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About This Book

Let no one ignorant of geometry enter here!

Entrance to Plato’s academy

Once or twice she had peeped into the book her sister was
reading, but it had no pictures or conversations in it, “and
what is the use of a book,” thought Alice, “without pictures or
conversations?”

Lewis Carroll,
Alice’s Adventures in Wonderland

Geometry is the mathematical discipline that deals with the interrelations
of objects in the plane, in space, or even in higher dimensions. Practicing
geometry comes in very different flavors. More than any other mathematical
discipline, the field of geometry ranges from the very concrete and visual to
the very abstract and fundamental. In the one extreme, geometry deals with
very concrete objects such as points, lines, circles, and planes and studies
the interrelations between them. On the other side, geometry is a benchmark
for logical rigor, the elegance of axiom systems, and logical chains of proof.
There is a third way of thinking about geometry that stands alongside the
visual and the logic-based approaches: the algebraic treatment. Here algebraic
structures such as vectors, matrices, and equations are used to form a kind of
parallel world, in which each geometric object and relation has an algebraic
manifestation. In this parallel world, too, the considerations may be very
concrete and algorithmic or very abstract and functorial. This book explains
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vi About This Book

how to treat the fundamental objects of geometry using appropriate algebraic
methods. Many of the techniques presented in this book have their roots
in the work of the great geometers of the nineteenth century like Plücker,
Grassmann, Möbius, Klein, and Poincaré (to mention only a few).

The algebraic representations are, however, more by far than a way to
express geometric objects by numbers. Very often, finding the right algebraic
structure unveils the “true” nature of a geometric concept. It may open new
perspectives on and deep insights into matters that seemed elementary at
first sight and help to generalize, connect, interpret, visualize, and under-
stand. This is what this book is about. Its ultimate aim is to present the
beauty that lies in the rich interplay of geometric structures and their al-
gebraic counterparts. A warning should be issued right at the beginning. It
is relatively easy to transform geometric objects into algebraic ones. For in-
stance, points in the plane may be easily represented by their xy-coordinates.
However, these “naive” approaches to representing geometric objects are very
often not the ones that lead to far-reaching conclusions. Often it is useful to
introduce more sophisticated algebraic methods that may seem more abstract
at first sight but are ultimately more powerful and elegant. Guided by these
more abstract and elegant structures, it may even happen that one is willing
to modify the original concept of the geometric first-class citizens (say points
or lines) and for instance add some new type of (more abstract) objects.
When we talk about homogeneous coordinates, one of the most fundamen-
tal concepts of this book, exactly this will happen. We will first see that in
the plane very elementary operations such as computing the line through
two points and computing the intersection of two lines can be very elegantly
expressed if lines as well as points are represented by three-dimensional coor-
dinates (where nonzero scalar multiples are identified). Taking a closer look
at the relation of planar points and their three-dimensional representing vec-
tors, we will observe that certain vectors do not represent points in the real
Euclidean plane. This motivates the search for a geometric interpretation of
these nonexistent points. It turns out that they may be interpreted as “points
that are infinitely far away.” We will then extend the usual two-dimensional
plane by these new points at infinity and obtain a richer and more elegant
geometric system: the system of projective geometry.

In a certain sense this way of thinking is quite similar to the work of
chemists at the time when the periodic table of the elements was about to
be discovered. Based on the elements known so far, they looked for ways to
explain their behavior. At some point they spotted a structure and certain
symmetry principles into which all the known chemical elements could be fit-
ted (the periodic table of the elements). However, some places in the periodic
table did not correspond to known elements. It soon became more reasonable
to claim the existence of these undiscovered elements than to give up the
inner beauty and explanatory power of the periodic table. Later on, all ele-
ments whose existence had been conjectured were indeed discovered. The role
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of “discovering elements” in mathematics is played by the “interpretation of
concepts.” We will meet such situations quite often in this book.

The spirit of this book. In a sense, this book is much more about the
“how” than about the “what” of geometry. The reader will recognize that
very often we will study very simple objects and their relations. Elementary
objects such as points, lines, circles, conics, angles, and distances are the
real first-class citizens in our approach. Also, the operations we study will
be quite elementary: intersecting two lines, intersecting a line and a conic,
calculating tangents, etc. Most of these operations may in principle be per-
formed with some advanced high-school mathematics. Regardless of that, our
emphasis will be on structures that at the same time allow us to express the
fundamental objects as well as the operations on them in a most elegant
way. So the algebraic representation of an object never stands alone; it is
always related to the operations that should be performed with the object.
As mentioned before, these advanced representations often lead to new in-
sights and broaden our understanding of the seemingly well-known objects.
In this respect our philosophy here is very close to Felix Klein’s famous book
“Elementary Mathematics From an Advanced Standpoint.”

While reading this book, the reader will find that the definitions and con-
cepts are more important than the theorems. Very often the same (sometimes
elementary) theorems are re-proved with different approaches. A topic that
will show up over and over again is the question of how elegantly and gen-
eralizably these proofs can be performed with the various methods. I hope
that the reader will find these multiple perspectives on related topics a good
way to gain a deeper understanding of what is going on.

A little history. As mentioned before, many of the techniques in this book
go back to what could be called the golden age of geometry, the hundred years
between 1790 and 1890. In this period, starting with Gaspard Monge many
fundamental geometric concepts were discovered that went far beyond Eu-
clid’s Elements (which until then had dominated geometric thinking). Many
of these new concepts were intimately related to the underlying algebraic
structures. In that period, algebra and geometry underwent a kind of coevo-
lution, inspiring and enhancing each other. Projective geometry turned out
to be one of the most fundamental structures that at the same time had the
most elegant algebraic representation. The concepts of linear and multilinear
algebra were developed in close connection to their geometric significance.
The development culminated in the revolutionary discovery of what now is
called “hyperbolic geometry”: a geometric structure that violates the fifth
postulate of Euclid and is still logically on an equal footing with his geom-
etry. At its time, this discovery was so revolutionary that C.F. Gauss, who
was one of the main protagonists in this discovery and at the same time one
of the world’s leading mathematicians, kept it a secret and never published
anything on that topic. (We will dedicate several chapters to this topic.) The
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key to an elegant treatment of hyperbolic geometry again lies in projective
approaches. Nowadays, hyperbolic geometry is a well-established, amazingly
rich mathematical subject with flourishing connections to many other fields,
such as topology, group theory, number theory, combinatorics, numerics, and
many more.

Unfortunately, in the nineteenth century the field of geometry grew per-
haps a bit too fast. Many books with many pictures, many theorems, and
many proofs of varying mathematical quality were published. Some of the
proofs heavily relied on pictorial reasoning. At some time around the turn
of the century, a point was reached where it was difficult to say which of
these results were to be trusted and which were not. As a kind of antithetical
development, this time was the beginning of a school of new and until then
unmatched mathematical rigor. David Hilbert was one of the leading figures
in the process of rewriting all geometry from scratch in order to place it on a
reliable and safe foundation. His book “Grundlagen der Geometrie” (Foun-
dations of Geometry) [58] starts with an axiom system that even fixed gaps
in Euclid’s axioms and postulates to develop a watertight building of geom-
etry. Hilbert’s famous saying that one must be able to say “tables, chairs,
beer mugs” each time in place of “points, lines, planes” refers to the demand
that an axiom system must be completely formal and not at all depend on
the imagination. Following this strict approach, he and several other mathe-
maticians triggered a development in which geometry was treated as a purely
formal science. The hardliners of this program claimed that pictures, and in
particular pictorial reasoning, had to be abandoned from geometry books.1

This development was a kind of catharsis for geometry, and many impor-
tant and subtle points were revealed in this time (from 1900 to approximately
1970). However, this formal approach also had its disadvantages. There is a
famous half-joking quotation from Johann Wolfgang von Goethe about math-
ematical abstractions:

Mathematicians are a kind of Frenchmen; whatever you say to them they translate
into their own language, and forthwith it is something entirely different.

Something like this happened to geometry in the time of rigorous abstraction.
Abstraction opened mathematicans’ eyes to many far-reaching concepts, such
as alternative axiom systems, algebraic geometry, and combinatorial gener-
alizations. At the same time, it changed the concept of what was considered
a first-class mathematical citizen. Germs, schemes, matroids, and configura-
tion spaces became more important than (the old-fashioned) points, lines,
and planes.

As a sideeffect of this process many important concepts were almost for-
gotten. Large parts of the still valuable “old geometry” were no longer taught
at the universities. The following personal anecdote shall exemplify this. It
was around 1993 when I gave a talk at KTH (Kungliska Tekniska Högskolan)

1 It is a kind of historical irony that Hilbert, jointly with Cohn-Vossen, wrote a beautiful
and highly visual book entitled “Geometry and the Imagination” [59].
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in Sweden, where I mentioned a certain (and I think really cool) way to con-
struct the foci of an ellipse simply by drawing four specific (complex) tangents
and intersecting them (see Figure 19.6). After the talk, a much older colleague
came to me and said, “Oh, I am so glad. I thought that today nobody re-
membered this construction and that I might be one of the last ones who
knew it.” In fact, I learned this construction from a book by Blaschke from
the 1940s [6], and I hardly know a modern textbook in which it is taught.
Perhaps this was one of the points at which I decided to write this book.

Geometry and computers. Since the 1970s, the role of geometric rea-
soning has again undergone a structural change. The reason for this is that
computers, and in particular computer graphics, have come to play a more
and more important role. This has had a twofold effect. On the one hand, in
order to obtain good visualizations (also in nonmathematical fields such as
CAD, animated movies, games) it is essential to have a good and far-reaching
modeling of the objects that are to be visualized, be it the newest automobile
design, the dinosaurs in Jurassic Park, or chemical molecules. For such visu-
alizations, even on a very elementary level the elegant treatment of primitives
such as points, lines, and circles becomes a key issue. On the other hand, the
computer became a tool that allowed mathematicians to visualize abstract
concepts and to do precise research on a level that is still quite visual. In
particular, computers have made it possible to interact directly with mathe-
matical (and in particular with geometric) structures. All these developments
brought a more concrete and more algorithmic treatment of geometry to the
mathematical world’s attention once more. In fact, it turned out that many
concepts related to nineteenth-century geometry were highly appropriate for
dealing with geometric structures in a computational way.

I myself began my research career at a time (around 1985) at which com-
putational methods were seriously entering the everyday work of mathemati-
cians. From then until now I have gone through a chain of thoughts, concepts
and problems that definitely shaped the selection of topics in this book. For
me, an amazing experience was that this chain went from quite abstract con-
cepts in combinatorial geometry to increasingly elementary (or let us rather
say fundamental) concepts and questions. Following these experiences it be-
came more and more clear that the key to an elegant treatment of geometric
structures lies in a good algebraic representation and goes straight to the
heart of ninetheenth century geometry. Since many of these topics I was work-
ing on form a kind of “knowledge base” for this book, I will briefly mention
this chain. I started working on the structural and computational treatment
of so-called realizability questions on combinatorial geometry (we will meet
this topic briefly in Section 27.2). In this area it turned out that invariant
theoretic and projective methods (see Chapter 6 and Chapter 7) are funda-
mental. In fact (and this was part of my own doctoral thesis), these methods
could be used to implement algorithms that were able to generate “readable
algebraic proofs” for many geometric incidence theorems (see Chapter 15)
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and by this can form the basis of a kind of geometric expert system. After
implementing this prover, I had the desire to have a nice interactive input
device for geometric configurations that could be used to feed the prover.
What started as a small and seemingly simple project turned out to be a
task that is still occupying quite a substantial fraction of my research time.
The original demands for this input interface were comparatively simple. The
user should be able to use the mouse to construct geometric configurations
containing points, lines, circles, conics, etc. After the construction is finished
it should be possible to grab basis elements with the mouse, move them, and
watch the dependent elements change according to the rules of the construc-
tion. If the configuration encodes an incidence theorem, it should be possible
to ask the prover for a proof of it. My experience in combinatorial geometry
and invariant theory made it immediately clear that such a system, if it was
to be elegant, must be based on projective methods, since they have the nice
feature of eliminating many special cases. What started at this time (a first
prototypical project was undertaken together with Henry Crapo in 1992) for
me turned out to be an ongoing search for elegant structures to represent the
fundamental objects in geometry. In a sense, this book tells roughly half of
this story. In 1996 I started the development of a less prototypical system for
dynamic geometry (Cinderella), jointly with Ulrich Kortenkamp [112, 113].
In this system we tried to represent the geometric objects in a way that al-
lows for a smooth implementation of geometric primitive operations. One can
read the present book as a guide to the representation of these objects and
operations. One fundamental breakthrough in the Cinderella project was the
discovery that in order to achieve a continuous dynamic behavior in the ge-
ometric elements it is necessary to embed the whole situation in an ambient
complex space and in a sense navigate on Riemann surfaces (see [72, 73, 74]).
This is the other half of the story, on which we will only very briefly touch in
the very last section of the very last chapter. To tell it in full length would
require another book.

Applications, beauty, pictures, and formulas: This book is intended
to serve two purposes. On the one hand, it should be very “hands-on” and
purposely focuses on elementary objects such as points, lines, circles, conics,
and their interrelations. The reader will find many concrete and directly ap-
plicable formulas and recipes for performing operations, measurements, and
transformations on them. On the other hand, the book is intended to com-
municate some of the inner beauty of the subject. For me it is one of the most
beautiful mathematical topics, with many amazing twists, surprises, and sub-
tleties and still of fundamental importance for many practical applications.

Although this book presents many such explicit algebraic and algorith-
mic methods for performing primitive operations, the observant reader may
recognize that in this book there are comparatively few long algebraic deriva-
tions and calculations. This is intimately related to the approach of working
on a conceptual level. We will try to derive conceptual setups that make
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explicit calculations superfluous whenever possible. In doing so we are close
to the philosophy of one of the most important persons in nineteenth century
geometry, Julius Plücker. Felix Klein, who was his student, wrote about him:

In der Plückerschen Geometrie wird die bloße Kombination von Gleichungen in
geometrische Auffassung übersetzt und rückwärts durch letztere die analytische Op-
eration geleitet. Rechnung wird nach Möglichkeit vermieden, dabei eine bis zur
Virtuosität gesteigerte Beweglichkeit der inneren Anschauung, der geometrischen
Ausdeutung vorliegender analytischer Gleichungen ausgebildet und in reichem Maße
verwendet.

Or in the translation by M. Ackermann:

In Plücker’s geometry the bare combination of equations is translated into geomet-
rical terms, and the analytic operations are led back through the geometric. Com-
putation is avoided as far as possible; but by doing this, a mobility, heightened to
the point of virtuosity, of inner intuition of the geometric interpretation of given
analytic equations, is cultivated and extensively applied.

Many of the formulas and derivations that are given here are not only used
to do a formal derivation that takes one from a statement A to a statement B.
More importantly, formulas very often have a structural component. Many
of them have interesting symmetry properties, a certain rhythm, so to speak.
It is perhaps advisable that the reader pause at some point and meditate a
bit on this inner structure and symmetry of some of the formulas.

In the book you will also find many pictures, diagrams, and illustrations
(so hopefully Alice will find it useful after all). They are intended to illustrate
and not to replace the proofs and concepts that are presented. As with the
formulas, while reading the book it is highly recommended that one spend a
substantial amount of time looking closely at some of the pictures. A picture
is worth a thousand words, and not everything that one might see and observe
in the pictures is also in the text. So I recommend that the reader take some
time for meditation on the pictures, their hidden symmetry structures, their
spatial interpretations, their dynamic behavior.

Why this book? One might wonder why one should take the effort to
write a 570-page book about projective geometry that contains so much “old
geometry.” There are several reasons, and I will try to explain a few of them.

My experience over the past few years: As already mentioned, much of my
own work has been closely related to the representation of geometric objects
on the computer. In the area of automated theorem-proving as in the area
of dynamic geometry, the classical approaches turned out to be extremely
useful. Homogeneous coordinates, invariant theoretic methods, Grassmann-
Plücker relations, Cayley-Klein geometries and many other topics that are
central in this book were the key to understanding and implementing versatile
and flexible tools. This book presents a selection of those topics that I found
most helpful either from a structural point of view (how things are related)
or from a pragmatic point of view (what is needed for implementations).
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Furthermore, many aspects have been added to the purely classical viewpoint
that will hopefully reveal some new interrelations between the topics.

Backing up knowledge: I had to learn many of these concepts from the old
original literature. Mathematical language changes over time, and sometimes
it takes quite a bit of decoding to understand what some concept in some
original paper really means. Although much of the old mathematics may
still be valuable from a modern point of view, it might become increasingly
inaccessible. In particular, if (as in the case of classical projective geometry)
some concepts are no longer regularly taught at universities, they enter a self-
reinforcing loop of fading from commonly available knowledge. Fortunately,
the advent of computer visualization has made classical projective geometry
an important topic, again. However, many of the deeper concepts are still
accessible only to the experts. A few months ago I had a discussion with my
colleague Tim Hoffmann on this topic, and in the discussion we found a nice
metaphor for what is going on. Writing about classical topics in a modern
language is like copying films from videotape to DVDs. The old media still
exist; however, it becomes increasingly unlikely that they are used. It needs a
refreshing copy procedure that puts the data/knowledge in a format accessible
by modern readers (i.e. DVD players). So part of this book project is a kind of
backup process. Still I can truly recommend to everyone to read at least once
Felix Klein’s Vorlesungen über nicht-euklidische Geometrie [68] or Plücker’s
System der analytischen Geometrie [100].

The audience: This book is intentionally written in a style that should
be accessible to students who have basically finished their elementary linear
algebra course. It should be accessible to mathematicians as well as computer
scientists and physicists. Most of the topics in this book are presented in a
relatively self-contained way, allowing even geometry novices to profit from
reading it.

A guided tour: Here is a brief summary of the topics you will meet in the
following chapters. Except for Chapter 1 (which is a bit special, as you will
see), this book is divided into three parts. The first part is entitled “Projec-
tive Geometry” and deals with the very fundamental objects and concepts.
Projective spaces are introduced, first on an axiomatic level (Chapter 2) and
then in direct relation to spaces related to real geometry (“real” in the sense
of the real numbers R). Homogeneous coordinates are introduced as the main
tool for dealing with projective geometry on an algebraic level (Chapter 3).
Their transformations are also studied. In particular, it is shown how vari-
ous transformations can all be handled by a unified framework. Chapter 4
deals with first simple invariants under these transformations. Cross-ratios
are prominently introduced. They will form the foundation of many inves-
tigations in the later chapters. Chapter 5 is perhaps the theoretically most
complicated chapter of the first part. There we show that projective transfor-
mations can also be characterized by certain invariant properties (for instance
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collinearity). This chapter could be skipped on first reading. Chapters 6 and 7
demonstrate the importance of determinants in this context. We outline how
one could alternatively build up the framework of projective geometry by tak-
ing determinants instead of points as first-class citizens.

The second part is entitled “Working and Playing with Geometry.” In this
part a selection of topics is presented that can be handily treated by means
of projective concepts. In a way, this part is also largely about the “flexibility
of thinking” in Plücker’s sense. Here we try to demonstrate the conceptual
power of projective geometry and homogeneous coordinates. Chapter 8 in-
troduces more elaborate invariants. Chapters 9 to 11 deal intensively with
conics. These chapters are of fundamental importance for the rest of the
book and should not be skipped. Chapter 12 explains how the concepts gen-
eralize to higher dimensions. Chapters 13 and 14 are in a sense special again.
They introduce a beautiful method of dealing with projective geometry on
a diagrammatic level. In this language, each formula can be expressed by a
graphical diagram. Algebraic derivations translate to graph manipulations.
These two chapters can be skipped at first reading; however, skipping them
means missing a wealth of beautiful concepts. Chapter 15 finally tries to
present all previously mentioned concepts in a combined way and highlights
several interesting geometric incidence theorems and invariant-theoretic prov-
ing methods.

The third part is entitled “Measurements.” It deals with a fundamental
problem that remains after the first two parts. Over the real numbers, projec-
tive geometry and homogeneous coordinates are a powerful system. However,
they have one great disadvantage. The only concepts that can be dealt with
are those that are stable under projective transformations. This implies that
such elementary geometric operations as measuring a distance and measuring
an angle have no direct analogue in real projective geometry. Also, such fun-
damental objects as circles are not objects of real projective geometry. This
problem has a beautiful solution. Performing projective geometry over the
complex numbers allows for the utilization of the geometric properties of this
number field. Since multiplication by complex numbers of unit length corre-
sponds to a rotation and rotations implicitly encode distances, this implies
that using complex numbers allows one to express measurements in projective
geometry. We will see that, for instance, circles can be expressed as special
conics that pass through two special complex points I and J. Adding these
two points to projective geometry will essentially allow us to perform Eu-
clidean operations. The entire third part is about the utilization of complex
numbers for performing measurements. Chapter 16 provides a brief introduc-
tion to the geometry of complex numbers. Chapter 17 introduces the complex
projective line, a first structure in which cocircularity can be expressed in a
purely projective framework. Chapter 18 merges the structure of the real
projective plane and the complex projective line to arrive at a system that
combines the advantages of both spaces. Chapter 19 gives many concrete ex-
amples of how this general philosophy applies to various Euclidean concepts.
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Chapters 20 to 26 deal with a bold generalization of this approach. It is shown
how measurements can be based on projective calculations with respect to
a conic. Here all three branches (projective invariants, conics, and complex
numbers) are combined to form the very general framework of Cayley-Klein
geometries. Chapter 20 introduces the basic concepts, while Chapter 21 in-
troduces the general framework for measurements. Chapters 22 and 23 deal
with various special geometric properties and theorems in these spaces. The
historically very important topic of hyperbolic geometry is a special Cayley-
Klein geometry. We dedicate Chapters 24 to 26 to it as the representation of
hyperbolic elementary geometry. Hyperbolic geometry turns out to be a so-
called nondegenerate Cayley-Klein geometry. This gives it various symmetry
properties not shared by general Cayley-Klein geometries.

Finally, in Chapter 27 we briefly mention a few topics that demonstrate
how projective geometry influences other parts of mathematics, among them
algebraic geometry, combinatorics, quantum information theory, and dynamic
geometry.
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1

Pappos’s Theorem: Nine Proofs
and Three Variations

Bees, then, know just this fact which is of service to them-
selves, that the hexagon is greater than the square and the
triangle and will hold more honey for the same expenditure of
material used in constructing the different figures. We, how-
ever, claiming as we do a greater share in wisdom than bees,
will investigate a problem of still wider extent, namely, that,
of all equilateral and equiangular plane figures having an equal
perimeter, that which has the greater number of angles is al-
ways greater, and the greatest plane figure of all those which
have a perimeter equal to that of the polygons is the circle.

Pappos of Alexandria, ca. 340 CE

Everything in the world is strange and marvelous to well-open
eyes.

José Ortega y Gasset

We will begin our journey through projective geometry in a slightly uncommon
way. We will have a very close look at one particular geometric theorem—
namely The hexagon theorem of Pappos. Pappos of Alexandria lived around
290–350 CE and was one of the last great Greek geometers of antiquity.
He was the author of several books (some of them are unfortunately lost)
that covered large parts of the mathematics known at that time. Among
other topics, his work addressed questions in mechanics, dealt with the vol-
ume/circumference properties of circles, and even gave a solution to the angle
trisection problem (with the additional help of a conic). The reader may take
this first chapter as a kind of overture to the remainder of the book in which
several topics that are important later on are introduced. Without any harm
one can also skip this chapter on first reading and come back to it later.

3
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Fig. 1.1 Three versions of Pappos’s theorem.

1.1 Pappos’s Theorem and Projective Geometry

The theorem that we will investigate here is known as Pappos’s hexagon
theorem and usually attributed to Pappos of Alexandria (though it is not
clear whether he was the first mathematician who knew about this theorem).
We will later see that this theorem is special in several respects. Perhaps
the most important property is that in a certain sense Pappos’s theorem is
the smallest theorem expressible in elementary terms only. The only objects
involved in the statement of Pappos’s theorem are points and lines, and the
only relation needed in the formulation of the theorem is incidence. Properly
stated, the theorem consists only of nine points and nine lines, and there
is no such theorem with fewer items. Another remarkable fact is that the
incidence configuration underlying Pappos’s theorem has beautiful symmetry
properties. Some of them are obvious, some of them slightly hidden.

Theorem 1.1 (Pappos’s hexagon theorem). Let A,B,C be three points
on a straight line and let X,Y, Z be three points on another line. If the lines
AY , BZ, CX intersect the lines BX, CY , AZ, respectively, then the three
points of intersection are collinear.

Here intersecting means that two lines have exactly one point in common.
The nine points of Pappos’s theorem are the two triples of points on the
initial two lines and the three points of intersection, which finally turn out
to be collinear. The nine lines are the two initial lines, the six zigzag lines
between the points, and finally the line on which the three intersection points
lie. Figure 1.1 shows several instances of Pappos’s theorem. The six black
points correspond to the initial points, whereas the three white points are the
intersections that turn out to be collinear. Observe that in our examples the
positions of the nine points and lines (taken as a set) are identical. However,
the role of the initial two triples of points is played by different points in each
example. The first example shows the picture most often drawn in textbooks,
with the final conclusion line between the two initial lines. The second picture
shows that the roles of these three lines can be freely interchanged. The
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Fig. 1.2 An almost parallel bundle of lines that meet at a point far on the right.

last picture shows that also one of the inner lines can play the role of the
conclusion line (by symmetry of the construction this line can be an arbitrary
inner line). In fact, the automorphism group of the combinatorial structure
behind Pappos’s theorem admits that any pair of lines that do not have a
point of the configuration in common can be taken as initial lines for the
theorem.

The exact formulation of the theorem already has some subtleties, which
we want to mention here. The theorem as stated above requires that the
pairs of lines (AY ,BX), (BZ,CY ), and (CX,AZ) actually intersect, so that
we can speak of the collinearity of the intersection points. Stated as in Theo-
rem 1.1, Pappos’s theorem is perfectly valid in Euclidean geometry. However,
if we interpret it in Euclidean geometry it does not exhaust its full generality.
There are essentially two different ways in which it can happen that two lines
a and b may not intersect in Euclidean geometry. Either they are identical
(then they have infinitely many points in common) or they are parallel (then
they have no point in common). Now, projective geometry is an extension of
Euclidean geometry in which points are added that are infinitely far away. By
this we can properly speak of the intersection of parallel lines (the intersec-
tion point lies at infinity) and we get an interpretation of Pappos’s theorem
in which all instances of parallelism are covered as well.

The essence of real projective geometry may be summarized in the fol-
lowing two sentences: Bundles of parallel lines meet at an infinite point. All
infinite points are incident to a line at infinity. Thus (real) projective geom-
etry is an extension of Euclidean geometry by certain elements at infinity.
In the next two chapters we will elaborate in depth on this extension of Eu-
clidean geometry. In this chapter we will be content with a kind of pre-formal
understanding of it.

Imagine a horizontal line a and a line b that is almost parallel to it. Both
lines meet (since they are not parallel), but the point of intersection will be
relatively far out. If the line b has a small negative slope, the intersection point
will be far to the right of the picture. If the slope of b is small but positive,
the intersection point will be far to the left. What happens if we move line
b continuously from the situation with small negative slope via zero slope to
the situation with small positive slope? The point of intersection will first
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Fig. 1.3 Euclidean version of Pappos’s theorem.

move farther and farther to the right (in fact, it can be arbitrarily far away).
In the situation with zero, slope both lines are parallel and the intersection
point vanishes. After this, the point comes back from a very far position on
the left side. Projective geometry now eliminates the special case of parallel
lines by postulating an additional point at infinity on the parallels. Figure 1.2
shows a bundle of lines that meet in a point very far out on the right. If this
point is moved to infinity, then the lines will eventually become parallel.

It is important to notice that in the concept of projective geometry one
assumes the existence of many different points at infinity: one for each bun-
dle of parallel lines. All these points together form the line at infinity �∞.
By introducing these additional elements, special cases get eliminated from
geometry. As a matter of fact, these extensions imply that in the projective
plane any two distinct points will have a unique line connecting them and
any two distinct lines will have a unique point of intersection (it just may be
at infinity). Furthermore, from an intrinsic viewpoint of the projective plane
the infinite elements are indistinguishable from the finite elements. They have
exactly the same incidence properties. (For more details see the next chapter.)

1.2 Euclidean Versions of Pappos’s Theorem

By passing to a projective framework we get two kinds of benefit. First of all,
we extend the scope in which Theorem 1.1 (in exactly the same formulation)
is valid. Any point or any line may as well be located at an infinite position—
the theorem remains true (we will prove this later). On the other hand, we
may get interesting Euclidean specializations of Pappos’s theorem by sending
elements to infinity. One of them is given by the theorem below:

Theorem 1.2 (A Euclidean version of Pappos’s theorem). Consider
two straight lines a and b in Euclidean geometry. Let A,B,C be three points
on a and let X,Y, Z be three points on b. Then the following holds: If AY ‖
BX and BZ ‖ CY then automatically AZ ‖ CX.
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Fig. 1.4 Euclidean version of Pappos’s theorem with points at infinity and line at infinity
added (left). The straight version (right).

For a drawing of this theorem see Figure 1.3. Figure 1.4 illustrates how the
parallelism of lines is translated to the projective setup. If AY ‖ BX then
these two lines intersect (projectively) at a point γ at infinity. Similarly we get
an infinite intersection α for BZ ‖ CY . Pappos’s theorem (in its projective
version) states that γ and α and the intersection β of AZ with CX are
collinear. Since γ and α span the line �∞ at infinity, AZ and CX must be
parallel as well. In other words, the conclusion line (i.e. the line that encodes
the final conclusion of the theorem) has been sent to infinity. The drawing
on the right shows a straightened version of the situation with the conclusion
line at a finite location. Observe the similarity of the combinatorics. Once we
have introduced the concept of projective transformation, we will see that by
a suitable transformation we can send any instance of Pappos’s theorem to
the above situation. Thus our Euclidean version is essentially equivalent to
the full Pappos’s theorem and not just a special case of it.

We will start our collection of proofs with two proofs of Theorem 1.2.
It should be remarked in advance that most of our proofs will be algebraic
and rely on translations of geometric facts to algebraic identities. There is
a general problem with algebraic proofs: one should never divide by zero!
This seemingly obvious fact leads to many difficulties and misunderstandings
when geometric theorems are concerned. Very often, proofs work perfectly in
generic situations in which no points or lines coincide or additional collineari-
ties occur, but in certain degenerate cases they may break down. In fact, many
algebraic proofs given in geometry textbooks suffer from this (d)effect and a
whole branch of current ongoing research deals with the proper treatment of
nondegeneracy conditions. The very statement of Theorem 1.1 carries non-
degeneracy conditions in stating that the three crucial pairs of lines should
actually intersect.
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Fig. 1.5 Euclidean version of Pappos’s theorem (left). Relation of parallels and segment
ratios (right).

In our investigations we will bypass these degeneracy problems by assum-
ing a few (rather strong) generic nondegeneracy properties. All nine points
of the configuration should be distinct and all nine lines of the configuration
should be distinct. If for a certain proof additional nondegeneracy assump-
tions are necessary, we will state them in the context of the proof.

Our first proof is extremely simple but (in its naive version) also of limited
scope. It will be based on ratios of segment lengths. We present the proof in a
version that works only under the following two additional assumptions: The
two initial lines must intersect in a point O. The triples of points on these
lines should not be separated by O. By introducing oriented lengths the proof
can be easily extended to get rid of the second assumption. But we will not
do this here.

Proof one: segment ratios. By |PQ| we denote the distance between two
points P and Q. Our first proof relies on the following fact, which is well
known from school lessons on elementary geometry (compare Figure 1.5,
right). Let a and b be two lines intersecting at O and let P and Q be two
points on a not separated by O. Similarly, let R and S be two points on b
not separated by O. Then PR and QS are parallel if and only if

|OP |
|OQ| =

|OR|
|OS| .

Using this fact and the hypotheses of the theorem, the parallelism of AY
and BX implies that

|OA|
|OB| =

|OY |
|OX | .

Similarly, the parallelism of BZ and CY implies that

|OB|
|OC| =

|OZ|
|OY | .
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Since none of the six points are allowed to coincide with O, none of the
denominators in the above expression are zero. Multiplying the two left sides
of the equations and the two right sides of the equations and canceling the
terms |OB| and |OY |, we obtain

|OA|
|OC| =

|OZ|
|OX | .

This in turn is equivalent to the fact that AZ and CX are parallel. ��

At first sight the above proof seems to be very simple and elegant: Multiply
two equations, cancel out terms, and get the result. Unfortunately, it has
several drawbacks. One of the main problems is that we translated parallelism
into ratios of lengths of segments. This translation works correctly only if the
decisive points are not separated by the intersection of the lines. One can
circumvent this problem by considering oriented line segments. The sign of
the ratios used in our proof will be negative if the points are separated by O,
and positive otherwise. However, to make this formally correct one should
provide a case-by-case analysis that proves that the signs really have the
desired behavior. A closer look shows that the proof is problematic, since we
introduced the auxiliary point O and we made the proof dependent on its
existence. The complete proof breaks down if the lines a and b are parallel
and point O does not exist at all. In fact, the Euclidean version of Pappos’s
theorem does not at all depend on these special position requirements. The
following proof uses only the six points of Theorem 1.2. However, we will need
three slightly less trivial facts concerning polynomials and oriented areas of
triangles and quadrangles.

Fact 1: Oriented triangle area.
For three points A,B,C with coordinates (ax, ay), (bx, by), and (cx, cy) we
can express the oriented area of the triangle Δ(A,B,C) by a polynomial in
the coordinates. To be more specific, the desired polynomial is

1
2

det

⎛
⎝
ax bx cx
ay by cy
1 1 1

⎞
⎠ =

1
2
(axby + bxcy + cxay − axcy − bxay − cxby).

In fact, the specific shape of this polynomial is not important for our next
proof. What is more important is the meaning of oriented: If the sequence of
points (A,B,C) is in counterclockwise order, then the area will be calculated
with positive sign. If they are in clockwise order, we will get a negative sign.
If the three points are collinear, then the triangle vanishes and the area will
be zero. We will denote the triangle area by area(A,B,C).

Fact 2: Oriented quadrangle area.
The oriented area of a quadrangle �(A,B,C,D) can be defined as
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Fig. 1.6 Area of a quadrangle. The convex case (left) and a self-intersecting zero-area
case (right).

area(A,B,C,D) = area(A,B,D) + area(B,C,D).

This function is again a polynomial in the coordinates of the points. If the
boundary of this triangle (the polygonal chain from A to B to C to D
and back to A) is free of self-intersections, then the usual area is calcu-
lated (with sign depending of the orientation). However, if the polygon has
self-intersections, then one of the triangles in the sum contributes a positive
value and the other a negative value. The area of a self-intersecting quadran-
gle (A,B,C,D) is zero if and only if the two triangles involved in the sum have
equal areas with opposite signs. Since both triangles share the edge (B,D),
the zero case implies that A and C have the same altitude over this edge.
In other words, the line through A and C is parallel to the line through B
and D. Altogether we obtain

AC ‖ BD if and only if area(A,B,C,D) = 0.

Fact 3: Zero polynomials.
If a polynomial in several variables is zero in a full-dimensional region of the
space of parameters, then it must be the zero polynomial. In other words,
if we have a polynomial that evaluates to zero at a certain point and also
for all small perturbations away from that point, then it must be the zero
polynomial.

Now we have collected everything to formulate a proof of Pappos’s theorem
by area arguments. The following proof was given as a motivating example
by D. Fearnly Sander in an article on the conceptual power of areas for
theorem-proving [39].

Proof two: area method. Consider six points A,B,C,X, Y, Z in the Eu-
clidean plane located at positions that roughly resemble the situation in
Figure 1.7 on the left. This figure can be considered as being composed
of two triangles Δ(A,C,B), Δ(X,Y, Z), and two quadrangles �(B, Y,X,A)
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Fig. 1.7 Pappos proof by the area method.

and �(C,Z, Y,B). The sum of the oriented areas (with counterclockwise
vertex labels) of these tiles equals the area of the surrounding quadrangle
�(C,Z,X,A). Thus we have

+ area(A,C,B)
+ area(X,Y, Z)
+ area(B, Y,X,A)
+ area(C,Z, Y,B)
− area(C,Z,X,A) = 0.

The expression on the left is obviously a polynomial, and it does not depend
on the exact position of the points (since for our argument only the fact
that all involved polygons are labeled counterclockwise and the fact that the
inner tiles decompose the outer quadrangle were relevant). Hence by Fact 3
this formula must hold for arbitrary positions of the six points—even in
degenerate cases. Now let the six points correspond to the points in Pappos’s
theorem. The hypotheses of Theorem 1.2 state that (A,B,C) and (X,Y, Z)
are two collinear triples of points. Furthermore, we have AY ‖ XB and
BZ ‖ Y C. In terms of areas, this means that

area(A,C,B) = area(X,Y, Z) = area(B, Y,X,A) = area(C,Z, Y,B) = 0.

This implies immediately that we also have

area(C,Z,X,A) = 0,

since otherwise the above area-sum formula would be violated. Hence we have
AZ ‖ XC and the theorem is proved. ��

This proof is conceptually far less trivial than our first one, but as a benefit
we get several things for free. In essence, the proof says that if four of the
areas in the formula above vanish, then the last one has to vanish as well. In
this form the theorem holds without any restrictions. It covers even the case
of coinciding points.
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Fig. 1.8 Three versions of Pappos’s Theorem.

As a second benefit we may observe that this proof is very useful for
generalizations. We may consider the drawing in Figure 1.7 as the projec-
tion of a three-dimensional prism over a triangle. The five faces of the prism
(two triangles and three quadrangles) correspond to the five areas involved
in the proof. We can play a similar game with every three-dimensional poly-
hedron that has only triangles and quadrangles in its boundary. This gives
an infinite collection of incidence theorems for which Pappos’s theorem is the
smallest example. The reader is invited to explore this field on his/her own.
For instance, what is the corresponding theorem if we consider a cube as the
underlying combinatorial structure?

Before we start to investigate proofs of Pappos’s theorem based on con-
cepts of projective geometry we will present some other interesting instances
of Pappos’s theorem. They are drawn in Figure 1.8. Lines that seem to be
parallel in the drawings are really assumed to be parallel. The first picture
shows a nice instance that reveals the order-three symmetry that is inherent
to Pappos’s theorem. The other two pictures show Euclidean specializations
in which some of the points are sent to infinity. So the Euclidean instance in
the second drawing could be formulated as follows.

Theorem 1.3 (Another Euclidean version of Pappos’s theorem).
Start with a triangle A,B,C. Draw a point P on the line AB. From there draw
a parallel to AC and form the intersection with BC. From this intersection
draw a parallel to AB and form the intersection with AC and continue this
procedure as indicated in the picture. After six steps you will reach point P
again.

The patient reader is invited to find out how the drawings in Figure 1.8
correspond to the labeling in our original version of the theorem.
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1.3 Projective Proofs of Pappos’s Theorem

In this section we want to present proofs in which (in contrast to the last
section) we make no particular use of parallelism. All proofs in this section
will rely on the collinearity properties of points only. In this respect these
proofs are projective in nature, since incidence and collinearity are genuine
projective concepts, while parallels are not.

The main algebraic tool used in this section is homogeneous coordinates,
which will be introduced in much detail in later chapters. In contrast to
the usual (x, y)-coordinates in the plane, homogeneous coordinates present
points in the plane by three coordinates (x, y, z). Coordinate vectors that dif-
fer only by a nonzero scalar multiple are considered to be equivalent. The zero
vector (0, 0, 0) is excluded from consideration. Thus the nonzero points in a
one-dimensional subspace of R

3 represent the same point. A usual Euclidean
plane H can be embedded in a homogeneous framework in the following way.
Embed H as an affine subspace of R

3 that does not contain the origin. Each
point p of H corresponds to the one-dimensional subspace Vp spanned by p
and may be represented by any nonzero vector of Vp. Conversely, each homo-
geneous vector (x, y, z) spans a subspace V(x,y,z). In general, this subspace
intersects the embedded plane H at some point p. This is the point that cor-
responds to (x, y, z). It may happen that V(x,y,z) does not intersect H (this
happens whenever the subspace is parallel to H). Then there is no Euclidean
point associated to (x, y, z). In this case this homogeneous coordinate vec-
tor represents an infinite point (see Chapter 3 for details). Thus the finite
and the infinite points can be represented by homogeneous coordinates in a
completely generalized manner.

Collinearity of points in H translates to the fact that the three points in
R

3 lie in a single plane (the plane spanned by the corresponding line and the
origin of R

3). Thus if A = (x1, y1, z1), B = (x2, y2, z2), and C = (x3, y3, z3)
are homogeneous coordinates of points, then one can test collinearity by
checking the condition

det

⎛
⎝
x1 y1 z1
x2 y2 z2
x3 y3 z3

⎞
⎠ = 0.

This condition works for finite as well as for infinite points. The following
proof is based on this observation.

Proof three: determinant cancellations. For matters of better readability we
have exchanged the labels of the points by simple digits from 1 to 9 (see
Figure 1.9). For the proof we need the additional nondegeneracy condition
that the triple of points (1, 4, 7) is not collinear. The generic nondegeneracy
conditions (no identical points and no identical lines) should still be valid.

Assume that (1, 4, 7) is not collinear. After a suitable affine transformation
(which does not affect the incidence relations of points and lines) we may
assume without loss of generality that (1, 4, 7) forms an equilateral triangle.
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5

9
8

1 1 0 0
2 a b c
3 d e f
4 0 1 0
5 g h i
6 j k l
7 0 0 1
8 m n o
9 p q r

[1, 2, 3] = 0 =⇒ ce=bf
[1, 5, 9] = 0 =⇒ iq=hr
[1, 6, 8] = 0 =⇒ ko=ln
[2, 4, 9] = 0 =⇒ ar=cp
[2, 6, 7] = 0 =⇒ bj=ak
[3, 4, 8] = 0 =⇒ fm=do
[3, 5, 7] = 0 =⇒ dh=eg
[4, 5, 6] = 0 =⇒ gl=ij

[7, 8, 9] = 0 ⇐= mq=np

Fig. 1.9 Determinant cancellation for Pappos’s theorem.

Now we embed the plane in which our configuration resides into three-space
in such a way that the points 1, 4, and 7 are at the three-dimensional unit
vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Since the configuration is now embedded in R
3, each point is represented

by three-dimensional (homogeneous) coordinates. Three points P,Q,R in our
picture are collinear if and only if the determinant of the 3×3 matrix formed
by their coordinates is zero. We abbreviate this determinant by [PQR]. The
matrix in Figure 1.9 represents the coordinates of the configuration.

The letters in the matrix represent the coordinates of the remaining points.
The generic nondegeneracy assumptions imply that none of the letters can
be 0. This can be seen as follows. The triple of points (3, 4, 7) cannot be
collinear, since otherwise two of the configuration lines would coincide. How-
ever, the determinant formed by these points equals exactly a. Thus we get

0 �= det

⎛
⎝
a b c
0 1 0
0 0 1

⎞
⎠ = a.

A similar argument works for each of the other variables.
With our special choice of coordinates, each of the eight collinearities of

the hypotheses can be expressed as the vanishing of a certain 2 × 2 sub-
determinant of the coordinate matrix. If we write down all these equations
(compare Figure 1.9), multiply all left sides, and multiply all right sides,
we are left with another equation mq = np, which translates back to the
collinearity of (7, 8, 9). By our nondegeneracy assumptions, all variables in-
volved in the proof will be nonzero; therefore the cancellation process is fea-
sible. ��

A proof that is essentially based on this structure first appeared in [14].
This proof carries remarkable symmetric structures concerning the cancella-
tion patterns among the determinants. Structurally, it reduces to the facts
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that all collinearities correspond to 2 × 2 determinants and that each letter
occurs on the left as well as on the right. The first fact is highly dependent
on the choice of our basis, since only the zeros in the unit vectors are allowed
to express each of the collinearities as a 2 × 2 determinant.

