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Pappos’s Theorem: Nine Proofs
and Three Variations

Bees, then, know just this fact which is of service to them-
selves, that the hexagon is greater than the square and the
triangle and will hold more honey for the same expenditure of
material used in constructing the different figures. We, how-
ever, claiming as we do a greater share in wisdom than bees,
will investigate a problem of still wider extent, namely, that,
of all equilateral and equiangular plane figures having an equal
perimeter, that which has the greater number of angles is al-
ways greater, and the greatest plane figure of all those which
have a perimeter equal to that of the polygons is the circle.

Pappos of Alexandria, ca. 340 CE

Everything in the world is strange and marvelous to well-open
eyes.

José Ortega y Gasset

We will begin our journey through projective geometry in a slightly uncommon
way. We will have a very close look at one particular geometric theorem—
namely The hexagon theorem of Pappos. Pappos of Alexandria lived around
290–350 CE and was one of the last great Greek geometers of antiquity.
He was the author of several books (some of them are unfortunately lost)
that covered large parts of the mathematics known at that time. Among
other topics, his work addressed questions in mechanics, dealt with the vol-
ume/circumference properties of circles, and even gave a solution to the angle
trisection problem (with the additional help of a conic). The reader may take
this first chapter as a kind of overture to the remainder of the book in which
several topics that are important later on are introduced. Without any harm
one can also skip this chapter on first reading and come back to it later.
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Fig. 1.1 Three versions of Pappos’s theorem.

1.1 Pappos’s Theorem and Projective Geometry

The theorem that we will investigate here is known as Pappos’s hexagon
theorem and usually attributed to Pappos of Alexandria (though it is not
clear whether he was the first mathematician who knew about this theorem).
We will later see that this theorem is special in several respects. Perhaps
the most important property is that in a certain sense Pappos’s theorem is
the smallest theorem expressible in elementary terms only. The only objects
involved in the statement of Pappos’s theorem are points and lines, and the
only relation needed in the formulation of the theorem is incidence. Properly
stated, the theorem consists only of nine points and nine lines, and there
is no such theorem with fewer items. Another remarkable fact is that the
incidence configuration underlying Pappos’s theorem has beautiful symmetry
properties. Some of them are obvious, some of them slightly hidden.

Theorem 1.1 (Pappos’s hexagon theorem). Let A, B, C be three points
on a straight line and let X, Y, Z be three points on another line. If the lines
AY , BZ, CX intersect the lines BX, CY , AZ, respectively, then the three
points of intersection are collinear.

Here intersecting means that two lines have exactly one point in common.
The nine points of Pappos’s theorem are the two triples of points on the
initial two lines and the three points of intersection, which finally turn out
to be collinear. The nine lines are the two initial lines, the six zigzag lines
between the points, and finally the line on which the three intersection points
lie. Figure 1.1 shows several instances of Pappos’s theorem. The six black
points correspond to the initial points, whereas the three white points are the
intersections that turn out to be collinear. Observe that in our examples the
positions of the nine points and lines (taken as a set) are identical. However,
the role of the initial two triples of points is played by different points in each
example. The first example shows the picture most often drawn in textbooks,
with the final conclusion line between the two initial lines. The second picture
shows that the roles of these three lines can be freely interchanged. The
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Fig. 1.2 An almost parallel bundle of lines that meet at a point far on the right.

last picture shows that also one of the inner lines can play the role of the
conclusion line (by symmetry of the construction this line can be an arbitrary
inner line). In fact, the automorphism group of the combinatorial structure
behind Pappos’s theorem admits that any pair of lines that do not have a
point of the configuration in common can be taken as initial lines for the
theorem.

The exact formulation of the theorem already has some subtleties, which
we want to mention here. The theorem as stated above requires that the
pairs of lines (AY , BX), (BZ, CY ), and (CX, AZ) actually intersect, so that
we can speak of the collinearity of the intersection points. Stated as in Theo-
rem 1.1, Pappos’s theorem is perfectly valid in Euclidean geometry. However,
if we interpret it in Euclidean geometry it does not exhaust its full generality.
There are essentially two different ways in which it can happen that two lines
a and b may not intersect in Euclidean geometry. Either they are identical
(then they have infinitely many points in common) or they are parallel (then
they have no point in common). Now, projective geometry is an extension of
Euclidean geometry in which points are added that are infinitely far away. By
this we can properly speak of the intersection of parallel lines (the intersec-
tion point lies at infinity) and we get an interpretation of Pappos’s theorem
in which all instances of parallelism are covered as well.

The essence of real projective geometry may be summarized in the fol-
lowing two sentences: Bundles of parallel lines meet at an infinite point. All
infinite points are incident to a line at infinity. Thus (real) projective geom-
etry is an extension of Euclidean geometry by certain elements at infinity.
In the next two chapters we will elaborate in depth on this extension of Eu-
clidean geometry. In this chapter we will be content with a kind of pre-formal
understanding of it.

Imagine a horizontal line a and a line b that is almost parallel to it. Both
lines meet (since they are not parallel), but the point of intersection will be
relatively far out. If the line b has a small negative slope, the intersection point
will be far to the right of the picture. If the slope of b is small but positive,
the intersection point will be far to the left. What happens if we move line
b continuously from the situation with small negative slope via zero slope to
the situation with small positive slope? The point of intersection will first
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Fig. 1.3 Euclidean version of Pappos’s theorem.

move farther and farther to the right (in fact, it can be arbitrarily far away).
In the situation with zero, slope both lines are parallel and the intersection
point vanishes. After this, the point comes back from a very far position on
the left side. Projective geometry now eliminates the special case of parallel
lines by postulating an additional point at infinity on the parallels. Figure 1.2
shows a bundle of lines that meet in a point very far out on the right. If this
point is moved to infinity, then the lines will eventually become parallel.

It is important to notice that in the concept of projective geometry one
assumes the existence of many different points at infinity: one for each bun-
dle of parallel lines. All these points together form the line at infinity �∞.
By introducing these additional elements, special cases get eliminated from
geometry. As a matter of fact, these extensions imply that in the projective
plane any two distinct points will have a unique line connecting them and
any two distinct lines will have a unique point of intersection (it just may be
at infinity). Furthermore, from an intrinsic viewpoint of the projective plane
the infinite elements are indistinguishable from the finite elements. They have
exactly the same incidence properties. (For more details see the next chapter.)

