradient ∇wf of the function f , at a vertex u ∈ V , is defined
as (∇wf)(u) =

(
∂v1f(u), . . . , ∂vk

f(u)
)T . This operator corresponds to the local

variation of the function f at the vertex u and measures the regularity of f in
the adjacent neighborhood v1, . . . , vk of the vertex u. Hence, the L2-norm of the

weighted gradient is ‖(∇wf)(u)‖2 =
[∑

v∼u w(u, v)
(
f(v)−f(u)

)2]1/2

. Then, the

weighted p-Laplacian (Δp
wf)(u) at vertex u is defined as

(Δp
wf)(u) =

∑
v∼u

γp(u, v)
(
f(v)−f(u)

)
(1)

where γp(u, v) = w(u, v)
(‖(∇wf)(u)‖p−2

2 + ‖(∇wf)(v)‖p−2
2

)
. Clearly, in the case

where p = 1 and p = 2, we have the definitions of the standard graph curvature
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Δ1
wf = κf and graph Laplace Δ2

wf = Δf operators. More details on these
definitions can be found in [8].

In the following, we only consider the case where p = 2.

3.3 Discrete Regularization Framework

To regularize a function f0 ∈ H(V ) using the p-Laplacian (Eq. (1)), we consider
the following general variational problem on graphs:

min
f∈H(V )

{
Ew(f, f0, λ, p) = Rw(f, p) +

λ

2
‖f − f0‖2

2

}
. (2)

The first term, Rw(f, p), is the regularizer and is defined as, with 0<p<+∞:
Rw(f, p) = 1

p

∑
u∈V

‖(∇wf)(u)‖p
2. The second term is the fitting term. This opti-

mization problem has a unique solution for p = 1 and p = 2 which satisfies, for
all u ∈ V :

∂Ew(f, f0, λ, p)
∂f(u)

= (Δp
wf)(u) + λ

(
f(u) − f0(u)

)
= 0,

which is equivalent to(
λ +

∑
v∼u

γ(u, v)
)

f(u) −
∑
v∼u

γ(u, v)f(v) = λf0(u).

To approximate the solution of the minimization (2), we can linearize this system
of equations and use the Gauss-Jacobi method to obtain the following iterative
algorithm: ⎧⎪⎨

⎪⎩
f (0)(u) = f0(u)

f (n+1)(u) = f0(u) +
∑
v∼u

λ +
∑
v∼u

γ(n)(u, v), (3)

where γ(n)(u, v) is the γ function (in Eq. (1)) at the iteration step n. The inter-
ested reader can refer to [8] for more details on the formulation and the connec-
tions with other formalisms. The above algorithm enables to simplify functions
living on graphs by a discrete diffusion process.

3.4 Discrete Semi-supervised Clustering

The previously presented discrete regularization framework can be naturally
adapted to address discrete semi-supervised clustering problems. Let
V = {u1, . . . , uN} be a finite set of data, where each data ui is a vector of
R

m. Let G = (V, E, w) be a weighted graph such that all vertices are connected
by an edge of E. The semi-supervised clustering of the set V consists in grouping
the set V into k classes where the number of k classes is given. For this, the set
V is composed of labeled and unlabeled data. The objective is then to estimate
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the labels of unlabeled data from labeled ones. Let C = {ci}i=1,...,k the set of
classes, L the set of labeled vertices and V \L be te initially unlabelled vertices
(the whole set of vertices except the labeled ones). For each vertex of L, its
classes is available with the function L : L → C.

This situation can be modeled by considering k initial label functions (one
per class) f0

i : V → R, with i = 1, . . . , k. For a given vertex u, if u is initially
labeled (u ∈ L) then f0

i (u) = +1 if L(u) ∈ ci and f0
i (u) = −1 otherwise.

If u is initially unlabeled (i.e. u ∈ V \ L) then f0
i (u) = 0. Then, the vertex

clustering is accomplished by k regularization processes. This corresponds to
estimate functions fi : V → R for each ith class using the discrete diffusion
process (Eq. (3)). At the end of the label propagation processes, the final label

of a given vertex u ∈ V can be obtained by argmax
i

{
fi(u)/

∑
j=1,...,k fj(u)

}
.

4 Multi-resolution Segmentation Approach

4.1 Principle

As it has been previously pointed out, a multi-resolution segmentation process
is a natural approach to analyze whole slide images [7,9]. Indeed, we have seen
in Sect. 2.2 that the whole slide image analysis visual process performed by
pathologist experts is a multi-resolution process. An expert determines regions
of interest at low resolution while cellular classification is performed at high
resolution.

Our proposed multi-resolution segmentation process is based on a top-down
segmentation that reproduces exactly the interpretation process performed by
pathologist experts according to specific domain knowledge (expressed by the
pathologists themselves). At a given resolution i, a clustering is performed by
the following steps: the image is simplified by discrete regularization (Fig 2 (a)-
(b)) and clustered by an unsupervised 2-means clustering (Fig. 2 (c)-(d)). The
clustering is performed inside specific region that were segmented at the previous
resolution. The obtained clustering is spread by pixel replication at a finer level
of resolution (Fig. 2 (e)-(f)) and refined in specific region (according to domain
knowledge) (Fig. 2 (g)-(i)). As clustering being performed in a feature space, it
does not take into account spatial information, and the obtained segmentation
is not accurate around image edges. In addition, the propagation of the labels
across the different resolution levels is performed by plain pixel replication and
the segmentation is coarse around edges. To alleviate both these effects, each ob-
tained clustering is refined by our discrete semi-supervised clustering in a narrow
band around the boundaries of the clusters. The whole segmentation strategy
can be summarized by Algorithm 1 where Ii denotes an image at resolution
level i.

At the last resolution level, mitotic figures are extracted (Fig. 2 (j)-(l)). Fig. 3
provides results for several whole slide images.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

(j) (k) (l)

Fig. 2. Illustration of the multi-resolution segmentation process. (a) initial image, (b)

regularized image. (c) and (d) clustered image at two level 1 and 2. (e) and (f) replica-

tion problem. (g)-(i) illustration of the spatial refinement clustering. (j)-(l) the mitotic

figures extraction.

Algorithm 1. Multi-resolution WSI segmentation
1: Is

0 = Regularization(I0)

2: Ic
0 = 2-MeansClustering(Is

0)

3: Ir
0 = SpatialClusteringRefinement(Ic

0)

4: for i = 1 to 3 do
5: Ip

i = ReplicatePreviousResolutionClustering(Ir
i−1)

6: Is
i = Regularization(Ii)

7: Ic
i = 2-MeansClustering(Is

i ) inside one class of Ip
i

8: Ir
i = SpatialClusteringRefinement(Ic

i )

9: end for

5 Visualization of Mitotic Figures

Once all the mitosis have been extracted at the highest resolution using our top-
down multi-resolution graph-based extraction algorithm, the pathologist has to
visualize them to establish the mitotic score. Our proposal does not intend to
compute the mitotic score but at helping the pathologist to do it. To do so, we
provide for pathologists two visualization tools.
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Fig. 3. Illustration of the multi-resolution clustering process. The first column presents

original images. The second column is the segmentation obtained at the first resolution

(background in pink, tissue in cyan), the third column is the segmentation obtained at

the second resolution (lesion in yellow), the fourth column is the segmentation obtained

at the third resolution (stroma in yellow and tumorous cells dark blue). The fourth

column is the segmentation obtained at the fifth resolution (stroma in dark blue and

tumorous cells in green). The sixth column is the segmentation obtained at the fifth

resolution (mitotic figures in red).

The first one enables the pathologist to evaluate the global repartition of mi-
tosis on the whole slide. This visual information is provided by superimposing
a graph on the whole slide image. The graph is constructed as follows. Each
detected mitosis is represented by a vertex of the graph. A Voronoi map is com-
puted on the vertices coordinates and the associated Delaunay graph is obtained.
This enables the pathologist to evaluate regions on the whole slide image where
the mitotic activity is important by the superposition of either the Delaunay
graph or the Voronoi distance map on the whole slide image (Fig. 4(a)-(c)).

The second visualization tool enables the pathologist to see the extracted
mitosis altogether on a single 3D projection. Indeed, the first projection tool
enables the pathologist to visualize each extracted mitosis on the whole image
while appreciating the whole global distribution of mitosis. However, this does
not allow to simultaneously visualize all the extracted mitosis of the slide to
appreciate their aspect (e.g. to differentiate the different mitotic phases). There-
fore, we propose a specific visualization tool that provides this information to
the pathologist.

The proposed visualization tool is based on dimensionality reduction with
Laplacian Eigenmaps [10]. Dimensionality reduction requires a distance measure
to evaluate the similarity between two objects in the initial space. In the case
of mitosis, since they can be in different mitotic phases, the most prominent
information is texture. Therefore, a texture description of each mitotic figure is
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computed in the form of a Locally Binary Pattern (LBP) histogram (introduced
in [11]) and this feature vector is used as an input for dimensionality reduction
with a χ2 histogram distance.

Once the dimensionality reduction has been performed, the pathologist can
visualize simultaneously all the mitotic figures of a whole slide image in the
form of a 3D projection where each mitosis is projected at coordinates defined
by the projection. With this projection, the pathologist can appreciate the simi-
larity of mitosis that are not necessarily spatially close in the whole slide image.
Finally, performing a dimensionality reduction with Laplacian Eigenmaps pro-
vides also geometrical information on the projection. Indeed, the sign of the first
eigenvector enables to partition the data into two sets. The obtained partitions
correspond to the normalized cut criterion of the initial data [12]. As a conse-
quence, this clustering information is also provided by coloring the bounding
box of each mitosis in a color corresponding to one of the two clusters (red or
green). This enables the pathologist to quickly distinguish mitosis with low or
high textural content (Fig. 4(d)-(f)).

(a) (b) (c)

(d) (e) (f)

Fig. 4. Illustration of visualization tools of extracted mitotic figures. (a)-(b)-(c): De-

launay graph superimposed on the distance maps associated. (d)-(e)-(f): visualization

of extracted mitotic figures by dimensionality reduction for the mitosis of (a)-(c) (see

electronic version of the paper for better visualization).

6 Conclusion

In this paper, a multi-resolution image analysis strategy for automatic enumera-
tion of mitotic figures on whole slide images is proposed. The whole classification
process begins with the lowest resolution image and moves to higher resolution
into regions of interest gradually identified. Graph-based regularization provides
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a unified formalism for both image simplification and spatial cluster refinement.
Contrary to methods that can be found in literature, our method is completely
unsupervised and has the advantage of reducing the amount of data to be pro-
cessed at each resolution level by selecting regions of interest.

We also propose two methods for the visualization of mitotic figures. The first
method allows to visualize the distribution of mitosis on the tissue samples. The
second method groups mitosis according to texture parameters.

Future works will concern the automation of the other scores of the Elston-
Ellis grading systems.
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Predicting Segmentation Accuracy for Biological
Cell Images�
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Abstract. We have performed segmentation procedures on a large num-

ber of images from two mammalian cell lines that were seeded at low

density, in order to study trends in the segmentation results and make

predictions about cellular features that affect segmentation accuracy. By

comparing segmentation results from approximately 40000 cells, we find

a linear relationship between the highest segmentation accuracy seen for

a given cell and the fraction of pixels in the neighborhood of the edge of

that cell. This fraction of pixels is at greatest risk for error when cells are

segmented. We call the ratio of the size of this pixel fraction to the size

of the cell the extended edge neighborhood and this metric can predict

segmentation accuracy of any isolated cell.

1 Introduction

Cell microscopy is being used extensively to monitor cellular behavior under ex-
perimental settings. The common use of CCD cameras and the availability of
microscopes with excellent optics, light sources, and automated stages and filter
wheels allows collection of quantitative multiparameter image sets of large num-
bers of cells [1]. When combined with image analysis procedures, these image sets
can provide several measurements of cellular behavior under the experimental
conditions.

One of the most common image analysis procedures for cellular images is
segmentation of an image object from the remainder of the image. For example,
for images of cells stained with a fluorescent dye that covalently attaches to
cellular proteins [2], segmentation procedures can be used to identify image pixels
that are associated with the cell and separate them from the background. The
results of this type of segmentation on images of cells that are at low density
(i.e. minimal cell-cell contact) can be used to generate metrics such as spreading
area, cell shape, and edge perimeter and provide high quality information about
the morphological shape of the cells. This information is characteristic of cell
phenotype or state and provides measurements that can be used to compare
experimental conditions [3].

� This contribution of NIST, an agency of the U.S. government, is not subject to

copyright.

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 549–560, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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There is extensive literature on procedures used to segment whole cells. De-
pending on the properties of the imaged cells, automated segmentation algo-
rithms can provide differential results even when applied to the same image.
New sophisticated algorithms such as level sets and active contours can segment
particular cell features, but they are not necessarily readily available for conven-
tional users of image analysis software. Automated segmentation routines based
on histogram analysis or simple gradient-based edge detection routines are more
common in most image analysis software. Although these methods can provide
appropriate cell segmentation under many conditions, these segmentation rou-
tines often fail to adequately segment certain cells. In this study, we segmented
a large number of cells from cellular images with various algorithms to identify
what features in a cell object can influence segmentation outcome for a particu-
lar cell. A metric that evaluates the staining properties at the edge of a cell was
developed to score the cell edge properties. This metric, called the edge neigh-
borhood fraction, was found to be predictive of segmentation accuracy under
several experimental conditions.

Because image segmentation is critical to biological image analysis, many
segmentation methods have been published, including histogram-based, edge-
detection-based, watershed, morphological, and stochastic techniques [4]. There
are few examples of systematic comparisons of image analysis algorithms for cell
image data; these include a comparison of cell shape analysis, a recent report
comparing segmentation algorithms [5] and a study on predicting confidence
limits in segmentation of cells [6]. An ongoing study in our group compares
nine different segmentation techniques to manually segmented cells on a small
number of cell images [7]. The study presented here evaluates cells from images
of two different cell lines under five different sets of imaging conditions. Overall,
we evaluated over 40000 cells from both NIH3T3 fibroblast and A10 smooth
muscle cells in 9000 images. The 40000 cells represent 4 replicate wells of each of
2000 unique cells imaged under five different settings which varied edge quality. A
study on this scale was large enough to produce statistically reliable results about
the accuracy of the segmentation methods evaluated here and form predictive
information for individual cells in different cell lines over a range of representative
imaging conditions.

2 Data Description

The data used in this study examine two cell lines and five imaging conditions.
These images consist of A10 rat smooth vascular muscle cells and NIH3T3 mouse
fibroblasts stained with a fluorescent Texas Red-C2-maleimide cell body stain
[2]. The overall geometric shape of the cell lines differ. A10 cells are well spread
large cells. NIH3T3 cells are smaller fibroblasts with a spindly shape. The five
imaging conditions varied in both the exposure time and the filter settings. These
settings resulted in varying the line per mm resolution and the signal to noise
ratio. Multiple cells are present on most images.

Both cell lines were maintained as previously described [8]. Cells were seeded
at 1200 (NIH3T3) or 800 (A10) cells/cm2, in 6 well tissue culture PS plates
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and incubated overnight. The cells were fixed with 1% PFA in PBS, and stained
with Texas-Red maleimide and DAPI as previously described [2]. Images of the
stained cells were collected with an Zeiss automated microscope with automated
filter wheels controlled by Axiovision software. For optimal filter conditions,
the stained cells were visualized with a Texas Red filter set (Chroma Technol-
ogy, Excitation 555/28, #32295; dichroic beamsplitter #84000; Emission 630/60,
#41834). For non-optimal filter conditions, the cells were imaged with Texas Red
excitation filter (Chroma Technology, Excitation 555/28 filter dichroic beam-
splitter #84000; Emission 740lp, #42345). These imaging conditions result in
reduced intensity signal to noise ratios and introduce blurring.1 Exposure times
were selected to use either 1/4, full, or partially saturated dynamic range of the
CoolSnap HQ2 camera. The five imaging conditions are summarized in Table 1.

To segment each of the cells and generate reference data that closely mimics
human drawn segmentations, we used a procedure that was developed based
on the analysis of manual segmentation processes. The procedure is described in
reference [9]. This algorithm was applied to images with the highest contrast (i.e.
conditions 3, Table 1) and edge pixels were identified as pixels with at least one
neighbor pixel with an intensity less than 0.7 of its adjacent value. This intensity
gradient feature has been shown to correlate well with manually selected edge
pixels. Figure 1 shows a typical image and the reference data cell masks.

Table 1. The five sets of imaging conditions

Image Exposure Exposure Filter type

time(s) A10 time(s) NIH3T3

1 0.015 0.01 optimal filter

2 0.08 0.05 optimal filter

3 0.3 0.15 optimal filter

4 1.0 1.0 non-optimal filter

5 5.0 5.0 non-optimal filter

3 Extended Edge Neighborhood

The apparent cell edges vary widely in clarity and sharpness across the five
different images of the same cells. In particular, the images vary in terms of
the number of pixel lengths (distance between pixels) needed to represent the
thickness of the edge regions of the cells. We have previously quantified this
thickness with a metric we call the cell edge quality index (QI) [10]. In the next
section we describe how we find and quantify the fraction of pixels that are at
risk for inaccuracy during a segmentation, using the quality index and the cell
geometry.
1 Certain trade names are identified in this report only in order to specify the experi-

mental conditions used in obtaining the reported data. Mention of these products in

no way constitutes endorsement of them. Other manufacturers may have products

of equal or superior specifications.



552 A.P. Peskin et al.

Fig. 1. The outlines in green of masks resulting from our semi-automated method for

mimicing the manual segmentation process; A close-up of one cell near the bottom of

the image, with the mask in red and the cell outline in green

In an accompanying paper, we compare manual segmentation masks on a set
of 16 of the images used here, with type 3 imaging conditions from Table 1.
We find that the our manual segmentation sets differ from one another, and
that the extent of misalignment from one set to another depends upon the cell
geometry [7] [9]. We observed that smaller, less round cells were more at risk
for error in the selection. The smaller the cell, the less likely that two people
hand selecting a mask would pick a large fraction of exactly the same pixels for
the mask: if most of the pixels are near an edge, a cell is more at risk for any
kind of segmentation error. In addition to cell size and shape, the gradient of the
pixel intensity at the cell edge also plays a large role in determining whether a
cell image can be segmented properly. We combine these concepts into a single
quantity that can be calculated quickly for each cell. The metric represents the
size of the extended edge neighborhood of pixels and is a fraction derived from
the ratio of pixels at risk to the total area of the cell. The pixels at risk are
determined by multiplying the cell perimeter by a factor determined from the
quality index (QI), that represents the physical thickness (Th) of the cell edge.

4 Quality Index and Edge Thickness Calculation

For each cell in an image, we evaluate the pixel intensities within an isolated
region containing the cell and background pixels. The quality index is calculated
as follows [10]:

1. Identify the 3-component Gaussian mixture, whose components correspond
to background (B), edge (E), and cell (C) pixels, via the EM (Expectation-
Maximization) algorithm; xB, xE , and xC denote the means of each compo-
nent [11], [12].

2. Find the average gradient magnitude at each intensity between xB and xE .
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3. Smooth the gradient in this region to fill in any gaps, and denote the resulting
function by G(Intensity).

4. Find the intensity, Intensity A, at which the smoothed gradient magnitude
is maximized.

5. Find the expected neighboring pixel to a pixel with Intensity A and denote
this intensity as B; i.e., Intensity B = A - G(A)*(1 pixel unit).

6. Find the expected neighboring pixel to a pixel with Intensity B; i.e., Intensity
C = B - G(B)*(1 pixel unit) = A - G(A)*(1 pixel unit) - G(A-G(A)*(1 pixel
unit))*(1 pixel unit).

7. Compute the quality index as QI = (A - C)/(A - xB).

The quality index ranges from 0.0 to 2.0, with a perfectly sharp edge at a value of
2.0. The edge thickness is defined as Th = 2.0/QI to scale a perfectly sharp edge
to be equal to 1.0 pixel unit. We approximate the number of pixels at the edge
by multiplying the edge thickness, Th, by the cell perimeter, and then define
our new metric, the ratio of pixels at the edge to the total number of pixels, the
extended edge neighborhood (EEN), as:

EEN = (P × Th)/area (1)

This value is effectively the fraction of the total cell area that makes up the cell
edge. We determine the cell perimeter-to-area ratio from a 5-means clustering
segmentation mask. This is a simple, fast segmentation, which we know from our
ongoing study [7] is consistently a good performing algorithm over a wide range
of extended edge neighborhoods. Because we need only the ratio of perimeter to
area and not an accurate measurement of each, we can use this simple method.

The extended edge neighborhood is influenced by the intensity contrast of
the image, through the calculation of the gradient at the cell edge, and by the
overall geometry of the cell, the ratio of cell perimeter to cell area. This metric
can vary from 0.0 to 3.0 or more depending upon the geometric features of the
cell, although most images of cells have values between 0.0 and 1.0. Figure 2
shows three cells with very different extended edge neighborhoods. If the edge
is very thick because the image is blurry, as in the third picture of Figure 2, the
extended edge neighborhood can be larger than 1.0. If a cell is very thin but the
cell edges are very sharp, as in the middle picture of Figure 2, it still has a higher
extended edge neighborhood than a larger cell with similar edges, as in the first
picture of Figure 2. This metric can be calculated for each cell in the absence of
good segmentation, because knowledge of the cell edge is not required for either
the edge thickness or cell geometry estimates. The calculation for each cell can
be performed efficiently even for very large datasets.

5 Testing 40000 Cells

Figure 3 shows a histogram plot of the EEN metric for 40000 cells. It shows
that the A10 cells have lower EEN values on average than the NIH3T3 cells. To
determine if the extended edge neighborhood metric is predictive of accuracy
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Fig. 2. 3 cells are colored according to pixel intensity, with the full range shown divided

into 40 different colors: a large, round cell with low extended edge neighborhood; a

small, thin cell similar edges but a higher extended edge neighborhood; the same cell

but a blurrier image, where the extended edge neighborhood is greater than 1.0

Fig. 3. Numbers of cells as a function of extended edge neighborhood for the A10 cells

in red, and the NIH3T3 cells in blue

for segmentation algorithms, we studied the accuracy of four segmentation algo-
rithms that use different methods to identify cell edges as a function of extended
edge neighborhood for each cell. The algorithms tested were 3-means clustering,
4-means clustering, 5-means clustering, and a Canny edge method. Segmenta-
tion masks were generated from the k-means clustering algorithms by assuming
that the cluster with the lowest centroid represents the background and the re-
maining clusters belong to the cells. To determine an accuracy metric for each
cell that is segmented by an automated segmentation, we compared the results
of the algorithm to that of a reference segmentation data set derived with an
a computer assisted manual segmentation and expert visual inspection, using
bivariate similarity metrics, previously described in [7] [9]. Definitions of these
metrics and a justification for their use are summarized in the next section.
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6 Bivariate Similarity Index

Various similarity metrics have been used to evaluate segmentation algorithm
performance. The commonly used Jaccard similarity index [13], for example,
compares a reference data set, T, with another set of estimates, E, defined by:

S = |T ∩ E|/|T ∪ E|, (2)

where 0.0 ≤ S ≤ 1.0. If an estimate matches the truth, T ∩ E = T ∪ E and S =
1. If an algorithm fails, then E = 0 and S = 0. However, S cannot discriminate
between certain underestimation and overestimation cases. For example, if the
true area = 1000, then both the underestimated area of 500, and the overesti-
mated area of 2000 yield the same value for the similarity index S = 500/1000
= 1000/2000 = 0.5. Here we used a set of bivariate similarity indices that can
distinguish between underestimation and overestimation.

Fig. 4. Plot of TET vs. TEE for 3,000 A10 cells

We define these indices as follows, to compare the reference pixel set T, with
a segmentation mask, pixel set E:

TET = |T ∩ E|/|T |, 0.0 ≤ TET ≤ 1.0 (3)

TEE = |T ∩ E|/|E|, 0.0 ≤ TEE ≤ 1.0 (4)

Each similarity metric varies between 0 and 1. If the estimate matches the ref-
erence mask, both TET and TEE = 1.0. TET and TEE were constructed to be
independent and orthogonal and divides performance into four regions: Dislo-
cation: TET and TEE are small; Overestimation: TET is large, TEE is small;
Underestimation: TET is small, TEE is large; and Good: both TET and TEE
are large. Figure 5 illustrates the use of the indices to compare a group of approx-
imately 3000 A10 cells, segmentated with a 5-means clustering segmentation in
Figure 4. This plot shows the tendency of 5-means clustering segmentations to
underestimate cell edge compared to the manually segmented data.
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In some situations, segmentation comparisons may be facilitated by combining
the bivariate indices into a univariate metric. For these purposes we define a
metric called the segmentation distance as the Euclidean distance from the point
corresponding to the TET and TEE values to the point corresponding to perfect
segmentation (TET = 1.0, TEE = 1.0). The univariate metric does not contain
information about over- or undersegmentation, but it does provide a general
measure of segmentation accuracy and can be used to evaluate correlations with
the extended edge neighborhood metric.

Fig. 5. Number of cells for which a technique worked best: 3-means clustering (red), 4-

means clustering (green), 5-means clustering (blue), Canny edge (purple), as a function

of extended edge neighborhood

7 Results

To begin, we evaluate which segmentation algorithm worked best for each in-
dividual cell. Figure 5 shows how many of the 40000 cells scored best for each
method, as a function of our new metric, the extended edge neighborhood. Often
several of the methods gave similar results, but this plot counts the number of
times each method gave the best results, regardless of whether another method
came close. If two methods gave identical results for a given cell, results for that
cell were not included in the plot. The 5-means clustering gives the best results
for this cell image dataset and the cells most likely to be segmented best using
this method tended to have a mean EEN value greater than 0.2. Interestingly,
the Canny edge segmentation method works very well in only a small region
of the extended edge neighborhood curve, at low extended edge neighborhoods
between 0.0 and approximately 0.15, which represents larger cells with sharp
edges. In this region the Canny algorithm segmentation results are more similar
to manual segmentation than 5-means clustering, 4-means clustering, or 3-means
clustering. 3-means clustering and 4-means clustering methods did best for only
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Fig. 6. Averaged segmentation distance for each group of cells with the same extended

edge neighborhood for 3-means clustering (red), 4-means clustering (green), 5-means

clustering (blue), and Canny edge (purple); Standard deviations of 5-means clustering

averaged segmentation distance results as a function of extended edge neighborhood

for the A10 cells (blue); for the NIH3T3 cells (red); for all 40000 cells (purple)

a small number of cells in the extended edge neighborhood region between 0.2
and 0.4, where the accuracy using any method was not very high.

Figure 6 shows all of the segmentation results for each of four methods over
the whole range of our extended edge neighborhood metric. The results are
presented in terms of the averaged segmentation distance for groups of cells with
the same extended edge neighborhoods. We can draw a number of conclusions
from this data. In general, the accuracy of these methods varies monotonically
with extended edge neighborhood, and the 5-means clustering results are on
average always better than the 4-means clustering, which are always better on
average than the 3-means clustering. An occasional cell has better results for
3-means clustering than 4-means clustering or 5-means clustering. However, the
results show that in general, the extended edge neighborhood metric predicts the
accuracy of k-means algorithms in segmenting these cell images. The standard
deviations of segmentation distances averaged over a group of cells with the same
extended edge neighborhoods are low, suggesting a high level of predictability
for most cells. As an example, the standard deviation results for the 5-means
clustering data are shown in the second plot of Figure 6. The data show that
for A10 smooth muscle cells, the standard deviation in segmentation accuracy is
low for the EEN range 0.0 to 0.2. The standard deviation for the NIH3T3 cells
is low for the range 0.2 to 0.5.

The Canny edge segmentation results are similar to the 5-means clustering
method at low extended edge neighborhoods. Above we saw that more cells
were segmented accurately in this extended edge neighborhood than with 5-
means clustering, but the variability of the Canny edge results produce a similar
plot on data averaged over all of the cells, in the region between 0.0 and 0.15
extended edge neighborhood. Overall, we see a fairly linear trend in the best
averaged segmentation as a function of extended edge neighborhood.
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Fig. 7. Averaged segmentation distance for the A10 cells (red), along with a plot of cell

numbers as a function of extended edge neighborhood (blue); Same for the NIH3T3

cells; Results from the A10 cells (red) and NIH3T3 cells (blue) from the first two plots.

A straight line is fitted to this data.
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To investigate further the relationship between the EEN metric, the extended
edge neighborhood, and the best averaged segmentation results, we look only
at data for which there are a large number of cells. We find the region on the
extended edge neighborhood curves for each cell line that includes 90 % of the
cell data in each cell line. The first two plots of Figures 7 overlay plots of cell
counts for the A10 and NIH3T3 cell lines respectively with the segmentation
distances from a 5-means clustering for each cell line. In the third plot of Figure
7, we graph the A10 cells in the extended edge region from 0.02 to 0.2, and the
NIH3T3 results in the extended edge region 0.2 to 0.5, where 90% of the cells
from each cell line occur. Both of these data sets are fitted with a linear model,
which is also plotted in Figure 7: predicted distance = 0.051 + EEN × 0.477,
with a correlation coefficient of 0.9815.

8 Conclusions and Future Work

From this large scale test, we define a method to pre-process images and de-
termine their vulnerability to segmentation error. The accuracy that is possible
from any given segmentation technique is directly proportional to the extended
edge neighborhood of each individual cell within an image. Rounder, larger cells
have a lower extended edge neighborhood than smaller less round cells, and
segmentation will more closely align with manual segmentation for these cell
images. Our results suggest that of the four segmentation methods tested here,
a 5-means clustering segmentation is the most reliable. The Canny edge seg-
mentation method performs best with cells within a very small extended edge
neighborhood range that is less than approximately 0.15. We can now use the
methods outlined in this paper to look at a wider range of segmentation algo-
rithms for identifying more accurate segmentation techniques. We have written
a software segmentation pre-processor that calculates extended edge neighbor-
hood for each cell in an image and then provides the best technique and expected
accuracy for the segmentation of each cell based on these four algorithms, which
can evolve as we compare more algorithms. We believe that this processor will
be of great use for optimizing the segmentation of cells seeded at low density and
stained as described here. The EEN can also be used as a metric to rank cells for
most-likely best segmentation. Measurements of cell function can be weighted by
this ranking to potentially improve the measurement robustness in a cell-based
assay. The EEN metric will have significant value in determining which cells in
a data set are most at risk during a segmentation procedure.
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Abstract. We introduce variational optical flow computation involving

the prior with the fractional order differentiations. The fractional or-

der differentiation is a typical tool in signal processing and image anal-

ysis. The zero crossing of a fractional order Laplacian yields a good

performance for edge detection. As a sequel of edge detection with the

fractional order differentiations, we deal with variational optical flow

computation involving the fractional order differentiations on optical

flow vectors. The method allows us to detect discontinuity of optical

flow using linear operations.

1 Introduction

In this paper, we introduce a motion segmentation method using variational
optical flow computation with the prior involving fractional order differentiations
[1]1 for variational optical flow computation [2].

Using the Fourier transform pair

F (ξ, η, ζ) =
1

2π3/2

∫
R3

f(x, y, z)e−i(xξ+yη+zζ)dxdydz, (1)

f(x, y, z) =
1

2π3/2

∫
R3

F (ξ, η, ζ)ei(xξ+yη+zζ)dξdηdζ, (2)

we define the operation Λ as

Λf(x, y, z) =
1
2π

∫
R3

(
√

ξ2 + η2 + ζ2)F (ξ, η)ei(xξ+yη+zζ)dξdηdζ. (3)

Furthermore, we have the equality∫
R3

|∇f |2dxdydz =
∫
R3

|Λf |2dxdydz, (4)

since ∫
R3

|f |2dxdydz =
∫
R3

|F |2dξdηdζ. (5)

1 Fractional order differentiations satisfies the relations d1/2

dx1/2 x = 1√
2π

x1/2 and

d1/2

dx1/2
1√
2π

x1/2 = 1.
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The mathematical properties of eq. (4) on the operator Λ allows us to focus on
variational image analysis in the form

Jα(f) =
∫
R3

{M(f) + κ|Λαf |2}dxdydz, (6)

where M(f) is the model term for image analysis for κ ≥ 0 and α = 1+ ε where
0 ≤ ε < 1 as a generalization of the energy function such that

J(f) =
∫
R3

{M(f) + κ|∇f |2}dxdydz. (7)

Since Λ = Λ∗, the Euler-Lagrange equation of eq. (6) is

Λ2αf +
1
κ

M(f) = 0. (8)

Fractional order differentiations are typical tools in signal processing [4] and is
applied to the edge detection of images [5]. In edge detection, a zero-crossing set
of a fractional order Laplacian derives good performance [5].

Total variational (TV) regularization [3] is a successful method of optical flow
computation of an image with a discontinuity of the gray values and the optical
flow field. TV regularization uses the total variation of optical flow field as the
prior, although the classical Horn-Schunck method [6,7] uses the L2 norm of the
gradient of flow field. TV regularization optical flow computation [3] derives a
nonlinear elliptic partial differential equation as the Euler-Lagrange equation of
the energy functional of the problem.

The generalization of the order of differentiation in a Horn-Schunck type prior
is another modification of the original Horn-Schunck regularization, since this
generalization yields a linear Euler-Lagrange equation. There are two types of
generalization of the differentiations in priors; the first one is to deal with higher-
order differentiations, and the second one is to deal with fractional order differ-
entiations. We focus on the second type of generalization, that is, we deal with
the variational optical flow computation whose prior term involves a fractional
order differentiation of optical flow vectors.

Since fractional differentiations are linear operations, the fractional order regu-
larization for optical flow computation [2] derives a linear fractional order elliptic
partial differential equation as the Euler-Lagrange equation of the energy func-
tional. Therefore, we can numerically solve the problem using the same strategy
that is used to solve the Horn-Schunck method.

2 Optical Flow Computation

For a spatio-temporal image f(x, y, z, t), the total derivative with respect to the
time argument t is given as

d

dt
f =

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt
+

∂f

∂t

dt

dt
(9)
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where u = (u, v, w)	 = (ẋ, ẏ, ż)	 = (dx
dt , dy

dt , dz
dt )

	 is the motion of each point
x = (x, y, z)	. Optical flow consistency [6,7,8] d

dtf = 0 implies that the motion
u = (u, v, w)	 of the point x = (x, y, z)	 is the solution of the singular equation,

fxu + fyv + fzw + ft = 0. (10)

The mathematical properties of eq. (4) on the operator Λ allows us to focus on
variational optical flow computation in the form

Jα(u) =
∫
R2

(∇f	u + ∂tf)2dxdydz + κEα(u)

Eα(u) =
∫
R2

(|Λαu|2 + |Λαv|2 + |Λαw|2)dxdydz, (11)

for κ ≥ 0 and α = n + ε where 0 ≤ ε < 1 as a generalization of the energy
functional of the Horn-Schunck method [6] such that

J(u) =
∫
R2

(∇f	u + ∂tf)2dxdydz + κE1(u)

E1(u) =
∫
R2

(|∇u|2 + |∇v|2 + |∇w|2)dxdydz. (12)

These energy functionals lead to the following definition.

Definition 1. We call the minimizer of eq. (11) the α optical flow

Since Λ = Λ∗, the Euler-Lagrange equation of eq. (11) is

Λ2αu +
1
κ

(∇f	u + ∂tf)∇f = 0. (13)

Specially, for α = 1, 3
2 , 2, the Euler-Lagrange equations are

Δu − 1
κ

(∇f	u + ∂tf)∇f = 0, (14)

ΔΛu − 1
κ

(∇f	u + ∂tf)∇f = 0, (15)

Δ2u +
1
κ

(∇f	u + ∂tf)∇f = 0. (16)

since Λ2 = −Δ, Λ3 = −ΔΛ, and Λ4 = Δ2.
The solution involving the lth-order prior is

f(x, y, z) =
l−1∑

i,j,k=0

aijx
iyjzk (17)

for nonnegative integers i, j, k, that is, the solution is locally a (k − 1)th-order
polynomial of x, y, and z. This property implies that the priors involving the
first- and second- order differentiations derive a piecewise linear and affine optical
flow, respectively.



564 K. Kashu, A. Imiya, and T. Sakai

3 Numerical Examples

The associated diffusion equation

∂u

∂τ
= −Λ2αu − 1

κ
(∇f	u + ∂tf)∇f. (18)

of eq. (13) derives the semi-implicit discretization

u(n+1) − u(n)

Δτ
= −Λ2αu(n+1) − 1

κ
(∇f	u(n) + ∂tf)∇f. (19)

From eq. (19) we have the iteration form

(I +
Δτ

κ
Skmn)u(l+1)

kmn = u
(l)
kmn + Δτ (−Λ2α)u(l)

kmn − Δτ

κ
ckmn, l ≥ 0, (20)

for the numerical computation of α optical flow.
Equation (20) is expressed as

Au(l+1) = P	BPu(l) + c, B = I + Δτ(−L)α (21)

where L is the discrete Laplacian such that

L = diag(l, l, l), l = D ⊗ I ⊗ I + I ⊗ D ⊗ I + I ⊗ I ⊗ D (22)

D =

⎛
⎜⎜⎜⎝

−1 1 0 · · · 0 0
1 −2 1 0 · · ·
...

...
. . .

...
0 0 · · · 0 1 −1

⎞
⎟⎟⎟⎠ , (23)

and P = diag(Q, Q, Q) for the permutation matrix Q which transforms the
collection of triplets (k, m, n) 1 ≤ k, m, n ≤ N from the lexicographical order to
the reverse lexicographical order.

Setting Φ and Σ to be the discrete cosine transform matrix and its eigenma-
trix, the matrix Lα is rewritten as2

Lα = (Φ ⊗ Φ ⊗ Φ)	(Σα ⊗ Σα ⊗ Σα)(Φ ⊗ Φ ⊗ Φ) (24)

Therefore, we can compute Λα numerically using discrete cosine transform.
Figures 1 (a) and (b) show biological and medical images, respectively Figure 2

shows Motion field of chromosome segmentation in binary fission process for
α = 0, 5, 1.0, 1.5, 2.0, 2.5, 3.0. The image sequence is dynamically measured using
a confocal laser microscopy. If the optimal order of the points is between n and
n+1, the points are viscoelastically moving [9] on an image. These results shows
that, in the segmentation process, the ribosome vicoustically moves and that
the motions of nucleolus and nucleus are inactive. Figure 3 show the results
2 For a positive definite matrix A and a real number α the eigenvalues of Aα is λα

for Au = λu, where u is the eigenvector of A.
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(a) CFL (b) MRI (c) Chart (d) Ground Truth

Fig. 1. Original images on on the sagittal, coronal, and transverse planes and the

color chart for planar motion field. (a) Dynamic confocal laser image of chromosome

segmentation in binary fission process. (b) MRI image of a beating heart. (c) Color

chart for the planar vector. (d) Color expression of a planar motion field.

(a) α = 0.5 (b) α = 1.0 (c) α = 1.5

(d) α = 2.0 (e) α = 2.5 (f) α = 3.0

Fig. 2. Computational results for a biological image sequence. Motion field of chro-

mosome segmentation in binary fission process. The optical flow fields for α =

0.5, 1.0, 1.5, 2.0, 2.5, 3.0 show that the continuity order of flow field is non-uniform on

the screen.

a beating heart image sequence, respectively for α = 0, 5, 1.0, 1.5, 2.0, 2.5, 3.0.
These results separates the heart wall based on the continuity orders.
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In these examples, optical flow field is computed using volumetric method,
and on the sagittal, coronal, and transverse planes, motion fields are expressed
using color chart of Fig. 1.

The examples show that our method extracts motion boundary, and that
using hierarchical analysis of motion fields with respect to α, it is possible to
classify the motion fields using the continuity order of the optical flow vectors. As
shown in results, if α is non-integer, the algorithm extracts the motion boundary.
Furthermore, since the detected flow fields depend on the parameter α. Moreover,
by tuning the parameter α, the algorithm detects the position of discontinuity
of the boundary.

Figures 4(a) and 4(d) show the average and variance curves of residuals

R(α) = average
{∫

R3
r(α)dx

}
, r(α) = (∇f	uα + ft)2 + κ|Λαuα|2 (25)

for three-dimensional volumetric images, where uα is the numerical solution of
the problem for each α for the image sequence of confocal laser microscopy and
volumetric beating heart sequence measured by MRI. These results show that
the volumetric motion boundary of HeLa moves viscoelastically and that these
of volumetric beating heart moves elastically, since the R(α) curve of HeLa is flat
and that of volumetric beating curve is convex and has the minimum around

(a) α = 0.5 (b) α = 1.0 (c) α = 1.5

(d) α = 2.0 (e) α = 2.5 (f) α = 3.0

Fig. 3. Computational results for a medical image sequence. Wall motion of a beating

heart. The optical flow fields for α = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 show that the continuity

order of flow field is non-uniform on the screen.
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α = 2. Figures 4(c) and 4(d) show optical flow for u∗. Since each image of
the heart image sequence is produced as the average of many images measured
in the different observations, The background of each image is assumed to be
the average of white noise with various levels and the motion vectors in the
background are average of various motion vectors. Therefore, it is not so easy to
extract discontinuity of motion field from the background.

For Λ we obtain the relations

Λ2α = (−Δ)n(−Δ)ε, Λ2α = (−Δ)n+1(−Δ)−ε̄ (26)

for α = n + ε = (n + 1)− ε̄ where 0 < ε, ε̄ < 1 and ε̄ + ε = 1. Since symbolically
we have the relation (−Δ)−ε̄(−Δ)ε̄f = f , the operation (−Δ)−ε̄f is a low-pass
filter in the Fourier domain.

This decomposition can be read that Λ2αf is achieved by applying the har-
monic operation (−Δ)n+1 to g = (−Δ)−ε̄f , which is achieved by convolution
between the function f and the Riesz potential [10]. The operation (−Δ)−ε̄ pos-
sesses smoothing effect to the optical flow field in each step of iteration, since
(−Δ)ε̄ is a high-pass operation for ε̄ > 0. Therefore, our numerical scheme de-
rived generates a smoothed optical flow before applying the harmonic operation,
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which is the main part of the prior for selection of model in optical flow com-
putation. This pre-smoothing property of the numerical scheme yields a better
performance for α = n + ε such that 0 < ε < 1.

4 Concluding Remarks

The order of differentiation in the prior decides the continuity order of the optical
flow filed. Therefore, our results show that the orders between one and two
are preferable to detect discontinuity optical flow vectors, which appear on the
motion boundary.

The Nagel-Enckelmann [8] and TV regularization [2] methods are image and
flow driven optical flow computation methods, respectively. On the other hand,
our method is an operator driven. In Nagel-Enckelmann method, the structure
tensor, which is the local moment of the gradient image, controls the local coor-
dinate of optical flow computation, although the numerical scheme is linear. In
TV regularization, the direction of the flow vector itself controls the direction to
compute local average and the numerical scheme is nonlinear.

Setting T to be a shift-invariant linear operation to images, the operation T
is expressed as a convolution operation such that

T f(x, y, z) =
∫
R2

t(x − x′, y − y′, z − z′)f(x′, y′, z′)dx′dy′dz′. (27)

We can deal with the variational equation

G(u) =
∫
R2

{
(∇f	u + ∂tf)2 + κ(|Tu|2 + |T v|2 + |Tw|2)} dxdydz (28)

for the optical flow computation. We showed that if T is the differentiation
operator of the order α, such that, α = 1 + ε for 0 < ε < 2, we can detect the
motion boundary with motion discontinuity.

The Euler-Lagrange equation of eq. (28) is

T ∗Tu +
1
κ

(∇f	u + ∂tf)∇f = 0, (29)

where T ∗ is the conjugate operation of T . The associated diffusion equation of
eq. (29) is

∂

∂τ
u = Fu + g, (30)

where F = (T ∗T + S) for g = ft∇f and S = ∇f∇f	. Therefore, for the
selection of T , the operator theory [11,12] is helpful. Setting T to be the Fourier
transform of t, the Fourier transform of T f is TF . If T is a real function of
ρ =

√
ξ2 + η2 + ζ2, the relation T ∗ = T is satisfied. For example, if T (ξ, η, ζ) =

−ρ2 = (ξ2 + η2 + ζ2), T is the Laplacian, which is linear and shift-invariant
operation. For the semi-explicit discretization of

∂u

∂τ
= T ∗Tu +

1
κ

(∇f	u + ∂tf)∇f, (31)
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using the operator splitting

u +
Δτ

κ
Su = u + Δτ (−T ∗T )u − Δτ

κ
∂t∇f, (32)

where S = ∇f∇f	, eq. (29) derives the iteration form

(I +
Δτ

κ
S)u(l+1) = u(l) + Δτ (−T ∗T )u(l) − Δτ

κ
∂t∇f, l ≥ 0, (33)

which converges to

u =
(

T ∗T +
1
κ

S

)−1 (
− 1

κ
∂tf∇f

)
= Cun, un = − ∂tf

|∇f |2∇f. (34)

if ρ(I + Δτ
κ S) > 1 and ρ(I − ΔτT ∗T ) < 1. Equation. (34) implies that the

operator T decides the linear operation A which derives the optical flow vector
from the normal flow un at each point, although an image and optical flow field
decides the operator A in the Nagel-Enckelmann method and TV regulariza-
tion. The selection of T is expected to derive remarkable results for optical flow
computation.