One can circumvent this problem by an even more abstract approach.
Instead of dealing with concrete coordinates of points, we may deal with gen-
eral properties of determinants. A fundamental role in this context is played
by the Grassmann-Plücker relations. These relations state that for arbitrary
five points A,B,C,D,E in the projective plane the following relation holds
among the determinants of the homogeneous coordinates:

[ABC][ADE] − [ABD][ACE] + [ABE][ACD] = 0.

This remarkable identity is of fundamental importance for projective geom-
etry, and we will dedicate a large part of Chapter 6 to it. For now we take
the identity as an algebraic fact. On it we base our next proof.

Proof four: Grassmann-Plücker relations. We again assume that (1, 4, 7) is
not collinear. We consider the fact that (1, 2, 3) is collinear in our theorem.
Taking this Grassmann-Plücker relation

[147][123]− [142][173] + [143][172] = 0

together with the fact that [123] = 0, we obtain

[142][173] = [143][172].

For each of the eight collinearities of the hypotheses we can get one such
equation:

[147][123]− [142][173] + [143][172] = 0 =⇒ [142][173] = [143][172]
[147][159]− [145][179] + [149][175] = 0 =⇒ [145][179] = [149][175]
[147][186]− [148][176] + [146][178] = 0 =⇒ [148][176] = [146][178]
[471][456]− [475][416] + [476][415] = 0 =⇒ [475][416] = [476][415]
[471][483]− [478][413] + [473][418] = 0 =⇒ [478][413] = [473][418]
[471][429]− [472][419] + [479][412] = 0 =⇒ [472][419] = [479][412]
[714][726]− [712][746] + [716][742] = 0 =⇒ [712][746] = [716][742]
[714][753]− [715][743] + [713][745] = 0 =⇒ [715][743] = [713][745]

Multiplying again all left sides and all right sides of the equations (and taking
care of the signs of the determinants) and canceling out terms that occur on
both sides, we end up with the equation

[718][749] = [719][748].
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Fig. 1.10 Ceva’s theorem
|AX|
|XB| ·

|BY |
|Y C| ·

|CZ|
|ZA| = 1 (left). The pasting scheme for the proof

(right).

(The cancellation is feasible since all involved determinants will be nonzero
by our nondegeneracy conditions.) By the Grassmann-Plücker relation

[714][789]− [718][749] + [719][748] = 0,

this implies that [714][789] = 0. Since [147] was assumed to be nonzero,
this implies that [789] = 0, which in turn is equivalent to the collinearity
of (7, 8, 9). ��

This proof is very similar to the previous one. However, working directly
on the level of determinants makes the special choice of the basis no longer
necessary. There are amazingly many theorems in projective geometry that
can be proved by this generic determinant calculus, and one can even base
methods for automatic theorem-proving on them. (For details on this subject
see [15, 30, 109].)

Our next proof reveals a topological structure that underlies Pappos’s
theorem. The proof can be thought of as gluing together several triangular
shapes to form a closed oriented surface. The fact that the surface is closed
(has no boundary) corresponds to the conclusion of the theorem.

For this proof to work out we need a kind of basic building block: The
theorem of Ceva (see for instance [28]). Ceva’s theorem states that if in a
triangle the sides are cut by three concurrent lines that pass through the cor-
responding opposite vertices, then the product of the three (oriented) length
ratios along each side equals 1.

In fact, this theorem is almost trivial if one views the length ratios as ratios
of certain triangle areas. For this observe that if the line (A,B) is cut by the
line (C,D) at a point X , then we have

|AX |
|XB| = −area(C,X,A)

area(C,X,B)
= −area(C,D,A)

area(C,D,B)
, (∗)
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Fig. 1.11 Pasting copies of Ceva’s theorem.

where area(A,B,C) denotes the oriented area of the triangle (A,B,C). In
order to prove Ceva’s theorem, we consider the obvious identity

area(CDA)
area(CDB)

· area(ADB)
area(ADC)

· area(BDC)
area(BDA)

= −1

(note that the oriented triangle area is an alternating function and that
each triangle in the denominator occurs as well in the numerator). Applying
the above identity (∗), we immediately get Ceva’s theorem. The converse of
Ceva’s theorem holds as well: If the product of the three ratios equals 1, then
the three lines in the interior will meet.

Now consider the situation in which two Ceva triangles are glued together
along an edge in a way such that they share the point on this edge. Multiply-
ing the two Ceva expressions, we see that the ratio on the inner edge cancels,
and we are left only with terms that live on the boundary of the figure (see
Figure 1.11 (left)). We obtain

|AZ|
|ZB| ·

|CY |
|Y A| ·

|BV |
|V D| ·

|DW |
|WC| = 1.

We can extend this process to an arbitrary collection of triangles that are
glued edge to edge. An edge can be used either by only one triangle (then it is
a boundary edge) or by exactly two triangles. The whole collection of patched
triangles should be orientable (thus we obtain an orientable triangulated 2-
manifold with boundary). All triangles of the collection should be equipped
with Ceva configurations that have the additional property that points on
interior edges are shared by the Ceva configurations of two adjacent trian-
gles. We consider the product of all corresponding Ceva expressions. After
cancellation of the ratios that correspond to inner edges we are left with an
expression that contains only oriented length ratios from the boundary. For
instance, in the situation of Figure 1.11 (right) we get
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Fig. 1.12 Creating Pappos’s theorem from six copies of Ceva’s theorem.

a1

b1
· a2

b2
· a3

b3
· a4

b4
· a5

b5
· a6

b6
= 1.

The inner part of the structure cancels completely and does not contribute
to the product on the boundary. Now, if we have a collection of triangles that
has nothing more than a triangular boundary (i.e., a 2-manifold with a single
triangular hole), then the Ceva condition on the whole is automatically satis-
fied, and we can paste in a final triangle that carries a Ceva configuration. In
other words, if we have an orientable triangulated 2-manifold without bound-
ary and we have a Ceva configuration on all triangles but one (such that the
edge points are shared), then a Ceva configuration can automatically be put
on the final triangle. This is an incidence theorem. We now will show that
using the right manifold, Pappos’s theorem can be put in exactly this form.

Proof five: pasting copies of Ceva’s theorem. Consider six triangles that are
arranged as in Figure 1.10 on the right. Furthermore, identify opposite edges
of the hexagon as indicated in the drawing. This can be done by placing the
six triangles one over the other (think of the hexagon as made of paper and
fold it appropriately) and gluing together corresponding opposite edges. Now
place a Ceva configuration on each of the edges in a way such that whenever
two triangles meet at an edge, the corresponding two points on this edge are
identified. Our considerations above show that if the edge points are located
such that five of the triangles carry proper Ceva configurations, then the last
Ceva configuration is satisfied automatically. The figure in the middle shows
the situation after all the triangle edges have been identified. Observe that
the points on the edges of the outer triangle as well as the edges themselves
do not contribute to the incidence theorem. What is left after these elements
are deleted is exactly a drawing of Pappos’s theorem. ��

A proof very similar to this was given by H.S.M. Coxeter and S.L. Gre-
itzer [28]. Their proof was based on Menelaus configurations instead of Ceva
configurations but is essentially similar. In [110] one can find an elaborate
treatment of the question of which geometric theorems can be proved by
similar manifold arguments.
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Fig. 1.13 Two instances of Pascal’s theorem.

1.4 Conics

This section deals with generalizations and variations of Pappos’s theorem.
In particular, we will study what happens if we consider pairs of lines as
degenerate cases of a degree-two curve (an ellipse, hyperbola, or parabola)
in the plane. Degree-two curves are often also called conics, and they cor-
respond to solutions of (homogeneous) quadratic equations in homogeneous
coordinates. More specifically, a conic in the plane is characterized by six ho-
mogeneous parameters a, b, c, d, e, f and consists of the set of all points with
homogeneous coordinates (x, y, z) that satisfy the equation

a · x2 + b · y2 + c · xy + d · xz + e · yz + f · z2 = 0.

Let (x, y, z) be a solution of this equation. Since the total degree in x, y, z of
each summand is the same (namely two), every scalar multiple λ · (x, y, z)
is also a solution of this equation. Thus we may think of each solution as
a point in the real projective plane. The totality of these points forms the
conic. The geometric form of the conic depends on the special values of the
parameters. Projectively, there is no difference between ellipse, hyperbola,
and parabola. These three cases simply reflect different ways in which the
line at infinity �∞ intersects the conic. If there is no intersection, the conic
is an ellipse; if there are two intersections, the conic is a hyperbola (it has
two infinite points, which correspond to the two asymptotes); if there is just
one intersection, the conic is a parabola (which turns out to be a limit case
between the two other possibilities).

There is one interesting special case that is also important from a projec-
tive point of view: the conic may degenerate into two lines (which may even
coincide). This happens whenever the the term ax2+by2+cxy+dxz+eyz+fz2

factorizes into two linear components:



20 1 Pappos’s Theorem: Nine Proofs and Three Variations

1
2 3

4
5

6

9
8

7

1
2

3

4
5

6

9 8 7

Fig. 1.14 Deformations of Pascal’s theorem and labeling for the proof.

ax2 + by2 + cxy + dxz + eyz + fz2 = (α1x+ β1y + γ1z) · (α2x+ β2y + γ2z).

In this case the conic consists of two lines, each one described by the linear
equation in one of the factors.

In general, five points in the projective plane determine a unique conic
passing through each of them. Thus it is a truly projective condition whether
six points lie on a common conic or not. In Chapter 10 we will prove that
six points A,B,C,X, Y, Z are on a common conic if and only if the following
condition among the determinants of the homogeneous coordinates holds:

[ABC][AY Z][XBZ][XYC] = [XY Z][XBC][AY C][ABZ].

We will use this nice characterization to prove the following well-known vari-
ation (or better generalization) of Pappos’s theorem:

Theorem 1.4 (Variation 1: Pascal’s Theorem). Let A,B,C,X, Y, Z be
six points on a conic. If the lines AY , BZ, CX intersect the lines BX, CY ,
AZ respectively, then the three points of intersection are collinear.

Two instances of the theorem can be found in Figure 1.13. Pascal’s theorem
is named after the famous Blaise Pascal and was discovered by (the 16-year-
old) Pascal in 1640. This is about 1300 years after the discovery of Pappos’s
theorem. Nevertheless, it is obviously a generalization of Pappos’s theorem.
If the conic in Pascal’s theorem degenerates to consist of two lines, then
we immediately obtain Pappos’s theorem. We will prove Theorem 1.4 by
a determinant cancellation argument similar to the one used in our fourth
proof. Figure 1.14 shows two instances of Pascal’s theorem one with an ellipse
and one with a hyperbola. If we smoothly deform the first into the second, we
will pass through the degenerate situation that resembles Pappos’s theorem.

Proof six: Pascal’s theorem. Again we assume for nondegeneracy reasons that
no points and no lines of the theorem coincide. For the labeling in the proof
we refer to Figure 1.14. Consider the following determinant equations:
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conic: ⇒ [125] [136] [246] [345] = + [126] [135] [245] [346]
[159] = 0 =⇒ [157] [259] = − [125] [597]
[168] = 0 =⇒ [126] [368] = + [136] [268]
[249] = 0 =⇒ [245] [297] = − [247] [259]
[267] = 0 =⇒ [247] [268] = − [246] [287]
[348] = 0 =⇒ [346] [358] = + [345] [368]
[357] = 0 =⇒ [135] [587] = − [157] [358]
[987] = 0 ⇐= [287] [597] = + [297] [587]

The first line encodes that the points 1, . . . , 6 lie on a conic. The next six
lines are consequences of Grassmann-Plücker relations and the six collinearity
hypotheses of our theorem. If we multiply all expressions on the left and all
expressions on the right and cancel determinants that occur on both sides, we
end up with the last expression, which (under the nondegeneracy assumption
that [157] �= 0) implies the desired collinearity of (7, 8, 9). ��

Similar to Pappos’s theorem, there is a variety of reformulations and spe-
cializations. A nice reformulation is the following: If a hexagon is inscribed in
a conic in the projective plane, then the opposite sides of the hexagon meet in
three collinear points. Or if one prefers a Euclidean variant of this in which the
conclusion line is sent to infinity, one could state the following: If a hexagon
is inscribed in a conic and two pairs of opposite edges are parallel, then so
is the third pair. There is another nice way to derive even more incidence
theorems from Pascal’s theorem. Assume that the conic has a fixed position.
If two of the points in Pascal’s theorem that are joined by a line continu-
ously approach each other until they meet, their joining line will in the limit
case become a tangent to the conic at the position where the two points are
located. Thus we obtain as limit cases situations in which also tangents are
involved (observe that tangents are proper concepts of projective geometry).

Instances of degenerate versions are given in Figure 1.15. The leftmost
picture shows a smallest degenerate situation. The label 15 symbolizes that
points 1 and 5 are identified. The labeling is consistent with the labeling in
Figure 1.14. The join of 1 and 5 becomes the tangent at the point 15. One can
also read the construction in the reverse direction. If a conic C and a point 15
on it are given, then one can construct the tangent at 15 by choosing four
arbitrary points 2, 3, 4, 6 on C and constructing the joins and intersections as
given by the picture to arrive finally at point 9 another point on the tangent.
This fact was also known to Pascal, and is one of the main applications
of his theorem. The second picture shows in essence the same situation as
the first one. However, here the point 15 has been sent to infinity and the
corresponding tangent is located at the line at infinity. By this the conic
becomes a parabola, and the two other lines through 15 become parallel to
the symmetry axis of the parabola. Now the theorem reads as follows: Start
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Fig. 1.15 Degenerate versions of Pascal’s theorem.

with four points A,B,C,D on a parabola. Draw two lines through C and D
parallel to the symmetry axis of the parabola. Intersect them with AD and BC,
respectively. Then the join of the two intersections is parallel to the join of A
and B. The right figure shows an even more degenerate situation: Inscribe a
triangle into a conic. Form the tangents at the vertices. Intersect them with
the opposite sides of the triangle. The three intersections are collinear.

1.5 More Conics

We can think of Pascal’s theorem being derived from Pappos’s theorem by
considering two lines that do not have a configuration point in common as a
(degenerate) conic. Pascal’s theorem says that the theorem stays valid even if
the conic is not degenerate. The same process can be applied two more times
to obtain a theorem with three conics and three lines. For this consider the
left part of Figure 1.16. The blue conic arises from merging the upper and the
lower lines of the drawing. The red and the green conics arise from merging
two other lines. Amazingly, the new configuration still forms a theorem. If all
incidences except for the blue line are satisfied as indicated in the picture,
then the three white points are automatically collinear (we will prove this
in a minute). First we observe that there are two combinatorially different
ways of merging three pairs of lines in Pappos’s theorem to three conics. The
second possibility is shown in Figure 1.16 on the right. Also in this case we
get a theorem. To see that they are combinatorially different, observe that in
one picture the three lines meet in a point; in the other one they don’t. Both
theorems are an instance of an even more general fact that is a consequence of
Bézout’s theorem from algebraic geometry (see [19, 40]). An algebraic curve
of degree d is the zeroset of a homogeneous polynomial of degree d. Thus
conics are algebraic curves of degree 2. Bézout’s theorem can be stated in
the following way: If an algebraic curve of degree n and an algebraic curve of
degree m intersect, then either the number of intersections is finite and less
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Fig. 1.16 Generalizations of Pascal’s Theorem

than or equal to n ·m, or the curves intersect in infinitely many points and
share a component. Now we can prove the following very strong statement:

Theorem 1.5 (Variation 2: Cayley-Bacharach-Chasles theorem). Let
A and B be two curves of degree three intersecting in nine proper points. If
six of these points are on a conic, the remaining three points are collinear.

Proof seven: algebraic curves. Let A and B be the curves and let pA(x, y, z)
and pB(x, y, z) be the corresponding homogeneous polynomials of degree
three. Bézout’s theorem implies that if the two curves A and B have only
finitely many points in common, then they can have at most nine points of
intersection. Call them 1, . . . , 9. And assume that 1, . . . , 6 are on a conic C
with polynomial pC . We will prove that 7, 8, 9 are collinear. Consider a linear
combination pμ = pA + μ · pB of the two polynomials for some real param-
eter μ. The polynomial pμ has the following properties. First it is again a
degree-three polynomial. Second, it passes through all nine points 1, . . . , 9
(each of these points is a zero of both pA and pB, so it is also a zero of
any linear combination of them). Now consider an additional point q on the
conic C distinct from 1, . . . , 6. There is a μ such that pμ also passes through q
(to find μ we just have to solve a linear equation pA(q) + μpB(q) = 0). Con-
sider pμ with this specific value μ. The curve pμ passes through 1, . . . , 6 and
through q. Thus it shares these seven points with the conic C. Bézout’s theo-
rem implies that pμ must have C as one component. Thus we have pμ = pC ·L
with a linear equation L (otherwise pμ cannot have degree three). This im-
plies that the points 7, 8, 9 are all contained in the line described by the linear
equation L. ��

The situation of the theorem is sketched in Figure 1.17. This theorem
was independently discovered by several people. Most probably Chasles was
the first to discover this theorem, in a slightly more general version in 1885.
As so often in mathematics, the theorem is usually attributed to others, in
this case namely to Cayley and to Bacharach, who published similar results
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Fig. 1.17 If two cubics intersect in nine points six of which are on a conic, then the
remaining three points are collinear.

later than Chasles (for a historic account see [38, 63]). The theorems shown
in Figure 1.16 are immediate specializations of this theorem. There the two
curves of degree three decompose into the product of a quadratic curve (the
conic) and a linear curve (the line). So the two red components of the picture
form one curve of degree three, and the two green components form the
other one. The rest is a literal application of the above theorem. One can
even go one step further and consider Pappos’s original theorem as a direct
consequence of Theorem 1.5. For this one simply has to consider three of the
lines as one cubic and another three as the other cubic. The color coding in
Figure 1.17 makes the decomposition clear.

1.6 Complex Numbers and Circles

We are almost at the end of our journey around Pappos’s theorem. In this
section we want to take the considerations of the last chapter still a little
further and draw a surprising connection to the geometry of circles in the
plane. Circles are an intrinsically Euclidean concept. Thus if we do so we
have again to talk about the exact position of our line at infinity �∞. As
already mentioned in Section 1.3, homogeneous coordinates can be considered
as embedding the Euclidean plane into R

3 at some affine hyperplane. This
time (and this will be done quite often later in the book) we will choose the
affine hyperplane {(x, y, z) | z = 1} for this embedding. Thus a point with
Euclidean coordinates (x, y) can be represented by homogeneous coordinates
(x, y, 1) or any nonzero scalar multiple of this vector. The infinite points are
those with coordinates (x, y, 0).

We now want to study circles under this special embedding. A circle is
a special conic. Thus we want to find out which quadratic equations will
correspond to circles. A circle is usually given by its center (cx, cy) and a
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radius r. In Euclidean geometry the circle equation can be written as

(x− cx)2 + (y − cy)2 − r2 = 0.

Expanding this term and interpreting it in homogeneous coordinates with
z = 1, we can rewrite it as

(x− cx · z)2 + (y − cy · z)2 − r2 · z2 =
x2 − 2cxxz + c2xz

2 + y2 − 2cyyz + c2yz
2 − r2z2 =

x2 + y2 − 2cxxz − 2cyyz + (c2x + c2y − r2)z2 = 0.

The last line gives the interpretation of the circle in parameters of a general
conic. The circle is a special conic for which the coefficients of x2 and y2 are
equal and the coefficient of xy vanishes.

There is a surprising (and very deep) connection between circles and com-
plex numbers. Let us investigate what happens when we intersect a circle
with the line at infinity. In other words, we search for solutions of the above
equation with z = 0. Clearly the solution must be complex, since no circle
has real intersections with the line at infinity (this property is possessed only
by hyperbolas and parabolas). In the circular case for z = 0 the equation
degenerates to

x2 + y2 = 0.

Up to scalar multiples we get the two solutions

I = (1, i, 0) and J = (1,−i, 0).

These solutions are complex points at the line at infinity. Moreover (and this
is an important fact!), they do not depend on the specific choice of the specific
circle. Thus we can say All circles pass through I and J and any conic passing
through these points is a circle.

This fact is perhaps the most important connection of Euclidean and pro-
jective geometry. It allows us to express relations about circles as incidence
relations of conics that involve the points I and J. In a very strong sense
we could say that every Euclidean incidence theorem can be expressed as a
projective theorem in which two points play the special roles of I and J. In a
sense, Chapters 16 to 26 of this book are dedicated to the elaboration of this
fact. Here we will make a small application of it in the context of Pappos’s
theorem. Consider again the two generalizations given in Figure 1.16. These
two pictures are reproduced again in the first row of Figure 1.18. In these
pictures the points in which three conics meet are marked by white dots.
In the same way as we assumed in Section 1.2 that a certain line is located
at the line at infinity we will now assume that in each picture two of these
points are located at the points I and J. All other points should stay at real
positions. A conic that passes through I and J is a circle. Thus the conics in
our theorem become circles (this is similar to the effect that two lines become
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Fig. 1.18 Metamorphoses of theorems.

parallel if their point of intersection is located at an infinite position). So the
two theorems can be interpreted as Euclidean theorems about seven points,
three lines, and three circles. The corresponding pictures are shown in Fig-
ure 1.18 in the second row. For instance, the first of these two theorems can
be stated as follows: Given three circles that intersect mutually in two points,
the three lines spanned by the intersections of each pair of circles meet in a
point. The meeting point corresponds to point 7 in the original theorem.

We can even go one step further. We can interpret straight lines as cir-
cles with infinite radius. There is a particular way of extending Euclidean
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Fig. 1.19 Miquel’s theorem.

geometry that reflects this way of thinking. For this we introduce one point ∞
at infinity and assume that straight lines are circles that in particular con-
tain this point. (A word of caution: one should not confuse this extension
of Euclidean geometry by one point with the projective plane we introduced
earlier. In the projective plane a line at infinity was introduced. The extension
by only one point used here has something to do with the projective complex
line and is called the one-point compactification of the Euclidean plane and
will be investigated later, in Chapter 17.

In this setup we no longer have to distinguish between lines and circles.
Lines are just circles of infinite radius. In this interpretation our two theorems
could be stated as theorems on six circles and eight points (we interpret the
infinite point ∞ just as an ordinary point). The last row of Figure 1.18
gives a drawing of the situation in which ∞ is located at a finite position.
For instance, the second theorem (which is a well-known fact from circle
geometry) could be stated as follows.

Theorem 1.6 (Variation 3: Miquel’s theorem). Consider four points
A,B,C,D on a circle. Draw four more circles C1, C2, C3, C4 that pass through
the pairs of points (A,B), (B,C), (C,D), and (D,A), respectively. Now con-
sider the other intersections of Ci and Ci+1 for i = 1, . . . , 4 (indices mod-
ulo 4). These four intersections are again cocircular.

We will give an elementary proof of this theorem by calculations of angle
sums. The basic fact that we will need for this proof is illustrated in Fig-
ure 1.20. If we consider a secant AB of a circle and if we look at this secant
from two other different points C and D of the circle (which are on the same
side of AB), we will see the secant in the same angle. If the points C and D
are at opposite sides of the secant we will have complementary angles. Ob-
serve that the angles in Figure 1.20 are assumed to be oriented angles. Thus
the complementary angle has to be counted with negative sign. If one takes
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care of the orientation of the angles one could say that the difference of the
two angles at C and D will in both cases be a multiple of π. Conversely,
four points A,B,C,D lie on a common circle if the difference of the angles
(under which AB is seen) at C and D is a multiple of π. Thus we get a
characterization of four points on a circle in terms of angles.

In principle, Miquel’s theorem can now easily be proven by considering
angle sums among the six involved circles. However, we here will prefer a more
algebraic approach that expresses the angle relations in terms of complex
numbers. For this assume that all eight points in the picture are finite and
consider the picture of Miquel’s theorem embedded in the complex number
plane C. We consider A,B,C,D from Figure 1.20 as complex numbers. Then,
for instance, A − C forms a complex number that points in the direction
from C to A. Forming the quotient A−C

B−C , we get a complex number whose
argument (the angle with respect to the real axis) is exactly the angle at
point C. Similarly, A−D

B−D gives a complex number that describes the angle at
point D. We can compare these two angles by forming again the quotient of
these two numbers: A−C

B−C /
A−D
B−D . This number will be real if and only if the

two angles differ by a multiple of π.
Taking everything together, we get the following characterization of four

points being cocircular (possibly with infinite radius): Four points A,B,C,D
in the complex plane are cocircular if and only if

(A− C)(B −D)
(B − C)(A −D)

is a real number.
The above expression is called a cross-ratio, and we will later on see that

cross-ratios play a fundamental and omnipresent role in projective geometry
(see Chapters 4 and 5). With the help of cross-ratios we can easily state a
proof of Miquel’s theorem.
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C D

α α

A B
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α

α − π

Fig. 1.20 Angles in a circle.
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Proof eight: cross-ratio cancellations. Assume that the quadruples of points
(A,B,C,D), (A,B,E, F ), (B,C, F,G), (C,D,G,H), (D,A,H,E) are cocir-
cular. From this we obtain that the following cross-ratios are all real:

(A−B)(C−D)
(C−B)(A−D) ,

(F−B)(A−E)
(A−B)(F−E) ,

(C−B)(F−G)
(F−B)(C−G) ,

(H−D)(C−G)
(C−D)(H−G) ,

(A−D)(H−E)
(H−D)(A−E) .

Multiplying all these numbers and canceling terms that occur in the numer-
ator as well as in the denominator, we are left with the expression

(F −G)(H − E)
(H −G)(F − E)

.

Since this expression is the product of real numbers, it must itself be real. By
our above observations this expresses exactly the cocircularity of (E,F,G,H),
which is the conclusion of our theorem. ��

1.7 Finally...

We will end this section with an almost trivial proof of Pappos’s theorem in
its full generality by simply expanding an algebraic term. Still we need a little
preparation for this. Again consider the original points of Pappos’s theorem
expressed in homogeneous coordinates. Thus we assume that the drawing
planeH is again embedded in R

3 at a position that does not contain the origin
of R

3. As before, each point p is represented by a three-dimensional vector
(x, y, z). This time we will take all points of R

3 − {(0, 0, 0)} into account.
For this we identify the vector (x, y, z) with all of its nonzero scalar multiples
(λx, λy, λz), λ �= 0. By this R

3−{(0, 0, 0)} is divided into equivalence classes.
Each equivalence class represents a point of the projective plane. A point
of the drawing plane H can be represented by its actual (x, y, z) position
or by any nonzero scalar multiple of it. Conversely, for a point (x, y, z) of
R

3 − {(0, 0, 0)} we consider the line l(x,y,z) through it and the origin. The
point in H that is represented by (x, y, z) is the intersection of l(x,y,z) and H .
If this intersection does not exist, (x, y, z) represents an infinite point.

In this setup a straight line g in H may be considered a two-dimensional
linear space spanned by the elements of g and the origin of R

3. Such a line
may by represented by a linear equation

{(x, y, z) ∈ R
3 − {(0, 0, 0)} | ax+ by + cz = 0}

given by parameters (a, b, c) ∈ R
3 − {(0, 0, 0)}. Thus points as well as lines

are represented by nonzero vectors in R
3. A line g is incident to a point p if

and only if the standard scalar product 〈p, g〉 is zero.
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Fig. 1.21 A construction sequence for Pappos’s theorem.

This observation gives us the key to a very elegant method of calculating
the line that connects two points p and q. We simply need a vector g with
the property 〈p, g〉 = 〈q, g〉 = 0. Such a vector can simply be calculated by
the cross product p× q. Similarly, the intersection of two lines g and h asks
for a vector p with the property 〈p, g〉 = 〈p, h〉 = 0. Thus the intersection
can be calculated by g × h. So we can apply the cross product to calculate
intersections and joins in projective geometry. (We will learn much more of
this in Chapter 3.)

What happens if we try to form the join of two identical points p and q?
If p and q represent the same point, they must be scalar multiples of each
other: q = λp. Performing the cross product, we obtain p × q = p × λp =
λ(p × p) = (0, 0, 0). Obtaining a zero vector as result is an indication of
performing a degenerate operation. A similar effect results when we try to
intersect two identical lines.

How can we test collinearity of three points p, q, r? The points are collinear
if and only if the representing vectors are linearly dependent in R

3. Thus we
can test collinearity by the condition det(p, q, r) = 0.

Now we can express Pappos’s theorem as a sequence of nested cross prod-
ucts and a determinant. Expanding the final term and observing that it is
zero will prove the theorem.

Proof nine: brute force. We give a construction sequence for the Pappos’s con-
figuration. We start with five free points A,B,C,D,E (compare Figure 1.21).
The coordinates for the remaining four points in the construction can be cal-
culated by

F = (A×D) × (B × C),
G = (A×B) × (D × E),
H = (C ×D) × (B × E),
I = (A×H) × (C ×G).

Testing the final collinearity boils down to testing whether det(E,F, I) = 0.
The following session of the computer algebra program Mathematica shows
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an evaluation of these expressions. All output except for the final result has
been suppressed. The final “0” proves Pappos’s theorem.

What does this evaluation indeed prove? It shows that when we perform
the construction sequence independently of the initial choice of the coordi-
nates of A,B,C,D,E, the final determinant will be zero. This may happen
for two different reasons. Either during the construction sequence we run
into a degenerate situation (such as the intersection of identical lines) that
introduce a zero vector as an intermediate result. Or all operations were valid
(this will be the case for almost every instance) and the final points E,F, I
are indeed collinear. ��

A word of caution: The last proof is very general and seems to be straight-
forward. Still, the help of a computer is essential here. Performing the cal-
culations by hand would require one to perform all cross products and to
evaluate the final determinant. The final term has altogether 15456 sum-
mands of degree 15. They can be canceled in pairs, which gives the final
result.
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Projective Geometry
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Projective Planes

Möge dieses Büchlein dazu beitragen den Schatz geo-
metrischer Schönheit [. . .] über unsere Zeit hinwegzuretten.

W. Blaschke, Projektive Geometrie 1949

The basis of all investigations in this book will be projective geometry.
Although projective geometry has a tradition of more than 400 years, it
gives a fresh look at many problems, even today. One could even say
that the essence of this book is to view many well-known geometric ef-
fects/setups/statements/environments from a projective viewpoint.

One of the usual approaches to projective geometry is the axiomatic one
(see for instance [3, 25, 44, 58]). There, in the spirit of Euclid, a few axioms
are set up and a projective geometry is defined as any system that satisfies
these axioms. We will very briefly meet this approach in this chapter. The
main part of this book will, however, be much more concrete and “down to
earth.” We will predominantly study projective geometries that are defined
over a specific coordinate field (most prominently the real numbers R or
the complex numbers C). This gives us the chance to directly investigate
the interplay of geometric objects (points, lines, circles, conics, . . .) and the
algebraic structures (coordinates, polynomials, determinants, . . .) that are
used to represent them. The largest part of the book will be about surprisingly
elegant ways of expressing geometric operations or relations by algebraic
formulas (see also [26]). We will in particular focus on understanding the
geometry of real and of complex spaces. In the same way as the concept of
complex numbers explains many of the seemingly complicated effects for real
situations (for instance in calculus, algebra, or function theory), studying the
complex projective world will give surprising insights into the geometry over
the real numbers (which to a large extent governs our real life).

35
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The usual study of Euclidean geometry leads to a treatment of special
cases at a very early stage. Two lines may intersect or not depending on
whether they are parallel or not. Two circles may intersect or not depending
on their radii and on the position of their midpoints. In fact, these two effects
already lead to a variety of special cases in constructions and theorems all over
Euclidean geometry. The treatment of these special cases often unnecessarily
obscures the beauty of the underlying structures. Our aim in this book is to
derive statements and formulas that are elegant and general, and carry as
much geometric information as possible. In particular, we will try to reduce
the necessity of treating special cases to a minimum. Here we do not strive
for complicated formulas but for formulas that carry much structural insight
and often simplicity. In a sense, this book is written in the spirit of Julius
Plücker (1801–1868), who was, as Felix Klein (1849–1925) expressed it [69],
a master of “reading in the equations.”

Starting from the usual Euclidean plane we will see that there are two es-
sential extensions needed to bypass the special situations described in the last
paragraph. First, one has to introduce elements at infinity. These elements
at infinity will nicely unify special cases that come from parallel situations.
Second (in the third part of this book), we will study the geometry over com-
plex numbers, since they allow us also to treat intersections of circles that
are disjoint from each other in real space.

2.1 Drawings and Perspectives

• In the Garden of Eden, God is giving Adam a geometry
lesson: “Two parallel lines intersect at infinity. It can’t
be proven but I’ve been there.”

• If parallel lines meet at infinity, infinity must be a very
noisy place with all those lines crashing together!

Two math jokes from a website

It was one of the major achievements of the Renaissance period of painting
to understand the laws of perspective drawing. If one tries to produce a two-
dimensional image of a three-dimensional object (say a cube or a pyramid),
the lines of the drawing cannot be in arbitrary position. Lines that are parallel
in the original scene must either be parallel or meet in a finite point. Lines
that meet in a point in the original scene have either to meet in a point in the
drawing or they may become parallel in the picture for very special choices
of the viewpoint. The artists of that time (among others Dürer, Leonardo
da Vinci and Raphael) used these principles to produce (for the standards of
that time) stunningly realistic-looking images of buildings, towns, and other
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Fig. 2.1 A page of Dürer’s book Underweysung der Messung, mit dem Zirkel unn
Richtscheyt, in Linien, Ebenen unn gantzen corporen.

scenes. The principles developed at this time still form the basis of most
computer-created photorealistic images. The basic idea is simple. To produce
a two-dimensional drawing of a three-dimensional scene, fix the position of
the canvas and the position of the viewer’s eye in space. For each point on
the canvas consider a line from the viewer’s eye through this point and plot
a dot according to the object that your ray meets first (compare Figure 2.1).

By this procedure a line in object space is in general mapped to a line in
the picture. One may think of this process in the following way: Any point in
object space is connected to the viewpoint by a line. The intersection of this
line with the canvas gives the image of the point. For any line in object space
we consider the plane spanned by this line and the viewpoint (if the line does
not pass through the viewpoint this plane is unique). The intersection of this
plane and the canvas plane is the image of the line. This simple construction
principle implies that—almost obviously—incidences of points and lines are
preserved by the mapping process and that lines are again mapped to lines.
Parallelism, orthogonality, distances, and angles, however, are not preserved
by this process. So it may happen that lines that were parallel in object space
are mapped to concurrent lines in the image space. Two pictures by the Dutch



38 2 Projective Planes

Fig. 2.2 Two copperplates of the dutch graphic artist M.C. Escher with auxiliary lines
demonstrating the strong perspectivity.

artist M.C. Escher in which these construction principles are carried out in
a very strict sense are reproduced in Figure 2.21.

A first systematic treatment of the mathematical laws of perspective draw-
ings was undertaken by the French architect and engineer Girard Desar-
gues (1591–1661) [32] and later by his student Blaise Pascal (1623–1662).
They laid foundations of the discipline that we today call projective geom-
etry. Unfortunately, many of their geometric investigations had not been
anticipated by the mathematicians of their time, since approximately at the
same time Réne Descartes (1596–1650) published his groundbreaking work
La géométrie, which for the first time intimately related the concepts of alge-
bra and geometry by introducing a coordinate system (this is why we speak
of “Cartesian coordinates”). It was almost 150 years later that large parts
of projective geometry were rediscovered by the Frenchman Gaspard Monge
(1746–1818), who was, among other occupations, draftsman, lecturer, min-
ister and a strong supporter of Napoleon Bonaparte and his revolution. His
mathematical investigations had very practical backgrounds, since they were
at least partially directly related to mechanics, architecture, and military ap-
plications. In 1799 Monge wrote a book [89] on what we today would call
constructive or descriptive geometry. This discipline deals with the problem
of making exact two-dimensional construction sketches of three-dimensional
objects. Monge introduced a method (which in essence is still used today
by architects and mechanical engineers) of providing different interrelated

1 M.C. Escher’s “Delft: Town Hall” c©2010 The M.C. Escher Company-Holland. All rights
reserved.—M.C. Escher’s “Tower of Babel” c©2010 The M.C. Escher Company-Holland.
All rights reserved. www.mcescher.com.
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Fig. 2.3 Monge view of a square in space.

perspective drawings of a three-dimensional object in a well-defined way, such
that the three-dimensional object is essentially determined by the sketches.
Monge’s method usually projects an object by parallel rays orthogonally to
two or three distinct canvases that are orthogonal to each other. Thus the
planar sketch contains, for instance a front view, a side view, and a top view
of the same object. The line in which the two canvases intersect is identified
and commonly used in both perspective drawings. For an example of this
method consider Figure 2.3.

Monge made the exciting observation that relations between geometric
objects in space and their perspective drawings may lead to genuinely planar
theorems. These planar theorems can be entirely interpreted in the plane
and need no further reference to the original spatial object. For instance,
consider the triangle in space (see Figure 2.4). Assume that a triangle A,B,C
is projected to two different mutually perpendicular projection planes. The
vertices of the triangle are mapped to points A′, B′, C′ and A′′, B′′, C′′ in
the projection planes. Furthermore, assume that the plane that supports the
triangle contains the line � in which the two projection planes meet. Under
this condition the images ab′ and ab′′ of the line supporting the edge AB will
also intersect in the line �. The same holds for the images ac′ and ac′′ and
for bc′ and bc′′. Now let us assume that we are trying to construct such a
descriptive geometric drawing without reference to the spatial triangle. The
fact that ab′ and ab′′ meet in � can be interpreted as the fact that the spatial
line AB meets �. Similarly, the fact that ac′ and ac′′ meet in � corresponds to
the fact that the spatial line AC meets �. However, this already implies that
the plane that supports the triangle contains �. Hence, line BC has to meet �
as well and therefore bc′ and bc′′ also will meet in �. Thus the last coincidence
in the theorem will occur automatically. In other words, in the drawing the
last coincidence of lines occurs automatically. In fact, this special situation
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Fig. 2.4 Monge view of a triangle in space.

is nothing other than Desargues’s theorem, which was discovered almost 200
years earlier.

Our starting point, and the last person of our little historical review, was
Monge’s student Jean-Victor Poncelet (1788–1867). He took up Monge’s ideas
and elaborated on them on a more abstract level. In 1822 he finished his
Traité des propriétés projectives des figures [103]. In this monumental work
(about 1200 big folio pages) he investigated those properties that remain
invariant under projection. This two-volume work contains fundamental ideas
of projective geometry, such as the cross-ratio, perspective, involution, and
the circular points at infinity, that we will meet in many situations throughout
the rest of this book. Poncelet was consequently the first to make use of
elements at infinity, which form the basis of all the elegant treatments that
we will encounter later on.

2.2 The Axioms

What happens if we try to untangle planar Euclidean geometry by eliminating
special cases arising from parallelism? In planar Euclidean geometry two
distinct lines intersect unless they are parallel. Now in the setup of projective
geometry one enlarges the geometric setup by claiming that two distinct lines
will always intersect. Even if they are parallel, they have an intersection—we
just do not see it. In the axiomatic approach a projective plane is defined in
the following way.
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Fig. 2.5 The axioms of projective geometry.

Definition 2.1. A projective plane is a triple (P ,L, I). The set P consists of
the points, and the set L consists of the lines of the geometry. The inclusion
I ⊆ P × L is an incidence relation satisfying the following three axioms:

(i) For any two distinct points, there is exactly one line incident with both
of them.

(ii) For any two distinct lines, there is exactly one point incident with both
of them.

(iii) There are four distinct points such that no line is incident with more than
two of them.

Observe that the first two axioms describe a completely symmetric rela-
tion of points and lines. The second axiom simply states that (without any
exception) two distinct lines will always intersect in a unique point. The first
axiom states that (without any exception) two distinct points will always
have a line joining them. The third axiom merely ensures that the structure
is not a degenerate trivial case in which most of the points are collinear.

It is the aim of this and the following section to give various models for
this axiom system. Let us first see how the usual Euclidean plane can be
extended to a projective plane in a natural way by including elements at
infinity. Let E = (PE,LE, IE) be the usual Euclidean plane with points PE,
lines LE, and the usual incidence relation IE of the Euclidean plane. We can
easily identify PE with R

2. Now let us introduce the elements at infinity. For
a line l consider the equivalence class [l] of all lines that are parallel to l. For
each such equivalence class we define a new point p[l]. This point will play
the role of the point at infinity in which all the parallels contained in the
equivalence class [l] shall meet. This point is supposed to be incident with all
lines of [l]. Furthermore, we define one line at infinity l∞. All points p[l] are
supposed to be incident with this line. More formally, we set

• P = PE ∪ {p[l] | l ∈ LE},
• L = LE ∪ {l∞},
• I = IE ∪ {(p[l], l) | l ∈ LE} ∪ {(p[l], l∞) | l ∈ LE}.
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Fig. 2.6 Sketch of some lines in the projective extension of Euclidean geometry.

It is easy to verify that this system (P ,L, I) satisfies the axioms of a
projective plane. Let us start with axiom (ii). Two distinct lines l1 and l2
have a point in common: If l1 and l2 are nonparallel Euclidean lines, then this
intersection is simply their usual Euclidean intersection. If they are parallel,
it is the corresponding unique point p[l1] (which is identical to p[l2]). The
intersection of l∞ with a Euclidean line l is the point at infinity p[l] “on”
that line. The first axiom is also easy to check: the unique line incident to
two Euclidean points p1 and p2 is simply the Euclidean line between them.
The line that joins a Euclidean point p and an infinite point p∞ is the unique
line l through p with the property that p∞ = p[l]. Last but not least, the
line incident to two distinct infinite points is the line at infinity l∞ itself.
This completes the considerations for axiom (i) and axiom (ii). Axiom (iii) is
evidently satisfied. For this one has simply to pick four points of an arbitrary
proper rectangle.

Figure 2.6 (left) symbolizes three bundles of parallels in the Euclidean
plane. Figure 2.6 (right) indicates how these lines projectively meet in a
point and how all these points lie together on the line at infinity (drawn as a
large circle for which antipodal points are assumed to be identified). Looking
at the process of extending the Euclidean plane to a projective plane, it may
seem that the points at infinity and the line at infinity play a special role.
We will see later on that this is by far not the case. In a certain sense the
projective extension of a Euclidean plane is even more symmetric than the
usual Euclidean plane itself, since it allows for even more automorphisms.
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2.3 The Smallest Projective Plane

The concept of projective planes as set up by our three axioms is a very
general one. The projective extension of the real Euclidean plane is by far
not the only model of the axiom system. In fact, even today there is no
final classification or enumeration of all possible projective planes. Projective
planes do not even have to be infinite objects. There are interesting systems
of finitely many points and lines that fully satisfy the axioms of a projective
plane. To get a feeling for these structures we will briefly construct and
encounter a few small examples.

What is the smallest projective plane? Axiom (iii) tells us that it must con-
tain at least four points, no three of which are collinear. So let us start with
four points and search for the smallest system of points and lines that con-
tains these points and at the same time satisfies axioms (i) and (ii). Let the
four points be A, B, C, and D. By axiom (ii) any pair of these points has
to be connected by a line. This generates exactly

(
4
2

)
= 6 lines. Axiom (i)

requires that any pair of such lines intersect. There are exactly three missing
intersections, namely those of the pairs of lines (AB,CD), (AC,BD), and
(AD,BC). This gives an additional three points that must necessarily exist.
Now again axiom (i) requires that any pair of points be joined by a line. The
only pairs of points that are not joined so far are those formed by the most
recently added three points. We can satisfy the axioms by simply adding one
line that contains exactly these three points.

Fig. 2.7 Construction of the smallest projective plane.