1.2 Euclidean Versions of Pappos’s Theorem

By passing to a projective framework we get two kinds of benefit. First of all,
we extend the scope in which Theorem 1.1 (in exactly the same formulation)
is valid. Any point or any line may as well be located at an infinite position—
the theorem remains true (we will prove this later). On the other hand, we
may get interesting Euclidean specializations of Pappos’s theorem by sending
elements to infinity. One of them is given by the theorem below:

Theorem 1.2 (A Euclidean version of Pappos’s theorem). Consider
two straight lines a and b in Euclidean geometry. Let A, B, C be three points
on a and let X, Y, Z be three points on b. Then the following holds: If AY ‖
BX and BZ ‖ CY then automatically AZ ‖ CX.
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Fig. 1.4 Euclidean version of Pappos’s theorem with points at infinity and line at infinity
added (left). The straight version (right).

For a drawing of this theorem see Figure 1.3. Figure 1.4 illustrates how the
parallelism of lines is translated to the projective setup. If AY ‖ BX then
these two lines intersect (projectively) at a point γ at infinity. Similarly we get
an infinite intersection α for BZ ‖ CY . Pappos’s theorem (in its projective
version) states that γ and α and the intersection β of AZ with CX are
collinear. Since γ and α span the line �∞ at infinity, AZ and CX must be
parallel as well. In other words, the conclusion line (i.e. the line that encodes
the final conclusion of the theorem) has been sent to infinity. The drawing
on the right shows a straightened version of the situation with the conclusion
line at a finite location. Observe the similarity of the combinatorics. Once we
have introduced the concept of projective transformation, we will see that by
a suitable transformation we can send any instance of Pappos’s theorem to
the above situation. Thus our Euclidean version is essentially equivalent to
the full Pappos’s theorem and not just a special case of it.

We will start our collection of proofs with two proofs of Theorem 1.2.
It should be remarked in advance that most of our proofs will be algebraic
and rely on translations of geometric facts to algebraic identities. There is
a general problem with algebraic proofs: one should never divide by zero!
This seemingly obvious fact leads to many difficulties and misunderstandings
when geometric theorems are concerned. Very often, proofs work perfectly in
generic situations in which no points or lines coincide or additional collineari-
ties occur, but in certain degenerate cases they may break down. In fact, many
algebraic proofs given in geometry textbooks suffer from this (d)effect and a
whole branch of current ongoing research deals with the proper treatment of
nondegeneracy conditions. The very statement of Theorem 1.1 carries non-
degeneracy conditions in stating that the three crucial pairs of lines should
actually intersect.
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Fig. 1.5 Euclidean version of Pappos’s theorem (left). Relation of parallels and segment
ratios (right).

In our investigations we will bypass these degeneracy problems by assum-
ing a few (rather strong) generic nondegeneracy properties. All nine points
of the configuration should be distinct and all nine lines of the configuration
should be distinct. If for a certain proof additional nondegeneracy assump-
tions are necessary, we will state them in the context of the proof.

Our first proof is extremely simple but (in its naive version) also of limited
scope. It will be based on ratios of segment lengths. We present the proof in a
version that works only under the following two additional assumptions: The
two initial lines must intersect in a point O. The triples of points on these
lines should not be separated by O. By introducing oriented lengths the proof
can be easily extended to get rid of the second assumption. But we will not
do this here.

Proof one: segment ratios. By |PQ| we denote the distance between two
points P and Q. Our first proof relies on the following fact, which is well
known from school lessons on elementary geometry (compare Figure 1.5,
right). Let a and b be two lines intersecting at O and let P and Q be two
points on a not separated by O. Similarly, let R and S be two points on b
not separated by O. Then PR and QS are parallel if and only if

|OP |
|OQ| =

|OR|
|OS| .

Using this fact and the hypotheses of the theorem, the parallelism of AY
and BX implies that

|OA|
|OB| =

|OY |
|OX | .

Similarly, the parallelism of BZ and CY implies that

|OB|
|OC| =

|OZ|
|OY | .
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Since none of the six points are allowed to coincide with O, none of the
denominators in the above expression are zero. Multiplying the two left sides
of the equations and the two right sides of the equations and canceling the
terms |OB| and |OY |, we obtain

|OA|
|OC| =

|OZ|
|OX | .

This in turn is equivalent to the fact that AZ and CX are parallel. ��

At first sight the above proof seems to be very simple and elegant: Multiply
two equations, cancel out terms, and get the result. Unfortunately, it has
several drawbacks. One of the main problems is that we translated parallelism
into ratios of lengths of segments. This translation works correctly only if the
decisive points are not separated by the intersection of the lines. One can
circumvent this problem by considering oriented line segments. The sign of
the ratios used in our proof will be negative if the points are separated by O,
and positive otherwise. However, to make this formally correct one should
provide a case-by-case analysis that proves that the signs really have the
desired behavior. A closer look shows that the proof is problematic, since we
introduced the auxiliary point O and we made the proof dependent on its
existence. The complete proof breaks down if the lines a and b are parallel
and point O does not exist at all. In fact, the Euclidean version of Pappos’s
theorem does not at all depend on these special position requirements. The
following proof uses only the six points of Theorem 1.2. However, we will need
three slightly less trivial facts concerning polynomials and oriented areas of
triangles and quadrangles.

Fact 1: Oriented triangle area.
For three points A, B, C with coordinates (ax, ay), (bx, by), and (cx, cy) we
can express the oriented area of the triangle Δ(A, B, C) by a polynomial in
the coordinates. To be more specific, the desired polynomial is

1
2

det

⎛
⎝

ax bx cx

ay by cy

1 1 1

⎞
⎠ =

1
2
(axby + bxcy + cxay − axcy − bxay − cxby).

In fact, the specific shape of this polynomial is not important for our next
proof. What is more important is the meaning of oriented: If the sequence of
points (A, B, C) is in counterclockwise order, then the area will be calculated
with positive sign. If they are in clockwise order, we will get a negative sign.
If the three points are collinear, then the triangle vanishes and the area will
be zero. We will denote the triangle area by area(A, B, C).

Fact 2: Oriented quadrangle area.
The oriented area of a quadrangle �(A, B, C, D) can be defined as
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Fig. 1.6 Area of a quadrangle. The convex case (left) and a self-intersecting zero-area
case (right).

area(A, B, C, D) = area(A, B, D) + area(B, C, D).

This function is again a polynomial in the coordinates of the points. If the
boundary of this triangle (the polygonal chain from A to B to C to D
and back to A) is free of self-intersections, then the usual area is calcu-
lated (with sign depending of the orientation). However, if the polygon has
self-intersections, then one of the triangles in the sum contributes a positive
value and the other a negative value. The area of a self-intersecting quadran-
gle (A, B, C, D) is zero if and only if the two triangles involved in the sum have
equal areas with opposite signs. Since both triangles share the edge (B, D),
the zero case implies that A and C have the same altitude over this edge.
In other words, the line through A and C is parallel to the line through B
and D. Altogether we obtain

AC ‖ BD if and only if area(A, B, C, D) = 0.