The second term of the right-hand side of eq. (33) is numerically computed
as

(−T ∗Tu)kmn =
∑
ijq

tijpuk−i m−j,n−q (35)

since T ∗T is a shift-invariant operation, which is efficiently computed by FFT.
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Appendix

The Riemann-Liouville fractional differentiation

dα

dxα
f(x) =

1
Γ (n − α)

dn

dxn

∫ t

0

(t − τ)n−α−1f(τ)dτ,

for n = [α] + 1. involves the Cauchy integral formula, which is unstable to
numerical implementation, since the formula involves a singular integral.

Let fn and Fn for 0 ≤ n ≤ (N − 1) be the discrete Fourier transform pair
such that

Fn =
1√
N

N−1∑
m=0

fm exp
(
−2πi

mn

N

)
, fn =

1√
N

N−1∑
m=0

Fm exp
(
2πi

mn

N

)
.

Since
1
2
(fn+ 1

2
− fn− 1

2
) =

1√
N

N−1∑
m=0

i sin
(
π

m

N

)
Fm exp

(
2πi

mn

N

)
,

we can compute

(Dαf)n =
1√
N

N−1∑
m=0

(
i sin

(
π

m

N

))α

Fm exp
(
2πi

mn

N

)
,

for the discrete difference operation D.
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Abstract. In the field of assisted reproductive technologies, ICSI fertil-

ization is a medically-assisted reproduction technique, enabling infertile

couples to achieve successful pregnancy. In this field crucial points are:

the analysis of clinical data of the patient, aimed at adopting an appro-

priate stimulation protocol to obtain an adequate number of oocytes,

and the selection of the best oocytes to fertilize. In this paper we would

provide a framework able to extract useful morphological features from

oocyte images that combined with the provided clinical data of the pa-

tients can be used to discover new information for defining therapeutic

plans for new patients as well as selecting the most promising oocytes.

1 Introduction

Many assisted reproductive techniques have been designed to overcome the al-
ways more frequent problem of infertility. One of these techniques is the intracy-
toplasmic sperm injection (ICSI) in which a single sperm is directly injected into
an oocyte. The fertilized oocyte grows in a laboratory for one to five days, then
it is placed in the woman’s uterus. Due to ethical and medical reasons a specified
number of embryos have to be selected and hence transferred in woman’s uterus.
As a consequence, even the number of oocytes to fertilize could be under such
a restriction and clinicians prefer to appropriately select the most promising
oocytes among all the oocytes taken from the woman.

Generally, the oocytes selection is manually done by non-invasive examina-
tion of the morphology and dynamics of the oocyte. Indeed, a set of morpho-
logical parameters to be examined are present in medical literature such as
oocyte/cytoplasm dimension, perivitelline space and zona pellucida thickness,
first polar body conformation, and more subtle abnormalities of cytoplasm such
as central granularity, inclusions and vacuolation.

However, these variables are not the unique and independent parameters in-
volved in the process. Indeed, in general, before the ICSI procedure, a hormone
stimulation protocol of the female patient, consisting of a set of pharmacological
treatments, is carried out in order to ensure the development of multiple preovu-
latory follicles to obtain multiple oocytes to aspire. In this phase, the couples’
health conditions have to be taken into account as well.

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 571–581, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In this work we introduce a multi-relational learning approach able to deal
with clinical data and relevant features extracted from oocyte images. The goal
is to discover new information useful to support the clinicians both in the def-
inition of the stimulation protocol for new unseen patients and in the selection
of oocytes from new unseen oocytes. At this aim we have developed a system
that exploits image processing techniques to extract useful morphological fea-
tures from oocyte images and machine learning methods, that work on such
features and combine them with the patients clinical data. Due to the presence
of strong relationships among different stages of the process, multi-relational
learning techniques that are able to take into account the relationships exist-
ing among all the entities involved in the process seem to be the most suitable
approaches in this medical application domain. The approach consists of a multi-
relational clustering followed by a multi-relational rule induction. The induced
rules are represented in a easily comprehensible form and can be used as an
advisor to the clinicians during their work in order to help them in determining
what knowledge sources are relevant for a treatment plan.

Some works faced the problem of designing systems to support clinicians
in this domain. Some approaches work with low level features extracted from
oocyte images to assess their quality [1–3]. Other approaches work with higher
level characteristics such as the clinical data of the patients with the aim of
grasping structural patterns that define the peculiarities of the patient. Few
approaches are presented in literature that work with both these kinds of infor-
mation, but they assume that all the information on both features extracted from
the images and the clinical data are available [4–6]. Furthermore, they exploit
an attribute-value description of the data thus losing the relationships existing
between oocytes and patients data. Indeed, an important aspect and commonly
neglected by these approaches is that each set of variables, i.e. patient data and
image features, cannot be considered as a stand-alone set since relationships be-
tween such sets of data can occur [7]. For example, clinical data of the patient
are related both to the oocyte quality and to the implantation success rate; the
oocyte quality, intended as its maturity, plays a fundamental role in the embryo
development. For these reasons, multi-relational learning techniques seem to be
the most suitable approaches in this application domain.

2 The Framework

The general framework we propose, depicted in fig. 1, is made up of a module
devoted to image-based features extraction - based on mathematical morphology
- and a module for knowledge extraction from both clinical and image features
data - based on multi-relational learning techniques.

2.1 Image-Based Features Extraction

The features extraction module is oriented to extract some relevant morpho-
structural features from oocyte images, such as the measures of oocyte and
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Fig. 1. Schematic representation of the proposed framework

cytoplasm diameters. This can be addressed as an image segmentation problem.
Since we are interested in extracting the shape of the oocyte from the image, we
employ a segmentation method better suited for shape analysis, that is mainly
based on mathematical morphology [8].

Basic concept of mathematical morphology is the structuring element: given
a two-dimensional binary image X ⊂ Z2, a structuring element is a particular
set B ⊂ Z2, that gets translated over X and whose relations with X are studied
at each location. In the following, we denote Bx the translation of B by x.

The basic operations of mathematical morphology are dilation and erosion.
The dilation of an image X ⊂ Z2 by a structuring element B, denoted by ⊕, is
the set of points x ∈ Z2 such that the translation of B by x has a non-empty
intersection with set X : X ⊕B = {x ∈ Z2 | X ∩Bx �= 0}. The erosion of X by a
structuring element B, denoted by �, is the set of points x ∈ Z2 such that the
translation of B by x is included in X : X � B = {x ∈ Z2 | Bx ⊆ X}.

From the erosion and dilation operators, two fundamental morphological op-
erations can be derived as follows: the opening of X by B, denoted by ◦, is the
union of all the translations of the structuring element that fit inside the image
X , i.e. X ◦ B =

⋃{Bx | Bx ⊂ X} = ((X � B) ⊕ B). The dual operation of the
opening is the closing, denoted by •, which is defined as: X •B = ((X⊕B)�B).

On such operators we designed a procedure able to extract the region con-
taining the oocyte, and its diameter, along with a good approximation of the
cytoplasm diameter. Specifically, the proposed procedure works as follows.

Oocyte region detection. Firstly, an edge detection and a binarization steps
are performed. After the binarization, elements that are not of interest sur-
rounding the image borders, such as the holding and injection pipettes, have to
be taken out. This is done by selecting a point p in the border region and, start-
ing form it, by finding the connected components. This step uses an extraction
of connected components algorithm [8] based on dilation and intersection of the
set of pixels of the binary image.

At this point, the binary image shows segments of high contrast that do not
quite delineate the outline of the object of interest. Indeed gaps in the segments
surrounding the object are evident. These gaps will disappear as soon as the
image is dilated twice using circular structuring elements.
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a b c d

Fig. 2. Image Processing. (a) Original. (b) Detected region. (c) Oocyte region extrac-

tion. (d) Cytoplasm detection.

The dilated image shows the outline of the object quite nicely, but there are
still holes in the interior of the object. The filling of these holes is performed by
starting from a point p in the region to process and iteratively dilating it and
intersecting the resulting dilation with the complement of the starting image
[8]. Finally, in order to make the segmented object look natural, the region is
smoothed by an opening-closing operation with a circular structuring element.

Now, by subtracting the obtained image from the original one, the region of
the oocyte on a black-background is achieved (fig. 2b). Finally, in order to obtain
the smallest rectangle that contains the object, the center of mass of the oocyte
region is calculated and, starting from it, the 4-directional Euclidean distances,
until a pixel background is encountered, are computed. The mean of these values
represents the diameter of the oocyte and the minimum and maximum x and y
coordinates of the 4-directional Euclidean distances are the starting points from
which to extract the bounding rectangular region containing the oocyte (fig. 2c).

Cytoplasm region detection. As according to medical literature the cyto-
plasm dimension is about the 66% of the oocyte dimension [9], this value can be
used to approximate the cytoplasm diameter. A more accurate measure has been
obtained by considering that the shape of the cytoplasm can be approximated
by a circumference. To this aim the Hough transform is applied to the binary
image so as to detect the best circle fitting the shape of the oocyte cytoplasm.
This has been done by searching for circles of radius r, varying from (d/2 − δ)
to (d/2 + δ), where δ has been chosen equal the 10% of the oocyte dimension d.
The resulting cytoplasm detection is shown in fig. 2d.

2.2 Knowledge Extraction

The knowledge extraction step involves the representation of both clinical and
image-based data, extracted from oocyte images, and the application of the
multi-relational learning approach to build a model able to solve the issues con-
cerning the identification of similarities among situations such as stimulation
protocols under specific patients’health conditions and, hence, the predictivity
of the goodness of the oocytes to select as the most promising for the fertilization.

As to the data representation, the description language reported in Table 1
was exploited: for each entity involved in the domain, a set of descriptive at-
tributes are reported along with the existing relationships. Specifically, the gen-
eral information on a patient and the clinical data about the couple diseases is
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Table 1. Attributes (bold) and Relations (italic) descriptors used to represent entities

(patient P, protocol PR, hormone H, oocyte O, component C) and relationships

General information and clinical data

age(P,val) val: integer

bmi(P,val) val: real

basal FSH(P, val) val: real

basal LH(P, val) val: real

male infertility(P,inf) inf: oligospermia, azoospermia, teratospermia

female infertility(P,inf) inf: tubaric, pcos, thyroid, uterine, endometrial

Stimulation Protocol Data

stimulation protocol(P,PR) PR: nominal (performed protocol identification)

hormone stimulation(PR, H) H: agoGnRH,antagoGnRH,rFH,rLH,HMG,uFSH

dose(H,val) val: real (provided dose)

timing(H,val) val: real (duration of the stimulation type)

duration of stimulation(PR,val) val: real (duration of the stimulation protocol)

estradiol level(PR,value) val: real (estradiol at the HCG injection day)

HCG dose(PR,val) val: real

aspiration timing(PR,val) val: real (hours from HCG injection to aspiration)

Oocyte data

part of(P,O) O: nominal (oocyte identification)

dimension(O, val) val: real (μm)

part of(O, C) C: cytoplasm

dimension(C, val) val: real (μm)

followed by the data describing the ovarian stimulation protocol. Then, the data
about the oocyte aspiration phase are introduced: For each patient a set of n (a
value varying form one patient to another) oocytes is obtained and each oocyte
is described according to the own features extracted from the images.

As to the knowledge extraction phase, we apply two submodules. The first one
concerns the application of clustering techniques to identify similarities among
patients. Indeed, the aggregation of patients that show a similar behavior could
be useful to better understand the conditions under which a pregnancy could be
obtained. Once the clustering has been taken place, for each cluster a set of rules
are induced that will be able to identify relations between stimulation protocol
and health conditions or between number and quality of oocytes obtained.

Due to the complexity of data in our application domain, multi-relational
techniques were exploited. In particular, we use APAM [10] as it is very robust
with respect to the existence of outliers. This is a fundamental characteristic
for our application domain as clinicians can adopt very different stimulation
protocols according to their experience and, more importantly, according to the
patients’health conditions. Furthermore, the APAM algorithm is based on an ap-
proximate evaluation of the clustering membership thus allowing to tackle the
uncertainty in the data. On the other hand, the induction process on the clus-
tered data was performed by means of the incremental multi-relational inductive
logic system [11] as its incremental capability makes it able to learn a satisfiable
model even with few examples and, more importantly, to revise the learned rules
as new examples are provided without restart the learning step from scratch.
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In the following the multi-relational techniques exploited are briefly reported.

Multi-Relational Clustering. Clustering is an unsupervised learning tech-
nique used to find a partition of a set of objects into clusters so that the objects
within each cluster are similar to each other. The similarity between objects can
be determined using various distance measures. Relational clustering works on
relational data and uses distance measures that are generally more complex than
those used in the case of attribute-value representations. Indeed, the generic Eu-
clidean distance cannot be applied to relational representations of the data as
they are not represented by a feature vector of a fixed number of measurements.

Here we use the distance function and the modification of a partitional clus-
tering algorithm introduced in [10] and here briefly reported.

As to the distance function, an adaptation of the Tanimoto metric to relational
descriptions is exploited. Specifically, the Tanimoto metric adaptation to define
the distance between two multi-relational descriptions D1 and D2 is:

dT∩(D1, D2, α) =
|D1| + |D2| − 2s∩(D1, D2, α)

|D1| + |D2| − s∩(D1, D2, α)
,

where |Di| is the number of descriptors in Di and s∩(D1, D2, α), the number
of descriptors in common between D1 and D2, is approximated by the mean of
the number of common descriptors in D1 and D2 for each of the α renamings
of D2. In this setting a renaming R(D) of a multi-relational description D is a
ground description obtained by firstly turning constants into variables in D and
then applying a substitution (i.e., a mapping from variables onto a new set of
constants) to the result. The set of renamings is generated randomly choosing k
renamings of D onto the set of constants C.

As to the partitional clustering, the following generic schema is considered:
1. randomly choose k representatives for clusters;
2. iteratively improve these initial representatives until the change in the objec-
tive function from one iteration to the next drops below a given threshold:

(a) assign each object to the cluster it “fits best” in the current clustering
(b) compute new cluster representatives using these new assignments

One of the most well-known and commonly used partitioning method is the k-
medoids clustering algorithm. Traditional k-medoids clustering algorithm seeks
to find k medoids among the objects in the data set minimizing, for a given
clustering solution C, the following objective function:

tightness(C) = 1
n

∑
i=1,...,n d(xi, μi)),

where μi is the medoid of the cluster xi belongs to and d(·, ·) is the distance.
The k-medoids clustering algorithm PAM on which APAM is based starts with

a set of clusters containing the medoids of the complete data set, and greedily
inserts new objects into this set of clusters while minimizing the above objective
function. Then, it tries to improve the previously obtained clustering by explor-
ing all possible replacements of medoids by non-medoids picking the replacement
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that enhances the fitness function. If no such fitness improving replacement can
be found, the procedure terminates.

APAM, the approximate relational clustering variant of PAM, uses the following
objective function:

Jtightness(C, α) = 1
n

∑
i=1,...,n dT∩(xi, μi, α).

Similarly to PAM, it starts by randomly selecting k medoids and finding the first
clustering solution C by associating each non-medoid instance to the cluster
whose medoid is more similar. Then, it iteratively tries to swap a medoid with
a non-medoid object, exploring all possible replacements, in order to minimize
the value of the objective function. It terminates if no replacement can be found
that leads to a clustering with a better (lower) objective value.

Multi-Relational Rule Induction. Rule induction is a supervised learning
technique concerning the extraction of a set of formal rules from a set of la-
belled observations. One of the rule induction paradigms able to deal with
multi-relational representation language is the Inductive Logic Programming
(ILP) framework [12]. In this setting, given a background knowledge and a set of
labelled (positive/negative) observations, the aim is to derive a set of rules (or
theory) which entails all the positive and none of the negative observations. The
rules induction is performed by exploring the lattice-based concepts by means
of some operators such as least general generalisation and inverse resolution.

In this work we adopted the ILP system INTHELEX [11] to process the results
obtained by the multi-relational clustering technique. It is a learning system
for the induction of theories from positive and negative observations. It is fully
and inherently incremental. This means that, in addition to the possibility of
taking as input a previously generated version of the theory, learning can also
start from an empty theory and from the first available observation; moreover,
at any moment the theory is guaranteed to be correct with respect to all of the
observations encountered thus far. Indeed, the correctness is checked on any new
example and, in case of failure, a revision process is activated.

In the theory revision process the system exploits a previous theory (if any)
and a memory of all the past (positive/negative) observations that led to the
current theory. The new observations are exploited incrementally to modify in-
correct hypotheses according to a data-driven strategy. In particular, when a
positive observation is not covered, a revision of the theory to restore its com-
pleteness is performed as follows:
- replacing a rule in the theory with one of its least general generalizations against
the problematic observation;
- adding a new rule to the theory, obtained by properly turning constants into
variables in the problematic example;
- adding the problematic observation as a positive exception.
On the other hand, when a negative observation is covered, the system revises
the theory to restore consistency by performing one of the following actions:
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- adding positive information able to characterize all the past positive observa-
tions (and exclude the problematic one) to the rule that covers the example;
- adding negative information to discriminate the problematic observation from
all the past positive ones to the rule that covers the problematic observation;
- adding the problematic observation as a negative exception.

3 Evaluation

The overall framework was tested on a preliminary set of data collected by
the Department of Endocrinology and Molecular and Clinical Oncology of the
University Federico II of Naples including clinical data of the patients along with
the corresponding light microscope images of the oocytes. The dataset consisted
of about 30 patients and 120 oocytes images.

The image processing devoted to the extraction of morpho-structural features
from the oocyte images was able to correctly extract the region of interest (oocyte
and cytoplasm) in the 90% of the cases. On about the 10% of the processed im-
ages the procedure doesn’t work well due to very noisy images in which the
background is confused whit the oocyte region. In the cases when the procedure
correctly was able to extract the oocyte/cytoplasm region and hence the diame-
ter, the standard deviation of the difference between the automatically extracted
and the real manually measured diameter was about 11 μm, i.e. it represents
about 0.06% of the real oocyte/cytoplasm measure.

As to concern the experimental outcomes of the applications of the multi-
relational techniques, they revealed some interesting features that correlate health
conditions to the stimulation protocol, that could confirm in some cases the medi-
cal literature. In particular the clustering was setted so to generate two clusters in
order to differentiate good from not good practice. In particular, the first cluster,
that we labelled as protocol stimulation practice in order to obtain a greater number
of oocytes, has put together couples characterized by few female infertility condi-
tions and many/severe male infertility ones. For such couples mainly long stimu-
lation protocol was carried out resulting in a production of a mean of 6 oocytes
for patient. This cluster characterization was confirmed by the rule induction step
that exactly was able to grasp the concept as above reported by inferring rules such
the one reported in fig. 3. This rule says that couples with some female infertility
factors and severe male infertility factors, for which the patients were subjected
to a long stimulation protocol, a great number of oocytes was obtained. Further-
more, it gives further information characterizing the obtained oocytes, i.e. that in
such conditions almost all of them have medium oocyte/cytoplasm dimension.

On the other hand, the other cluster has aggregated couples characterized
by many female infertility conditions and male infertility conditions of different
seriousness. For such couples prevalently short stimulation protocols were carried
out and a lesser number of oocytes were obtained (3 in average). This can be
labelled as protocol stimulation practice in order to obtain a lesser number of
oocytes. Even in this case, the rule induction phase was able to learn the concept
as described in the found rule reported in the follows:
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Fig. 3. Sample learned rule

cluster2(Patient):-

age(Patient, [35,40]), oocyte_aspired(Patient, [2,4]),

male_infertility(Patient,oligo), specification(oligo,normal),

stimulation_protocol(Patient,PR_ID),

hormone_stimulation(PR_ID,agoGnRH), specification(agoGnRH,short),

hcg_dose(PR_ID,[10000,12000]), aspiration_timing(PR_ID,[35.5,36]).

This rule says that: a patient belongs to the cluster2 iff the patient is between 35
and 40 years old, in the couple there is a male infertility problem, specifically an
oligospermia characterized as normal, the patient was subjected to a stimulation
protocol in which a short treatment of agoGnRH hormone was carried out, and
an hcg dose in [10000,12000] UI was injected during the treatment. For these
patients the aspiration time, i.e. the hours between the hcg injection and the
oocytes aspiration is between 35.5 and 36 hours and a number of oocytes ranging
form 2 to 4 was obtained.

More interestingly, an in deep analysis of the the oocytes quality in the clus-
tered data was performed according to the further information provided by the
clinicians about the oocyte fertilization and growing. This analysis revealed that
most of the data about oocytes in the first cluster concern poor quality oocytes
as they do not grown in the following days after fertilization or they present
an high fragmentation rate (> 10) at the embryo stage (fragmentation is a pro-
cess where portions of the embryo’s cells have broken off and are separate from
the nucleated portion of the cell. According to the medical literature, little or
no fragmentation are preferable as embryos with more than 25% fragmentation
have a low implantation potential). On the contrary, the data in the second clus-
ter regard good quality oocytes that in almost all of case grows in embryos and
with a low rate of fragmentation (≤ 10) at embryo stage.

4 Conclusion and Future Work

In this paper an automatic tool to support ICSI applications is presented. The
existing approaches work at different level according to the data starting point,
i.e. images or clinical data. On the contrary, the proposed framework involves
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both data with the aim of putting together the automatically extracted morpho-
structural data of the image and the clinical data with the aim of further elab-
oration steps devoted to discovery relationships among data.

Future work will concern the extension of the clinical data to elaborate by
considering more parameters in both the stimulation protocol and in the defini-
tion of health conditions, and the extension of the image processing module in
order to extract more features from the oocyte images and from other images
that follow the oocyte development after fertilization, i.e. zygote and embryo
images. Finally, an exhaustive experimental phase is planned to be carried out.
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Reconstruction of Spectra Using Empirical Basis
Functions

Jakob Bärz, Tina Hansen, and Stefan Müller

University of Koblenz, Germany

Abstract. Physically-based image synthesis requires measured spectral

quantities for illuminants and reflectances as part of the virtual scene

description to compute trustworthy lighting simulations. When spectral

distributions are not available, a method to reconstruct spectra from

color triplets needs to be applied. A comprehensive evaluation of the

practical applicability of previously published approaches in the context

of realistic rendering is still lacking. Thus, we designed three different

comparison scenarios typical for computer graphic applications to eval-

uate the suitability of the methods to reconstruct illumination and re-

flectance spectra. Furthermore, we propose a novel approach applying

empirical mean spectra as basis functions to reconstruct spectral dis-

tributions. The mean spectra are derived from averaging sets of typical

red, green, and blue spectra. This method is intuitive, computationally

inexpensive, and achieved the best results for all scenarios in our evalua-

tion. However, reconstructed spectra are not unrestrictedly applicable in

physically-based rendering where reliable synthetic images are crucial.

1 Introduction

In physically-based image synthesis, the natural appearance of a virtual scenario
is predicted by simulating the distribution of light. To guarantee reliable and
trustworthy results, a spectral rendering algorithm with measured radiometric
input data for light sources and materials is obligatory. Especially in product
design as a typical field of application of physically-based rendering, decision-
makers rely on photometrically and colorimetrically consistent images. However,
when spectral data is not available due to expensive measurement devices, legacy
RGB data or efficiency reasons, e.g. measuring textures or environment maps
using RGB cameras, spectra need to be derived from colors in 3D color spaces.

A number of promising approaches to compute spectra from color triplets
have been presented in the past. The key problem when converting colors into
spectra is that an infinite number of metameric spectra [1] with the same color
coordinates exist. But, in order to apply reconstructed spectra in a physically-
based rendering context, not only the luminance and chromaticity values of these
spectra are to be indistinguishable from the original spectra. Also, using recon-
structed spectral distributions for light sources or materials needs to exhibit
a reliable photometric and colorimetric appearance of the reflected spectra re-
sulting from interactions between light and matter. A systematic evaluation of
existing methods addressing this issue has not yet been published.

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 582–591, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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We present a novel approach to reconstruct spectra from RGB triplets us-
ing empirical basis functions derived from averaged sets of typical red, green,
and blue spectra. In a comprehensive evaluation, we compared our approach
with different previously proposed methods. To account for better practical ap-
plicability in physically-based rendering, three scenarios with diverse foci were
investigated. The first scenario is a direct comparison of ground truth spectra
and reconstructed spectra. The input RGB triplets are derived from the ground
truth by performing a spectrum to XYZ conversion followed by converting the
XYZ tristimuli to RGB values. In the second scenario, a reflectance spectrum
is illuminated by different light spectra applying both ground truth and recon-
structed spectra before comparing the resulting spectra to evaluate reliability
with respect to varying lighting conditions. The third scenario was designed to
investigate the applicability of reconstructed spectra as spectral radiance distri-
butions of light sources. To generate perceptually meaningful results, all com-
parisons were carried out by computing the 1976 CIELAB difference between
the original and reconstructed spectra.

The remainder of the paper is organized as follows. Section 2 reviews existing
approaches to reconstruct spectra and related problems. Our method is outlined
in section 3 and the evaluation scenarios are described in section 4. The results
follow in section 5, the conclusion in section 6.

2 Related Work

A general approach to create spectra from RGB values is to transform the color
triplet into a color space, where the basis functions are known. Let x̄(λ), ȳ(λ), and
z̄(λ) be the 1931 CIE XYZ color matching functions and Mrgb xyz the matrix
transforming values from a well-defined RGB color space into the CIE XYZ
color space, then the color coordinates W = (w1, w2, w3)T in the 3D color space
defined by arbitrary linearly independent basis functions f1(λ), f2(λ), and f3(λ)
are derived from RGB value C = (r, g, b)T by

⎡
⎣w1

w2

w3

⎤
⎦ =

⎡
⎣
∫

f1(λ)x̄(λ)dλ
∫

f2(λ)x̄(λ)dλ
∫

f3(λ)x̄(λ)dλ∫
f1(λ)ȳ(λ)dλ

∫
f2(λ)ȳ(λ)dλ

∫
f3(λ)ȳ(λ)dλ∫

f1(λ)z̄(λ)dλ
∫

f2(λ)z̄(λ)dλ
∫

f3(λ)z̄(λ)dλ

⎤
⎦
−1

Mrgb xyz

⎡
⎣ r

g
b

⎤
⎦ (1)

Weighting the basis functions by the coordinates yields spectrum S(λ) with color
sensation C:

S(λ) = w1f1(λ) + w2f2(λ) + w3f3(λ) (2)

A number of different basis functions have been suggested in the past. To gen-
erate spectra from designer input or existing libraries in RGB color space,
Glassner [2] defines a three-dimensional space of monochromatic line spectra
with an orthonormal base of axis given by the delta functions f1(λ) = δu(λ),
f2(λ) = δv(λ), and f3(λ) = δw(λ), with λmax ≥ λu > λv > λw ≥ λmin.
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The resulting spectra may contain physically implausible negative values and
are empty except for three discrete wavelengths. A solution for the latter is
a multiple execution of the procedure, applying a different orthonormal base
choosing varying nonzero wavelengths for the delta functions each. Averag-
ing the resulting spectra yields a fuller spectrum, which is a metamer of its
components. Alternatively, Glassner proposes the primaries of a monitor [3]
or the first three functions from a Fourier basis as basis functions. In 1985,
Wandell [4] proved that equal energy spectrum f1(λ) = 1.0, a single cycle of
sine f2(λ) = sin(2π(λ − λmin)/(λmax − λmin)), and a single cycle of cosine
f3(λ) = cos(2π(λ − λmin)/(λmax − λmin)) suffice to match a number of 462
Munsell color chips with an RMS error of about 0.02.

The conversion of a camera RGB color signal into a spectrum has been ad-
dressed by Drew et al [5] in 1992. Four different sets of basis functions were
investigated. Firstly, the 1931 CIE standard observer color-matching functions
as in Horn [6] and secondly the Fourier functions [4] were applied as basis func-
tions. Thirdly, Drew at al [5] used basis function products of illumination Ei(λ)
and reflectance Si(λ) functions: f1(λ) = E1(λ)S1(λ), f2(λ) = E1(λ)S2(λ), and
f3(λ) = E2(λ)S1(λ). As basis set for illumination, Judd et al’s daylight func-
tions [7], determined by a principal component analysis of 622 measured sam-
ples, were employed. The reflectance functions were derived from the Krinov
catalogue [8] of 370 natural reflectances applying the Karhunen-Loève [9, p. 275]
analysis. Lastly, a fourth set of basis functions was computed from a large col-
lection of 1710 natural color signals being synthesized by multiplying five typical
daylight spectra from Judd et al [7] with 342 reflectance spectra from Krinov [8].
The three most important vectors accounting for the highest variability in the
whole set were again determined by the KLT. According to Drew at al [5], the
best results were delivered by the last two methods, but the error increased when
applying the methods to a set of color signals not being included in the PCA.

Sun et al [10] presented a method to derive spectra from colors in the context
of rendering the wavelength-dependent phenomenon of light interference. Since
previous approaches were unable to generate spectra of rich shape as exist in
nature, this method applies Gaussians as basis functions that are centered at the
wavelengths of red, green, and blue with their width depending on the saturation
of the colors to reproduce. Specifically, the three Gaussian basis functions are
given by fi(λ) = e−ln2[2(λ−λc,i)/wi]

2
with i ∈ 1, 2, 3 and λc,i representing the

center and wi the width of the ith Gaussian function. While the centers are
chosen at 680, 550, and 420nm, the widths depend on the local saturation of
the color to be reproduced. Sun et al compared the Gaussian to the Fourier
basis functions by computing the difference between the input color and the
color resulting from applying the respective color matching functions to the
reconstructed spectrum. Sun reports a lower relative error for the Gaussian basis
functions, especially for highly saturated colors.

In 1999, Smits [11] published a solution to convert existing RGB data into
plausible reflectance spectra for spectral-based rendering systems. It is empha-
sized that creating metameric spectra with the exact RGB values is a well-defined
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problem, but illuminating these spectra with non-equal energy light yields indi-
rect spectra, which are usually no metamers. Thus, Smits formulates a number
of constraints for good metamers: The reflectance spectra are piecewise constant
functions defined from 360 to 800nm and lie between 0 and 1 to be physically
plausible. They should be smooth and have a minimum amount of variation for
computational reasons. Smits [11] proposes to express spectra as a combination
of as much white as possible, followed by as much of a secondary color out of
cyan, magenta, or yellow as possible, and one primary color out of red, green,
or blue. The smoothness of the basis functions is guaranteed by minimizing the
differences between adjacent samples.

Another approach to generate realistic spectra for reflectances was proposed
by Wang et al [12] in 2004. The authors measured a set of 1400 physical re-
flectances and created a number of more saturated colors applying Bouguer’s
law [13]. These spectra serve as basis functions to reconstruct any color P by
trilinear interpolation. Therefore, eight subspaces in the color space of P are con-
structed by computing three planes that pass through P and are parallel to the
xy-, xz-, and yz-plane, respectively. For each subspace, the color point closest to
P is selected. Four of these eight points serve to build the smallest tetrahedron
containing P . Finally, trilinear interpolation of the four spectra corresponding
to the corner points of the tetrahedron yields the desired spectrum for P .

Bergner et al [14] presented a tool to design reflected spectra as a product
of light and reflectance as a part of the scene description. The design principles
are: A combination of light and reflectance should produce the color sensation re-
quested by the user, the second order difference of the resulting spectrum should
be minimized to guarantee smoothness, and the spectrum should be positive. The
design problem is expressed by Q diag(E)W = C, where E is the illumination
spectrum and diag(E) the diagonal matrix containing E on the main diagonal.
W is the reflectance producing the desired color sensation C under illumination
E. Matrix Q is the product of the hardware-specific matrix Qrgb xyz to trans-
form RGB to XYZ values and matrix Qxyz spec with the rows containing the CIE
XYZ color matching functions. Asking for multiple lights Ek to produce colors
Ck is solved by vertically concatenating the multiple Qdiag(Ek) to QEk and the
multiple Ck to Y . The solution for W is found by minimizing QEk W − Y .

Recently, Rump et al [15] emphasized the need of spectral data for exact color
reproduction in lighting simulations. Given a dense RGB and a sparse spectral
sampling from a line scanner of a texture or environment map, their approach is
able to infer full spectral data. The authors derive the spectral image by minimiz-
ing the euclidean distance between the desired and the measured spectrum for
each pixel as well as between the corresponding RGB color of the desired spectra
and the measured RGB data. Furthermore, neighboring spectra with respect to
intensity-free euclidean distance in RGB color space are forced to be close to
each other. To evaluate the resulting spectral data, the environment maps were
applied to illuminate the Munsell ColorChecker chart and the textures were il-
luminated by ten different light sources prior to computing the 1994 CIELAB
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Fig. 1. Mean spectra derived from the ColorChecker chart and RAL fan

color difference between the approximated and the ground truth spectra. The
ΔE∗

94 error was acceptable selecting reasonable line scans.

3 Approach

This work was motivated by research on physically-based lighting simulation
in the context of product design where a predictive appearance of the synthetic
images is crucial. Since spectral rendering is required to achieve photometric and
colorimetric consistency, the problem of incorporating existing RGB data for
environment maps or textures needed to be addressed. To choose the best state-
of-the-art method, a systematic evaluation of previous approaches to reconstruct
spectra from color triplets was still lacking. Furthermore, existing algorithms
either delivered physically implausible and significantly negative results [2] [4],
required a priori knowledge of a set of spectra and costly pre-processing [5] [12]
or included unintuitive computation [10]. Our approach was motivated by the
simplicity of Smits [11] in combination with the basis function model [2] and the
idea of interpolating physical basis functions [12].

Contrary to [2], [10], and [4], where arbitrary base functions were applied,
we used empirically determined mean spectra for red, green, and blue. A subset
of spectra for red, green, and blue was selected subjectively from the measured
spectra of the Munsell Digital ColorChecker SG chart with 140 patches. Averag-
ing each subset yields the mean spectrum serving as the base spectrum for the
corresponding color. This process was repeated with a RAL fan containing 126
spectra, to obtain a set of different base spectra to evaluate the dependency of
the results from the training data. The base spectra are displayed in figure 1. Let
rd
i (λ), gd

j (λ), and bd
k(λ) be subjectively selected sets of measured red, green, and

blue spectra from data set d ∈ {ColorChecker, Ral fan}, then the basis functions
are given by

Rd(λ) =
1
I

I∑
i=1

rd
i (λ), Gd(λ) =

1
J

J∑
j=1

gd
j (λ), Bd(λ) =

1
K

K∑
k=1

bd
k(λ) (3)
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Setting f1(λ) = Rd(λ), f2(λ) = Gd(λ), and f3(λ) = Bd(λ) in equation 1 converts
a given RGB tristimulus C into color W in the 3D space defined by the basis
functions. Applying the weights W to the basis functions as in equation 2 yields
the desired spectrum S(λ) with color sensation C.

4 Evaluation

To evaluate the different approaches to reconstruct spectra, we investigated three
scenarios with diverse foci. The scenarios were designed to determine the practi-
cal applicability of the resulting spectral distributions for light sources or mate-
rials in a lighting simulation. In each scenario, we applied the same test cases to
ground truth spectra and reconstructed counterparts for better comparability.
To generate perceptually meaningful results, we transformed both ground truth
and reconstructed spectra into the CIELAB color space and computed the 1976
CIELAB color difference [16] between the resulting colors. The ΔE∗

ab distance
is a measure for the difference between two stimuli perceived by the same ob-
server. The human eye is unable to recognize the difference of two colors with a
distance below the just noticeable difference (JND) of 2.3 [17]. The evaluation
included our approach applying empirical basis functions by averaging typical
spectra from the ColorChecker chart (in the following denoted as EmpCC) and
from the RAL fan with 126 spectra (EmpRAL). We compared our approach to
Smits [11] and the methods using Fourier [4], Gaussian [10], and CIE XYZ color
matching functions [6] as basis functions. All spectra were represented as vectors
containing 71 samples at 5nm spacing from 380 to 730nm.

In the first scenario, we compared the reconstructed with the ground truth
spectra directly. For each spectrum of the Munsell Digital ColorChecker SG chart
and the two different RAL fans, we determined the respective sRGB value serving
as input for the different reconstruction methods. The reconstructed spectrum
and the ground truth spectrum were compared by computing the ΔE∗

ab error. As
reference white, illuminant E was applied in this scenario. The second scenario
investigated the quality of a reflected spectrum after illuminating a reconstructed
material spectrum with a reconstructed spectrum of a natural light source. The
spectra for the light source (D50, D65, or E) and the material were reconstructed
as described in Scenario I. Afterward, the reconstructed material was illuminated
by the reconstructed light and the ground truth material by the ground truth
light, respectively. Between the two resulting reflected spectra, ground truth and
reconstructed, the ΔE∗

ab error was calculated. The reference white was set to the
respective light spectrum.

The third scenario was designed to determine the applicability of reconstruct-
ing illuminant spectra. For instance, this situation occurs when an environment
map captured by an RGB camera is reconstructed and serves as light source
for the scene. The reconstructed light spectra were applied to illuminate the re-
constructed reflection spectra. For the resulting reflected spectra, we calculated
the ΔE∗

ab error to determine the color difference to the ground truth counter-
parts. Notably, we chose a D65 spectrum as reference white in this scenario to
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Table 1. CIELAB differences for the three scenarios

data set error Fourier Gauss Smits XYZ EmpCC EmpRAL

Scenario I CC140 mean 1.23 9.52 34.28 1.55 0.76 0.45

max 17.00 89.25 86.28 21.26 8.03 8.65

min 0 0 3.42 0 0 0

RAL mean 0.08 5.16 19.35 0.83 1.30 0.08

max 4.32 49.81 59.75 11.78 7.90 0.83

min 0 0 2.76 0 0 0

RAL-K5 mean 1.53 12.24 37.04 2.16 0.60 0.53

max 38.25 104.28 91.16 32.30 19.89 17.17

min 0 0 4.31 0 0 0

Scenario II CC140 mean 1.69 10.12 36.50 5.45 3.16 1.44

max 17.59 90.08 90.16 26.63 9.95 11.31

min 0 0 7.83 0.29 0.38 0.06

RAL mean 0.75 6.17 22.91 5.11 3.59 1.35

max 5.62 52.77 64.64 16.70 10.02 3.84

min 0 0.01 7.12 0.34 0.76 0.04

RAL-K5 mean 1.89 12.90 38.22 5.98 2.93 1.50

max 37.47 107.82 94.59 40.80 21.31 15.40

min 0 0.01 8.45 0.15 0.20 0.06

Scenario III CC140 mean 12.39 28.25 35.75 15.41 14.00 11.97

max 156.82 242.86 119.19 186.76 136.11 152.43

min 0 0 1.19 0.17 0.23 0.06

RAL mean 11.21 22.07 23.15 14.89 15.09 11.38

max 75.82 121.80 71.61 76.73 71.78 65.40

min 0.02 0.04 0.58 0.21 0.57 0.08

RAL-K5 mean 15.09 33.37 34.61 18.61 16.26 14.31

max 143.05 223.22 146.87 126.61 114.10 113.99

min 0 0 0.85 0.06 0.09 0.01

account for the fact that a real setup will most likely incorporate many different
light sources. Thus, the resulting error is higher as though applying the actual
illuminant as reference white.

5 Results

The results in this section were calculated for the three different scenarios de-
scribed in section 4. For each scenario, we applied three different sets of spectral
data. The first data set was the Munsell Digital ColorChecker SG chart with
140 color patches. The other two data sets were measured from the RAL fan
containing 126 and the RAL-K5 fan with 211 spectra, respectively. For each
method and data set the minimum and maximum ΔE∗

ab, and the mean ΔE∗
ab

distance are displayed in table 1. For the results of scenario I, the ΔE∗
ab errors

for the basis function approaches is expected to be zero by definition. However,
since the reconstructed spectra were forced to be physically plausible by cropping
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Fig. 2. Results for Scenario II projected onto the a*b* plane

negative values to zero and values greater one to one, the mean error is a good
measure for the plausibility of the reconstruction methods. While the EmpCC,
EmpRAL, Fourier, and XYZ basis functions delivered good overall results for all
data sets, the Gauss function’s mean error was too high, and Smits could not
compete. Notably, EmpRAL outperforms EmpCC in terms of mean error even for
the ColorChecker data which served as training set for the latter. Even for this
simple scenario, the maximum error of all methods for nearly every data set lies
above the JND. The only exception is EmpRAL, applied on its training data,
despite just a few representative red, green, and blue spectra were selected to
derive the mean functions.
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In scenario II, where the reconstructed spectra were illuminated by the re-
constructed counterparts of the smooth natural standard light sources D65, D50
and E, the ΔE∗

ab error tends to be slightly higher overall. In this scenario, only
the mean values of Fourier and EmpRAL are still below the JND threshold with
the latter performing better on average. No method was able to reproduce every
spectrum of the data sets faithfully. Again, the choice of the training data does
not seem to influence the outcome of our approach. For better comparability, the
results of this scenario were projected onto the a*b* plane in figure 2. The results
of the third scenario reveal that none of the methods was able to deliver a mean
error below the JND for reflectance spectra illuminated by arbitrary lights. Still,
EmpRAL performs best, followed by Fourier, EmpCC, and XYZ. Gauss and Smits
delivered the worst results. Arguably, the reconstruction approaches are not ap-
plicable in scenarios with arbitrary illumination or multiple reflections when a
trustworthy appearance is crucial. For a decent estimation, EmpRAL exhibits a
mean value below fifteen for all data sets even in this worst case setup.

6 Conclusion

Motivated by the issue of incorporating existing RGB data for illuminants and
reflectances into physically-based image synthesis for product design, this work
focused on comparing previously published methods to reconstruct spectra from
color triplets. We conducted a comprehensive evaluation based on practical appli-
cability in a spectral rendering context. Thus, we designed three typical scenarios
for computer graphics: A direct comparison of ground truth and reconstructed
spectra, an evaluation of reconstructed reflectances illuminated by reconstructed
standard light sources and a scenario to rate the suitability of reconstructing ar-
bitrary light sources to illuminate reconstructed reflectances.

Furthermore, the evaluation included our novel approach to reconstruct spec-
tra applying mean red, green, and blue spectra as basis functions. These spectra
are averaged from representative sets of typical red, green, and blue spectra
from the Munsell Digital ColorChecker SG chart or a RAL fan, for instance.
Our method is simple, intuitive, and computationally inexpensive. The evalu-
ation revealed a good overall performance for this new method when selecting
reasonable spectra to derive the basis functions. Notably, the results indicate no
significant dependency between the choice of the training data and the test data.

In general, reconstructing spectra from color triplets is not unrestrictedly
applicable in physically-based lighting simulation setups. When reconstructing
spectra for both arbitrary light sources and reflectances, the resulting reflected
spectra are not guaranteed to be indistinguishable from the reflected spectra
computed with ground truth spectra for light and material. Thus, radiometri-
cally measured spectral data is required as input to generate truly predictive
synthetic images that decision-makers can rely on. Future work might focus on
selecting good sets of representative red, green, and blue spectra to generate ba-
sis functions yielding lower errors on average. Investigations should include the
evaluation whether the reconstructed spectra relate positively with the training
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data for specific applications, e.g. choosing the mean spectra from sets of car
paints when rendering automobiles.
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Abstract. Consider any real structure that can be modeled by a set of

straight line segments. This can be a network of streets in a city, tun-

nels in a mine, corridors in a building, pipes in a factory, etc. We want

to approximate a minimal number of locations where to place “guards”

(either men or machines), in a way that any point of the network can be

“seen” by at least one guard. A guard can see all points on segments it is

on (and nothing more). As the problem is known to be NP-hard, we con-

sider three greedy-type algorithms for finding approximate solutions. We

show that for each of these, theoretically the ratio of the approximate to

the optimal solution can increase without bound with the increase of the

number of segments. Nevertheless, our extensive experiments show that

on randomly generated instances, the approximate solutions are always
very close to the optimal ones and often are, in fact, optimal.