The final construction contains seven points and seven lines and is called
the Fano plane. There are a few interesting observations that can be made
in this example:

• There are exactly as many lines as there are points in the drawing.
• On each line there is exactly the same number of points (here 3).
• Through each point passes exactly the same number of lines.

Each of these statements generalizes to general finite projective planes, as
the following propositions show. We first fix some notation. Let (P ,L, I) be
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a projective plane. For a line l ∈ L let p(l) = {p ∈ P ∣∣ pIl} be the points
on l, and for a point p ∈ P let l(p) = {l ∈ L ∣∣ pIl} be the lines through p.
Furthermore, we agree on a few linguistic conventions. Since in a projective
plane the line l that is at the same time incident to two points p and q is by
axiom (i) uniquely determined, we will use a language that is more functional
than set-theoretic and simply speak of the join of the two points. We will
express this join operation by p∨q or by join(p, q). Similarly, we will call the
unique point incident with two lines l and m the meet or intersection of these
lines and denote the corresponding operation by l ∧m or by meet(l,m). We
also say that a line l contains a point p if it is incident with it.

Lemma 2.1. If for p, q ∈ P and l,m ∈ L we have pIl, qIl, pIm, and qIm,
then either p = q or l = m.

Proof. Assume that pIl, qIl, pIm, and qIm. If p �= q, axiom (i) implies that
l = m. Conversely, if l �= m, axiom (ii) implies that p = q. ��

Lemma 2.2. Every line of a projective plane is incident with at least three
points.

Proof. Let l ∈ L be any line of the projective plane and assume to the
contrary that l does contain fewer than three points. Let a, b, c, and d be the
points of axiom (iii). Assume without loss of generality that a and b are not
on l. Consider the lines a∨ b, a∨ c, a∨d. Since these all pass through a, they
must be distinct by axiom (iii) and must by Lemma 2.1 have three distinct
intersections with l. ��

Lemma 2.3. For every point p there is at least one line not incident with p.

Proof. Let p be any point. Let l and m be arbitrary lines. Either one of them
does not contain p (then we are done), or we have p = l ∧ m. By the last
lemma there is a point pl on l distinct from p, and a point pm on m distinct
from p. The join of these two points cannot contain p, since this would violate
axiom (i). ��

Theorem 2.1. Let (P ,L, I) be a projective plane with finite sets P and L.
Then there exists a number n ∈ N such that |p(l)| = n+ 1 for any l ∈ L and
|l(p)| = n+ 1 for any p ∈ P.

Proof. Let l and m be two distinct lines. Assume that l contains k points. We
will prove that both lines contain the same number of points. Let p = l ∧m
be their intersection and let � be a line through p distinct from l and m.
Now consider a point q on � distinct from p, which exists by Lemma 2.2. Let
{a1, a2, . . . , an} = p(l) − {p} be the points on l distinct from p and consider
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Fig. 2.8 The proof that all lines have the same number of points.

the n− 1 lines li = pi ∨ q; i = 1, . . . , n. Each of these lines intersects the line
m in a point bi = li ∧m. All these points have to be distinct, since otherwise
there would be lines li, lj that intersect twice, in contradiction to Lemma 2.1.
Thus the number of points on m is at least as big as the number of points
on l. Similarly, we can argue that the number of points on l is at least as big
as the number of points on m. Hence both numbers have to be equal. Thus
the number of points on a line is the same for any line (see Figure 2.8).

Now let p be any point and let l be a line that does not contain p. Let
{p1, p2, . . . , pn+1} be the n+ 1 points on l. Joining these points with p gen-
erates n + 1 lines through p. In fact, these lines must be all lines through
p since any line through p, must have an intersection with l by axiom (ii).
Hence the number of lines that pass through our (arbitrarily chosen) point p
must also be equal to n+ 1. ��

The number n of the last proposition (which was the number of points
on a line minus one) is usually called the order of the projective plane. The
following proposition relates the order and the overall number of points and
lines in a finite projective plane.

Theorem 2.2. Let (P ,L, I) be a projective plane with finite sets P and L of
order n. Then we have |P| = |L| = n2 + n+ 1.

Proof. The last proposition proved that the number of points on each line is
n+ 1 and the number of lines through each point is also n+ 1. Let p be any
point of the projective plane. Each of the n + 1 lines through p contains n
additional points. They must all be distinct, since otherwise two of these lines
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intersect twice. We have altogether (n + 1) · n + 1 = n2 + n + 1 points. A
similar count proves that the number of lines is the same. ��

So far we have met two examples of a projective plane. One is the finite
Fano plane of order 2; the other (infinite example) was the projective exten-
sion of the real Euclidean plane. Our next chapter will show that both can be
considered as special examples of a construction that generates a projective
plane for every number field.
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Homogeneous Coordinates

Ich habe bei den folgenden Entwicklungen nur die Absicht
gehabt [...] zu zeigen, dass die neue Methode [...] zum Be-
weise einzelner Sätze und zur Darstellung allgemeiner Theo-
rien sich sehr geschmeidig zeigt.

Julius Plücker, Ueber ein neues Coordinatensystem, 1829

3.1 A Spatial Point of View

Let K be any field.1. And let K
3 be the vector space of dimension three over

this field. We will prove that if we consider the one-dimensional subspaces of
K

3 as points and the two-dimensional subspaces as lines, then we obtain a
projective plane by defining incidence as subspace containment.

We will prove this fact by creating a more concrete coordinate representa-
tion of the one- and two-dimensional subspaces of K

3. This will allow us to
calculate with these objects easily. For this we first form equivalence classes
of vectors by identifying all vectors v ∈ K

3 that differ by a nonzero multiple:

[v] := {v′ ∈ K
3 | v′ = λ · v for λ ∈ K \ {0}}.

The set of all such equivalence classes could be denoted by K
3\{(0,0,0)}

K\{0} : all
nonzero vectors modulo scalar nonzero multiples. Replacing a vector by its

1 This is almost the only place in this book where we will refer to an arbitrary field K All
other considerations will be much more “down to earth” and refer to specific fields—mostly
the real numbers R or the complex numbers C.

47
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equivalence class preserves many interesting structural properties. In par-
ticular, two vectors v1, v2 are orthogonal if their scalar product vanishes:
〈v1, v2〉 = 0. This relation remains stable if we replace the two vectors by any
vectors taken from the corresponding equivalence classes. We define orthog-
onality of equivalence classes [p] and [l] in a canonic way by

[p] ⊥ [l] ⇐⇒ 〈p, l〉 = 0.

Now we set PK = K
3\{(0,0,0)}

K\{0} and let LK = K
3\{(0,0,0)}

K\{0} as well (we consider PK

and LK as disjoint copies of the same kind of space). Furthermore, we define
the incidence relation IK ⊆ PK × LK for [p] ∈ P and [l] ∈ L by

[p] IK [l] ⇐⇒ [p] ⊥ [l].

Before we prove that the triple (PK,LK, IK) is indeed a projective plane, we
clarify what this has to do with one- and two-dimensional subspaces. There
is a bijection of the set of one-dimensional subspaces of K

3 and PK. Each
subspace can be represented by a single nonzero vector p in it. In fact, exactly
all vectors in the equivalence class [p] represent the same one-dimensional
subspace. We observe, that [p] itself is this subspace with the zero vector
taken out. A two-dimensional vector space {(x, y, z) | ax + by + cz = 0}
in K

3 is in our setup represented by its normal vector (a, b, c). Since normal
vectors that differ only by a scalar multiple describe the same two-dimensional
subspace, the set LK is appropriate for representing them. Finally, a one-
dimensional subspace represented by [p] is contained in a two-dimensional
subspace represented by [l] if and only if [p] ⊥ [l]. This is consistent with our
incidence operator IK.

Theorem 3.1. With the above definitions and notation for any field K, the
triple (PK,LK, IK) is a projective plane.

Proof. We simply have to verify the three axioms. Let [p] and [q] be two
distinct elements in PK. In order to verify axiom (i) we must prove that there
is a vector l that is simultaneously orthogonal to p and q. Furthermore, we
must show that all nonzero vectors with this property must be scalar multiples
of l. Since [p] and [q] are distinct, the vectors (p1, p2, p3) and (q1, q2, q3) do
not differ just by a nonzero scalar multiple. In other words, the matrix

(
p1 p2 p3

q1 q2 q3

)

has rank 2. Thus the solution space of

(
p1 p2 p3

q1 q2 q3

)⎛
⎝
l1
l2
l3

⎞
⎠ =

(
0
0

)
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is one-dimensional. This is exactly the desired claim. For any nonzero solution
(l1, l2, l3) of this system the equivalence class [(l1, l2, l3)] is the desired join of
the points.

In a completely similar way, we can verify axiom (ii), which states that for
any pair of distinct lines there is exactly one point incident to both.

For axiom (iii) observe that any field K must contain a zero element and
a one element. It is easy to check that the equivalence classes of the four vec-
tors (0, 0, 1), (0, 1, 1), (1, 0, 1), and (1, 1, 1) satisfy the requirements of non-
collinearity of axiom (iii). ��

Although the message of the last theorem is simple, it is perhaps the cen-
tral point of this entire book. It is the link of geometry and algebra. Its
power stems from the fact that we can recover our construction of projec-
tively extending the Euclidean plane directly in the representation of points
by three-dimensional vectors. This will be shown in the next section. This rep-
resentation of points as well as lines of a projective plane by three-dimensional
vectors is called homogeneous coordinates. We will later on see that the ad-
jective homogeneous is very appropriate, since these coordinates at the same
time unify the role of usual lines and the line at infinity and give three co-
ordinates of K

3 a completely symmetric interpretation. We will see that by
introducing this coordinate system we can easily deal with the Euclidean
plane and its projective extension (the points and the line at infinity) in a
completely algebraic manner.

The use of homogeneous coordinates can be considered an extension
of barycentric coordinates, which were introduced by August Ferdinand
Möbius (1790–1868). Homogeneous coordinates were first introduced by
Julius Plücker in his article “Ueber ein neues Coordinatensystem” in 1830
[99]. There he writes

Ich habe bei den folgenden Entwicklungen nur die Absicht gehabt [...] zu zeigen, dass
die neue Methode [...] zum Beweise einzelner Sätze und zur Darstellung allgemeiner
Theorien sich sehr geschmeidig zeigt.2

In fact, it is this elegance that we will encounter repeatedly throughout this
book. I hope that after finishing this book the reader will finally agree on
Plücker’s point of view.

3.2 The Real Projective Plane with Homogeneous
Coordinates

Let us now analyze how the projective extension of the Euclidean plane
fits into the picture of homogeneous coordinates. For this we start with a

2 My intention for making the following developments was to demonstrate that this new
method turns out to be very pliable for proving specific theorems or for representing general
theories.
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R2 → {(x, y, z) ∈ R3 | z = 1}

Fig. 3.1 Embedding the Euclidean plane in R
3.

coordinate representation of the Euclidean plane E. As usual, we identify the
Euclidean plane with R

2. Each point in the Euclidean plane can be repre-
sented by a two-dimensional vector of the form (x, y) ∈ R

2. A line can be con-
sidered as the set of all points (x, y) satisfying the equation a·x+ b·y+ c = 0.
However, since we will treat lines as individual objects rather than sets of
points, we will consider the parameters (a, b, c) themselves as a representation
of the line. Observe that for nonzero λ the vector (λ·a, λ·b, λ·c) represents the
same line as (a, b, c). Furthermore, the vector (0, 0, 1) does not represent a
real line at all, since then the above equation would read 1 = 0.

Now we make the step to homogeneous coordinates. For this we consider
our Euclidean plane embedded affinely in the three-dimensional space R

3. It
is convenient to consider the plane to be the z = 1 plane. Each point (x, y)
of the Euclidean plane will now be represented by the point (x, y, 1). How
should we interpret all other points in R

3? In fact, for any point that does
not have a zero z-component we can easily assign a corresponding Euclidean
point. For (x, y, z) ∈ R

3 we consider the one-dimensional subspace spanned
by this point. If z �= 0 this subspace intersects the embedded Euclidean plane
at a unique single point. We can calculate this point simply by dividing by the
z-coordinate. Thus for z �= 0 the vector p = (x, y, z) represents the Euclidean
point (x/z, y/z, 1). Note that all vectors in the equivalence class [p] represent
the same Euclidean point. So if we are interested only in Euclidean points,
we do not have to care about nonzero scalar factors.

How about the remaining points of R
3, those with z-coordinate equal to 0?

These points will correspond to the points at infinity of the projective com-
pletion of the Euclidean plane. To see this, we consider a limit process that
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dynamically moves a point to infinity and observe what will happen with the
Euclidean coordinates. We start in the Euclidean picture. Assume we have
a point p = (p1, p2) in the usual Euclidean plane. Furthermore, we have a
direction r = (r1, r2). If we consider qα := p + α · r and start to increase α
from 0 to a larger and larger value, the point qα will move away in direction r.
What does this situation look like in homogeneous coordinates? Point qα is
represented by the homogeneous coordinates (p1 +α · r1, p2 +α · r2, 1). Since
in homogeneous coordinates we do not care about nonzero multiples, we can
(for α �= 0 ) equivalently represent the point qα by (p1/α+r1, p2/α+r2, 1/α).
What happens in the limit case α → ∞? In this case our vector represent-
ing qα degenerates to the vector (r1, r2, 0). Let us reinterpret this process
geometrically. “No matter with which point we start, if we move it in di-
rection r further and further out, then in the limit case, we will end up at
a point with homogeneous coordinates (r1, r2, 0).” In other words, we can
consider the vector (r1, r2, 0) as a representation of the point at infinity in
direction r. (Perhaps it is a good exercise for the reader to convince him-
self/herself that we arrive at exactly the same point if we decrease α starting
at α = 0 and ending at α = −∞.) Also for infinite points it is possible to
neglect scalar multiples and take any point of the corresponding equivalence
class [(r1, r2, 0)] to represent the same point at infinity.

The only vector that does not fit into our considerations so far is the zero
vector (0, 0, 0). This is, however, no problem at all, since the space R

3\{(0,0,0)}
R\{0}

excludes this vector explicitly. We will see later on that whenever the zero-
vector pops up in a calculation we will have encountered a degenerate situa-
tion, for instance intersecting two identical lines.

How about the lines? We already saw that a Euclidean line is nicely repre-
sented by the parameters (a, b, c) of the linear equation a ·x+b ·y+c = 0. We
also observed that multiplying (a, b, c) by a nonzero scalar does not change
the line represented. If we view the line equation in homogeneous coordinates,
it becomes

a · x+ b · y + c · z = 0.

If we consider a point on this line with homogeneous coordinates (x, y, 1),
this form degenerates to the Euclidean version. However, whenever we have
a point (x, y, z) that satisfies the equation, it will still satisfy the equation if we
replace it by (λx, λy, λz). Thus, this form is stable under our representation
of points and lines by equivalence classes. If we interpret this equation in
three dimensions, we see that the vector (a, b, c) is the normal vector of the
plane that contains all vectors (x, y, z) ∈ R

3 that satisfy the equation. If we
intersect this plane with our embedded Euclidean plane, we obtain a line in
the Euclidean plane that corresponds to the Euclidean counterpart of our
line under consideration (compare Figure 3.1).

There is only one type of vector that does not correspond to a Euclidean
line. If we consider the vector (0, 0, c) with c �= 0, the orthogonal vector
space is the xy-plane through the origin. This plane does not intersect the
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embedded Euclidean plane. However all points at infinity (remember, they
have the form (x, y, 0)) are orthogonal to this vector, since 0·x+0·y+c·0 = 0.
We call this line the line at infinity. It is incident to all points at infinity.

Let us summarize what we have achieved so far. In Section 2.2 we discussed
how we can extend the Euclidean plane by introducing elements at infinity:
one point at infinity for each direction and one global line at infinity that
contains all these points. Now we have a concrete coordinate representation of
these objects. The Euclidean points correspond to points of the form (x, y, 1);
the infinite points correspond to points of the form (x, y, 0). The Euclidean
lines have the form (a, b, c) with a �= 0 or b �= 0 (or both). The line at infinity
has the form (0, 0, 1). All the vectors are considered modulo nonzero scalar
multiples. We will refer to this setup of the real projective plane later on as
RP

2. This notion stands for Real Projective 2-dimensional space. Later on we
will also deal with spaces such as RP

1, RP
d, CP

1, CP
2.

From the three-dimensional viewpoint the distinction of infinite and finite
elements is completely unnatural: all elements are simply represented by vec-
tors. This resembles the situation in the axiom system for projective planes.
There we also do not distinguish between finite and infinite elements. This
distinction is only a kind of artifact that arises when we interpret the Eu-
clidean plane in a projective setup. In a sense, if we consider the projective
plane as an extension of the Euclidean plane, we break the nice symmetry of
projective planes by (artificially) singling out one line to play the role of the
line at infinity. Nevertheless, it is a very fruitful exercise to interpret Euclidean
theorems in a projective framework or to interpret projective theorems in a
Euclidean framework. Usually, a whole group of theorems in Euclidean ge-
ometry corresponds to just one theorem in projective geometry and turns out
to be just different specializations for different lines at infinity. We will make
these kinds of investigations very often in the following chapters, and we will
see how nicely projective geometry generalizes different Euclidean concepts.

3.3 Joins and Meets

This section is dedicated to a way of easily carrying out elementary operations
in geometry by algebraic calculation. In Chapter 2 we saw that the axiom
system for projective planes immediately motivates two operations, the join
of two points and the meet of two lines. We will now get to know the algebraic
counterparts of these operations. From now on we will (by slight abuse of
notation) no longer explicitly refer to the equivalence classes of points that
arise from multiplication by nonzero scalars. Rather than that we will do
the calculations with explicit representatives of these classes. Essentially all
operations that will be described can be simply carried out on this level of
representatives. So, from now on the reader should always have in mind that
the vectors (x, y, z) and (λx, λy, λz) represent the same geometric point.
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The crucial point for representing the join and meet operations alge-
braically is that if (in homogeneous coordinates) the point (x, y, z) is con-
tained in the line (a, b, c), the equation

a · x+ b · y + c · z = 0

holds. If the equation holds, then these two vectors are orthogonal. Now, if
two points p = (p1, p2, p3) and q = (q1, q2, q3) are given, then the coordinates
l = (l1, l2, l3) of a line incident to both points must be orthogonal to both
vectors p and q. In Section 3.1 we argued that there is a solution to this
problem by explicitly writing down a system of two linear equations. However,
there is also a way to obtain a specific solution explicitly. For this consider
the vector-product operator “×” from linear algebra. This operator is defined
as follows: ⎛

⎝
p1

p2

p3

⎞
⎠×
⎛
⎝
q1
q2
q3

⎞
⎠ =

⎛
⎝

+p2q3 − p3q2
−p1q3 + p3q1
+p1q2 − p2q1

⎞
⎠.

An easy calculation shows that this operator generates a vector that is si-
multaneously orthogonal to p and q. For instance, for p we get, after term
expansion,

p1 · (p2q3 − p3q2) + p2 · (−p1q3 + p3q1) + p3 · (p1q2 − p2q1) = 0.

(We will soon see a more structural approach to the vector product that
explains this relation.) Thus we can express the join operation of two points
simply by the cross product:

meet(p, q) := p× q.

We can deal in a completely similar fashion with the problem of intersecting
two lines l = (l1, l2, l3) and m = (m1,m2,m3). A point that is simultaneously
incident with both lines must be represented by a vector that is orthogonal
to both l and m. We can generate such a vector simply by forming the vector
product. Thus we get

join(l,m) := l×m.

It is instructive to see these operators in work at a Euclidean example. Let
A,B,C,D (see Figure 3.2, left) be four points in the Euclidean plane given
by the following (Euclidean) coordinates:

A = (1, 1),
B = (3, 2),
C = (3, 0),
D = (4, 1).

What are the coordinates of the intersection of the lines AB and CD?
The homogeneous coordinates of the points are A = (1, 1, 1), B = (3, 2, 1),
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C = (3, 0, 1), D = (4, 1, 1). We can calculate the homogeneous coordinates of
the two lines simply by taking the vector products:

lAB = (1, 1, 1)× (3, 2, 1)
= (1 · 1 − 1 · 2,−1 · 1 + 1 · 3, 1 · 2 − 1 · 3)
= (−1, 2,−1),

lCD = (3, 0, 1)× (4, 1, 1)
= (0 · 1 − 1 · 1,−3 · 1 + 1 · 4, 3 · 1 − 0 · 4)
= (−1, 1, 3).

The meet E of these lines is again calculated by the vector product:

E = (−1, 2,−1)× (−1, 1, 3)
= (2 · 3 − (−1) · 1,−(−1) · 3 + (−1) · (−1), (−1) · 1 − 2 · (−1))
= (7, 4, 1).

These are the homogeneous coordinates of the Euclidean point (7, 4). (The
fact that the z-coordinate turned out to be 1 was, in fact, only a lucky
coincidence. In general we would have to divide by this coordinate to get
the Euclidean values.) It is somehow amazing that with a projective point of
view we get an explicit and straightforward way to calculate with joins and
intersections. The calculations even automatically take care of the coordinates
if elements at infinity are involved. We consider the same example but now
with point D located at (5, 1) (see Figure 3.2, right). The calculation above
becomes

lAB = (1, 1, 1) × (3, 2, 1)
= (1 · 1 − 1 · 2,−1 · 1 + 1 · 3, 1 · 2 − 1 · 3)
= (−1, 2,−1),

lCD = (3, 0, 1) × (5, 1, 1)
= (0 · 1 − 1 · 1,−3 · 1 + 1 · 5, 3 · 1 − 0 · 5)
= (−1, 2, 3).

E = (−1, 2,−1)× (−1, 2, 3)
= (2 · 3 − (−1) · 2,−(−1) · 3 + (−1) · (−1), (−1) · 2 − 2 · (−1))
= (8, 4, 0).

Point E is now an infinite point, since its z-coordinate is zero. In particular,
it its the infinite point in direction (8, 4) (or equivalently in direction (2, 1)).
This is the point in which the two parallel lines meet.
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Fig. 3.2 Working with meet and join.

3.4 Parallelism

The only operations and relations we have modeled so far are incidence, join,
and meet. We will see that many other geometric operations (such as measur-
ing distances, calculating angles, creating perpendiculars) will require special
treatment if we want to model them in a projective setup. Nevertheless, there
is at least one operation of Euclidean geometry that can be easily modeled
in a projective framework: drawing a parallel to a line through a point. For
this, start with the real projective plane with our usual setup in homogeneous
coordinates. We then have to single out a line at infinity. Usually we use the
standard line at infinity with homogeneous coordinates (0, 0, 1), but we are
not forced to do so.

Let l∞ ∈ LR be the line at infinity. With respect to this line we can define
an operator parallel(p, l) : PR × LR → LR that takes as input a line l and
a point p and calculates a line parallel to l and through p. We define this
operator by

parallel(p, l) := join(p,meet(l, l∞)) = p× (l × l∞).

How does this operator work? First it calculates the intersection of l with
the line at infinity. This is the point at infinity that is contained in l and on
any parallel to l. So, if we want to obtain a parallel to l through p, we have
simply to join this point with p. This is how the operator works.

It is interesting to see what happens if we select a finite Euclidean line as
the line at infinity. As an example consider the situation of a square and the
task of constructing its two diagonals, its’ center, and two lines through this
center that are parallel to the quadrangles sides (Figure 3.3). If we had cho-
sen four arbitrary (nonsquare) points A,B,C,D as corners, the construction
could still be performed. For this let A,B,C,D be the corners of the quad-
rangle in cyclic order. The joins d1 = join(A,C) and d2 = join(B,D) are the
diagonals of the “quadrangle.” Their meet m = meet(d1, d2) is the center. To
get the two parallels we first have to know where the line at infinity is. If we
consider (by definition) the four points as corners of a square, we know that



56 3 Homogeneous Coordinates

D C

A B

D

C

A B

q

Fig. 3.3 Parallelism with a finite line as line at infinity.

opposite sides must be parallel. Hence the intersection of the lines supporting
opposite sides gives us two ways of constructing a point at infinity, namely
p1 = meet(join(A,B), join(C,D)) and p2 = meet(join(B,C), join(D,A)).
Joining these two points gives us the position of the line at infinity. We finally
want to construct the two lines through the center, parallel to the sides. These
are simply the joins join(m, p1) and join(m, p2). What we finally obtain is
a perspectively correct drawing of the quadrangle together with the required
points and lines.

3.5 Duality

We will here briefly touch upon a topic that we will encounter later in greater
depth and detail. You may have observed that if we are in a projective setup,
points and lines play a completely symmetric role. We want to point out a
few points where this becomes transparent.

• In the axiom system for projective planes axiom (i) transfers to axiom
(ii) if one interchanges the words line and point.

• At first sight, axiom (iii) seems to break symmetry. However, one can
prove a similar (and equivalent) statement with the role of points and
lines interchanged as a consequence of the three axioms.

• In the homogeneous coordinate setup the spaces PK and LK are alge-
braically identical.

• In the incidence relation ax+ by+ cz = 0 the vectors (a, b, c) and (x, y, z)
play a completely symmetric role.

• Joins and meets can both be calculated by the vector product.

So, every true statement in projective geometry that involves only the
vocabulary we have developed so far is again transferred to a true statement
if we exchange the terms:
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point ↔ line
join ↔ meet
P ↔ L

We call this effect duality. So we can say that the very basis of projective
geometry is dual. This implies that for every concept we will develop further
on there will be a corresponding dual counterpart. For every theorem in
projective geometry there will be a corresponding dual theorem. For every
definition in projective geometry there will be a corresponding dual definition,
and so forth. The reader is invited to dualize the rest of this book (i.e., it is
useful to question for every concept/theorem/definition/drawing introduced
in the book what the corresponding dual would be).

We will exemplify duality with a small construction of projective geometry
(compare Figure 3.4). We first describe the primal construction. We start with
four points of which no three are collinear in RP

2. There are altogether six
lines that can be drawn between these four points. Dually this reads thus:
Start with four lines. These lines will have altogether six points of intersection.
The primal and dual situations are drawn in Figure 3.4.

One has to be aware that the analogy of primal and dual situations goes
far beyond the combinatorial level. We can literally take the homogeneous
coordinates of a point and interpret them as homogeneous coordinates of a
line, and vice versa. Incidences are preserved under this exchange. Figure 3.5
represents an example of three collinear points in the standard embedding
of the Euclidean plane on the z = 1 plane. Coordinates of the points and of
the line are given. The second picture shows the corresponding dual situation
in which the coordinates are interpreted as line coordinates, three lines that
meet in a point. The line equations are given, and it is easy to check that
the homogeneous coordinates of the points in one picture are exactly the
homogeneous coordinates of the lines in the other picture.

Fig. 3.4 A pair of primal and dual configurations.
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Fig. 3.5 A pair of primal and dual configurations with coordinates.

3.6 Projective Transformations

Transformations are a fundamental concept all over geometry. There are dif-
ferent aspects under which one can consider transformations. On the one
hand, they are a change of the frame of reference. After a transformation,
the same objects are represented within a new coordinate system. Hence a
transformation is a (bijective) map of the ambient space onto itself. The
other way one can look at transformations is that they take the objects and
move (or even deform) them to end up in another position. No matter which
picture one prefer describing a transformation, the crucial point is that they
leave certain properties of the objects unchanged.

We will first introduce transformations in an abstract setup and become
more and more specific further on. In general, one can equip reasonable col-
lections of transformations with a group structure. For this let us consider
an object space Ø. This object space will later on be, for instance, the set
of points PR of the real projective plane. In general, a transformation is a
bijective map T : Ø → Ø. We obtain the group structure by requiring that
collections of transformations be closed under reasonable operations. If one
applies two transformations T1 and T2 one after another, one can consider
the result as a single transformation (T2◦T1) : Ø → Ø. For this book we make
the convention that T2 ◦ T1 is interpreted as first applying T1 and then T2.
Thus if we have a specific object o ∈ Ø, we have (T2 ◦ T1)(o) = T2(T1(o)).
The identity Id: Ø → Ø that maps every element of the object space to itself
is a transformation. Since transformations are assumed to be bijective maps
in the object space, we can for any transformation T consider its inverse op-
eration T−1 as a transformation as well. We have T ◦ T−1 = Id. It is also
not difficult to check that transformations are in general associative. For this
we have to show that if we have three transformations T1, T2, T3, the relation
(T3 ◦ T2) ◦ T1 = T3 ◦ (T2 ◦ T1) holds. In order to see this, consider a concrete
object o. We have



3.6 Projective Transformations 59

((T3 ◦ T2) ◦ T1)(o) = (T3 ◦ T2)(T1(o))
= T3(T2(T1(o))
= T3((T2 ◦ T1)(o))
= (T3 ◦ (T2 ◦ T1))(o).

Taking all this together, one obtains the properties that ensure that we have
a group structure.

Let us be a little more concrete and consider the usual transformations of
Euclidean geometry (we will now recall a few facts from linear algebra). For
this let R

2 again represent the coordinates of the Euclidean plane. The points
of the Euclidean plane will be our objects; thus R

2 plays the role of the object
space. The usual transformations in Euclidean geometry are translations,
rotations, reflections, and glide reflections. These transformations can easily
be expressed by algebraic operations. A translation by a vector (tx, ty) can
be written as (

x
y

)
�→
(
x+ tx
y + ty

)
.

A rotation about the origin by an angle α can be written as
(
x
y

)
�→
(

cos(α) sin(α)
− sin(α) cos(α)

)
·
(
x
y

)
.

A rotation about an arbitrary point (rx, ry) can be written as
(
x
y

)
�→
(

cos(α) sin(α)
− sin(α) cos(α)

)
·
(
x− rx
y − ry

)
+
(
rx
ry

)
.

Reflections and glide reflections have a similar representation. Any of the
above Euclidean transformations can be written in the form

p �→ M(p− v) + w

for suitable choices of a 2 × 2 matrix M and vectors v and w. For rota-
tions the matrix M has to be a rotation matrix. This means it has the form(

cos(α) sin(α)
− sin(α) cos(α)

)
. For reflections or glide reflections the matrix must be a re-

flection matrix of the form
(

cos(α) sin(α)
sin(α) − cos(α)

)
. The group of Euclidean transfor-

mations leaves fundamental properties and relations within the object space
invariant. For instance, if p and q are Euclidean points, then the distance
between them is the same before or after a Euclidean transformation. Also
the absolute values of angles are not altered by Euclidean transformations. In
general, the shape and size of an object is not altered by a Euclidean transfor-
mation. If one maps a circle (or line, or quadrangle) pointwise by a Euclidean
transformation, one ends up again with a circle (or line, or quadrangle) of
the same size. It may just have moved to another location.
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In the above form M(p − v) + w, one may allow for more general trans-
formations (where M is any invertible 2 × 2 matrix). By this one can also
describe scalings, similarities, and affine transformations. In this case the
group of transformations becomes larger and the set of properties that is
not altered by these transformations becomes smaller. For instance, similar-
ities will still preserve the absolute value of angles but no longer distances.
An affine transformation will not even preserve angles. However, an affine
transformation still maps a pair of parallel lines to another pair of parallel
lines.

From the point of view of computer implementations it is inherently diffi-
cult and error-prone to calculate with the above representation of Euclidean
transformations. The fact that the rotational or reflectional part is expressed
by a matrix multiplication while the translational part is expressed by a vec-
tor addition makes it cumbersome to calculate the inverses or the composition
of two transformations. Again we get a structurally much clearer approach if
we focus on a projective setup and an approach via homogeneous coordinates.

If we represent a Euclidean point (x, y) by homogeneous coordinates
(x, y, 1), we can express rotations as well as translations by a multiplica-
tion by a 3 × 3 matrix. Translations take the following form (assuming for a
moment that the z-coordinate is chosen to be 1):

⎛
⎝
x
y
1

⎞
⎠ �→

⎛
⎝

1 0 tx
0 1 ty
0 0 1

⎞
⎠ ·
⎛
⎝
x
y
1

⎞
⎠ =

⎛
⎝
x+ tx
y + ty

1

⎞
⎠.

Rotations about the origin can be expressed thus:
⎛
⎝
x
y
1

⎞
⎠ �→

⎛
⎝

cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

⎞
⎠ ·
⎛
⎝
x
y
1

⎞
⎠.

Applying two transformations in succession is now nothing but multiplica-
tion of the corresponding matrices. Inverting a transformation corresponds
to matrix inversion. One should notice that the above matrices were chosen
in a way that a vector with z-coordinate equal to one is again mapped to
a vector with z-coordinate equal to one. Hence, the first two entries of the
homogeneous coordinate vector directly show the Euclidean position of the
mapped point (in our standard embedding). From a conceptual point of view,
it is, even if one deals only with Euclidean transformations, often much more
useful to work in this more general representation, since here translations,
rotations, and reflections arise in a unified way. Moreover, we will gain even
more advantage from this representation, since it is the key to an even wider
class of transformations: the projective transformations. First, if we consider
matrices with nonzero determinant of the form



3.6 Projective Transformations 61

⎛
⎝
a b c
d e f
0 0 1

⎞
⎠,

then we get all affine planar transformations. Still we have not used the whole
freedom of an invertible 3 × 3 matrix. A general projective transformation is
a multiplication by an invertible 3 × 3 matrix

⎛
⎝
a b c
d e f
g h i

⎞
⎠.

We now want to investigate the properties of such a general type of pro-
jective transformation. We first make a notational convention. Since for any
p ∈ R

3 \ {(0, 0, 0)} the product of a 3 × 3 matrix M and any member of the
equivalence class [p] ends up within the same equivalence class [M · p], the
action of M on these equivalence classes is well defined. Thus we can simply
interpret M as acting on our object space (of equivalence classes) PR. Thus
we can interpret the multiplication by M on the level of representatives taken
from R

3 \ {(0, 0, 0)} or on the level of equivalence classes R
3\{(0,0,0)}

R\{0} . Thus
for a projective point in [p] ∈ PR we will write M · [p] and mean by this the
projective point [M · p].

Since in the context of projective geometry the input vector and the output
vector of our matrix multiplication are determined only up to multiplication
by a nonzero scalar, the matrices M and λM represent the same projective
transformation (for nonzero λ). Thus we have overall only eight degrees of
freedom that determine such a transformation.

One fundamental property of projective transformations is given by the
following statement.

Theorem 3.2. A projective transformation maps collinear points to collinear
points.

Proof. It suffices to prove the theorem for a generic triple of points. Let
[a], [b], [c] ∈ PR be three collinear points represented by homogeneous coor-
dinates a, b, c. In this case there exists a line [l] ∈ LR with 〈l, a〉 = 〈l, b〉 =
〈l, c〉 = 0. We assume that all homogeneous coordinates are represented by
column vectors. We have to show that under these conditions the points rep-
resented by a′ = M · a, b′ = M · b, c′ = M · c, are also collinear. For this
simply consider the line [l′] represented by l′ := (M−1)T l. We have

〈l′, a′〉 = (l′)T a′ = ((M−1)T l)TMa = lT ((M−1)T )TMa = lTa = 〈l, a〉 = 0.

A similar calculation applies also to the other two points. Thus the line
represented by l′ is simultaneously incident to all three points represented by
a′, b′ and, c′. Hence these points are collinear. ��
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Implicitly, the calculations in the last proof describe how a projective trans-
formation M : PR → PR represented by a 3 × 3 matrix M acts on the space
of lines LR. The homogeneous coordinates of a line must be mapped in such
a way that incidences of points and lines are preserved under the mapping.
This implies that a line has to be mapped according to l �→ (M−1)T l. If p
and l are incident before a transformation, they will be incident after the
transformation as well.

In fact, the property of Theorem 3.2 is characteristic of projective trans-
formations over the field of real numbers. One can prove the following:

Theorem 3.3. If Φ : PR → PR is any bijective map that preserves the
collinearity of points, then Φ can be expressed as multiplication by a 3 × 3
matrix.

In fact, this theorem is so crucial that it is sometimes called the fundamental
theorem of projective geometry. Its proof is a bit subtle, and requires some
elementary results from field theory. The proof makes use of the fact that
the real numbers do not have any field automorphisms except the identity.
The generalization of the above theorem to arbitrary fields involves a proper
discussion of field automorphisms. A proof will be postponed to Section 5,
where we will discuss the relations of projective geometry and elementary
arithmetic operations. For now, we will collect more properties of projective
transformations that can be expressed as multiplication by a 3 × 3 matrix.

The most fundamental property of projective transformations that we will
need (which is also of invaluable practical importance) is the following fact.

Theorem 3.4. Let [a], [b], [c], [d] ∈ PR be four points of which no three are
collinear and let [a′], [b′], [c′], [d′] ∈ PR be another four points of which no
three are collinear then there exists a 3× 3 matrix M such that [M ·a] = [a′],
[M · b] = [b′], [M · c] = [c′], and [M · d] = [d′].

Proof. We assume that a, b, c, d, a′, b′, c′, d′ ∈ R
3 are representatives of the

corresponding equivalence classes. We first prove the theorem for the special
case that a = (1, 0, 0), b = (0, 1, 0), c = (0, 0, 1), and d = (1, 1, 1). Since
the columns of a matrix are the images of the unit vectors, the matrix must
have the form (λ · a′, μ · b′, τ · c′). (In other words, the image of a must be a
multiple of vector a′ and so forth.) Hence the image of d is λ ·a′ +μ ·b′+τ ·c′.
This must be a multiple of d′. We have only to adjust the parameters λ, μ, τ
accordingly. For this we have to solve the system of linear equations

⎛
⎝

| | |
a′ b′ c′

| | |

⎞
⎠ ·
⎛
⎝
λ
μ
τ

⎞
⎠ =

⎛
⎝

|
d′

|

⎞
⎠.

This system is solvable, by our nondegeneracy assumptions (a′, b′, c′ are not
collinear). Furthermore, none of the parameters is zero (as a consequence of
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Fig. 3.6 The image of a grid under a projective transformation.

the remaining nondegeneracy assumptions). This proves the theorem for the
special case.

In order to prove the general case of the theorem one uses the above fact
to find a transformation T1 that maps (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) to
a, b, c, d, and to find a transformation T2 that maps (1, 0, 0), (0, 1, 0), (0, 0, 1),
(1, 1, 1) to a′, b′, c′, d′. The desired transformation is then T2 · T−1

1 . ��

Remark 3.1. (A note on implementations): The last theorem is not only of
theoretical interest. The proof gives also a practical recipe for calculating a
projective transformation that maps a, b, c, d to a′, b′, c′, d′ (as usual up to
scalar multiple). The basic operations that are required for this are matrix
multiplication and matrix inversion. One has simply to follow the different
calculation steps in the above proof.

The fact that projective transformations preserve collinearities and inci-
dences of points and lines relates them intimately to the topic of perspectively
correct drawings. Figure 3.6 shows a drawing of a checkerboard-like grid and
four circles and its image under a projective transformation. The projec-
tively transformed picture is completely determined by the image of four
corner points. Observe that, for instance, the grid points along the diagonals
are again collinear in the transformed image. One can also see that angles
and distances are not preserved under a projective transformation. Not even
ratios of distances are preserved: an equidistant chain of points in the original
picture will in general no longer be equidistant after the projective transfor-
mation (later on, we will see that cross-ratios are preserved under projective
transformations). We also see that circles are not necessarily mapped to cir-
cles again. The picture also indicates that tangency relations of curves are
preserved under projective transformations.

Throughout the entire book we will very often return to the topic of pro-
jective transformations under various aspects.
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3.7 Finite Projective Planes

Before we will continue our study of geometric situations over the real (and
over the complex) numbers we will have a very brief look at projective spaces
over finite fields. Without providing proofs we will report on a few basic
facts. The construction of Section 3.1 was a general method of constructing a
projective plane starting from a field K. Points correspond to one-dimensional
subspaces; lines correspond to two-dimensional subspaces. If K is a finite field
we end up with a projective plane consisting of only finitely many points and
lines. Let us consider the smallest cases explicitly. First we study the case
K = GF2, the field of characteristic 2 that consists of a 0 and a 1 only. All
nonzero vectors of K

3 are listed below:
⎛
⎝

1
0
0

⎞
⎠,
⎛
⎝

0
1
0

⎞
⎠,
⎛
⎝

0
0
1

⎞
⎠,
⎛
⎝

1
1
0

⎞
⎠,
⎛
⎝

1
0
1

⎞
⎠,
⎛
⎝

0
1
1

⎞
⎠,
⎛
⎝

1
1
1

⎞
⎠.

Over this field there are no nontrivial scalar multiples of these vectors (the
only nonzero scalar is λ = 1). Hence each of these vectors corresponds to one
point of the corresponding projective plane. These seven points are nothing
but the seven points of the Fano plane that we encountered in Section 2.3.

An assignment of coordinates to the points is given in Figure 3.7. Three
points are collinear in this plane if and only if there is a line vector (a, b, c)
that is simultaneously orthogonal to all three points. For instance, the circle
in the center corresponds to the line (1, 1, 1).

Alternatively, one can view the Fano plane in the following way: The GF2

analogue of the Euclidean plane R
2 is the space (GF2)2 that has exactly four

elements. We can homogenize them by embedding them in the z = 1 plane
of (GF2)3 (white points in the picture). In addition, we have to consider
all points at infinity with a z-coordinate 0 (the black points). They lie on a
common line—the line at infinity. Observe that each projective line contains

(0,1,0)

(0,0,1) (1,0,0)

)0,1,1()1,1,0(

(1,0,1)

(1,1,1)

Fig. 3.7 The Fano plane with coordinates over GF2. And the projective plane over GF3

.
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exactly n+1 elements. We can calculate the number of points in two different
ways. If n is the number of elements of the field then we have n2 finite points
and n+1 infinite points. This makes n2 +n+1 points altogether. We obtain
the same number if we consider the (n3 − 1) nonzero vectors in K

3. Each
equivalence class consists of n− 1 vectors. And we have (n3 − 1)/(n− 1) =
n2 + n+ 1 points.

The next, more complicated, example is a projective plane over the three-
element field GF3. Here we have 4 points on each line, and the overall number
of points is 32 + 3 + 1 = 13. The corresponding incidence structure is shown
in Figure 3.7 (right): also here we could divide the points into a finite and an
infinite part and single out a line at infinity. However, one should be aware
that by construction there are no a priori distinguished lines: As in the case
of the Euclidean plane, any line can play the role of the line at infinity.

Since there is a finite field for every prime power p, our general construction
immediately yields the following result:

Theorem 3.5. For any prime power n there is a projective plane that con-
sists of n2 + n + 1 points and n2 + n + 1 lines. Each line contains exactly
n+ 1 points and each point lies on exactly n+ 1 lines.

The parameter n is called the order of the finite projective plane. There
is a famous conjecture that the order of a projective plane is always a prime
power. However, experts in the field have tried to prove this conjecture now
for several decades, and the status of the conjecture remains open. We briefly
want to review the state of this conjecture. A priori there is no reason why
for n > 1 there should not be a projective plane of order n. The sharpest
result that rules out several cases is the theorem of Bruck and Ryser, which
was first proven in 1949 [20] (which we quote without proof here).

Theorem 3.6. If a projective plane of order n exists, and n ≡ 1 or
2 (mod 4), then n is the sum of two squares.

Let us see what the situation looks like for orders up to 14:

2 = 21 = 1 + 1 Fano plane;
3 = 31 Plane over GF3;
4 = 22 Plane over (GF2)2;
5 = 51 = 4 + 1 Plane over GF5;
6 Not sum of two squares; no projective plane of this order;
7 = 71 Plane over GF7;
8 = 23 Plane over (GF2)3;
9 = 32 = 9 + 0 Plane over (GF3)2;
10 = 9 + 1 No prime power, but Bruck-Ryser does also not apply;
11 = 111 Plane over GF11;
12 No prime power, but Bruck-Ryser does also not apply;
13 = 131 Plane over GF13;
14 Not sum of two squares; no projective plane of this order;
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The table reveals two interesting values of the order for which the Theorem
of Bruck and Ryser does not rule out the existence of a projective plane, nor
does our field construction apply: the orders 10 and 12.