Fact 3: Zero polynomials.
If a polynomial in several variables is zero in a full-dimensional region of the
space of parameters, then it must be the zero polynomial. In other words,
if we have a polynomial that evaluates to zero at a certain point and also
for all small perturbations away from that point, then it must be the zero
polynomial.

Now we have collected everything to formulate a proof of Pappos’s theorem
by area arguments. The following proof was given as a motivating example
by D. Fearnly Sander in an article on the conceptual power of areas for
theorem-proving [39].

Proof two: area method. Consider six points A, B, C, X, Y, Z in the Eu-
clidean plane located at positions that roughly resemble the situation in
Figure 1.7 on the left. This figure can be considered as being composed
of two triangles Δ(A, C, B), Δ(X, Y, Z), and two quadrangles �(B, Y, X, A)
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Fig. 1.7 Pappos proof by the area method.

and �(C, Z, Y, B). The sum of the oriented areas (with counterclockwise
vertex labels) of these tiles equals the area of the surrounding quadrangle
�(C, Z, X, A). Thus we have

+ area(A, C, B)
+ area(X, Y, Z)
+ area(B, Y, X, A)
+ area(C, Z, Y, B)
− area(C, Z, X, A) = 0.

The expression on the left is obviously a polynomial, and it does not depend
on the exact position of the points (since for our argument only the fact
that all involved polygons are labeled counterclockwise and the fact that the
inner tiles decompose the outer quadrangle were relevant). Hence by Fact 3
this formula must hold for arbitrary positions of the six points—even in
degenerate cases. Now let the six points correspond to the points in Pappos’s
theorem. The hypotheses of Theorem 1.2 state that (A, B, C) and (X, Y, Z)
are two collinear triples of points. Furthermore, we have AY ‖ XB and
BZ ‖ Y C. In terms of areas, this means that

area(A, C, B) = area(X, Y, Z) = area(B, Y, X, A) = area(C, Z, Y, B) = 0.

This implies immediately that we also have

area(C, Z, X, A) = 0,

since otherwise the above area-sum formula would be violated. Hence we have
AZ ‖ XC and the theorem is proved. ��

This proof is conceptually far less trivial than our first one, but as a benefit
we get several things for free. In essence, the proof says that if four of the
areas in the formula above vanish, then the last one has to vanish as well. In
this form the theorem holds without any restrictions. It covers even the case
of coinciding points.
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Fig. 1.8 Three versions of Pappos’s Theorem.

As a second benefit we may observe that this proof is very useful for
generalizations. We may consider the drawing in Figure 1.7 as the projec-
tion of a three-dimensional prism over a triangle. The five faces of the prism
(two triangles and three quadrangles) correspond to the five areas involved
in the proof. We can play a similar game with every three-dimensional poly-
hedron that has only triangles and quadrangles in its boundary. This gives
an infinite collection of incidence theorems for which Pappos’s theorem is the
smallest example. The reader is invited to explore this field on his/her own.
For instance, what is the corresponding theorem if we consider a cube as the
underlying combinatorial structure?

Before we start to investigate proofs of Pappos’s theorem based on con-
cepts of projective geometry we will present some other interesting instances
of Pappos’s theorem. They are drawn in Figure 1.8. Lines that seem to be
parallel in the drawings are really assumed to be parallel. The first picture
shows a nice instance that reveals the order-three symmetry that is inherent
to Pappos’s theorem. The other two pictures show Euclidean specializations
in which some of the points are sent to infinity. So the Euclidean instance in
the second drawing could be formulated as follows.

Theorem 1.3 (Another Euclidean version of Pappos’s theorem).
Start with a triangle A, B, C. Draw a point P on the line AB. From there draw
a parallel to AC and form the intersection with BC. From this intersection
draw a parallel to AB and form the intersection with AC and continue this
procedure as indicated in the picture. After six steps you will reach point P
again.

The patient reader is invited to find out how the drawings in Figure 1.8
correspond to the labeling in our original version of the theorem.
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1.3 Projective Proofs of Pappos’s Theorem

In this section we want to present proofs in which (in contrast to the last
section) we make no particular use of parallelism. All proofs in this section
will rely on the collinearity properties of points only. In this respect these
proofs are projective in nature, since incidence and collinearity are genuine
projective concepts, while parallels are not.

The main algebraic tool used in this section is homogeneous coordinates,
which will be introduced in much detail in later chapters. In contrast to
the usual (x, y)-coordinates in the plane, homogeneous coordinates present
points in the plane by three coordinates (x, y, z). Coordinate vectors that dif-
fer only by a nonzero scalar multiple are considered to be equivalent. The zero
vector (0, 0, 0) is excluded from consideration. Thus the nonzero points in a
one-dimensional subspace of R

3 represent the same point. A usual Euclidean
plane H can be embedded in a homogeneous framework in the following way.
Embed H as an affine subspace of R

3 that does not contain the origin. Each
point p of H corresponds to the one-dimensional subspace Vp spanned by p
and may be represented by any nonzero vector of Vp. Conversely, each homo-
geneous vector (x, y, z) spans a subspace V(x,y,z). In general, this subspace
intersects the embedded plane H at some point p. This is the point that cor-
responds to (x, y, z). It may happen that V(x,y,z) does not intersect H (this
happens whenever the subspace is parallel to H). Then there is no Euclidean
point associated to (x, y, z). In this case this homogeneous coordinate vec-
tor represents an infinite point (see Chapter 3 for details). Thus the finite
and the infinite points can be represented by homogeneous coordinates in a
completely generalized manner.

Collinearity of points in H translates to the fact that the three points in
R

3 lie in a single plane (the plane spanned by the corresponding line and the
origin of R

3). Thus if A = (x1, y1, z1), B = (x2, y2, z2), and C = (x3, y3, z3)
are homogeneous coordinates of points, then one can test collinearity by
checking the condition

det

⎛
⎝

x1 y1 z1

x2 y2 z2

x3 y3 z3

⎞
⎠ = 0.

This condition works for finite as well as for infinite points. The following
proof is based on this observation.

Proof three: determinant cancellations. For matters of better readability we
have exchanged the labels of the points by simple digits from 1 to 9 (see
Figure 1.9). For the proof we need the additional nondegeneracy condition
that the triple of points (1, 4, 7) is not collinear. The generic nondegeneracy
conditions (no identical points and no identical lines) should still be valid.