Keywords: guarding set of segments, art gallery problem, approxima-

tion algorithm, set cover, vertex cover.

1 Introduction

In recent decades, and especially in the last one, security issues of diverse nature
are becoming increasingly important. In particular, in many occasions 24 hour
surveillance is carried out for various purposes. It can be secured either through
observers (e.g., policemen, guards, etc.) or by technology (including observing
cameras or other sensors). Both ways are costly, therefore it is desirable to op-
timize the number of people or devices used. In this paper we consider a model
of such an optimization problem.

Consider any real structure that can be modeled by a set of straight line
segments. This can be a network of streets in a city, tunnels in a mine or corridors
in a building, pipes in a factory, etc. We want to find a minimal (or close to the
minimal) number of locations where to place “guards” (either men or machines),
in a way that any point of the network can be “seen” by at least one guard.
Alternatively, we can view this problem as finding a minimal number of devices
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Fig. 1. Left: Any minimal vertex cover of the given plane graph requires four vertices.

One of them is marked by thick dots. Right: Two vertices can guard the same graph.

One optimal solution is exhibited.

to place so that a user has access (or a connection) to at least one device from
any location. In terms of our mathematical model, we look for a minimum (or
close to the minimum) number of points on the given segments, so that every
segment contains at least one of them. We call this problem Guarding a Set of
Segments (GSS).

We remark that GSS belongs to the class of the art gallery problems. A great
variety of such problems have been studied for at least four decades. Related
studies have started much earlier by introducing the concepts of starshapedness
and visibility (see [3,7]). The reader is referred to the monograph of Joseph
O’Rourke [8] and the more recent one of Jorge Urrutia [10]. See also [1,6] and
the bibliography therein for a couple of examples of art-gallery problems defined
on sets of segments.

GSS is germane to the set cover (SC) and vertex cover (VC) problems, which
are fundamental combinatorial problems that play an important role in com-
plexity theory. GSS can be formulated as a special case of the set cover problem
(see Section 2) and, under certain conditions, as a vertex cover problem, as well.
However, in general, GSS and VC are different, as Figure 1 demonstrates. It is
well-known that both SC and VC are NP-complete [5,4]. In a recent work [2]
we proved that GSS is NP-complete as well. This suggests that it is unrealistic
to expect any efficient algorithm for finding the exact optimal solution. There-
fore, in the present paper we study GSS’ approximability, both theoretically and
through massive experimentation.

To this end, we consider three greedy-type algorithms for finding approximate
solutions of GSS. We show that for each of these, theoretically the ratio of the ap-
proximate to the optimal solution can increase without bound with the increase
of the number of segments. However, our extensive experiments demonstrate
that on randomly generated instances the approximate solutions are always very
close to the optimal ones, and often are, in fact, optimal.

The paper is organized as follows. The next section includes certain prelim-
inaries useful for understanding the rest of the paper. In Section 3 we present
the three approximation algorithms and study their theoretical performance.
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Section 4 presents our experimental study. We conclude with some final remarks
in Section 5.

2 Preliminaries: Vertex Cover, Set Cover, and GSS

Given a universe set U and an arbitrary family of subsets F ⊆ P(U), the opti-
mization set cover problem looks for a minimum cover C ⊆ F with

⋃
C = U .

Given a graph G, a vertex cover of G is a set C of vertices of G, such that
every edge of G is incident to at least one vertex of C. The optimization vertex
cover problem has as an input a graph G = (V, E), and one looks for a vertex
cover with a minimum number of vertices.

Now let S = {s1, s2, . . . , sn} be a set of segments in the plane. Denote by S̄
the set of all points of segments in S and by V the set of all intersection points
of segments of S. The elements of V will be called vertices of S̄.1 If A ⊆ V ,
let SA denote the set of segments which contain the vertices in A and and S̄A

denote the set of points on segments in SA. We consider as degenerate the case
of intersecting collinear segments since it is trivial to discover such segments
and merge them into one. In terms of the above notations, our problem can be
formulated as follows.

Guarding a Set of Segments (GSS)
Find a minimally sized subset of vertices Γ ⊆ V such that S̄Γ = S̄.

In other words, one has to locate a minimum number of guards at the vertices
of S̄ so that every point of S̄ is seen by at least one guard.

W.l.o.g, we will assume throughout that the set S̄ is connected.
It is easy to see that the requirement to locate guards at vertices is not a

restriction of the generality: every non-vertex point on a segment s can see the
points of s only, while each of the vertices on s can see s and other segments.

In view of the above remark, GSS admits formulation in terms of a set cover
problem, as follows.

Set Cover Formulation of GSS
Let S be a set of segments and V the set of their intersections, called vertices of
S. Find a minimally sized subset of vertices Γ ⊆ V such that SΓ = S.

3 Approximation Algorithms for GSS

The four approximation algorithms we consider can all be classified as greedy
algorithms adapted from the related set cover and vertex cover problems.

G1 Set Cover Simplest Greedy (SC)
On each iteration, this algorithm simply chooses a vertex of greatest degree
(deg(v) = |Sv|), removes it and all incident segments from the set of segments,
and repeats until there are no longer any segments to cover.
1 A vertex can be an intersection point of arbitrarily many segments. Segments may

intersect at their endpoints.
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G2 Vertex Cover-Inspired Matching Greedy (VC)
The approximation algorithm for the vertex cover problem finds a maximal
matching2 for the graph and selects both endpoints of each edge of the match-
ing. Because in GSS there can be multiple intersections along a segment, we
needed to make some changes before this algorithm can be correctly applied to
GSS. For this algorithm, “both endpoints of each edge” was translated to “all
intersections along each segment.”

On each iteration of G2 it chooses a segment with fewest intersections on
it, adds all intersections on the segment to the cover, and removes all incident
segments from the GSS, repeating until there are no longer any segments to
cover. The segments chosen on each iteration form a matching.

G3 Improved Vertex Cover Matching Greedy (IVC)
This algorithm is the same as G2 with the following modification: the inter-
sections along each chosen segment are added to the cover in order of greatest
degree first, ignoring intersections that do not contribute any new segments to
the cover.

G4 Improved Set Cover Greedy Hybrid (ISC)
This algorithm is a heuristic that uses G2 as its base but abandons the idea of
a matching. For each segment chosen by G2, G4 simply chooses one intersection
of greatest degree along that segment and ignores the rest.

3.1 Theoretical Performance

By performance, or approximation ratio of an approximation algorithm on a
problem instance we will mean the ratio gapprox

gopt
where gapprox and gopt are

the respective values of the approximate and the optimal solution on the in-
stance. Then the (relative) error of the approximation algorithm is defined as
gapprox−gopt

gopt
= gapprox

gopt
− 1.

To show that the approximation error of algorithm G1 can be arbitrarily large
with respect to the optimal solution, we use the approach similar to a known
estimation of a greedy solution to the set and vertex cover problems (see, e.g.,
[9]).

We define the placement of line segments in the plane as follows. Fix an m ∈ N,
m > 3, a ∈ R, a > 0, and place the m points a1 = (1, a), (2, a), . . . , (m, a) = am.

Let n =
m∑

i=2

⌊
m
i

⌋
. Place the n points b2,0 = (1, 0), (2, 0), . . . , (n, 0) = bm,0 parti-

tioned into groups of
⌊

m
2

⌋
,
⌊

m
3

⌋
, . . . ,

⌊
m

m−1

⌋
,
⌊

m
m

⌋
points where each partition is

appended to the previous partition along the line y = 0. Let bi,j be the kth point

from the origin on the x-axis, where k =
(

j + 1 +
i−1∑
r=1

⌊
m
r

⌋− m

)
. This way i is

the index of the partition (i = 2 . . .m) and j is an index within each partition

2 A matching in a graph is any set of edges without common vertices. A matching is

maximal if it is not a proper subset of any other matching in the graph.
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Fig. 2. Left: Illustration to the theoretical construction on which G1 obtains a solution

that is far from the optimal. Right: If each of the two sheaves of segments contains

n/2 segments (for any positive even n ≥ 4), then algorithm G3 finds an approximate

solution of n/2 + 1 segments. Clearly, the optimal solution comprises the two vertices

marked by thick dots. Note that G1 is optimal here.

(j = 0 . . .m− 1). We have one row of points on y = a which is placed on integer
coordinates in the following order:

a1, a2, . . . , am

and one row on y = 0 which is placed on integer coordinates in the following
order:

b2,0, b2,1, . . . , b2,�m
2 �−1, b3,0, b3,1, . . . , b3,�m

3 �−1, . . . , bm−1,� m
m−1�−1, bm,0

Connect bi,j to all points in the set {aji+1, aji+2, . . . , aji+i} forming i segments
for each bi,j . In this way, bi,j lies on exactly i segments. Figure 2 (left) illustrates
the construction for m = 8.

One can show that the optimal solution to the so-constructed GSS problem is
A = {a1, . . . , am} while the set cover greedy algorithm always finds the solution
B = {b2,0, b2,2, . . . , b2,�m

2 �−1, . . . , bm−1,� m
m−1�−1, bm,0} (i.e. {b1, . . . , bn}). This

makes the approximation ratio

gapprox

gopt
� n

m
=

m∑
i=2

⌊
m
i

⌋
m

≈ m log m

m
= log m,

The technical details of the proof, although not too difficult, are verbose and
therefore omitted due to page limit.

Figure 2 (right) illustrates that a solution for a GSS problem on n segments
found by the Improved Vertex Cover Matching Greedy (G3) can be (n/2 + 1)/2
times the optimal.

Despite the above theoretical results, the experimental results of the next sec-
tion show that on ”random” GSS instances the tested approximation algorithms
have excellent performance.
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4 Experimental Studies

4.1 Generators

We currently have two GSS generators designed to generate random sets of
segments. Both are written in Java.

Segment Generator. The Segment Generator was originally designed to sim-
ply generate random segments. Because the results consisted almost entirely of
degree two intersections, some modifications including two new methods were
added to ensure more vertices of higher degree.
Parameters

– Number of segments to generate
– Size of square grid (length along a side)
– Probabilities

• Random Intersecting Segment
• Connect two random vertices
• Extend segment

– Output files: GSS (line segment coordinates), Matrix (incidence matrix),
Intersections (intersection coordinates)

Algorithm. The Segment Generator repeats a simple loop that runs until the
requested number of segments has been generated. First it creates four random
connected segments to create some intersections. Then, for each remaining seg-
ment it chooses among the three following segment generation methods accord-
ing to the probability distribution given in the parameters: random intersecting
segment, random vertex to vertex segment, and random vertex to random point
segment (probability = 1− sum of the other two). The two methods that use
an intersection as an endpoint also have a chance of extending the segment past
the intersection, using the given probability parameter. The three methods are
described in further detail below.
Random Intersecting Segment randomly chooses two arbitrary lattice points un-
der the constraint that the resulting segment must be connected to the already
existing generated segments.
Random Vertex to Vertex Segment randomly chooses two intersection points from
the existing segment intersections and connects them to form a new segment.
Random Vertex to Random Point randomly chooses an intersection point and
an arbitrary lattice point and connects them to form a new segment.

Vertex Generator. The Vertex Generator is designed to generate segment sets
with a large number of high-degree vertices fairly quickly.
Parameters

– Number of segments to generate
– Size of square grid (Length along a side)
– Probability: Connect two random vertices
– Output files: GSS, Matrix, Intersections
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Algorithm. The Vertex Generator repeats a simple loop that runs until the
requested number of segment has been generated. First it creates a random
segment as a base. Then, for each remaining segment it chooses one of two
segment generation methods based on the probability distribution specified in
the parameters: random vertex to vertex segment, and random vertex to random
point.
Random Vertex to Vertex Segment randomly chooses two distinct endpoints from
different segments out of the existing set and connects them to form a new
segment.
Random Vertex to Random Point randomly chooses an endpoint from an existing
segment and a random lattice point and connects the two to form a new segment.

Exact and Approximation Algorithms
In order to study the performance of the algorithms, we needed to have the
optimal solution computed for each problem instance. This is implemented in
Mathematica using the software’s integer linear programming (ILP) algorithm.
Note that ILP itself is NP-complete, which limited the number of segments for
which an exact solution can be found within a reasonable amount of time. We
therefore restrict our analysis to sets of segments small enough to make this
computation feasible.

For all the approximation algorithms, we represent the GSS problem as a
0-1 segment-vertex incidence matrix and find the matrix row/column cover. A
side effect is that these algorithms can solve any covering problem that can be
represented as a 0-1 matrix. These algorithms are implemented in C++.

Data Analysis
Once we had generated GSS instances and found solutions using the various
algorithms, we saved the results in tabular form within a text file. Further sta-
tistical analysis (e.g. finding means, plotting correlations, etc.) was done with
GNU R.3

Additionally, we wrote a script that uses gnuplot4 to graph a GSS instance
along with the solutions found using any of the algorithms for visual inspection.
Illustration is omitted due to page limit but can be found in [2].

4.2 Experimental Performance

In the following presentation algorithm G2 is ignored from evaluation and dis-
cussion, as the solutions it produced were always significantly inferior to the
solutions found by all other algorithms.

Throughout the following analysis, mention of probability parameters refers
to the probabilities that the given generator will use the corresponding methods
to generate the next line segment. These parameters are adjusted for various
experiments in order to create sets of segments that exhibit desired properties.

3 http://www.r-project.org/
4 http://www.gnuplot.info/

http://www.r-project.org/
http://www.gnuplot.info/
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Table 1. Experiments on sets of different cardinality

Number of segments 5 10 20 40 80 160

mean ILP 2.94 4.97 9.73 19.45 38.57 76.29

mean SC 2.96 5.39 10.48 20.63 40.32 78.91

mean IVC 3.17 6.81 14.98 32.34 68.92 143.92

mean ISC 2.94 5.08 9.98 19.75 39.4 78.19

Approximation Ratio

mean SC 1.006667 1.084333 1.077333 1.061020 1.045344 1.034336

mean IVC 1.080000 1.370667 1.541556 1.663740 1.787754 1.887043

mean ISC 1.000000 1.022000 1.027139 1.015798 1.021741 1.025017

max SC 1.333333 1.250000 1.300000 1.157895 1.128205 1.078947

max IVC 1.500000 1.600000 1.888889 1.944444 1.945946 2.000000

max ISC 1.000000 1.200000 1.222222 1.105263 1.081081 1.053333

SC: % incorrect 2 42 63 84 90 100

IVC: % incorrect 23 98 100 100 100 100

ISC: % incorrect 0 11 24 29 67 97

% SC better than ISC 0 5 8 0 9 18

% SC better than IVC 22 86 100 100 100 100

SC-ISC Concurrent approximation ratio

mean 1.000000 1.012000 1.018333 1.015798 1.019073 1.021578

max 1.000000 1.200000 1.222222 1.105263 1.054054 1.053333

Random Intersecting Segment Sets
The sets of segments used for this data table were generated using Segment
Generator with parameters of 1, 0, 0, which means that line segments are only
created using the Random Intersecting Segment method. This resulted in an
average of 98100 sets of segments were generated for each of the following sizes
of segment sets: 5, 10, 20, 40, 80 and 160. All constructions were solved using
ILP (the optimal), the set cover greedy algorithm, the improved vertex cover
greedy algorithm, and the improved set cover greedy algorithm.

Generalized results are presented in Table 1 and it is to a great extent self-
explanatory. The main conclusion one can make on the basis of the obtained data
is that all approximation algorithms perform well. The approximation ratio over
all 600 problems of different dimensions is never greater than 2.000. Moreover,
at least one of the approximation algorithms always does better than 0.222 error
at worst, and better than 0.022 error on average.

It is clear from the data that for the improved vertex cover algorithm, the
mean and maximum approximation ratios strictly increase with the number of
segments. On the other hand, the mean approximation ratios of set cover and
improved set cover do not display any positive growth correlation. In fact, they
tend to decrease as the number of line segments increases which is rather unex-
pected. Counter-intuitively, the percent of optimal solutions given by all studied
approximation algorithms actually decreases despite the increasing accuracy of
approximation.
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Table 2. Results of experiments on 49,902 sets of 12 segments

12 segments All GSS (49902) IVC < SC (1057) IVC < ISC (183)

mean ILP 4.669071 4.577105 4.415301

mean SC 4.925412 5.703879 4.901639

mean IVC 6.031161 4.686850 4.469945

mean ISC 4.824195 4.686850 5.480874

Approximation Ratios

mean SC 1.056135 1.249306 1.113661

mean IVC 1.294305 1.023825 1.012568

mean ISC 1.034772 1.025181 1.244536

max SC 1.600000 1.600000 1.500000

max IVC 2.500000 1.400000 1.250000

max ISC 1.500000 1.500000 1.500000

SC: % incorrect 24.860730 100.000000 48.087430

IVC: % incorrect 83.319300 10.879850 5.464481

ISC: % incorrect 15.398180 10.879850 100.000000

% SC < ISC 6.671075 0.000000 54.644810

% SC < IVC 73.323153 N/A 2.185792

% IVC �= ISC 78.624103 15.61 N/A

SC-ISC concurrent approximation ratio

mean 1.019562 same as ISC 1.113661

max 1.500000 same as ISC 1.500000

Further Experiments
The motivation for this test was to obtain the most variety possible among
segment sets of a fixed size. For this purpose, 49902 sets of 12 segments were
created using Segment Generator with probabilities of .3, .4, .3, yielding a mean
of 68% degree two intersections. The maximum number of intersections created
in one of these pictures was 53 and the minimum was 4.

The obtained results, summarized in Table 2 show that even over greatly
varied arrangements of line segments, the studied approximation algorithms still
perform extremely well. In fact, if we take the minimum of the approximation
ratios among set cover and improved set cover for each case, the mean and
maximum approximation ratios are 1.02 and 1.5 respectively. This suggests that
the two algorithms complement each other in a concurrent manner as set cover
performs better than improved set cover 6.67% of the time. Thus it would be
interesting to answer the question: when improved set cover performs poorly,
does set cover perform well and vice versa?

Five Segment Experiment
For human inspection, 3 groups of 10000 instances of GSS with 5 segments were
generated with the Segment Generator using 3 varied probability profiles. The
most notable results were:

– ISC performed better than IVC in all instances
– either ISC or SC was optimal in every instance
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Vertex Generator Experiments
Experiments were carried out using the Vertex Generator, but the results were
very similar to those produced by the Segment Generator. This is reassuring as it
suggests that the accurate experimental approximations are not just an artifact
of the sets of line segments that Segment Generator creates.

5 Concluding Remarks

In this paper we considered an art-gallery problem defined on a set of segments
and three approximation algorithms for it. In theory, there exist sets of segments
in which the algorithms can be made to perform as poorly as desired. However, in
practice the approximate solutions are near optimal. Work in progress is aimed
at providing a theoretical explanation of this phenomenon.
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Abstract. This paper describes a method for Automatic hole characterization on 
3D meshes, avoiding user intervention to decide which regions of the surface 
should be corrected. The aim of the method is to classify real and false anoma-
lies without user intervention by using a contours irregularity measure based on 
two geometrical estimations: the torsion contour’s estimation uncertainty, and 
an approximation of geometrical shape measure surrounding the hole. 

1   Introduction 

The shape reconstruction process requires estimating a mathematical representation of 
an object’s geometry using a measured data-set from the object [1]. The purpose is to 
convert a big amount of data points coming from the surface of a real object acquired 
by special devices namely 3D scanners, into a digital model preserving the geometric-
al features like volume and shape.  

There are many measuring drawbacks in the acquisition step: topological characte-
ristics of the objects, sensor structure, physical properties of the object’s material, 
illumination conditions and among others. Those represent the main source of anoma-
ly generation, distorting the measured data and avoid estimating an accurate represen-
tation of the geometrical characteristic. These inadequacies represent the main source 
of anomaly generation, and must be repaired in order to create a valid digital model 
[2].  

In this paper the anomalies can be classified into three groups: Noise, Holes arti-
facts and Redundancy. Noisy points are points which location may be perturbed by 
unknown levels of noise [4]. Holes artifacts or incomplete sampling is caused by not 
well-sampled set which need user efforts. Typically, these anomalies are repaired in a 
phase called integration [3].  

The classical reconstruction methods need to apply a post-processing procedure  
after the final stage of surface-fitting. This is mainly due to the difficulty in differen-
tiating the nature of the discontinuity, that is, whether or not it belongs to the actual 
surface. One of the main desirable features in surface reconstruction methods is the 
ability to fill holes or to complete missing regions.  Lack of information is caused 
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mainly by the reflective properties of the material, or by occlusion problems in re-
gions inaccessible to the sensor. 

Some methods make an implicit correction during the fitting phase by means of 
global reconstruction [1] [5]. This approach has two disadvantages: first, it does not 
permit to keep false holes, i.e. those belonging to the object, and second, the quality 
of the portion generated depends on the technique used and not on the analysis of the 
intrinsic geometry of the object. While taking the surface as continuum and complete, 
these techniques reproduce visually appropriate solutions. However, the correction of 
these anomalies is still limited to particular cases when objects are closed. 

The hole-filling procedure is based on surface segment generation, for which dif-
ferent techniques have been proposed [6-14]. There are two general trends in the 
group of geometry-based techniques: repair based on triangle meshes, and repair 
based on voxels.  Wei [15] proposed an algorithm for filling holes that starts with a 
hole identification phase and then applies a triangulation of the hole region using the 
Advancing Front Method. Finally, by solving a Poisson equation, the vertex of the 
generated triangles is adjusted. Although adequate visual results are obtained with this 
procedure, it is time costly and depends on the size of the hole.  

Voxel-based approaches estimate an initial surface volumetric representation by 
voxel set. These voxel units are marked with a sign according to their relative position 
to the surface, that is, inside or outside the surface. Different techniques have emerged 
to fill the hole in the volumetric space. Curless [16] proposed a method based on 
volumetric diffusion consisting of a distance function estimation --which is used to 
mark the voxel--, and then diffusion  is applied through the volume to find the zero set 
that defines the surface. Ju [17] proposed a method of contour surface reconstruction 
by marking the voxel using an Octree data structure. The procedure is able to fill 
small gaps, taking into account geometric characteristics. The main limitation is that 
the hole size must be smaller than the relative surface size.  Chun [18] describes a 
two-phase approach to 3D model repair. In the first phase, a radial basis function 
interpolation is used to fill the region inside the hole; the second one is a post-
processing stage to refine the geometrical detail. In the refinement stage the normals 
are adjusted to produce adequate visual results. 

In this paper, we propose a metric for robust hole characterization in 3D models. 
This metric intends to characterize holes through geometric features measures. Our 
hypothesis is based on a widely accepted definition [19]: free-form objects are smooth 
except in regions that represent specific geometric details. Hence, if there are not any 
problems in the acquisition stage, a false contour anomaly should not have large geo-
metric variations; otherwise, it could be caused by problems in the acquisition stage 
and constitute an anomaly to be repaired. Thus, if there were any problems during the 
acquisition process then the data is altered introducing distortion that should not be 
equal for the segments that define the anomaly. That is, acquisition problems intro-
duce some degree of "contour distortion”. The characterization of each anomaly is 
based on the quantification of this distortion, which for this particular case is approx-
imated by a quantification of the entropy in the boundary geometry. 
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The paper is organized as follows: section 2 introduces the topic of anomalies clas-
sification; section 3 describes the proposed contour’s irregularity; and section 4 
presents the experimental design and results. 

2   Anomalies Classification  

The key difference between 3D scattered data and other data types such as images or 
video is that 3D scattered data are typically irregularly sampled. The points’ distribu-
tion of vertices across the surface is not uniform, so to quantify a measure it must be 
robust under different distribution of points.  

In order to get the most accurate estimation of the irregularity of a hole, we  
propose a metric that measures the hole´s most important geometrical features: the 
contour curve irregularity measure from the torsion and curvature entropy.  

3   Irregularity Measure 

In this step we are interested in measuring the geometrical characteristic of the con-
tour curve, i.e. its curvature and its torsion. The aim of these estimations is to quantify 
its irregularity by means of the uncertainty using the entropy measure.  

 
Entropy Measure of contour 
The two fundamental characteristics of a curve are its curvature and torsion; these 
allow to measure how a curve bends in 3D space, therefore, it constitutes a curve’s 
particular characteristic. Often, we assumed that discontinuous contour curves in 
smooth objects without acquisition problems are smooth too.  

Contour bends give us a measure of irregularity. However, estimating the accurate 
torsion value of a sample curve, defined by a piecewise linear approximation through 
an ordered finite collection of points  p , is not a trivial task since noise is present. 
i.e., the points p  stay too close to the curve, but not necessarily lie on it. 

In order to approximate a correct classification of contour curves, we used the tor-
sion measure. For a spatial curve torsion is defined by B s τ s N s  
where N s r s / r s  is the normal vector, s is the arc length from a specific 
position r t  given by a parametric curve r, to a close position r t  and defined 

by s t r u . For a non arc-length parameterized r t , τ s  is thus  

estimated: 

 (6)

To estimate the torsion we adopt the weighted least squares approach and local  
arc-length approximation [2] [3] [4].  It considers a samples-set p  from a spatial 
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Fig. 1. Weight least square curve 

curve. The estimation of derivates of  r at  p  is performed with a point-subset   of 2q 1 points such that (see Figure 1): 
Then, a parametric curve x s , y s , z s)) is fitted locally, assuming p r  and an 

arc-length s value associated to the samples p :  12 16  12 16  

̂ 12 16  

(7)

Taking  coordinate, the derivates  x , x , x  are obtained minimizing [21]: 

E x , x , x w x x s 12 x s 12 x s 16 x s  (8)

Where w 1, s ∑ p p , p . It can be written in terms of 
matrix inversion: 

 (9)

A similar approach is used to estimate the x and  derivates getting the vectors: 
 

  

 
From the equations system: 

 (10)

Where, a a aa a aa a a          b , b , b ,b , b , b ,b , b , b ,  
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The a  values and b ,  are defined thus: 
   12  

14  16  
112  

136  

 

,  , 12  , 16  

,  , 12  , 16  

,  , 12  , 16  

 
Finally, it defines:       

 
The computation of  is straightforward, thus: 

 

 

 

Due to their nature, hole-characterization problems suggest solutions based on infe-
rence, since it needs a process of drawing conclusions from available information that 
is partial, insufficient and that does not allow to reach an unequivocal, optimal and 
unique solution. Then we need to make inferences from the available data assuming it 
is noisy. Specifically, the topic of hole characterization constitutes a highly ambi-
guous example to take decisions because there are many possible configurations of 
irregular contours. Both aspects, noise and ambiguity, imply taking uncertainty into 
account.  

The adequate way to deal with the presence of uncertainty, related to lack of in-
formation, is to introduce assumptions about the problem’s domain or a priori know-
ledge about the data, by means of the notion of degrees of belief. It should be treated 
using the classical rules of calculus of probabilities. The rules of probability theory 
allow us to assign probabilities to some "complex" propositions on the basis of the 
probabilities that have been previously assigned to other, perhaps more "elementary" 
propositions. However, in order to estimate a measure to characterize contours, we are 
not interested in just probability estimation about a geometrical characteristic, but also 
in its variability. High variability could be measured through entropy. Specifically, 
conditional entropy is used.  
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Given two variables  and , the |  quantity that measures the amount of uncer-
tainty about one variable x when we have some limited information about another 
variable   is conditional entropy [5]. It is obtained by calculating the entropy of  as 
if the precise value of   were known and then taking the expectation over the possi-
ble values of y. 

| | | log |  

In a similar way, 

| , log |  (11)

Given a sequence of   points  :  forming the contour of a 3D curve defining 
an anomaly, and a set  of geometrical characteristics measures associated to each 
one in . We want to measure the irregularity in  from a prior knowledge of some 
geometrical characteristic measure. It means that the certainty of a point  is esti-
mated by taking an  -set : : 1 1  over a sorted sequence of 
points used to estimate the next value. The certainty or, in inverse form, the unpredic-
tability of all  is related to entropy.  

, log |  (12)

Where : , , … , , , and: 
 

 . 

 
Contours’ curvature Measure 
The principal limitation of a descriptor based on torsion measure is to deal with planar 
curves. Planar curves may appear as a result of occlusions; although these are less 
common and torsion based decision is inappropriate.  However, in order to attain 
completeness, our metric takes into account those cases and uses a tangent vector 
variability measure for planar cases like irregularity. 

For anomalies in planar cases, tangent variability is usually high; conversely, real 
holes show smooth changes between tangent angles (see Figure 2). 

To estimate this measure, we take the weighted least squares approach and local 
arc-length approximation made in section 4. Tangent vector is defined as 

, or in derivate terms  . We estimate the entropy  of angle 

between successive tangents with equation 12, by replacing the torsions distributions 
by the angle between tangents distribution.  And finally, we quantify the global entro-
py of the contour  by: 
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S S S  (13)

Finally,  

 

For undefined cases of   SI, the S  measure is an accurate estimation of irregularity. 
  

a) b) 

Fig. 2. Tangent vectors variability of both real and false holes respectively 

4   Experiment Design and Result 

All tests were performed using a computer with 3.0GHz Intel processor, 3.0GB RAM 
running under Microsoft Windows XP operating system. The implementations of the 
models were made in C++ for identification and mesh handling and MATLAB for 
entropy estimation, as well as programming a OpenGL graphics engine in order to 
obtain the graphical representation of the images. Most data used were obtained with 
the non-invasive 3D Digitizer VIVID 9i Konica Minolta range scanner of the Nation-
al University of Colombia, Manizales. 

In order to estimate the     and  |  quantity given a continuous variable of tor-
sion measure, we used a bin size  to discrete the domain of an experimental set of 
hole-contour configurations. The experimental set was obtained from 10 images with 
real hole anomaly, like Figure 3a,b and 10 contours with false hole anomalies like 
Figure 3c-f, in partial and complete 3d models’ range data. Some images were scales 
to maintain a fixed scale. It was done by subtracting the mean and dividing by the 
standard deviation. The irregularity was estimated with equation 13. Figure 4 shows 
the irregularity estimated for both sets. It shows that the irregularity measure is highly 
sensitive to the irregularities in the contour. Determining if an anomaly is real or false 
is straightforward because the values are sufficiently separated. The midpoint of the 
range of separation is 3.1. The experimental threshold for classification was estimated 
in this value. 

However, our goal is to quantify the irregularity of contour. We are interested in 
extending the method using a Bayesian classifier for the anomalies classification as 
well as the correction by the generation of the missing segment of surface. 

The irregularity is increased when the separation of the data is greater. The method 
is highly sensitive to noise; small changes in the regularity of the contour show an 
equal increase in the estimation of entropy. This method can be used as an initial step 
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in the process of correcting anomalies. We aim to complement the method with the 
filling process to propose an automatic robust method to correct anomalies. 

The proposed method allows estimating a metric for the automatic classification of 
anomalies in range images. The purpose of the method is to automate a process that 
has traditionally required user intervention. The method estimates the most relevant 
geometric characteristics of curves and surfaces to describe them.  

The anomalies used as the working set were mostly generated by occlusion. We are 
interested in extending the study to holes generated by surface brightness. 

 

 

(a) 
 

(b) 

 

(c) (d) 

 

(e) (f) 

Fig. 3. Examples of surface discontinuity: a-b) false discontinuities, c) real discontinuity of the 
object 
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Fig. 4. Irregularity values of false and real anomalies 
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Abstract. Direction fields are an essential ingredient in controlling surface ap-
pearance for applications ranging from anisotropic shading to texture synthesis 
and non-photorealistic rendering. Applying local principal covariance analysis, 
we present a simplistic way for constructing local frames used for vector field 
generation on point-sampled models. Different kinds of vector fields can be 
achieved by assigning different planar vectors to the local coordinates. Unlike 
previous methods, in the proposed algorithm, there is no need of user con-
straints or any extra smoothing and relaxation process. Experimental results in 
the isotropic remeshing and texture synthesis are used to demonstrate its  
performance. 

1   Introduction 

Vector fields have been used as the fundamental information for controlling the ap-
pearance of surface in many applications, for instance, example-driven texture syn-
thesis makes use of a vector field to define local texture orientation and scale [1-3]. In 
non-photorealistic rendering, vector fields are used to guide the orientation of brush 
strokes [4] and hatches [5]. In fluid simulation, the external force is a vector field 
which need not correspond to any physical phenomenon and can exist on synthetic 3D 
surfaces [6]. For quadrilateral remeshing, edges are aligned in accordance with the 
direction tensor [7-8].  

Most of the recent algorithms for constructing vector fields are based on user given 
constraints and some time-consuming operators. In [1], Praun et al. specify the de-
sired orientation and scale over the mesh as a tangential vector field. Firstly, vectors 
at a few faces need to be defined, and then vectors at the remaining faces are interpo-
lated using Gaussian radial basis functions, where the radius is defined as distance 
over the mesh, as computed using Dijkstra’s algorithm. In [2], a multi-resolution 
representation of the mesh and employs a push-pull technique to interpolate sparse 
user information about the vector field is introduced. For every level representation of 
meshes, tangent planes of each vector have been estimated in the context of process-
ing operations.  In [3], a relaxation technique to generate smooth vector field is pre-
sented. The method can be described as a diffusion process where the desired values 
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are smoothly propagated from seed points to the rest of the surface. The energy  
function is used to represent different types of symmetries. In [9], the vector field is 
defined as parametric domain.  In [10], each point in the point set is defined as a  
direction that conforms to user defined or automatically detected directions so that the 
discrepancy of close point is minimized. This operator needs to assign at least one 
point a direction manually. If no preferred directions are specified, random directions 
of the point set need to be smoothed iteratively by repeatedly averaging directions of 
the points. In [11], a discrete version of the surface gradient is proposed by the use of 
K-nearest neighbors. Gradient information is used to define the parameterization as an 
optimization problem. The solution minimizes a measure of distortion of the gradient 
along the surface. The local parameterizations are used for local operations on the 
geometry or texture mapping operations.  In [12], the vector field is formulated as a 
linear problem by using intrinsic, coordinate-free approach based on discrete differen-
tial forms and the associated Discrete Exterior Calculus (DEC) [13]. In [14], a smooth 
tangent vector fields is defined on non-flat triangle meshes. Their principal design 
tool is the placement of singular basis vector fields, which are mapped to the surface 
from their planar domain via the use of polar geodesic maps and parallel transport. 
For removing singularities, they use a posteriori harmonic smoothing. 

    

    

Fig. 1. Some salient results generated via the proposed vector construction algorithm 

In this paper, a new method for computing direction fields on raw point cloud is 
presented. For point clouds without normal information, surface normal at each point is 
firstly calculated by performing local Principle Component Analysis (PCA). After 
adjusting the surface normal orientation, a local coordinate for each surface point can 
be built. Then different kinds of vector fields can be constructed by assigning different 
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planar vectors to the local coordinates, and the generated vector fields can be edited by 
rotating the assigned planar vector as shown in Fig. 1.   

2   Local-Frame Based Vector Field Generation 

In the proposed algorithm, local-frame vector field is generated by firstly building a 
local coordinate for each point of the point-sampled model. And then different kinds 
of tangent vector fields can be constructed by assigning different planar vectors to 
local coordinates.  

2.1   Local Frame Coordinate Construction 

For point cloud with correct normal information, we can easily build local frame for 
each point by assuming that the normal direction is the Z  axis of local coordinate. 
However, if the normals are not given, our algorithm needs extra computation for 
calculating the corresponding normal of each point in point cloud [15-16].  

Given an input of unorganized point cloud ={ }, , {1,...,  }i N∈ ∈3
i iP p p R , where no 

surface normal and connection information available. The point set surface is required 
to be manifold, it may be of arbitrary genus. We calculate the normal of each point in 
point cloud by performing principal covariance analysis over its local neighborhoods.  

Neighborhoods of each point ip  in a local region with radius of r  are denoted 
as ( )iNBHD p (For point cloud which is uneven sampled, we use k-nearest 
neighbors ), where r is set to be 2-5 times of the average station distance of the point 
set [17], and the neighborhoods are defined as: 

( ) { },|| || , 0,...,i j j iNBHD p p p p r j k= − ≤ =  (1)

Assuming covariance matrix of ( )iNBHD p  to B as: 

( )

( )( )
j i

T
j i j i

p NBDH p

B p p p pθ
∈

= − −∑  
(2)

where θ  refers to  a radials Gaussian weight function as: 

2

2
( )

d

hd eθ
−

=  (3)

where || ||j id p p= − and h is the average station distance of the point set. Eigen 
values and their corresponding eigenvectors of B are represented by 0 1 2λ λ λ< < , 
and

0V , 
1V , 

2V . Reference domain iH , which can be seen as the tangent plane of point 
set surface at ip , is defined by

1V , 
2V  and ip , and the surface normal in at ip  is set to 

be 
0V , || || 1in = .  
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Since the normal obtained by this method are pointing to the different sides of 
point set surface, so we get each normal to point in direction ‘out’ consistently by 
performing normal adjustment algorithm as described in [19].  

A local coordinate system on 
iH  can be defined as ( , , , )i ip u v n , where ip  is the 

origin, and 
in  is the Z -axis. The coordinate transformation matrixes between object 

frame and local frame are defined as follows: 
Matrix 1T  for transformation of object frame to local frame can be expressed as: 

1

1 0 0 . 1 0 0 0 cos 2 0 sin 2 0

0 1 0 . 0 cos1 sin1 0 0 1 0 0

0 0 1 . 0 sin1 cos1 0 sin 2 0 cos 2 0

0 0 0 1 0 0 0 1 0 0 0 1

i

i

i

p x

p y
T

p z

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 
(4)

Matrix 2T  for transformation of object frame to local frame is defined as: 

2

cos 2 0 sin 2 0 1 0 0 0 1 0 0 .

0 1 0 0 0 cos1 sin1 0 0 1 0 .

sin 2 0 cos 2 0 0 sin1 cos1 0 0 0 1 .

0 0 0 1 0 0 0 1 0 0 0 1

i

i

i

p x

p y
T

p z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

(5)

where, 
22 .. ynznv ii +=  

vzni /.1cos =  

vyni /.1sin −=  

v=2cos  

xni .2sin −=  

2.2   Vector Field Construction 

Some regular kinds of vector fields can be obtained by assigning a constant planar 
vector (vectors on reference domain) to the local frame coordinate of each point. For 
example, a common used isotropic tensor can be achieved by simply assigning two 
orthogonal planar vectors to each coordinate of point set model. Fig. 2 shows the 
direction fields resulting from two given orthogonal vectors 

1 (1.0,0.0,0.0)D =  
and 2 (0,1.0,0.0)D = . These kinds of orthogonal vector fields are very suitable for 
isotropic remeshing as shown in Fig. 3. Fig. 4 shows that the proposed local-frame 
based vector field can be changed by rotating the assigned planar vectors of each local 
coordinate.  
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(a)                                                                         (b) 

Fig. 2. Vector fields constructed by assigning two orthogonal constant planar vectors to each 
local frames. (a) Partial vector fields of Max-Planck model; (b) Simplified vector fields. 

   

(a) (b) (c) 

Fig. 3. Isotropic flow lines generated according to the direction fields constructed by assigning 
two agreed orthogonal planar vectors to each local coordinate of existing points in point cloud. 
(a) Flow lines generated via assigned vector 1 (1.0,0.0,0.0)D =  to each local coordinate.  
(b) 2 (0,1.0,0.0)D = . (c) Flow lines generated from these two orthogonal vector fields. 

 

Fig. 4. Vector fields (flow lines) can be changed by rotating the assigned planar vectors 
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Another two point clouds with direction flows with 60  rotation are also con-
ducted to evaluate the algorithm performance. For the purpose of remeshing and mul-
ti-resolution modeling, previous works like [20] usually adopt Laplacian fields to 
construct the vector fields on polygon meshes. In the proposed approach, the results 
are generated from unorganized point cloud with less computation as shown in Fig. 5.   

                   

Fig. 5. Assigning two vectors with 60 degree rotation to each local coordinate; Two different 
groups of direction flows are obtained which are suitable for triangulation tasks 

3   Experiments and Discussion  

To evaluate the performance of the proposed local-frame based vector field generat-
ing method, we make an analysis on consuming-time and memory requirement of the 
procedure, as performed over different point clouds with no normal information. This 
section also demonstrates the feasibility of the algorithm by comparing the work with 
some previous works. 

3.1   Run Time Performance and Memory Requirement 

Table 1 shows the run times for each stage in the proposed algorithm for point-
sampled models with different scales, which includes times for computing normal, 
adjusting normal orientation and generating vector fields of two different directions. 
The total execution time and maximum memory used are also reported in the table.  

The experimental data show that the most time-consuming part of our implementa-
tion is calculating oriented normal for point cloud, and it takes very little time for 
generating vector fields. So for point clouds with correct normal information, the 
proposed approach can provide vector fields with extremely high efficiency. 
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Table 1. Run time performance (in seconds) and maximal memory requiremnt (in  Megabytes) 
of the proposed method, as measured on a 2.7GHz AMD Athlon processor 

Model # of 
points 

Normal 
estimation

Normal 
orientation

Vector 
Field 

Total 
time 

Maximal 
memory 

Bunny 35.9K 0.390 0.985 0.015 1.390 54 
Venus 134.4K 1.484 3.312 0.047 4.843 100 
Hand 6.6K 0.079 0.140 0.016 0.235 35 
Planck 25.4K 0.297 0.703 0.015 1.015 48 
Dino 56.3K 0.766 1.656 0.016 2.438 62 

 
The entry of maximum memory in Table 1 demonstrates that our local-frame based 

algorithm performed with low memory requirements. According to the algorithm 
procedures, we can also derive that it needs almost no extra memory during the stage 
of constructing vector fields.  

3.2   Comparison and Limitation 

As shown in Fig. 6(a), vector field is obtained by firstly manually position one or 
more seeds on point set surface, then any point within a sphere of a user defined ra-
dius gets a direction that points either to the center of the sphere or away from it. The 
rest points of the model are assigned a direction by using a Dijkstra-like approach; if 
no seed point is given, successive relaxation passes is performed to smooth a random 
set of directions to a certain degree, Fig. 6(b) shows the result of this procedure. 

Vector field represented in Fig. 6(c) is a tangential vector field, specifying vectors 
at a few faces, the remaining directions are computed using an RBF scattered data 
interpolation approach, where distances are determined using Dijkstra’s algorithm on 
the edge graph. Vector field depicted in Fig. 6(d) is achieved by firstly creating a 
hierarchy of mesh from low to high density over a given surface, and then the user 
specifies a vector field over the surface that indicates the orientation of the texture. 
The mesh vertices on the surface are then sorted in such a way that visiting the points 
in order will follow the vector field and will sweep across the surface from one end to 
the other.  

Algorithms used in Fig. 6(a-d) are all based on user given constraints and some 
time-consuming operators, such as relaxation process, Dijkstra’s approach, hierarchy 
interpolation, Gaussian smoothing and so on. Instead of using manually given con-
straints and some iterative smoothing operators, the proposed algorithm constructs 
vector fields over raw point cloud in a much simple manner, and high quality results 
are obtained from one-shot computation as shown in Fig. 6(e) and 6(f). 

The experimental results demonstrate that the proposed algorithm build different 
kinds of reasonable vector fields which are particularly suitable for isotropic quadri-
lateral remeshing or example-driven texture synthesis without any manually given 
constraints or time-consuming iterative smoothing operators.  
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 (a)                                (b)                                (c)                               (d) 

   

 (e)                                                         (f) 

Fig. 6. Comparison between the proposed algorithm and some previous works. (a) The direc-
tion field resulting from the first pass of the algorithm starting in one, respectively two, user 
specified discontinuities [10]. (b) Starting from a set of random directions, this point set is 
smoothed iteratively by repeatedly averaging directions of the points [10]. (c) A tangential 
vector field is defined on triangle mesh by using RBF and Dijkstra’s algorithm [1]. (d) The 
interpolated orientation field based on user defined constraint [2]. (e), (f) The direction fields 
constructed by our algorithm which can be changed by rotating the given local planar vector. 

For point clouds with no surface normal information, the construction of the lo-
cal frame is dependent on the local sampling rate, which may not be suitable for 
sparse or uneven sampled model. However, for uniformly sampled point clouds, es-
pecially for point clouds which provide correct normal information, satisfied vector 
field can be obtained via the proposed algorithm.  

Currently, our algorithm hasn’t taken the effects of features into account, but uses 
the singularities closely related to the initial pose of the model. So it has to change the 
model pose for getting a satisfying vector field. For most of the models of symmetric 
objects and other models without extremely complicated features, the proposed algo-
rithm is applicable.  