The case of order 10 was settled in 1989 by H.W.C. Lam, L. Thiel, and
S. Swiercz [78, 79]. They proved the nonexistence of a projective plane of
order 10 by a clever but in essence still brute-force computer proof. The
exhaustive computer proof took the equivalent of 2000 hours on a Cray 1
supercomputer. (In order to get an impression of the problem state it in the
following way: Mark the places in a 111 × 111 array such that the following
conditions are satisfied: In each row and each column there are exactly 11
marks. Furthermore, each pair of rows must have exactly one mark in the
same column.)

The case of order 12 is still wide open. No method seems to be known to
break down the difficulty of enumerating all possible cases to a reasonable
size that would fit on contemporary computing devices.

One might wonder whether the only way to obtain a finite projective plane
is via our field construction. This is not the case. The first case for which such
nonstandard planes occur is that of order nine. There are 4 nonisomorphic
projective planes of this order. There are even 193 (known) finite projective
planes of order 25. A general method of classification seems to be far beyond
reach.
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Lines and Cross-Ratios

Upside down
boy you turn me

inside out
and round and round

Song text, Diana Ross

At this stage of this monograph we enter a significant didactic problem.
There are three concepts that are intimately related and that unfold their full
power only if they play together. These concepts are performing calculations
with geometric objects, determinants and determinant algebra, and geometric
incidence theorems. The reader should understand that in a beginner’s text
that makes few assumptions about prior knowledge, these concepts must
be introduced sequentially. Therefore we will sacrifice some mathematical
beauty for clarity of exposition. Still, we highly recommend that the following
chapters be read (at least) twice, so that the reader may obtain an impression
of the interplay of the different concepts.

This and the next section are dedicated to the relationship between RP
2

and calculations in the underlying field R. For this we will first find methods
to relate points in a projective plane to the coordinates over R. Then we
will show that elementary operations like addition and multiplication can be
mimicked in a purely geometric fashion. Finally, we will use these facts to
derive interesting statements about the structure of projective planes and
projective transformations.

67
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4.1 Coordinates on a Line

Assume that two distinct points [p] and [q] in PR are given. How can we
describe the set of all points on the line through these two points? It is clear
that we can implicitly describe them by first calculating the homogeneous
coordinates of the line through p and q and then selecting all points that are
incident to this line. However, there is also a very direct and explicit way of
describing these points, as the following lemma shows:

Lemma 4.1. Let [p] and [q] be two distinct points in PR. The set of all points
on the line through these points is given by

{[λ · p+ μ · q] ∣∣ λ, μ ∈ R with λ or μ nonzero}.

Proof. The proof is an exercise in elementary linear algebra. For λ, μ ∈ R

(with λ or μ nonzero) let r = λ · p+ μ · q be a representative of a point. We
have to show that this point is on the line through [p] and [q]. In other words,
we must prove that 〈λ ·p+μ ·q, p× q〉 = 0. This is an immediate consequence
of the arithmetic rules for the scalar and vector products. We have

〈λ · p+ μ · q, p× q〉 = 〈λ · p, p× q〉 + 〈μ · q, p× q〉
= λ〈p, p× q〉 + μ〈q, p× q〉
= λ · 0 + μ · 0
= 0.

The first two equations hold by multilinearity of the scalar product. The third
equation comes from the fact that 〈p, p× q〉 and 〈q, p× q〉 are always zero.

Conversely, assume that [r] is a point on the line spanned by [p] and [q].
This means that there is a vector l ∈ R

3 with

〈l, p〉 = 〈l, q〉 = 〈l, r〉 = 0.

The points [p] and [q] are distinct, and thus p and q are linearly independent.
Consider the matrix M with row vectors p, q, r. This matrix cannot have full
rank, since the product M · l is the zero vector. Thus r must lie in the span
of p and q. Since r itself is not the zero vector, we have a representation of
the form r = λ · p+ μ · q with λ or μ nonzero. ��

The last proof is simply an algebraic version of the geometric fact that
we consider a line as the linear span of two distinct points on it. In the
form r = λ · p + μ · q we can simultaneously multiply both parameters λ
and μ by the same factor α and still obtain the same point [r]. If one of the
two parameters is nonzero we can normalize this parameter to 1. Using this
fact we can express almost all points on the line through [p] and [q] by the
expression λ · p + q; λ ∈ R. The only point we miss is [p] itself. Similarly,
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we obtain all points except [q] by the expression p + μ · q. Let us interpret
these relations within the framework of concrete coordinates of points in the
standard embedding of the Euclidean plane. For this we set o = (0, 0, 1) (the
corresponding point [o] represents the origin of the coordinate system of R

2

embedded in the z = 1 plane) and x∞ = (1, 0, 0) (the corresponding point
[x∞] represents the infinite point in the direction of the x-axis). The points
represented by vectors λ · x∞ + o = (λ, 0, 1) are the finite points on the line
joining [o] and [x∞] (this is the embedded x-axis). Each such point (λ, 0, 1)
is bijectively associated to a real parameter λ ∈ R.

It is important to notice that this way of assigning real numbers to points
in the projective plane is heavily dependent on the choice of the reference
points. It will be our next aim to reconstruct this relation of real parameters
in a purely projective setup.

4.2 The Real Projective Line

The last section focused on viewing a single line in PR from the projective
viewpoint. In the expression λ·p+μ·q the parameters (λ, μ) themselves can be
considered homogeneous coordinates on the one-dimensional projective line
spanned by p and q. In this section we want to step back from our consid-
erations of the projective plane and study the situation of a (self-contained)
projective line. We will do this in analogy to the homogeneous setup for the
projective plane. For the moment, we again restrict ourselves to the real case.

A real (Euclidean) line is a one-dimensional object that can be isomor-
phically associated to the real numbers R. Each point on the line uniquely
corresponds to exactly one real number. Increasing this real number more
and more, we will move the corresponding point farther and farther out. De-
creasing the parameter will move the point farther and farther out in the
opposite direction. In a projective setup we will compactify this situation by
adding one point at infinity on this line. If we increase or decrease the real

(−1, 1) (1, 1) (2, 1)

(1, 0)
x

y

Fig. 4.1 Homogeneous coordinates on the real projective line.
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parameter, we will in the limit reach this unique infinite point. Algebraically
we can model this process again by introducing homogeneous coordinates.
A finite point with parameter λ on the line will be represented by a two-
dimensional vector (λ, 1) (or any nonzero multiple of this vector). The unique
infinite point corresponds to the vector (1, 0) (or any nonzero multiple of this
vector). Formally we can describe this space as R

2−{(0,0)}
R−{0} . Figure 4.1 above

gives an impression of the situation. The original line is now embedded in the
line y = 1. Each two-dimensional vector represents a one-dimensional sub-
space of R

2. For finite points the intersection of this subspace with the line
gives the corresponding point on the line. The infinite point is represented by
any vector on the x-axis. (The reader should notice that this setup is com-
pletely analogous to the setup for the real projective plane that we described
in Section 3.1.) Topologically a projective line has the shape of a circle—a
one-dimensional road on which we return to the starting-point if we travel
long enough in one direction. We call this space RP

1. In the projective plane
RP

2 we can consider any line as an isomorphic copy of RP
1.

In analogy to the real projective plane we define a projective transforma-
tion by the multiplication of the homogeneous coordinate vector by a matrix.
This time it must be a 2 × 2 matrix:

(
x
y

)
�→
(
a b
c d

)
·
(
x
y

)
.

If we consider our points (λ, 1) represented by a real parameter λ, then
matrix multiplication induces the following action on the parameter λ:

λ �→ a · λ+ b

c · λ+ d
.

A point gets mapped to infinity if the denominator of the above ratio vanishes.
An argument completely analogous to the proof of Theorem 3.4 proves the
following result:

Theorem 4.1. Let [a], [b], [c] ∈ RP
1 be three points no two of which are co-

incident and let [a′], [b′], [c′] ∈ RP
1 be another three points no two of which

are coincident, then there exists a 2 × 2 matrix M such that [M · a] = [a′],
[M · b] = [b′], and [M · c] = [c′].

In other words, three points and their images uniquely determine a projec-
tive transformation. The projective transformations arise in a natural way if
we represent points on the line with respect to two different sets of reference
vectors, as the following lemma shows.

Lemma 4.2. Let � be the line spanned by two points [p] and [q] in RP
2. Let [a]

and [b] be two other distinct points on �. Consider the vector λp+ μq (which
represents a point on �). This vector can also be written as αa+βb for certain
α, β. The parameters (α, β) can be expressed in terms of (λ, μ) by a linear
transformation that depends only on a, b, p, and q.



4.2 The Real Projective Line 71

a

b

p

a

b

p

o

Fig. 4.2 Projective scales under projections.

Proof. Theorem 4.1 ensures that the point represented by λp + μq can also
be expressed in the form αa+ βb. Since p is in the span of a and b, it can be
written as p = αpa+ βpb. Similarly, q can be written as q = αqa+ βqb. Thus
the expression λp+ μq can be written as λ(αpa+ βpb) + μ(αqa+ βqb). Thus
we have

αa+ βb = (αpλ+ αqμ)a+ (βpλ+ βqμ)b.

Since a and b are linearly independent, we have
(
α
β

)
=
(
αp αq
βp βq

)
·
(
λ
μ

)
.

��

Finally, we want to describe how perspectivities from one line to another
induce projective maps on the coordinates of the lines. For this let � and �′

be two lines and let o be a projection point not incident to either of them.
Furthermore, assume that [a] and [b] are points on � and that [a′] and [b′] are
the corresponding projected images in a projection through o from � to �′.
The situation is illustrated in Figure 4.2. With these settings we obtain the
following:

Lemma 4.3. There exists a number τ ∈ R such that the image of a point
αa+ βb under the projection is α′a′ + β′b′, with (α′, β′) = (ατ, β).

Proof. One way to geometrically express the desired result is to say that the
line (αa+ βb)× (α′a′ + β′b′) is incident to o. This happens if and only if the
scalar product of o and this line is zero. In this case we have
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0 = 〈(αa+ βb) × (α′a′ + β′b′), o〉
= 〈(αa× α′a′) + (βb× β′b′) + (αa× β′b′) + (βb× α′a′), o〉
= αα′〈(a× a′), o〉 + ββ′〈(b × b′), o〉 + αβ′〈(a× b′), o〉 + βα′〈(b × a′), o〉
= αβ′〈(a× b′), o〉 + βα′〈(b × a′), o〉.

The first and second equalities just expand the cross product by distributivity.
The third equality holds since o is on a× a′ and o is on b× b′. The last line
being equal to zero can also be written as

α

β
·
(
−〈(a× b′), o〉
〈(b× a′), o〉

)
=
α′

β′ .

Setting τ = − 〈(a×b′),o〉
〈(b×a′),o〉 gives the desired claim. ��

4.3 Cross-Ratios (a First Encounter)

In the previous sections we have seen that many geometric magnitudes
(among them seemingly natural magnitudes such as distances and ratios of
distances) do not remain invariant under projective transformations.

Cross-ratios are the simplest magnitudes that are invariant under pro-
jective transformations. Cross-ratios will play an important role throughout
each of the following chapters.

Before we introduce cross-ratios, we will set up a little notation that will
help us to abbreviate many of the formulas we will have to consider from now
on. If a =

(
a1
a2

)
and b =

(
b1
b2

)
are two-dimensional vectors, we will use

[a, b] := det
(
a1 b1
a2 b2

)

as an abbreviation for the determinant of the 2 × 2 matrix formed by these
two vectors. We will also use

[a, b, c] := det

⎛
⎝
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎞
⎠

as an abbreviation of a 3 × 3 determinant if a, b, c are three-dimensional
vectors. The reader should be careful not to confuse these brackets with the
notation we use for equivalence classes.

A cross-ratio is assigned to an ordered quadruple of points on a line. We
first restrict ourselves to the case of calculating the cross-ratio for four points
in RP

1. Later on we will define the cross-ratio for four arbitrary points on a
line in the projective plane RP

2.
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We first define the cross-ratio on the level of homogeneous coordinates and
then prove that the cross-ratio actually depends only on the projective points
represented by these coordinates.

Definition 4.1. Let a, b, c, d be four nonzero vectors in R
2. The cross-ratio

(a, b; c, d) is the following magnitude:

(a, b; c, d) :=
[a, c][b, d]
[a, d][b, c]

.

We will now show that the value of the cross-ratio does not change under
various transformations.

Lemma 4.4. For any real nonzero parameters λa, λb, λc, λd ∈ R we have

(a, b; c, d) = (λaa, λbb;λcc, λdd).

Proof. Since [p, q] represents a determinant with columns p and q, we have
[λpp, λqq] = λpλq[p, q]. Applying this to the definition of cross-ratios, we get

[λaa, λcc][λbb, λdd]
[λaa, λdd][λbb, λcc]

=
λaλbλcλd[a, c][b, d]
λaλbλcλd[a, d][b, c]

=
[a, c][b, d]
[a, d][b, c]

.

Canceling all the λ’s is feasible, since they were assumed to be nonzero. The
equality of the leftmost and the rightmost terms is exactly the claim. ��

This lemma proves that it makes sense to speak of the cross-ratio

([a], [b]; [c], [d])

of four points in RP
1, since the concrete choices of the representatives are

irrelevant for the value of the cross-ratio. Cross-ratios are also invariant under
projective transformations, as the following lemma shows:

Lemma 4.5. Let M be a 2 × 2 matrix with nonvanishing determinant and
let a, b, c, d be four vectors in R

2. Then we have

(a, b; c, d) = (M · a,M · b;M · c,M · d).

Proof. We have [M · p,M · q] = det(M) · [p, q]. This gives:

[M · a,M · c][M · b,M · d]
[M · a,M · d][M · b,M · c] =

det(M)2[a, c][b, d]
det(M)2[a, d][b, c]

=
[a, c][b, d]
[a, d][b, c]

.

Canceling all determinants is feasible, since M was assumed to be invertible.
The equality of the leftmost and the rightmost terms is exactly the claim. ��
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Taking the last two lemmas together highlights a remarkable robustness
of the cross-ratio. Not only is it independent of the vectors representing the
points. It is invariant even under projective transformations. This in turn
has the consequence that if we have a line in RP

2 with two points p and q
such that the points on the line are represented by λp + μq, the cross-ratio
of four points on this line can be calculated using the parameters (λ, μ) as
one-dimensional homogeneous coordinates. The value of this cross-ratio is
well defined according to Lemma 4.2, Lemma 4.4, and Lemma 4.5.

Thus we have encountered our first genuine projective measure: the cross-
ratio. From now on we will only very rarely have to distinguish between a
point [p] in projective space and its representation in homogeneous coordi-
nates. The reason is that whenever we want to link projective entities to
measures we can do this via cross-ratios. If no confusion can arise we will
from now on identify a point [p] with the homogeneous coordinate vector p
representing it. Whenever we speak of the point p we mean the equivalence
class [p], and if we speak of the vector p we mean the element of R

d repre-
senting it.

4.4 Elementary Properties of the Cross-Ratio

In this section we will collect a few elementary facts that are useful whenever
one calculates with cross-ratios.

Cross-ratios and the real numbers line: Readers already familiar
with cross-ratios may have noticed that our approach to cross-ratios is not
the one taken most often by textbooks. Usually cross-ratios are introduced by
expressions concerning the oriented distances of points on a line. For reference
we will briefly also present this approach.

For this let � be any line and let a, b, c, d be four points on this line. We
assume that � is equipped with an orientation (a preferred direction) and we
denote by |a, b| the directed (Euclidean) distance from a to b (this means that
|a, b| = −|b, a|). If � represents the real number line, each point a corresponds
to a number xa ∈ R and we can simply set |a, b| = xb−xa. Now the cross-ratio
is usually defined as

(a, b; c, d) =
|a, c|
|a, d|

/ |b, c|
|b, d| .

(In German literature the cross-ratio is called Doppelverhältnis: a “ratio of
ratios.”) It is easy to see that this definition agrees with our setup for all
finite points a, b, c, d. We can introduce homogeneous coordinates

(
a
1

)
,
(
b
1

)
,(

c
1

)
and
(
d
1

)
for the points. The determinant then becomes

det
(
a b
1 1

)
= a− b = −|a, b|.
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An easy calculation shows the identity of both setups. Compared to this
approach via oriented lengths the approach taken in the last section has the
advantage that it also treats infinite points correctly. Sometimes the form
above provides a nice shortcut for calculating the cross-ratio for finite points.

For some positions of the input values the cross-ratio becomes infinite.
This happens whenever either a and d coincide or b and c coincide. It will
later on turn out to be useful not to consider this as an unpleasant special
case. We simply can consider the results of the cross-ratio themselves as
points on a projectively closed line. The infinite value is then nothing but a
representation of the infinite point. If we assume in this interpretation that
three of the entries (say a, b, and c) are distinct and fixed, then the map

d �→ (a, b; c, d)

itself becomes a projective transformation. If one wants to calculate with
infinite numbers, the following rules will be consistent with all operations
throughout this book:

1/∞ = 0; 1/0 = ∞; 1 + ∞ = ∞.

Permutations of cross-ratios: The cross-ratio is not independent of the
order of the entries. However, if we know the cross-ratio (a, b; c, d) = λ, we can
reconstruct the cross-ratio for any permutation of a, b, c, and d. We obtain
the following theorem:

Theorem 4.2. Let a, b, c, d be four points on a projective line with cross-ratio
(a, b; c, d) = λ. Then we have

(i) (a, b; c, d) = (b, a; d, c) = (c, d; a, b) = (d, c; b, a),
(ii) (a, b; d, c) = 1/λ,
(iii) (a, c; b, d) = 1 − λ,
(iv) the values for the remaining permutations are

a consequence of these three rules.

Proof. Statement (i) is clear from Definition 4.1 and the anticommutativity
of the determinant. Statement (ii) is obvious from the definition, since it just
exchanges numerator and denominator.

Statement (iii) requires a little elementary calculation. The expression we
want to prove is

(a, c; b, d) = 1 − (a, b; c, d).

On the determinant level this reads

[a, b][c, d]
[a, d][c, b]

= 1 − [a, c][b, d]
[a, d][b, c]

.
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Multiplying by [a, d][b, c], this translates to

[a, b][c, d] − [a, c][b, d] + [a, d][b, c] = 0.

Since the cross-ratio is invariant under projective transformations, we may
assume that all points are finite and we can represent them by numbers λa,
λb, λc, and λd. The determinants then become differences, and our expression
reads

(λa − λb)(λc − λd) − (λa − λc)(λb − λd) + (λa − λd)(λb − λc) = 0.

Expanding all terms, we get

(λaλc + λbλd − λaλd − λbλc)
−(λaλb + λcλd − λaλd − λcλb)
+(λaλb + λdλc − λaλc − λdλb) = 0.

This is obviously true, since all summands cancel.

Finally, it is obvious that we can generate all possible permutations of
points by application of the three rules. The first rule allows us to bring
any letter to the front position. The second and third equations describe two
specific transpositions from which all permutations of the last three letters
can be generated. ��

Remark 4.1. If (a, b; c, d) = λ, the six values of the cross-ratio for permuta-
tions of these points are

λ,
1
λ
, 1 − λ,

1
1 − λ

,
λ

1 − λ
,

1 − λ

λ
.

In particular, these six functions form a group isomorphic to S3.

Cross-ratios and perspectivities: We now want to demonstrate how
cross-ratios are invariant under geometric projections. This is an immedi-
ate corollary of the fact that projections induce a projective transformation
(Lemma 4.3) and the invariance of the cross-ratio under projective transfor-
mations:

Corollary 4.1. Let o be a point and let � and �′ be two lines not passing
through o. If four points a, b, c, d on � are projected by the viewpoint o to four
points a′, b′, c′, d′ on �′, then the cross-ratios satisfy (a, b; c, d) = (a′, b′; c′, d′).

This corollary justifies another concept. We can assign to any quadru-
ple of lines that pass through one point o a cross-ratio. We can assign this
cross-ratio in the following way. We cut the four lines by an arbitrary line
� (not through o). The four points of intersection define a cross-ratio. The
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a

b

c

d

a

b

c

d

o

Fig. 4.3 Cross-ratios under projections. We have (a, b; c, d) = (a′, b′; c′, d′).

last corollary shows that the value of this cross-ratio is independent of the
specific choice of �. Thus we can call it the cross-ratio of the lines. This fact
is nothing but a consequence of the fact that in projective geometry every
concept must have a reasonable dual. So, if one can assign a cross-ratio to
four points on a line, one must also be able to assign a cross-ratio to four
lines through a point.

Cross-ratios in RP
2: Sometimes it is very inconvenient to calculate cross-

ratios of four points on a line in the real projective plane RP
2 by first introduc-

ing a projective scale on the line. However, there is a possibility to calculate
the cross-ratio much more directly using quotients of 3 × 3 determinants.

Lemma 4.6. Let a, b, c, d be four collinear points in the projective plane RP
2

and let o be a point not on this line. Then one can calculate the cross-ratio
via

(a, b; c, d) =
[o, a, c][o, b, d]
[o, a, d][o, b, c]

.

Proof. Similar to the proof of Lemmas 4.4 and 4.5, it is easy to see that
the value of this expression does not depend on the specific choice of the
representing vectors, and that it is invariant under projective transformations.
Hence we may assume without loss of generality that we have

a =

⎛
⎝

1
0
0

⎞
⎠, b =

⎛
⎝

0
1
0

⎞
⎠, o =

⎛
⎝

0
0
1

⎞
⎠.

Under these assumptions the points c and d have coordinates
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c =

⎛
⎝
c1
c2
0

⎞
⎠, d =

⎛
⎝
d1

d2

0

⎞
⎠.

All determinants reduce to 2 × 2 determinants, and the theorem follows im-
mediately. ��
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Calculating with Points on Lines

Newsgroups: sci.math
Subject: Re: I'm looking for axioms and proof in math texts
Date: 6 Aug 2003 02:53:12 -0700
From: euclid@softcom.net (prometheus666)

[...]
and being passing familiar with the number line -- I'm sure if I don't
say passing familiar somebody here will say, "You have to know vector
tensor shmelaculus in 15 triad synergies to really understand the
number line. It's not even called that, it's called the real
torticular space." or something to that effect --
[...]

Found on the WWW

In the previous section we have seen that cross-ratios form a universal link
from projective geometry to the underlying coordinate field. In this chapter
we want to elaborate more on this topic. We will see that one can recover
the structure of the real numbers from the purely geometric setup of the real
projective plane.

A line has (seemingly) far less geometric structure than the plane. In the
plane there can be collinear and non collinear points, and we have seen that
collinearity is a crucial property that is invariant under projective transforma-
tions. On a line all triples of points are automatically collinear, so we cannot
hope for this to be a crucial characterizing property of projective transforma-
tions. The simplest nontrivial property that is invariant under a projective
transformation on a line is the specific value of the cross-ratio of a quadruple
of points. It will be the ultimate goal of this chapter to show that a map that
fixes a certain value for the cross-ratio of four points automatically fixes all
cross-ratios and will automatically be a projective transformation. From there
we will prove Theorem 3.3, which claims that any bijective transformation in
RP

2 that preserves collinearity is automatically a projective transformation.

79
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5.1 Harmonic Points

We will now focus on the geometric properties of quadruples of points on a
line that have a cross-ratio of (a, b; c, d) = −1. It is clear that if we fix points
a, b, c on a line then this condition uniquely determines the position of the
last point d. So, from a projective viewpoint there is essentially only one point
set (up to projective transformations) that satisfies this condition. However,
under the aspect of coordinates there are many interesting cases that can be
considered.

Definition 5.1. Two pairs of points (a, b) and (c, d) are in harmonic position
with respect to each other if the cross-ratio (a, b; c, d) is −1.

First we observe that the property of being in harmonic position is well
defined. This means that it really is invariant under transposition of the
points in the pairs.

Lemma 5.1. If (a, b; c, d) = −1 we also have (b, a; c, d) = (a, b; d, c) =
(c, d; a, b) = −1.

Proof. This lemma is an immediate consequence of Theorem 4.2 and the fact
that 1/(−1) = −1. ��

In fact, if a �= b and c �= d and the cross-ratio (a, b; c, d) is invariant under
interchange of the last two letters, the points must be in harmonic position.
This is the case, since we then have

(a, b; c, d) =
1

(a, b; d, c)
=

1
(a, b; c, d)

.

The only values for the cross-ratio that satisfy this equality are 1 and −1.
Since a �= b and c �= d, this excludes the first case.

If a, b, c on a line � are given, the fourth harmonic point can be constructed
in the following way:

• Start with an auxiliary point o,
• connect this point to a, b, and c,
• on join(o, c) choose another auxiliary point p,
• construct d by

d = meet(�, join( meet(join(o, a), join(p, b)),
meet(join(o, b), join(p, a)))).

Figure 5.1 shows the construction. The construction is not feasible when a
and b coincide.
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a bc

a

b
c

d

o

p

Fig. 5.1 Construction of harmonic points.

Lemma 5.2. Independently of the choice of the auxiliary points o and p, the
construction presented above will end up with the same point d. This point
satisfies (a, b; c, d) = −1.

Proof. For the labeling we refer to Figure 5.1. The point o can be considered
the center of projection from � to the line spanned by b′ and a′. Thus we get
(a, b; c, d) = (a′, b′; c′, d). Similarly, p can be considered a center of projection,
which implies (a′, b′; c′, d) = (b, a; c, d). Taking these two relations together,
we obtain (a, b; c, d) = (b, a; c, d), which implies (a, b; c, d) = −1. This also
implies the independence of d of the specific choice of o and p. ��

There are a few remarkable collections of relative positions of points that
generate a harmonic position. The following collection of equations collects
some of them. For the sake of simplicity we identify points on a line with
the corresponding real numbers on R (including the point ∞ for the point at
infinity).

Lemma 5.3. Let x ∈ R and y ∈ R be arbitrary numbers. We have

(i) (−x, x; 0,∞) = −1,
(ii) (0, 2x;x,∞) = −1,
(iii) (x, y; x+y2 ,∞) = −1,
(iv) (−1, 1;x, 1/x) = −1,
(v) (−x, x; 1, x2) = −1.

Proof. We start with a proof of property (v). We can simply check it via a
calculation representing determinants as differences of numbers (as described
in Section 4.4.1). We can calculate
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(−x− 1)(x− x2)
(−x− x2)(x − 1)

=
x(−x− 1)(1 − x)
x(−1 − x)(x− 1)

= −1.

Statement (iv) is a consequence of statement (v); it arises by dividing
all entries by x (this is a projective transformation and does not change
the cross-ratio). Statement (i) can be considered a limit case of (iv) if x →
0. Statement (ii) arises from (i) by adding x to all entries (this is again a
projective transformation). Statement (iii) arises from (i) also by scaling and
shifting. ��

5.2 Projective Scales

We now fix three distinct points on a line, and call them 0, 1, and ∞. Every
point x on the line can be associated with a unique cross-ratio (0,∞;x,1).
This construction allows us to equip the line with a scale that behaves “as
if” point 0 were the origin, 1 were a unit point, and point ∞ were infinitely
far away. In particular we have the following:

Lemma 5.4. The following equations hold:

(i) (0,∞;0,1) = 0,
(ii) (0,∞;1,1) = 1,
(iii) (0,∞;∞,1) = ∞.

Proof. The lemma is a direct application of the definition of the cross-
ratio. ��

The next lemma shows that the cross-ratios with respect to these three
points can be used to reconstruct the coordinates of a point from its geometric
location. For this we set 0, 1, and ∞ to the positions 0, 1, and ∞ on a real
number line.

Lemma 5.5. Assume that we have the specific homogeneous coordinates
0 = (0, 1), 1 = (1, 1), ∞ = (1, 0), x = (x, 1) for x ∈ R. Then we have
(0,∞;x,1) = x.

Proof. We can proof this fact by direct calculation:

(0,∞;x,1) =
det
(

0 x
1 1

)
det
(

1 1
0 1

)

det
(

0 1
1 1

)
det
(

1 x
0 1

) = x.

��
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If we single out three distinct points on a line, we can always consider them
a projective basis and refer all measurements to these three points. By this
we can assign to every point on the line a real number. The resulting number
is then invariant under projective transformations. In a way this is like re-
constructing the original scenery from a perspectively distorted photograph
if the original positions of three points are given.

5.3 From Geometry to Real Numbers

From 1850 to 1856 the mathematician Karl Georg Christian von Staudt
(1798–1867) published a series of books under the title Beiträge zur Ge-
ometrie der Lage. In these books von Staudt develops a completely synthetic
(this means there are no calculations) setup for projective geometry. In his
setup for projective geometry he works on a similar axiomatic level as Euclid
did for Euclidean geometry. One of the major achievements of von Staudt’s
work was to provide a method that starts with a purely projective setup and
reconstructs an underlying algebraic structure. In particular, he was able to
reconstruct the field structure of the underlying coordinate field from prop-
erties of geometric constructions.

We will not follow exactly these lines of thought here.1 However, we will
demonstrate how intimately the concepts of real numbers, cross-ratios, and
projective transformations are interwoven. In particular, we will provide the
promised proof of Theorem 3.3, which claims that whenever we have a bijec-
tive map in RP

2 that maps collinear points to collinear points, then it must
be a projective transformation. We will even work a little harder and provide
the proof for a similar fact on the projective line from which Theorem 3.3
will easily follow.

Theorem 5.1. Let τ : RP
1 → RP

1 be a bijective map with the property that
harmonic quadruples of points are mapped to harmonic quadruples of points.
Then τ is a projective transformation.

We subdivide the proof of this rather strong theorem into several smaller
parts. A bijective map with the property that harmonic quadruples of points
are mapped to harmonic quadruples of points will be called a harmonic map.
Our strategy will be first to show that harmonic maps are very rigid objects.
We will see that harmonic maps that preserve the base points of a projective
scale will induce a field automorphism. For this we will first fix a projective
scale 0, 1, and ∞ on RP

1. We can identify each point x of RP
1 \ {∞} by its

real coordinate (0,∞;x,1) ∈ R. If τ : RP
1 → RP

1 is any bijective map with
τ(∞) = ∞, this induces a bijection fτ : R → R according to

τ(p) = q ⇐⇒ fτ ((0,∞; p,1)) = (0,∞; q,1).

1 In fact, our approach closely follows Blaschke’s presentation in [6].
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The behavior of f is mainly determined by the fact that τ is harmonic:

Lemma 5.6. Let τ be a harmonic map that in addition satisfies τ(0) = 0,
τ(1) = 1, τ(∞) = ∞. Then the function fτ : R → R satisfies the following
relations:

(i) fτ (0) = 0,
(ii) fτ (1) = 1,

(iii) fτ (x+y2 ) = fτ (x)+fτ (y)
2 ,

(iv) fτ (2x) = 2fτ (x),
(v) fτ (x+ y) = fτ (x) + fτ (y),
(vi) fτ (−x) = −fτ (x),
(vii) fτ (x2) = fτ (x)2,
(viii) fτ (x · y) = fτ (x) · fτ (y).

Proof. We can prove the statements in order. In doing so, we make heavy
use of the fact that if the positions of points a, b, c on a line are fixed, then
the fourth harmonic point d is determined uniquely. Within this proof we
will freely identify points on RP

1 and the corresponding real numbers with
respect to the basis 0,1,∞.

Statements (i) and (ii) are direct reformulations of the facts that τ(0) = 0
and τ(1) = 1. Statement (iii) holds for the following reason. For any x, y
the pairs of points (x, y) and ((x + y)/2,∞) are in harmonic position (com-
pare Lemma 5.3 (iii)). Thus if we apply a harmonic map the image pairs
(f(x), f(y)) and (f((x + y)/2), f(∞)) are harmonic again. Since we have
f(∞) = ∞, the point f((x + y)/2) must be fτ (x)+fτ (y)

2 . Several of the other
statements follow by similar reasoning. In these cases we refer only to the
corresponding harmonic sets. Statement (iv) holds, since the pair (0, 2x) is
harmonic with the pair (x,∞). Statement (v) is now a consequence of (iii)
and (iv). Statement (vi) is a consequence of (v) and (i). Statement (vii) holds,
since (−x, x; 1, x2) is harmonic together with (ii) and (vi). Statement (viii)
requires a little calculation. By (vii), (v), and (iv) we can conclude that

fτ (x)2 + 2fτ(x · y) + fτ (y)2 = fτ (x2) + 2fτ (x · y) + fτ (y2)

= fτ (x2 + 2xy + y2)

= fτ ((x + y)2)

= (fτ (x+ y))2

= fτ (x)2 + 2fτ (x) · fτ (y) + fτ (y)2.

Comparing the first and the last expressions in this chain of equalities, we
obtain fτ (x · y) = fτ (x) · fτ (y). ��
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The most important statements in the last theorem were the facts that
we have fτ (x + y) = fτ (x) + fτ (y) and fτ (x · y) = fτ (x) · fτ (y). In other
words, the function fτ is a field automorphism of R. However, the only field
automorphism of R is the identity, as the next lemma shows:

Lemma 5.7. Let f : R → R be a function that satisfies f(x+y) = f(x)+f(y)
and f(x · y) = f(x) · f(y). Then f is the identity.

Proof. Since 0 is the only element in R that satisfies x + x = x and we
have f(0) + f(0) = f(0 + 0) = f(0), we must have f(0) = 0. Similarly,
f(1) ·f(1) = f(1 ·1) = f(1) implies f(1) = 1. Now consider an integer n ∈ N.
We can write n = 1 + 1 + · · · + 1︸ ︷︷ ︸

n-times

and obtain

f(n) = f(1 + 1 + · · · + 1︸ ︷︷ ︸
n-times

) = f(1) + f(1) + · · · + f(1)︸ ︷︷ ︸
n-times

= 1 + 1 + · · · + 1︸ ︷︷ ︸
n-times

= n.

The fact that f(x · y) = f(x) · f(y) implies that for any rational number
q = n/m, n,m ∈ N, we have f(q) = q, since q is the only number that
satisfies the equation f(m) · q = f(n) and we have f(n) = n and f(m) = m.
For similar reasons we have f(−x) = −f(x) for any x ∈ R.

Now the key observation is that one can characterize positivity in R by
multiplication. A number is positive if it can be written as x2 for x �= 0. Thus
from f(x2) = f(x)2 we obtain that f maps positive numbers to positive
numbers. This implies that x < y implies f(x) < f(y) (to see this, observe
that x < y is equivalent to y − x > 0).

If f were not the identity, then we could find a real number a such that
f(a) �= a. Then we would have either a < f(a) or a > f(a). Consider the first
case. Since the set of rational numbers is dense in R, the open interval (a, f(a))
contains a rational number q. This leads to a contradiction to the order-
preservation property of f , since we then have a < q, but f(a) > q = f(q).
The case a > f(a) is analogous. ��

Taking together Lemma 5.6 and Lemma 5.7, we can finally prove Theo-
rem 5.1, the fact that harmonic maps can be expressed by matrix multipli-
cation.

Proof of Theorem 5.1. Assume that ψ : RP
1 → RP

1 is a harmonic map.
The special points 0, 1, and ∞ are mapped by ψ to some points 0′, 1′,
and ∞′. Theorem 4.1 implies that there exists a projective transformation
φ : RP

1 → RP
1 with φ(0′) = 0, φ(1′) = 1, φ(∞′) = ∞. The composition

τ : RP
1 → RP

1 defined by τ(x) = φ(ψ(x)) is again a harmonic map, which
in addition leaves 0, 1, and ∞ invariant. By Lemma 5.6 it induces a field
automorphism on R, which (by Lemma 5.7) can only be the identity. Thus τ
itself must have been the identity map. This in turn implies that the original
harmonic map ψ must be the inverse of the projective transformation φ.
Hence it is itself a projective transformation. ��
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5.4 The Fundamental Theorem

Theorem 5.1 is of fundamental importance. It links a structural geometric
concept (harmonic point quadruples) to the algebraic structure of the under-
lying field: On the level of coordinates every harmonic map can be expressed
as a matrix multiplication. Von Staudt originally went even one step further:
He started with an incidence system that satisfies the axioms of a projec-
tive plane and required the additional presence of another incidence property
(namely that Pappos’s theorem holds within the incidence structure) and re-
constructed an underlying field K from this incidence structure. One can show
that the original projective plane is isomorphic to K

3−{(0,0,0)}
K−{0} . We will not

prove this here. For a proof of this fact see for instance [44, 58, 3]. However,
we will explain later the relevance of Pappos’s theorem in this context: The
presence of Pappos’s theorem results in the commutativity of the underlying
field.

Theorem 5.1 is a one-dimensional counterpart of Theorem 3.3, for which
we still have not presented a proof. This theorem states that in RP

2 any
bijective map that maps collinear points to collinear points can be expressed
by a projective transformation. We will obtain this in a similar way as The-
orem 5.1. However, we will have to find a way to encode two-dimensional
positions in terms of cross-ratios. A harmonic map in RP

2 is any bijection
that maps harmonic points on a line to harmonic points (perhaps on another
line). A collineation in RP

2 will be any bijection that maps collinear points to
collinear points. It is obvious that a harmonic map is a collineation (collinear
points are mapped to collinear points). However, the opposite is also true:

Lemma 5.8. Any collineation in RP
2 is a harmonic map.

Proof. Consider four harmonic points a, b, c, d on some line l. By Lemma 5.2
there exist four auxiliary points not on l that form (together with a, b, c, d) the
incidence pattern of Figure 5.1. Under a collineation this incidence pattern
is mapped to an incidence pattern with the same combinatorial structure.
This implies that (again by Lemma 5.2) the image points are harmonic as
well. ��

We now use two values of cross-ratios in RP
2 as “coordinates” for two-

dimensional points. For this we single out a projective basis in RP
2 consisting

of four distinct points 0, ∞x, ∞y, and 1. These four points will play the role
of the origin, an infinite point on the x-axis, an infinite point on the y-axis,
and a point with coordinates (1, 1) respectively. Furthermore, we define

1x = meet(join(0,∞x), join(1,∞y))

and
1y = meet(join(0,∞y), join(1,∞x)).
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Fig. 5.2 Fixing a projective framework in RP
2.

The triple (0,1x,∞x) forms a projective basis on the line lx spanned by 0
and ∞x, and a point x on lx is uniquely determined by the cross-ratio

x := (0,∞x;x,1x).

Similarly, the triple (0,1y,∞y) forms a projective basis on the line ly spanned
by 0 and ∞y, and a point y on ly is uniquely determined by the cross-ratio

y := (0,∞y;y,1y).

Any point p of RP
2 that does not lie on the line l∞ := join(∞x,∞y)

defines uniquely two points

x = meet(lx, join(p,∞y)) and y = meet(ly, join(p,∞x)),

from which it can be reconstructed by means of

p = meet(join(x,∞y), join(y,∞x)).

In other words, the pair of numbers (x, y) with x := (0,∞x;x,1x) and y :=
(0,∞y;y,1y) uniquely determines the position of p.

Now we are ready for the proof of Theorem 3.3: Every collineation is a
projective transformation.

Proof of Theorem 3.3 Assume that ψ : RP
2 → RP

2 is a collineation. The
special points 0, 1, ∞x, and ∞y are mapped by ψ to some points 0′, 1′, ∞x

′,
and ∞y

′. Theorem 3.4 implies that there exists a projective transformation
φ : RP

2 → RP
2 with φ(0′) = 0, φ(1′) = 1, φ(∞x

′) = ∞x
′, φ(∞y

′) = ∞y
′.

The composition τ(x) = φ(ψ(x)) is again a collineation, which in addition
leaves 0, 1, ∞x, and ∞y invariant.
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By Lemma 5.6 it induces a field automorphism on R, which (by Lemma 5.7)
can only be the identity. Thus τ itself must have been the identity map on
the lines lx and ly. Our above considerations imply that all points of RP

2

that are not on l∞ must be invariant. As a consequence, all points on l∞
must be invariant as well (any such point can be encoded as the intersection
of l∞ and a line through two points not on l∞). Thus τ is the identity. This
in turn implies that the original harmonic map ψ must be the inverse of the
projective transformation φ. Hence it is itself a projective transformation. ��

5.5 A Note on Other Fields

The last three sections established a close connection of the field that un-
derlies a projective geometry and projective transformations. In our ap-
proach we entirely focused on the real projective plane. Almost all our con-
structions (such as projective transformations, cross-ratios, harmonic points,
collineations) could as well be carried out over arbitrary fields. However, with
respect to the fundamental theorem a little care is necessary.

One crucial ingredient for Theorem 5.1 and Theorem 3.3 was to derive
a field automorphism from a harmonic map. The fact that R has only
have the trivial field automorphism translates into the statement that every
collineation can be expressed as a matrix multiplication. Over other fields
(such as C) we have nontrivial field automorphisms. These field automor-
phisms induce collineations that cannot be expressed as a projective trans-
formation. Let us focus for a moment on the complex projective plane CP

2. In
complete analogy to RP

2 we can define this space by PC = C
2−{(0,0,0)}

C−{0} and

LC = C
2−{(0,0,0)}

C−{0} . A point (x, y, z) is on a line (a, b, c) if a ·x+ b ·y+ c · z = 0.
Matrix multiplications are again the projective transformations and induce
collineations. However, over C we have additional collineations. We obtain the
simplest such collineation by taking the map that assigns to each coordinate
entry its complex conjugate:

(x, y, z) �→ (x, y, z) and (a, b, c) �→ (a, b, c).

We have a · x+ b · y + c · z = 0 ⇐⇒ a · x+ b · y + c · z = 0.
The generalization of the fundamental theorem that applies to all fields

can be stated as follows.

Theorem 5.2. Let τ : KP
1 → KP

1 be a collineation. Then τ can be factored
as φ ◦ ψ, where φ is a projective transformation and ψ is induced by a field
automorphism.
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5.6 Von Staudt’s Original Constructions

In Section 5.3 we introduced a way to mimic multiplication and addition
by geometric constructions. Since we wanted to stay within RP

1, our basic
primitive was harmonic point quadruples rather than collinearity. The con-
structions performed in Lemma 5.6 can also be turned into geometric con-
structions for addition and multiplication using just join and meet operations.
For this every harmonic quadruple of points is forced to be harmonic using
the construction of Figure 5.1. From an “economic” point of view this way of
encoding geometric addition and multiplication is far too complicated. Each
harmonic set used in the construction requires four additional points. There
is a much more direct way to encode geometric multiplication and geomet-
ric addition by a few construction steps only. These were the constructions
originally given by von Staudt. They require only four additional points for
addition or multiplication. Since these constructions are nice little gadgets
that are useful for many geometric constructions, we will present them here.

As a “warmup” we start with a construction that from 0, 1, and ∞ (which
are assumed to be given on a line �), constructs the points corresponding to
the integers.

We start with one more arbitrary point p not on � and a point q on the
line joining 0 and p. We construct a point r by

r = meet(join(p,∞), join(q,1)).

Then we construct a point q1 according to

q1 = meet(join(q,∞), join(p,1))

and a point 2 according to

2 = meet(�, join(r, q1)).

For the special choice of coordinates 0 = (0, 0, 1), 1 = (1, 0, 1), and
∞ = (1, 0, 0), Figure 5.3 shows the corresponding situation (in the usual

r p

q q1

0 1 2

r p

q

0 1 2 3 4 5

Fig. 5.3 Constructing the integers.
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r

p

q

0 1 2 ∞

r

p

q

0 1 2 3 ∞

Fig. 5.4 Constructing the integers projectively.

view of the Euclidean plane). Since ∞ is a point at infinity, the three lines
�, join(q,∞), and join(p,∞) are parallel in the picture. Thus the (oriented)
segment lengths |0,1|, |1,2|, and |q, q1| are related by

|0,1|
|q, q1| =

|1,2|
|q, q1| .

Multiplying both sides by |q, q1| we obtain

|0,1| = |1,2|.