Assume that (1, 4, 7) is not collinear. After a suitable affine transformation
(which does not affect the incidence relations of points and lines) we may
assume without loss of generality that (1, 4, 7) forms an equilateral triangle.
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1 1 0 0
2 a b c
3 d e f
4 0 1 0
5 g h i
6 j k l
7 0 0 1
8 m n o
9 p q r

[1, 2, 3] = 0 =⇒ ce=bf
[1, 5, 9] = 0 =⇒ iq=hr
[1, 6, 8] = 0 =⇒ ko=ln
[2, 4, 9] = 0 =⇒ ar=cp
[2, 6, 7] = 0 =⇒ bj=ak
[3, 4, 8] = 0 =⇒ fm=do
[3, 5, 7] = 0 =⇒ dh=eg
[4, 5, 6] = 0 =⇒ gl=ij

[7, 8, 9] = 0 ⇐= mq=np

Fig. 1.9 Determinant cancellation for Pappos’s theorem.

Now we embed the plane in which our configuration resides into three-space
in such a way that the points 1, 4, and 7 are at the three-dimensional unit
vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Since the configuration is now embedded in R
3, each point is represented

by three-dimensional (homogeneous) coordinates. Three points P, Q, R in our
picture are collinear if and only if the determinant of the 3×3 matrix formed
by their coordinates is zero. We abbreviate this determinant by [PQR]. The
matrix in Figure 1.9 represents the coordinates of the configuration.

The letters in the matrix represent the coordinates of the remaining points.
The generic nondegeneracy assumptions imply that none of the letters can
be 0. This can be seen as follows. The triple of points (3, 4, 7) cannot be
collinear, since otherwise two of the configuration lines would coincide. How-
ever, the determinant formed by these points equals exactly a. Thus we get

0 �= det

⎛
⎝

a b c
0 1 0
0 0 1

⎞
⎠ = a.

A similar argument works for each of the other variables.
With our special choice of coordinates, each of the eight collinearities of

the hypotheses can be expressed as the vanishing of a certain 2 × 2 sub-
determinant of the coordinate matrix. If we write down all these equations
(compare Figure 1.9), multiply all left sides, and multiply all right sides,
we are left with another equation mq = np, which translates back to the
collinearity of (7, 8, 9). By our nondegeneracy assumptions, all variables in-
volved in the proof will be nonzero; therefore the cancellation process is fea-
sible. ��

A proof that is essentially based on this structure first appeared in [14].
This proof carries remarkable symmetric structures concerning the cancella-
tion patterns among the determinants. Structurally, it reduces to the facts
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that all collinearities correspond to 2 × 2 determinants and that each letter
occurs on the left as well as on the right. The first fact is highly dependent
on the choice of our basis, since only the zeros in the unit vectors are allowed
to express each of the collinearities as a 2 × 2 determinant.

One can circumvent this problem by an even more abstract approach.
Instead of dealing with concrete coordinates of points, we may deal with gen-
eral properties of determinants. A fundamental role in this context is played
by the Grassmann-Plücker relations. These relations state that for arbitrary
five points A, B, C, D, E in the projective plane the following relation holds
among the determinants of the homogeneous coordinates:

[ABC][ADE] − [ABD][ACE] + [ABE][ACD] = 0.

This remarkable identity is of fundamental importance for projective geom-
etry, and we will dedicate a large part of Chapter 6 to it. For now we take
the identity as an algebraic fact. On it we base our next proof.

Proof four: Grassmann-Plücker relations. We again assume that (1, 4, 7) is
not collinear. We consider the fact that (1, 2, 3) is collinear in our theorem.
Taking this Grassmann-Plücker relation

[147][123]− [142][173] + [143][172] = 0

together with the fact that [123] = 0, we obtain

[142][173] = [143][172].

For each of the eight collinearities of the hypotheses we can get one such
equation:

[147][123]− [142][173] + [143][172] = 0 =⇒ [142][173] = [143][172]
[147][159]− [145][179] + [149][175] = 0 =⇒ [145][179] = [149][175]
[147][186]− [148][176] + [146][178] = 0 =⇒ [148][176] = [146][178]
[471][456]− [475][416] + [476][415] = 0 =⇒ [475][416] = [476][415]
[471][483]− [478][413] + [473][418] = 0 =⇒ [478][413] = [473][418]
[471][429]− [472][419] + [479][412] = 0 =⇒ [472][419] = [479][412]
[714][726]− [712][746] + [716][742] = 0 =⇒ [712][746] = [716][742]
[714][753]− [715][743] + [713][745] = 0 =⇒ [715][743] = [713][745]

Multiplying again all left sides and all right sides of the equations (and taking
care of the signs of the determinants) and canceling out terms that occur on
both sides, we end up with the equation

[718][749] = [719][748].
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Fig. 1.10 Ceva’s theorem
|AX|
|XB| · |BY |

|Y C| · |CZ|
|ZA| = 1 (left). The pasting scheme for the proof

(right).

(The cancellation is feasible since all involved determinants will be nonzero
by our nondegeneracy conditions.) By the Grassmann-Plücker relation

[714][789]− [718][749] + [719][748] = 0,

this implies that [714][789] = 0. Since [147] was assumed to be nonzero,
this implies that [789] = 0, which in turn is equivalent to the collinearity
of (7, 8, 9). ��

This proof is very similar to the previous one. However, working directly
on the level of determinants makes the special choice of the basis no longer
necessary. There are amazingly many theorems in projective geometry that
can be proved by this generic determinant calculus, and one can even base
methods for automatic theorem-proving on them. (For details on this subject
see [15, 30, 109].)

Our next proof reveals a topological structure that underlies Pappos’s
theorem. The proof can be thought of as gluing together several triangular
shapes to form a closed oriented surface. The fact that the surface is closed
(has no boundary) corresponds to the conclusion of the theorem.

For this proof to work out we need a kind of basic building block: The
theorem of Ceva (see for instance [28]). Ceva’s theorem states that if in a
triangle the sides are cut by three concurrent lines that pass through the cor-
responding opposite vertices, then the product of the three (oriented) length
ratios along each side equals 1.

In fact, this theorem is almost trivial if one views the length ratios as ratios
of certain triangle areas. For this observe that if the line (A, B) is cut by the
line (C, D) at a point X , then we have

|AX |
|XB| = −area(C, X, A)

area(C, X, B)
= −area(C, D, A)

area(C, D, B)
, (∗)
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Fig. 1.11 Pasting copies of Ceva’s theorem.

where area(A, B, C) denotes the oriented area of the triangle (A, B, C). In
order to prove Ceva’s theorem, we consider the obvious identity

area(CDA)
area(CDB)

· area(ADB)
area(ADC)

· area(BDC)
area(BDA)

= −1

(note that the oriented triangle area is an alternating function and that
each triangle in the denominator occurs as well in the numerator). Applying
the above identity (∗), we immediately get Ceva’s theorem. The converse of
Ceva’s theorem holds as well: If the product of the three ratios equals 1, then
the three lines in the interior will meet.