4   Conclusion and Future Work 

In this paper, we have presented a local-frame based method to establish direction 
fields over point-sampled geometry, which is both efficient and easy to implement. 
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Vector fields generated by our algorithm are applicable for example-driven texture 
synthesis, isotropic remeshing and other graphic applications. For the present, our 
algorithm hasn’t taken features into consideration of our generated vector fields. This 
work is concluded as a possible future work. Moreover, its application can also be 
extended to many other point cloud based applications such as quadrilateral meshing 
and triangulation etc.  
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Preprocessed Global Visibility for Real-Time
Rendering on Low-End Hardware

Benjamin Eikel, Claudius Jähn, and Matthias Fischer

Heinz Nixdorf Institute, University of Paderborn

Abstract. We present an approach for real-time rendering of complex

3D scenes consisting of millions of polygons on limited graphics hardware.

In a preprocessing step, powerful hardware is used to gain fine granular

global visibility information of a scene using an adaptive sampling al-

gorithm. Additively the visual influence of each object on the eventual

rendered image is estimated. This influence is used to select the most

important objects to display in our approximative culling algorithm. Af-

ter the visibility data is compressed to meet the storage capabilities of

small devices, we achieve an interactive walkthrough of the Power Plant

scene on a standard netbook with an integrated graphics chipset.

1 Introduction

State of the art graphics hardware for desktop computers is capable of ren-
dering millions of triangles in real-time. By contrast, netbooks and mobile de-
vices, which are optimized for low power consumption, lack comparably powerful
graphics adapters. Nevertheless do many people use a laptop as a replacement
for a desktop computer especially in a professional environment. Therefore tasks,
which used to be reserved for desktop computers, have to be completed on mo-
bile devices. For instance for business trips or informal sales meetings it may be
desirable to present complex 3D scenes to customers on a mobile device. These
3D scenes may originate from computer-aided design (CAD) applications or 3D
scans of real objects. Fortunately our approach allows the real-time rendering of
complex scenes on high-performance workstations as well as on low-end hard-
ware with weak graphics capabilities. The same preprocessed 3D data can be
used for rendering on different devices, therefore several data preparations are
no longer necessary.

We exploit the observation, that at most positions in a virtual scene, only
a small fraction of the whole geometry contributes almost all visible pixels of
the final image. Our global visibility preprocessing determines the importance
of the geometry for the visual impression in the rendered image. The resulting
visible sets are small enough to be rendered in real-time on a strong graphics
machine. Due to the importance estimations of the objects in the scene, the pre-
sented approximative culling provides an adjustable frame rate while providing
reasonable visible quality even when rendering complex scenes on a netbook.

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 622–633, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Preprocessing steps to build the data structures and reduce their storage space.

In the reduced object space partition after Step 3 the two objects 3 and 4 have been

merged. Thereby references to Object 4 in the visibility subdivision can be saved. In

the reduced visibility subdivision, cells with the same visible objects share the same

reference set (indicated by the arrows), instead of storing it twice. Additively, the cells

with similar reference sets (e.g. {1, 2, 3} and {2, 3}) could also be merged.

2 Outline

We give a short outline of our visibility preprocessing and rendering during
runtime. The basic idea of our data structure is a separated partition of view
space and object space. A partition of the 3D model’s triangles into objects is
called object space OS. A partition of the view space V S ⊂ R

3 into view cells is
called visibility subdivision V S.

Computation of object space and view space take place in four steps (see
Figure 1). The first two steps compute objects and partition the view space into
cells. The last two steps reduce the space requirement of the computed data
structures of the first two steps.

1. First we compute an initial object space partition using a kD tree. The leaves
of the kD tree are base objects used for computing visibility information in
the second step (confer Figure 1). Other spatial data structures producing
relatively compact objects with adjustable sizes should be applicable as well.
The complexity of the base objects is the first parameter used to adjust
the preprocessing costs on the one hand and the quality of the final global
visibility information and therefore the image quality on the other hand.

2. Secondly, the initial visibility subdivision is computed with an adaptive sam-
pling approach (see Section 4.1). Each cell of the partition provides a list
of objects visible from (almost) all positions of the cell and the estimated
influence of the object on the final image.

3. The third step merges the object space’s objects for two reasons: Firstly,
objects consisting of too few triangles should be merged in order to obtain
reasonable batch sizes for the graphics pipeline. Secondly, merging objects
is the main mechanism to reduce the data structure’s memory consumption
(see Section 4.2). By merging two objects, only one object’s meta information
has to be stored and the number of visibility references inside the view cells
is reduced.

4. The fourth step merges the view space’s cells. This step also reduces the
memory consumption by decreasing the number of cells and visibility refer-
ences (see Section 4.2).
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Step 1 and 2 result in an object space and a view space with finest granularity.
Starting with coarser granularity would lead to more imprecise visibility com-
putations. An initial memory reduction of the data structure would cause more
imprecise results. Therefore, we start with a fine granularity and reduce the data
structure such that the size fits the target device’s memory in the end.

The rendering during the scene’s walkthrough is quite straightforward. Based
on the capabilities of the used hardware and the desired frame rate, a triangle
budget is introduced. Until this budget is exhausted, only the most relevant
objects of the current cell are rendered – that are the objects, which are expected
to produce the most visible pixels weighted by the object’s rendering costs. In
this manner, even a comparatively small triangle budget leads to a good visual
quality. Using the same data structure on stronger hardware with a large budget,
all objects that were classified visible can be rendered.

3 Related Work

Culling The literature offers many kinds of different culling algorithms. Our
method can be classified by the taxonomy from Cohen-Or et al. [1] as from-region
occlusion culling algorithm. We apply image precision visibility in our sampling
strategy. Our preprocessing stage can cope with generic scenes composed of
triangles. Our rendering algorithm limits the number of triangles displayed and
therefore applies approximate visibility. The geometry of the whole model can
be used for occlusion (all occluders, generic occluders, occluder-fusion).

Visibility Preprocessing Instead of analyzing the scene geometry’s visibility
at run-time (on-line algorithm), it can be analyzed in a preprocessing step (off-
line algorithm). The preprocessing can be carried out on a powerful machine
that stores the global visibility results. These results can be used by a low-end
machine to render only the scene’s visible parts.

The aspect graph [2] is helpful to theoretically explain the high complexity
of exact visibility. It is a subdivision of the view space into regions, in which
the object’s topological appearance stays the same. For perspective projection
in R

3 the aspect graph contains O(n9) regions, where n is the number of facets.
Due to its high complexity it is not suitable for practical usage. To be able to
use preprocessed visibility for practical sizes of 3D scenes, we use a less exact
definition of visibility. We are only interested in whether an object is visible
or not. Furthermore we do not determine the exact visibility of triangles but
approximate the visibility of objects.

Beside the classical approaches based on potentially visible sets (PVS) [3, 4],
there exist several methods based on a sampled preprocessed visibility. One
approach is presented by Nirenstein and Blake [5]. Here the term aggressive vis-
ibility is introduced, meaning that the calculated potentially visible sets are real
subsets of the exact visible sets. We do not determine the visibility of geometry
on triangle level but on object level, in order to be able to cope with larger
scenes. Therefore it is possible that objects classified as visible by our algorithm
contain triangles, which are in fact not visible from the tested region. Hence our
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approach is approximate and not aggressive. Furthermore, the solution from the
aforementioned article focuses on an adaptive subdivision of the view space and
not the object space. Mattausch et al. [6] present a solution for the integrated
partitioning of the object space and the view space. We pick up this idea and
also subdivide both spaces. By merging visibility cells and objects respectively
we are able to reduce the storage space needed by the partitions. To gain vis-
ibility information they use ray casting which yields exact geometric visibility.
Because of the uniform ray casting and computational costly calculations – for
finding out which object or region to subdivide next – their solution is not well
suited for large scenes.

A much faster method is presented by Bittner et al. [7]. By using a casted ray
as information for all cells intersected by the ray, global visibility information
can be gained much faster. The method is able to preprocess very complex
scenes with millions of triangles, but it classifies much more triangles as visible
than our approach. The diagram [7] shown for the Power Plant model states that
about 1.4 million triangles are visible on average, whereas our sampling approach
classifies only 600,000 triangles as visible. Because our goal is rendering on low-
end hardware, we are interested in as few visible triangles as possible.

Van de Panne and Stewart [8] present compression techniques that efficiently
store the visibility information as a table of single bits. This also allows efficient
merging of objects and cells with similar visibility. Because our method stores
the number of visible pixels for each object and each cell it is visible in, these
compression techniques cannot be applied directly. Furthermore we amply reduce
the data structures’ storage space to be loadable on netbooks and eschew the
additional computation demand involved with compression techniques.

Similar to our approach the HDoV tree [9] uses information about an ob-
ject’s impact on the image displayed on screen. This information is stored in a
tree structure together with the geometry and its different levels of detail. The
rendering algorithm can use the objects’ visual importance to assign triangle
budgets to the tree nodes and fitting approximations can be chosen.

Rendering on Mobile Devices There are different classes of rendering algo-
rithms for mobile devices. One class uses a remote server to render an image
and sends this image to the mobile device for display (e.g. [10]). Another class
uses image-based rendering [11, 12]. A third class of solutions [13–16] renders
the geometry on the mobile device directly, whereas the scenes are specifically
designed and prepared for mobile rendering. On the one hand, we aim at using
PC-like systems that are not as small as some devices utilized in these arti-
cles. On the other hand, we want to visualize standard scenes that are normally
displayed on CAD workstations.

4 Preprocessing

In Section 4.1 we present our global visibility sampling algorithm. Section 4.2
describes the steps to reduce the data structures’ storage space. In Section 4.3
the influences on the rendered image’s visual quality are identified.
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4.1 Sampling Visibility

The goal of the sampling process is to get a fine granular partition of the view
space, where each cell holds references to all base objects that are visible from
a point inside the cell, with a rating of the object’s importance. To sample the
visibility at one position in the scene, the base objects are rendered on the six
sides of a cube around that position. For each object it is determined whether
it is fully occluded or how many pixels are visible by using hardware assisted
occlusion queries. The ratio of the object’s number of visible pixels to its number
of triangles forms its importance value. This value models the influence of the
object to the resulting image weighted by the costs for rendering the object.

In order to allow the handling of large scenes with a reasonable number of
samples, the samples are not distributed uniformly but are adapted to changes in
the visibility throughout the scene. This works as follows: At first, the bounding
box of the scene is inserted into a priority queue with a quality value of zero.
The quality of a cell is a measure of how similar the identified visible objects are
at each sampled position in relation to the number of samples and the size of the
cell. Then, until the overall number of sampled positions reaches the chosen limit,
the cell with the lowest quality value is extracted from the queue. This aims at
distributing the sampled positions among those cells, where the most benefit of
additional subdivisions is expected, first. This cell is split along each axis into
eight equal sized parts (like an octree) and all prior results associated with the
extracted cell are distributed over the new cells, which cover the corresponding
positions. For each of these new cells, new measurements are performed. At first,
all corners are explored – if no corresponding result is yet available from a prior
explored cell. Then some additional evenly distributed random positions inside
the bounding box are sampled. The number of additional samples is chosen
linearly in the diameter of the box, where the factor can be used to express
the scaling of the scene. From experience, about five samples are sufficient for
a house sized area. The importance value of the objects in the cell is set to
the maximum value of all sample points in the cell. In order to calculate the
estimated quality of a cell two sets of objects are determined: One containing
the objects visible from every sampled position inside the cell and one containing
the objects visible from at least one position. The difference in the accumulated
triangle counts of these sets is an indication for the uniformity of the visibility
inside this cell and is called diffPoly(cell). The quality of a region is defined by:
numberOfSamples(cell)/(diameter(cell)·diffPoly(cell)). Hence, if many samples inside a
small cell indicate nearly the same visible objects, it is very unlikely that a further
subdivision of that cell increases the overall quality of the visibility subdivision.

The duration of the sampling process and the quality of the subdivision can
mainly be controlled by the parameter for the number of sampled points. This
leads to a high reliability and easy usage of this sampling technique.

4.2 Trading Space for (Rendering) Time

The sampling process returns a fine granular and memory-intensive partition of
the scene, where each cell references the visible base objects with their expected
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projected visible size. In the next step, this initial partition is further processed
in order to massively reduce the memory requirements and to gain objects of
a higher complexity that allow an efficient rendering by the graphics hardware.
The basic idea is to merge objects likely to be visible simultaneously and to
merge cells from within nearly the same objects are visible. On the one hand,
the merging reduces the number of references to store, but on the other hand,
additional visible objects may be added to the cells. Obviously there is a trade-off
between storage space and rendering time.

The merging is performed in two steps: In a first step, the base objects are
merged until all objects consist of a reasonable number of triangles and the
number of objects reaches a fixed value. Every merging step leads to a benefit in
form of a memory consumption reduction and produces additional costs during
rendering by the number of additionally rendered triangles weighted by the vol-
ume of the cell where this geometry is now rendered unnecessarily. The goal is to
always merge those two objects, which result in the best cost-benefit ratio. Due
to the large number of objects, it is impractical to determine this exactly and
we apply a heuristic. We do the calculations only in a small constant working
set of the smallest objects and merge the most promising candidates. When the
termination conditions are met, the vertex ordering for all objects is optimized
for vertex cache locality to improve rendering efficiency (see [17]).

In a second step, visibility cells are merged until their number also reaches a
fixed value. This is done analogously to the merging of objects, where the costs
are again defined by the additional rendering costs and the benefit by the amount
of saved memory. If the boundaries of the merged cells do not form a box, the
boxes of both cells are preserved and same visibility information is shared.

Through the merging, the resulting partitions have now been adapted to the
memory size of the target machine.

4.3 Adjusting the Quality

When approximating global visibility there are basically two kinds of errors that
can occur: If visible geometry is classified as invisible, it leads to missing parts
in the rendered images. If occluded geometry is classified as visible, it leads to
an increased rendering time and hence a lower frame rate – or if we use a fixed
triangle budget, also in a decreasing visual quality. Another source of error in the
presented technique is that inaccurate importance values of objects may result
in a decreased image quality if less visible parts are rendered while actually more
important parts are left out. To what extend these errors occur can be adjusted
at several stages by different parameters: The larger the size of the base objects
is chosen, the more triangles are classified as visible when only a fraction of
the object is visible. On the other hand, larger objects reduce the possibility
for visible geometry not to be identified as such, due to larger objects being
easier to find from a random position. During the sampling process, accuracy is
mainly to be controlled by the number of samples. The more samples are used,
the better the objects are classified and the more accurate the importance values
are gained. In order not to miss small objects, an adequate screen resolution,
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which should correspond to that of the target system, is necessary. Finally, during
the merging step, the more objects and regions are merged, the more invisible
geometry is classified as visible, while the amount of unidentified visible geometry
may decrease. The overall quality of the partitions can be controlled according
to the available time and memory for the preprocessing. The data structures
can be adapted to the hardware resources of a wide range of target systems with
different configurations.

5 Rendering

The presented technique allows a fluent, high quality interactive visualization of
scenes within the realms of possibility, even when the complexity of all visible
objects exceeds the capabilities of the used hardware. During the walkthrough,
we utilize the graphics hardware to render the parts of the scene that have the
greatest impact on the resulting image. When rendering a frame the visibility
cell containing the observer’s position is determined. At first frustum culling is
applied to the set of objects from that cell. The remaining visible objects are
rendered in descending order of importance. The number of drawn triangles is
accumulated and the current frame ends when a triangle limit has been reached.
If the observer does not move in the next frame, the rendering can continue at
this point, until all referenced visible objects have been displayed.

If the graphics card is capable of rendering all objects in real time, this allows
a very efficient rendering of visible geometry without any overhead for complex
operations like occlusion tests. If the graphics card cannot handle all objects in
real time, the ordering of the objects according to their importance still leads to
a reasonable visual quality while preserving an adjustable frame rate.

6 Results

In this evaluation section, we analyze the number of rendered triangles, the
rendering time and the visual quality of our algorithm, compared to a standard
frustum culling and a conservative occlusion culling algorithm. Here we use an
implementation of the coherent hierarchical culling algorithm (CHC ) [18] with
a kD tree with a leaf size of 20 k triangles as data structure, which yields good
average running times.

The important constituents of the evaluation are the time needed for prepro-
cessing a complex scene and the rendering efficiency and quality on a device with
weak graphics adapter.

Systems. We used a Dell Precision T3500 workstation (Intel Xeon W3503 CPU
(2 × 2.4GHz), 12GiBytes main memory, NVIDIA GeForce 9800 GT (1 GiByte
memory) graphics adapter) for the preprocessing. As low-end device we used
a Dell Latitude 2100 netbook (Intel Atom N270 CPU (2 × 1.6GHz), 1 GiByte
main memory, Intel 945GSE integrated graphics chipset (8 MiBytes memory)).
Hardware assisted occlusion queries are not available on the netbook, which
prevents the application of the CHC algorithm on this system.
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Scene and Camera Path. For the evaluation of our algorithms we used the Power
Plant model [19] with 12.7 million triangles. It is an architectural CAD model,
which offers a pleasantly high amount of occlusion by the single parts of the
building. The model was partitioned using a kD tree with a maximum of 150
triangles per leaf cell. The initial object space consists of nearly 150,000 objects.

Our camera path begins inside the model’s main building with the camera
pointing upwards where many tubes are visible. Then the camera moves outside,
while the amount of geometry inside the frustum decreases. Beginning with
the 380th waypoint, the main building containing nearly all objects is again
contained in the viewing frustum, while the camera circles around the scene.
Then the camera slowly moves away during the last hundred waypoints.

6.1 Sampling Efficiency

Our sampling approach was used with the object space, described in the previous
section, to create a visibility subdivision. The scene has to be rendered six times
for each sampled position. Therefore the overall time needed for the sampling
process is mainly determined by the graphic capabilities of the device used for
preprocessing. One limitation is introduced by the size of the base objects, which
are typically too small to fully exploit the capacities of the graphics card (as the
batch sizes are too small).

We created samples for 10,000 positions with a resolution of 720× 720 pixels
for each side of the sampling cube. The originating visibility subdivision consists
of about 5,000 visibility cells that are containing nearly 35 million references to
visible objects. On the test system, the overall sampling process took 3.5 hours.

6.2 Adapting to the Memory Requirements

After sampling, the overall memory consumption for the visibility subdivision and
the base objects is over three gigabytes of data. In order to obtain a data set of
practicable size, we reduce the initial partitions to two target states: One interme-
diate state that can be used for rendering on a high-performance computer with
at least 2 GiBytes main memory and one fully reduced state that can be used for
rendering on a low-performance computer with 1GiByte main memory. For the
intermediate state only small objects were merged until there were no objects with
less than 200 triangles. The fully reduced state was created by merging the objects
until there were no objects with less than 600 triangles and merging the visibility
cells until there were at most 2000 cells. Here, the object’s average size is about
1100 triangles. The time needed for reaching the fully reduced state was about
2.6 hours, using a working set of size 400. The data structures of the fully reduced
state can be stored in 760MiBytes memory and therefore can be loaded on our
test system with 1GiByte main memory.

Summarizing, we performed the complete preprocessing of a scene with 12.7
million triangles in about six hours.
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6.3 Rendering Performance and Quality

The diagram in Figure 2 shows the number of triangles that are classified as
visible and thereby rendered when using different rendering algorithms while
traversing the camera path. When determining the exact visibility – in our no-
tion, that a triangle is visible if it contributes at least one pixel to the resulting
image – only some hundred to a few thousand triangles are visible (see the gray
line at the bottom). Rendering the original scene with frustum culling (the black
curve at the top) only, naturally leads to the highest amount of geometry, when-
ever many objects lie in the frustum. The CHC algorithm (shown by the light
gray curve) performs unevenly. When, for example, most of the geometry is hid-
den behind the chimney (around waypoint 600), it performs very well. But when
the outer objects can be seen through the borders of the main building (around
waypoint 680), much occluded geometry is classified as visible.

The other three curves in Figure 2 show our proposed rendering algorithm
while using the initial, the intermediate and the fully reduced partitions respec-
tively. By using the initial partitions, the algorithm only sends a small fraction of
triangles inside the frustum to the rendering pipeline and yields better results in
most of the cases compared to the CHC algorithm. Not much more triangles are
classified as visible than that are exactly visible, which supports our sampling
approach. Furthermore this diagram shows the trade-off between storage space
and accuracy of the visibility data. The smaller the visibility subdivision gets in
terms of storage space the more triangles are visible from the visibility cells. But
even the reduced visibility subdivision achieves very good results compared to
the frustum culling approach and is in some cases at least as good as the CHC
algorithm. These results can be achieved with greatly reduced storage space.
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Figure 3 shows the rendering times for the Power Plant model achieved by
our algorithm with a storage space reduced visibility subdivision on the netbook.
With frustum culling rendering, one frame may take over 18 s to complete. But
even in this restricted setting it is possible to visualize such large scenes on
mobile devices by using our proposed rendering algorithm. When restricting
the maximum number of triangles rendered in one frame to 100,000, about five
frames per second can be achieved almost constantly over the camera path.

Fig. 4. Screenshots of the approximated rendering with a budget of 400 k triangles

(1st image), 200 k triangles (3rd image) and pixel difference between the approximated

rendering and rendering of the original model highlighted in white (2nd and 4th image)

To examine the visual quality (percentage of equally colored pixels) we com-
pare the images generated by rendering the original Power Plant model with
the images generated by our approximative culling algorithm while traversing
the camera path. The Figure 4 gives an impression of how the visual quality is
perceived by the user. The diagram in Figure 5 shows the distribution of the
visual quality for the three different states of the partitions and for five different
triangle budgets. If no budget is used only very few visible objects are not classi-
fied as visible due to sampling errors, leading to minor image errors in some cells
on the camera path. The less triangles are rendered per frame and the stronger
the data structure is compressed, the lower the visible quality becomes. If the
budget is limited to only 100k triangles using the fully reduced partitions, the
rendered images still show the most important parts of the scene. An interactive
navigation through the scene is still possible, but in order to observe smaller
details, one has to stop the camera movement and wait a few frames until all
details are shown.

So the overall performance of the presented method, in speed and image qual-
ity, depends on several parameters and properties:

– The invested preprocessing time,
– the design of the virtual scene (number of primitives, amount of occlusion),
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– the memory size of the target machine
– and finally on the capabilities of the target machine’s graphics hardware.

7 Conclusion

We have presented a solution to process complex generic scenes and prepare
them for the rendering on different kinds of devices. By using the Power Plant
scene we were able to demonstrate that the preprocessing can be carried out
with acceptable resources. The data structures can be reduced in storage space
to a size that fits in a netbook’s memory. Our approximate culling algorithm
is finally able to provide real-time walkthroughs on low-end graphics hardware
with a reasonable quality.

In order to further reduce the amount of rendered geometry necessary for
achieving good visual results, the presented approximative culling method is an
ideal starting point for the development of new LOD (level of detail) methods.
An approach similar to the one of El-Sana et al. [20] could be applicably. In-
stead of omitting less important objects, the importance estimation can be used
to select an appropriate level of detail for each visible object. This extension
should allow an interactive walkthrough of complex CAD-generated scenes even
on smartphones.
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Nonlocal Mesh Editing
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Abstract. Mesh editing is a time-consuming and error prone process

when changes must be manually applied to repeated structures in the

mesh. Since mesh design is a major bottleneck in the creation of com-

puter games and animation, simplifying the process of mesh editing is an

important problem. We propose a fast and accurate method for perform-

ing region matching which is based on the manifold harmonics transform.

We then demonstrate this matching method in the context of nonlocal
mesh editing - propagating mesh editing operations from a single source

region to multiple target regions which may be arbitrarily far away. This

contribution will lead to more efficient methods of mesh editing and

character design.

1 Introduction

Mesh editing can be a time-consuming task when similar changes must be made
to multiple regions of the mesh. Consider the problem of editing the limbs of
an animal, for example the hooves of horse. If an artist wishes to change the
shape of the hooves, the editing procedure must be manually applied to all four
hooves. This process is time-consuming and prone to error. In the case of meshes
representing inorganic structures, such as buildings, there may be dozens of
repeated structures, such as windows, making the problem even more complex.
We present a framework for nonlocal mesh editing and a method for quickly
identifying similar substructures in a mesh. We demonstrate our technique on
several meshes representing organic characters and inorganic structures.

Nonlocal approaches to image processing address the redundant nature of
many natural images due to periodicity and symmetry. This redundancy occurs,
for example, when the texture of a wall contains many similar bricks, or two eyes
are visible on the same face. The drawback of these methods is the search time
required to find similar regions. The classical image processing assumption of
smoothness is a local property, and may be assessed using differential operators
or local neighborhood searches. Nonlocal methods typically involve searches for
similarity over the entire image domain, and typically show improved results
over local methods at the expense of speed.

Many meshes also have the property of nonlocal self-similarity. The structure
of many living creatures is characterized by bilateral (left-right) symmetry. There

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 634–643, 2010.
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is geometric similarity between pairs of arms, legs, and facial features. Many
non-living objects are also characterized by repetition : a car may have multiple
wheels, a building may have periodic architectural details, such as windows and
doors.

We propose to simplify mesh editing by identifying such redundancies and
automatically propagating mesh editing operations on one structure to other
similar structures. We quantify similarity of mesh regions by using a region
spectrum determined from a frequency domain decomposition of the mesh.

2 Background

Our approach to propagating editing operations is inspired by the diverse con-
cepts of nonlocal image processing and manifold harmonics.

2.1 Nonlocal Image Processing

Nonlocal image denoising was introduced by Buades et al. [1] in 2005. Many
previous approaches to image denoising were based on local processing (such as
local averaging). Nonlocal methods are based on the observation that due to
texture and repetition, there may be nonlocal redundancy in an image which
can be exploited for denoising. The idea was extended to denoising of video
sequences [2], and also applied to other image processing problems, such as
image demosaicing [3]. Nonlocal redundancy can be used as a regularizer for
inverse problems, such as super-resolution [4] which has commonly used local
smoothness as a standard constraint.

Searching over the entire image domain for similar regions can make these
algorithms slow. Much recent work has focused on improving the efficiency of
nonlocal methods. One approach is to restrict the search to large neighborhoods
rather than the entire image.

2.2 Manifold Harmonics

The manifold harmonic basis (MHB) is analogous to the sinusoidal basis implied
by the Fourier transform - both are eigenfunctions of Laplacian operators defined
on their respective spaces. The Fourier transform operates on functions of real
variables, but the manifold harmonic transform (MHT) operates on functions
whose domain is a graph representing the connectivity of the mesh.

Vallet and Lévy [5] presented a method to convert the geometry of a mesh into
frequency space for the purposes of mesh smoothing. The eigenfunctions of the
Laplace-Beltrami operator are used to define Fourier-like basis functions called
manifold harmonics. High frequency noise and other details can be removed
by low-pass filtering. The manifold harmonics are described in further detail in
section 4.
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Spectral methods have been useful in many area of mesh processing, including
segmentation [6] and deformation [7]. The mesh spectrum has previously been
applied to matching and correspondence problems [8,9]. In contrast to earlier
work, we are not considering the problem of comparing multiple meshes, but
comparing different parts of the same mesh. This permits us to quickly compute
an approximation of the spectrum, as we will demonstrate.

3 Our Approach to Nonlocal Mesh Editing

We utilize the MHT to estimate the frequency spectrum for the region being
edited. The spectrum has several properties which make it efficient for region
comparison:

– Location invariance: The spectrum is unchanged by translating the region.
– Rotation invariance: The spectrum is unchanged by changing the orienta-

tion of the region. This is important because similar regions may be rotated
due to the pose of the mesh.

– Can be made scale invariant: It is not addressed in this work, but the
matching can be made scale invariant by normalization of the spectra.

– Conciseness: A spectrum of 1000 coefficients is sufficient to represent most
meshes for reconstruction purposes. However, by smoothing and subsampling
the spectrum we can represent each region with a few hundred scalar values
for matching applications.

Regions with similar spectra are candidates for more accurate matching using
mesh registration. This step yields an error metric and a transformation matrix
which can be used to propagate mesh edits.

Our mesh editing framework consists of the following steps

– Compute MHT for entire mesh (precomputed offline)
– Select region of interest (ROI)
– Estimate the spectrum for the ROI
– Estimate the spectrum for all other regions
– Perform mesh registration on regions whose spectra match. This step yields

a set of target regions, and transformation matrices.
– Transform editing operations from the ROI to all target regions.

4 Implementation Details

In order to perform matching using the local spectra it is necessary to compute
the MHB for the entire mesh. This involves computing the mesh Laplacian ma-
trix, and the eigenvalue decomposition of this matrix. This computation can be
performed once and stored in a file rather than recomputing it for every editing
operation. See Vallet and Lévy [5] for more details about the numerical methods.
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4.1 Manifold Harmonic Transform

The manifold harmonic basis (MHB) is analogous to the sinusoidal basis implied
by the Fourier transform - both are eigenfunctions of Laplacian operators defined
on their respective spaces. The Fourier transform operates on functions of real
variables, but the manifold harmonic transform (MHT) operates on functions
whose domain is a graph representing the connectivity of the mesh.

Given a triangulated mesh with n vertices we may compute m basis functions
Hk, k = 1...m called the manifold harmonic basis. Each basis function is assumed
to be a piecewise linear function represented by its value Hk

i at each vertex, i.
These basis functions, in matrix form, can be used to transform the vertices
back and forth between their native geometric space and the frequency domain.
Let x = [x1, x2, ...xn], y = [y1, y2, ...yn], and z = [z1, z2, ...zn] be the geometric
coordinates and x̃ = [x̃1, x̃2, ...x̃m], ỹ = [ỹ1, ỹ2, ...ỹm], z̃ = [z̃1, z̃2, ...z̃m] be the
frequency coordinates.

The frequency domain vertices can be computed using the manifold harmonic
transform

x̃ = xDH, (1)

where D is a lumped mass matrix which depends on triangle areas within the
mesh. Similar expressions hold for ỹ, z̃.

The mesh may be reconstructed from the frequency domain vertices by

x = x̃H ′, (2)

and similar expressions can be written for y, z.
Spatial frequencies, ωi, of the basis functions are related to the eigenvalues, λi,

associated with each eigenvector by ωi =
√

λi. Plots of several MHB functions
for a horse mesh are shown in Figure 1.

4.2 Local Spectrum Estimation

The key to our fast approach to local spectrum estimation is to not compute the
MHT for the region around each vertex, but to reuse the global mesh harmonic
basis functions to estimate the local MHT. Since the MHT involves computing
eigenvalues of a large matrix, this approximation saves much computation time.

The local spectrum is estimated by restricting the basis functions to the se-
lected region, R, by G = Hk

j for k ∈ [0, kmax] and j ∈ R. Let E denote a similar
restriction of D. Then the approximate MHT of the vertices in R, xR, is given
by

x̃R = xREG. (3)

Similar expressions hold for the y and z coordinates.
A rotationally invariant spectrum is obtained by combining the frequency

domain coefficients
r̃ =

√
x̃R

2 + ỹR
2 + z̃R

2. (4)
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(a) H1, H2, H5, H10

(b) H100, H250, H500, H1000

Fig. 1. Selected manifold harmonic basis functions computed for the horse mesh

Fig. 2. Rotationally invariant spectrum r̃ =
√

x̃2 + ỹ2 + z̃2 computed for the horse

mesh and plotted on a semilog scale against eigenvalue, λ

A plot of the rotationally invariant spectrum of the horse mesh is shown in
Figure (2). The coefficients tend to decay exponentially with increasing
frequency.

4.3 Defining Regions

We define mesh regions as sets of vertices within a threshold geodesic distance
from a selected center point. Given the center point we use the fast marching
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method [10] to find all of the vertices belonging to the region of interest. It may
not be the case that all of the vertices in the ROI will be edited, but defining
the regions in this way allows us to exploit the rotation invariance of the region
spectrum.

4.4 Spectrum Similarity Metric

There has been much previous work on matching frequency domain spectra
in application areas such as content-based audio retrieval and image analysis.
Some common spectrum similarity measures are based on L1 (Manhattan) and
L2 (Euclidean) distances [11], cross correlation [12], and information theoretic
approaches [13]. After experimenting with these approaches we determined that
the most robust region matching was obtained with a combination of Euclidean
distance and cross correlation. Our measure, d(a, b) is given by

dE(a, b) =

√√√√ n∑
i=1

(ai − bi)2

dcc(a, b) =
∑n

i=1(ai − ā)(bi − b̄)
(n − 1)sasb

d(a, b) = dE(a, b) − dcc(a, b) (5)

where ā is the mean of spectrum a, and sa is the sample standard deviation of a.
Plots of the spectral similarity given several meshes and selected vertex sets

are shown in Figure (3). Darker colors indicate a better match. Note that the
selected left ear of the bunny matches the right ear, the selected finger of the
hand matches the other 4 fingers, and the selected foot of the horse matches
the other 3 feet. Also note that the matching function changes slowly. For large
meshes we sparsely sample the matching function over the mesh, then find local
maxima using hill-climbing. We then cluster the local maxima using the mean-
shift algorithm [14], and take the vertex with best matching of the matching
function in each cluster as the center point of a target region. The results of
clustering and center point determination are shown in Figure 4. The axes draw
in each region have their origin at the center point, and the axis directions
correspond to the coordinate transformation determined by the mesh registration
procedure describe in the following section.

The hand and bunny results demonstrate the rotation invariance of our spec-
tral matching technique. Even though the fingers of the hand and the ears of the
rabbit have different orientations we can still detect matches in these regions.

4.5 Mesh Registration

It is known that meshes may be cospectral (i.e. share the same frequency spec-
trum) but not be identical [15]. Due to this fact we must perform a geometri-
cal comparison between regions whose spectra are similar. The iterative closest
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Fig. 3. Matching function for 3 different meshes. The ROI vertices are marked with

’+’. Darker colors indicate better match.

(a) Clustering results (b) Registration results

Fig. 4. Clustering of the matching function (left) reveals 4 regions of similarity. After

ICP registration of the ROI with these 4 regions the bilateral symmetry of the mesh

is revealed in the plots of the coordinate frames of each region.

point (ICP) algorithm [16] is a method for mesh registration which minimizes
an error metric. The error metric has value zero when two meshes are perfectly
aligned. The ICP algorithm also yields a transformation matrix which allows us
to transform coordinates from one region to another. We use a variant of ICP
called stochastic ICP since it is less likely to become stuck in local minima of
the energy functional during optimization. Mesh registration results are shown
in Figure 4.

4.6 Propagating Editing Operations

Similar regions of the mesh may not be triangulated in the same way, so propa-
gating changes in vertex location is problematic. One solution is to parameterize
[17] the source and target regions to same domain. Then the target region may
be retriangulated, or the vertex deformation may be interpolated.

In our experiments we use Laplacian mesh editing [18] to apply translations,
rotations and scaling transformations to group of vertices with no need for ex-
act vertex correspondence. Similar mesh editing techniques, such as differential
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Fig. 5. Original meshes with ROI vertices plotted with ’+’, and automatically detected

target regions in white (left). Results after ROI deformations have been automatically

propagated to all target regions (right).
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coordinates [19] and Poisson mesh editing [20], would also work well in this
framework.

5 Results

Our algorithm was applied to the horse, hand, and bunny meshes, and the re-
sulting images are shown in Figures 5. The initial user-selected ROI is shown
with an ’+’ at each vertex. The matching target regions are shown in white in
the left column. The repeated hooves of the horse, fingers of the hand, and ears
of the bunny were all successfully located. The right column of images shows the
results after editing operations on the ROI have been propagated to all target
regions.

In all cases our method was able to detect all relevant matches and accurately
propagate the vertex displacements from the ROI to the target regions.

6 Conclusions and Future Work

We have presented a framework for nonlocal mesh editing, and a fast method for
performing mesh region matching. We demonstrated nonlocal mesh editing on
several meshes, both organic and inorganic in nature. The approach we present
is flexible enough to be used in conjunction with several mesh editing methods.
The nonlocal mesh editing process relieves the user from performing repeated
mesh editing operations.

In the future we plan to implement scale invariance into the editing process
and investigate our proposed spectral matching method in the context of mesh
denoising.
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tial coordinates for interactive mesh editing. In: Proceedings of Shape Modeling

International, pp. 181–190 (2004)

20. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.: Mesh editing

with poisson-based gradient field manipulation. ACM Transactions on Graphics

(TOG) 23, 644–651 (2004)



Markov Random Field-Based Clustering for the
Integration of Multi-view Range Images

Ran Song1, Yonghuai Liu1, Ralph R. Martin2, and Paul L. Rosin2

1 Department of Computer Science, Aberystwyth University, UK

{res,yyl}@aber.ac.uk
2 School of Computer Science & Informatics, Cardiff University, UK

{Ralph.Martin,Paul.Rosin}@cs.cardiff.ac.uk

Abstract. Multi-view range image integration aims at producing a sin-

gle reasonable 3D point cloud. The point cloud is likely to be inconsistent

with the measurements topologically and geometrically due to registra-

tion errors and scanning noise. This paper proposes a novel integration

method cast in the framework of Markov random fields (MRF). We de-

fine a probabilistic description of a MRF model designed to represent

not only the interpoint Euclidean distances but also the surface topol-

ogy and neighbourhood consistency intrinsically embedded in a prede-

fined neighbourhood. Subject to this model, points are clustered in aN

iterative manner, which compensates the errors caused by poor registra-

tion and scanning noise. The integration is thus robust and experiments

show the superiority of our MRF-based approach over existing methods.

1 Introduction

3D surface reconstruction from multi-view 2.5D range images is important for
a wide range of applications, such as reverse engineering, CAD and quality as-
surance, etc. Its goal is to estimate a manifold surface that approximates an
unknown object surface using multi-view range images, each of which essentially
represents a sample of points in 3D Euclidean space. These samples of points are
usually described in local, system centred, coordinate systems and cannot offer a
full coverage of the object surface. To reconstruct a complete 3D surface model,
we need to register a set of overlapped range images into a common coordinate
frame and then integrate them to fuse the redundant data contained in over-
lapping regions while retain enough data sufficiently representing the correct
surface details. However, to achieve both is challenging due to its ad hoc na-
ture. Scanning noise such as unwanted outliers and data loss typically caused by
self-occlusion, large registration errors and connectivity relationship loss among
sampled points in acquired data often lead to a poor integration. As a result,
the reconstructed surface may include holes, false connections, thick and non-
smooth or over-smooth patches, and artefacts. Hence, a good integration should
be robust to inevitable registration errors and noise. Once multiple registered
overlapping range images have been fused into a single reasonable point cloud,
many techniques [1–3] can be employed to reconstruct a watertight surface.
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2 Related Work

Existing integration methods can be classified into four categories: volumetric
method, mesh-based method, point-based method and clustering-based method.
The volumetric method [4–7] first divides the space around objects into voxels
and then fuses the data in each voxel. But the comparative studies [8, 9] show
they are time-consuming, memory-hungry and not robust to registration errors
and scanning noise, resulting in poor reconstructed surfaces. The mesh-based
method [10–13] first employs a step discontiuity constrained triangulation and
then detects the overlapping regions between the triangular meshes derived from
successive range images. Finally, it reserves the most accurate triangles in the
overlapping regions and reconnects all remaining triangles subject to a certain
objective function. Since the number of triangles is usually much larger than
that of the sampled points, the mesh-based methods are computationally more
expensive. Some mesh-based methods employ a 2D triangulation in the image
plane to estimate the local surface connectivity as computation in a 2D sub-
space is more efficient. But projection from 3D to 2D may lead to ambiguities if
the projection is not injective. The mesh-based methods are thus highly likely to
fail in non-flat areas where no unique projection plane exists. The point-based
method [14, 15] produces a set of new points with optimised locations. But its
integration result is often over-smooth and cannot retain enough surface details
in non-flat areas. The clustering-based method [8, 9] employs classical cluster-
ing methods to minimise dissimilarity objective functions. It surpasses previous
methods as it is more robust to noise and registration errors. Also, the itera-
tive clustering optimises the locations of points and thus generates much fewer
ill-shaped triangles. However, this clustering, only based on Euclidean distance,
does not consider local surface topology and neighbourhood consistency, leading
to errors in non-flat areas. For instance, in Fig.1(a), although point A is closer
to B and thus the clustering-based methods wrongly group them together, we
would rather group A with C or D to maintain the correct surface topology.

In this paper, we propose a novel integration method. A MRF model is
designed based on both statistical and structural information that clustering-
based methods neglect. This model is then converted into a specific description

Fig. 1. (a) Local topology has a significant effect on the point clustering in non-flat

areas (b) X-Y projection of point clouds from reference and registered range images

where the gray points are the raw data and the black points are the registered ones
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minimised in a clustering manner. The new method retains the advantages of
clustering-based methods and is more robust as it uses more information from
the input data. The integration is thus reliable in both flat areas and non-flat
areas. It is worth mentioning that our method does not require a regular image
grid whereas some state-of-the-art techniques [16, 17] rely heavily on it. The
registered range images used as the input in this work are actually 3D unstruc-
tured point clouds due to large registration errors (Fig.1(b)). Generally, our
method can also cope with the more general input–multiple 3D unstructured
point clouds.

3 Markov Random Field-Based Clustering

MRF describes a system by local interaction and is able to capture many features
of the system of interest by simply adding appropriate terms representing spatial
or contextual dependencies into it. For this work, we denote a set of sites s =
{1, . . . , n} representing the primitive points and define the label assignment x =
{x1, . . . , xn} to all sites as a realisation of a family of random variables defined on
s. We also define the feature space that describes the sites and understand it as
a random observation field with its realisation y = {y1, . . . , yn}. We also denote
a label set L = {1, . . . , m}, where each label corresponds to a class centroid.

An optimal labeling should minimise the posterior energy U(x|y) = U(y|x) +
U(x). Under the MRF assumption that the observations are mutually indepen-
dent, the likelihood energy U(y|x) can be computed as U(y|x) =

∑
i∈S V (yi|xi).

In this work, V (yi|xi) is the Euclidean distance between point and class centroid:

V (yi|xi) = ‖yi − Cxi‖ = |yi − Cxi | (1)

It can be understood in this way: given a label set C and an observation field y
which has an observation yi at point i, whether i should obey an assignment xi

which assigns it to a centroid Cxi (Cxi ∈ C) depends on the distance between
them. The smaller the distance, the larger the probability for such an assignment.

Once we define a neighbourhood N(i) for point i, the prior energy U(x) can
be expressed as the sum of different types of clique energies:

U(x) =
∑

i

V1(xi)+
∑

i

∑
i′∈N(i)

V2(xi, xi′ )+
∑

i

∑
i′∈N(i)

∑
i′′∈N(i)

V3(xi, xi′ , xi′′ )+ · · · (2)

Here, single-point cliques V1(xi) are set to 0 as we have no preference which label
should be better. Our MRF model is inhomogenous and anisotropic due to the
specific definition of the neighbourhood. Furthermore, a range image does not
have such a discrete property attached to each point as intensity. Considering
the inhomogeneous sites with continuous labels, we cannot use a simplified form
such as the Ising model [18] to ‘discourage’ the routine from assigning different
labels to two neighbouring points. The difference between the normals is used to
evaluate the binary clique energy representing the neighbourhood consistency:

U(x) =
∑ ∑

i′∈N(i)

V2(xi, xi′) =
∑ ∑

i′∈N(i)

w|ACxi
− ACx

i′
| (3)
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where ACxi
and ACx

i′
are the unit normal vectors of the centroids Cxi and

Cxi′ respectively. The neighbourhood consistency constraint is thus based on
the assumption that point normals should not deviate from each other too much
in a small neighbourhood. The minimisation combining two types of energies
arises from different value ranges. The range of the likelihood energy is usually
dependent on the number and the positions of class centroids, whereas the range
of the clique energy depends on the definition and the size of the neighbour-
hood system and the measurement of the difference between the normals. One
weighting parameter w is thus necessary to balance the two kinds of energies.

We define a normal deviation parameter s related to local surface topology:

si = std(ai′ |i′ ∈ N(i)), ai′ = cos θi′ = (Ai′ · z)/|Ai′ ||z|, i′ ∈ N(i) (4)

where std is the standard deviation function. We choose z (z axis) as the reference
direction because the scanning accuracy of a point depends on the including angle
between its normal and the line of sight from the scanner which is along z [13].