Hence, the location of 2 is independent of the choice of p and q. It is as far
from 1 as 1 is from 0. Hence it must have homogeneous coordinates (2, 0, 1).
Iterative application of this construction can be used to construct a sequence
of points with homogeneous coordinates (n, 0, 1), n ∈ N. Figure 5.4 shows
the result of the construction if ∞ is chosen to be a finite point. Still, our
considerations imply that the positions of 0, 1, and ∞ determine the positions
of 2,3,4, . . . uniquely, independently of the choice of p and q.

As a next aim we will model the operations of addition and multiplication
by geometric constructions. For this we again fix points 0, 1, and ∞ and
choose points p and q as before. The constructions for addition and multipli-
cation are given in Figure 5.5.

We assume that on the line � two additional points x and y are given with
homogeneous coordinates (x, 0, 1) and (y, 0, 1), respectively. We demonstrate
how to construct the points x + y and x · y with homogeneous coordinates
(x+y, 0, 1) and (x·y, 0, 1), respectively. The constructions can be read off in a
straightforward way from the pictures. Using the parallel lines in each picture
and considering length ratios we obtain for the first picture the relation

|0,x|
|q, q1| =

|y,x + y|
|q, q1| .
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x y x + y0

p

q

r

q1

1 x y x · y0

p

q

r

q1

s

Fig. 5.5 Geometric addition and multiplication.

Thus the distance from 0 to x is the same as the distance from y to x + y.
This implies the desired relation for addition. For the picture on the right we
obtain the relations |0,1|

|0,x| =
|p, s|
|r, p| =

|0,y|
|0,x · y| .

The first relation comes from the relations induced by the lines passing
through q, the second comes from the lines passing through q1; Comparing
the first and the third terms gives the desired relation.

If we alter the role of the points, the same configurations can be used to
perform geometric subtraction or geometric division. By combining several
von Staudt constructions, the evaluation of arbitrary quotients of polynomials
can be modeled geometrically.

5.7 Pappos’s Theorem

As a final topic of this chapter, we want to demonstrate the important role
that is played by Pappos’s theorem in relation to underlying fields of a pro-
jective plane. We will see that Pappos’s theorem is equivalent to the commu-
tativity of the underlying field. To see this, we will have a closer look at the
von Staudt constructions for addition and multiplication.

If we interchange the roles of x and y in the von Staudt addition (see
Figure 5.5 left) we end up with a drawing that has exactly the same combi-
natorics. This implies the commutativity of addition. This is not the case for
von Staudt multiplication. Figure 5.6 overlays different constructions for the
point x · y. The blue lines are exactly the same as presented as “von Staudt
multiplication” in the last section. The green construction corresponds to the
“von Staudt multiplication” for y · x (the roles of x and y are interchanged).
The black lines belong to both constructions. Since over real numbers the
multiplication is commutative and we have x · y = y · x, both constructions
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1 x y x · y = y · x0

p

q

r

q1

q2

st

1 x y x · y = y · x0

p

q

r

q1

q2

st

Fig. 5.6 Commutativity of multiplication and Pappos’s theorem.

must result in the same point. This fact can be interpreted as a purely geo-
metric incidence theorem (without ever referring to algebra).

In fact, the decisive incidence theorem that hides behind commutativity
of multiplication is nothing but Pappos’s theorem (recall the first chapter of
this book). In Figure 5.6 the nine lines that correspond to Pappos’s theo-
rem are drawn in bold, and the nine points are emphasized in red.t If we look
back at the collection of proofs for Pappos’s theorem that we presented in the
first chapter of this book, then we will recognize that each of these proofs at
one point made use of commutativity of the underlying coordinate field. The
reason for this is that the presence of Pappos’s theorem in a projective plane
implies that the plane can be considered as (PK,LK, IK) for some (commu-
tative) field K. Projective planes in which Pappos’s theorem holds are called
Pappian planes. With this terminology we can reformulate the above fact in
the following manner:

Theorem 5.3. A projective plane is Pappian if and only if it is of the form
(PK,LK, IK) for some field K.

We do not prove this theorem here (for proofs see [44, 58, 3]), since the
main focus of this book is not the distinction of projective planes that come
from fields from those that do not come from fields. All projective planes
used hereinafter will come from a field, and hence we can (and will) freely
make use of Pappos’s theorem.
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Determinants

One person’s constant is another person’s variable.

Susan Gerhart

While the previous chapters had their focus on the exploration of the logi-
cal and structural properties of projective planes, this chapter will focus on
the following question: What is the easiest way to calculate with geometry?
Many textbooks on geometry introduce coordinates (or homogeneous coor-
dinates) and base all analytic computations on calculations on this level. An
analytic proof of a geometric theorem is carried out in the parameter space.
For a different parameterization of the theorem the proof may look entirely
different.

In this chapter we will see that this way of thinking is very often not
the most economical one. The reason for this is that the coordinates of a
geometric object are in a way a basis-dependent artifact and carry not only
information on the geometric object but also on the relation of this object to
the basis of the coordinate system. For instance, if a point is represented by its
homogeneous coordinates (x, y, z), we have encoded its relative position to a
frame of reference. From the perspective of projective geometry the perhaps
most important fact that one can say about the point is simply that it is
a point. All other properties are not projectively invariant. Similarly, if we
consider three points p1 = (x1, y1, z1), p2 = (x2, y2, z2), p3 = (x3, y3, z3), the
statement that these points are collinear reads

x1y2z3 + x2y3z1 + x3y1z2 − x1y3z2 − x2y1z3 − x3y2z1 = 0,

a 3×3 determinant. Again from a structural point of view this expression is far
too complicated. It would be much better to encode the collinearity directly
into a short algebraic expression and deal with this. The simplest way to

93
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do this is to change the role of primary and derived algebraic objects. If we
consider the determinants themselves as “first-class citizens,” the statement
of collinearity simply reads det(p1, p2, p3) = 0, where the determinant is
considered an unbreakable unit rather than just a shorthand for the above
expanded formula. In this chapter we will explore the roles determinants play
within projective geometry. For further reading on this fascinating topic we
recommend [16, 33, 126, 132].

6.1 A “Determinantal” Point of View

Before we start with the treatment of determinants on a more general level we
will review and emphasize the role of determinants in topics we have treated
so far.

One of our first encounters of determinants occurred when we expressed
the collinearity of points in homogeneous coordinates. Three points p1, p2, p3

are collinear in RP
2 if and only if det(p1, p2, p3) = 0. One can interpret this

fact either geometrically (if p1, p2, p3 are collinear, then the corresponding
vectors of homogeneous coordinates are coplanar) or algebraically (if p1, p2, p3

are collinear, then the system of linear equations 〈p1, l〉 = 〈p2, l〉 = 〈p3, l〉 = 0
has a nontrivial solution l �= (0, 0, 0)). Dually, we can say that the determinant
of three lines l1, l2, l3 vanishes if and only if these lines have a point in common
(this point may be at infinity).

A second instance in which determinants played a less obvious role oc-
curred when we calculated the join of two points p and q by the cross product
p× q. We will give an algebraic interpretation of this. If (x, y, z) is any point
on the line p ∨ q, then it satisfies

det

⎛
⎝
p1 p2 p3

q1 q2 q3
x y z

⎞
⎠ = 0.

If we develop the determinant by the last row, we can rewrite this as

det
(
p2 p3

q2 q3

)
· x− det

(
p1 p3

q1 q3

)
· y + det

(
p1 p2

q1 q2

)
· z = 0.

Or expressed as a scalar product,
〈(

det
(
p2 p3

q2 q3

)
,− det

(
p1 p3

q1 q3

)
, det
(
p1 p2

q1 q2

))
, (x, y, z)

〉
= 0.

We can geometrically reinterpret this equation by saying that
(

det
(
p2 p3

q2 q3

)
,− det

(
p1 p3

q1 q3

)
, det
(
p1 p2

q1 q2

))
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must be the homogeneous coordinates of the line l through p and q, since
every vector (x, y, z) on this line satisfies 〈l, (x, y, z)〉 = 0. This vector is
nothing, but the cross product p× q.

A third situation in which determinants played a fundamental role was in
the definition of cross-ratios. Cross-ratios were defined as the product of two
determinants divided by the product of two other determinants.

We will see later on that all three circumstances described here will have
nice and interesting generalizations:

• In projective d-space coplanarity will be expressed as the vanishing of a
(d+ 1) × (d+ 1) determinant.

• In projective d-space joins and meets will be nicely expressed as vectors
of sub-determinants.

• Projective invariants can be expressed as certain rational functions of
determinants.

6.2 A Few Useful Formulas

We will now see how we can translate geometric constructions into expressions
that involve only determinants and base points of the construction. Since from
now on we will have to deal with many determinants at the same time, we
first introduce a useful abbreviation. For three points p, q, r ∈ RP

2 we set

[p, q, r] := det

⎛
⎝
p1 p2 p3

q1 q2 q3
r1 r2 r3

⎞
⎠.

Similarly, we set for two points in RP
1,

[p, q] := det
(
p1 p2

q1 q2

)
.

We call an expression of the form [. . .] a bracket. Here are a few fundamental
and useful properties of 3 × 3 determinants:

Alternating sign changes:

[p, q, r] = [q, r, p] = [r, p, q] = −[p, r, q] = −[r, q, p] = −[q, p, r].

Linearity (in every row and column):

[λ · p1 + μ · p2, q, r] = λ · [p1, q, r] + μ · [p2, q, r].

Plücker’s formula:
[p, q, r] = 〈p, q × r〉.
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l1

l2

c1

c2

q

q

Fig. 6.1 Two applications of Plücker’s μ.

The last formula can be considered a shorthand for our developments on cross
products, scalar products, and determinants in the previous section.

6.3 Plücker’s μ

We now introduce a very useful trick with which one can derive formulas for
geometric objects that should simultaneously satisfy several constraints. The
trick was frequently used by Plücker and is sometimes called Plücker’s μ.

Imagine you have an equation f : R
d → R whose zero set describes a

geometric object. For instance, think of a line equation (x, y, z) �→ a · x+ b ·
y + c · z or a circle equation in the plane (x, y) �→ (x − a)2 + (y − b)2 − r2.
Often one is interested in objects that share intersection points with a given
reference object and in addition pass through a third object. If the linear
combination λ · f(p) + μ · g(p) again describes an object of the same type,
then one can apply Plücker’s μ. All objects described by

p �→ λ · f(p) + μ · g(p)

will pass through the common zeros of f and g. This is obvious, since when-
ever f(p) = 0 and g(p) = 0, any linear combination is also 0. If one in
addition wants to have the object pass through a specific point q, then the
linear combination

p �→ g(q) · f(p) − f(q) · g(p)

is the desired equation. To see this, simply plug the point q into the equation.
Then one gets g(q) · f(q) − f(q) · g(q) = 0.

With this trick we can very easily describe the homogeneous coordinates
of a line � that passes through the intersection of two other lines l1 and l2
and through a third point q by
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a

b

c

d

[a, b, d] · c − [a, b, c] · d

a

b

c

de

f

[c, d, b][e, f, a] − [c, d, a][e, f, b] = 0

Fig. 6.2 Conditions for lines meeting in a point.

〈l2, q〉l1 − 〈l1, q〉l2.

Testing whether this line passes through q yields

〈〈l2, q〉l1 − 〈l1, q〉l2, q〉 = 〈l2, q〉〈l1, q〉 − 〈l1, q〉〈l2, q〉 = 0,

which is obviously true. Later on we will make frequent use of this trick
whenever we need a fast and elegant way to calculate a specific geometric
object. We will now use Plücker’s μ to calculate intersections of lines spanned
by points.

What is the intersection of the two lines spanned by the point pairs (a, b)
and (c, d)? On the one hand, the point has to be on the line a ∨ b; thus it
must be of the form λ ·a+μ · b. It also has to be on c∨d; hence it must be of
the form ψ · c+φ ·d. Identifying these two expressions and solving for λ, μ, ψ,
and φ would be one possibility to solve the problem. But we can directly read
off the right parameters using (a dual version of) Plücker’s μ. The property
that encodes that a point p is on the line c ∨ d is simply [c, d, p] = 0. Thus
we immediately obtain that the point

[c, d, b] · a− [c, d, a] · b

must be the desired intersection. This point is obviously on a ∨ b, and it is
on c ∨ d, since we have

[c, d, [c, d, b] · a− [c, d, a] · b] = [c, d, b] · [c, d, a] − [c, d, a] · [c, d, b] = 0.

We could equivalently have applied the calculation with the roles of a ∨ b
and c ∨ d interchanged. Then we can express the same point as

[a, b, d] · c− [a, b, c] · d.
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In fact, it is not a surprise that these two expressions end up at identical
points. We will later on, in Section 6.5, see that this is just a reformulation
of the well-known Cramer’s rule for solving systems of linear equations.

How can we express the condition that three lines a ∨ b, c ∨ d, e ∨ f meet
in a point? For this we simply have to test whether the intersection p of a∨ b
and c ∨ d, is on e ∨ f . We can do this by testing whether the determinant of
these three points is zero. Plugging in the formula for p, we get

[e, f, [c, d, b] · a− [c, d, a] · b] = 0.

After expansion by multilinearity, we obtain

[c, d, b][e, f, a]− [c, d, a][e, f, b] = 0.

This is the algebraic condition for the three lines meeting in a point. Taking
a look at the above formula, we should pause and make a few observations:

• The first and most important observation is that we could write such a
projective condition as a polynomial of determinants evaluating to zero.

• In the formula, each term has the same number of determinants.

• Each letter occurs equally often in each term.

All three observations extend very well to much more general cases. In order
to see this, we will have first to introduce the notion of projectively invariant
properties.

Before we do this we want to use this formula to obtain (another) beautiful
proof for Pappos’s theorem. Consider the drawing of Pappos’s theorem in
Figure 6.3 (observe the nice 3-fold symmetry). We can state Pappos’s theorem
in the following way: If for six points a, . . . , f in the projective plane the lines
a ∨ d, c ∨ b, e ∨ f meet and the lines c ∨ f , e ∨ d, a ∨ b meet, then also e ∨ b,
a ∨ f , c ∨ d meet. The two hypotheses can be expressed as

[b, c, e][a, d, f ] = [b, c, f ][a, d, e],
[c, f, b][d, e, a] = [c, f, a][d, e, b].

Using the fact that a cyclic shift of the points of a 3 × 3 bracket does not
change its sign, we observe that the first term of the second equation is
identical to the second term of the first equation. So we obtain

[f, a, c][e, b, d] = [f, a, d][e, b, c]

Which is exactly the desired conclusion of Pappos’s theorem.
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Fig. 6.3 Pappos’s theorem, once more.

6.4 Invariant Properties

How can we algebraically characterize that a certain property of a point con-
figuration is invariant under projective transformations? Properties of such
type are for instance three lines being concurrent or six points a, . . . , f such
that a ∨ b, c ∨ d, e ∨ f meet.

In general, properties of this type can be expressed as functions in the (ho-
mogeneous) coordinates of the points that have to be zero when the property
holds. Being invariant means that a property holds for a point configuration
P if and only if it also holds for any projective transformation of P . More
formally, let us express the point configuration P by a matrix whose columns
are the homogeneous coordinates of n points p1, . . . , pn:

P =

⎛
⎝
p1x p2x . . . pnx
p1y p2y . . . pny
p1z p2z . . . pnz

⎞
⎠ .

A projective transformation is then simply represented by left-multiplication
by a 3× 3 invertible matrix T . A projectively invariant property should also
be invariant when we replace a vector pi by a scalar multiple λi · pi. We can
express the scaling of the points by right multiplication of P by an invertible
diagonal matrix D. All matrices obtained from P via

T · P ·D

represent essentially the same projective configuration. A projectively invari-
ant property is any property ofP that is invariant under such a transformation.
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Very often, our invariant properties will be polynomials being zero, but for
now we want to keep things more general and consider any map that asso-
ciates to P a Boolean value. The matrix P can be considered an element of
R

3·n. Thus we make the following definition:

Definition 6.1. A projectively invariant property of n points in the real pro-
jective plane is a map f : R

3·n → {true, false} such that for all invertible
real 3 × 3 matrices T ∈ GL(R, 3) and n× n invertible real diagonal matrices
D ∈ diag(R, n), we have

f(P ) = f(T · P ·D).

In a canonical way we can identify each predicate P ⊆ X on a space X
with its characteristic function f : X → {true, false}, where f(x) evaluates
to true if and only if x ∈ P . Thus we can equivalently speak of projectively
invariant predicates.

In this sense, for instance, [a, b, c] = 0 defines a projectively invariant
property of three points a, b, c in the real projective plane. Also the property
that we encountered in the last section,

[c, d, b][e, f, a]− [c, d, a][e, f, b] = 0,

which encodes the fact that three lines a ∨ b, c ∨ d, e ∨ f meet in a point, is
projectively invariant. Before we state a more general theorem we will analyze
why this relation is invariant from an algebraic point of view. Transforming
the points by a projective transformation T results in replacing the points
a, . . . , f with T · a, . . . , T · f . Scaling the homogeneous coordinates results in
replacing a, . . . , f by λa · a, . . . , λf · f with nonzero λ’s. Thus if P encodes
the point configuration, then the overall effect of T · P ·D on the expression
[c, d, b][e, f, a] − [c, d, a][e, f, b] can be written as

[λc · T · c, λd · T · d, λb · T · b][λe · T · e, λf · T · f, λa · T · a]
− [λc · T · c, λd · T · d, λa · T · a][λe · T · e, λf · T · f, λb · T · b].

Since [T · p, T · q, T · r] = det(T ) · [p, q, r], the above expression simplifies to

(det(T )2 · λa · λb · λc · λd · λe · λf ) · ([c, d, b][e, f, a] − [c, d, a][e, f, b]).

All λ’s were nonzero and T was assumed to be invertible. Hence the expression
[c, d, b][e, f, a]−[c, d, a][e, f, b] is zero if and only if the above expression is zero.
Observe that it was important that each summand of the bracket polynomial
had exactly the same number of brackets. This made it possible to factor out
a factor det(T )2. Furthermore, in each summand each letter occurred equally
often. This made it possible to factor out the λ’s.

This example is a special case of a much more general fact, namely that
all multihomogeneous bracket polynomials define projectively invariant prop-
erties.
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Definition 6.2. Let P = (p1, p2, , . . . , pn) ∈ (R3)n represent a point config-
uration of n points. A bracket monomial on P is an expression of the form

[a1,1, a1,2, a1,3] · [a2,1, a2,2, a2,3] · · · · · [ak,1, ak,2, ak,3],

where each aj,k is one of the points pi. The degree deg(pi,M) of a point
pi in a monomial is the total number of occurrences of pi in M . A bracket
polynomial on P is a sum of bracket monomials on P . A bracket polynomial
Q = M1 + · · · + Ml with monomials M1, . . . ,Ml is multihomogeneous if for
each point pi we have

deg(pi,M1) = · · · = deg(pi,Ml).

In other words, a bracket polynomial is multihomogeneous if each point
occurs in each summand the same number of times. We can make an anal-
ogous definition for points on a projective line. The only difference there is
that we have to deal with brackets of length 2 instead of length 3.

As a straightforward generalization of our observations on the multiho-
mogeneous bracket polynomial [c, d, b][e, f, a] − [c, d, a][e, f, b] we obtain the
following theorem:

Theorem 6.1. Let Q(P ) be a multihomogeneous bracket polynomial on n
points P = (p1, p2, . . . , pn) ∈ (R3)n. Then Q(P ) = 0 defines a projectively
invariant property.

Proof. Since Q is multihomogeneous, each of the summands contains the
same number (say 3k) of points. Therefore each summand is the product of k
brackets. Thus we have for any projective transformation T the relation

Q(T · P ) = det(T )k ·Q(P ).

Furthermore, the degree of the point pi is the same (say di) in each monomial.
Scaling the points by scalars λ1 · · · · · λd can be expressed as multiplication
by the diagonal matrix D = diag(λ1 · · · · · λn). Since each bracket is linear in
each point entry, the scaling induces the following action on Q:

Q(P ·D) = λd11 · · · · · λdn
n ·Q(P ).

Overall, we obtain

Q(T · P ·D) = det(T )k · λd11 · · · · · λdn
n ·Q(P ).

The factors preceding Q(P ) are all nonzero, since T is invertible and only
nonzero λi are allowed. Hence Q(T · P · D) is zero if and only if Q(P ) is
zero. ��

Clearly, a similar statement also holds for points on the projective line (and
2 × 2 brackets) and also for projective planes over other fields.
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We could now begin a comprehensive study of multihomogeneous bracket
polynomials and the projective invariants encoded by them. We will en-
counter several of them later in the book. Here we just give without further
proofs a few examples to exemplify the expressive power of multihomoge-
neous bracket polynomials. We begin with a few examples on the projective
line:

[ab] = 0 a coincides with b
a = b

[ac][bd] + [ad][bc] = 0 (a, b); (c, d)
is harmonic

a bc d

[ae][bf ][cd] − [af ][bd][ce] = 0 (a, b); (c, d); (e, f)
is a quadrilateral set

a b c de f

Here are some other examples in the projective plane:

[abc] = 0 a, b, c are collinear
a

b
c

[abd][ace] + [abe][acd] = 0
The line pairs
(a ∨ b, a ∨ c); (a ∨ d, a ∨ e)
are harmonic

a

b

c
d

e

[abe][cdf ] − [abf ][cde] = 0 (a ∨ b); (c ∨ d); (e ∨ f)
meet in a point

a
b

c

f
e

d

[abc][aef ][dbf ][dec]−
[def ][dbc][aec][abf ] = 0

a, b, c, d, e, f
are on a conic

a

b

c

e
f

d

6.5 Grassmann-Plücker relations

When we studied the example of three lines a ∨ b, c ∨ d, e ∨ f meeting in a
point we ended up with the formula
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[c, d, b][e, f, a]− [c, d, a][e, f, b] = 0.

A closer look at this formula shows that the line a ∨ b plays a special role
compared to the other two lines. Its points are distributed over the brackets,
while the points of the other lines always occur in one bracket. The symmetry
of the original property implies that there are two more essentially different
ways to encode the property in a bracket polynomial:

[a, b, c][e, f, d]−[a, b, d][e, f, c] = 0 and [a, b, e][c, d, f ]−[a, b, f ][c, d, e] = 0.

The reason for this is that there are multi-homogeneous bracket polynomials
that will always evaluate to zero no matter where the points of the configu-
ration are placed. These special polynomials are of fundamental importance
whenever one makes calculations in which several determinants are involved.
The relations in question are the Grassmann-Plücker relations. In principle,
such relations exist in any dimension. However, as usual in our exposition we
will mainly focus on the case of the projective line and the projective plane,
i.e., 2 × 2 and 3 × 3 brackets. We start with the 2 × 2 case. We state the
relations on the level of vectors rather than on the level of projective points.

Theorem 6.2. For any vectors a, b, c, d ∈ R
2 the following equation holds:

[a, b][c, d] − [a, c][b, d] + [a, d][b, c] = 0.

Proof. If one of the vectors is the zero vector, the equation is trivially true.
Thus we may assume that each of the vectors represents a point of the pro-
jective line. Since [a, b][c, d] − [a, c][b, d] + [a, d][b, c] is a multihomogeneous
bracket polynomial, we may assume that all vectors are (if necessary after
a suitable projective transformation) finite points and normalized to vectors(
λa

1

)
, . . . ,

(
λd

1

)
. The determinants then become simply differences. Rewriting

the term gives

(λa − λb)(λc − λd) − (λa − λc)(λb − λd) + (λa − λd)(λb − λc) = 0.

Expanding all terms, we get equivalently

(λaλc + λbλd − λaλd − λbλc)
−(λaλb + λcλd − λaλd − λcλb)
+(λaλb + λdλc − λaλc − λdλb) = 0.

The last equation can be easily checked. ��
Grassmann-Plücker relations can be interpreted in many equivalent ways

and, thereby this link several branches of geometry and invariant theory. We
will here present three more interpretations (or proofs if you want).

1. Determinant expansion: The Grassmann-Plücker relation [a, b][c, d]−
[a, c][b, d] + [a, d][b, c] = 0 can be considered a determinant expansion. For
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this assume without loss of generality that [a, b] �= 0. After a projective
transformation we may assume that a =

(
1
0

)
and b =

(
0
1

)
. The Grassmann-

Plücker relation then reads as
∣∣∣∣
1 0
0 1

∣∣∣∣ ·
∣∣∣∣
c1 d1

c2 d2

∣∣∣∣ −
∣∣∣∣
1 c1
0 c2

∣∣∣∣ ·
∣∣∣∣
0 d1

1 d2

∣∣∣∣ +
∣∣∣∣
1 d1

0 d2

∣∣∣∣ ·
∣∣∣∣
0 c1
1 c2

∣∣∣∣

= 1 ·
∣∣∣∣
c1 d1

c2 d2

∣∣∣∣ − c2 · (−d1) + d2 · (−c1) = 0

.

The last expression is easily recognized as the expansion formula for the
determinant and obviously evaluates to zero.

2. Area relation: After a projective transformation and rescaling we can
also assume that a =

(
1
0

)
, b =

(
b1
1

)
, c =

(
c1
1

)
and d =

(
d1
1

)
. Then the

Grassmann-Plücker relation reads
∣∣∣∣
1 b1
0 1

∣∣∣∣ ·
∣∣∣∣
c1 d1

1 1

∣∣∣∣ −
∣∣∣∣
1 c1
0 1

∣∣∣∣ ·
∣∣∣∣
b1 d1

1 1

∣∣∣∣ +
∣∣∣∣
1 d1

0 1

∣∣∣∣ ·
∣∣∣∣
b1 c1
1 1

∣∣∣∣

= 1 · (c1 − d1) − 1 · (b1 − d1) + 1 · (b1 − c1) = 0.

This formula can be affinely (!) interpreted as the relation of three directed
length segments of three points b, c, d on a line:

d c b(c − d) (b − c)

(b − d)

3. Cramer’s rule: Let us assume that [a, c] �= 0. Cramer’s rule gives us an
explicit formula to solve the system of equations

(
a1 c1
a2 c2

)
·
(
α
β

)
=
(
b1
b2

)
.

We get

α =
[b, c]
[a, c]

and β =
[a, b]
[a, c]

.

Inserting this into the original equation and multiplying by [a, c], we get

[b, c] · a+ [a, b] · c− [a, c] · b = 0.

Here “0” means the zero vector. Thus we can find the following expansion of
zero:

0 = [[b, c] · a+ [a, b] · c− [a, c] · b, d] = [b, c][a, d] + [a, b][c, d] − [a, c][b, d].
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This is exactly the Grassmann-Plücker relation.

What happens in dimension 3 (i.e., the projective plane)? First of all, we
obtain a consequence of the Grassmann-Plücker relation on the line when we
add the same point to any bracket:

Theorem 6.3. For any vectors a, b, c, d, x ∈ R
3 the following equation holds:

[x, a, b][x, c, d] − [x, a, c][x, b, d] + [x, a, d][x, b, c] = 0.

Proof. Assuming without loss of generality that x = (1, 0, 0) reduces all de-
terminants of the expression to 2 × 2 determinants, any of the above proofs
translates literally. ��

In the projective plane we get another Grassmann-Plücker relation that
involves four instead of three summands.

Theorem 6.4. For any vectors a, b, c, d, e, f ∈ R
3 the following equation

holds:

[a, b, c][d, e, f ]− [a, b, d][c, e, f ] + [a, b, e][c, d, f ]− [a, b, f ][c, d, e] = 0.

Proof. Applying Cramer’s rule to the solution of a 3 × 3 equation
⎛
⎝

| | |
c d e
| | |

⎞
⎠ ·
⎛
⎝
α
β
γ

⎞
⎠ =

⎛
⎝

|
f
|

⎞
⎠,

we can prove the identity

[f, d, e] · c+ [c, f, e] · d+ [c, d, f ] · e = [c, d, e] · f.

Rearranging the terms yields

[d, e, f ] · c− [c, e, f ] · d+ [c, d, f ] · e− [c, d, e] · f = 0.

Inserting this expansion of the zero vector 0 into [a, b, 0] = 0 yields (after
expanding the terms by multilinearity) the desired relation. ��

Again, we can also interpret this equation in many different ways. Set-
ting (a, b, c) to the unit matrix the Grassmann-Plücker relation encodes the
development of the 3 × 3 determinant (d, e, f) by the first column. We get

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
·
∣∣∣∣∣∣

d1 e1 f1
d2 e2 f2
d3 e3 f3

∣∣∣∣∣∣
−
∣∣∣∣∣∣
1 0 d1
0 1 d2
0 0 d3

∣∣∣∣∣∣
·
∣∣∣∣∣∣
0 e1 f1
0 e2 f2
1 e3 f3

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1 0 e1
0 1 e2
0 0 e3

∣∣∣∣∣∣
·
∣∣∣∣∣∣
0 d1 f1
0 d2 f2
1 d3 f3

∣∣∣∣∣∣
−
∣∣∣∣∣∣
1 0 f1
0 1 f2
0 0 f3

∣∣∣∣∣∣
·
∣∣∣∣∣∣
0 d1 e1
0 d2 e2
1 d3 e3

∣∣∣∣∣∣

= 1 ·
∣∣∣∣∣∣

d1 e1 f1
d2 e2 f2
d3 e3 f3

∣∣∣∣∣∣
− d3 ·

∣∣∣∣
e1 f1
e2 f2

∣∣∣∣ + e3 ·
∣∣∣∣

d1 f1
d2 f2

∣∣∣∣ − f3 ·
∣∣∣∣

d1 e1
d2 e2

∣∣∣∣ = 0.
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c

d

f

− c

e

f

+

d

e

f

− c

d

e
= 0

Fig. 6.4 Grassmann-Plücker relation as area formulas.

Observe that we can express each minor of the determinant [d, e, f ] as a
suitable bracket that involves a, b, c. This point will later be of fundamental
importance.

There is also a nice interpretation that generalizes the “area viewpoint.”
The determinant ∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
1 1 1

∣∣∣∣∣∣
calculates twice the oriented area Δ(a, b, c) of the affine triangle a, b, c. After
a suitable projective transformation the Grassmann-Plücker relation reads
∣∣∣∣∣∣
1 0 c1
0 1 c2
0 0 1

∣∣∣∣∣∣

∣∣∣∣∣∣
d1 e1 f1
d2 e2 f2
1 1 1

∣∣∣∣∣∣
−
∣∣∣∣∣∣
1 0 d1
0 1 d2
0 0 1

∣∣∣∣∣∣

∣∣∣∣∣∣
c1 e1 f1
c2 e2 f2
1 1 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1 0 e1
0 1 e2
0 0 1

∣∣∣∣∣∣

∣∣∣∣∣∣
c1 d1 f1
c2 d2 f2
1 1 1

∣∣∣∣∣∣
−
∣∣∣∣∣∣
1 0 f1
0 1 f2
0 0 1

∣∣∣∣∣∣

∣∣∣∣∣∣
c1 d1 e1
c2 d2 e2
1 1 1

∣∣∣∣∣∣
= 0.

In terms of triangle areas this equation reads as

Δ(d, e, f) −Δ(c, e, f) +Δ(c, d, f) −Δ(c, d, e) = 0.

This formula has again a direct geometric interpretation in terms of affine
oriented areas of triangles. Assume that c, d, e, f are any four points in the
affine plane. The convex hull of these four points can be covered in two ways
by triangles spanned by three of the points. These two possibilities must
both result in the same total (oriented) area. This is the Grassmann-Plücker
relation.

Using Grassmann-Plücker relations we can easily explain why the property
that a ∨ b, c ∨ d, e ∨ f meet can be expressed either by

[a, b, e][c, d, f ] − [a, b, f ][c, d, e] = 0

or by
[a, b, c][e, f, d]− [a, b, d][e, f, c] = 0.

Adding the two expressions yields

[a, b, c][e, f, d] − [a, b, d][e, f, c] + [a, b, e][c, d, f ] − [a, b, f ][c, d, e] = 0,
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which is exactly a Grassmann-Plücker relation. Hence this equation must be
zero, which proves the equivalence of the above two expressions.



7

More on Bracket Algebra

Algebra is generous; she often gives more than is asked of her.

D’Alembert (1717–1783)

The last chapter demonstrated that determinants (and in particular multiho-
mogeneous bracket polynomials) are of fundamental importance in express-
ing projectively invariant properties. In this chapter we will alter our point
of view. What if our “first-class citizens” were not the points of a projective
plane but the values of determinants generated by them? We will see that
with the use of Grassmann-Plücker relations we will be able to recover a
projective configuration from its values of determinants.

We will start our treatment by considering vectors in R
3 rather than con-

sidering homogeneous coordinates of points in RP
2. This has the advantage

that we can neglect the (only technical) difficulty that the determinant values
vary when the coordinates of a point are multiplied by a scalar.

While reading this chapter the reader should constantly bear in mind that
all concepts presented in this chapter generalize to arbitrary dimensions. Still
we will concentrate on the case of vectors in R

2 and in R
3 to keep things

conceptually as simple as possible.

7.1 From Points to Determinants . . .

Assume that we are given a configuration of n vectors in R
3 arranged in a

matrix:

P =

⎛
⎝

| | | . . . |
p1 p2 p3 . . . pn
| | | . . . |

⎞
⎠ .

109
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Later on we will consider these vectors as homogeneous coordinates of a
point configuration in the projective plane. The matrix P may be considered
an element in R

3·n. There is an overall number of
(
n
3

)
possible 3 × 3 matrix

minors that could be formed from this matrix, since there are as many ways
to select three points from the configuration. If we know the value of the
corresponding determinants we can reconstruct the value of any bracket using
permutations of the points and applying the appropriate sign changes, since
we have

[a, b, c] = [b, c, a] = [c, a, b] = −[b, a, c] = −[a, c, b] = −[c, b, a].

We consider the index set E for the points in P by

E = {1, 2, . . . , n}

and a corresponding index set for the index triples

Λ(n, 3) := {(i, j, k) ∈ E
3 | i < j < k}.

Calculating the determinants for our vector configuration can now be con-
sidered as a map

Γ : R
3·n → R

(n
3),

P �→ ([p1, p2, p3], [p1, p2, p4], . . . , [pn−2, pn−1, pn]).

We can consider the vector of determinants Γ (P ) itself as a map that assigns
to each element (i, j, k) ∈ Λ(n, 3) the value of the corresponding determinant
[pi, pj, pk]. By applying the alternating rule, the values of all brackets can
be recovered from the values of Γ (P ). In order to avoid all the information
about a bracket being captured by the subscripts, we make the following
typographical convention. If P is a matrix consisting of columns p1, p2, . . . , pn,
then we may also write [i, j, k]P instead of [pi, pj , pk].

The reader should not be scared of the high dimension of the spaces in-
volved. This high dimensionality comes from the fact that we consider an
entire collection of n vectors now as a single object in R

n·3. Similarly, an
element in the space R

(n
3) may be considered a single object that carries the

values of all determinants simultaneously. It will be our aim to show that
both spaces carry in principle the same information if we are concerned with
projective properties.

One of the fundamental relations between P and Γ (P ) is given by the
following lemma:

Lemma 7.1. Let P ∈ (R3)n be a configuration of n vectors in R
3 and let T

be an invertible 3× 3 matrix. Then Γ (T ·P ) = λ · Γ (P ) for a suitable λ �= 0.

Proof. Let (i, j, k) ∈ Λ(n, 3): Then we have det(T ·pi, T ·pj , T ·pk) = det(T ) ·
[pi, pj, pk]. Thus we have Γ (T · P ) = det(T ) · Γ (P ). ��
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1.0

1 2

3 4

5

6

1.0

1 2

3
4

5

6

Fig. 7.1 A configuration and a projective image of it.

The previous lemma states that up to a scalar multiple the vector Γ (P ) is
invariant under linear transformations. On the level of point configurations
in the projective plane this means that if two configurations of points are
projectively equivalent, we can assign matrices of homogeneous coordinates
P and Q to them such that Γ (P ) = Γ (Q). A little care has to be taken.
Since the homogeneous coordinates of each point are determined only up to
a scalar factor, we have to adjust these factors in the right way to get the
above relation. We can get rid of the λ in Lemma 7.1 by an overall scaling
applied to all homogeneous coordinates.

Example 7.1. Consider the two pictures in Figure 7.1. They are related by
a projective transformation. We get homogeneous coordinates of the points
by simply extending the Euclidean coordinates by a 1. The two coordinate
matrices are

P =

⎛
⎝

0 4 0 4 2 2
0 0 4 4 2 6
1 1 1 1 1 1

⎞
⎠ , Q =

⎛
⎝

2 4 0 4 8
3 0

0 0 3 3 1 9
1 1 1 1 1 1

⎞
⎠ .

For P the corresponding determinants indexed by Λ(6, 3) are

[1, 2, 3]P = 16 [1, 3, 5]P = −8 [2, 3, 4]P = −16 [2, 5, 6]P = −8
[1, 2, 4]P = 16 [1, 3, 6]P = −8 [2, 3, 5]P = 0 [3, 4, 5]P = −8
[1, 2, 5]P = 8 [1, 4, 5]P = 0 [2, 3, 6]P = −16 [3, 4, 6]P = 8
[1, 2, 6]P = 24 [1, 4, 6]P = 16 [2, 4, 5]P = 8 [3, 5, 6]P = 8
[1, 3, 4]P = −16 [1, 5, 6]P = 8 [2, 4, 5]P = 8 [4, 5, 6]P = −8.

The corresponding values for Q are
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[1, 2, 3]Q = 6 [1, 3, 5]Q = −4 [2, 3, 4]Q = −16 [2, 5, 6]Q = −8
[1, 2, 4]Q = 6 [1, 3, 6]Q = −12 [2, 3, 5]Q = 0 [3, 4, 5]Q = −8
[1, 2, 5]Q = 2 [1, 4, 5]Q = 0 [2, 3, 6]Q = −24 [3, 4, 6]Q = 24
[1, 2, 6]Q = 18 [1, 4, 6]Q = 24 [2, 4, 5]Q = 4 [3, 5, 6]Q = 16
[1, 3, 4]Q = −12 [1, 5, 6]Q = 8 [2, 4, 5]Q = 12 [4, 5, 6]Q = −16.

At first sight these two collections of values seem not to be very related.
However, if we simply choose different homogeneous coordinates for the point
in the second picture, such as

r1 = 4 · q1, r2 = 4 · q2, r3 = 2 · q3, r4 = 2 · q4, r5 = 3 · q5, r6 = 1 · q6,

we get

[1, 2, 3]R = 192 [1, 3, 5]R = −96 [2, 3, 4]R = −192 [2, 5, 6]R = −96
[1, 2, 4]R = 192 [1, 3, 6]R = −96 [2, 3, 5]R = 0 [3, 4, 5]R = −96
[1, 2, 5]R = 96 [1, 4, 5]R = 0 [2, 3, 6]R = −192 [3, 4, 6]R = 96
[1, 2, 6]R = 288 [1, 4, 6]R = 192 [2, 4, 5]R = 96 [3, 5, 6]R = 96
[1, 3, 4]R = −192 [1, 5, 6]R = 96 [2, 4, 5]R = 96 [4, 5, 6]R = −96.

This is exactly 12 times the values of the determinants obtained from P . It
is also instructive to check the Grassmann-Plücker relations for a few special
cases. For instance, we should have

[1, 2, 3]P [4, 5, 6]P−[1, 2, 4]P [3, 5, 6]P+[1, 2, 5]P [3, 4, 6]P−[1, 2, 6]P [3, 4, 5]P = 0.

This can easily be verified:

16 · (−8) − 16 · 8 + 8 · 8 − 24 · (−8) = −128 − 128 + 64 + 192 = 0.

7.2 . . . and Back

We will now focus on the other direction. To what extent do the values of
Γ (P ) already determine the entries of P? Let us first start with two obser-
vations.

Observation 1: The elements in Γ (P ) are not independent of each
other. This comes from the fact that the entries at least have to satisfy
the Grassmann-Plücker relations.
Observation 2: The elements in Γ (P ) can determine P only up to a
linear transformation. This is the statement of Lemma 7.1.
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These two observations extract the essence of the relation between Γ (P )
and P . We will prove that for every Γ ∈ R

(n
3) − {0} that satisfies the

Grassmann-Plücker relations there is a P ∈ R
3·n such that Γ = Γ (P ). This

P is uniquely determined up to a linear transformation.
We again consider Γ as a map Λ(n, 3) → R. For the rest of this chapter

we will denote the value Γ ((i, j, k)) by [i, j, k]. Thus the problem of finding a
suitable P can be restated in the following way:

Find a P such that [i, j, k] = [i, j, k]P for all (i, j, k) ∈ Λ(n, 3).

If Γ is not the zero vector 0, then we may without loss of generality
assume that [1, 2, 3] = 1 (otherwise we simply have to permute the indices
in a suitable way, and scale Γ by a suitable factor). If we find any suitable
matrix P with Γ (P ) = Γ , then the first three vectors form an invertible
matrix

M =

⎛
⎝

| | |
p1 p2 p3

| | |

⎞
⎠ .

If we replace P by P ′ := detM ·M−1 · P , we still have Γ (P ′) = Γ but in
addition the first three vectors became unit vectors. The matrix P ′ has the
shape

P ′ =

⎛
⎝

1 0 0 p41 p51 . . . pn1

0 1 0 p42 p52 . . . pn2

0 0 1 p43 p53 . . . pn3

⎞
⎠ .

The key observation now is that each entry in the matrix corresponds to
the value of a suitable bracket. For instance, we have

p43 = [1, 2, 4]; p42 = −[1, 3, 4]; p41 = [2, 3, 4].

Thus if our matrix P ′ exists, we can immediately fill in all the other entries
if we know the values of Γ . We get

P ′ =

⎛
⎝

1 0 0 [2, 3, 4] [2, 3, 5] . . . [2, 3, n]
0 1 0 −[1, 3, 4] −[1, 3, 5] . . . −[1, 3, n]
0 0 1 [1, 2, 4] [1, 2, 5] . . . [1, 2, n]

⎞
⎠ .

So far we have only made sure that brackets of the forms [1, 2, 3], [1, 2, i],
[1, 3, i], and [2, 3, i], i = 4, . . . , n, get the right value. How about all the
remaining brackets (which are the vast majority)? This is the point where
the Grassmann-Plücker relations come into play. If Γ satisfies all identities
required by the Grassmann-Plücker relations, then all other bracket values
will fit automatically. We can prove this by successively showing that (under
the hypothesis that the Grassmann-Plücker relations hold) the values of the
brackets are uniquely determined after fixing the brackets of the above form.
Let us take the bracket [1, 4, 5] for instance. By our assumptions on Γ we



114 7 More on Bracket Algebra

know that the relation

[1, 2, 3][1, 4, 5]− [1, 2, 4][1, 3, 5] + [1, 2, 5][1, 3, 4] = 0

must hold. Except for the value of the bracket [1, 4, 5], all other bracket
values are already fixed. Since [1, 2, 3] �= 0, the value of [1, 4, 5] is determined
uniquely. Similarly, we can show that all values of the brackets of the forms
[1, i, j], [2, i, j], and [3, i, j] are uniquely determined. It remains to show that
brackets that do not contain any of the indices 1, 2, 3 are also already fixed.
As an example we take the bracket [4, 5, 6]. The following relation must hold:

[1, 2, 3][4, 5, 6]− [1, 2, 4][3, 5, 6] + [1, 2, 5][3, 4, 6]− [1, 2, 6][3, 4, 5] = 0.

Again all values except [4, 5, 6] are already determined by our previous con-
siderations. Hence the above expression fixes the value of [4, 5, 6]. We may
argue similarly for any bracket [i, j, k]. We have finished the essential parts
of the proof of the following theorem:

Theorem 7.1. Let Γ ∈ R
(n
3), Γ �= 0, be an assignment of bracket values that

satisfies all Grassmann-Plücker relations. Then there exists a vector config-
uration P ∈ R

3·n with Γ = Γ (P ).