Now consider the situation in which two Ceva triangles are glued together
along an edge in a way such that they share the point on this edge. Multiply-
ing the two Ceva expressions, we see that the ratio on the inner edge cancels,
and we are left only with terms that live on the boundary of the figure (see
Figure 1.11 (left)). We obtain

|AZ|
|ZB| ·

|CY |
|Y A| ·

|BV |
|V D| ·

|DW |
|WC| = 1.

We can extend this process to an arbitrary collection of triangles that are
glued edge to edge. An edge can be used either by only one triangle (then it is
a boundary edge) or by exactly two triangles. The whole collection of patched
triangles should be orientable (thus we obtain an orientable triangulated 2-
manifold with boundary). All triangles of the collection should be equipped
with Ceva configurations that have the additional property that points on
interior edges are shared by the Ceva configurations of two adjacent trian-
gles. We consider the product of all corresponding Ceva expressions. After
cancellation of the ratios that correspond to inner edges we are left with an
expression that contains only oriented length ratios from the boundary. For
instance, in the situation of Figure 1.11 (right) we get
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Fig. 1.12 Creating Pappos’s theorem from six copies of Ceva’s theorem.

a1

b1
· a2

b2
· a3

b3
· a4

b4
· a5

b5
· a6

b6
= 1.

The inner part of the structure cancels completely and does not contribute
to the product on the boundary. Now, if we have a collection of triangles that
has nothing more than a triangular boundary (i.e., a 2-manifold with a single
triangular hole), then the Ceva condition on the whole is automatically satis-
fied, and we can paste in a final triangle that carries a Ceva configuration. In
other words, if we have an orientable triangulated 2-manifold without bound-
ary and we have a Ceva configuration on all triangles but one (such that the
edge points are shared), then a Ceva configuration can automatically be put
on the final triangle. This is an incidence theorem. We now will show that
using the right manifold, Pappos’s theorem can be put in exactly this form.

Proof five: pasting copies of Ceva’s theorem. Consider six triangles that are
arranged as in Figure 1.10 on the right. Furthermore, identify opposite edges
of the hexagon as indicated in the drawing. This can be done by placing the
six triangles one over the other (think of the hexagon as made of paper and
fold it appropriately) and gluing together corresponding opposite edges. Now
place a Ceva configuration on each of the edges in a way such that whenever
two triangles meet at an edge, the corresponding two points on this edge are
identified. Our considerations above show that if the edge points are located
such that five of the triangles carry proper Ceva configurations, then the last
Ceva configuration is satisfied automatically. The figure in the middle shows
the situation after all the triangle edges have been identified. Observe that
the points on the edges of the outer triangle as well as the edges themselves
do not contribute to the incidence theorem. What is left after these elements
are deleted is exactly a drawing of Pappos’s theorem. ��

A proof very similar to this was given by H.S.M. Coxeter and S.L. Gre-
itzer [28]. Their proof was based on Menelaus configurations instead of Ceva
configurations but is essentially similar. In [110] one can find an elaborate
treatment of the question of which geometric theorems can be proved by
similar manifold arguments.
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Fig. 1.13 Two instances of Pascal’s theorem.

1.4 Conics

This section deals with generalizations and variations of Pappos’s theorem.
In particular, we will study what happens if we consider pairs of lines as
degenerate cases of a degree-two curve (an ellipse, hyperbola, or parabola)
in the plane. Degree-two curves are often also called conics, and they cor-
respond to solutions of (homogeneous) quadratic equations in homogeneous
coordinates. More specifically, a conic in the plane is characterized by six ho-
mogeneous parameters a, b, c, d, e, f and consists of the set of all points with
homogeneous coordinates (x, y, z) that satisfy the equation

a · x2 + b · y2 + c · xy + d · xz + e · yz + f · z2 = 0.

Let (x, y, z) be a solution of this equation. Since the total degree in x, y, z of
each summand is the same (namely two), every scalar multiple λ · (x, y, z)
is also a solution of this equation. Thus we may think of each solution as
a point in the real projective plane. The totality of these points forms the
conic. The geometric form of the conic depends on the special values of the
parameters. Projectively, there is no difference between ellipse, hyperbola,
and parabola. These three cases simply reflect different ways in which the
line at infinity �∞ intersects the conic. If there is no intersection, the conic
is an ellipse; if there are two intersections, the conic is a hyperbola (it has
two infinite points, which correspond to the two asymptotes); if there is just
one intersection, the conic is a parabola (which turns out to be a limit case
between the two other possibilities).

There is one interesting special case that is also important from a projec-
tive point of view: the conic may degenerate into two lines (which may even
coincide). This happens whenever the the term ax2+by2+cxy+dxz+eyz+fz2

factorizes into two linear components:
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Fig. 1.14 Deformations of Pascal’s theorem and labeling for the proof.

ax2 + by2 + cxy + dxz + eyz + fz2 = (α1x + β1y + γ1z) · (α2x + β2y + γ2z).

In this case the conic consists of two lines, each one described by the linear
equation in one of the factors.

In general, five points in the projective plane determine a unique conic
passing through each of them. Thus it is a truly projective condition whether
six points lie on a common conic or not. In Chapter 10 we will prove that
six points A, B, C, X, Y, Z are on a common conic if and only if the following
condition among the determinants of the homogeneous coordinates holds:

[ABC][AY Z][XBZ][XY C] = [XY Z][XBC][AY C][ABZ].

We will use this nice characterization to prove the following well-known vari-
ation (or better generalization) of Pappos’s theorem:

Theorem 1.4 (Variation 1: Pascal’s Theorem). Let A, B, C, X, Y, Z be
six points on a conic. If the lines AY , BZ, CX intersect the lines BX, CY ,
AZ respectively, then the three points of intersection are collinear.

Two instances of the theorem can be found in Figure 1.13. Pascal’s theorem
is named after the famous Blaise Pascal and was discovered by (the 16-year-
old) Pascal in 1640. This is about 1300 years after the discovery of Pappos’s
theorem. Nevertheless, it is obviously a generalization of Pappos’s theorem.
If the conic in Pascal’s theorem degenerates to consist of two lines, then
we immediately obtain Pappos’s theorem. We will prove Theorem 1.4 by
a determinant cancellation argument similar to the one used in our fourth
proof. Figure 1.14 shows two instances of Pascal’s theorem one with an ellipse
and one with a hyperbola. If we smoothly deform the first into the second, we
will pass through the degenerate situation that resembles Pappos’s theorem.