For most MRF applications in computer vision [19–22], 4 neighbouring pixels
are chosen to produce a neighbourhood N(i) for a pixel i. But to define N(i) in
a 3D unstructured point cloud is more difficult since the concept ‘pixel’ does not
exist here. The simplest method is to use the k-nearest-neighbours algorithm (k-
NN) to find the k points closest to i. But this method has its drawbacks. First,
to employ k-NN needs extra computational cost. Second, more importantly, the
neighbours produced by k-NN cannot deliver surface topological information.
Due to incorrect registration and noise, some of the neighbours produced by k-
NN may not be on the surface of point cloud. The following calculation of their
normals will thus be inaccurate and makes the whole algorithm unreliable. In
this work, before the integration, we first do a triangulation for the points in the
overlapping regions and find the neighbouring triangles of point i. The vertices
of these triangles, excluding i, are defined as the neighbours of i. The collection
of all neighbours of i is defined as the neighbourhood of i, written as N(i). Fig.2
shows a neighbourhood. The advantages of this definition are: (1) it reflects the
local topology and makes it possible to evaluate the neighbourhood consistency
defined as the difference between the normals in the MRF model; (2) there is no
extra computational cost as the triangulation has been done at the beginning
of the algorithm. Since points may have different number of neighbours, it is
necessary to add a normalisation parameter to measure the clique energy. Also,
the clique energy defined in this way is not relevant to scanning resolution, but
the likelihood energy, described by the distance measurement is directly related
to it. We thus use a constant c to balance the different magnitudes between the

Fig. 2. A neighbourhood and the normalised normal vectors attached to the neighbours
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two types of energies. In a general form, w = si × c × R/ni, where ni is the
number of neighbours of i and R is the scanning resolution of the input images.

If point i lies in a non-flat area such as a crease edge, si will probably be a
large value and the clique energy will have more weight. Thus the error illus-
trated in Fig.1 will probably be avoided. If i is located in a flat area, si will be
quite small or even equal to 0 (in a planar area). In this case, the algorithm is
actually downgraded to the classical k-means clustering. This is desired as the
k-means clustering works well in flat areas. In other words, whether a point can
be assigned to a certain centroid depends upon not only the distance between
them but also the local topology and neighbourhood consistency.

In image segmentation where MRF has already been widely used [19–21, 23],
the label set is usually defined using an intensity set and its domain remains
unchanged in the algorithm. This is a ‘pure’ MRF labeling problem and can
be solved by some well-known methods such as graph cuts and loopy belief
propagation [24]. But these methods cannot gurantee a reconstructed mesh with
well-shaped triangles. In contrast, the clustering-based methods can achieve that
due to the averaging for the calculation of new centroids in the clustering [8, 9].
We thus solve this combinatorial minimisation problem in a clustering manner. In
our method, both the label set and its domain are changed iteratively. A double
optimisation is thus achieved. One is done by MRF under a given label set and
the other one is done by the iteration analogous with the routine of the k-means
clustering. The changing label set is the centroids. Once one point i is assigned
to a centroid Cxi , it is labeled as Cxi and its normal is also labeled as ACxi

.
Analogously, the normal of i′ should be labeled using ACx

i′
. But estimating

ACx
i′

needs ni extra nearest neighbour searches for each point and that would
significantly slow down the whole algorithm. We thus assume ACx

i′
= Ai′ , so

U(x|y) =
∑

i

∑
i′∈N(i)

si

ni
× c × R × |ACxi

− Ai′ | +
∑

i

|yi − Cxi | (5)

4 Implementation

Fig.3 shows the workflow of the new algorithm. We employ the method proposed
in [8] to define correspondences and detect overlapping areas. Then, the points in
the overlapping areas are triangulated to compute normals and find neighbours.

The initialisation is vital to the integration result and the speed of conver-
gence. Each point in the overlapping area is shifted along its normal towards

Fig. 3. The workflow of the MRF-based clustering algorithm
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its corresponding point by half of the distance between them. For each point
shifted from a point of the reference image, a sphere with a radius r = m×R (m
is a parameter controlling the density of the output point cloud) is defined. If
some points fall into this sphere, then their original points (without shifting) and
normals are retrieved. Their averages are then used to initialise cluster centroids
and their normals. The centroid yielding the lowest energy is chosen to label
the point. All points labeled with the same centroid are grouped as one class.
The centroid of a new class and its normal can be recalculated by computing
the mean values of the coordinates of the class members and their normals. The
iteration ends when centroids do not change any more. Finally, the new point
set consisting of the new centroids and the original points not in the overlapping
areas is used to reconstruct a triangular mesh and a watertight surface.

In practice, we use a speeded-up scheme to find the centroid Cxi . We first
perform k-NN to find the k centroids closest to i. Then we just search the one
minimising U(x|y) out of the k centroids. k is set to 5 in this work to ensure
that the one searched can always minimise U(x|y) among all centroids. Other-
wise it means that the balance constant c is not set to a reasonable value and
the clique energy has too much weight. Thus the new method has the same com-
putational complexity as the k-means clustering. The computational complexity
of our algorithm is O(n1 log2 n2) where n1 and n2 are the numbers of points in
the overlapping regions from both images and the reference image respectively.

5 Experimental Results and Performance Analysis

In our experiments, the input range images are all downloaded from the OSU
Range Image Database (http://sampl.ece.ohio-state.edu/data/3DDB/RID/
index.htm). On average, each ‘Bird’ image has 9022 points and each ‘Frog’
image has 9997 points. We employed the method proposed in [25] for pairwise
registration. Inevitably, the images are not accurately registered, since we found
the average registration error (0.30mm for the ‘Bird’ images and 0.29mm for the
‘Frog’ images) is as high as half the scanning resolution of the input data. A
large registration error causes corresponding points in the overlapping area to
move away from each other and the overlapping area detection will thus be more
difficult. The final integration is likely to be inaccurate accordingly. Fig.4 and 5
show the comparative integration results produced by existing methods and our
method.

Fig.6(a) illustrates the convergence performance of the new method. The new
method achieves a high computational efficiency in terms of iteration number
required for convergence. We also compute the proportion of the points really
affected by clique energy. Here, ‘really affected’ means one point was not labeled
with its closest centroid due to the effect from clique energy. Fig.6(b) shows the
statistics over the integration of two Bird images (0◦ and 20◦) using different
parameters. Clique energy gains more weight when the product of c and R is
larger. So, Fig.6(b) shows more points are really affected by clique energy when
c×R = 80. But it does not mean a better integration can be achieved as shown
in Fig.6(c) and (d). We can see that it is important to choose an appropriate c.

(http://sampl.ece.ohio-state.edu/data/3DDB/RID/index.htm)
(http://sampl.ece.ohio-state.edu/data/3DDB/RID/index.htm)
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Fig. 4. Integration results of 18 ‘Bird’ images. Top left: volumetric method [5]. Top

middle: mesh-based method [13]. Top right: fuzzy-c means clustering [9]. Bottom left: k-

means clustering [8]. Bottom middle: the triangular mesh produced by the new method.

Bottom right: the final integration result produced by the new method.

Fig. 5. Integration results of 18 ‘Frog’ images. Top left: volumetric method [5]. Top

middle: mesh-based method [13]. Top right: fuzzy-c means clustering [9]. Bottom left: k-

means clustering [8]. Bottom middle: the triangular mesh produced by the new method.

Bottom right: the final integration result produced by the new method.

Fig. 6. (a): The convergence performance of the new mehtod. (b): The proportion of

the points really affected by clique energy (c): Integration result when c ×R = 40 (d):

Integration result when c × R = 80. Please note the holes around the neck.
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Fig. 7. Integration results of 18 ‘Bird’ images produced by different clustering methods.

Left: MRF-based clustering; Middle: fuzzy-c means; Right: k-means.

Fig. 8. Integration re0.7ts (back view) of 18 ‘Bird’ images produced by different clus-

tering methods. From left to right: k-means clustering, fuzzy-c means clustering, the

reconstructed surface and triangular mesh produced by MRF-based clustering.

Fig. 9. Triangulated meshes of the integrated surface using different methods. From left

to right: volumetric[5], mesh-based method[13], point-based method[15], our method.

Fig. 10. Different performance measures of integration algorithms. Left: distortion met-

ric. Right: computational time.
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Due to the different objective functions, it is very difficult to define a uniform
metric such as the integration error [8, 9] for comparison because we reject the
idea that the closest centroid is the best choice. However, Fig.7 and 8 highlight
the visual difference of the integration results produced by classical clustering
methods and our method. It can be seen that our method performs better,
particularly in the non-flat regions such as the neck and the tail of the bird.

Even so, for a fair comparison, we introduce some measurement parameters
widely used but not relevant to the objective function: 1) The distribution of
interior angles of triangles. The angle distribution shows the global optimal de-
gree of triangles. The closer the interior angles are to 60◦, the more similar the
triangles are to equilateral ones; 2) Average distortion metric [26]: the distortion
metric of a triangle is defined as its area divided by the sum of the squares of the
lengths of its edges and then normalised by a factor 2

√
3. The value of distortion

metric is in [0,1]. The higher the average distortion metric value, the higher the
quality of a surface; 3) The computational time; Fig.9 and 10 show that the
MRF-based algorithm performs better in the sense of the distribution of interior
angles of triangles, the distortion metric and the computational time. All exper-
iments were done on a Pentium IV 2.40 GHz computer. Additionally, because
there is no specific segmentation scheme involved in the MRF-based clustering,
our algorithm saves computational time compared with the techniques using
some segmentation algorithms as a preprocessing before the integration [9].

6 Conclusion

Clustering-based methods proved superior to other existing methods for integrat-
ing multi-view range images. It has, however, been shown that classical clustering
methods lead to significant misclassification in non-flat areas as the local surface
topology are neglected. We develop a MRF-based method to tackle this problem
and produce better integration results. It does not only focus on minimising the
integration errors defined by the Euclidean distance, but also considers the effect
from local topology and neighbourhood consistency. The reconstructed surfaces
are geometrically realistic since the new method essentially uses more informa-
tion contained within the input data. Also, it is applicable to more general data
sources such as 3D unstructured point clouds.

Acknowledgments. Ran Song is supported by HEFCW/WAG on the RIVIC
project. This support is gratefully acknowledged.
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Abstract. This paper presents a novel scheme for automatically align-

ing two widely separated 3D scenes via the use of viewpoint invariant

features. The key idea of the proposed method is following. First, a num-

ber of dominant planes are extracted in the SfM 3D point cloud using

a novel method integrating RANSAC and MDL to describe the under-

lying 3D geometry in urban settings. With respect to the extracted 3D

planes, the original camera viewing directions are rectified to form the

front-parallel views of the scene. Viewpoint invariant features are ex-

tracted on the canonical views to provide a basis for further matching.

Compared to the conventional 2D feature detectors (e.g. SIFT, MSER),

the resulting features have following advantages: (1) they are very dis-

criminative and robust to perspective distortions and viewpoint changes

due to exploiting scene structure; (2) the features contain useful local

patch information which allow for efficient feature matching. Using the

novel viewpoint invariant features, wide-baseline 3D scenes are automat-

ically aligned in terms of robust image matching. The performance of

the proposed method is comprehensively evaluated in our experiments.

It’s demonstrated that 2D image feature matching can be significantly

improved by considering 3D scene structure.

1 Introduction

Significant progress has recently been made in solving the problem of robust
feature matching and automatic Structure from Motion (SfM). These advances
allow us to recover the underlying 3D structure of a scene from a number of
collected photographs [1], [2], [3]. However, the problem of automatically align-
ing two individual 3D models obtained at very different viewpoints still remains
unresolved. Since the captured images are directly linked to the 3D point cloud
in the SfM procedure, 3D points can be automatically related in terms of the
matching of their associated 2D image appearances. Previously a number of suc-
cessful techniques [4], [5], [6], [7], [8], [9] have been proposed for robust 2D image
matching - a comprehensive review was given in [10]. However the performances
of these techniques are limited in that they only consider the 2D image texture
and ignore important cues related to the 3D geometry. These methods cannot
� The first two authors contributed equally to this paper.
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produce reliable matching results of features extracted on wide baseline image
pairs. In this paper our goal is to integrate recent advances in 2D feature extrac-
tion with the concept of 3D viewpoint normalization to improve the descriptive
ability of local features for robust matching over largely separated views.

In predominantly planar environments (urban scenes), fitting a scene with a
piecewise planar model has become popular for urban reconstruction [11], [12].
In this paper, we proposed a novel approach to extract a number of dominant
planes in the 3D point cloud by integrating RANSAC and MDL. The derived
planar structures are used to represent the spatial layout of a urban scene. The
2D image features can be normalized with respect to these recovered planes to
achieve viewpoints invariance. The individual patches on the original image, each
corresponding to an identified 3D planar region, are rectified to form the front-
parallel views of the scene. Viewpoint invariant features are then extracted on
these canonical views for further matching. The key idea of the proposed method
is schematically illustrated in Fig. 1. Knowing how everything looks like from a
front-parallel view, it becomes easier to recognize the same surface from different
viewpoints. Compared with some previous efforts on combining 2D feature with
3D geometry [13], [14], our method exploited the planar characteristics of man-
made environment and extracted a number of dominant 3D planes to represent
its 3D layout. Viewpoint normalization can be performed w.r.t. the planes to
achieve better efficiency and robustness.

Fig. 1. The major procedure of generating and matching viewpoint invariant features

The remainder of the paper is organized as follow. Section 2 reviews some
existing solutions for robust feature matching and 3D model alignment. The
proposed method for 3D dominant plane extraction is presented in Section 3.
In Section 4, we explain the procedures of 3D viewpoint normalization and pro-
pose an effective scheme to match the resulting viewpoint invariant features. In
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Section 5, the performance of the proposed method is comprehensively evaluated.
We finally conclude with a brief summary in Section 6.

2 Related Work

Automatic 3D scene alignment is a key step in many computer vision appli-
cations including large scale 3D modelling, augmented reality, and intelligent
urban navigation. Given two sets of 3D points obtained at different viewpoints,
the task is to estimate an optimal transformation between them. The most pop-
ular class of method for solving this problem is the Iterative closest point (ICP)
based techniques [15], [16], [17]. They compute the alignment transformation by
iteratively minimizing the sum of distances between closest points. However, the
performances of ICP-based methods reply on a good estimation initialization
and require good spatial configuration of 3D points. Recently many researchers
proposed to enhance the performances of 3D point cloud alignment by referring
to their associated 2D images. In [18], an effective method was presented for
automatic 3D model alignment via 2D image matching. [19] presented a general
framework to align 3D points from SfM with range data. Images are linked to
the 3D model to produce common points between range data. [20] presented an
automated 3D range to 3D range registration method that relies on the match-
ing of reflectance range image and camera image. In [21], a flexible approach
was presented for the automatic co-registration of terrestrial laser scanners and
digital cameras by matching the camera images against the range image. These
techniques work well for the small observation changes. To produce satisfac-
tory registration results of 3D points clouds captured at significantly changed
viewpoints, we need an effective image feature scheme to establish reliable cor-
respondences between wide baseline image pairs.

A large number of papers have reported on robust 2D image feature extrac-
tion and matching, cf. [10] for a detailed review. The underlying principle for
achieving invariance is to normalize the extracted regions of interest so that the
appearances of a region will produce the same descriptors (in an ideal situa-
tion) under the changes of illumination, scale, rotation, and viewpoint. Among
them the Scale-invariant feature transform (SIFT) [7] is the best scale-invariant
feature scheme and the Maximally Stable Extremal Regions (MSER) [6] shows
superior affine invariance. In [22], the authors conducted a comprehensive eval-
uation of various feature descriptors and concluded that the 128-element SIFT
descriptor outperforms other descriptor schemes. Robust 2D feature extraction
techniques have been successfully applied to various computer vision tasks such
as object recognition, 3D modelling, and pose estimation. However, the exist-
ing schemes cannot produce satisfactory feature matching over largely separated
views because perspective effects will add severe distortions to the resulting de-
scriptors. Recently, many researchers have considered the use of 3D geometry
as an additional cue to improve 2D feature detection. A novel feature detection
scheme, Viewpoint Invariant Patches (VIP) [13], based on 3D normalized patches
was proposed for 3D model matching and querying. In [14], both texture and
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depth information were exploited for computing a normal view onto the surface.
In this way they kept the descriptiveness of similarity invariant features (e.g.
SIFT) while achieving extra invariance against perspective distortions. However
these methods directly make use of the preliminary 3D model from SfM. View-
point normalization with respect to the local computed tangent planes are prone
to errors occurred in the process of 3D reconstruction. For predominantly planar
scenes (urban scenes), piece-wise planar 3D models are more robust, compact,
and efficient for viewpoint normalization of cameras with wide baselines.

3 3D Dominant Plane Extraction

One of the most widely known methodologies for plane extraction is the RAN-
dom SAmple Consensus (RANSAC) algorithm [23]. It has been proven to suc-
cessfully detect planes in 2D as well as 3D. RANSAC is reliable even in the
presence of a high proportion of outliers.

Based on the observation that RANSAC may find wrong planes if the data
has a complex geometry, we introduces a plane extraction method by integrating
RANSAC and minimum description length (MDL).

Here, we apply MDL for plane extraction, similar to the approach of [24].
Given a set of points, we assume several competing hypothesis, here namely,
outliers (O), 1 plane and outliers (1P+O), 2 planes and outliers (2P+O), 3
planes and outliers (3P+O), 4 planes and outliers (4P+O), 5 planes and outliers
(5P+O), 6 planes and outliers (6P+O), ect..

Let n0 points xi, yi, zi be given in a 3D coordinate and the coordinates be
given up to a resolution of ε and be within range R. The description length for
the n0 points, when assuming outliers (O), therefore is

#bits(points | O) = n0 · (3lb(R/ε)) (1)

where lb(R/ε) bits are necessary to describe one coordinate.
If we now assume n1 points to sit on a plane, n2 points to sit on the second

plane, and the other n̄ = n0 − n1 − n2 points to be outliers, we need

#bits(points | 2P + O) = n0 + n̄ · 3lb(R/ε) + 6lb(R/ε) + n1 · 2lb(R/ε)

+n2 · 2lb(R/ε) +

[
n1+n2∑

i=1

{
1

2ln2
· (vi)T Σ−1(vi) +

1
2
lb(|Σ| /ε6) +

k

2
lb2π

}]
(2)

where the first term represents the n0 bits for specifying whether a point is good
or bad, the second term is the number of bits to describe the bad points, the
third term is the number of bits to describe the parameters of two planes, which
is the number of bits to describe the model complexity, a variation of [25]. We
assumed the n1 good points to randomly sit on one plane which leads to the
fourth term, and the n2 good points to randomly sit on the other plane which
leads to the fifth term, and to have Gaussian distribution x ∼ N(μ, Σ) which
leads to the sixth term.
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#bits(points | 1P + O), #bits(points | 3P + O), #bits(points | 4P + O),
#bits(points | 5P +O), and #bits(points | 6P +O), and so on, can be deducted
in a similar way. RANSAC is applied to extract planes in the point cloud. The
MDL principle, deducted above, for interpreting a set of points in 3D space,is
employed to decide which hypothesis is the best one.

4 3D Viewpoint Invariant Features

In this step we perform normalization with respect to extracted dominant 3D
planes to achieve viewpoint invariance. Given a perspective image of a world
plane the goal is to generate the front-parallel view of the plane. This is equiva-
lent to obtaining an image of the world plane where the camera viewing direction
is parallel to the plane normal. It’s well known that the mapping between a 3D
world plane and its perspective image is a homography function. Since we know
the 3D positions of the points shown in the scene and their corresponding image,
we can compute the homography relating the plane to its image from four (or
more) correspondences. The computed homography H enables us to warp the
original image to a normalized front-parallel view where the perspective distor-
tion is removed. Fig. 2 shows some examples of such viewpoint normalization.
Within the normalized front-parallel views of the scene, the viewpoint invariant
features are computed in the same manner as the SIFT scheme [7]. Potential
keypoints are identified by scanning local extreme in a series of Difference-of-
Gaussian (DoG) images. For each detected keypoint x, appropriate scale s and
orientation θ are assigned to it and a 128-element SIFT descriptor f is created
based upon image gradients of its local neighbourhood.

Fig. 2. Some examples of viewpoint normalization. Left : Original images; Right : Nor-

malized front views. Note the perspective distortions are largely reduced in the warped

front-parallel views of the building walls (e.g. a rectangular window in the 3D world

will also appear rectangular in the normalized images).

Given a number of features extracted on the canonical views, we applied
the criterion described in [26] to generate the putative feature correspondences.
Two features are considered matched if the cosine of the angle between their
descriptors fi and fj is above some threshold δ as:

cos(fi, fj) =
fi · fj

‖fi‖2 ‖fj‖2

> δ (3)
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where ‖·‖2 represents the L2-norm of a vector. This criterion establishes matches
between features having similar descriptors and does not falsely reject potential
correspondences extracted on the images of repetitive structures which are very
common in man-made environments.

After obtaining a set of putative feature correspondences based on the match-
ing of their local descriptors, we impose certain global geometric constraints to
identify the true correspondences. The RANSAC technique [23] is applied for
this task. The number of samples M required to guarantee a confidence ρ that
at least one sample is outlier free is given in Table 1. When the fraction of out-
liers is significant and the geometric model is complex, RANSAC needs a large
number of samples and becomes prohibitively expansive.

Table 1. The theoretical number of samples required for RANSAC to ensure 95% con-

fidence that one outlier free sample is obtained for estimation of geometrical constraint.

The actual required number is around an order of magnitude more.

Outlier ratio 40% 50% 60% 70% 80%

Our method (1 point) 4 5 6 9 14

H-matrix (4 point) 22 47 116 369 1871

F-matrix (7 point) 106 382 1827 13696 234041

The geometrical model can be significantly simplified via the use of these
novel features, and thus, lead to a more efficient matching method. Since the
effects of perspective transformation are not compensated in the standard SIFT
scheme, only the 2D image coordinates of SIFT features can be used to gener-
ate geometric constraints (F-Matrix or H-Matrix). Therefore, a number of SIFT
matches are required to compute F-Matrix (7 correspondences) or H-matrix (4
correspondences). In comparison, the viewpoint invariant features are extracted
on the front-parallel views of the same continuous flat building facade, taken at
different distances and up to a camera translation and rotation around its opti-
cal axis. Every feature correspondence provides three constraints: scale (camera
distance), 2D coordinates on the canonical view (camera translation), and dom-
inant orientation (rotation around its optical axis). Therefore, a single feature
correspondence is enough to completely define a point-to-point mapping relation
between two canonical views. Consider a pair of matched features (xm

1 , sm
1 , θm

1 )
and (xn

2 , sn
2 , θn

2 ) both extracted on the normalized front-parallel views, a 2D
similarity translation hypothesis is generated as follows:⎡

⎣x1 − xm
1

y1 − ym
1

1

⎤
⎦ =

⎡
⎣Δs 0 0

0 Δs 0
0 0 1

⎤
⎦
⎡
⎣cosΔθ − sinΔθ 0

sin Δθ cosΔθ 0
0 0 1

⎤
⎦
⎡
⎣x2 − xm

2

y2 − ym
2

1

⎤
⎦ (4)

where Δs = sm
1 /sn

2 is the scale ratio and Δθ = θm
1 − θn

2 is the orientation
difference. Our experimental evaluations in Section 5.2 show that for all ground
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true correspondences the scale ratios and orientation differences are equal up to
a very small offset. It means that the information of patch scale and dominant
orientation associated with the viewpoint invariant features are robust enough
to generate geometrical hypothesis, which is impossible in the SIFT scheme.
Using this simplified geometric model, a much smaller number of samples are
needed to guarantee the generation of the correct hypothesis (c.f. Table 1 for
comparison). The correspondences consistent with each generated hypothesis
(e.g. the symmetric transfer error is less than a threshold) are defined as its
inliers. The hypothesis with the most supports is chosen and its corresponding
inliers are defined as true matches.

5 Experimental Results

We conducted experiments to evaluate the performance of the proposed method
on urban scenes, with focus on the building facade images.

5.1 Point Cloud Sets Generation

We have taken 15 pairs of images over largely separated views with a calibrated
camera. Each pair consists of 10 images, of which 5 images represent left view,
the other 5 images represent right view. Only one pair is exceptional, as shown in
Fig. 7 (a), of which 10 images represent left view, the other 10 images represent
right view. We intend to use this pair for further comparison w.r.t. multi-view
image numbers. Then, we applied orientation software Aurelo [27] to achieve
full automatic relative orientation of these multi-view images. And we used the
public domain software PMVS (patch-based multi-view stereo) [28] for deriving
a dense point cloud for each view of image pairs. It provides a set of 3D points
with normals at those positions where there is enough texture in the images.
The algorithm starts by detecting features in each image, matches them across
multiple images to form an initial set of patches, and uses an expansion procedure
to obtain a denser set of patches, before using visibility constraints to filter away
false matches. An example for a point cloud derived with this software is given in
Fig. 3 Middle. Finally, 5 dominant planes were extracted from each point cloud,
while the rest planes were removed. One example demonstrating dominant planes
extraction is shown in Fig. 3 Right.

5.2 Performance Evaluations

After extracting dominant planes, we perform normalization w.r.t. these planes
to achieve viewpoint invariance. After viewpoint normalization, corresponding
scene elements will have more similar appearances. The resulting features will
suffer less from the perspective distortions and show better descriptiveness. We
tested our method on two wide baseline 3D point clouds, as shown in Fig. 4,
to demonstrate such improvements. It’s noted that both 3D point clouds cov-
ered a same dominant planar structure which can be easily related through a
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Fig. 3. Left : One of three images taken for a building facade scene. Middle: A snap-shot

image of corresponding 3D point cloud generated by PMVS. Right : The five dominant

planes automatically extracted from the point cloud.

homography. A number of SIFT and viewpoint invariant features were extracted
on the original images and on the normalized front-parallel views, respectively.
Then we followed the method described in [22] to define a set of ground truth
matches. The extracted features in the first image were projected onto the sec-
ond one using the homography relating the images (we manually selected 4 well
conditioned correspondences to calculate the homography). A pair of features is
considered matched if the overlap error of their corresponding regions is mini-
mal and less than a threshold [22]. We adjusted the threshold value to vary the
number of resulting feature correspondences.

Fig. 4. Two 3D point clouds and their associated images captured at widely separated

views

Our goal is to evaluate how well two actually matched features relate with each
other in terms of the Euclidean distance between their corresponding descriptors,
their scale ratio, and their orientation difference. Given a number of matched
features, we calculated the average Euclidean distance between their descriptors.
The quantitative results are shown in Fig. 5 Left. It’s noted that the descriptors of
corresponding features extracted on the front-parallel views become very similar.
It’s because the procedure of viewpoint normalization will compensate the effects
of perspective distortion, thus the resulting descriptors are more robust to the
viewpoint changes. For each pair of matched features, we also computed the
difference between their dominant orientations and the ratio between their patch
scales. The results are shown in Fig. 5 Middle and Fig. 5 Right, respectively.
On the normalized front-parallel views, the viewing direction is normal to the
extracted 3D plane. The matched features extracted on such normalized views
have similar dominant orientations and consistent scale ratio. It means that
the information of patch scale and dominant orientation associated with the
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Fig. 5. Performance comparison between SIFT and Viewpoint invariant features. Left :
The average Euclidean distances between the descriptors of matched features; Middle:

The orientation differences between matched features; Right : The scale ratios between

matched feature. The matched feature extracted on the normalized front-parallel views

show better robustness to viewpoint changes.

Fig. 6. A number of matched features are shown. Left : on the original images; Right :
on the front parallel views. Their scales and orientations are annotated. The feature

matches on the viewpoint normalized views have very similar orientations and consis-

tent scale ratios.

viewpoint invariant features are robust enough to determine camera distance and
camera rotation around it optical axis, respectively. To qualitatively demonstrate
the improvements, a number of matched features are shown on the original
images (cf. Fig. 6 Left) and on the normalized images (Fig. 6 Right).

5.3 Wide Baseline Alignment

Next we demonstrate the advantages of the proposed feature matching scheme
by applying it to some very difficult wide baseline alignment tasks. First, we
extracted a number of viewpoint invariant features and establish putative cor-
respondences according to Eq. 3 (the threshold δ was set at 0.9). Then, we
applied the RANSAC algorithm impose the global geometric constraint (Eq. 4)
to identify inliers. The number of inlier correspondences and correct ones were
counted manually. For comparison, we applied SIFT and MSER for the same
task. A set of putative matches were firstly established, among them the inlier
correspondences were selected by imposing the homography constraint. In many
cases, SIFT and MSER cannot generate enough correctly matched features to
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(a) (b)

Fig. 7. Two example results of wide baseline 3D scene matching. Significant viewpoint

changes can be observed on the associated image pairs shown on the top.

(a) (b)

Fig. 8. Some other example results of wide baseline 3D scene matching. Our technique

successfully aligned 3D scenes with very small overlap.

compute the correct H-matrix for identifying inlier correspondences due to the
large viewpoint changes. Some matching results are shown in Fig. 7 and Fig. 8
with the quantitative comparisons provided in Tab. 2.
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Table 2. The quantitative results of wide baseline 3D scene matching. (I - the number

of initial correspondences by matching descriptors, N - the number of inliers correspon-

dences returned by the RANSAC technique, T - the number of correct ones.)

Scene SIFT MSER Our method

T N I T N I T N I

7a 70 89 7117 303 550 4511 420 421 8165

7b 0 13 704 3 13 512 23 23 658

8a 19 28 901 7 16 690 79 80 901

8b 0 10 640 4 19 412 41 41 804

6 Conclusions

We have proposed an intuitive scheme for aligning two widely separated 3D
scenes via the use of viewpoint invariant features. To achieve this, we extracted
viewpoint invariant features on the normalized front-parallel views w.r.t. 3D
dominant planes derived from point cloud of a scene. This enables us to link the
corresponding 3D points automatically in terms of wide baseline image matching.
We evaluated the proposed feature matching scheme against the conventional 2D
feature detectors, and applied to some difficult wide baseline alignment tasks of
a variety of urban scenes. Our evaluation demonstrates that viewpoint invariant
features are an improvement on current methods for robust and accurate 3D
wide baseline scene alignment.
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Abstract. In this paper, we present an algorithm for estimating dis-

parity for images containing large textureless regions. We propose a fast

and efficient region growing algorithm for estimating the stereo disparity.

Though we present results on ice images, the algorithm can be easily used

for other applications. We modify the first-best region growing algorithm

using relaxed uniqueness constraints and matching for sub-pixel values

and slant surfaces. We provide an efficient method for matching multiple

windows using a linear transform. We estimate the parameters required

by the algorithm automatically based on initial correspondences. Our

method was tested on synthetic, benchmark and real outdoor data. We

quantitatively demonstrated that our method performs well in all three

cases.

1 Introduction

3D reconstruction using stereo cameras is being explored in the areas of urban
reconstruction [1], robot navigation [2] and object recognition [3]. The algo-
rithms being used for matching are as varied as the content encountered in the
applications. In this paper, we present an algorithm for estimating disparity for
images containing large textureless regions. This work is part of our effort to de-
velop a fast and efficient method for capturing sea-ice surface topography using
stereo cameras mounted on an icebreaker during a cruise. Obtaining the surface
height and other characteristics are key factors in determining the volume of sea-
ice and also for interpreting satellite data [4,5]. We propose a fast and efficient
region growing algorithm for estimating the stereo disparity and demonstrate
the working of our algorithm on synthetic and benchmark stereo datasets. We
validate quantitatively our results on real scenes using data collected from a 3D
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Fig. 1. Reconstruction of a scene from a 4 MP image. Width of the scene is 20 meters

and depth is 60 mts.

laser scanner. Though we present results on sea-ice images, the algorithm can
be easily used for other applications.

A brief discussion on the nature of data and the requirements of the stereo
algorithm will motivate our approach. The images acquired by the stereo system
are large (4 megapixels each) and there are up to 500 disparity levels. Since the
images mostly contain snow covered regions or ice, there is little color variation
present. The terrain being imaged is viewed from an oblique angle due to the
height of the system and hence the surface being reconstructed may not always
be parallel to the baseline (violating the fronto-parallel assumption).

The first step in many stereo algorithms is the calculation of the disparity
volume, that is, the cost associated with assigning various disparity values to
pixels in the image. This would not only require computing the matching score
of every pixel with corresponding feasible pixels, but also storing this informa-
tion in an array whose size is the product of image area and disparity range.
Our image size and disparity range preclude algorithms employing such a step.
We propose an algorithm which grows regions out of sparse correspondences and
hence its complexity does not depend significantly on disparity range, but only
on image size. Our method also takes advantage of large planar areas in the
image. Such areas are not matched in the stereo process, but are interpolated
to fill in the disparity values. Compared to other region growing algorithms, our
approach differs in the following aspects: (1) we provide dense disparity as out-
put, (2) we explicitly handle change in appearance of a region due to slant, (3)
we adaptively estimate most of the parameters necessary for our algorithm from
the initial correspondences, (4) we also provide an efficient method for comput-
ing the similarity measure between windows being matched by discretizing the
allowed angles of slant and precomputing the transforms.

We briefly review some related methods in Section 2, formulate the problem
in Section 3 and discuss the details of our approach in Section 4. We present
results on synthetic, benchmark and real outdoor datasets in Section 5 and
conclude in Section 6.
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2 Related Work

In this section, we discuss a few stereo methods which are similar to proposed
method or present results on similar data. For a general discussion on stereo
algorithms and their taxonomy, we refer the reader to [6]. One of the schemes
involves classification of stereo algorithms based on the density of the estimated
disparity map into sparse (only in some feature locations), dense (everywhere)
and quasi-dense (almost everywhere) schemes. The relative merit of each scheme
is discussed in [7]. One of the earliest region growing methods [8] relied on adap-
tive least squares correlation algorithm and provided dense correspondences.
There is a recent extension [9] which attempts to increase the performance of
the algorithm using parallel processing. [10] extends region growing method
to multiview-cases. However, the discussion below concerns two other methods
which are closer to the proposed method.

Lhullier and Quan [7] proposed a method to obtain surface reconstruc-
tion from uncalibrated images. The method involved obtaining and validating
a sparse set of correspondences. These are then used to grow regions using a
best-first strategy without epipolar constraint. The resulting disparity map is re-
sampled using local homographies to obtain quasi-dense correspondences. These
correspondences are used to estimate the fundamental matrix and then initial
seeds are grown again using epipolar constraints. This process is repeated till
the solution converges. Though we use a similar strategy for growing the seeds,
there are some key differences. First, our system is calibrated and our images
are rectified, so we do not estimate fundamental matrix, but employ epipolar
constraints directly. They employ a combination of gradient cues and confidence
measures to limit the propagation. We use statistics derived from the initial
matches to decide when the propagation needs to stop. Though results are pre-
sented on planes oriented at different angles, their method does not explicitly
handle fractional disparities and slanted surfaces in its formulation.

Growing correspondence seeds (GCS) [11] was proposed as a fast method for
obtaining disparity of regions with random initial seeds. The method involved
growing overlapping components in disparity space and then optimally matching
those components. A distortion model for slant was suggested but not discussed
in detail. It is noted that a simple region growing scheme does not perform
well on its own and hence the components found are matched using maximum
strict sub-kernel algorithm. However, the output of the algorithm is then filtered
to provide only a quasi-dense estimate of the disparity. In our method, after
growing the regions (using relaxed uniqueness constraints), we use the estimate
as the initialization of an optimization algorithm that seeks to minimize a global
energy function.

There are other approaches using belief propagation for slant regions [12]
and texture-less regions [13]. However, these require computation of the entire
disparity volume and are not suitable for large images with large disparity range.
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3 Our Approach

Our approach is outlined below. As pointed out in [11], region growing alone
does not provide a good estimate of the disparity. Hence, we attempt to minimize
the following objective:

E(d) =
∑
(x,y)

(1 − λ(x, y))[n(I(x, y), I ′(x + d(x, y), y)) + α∇2d] + λ(x, y)

Here, I and I ′ are the left and right images, d is the disparity map. λ is an
indicator variable (λ ∈ {0, 1}). If λ = 1, then the pixel is occluded or lies on a
discontinuity. We call a pixel (x, y) matchable if λ(x, y) = 0. It can be seen that
if n is normalized, and ∇2d is small, then minimizing E will lead to minimizing
the occluded regions in the image. However, minimizing this objective function is
not a well-posed problem as there are multiple minima near textureless regions.
Hence we propose to solve it using the following steps:

– Obtain sparse correspondences between left and right images.
– Grow the correspondences without entering textureless regions.
– Interpolate the obtained disparity to get an initial solution to the minimiza-

tion problem.
– Solve the minimization by solving Euler-Lagrange equations at points where

gradient is high.

The motivation for this approach is that region growing cannot cross regions
where uniqueness constraint is violated. However, if we assume that each match-
able region (a region consisting entirely of matchable pixels) contains at least
one seed, the regions that remain after the growth step are either occluded or
textureless. These can be interpolated according to the energy minimization.
We use diffusion to achieve interpolation, though techniques using finite element
methods may also be utilized [14].

4 Details

4.1 Sparse Correspondences

We use Harris detectors to find features for sparse correspondences and normal-
ized cross correlation to match them. This is similar to the approach followed in
[11]. Although various detector/descriptor combinations may be used, we have
found that owing to lack of change in scale and orientation, Harris and correla-
tion yield reliable matches. Since the images are already rectified, we filter those
matches that do not follow the epipolar constraint. We will refer to coordinates
of the resultant points as lx and ly (similarly rx and ry), each of which is N × 1
vector (N is the number of points found).
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Algorithm 4.1. Region growing algorithm
1. ∀(x,y)filled(x,y)=0.

2. for i = 1TO N , insert [lx(i) ly(i) lx(i) − rx(i) lx(i) − rx(i) lx(i) − rx(i)] into queue
Q.

3. While Q is not empty, repeat steps 4 to 10

4. Pop first element of Q into c.
5. If filled(cx, cy) then Goto step 3.

6. Get errors e(d) of pixel (cx, cy) for disparities in range of cmin to cmax.

7. If min e < θ and [Number of disparities d such that e(d) < 2 ∗ emin] < M , then

continue, else Goto step 3.

8. d(cx, cy) = argmax
d

e(d) + α ∗ |d − cp|.
9. filled(x, y)=1.

10. For each neighbor (x, y) of (cx, cy): Insert [x y d(cx, cy) − w d(cx, cy) + w cp] into

Q. The disparity range is restricted for left and right neighbor to avoid overlap.

4.2 Region Growing

We perform region growing iteratively using Algorithm 4.1. The matching mea-
sure used is sum of squared differences (SSD). Points which are to be processed
are inserted into a FIFO queue Q. Each item c in Q has the following terms:

c = [cx cy cmin cmax cp]

This item in the queue corresponds to the pixel at location (cx, cy). Its disparity
will be searched over the range [cmin, cmax]. The last term cp indicates the dis-
parity of the initial correspondence which led to the current pixel being inserted
into queue. cp is used to regularize the disparity. Note that since noise levels may
vary between images, we do not enforce a strict uniqueness constraint (each pixel
has only one match). Instead we check to see if the number of disparities within
twice the minimum error range is less than M . Choosing M = 1 would be close
to enforcing uniqueness constraint. Also, there is a factor θ which is the maxi-
mum error allowed for a match. We choose M and θ adaptively based on initial
matches (discussed in section 4.4). Though uniqueness is weakly enforced, it is
sufficient to prevent growth in textureless regions. This may be observed in the
synthetic results in section 5.1. We may also include gradient or segmentation
cues if available to decide when a propagation needs to be stopped.

4.3 Sub-pixel Matching and Slant

In step 6 of Algorithm 4.1, we find errors of the current pixel with pixels in the
disparity range [cmin, cmax]. This interval is divided into fractional intervals cor-
responding to sub-pixel disparities. We assume that scan lines of the image are
independent, and hence we linearly interpolate the images for sub-pixel match-
ing. This is similar to the method in [15]. Also, the appearance of the pixel in
the right image may have changed due to slant. In stereo, slant refers to a plane
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Source Window

Destination Windows

Sub-pixel shift

Angle shift

Fig. 2. Illustration of matching windows with varying sub-pixel value and angle. Match-

ing with multiple angles helps decrease error in slanted regions.

whose normal is at significantly different angles with respect to the viewing di-
rections of the two cameras. If the plane is very inclined or the scene is very close,
the image of the plane is distorted in one of the images. To handle these cases,
we compress and dilate the matching window corresponding to discrete angles.
Figure 2 summarizes the matching performed for every window. For this paper,
we have chosen 2 levels between every successive disparity (0,0.25,0.5,1) and a
total of 5 angles (−60◦,−30◦, 0◦, 30◦, 60◦). Note that each of these distortions
(sub-pixel+angle distortion) is a linear interpolation of values of image. Hence,
these operators can be pre-computed. When a window needs to be matched, the
operators are applied through matrix multiplication and the result compared to
the destination window. This is much more efficient than computing arbitrary
affine parameters for each window and provides reasonable results if the slant is
limited. An example of slant plane can be seen in Figure 3.

4.4 Parameter Estimation

We used parameters θ, M , w and α in Algorithm 4.1. Two of these parameters
can be estimated from the initial set of correspondences. Given the correspon-
dences, a tentative estimate of minimum and maximum disparity for the image
is calculated as the minimum and maximum value of lx−rx. SSD errors are then
calculated for each of the initial correspondence. θ is set to the average error of
all correspondences. Similarly, the average number of disparity values with error
less than 2emin is chosen as M . The choice of α controls the smoothness and w
decides the largest change in the gradient within a continous region (depends on
the image size). For our experiments, we chose w = 3.
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4.5 Interpolation and Optimization

Once the regions are grown, the resulting disparity map contains many pix-
els where disparity is not assigned. We fill them using bilinear interpolation.
Euler-Lagrange equations corresponding to the energy in section 3 is evaluated
iteratively on pixels sorted by their gradient. This forces the optimization to
concentrate on regions where large gradients exist, thus smoothing them out.
Since most of the pixels in the image are matchable, their disparity is already
correctly assigned by the region growth algorithm. The step of optimization is
useful when errors due to incorrect seeds or noise may have crept into the growth
process (see Teddy example in Results).

Table 1. Change in number of iterations for growth algorithm with disparity range

for image size of 200x200. Number of iterations decrease slightly with disparity range

because occlusion increases as strip moves farther from the background. Occluded pixels

are not handled by the growth algorithm.

Disparity Range Iterations Disparity volume

1 70985 40000

5 68276 200000

25 66964 1000000

50 60208 2000000

5 Results

The algorithm was implemented in MATLAB. The vectorization described in
section 4.3 is exploited to perform parallel interpolations across rows and chan-
nels. The running times are reported on a PC with Intel Centrino 2 processor
with 4GB RAM.

5.1 Synthetic Results

We present results on two synthetic images shown in Figure 3. In the first im-
age, the white strip is moved laterally by 25 pixels. Note that the region growth
algorithm assigns values only on the outline of the region and not inside where
the matching is ambiguous. In the interpolation and optmization step, the dis-
parity is filled inside the strip and the boundary smoothed out by diffusion. In
the second image, it is moved and rotated, so that the disparity on the left side
is 25 and right side is 10. Notice that the matching does not fail on the slant
edge. Although the exact angle of the slant is not included in the search, the
approximation is close enough to provide complete disparity on the boundary
of the strip. We also conducted an experiment to measure the effect of dispar-
ity range on the number of matches performed. The strip in the first image was
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1a. Right Image 1b. Result of Region Growth 1c. Final result

2a. Right Image 2b. Result of Region Growth 2c. Final result

Fig. 3. Results on synthetic dataset. First row (1a-1c) corresponds to flat plane in

front of a background leading to constant disparity. Second row (2a-2c) corresponds to

a slanted plane and hence contains a gradient in disparity.

moved at steps and disparity calculated, the number of matches performed by
the algorithm were noted. The findings are shown in Table 1. It can be seen
that even though the disparity range changes by a large factor, the number of
matches performed does not increase significantly. For image sizes of 200x200,
the algorithm takes 12-14 seconds to converge.

5.2 Benchmark Results

We tested our algorithm on Middlebury stereo dataset. Results on two of the
images are shown in Figure 4. Note that although large regions of Venus im-
age are not assigned disparity in the growth step, the values are interpolated
successfully in the next step. In the Teddy image, notice that the region on the
roof is assigned wrong disparity in the first step. However, this is corrected in
the subsequent steps. The errors on all the bench mark images are in table 2.
Although the errors are not comparable to segmentation based techniques, it
does however out-perform several global methods such as graph-cuts [16].

Table 2. Error in results for Middlebury dataset [6]. Bad pixels are those whose

disparity error is greater than 1.

Image Percentage of bad pixels

Tsukuba 1.23

Venus 1.57

Teddy 10.98

Cones 5.11
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1a. Left Image with Inital
 Correspondences

2a. Left Image with Inital 
Correspondences

1b. Result of region growth

2b. Result of region growth

1c. Final Disparity

2c. Final Disparity

Fig. 4. Results on Middlebury dataset. First row (1a-1c) corresponds to Teddy image

and second row (2a-2c) contains Venus image.