Proof. For the proof we just summarize what we have done so far. With the
above notation we may without loss of generality assume that [1, 2, 3] = 1.
As above, set

P =

⎛
⎝

1 0 0 [2, 3, 4] [2, 3, 5] . . . [2, 3, n]
0 1 0 −[1, 3, 4] −[1, 3, 5] . . . −[1, 3, n]
0 0 1 [1, 2, 4] [1, 2, 5] . . . [1, 2, n]

⎞
⎠ .

In particular, by this choice we have

[1, 2, 3] = [1, 2, 3]P , [1, 2, i] = [1, 2, i]P , [1, 3, i] = [1, 3, i]P , [2, 3, i] = [2, 3, i]P ,

for any i ∈ {4, . . . , n}. Since P is a point configuration, it satisfies all
Grassmann-Plücker relations. Since if the Grassmann-Plücker relations are
satisfied the values of all brackets are determined uniquely if the above bracket
values are fixed, we must have Γ = Γ (P ). ��

Example 7.2. Assume that we are looking for a vector configuration that gives
us the following bracket values (they have been chosen carefully to satisfy all
Grassmann-Plücker relations, check it):
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[1,2,3] = 1 [1,3,5] = −1/2 [2,3,4] = −1 [2, 5, 6] = −1/2
[1,2,4] = 1 [1,3,6] = −1/2 [2,3,5] = 0 [3, 4, 5] = −1/2
[1,2,5] = 1/2 [1, 4, 5] = 0 [2,3,6] = −1 [3, 4, 6] = 1/2
[1,2,6] = 3/2 [1, 4, 6] = 1 [2, 4, 5] = 1/2 [3, 5, 6] = 1/2
[1,3,4] = −1 [1, 5, 6] = 1/2 [2, 4, 5] = 1/2 [4, 5, 6] = −1/2.

The brackets that are emphasized by bold letters are those we can directly
use to obtain the entries in our matrix

P =

⎛
⎜⎜⎝

1 0 0 −1 0 −1

0 1 0 1 1
2

1
2

0 0 1 1 1
2

3
2

⎞
⎟⎟⎠ .

It is easy to check that the other bracket values are satisfied automatically.
The careful reader may have recognized that the brackets were chosen such in
a way that they again produce a projectively equivalent copy of the drawing
in Figure 7.1.

7.3 A Glimpse of Invariant Theory

The essence of the last two chapters can be stated in the following way: The
determinants Γ (P ) of a vector configuration P carry essentially the same
information as the configuration itself. In principle, we can perform all oper-
ations of projective geometry entirely on the level of determinants.

There are several ways to exploit this fact, and we want to mention at least
a few of them. In this section we want to review a few facts that belong to the
context of classical invariant theory (see for instance [98, 131]). This theory
originated precisely in the efforts of the classical geometers to understand how
geometry and algebra are related. Besides a purely theoretical interest there
were also very practical motivations for considering this topic: People in the
nineteenth century did not have computers. All calculations had to be done
by hand. For dealing with geometric constructions of nontrivial size it was
absolutely necessary to have advanced algebraic techniques that reduced the
amount of hand calculations to a minimum. Plücker, who was (as we already
have seen) one of the pioneers in this field, once said (according to Klein)
that one has to read in equations. This means to draw far-reaching conclusions
from simple algebraic facts. Striving for powerful algebraic techniques that are
as close to geometry as possible first led to the development of homogeneous
coordinates, later to the recognition of the importance of determinants and
still later to the development of invariant theory.

One might be tempted to think that nowadays with the help of computers
that can do all the “number crunching” it is no longer necessary to care



116 7 More on Bracket Algebra

about sophisticated algebraic techniques, since calculations on the coordinate
level can be carried out automatically. In fact, exactly the opposite is the
case. The rise of computational power has led to a considerable demand
for sophisticated techniques for performing geometric calculations. There are
several reasons for this (and we will list only a few of them):

• With computers it is possible to deal with really huge geometric situations
that were not previously within reach. So still it is necessary to compute
efficiently.

• Practical applications in computer-aided design, robotics, computer vi-
sion, and structural mechanics lead to problems that are at the core of
projective geometry, and the algebraic techniques that are used there have
to be appropriate for the problem. (For instance, consider an autonomous
robot that has to use pictures taken by a video camera to obtain an inner
model of the environment. This corresponds to the problem of lifting a
two-dimensional projective scene to a three-dimensional one.)

• Symbolic calculations on the coordinate level very soon lead to a combi-
natorial explosion, since usually every single multiplication of two poly-
nomials doubles the number of summands involved.

• The rise of computers opened the new discipline of “automatic deduc-
tion in geometry” (see [45, 115, 133, 60, 17]). There one is, for instance,
interested in automatically generating proofs for geometric theorems. In
order to be able to retranslate the automatically generated proof into
geometric statements one has finally to reinterpret algebraic terms geo-
metrically. This is much easier if the algebraic statements are “close” to
geometry.

Our investigations of the last two sections showed that brackets form a
functional basis for projective invariants. To make this notion a bit more
precise, we first slightly broaden the scope of Definition 6.1, in which we in-
troduced projectively invariant properties. To avoid technical difficulties that
arise from configurations that do not have full rank, we call a configuration
of points given by homogeneous coordinates P ∈ R

3·n proper if P has rank 3.
If P is not proper, then all points of P lie on a line, or even collapse to a
single point.

Definition 7.1. Let M be an arbitrary set. A projective invariant of n points
in the real projective plane is a map f : R

3·n →M such that for all invertible
real 3 × 3 matrices T ∈ GL(R, 3) and n× n invertible real diagonal matrices
D ∈ diag(R, n) and for any proper configuration P , we have

f(P ) = f(T · P ·D).

In this definition the image range M is taken to be an arbitrary set. If M is
the set {true, false}, then f is a projectively invariant property as introduced
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in Definition 6.1. If M = R ∪ {∞}, then f measures some number that
is invariant under projective transformations (such as the cross-ratio, for
instance). We now want to study under what circumstances one can generate
one projective invariant from others. For this we introduce the concept of a
functional basis.

Definition 7.2. A collection fi : R
3·n → Mi, i = 1, . . . , k, of functions is a

functional basis of the set of all projective invariants if for every projective
invariant f : R

3·n →M , there is a function

m : M1 × · · · ×Mk →M

such that for all X ∈ R
3·n we have

f(X) = m(f1(X), . . . , fk(X)).

In other words, if f1, . . . , fk is a functional basis then it completely suf-
fices to know the values of these functions to calculate the value of any other
invariant. We can also understand the concept of functional basis on an al-
gorithmic level. For every invariant f there exists an algorithm A that takes
the values of f1, . . . , fk as input and calculates the value of f . The last two
sections essentially prove the following theorem:

Theorem 7.2. The entries of the determinant vector Γ (P ) form a functional
basis for all projective invariants.

Proof (sketch). Let f be any invariant and let P be an arbitrary proper
configuration of points. Since P is proper, at least one entry of Γ := Γ (P ) is
nonzero (this means that at least one determinant does not vanish). Thus we
can use the techniques of Section 7.2 to calculate a configuration P ′ := P ′(Γ )
that is projectively equivalent to P . Thus we must have f(P ′(Γ )) = f(P ),
which proves the claim. ��

This theorem is a weak version of a much deeper algebraic fact that is
known as the first fundamental theorem of projective invariant theory (see
[131, 126]). Theorem 7.2 states only that we can compute any invariant if we
know the values of the brackets. It does not state that the algebraic structure
of an invariant is preserved by any means. The first fundamental theorem
in addition guarantees that the algebraic type of an invariant is essentially
preserved.

Unfortunately, at this point we have to pay a price for calculating with ho-
mogeneous coordinates. Since we do not distinguish homogeneous coordinates
that differ only by a scalar multiple, we have to take care of these equivalence
classes in a corresponding algebraic setup. Any polynomial in the entries of
the matrix P ∈ R

3·n is thus not invariant under rescaling of the homoge-
neous coordinates. This implies that the category of polynomials is not the
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appropriate one for talking about projective invariants. There are essentially
two ways out of this dilemma. Both involve quite a few technical difficulties.
The first is to introduce the concept of a relative invariant polynomial. Such
a polynomial f(P ) is not an invariant in the sense of Definition 7.1. Rather
than being strictly invariant, one requires that the action of T ∈ GL(R, 3)
and D ∈ diag(R, n) change f(T · P ·D) in a very predictable way. If D has
diagonal entries λ1, . . . , λk, then f is called a relative invariant if there are
exponents τ1, . . . , τn, τ such that

f(T · P ·D) = det(T )τ · λτ11 · · · · · λτn
n · f(P ).

This means that rescaling and transforming only results in a controllable
factor that essentially depends only on the number of times a point is involved
in the function f .

The other way out is to change the category of functions under considera-
tion and not consider polynomials as the important functions. The simplest
category of functions in which projective invariants arise is that of rational
functions that are quotients of polynomials. We already have encountered
such types of invariants. The cross-ratio is the simplest instance of such an
invariant. We will follow this path a little later.

For now we want to state at least one version of the first fundamental
theorem that avoids all these technical difficulties for the price of not directly
making a statement about projective geometry [131]. Our version of the first
fundamental theorem is formulated on the level of vector configurations. Thus
this time we distinguish vectors that differ by scalar multiples. Furthermore,
we have to restrict the set of allowed transformations to those that have
determinant one (this means we have to study group actions of SL(R, 3);
this still includes all projective transformations).

Theorem 7.3. Let f : R
3·n → R be a polynomial with the property that for

every T ∈ SL(R, 3) and every P ∈ R
3·n we have

f(P ) = f(T · P ).

Then f can be expressed as a polynomial in the 3× 3 sub-determinants of P .

So, the first fundamental theorem does not state that every invariant can
be expressed in terms of the determinants. It states that every polynomial in-
variant can be expressed as a polynomial in the determinants. To understand
the power of this statement we want to emphasize that by this theorem, usu-
ally rather long and involved formulas on the level of coordinates (i.e., the
entries of P ) will factor into small and geometrically understandable poly-
nomials on the level of brackets. We will not prove the first fundamental
theorem here since the proof requires some nontrivial and extensive technical
machinery. (A proof of this classical theorem may be found, for instance, in
[131], in [33], or in [126].) However, we at least want to give an example that
demonstrates the power of the statement.
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Example 7.3. We want to analyze the condition that six points 1, 2, 3, 4, 5, 6 lie
on a common quadratic curve (a conic). Algebraically this can be stated in the
following way. Assume that the points 1, . . . , 6 have homogeneous coordinates
(x1, y1, z1), . . . , (x6, y6, z6). If all points are on a common quadratic curve,
there are parameters a, b, c, d, e, f such that the quadratic equations

a · x2
i + b · y2

i + c · z2
i + d · xi · yi + e · xi · zi + d · yi · zi = 0

for i = 1, . . . , 6 hold (and at least one of the parameters does not vanish).
This defines a system of linear equations

⎛
⎜⎜⎜⎜⎜⎜⎝

x2
1 y

2
1 z

2
1 x1y1 x1z1 y1z1

x2
2 y

2
2 z

2
2 x2y2 x2z2 y2z2

x2
3 y

2
3 z

2
3 x3y3 x3z3 y3z3

x2
4 y

2
4 z

2
4 x4y4 x4z4 y4z4

x2
5 y

2
5 z

2
5 x5y5 x5z5 y5z5

x2
6 y

2
6 z

2
6 x6y6 x6z6 y6z6

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

a
b
c
d
e
f

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

This system has a nontrivial solution if and only if the determinant of this
matrix does not vanish. Expanding this determinant produces a polynomial
f(x1, x2, , . . . , z6) in 18 variables with 720 summands each of degree 12. The
polynomial must be a projective invariant, since the condition of six points
being on a conic is invariant under projective transformations. The first fun-
damental theorem tells us that this polynomial must be expressible in terms
of determinants. In fact, on the level of determinants the polynomial simpli-
fies to the following form:

[1, 2, 3][1, 5, 6][4, 2, 6][4, 5, 3]− [4, 5, 6][4, 2, 3][1, 5, 3][1, 2, 6] = 0.

This condition can be easily checked by a computer algebra system. One
generates the polynomial f by expanding the above determinant and then
applies to f an operation like simplify(f). If the computer algebra system is
clever enough, it will find a form that resembles the above bracket expression.

If one takes a closer look at the above bracket expression one observes
that after expansion back to the coordinate level each of the two summands
produces many summands. Each bracket is a determinant with 6 summands,
and thus each summand produces 64 = 1296 summands on the level of co-
ordinates. Altogether we have 2592 summands, and 1872 of these summands
cancel pairwise.

Since there are nontrivial dependencies among the determinants (such
as Grassmann-Plücker relations), the bracket expression is far from unique.
There are

(
6
3

)
equivalent bracket expressions with 2 summands, and many

more with more than two summands. Expanding any of these equivalent
expressions to the coordinate level results in the same polynomial f .
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The first fundamental theorem can be proved constructively by providing
an explicit algorithm that takes a polynomial

f(P ) ∈ R[x1,1, x1,2, x1,3, . . . , xn,1, xn,2, xn,3] =: R[X]

on the coordinate level as input and produces a polynomial in the brackets
of the points 1, . . . , n whenever f is an invariant. Here X abbreviates the
collection of all indeterminates on the coordinate level. One strategy for this
is to introduce a generic basis of three independent points e1, e2, e3. Under
the assumption of invariance of f one may without loss of generality assume
that these three vectors are the three unit vectors. Thus each variable on the
coordinate level can be expressed as a bracket that involves two unit vectors
and one point of the configuration. So we can rewrite f as a polynomial b(. . .)
in these brackets. Now the difficult part of the proof begins. One can show
that using Grassmann-Plücker relations, b can be rewritten in the form

b = [e1, e2, e3]τ · b′(. . .).

Here b′(. . .) is a bracket polynomial that involves only points 1, . . . , n. Since
[e1, e2, e3]τ is constantly 1, the polynomial b′(. . .) must be the desired bracket
polynomial. The reader interested in a formal proof that follows these lines
is referred to [126].

A general problem in the translation of coordinate polynomials to bracket
polynomials is that one has almost no control on the length of the resulting
bracket polynomial. It is still a difficult open research problem to provide ef-
ficient algorithms that generate bracket expressions of provably short length.

7.4 Projectively Invariant Functions

In geometry one is often interested in measuring certain values of geometric
configurations (lengths, angles, etc.). As we have seen, lengths and angles are
not invariant under projective transformations. Thus they are not a reason-
able measure within the framework of projective geometry. In contrast, it is
appropriate to study functions f : RP

2 → R ∪ {∞} that are projectively in-
variant in the sense of Definition 7.1. Here we will focus on rational functions
that are projectively invariant.

We have already met one of these functions: the cross-ratio. If we re-
consider the proofs of Lemmas 4.4 (invariance under rescaling homogeneous
coordinates) and 4.5 (invariance under projective transformations), we imme-
diately see how to obtain other projectively invariant rational functions. The
crucial property is that in the numerator and in the denominator we have
multihomogeneous functions with the same degree for any letter. Under these
conditions, rescaling factors of homogeneous coordinates and determinants of
projective transformations will cancel perfectly.
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We will see later on (in Part III of this book) how to express angles and
distances as invariant functions that relate projective objects with special
points or lines (such as the line at infinity).

Under mild nondegeneracy assumptions it can be shown that every rational
projectively invariant function can be expressed as a rational function in
cross-ratios. The proof of this fact essentially reconstructs the coordinates
of the configuration (up to projective equivalence) from the cross-ratios (by
techniques similar to those of Section 5.4). Then the invariant functions can
simply be expanded in terms of cross-ratios. A formal proof may be found
in [18].

7.5 The Bracket Algebra

In this section we want to change our point of view and again consider the
brackets as “first-class citizens” in preference to coordinates. We have seen in
Sections 7.1 and 7.2 that brackets carry all information that is necessary to
reconstruct a configuration up to projective equivalence. Furthermore, Sec-
tion 7.3 showed that as a consequence of this we can compute any projective
invariant from the values of the brackets. In particular, Example 7.3 indi-
cated that expressing projective invariants on the level of brackets leads to
considerably shorter expressions compared to the coordinate level. Moreover,
the bracket expressions are often much easier to interpret geometrically than
the coordinate expression.

Taking all this into account, it would be a wise strategy to drop the co-
ordinate level completely and model the entire setup of projective geometry
over R on the level of brackets.

For this we will in this chapter consider the brackets [a, b, c] themselves as
indeterminates that may take any value in R. The set of all brackets on n
points is abbreviated

B := {[i, j, k] ∣∣ i, j, k ∈ E}, E = {1, . . . , n}.

The polynomial ring R[B] contains all polynomials that we can possibly write
with those brackets (remember, the brackets are now variables, not determi-
nants). If the brackets really came from the determinants of a vector config-
uration they would be far from independent. There would be many relations
among them: a bracket that contains a repeated letter would have to be zero,
the brackets would satisfy the alternating determinant rules, and, last but not
least, the brackets would have to satisfy the Grassmann-Plücker relations.

We can take these dependencies into account by factoring out the corre-
sponding relations from the ring R[B].

Definition 7.3. We define the following three ideals in the ring R[B]:
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• Irepeat :=
〈
{[i, j, k] ∈ B

∣∣ i = j or i = k or j = k}
〉
,

• Ialtern :=
〈
{[λ1, λ2, λ3]+σ(π)[λπ(1), λπ(2), λπ(3)]

∣∣λ1, λ2, λ3 ∈ E, σ ∈ S3}
〉
,

• IGP :=
〈
{[a, b, c][d, e, f ]− [a, b, d][c, e, f ]+ [a, b, e][c, d, f ]− [a, b, f ][c, d, e]

∣∣
a, b, c, d, e, f ∈ E}

〉
.

In this expression π is a permutation of three elements, and σ(π) is its sign.
The bracket ring BR is the ring R[B] factored modulo these three ideals:

BR := R[B]/
〈
Irepeat ∪ Ialtern ∪ IGP

〉
.

Thus the bracket ring is defined in a way that brackets with repeated letters
are automatically zero (this is forced by Irepeat). Furthermore, alternating
determinant rules are forced by Ialtern, and finally, the Grassmann-Plücker
relations are forced by IGP. See [132] for a more elaborate treatment of the
bracket ring. Bracket polynomials that are identical in BR turn out to expand
to the same expression when we replace the brackets by the corresponding
determinants. In order to formulate this precisely, we introduce a ring homo-
morphism

Φ : R(B) → R[X]

that models the expansion of brackets. This homomorphism is uniquely de-
termined by its action on the brackets

Φ([i, j, k]) := det(xi, xj , xk).

We now can prove the following theorem:

Theorem 7.4. Let f, g be two polynomials in R(B) such that f ≡ g in the
bracket ring. Then Φ(f) = Φ(g).

Proof. If f ≡ g in the bracket ring, then there is a polynomial h ∈ 〈Irepeat ∪
Ialtern ∪ IGP

〉
such that f = g + h in R[B]. Applying the operator Φ to both

sides, we obtain

Φ(f) = Φ(g + h) = Φ(g) + Φ(h) = Φ(g).

The last equation holds since every polynomial in the ideals Irepeat, Ialtern, IGP

expands to zero under Φ by definition. ��

The converse of the above theorem is true as well:

Theorem 7.5. Let f, g be two polynomials in R(B) with Φ(f) = Φ(g). Then
f − g ∈ 〈Irepeat ∪ Ialtern ∪ IGP

〉
.

Equivalently, we can state this theorem also by saying that every bracket
polynomial f ∈ R(B) with Φ(f) = 0 is automatically in the ideal
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〈
Irepeat ∪ Ialtern ∪ IGP

〉
.

This theorem is also known as the second fundamental theorem of invariant
theory: All bracket polynomials that are identical to zero for all point config-
urations are generated by our three ideals. If we, a little less formally, identify
bracket symbols according to the rules

[i, j, k] = [j, k, i] = [k, i, j] = −[i, k, j] = −[k, j, i] = −[j, i, k],

we can also express this theorem by saying that every bracket expression
f(B) that vanishes on all configurations can be written as

f =
∑

mi · γi,

where the γi are Grassmann-Plücker relations.



Part II

Working and Playing with Geometry
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Need to play is the mother of all invention.

Kristina Brenneman, Portland Tribune, 2005

You’ve achieved success in your field when you don’t know
whether what you’re doing is work or play.

Warren Beatty (b. 1937)

So far, we have prepared a solid basis for projective geometry with a strong
emphasis on relationship to algebra. Now it is time to explore how these
concepts interact in several contexts. It is the aim of the following few chapters
to demonstrate how a bracket-oriented point of view makes it algebraically
easy to describe, prove, and even generate interesting geometric facts. We
also want to investigate how homogeneous coordinates can be used to express
geometric calculations in an elegant fashion.

The material used in the following sections is intentionally taken from
different areas of projective geometry. However, especially the chapters on
quadrilateral sets and on conics will play an important role later on. Through-
out these chapters we will also try to introduce several standard techniques
for proving geometric facts on the level of bracket algebra.
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Quadrilateral Sets and Liftings

The mathematics of rhythm are universal.
They don’t belong to any particular culture

John McLaughlin

In this chapter we will focus on an important concept of projective geom-
etry: quadrilateral sets. On the one hand, these configurations can be con-
sidered a generalization of harmonic points. On the other hand, they have a
close relation-ship to the liftability of lower-dimensional point configurations
to prescribed higher-dimensional scenarios. Their algebraic counterparts also
expose highly symmetric (almost rhythmic) structures coming from the in-
terplay of the six intersections of four lines.

8.1 Points on a Line

We will begin our studies with the algebraic consequences of having n points
on a line. Any bracket formed by three collinear points will automatically be
zero. Via Grassmann-Plücker relations, this vanishing bracket causes other
relations among the other (nonzero) brackets. (From now on, we will freely
omit the commas in brackets whenever no confusion can arise in order to
make the formulas a bit more compact and readable; thus we may write [abc]
instead of [a, b, c]). Consider the three-summand Grassmann-Plücker relation

[abc][axy] − [abx][acy] + [aby][acx] = 0.

129
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Fig. 8.1 The product of the red areas equals the product of the yellow areas.

We know that this equation holds for arbitrary points a, b, c, x, y of RP
2. If

in a configuration we know in addition that a, b, c are collinear, then the first
summand of this equation vanishes, and we obtain the equation

[abx][acy] = [aby][acx].

This relation generalizes to more general contexts:

Theorem 8.1. Let a1, . . . , an, b1, . . . , bn ∈ RP
2 be 2n collinear points (not

necessarily distinct), and let x1, . . . , xn ∈ RP
2 be n arbitrary additional

points. Then the following bracket equation holds for any permutation π ∈ Sn:
∏
i

[ai, bi, xi] =
∏
i

[ai, bi, xπ(i)].

Proof. In principle, one can prove this result by a suitable linear combination
of Grassmann-Plücker relations. However, we will use this result to introduce
the technique of “proof by specialization.” The argument goes as follows. The
conclusion of the proof is obviously a projectively invariant property (every
letter occurs as often on the left as on the right). Thus it is invariant under
projective transformations and rescaling of homogeneous coordinates. Thus
we may without loss of generality assume that all the last entries of the ho-
mogeneous coordinates are 1 and all points are in finite position. In this case,
the determinant [a, b, c] equals twice the oriented area of the corresponding
triangle. For this situation we can provide a very elementary proof (compare
Figure 8.1).

The area of the triangle (ai, bi, xi) can be calculated as |ai, bi| · h(xi)/2,
where |ai, bi| is the oriented distance from ai to bi and h(xi) is the altitude
of point x over the line on which the ai and bi lie. Thus both sides of the
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Fig. 8.2 Projecting the six intersections of four lines.

expression
∏
i[ai, bi, xi] =

∏
i[ai, bi, xπ(i)] must be equal, since they simply

represent two different ways of ordering the factors of a product. ��

8.2 Quadrilateral Sets

Our next example studies the conditions under which points on a line are the
projection of a certain incidence configuration in RP

2. Consider the picture in
Figure 8.2. The four distinct blue lines intersect in six points. These six points
are projected (with viewpoint o) to the black line �. How can we characterize
whether six points on � arise from such a projection? We will present several
approaches to this question.

First of all, since all six points are collinear, the characterization must be
expressible as a one-dimensional condition on the line. This condition in turn
must be expressible purely on the level of determinant equations. Since the
points are projected with projection center o, it must be possible to express
the condition as a determinant expression in which each determinant involves
point o. For deriving this equation we will now introduce a technique that is
also applicable in many other contexts.

We consider the four collinearities [abc] = [aef ] = [bdf ] = [cde] = 0 that
hold in our picture. From these collinearities we obtain the following four
equations:
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[abc] = 0 =⇒ [abe][bcf ][cad] = [abf ][bcd][cae]
[aef ] = 0 =⇒ [aeo][afb] = [aeb][afo]
[bfd] = 0 =⇒ [bfo][bdc] = [bfc][bdo]
[cde] = 0 =⇒ [cdo][cea] = [cda][ceo]

The last three are direct consequences of Grassmann-Plücker relations.
The first equation is an application of Theorem 8.1. Multiplying all left sides
and all right sides and canceling determinants that appear on both sides
(those that are not underlined), we arrive at the equation

[aeo][bfo][cdo] = [afo][bdo][ceo].

This is the desired characterization. Since in each bracket the point o is
involved, we can also read this expression as a rank-2 expression of the cor-
responding projections on the line.

Before we study the symmetry of this bracket expression we will have a look
at two other ways of deriving this formula. Consider the picture in Figure 8.3
left. There the point of projection has been moved to infinity. We want to give
an affine argument from which we can generate the desired formula. This time
we will directly head for the rank-2 formula: Under what conditions are six
points a, b, c, d, e, f on a line liftable to the blue incidence configuration? We
want a nontrivial lifting, in which not all lines are identical. We furthermore
assume that points whose lifted images should be collinear do not coincide
on the line. Similar questions arise in the field of scene analysis, a branch of
projective geometry in which quadrilateral sets and bracket algebra play a
fundamental role [29, 31].

We assume that the points that are involved have homogeneous (rank-2)
coordinates (xa, 1), . . . , (xf , 1). A lifting of the six points corresponds to an
assignment of an altitude ha, . . . , hf to each of the points. Assume that we
have such a lifting such that the lifted points a, b, c are collinear. The lifted
points have homogeneous coordinates (xa, 1, ha), (xb, 1, hb), (xc, 1, hc). Their
collinearity is expressed as

0 = det

⎛
⎝
xa 1 ha
xb 1 hb
xc 1 hc

⎞
⎠ = [ab]hc − [ac]hb + [bc]ha.

We get similar expressions for the other four lines. In a lifting these four
conditions have to be satisfied simultaneously. Thus any lifting corresponds
to a solution of the linear system of equations
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Fig. 8.3 Two ways of generating a quadrilateral set.

⎛
⎜⎜⎜⎜⎝

+[bc] −[ac] +[ab] 0 0 0
+[ef ] 0 0 0 −[af ] +[ae]

0 +[df ] 0 −[bf ] 0 +[bd]
0 0 +[de] −[ce] +[cd] 0

⎞
⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

ha
hb
hc
hd
he
hf

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ .

In order to get nontrivial liftings, the solution space of this system has to have
at least dimension three (having all lifted points in trivial position on a single
line already accounts for two dimensions). Thus if the points are liftable, the
matrix must have rank at most 3. Thus any 4×4 subdeterminant must vanish.
Considering the last four columns, we get

det

⎛
⎜⎜⎜⎜⎝

+[ab] 0 0 0
0 0 −[af ] +[ae]
0 −[bf ] 0 +[bd]

+[de] −[ce] +[cd] 0

⎞
⎟⎟⎟⎟⎠

= [ab] · ([ae][bf ][cd] − [af ][bd][ce]).

Since [ab] was assumed to be nonzero, the vanishing of this determinant
implies our desired characterization:

[ae][bf ][cd] = [af ][bd][ce].

Points on a line that satisfy this relation are called a quadrilateral set (or
quadset, for short). By considering other columns of our matrix, we could
derive similar-looking equivalent bracket expressions.

Here is another way of deriving the same formula from a different geometric
situation. The right picture of Figure 8.3 shows the dual situation of the one
we have considered so far. We draw the six lines through four points x, z, p, q
and intersect these lines with another line. The points of intersection are
called a, . . . , f . For this configuration we consider the equalities of cross-ratios
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(a, c; e, d) = (a, y;x, o) = (a, b; f, d).

The first equality comes from projection through point p; the second is a
consequence of projection through q. Expanding the cross-ratios, we get

[ae][cd]
[ad][ce]

=
[af ][bd]
[ad][bf ]

.

Canceling [ad] and multiplying by the denominators, we get the desired equa-
tion

[ae][bf ][cd] = [ce][af ][bd].

8.3 Symmetry and Generalizations of Quadrilateral Sets

The quadrilateral set configuration has interesting inner structures. In our
labeling there are three pairs of points (a, d), (b, e), and (c, f) such that the
points of each pair do not share a line of the configuration. Every line of the
complete quadrilateral is obtained by selecting exactly one point from each
of the pairs. For instance, the line (a, b, c) takes the first point of each of the
pairs. In our expression

[ae][bf ][cd] = [ce][af ][bd],

the line (a, b, c) plays a special role. The two monomials of the expression
are formed by three brackets, and each of these brackets contains exactly one
point of the line and one other point such that they do not form one of the
three pairs above. For each line we get exactly one such characterization of
the quadrilateral set.

Besides the four lines in our original quadrilateral set there are also
four other lines that can be formed by taking exactly one point from each
of the pairs. These lines (d, e, f), (a, b, f), (b, c, d), and (a, c, e) describe
the associated complete quadrilateral to our original one. The symmetry of
[ae][bf ][cd] = [ce][af ][bd] also implies that this expression is as well a char-
acterization of the quadrilateral set generated by the associated complete
quadrilateral. The situation is illustrated in Figure 8.4 left. The blue part
of the picture is our original quadrilateral set configuration, the green part
is the complementary one. In particular, if we interchange the roles of two
points in one of the pairs (a, d), (b, e), (c, f), then we transfer the complete
quadrilateral into its associated one. This implies that the triple of pairs char-
acterizes the quadrilateral set. The right part of Figure 8.4 is an illustration
of obtaining a quadrilateral set by projection or by intersection. Both pic-
tures represent projective incidence theorems. If all coincidences except the
last one are satisfied, then the last one is satisfied automatically.
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da b ce f a b cde f

Fig. 8.4 Incidence theorems from quadrilateral sets.

Finally, we want to explore how the notion of quadrilateral sets can be
generalized. One way of doing this is to use one of the lines of the complete
quadrilateral itself for the projection. Figure 8.5 left shows the situation for
the usual quadrilateral set. The six points on the base line are the three
projections a1, a2, a3 of the points of a triangle and the intersections b1, b2, b3
with its sides. We get the equation

[a1, b1][a2, b2][a3, b3] = [a1, b3][a2, b1][a3, b2].

If we consider an arbitrary n-gon with vertices 1, . . . , n, the projections of
its vertices a1, . . . , an to a line �, and the intersections bi = � ∧ (i ∨ (i + 1))
(indices modulo n), then we get the equation

∏
i

[ai, bi] =
∏
i

[ai, bi−1].

H K a3 a2b1 b2

1

2

3

a1 a2 a3a4a5 b1b2b5 b4b3

1

2
3

4

5

Fig. 8.5 Sections of an n-gon.
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y x x + y0 ∞ 1 x y x · y0 ∞

Fig. 8.6 Geometric addition and multiplication, with a finite point ∞.

This formula can be proven easily by the techniques we used for the charac-
terization of quadrilateral sets. A nontrivial lifting of the segment (i, i + 1)
implies the existence of nonzero altitudes hi, hi+1 such that

[ai, bi]
[ai+1, bi]

=
hi
hi+1

.

Forming the product over all i yields (indices modulo n)

n∏
i=1

[ai, bi]
[ai+1, bi]

=
n∏
i=1

hi
hi+1

= 1,

which is equivalent to the desired formula.

8.4 Quadrilateral Sets and von Staudt

Let us reconsider the original von Staudt constructions we got to know in
Section 5.6. The von Staudt constructions provided a tool for performing
addition and multiplication with respect to a projective basis 0,1,∞ on a line.
Figure 8.6 shows the situation with the point ∞ moved to a finite position
(compare the drawing with Figure 5.5). We observe that the relevant points
of the calculation are the intersections with the six lines through four other
points. In other words, we see that the von Staudt constructions are based
on a quadrilateral set construction.

What makes von Staudt constructions work is the fact that (in the usual
identification of the projective line with R ∪ {∞}) the following triples of
(ordered) pairs define quadrilateral sets:

((0, x+ y); (x, y); (∞,∞)) and ((0,∞); (x, y); (1, x · y)).
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The reader is invited to check this fact explicitly by hand calculation.

8.5 Slope Conditions

We continue to play with quadrilateral sets. What happens, for instance, if
we intersect the six lines through four (finite) points with the line at infinity?
In this case we get a quadrilateral set on the line at infinity. From a projective
point of view this is not at all a special case. However, we want to interpret
the quadrilateral set from the perspective of a special coordinatization. With
respect to the usual standard embedding of the Euclidean plane at the affine
z = 1 plane, infinite points have coordinates of the form (x, y, 0). A finite
line � with equation ax + by + c = 0 intersects the line at infinity in the
point (b,−a, 0). We could rewrite the line equation as y = −a

bx − c
b . Thus

the intersection point has (after rescaling of homogeneous coordinates) the
coordinates (1, s, 0), where s is the slope of the line. If we choose the basis 0 =
(1, 0, 0), ∞ = (0, 1, 0), and 1 = (1, 1, 0)for the line at infinity, the parameter
of a point with respect to this basis is exactly the slope of the line bundle
passing through it.

Taking these considerations into account, we can, after four finite points
are given, read off a quadrilateral set condition for the slopes of six lines
spanned by them. Figure 8.7 illustrates this fact. If a, . . . , f are the slopes of
the three lines, the quadrilateral set condition reads

(a− e) · (b− f) · (c− d) = (a− f) · (b − d) · (c− e).

In the concrete example we get:
(

1
3−
(− 1

7

)) · (−5−5
2

) · (− 1
2−
(− 6

5

))
=
(

1
3−5

2

) · (−5− (− 6
5

)) · (− 1
2−
(− 1

7

))
,

a = 1
3

b = −4

c = − 1
2

d = − 6
5

e = − 1
7

f = 5
2

Fig. 8.7 Line slopes between four points.
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a
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d

e
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Fig. 8.8 Two combinatorially different drawings with parallel slopes.

which is reduced to the identity

10
21 · (− 13

2

) · 7
10 = − 13

6 · (− 14
5

) · (− 5
14

)
.

The relation of slopes and quadrilateral sets can be used to derive interest-
ing theorems in affine geometry (in which parallels can be used as a primitive
predicate). In Figure 8.4 (left) we illustrated the fact that quadrilateral sets
arise in two combinatorially different ways as projections of the intersections
of four lines. This translates to the fact illustrated in Figure 8.8. In this pic-
ture, lines with identical colors are parallel. If four points in the plane are
given the slopes of the six lines spanned by them form a quadrilateral set.
Thus we can find lines that are parallel to these lines that form a combinato-
rially different drawing of the slopes between four points. The corresponding

1

0

0

x

x

y

y

x·y

x + y

∞∞

∞

Fig. 8.9 Addition and multiplication of line slopes.
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√
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∞

∞

Fig. 8.10 Constructing a slope of
√

2.

lines that pass through a point in the left picture form a triangle in the right
picture.

Combining our considerations on slopes and the relationships between
quadrilateral sets and von Staudt constructions we can also perform geo-
metric addition and multiplication on the level of slopes. Figure 8.9 shows
the two corresponding configurations. After fixing lines with slopes 0 and
∞, the left drawing demonstrates how to perform addition of two slopes x
and y. In the right drawing, furthermore, a line with slope 1 is fixed. The
construction forces multiplication of the slopes x and y. In both cases it is
very easy to prove the relations of slopes by elementary considerations.

As an example of combining several slope addition and multiplication de-
vices, the drawing in Figure 8.10 shows a configuration in which after fixing
the slopes 0, 1, and ∞, some of the lines are forced to have slope

√
2. One

subconfiguration is used to perform the operation 1 + 1 = 2, and another
configuration is used to calculate x · x = 2. The slope x is then forced to be
either

√
2 or −√

2.

8.6 Involutions and Quadrilateral Sets

There is also a very interesting connection of quadrilateral sets to projective
transformations on a line. For this we have to consider projective involutions
τ : RP

1 → RP
1. The defining property of an involution is that τ(τ(p)) = p

for every point p. Every projective involution on RP
1 can be expressed by

multiplication by a 2 × 2 matrix T that satisfies T 2 = λ · Id. Involutions are
closely related to geometric reflections, since the characterizing property of a
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Fig. 8.11 Pairs of orthogonal slopes: The altitudes meet in a point.

reflection is that the mirror image of the mirror image is the original again.
We now get the following result:

Theorem 8.2. Let τ : RP
1 → RP

1 be a projective involution that is not the
identity and let a, b, c be arbitrary points in RP

1. Then the pairs

(a, τ(a)), (b, τ(b)), (c, τ(c))

form a quadrilateral set.

Proof. Since T is an involution, we have T 2 = λ · Id. This implies det(T )2 =
det(T 2) = det((λ · Id)) = λ2. Hence det(T ) is either +λ or −λ. We will first
exclude the case det(T ) = λ. For this, the fact that T is a 2 × 2 matrix is
crucial. Let T =

(
α β
γ δ

)
. We then get

T 2 =
(
α2 + βγ αβ + βδ
αγ + δγ γβ + δ2

)
=
(
λ 0
0 λ

)
.

This can be satisfied only if either α = −δ or γ = β = 0. The first case
leads to det(T ) = −λ (check it). The second case implies α2 = δ2. Since
again τ was assumed not to be the identity, this case implies α = −δ, which
again implies (together with β = γ = 0) the equation det(T ) = −λ. We now
consider the monomial

[a, T b][b, T c][c, T a].

Applying the transformation T to each of the points of this monomial trans-
fers this monomial to

[Ta, T 2b][Tb, T 2c][Tc, T 2a]=[Ta, λb][Tb, λc][Tc, λa]=−λ3[b, T a][c, T b][a, T c].

On the other hand, the transferred monomial must satisfy the equation

[Ta, T 2b][Tb, T 2c][Tc, T 2a] = (det(T ))3[a, T b][b, T c][c, T a].
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Fig. 8.12 Mirroring slopes.

Comparing these two terms and using the fact det(T ) = −λ, we get

[a, T b][b, T c][c, T a] = [a, T c][b, T a][c, T b].

This is exactly the characterization of a quadrilateral set. ��

Let us use this fact to derive immediate conclusions about configurations
that concern the slopes of lines. For this, we consider involutions on the line
at infinity. We will consider two natural types of involution that are related
to operations in the Euclidean plane. The first is a rotation by 90◦ around
an arbitrary point. Such a rotation is clearly an involution. It induces an
involution on the line at infinity. Slopes are transferred by such a rotation to
perpendicular slopes. For our incidence theorem we start with three arbitrary
line slopes (compare Figure 8.11). In the picture they are black, yellow, and
green. Then we construct line slopes that are perpendicular to these slopes.
By the above theorem, the six slopes form a quadrilateral set. Thus one can
draw a projection of a tetrahedron with exactly these line slopes. Lines that
do not share a point in the tetrahedron are perpendicular to each other.
Looking at the right part of Figure 8.11, one observes that this statement is
nothing but a strange way to derive a well-known result: the altitudes in a
triangle meet in a point.

There is another theorem that is not known so well that can be derived
by the same argument. For this we consider an involution that arises from
a line reflection. Figure 8.12 on the left shows six lines that are pairwise in
a mirror relation to each other. The mirror axis is the thin black line. Since a
mirror symmetry is an involution, the theorem implies that the six line slopes
form a quadrilateral set. Hence again they can be used to form a drawing of
a tetrahedron.

Theorem 8.2 showed that there is a close relationship between quadrilateral
sets and projective involutions. Any three pairs of images and preimages of a
projective involution on a line form a quadrilateral set. The converse is also
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true. For this we first observe that if a projective map in RP
1 interchanges

two points, then it will automatically be an involution.

Lemma 8.1. Let τ : RP
1 → RP

1 be a projective transformation with τ(a) =
a′ and τ(a′) = a for distinct points a and a′. Then τ is an involution.

Proof. Without loss of generality we may (after a suitable projective trans-
formation) assume that a =

(
1
0

)
and a′ =

(
0
1

)
. Thus the matrix T that

represents τ must have the form T =
(

0 α
β 0

)
for nonzero parameters α and β.

Calculating T 2, we get

T 2 =
(
αβ 0
0 αβ

)
= αβ

(
1 0
0 1

)
.

Thus T 2 represents the identity map on RP
1. ��

With this lemma it is easy to prove that every quadrilateral set induces
an involution.

Theorem 8.3. Let a, b, c be three distinct points in RP
1. Let a′b′c′ be three

additional points. If (a, a′); (b, b′); (c, c′) forms a quadrilateral set, then the
projective map τ uniquely defined by τ(a) = a′, τ(b) = b′, τ(c) = c′ is an
involution.

Proof. If a = a′, b = b′, c = c′, then τ must be the identity, which is trivially
an involution. Thus at least one of the pairs consists of different points.
Assume without loss of generality that a and a′ are distinct. Consider the
uniquely defined transformation τ that satisfies τ(a) = a′, τ(a′) = a, τ(b) =
b′. By Lemma 8.1 this transformation will be an involution. Thus it suffices
to show that τ(c) = c′. Theorem 8.2 implies that

(a, τ(a)), (b, τ(b)), (c, τ(c))

form a quadrilateral set. Using our knowledge about τ , we see that

(a, a′), (b, b′), (c, τ(c))

is a quadrilateral set. Since five points of a quadrilateral set determine the
sixth one uniquely, we must have that τ(c) = c′. This proves the theorem. ��

So to every quadrilateral set we can associate in a natural way an involu-
tion. It is a remarkable fact that the two fixed points of the involution are in
harmonic position to all point pairs in the quadrilateral set.

If T represents a projective transformation, then the eigenvectors of T
correspond to the fixed points of the transformation. For every eigenvector p
of T we have Tp = λp, and p is mapped to itself. If T is a 2× 2 matrix, then
it may have either two real or two complex conjugate eigenvectors (up to
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scalar multiples). If the eigenvectors are real, then they correspond to points
in RP

1 that are invariant under T .

Theorem 8.4. Let τ be the involution associated to the points of a quadri-
lateral set (a, a′; b, b′, c, c′). Assume that τ has two distinct real fixed points p
and q. Then the point pairs (p, q) and (a, a′) form a harmonic set.

Proof. If τ is an involution, then (a, τ(a); p, τ(p); q, τ(q)) is a quadrilateral
set. Using our knowledge of the definition of τ and the fixed point properties
of p and q, we see that (a, a′; p, p; q, q) is a quadrilateral set. Thus we have
[a, p][p, q][q, a′] = [a, q][p, a′][q, p]. Using the distinctness of p and q we can
cancel [p, q] from this expression and are left with [a, p][q, a′] = −[a, q][p, a′],
which is exactly the characterization for a harmonic pair of point pairs. ��

Clearly, in the same way the pair of points (p, q) is also harmonic with
respect to (b, b′) and to (c, c′). This leads us to a nice characterization of
fixed points of τ . If τ is an involution associated to (a, a′; b, b′; c, c′), then
the fixed points of τ are exactly those two points that are simultaneously
harmonic to all three point pairs of the quadrilateral set. In fact, any two
of the point pairs of the quadrilateral set determine the position of p and q
uniquely. The fact that (p, q) are also harmonic with respect to the last pair
is exactly the quadrilateral set condition.