Proof six: Pascal’s theorem. Again we assume for nondegeneracy reasons that
no points and no lines of the theorem coincide. For the labeling in the proof
we refer to Figure 1.14. Consider the following determinant equations:
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conic: ⇒ [125] [136] [246] [345] = + [126] [135] [245] [346]
[159] = 0 =⇒ [157] [259] = − [125] [597]
[168] = 0 =⇒ [126] [368] = + [136] [268]
[249] = 0 =⇒ [245] [297] = − [247] [259]
[267] = 0 =⇒ [247] [268] = − [246] [287]
[348] = 0 =⇒ [346] [358] = + [345] [368]
[357] = 0 =⇒ [135] [587] = − [157] [358]
[987] = 0 ⇐= [287] [597] = + [297] [587]

The first line encodes that the points 1, . . . , 6 lie on a conic. The next six
lines are consequences of Grassmann-Plücker relations and the six collinearity
hypotheses of our theorem. If we multiply all expressions on the left and all
expressions on the right and cancel determinants that occur on both sides, we
end up with the last expression, which (under the nondegeneracy assumption
that [157] �= 0) implies the desired collinearity of (7, 8, 9). ��

Similar to Pappos’s theorem, there is a variety of reformulations and spe-
cializations. A nice reformulation is the following: If a hexagon is inscribed in
a conic in the projective plane, then the opposite sides of the hexagon meet in
three collinear points. Or if one prefers a Euclidean variant of this in which the
conclusion line is sent to infinity, one could state the following: If a hexagon
is inscribed in a conic and two pairs of opposite edges are parallel, then so
is the third pair. There is another nice way to derive even more incidence
theorems from Pascal’s theorem. Assume that the conic has a fixed position.
If two of the points in Pascal’s theorem that are joined by a line continu-
ously approach each other until they meet, their joining line will in the limit
case become a tangent to the conic at the position where the two points are
located. Thus we obtain as limit cases situations in which also tangents are
involved (observe that tangents are proper concepts of projective geometry).

Instances of degenerate versions are given in Figure 1.15. The leftmost
picture shows a smallest degenerate situation. The label 15 symbolizes that
points 1 and 5 are identified. The labeling is consistent with the labeling in
Figure 1.14. The join of 1 and 5 becomes the tangent at the point 15. One can
also read the construction in the reverse direction. If a conic C and a point 15
on it are given, then one can construct the tangent at 15 by choosing four
arbitrary points 2, 3, 4, 6 on C and constructing the joins and intersections as
given by the picture to arrive finally at point 9 another point on the tangent.
This fact was also known to Pascal, and is one of the main applications
of his theorem. The second picture shows in essence the same situation as
the first one. However, here the point 15 has been sent to infinity and the
corresponding tangent is located at the line at infinity. By this the conic
becomes a parabola, and the two other lines through 15 become parallel to
the symmetry axis of the parabola. Now the theorem reads as follows: Start
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Fig. 1.15 Degenerate versions of Pascal’s theorem.

with four points A, B, C, D on a parabola. Draw two lines through C and D
parallel to the symmetry axis of the parabola. Intersect them with AD and BC,
respectively. Then the join of the two intersections is parallel to the join of A
and B. The right figure shows an even more degenerate situation: Inscribe a
triangle into a conic. Form the tangents at the vertices. Intersect them with
the opposite sides of the triangle. The three intersections are collinear.

1.5 More Conics

We can think of Pascal’s theorem being derived from Pappos’s theorem by
considering two lines that do not have a configuration point in common as a
(degenerate) conic. Pascal’s theorem says that the theorem stays valid even if
the conic is not degenerate. The same process can be applied two more times
to obtain a theorem with three conics and three lines. For this consider the
left part of Figure 1.16. The blue conic arises from merging the upper and the
lower lines of the drawing. The red and the green conics arise from merging
two other lines. Amazingly, the new configuration still forms a theorem. If all
incidences except for the blue line are satisfied as indicated in the picture,
then the three white points are automatically collinear (we will prove this
in a minute). First we observe that there are two combinatorially different
ways of merging three pairs of lines in Pappos’s theorem to three conics. The
second possibility is shown in Figure 1.16 on the right. Also in this case we
get a theorem. To see that they are combinatorially different, observe that in
one picture the three lines meet in a point; in the other one they don’t. Both
theorems are an instance of an even more general fact that is a consequence of
Bézout’s theorem from algebraic geometry (see [19, 40]). An algebraic curve
of degree d is the zeroset of a homogeneous polynomial of degree d. Thus
conics are algebraic curves of degree 2. Bézout’s theorem can be stated in
the following way: If an algebraic curve of degree n and an algebraic curve of
degree m intersect, then either the number of intersections is finite and less
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Fig. 1.16 Generalizations of Pascal’s Theorem

than or equal to n · m, or the curves intersect in infinitely many points and
share a component. Now we can prove the following very strong statement:

Theorem 1.5 (Variation 2: Cayley-Bacharach-Chasles theorem). Let
A and B be two curves of degree three intersecting in nine proper points. If
six of these points are on a conic, the remaining three points are collinear.

Proof seven: algebraic curves. Let A and B be the curves and let pA(x, y, z)
and pB(x, y, z) be the corresponding homogeneous polynomials of degree
three. Bézout’s theorem implies that if the two curves A and B have only
finitely many points in common, then they can have at most nine points of
intersection. Call them 1, . . . , 9. And assume that 1, . . . , 6 are on a conic C
with polynomial pC . We will prove that 7, 8, 9 are collinear. Consider a linear
combination pµ = pA + μ · pB of the two polynomials for some real param-
eter μ. The polynomial pµ has the following properties. First it is again a
degree-three polynomial. Second, it passes through all nine points 1, . . . , 9
(each of these points is a zero of both pA and pB, so it is also a zero of
any linear combination of them). Now consider an additional point q on the
conic C distinct from 1, . . . , 6. There is a μ such that pµ also passes through q
(to find μ we just have to solve a linear equation pA(q) + μpB(q) = 0). Con-
sider pµ with this specific value μ. The curve pµ passes through 1, . . . , 6 and
through q. Thus it shares these seven points with the conic C. Bézout’s theo-
rem implies that pµ must have C as one component. Thus we have pµ = pC ·L
with a linear equation L (otherwise pµ cannot have degree three). This im-
plies that the points 7, 8, 9 are all contained in the line described by the linear
equation L. ��

The situation of the theorem is sketched in Figure 1.17. This theorem
was independently discovered by several people. Most probably Chasles was
the first to discover this theorem, in a slightly more general version in 1885.
As so often in mathematics, the theorem is usually attributed to others, in
this case namely to Cayley and to Bacharach, who published similar results
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Fig. 1.17 If two cubics intersect in nine points six of which are on a conic, then the
remaining three points are collinear.

later than Chasles (for a historic account see [38, 63]). The theorems shown
in Figure 1.16 are immediate specializations of this theorem. There the two
curves of degree three decompose into the product of a quadratic curve (the
conic) and a linear curve (the line). So the two red components of the picture
form one curve of degree three, and the two green components form the
other one. The rest is a literal application of the above theorem. One can
even go one step further and consider Pappos’s original theorem as a direct
consequence of Theorem 1.5. For this one simply has to consider three of the
lines as one cubic and another three as the other cubic. The color coding in
Figure 1.17 makes the decomposition clear.