5.3 Real Outdoor Results

We performed tests on outdoor ice-scape to see the effectiveness of the algorithm
on large images. The scene was river bank 15-25 meters far from the camera.
It was covered with ice blocks and snow. The images were captured using a
16MP SLR camera and downsampled to 4MP. The scene was also measured
using a 3D laser scanner that provides panaromic range scan of the scene with
1 mm precision. The scene was captured in 3 image pairs. Figure 5 shows
reconstruction from one pair and corresponding section of laser data. 1,337,079
points were reconstructed from the stereo pair and a corresponding 100,000
points from the laser scanner were aligned with it for comparison. To compare
the two surfaces, for each point obtained by the laser scanner, we compute the
closest point on the stereo reconstructed surface and calculate the euclidean
distance between them to estimate the reconstruction error. Table 3 shows
mean error for all the points on the surface in centimeters for various values of
α. Figure 1 shows ice blocks floating in river. The dimensions of rendered scene
are 20 meters wide and 60 meters deep.

Table 3. Change in mean error between the stereo and 3D laser scanned surfaces when

smoothness parameter α is varied

α Mean Error (in cm)

0.1 19.34

0.3 18.88

0.8 18.62

2.0 19.15
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a. Left Image a. Disparity

c. Reconstruction from Stereo

d. Reconstruction from 3D Laser scanner

Fig. 5. Results on ice/snow surface. Comparison of surface reconstructed from stereo

and 3D laser scanner. (a) Left image from stereo image pair. (b) Disparity estimated

from our algorithm. (c) Reconstruction from stereo (mesh with 1,337,079 vertices). (d)

Reconstruction from laser scanner (100,000 vertices).

6 Conclusion

To enable fast and accurate capture of surface topography, we proposed a stereo
matching algorithm based on region growing. Since region growing alone can-
not provide good results, we augmented it with an optimization step to cor-
rect the estimate. We modified the first-best region growing algorithm using
relaxed uniqueness constraints and matching for sub-pixel values and slant sur-
faces and provided an efficient method for matching multiple windows using a
linear transform. We estimated the parameters required by the algorithm auto-
matically based on initial correspondences. We tested our method on synthetic,
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benchmark and real outdoor data. We quantitatively demonstrated that our
method performs well in all three cases and showed that the number of itera-
tions required does not grow significantly with disparity range, but only depends
on the image size. Comparison with laser scanned data suggests that the algo-
rithm performs well even in regions with little or no texture. In future work, we
will combine the region growing technique with segmentation based methods to
provide a robust disparity estimate.
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Synthetic Shape Reconstruction Combined with the 
FT-Based Method in Photometric Stereo 

Osamu Ikeda 

Faculty of Engineering, Takushoku University 
815-1 Tate, Hachioji, Tokyo, Japan 

Abstract. A novel method of synthetic shape reconstruction from photometric 
stereo data combined with the FF-based method is presented, aiming at obtaining 
more accurate shape. First, a shape is reconstructed from color images using a 
modified FF-based algorithm. Then, with the shape as initial value, a more ac-
curate shape is synthetically reconstructed based on the Jacobi iterative method. 
The synthesis is realized as follows: the reconstruction is sequentially made in 
each of small image subareas, using the depths in the neighboring subareas as 
boundary values, which is iterated until the overall shape converges. The division 
to image subareas enables us to synthesize large shapes.  

1   Introduction 

Several shape reconstruction methods have reported in the field of photometric stereo. 
One is to convert the surface normal map obtained from three images [1] to the depth 
map. The conversion is not straightforward but it needs sophisticated methods, as 
reported by Frankot and Chellappa [2] and Agrawal, Raskar and Chellappa [3]. One is a 
direct method that solves a set of relations between the surface normal vector and the 
depth, as presented by Basi and Jacobs [4]. The method needs a number of images to 
obtain a good shape and it is quite time consuming. Another direct method uses the 
Jacobi iterative method as shown by Ikeda [5]. The method appears mathematically 
sound, but it requires a huge space of memory. As a result, it is time consuming and 
reconstruction is limited in dimension of shape.  

Future applications in computer vision may require accurate and detailed visual 
object information, such as shape, color, albedo and spectral reflection characteristics 
for recognition and/or identification purposes. The requirement for accurate shape, 
however, may not necessarily be met by the existing methods.  

In this paper, based on the method [5], a novel synthetic reconstruction method is 
presented in combination with the FT-based method, to obtain accurate large-sized 
shapes. In the new method, the whole image area is divided into small subareas. In the 
reconstruction, one iteration of shape reconstruction is made sequentially in each of the 
subareas, using the depths in the neighboring subareas as the boundary condition, 
which is iterated until the entire shape converges. This results in the synthesis of the 
shape.  
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To shorten the computation time, a shape is reconstructed using the FT-based me-
thod [2] and it is used as the initial shape. The method in its basic form is inferior to the 
iterative method [5] in accuracy, and it is applicable only to monochrome images. The 
algorithm is modified and optimized so that it is applicable to color images.  

2   Reconstruction Using Jacobi Iterative Method 

It is shown that the reconstruction using the Jacobi iterative method requires the 
amount of memory of 4N4 for N by N pixel images and that it also requires boundary 
values. 

Referring to [5], the method is based upon the consistency between the reflectance 
functions Rl(p, q) and color images Ic,l(x,y) for three directions of the light source: 

( ) ),(),(, , yxIqpRyx lclc =α , c= r, g, b, l = 1,2,3, x,y=1,…,N (1)

where αc are albedos that can be derived from the images [7] and (p, q) denote the 
surface tilts. For the case of Lambertian reflection, Rl(p, q) are given by 

3,2,1,),( =•= lqpR ll SP  (2)

where P is the surface normal vector of the shape, and S is the illuminant vector. The 
simplest approximations of p and q may be given from the depth map, z(x,y), as 
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So we can have four combinations for (p, q).   
Defining the functions fa,c,l(x,y) as 
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where a denotes the combination of the approximations, and Ja,c,l are Ia,c,l with the 
lateral shifts in correspondence with the combination. The Jacobi iterative method 
gives the iterative relations for one of the four combinations as 

( )

( ) ( ))1()(

)1(

,,1)1()(

)1(

,,1)1()(

)1(

,,1)1(
,,1

)1,()1,(
)1,(

),(
),1(),1(

),1(

),(
),(),(

),(

),(
),(

−
−

−

−
−

−
−

−−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∂

∂
+−−−×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∂

∂
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=−

nn

n

lcnn

n

lcnn

n

lcn
lc

yxzyxz
yxz

yxf
yxzyxz

yxz

yxf
yxzyxz

yxz

yxf
yxf

(5)

where n is the number of iterations. Those relations can be rewritten in matrix form as 

)( )1()()1(
,,

)1(
,,

−−− −=− nnn
lca

n
lca zzgf , a=1-4, c=r, g, b, l=1-3, n=1,2,…, (6)

where fa,c,l and z are vectors having of N2 elements, and ga,c,l are matrices having N2 by 
N2 elements.  



680 O. Ikeda 

12 of these relations are linearly combined in a least squares sense to reconstruct 
three color component shapes, and 36 of them for three colors combined shapes. We 
obtain the following relation for the combined case:   

( ))1()()1()1( −−− −=− nnnn zzGF , n=1,2,…, (7)

where G is the matrix having 36N2 by N2 elements. The depth map is estimated  
following  

( ) )1(
2

1)1(
2

)1()( −−−− −= nnnn FGzz , n = 1,2,…, (8)

FGFGGG TT == 22 ,
 

(9)

To make the structure of G2 uniform, the elements on the four borders are excluded 
from the reconstruction. This enhances numerical stability. Hence, G2 results in (N-2)2 
by (N-2)2 matrix and the reconstruction area is reduced to N-2 by N-2.  

It is seen from Eqs. (8) and (9) that G2 occupies most of the required memory in the 
computation. For a case where available memory is limited to 2GB, N is limited to 150. 
The value may not be large enough for applications.  

3   Procedure of Synthetic Shape Reconstruction 

It is seen from Eq. (3) that depths just outside the reconstruction area are required to 
determine the surface tilts of the elements on the four borders. This means that when the 
whole image area is divided to small subareas, depths in subareas contribute to shape 
reconstruction in the neighboring subareas. If we carry out the reconstruction sequen-
tially in each of the subareas, then it may be able to reconstruct the whole shape at every 
iteration in a similar fashion to the case where just one area is used. This may end up 
synthesizing the shape over a large area while repeating the reconstruction in small 
subareas.  
 

 

Fig. 1. Division of the reconstruction area into subareas 

SA11 SA12 SA13 

SA21 SA22 SA23 

SA31 SA32 SA33 
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Let’s consider the 3 by 3 subarea division shown in Fig. 1. The initial map of depth 
value is set to null. In the first iteration, one iteration of shape reconstruction is made in 
the subarea SA11 using the null depths in the subarea and those in the neighboring ones. 
The depth map is updated with the resulting depths, where the depths on the left of SA11 

and those above SA11 are replaced with those at the nearest elements. One iteration of 
the reconstruction is made next in SA12 using the updated depth map, where part of the 
depth values in SA11 are used. The depth map is then updated in the same way. This is 
repeated through the subarea SA33. In the second iteration, too, the sequential recon-
struction begins with the subarea SA11 and ends with SA33, while updating the depth 
map. The sequential reconstruction is repeated until the depth map converges.  

4   Reconstruction Using FT 

The FT-based shape reconstruction algorithm [2] is not so accurate but fast. So we use 
the shape as the initial one for the new method. The existing algorithm is for mo-
nochromatic color, so let’s modify the algorithm in order to be applicable to color 
images. 

Using P = (nx, ny, nz)
T and Tl
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y

l
x sss ),,(=S , the following relation holds: 
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From Eq. (10) the components of P are given by 
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Then, they are averaged over the three colors with weights dependent upon the image 
brightness: 
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The surface tilts (p, q) are given by  
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where p and q vary depending on (x, y). Let P(ωu, ωv) and Q(ωu, ωv) be the Fourier 
transforms of p and q, respectively, and let the approximations, ∂z/∂x = z(x, y) - z(x-1, y) 
and ∂z/∂y = z(x, y) - z(x, y-1), be used. Then, the depth map is reconstructed as 
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where F-1 denotes the inverse Fourier transform. In its implementation using FFT, (ωu, 
ωv) are replaced with (2π/Μ)(u, v), u, v = 0, 1, …, M-1. 

5   Experiments 

Two objects were used in experiments. One is a plastic toy penguin, which is 36.8 mm 
in width, 48.1 mm in height, and 16.3 mm in depth. The other is a ceramic toy horse, 
which is 68 mm in width, 66.5 mm in height, and 19.2 mm in depth. These objects were 
illuminated with an incandescent light from three directions to capture images in RAW 
format. The color temperature of the light source is estimated to be around 3000K. One 
optical polarization filter was placed in front of the light source and the other in front of 
camera lens to get rid of specular reflection components in the images.  

 

   
(-11,6.5,30 )      (0,-12.5,30)       (11,6.5,30) 

   
(-11,6,33 )       (0,-13.6,33)       (11,6,33) 

Fig. 2. Images of two objects used in experiments, where (Sx, Sy, Sz) denotes the illuminat vector 

With the RAW development software, the captured images were made “linear” in 
brightness, and the color temperature was set to 4000K so that the resulting images 
agreed in color with our observation. Then, the three color component images were 
modulated as 

( ) 3,2,1,,,, === lbgrciI cgl
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Fig. 4. Left: shape reconstructed using the modified FT algorithm, Right: shape reconstructed 
using the synthetic shape reconstruction. The top left shape was used as the initial depth map to 
reconstruct the shape using the synthetic method. 

The existence of the fringes also affects the value of gr in Eq. (15). It may be larger 
than 0.915 in the absence of the fringes, but its estimate is 0.889, which is smaller than 
0.915 to reduce the enhanced image contrast.  

On the whole, the three initial shapes look very similar. On the other hand, some 
differences are noticeable among the three converged shapes. Hence, the synthetic 
shape tends to reveal the color dependency more correctly.  

These are the case of the horse, too, as shown in Fig. 6. On the whole, the converged 
shape is more accurate than the initial shape. Especially in the dark image regions and 
in the shadow regions, the converged shape is much better than the initial shape. 

In this object case, there are no fringes in the red images but there are some fringes in 
the green images and, to a lesser extent, in the blue ones, in the hip and chest parts on 
the side of the body, appearing red in Fig. 2. They result in enhancing the image con-
trasts, and as a result, it is likely that gr (0.648) has been made smaller than gb (0.656). 

The depth profiles as a function of number of iterations are shown in Fig. 7. In the 
case of the penguin, its dimensions in the 256 by 256 images are 193 in width and 252 
in height, so that correspondingly the overall depth should be reconstructed to be 85.6. 
In the case of the horse, its dimensions are 252 in width and 246 in height, so that the 
overall depth should be reconstructed to be 71.1.  
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Abstract. Generating accurate three dimensional planetary models is

becoming increasingly important as NASA plans manned missions to

return to the Moon in the next decade. This paper describes a 3D sur-

face and albedo reconstruction from orbital imagery. The techniques de-

scribed here allow us to automatically produce seamless, highly accurate

digital elevation and albedo models from multiple stereo image pairs

while significantly reducing the influence of image noise. Our technique

is demonstrated on the entire set of orbital images retrieved by the Apollo

15 mission.

1 Introduction

High resolution, accurate topographic and albedo maps of planetary surfaces in
general and Lunar surface in particular play an important role for the next NASA
robotic missions. More specifically these maps are used in landing site selection,
mission planing, planetary science discoveries and as educational resources. This
paper describes a method for topographic and albedo maps reconstruction from
the Apollo era missions. The Apollo metric camera flown on an orbit at approx-
imately 100km above the Lunar surface was a calibrated wide field (75◦) of view
orbital mapping camera that photographed overlapping images (80%). The scans
of these film images recently made available [1,2] capture the full dynamic range
and resolution of the original film resulting in digital images of size 22,000 ×

Fig. 1. Apollo Metric images from Orbit 33

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 688–697, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 2. The overall system for albedo reconstruction

22,000 pixels representing a resolution of 10 m/pixel. Figure 1 shows the images
of one Lunar orbit captured by the Apollo 15 mission. Our method for geomet-
ric stereo reconstruction and photometric albedo reconstruction is illustrated in
Figure 2. Each component of our system will be described in more detail in the
following sections.

2 Bundle Adjustment

The Apollo-era satellite tracking network was highly inaccurate by today’s stan-
dards with errors estimated to be 2.04-km for satellite station positions and 0.002
degrees for pose estimates in a typical Apollo 15 image [3]. Such errors propa-
gate through the stereo triangulation process, resulting in systematic position
errors and distortions in the resulting DEMs. These errors are corrected using
bundle adjustment techniques. Our bundle adjustment solution uses SURF fea-
ture points [4]. Our bundle adjustment approach follows the method described
in [5] and determines the best camera parameters that minimize the projection
error given by ε =

∑
k

∑
j(Ik − I(Cj , Xk))2 where Ik are feature locations on

the image plane, Cj are the camera parameters, and Xk are the 3D positions
associated with features Ik. I(Cj , Xk) is an image formation model (i.e. forward
projection) for a given camera and 3D point. The optimization of the cost func-
tion uses the Levenberg-Marquartd algorithm. Speed is improved by using sparse
methods described in [6]. Outliers are rejected using the RANSAC method and
trimmed to 1000 matches that are spread evenly across the images. To eliminate
the gauge freedom inherent in this problem, we add two addition error metrics
to this cost function to constrain the position and scale of the overall solution.
First, ε =

∑
j(C

initial
j −Cj)2 constrains camera parameters to stay close to their

initial values. Second, a set of 3D ground control points are added to the error



690 A.V. Nefian et al.

metric as ε =
∑

k(Xgcp
k − Xk)2 to constrain these points to known locations

in the lunar coordinate frame. In the cost functions discussed above, errors are
weighted by the inverse covariance of the measurement that gave rise to the
constraint.

3 Dense Disparity Maps

This section describes our subpixel correlation method that reduces the effect
of the scanning artifacts and refines the integer disparity map to sub-pixel ac-
curacy. We investigated a large number of stereogrammmetric systems that can
provide dense stereo matching from orbital imagery [7,8,9,10,11,12]. Our subpixel
refinement method uses the statistical method described in [13].

In our approach the probability of a pixel in the right image is given by the
following Bayesian model:

P (IR(m, n)) =
∏

(x,y)∈W

N (IR(m, n)|IL(i + δx, j + δy),
σp√
gxy

)P (z = 0) + (1)

+ N (IR(m, n)|μn, σn)P (z = 1)

where W is a matching window,

IL(i + δx, j + δy) ≈ IL(i, j) + δx
dIL

dx
(i, j) + δy

dIL

dy
(i, j) (2)

and δx and δy are the local sub-pixel displacements given by

δx(i, j) = a1i + b1j + c1

δy(i, j) = a2i + b2j + c2. (3)

The first mixture component (z = 0) is a normal density function with mean
IL(i + δx, j + δy) and variance σp√

gxy
:

P (IR(m, n)|z = 0) = N (IR(m, n)|IL(i + δx, j + δy),
σp√
gxy

) (4)

The 1√
gxy

factor in the variance of this component has the effect of a Gaussian
smoothing window over the patch. The second mixture component (z = 1) in
Equation 4 models the image noise using a normal density function with mean
μn and variance σn. With the assumption of independent observations within
the matching window W the goal of the subpixel refinement algorithm becomes
to maximize

P (IR(m, n)) =
∏

(x,y)∈W

P (IR(x, y)). (5)

Figure 3 shows an example of a stereo image pair captured by the Apollo Metric
Camera and used to generate a DEM of the Apollo 15 landing site.
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Fig. 3. Apollo 15 zone elevation model before (left) and after (center) bundle adjust-

ment and oblique view of the Apollo 15 landing site (right)

4 Photometric Reconstruction

Each pixel of the Apollo Metric Camera images was formed by a combination
of many factors, including albedo, terrain slope, exposure time, shadowing, and
viewing and illumination angles. The goal of albedo reconstruction is to separate
contributions of these factors. This is possible in part because of redundancy in
the data; specifically, the same surface location is often observed in multiple
overlapping images.

To do the albedo reconstruction, we include all of the factors in a image
formation model. Many of the parameters in this model such as digital terrain
slopes, viewing angle, and sun ephemeris are known. To reconstruct albedo, we
first model how the Metric Camera images were formed as a function of albedo,
exposure time, illumination and viewing angles, and other factors. Then we can
formulate the albedo inference problem as a least-squares solution that calculates
the most likely albedo to produce the observed image data.

Starting with the first images from the Apollo missions a large number of
Lunar reflectance models were studied [14,15,16]. In this paper the reflectance
is computed using the Lunar-Lambertian model [14,17]. As shown in Figure 4,
we define the following unit vectors: n is the local surface normal; l and v are
directed at the locations of the Sun and the spacecraft, respectively, at the time
when the image was captured. We further define the angles i separating n from
l, e separating n from v, and the phase angle α separating l from v . The
Lunar-Lambertian reflectance model is given by

F = AR = A

[
(1 − L(α)) cos(i) + 2L(α)

cos(i)
cos(i) + cos(e)

]
(6)

where A is the intrinsic albedo and L(α) is a weighting factor between the Lu-
nar and Lambertian reflectance models [18] that depends on the phase angle and
surface properties. R is a photometric function that depends on the angles α,
i and e. The image formation model begins as follows. Let Iij , Aij , Rij be the
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Fig. 4. Illumination and viewing angles used by the Lunar-Lambertian reflectance

model

pixel value, albedo and R function at image location (i, j), and T be a variable
proportional to the exposure time of the image. Then

Iij = TAijRij . (7)

Note that the image formation model described in Equation 7 does not take
into consideration the camera transfer function since the influence of the non-
linearities of the camera transfer function plays a secondary role in the image
formation model [18]. From Equation 7 it can be seen that when the observed
pixel value, exposure time, and R value are known, the image formation model
in Equation 7 provides a unique albedo value. However, these values are sub-
ject to errors arising from measurement (exposure time), scanning (image value)
or stereo modeling errors (reflectance), resulting in imprecise albedo calcula-
tions. The method proposed here mitigates these errors by reconstructing the
albedo of the Lunar surface from all the overlapping images, along with their
corresponding exposure times and DEM information. The albedo reconstruction
is formulated as the least squares problem that minimizes the following cost
function Q:

Q =
∑

k

∑
ij

[
(Ik

ij − AijT
kRk

ij)
2Sk

ijw
k
ij

]
(8)

where super script k denotes the variables associated with the kth image and
Sk

ij is a shadow binary variable. Sk
ij = 1 when the pixel is in shadow and 0,

otherwise. The weights wk
ij are chosen such that they have linearly decreasing

values from the center of the image (wk
ij = 1) to the image boundaries (wk

ij = 0).
The choice of these weights insures that the reconstructed albedo mosaic is
seamless. As shown by Equation 8 and illustrated in Figure 2 the steps of our
photometric reconstruction method are the computation of the shadow and relief
map followed by albedo reconstruction. These steps are described next.

4.1 Shadow Map Computation

Discarding unreliable image pixels that are in shadow and for which the DEM
and the reflectance models are unreliable plays an important role in accurate
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Fig. 5. Orbital image: (left) input image, (middle) binary shadow map with shadow

regions shown in white, (right) DEM confidence map (brighter areas have higher esti-

mated error)

albedo estimation [19,20]. Figure 5(left, middle) shows an input image together
with its binary shadow map; shadowed areas are indicated in white.

4.2 Relief Map Computation

The geodetically aligned local DEM determine multiple values for the same loca-
tion on the Lunar surface. A simple average of the local DEM value determines
the value used in computing the local slopes and the reflectance value. The
average DEM has the following benefits for albedo reconstruction:

– It is essential to the computation of a coherent “R map”, since each point
of the Lunar surface must have a unique DEM value.

– The statistical process produces more accurate terrain models by reducing
the effect of random errors in local DEMs and without blurring the topo-
graphical features. Figure 6 shows the R map of a subregion of the orbital
image in Figure 5 before and after the DEM averaging and denoising process.
It can be seen that the noise artifacts in the original DEM are reduced in
the denoised DEM while the edges of the large crater and mountain regions
are very well preserved.

– The statistical parameters of the DEM values at each point are instrumental
in building a confidence map of the Apollo coverage DEM. Figure 5(right)
shows the error confidence map for the orbital image illustrated in Fig-
ure 5(left). The values shown in this error map are the 0.05×the variance
values of the DEM expressed in meters.

This step of the algorithm computes the values of the photometric function R
described by Equation 6 corresponding to every pixel in the image. We denote
the set of R values as the “R map” of the image. The accurate DEM calculation
influences the R values through the effect of surface normals on the angles i and
e that appear in Equation 6.



694 A.V. Nefian et al.

Fig. 6. R maps generated using (left) single local DEM and (right) denoised DEM de-

rived from multiple overlapping local DEM. Our denoising approach preserves structure

while reducing the artifacts shown in the insets.

4.3 Albedo Reconstruction

The optimal albedo reconstruction [21] from multi view images and their corre-
sponding DEM is formulated as a minimization problem of finding

{Ãij , T̃
k} = arg min

Aij ,T k
Q (9)

for all pixels ij and images k, where Q is the cost function in Equation 8. An
iterative solution to the above least square problem is given by the Gauss Newton
updates described below.

– Step 1: Initialize the exposure time with the value provided in the image
metadata. Initialize the albedo map with the average value of the local albedo
observed in all images.

Aij =
∑

k

Ik
ijw

k
ij

Rk
ijT

k
(10)

– Step 2: Re-estimate the albedo and refine the exposure time using

Ãij = Aij +

∑
k(Ik

ij − T kAijR
k
ij)T

kRk
ijS

k
ijw

k
ij∑

k(T kRk
ij)2S

k
ijw

k
ij

(11)

T̃ k = T k +

∑
ij(I

k
ij − T kAijR

k
ij)AijR

k
ijS

k
ijw

k
ij∑

ij(AijRk
ij)2S

k
ijw

k
ij

(12)

– Step 3: Compute the error cost function Q (Eqn. 8) for the re-estimated
values of the albedo and exposure time.
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Fig. 7. Albedo reconstruction: (left) R map, (middle) reconstructed albedo, (right)

albedo confidence map (brighter areas have higher estimated error)

– Convergence: If the convergence error between consecutive iterations falls
below a fixed threshold then stop iterations and the re-estimated albedo is
the optimal reconstructed albedo surface. Otherwise return to step 2.

Figure 7 shows the R map, the albedo map and the albedo reconstruction er-
ror map, respectively, for the original orbital image in Figure 5. The albedo
reconstruction error map is computed as the absolute difference between the
original image Ik

ij and the reconstructed image T kAijR
k
ij . For display, the error

values were multiplied by a factor 10 in Figure 7(right). Figure 8 illustrates the
reconstructed albedo for one orbit of the Apollo mission data overlayed over pre-
vious low resolution Clementine imagery. The Clementine mission images were
captured under incidence and emission angles close to zero, therefore capturing
images that describe the relative Lunar albedo. It can be seen that the recon-
structed albedo de-emphasizes the brightness variations shown in the original
imagery (Figure 1) between images and produces a seamless albedo mosaic.

Fig. 8. Albedo reconstruction of orbit 33 of the Apollo 15 mission

5 Conclusions

This paper presents a novel approach for topographic and albedo maps gen-
eration from orbital imagery. The method for sub-pixel disparity maps uses a
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novel statistical formulation for optimally determining the stereo correspondence
and reducing the effect of image noise. Our approach outperforms existing ro-
bust methods based on Lucas Kanade optical flow formulations at the cost of
a higher computational complexity. The derived topographic maps are used to
determine the albedo maps from an image formation model that incorporates
the Lunar-Lambertian reflectance model. The optimal values of albedo and ex-
posure time are learned from multiple image views of the same area on Luna
surface. Further research will be directed towards a joint estimation of the top-
graphic and albedo information using shape from shading techniques specific for
the Lunar reflectance model and scanned image properties.
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Abstract. Unmanned Aircraft Systems (UAS) have been used in many military 
and civil applications, particularly surveillance. One of the best ways to use the 
capacity of a UAS imaging system is by constructing a mosaic of the recorded 
video. This paper presents a novel algorithm for the construction of super-
resolution mosaicking. The algorithm is based on the Levenberg Marquardt 
(LM) method. Hubert prior is used together with four different cliques to deal 
with the ill-conditioned inverse problem and to preserve edges. Furthermore, 
the Lagrange multiplier is compute without using sparse matrices. We present 
the results with synthetic and real UAS surveillance data, resulting in a great 
improvement of the visual resolution. For the case of synthetic images, we ob-
tained a PSNR of 47.0 dB, as well as a significant increase in the details visible 
for the case of real UAS frames in only ten iterations. 

Keywords: Mosaic, Super-Resolution, UAS, Huber-Regularization, Ill-Posed 
Inverse Problems. Steepest –Descent, Levenberg Marquardt, Nonlinear Multi-
variable Optimization, Unmanned Aircraft Systems, Video Surveillance. 

1   Introduction 

Multi-frame super-resolution refers to the particular case where multiple images  of a 
particular scene are available [3]. The idea is to use the low-resolution images con-
taining motion, camera zoom, focus, and out of focus blur to recover extra data to 
reconstruct an image with a resolution above of limits of the camera. The super-
resolved image should have more detail that any of the low resolution images. Mo-
saicking is the alignment or stitching of two or more images into a single composition 
representing a 3D scene [5]. Generally, the mosaics are used to create a map which is 
impossible to visualize with only one video frame. 

Super-resolution mosaicking combines both methods, and it has number of appli-
cations when surveillance video from UAS or satellite is used. One clear application 
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is the surveillance of certain areas even during night with the use of an infrared (IR) 
imaging system. The UAS can fly over areas of interest and generate super-resolved 
mosaics that can be analyzed at the ground control station. Other important applica-
tions involve the supervision of high voltage transmission lines, oil pipes, and the 
highway system.  NASA also uses super-resolution mosaics to study the surface of 
Mars, the Moon, and other planets. 

Super-resolution mosaicking has been studied by many researchers; Zomet and Pe-
leg [6] use the overlapping area within a sequence of video frames to create a super-
resolved mosaic. In this method, the SR reconstruction technique proposed in [7] is 
applied to a strip rather than a whole image. This means that the resolution of each 
strip is enhanced by the use of all the frames that contain that particular strip. The 
disadvantage is that this method is computationally expensive. Ready and Taylor [8] 
use a Kalman filter to compute the super-resolved mosaic. They add unobserved data 
to the mosaic using Dellaert’s method. Basically, they construct a matrix that relates 
the observed pixels to estimated mixel values. This matrix is constructed using the 
homography matrix and the point spread function (PSF). The problem is that this 
matrix is extremely large, so they use a Kalman filter and diagonalization of the cova-
riance matrix to reduce the amount of storage and computation required. The draw-
back of this algorithm is the use of the large matrix, and the best results with synthetic 
data obtain a PSNR of 31.6 dB.  Simolic and Wiegand [9] use a method based on 
image warping.  In this method, each pixel of each frame is mapped into the SR mo-
saic, and its gray level value is assigned to the corresponding pixel in the SR mosaic 
within a range of ± 0.2 pixel units. The drawback of this method is that it requires that 
the motion vectors and homography must be highly accurate, which is difficult when 
dealing with real surveillance video from UAS. Wang, Fevig, and Schultz [10] use the 
overlapped area within five consecutive frames from a video sequence. Then they use 
sparse matrices to model the relationship between the LR and SR frames, which is 
solved using maximum a posteriori estimation. To deal with the ill-posed problem of 
the super-resolution model, they use hybrid regularization. The drawback of this me-
thod is that it has to be used every five frames, which means that every five frames 
several sparse matrices has to be built. Therefore, this method does not seem to be 
appropriate to deal with a real video sequence which has thousand of frames. Picker-
ing and Ye [1] proposed an interesting model for mosaicking and super-resolution of 
video sequences, using the Laplacian operator to find the regularization factor. The 
problem with the use of the Laplacian factor is that forces spatial smoothness. There-
fore, noise and edge pixels are removed in the regularization process, eliminating 
sharp edges [11]. Arican and Frossard [17] use the Levenberg Marquardt algorithm to 
compute the SR of onmidirectional images. Chung [18] proposed different Gauss 
Newton methods to compute the SR of images, the disadvantage is that works only 
for small images. 

Our method combines the ideas of most of these techniques, but it also inserts a 
different way to deal with the super-resolution mosaicking that does not require the 
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construction of sparse matrices. Therefore, it is feasible to apply the algorithm to a 
relative large image sequence and obtain a video mosaic. Also, we use Huber regula-
rization which preserves high frequency pixels, so sharp edges are preserved, and 
makes the super-resolution problem convex [20] that helps in the converge of our 
proposed algorithm.  

2   Observation Model 

Assuming that there are K frames of LR images available, the observation model can 
be represented as 
 

 (1) 
 

 
Here,     (k =1,2, …, K),  x, and      represent the kth LR image, the part of the real 
world depicted by the super-resolution mosaic, and the additive noise, respectively. 
The observation model in (1) introduces          which represents the reconstruction of 
the kth warped SR image from the original high-resolution data x [1]. The geometric 
warp operator and the blur matrix between x and the kth LR image, yk,, are represented 
by Wk and Bk, respectively. The decimation operator is denoted by D. 

3   Robust Super-Resolution Mosaicking 

The estimation of the unknown SR mosaic image is not only based on the observed 
LR images, but also on many assumptions such as the blurring process and additive 
noise. The motion model is computed as a projective model using the homography 
between frames; the blur is considered only optical. The additive noise       is consi-
dered to be independent and identically distributed white Gaussian noise. Therefore, 
the problem of finding the maximum likelihood estimate of the SR mosaic image  
    can be formulated as 

       
                                                                                                                                 (2)  

 
 

In this case, ||  ||2 denotes the Euclidean norm. As the SR reconstruction is an ill-posed 
inverse problem, we need to add another term for regularization which must have 
prior information of the SR mosaicking. This regularization term helps to convert the 
ill-posed problem into a well-posed problem. We use Huber regularization, because it 
preserves edges and high frequency information [2][3]. The equation : 
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where G
 

is the gradient operator over the cliques, and )(nλ , the regularization opera-
tor can be computed as 
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4   Levenberg Marquardt Method 

The Levenberg Marquardt (LM) method was proposed by [15] as a new method to 
solve nonlinear problems. This algorithm shares with gradient methods their ability to 
converge from an initial guess which may be outside of the region of convergence of 
other methods. Based on the Levenberg Marquardt method for minimizing (3), we 
have 

Defining f(x) as: 
                                                                                                                                 (6) 
 
 

Where J is the Jacobian matrix given by: 
                                            
 

(7) 
 

Levenberg Marquardt method is iterative: Initiated at the start point x0. The method re-

quires to find � that minimizes �����F���F )()(     

 . �  is found solving a non-linear-least square problem: The minimum is attained when   
 ��  is orthogonal to the column space of  J . This leads to: 

(8) 
 

and the pseudo Hessian is given by [15]: 
 

(9) 
 

LM solves the equation (8), adding a damping term to the diagonal elements of           
Therefore, the LM equation is  
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then,  

(11) 
 
 

where      is the Levenberg Marquardt damping term that determines the behavior of 
the gradient in each iteration. If is close to zero then the algorithm behaves like a 
Gauss Newton method (GN), but if               , then the algorithm behaves like steepest 
descent method (SD). The values of      during the iterative process are chosen in the 
 

(a) (b) (c) 

(d) (e) (f) 

Fig. 1. Results of SR mosaicking for synthetic frames using the Levenberg Marquardt method. 
The mosaic was constructed using five frames. Figures (a) and (d) show the mosaic for the first 
and second sets of synthetic frames, respectively. These mosaics are the input to the algorithm. 
(b) and (e) are the super-resolved mosaics applying the LM method to (a) and (d), respectively. 
These mosaics are the output of the proposed algorithm. Figures (c) and (f) show the ground 
truth mosaics. 
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following way: at the beginning of the iterations,    is set to a large value, so the LM 
method use the robustness of SD, so the initial guess of the solution of (10) can be 
chosen with less caution. It is necessary to save the value of the errors for each itera-
tion, and do the comparison between two consecutive errors. In the case that error(k)  
< error(k-1) decreases    by a certain amount so LM behaves like GN to take advantage 
of the speed up to converge, otherwise c increases to a to large value (increasing the 
searching area), which means that the LM behaves like SD. 

5   Experimental Results for LM Method 

We created synthetic LR frames from a single high resolution image. These LR 
frames where created using different translations (18 to 95 pixels), rotations (5o to 
10o), and scales (1 to 1.5); we blurred the frames with a Gaussian kernel of size 3x3. 
With these LR frames we compute the LR mosaic which is the input to the proposed 
LM algorithm. 

Figure 1 (d) and (f) shows the result for the proposed LM algorithm. The results 
SR mosaic shows a great improvement in the quality of the image and also looks 
close to the ground truth. Figure 2, shows the result for a real set of UAS frames, the 
SR mosaic has more details and is less cloudy. For the case of real UAS IR video 
frames there is some artifacts introduced by the LM algorithm, the reason of that is 
because the solution of (10) deals with close to singular matrices. 

The PSNR obtained for the LM SR mosaic is 47.45 dB, using only 5 LR frames. 
Table 1 shows some results for two different of synthetic data, computed in ten itera-
tions. Table 2 shows result for two different set of video frames captured in 2007 by 
the UASE team at the University of North Dakota. 

Table 1. Results of the computation of super-resolution mosaicking using Levenberg Mar-
quardt method for two different set of color synthetic frames 

Test PSNR (dB) 

Final error 

2

21 ˆˆ

k

kk

x
xx −+ Total Processing 

Time on CPU (sec) 

First set of five  
synthetic color frames. 

43.77 0.002833 5.109 

Second set of five  
synthetic color frames 

47.45 0.002505 4.281 
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Table 2. Results of the computation of super-resolution mosaicking using the proposed Leven-
berg Marquardt algorithm for three different sets real frames from UAS 

Test 

Final error 
 

2

21 ˆˆ

k

kk

x
xx −+  

Total Processing Time 
on CPU (sec) 

Test #1: IR frames of 
buildings 

0.003514 11.766 

Test #2: IR frames of a 
forest. 

0.004298 11.391 

 

 
(a) (b) 

 
(c) (d) 

Fig. 2. Results of the SR mosaic for real frames from UAS using the proposed Levenberg Mar-
quardt algorithm. The mosaic was constructed using five frames. Figures (a) and (c) show the 
mosaic for the first and second set of frames, respectively. These mosaics are the input to the 
algorithm. (b) and (d) are the super-resolved mosaics of (a) and (c) respectively. These mosaics 
are the output of the proposed algorithm. The arrows show the artifacs introduced by the  
algorithm. 
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6   Conclusions 

We showed the construction of SR mosaic from input LR frames. For that, we first 
compute the LR mosaic which becomes the input to the SR LM algorithm The results 
for synthetic and real frames from UAS show a great improvement in the resolution. 
The algorithms work with IR and visible (RGB) frames. It is not necessary to use 
sparse matrices, so the processing time is reduced, and can be even faster if using 
GPU (Graphics Processing Unit) processors. 

7   Future Work 

This paper only works with a handful of five frames from a video; we are working to 
improve the algorithm to take a whole video and create the SR video mosaicking. 
Finally, we are considering the use of parallel programming by using GPU processors 
to speed up the computation of the super-resolution mosaic. 
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Abstract. Hand dyeing generates artistic representations with unique and com-
plex patterns. The aesthetics of dyed patterns on a cloth originate from the physi-
cal properties of dyeing in the cloth and the geometric operations of the cloth.
Although many artistic representations have been studied in the field of non-
photorealistic rendering, dyeing remains a challenging and attractive topic. In
this paper, we propose a new framework for simulating dyeing techniques that
considers the geometry of the folded cloth. Our simulation framework of dye-
ing in folded woven cloth is based on a novel dye transfer model that considers
diffusion, adsorption, and supply. The dye transfer model is discretized on a 3D
graph to approximate the folded woven cloth designed by user interactions. We
also develop new methods for dip dyeing and tie-dyeing effects. Comparisons of
our simulated results with real dyeing demonstrate that our simulation is capable
of representing characteristics of dyeing.

1 Introduction

Since ancient times, dyeing has been employed to color fabrics in both industry and
arts and crafts. Various dyeing techniques are practiced throughout the world, such as
wax-resist dyeing (batik dyeing), hand drawing with dye and paste (Yuzen dyeing), and
many other techniques [1,2]. Tie-dyeing produces beautiful and unique dyed patterns.
The tie-dyeing process involves performing various geometric operations on a support
medium, then dipping the medium into a dyebath. The process of dipping a cloth into a
dyebath is called dip dyeing.

The design of dye patterns is complicated by factors such as dye transfer and cloth
deformation. Professional dyers predict final dye patterns based on heuristics; they tap
into years of experience and intimate knowledge of traditional dyeing techniques. Fur-
thermore, the real dyeing process is time-consuming. For example, clamp resist dyeing
requires the dyer to fashion wooden templates to press the cloth during dyeing. Tem-
plates used in this technique can be very complex. Hand dyed patterns require the dyer’s
experience, skill, and effort, which are combined with the chemical and physical prop-
erties of the materials. This allows the dyer to generate interesting and unique patterns.
There are no other painting techniques that are associated with the deformation of the
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G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 707–718, 2010.
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Our simulated results along the time step Real dyed pattern [3] Magnified images

Fig. 1. Comparisons of our simulated results with a real dyed pattern

(a) Define weave (b) Specify cloth geometry (c) Supply dyes
(Plain weave) Fold Press (Stitch) (Dip dyeing)

cloth

dyebath

dyer

(A) (B) (C) (D) (E) (F)

Fig. 2. The general steps for a real dyeing process (top row [3]) and our dyeing framework (bot-
tom row) using the Chinese flower resist technique. (A) The woven cloth has a plain weave; the
blue and yellow cells indicate the warp and the weft. (B) The unfolded cloth with user specified
fold lines, the red and blue lines indicate ridges and valleys, and folds in the cloth. (C) The cor-
responding folded cloth in (B). (D, E) The interfaces representing user drawings on an unfolded
and folded cloth. The gray lines indicate a user-specified boundary domain; these will be the dye
resist regions. (F) The folded cloth with the red region indicating the exterior surfaces.

support medium. In contrast to hand dyeing, dyeing simulation allow for an inexpen-
sive, fast, and accessible way to create dyed patterns. We focus on folded cloth geometry
and dye transfer phenomenon. Figure 1 shows the simulated results obtained using our
physics-based dyeing framework and a real dyed pattern.

Related work. Non-photorealistic rendering (NPR) methods for painting and transfer-
ring pigments on paper have been developed for watercolor and Chinese ink paintings
[4,5,6,7,8,9]. These methods are often based on fluid mechanics: Kunii et al. [5] used
Fick’s second law of diffusion to describe water spreading on dry paper with pigments;
Curtis et al. [9] developed a technique for simulating watercolor effects; Chu and Tai
[7] presented a real-time drawing algorithm based on the lattice Boltzmann equation ;
and Xu et al. [8] proposed a generic pigment model based on rules and formulations
derived from studies of adsorption and diffusion in surface chemistry and the textile
industry.

Several studies have also investigated dyeing methods: Wyvill et al. [10] proposed
an algorithm for rendering cracks in batik that is capable of producing realistic crack
patterns in wax; Shamey et al. [11] used a numerical simulation of the dyebath to
study mass transfer in a fluid influenced by dispersion; and Morimoto et al. [12] used a
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diffusion model that includes adsorption to reproduce the details of dyeing characteris-
tics such as thin colored threads by considering the woven cloth, based on dye physics.

However, the above methods are insufficient for simulating advanced dyeing tech-
niques, such as tie-dyeing. Previous methods are strictly 2D, and are not designed to
handle the folded 3D geometry of the support medium. There is no other simulation
method that considers the folded 3D geometry of the support medium which clearly af-
fects real dyeing results. In addition, the above methods cannot be used in tandem with
texture synthesis [13] to generate dyed patterns, because dyeing is a time variant physi-
cal phenomenon. Because of the large number of dyeing factors (chemical and physical
phenomenon with the dyer’s design, skill, and experience), only physics-based models
will be capable of simulating sensitive dyeing processes. We extend the physical 2D
dyeing model (Morimoto et al. [12]) to consider the folded cloth geometry.

Real dyeing process and framework overview. Figure 2 depicts the framework with a
corresponding dyeing process. In the real process, the cloth is prepared, folded, and
pressed to form the cloth geometry that allows resist dyeing to occur in some parts of
the cloth; tie-dyeing techniques (folding, stitching, clamping, etc) are coordinated with
folding and pressing. The cloth is put into a dyebath, where dye transfer occurs. The
cloth is removed from the dyebath, opened, and dried to complete dye transfer. Our
framework is summarized in the bottom of Figure 2. First, we define the weave struc-
ture. Then, we model the dyeing techniques with user-specified folding and pressing.
Next, we calculate the distribution of the dye supply and simulate dye transfer.

Our approach. We propose a novel simulation framework that simulates dyed patterns
produced by folding the cloth. This dyeing framework is based on a new dye transfer
model; it is implemented using a discrete 3D diffusion graph that approximates the
folded cloth. Our dye transfer model is formulated using an evolutionary system of
PDEs that accounts for diffusion with adsorption and dye supply from the dyebath.

We model the effects of pressing in tie-dyeing [1] via dye capacity maps. We model
dip dyeing from a dye supply map. These maps are generated from distance fields of
the exterior domain and dye resist regions of the folded cloth, respectively. The graph
structure is constructed as follows. The graph vertices are sampled from a 2D cloth
patch. The cloth patch is then folded along the fold lines specified by the user. The
graph edges connect adjacent vertices in the folded cloth. We also incorporated the
two-layered cellular cloth model of Morimoto et al. [12] to represent woven cloths.

Contributions and benefits. Our main contribution is a physically based dyeing simu-
lation framework that accounts for the folded cloth geometry associated with various
dyeing techniques. The technical contributions are a novel dye transfer model and its
discretization in a 3D graph to simulate tie-dyeing and dip dyeing.