There is a little subtlety concerning the existence of the fixed points that
will become relevant later in this book: The fixed points need not be real.
We saw that the fixed points correspond to the eigenvectors of the matrix T
that represents τ . If this matrix has complex eigenvalues (like the involution(

0 1
−1 0

)
), then the eigenvectors are also complex (and cannot become real by

multiplication by a real scalar). In such a case the transformation has no real
fixed points. This case geometrically is related to “rotation-like” transforma-
tions τ such as the 90◦ rotation we used in Figure 8.11. The case in which
real fixed points exist is related to “reflection-like” transformations, such as
the mirror-image operation we used in Figure 8.12.
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Conics and Their Duals

You always admire what you really don’t understand.

Blaise Pascal

So far, we have dealt almost exclusively with situations in which only points
and lines were involved. Geometry would be quite a pure topic if these were
the only objects to be treated. Large parts of classical elementary geome-
try deal with constructions involving circles. The most elementary drawing
tools treated by Euclid (the straightedge and the compass) contain a tool
for generating circles. In a sense, so far we have dealt with the straightedge
alone. Unfortunately, circles are not a concept of projective geometry. This
can easily be seen by observing that the shape of a circle is not invariant
under projective transformations. If you look at a sheet of paper on which a
circle is drawn from a skew angle, you will see an ellipse. In fact, projective
transformations of circles include ellipses, hyperbolas, and parabolas. They
are subsumed under the term conic sections, or conics, for short. Conics are
the concept of projective geometry that comes closest to the concept of circles
in Euclidean geometry. It is the purpose of this section to give a purely pro-
jective treatment of conics. Later on, we will see how certain specializations
provide interesting insights into the geometry of circles.

9.1 The Equation of a Conic

Let us start with the unit circle in the Euclidean plane:

{(x, y) ∈ R
2 | x2 + y2 = 1}.

145
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In this section we will investigate which shapes can arise if we transform this
circle projectively. For this we again consider the Euclidean plane embedded
at the z = 1 plane of R

3 and represented by homogeneous coordinates (any
other affine embedding not containing the origin would serve as well and
would lead to the same result). Thus the points of the circle correspond
to points with homogeneous coordinates (x, y, 1) with x2 + y2 = 1. Taking
into account that homogeneous coordinates are specified only up to a scalar
multiple, we may rewrite this condition in a more general way as points
(x, y, z) with x2 + y2 = z2. Setting z = 1, we obtain the original formula.
According to the fact that every term of the expression x2 + y2 = z2 is
quadratic, a vector (x, y, z) satisfies this expression if (λx, λy, λz), λ �= 0,
satisfies it. We may rewrite the quadratic equation as

(x, y, z) ·
⎛
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎠ ·
⎛
⎝
x
y
z

⎞
⎠ = 0.

Thus the homogeneous coordinate vectors that satisfy this equation are
exactly those that represent points of our circle. We now want to transform
these points projectively. Applying a projective transformation to the points
can be carried out by replacing both occurrences of the vector p = (x, y, z) by
a transformed vector M · p. Thus we obtain that a projectively transformed
unit circle can be expressed algebraically as the solutions of the equation

((x, y, z) ·MT ) ·
⎛
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎠ · (M ·

⎛
⎝
x
y
z

⎞
⎠) = 0,

where M is a real 3 × 3 matrix with nonzero determinant. Multiplying the
three matrices in the middle of this expression, we are led to an equation

(x, y, z) ·
⎛
⎝
a b d
b c e
d e f

⎞
⎠ ·
⎛
⎝
x
y
z

⎞
⎠ = 0, (∗)

for suitable parameters a, b, c, d, e, f . Observe that the matrix in the middle
is necessarily symmetric. Expanding the above product expression yields the
following quadratic equation:

a · x2 + c · y2 + f · z2 + 2b · xy + 2d · xz + 2e · yz = 0.

We call such an expression of the form pTAp a quadratic form (regardless
of whether the matrix A is symmetric). The set of points that satisfies such an
equation will be called a conic. In a sense we are working on three different
levels when we speak about matrices, quadratic forms, and conics. Before
we continue, we want to clarify this relationship. Let A be a 3 × 3 matrix
with entries in some field K. The associated quadratic form is a homogeneous
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quadratic function QA : K
3 → K defined by

QA(p) = pTAp.

It is important to notice that different matrices may lead to the same
quadratic form. This can be seen by expanding

QA = (x, y, z) ·
⎛
⎝
a b1 d2

b2 c e1
d1 e2 f

⎞
⎠ ·
⎛
⎝
x
y
z

⎞
⎠

to

QA = a · x2 + c · y2 + f · z2 + (b1 + b2) · xy + (d1 + d2) · xz + (e1 + e2) · yz.

Observe that the quadratic form associated to a matrix depends only on the
diagonal entries and the sums of matrix entries Aij+Aji. For every potentially
nonsymmetric matrix A, the matrix (A+ AT )/2 creates the same quadratic
form:

QA = Q(A+AT )/2.

We call this process symmetrization. Furthermore, it is also clear that for
every homogeneous quadratic polynomial f(x, y, z), a (symmetric) matrix A
with QA(x, y, z) = f(x, y, z) also exists.

The conics themselves are the third level with which we have to deal.
They consist of all points in PK for which a quadratic form vanishes. The
conic associated to a matrix (or quadratic form) is

CA = {[p] ∈ PK | pTAp = 0}.

Since the expression pTAp = 0 is stable under scalar multiplication of p by
a nonzero scalar, we will, by common abuse of notation, work as usual on
the level of homogeneous coordinates and omit the brackets [. . .]. How much
information about the matrix A is still present in the conic in a sense depends
on the underlying field. Over R it may, for instance, happen that a conic (such
as the solution set of x2 + y2 + z2 = 0) has no nonzero solutions at all. In
such a case there are still complex solutions. We will deal with them later.

We return to the case of a projectively transformed circle and the quadratic
form described in equation (∗). In this case the parameters a, . . . , f are not
completely independent. Sylvester’s law of inertia from linear algebra tells us
that the signature of the eigenvalues must be the same as in the matrix

⎛
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎠
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and that this is the only restriction.1

If we allow general real parameters in equation (∗), we can classify the
different cases by the signature of the eigenvalues. Since the quadratic forms
of the matrices A and −A describe identical point sets, we may identify
a signature vector with its negative. Thus we end up with five essentially
different cases of signatures:

(+,+,−), (+,+,+), (+,−, 0), (+,+, 0), (+, 0, 0).

Each of these cases describes a geometric situation that cannot be trans-
formed projectively into any of the other cases. The case of a circle cor-
responds to the first entry in the list. The last three cases correspond to
degenerate conics (the determinant of A is zero), and the second case corre-
sponds to a situation like x2 +y2 +z2 = 0, in which we have no real solutions
at all (but where complex solutions still exist). Before we clarify the geo-
metric meaning of the other four cases in detail, we will have a closer look
at the circular case. Projectively, all quadratic forms with eigenvalue signa-
ture (+,+,−) have to be considered as isomorphic (they are the projective
images of a unit circle). However, if we fix a certain embedding of the Eu-
clidean plane into R

3 (say the standard z = 1 embedding) and by this single
out a specific line at infinity, then we may classify them also with respect
to Euclidean motions. In fact, there is an infinite variety of forms of conics
that are inequivalent under Euclidean transformations. Still there is a very
useful (and well-known) coarser classification if we just count the intersec-
tions of the conic with the line at infinity. Intersecting the quadratic form of
a projectively transformed circle

a · x2 + c · y2 + f · z2 + 2b · xy + 2d · xz + 2e · yz = 0

and the line at infinity (i.e., setting z = 0) leaves us with the equation

a · x2 + c · y2 + 2b · xy = 0.

This homogeneous quadratic equation may lead to zero, one, or two solu-
tions up to scalar multiples. The three cases are shown in Figure 9.1. They
correspond to the well-known cases of ellipses, parabolas, and hyperbolas.
Thus one could say that a parabola is a conic that touches the line at in-
finity, while a hyperbola has two points at infinity. The three cases can be
algebraically distinguished by considering the discriminant of the equation
a · x2 + c · y2 + 2b · xy = 0. The sign of the discriminant turns out to be the
sign of the determinant

det
(
a b
b c

)
.

1 Sylvester’s law of inertia states that if M is nonsingular, then A and MT AM have the
same signature of eigenvalues for any symmetric matrix A. Furthermore, this is the only
restriction on the coefficients of the symmetric matrix MT AM .
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∞ ∞ ∞

ellipse parabola hyperbola

Fig. 9.1 The possible images of a circle.

If this sign is negative we are in the hyperbolic case. If it is zero, we get a
parabola, and if it is positive, we get an ellipse.

9.2 Polars and Tangents

For the moment we will stick to the case of nondegenerate conics that are
projective images of a circle. Our next task will be to calculate a tangent
to such a conic. For this we first need an algebraic characterization of a line
being tangent to a conic. There are essentially two ways of doing this. The
first is related to concepts of differential geometry: A line is tangent to a
conic if at a point of intersection it has the same slope as the conic. The
other approach is intersection-theoretic and uses the fact that we know that
a conic is a quadratic curve: A line is tangent to a conic if it has exactly one
point in common with it. The first approach is slightly more general, since it
also covers the case of degenerated conics. Still we want to follow the second
approach, since it fits smoothly into the concepts introduced so far, and we
will generalize it later.

Before we will start investigating the intersection properties of lines and
conics we have to recall a few facts concerning homogeneous quadratic equa-
tions. First consider the quadratic equation:
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(λ, μ) ·
(
a b
b c

)
·
(
λ
μ

)
= a · λ2 + 2b · λμ+ c · μ2 = 0.

Clearly if (λ, μ) is a solution then any scalar multiple of it is a solution as
well. If we as usual consider equivalence classes [(λ, μ)] of solutions modulo
nonzero scalars, this quadratic equation will have zero, one, or two solutions if
at least one of the parameters a, b, c does not vanish. In this case the number
of solutions depends on the sign of the determinant

det
(
a b
b c

)
.

If the sign is zero we get exactly one solution; if it is negative we get two
solutions; if it is positive we get no real solutions but two complex solutions.
If all parameters a, b, c are zero, any (λ, μ) ∈ R

2 will be a solution.
The second fact we need is that a quadratic form QA(p) may factor into

two linear terms. Then it has the form 〈p, l〉 · 〈p, g〉 for two suitable vectors l
and g. The quadratic form may then be written as QlgT (p), since we have

pT
(
lgT
)
p =
(
pT l
) (
gT p
)

= 〈p, l〉 · 〈p, g〉.

Furthermore, if the corresponding conic contains a line with homogeneous
coordinates l, then the quadratic form must necessarily factor to the above
form for suitable g.

In order to approach the calculation of a tangent, we will study the possible
types of intersections of a line given by a linear combination of two points a
and b on it and a conic given by a symmetric matrix A. In what follows all
coordinates of points and lines will be given by homogeneous coordinates, and
we will frequently identify the points with their coordinate representations.

Lemma 9.1. Let A be a symmetric real 3×3 matrix and let l be a line λa+μb
given by two distinct points a and b. Then points q on the line that satisfy
qTAq = 0 correspond to the solutions of the homogeneous system

(λ, μ) ·
(

(aTAa) (bTAa)
(bTAa) (bTAb)

)
·
(
λ
μ

)
= 0.

In particular, we get exactly two (real or complex) solutions (up to scalar
multiples) if and only if the determinant of the above matrix does not vanish.

Proof. The proof goes simply by expansion of the formula (λa+μb)TA(λa+
μb) = 0, which describes the common points of the line and the quadratic
form. Expanding it, we get

(λ, μ) ·
(

(aTAa) (bTAa)
(aTAb) (bTAb)

)
·
(
λ
μ

)
= 0,
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which is the desired formula except for one switch of a and b in the lower left
entry. However, this can be done easily, since A was assumed to be symmetric.
The second part of the theorem is just an application of the discriminant
formula. ��

Our next lemma states that matrices representing degenerate conics must
have a vanishing determinant.

Lemma 9.2. A quadratic equation qTAq = 0 with a symmetric 3× 3 matrix
A with det(A) �= 0 cannot be satisfied by all points of a projective line.

Proof. If the solution space of the quadratic equation qTAq = 0 contains a
whole line l, then one must be able to rewrite it as product of two linear
factors 〈p, l〉 · 〈p, g〉 = 0. One can rewrite this as

(qT l) · (gT q) = 0.

This in turn can be interpreted as

qT (l · gT )q = 0.

This is a quadratic form with a nonsymmetric rank-1 matrix M = l · gT . We
can symmetrize this matrix by replacing it with M +MT . That this matrix
is singular will be shown by a simple case distinction. Case 1: g = λl and the
matrix M + MT itself has rank 1. Case 2: g and l are linearly independent
and

(M +MT )(g × l) = (l · gT + g · lT )(g × l) = l〈g, g × l〉 + g〈l, g × l〉 = 0.

Thus in this case M + MT must be degenerate, since it has the nontrivial
element g× l in its kernel. Since M+MT must be a multiple of A, this proves
the claim. ��

We now define tangency in terms of numbers of intersections for the non-
degenerate case of det(A) �= 0. We postpone the definition of tangents in the
degenerate case until later, since it is a little more subtle.

Definition 9.1. Let A be a symmetric real 3× 3 matrix with det(A) �= 0. A
line l is tangent to the conic CA if it has exactly one intersection with it.

The following theorem gives a recipe for calculating a tangent to a conic.

Theorem 9.1. Let A be a symmetric real 3 × 3 matrix with det(A) �= 0 and
let p be a point on the corresponding conic. Then A·p gives homogeneous
coordinates for the tangent at point p to the conic.

Proof. We consider p �→ A·p as a function of the space of points to the space
of lines (represented by homogeneous coordinates). Since A is nondegenerate,
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p

∗A(p)

p

∗A(p)

p

∗A(p)

Fig. 9.2 Images under polarity.

this map is bijective. First we show that the point p and the line l := A·p
coincide. For this, simply observe, that

〈p, l〉 = 〈p,A·p〉 = pTAp = 0.

Now assume that there was a second point q that is on l as well as on the conic
represented by A. If p and q represent different points, then λp+μq must have
more than one intersection with the conic. In this case we have the following
three equations: pTAp = 0 (point p is on the conic), qTAq = 0 (point q is
on the conic), qTAp = 0 (point q is on l). Forming a linear combination of
the first and the last equations yields (λp + μq)TAp = 0 for arbitrary λ, μ.
Combining the second and the last yields qTA(λp + μq) = 0, which (by the
symmetry of A) gives (λp+ μq)TAq = 0. Another combination shows that

(λp+ μq)TA(λp + μq) = 0.

This proves that all linear combinations of p and q must be on the conic
as well. Thus either p and q both represent the same point (and all linear
combinations are also identical to this point) or the conic contains the entire
line λp+ μq. The latter cannot happen by Lemma 9.2, since A was assumed
to be nondegenerate. ��

The last theorem gives a very simple recipe to calculate the homogeneous
coordinates of a tangent l to a point p on a conic pTAp = 0: simply calculate
l = Ap! This function is also defined if p is not on the conic. The map p �→ Ap
is called a polarity, and it has various interesting properties. Figure 9.2 shows
three drawings of a point and its polar line with respect to an ellipse. Observe
that if the point is inside the ellipse, the corresponding polar lies entirely
outside. If the point is outside the conic, then the polar intersects the conic
in two points. In the limit situation when the point is on the ellipse. the
polar is the tangent at this point. We want to investigate the properties of
polarities in some detail.

Definition 9.2. Let A be a symmetric 3 × 3 matrix with det(A) �= 0. The
map

∗A : PR → LR,
p �→ Ap,
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p

∗A(p)l

g

∗A(l)

∗A(g)

p

∗A(p)

l g h

∗A(h)

∗A(g)

∗A(l)

Fig. 9.3 Properties of polarities.

is called a polarity. Since the domain and image space of ∗A are disjoint, we
extend ∗A by its own inverse and define

∗A : LR → PR,
l �→ A−1l.

Polarities are very closely related to projective transformations. However,
they map points to lines instead of points to points.

Theorem 9.2. Let A be a symmetric matrix with det(A) �= 0 and let CA be
the associated conic. The polarity ∗A has the following properties:

(i) For any element a ∈ PR ∪ LR we have ∗A(∗A(a)) = a.

(ii) Three points a, b, c ∈ PR are collinear if and only if
the lines ∗A(a), ∗A(b), ∗A(c) ∈ LR are concurrent.

(iii) Three lines a, b, c ∈ LR are concurrent if and only if
the points ∗A(a), ∗A(b), ∗A(c) ∈ PR are collinear.

(iv) p ∈ PR and l ∈ LR are incident if and only if
∗A(p) and ∗A(l) are incident.

(v) p and ∗A(p) are incident if and only if p is on CA.
Then ∗A(p) is the tangent to p at the conic CA.

Proof. (i) is clear, since A−1A = AA−1 = E. (ii) and (iii) follow from the facts
that collinearity/concurrence can be expressed by the condition det(a, b, c) =
0 and that this condition is invariant, since det(A) �= 0 is equivalent to
det(Aa,Ab,Ac) = 0. (iv) is the equivalence of 〈p, l〉 = 0 and 〈Ap,A−1l〉 = 0.
For (v) the incidence of p and Ap states simply that pTAp = 0, which means
that p is on the conic. The property of being tangent is exactly the statement
of Theorem 9.1. ��

Polarities are in a very concrete sence a representation of the dual charac-
ter of projective geometry. They give a concrete dictionary of how to translate
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statements of projective geometry into their dual statements. For every non-
degenerate matrix A we obtain such a dictionary. For a point p we will call
l = Ap the polar of p. Likewise, p is called the pole of l.

Algebraically, multiplication by A (or A−1) is the simplest way to carry
out a polarity. However, property (v) of the previous theorem gives us another
possibility to construct a polar of a point p geometrically if we are able to
construct a tangent to a conic. This is particularly easy if the point p is
“outside” the conic (i.e., the polar of p intersects the conic in two points).
Then we simply have to draw the two tangents of p to the conic. The points
where they touch the conic are the poles of these lines. If we join these two
points, then we get the polar of the original point. Figure 9.3 on the left shows
this procedure. Algebraically, this construction is explained by the fact that if
p is a point and l and g are two lines through this point, then by Theorem 9.2
(iv) the line ∗A(p) is incident to the points ∗A(l) and ∗A(g). Since l and g
are the tangents, then by Theorem 9.2 (v) the polars are the corresponding
touching points.

We can also reverse the construction in different ways. If the line ∗A(p)
is given, we can construct its pole p by intersection of the two tangents.
Furthermore, if, for instance, in a computer geometry system a method for
calculating the polar and pole is available (multiplication by A or A−1) and if
it is possible to intersect a conic with a line, then this can be used to construct
the tangents through a point p to a conic. Simply intersect the polar of the
point with the conic and join the intersections with point p.

Figure 9.3 on the right demonstrates that concurrent lines lead to collinear
poles. This property is also the key to constructing the polar of a point
“inside” a conic. For this, one must simply draw two lines incident to the
point, construct their poles, and join them.

So far, we have used the terms “inside” and “outside” of a conic in a
kind of informal way by always drawing images of an ellipse. In fact, one can
formalize this concept by referring to the number of intersections of the conic
with the corresponding polar.

Definition 9.3. For a 3 × 3 symmetric matrix A with det(A) �= 0, a point
a is inside the conic defined by pTAp = 0 if the conic does not intersect the
polar ∗A(a). If the polar intersects the conic in two (real) points, then the
point a is outside the conic (compare Figure 9.4).

9.3 Dual Quadratic Forms

In Chapters 2 and 3 we learned that projective geometry is a dual theory.
The roles of points and lines, meets and joins, etc. are interchangeable. In
the previous section we saw how we can make the duality explicit using a



9.3 Dual Quadratic Forms 155

Fig. 9.4 Inside an ellipse and inside a hyperbola.

polarity with respect to a conic. There must also be a dual counterpart of
the concept of a conic. This will be defined in this section. Again we will deal
with the nondegenerate case first.

A conic consists of all points p that satisfy an equation pTAp = 0. The set
of all tangents to this conic can be described as {Ap | pTAp = 0}. We can
describe this set of homogeneous coordinates for lines directly as a quadratic
form by the following observation:

pTAp = pTAA−1Ap = pTATA−1Ap = (Ap)TA−1(Ap).

The right side of the equation explains how the set of tangent lines of a
conic may be directly interpreted as the zero set of a quadratic form with
matrix A−1. Thus we obtain that the set of all tangents is described by

C∗
A := {[l] ∈ LR | lTA�l = 0}.

In this expression we replaced the inverse A−1 by the adjoint A� = A−1 ·
det(A) of the matrix A, which is (for a symmetric matrix) defined by

⎛
⎝
a b d
b c e
d e f

⎞
⎠

�

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

+
∣∣∣∣
c e
e f

∣∣∣∣ −
∣∣∣∣
b e
d f

∣∣∣∣ +
∣∣∣∣
b c
d e

∣∣∣∣

−
∣∣∣∣
b d
e f

∣∣∣∣ +
∣∣∣∣
a d
d f

∣∣∣∣ −
∣∣∣∣
a b
d e

∣∣∣∣

+
∣∣∣∣
b d
c e

∣∣∣∣ −
∣∣∣∣
a d
b e

∣∣∣∣ +
∣∣∣∣
a b
b c

∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Compared to the inverse, the adjoint has the advantage that it is also com-
putable if A is not invertible, since it avoids division by the determinant.
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Fig. 9.5 Many tangents to conics.

Definition 9.4. The dual of the quadratic form pTAp is the quadratic form
lTA�l. (The p and the l indicate that the former has to be interpreted in the
world of points, while the latter has to be interpreted in the world of lines.)

Figure 9.5 gives a rough impression of how one could imagine a dual conic.
A dual conic consists of all tangents to the original conic. While a conic is a
set of points, a dual conic is a set of lines.

9.4 How Conics Transform

Before we continue studying the relationships between primal and dual conics,
we first have to analyze how the algebraic representation of a conic is affected
by a projective transformation τ : RP

2 → RP
2. Since every projective trans-

formation can be expressed as matrix multiplication, we may assume that a
point p is transformed to τ(p) = Tp with a regular 3 × 3 matrix T .

Now let A be the symmetric matrix of a primal conic represented by the
equation pTAp = 0. Any point that satisfies this equation should be incident
with the transformed conic represented by a suitable matrix τ(A). This im-
plies that the equation of the transformed conic is (T−1p)TA(T−1p). Thus τ
acts on the matrix of the primal conic according to

A �→ T−1TAT−1.

Similarly, the equation of the dual conic lTBl = 0 transfers to (T T l)TB(T T l),
and the matrix of the dual conic transforms according to

B �→ TBT T .
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To summarize: the primal matrix A is affected by left and right application
of T−1, while the dual matrix is affected by left and right application of T .

Since A (resp. B) is a symmetric matrix, it is in particular possible to
choose a suitable transformation matrix T such that τ(A) (resp. τ(B)) is
a diagonal matrix. For this, the matrix T may even be chosen to be or-
thogonal (i.e., T TT = E. The diagonal entries are the eigenvalues of A
(resp. B). By choosing T appropriately, the diagonal entries of A′ = τ(A) =
diag(α1, α2, α3) may occur in any order.

We may even apply a further transformation by a diagonal matrix S by
computing A′′ = (S−1TA′S−1) if we set

Sii :=
{√|αi| if αi �= 0,

1 if αi = 0.

Then A′′ is a diagonal matrix whose entries are in {+1,−1, 0}. As a direct
consequence we obtain the following:
Theorem 9.3. Every planar conic is projectively equivalent to a conic of the
form σ1x

2 + σ2y
2 + σ3z

2 = 0 with σi ∈ {+1,−1, 0} for i ∈ {1, 2, 3}.

9.5 Degenerate Conics

So far, we have considered mainly conics that came from invertible matri-
ces A. In this case there is a one-to-one correspondence between conics and
their duals. We will now study the degenerate case. We first study the pos-
sible cases in the world of primal conics which correspond to point sets. For
a classification we have again to study the different signatures of eigenvalues
that we met in Section 9.1:

(+,+,−), (+,+,+), , (+,−, 0) (+,+, 0), (+, 0, 0).

Theorem 9.3 tells us that these are up to projective equivalence all cases that
can arise. The first case corresponds to the class of real nondegenerate conics,
which we have studied previously. The second case is still not degenerate, but
the corresponding conic consists entirely of complex points. The last three
cases lead to situations with vanishing determinant and have to be considered
degenerate conics. Up to projective equivalence they may be represented by
the following quadratic forms:

x2 − y2 = 0, x2 + y2 = 0, x2 = 0.

The first case consists of all points (x, y, z) for which |x| = |y|. Thus up to
scalar multiple the points are of the form (1, 1, α), (1,−1, α), or (0, 0, 1). The
first and second types of these vectors describe two lines each with one point
missing, and the last vector describes the missing intersection point of the
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→ → → →

Fig. 9.6 From a hyperbola to degenerate conic, and back.

two lines. Thus the conic x2−y2 = 0 consists of two intersecting lines. In this
specific case with the usual z = 1 embedding of the Euclidean plane these
are the two lines with slope ±45◦ through the origin.

We may interpret this degenerate case by considering the limit case of a hy-
perbola with a very sharp bend as indicated in Figure 9.6. From a projective
viewpoint we can say that the case with eigenvalue signature (+,−, 0) rep-
resents the situation in which the conics have degenerated into two real lines
l and g. The corresponding quadratic form is then given by QlgT . Here lgT

is a nonsymmetric rank-one matrix. Equivalently, we may consider the sym-
metrized matrix lgT + glT .

The second case in our list corresponds to the equation x2 + y2 = 0. The
only real point satisfying this condition is (0, 0, 1). Still we get many complex
solutions (and we will list them here for later use). Treating this case similarly
to the one above, we see that the points on this conic are of the form (1, i, α),
(1,−i, α), or (0, 0, 1). The first two cases correspond to complex lines. These
lines still have a real intersection, namely the point (0, 0, 1). In summary, the
case with signature (+,+, 0) can be considered as consisting of two conjugate
complex lines together with their real point of intersection.

The last case to be considered has signature (+, 0, 0) and corresponds
to the equation x2 = 0. This implies that x = 0 and all points on the
conic are of the form (0, α, β). This is exactly the line with homogeneous
coordinates (1, 0, 0). In other words, this case consists of a real line. In fact,
it is reasonable to consider this line as having multiplicity two (a double line),
since the situation arises as a limit case when the two lines of a conic with
signature (+,−, 0) coincide. The situation is indicated in Figure 9.7.

→ → → →

Fig. 9.7 From two single lines to a double line, and back.
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→ → → →

Fig. 9.8 Tangents of a hyperbola.

9.6 Primal-Dual Pairs

What happens to tangents in the process of degeneration? Figure 9.8 shows
the situation as a kind of continuous process. A hyperbola is deformed such
that the deformation passes through a situation in which the conic degener-
ates into two real lines. The green lines in the pictures are tangents of the
conic. First note that the tangents in the first picture all are “outside” the
conic. When the conic becomes more degenerate, the tangents seem to accu-
mulate in the center of the conic. In the degenerate situation, in which the
conic consists of two lines, there are indeed many lines that have only one
intersection with the conic. They all pass through the singular point at which
the two lines meet. After the degenerate situation, the hyperbola “switches
its branches” (left/right to top/bottom). Again the tangents are outside the
hyperbola, but they now occupy a different region of the projective plane.
The degenerate situation is a kind of intermediate stage, in which tangents
in both regions are possible. Our tangency concept of Definition 9.1 did not
cover the degenerate case.

For the degenerate case of a conic consisting of two lines it is reasonable
to consider all lines through the point of intersection as tangents, including
the two lines of the conic themselves. Algebraically, this can be done quite
elegantly and explicitly, again by considering the adjoint of the corresponding
matrix.

Theorem 9.4. Let A be the symmetric 3 × 3 matrix corresponding to a de-
generate conic CA consisting of two distinct lines g and h. Then the adjoint
A� has the property that the lines passing through the intersection g × h are
exactly those that satisfy lTA�l = 0.

Proof. This theorem can be proved using the following formula, which
holds for arbitrary three-dimensional vectors g = (g1, g2, g3)T and h =
(h1, h2, h3)T :

(ghT + hgT )� = −(g × h)(g × h)T .

First observe that this formula can be proved simply by expanding the terms
on both sides of the expression and comparing the entries of the resulting
3 × 3 matrices (this is left to the patient reader).
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The left side of the equation is the adjoint of the symmetric matrix repre-
senting a degenerate conic consisting of the lines g and h. If g and h represent
distinct vectors, then g × h = p represents their point of intersection. Thus
the right side has the form −ppT . Now assume that a line l is incident to p.
Then we have lT (−ppT )l = −(lTp)(pT l) = 0. Conversely, if a line satisfies
lT (−ppT )l = 0, then we have (lT p)2 = 0. Thus l must be incident to p as
claimed in the theorem. ��

The previous theorem together with the fact that for a nondegenerate
matrix A the inverse is a multiple of the adjoint allows us to nicely combine
the description of polars for both cases. In both cases we can consider the
dual as the following set of lines:

{[l] ∈ LR | lTA�l = 0}.

In the case of a degenerate primal conic, the dual describes all points that
pass through the double point in which the two lines intersect.

So far, we have not treated the case in which the conic degenerates into
just one line (we may consider this a double line). Algebraically, this case is
characterized by the property that the symmetric matrix A has rank 1 and is
of the form A = ggT . It also corresponds to the eigenvalue signature (+, 0, 0).
In this case the adjoint is simply the zero matrix and no longer carries any
geometric information. In fact, in this case it is reasonable (and as we will
later see, highly useful) to blow up the situation and assign information by
attaching a suitable matrix to the dual.

Since the situation is a little subtle, we will approach it from several per-
spectives. First of all, we consider a deformation of a conic that passes through
the situation of a double line. For this, consider the drawing in Figure 9.9,
which has been reproduced from the brilliant book by Felix Klein Vorlesun-
gen über nicht-euklidische Geometrie (1925) [68]. There we see a sequence
of pictures. The first shows an ellipse. This ellipse is squeezed horizontally
until it becomes extremely thin. We can model this situation by consider-
ing the equation αx2 + y2 − αz2 = 0 with α moving from 0.5 to 0. In the
limit situation all tangents seem to pass through the two “endpoints” of the
squeezed ellipse. If we deform α further (from 0 to −0.5), the conic becomes
a hyperbola. Again close to the limit case all tangents seem to pass through
the two special points. In the limit case α = 0 the conic consists of just the
doubly covered x-axis. On this axis two points play a special role.

We can reinterpret this situation in terms of dual conics. What is the
dual of a conic that consists of two distinct lines and a double point where
they meet? Dualizing this description word by word, we see that the dual of
such a conic must consist of two distinct points and a double line that joins
them. This is exactly what we see in Klein’s drawing. Algebraically, the dual
conic may be represented by a single quadratic form lTBl = 0 with a rank-2
symmetric matrix B. Its dual is described by the matrix B�. The quadratic
form pTA�p = 0 describes exactly the double line through the two points.
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Fig. 9.9 Deformation via a double line (reproduction of a drawing by Felix Klein [68]).

The considerations of the last few paragraphs suggest that it is reasonable
to represent a conic by a pair of matrices, one of them representing the primal
object and the other representing the dual object. If one of them is too degen-
erate, the other may still carry geometric information. In Section 9.1 we saw
that we may classify the primal conics (up to real projective transformations)
by their eigenvalue signatures

(+,+,−), (+,+,+), , (+,−, 0) (+,+, 0), (+, 0, 0),

which geometrically correspond to real nondegenerate, complex nondegenera-
te, two distinct real lines (meeting in a real point), two distinct complex conju-
gate lines (meeting in a real point), a real double line, respectively. Similarly,
the same signatures of eigenvalues characterize the possible dual conics. We
get (for the same order of signatures) the following geometric types of dual
conics: real nondegenerate, complex nondegenerate, two distinct real points
(spanning a real line), two distinct complex conjugate points (spanning a real
line), a real double point. Now, a suitable description for primal/dual pairs of
conics must define which primal conics (described by a real matrix A) can be
combined with which dual conics (described by a matrix B). Not only must
such a description specify the possible eigenvalue signatures of such pairs. It
must as well specify the relative positions of the primal and the dual conics
(for instance, the two points of a degenerate dual conic must coincide with
the corresponding double line of the primal conic)—preferably encoded by a
simple algebraic condition.

If at least one of the matrices has a nonzero adjoint, then the situation is
clear, since the other matrix has (up to a scalar multiple) to be the adjoint of
the other. In very highly degenerate situations it may, however, also happen
that the conic degenerates into a real double line with a real double point on
it. This may happen, for instance, by the movement indicated in Figure 9.7.
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The degenerate situation corresponds to the middle picture of this sequence.
Dually, this situation may also arise if for a conic consisting of a primal double
line whose dual consists of two points these two points approach each other
and in the limit case coincide. In such a situation both matrices A and B
have rank 1, and their adjoint is the zero matrix. On the other hand, not
every combination of two rank-1 matrices may occur as a primal/dual pair
of a conic, since generically in such pairs the double line encoded by A does
not coincide with the double point encoded by B. The following table collects
all possible cases that may arise geometrically as pairs of primal and dual
conics.

A B type

(+,+,+) (+,+,+) complex nondegenerate
conic

(+,+,−) (+,+,−) real nondegenerate conic

(+,+, 0) (+, 0, 0) two complex lines and a dou-
ble real point on them

(+,−, 0) (+, 0, 0) two real lines and a double
real point on them

(+, 0, 0) (+,+, 0) two complex points and a real
double line through them

(+, 0, 0) (+,−, 0) two real points and a real
double line through them

(+, 0, 0) (+, 0, 0) a real double line and a real
double point through it

Remark 9.1. In fact, all degenerate cases indicated by the pairs in the table
(the last five cases) may occur as limit cases of nondegenerate conics. Con-
versely, all possible limit situations of nondegenerate conics correspond to a
type given in the table. We will not prove this here formally.

We will now aim for a simple algebraic characterization of the geomet-
rically meaningful pairs listed in the table. The following definition covers
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also the above-mentioned highly degenerate case, in which the primal conic
degenerates into a double line and the dual conic degenerates into a double
point on this line.2 Compared to the formula in Theorem 9.4, it is an implicit
rather than an explicit description.

Definition 9.5. A primal/dual pair of conics is given by a pair (A,B) of real
symmetric nonzero 3 × 3 matrices such that there exists a factor λ ∈ R with
AB = λE (here E is the usual unit matrix).

By looking at this definition it is not clear at all that it exactly characterizes
all possible cases. To see this, we have to do a little work. We break the
argument into a sequence of small lemmas that cover all important properties.

Lemma 9.3. Being a primal/dual pair is a projectively invariant property.

Proof. Assume that (A,B) is a primal/dual pair. Thus there is a λ with
AB = λE. Let τ be a projective transformation that transforms points by
p �→ Tp. This transformation maps the primal conic A according to A �→
T−1TAT−1. The matrix of the dual conic B is mapped according to B �→
TBT T . Applying τ to both objects in the expressionA·B, we get τ(A)·τ(B) =
T−1TAT−1TBT T = T−1TABT T = T−1TλET T = λE. ��

Lemma 9.4. If det(A) �= 0, then (A,B) is a primal/dual pair if and only if
B is a nonzero multiple of A−1.

Proof. Let det(A) �= 0. Then for every nonzero 3 × 3 matrix B, the product
AB is not the zero matrix. If (A,B) is a primal pair, then AB = λE with
λ �= 0. Hence B must be a multiple of A−1. Conversely, if B is a multiple of
A−1, then AB = λE. ��

The previous lemma tells us that at least in the nondegenerate case, the
primal/dual pairs correspond to a pair of corresponding primal and dual
conics. We now show that all other primal/dual pairs characterize exactly
those pairs of primal and dual conics that arise as limit cases of nondegenerate
situations. For the proper treatment of the nondegenerate cases we have to
be aware of the following two subtleties related to the question of real vs.
complex coordinate entries and the fact that matrices and vectors differing
by nonzero scalar multiples represent the same geometric object. We will
always assume that the matrices A and B have real entries. Still, it may
happen that, for instance, a primal matrix A decomposes into two complex
conjugate lines, since ll

T
+ llT is real. We will also have to express real rank-1

matrices A by expressions of the type A = llT . For this it may happen that
although A is real, l must be chosen to be complex. For instance, consider the

2 The concept of primal/dual pairs given in Definition 9.5 nicely generalizes to an appropri-
ate concept even in higher dimensions. The reader is invited to figure out the corresponding
theory for three-dimensional or even higher-dimensional cases by analogy.
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matrix A with the only nonzero element −1 in the upper left corner. For a
decomposition A = llT we must choose either l = (i, 0, 0)T or l = (−i, 0, 0)T .
Still, l represents a real point, since it is a scalar multiple of (1, 0, 0)T . Similar
problems may arise by decomposing a rank-two matrix with no negative
eigenvalues into a pair of real lines. Since matrices differing only by a nonzero
scalar multiple represent the same geometric object, we may easily bypass
this problem by the following general assumption, which we make from now
on whenever necessary:

Both matrices in a primal/dual pair (A,B) should have at least one
positive eigenvalue.

Since (A,B) is a primal/dual pair if and only if (−A,B) or (A,−B) is, this
assumption can be made without any loss of generality.

Lemma 9.5. If A describes a conic consisting of two distinct lines g and l
then (A,B) is a primal/dual pair if and only if B is a multiple of ppT , with
p = g × l.

Proof. If A encodes a primal conic consisting of two distinct lines l and g,
then up to a scalar multiple, the matrix A equals glT + lgT . This matrix has
rank 2, so the product with another matrix B can never be the unit matrix E.
Thus for the primal/dual pair (A,B) we have AB = 0 (here 0 denotes the
zero matrix). In this case B has rank 1, since every column of B must lie in
the (one-dimensional) kernel of A. Thus B is of the form ppT for a suitable
p ∈ C

3. We get

0 = AB =
(
glT + lgT

) (
ppT
)

= glTppT + lgTppT =
(
lT p
)
gpT +

(
gT p
)
lpT .

To derive the desired result we have to inspect the expression above. Since l
and g represent distinct lines, the matrices gpT and lpT do not differ just by
a scalar multiple. They also are nonzero, since none of the vectors p, g, l is
zero. Hence this expression can be the zero matrix only if lTp = gT p = 0.
Thus p must be incident to both l and m. Hence it is a multiple of g × l.

If, conversely,B = ppT for a point p incident to l and g, then the expression
AB = (lT p)gpT + (gT p)lpT vanishes. ��

Remark 9.2. As said before, we may assume that the point B has a single
positive eigenvalue and thus p in the above lemma can be chosen to be com-
pletely real. We also want to point out that the above argument also covers
the case that l and g have complex conjugate coordinates.

Obviously this lemma also has also a corresponding dual statement that
covers the case of a matrix B describing a dual conic consisting of two distinct
(perhaps complex conjugate) points. The dual statement of the lemma then
claims that the matrix A describes a doubly covered real line l through these
two points.
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We now analyze what the property of being a primal/dual pair tells us if
we know that the matrix A describes a conic that consists of a single (doubly
counted) line l. In this case, A is a rank-1 matrix of the form llT .

Lemma 9.6. Let A = llT describe a conic consisting of a real double line l.

(i) If (A,B) is a primal/dual pair, then B is of the form pqT + qpT , with
lT p = 0 and lT q = 0 for suitable p, q ∈ C

3. If further, B has at least one
positive eigenvalue, then p and q may be chosen either to be both real or
as complex conjugates (in particular, p and q may coincide).

(ii) If a real symmetric matrix B is of the form pqT + qpT , with lT q = 0 and
lT q = 0, then (A,B) is a primal/dual pair.

Proof. We start with statement (i). If A = llT for a line l, then A has rank 1.
Let us assume that (A,B) is a primal/dual pair. Then AB can never be the
unit matrix. Thus if (A,B) is a primal/dual pair, then we must have AB = 0.
This implies that B has at most rank 2 but is still nonzero. Hence at least
one eigenvalue of B (say λ3) is zero and at least one eigenvalue (say λ1) is
nonzero. Since B is by definition real and symmetric, it has an orthonormal
basis a1, a2, a3 of eigenvectors. Thus we have Bai = λiai and

aTi aj =
{

1 if i = j,
0 if i �= j.

(9.2)

We now consider the two points

p =
√
λ1a1 +

√−λ2a2

2
and q =

√
λ1a1 −

√−λ2a2

2
.

A simple calculation (expand and cancel) shows, that

X := pqT + qpT = λ1a1a
T
1 + λ2a2a

T
2 .

Using (9.2), we get

Xa1 = λ1a1a
T
1 a1 + λ2a2a

T
2 a1 = 1 · λ1a1 + 0 · λ2a1 = λ1a1,

Xa2 = λ1a1a
T
1 a2 + λ2a2a

T
2 a2 = 0 · λ1a1 + 1 · λ2a1 = λ2a2,

Xa3 = λ1a1a
T
1 a3 + λ2a2a

T
2 a3 = 0 · λ1a1 + 0 · λ2a1 = 0.

Thus X acts on a1, a2, a3 exactly as B does. Hence B = X = pqT + qpT .
In order to see that lTp = 0 and lT q = 0, consider the expression 0 =

AB = llt(pqT + qpT ). If p and q represent two different points, then we
are in the situation of the dual of Lemma 9.6, and lTp = lT q = 0 follows
from this statement. Otherwise, p is a multiple of q and then B = αppT

for suitable nonzero α. Then 0 = AB = αllTppT = (lT p)lpT . Since both l
and p are nonzero, this can happen only if lT p = 0. If we furthermore assume
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that without loss of generality λ1 is positive then we get the following three
possible geometric situations:

• If λ2 > 0 then p and q are complex conjugates,

• If λ2 < 0 then p and q are real and distinct,

• If λ2 = 0 then p = q is real.

To prove (ii) assume that B = pqT + qpT with lT p = lT q = 0. Expanding
AB and using lT p = lT q = 0 immediately proves AB = 0; hence (A,B) is a
primal/dual pair. ��

Summarizing the results of the previous lemmas we yields the following
theorem:

Theorem 9.5. If (A,B) is a primal/dual pair, then we have one of the ge-
ometric situations listed in the table on page 162. Conversely, if A and B
describe any of the cases in this table, then (A,B) is a primal/dual pair.

Proof. The two nondegenerate cases are covered by Lemma 9.4. The five
degenerate cases are covered by Lemma 9.5 and Lemma 9.6. ��

Remark 9.3. The reader might wonder why we have devoted such a long
section to the proper treatment of the degenerate cases of conics and the
admissible primal/dual pairs of matrices. We will see that they become of
crucial importance in Chapters 20 to 24, when we deal with different Cayley-
Klein geometries. We will see that each of the cases in our table of primal/dual
pairs leads to a different type of “metric geometry” with quite specific and
very interesting properties.
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Conics and Perspectivity

Some people have a mental horizon of radius zero and call it
their point of view.

Attributed variously to David Hilbert,
Albert Einstein and Leonhard Euler

In the previous chapter we treated conics more or less as isolated objects. We
defined points on them and lines tangent to them. Now we want to investigate
various geometric and algebraic properties of conics. In particular, we will see
how we can treat conics on the level of bracket algebra.

10.1 Conic through Five Points

We begin by calculating a conic through a given set of points. For this,
consider the quadratic equation that defines a conic:

a · x2 + b · y2 + c · z2 + d · xy + e · xz + f · yz = 0.