1.6 Complex Numbers and Circles

We are almost at the end of our journey around Pappos’s theorem. In this
section we want to take the considerations of the last chapter still a little
further and draw a surprising connection to the geometry of circles in the
plane. Circles are an intrinsically Euclidean concept. Thus if we do so we
have again to talk about the exact position of our line at infinity �∞. As
already mentioned in Section 1.3, homogeneous coordinates can be considered
as embedding the Euclidean plane into R

3 at some affine hyperplane. This
time (and this will be done quite often later in the book) we will choose the
affine hyperplane {(x, y, z) | z = 1} for this embedding. Thus a point with
Euclidean coordinates (x, y) can be represented by homogeneous coordinates
(x, y, 1) or any nonzero scalar multiple of this vector. The infinite points are
those with coordinates (x, y, 0).

We now want to study circles under this special embedding. A circle is
a special conic. Thus we want to find out which quadratic equations will
correspond to circles. A circle is usually given by its center (cx, cy) and a
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radius r. In Euclidean geometry the circle equation can be written as

(x − cx)2 + (y − cy)2 − r2 = 0.

Expanding this term and interpreting it in homogeneous coordinates with
z = 1, we can rewrite it as

(x − cx · z)2 + (y − cy · z)2 − r2 · z2 =
x2 − 2cxxz + c2

xz2 + y2 − 2cyyz + c2
yz2 − r2z2 =

x2 + y2 − 2cxxz − 2cyyz + (c2
x + c2

y − r2)z2 = 0.

The last line gives the interpretation of the circle in parameters of a general
conic. The circle is a special conic for which the coefficients of x2 and y2 are
equal and the coefficient of xy vanishes.

There is a surprising (and very deep) connection between circles and com-
plex numbers. Let us investigate what happens when we intersect a circle
with the line at infinity. In other words, we search for solutions of the above
equation with z = 0. Clearly the solution must be complex, since no circle
has real intersections with the line at infinity (this property is possessed only
by hyperbolas and parabolas). In the circular case for z = 0 the equation
degenerates to

x2 + y2 = 0.

Up to scalar multiples we get the two solutions

I = (1, i, 0) and J = (1,−i, 0).

These solutions are complex points at the line at infinity. Moreover (and this
is an important fact!), they do not depend on the specific choice of the specific
circle. Thus we can say All circles pass through I and J and any conic passing
through these points is a circle.

This fact is perhaps the most important connection of Euclidean and pro-
jective geometry. It allows us to express relations about circles as incidence
relations of conics that involve the points I and J. In a very strong sense
we could say that every Euclidean incidence theorem can be expressed as a
projective theorem in which two points play the special roles of I and J. In a
sense, Chapters 16 to 26 of this book are dedicated to the elaboration of this
fact. Here we will make a small application of it in the context of Pappos’s
theorem. Consider again the two generalizations given in Figure 1.16. These
two pictures are reproduced again in the first row of Figure 1.18. In these
pictures the points in which three conics meet are marked by white dots.
In the same way as we assumed in Section 1.2 that a certain line is located
at the line at infinity we will now assume that in each picture two of these
points are located at the points I and J. All other points should stay at real
positions. A conic that passes through I and J is a circle. Thus the conics in
our theorem become circles (this is similar to the effect that two lines become
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Fig. 1.18 Metamorphoses of theorems.

parallel if their point of intersection is located at an infinite position). So the
two theorems can be interpreted as Euclidean theorems about seven points,
three lines, and three circles. The corresponding pictures are shown in Fig-
ure 1.18 in the second row. For instance, the first of these two theorems can
be stated as follows: Given three circles that intersect mutually in two points,
the three lines spanned by the intersections of each pair of circles meet in a
point. The meeting point corresponds to point 7 in the original theorem.

We can even go one step further. We can interpret straight lines as cir-
cles with infinite radius. There is a particular way of extending Euclidean
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Fig. 1.19 Miquel’s theorem.

geometry that reflects this way of thinking. For this we introduce one point ∞
at infinity and assume that straight lines are circles that in particular con-
tain this point. (A word of caution: one should not confuse this extension
of Euclidean geometry by one point with the projective plane we introduced
earlier. In the projective plane a line at infinity was introduced. The extension
by only one point used here has something to do with the projective complex
line and is called the one-point compactification of the Euclidean plane and
will be investigated later, in Chapter 17.

In this setup we no longer have to distinguish between lines and circles.
Lines are just circles of infinite radius. In this interpretation our two theorems
could be stated as theorems on six circles and eight points (we interpret the
infinite point ∞ just as an ordinary point). The last row of Figure 1.18
gives a drawing of the situation in which ∞ is located at a finite position.
For instance, the second theorem (which is a well-known fact from circle
geometry) could be stated as follows.

Theorem 1.6 (Variation 3: Miquel’s theorem). Consider four points
A, B, C, D on a circle. Draw four more circles C1, C2, C3, C4 that pass through
the pairs of points (A, B), (B, C), (C, D), and (D, A), respectively. Now con-
sider the other intersections of Ci and Ci+1 for i = 1, . . . , 4 (indices mod-
ulo 4). These four intersections are again cocircular.

We will give an elementary proof of this theorem by calculations of angle
sums. The basic fact that we will need for this proof is illustrated in Fig-
ure 1.20. If we consider a secant AB of a circle and if we look at this secant
from two other different points C and D of the circle (which are on the same
side of AB), we will see the secant in the same angle. If the points C and D
are at opposite sides of the secant we will have complementary angles. Ob-
serve that the angles in Figure 1.20 are assumed to be oriented angles. Thus
the complementary angle has to be counted with negative sign. If one takes
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care of the orientation of the angles one could say that the difference of the
two angles at C and D will in both cases be a multiple of π. Conversely,
four points A, B, C, D lie on a common circle if the difference of the angles
(under which AB is seen) at C and D is a multiple of π. Thus we get a
characterization of four points on a circle in terms of angles.