Our framework allows us to produce new stylized depictions for computer graphics.
We expect the framework to have applications in real dyeing processes as a computer-
aided design tool. Even dyeing neophytes would be able to generate and predict dyed
patterns with minimal material and labor costs. By easing the design process, we hope
to advance dyeing design and help spread the dyeing tradition around the world. Our
3D diffusion graph can be applied to simulate diffusion effects in layered objects.
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2 Dye Transfer Model

Our dye transfer model accounts for the diffusion, adsorption, and supply terms of the
dye as described in an equation (1). The diffusion and adsorption terms describe the dye
behavior based on Fick’s second law [14] and dyeing physics, respectively. The supply
term enables arbitrary dye distribution for dip dyeing and user drawings.

Let f = f(x, t) ∈ (0, 1] be a dye concentration function with position vector x ∈ �3

and time parameter t ≥ 0, where t is independent of x. The dyeing model is formulated
by the following evolutionary system of PDEs.

∂f(x, t)
∂t

= div(D(x)∇f) + s(x, f) − a(x, f), (1)

where D(x) is the diffusion coefficient function, div(·) and ∇(·) are the divergence and
gradient operators respectively, and s(·, ·) and a(·, ·) are the source and sink terms that
represent dye supply and adsorption, whereas div(D(x)∇f) is the diffusion term. We
model the functions s(·, ·) and a(·, ·) as follows.

s(x, f) =
{

αMs(x) if Ms(x) > f(x, t) and Mcd(x) > f(x, t).
0 Otherwise,

a(x, f) =
{

βf(x, t) if h(x, t) < ad(x, f) and Mca(x) > h(x, t).
0 Otherwise,

where α is the user-specified dye concentration, Ms(x) ∈ [0, 1] is the dye supply map,
Mcd(x) and Mca(x) are the diffusion and adsorption capacity maps, β ∈ [0, 1] is the
user-specified adsorption rate, and ad(x, f) is the adsorption capacity according to ad-
sorption isotherms. The adsorption isotherm depicts the amount of adsorbate on the
adsorbent as a function of its concentration at constant temperature. In this paper, we
employ the Langmuir adsorption model [15], which is a saturation curve, to calculate
ad(x, f) in our simulation based on the model developed by Morimoto et al. [12]. The
adsorbed dye concentration h(x, t) ∈ [0, 1] is given by the equation bellow and the
evolution of f(x, t) and h(x, t) as t → ∞ describes the dyeing process.

∂h(x, t)
∂t

= a(x, f)
Mcd(x)
Mca(x)

, (2)

Two-layered cloth model and diffusion coefficient [12]. Since the cloth is woven in
wefts and warps, the layers of the cloth model naturally reflect this, and consist of a layer
of weft cells and a layer of warp cells. The positions of cells are defined along the cloth
weave. The diffusion coefficient D(x) is defined between graph vertices, and is calcu-
lated from the composition of the dyestuff and cloth fibre, the style of the weave, and
the relationship of cloth fibers between cells, causing an anisotropic diffusion. When
considering the x-y plane, diffusion occurs between adjacent cells in the same plane.
In the z-direction, diffusion is dictated by cloth geometry, which is described in more
detail in Section 3.
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Boundary condition. Let z ∈ B be the boundary domain for dye transfer. We use the
Neumann boundary condition ∂f(z,t)

∂n(z) = b(z), z ∈ B where n(z) is a unit normal vector
of the boundary. In tie-dyeing, parts of the cloth are pressed together by folding and
pressing. We assume that the pressed region is the boundary domain because no space
exists between the pressed cloth parts for the dye to enter. In our framework, the user
specifies B by drawing on both the unfolded and folded cloth, as shown in Figure 2 (D)
and (E), respectively. In the case of the folded cloth, shown in Figure 2 (E), we project
B to all overlapping faces of the folded cloth. Here, the faces are the polygons of the
folded cloth, as shown in Figure 2 (C).

Press function. We introduce a press function P (x, c) ∈ [0, 1] as a press effect from
dyeing technique. Here c is a user-specified cut-off constant describing the domain of
influence of the dye supply and the capacity maps, and represents the physical parame-
ters. The extent of the pressing effect and dye permeation depend on the both softness
and elasticity of the cloth and on the tying strength. The press function serves to;

– Limit dye supply (Pressed regions prevent dye diffusion).
– Decrease the dye capacity (Pressed regions have low porosity).

We approximate the magnitude of pressure using the distance field dist(x,B) obtained
from the pressed boundary domain B. Note that the press effect only influences the
interior surfaces of the cloth, as only interior surfaces can press each other.

We define Ω as the set of exterior surfaces of the tied cloth that are in contact with
the dye and L as the fold lines that the user input to specify the folds. We define Ω, B,
and L as fold features (Figure 3). We calculate the press function P (x, c) as described
in Pseudocode 1. In Pseudocodes 1 and 2, CalcDF () calculates the distance field ob-
tained from the fold feature indicated by the first argument, and returns infinity on the
fold features indicated by the second and third arguments. We use m as the number of
vertices in the diffusion graph described in Section 3.

Dye supply map. The dye supply map Ms(x) (Figure 4) describes the distribution of
dye sources and sinks on the cloth, and is applied to the dye supply term in equation (1).
In dip dyeing, the dye is supplied to both the exterior and interior surfaces of the folded
cloth. The folded cloth opens naturally except in pressed regions, allowing liquid to
enter the spaces between the folds (Figure 5). Thus, we assume that Ms(x) is inversely
proportional to the distance from Ω, as it is easier to expose regions that are closer to
the liquid dye. Also, the dye supply range depends on the movement of the cloth in the
dyebath. We model this effect by limiting dist(x, Ω) to a cut-off constant cΩ . Another
cut-off constant cB1 limits the influence of the press function P (x, cB1).

The method used to model the dye supply map Ms(x) is similar to the method
used to model the press function, and is described in Pseudocode 2. In Pseudocode
2, distmax is the max value of dist(x, Ω) and GaussF ilter() is a Gaussian function
used to mimic rounded-edge folding (as opposed to sharp-edge folding) of the cloth.
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dist(x,B) ← CalcDF (B, Ω,L)
for i=1 to m do

if dist(i,B) > c then
P (i, c) ← 1.0

else
P (i, c) ← dist(i,B)/c

end if
end for

Pseudocode 1. Press function.

dist(x, Ω) ← CalcDF (Ω,B,L)
for i=1 to m do

dist(i, Ω) ← (distmax − dist(i, Ω))
if dist(i, Ω) > cΩ then

dist(i, Ω) ← P (i, cB1)
else

dist(i, Ω) ← P (i, cB1)dist(i, Ω)/cΩ

end if
end for
Ms(x) ← GaussF ilter(dist(x, Ω))

Pseudocode 2. Dye supply map.

Fold features Distance field
dist(x,B)

Cut-off �� Normalize��

Press function
P (x, cB1)

Fig. 3. An example for calculating the press function P (x, cB1) for the Chinese flower resist. In
the fold features, the exterior surface Ω, pressed boundary domain B, and the fold lines L are
shown by red, gray, and blue colors.

Distance field
dist(x, Ω)

Invert,
cut-off by

cΩ ,

normalize
��

Multiply
by

P (x, cB1)�� Smoothing��

Dye supply map
Ms(x)

Fig. 4. An illustration of the dye supply map Ms(x) for the Chinese flower resist

Fig. 5. Photographs of real dip dyeing.
The left shows a folded cloth pressed
between two wooden plates. The right
shows folded cloths that have opened
naturally in liquid.

Basic capacity Press function
P (x, cB2)

Capacity map
Mcd(x)

Fig. 6. Illustration for our diffusion capacity map
Mcd(x) calculated by taking the product of the basic
capacity and P (x, cB2)
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Capacity maps. The capacity maps indicate the dye capacities in a cloth; they define the
spaces that dyes can occupy. We first calculate the basic capacities from a fibre porosity
parameter [12]. The cut-off constant cB2 limits the press function P (x, cB2) used here.
We then multiply these capacities by the press function to obtain the capacity maps
Mcd(x) and Mca(x) (see Figure 6).

3 Graph Diffusion

We approximate the user-specified cloth geometry by a 3D diffusion graphG. Our trans-
fer model is then discretized on the graph.

Diffusion graph construction. We construct multiple two-layered cells from the two-
layered cellular cloth model by cloth-folding operations. The diffusion graph G is a
weighted 3D graph with vertices vi, edges, and weights wij where i, j = 1, 2, .., m.
The vertex vi in the diffusion graph G is given by the cell center.

We apply the ORIPA algorithm [16], which generates the folded paper geometry
from the development diagram, to the user-specified fold lines on a rectangular cloth.
The fold lines divide the cloth into a set of faces as shown in Figure 2 (B). The ORIPA
algorithm generates the corresponding vertex positions of faces on the folded and un-
folded cloths and the overlapping relation between every two faces as shown in Figure
2 (C). We apply ID rendering to the faces to obtain the overlapping relation for multiple
two-layered cells. We then determine the contact areas between cells in the folded cloth,
and construct the diffusion graph G by connecting all vertices vi to vertices vj in the
adjacent contact cell by edges, as illustrated in Figure 7.

Discretization in diffusion graph. The finite difference approximation of the diffusion
term of equation (1) at vertex vi of G is given by

divD(x)∇f ≈
∑

j∈N(i)

wij
f(vj , t) − f(vi, t)

|vj − vi|2 ,

(a) An illustration for the multiple
two-layered cloth model.

ViVjGraph

(b) A graph in dot square in (a). (c) Contact cells.

Fig. 7. Graph construction from folded geometry of woven cloth. The bold line in (a) represents
a fold line. The gray points in (c) are contact cell vertices vj of the target cell vertex vi.
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Fig. 8. From the left to right, five Dij for x, y directions in the weft layer, z direction in both the
layers, and x, y directions in the warp layer and two D(vi) in the weft and warp layer in our
results, where Dmax = 2.68e − 006

where wij = DijAij , N(i) is an index set of vertices adjacent to vi in G, and Dij and
Aij are the diffusion coefficient and the contact area ratio between vertices vi and vj ,
respectively (Figure 7). We calculate the distance between vi and vj from cell sizes,
δx, δy, δz, and define Dij = (D(vi)+D(vj))/2 between vertices connected by folding
(Figure 8).

The following semi-implicit scheme gives our discrete formulation of equation (1):

(I − (δt)L)fn+1 = fn + δt(sn − an),

which is solved using the SOR solver [17], where I is the identity matrix, δt is the
discrete time-step parameter, n is the time step, and

fn = {f(v1, n), f(v2, n), .., f(vm, n)},
sn = {s(v1, f(v1, n)), s(v2, f(v2, n)), .., s(vm, f(vm, n))},
an = {a(v1, f(v1, n)), a(v2, f(v2, n)), .., a(vm, f(vm, n))},

L is the mxm graph Laplacian matrix [18] of G. The element lij of L is given by

lij =
{

wij/|vj − vi|2 if i �= j,
−∑

j∈N(i) lij Otherwise.

We then simply apply the forward Euler scheme to equation (2):

h(vi, n + 1) = h(vi, n) + δta(vi, f(vi, n))
Mcd(vi)
Mca(vi)

The diffused and adsorbed dye amounts at vi are given by f(vi, n)Mcd(vi) and
h(vi, n)Mca(vi), respectively. The dye transfer calculation stops when the evolution
of equation (1)converges to

∑m
i=1 |f(vi, n)n − f(vi, n)n−1|/m ≤ ε.

4 Results

Table 1 summarizes the parameters used in this study performed. For visualizations of
the dyed cloth, we render the images by taking the product of the sum of dye (transferred
and adsorbed) and its corresponding weft and warp texture.
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Table 1. Parameters and timing for our results (Figure 9, 10)

Common parameters (Intel Core i7 (3.2 GHz) PC with 3 GB RAM and a C++ compiler)
Boundary condition value b(z) =0 Initial dye condition f(x, 0) = h(x, t) =0
Discrete time step δt =0.5 Vertex number of G m =2x400x400
Stopping criterion ε =0.00001 Cell size δx = δy = 0.0005,
Dye supply constant, adsorption rate α, β = 0.7, 0.1 δz = 0.005

Other parameters and timing Figure 9 Seikaiha Kumo shibori Itajime
Cut-off constant cΩ , cB1 , cB2 100.0, 16.0, 8.0 10.0, 16.0, 8.0 140.0, 16.0, 8.0 160.0, 16.0, 8.0
Computing time (sec/time step) / 0.445 0.476 0.372

The simulated results obtained using both large and small cut-off constants are jux-
taposed in Figure 9. From (a), we can observe that with large values of cΩ , the dye is
able to permeate into the interior of the folded cloth, while small values of cΩ , only
exterior surfaces receive dye due to the softness and elasticity of the cloth. From (b),
large values of cut-off constant cB1 limit dye supply throughout the cloth while small
values of cB1 only prevent dye supply to the pressed regions of the cloth, due to cloth
properties mentioned above. Essentially, reducing the cut-off constant cB1 affects the
dye supply by reducing the space between the faces of the folded cloth. From (c), large
values of cut-off constant cB2 limit dye perfusion throughout the cloth while small val-
ues of cB2 limit it in pressed regions only. Reducing cut-off constant cB2 modifies the
capacity maps by reducing the space between fibers. These results suggest that the cut-
off constants can be manipulated to generate a wide variety of possible dyeing process.
In future projects, we will aim to automate the selection of these cut-off constants.

Figure 10 shows real dyed cloth and our simulated results for a selection of tie-dyeing
techniques. The dyeing results are evaluated by examining the color gradation, which
stems from cloth geometry. Our framework is capable of generating heterogeneous dye-
ing results by visualizing the dye transferring process. While we cannot perform a direct
comparison of our simulated results to real results, as we are unable to precisely match
the initial conditions or account for other detailed factors in the dyeing process, our
simulated results (a, b) corrspond well with real dyeing results (c). Since our dyeing

n =5 n =150
(a) cΩ=300, 1 (top, bottom)

n =5 n =150
(b) cB1=100, 1 (top, bottom)

n =5 n =150
(c) cB2=100, 1 (top, bottom)

Fig. 9. Comparison of simulated results obtained using different cut-off constants while keeping
the other parameters constant
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framework enables dyeing simulations that account for the geometry of the folded cloth
and advanced dyeing techniques, we can observe the characteristics of tie-dyeing as an
interesting gradation in our simulated results.

(a) n = 2700 (b) n = 7693 (c) (d) (e)
Seikaiha pattern

(a) n = 300 (b) n = 3968 (c)
(d) (e)

Kumo shibori

(a) n = 500 (b) n = 2778 (c)

(d) (e)

Itajime

(f) (g) (h)
Seikaiha pattern.

(f) (g) (h)
Kumo shibori.

(f) (g) (h)
Itajime

Fig. 10. Various tie-dyeing results and their corresponding conditions. (a) Our simulated results.
(b) Our converged simulated results. (c) Real tie-dyeing results [3]. (d) Tie-dyeing techniques.
(e) Folded cloths with user-specified boundary domains. (f) Fold features. (g) Dye supply maps
Ms(x). (h) Dye capacity maps Mcd(x). In (f), (g), and (h), the top and bottom images indicate
the top and bottom layers of the cloth model, respectively. The thin gray regions in the Seikaiha
pattern (e) indicate regions that were covered with a plastic sheet to prevent dye supply on them;
they are not the boundary domain. n is the number of time steps.
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Discussion. Our tie-dyeing operation does not support unintentional deformations af-
terwards, such as wrinkles and stretching. The Kumo shibori in Figure 10 shows the
importance of these effects. Our folding operation results in a triangular folded cloth
(e) while real tied cloth looks like a stick (d), resulting in different dyed patterns. Our
result show symmetry, but real results exhibit a warped geometry. In Figure 1, the real
result has petals of varying sizes, with the smallest one appearing more blurred. On the
other hand, our simulated result displays uniform petal size and blurring, save for the
petal on the exterior. This is likely due to thickness of the cloth.

We should develop an interactive interface to edit the dye supply and capacity maps
for an intuitive designing. Air pockets that are present between cloth layers in real
folded cloths could be modeled in our system by varying the graph weights.

5 Conclusion

In this paper, we describe a novel dyeing framework based on a new dye transfer model
and its discrete implementation in a 3D diffusion graph that approximates a folded cloth.
The framework is able to generate a wide range of dyed patterns produced using a folded
cloth, which are difficult to produce by conventional methods. Since our framework is
based on dyeing physics and real dyeing processes, we expect that it is not only a new
graphical tool for NPR, but it can also be used as a dyeing simulator for designing.

One limitation of our framework is designing multiple dye patterns using geometric
operations on a single cloths; these operations can be quite complex and unintuitive with
the current method. Thus our future work will include sketch-based design interface for
dyeing. Cloth modeling using curved folds should be implemented for more complex
dye patterns.
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VR Menus: Investigation of Distance, Size, Auto-scale, 
and Ray Casting vs. Pointer-Attached-to-Menu 

Kaushik Das and Christoph W. Borst 

University of Louisiana at Lafayette 

Abstract. We investigate menu distance, size, and related techniques to under-
stand and optimize menu performance in VR. We show how user interaction  
using ray casting and Pointer-Attached-to-Menu (PAM) pointing techniques is 
affected by menu size and distance from users. Results show how selection an-
gle – an angle to targets that depends on menu size and distance – relates to  
selection times. Mainly, increasing selection angle lowers selection time. Main-
taining a constant selection angle, by a technique called “auto-scale”, mitigates 
distance effects for ray casting. For small menus, PAM appears to perform as 
well as or potentially faster than ray casting. Unlike standard ray casting, PAM 
is potentially useful for tracked game controllers with restricted DOF, relative-
only tracking, or lower accuracy. 

1   Introduction and Related Work 

VR and immersive visualization involve widespread use of projection-based displays. 
For such displays, ray casting is the predominant pointing technique. We investigate 
VR menu properties related to menu size and distance and show how they affect user 
performance for pointing with ray casting and PAM [1]. Our work shows: 

 
− Performance degrades with decrease in selection angle (a circular menu’s center-to-

target angle). We show the shape of the degradation both for increasing user-to-
menu distance and for decreasing menu size with constant distance. 

− Auto-scale mitigates the effect of menu distance on selection times for ray casting. 
− PAM, a technique that allows separation of selection angle from distance and visual 

size, also has decreased performance with decreased selection angle, with an addi-
tional effect of visual size. For small menus, PAM may outperform ray casting. 
 

This study complements our earlier work on menu performance with ray-casting 
pointing and PAM in projection-based 3D environments. We previously studied menu 
properties like layout and location and found that contextually-located pie layouts are 
promising [1], consistent with other work showing a benefit of pie menus over list 
menus, e.g., [2], [3]. Only one (projected) menu size was considered in our earlier 
work, using an auto-scale feature intended to mitigate distance effects. Other methods 
to deal with distance include 3D variations of marking menu [3] or the rapMenu [4]. 
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Our new study considers distance-size properties of contextual pie menus and in-
cludes an evaluation of the auto-scale technique. We also further investigate the PAM 
pointing technique (the orientation-only variant, PAMO [1]), considering distance and 
size effects. In the previous study, standard ray casting performed better overall than 
PAM, but PAM was better in some cases and reduced errors overall. A benefit of 
PAM is that it supports a broader range of controllers than ray casting, requiring as 
few as 2 degrees of freedom with only relative tracking. 

2   Characteristics Related to Menu Distance and Size 

2.1   Distance, Size, and Auto-scale 

Ray-casting pointing faces a known problem of distant or precise pointing [5] due to 
perspective foreshortening and tracking or hand jitter that amplifies over distance. 
When pointing at pop-up menus, this problem might be mitigated by scaling menu 
size according to distance from user [1]. We name this mechanism “auto-scale”, 
where menus at varying distances have constant projected size. It is important to 
know how auto-scale affects performance. As an alternative to auto-scale, menus 
could be placed at a fixed distance. However, for contextually-located menus, this 
would make menus appear at a different depth than the object on which the menu is 
invoked. This can lead to visual discordance in a stereo immersive environment. We 
have also considered PAM as a way to separate interaction motions from distance and 
size [1], but we did not previously study distance and size effects on PAM. 

Auto-scale maintains constant projected size, but it is not known what sizes per-
form best. For pie menus with ray casting, no evaluative studies have been carried 
out, to our knowledge, to optimize size. Since ray casting has a known problem with 
small distant objects requiring overly precise pointing, and considering cases of larger 
interface elements outperforming small ones with ray casting [5], [6], we expect that 
larger menus would be faster, at least up to some optimal size. 

2.2   Selection Angle 

For ray casting, pie menu size can be described by selection angle: the angle a hand 
would rotate to move a ray-menu intersection point from menu center to a menu item. 
We expect this angle, instead of pre-projected menu radius, to be a suitable measure 
of required motion, due to perspective effects of distance. Considering the geometry 
in Fig. 1, selection angle is Φ = arctan(radius/distance). For results reported in this 
paper, we note our menus allow selection at a threshold distance of 60% of menu 
radius, so users need not move through the entire selection angle. 

If we increase pie radius at a fixed distance, selection angle increases. Selection 
angle also increases with decreasing menu distance for a fixed pie radius. The optimal 
angle would depend on characteristics of human limb and wrist motor movement for 
rapid aimed pointing tasks. We consider the angle as the required movement, since 
angular motion is usually predominant for ray-casting pointing. 
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Fig. 1. Left: Side view of a pie menu and a pointer with selection angle. Right: PAM pointing: 
hand motions map to pointer (upper left) attached to a pie menu. The diagram, from [1], shows 
the menu at upper left, rather than contextually, for clarity. 

2.3   PAM Selection Angle 

PAM [1] is an indirect ray pointing technique that maps user motions to a ray selector 
that is local to the menu object. Specifically, as illustrated in Fig. 1 (right), PAM at-
taches a short menu-local pointer in front of the menu and maps wand motions to this 
attached pointer to aim a ray from attached ray origin to menu items. PAM separates 
menu visual size and distance from selection angle by calculating intersections disre-
garding menu visual size and distance. Selection angle can be controlled by changing 
a motion gain associated with the attached pointer – the higher the gain, the smaller 
the selection angle. This means that higher gain requires less angular motion to reach 
an item. 

Changing selection angle in PAM by varying PAM gain might affect performance 
in a manner similar to changing selection angle for standard ray casting. If so, we 
could use PAM in a VR system where there is a restriction on menu visual size. PAM, 
with a (possibly optimal) large selection angle could then have faster performance 
than ray casting for small visual sizes or with high tracking jitter. However, a mis-
match between visual angle and PAM selection angle may be distracting.  

To avoid ambiguity, SRC angle (Standard Ray casting angle) is used to denote se-
lection angle for ray casting. It also defines the visual size (screen-projected size) of a 
menu (auto-scaled or otherwise). For PAM pointing, SRC angle corresponds to pro-
jected visual size, not to PAM angle. PAM angle is used to denote PAM selection 
angle that depends on motion angle and gain but not on SRC angle. So, SRC angle 
can be used with a separate PAM angle for the same menu. 

3   Pilot Study on PAM Angles 

To estimate optimal PAM angle (that would be investigated further in the main study) 
we conducted a pilot study with varying PAM angles and visual sizes (SRC angles), 
on 16 subjects and a small number of trials (2 trials per PAM angle and SRC angle 
combination). The task and experiment settings were the same as what will be de-
scribed in Section 4 (treatment type 2). Levels for SRC and PAM angles were also the 
same as in Section 4. Overall, the mean selection time with a PAM angle of 5° was 
best. Results, shown in Fig. 2, suggested that menu visual size (SRC angle) does have 
an effect in addition to the effect of PAM angle. 



722 K. Das and C.W. Borst 

 

A subjective tuning task was also given. Subjects adjusted selection angle for both 
standard ray casting and PAM and picked a value judged best for selections. For ray 
casting, menu size was changed to tune SRC angle. A tuning task was repeated three 
times, each with a different initial size: small (1.3°), large (9.7°), and the average of 
two previous subject-chosen sizes. The overall mean of best angle (average of 3 cho-
sen angles) was 4.4° (σ = 1.5°). For PAM, subjects controlled PAM gain to change 
PAM angle. Three different menu visual sizes (SRC angles) were presented randomly 
– large (9.7°), small (1.3°), and intermediate (4.3°). Within each SRC angle, PAM 
angles were presented in the same manner as before – large and small randomly or-
dered, then average. The mean of best PAM angle was 5.4° (σ = 2.7°). So, subjec-
tively-tuned PAM angle was roughly consistent with the overall best PAM angle (5°). 
The following study will show how this (estimated) optimal PAM angle compares 
against ray casting for various SRC angles. 

 

Fig. 2. Selection time (mean and SE) for different PAM and SRC angles from the pilot study 

4   Main Study: Methods 

Hypotheses: We are interested in five hypotheses (and independent variables):  

1. Distance: As distance between a user and menu increases, we expect user perform-
ance would degrade due to increase in required precision for the pointing task.  
Distance is measured between pie menu center and the hand position. 
2. Auto-scale: We expect effects with distance would not be found if the menu selec-
tion angle is kept constant with auto-scaling. 
3. SRC Angle: We expect user performance would get better with increasing SRC 
angle and that this effect would be similar for increases resulting from reduced dis-
tance (not auto-scaled) and increase in specified auto-scale size.  
4. PAM Angle: We expect that changing PAM angle by changing PAM gain would 
show similar effects as changing SRC angle for ray casting. 
5. Pointing Method: For small SRC angles, we expect that PAM pointing with an 
estimated optimal PAM angle would be faster than standard ray casting. 

We varied selection angle in three different ways: 
 

1. Varying distance of menu (un-auto-scaled) from hand. (SRC angle) 
2. Varying auto-scale size, specifying projected menu size independently from 

distance. (SRC angle) 
3. Using PAM and varying PAM gain. (PAM angle) 
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For un-auto-scaled menus, we chose a fixed menu size along with a set of distances 
such that projected sizes had SRC angles that we were also evaluating with auto-
scale. This allowed direct comparison of distance-based SRC angles to equivalent 
auto-scaled ones. Evaluated PAM angles were the same as evaluated SRC angles. For 
fair comparison of PAM to ray casting, the same set of menu distances was used in 
PAM conditions as in standard ray casting conditions. 

Specifically, we evaluated SRC and PAM angles of 1.3°, 1.8°, 2.3°, 5.0°, and 8.0°. 
Hand-to-menu distances were 11m, 8m, 6.2m, 2.9m, and 1.8m in the 3D space. Mini-
mum SRC angle was chosen so that menu labels were barely readable, although target 
item was indicated by color. Maximum size was large but did not cover the entire 
screen, to allow randomized menu position in a reasonable range. 

Apparatus: We used a 1.5m x 1.1m rear-projection screen with its lower edge 0.7m 
from the floor. An InFocus DepthQ projector displayed stereo 800x600 pixel images 
at 120 Hz, which were viewed with StereoGraphics CrystalEyes glasses. A wired 
Intersense IS-900 Wand was the 6-DOF input device and its button was used to indi-
cate selection of target boxes and menu items. Head tracking was also done with the 
IS-900. Subjects stood about 1.2m from the screen center as in Fig. 3 (left). 

Subjects: There were 20 subjects, 6 female and 14 male, with age from 19 to 41 years. 
Two were undergraduate students and 18 were graduate students. Four were left 
handed. 12 subjects reported no VR experience, 6 reported experience with 3D mo-
tion game controllers, and 2 reported experience with VR systems. 

Procedure: Subjects performed targeted menu item selection. A target box appeared at 
a random location but at a specific distance from the hand, based on current conditions. 
Subjects had to select this box with ray-casting pointing to pop up a contextual pie 
menu. Subjects had to select a red item amongst white items on the menu. Since dis-
tance is an independent variable here, additional depth cues were rendered. Target 
boxes were displayed on pedestals with shadows in a large enclosed space with tex-
tured walls. Subjects were instructed to select target menu items as quickly as possible 
while keeping errors low as well. However, accuracy was enforced but speed was not, 
to prevent subjects from achieving high speeds at the cost of accuracy. If an incorrect 
selection was made, an error sound was played, the menu disappeared, and subjects 
had to bring up the menu again. Furthermore, to explain the feature of pie menus that 
selections are possible by pointing in a direction, subjects were told that exact pointing 
at menu item spheres was not required. Sessions lasted for about 30 minutes. 

Trials and Treatments: A trial consisted of selecting the menu item on a single-level 
10-item menu. There were 10 trials per treatment, each with a unique target item. 
Target order was randomized within a treatment. Per treatment, 2 menus  
appeared at each of the 5 distances, but at an otherwise random screen position. Treat-
ments, consisting of combinations of the independent variables, were presented in 
random order per subject. There were 24 treatments (240 trials, excluding practice), 
divided into the following five types, presented in random order:  

1. Ray-casting pointing and auto-scaled menus. There were five treatments of this 
type, each with one of the five levels of SRC angle.  
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2. PAM pointing without auto-scaling (menu size was 0.25m before projection). 
There were five treatment of this type, each with one of the five levels of PAM angle.  
3. PAM pointing and auto-scaled menus. There were five treatments of this type, 

each with one of the five levels of PAM angle with the matching SRC angle. 
4. PAM pointing with (estimated) optimal PAM angle 5° and auto-scaled menus. 

There were four treatments of this type, each evaluated with one of four SRC angles. 
The optimal PAM angle matching SRC angle 5° occurred in treatment type 3.  
5. Ray-casting pointing without auto-scaling (menu size was 0.25m before projec-

tion). There were five treatments of this type. Ray casting at specific distances is of 
interest, but to keep the presentation of all treatments similar, distance varies within 
the treatment as well. We later separate results per distance (SRC angle). 

Dependent Variables: Dependent variables were selection times (appearance of menu 
to selection, including time spent correcting errors), error count, and movement. Due 
to space constraints, we focus mainly on selection times in this report. 

                 

Fig. 3. Left: Experiment setup: rear-projection stereo display with 6-DOF head and wand track-
ing. Right: A screenshot of the experiment scene. 

5   Results 

Distance and Auto-scale: As seen in the leftmost box in Fig. 4, increasing distance in 
a un-auto-scaled menu with ray casting (treatment type 5) tends to raise selection 
times. A single-factor (distance) ANOVA on un-auto-scaled ray casting cases detects 
significant effect of distance on selection times (F(4, 76)=46.102, p<0.001). Pairwise 
comparisons with Bonferroni correction detect significance (p<0.05) except between 
the two closest distances. Similar effect of distance on selection times is not seen for 
menus auto-scaled to maintain specific SRC angle (Fig. 4, except leftmost box, treat-
ment type 1). Note that auto-scaled conditions had 2 trials per distance, while there 
were 10 trials per distance in the un-auto-scaled condition. Single-factor ANOVAs for 
each auto-scaled SRC angle did not detect significant effect of distance on selection 
times. For auto-scaled menus at SRC angles of 1.3°, 2.3°, and 5°, the closest menu 
distance of 1.8 meters appears to take more time than further distances, but this was 
not detected significant overall. 

SRC Angle: Fig. 5 shows how increasing SRC angle lowers selection times for ray-
casting pointing. It also shows that SRC angle, changed either through varying menu 
distance without auto-scale (treatment type 5), or through changing menu size with 
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auto-scaling (treatment type 1), has similar effect on user performance. A 2-factorial 
ANOVA on selection time with independent variables of SRC angle and auto-scale 
detects significant effect of SRC angle on selection time (F(4, 76)=51.848, p<0.001). 
All possible pairwise comparisons between different SRC angles, with Bonferroni 
correction, detect significance (p<0.05). 

 

Fig. 4. Selection times (mean and SE) with ray casting at different menu distances without 
auto-scale in the leftmost panel (treatment type 5), and menus with auto-scale (except leftmost 
panel) having different SRC angles (treatment type 1)  

 

Fig. 5. Selection times (mean and SE) at different SRC angles clustered according to distance-
based SRC angles and auto-scaled SRC angles. Distance-based SRC angles (right bar from 
each pair; treatment type 5) correspond to leftmost panel in Fig.4. Auto-scaled SRC angles (left 
bar from each pair; treatment type 1) are collapsed from error bars other than leftmost panel in 
Fig. 4 by averaging over menu distances. 

PAM Angle: From Fig. 6 (right, treatment type 3) it seems that increasing PAM angle 
leads to lower selection times. If we compare 5° PAM angle cases (treatment type 4) 
to the SRC-angle-matched PAM angle cases (treatment type 3) at each of the four 
SRC angles, paired-sample t-tests detect significant effect of PAM angle at the small-
est (t(19)=2.278, p<0.05) and largest (t(19)=2.513,  p<0.05) SRC angle. It appears 
from Fig. 6 (left and right) that 5° PAM angle may perform better for smaller 
SRC angles (1.3°, 1.8°, and 2.3°) whereas matched PAM-SRC angles may perform 
better for larger SRC angles (5° and 8°). We can also see that increase of SRC angle  
leads to decrease in selection times (Fig. 6). An ANOVA on SRC angle for 5° PAM 
angle cases (treatment type 4), detects significant effect of SRC angle on selection 
times (F(4, 76)=37.536, p<0.001). Post-hoc tests with Bonferroni-adjusted pairwise 
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comparisons show significance (p<0.05) between all pairs except for the two largest 
and two smallest SRC angles. 

PAM vs. Ray casting: For smaller SRC angles, PAM seems to perform better with the 
estimated optimal PAM angle of 5° (treatment type 4) than ray casting (treatment type 
1). It appears from Fig. 6 (left) that means for PAM at SRC angles of 1.3° and 1.8° 
are lower than for ray casting. Ray casting, however, performs better than PAM at 
larger SRC angles, particularly at SRC angle of 8.0°. A 2-factor (pointing method and 
SRC angle) ANOVA on selection times for auto-scaled menus did not detect signifi-
cant effect of pointing method on times. Paired sample t-tests between pointing meth-
ods per SRC angle showed near significance at SRC angle 1.3° (t(19)=1.975, 
p<0.063) and significance at SRC angle 8.0° (t(19)= 2.914, p<0.01). 

 

       

Fig. 6. Selection times (mean and SE) for auto-scaled sizes. Left: PAM with PAM angle 5° 
(treatment type 4) and standard ray casting at different SRC angles (treatment type 1). Right: 
PAM angle matched with SRC angle (treatment type 3). 

6   Discussion 

The hypotheses in Section 4 are largely supported by the observed results. An effect 
of menu visual size (SRC angle) in PAM pointing was also detected.  

The basic effect of distance on menu selection with ray casting (Fig. 4, leftmost 
box) follows earlier studies of general object selection tasks [5]. Decreasing visual 
size with constant distance showed similar increase in selection times (Fig. 4, except 
leftmost box). Degradation of performance with increasing distance was mitigated by 
auto-scaling, which maintains a constant selection angle. Increasing selection angle 
decreased selection times, irrespective of how selection angle was varied – by chang-
ing auto-scaled size or by changing distance without auto-scale for ray-casting point-
ing, or by changing PAM gain for PAM pointing. These results show how selection 
angle can be used to understand user performance in ray-casting pointing. 

Results suggest that larger menus should be used for faster pie menu selection with 
ray casting. However, from a practical standpoint, restrictions on size may be imposed 
by the display or application. For hierarchical menus, traveling through a sequence of 
large offset child menus could move a user’s focus far from their object of interest. 
For the studied environment, we estimate optimal selection angle between 5° and 8° 
(for ray casting and PAM). The tuning study suggests users prefer selection angle 
closer to 5°. Note this optimal angle could vary depending on a selection threshold 
(60% of radius, in our study), as selection distance and area vary with it.  
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Higher selection times at small PAM angles may correspond to increased per-
ceived sensitivity (by large C-D gain). Subjects may find it irritating to see the visual 
attached pointer move large amounts for small hand motions. In PAM pointing, visual 
size (SRC angle) has an effect on user performance, even when PAM angle is con-
stant at 5°. From Fig. 2 and Fig. 6 we see that larger SRC angles typically led to lower 
selection times in PAM, especially for large PAM angles. Besides the performance 
increase with larger PAM angles, a likely reason that large SRC angles work well 
with large PAM angles is that subjects experience more consistency between visual 
effect and required motions. 

Comparing PAM with estimated optimal PAM angle (5°) to ray casting at specific 
SRC angles (Fig. 6 left) suggests that PAM performs about as good as or better than 
ray casting at smaller SRC angles of 1.3° and 1.8° (ANOVA did not detect overall 
significance, but there was a near-significant t-test result at 1.3°, so we also consider 
overall plotted trends and note this result is less conservatively stated than others). 
PAM may be a good alternative to ray casting when menu visual sizes must be small, 
when jitter is large, or with limited-DOF tracking devices. 

Selection time decreases with higher angular motion. That means users moved 
more rapidly towards a larger or a distant target. This follows from human motor 
performance for rapid aimed movements [7], where greater target distance results in 
faster motion. Also, as target size (pie-slice area) increases in a pie-menu with in-
creasing distance to target, users need not spend much time on the slower corrective 
submovement [7] that occurs for precise pointing. 

From results, we speculate that selection times may be modeled by a logarithmic 
function involving the inverse of selection angle [8]. However, such a model may not 
work well at very large or very small selection angles where additional factors such as 
tracking jitter become critical. A difference between visual target size (spheres drawn 
at visual menu circumference) and actual selection size (pie-slice with radius thresh-
olds) may further complicate the model. A well-known logarithmic model for point-
ing is Fitts's law applied to 1D or 2D translation [9] or rotation [7], where an index of 
difficulty is a logarithmic function of the ratio of target distance to target width. Relat-
ing our results to Fitts’s law may seem counterintuitive, as selection times decreased 
with an increase in distance, and our environment is 3D with interaction primarily 
involving rotation. However, both target distance and target width increase with in-
crease in selection angle, and the effect of target width seemingly dominates. This 
may be explained by modeling target width as target area (e.g., resembling [9]), which 
would be proportional to the square of the pie radius [8]. Since distance-to-target is a 
fraction of the pie radius, this would predict a decrease in movement time for increase 
in pie radius (or selection angle). 

7   Conclusion 

We showed several properties related to menu distance and size and how these affect 
user performance in menu interaction. These findings can help UI designers optimize 
menu interaction in projection-based VEs. We confirmed that auto-scaling mitigates 
the effect of distance on menu pointing tasks. Auto-scaling could also work well with 
other user interface elements such as toolbars, list menus, etc. that afford auto-scaling 
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(e.g., temporarily invoked widgets), where it could be used for more consistent user 
performance with widgets located at different distances. User performance was found 
to vary with selection angle: increasing selection angles lowered selection times. An 
estimated optimal selection angle of 5° is suggested for environments such as ours. 
We also observe that using PAM with a PAM angle of 5° can get performance as 
good as or faster than ray casting for small interface elements. In any case, inspection 
of results shows that performance differences between 5°-PAM and ray casting are 
not very large percentagewise, so PAM is a promising ray casting alternative for con-
trollers that are supported by PAM but not ray casting.  
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Contact Geometry and Visual Factors for
Vibrotactile-Grid Location Cues

Nicholas G. Lipari and Christoph W. Borst

University of Louisiana at Lafayette

Abstract. Visual and haptic factors can affect a user’s interpretation of

vibrotactile cues communicating location of objects in a real or virtual

environment. Identifying and understanding relevant factors will lead to

better device and interface design, for example, through procedures that

adjust for systematic error or per-user differences. We considered direct

effects of hand-tactor contact geometry and a possible cross-modal effect

of the visual interface. Our experiment examined contact geometry on

a single row of tactors and presence of a visual border on a graphical

region that mapped to the tactor array. We measured the relationship

between vibrotactile array stimulus coordinates and user responses. Con-

tact geometry that emphasized a certain tactor increased tendency for

subjects to mark near it. Effects of visual borders were noticeable but

subtle, acting more as a modulating factor.

1 Introduction

Multi-modal approaches for communicating position and direction can include
the haptic sense as a supplementary or reinforcing data channel. Our work con-
cerns a visual scene, rendered or real-life, containing an area that maps onto
a haptic device (our work is not intended as an abstract perception study, but
rather a human factors evaluation of the haptic device and visual interface de-
sign choices). Consider the conceptual diagram in Figure 1. In this example, an
application renders a map for the purpose of navigation. The haptic device then
renders a place of interest as a vibration pattern on the user’s palm depending
on point of view and a map-aligned region. Vibrotactile patterns may communi-
cate additional information, for example, identity or status messages as intensity
patterns. Based on this, the user navigates the environment in search of the in-
triguing location or feature. We are interested in errors due to discrepancies
among haptic, visual, and multimodal stimuli.

We present an experiment regarding haptic device contact geometry, stimulus
coordinate, and a visual interface property for users interpreting a vibrotactile
location cue at the palm. Skin-tactor contact varies with body-site shape and
variations between users. When marking a haptic stimulus’s location in a graph-
ical desktop environment, subjects marked locations nearer areas of emphasized
contact with the palm (where contact pressure was generally higher). In this sit-
uation, a mapping is induced between vision and taction and may be skewed by

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 729–738, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Example of a location communicated haptically. The dashed border square is

mapped to the tactile array and points of interest are relayed to the user as haptically

rendered positions.

incorrect perception of tactile stimuli or variations in graphical interface param-
eters. We also investigated the parameter of borders in the visual scene. When
borders of the response area were not present, the results suggested borders
acted as a modulating factor. Such factors may influence the design of multi-
modal systems and calibration techniques that improve feedback by adapting to
user trends.

2 Related Work

In a related experiment, Borst and Baiyya [1] investigated three parameters
of a vibration pattern: position, direction, and profile. Each pattern had one
of two possible shapes: point and line. The device, Figure 2 (left), activated
adjacent tactors with varying intensities to provide the illusion of a point (or a
point moving along a line) rendered somewhere on or between the tactors. After
observing mean error approach zero at the center of the array, Borst and Baiyya
postulated some systematic error could be present in the data.

We then conducted a preliminary experiment [2] to investigate systematic er-
rors in position accuracy. The results demonstrated an effect of Visual Scale and
Correct Answer Reinforcement on accuracy and suggested a metric to model
systematic error. Radial error was intuitively defined as the distance between
stimulus and response measured radially from the array’s center. More analyt-
ically, this was the directed magnitude of the error vector projected onto the
stimulus’s normalized radial vector. Tendencies for positive radial error were
called radial expansion and negative leanings were called contractions. We also
proposed stimulus calibration based on this model. Assuming systematic error as
radially symmetric, calibration adjusts the stimulus based on its radial distance.
While the visual properties had a significant effect on radial error, we did not
investigate how hand-tactor contact geometry contributed to radial error.
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Fig. 2. The vibrotactile array used in previous experiments (left) and our current

experiment (right). At left, six rows of five motors are mounted on a project box.

Nylon washers and foam pads improve contact consistency across the palm. At right,

one row of five pager motors mounted on a project box. Impostors take the place of the

remaining five rows of motors. Shims are placed below foam pads to raise the height

of individual motors, maintaining direct contact between tactors and skin.

The current experiment investigated two possible causes of error suggested
in [2]. We considered the simplified comparison between a flat row of tactors,
Figure 2 (right), and a raised middle tactor. These extremes of contact geometry
emphasized the array’s center. To supplement this, and provide some insight
where most radial error occurred, we divided stimulus points into center and
edge (of the palm). The experiment also varied the visibility of the interface’s
border to investigate subjects’ tendencies at the borders of the array.

Although not a psychophysics study, this work was informed by several studies
in applied psychology, haptic interfaces, and non-visual interaction techniques.
In [3], mislocalization illusions regarding tactile perception were given. In the fun-
neling effect, a tendency exists for simultaneous, adjacent stimuli to be felt as one
stimulus. This may contribute to several haptic applications, including [4], [5], [6],
and the current experiment, where attempts are made to combine signals from
two or more tactors into one haptic point. Ryu et al. [4] have also developed a
device with similar tactors and contact site as ours, the T-hive. Consisting of
thirteen tactors mounted around a spherical handle, the T-hive was designed to
provide directional information using multiple simultaneous vibrations for a six
degree of freedom hand controller. Oakley et al. [5] suggest that a “spatial sum-
ming” occurs for some stimuli meeting the spatial and temporal specifications
of [3]. Borst and Asutay [6] also use the technique of multiple, closely spaced
tactors, but with an unweighted area sampling taken from graphics concepts. It
appears that such configurations satisfy the psychophysical requirements listed
by Hayward [3] for the funneling illusion.

In Lindeman et al. [7], eight tactors delivered directions at a subject’s torso.
Tasked with clearing a building, subjects located objects and avoided hazards in
a virtual environment. Van Erp et al. demonstrated a similar apparatus in [8] for
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Fig. 3. A view of the data collection software for the current experiment with subject

response (left) and reinforcement (right) vertical marker lines. A stimulus timer (top-

right) and a session counter (bottom-right) indicated progress. Subjects were instructed

to mark the horizontal position of the stimulus in the white rectangle (and in the

same area for the Border Invisible case). After collecting the response, the experiment

displayed the reinforcement marker.

piloting a helicopter and boat. These and other similar works have contributed
to research in vibrotactile feedback devices geared toward specific applications.

3 Methods

Our repeated-measures experiment presented vibrotactile stimuli via a single-row
array of tactors (Figure 2, right) and an abstracted visual environment (Figure 3)
to users. The experiment interface represented a virtual environment with haptic
location cues. We investigated these multi-modal components by haptically ren-
dering horizontal positions and having subjects indicate corresponding positions
in a visual region matching array size.

Hand shape may cause contact to vary across the array. By presenting haptic
stimuli with various contact geometries, we investigate how this influences local-
ization. Also, visual edges of a rectangle, as in Figure 3, may mentally anchor
subject responses. This is relevant when an application provides a device-oriented
context for visual feedback. Users may be biased toward, or constrained by,
graphical boundaries of datasets or virtual rooms, or visual subregions mapped
to a haptic device. A case without visible borders could show further expansion
near the edges, illuminating their influence on the mental mapping of a haptic
stimulus.

3.1 Design

We considered three Within-Subjects variables Height Pattern, Point Location,
and Border Visibility. The two Height Patterns of tactors were Flat, with no
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Fig. 4. Height Patterns used in the experiment and pilot study. a) Flat: all tactors have

the same height. b) Exaggerated (Exag): The middle tactor is raised by two shims. c)

Pilot Study: The middle tactor is raised by two shims and the adjacent tactors are

raised by one. For the pilot study, (c) was also duplicated with washers above tactors.

raised tactors as in Figure 4a, and Exaggerated (Exag), having a raised center
tactor as in Figure 4b. Point Location partitioned the stimulus coordinate set
into Center and Edge subsets (our stimulus coordinates varied horizontally).
Based on which stimulus coordinates involved the center tactor under the area
sampling kernel of [6], the Center subset consisted of 41 coordinates, and the
Edge had 39 coordinates. Center coordinates were those (from a random set)
closer to the middle of the palm, and Edge coordinates were further. For the
Border Invisible condition, the rectangle in Figure 3 was absent, and for the
Border Visible case it was present. The dependent variables error magnitude
and radial error were computed for each condition combination. As stimuli and
responses were limited to one dimension, computation of each dependent variable
was simplified to sign changes and absolute values of signed 1D error.

3.2 Apparatus

We modeled our array and haptic rendering technique after [2] and [6], but
with modifications supporting our experiment. Seen in Figure 2 (left), the array
used by Borst and Asutay [6] consisted of six rows of five tactors (14mm DC
motors). Each tactor was placed on an 18 mm grid. Thus, 18 mm was one array
unit. Borst and Baiyya [1] affixed nylon washers and foam pads to tactors to
isolate vibrations and facilitate more consistent contact geometry for the palm.
A controller board varied tactor levels according to an unweighted area sampling
technique from [6].

The device used here, Figure 2 (right), was a one dimensional version of the
device in [2]. To vary tactor heights and examine the row of tactors with the
most radial expansion from [2], we arranged one row of tactors in the same grid
spacing with adjustable height. In other tactor locations, we placed impostors
with nearly identical heights and diameters. A Measurement Computing USB-
3114 controlled the five tactors with 16-bit precision analog voltage. The USB
controller was commanded by the unweighted area sampling routine [6] and only
minimal changes to driver and application code from [2] were required. To ensure
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consistent sensation between the experiments, we matched the controller output
(voltage) from the USB device to those of [2].

While the device from [2] had nylon washers atop tactors to fit the palm,
we selected Flat and Exaggerated patterns, shown in Figures 4a and 4b. Two
implementation options were the placement of washers above the tactors or
shims below. Since this could change vibration characteristics, a pilot study
determined the best option with the geometry from Figure 4c. Four subjects
completed eighty trials per day for two counterbalanced sessions. Regression
smoothers for the device were similar to the response curves of [2]. Since the use
of shims had a similar effect to washers and allowed direct tactor-skin contact,
we chose shims for implementing the Height Patterns in this experiment.

3.3 Participants

Eight male subjects took part in this study. We considered them moderately
experienced. Although levels of prior experience with the device varied, each
subject had at least two hours of prior exposure to 2D vibrotactile palm arrays.
Our experiment presented many trials, 160 per day, to the small number of
subjects instead of fewer trials with many novice users, reducing the effects of
learning and better representing a regular user. Two subjects were left-handed.
The median age of subjects was 26 years, with a minimum age of 24 years and
a maximum age of 37 years.

Table 1. Session Order Randomization. Rows correspond to sessions, with each subject

exposed to two sessions (A and C or B and D) on separate days.

Label Height Border Sequence

A Flat BV BI BI BV

B Exag BV BI BI BV

C Exag BI BV BV BI

D Flat BI BV BV BI

3.4 Procedure

The experiment followed an open-response paradigm in which subjects received
a vibrotactile stimulus on the left palm and indicated its horizontal position by
moving a vertical line. Each session consisted of Demonstration, Training, and
Testing stages. Starting in the Demonstration, subjects placed the left hand on
the palm-array and felt a series of point vibrations (each lasting two seconds). We
allowed, but did not instruct, subjects to look at the hand receiving stimuli, as
they would be able to during normal use. The array rendered five point vibrations
and the screen displayed horizontal positions with vertical lines. Subjects did not
indicate position. During Training, subjects felt ten haptically rendered points.
After each, they adjusted the position of a vertical line to indicate the perceived
horizontal position on the interface shown in Figure 3 with the current exper-
imental condition. Correct position was shown after the response. The Testing
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Fig. 5. Error magnitude and Radial Error against Height Pattern, Point Location, and

Border Visibility

Stage followed; subjects again marked the horizontal position of haptically ren-
dered points. Each subject completed two sessions on two non-consecutive days.
Sessions consisting of one Height Pattern and both levels of Border Visibility
lasted 20-30 minutes.

The order of conditions was randomized according to the following stipula-
tions. All sessions had both levels of Border Visibility counterbalanced in four
sub-sessions with 40 trials each, as seen in Table 1. To avoid the jarring effect of
the BI case on the first testing session, all subjects began with the order (BV, BI,
BI, BV). Height Patterns varied similarly across different sessions. Half of the
subjects completed the A and C orders, half the B and D orders. Each session
presented 160 trials, with 80 distinct horizontally varying points in a random or-
der per (BV, BV) or (BI, BI) pair. We generated points prior to data collection;
the set was split randomly within each Border Visibility condition.

4 Results

Figure 5 summarizes resulting error magnitude. We applied a 3-Way Repeated
Measures ANOVA over the Within-Subjects variables Height Pattern, Point Lo-
cation, and Border Visibility with dependent variable error magnitude. Border
Visibility (F (7, 1) = 8.203, p < 0.05) and Point Location (F (7, 1) = 7.007, p <
0.05) had an effect. Post-hoc tests indicated the Border Invisible and Edge cases
contributed more to error magnitude than Border Visible and Center, respec-
tively. Height Pattern showed a near significant (F (7, 1) = 4.155, p < 0.085)
effect for error magnitude (due to a small number of subjects, p-values between
0.05 and 0.10 are noted as interesting and referred to as “near significant”).

We also analyzed radial error from the same data. Height Pattern (F (7, 1) =
10.446, p < 0.05) and Point Location (F (7, 1) = 19.504, p < 0.05) both had
a significant effect on radial error. Post-hoc tests with Bonferonni corrections
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Fig. 6. Local Linear Regression Smoothers of Error (signed) over Border Visibility and

Height Pattern. The horizontal axis is Stimulus Coordinate for a haptically rendered

point varying horizontally. The horizontal dashed line is at zero radial error. The outer

two vertical dashed lines are at the extents of the Center-Edge Point Locations. The

middle vertical dashed line is the array’s center tactor. Outer portions of the curves

are faded to deemphasize points for which confidence diverges.

indicated the Flat and Center cases contributed more to radial error than Ex-
aggerated and Edge, respectively. A near significant interaction existed between
Border Visibility and Point Location (F (7, 1) = 5.223, p < 0.06).

5 Discussion

The above results demonstrate an effect of each independent variable for at least
one metric. Height Pattern’s significance in radial error, and near significance
in error magnitude, signified an effect more apparent when investigating signed
error, Figure 6. In Exaggerated (dashed) plots, responses had more oscillations,
shifting left and right (negative and positive) of left and right Edge points,
respectively. Then, subjects marked closer to the Exaggerated tactor for Center
stimuli. In both of these cases, and for Border Visible Flat, mean error tended
toward zero at the array’s center (middle vertical dashed line). The relation to
radial error can be seen by considering error relative to array center.

In the smoothed error plots of Flat Height Patterns (solid), less dramatic os-
cillations appear. Additionally, with the Border Visible Flat case (solid back),
subjects performed better than both Exaggerated Height cases, suggesting the
emphasized contact geometry increased perceived loudness of the middle tac-
tor. Similarly, the slight negative tendencies for Border Visible Flat, and more
drastically for Border Invisible Flat, occurred near the fleshy portion of the left
palm where contact pressure with flat surfaces was likely highest. Note an in-
terplay between contact pressure and vibration frequency may impact perceived
location for the eccentric-mass motors. As these motors have a low cost and are
available in many sizes, they are easily applicable to many situations. However,
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motor behavior regarding contact pressure, frequency, and vibration amplitude
make it unclear which of these contributes most to the preference for areas of
overly-conformant contact geometry.

Border Invisibility likely made subjects less confident, but its effects also vary
depending on stimulus location. This was suggested by the near significant in-
teraction of Border Visibility and Point Location. Both Border Invisible (grey)
cases, Flat and Exaggerated, show how border invisibility served to amplify the
error relative to the Border Visible cases. In both pairs of Height cases similar
curves appeared, but with marked shifts away from the Border Visible (black)
cases (erring away from the center) at the respective outer inflection points. A
possible cause lies in the thought process for mapping a body part to a visual
area. Since error at array center was near zero in both Exaggerated cases, sub-
jects may have used the interface’s center or response button for a reference
point. If the point locations away from the center were judged relative to the
center and nearest border, then the Border Invisible cases may have caused an
over-estimated distance from the center reference point.

Considering contact geometry a factor in radial expansion, future devices
should account for hand (or another stimulus site’s) shape. This experiment
indicated expected errors with inconsistent contact geometry. While our model
of radial expansion provided insight into user performance, this effect was partly
based on the structure of the hand, the composition of which varies from a
fleshy perimeter to a denser, bony interior. This structure may contribute to the
longitudinal asymmetry of the response curves, since a solid contact site in the
center would make vibrations here more pronounced.

6 Conclusion

Contact geometry and visual references influence the mapping of haptic cues in
a virtual environment. Results exhibited the least error near the array’s center
tactor. Error rose near the Center-Edge boundaries, at nearly identical coordi-
nates in all cases. We have previously demonstrated [2] stimulus calibration using
radial error. The highest points in radial error smoothers from [2] occurred at
equivalent radial measures to here (1.2-1.25 array units from center). The peaks
in [2] also occurred across three levels of Visual Scale, suggesting both effects
originated with the devices but was modulated by visual stimuli. Involvement
and understanding of haptic and visual conditions increases the power of stim-
ulus calibration by allowing for their inclusion in calibration models.

Visual Borders also contribute to error as modulating factors, and the effects
are relevant as design considerations for visualization applications. In our ex-
periment, the background items were constant, yet the lack of Visual Borders
increased subjects’ error. In the case of a visualization system with an active
scene and user interaction, the missing reference may also be detrimental.

A different body location could improve the contact between skin and tac-
tors. With a more planar body-site, better conformance to a grid of tactors
would be possible without height adjustments. While few applicable sites are
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as non-intrusive as the palm, the forearm and wrist do offer promising alterna-
tives. These, however, have less area of glabrous (hairless) skin and lower tactile
sensitivity than the palm, a change that would need to be investigated. Also,
tactor response was dependent on contact pressure. Nonetheless, the questions
raised remain relevant for any tactor type since variations in perceived loud-
ness may cause irregular response shapes, as suggested here. A more definitive
understanding of radial error gives insight into device design and modeling for
stimulus calibration. Given the current trend of consumer grade virtual real-
ity devices, haptic-enabled touch screens, and vibrational game controllers, we
may see devices similar to ours in navigation, communication, or entertainment
applications.
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Computer-Assisted Creation of 3D Models of
Freeway Interchanges
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Abstract. Several existing procedural modeling systems are able to gen-

erate large 3D models of cities. However, none of these systems can

automatically create 3D models of freeways and freeway interchanges,

even though these are important features in 3D urban landscape. We

have implemented a system that automatically creates 3D models of

road surfaces, bridges, tunnels, freeways, and freeway interchanges, tak-

ing user design and preferences into account. While we allow the graph-

ics designers to control the positions of the control points according to

their aesthetic appeal, our system automatically generates 3D models of

road surfaces and freeway connector ramps that are properly smoothed,

banked and connected.

1 Introduction

While there exists several systems that generate large 3D models of cities, these
systems do not automatically generate 3D models of freeways and freeway in-
terchanges. This is a major limitation, because roads and freeways form an im-
portant part of an urban environment. A realistic, drivable 3D model of freeway
and road networks needs to be produced, for example, if the output of the 3D
city model is to be used for a drive-through.

We have implemented a system that takes control points input by the user,
and generates 3D models of smoothed and banked road surfaces, heuristically
creating bridges and tunnels in areas of rough terrain. The road surface gen-
eration algorithm can also be applied to procedurally-generated road paths or
road paths generated by other systems. The output of our graphics model can
be used in racing games, or as 3D models for urban landscapes used in games
or movies.

While we allow the graphics designers to control the positions of the control
points according to their aesthetic appeal, our system instantly automatically
generates 3D models of road surfaces and freeway connector ramps that are
properly smoothed, banked and connected. These calculations would be time-
consuming for the human user to manually perform.

The main contribution of our work is the automatic creation of 3D models
of freeway overpasses and connector ramps. The user can custom-design inter-
changes by setting the height of points on a freeway or connector ramp. The
user can also determine the position, height, direction and number of lanes on

G. Bebis et al. (Eds.): ISVC 2010, Part I, LNCS 6453, pp. 739–750, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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a ramp. Our system creates a 3D model of the freeway interchange, with ap-
propriate smoothing and banking. Our system can also automatically detect
all Freeway-Freeway and Road-Freeway intersections and create generic freeway
interchanges in three common styles. Because we do not use rigorous civil en-
gineering calculations, but use only approximate methods in our approach, the
resulting roads do not match real-world roads, and are intended to be used in
virtual environments such as computer games and movies.

2 Related Work

Procedural modeling systems that generate cities typically also create roads.
For example. Weber et al.’s [1] system creates a network of major and minor
streets, with varying widths, and they have to build geometry of these streets.
Another example is CMPE, by Carrozzino et al. [2], which also creates a road
network, and performs crossroad tessellation, curve tessellation, and texturing
for the roads. Several other systems [3–5] also produce detailed road networks
and geometry, however none of the above systems has examples of bridges and
overpasses. On the other hand, Cabral et al. [6] have presented a method able to
build roads, bridges and overpasses using example blocks. Galin et al. [7] have
presented a system specifically for the procedural generation of roads, using the
shortest path algorithm to find the best route for roads.

Some commercial software is also available for making road geometry. For
example, like our system, Shape Magic Road Maker (www.shapemagic.com) is
able create smooth roads and road intersections on rough terrain, but it does
not include facilities to create freeway overpasses and interchanges. Cityscape
(pixelactive3d.com) goes further in allowing users to create freeway overpasses
and connectors. However, the user control over the appearance of the freeway
overpass is limited. Our system allows users to create freeway interchanges with
much more sophistication and realism.

3 Basic Road Surface Geometry

Our system loads a rectangular terrain map, with height information for each
cell. The terrain map is displayed in 2D with color-coded heights. The user
is able to click on the map to create control points for roads. A cubic curve
is automatically created to fit through all the control points. Note that user-
generated roads are not the main contribution of this paper, but are merely the
input to the road-surface generation algorithms we describe in this paper. The
input road routes can also come from procedural methods and other systems.

3.1 Joining Road with Terrain

A road specification consists of the control points of a curve, as well as the
number of lanes each road segment has. Roads are typically level, except when
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they are banked. Sometimes roads are also smoothed and vary in height less
than the underlying terrain, to make them more drivable. Given the height of
the surface of a road, and the height-map of the underlying terrain, the program
generates a triangle mesh that smoothly joins the road surface with the terrain.

First, the height of the road surface is encoded into RGB color. Then, the
color-encoded road surface height for the road surface is rendered, up to two
units outside the width of the road. The color buffer is read and stored in an
array ColorBuffer1.

The program then renders the road with value 255 from the middle of the road
until a distance of two units inside the edge of the road. From there, the value
decreases linearly to 0 at a distance of two units outside the edge of the road. This
is read to an arrayColorBuffer2. The Marching Squares method is then performed
to find the iso-contour of the value 128. This represents the edge of the road. Note
that the road has to be at least 4 units wide for this method to work correctly.

Each cell that has an iso-contour is then triangulated. The points that are
inside the road surface, as well as the points on the iso-surface, are set to the
height of the road surface. The height of the road surface is read and decoded
from ColorBuffer1. The height of points outside the road is set to the linear
interpolation between the road surface height and the original terrain height: h
= (d/2)*h1 + (1-(d/2))*h0, where d is the distance from the road edge, h0 is
the height of the road surface (read from ColorBuffer1), and h1 is the original
height of the terrain. For a distance of 2 units outside the road surface, the
height of each point is found by linearly interpolate between road height and
terrain height in the same way. For all terrain points completely within the road
surface, their heights are set to the road surface height.

3.2 Triangulating Intersections

A polygon is created for an intersection between two or more roads. For each
road intersection, the points of the intersection polygon are found by intersecting
each outgoing road edge with all other outgoing road edges. For each outgoing
road edge, the furthest intersection found forms part of the intersection polygon.
For each outgoing road section, intersection points are found for both its road
edges. An Intersection Offset is set to be the further of the two intersection
points, and the road section is drawn only up to this point, so as not to overlap
with the intersection polygon.

3.3 Automatic Bridges and Tunnels

The change in height of the terrain can sometimes be too steep for a road. When
this occurs, a tunnel or bridge is built. For example, when a road needs to cross
a deep ravine, a bridge is built over the ravine. An example is the Bixby Creek
Bridge in California. Likewise, tunnels are dug in mountainous terrain, so that
the road have a relatively gentle gradient compared to the terrain. Roads which
are too steep make it dangerous to drive downhill, and some vehicle engines may
not be powerful enough to climb a steep road.
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After the initial height of each road section is set, according to the underlying
terrain height at that point, the program makes one pass through all the section
heights to detect a change in height of more than d, where d is a threshold set by
the user to denote the maximum steepness of a road. For usual roads, d = 0.2.
This point is set to be the start of the bridge/tunnel. From here, the program
proceeds forward a distance of MaxBridgeLength to search for the first section
that is the same height as the start. If this section is found, the point is set to
be the end of the bridge/tunnel. Otherwise, the point which has the least slope
from the start is chosen as the end.

Next, the program looks forward a small distance BridgeLengthExtra to see if
a significantly better alternative end-point for the bridge/tunnel can be found.
Suppose the difference in height between an end-point P1 and the start point S
is d1 and the difference in height between P2 and S is d2. P1 is considered to be
significantly better than P2 if d1 < d2 + δ, where δ is a threshold value set in the
program. If such an alternative end-point is found, this new end-point is set to
be the end of the bridge, and the process repeats until no new better end-point
can be found at the distance of BridgeLengthExtra from the bridge end. If this
process of looking forward a small amount to find a better bridge/tunnel end-
point is not performed, then in certain cases, a “silly” bridge will be built when
a much better, slightly longer one can be built.

Figure 1 shows examples of some bridges and tunnels built by the program.

Fig. 1. Example of bridges, tunnels, and road banking at a sharp turn

3.4 Banking

Roads with high speed limits are often banked when they turn, so that cars can
travel faster without the danger of flipping over. Banking refers to tilting the road
surface perpendicular to the direction of travel. Suppose that the road makes an
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angle of theta with the horizontal, the speed at which a car can round a curve
on an imaginary road without friction is v = sqrt(rg tan theta), where r is the
radius of the turn, and g is gravitational force. This implies that the maximum
allowable speed at a turn increases with the banking angle, and decreases with
the sharpness of the turn. On a real-world road, calculation of banking angles
depend on the friction of the road surface, types of vehicles traveling on the road,
and the desired speed limit of the road.

Suppose that v0 and v1 are unit direction vectors of two consecutive sections
of the road. Then, φ, the angle of curvature of the road is φ = v0.v1. In our
program, we set the banking angle θ = kφ, where k is a constant set by the
user. In this way, the sharper the turn, the greater the banking angle. The
coefficient k is set higher for roads with higher speed limits, in order to increase
the banking angle. An example of road banking produced by the program is
shown in Figure 1.

3.5 Lane Graphics

At each control point on a Road, the user sets the number of lanes. In the 3D view
of the road, a shoulder is drawn on each side of the road, together with lanes, as
well as lane dividers drawn as broken lines. If two adjacent control points have
different number of lanes, the width of the road is linearly interpolated between
the two points. A Road is set to be either a “Left” or “Right” road, indicating
the side where a new lane is added.

4 Freeways

Freeways are common in the modern world and are especially important in com-
puter games. Because of their large size, they are also prominent in cityscapes.
Freeways have a few special characteristics which require them to be handled
differently from ordinary roads. First, freeway do not have intersections, where
one road crosses another. Instead, they have interchanges with overpasses so that
cars can travel straight through without crossing, with connector ramps for cars
to move to one freeway to another.

In our system, if the user designates a road as a “freeway”, no intersection
will be calculated for this freeway. Instead, we allow the user to make overpasses
and underpasses, and also attach connector ramps to the freeway.

Also, freeways are divided roads; in other words, the road going one way
is separated from the one going the opposite direction. At times, especially in
mountainous environments, the two opposite directions can be separated by a
significant distance. To define a freeway, the user first sets a series of control
points as usual. These control points define the freeway median. Together with
the median, two parallel Roads are created, one on each side of the median,
going opposite directions. These two Roads also have their own control points,
so that the user can move the control points to adjust their offsets from the
median control points. If the user later moves a median control point, the two
Roads attached to the control point move with the median control point.
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4.1 Freeway Overpasses

To prevent interruption to the flow of traffic, a freeway does not have intersec-
tions. Instead, overpasses or underpasses are constructed. To create them in our
system, the user clicks on an existing Road to make a new Height Point. The
user then enters the desired height of the point. The number entered denotes
the height offset from the ground at the point. For example, if the user creates
a Height Point with height -2.0, the Road at this point would be depressed by
a height of 2.0 from the ground height. If the user creates a Height Point with
height 3.0, then at this point, the Road is a bridge with height 3.0 above the
ground.

When the user creates multiple Height Points, the height of each point on the
Road in between the Height Points is linearly interpolated. The user can also
designate a Height Point as a “free” point. There are no restrictions of the height
of the Road after a free point. Also, the user can designate a section of a Road
to be “Bridge and Tunnel Free”. Ordinarily, when there is an abrupt change
in terrain height, a bridge or tunnel may be automatically created (described
in Section 3.3). However, if a section is designated “Bridge and Tunnel Free”,
no bridge or tunnel would be automatically created. At freeway interchanges,
no automatic bridges and tunnels should be created, so that they would not
interfere with the user-created overpasses and connector ramps. If a user-defined
bridge overlaps with an automatically-generated bridge, they are merged into one
bridge, with each point taking the maximum height of the two bridges where
they overlap. In between the Height Points set by the user, cubic interpolation
is used to generate the heights for all points on the user-created bridge.

Pillars are drawn at regular intervals to support bridges. For overpasses, sup-
port pillars cannot be drawn over the road below. To prevent this from happen-
ing, the program takes a picture of the scene from the bottom, and renders all
the road surfaces, each road having a unique ID, from top to bottom. In this
way, each fragment in the final image contains the ID of the bottom-most road
surface. A pillar for a Road A can be drawn at the location corresponding to a
fragment if and only if the road ID of that fragment is the ID of Road A.

4.2 Freeway Connector Ramps

User can set road split point anywhere on one side of a freeway. A road split
point can be defined to be incoming or outgoing, left or right. That defines the
direction and side of the freeway connector ramp. The number of lanes before
and after a road split point can also be determined by the user. If a road split
point is created at the end of a road, it can either lead to one or two connector
ramps. The different options are shown in Figure 2.

After defining split points, the user can create a freeway connector ramp by
clicking on the end points of two split points. A freeway connector ramp is
created to connect these two split points. A piece-wise cubic Hermite spline is
created to define the path of the ramp. If no additional control points are set
by the user, the two split points are the two control points of the cubic Hermite
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Fig. 2. The different types of split points on a freeway

curve. Note that the exact position of the end point has to be calculated, by
finding the coordinates of the midpoint of the lane on the freeway that becomes
the freeway ramp. The direction of the end-point of the Hermite curve is set to
be the direction of the main freeway at that point. Similarly, the banking angle
of the ramp is set to equal that of the freeway at the split point.

To create 3D surface geometry of the freeway connector ramp, the height at
the end points are found from the freeway height at those points. If the freeway
is a bridge at that point, then the freeway connector ramp also begins as a
bridge. The ramp is then treated as an ordinary road, and the height of the
road is determined by the usual algorithm, except for the additional bridge of
the connector begins or ends as a bridge. If such an end bridge is required, the
program searches for the other end point of the bridge by finding the point on
the connector ramp that has the least height difference from the end point.

The user is able to customize each connector ramp, but pressing the “Sub-
divide” button. This will add an additional control point to the freeway ramp.
The user can then use the mouse to move the control point to the desired posi-
tion. The user can also optionally set a height for the control point. To attach
another freeway ramp to this ramp, the user can set a control point as a “split
point”. Then, an additional ramp can be created from this split point. As usual,
the user can set the direction of the split branch, as well as the number of lanes
before and after the split.

Examples of freeway interchanges created by the user are shown in Figures 3,
4 and 5.

When a freeway ramp splits off from a freeway, it changes the balance of the
road. Ordinarily, the balance of a road is zero, meaning that the control spline
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Fig. 3. User-defined “Partial Cloverleaf” freeway interchange

Fig. 4. User creates an intersection from an end of one freeway onto another freeway.

Split Point A creates one ramp from a freeway side. Split Point B creates two ramps

from the end of a freeway side. This type of freeway interchange is commonly know as

the “Semi-Directional T”.
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Fig. 5. 3D model of a “Stack” freeway interchange

Fig. 6. The balance of a freeway changes after a ramp splits off. Before the split, the

control spline is in the center of the freeway; after the split, the center of the freeway

is one lane to the right of the control spline.
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Fig. 7. 3D model of a “Diamond” interchange automatically created by the program

Fig. 8. 3D model of a “Cloverleaf” interchange automatically created by the program
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is in the center of the road. However, when a freeway ramp splits off, this is
changed. Figure 6 shows an example. In this example, before the split, a freeway
has four lanes and the balance is zero. At the split, a two-lane freeway ramp
exits the freeway, leaving two lanes on the main freeway. Immediately after the
split, the center of the freeway road surface is now an offset of one to the right of
the freeway control spline. The magnitude of the balance after a split is equal to
half the remaining number of lanes on the freeway. The direction (left or right)
of the balance depends on whether the ramp is to the left or right, and whether
the ramp is incoming or outgoing. As 3D surface geometry is created for the
road surface, our program keeps track of the balance so that the correct road
surface is created. Our program also drifts the balance gradually back to zero
after each split.

5 Automatic Freeway Interchanges

The method described by the previous section requires the user to manually
create every freeway ramp, and set their height. While this allows the user great
control over the appearance of each ramp, it is also rather time-consuming. If the
user is only interested in creating generic interchanges, our system also provides
an automatic tool so that with one single click, the user can request the program
to automatically detect all Road-Freeway and Freeway-Freeway intersections,
and automatically create the intersections. A classic “Diamond” interchange
(Figure 7) is created for each Road-Freeway intersection, and either a “Full
Cloverleaf” (Figure 8) or “Full Stack” interchange is created for each Freeway-
Freeway intersection, depending on user preference. The program automatically
creates these interchanges by automatically inserting split points, setting their
directions, setting height points to lower one freeway, and raise the other freeway,
as well as insert freeway ramps and set their heights. The user is allowed to
manually change these automatically generated points if desired.

6 Conclusions

We have presented a system that automatically creates 3D models of roads
and freeways, including freeway interchanges. First, the user specifies control
points of a road, and at each control point, the user can also specify other
parameters such as number of lanes and height. Our system automatically creates
the geometry of a road surface, making sure that the road surface is smooth,
curved, banked if necessary, and the road intersections are level. Over rough
terrain, the program also heuristically creates tunnels and bridges to prevent
roads from being too steep.

The major contribution of this paper is the automatic creation of freeway
interchanges. Our tool allows the user to specify split points on the freeway
for freeway connector ramps, as well as height points to create overpasses. Our
system then generates a 3D model of the freeway interchange with smooth con-
nections and proper banking. Finally, our program also allows the user with one
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click to automatically find all freeway intersections and automatically create a
few common types of freeway interchanges.
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Abstract. In this paper, we propose an automatic learning method for gesture 
recognition. We combine two different pattern recognition techniques: the Self-
Organizing Map (SOM) and Support Vector Machine (SVM). First, we apply 
the SOM to divide the sample data into phases and construct a state machine. 
Next, we apply the SVM to learn the transition conditions between nodes. An 
independent SVM is constructed for each node. Of the various pattern recogni-
tion techniques for multi-dimensional data, the SOM is suitable for categorizing 
data into groups, and thus it is used in the first process. On the other hand, the 
SVM is suitable for partitioning the feature space into regions belonging to each 
class, and thus it is used in the second process. Our approach is unique and ef-
fective for multi-dimensional and time-varying gesture recognition. The pro-
posed method is a general gesture recognition method that can handle any kinds 
of input data from any input device. In the experiment presented in this paper, 
we used two Nintendo Wii Remote controllers, with three-dimensional accel-
eration sensors, as input devices. The proposed method successfully learned the 
recognition models of several gestures. 

Keywords: gesture recognition, automatic learning, SOM, SVM. 

1   Introduction 

Gesture recognition has many potential applications, such as gaming interfaces (for 
example Nintendo Wii, Microsoft Kinect, Sony Move), control interfaces for robots 
[1], and electronic devices (for example TVs, lights, air conditioning) [12], severance 
systems [5], and so on. In general, gesture recognition determines what kind of action 
the user is performing from various input signals such as body position, velocity and 
orientation. The input signals can be acquired from various devices, such as sensor-
embedded remote controllers, pressure sensors and cameras. 

There are many pattern recognition techniques. However, the problem with gesture 
recognition is that the inputs usually consist of multi-dimensional and time-varying 
data. If the input data were either multi-dimensional or time-varying, existing pattern 
recognition techniques could easily be applied. For example, the Support Vector  
Machine (SVM) and neural networks including the Self-Organizing Map (SOM) 
work well on multi-dimensional data, while the Hidden Markov Model (HMM) and 
Dynamic Programming (DP) are well-suited to time-varying data. Owing to the 
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(a) Gesture (b) Input signals and phases (c) State machine
     (recognition model)

 

Fig. 1. Examples of gesture recognition using Wii remotes. (a) Performing a gesture. (b) Input 
signals and phases. The horizontal axis represents time. Each line represents one of the input 
values (in this case, accelerations), and each block a phase of the gesture. (c) State machine 
(recognition model). Each state represents a phase of the gesture and has conditions for transi-
tions to connected states. 

combination of multi-dimensional and time-varying data, gesture recognition intro-
duces many problems.  

A common approach to handling such data is to divide each gesture into short 
phases, and then to recognize each phase using a pattern recognition technique for 
multi-dimensional data [9]. For example, the gesture of raising and lowering a hand 
would contain phases such as stationary, moving upward, moving downward. By 
introducing a state machine, representing each phase as a state, and using a pattern 
recognition technique to determine the state transitions, we can construct a recogni-
tion model (Fig. 1). By preparing multiple recognition models for all gestures used in 
the application, the system can recognize any user gesture. The problem with this 
approach is that the state machine must be constructed manually. The designer must 
divide a gesture into several phases based on changes in the input signals. This re-
quires much experience, effort, and trial and error processes. 

The purpose of this research is to develop an automatic learning method for gesture 
recognition. We combine two different pattern recognition techniques: the Self-
Organizing Map (SOM) [7] and Support Vector Machine (SVM) [1]. First, we apply 
the SOM to divide the sample data into phases and construct a state machine. Next, 
we apply the SVM to learn the transition conditions between nodes. An independent 
SVM is constructed for each node. Of the various pattern recognition techniques for 
multi-dimensional data, the SOM is suitable for categorizing data into groups, and 
thus it is used in the first process. On the other hand, the SVM is suitable for partition-
ing the feature space into regions belonging to each class, and thus it is used in the 
second process. Our approach is unique and effective for multi-dimensional and time-
varying gesture recognition. 

The proposed method is a general gesture recognition method that can handle any 
kinds of input data from any input device. In the experiment presented in this paper, 
we used two Nintendo Wii Remote controllers, with three-dimensional acceleration 
sensors, as input devices. The proposed method successfully learned the recognition 
models of several gestures. 
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The rest of this paper is organized as follows. In Section 2, we review related 
works. In Section 3, an overview of our method is presented, while Section 4 de-
scribes our method in detail. Experimental results and a discussion are presented in 
Section 5. Finally, Section 6 concludes the paper. 

2   Related Work 

There are many studies on gesture recognition techniques. As explained earlier, the 
problem is how to deal with multi-dimensional and time-varying input data. 

The Hidden Markov Model (HMM) is a popular method for recognizing time-
varying data. It represents a recognition model as a network of nodes that produce 
some symbols and transition probabilities between nodes. Since it handles input sig-
nals as a series of discrete symbols, in order to employ an HMM, the input signals 
must be reduced to a series of discrete symbols. This causes difficulty in handling 
multi-dimensional signals and prevents accurate recognition. Toyokura et al. [11] 
used manually specified conditions for discrimination and applied their approach to 
sign language recognition. Iuchi et al. [5] used an SOM for discretization. Liang et al. 
[8] used Principal Component Analysis (PCA) to discretize accelerations of multiple 
body parts. 

Another method for recognizing time-varying data is dynamic programming. By 
matching the trajectory from the input signals and the sample trajectory from a ges-
ture, the system can determine whether the gesture has been executed. However, to 
apply this approach, the trajectories must be projected onto a low-dimensional feature 
space. Moreover, an appropriate threshold must be specified to determine whether 
two trajectories are similar. Billon et al. [1] employed PCA for dimension reduction, 
while Yoshioka et al. [14] used manual discretization for each element of the feature 
vector. 

Using a state machine is also a viable approach. Matsunaga et al. [9] used an SVM 
to learn the conditions for transitions, whereas Oshita [12] used manually described 
fuzzy-based rules. However, as explained above, the state machine must be created 
manually. 

Even though some of these methods were designed for automatic learning of ges-
ture recognition, certain parts or parameters need to be designed or specified for each 
gesture by a designer. On the contrary, our method realizes automatic learning. 

3   System Overview 

Our system consists of a learning and a recognition process. The learning process is 
an offline process, whereas the recognition process is an online process. The learning 
process takes input signals of sample data performed by a user as input, while the 
recognition process takes the current feature vector from the input device at each 
frame as input. 
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Each instance of the input signals from an input device is represented as a feature 
vector. Typically the dimension of the feature vector is between a few and several 
tens. In the experiment in this paper, we used six-dimensional feature vectors. 

3.1   Recognition Model 

Our recognition model is represented as a state machine (Fig. 1(c)). Each state in the 
state machine represents a phase of the gesture. As explained in Section 1, gestures 
are expressed by time-varying data and the conditions of the feature vector for a ges-
ture vary from time to time. Therefore, we divide a gesture into phases. 

Each state of the state machine has a connection to other states and its own SVM to 
determine to which state to transit based on the current feature vector. 

The recognition model also has an initial state and a recognition path. The recogni-
tion path is a series of states. As the system transits through states according to the 
inputs, forming the recognition path, it determines that the gesture has been per-
formed. In addition, motion speed can also be calculated from the intervals of the 
transitions [9]. 

Each recognition model recognizes only one type of gesture. Since a system usu-
ally uses multiple gestures, multiple recognition models must be constructed and 
processed for recognition in parallel. Each recognition model is trained independently 
for a specific gesture. 

3.2   Learning Process 

The learning process takes input signals of sample data performed by a user as input. 
A single sample data contains a series of feature vectors obtained during the perform-
ance of the gesture. To train a recognition model, a number of sets of sample data are 
required. For example, in our experiments, we used 10 sets of sample data. Since 16 
feature vectors per second are recorded in our system and the length of a typical ges-
ture is between a few seconds and 10 seconds, each sample data consists of a series of 
about 100 to 200 feature vectors. 

Firstly, the system applies an SOM to categorize the feature vectors into a small 
number of groups (units). A state of the state machine is constructed from each group 
(unit). We use an SVM to represent the conditions for transitions in each node. De-
tails of the learning process are explained in the next section. 

3.3   Recognition Process 

During the recognition process, the system takes the current feature vector from the 
input device at each frame as input. Based on the current feature vector, the system 
determines to which state to transit next or whether to stay in the current state. The 
system determines if a particular gesture has been performed based on the history of 
the state transitions and the recognition path as explained in Section 3.1. 
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Input (time-varying input signals)

Constructing states using SOM

Constructing edges between states

Constructing transition conditions using SVM

Constructing recognition path

Repeating above processes with different
number of states and selecting the best one

Output (a recognition model)
 

Fig. 2. Flow chart and data structures for the learning process 

4   Automatic Learning of Recognition Model 

In this section, we explain our automatic learning method, which involves construct-
ing states using an SOM, edges between states, transition conditions using an SVM, 
and finally the recognition path (Fig. 2). In the following subsections, we explain each 
of these processes. 

4.1   Constructing States Using an SOM 

We use an SOM to construct the states of the state machine. The SOM is a pattern 
recognition technique incorporating unsupervised learning and a type of neural net-
work. It is widely used in many applications for classifying various kinds of data such 
as images, voices, medical data, genes, etc. The SOM is suitable for categorizing 
sample data. It maps high-dimensional data into a number of units, which are usually 
arranged as a two dimensional grid. As result, it groups similar data into the same or a 
nearby unit. 

We simply apply an SOM to all feature vectors from the sample data and then use 
each unit as a state in the state machine. Each state contains the feature vectors be-
longing to the corresponding unit and these are used in the following processes. Units 
with no data are ignored and no states are constructed from them. 

In general, when applying an SOM, the number of units must be specified manu-
ally. If the number is too small, dissimilar data may be mapped to the same unit. On 
the other hand, if the number is too high, similar data may be mapped to different 
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units causing too many states to be created in our system. This can cause recognition 
errors. In many applications, the number of units is chosen empirically. However, in 
our case, the number depends on the type of input and the gesture to be recognized. 
Therefore, we introduce automatic selection of the number of units. Our system con-
structs several state machines (learning models) with different numbers of units. It 
then evaluates these using the sample data. Finally, the best state machine that mini-
mizes the following criterion is chosen. 

 1 2e e k e= +  (1) 

where 1e  is the error rate that correct inputs are not recognized, 2e  is the error rate 
that incorrect inputs are recognized, and k  is a parameter denoting the weights, speci-
fied by the user, of 1e  and 2e . The appropriate value of k  depends on the applica-
tion. For example, in an application such as a gaming interface, a small 1e  is important 
and a small value is specified for k . On the other hand, in an application such as a 
security system, a small 2e  is important and thus, a large value is specified for k . 

4.2   Constructing Edges between States 

Once the states of the state machine have been created, our system determines possi-
ble transitions for each state. If a feature vector of state A is followed by a feature 
vector of state B in the input sample data, an edge from state A to state B is created. 
In addition, each state has an edge to itself and an edge to the initial state, as the user 
could terminate a gesture at any time and start from the beginning. 

4.3   Constructing Transition Conditions Using an SVM 

We use an SVM to learn the transition conditions for each state. The SVM is a popu-
lar pattern recognition technique with supervised learning. Since it divides the feature 
space for each class, the SVM can handle unknown data well, although it is not suited 
to grouping sample data. This is the reason that we combine two pattern recognition 
techniques, the SOM and SVM, with different characteristics. 

To construct an SVM for each state, the sample data belonging to the state and 
those belonging to adjacent (possible transition) states are used as training data. In our 
implementation, we employ LibSVM [3], which supports multi-class recognition. 

Once the SVM has been trained, the transition to the next state is determined based 
on the current feature vector. The transition could be to remain in the same state or to 
move to one of the adjacent states. 

4.4   Constructing Recognition Path 

A state machine is constructed from the above processes. Finally, the recognition path 
is determined. At this point, we have an initial state, to which the initial feature vec-
tors belong, and a terminal state, to which the terminal feature vectors belong.  
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However, even if the system transits from the initial state to the terminal state, it does 
not necessarily mean that the particular gesture has been performed. Generally, a state 
machine is a next work of states. Therefore, there can be many paths from the initial 
state to the terminal state and not all paths mean that the gesture has been performed.  

Our system determines a correct path for gesture recognition based on the input 
sample data. A sample data is represented by a series of states. The system stores the 
recognition path and uses it for recognition. When there are different recognition 
paths for different sample data, all recognition paths are used in the recognition  
process. 

5   Experiment and Discussion 

We have tested our method with various gestures. In this experiment, we used Wii 
Remote controllers as input devices. With these controllers, the user has one spatial 
acceleration sensor for each hand. An acceleration sensor detects three directional (X, 
Y and Z) accelerations. Therefore, the feature vector has a dimension of six. We used 
two kinds of gestures in the experiments. A simple gesture (Gesture A) consists of 
raising and then lowering the right hand while keeping the left hand still. A complex 
gesture (Gesture B) consists of pushing both hands forward, swinging both hands to 
the right, swinging both hands to the left, and extending both hands outwards. Note 
that Wii Remote controllers have only an acceleration sensor. Therefore, even these 
simple gestures are difficult to recognize, because the positions of the controllers 
cannot be used. We used 10 sets of sample data for training each recognition mode; 
that is, an individual performed each gesture 10 times and the input signals were re-
corded for the learning process. 

As explained in Section 4.1, to determine the appropriate number of units for the 
SOM, the system repeats the learning and recognition processes with a different  
number of units: two, four, and six. Both gestures (A and B) achieved the best recog-
nition rate with four units. Therefore, four units (four states) were used in the follow-
ing experiment. 

To evaluate the effectiveness of our automatic learning method, especially the ef-
fectiveness of using the SOM, we compared the results of our method and a manual 
method. In the manual method, a participant who is a graduate student with basic 
knowledge of gesture recognition manually labeled each of about 2,000 feature vec-
tors of input sample data by checking the images on the screen. For the number of 
states, we used the number determined automatically by our method. Once the catego-
rization was done, we used our automatic method for the later processes, since manu-
ally specifying transition conditions requires much trial and error and is not practical. 

Results of the above experiment are shown in Table 1. Obviously, the manual 
categorization required a great deal of time compared to our automatic method, espe-
cially for complex gestures. On the other hand, the manual method showed slightly 
better results. This is because the classification using an SOM does not work well in 
the presence of noise. When a human finds noise in a series of feature vectors, he/she 
is able to categorize these according to the previous and following feature vectors. 
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Table 1. Comparison between the proposed automatic method and manual method 

Method / Gesture Time for learning [sec] Recognition rate [%] 
Automatic (Proposed) / Gesture A  510 100 
Manual / Gesture A    4  98 
Automatic (Proposed) / Gesture B 5100  84 
Manual / Gesture B    8  80 

However, since our method simply categorizes all feature vectors independently, a 
sudden transition to a wrong node could happen as a result of the noise. To solve this 
problem, an additional process to correct the categorization error could be introduced. 

6   Conclusion 

In this paper, we proposed a method for automatically learning a recognition model 
by incorporating both an SOM and an SVM. We also showed the efficiency thereof. 

Gesture recognition has many potential applications. Applying our method to vari-
ous actual applications with higher dimensions remains a future work. For most appli-
cations, camera-based sensors are suitable, since users do not have to hold or wear 
any input devices. However, in order to apply our method to input signals from cam-
eras, a method for extracting feature vectors from images is needed. In addition, when 
applying our method to very high-dimensional data, for example, motion data ac-
quired using motion capture equipment and which could have more than 40 dimen-
sions, we would need a method for dimension reduction, such as PCA. Further  
research on these extensions as well as performing further experiments for compari-
son with alternative methods are also future works. 
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