In principle, Miquel’s theorem can now easily be proven by considering
angle sums among the six involved circles. However, we here will prefer a more
algebraic approach that expresses the angle relations in terms of complex
numbers. For this assume that all eight points in the picture are finite and
consider the picture of Miquel’s theorem embedded in the complex number
plane C. We consider A, B, C, D from Figure 1.20 as complex numbers. Then,
for instance, A − C forms a complex number that points in the direction
from C to A. Forming the quotient A−C

B−C , we get a complex number whose
argument (the angle with respect to the real axis) is exactly the angle at
point C. Similarly, A−D

B−D gives a complex number that describes the angle at
point D. We can compare these two angles by forming again the quotient of
these two numbers: A−C

B−C /A−D
B−D . This number will be real if and only if the

two angles differ by a multiple of π.
Taking everything together, we get the following characterization of four

points being cocircular (possibly with infinite radius): Four points A, B, C, D
in the complex plane are cocircular if and only if

(A − C)(B − D)
(B − C)(A − D)

is a real number.
The above expression is called a cross-ratio, and we will later on see that

cross-ratios play a fundamental and omnipresent role in projective geometry
(see Chapters 4 and 5). With the help of cross-ratios we can easily state a
proof of Miquel’s theorem.
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α α

A B

C

D

α

α − π

Fig. 1.20 Angles in a circle.
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Proof eight: cross-ratio cancellations. Assume that the quadruples of points
(A, B, C, D), (A, B, E, F ), (B, C, F, G), (C, D, G, H), (D, A, H, E) are cocir-
cular. From this we obtain that the following cross-ratios are all real:

(A−B)(C−D)
(C−B)(A−D) ,

(F−B)(A−E)
(A−B)(F−E) ,

(C−B)(F−G)
(F−B)(C−G) ,

(H−D)(C−G)
(C−D)(H−G) ,

(A−D)(H−E)
(H−D)(A−E) .

Multiplying all these numbers and canceling terms that occur in the numer-
ator as well as in the denominator, we are left with the expression

(F − G)(H − E)
(H − G)(F − E)

.

Since this expression is the product of real numbers, it must itself be real. By
our above observations this expresses exactly the cocircularity of (E, F, G, H),
which is the conclusion of our theorem. ��

1.7 Finally...

We will end this section with an almost trivial proof of Pappos’s theorem in
its full generality by simply expanding an algebraic term. Still we need a little
preparation for this. Again consider the original points of Pappos’s theorem
expressed in homogeneous coordinates. Thus we assume that the drawing
plane H is again embedded in R

3 at a position that does not contain the origin
of R

3. As before, each point p is represented by a three-dimensional vector
(x, y, z). This time we will take all points of R

3 − {(0, 0, 0)} into account.
For this we identify the vector (x, y, z) with all of its nonzero scalar multiples
(λx, λy, λz), λ �= 0. By this R

3−{(0, 0, 0)} is divided into equivalence classes.
Each equivalence class represents a point of the projective plane. A point
of the drawing plane H can be represented by its actual (x, y, z) position
or by any nonzero scalar multiple of it. Conversely, for a point (x, y, z) of
R

3 − {(0, 0, 0)} we consider the line l(x,y,z) through it and the origin. The
point in H that is represented by (x, y, z) is the intersection of l(x,y,z) and H .
If this intersection does not exist, (x, y, z) represents an infinite point.

In this setup a straight line g in H may be considered a two-dimensional
linear space spanned by the elements of g and the origin of R

3. Such a line
may by represented by a linear equation

{(x, y, z) ∈ R
3 − {(0, 0, 0)} | ax + by + cz = 0}

given by parameters (a, b, c) ∈ R
3 − {(0, 0, 0)}. Thus points as well as lines

are represented by nonzero vectors in R
3. A line g is incident to a point p if

and only if the standard scalar product 〈p, g〉 is zero.
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Fig. 1.21 A construction sequence for Pappos’s theorem.

This observation gives us the key to a very elegant method of calculating
the line that connects two points p and q. We simply need a vector g with
the property 〈p, g〉 = 〈q, g〉 = 0. Such a vector can simply be calculated by
the cross product p × q. Similarly, the intersection of two lines g and h asks
for a vector p with the property 〈p, g〉 = 〈p, h〉 = 0. Thus the intersection
can be calculated by g × h. So we can apply the cross product to calculate
intersections and joins in projective geometry. (We will learn much more of
this in Chapter 3.)

What happens if we try to form the join of two identical points p and q?
If p and q represent the same point, they must be scalar multiples of each
other: q = λp. Performing the cross product, we obtain p × q = p × λp =
λ(p × p) = (0, 0, 0). Obtaining a zero vector as result is an indication of
performing a degenerate operation. A similar effect results when we try to
intersect two identical lines.

How can we test collinearity of three points p, q, r? The points are collinear
if and only if the representing vectors are linearly dependent in R

3. Thus we
can test collinearity by the condition det(p, q, r) = 0.

Now we can express Pappos’s theorem as a sequence of nested cross prod-
ucts and a determinant. Expanding the final term and observing that it is
zero will prove the theorem.

Proof nine: brute force. We give a construction sequence for the Pappos’s con-
figuration. We start with five free points A, B, C, D, E (compare Figure 1.21).
The coordinates for the remaining four points in the construction can be cal-
culated by

F = (A × D) × (B × C),
G = (A × B) × (D × E),
H = (C × D) × (B × E),
I = (A × H) × (C × G).

Testing the final collinearity boils down to testing whether det(E, F, I) = 0.
The following session of the computer algebra program Mathematica shows
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an evaluation of these expressions. All output except for the final result has
been suppressed. The final “0” proves Pappos’s theorem.

What does this evaluation indeed prove? It shows that when we perform
the construction sequence independently of the initial choice of the coordi-
nates of A, B, C, D, E, the final determinant will be zero. This may happen
for two different reasons. Either during the construction sequence we run
into a degenerate situation (such as the intersection of identical lines) that
introduce a zero vector as an intermediate result. Or all operations were valid
(this will be the case for almost every instance) and the final points E, F, I
are indeed collinear. ��

A word of caution: The last proof is very general and seems to be straight-
forward. Still, the help of a computer is essential here. Performing the cal-
culations by hand would require one to perform all cross products and to
evaluate the final determinant. The final term has altogether 15456 sum-
mands of degree 15. They can be canceled in pairs, which gives the final
result.
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