This equation has six parameters a, . . . , f.1 Multiplying all of them simultane-
ously by the same nonzero scalar leads to the same conic. Thus the parameter
vector (a, . . . , f) behaves like a vector of homogeneous coordinates. Counting
degrees of freedom shows that in general it will take five points to uniquely
determine a conic. To find the parameters for a conic through five points
pi = (xi, yi, zi), i = 1, . . . , 5, we simply have to solve the following linear
system of equations:

1 Compared to Section 9.1 we have relabeled the parameters and put the factor 2 of the
mixed terms into the parameters.

167
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⎛
⎜⎜⎜⎜⎝

x2
1 y

2
1 z

2
1 x1y1 x1z1 y1z1

x2
2 y

2
2 z

2
2 x2y2 x2z2 y2z2

x2
3 y

2
3 z

2
3 x3y3 x3z3 y3z3

x2
4 y

2
4 z

2
4 x4y4 x4z4 y4z4

x2
5 y

2
5 z

2
5 x5y5 x5z5 y5z5

⎞
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·

⎛
⎜⎜⎜⎜⎜⎜⎝

a
b
c
d
e
f

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎟⎠
.

If this system has a full rank of 5, then there is a (up to scalar multiple)
unique solution (a, . . . , f) that defines the corresponding conic. If more than
three points are simultaneously collinear or if two points coincide, the rank
of the system may be lower than 5. This corresponds to the situation that
there is more than one conic passing through the given set of points. This
method of determining the parameter vector (a, . . . , f) is mathematically
elegant. However it is computationally expensive. We first have to calculate
the squared parameters and then have to solve a 5 × 6 system of equations.

There is also another way to calculate such a conic more or less directly.
This way will also give us additional structural insight into the geometry and
underlying algebra of a conic. In preparation we have to understand how to
calculate a degenerate conic that consists of two lines with homogeneous coor-
dinates g and h. A degenerate conic must be represented by a quadratic form
pTAp = 0 that vanishes if p is on either of the lines. The (nonsymmetrized)
matrix of such a quadratic form is simply given by

A = ghT .

This can be easily seen, since the quadratic form

pTAp = pT (ghT )p = (pT g)(hT p) = 〈p, g〉〈p, h〉

vanishes if one of the two scalar products on right side vanishes. This in turn
corresponds geometrically to the situation in which p is on g or on h.

Assume that the line g is spanned by two points labeled 1 and 2 and that
line h is spanned by two points labeled 3 and 4. Then we have g = 1× 2 and
h = 3 × 4. The quadratic form becomes

〈p, 1 × 2〉〈p, 3 × 4〉 = 0.

We may as well express this term as the product of two determinants

[p, 1, 2][p, 3, 4] = 0.

Each factor describes a linear condition on the point p. The product calculates
the conjunction between the two expressions.

Now assume that we want to describe the set of conics that pass through for
points 1, . . . , 4 in general position. Clearly, there are many conics that satisfy
this condition. The corresponding system of linear equations consists of four
equations in six variables. Hence the solution space will be two-dimensional.
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1
3

2 4

Fig. 10.1 Bundle of conics through four points. Three degenerate special cases.

One of these two degrees of freedom goes into the homogeneity of the conic
parameters. Therefore we have a bundle of geometric solutions with one de-
gree of freedom. Figure 10.1 (left) illustrates such a bundle of conics. Among
these conics there are three degenerate conics, each of them equal to a pair of
lines spanned by the four points. In Figure 10.1 (right) these pairs of lines are
marked by identical colors. They correspond to the following three quadratic
forms:

[p, 1, 2][p, 3, 4] = 0, [p, 1, 3][p, 2, 4] = 0, [p, 1, 4][p, 2, 3] = 0.

A linear combination of two of these forms (say the last two)

λ[p, 1, 3][p, 2, 4] + μ[p, 1, 4][p, 2, 3] = 0

again generates a quadratic form. The set of points p satisfying this equation
again forms a conic. This conic passes through all four points 1, . . . , 4, since
both summands vanish on these points. If λ and μ run through all possible

1

3

2

4

q

Fig. 10.2 Constructing a conic through five points.
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values we obtain all the conics in the bundle through the four points. Applying
the technique of Plücker’s μ (compare Section 6.3), we can adjust these values
such that the resulting conic passes through another given point q. For this
we simply have to choose

λ = [q, 1, 4][q, 2, 3]; μ = −[q, 1, 3][q, 2, 4].

The resulting conic equation can be written as

[q, 1, 4][q, 2, 3][p, 1, 3][p, 2, 4]− [q, 1, 3][q, 2, 4][p, 1, 4][p, 2, 3] = 0.

Observe that this equation is a multihomogeneous bracket polynomial that is
quadratic in each of the six involved points. Figure 10.2 illustrates the situa-
tion. We can also interpret it as a bracket condition encoding the (projectively
invariant) property that six points 1, . . . , 4, p, q are on a conic (compare Sec-
tion 6.4 and Section 7.3). We will return to this interpretation in the next
section.

But first we will give the procedure for calculating the symmetric matrix
for the conic through the five points 1, 2, 3, 4, q. We give it as a kind of simple
computer program:

1: g1 := 1 × 3;

2: g2 := 2 × 4;

3: h1 := 1 × 4;

4: h2 := 2 × 3;

5: G := g1g
T
2 ;

6: H := h1h
T
2 ;

7: M := qTHqG− qTGqH ;

8: A := M +MT .

The matrix A assigned in the last line of the program contains the sym-
metrized matrix.

10.2 Conics and Cross-Ratios

Let us return to the equation

[q, 1, 4][q, 2, 3][p, 1, 3][p, 2, 4]− [q, 1, 3][q, 2, 4][p, 1, 4][p, 2, 3] = 0, (∗)

which characterizes whether six points are on a conic. First observe that this
equation is highly symmetric. For each bracket in one term, its complement
(the bracket consisting of the other three letters) is in the other term. The
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1

2 3
4

q

p

Fig. 10.3 Four points on a conic seen from two other points of a conic.

symmetry becomes a bit more transparent if we rewrite the equation with
new point labels:

[A,B,C][A, Y, Z][X,B,Z][X,Y,C] − [A,B,Z][A, Y,C][X,B,C][X,Y, Z] = 0.

There is another important observation that we can make by rewriting
equation (∗). We assume that the conic is nondegenerate and that none of
the determinants vanishes. In this case we can rewrite (∗) in the form

[q, 1, 3][q, 2, 4]
[q, 1, 4][q, 2, 3]

=
[p, 1, 3][p, 2, 4]
[p, 1, 4][p, 2, 3]

.

Both sides of the equation represent cross-ratios. The right side is the cross-
ratio of the lines p1, p2, p3, p4; the left side of the equation is the cross-ratio
of the lines q1, q2, q3, q4. We abbreviate

(1, 2; 3, 4)q :=
[q, 1, 3][q, 2, 4]
[q, 1, 4][q, 2, 3]

.

This is the cross-ratio of 1, 2, 3, 4 as “seen from” point q. Thus equation (∗)
may be restated as

(1, 2; 3, 4)q = (1, 2; 3, 4)p.

Point p and point q see the points 1, 2, 3, 4 under the same cross-ratio. The
situation is shown in Figure 10.3. We summarize this in a theorem:

Theorem 10.1. Let 1, 2, 3, 4, p be five points on a conic such that p is distinct
from the other four points. Then the cross-ratio (1, 2; 3, 4)p is independent of
the special choice of p.
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We will later on see that this theorem is very closely related to the exterior
angle theorem for circles, which states that in a circle a fixed secant is seen
from an arbitrary point on the circle under the same angle (modulo π).

The previous theorem enables us to speak of the cross-ratio of four points
on a fixed conic as long as no more than two of the points (1, 2, 3, 4) coincide
and we can speak of a cross-ratio at all. For this we simply choose an arbi-
trary point p that does not coincide with 1, 2, 3, 4 and take the cross-ratio
(1, 2; 3, 4)p.

The theorem is useful under many aspects. In particular, it is useful to
parameterize classes of objects. We will investigate two of these applications.
First assume that the points 1, 2, 3, 4 are fixed. The previous theorem states
that for a fixed conic C, the value of (1, 2; 3, 4)p is independent of the choice
of p. Thus it can be considered as a characteristic number that singles out
the specific conic C from all other conics through the four points. Thus we
can take this number as a kind of coordinate for the conic within the one-
dimensional bundle of conics through 1, 2, 3, 4. In fact, if we do so the three
special degenerate conics in this bundle (compare Figure 10.1) correspond to
the values 0, 1, and ∞.

In the second application we fix the conic itself as well as the position
of the points 1, 2, 3. The point p may be an arbitrary point on the conic
whose exact position is not relevant for the calculations as long as it does
not coincide with the other points. If point 4 takes all possible positions on
the conic, then the value of (1, 2; 3, 4)p takes all possible values of R ∪ {∞},
since the line p, 4 takes all possible positions through p. Thus we can use the
cross-ratio (1, 2; 3, 4)p to characterize the position of 4 with respect to 1, 2, 3
on the conic. The three special values 0, 1, and ∞ are assumed when 4 is
identical to 1, 3, 2, respectively. In this setup we may consider the conic itself
as a model of the real projective line. The three points 1, 2, 3 above play the
role of a projective basis on this line with respect to which we measure the
cross-ratio. In this model it is obvious that the topological structure of the
real projective line is a circle.

10.3 Perspective Generation of Conics

The considerations of the last section can be reversed in order to create conics
by perspective bundles of lines. For this we consider the points p and q as
centers of two bundles of lines that are projectively related to each other.
Forming the intersections of corresponding lines from each bundle creates a
locus of points that all have to lie on a single conic.

To formalize this fact (in particular to deal with the special cases) we have
to refine our notion of projective transformations slightly.
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Fig. 10.4 A line perspectivity and a point perspectivity.

Definition 10.1. Let l1 and l2 be two distinct lines in LR and o ∈ PR

not incident to l1 or l2. Furthermore, let Pl1 and Pl2 be the sets of points
on the two lines, respectively. The map τ : Pl1 → Pl2 defined by τ(p) =
meet(l2, join(o, p)) is called a (point) perspectivity.

We furthermore use the term projective transformation from Pl1 to Pl2 in
the following sense. We represent the points on Pli , i = 1, 2, by suitable linear
combinations αiai + βibi. If τ : Pl1 → Pl2 can be expressed as

τ

((
α1

β1

))
=
(
a b
c d

)(
α1

β1

)
=
(
α2

β2

)
,

then we call τ a projective transformation. Theorem 5.1 established that
harmonic maps are projective transformations. In Lemma 4.3 we proved that
perspectivities are particular projective transformations. Dually, we can also
speak about perspectivities of bundles of lines.

Definition 10.2. Let p1 and p2 be two distinct points in PR and o ∈ LR

not incident to p1 or p2. Furthermore, let Lp1 and Lp2 be the sets of lines
through the two points, respectively. The map τ : Lp1 → Lp2 defined by
τ(l) = join(p2,meet(o, l)) is called a (line) perspectivity.

Figure 10.4 shows images for both types of perspectivities. We will also
consider projective transformations τ : Lp1 → Lp2 in the corresponding dual
sense to point transformations. Again, line perspectivities are special projec-
tive transformations. Now we will use Theorem 10.1 to prove the following
fact.

Theorem 10.2. Let p and q be two distinct points in RP
2. Let Lp and Lq be

the sets of all lines that pass through p and q, respectively . Let τ : Lp → Lq
be a projective transformation that is not a perspectivity. Then the points
meet(l, τ(l)) are all points of a certain conic C.
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Fig. 10.5 Generation of a conic by projective bundles.

Proof. Let l1, l2, l3, l4 be four arbitrary lines from Lp not through q. Con-
sider the points ai = meet(li, τ(li)), i = 1, . . . , 4. Since the two bundles of
lines were related by a projective transformation, the cross-ratio (l1, l2; l3, l4)
equals the cross-ratio (τ(l1), τ(l2); τ(l3), τ(l4)). This relation can be written
as (a1, a2; a3, a4)p = (a1, a2; a3, a4)q. Hence the six points a1, a2, a3, a4, p, q
lie on a conic. Since τ is not a perspectivity, the points a1, a2, a3 cannot
be collinear. (Assume, to the contrary, that they lie on a line �. Then the
image of an arbitrary fourth line l4 must satisfy the relation (l1, l2; l3, l4) =
(τ(l1), τ(l2); τ(l3), τ(l4)). Hence the intersections of l4 with � and τ(l4) with �
must coincide. This means that τ is a perspectivity.) Thus the conic C
uniquely defined by p, q, a1, a2, a3 is nondegenerate. Since l4 was chosen to
be arbitrary, all other intersections a = meet(l, τ(l)) must lie on C as well.
Conversely, for any point a on C{p, q} there is a line l that joins p and a. The
intersection of l and τ(l) must be on the conic. Thus this intersection must
be point a. ��

The previous theorem gives us a nice procedure to explicitly generate a
conic as a locus of points. The conic is determined by two points p and q
and a projective transformation between the line bundles through these two
points. For generation of the conic we take a free line from the bundle Lp
and let it sweep through the bundle. All intersections of l and τ(l) form the
points of the conic. Dually, if we have two lines l1 and l2 whose point sets are
connected by a projective transformation τ , we can consider a point p freely
movable on l1. The lines join(p, τ(p)) form the set of tangents to a particular
conic.

Figure 10.5 shows two particularly simple (but still interesting) examples
of this generation principle. On the right, two bundles of lines are shown,
where the second one simply arises from shifting and rotating the first one
(this is a particularly simple projective transformation). The resulting conic
that comes from intersecting corresponding lines is a circle. This result could



10.4 Transformations and Conics 175

also be derived elementarily using the exterior angle theorem for circles. We
will see later on that this theorem is highly related to our conic constructions.
The second example shows two sets of equidistant points on two different lines
(they are again related by a projective transformation). Joining corresponding
points yields the envelope of a conic. One should compare these two pictures
with Figure 10.4, in which pairs of objects are shown that are related by a
perspectivity. This case is the degenerate limit case of the above construction.

Remark 10.1. The construction underlying Theorem 10.2 also demonstrates
that the set of points on a nondegenerate conic can be polynomially param-
eterized (in homogeneous coordinates). For this consider two points p, q on
the conic and the two corresponding bundles of lines together with the cor-
responding projective transformation τ . We introduce a projective basis on
each of the two bundles together with a suitable homogeneous coordinatiza-
tion (say we represent lines from the first bundle by λpl1 + μpl2 and points
from the second bundle by λqm1 + μqm2). The projective transformation τ

can be written as
(
λq

μq

)
=
(
a b
c d

)(
λp

μp

)
for a suitable matrix

(
a b
c d

)
. Thus the

points on the conic have homogeneous coordinates

(tl1 + (1 − t)l2) × ((at+ b(t− 1))m1 + (ct+ d(t− 1))m2).

Here t is a parameter that runs through all elements of R from −∞ to +∞.
By this we get all points of the conic except for the one corresponding to
t = ∞. The above formula is simply a polynomial function.

A similar statement is no longer true for curves of higher degree. In general,
they cannot be parameterized by rational or even polynomial functions.

10.4 Transformations and Conics

Let us turn to the interesting task of studying all projective transformations
that leave a given fixed conic C invariant. Such a transformation must map
points on C to points on C. We here discuss the nondegenerate case only
and postpone the degenerate case to later chapters. The key to the classifi-
cation of such transformations is Theorem 10.1, which allows us to identify
the points on a conic with the points on a projective line and to associate a
cross-ratio to quadruples of such points. Our aim is to prove that a projective
transformation τ : RP

2 → RP
2 that leaves C invariant induces a projective

transformation on C (considered as a projective line). For the following con-
siderations we fix a nondegenerate conic C and identify it with the projective
line. As indicated in Section 10.2, we will speak of the cross-ratio (1, 2; 3, 4)C
of four points on C, which is (1, 2; 3, 4)p for a suitably nondegenerate choice
of p.
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Theorem 10.3. Let τ : RP
2 → RP

2 be a projective transformation that leaves
C invariant. Then the restriction of τ to C is a projective transformation on C.
Proof. Let 0, 1, and ∞ be three distinct points on C. The position of an
arbitrary point x on C is uniquely determined by the value of the cross-ratio
(0,∞;x,1)C . Let τ : RP

2 → RP
2 be a projective transformation that leaves C

invariant. We will prove that the position of τ(x) is already defined by the
positions of τ(0), τ(1), and τ(∞) and that we have in particular

(0,∞;x,1)C = (τ(0), τ(∞); τ(x), τ(1))C .

For this let p on C be chosen such that p does not coincide with the point 0,
1, ∞, or x. Then τ(p) will automatically not coincide with τ(0), τ(1), τ(∞),
or τ(x). Since τ is a projective transformation, we have

(0,∞;x,1)p = (τ(0), τ(∞); τ(x), τ(1))τ(p) .

The special choice of the position of p guarantees that the cross-ratios are
well defined. Now p as well as τ(p) are on C. The other four image points are
also on C. Thus the above two cross-ratios are the cross-ratios (0,∞;x,1)C
on C and (τ(0), τ(∞); τ(x), τ(1))C on C. Thus these two cross-ratios must
be equal, as claimed. This implies that the restriction of τ to C must be a
projective transformation. ��

The proof of the last theorem was algebraically simple but conceptually in-
teresting. It relates a projective transformation on RP

2 that leaves C invariant
to its action on C itself. With our concept of C representing the projective line,
we see that in this world τ induces nothing but a one-dimensional projective
transformation. In the theorem it was crucial that the value of the cross-ratio
of four points seen from a fifth point p is independent of the choice of p. This
allowed us to relate the image seen from p to the image seen from τ(p).

We can also do the opposite: define a projective transformation that
leaves C invariant by explicitly giving the images of four suitably chosen
points on C.

Theorem 10.4. Let a, b, c, d, and a′, b′, c′, d′ be two quadruples of distinct
points on a nondegenerate conic C such that (a, b; c, d)C = (a′, b′; c′, d′)C. Then
there exists a unique projective transformation τ : RP

2 → RP
2 with τ(a) = a′,

τ(b) = b′, τ(c) = c′, τ(d) = d′ that furthermore leaves C invariant.

Proof. The transformation τ is uniquely determined by the preimage points
a, b, c, d and the image points a′, b′, c′, d′. Thus we have only to show that τ
indeed leaves C invariant. Since a nondegenerate conic is uniquely determined
by five points on it it; suffices to prove that there exists one more point p on C
whose image τ(p) is also on C. For this, let p be an arbitrary point distinct
from the points a, b, c, d. Thus we have



10.4 Transformations and Conics 177
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τ(a)

τ(b)

τ(c)

τ(d)

Fig. 10.6 A transformation that leaves a conic invariant.

(a′, b′; c′, d′)C = (a, b; c, d)C = (a, b; c, d)p

= (τ(a), τ(b); τ(c), τ(d))τ(p) = (a′, b′; c′, d′)τ(p).

The third equation holds since τ is a projective transformation. The fact
that (a′, b′; c′, d′)C = (a′, b′; c′, d′)τ(p) shows that τ(p) also must lie on the
conic C. ��

Figure 10.6 shows a circle before and after a projective transformation that
leaves the circle invariant. The transformation τ : RP

2 → RP
2 is determined

by the image of the four red points. The position of the four image points
cannot be chosen arbitrarily. They must have the same cross-ratio with re-
spect to the circle as the four preimage points. In the situation shown in the
picture the four points are in harmonic position with respect to the circle.
The white points in the preimage circle (left) map to the white points in the
image circle (right). The lines and the central point indicate how the interior
of the circle is distorted by τ .

We can also make the relation of C to the projective line RP
1 more explicit

and relate the points of C to the line bundle Lp of lines through a point p ∈ C.
Such a line bundle considered as a set of lines is by duality a representation
of the projective line. We can explicitly relate every point on C to a line in
Lp: Each line is associated to its intersection with C different from p. There is
one line in the bundle that has to be treated separately. The tangent through
p is associated to p itself. (This reflects the limit situation as the point on C
approaches p.) We can express this relation by a bijective map φp : C → Lp
from C to the bundle of lines through p. Now the previous theorem states
that the projective transformation τ induces a projective transformation τp :
Lp → Lp in this line bundle via

τp(l) := φp(τ(φ−1
p (l))).
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Fig. 10.7 Projection of a conic onto RP
1.

The reader is invited to convince himself that the limit case of the tangent
through p fits seamlessly into this picture.

Figure 10.7 illustrates the relation of the points on the conic to the line
bundle. In addition to the line bundle, the picture also shows an additional
line � that is intersected with every line of the bundle. So the points on the
conic are also in one-to-one correspondence to the points on �. The picture
exemplifies also how this relation of points on the conic to points on the
line is closely related to the classical stereographic projection, a relation that
will become much more important later. It is remarkable how important it
is that the point p is really placed on the conic. If it were inside the conic
we would get a two-to-one relation between points on the conic and lines
in the bundle Lp. If the point p were outside the conic, not all lines of the
bundle would intersect the conic at all. An intersection of a line and a conic
corresponds to solving a quadratic equation. The fact that we consider a
bundle at a point on the conic implies that we already know one of the two
solutions of this quadratic equation. Thus solving the quadratic equation in
principle can be reduced to a linear problem by factoring out the already
known solution. The linearity is the deeper reason why there is a one-to-one
correspondence between C and the lines in the bundle.

Let us close this section with a remark on the group structure of the
set of those transformations that leave C invariant. Theorem 10.3 can be
interpreted in the following way: The group of all projective transformations
that leaves a nondegenerate conic invariant is isomorphic to the group of
projective transformations of RP

1.
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10.5 Hesse’s “Übertragungsprinzip”

The last sections have made it clear that we can identify a nondegenerate
conic with a projective line. In this section we will go one step further. We
will demonstrate a way how one can interpret arbitrary lines and points
of RP

2 as suitable objects on the projective line. This allows us to represent
statements in the two-dimensional world of RP

2 by corresponding statements
of certain objects on the projective line. The idea of this translation goes back
to an article by Otto Hesse from 1866 [57]. Hesse was mainly interested in
questions of invariant theory and studied several ways to linearize objects of
higher degree. In his works around 1866 he was interested in generalizing the
concept of duality. Duality allows us to derive for every theorem of projective
geometry a corresponding dual theorem just by applying a dictionary that
translates “point” by “line,” “line” by “point,” “intersection” by “meet,” and
so forth. In the same spirit Hesse formulated a principle that allowed him
to derive a one-dimensional theorem from any two-dimensional theorem of
projective geometry. He gave his principle the name “Übertragungsprinzip.”
A reasonable translation of this term could be “transfer principle.”

His work had far-reaching consequences. It was used by Klein in his famous
Erlanger Programm [65] to demonstrate the concept of equivalent geometries.
It inspired further work and many interesting generalizations. Some of these
generalizations had an important impact on the classification of Lie algebras
and even on quantum theory. For a more elaborate treatment of this fascinat-
ing topic see [56]. In this book we will use the transfer principle for deriving
elegant bracket expressions for geometric configurations involving conics and
lines.

In his original work Hesse related points in RP
2 to solutions of one-

dimensional quadratic forms. We will take a slightly more visual approach
that allows us to represent the solutions of the quadratic forms directly as
intersections of a conic with a line. As before, we consider a nondegenerate
conic C as an image of a projective line. Now to a line l in RP

2 we associate
its two points of intersection with C. A word of caution is necessary. First of
all, not all lines will have two intersections with C. This corresponds to the
situation that Hesse studied, solutions of arbitrary quadratic forms with real
coefficients. There may be two real solutions, two complex solutions (which
are conjugates), or one (double) real solution. The three cases correspond
to the situations in which the line intersects in two, in no, or in one point,
respectively. To state Hesse’s ideas in full generality we have also to deal with
the complex solutions. This will be our first careful investigation of complex
situations in projective geometry. Thus to treat Hesse’s transfer principle
properly, we must talk about CP

1 instead of RP
1. However, the only objects

we have to consider are pairs of points (p, q) that are either both real or
complex conjugates (p = q) or coincide (p = q). Figure 10.8 illustrates the
three cases. For the following considerations one may either consider these
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p1

p2

p

l1

H(l1) = (p1,p2)

l2

H(l1) = (p,p)

l3

H(l1) = (q,q)

Fig. 10.8 Hesse’s transfer principle for lines. Each line is associated to a pair of points.
In case the line does not intersect the conic, the points are complex and conjugates.

complex elements (all algebraic considerations work straightforwardly) or as-
sume (for convenience) that the conic is large enough such that all lines under
consideration intersect it in at least one point.

A line l that intersects the conic C in two (real or complex) points p1 and p2

is represented by the pair HC(l) := (p1, p2). If l is tangent to the conic at
point p, we represent it by the pair HC(l) := (p, p). In all our considerations
related to Hesse’s transfer principle the order of the points within such a pair
will be irrelevant. Nevertheless, it is important to speak of pairs rather than
sets to cover also the situation of a double point (p, p).

If lines are represented by pairs of points, what is the corresponding rep-
resentation of a point of RP

2? In Hesse’s transfer principle points would
be represented by projective transformations on the projective line that are
furthermore involutions (i.e., τ2 = Id). Such a transformation is derived in
the following way. For a point p not on C we take two arbitrary distinct
lines l and m through p that intersect C and consider the pairs of points
HC(l) = (a1, a2) and HC(m) = (b1, b2). These four points are distinct, and
since they lie on a nondegenerate conic, no three of them are collinear. Thus
there is a unique projective transformation τ : RP

2 → RP
2 that simultane-

ously interchanges a1 with a2 and b1 with b2. In particular, this transfor-
mation leaves l, m, and p invariant. Furthermore, we have (by Theorem 4.2)
(a1, a2; b1, b2)C = (a2, a1; b2, b1)C . This in turn implies by Theorem 10.3 that τ
leaves the conic C invariant. Such a projective transformation induces by The-
orem 10.2 a corresponding transformation τp on C considered as RP

1. This is
the object to which p is translated. The crucial fact in the definition of τp is
that it depends only on the choice of p but is independent of the particular
choice of l and m. We will not follow this line of thought here.
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The reason for this is that we want to bypass a certain technical problem
related to expressing a point p by a projective transformation τp. If the point p
is on the conic C, then the above construction does not lead to a proper
projective transformation, since a1 and b1 (or b2) become identical. Instead
of introducing a concrete object that represents a point, we will characterize
concurrence of lines k, l, m directly by a relation between the corresponding
point pairs HC(k), HC(l),and HC(m). This characterization also covers the
degenerate cases in which the coincident point lies on C.

Theorem 10.5. Let C be a conic and let k, l, m be lines in RP
2. To exclude

the complex case we assume that they intersect or touch the conic. If k, l, m
are concurrent, then (HC(k);HC(l);HC(m)) form a quadrilateral set.

We will prove this theorem by restriction to a remarkable special case by
a suitable projective transformation. This special case was communicated by
Yuri Matiyasevich (private communication), who discovered this remarkable
configuration as a high-school student. Matiyasevich’s configuration is a kind
of geometric gadget for performing multiplications. He used this gadget to
give a geometric construction for the prime numbers. We formulate it in the
real Euclidean plane:

Lemma 10.1. Let x and y be two real numbers. The join of the points
(−x, x2) and (y, y2) crosses the y-axis at the point (0, x · y).
Proof. We can prove this by direct calculation when we show that the three
points are collinear.

det

⎛
⎝
−x y 0
x2 y2 xy
1 1 1

⎞
⎠ = −x · y2 + y · xy − (−x) · xy − y · x2 = 0.

��
Figure 10.9 gives an impression of how the parabola-multiplication device

works. For our purposes we must also cover the degenerate case y = −x.
Then the join becomes a tangent and we obtain the following:

Lemma 10.2. Let x be a real number. Then the tangent at (−x, x2) to the
parabola y = x2 crosses the y-axis at the point (0,−x2).

Proof. This can also easily be checked by direct calculation. The tangent has
slope −2x; hence the tangent has equation f(t) = a − 2xt. Resolving for a
gives x2 = a− 2x(−x). Thus a must be −x2. ��

Now, what has Matiyasevich’s gadget to do with Hesse’s transfer principle?
The parabola plays the role of the conic. The points on the conic are vertically
projected onto the x-axis. Thus the x-axis is the representation of RP

1 that
is isomorphic to the points on the conic (the unique infinite point of the
parabola corresponds to the point at infinity of the x-axis). The line shown
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Fig. 10.9 Multiplication of two real numbers using a parabola.

in Figure 10.9 intersects the conic in two points (the green and the blue ones).
They are associated to their x-value by the projection. Thus the green and
blue points on the x-axis correspond to the Hesse pair that represents the
line. Now we are ready to prove Theorem 10.5 (which is essentially Hesse’s
transfer principle) as a simple application of Matiyasevich’s construction.

Proof of Theorem 10.5: Since three tangents of a conic C never intersect in
one point, at least one of the lines must meet the conic in two points. After
a suitable projective transformation we may assume that the conic p is the
parabola y = x2 (in Euclidean coordinates) and that one of the lines (say k)
is the y-axis. We identify the x-axis together with its point at infinity ∞ with
the RP

1 associated to the conic. The corresponding mapping goes via vertical
projection. Thus k is mapped to HC(k) = (0,∞). Now assume that the other
two lines l and m intersect the y-axis at the same point as required by the
theorem. Let the corresponding point pairs on the x-axis be HC(l) = (lx, ly)
and HC(m) = (mx,my). Since the two lines in the theorem intersect the y-axis
in the same point, we can consider them as two instances of Matiyasevich’s
construction, and we get

(−lx) · (ly) = (−mx) · (my).

This expression can be used to prove the corresponding quadset relation. For
this we introduce homogeneous coordinates

(
lx
1

)
,

(
ly
1

)
,

(
mx

1

)
,

(
my

1

)
,

(
0
1

)
,

(
1
0

)
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Fig. 10.10 Hesse’s transfer principle as an incidence theorem.

and calculate the characteristic quadset equation of Section 8.2. For the six
points (lx, ly;mx,my; 0,∞) being a quadset we must show that

[lx,∞][mx, ly][0,my] = [lx,my][mx,∞][0, ly].

This expands to
∣∣∣∣
lx 1
1 0

∣∣∣∣
∣∣∣∣
mx ly
1 1

∣∣∣∣
∣∣∣∣
0 my

1 1

∣∣∣∣ =
∣∣∣∣
lx my

1 1

∣∣∣∣
∣∣∣∣
mx 1
1 0

∣∣∣∣
∣∣∣∣
0 ly
1 1

∣∣∣∣.

Expanding the determinants yields

(−1)(mx − ly)(−my) = (lx −my)(−1)(−ly),

which reduces to
−mxmy + lymy = −lxly +myly.

Subtracting lymy on both sides leaves us exactly with the identity proven by
Matiyasevich’s equation. ��

With Theorem 10.5 we have reduced the essence of Hesse’s transfer princi-
ple to an incidence theorem in the projective plane. Lines are represented by
pairs of points. Three lines intersect if the corresponding three pairs of points
form a quadrilateral set. Figure 10.10 summarizes the essence of Hesse’s trans-
fer principle as an incidence theorem. The green lines are the three lines that
intersect. The six points of intersection seen from one point on the boundary
of the conic generate a line bundle that must form a quadrilateral set. The
red part of the figure witnesses the quadset relation by the construction given
in Figure 8.2.
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Fig. 10.11 Pascal’s theorem.

10.6 Pascal’s and Brianchon’s Theorems

No exposition on conics would be complete without a treatment of Pascal’s
theorem. This theorem was discovered in 1640 by the famous Blaise Pascal
and can be considered as a generalization of Pappos’s theorem. Figure 10.11
shows an instance of this theorem.

Theorem 10.6 (Pascal’s theorem). If 1, . . . , 6 are six points on a conic,
then the three intersections of opposite sides of the hexagon (1, 2, 3, 4, 5, 6)
are collinear.

Proof. We already presented proofs of this theorem in Chapter 1. However,
this time we want to add another proof, which is a simple application of
Hesse’s transfer principle. We may assume that the three intersection points
are distinct, since otherwise they are trivially collinear. For the labeling re-
fer to Figure 10.11. In order to apply the transfer principle we will simply
express the three inner intersections of Pascal’s theorem as quadrilateral set
conditions. Since the six points 1, . . . , 6 all lie on the conic, we can identify
them (applying the transfer principle) with points in RP

1. We will also need
two more points on the conic, namely its intersections X and Y with the
central conclusion line (red). Also they are considered as points in RP

1. Now,
the fact that 12, 45, XY , meet in a point is equivalent to the condition that
(1, 2; 4, 5;X,Y ) forms a quadrilateral set. This corresponds to the algebraic
condition

[1Y ][52][X4] = [14][5Y ][X2].

Similarly, the fact that 34, 16, XY meet in a point can be encoded by the
equation

[3Y ][14][X6] = [36][1Y ][X4].
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Fig. 10.12 Brianchon’s theorem

Multiplying both left and right sides and canceling brackets that appear on
both sides (the distinctness of the intersection points implies that they are
nonzero) leaves us with

[52][3Y ][X6] = [5Y ][36][X2],

which implies that 32, 56, and XY meet in a point and thus proves the
theorem. ��

For reasons of completeness (and for later use) we also mention the dual
of Pascal’s theorem. It is named after Charles Julien Brianchon and was
discovered in 1804 (more than 150 years after Pascal’s theorem!).

Theorem 10.7 (Brianchon’s theorem). Let 1, . . . , 6 be six tangents to
a conic (considered as the sides of a hexagon). Then the joins of opposite
hexagon vertices meet in a point (see Figure 10.12).

Pascal’s theorem also holds in limit cases in which up to three consecutive
points of the hexagon (1, . . . , 6) coincide. The join of two such consecutive
points then becomes a tangent to the conic. We refer the reader to Section 1.4
for examples of such limit situations.

10.7 Harmonic points on a conic

As a (for now) final application of Hesse’s transfer principle we want to show
that it is extremely simple to construct a harmonic point on a nondegenerate
conic. For this we again identify the conic C with the projective line. If three
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Fig. 10.13 Construction of a harmonic quadruple (a, b; c, d) = −1.

points a, b, c on C are given, we want to construct a fourth point d such
that (a, b; c, d)C = −1. The construction is shown in Figure 10.13 and just
consists of two tangents at a and b and a join of their intersection to c. By
Hesse’s transfer principle applied to this situation we get that (a, a; b, b; c, d)
is a quadrilateral set (the tangents correspond to the double points (a, a) and
(b, b)). This means that

[ab][bd][ca] = [ad][ba][cb].

Dividing one term by the other and canceling the bracket [a, b] gives

[bd][ca]
[ad][cb]

= −1,

which is after a slight reordering of the letters easily recognized as the con-
dition for (a, b; c, d) to be harmonic. The reasoning also works in the other
direction. Thus we have just proved the following theorem:

Theorem 10.8. Let a, b, c, d be four points on a conic C. Then the cross-ratio
(a, b; c, d)C equals −1 if and only if the tangents through a and b to C meet
on the line join(c, d).

It is an amazing fact that the construction of a harmonic point on a conic
turns out to be even simpler than the corresponding task on a line. This
reflects on the one hand the fundamental importance of conics and on the
other hand the fact that conics are closely related to involutions, and invo-
lutions are closely related to harmonic sets. In particular, if we fix a and b
and consider the construction of point d as a function τ : RP

1 → RP
1 with
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τ(c) = d, then this map τ turns out to be a projective involution with fixed
points a and b.
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Calculating with Conics

We [Kaplansky and Halmos] share a love of linear algebra. I
think it is our conviction that we’ll never understand infinite-
dimensional operators until we have a decent mastery of finite
matrices. And we share a philosophy about linear algebra: we
think basis-free, we write basis-free, but when the chips are
down we close the office door and compute with matrices like
fury.

Irving Kaplansky
in Paul Halmos: Celebrating 50 Years of Mathematics

A major part of classical elementary geometry was concerned with the
question of which constructions can be carried out with a straightedge and
compass. The decisive primitive operations here are connecting two points by
a line, drawing a circle with a radius given by two other points, and marking
intersections of objects as new points. In our projective framework we do not
have circles, but still can consider elementary constructions with the objects
we have studied so far (points, lines, and conics). Since we are interested
in particular in calculating with geometric objects, we in particular want to
know how we can compute the results of geometric primitive operations if the
parameters of the involved objects are given. So far, we can roughly associate
the classical straightedge/compass operations with our projective operations
in the following way:

• connecting two points by a line corresponds to the join operation and
can be carried out by a cross product,

• intersecting two lines corresponds to the meet operation and is also carried
out by the cross product,

• constructing a circle from two points can be associated to our construction
of a conic by five points as described in Section 10.1.

189
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Furthermore, we had additional operations for

• constructing polars of points and lines with respect to a conic (this in-
cluded the calculation of a tangent),

• transforming points/lines/conics by projective transformations,
• calculating the matrix of the dual of a given conic.

So far we do not have an algebraic equivalent of the classical operations
of intersecting a line and a circle and of intersecting two circles. This chapter
is (among others) dedicated to this task. We will develop algebraic methods
for intersecting conics with lines and conics with conics. Clearly, these op-
erations can be carried out by solving corresponding systems of polynomial
equations. However, we will try to make the calculations for these operations
as natural as possible in the framework of homogeneous coordinates and ma-
trix representations for conics. This chapter is meant as a collection of recipes
for such kinds of primitive operations. Many of these recipes are used in the
implementation of the dynamic geometry program Cinderella [112].

11.1 Splitting a Degenerate Conic

Before we turn our attention to the problem of intersecting a conic with other
objects we will study how it is possible to derive homogeneous coordinates
for the two lines of a degenerate conic from the matrix of a conic. This will
turn out to be a useful operation later on.

Assume that a conic CA is given by a symmetric matrix A such that as
usual, CA = {p | pTAp = 0}. If the conic is degenerate and consists of two lines
or of one double line, then A will not have full rank. Thus we can determine a
degenerate situation by testing det(A) = 0. If a conic consists of two distinct
lines with homogeneous coordinates g and h, then its symmetric (rank-2)
matrix A can be written as A = ghT + hgT (up to a scalar multiple). The
matrices ghT and hgT would in principle generate the same conic, but they
are not symmetric. However, knowing one of these matrices (for instance ghT )
would be equivalent to knowing the homogeneous coordinates of the two lines,
since the columns of this matrix are just scalar multiples of g and the rows
are just scalar multiples of h. Any nonzero column (resp. row) could serve as
homogeneous coordinates for g (resp. h). This can be seen easily by observing
that the disjunction of the conditions 〈p, h〉 = 0 and 〈p, g〉 = 0 can be written
as

0 = 〈p, g〉 · 〈p, h〉 = (pT g)(hT p) = pT (ghT )p.

So, splitting a degenerate conic into its two lines essentially corresponds to
finding a rank-1 matrix B that generates the same conic as A. The quadratic
form is linear in the corresponding matrix (i.e., we have pT (A + B)p =
pTAp + pTBp). Furthermore, those matrices for which the quadratic form
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is identically zero are exactly the skew-symmetric matrices (those with
AT = −A). All in all, for decomposing a symmetric degenerate matrix A
into two lines we have to find a skew-symmetric matrix B such that A + B
has rank 1. Thus in our case we have to find parameters λ, μ, and τ such
that the following matrix sum has rank 1:

⎛
⎝
a b d
b c e
d e f

⎞
⎠+

⎛
⎝

0 τ −μ
−τ 0 λ
μ −λ 0

⎞
⎠.

The determinant of every 2 × 2 submatrix of a rank-1 matrix must vanish.
Thus necessary conditions for the parameters are

∣∣∣∣
a b+ τ

b− τ c

∣∣∣∣ = 0;
∣∣∣∣

a d− μ
d+ μ f

∣∣∣∣ = 0;
∣∣∣∣

c e+ λ
e− λ f

∣∣∣∣ = 0.

Resolving for λ, τ , and μ gives

τ2 = −
∣∣∣∣
a b
b c

∣∣∣∣; μ2 = −
∣∣∣∣
a d
d f

∣∣∣∣; λ2 = −
∣∣∣∣
c e
e f

∣∣∣∣.

This determines the parameters λ, μ, and τ up to their sign. In principle
one could test all eight possibilities to find a suitable choice that makes the
entire matrix a rank-1 matrix. However, there is also a more direct way of
calculating the values with their correct sign. For this we associate to the
parameter vector p = (λ, μ, τ)T the skew-symmetric matrix

Mp :=

⎛
⎝

0 τ −μ
−τ 0 λ
μ −λ 0

⎞
⎠.

Left multiplication by the matrix Mp encodes performing a cross product
with the vector p. A simple calculation shows that for any three-dimensional
vector q we have

Mp · q = p× q.

Lemma 11.1. Let A be a rank-2 symmetric 3×3 matrix that defines a conic
consisting of two distinct lines. Let p be the point of intersection of these
lines. Then for a suitable factor α the matrix A+ αMp has rank 1.

Proof. Let g and h be homogeneous coordinates for the two lines. We may
assume that these coordinates are scaled such that A has the form ghT +hgT .
The intersection of these lines is g × h. We have for a suitable factor α the
equation g × h = αp. If we consider the difference ghT − hgT , we obtain the
skew-symmetric matrix
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ghT − hgT =

⎛
⎝

0 g1h2 − g2h1 g1h3 − g3h1

g2h1 − g1h2 0 g2h3 − g3h2

g3h1 − g1h3 g3h2 − g2h3 0

⎞
⎠.

Comparison of coefficients shows that this matrix is nothing other than
Mg×h. Thus we obtain

ghT − hgT = Mg×h = Mαp = αMp.

With this we obtain

A+ αMp = (ghT + hgT ) + (ghT − hgT ) = 2ghT .

Thus the result must have the desired rank-1 form, and the theorem is
proven. ��

In particular, if for specific coordinates g and h we have A = ghT + hgT

and p = g × h, we can choose the factor α = 1 and obtain

A−Mp = 2hgT .

If we instead add the matrices, we obtain A + Mp = 2ghT . The previous
lemma allows us to calculate the corresponding rank-1 matrix if a symmetric
matrix of a degenerate conic is given. However, it has one big disadvantage:
We know neither p nor α in advance. There are several circumstances (we will
encounter them later) in which we, for instance, know p in advance. However,
it is also possible to calculate p from the matrix A without too much effort.
For this we have to use the formula

(ghT + hgT )� = −(g × h)(g × h)T ,

which we already used in Section 9.5. The matrix B = (g × h)(g × h)T is
a rank-1 matrix ppT with p = g × h. Thus each row/column of this matrix
is a scalar multiple of p. Furthermore, the diagonal entries of this matrix
correspond to the squared coordinate values of g × h. Thus one can extract
the coordinates of g × h by searching for a nonzero diagonal entry of B,
say Bi,i, and set p = Bi/

√
Bi,i, where Bi denotes the ith column of B.

With this assignment we can calculate the matrix A� + Mp, which gives
either 2ghT or 2hgT depending on the sign of the square root. Altogether, we
can summarize the procedure of splitting a matrix A that describes a conic
consisting of two distinct lines.:

1: B := A�;

2: Let i be the index of a nonzero diagonal entry of B;

3: β =
√
Bi,i;

4: p = Bi/β, where Bi is the ith column of B;
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5: C = A+ Mp;

6: Let (i, j) be the index of a nonzero element Ci,j of C;

7: g is the ith row of C, h is the jth column of C.

After this calculation g and h contain the coordinates of the two lines. If A
describes a conic consisting of a double line, then this procedure does not
apply, since B will already be the zero matrix. Then one can directly split
the matrix A by searching a nonzero row and a nonzero column.

11.2 The Necessity of “If” Operations

Compared to all our other geometric calculations (such as computing the
meet of two lines, the join of two points, or a conic through five given points),
the last computation for splitting a conic is considerably different. During the
computation we had to inspect a 3 × 3 matrix for a nonzero entry in order
to extract a nonzero row (or a nonzero column). One might ask whether
it is possible to perform such a computation without such an inspection of
the matrix, which intrinsically requires branching if one implements such a
computation on a computer. Indeed, it is not possible to do the splitting
operation for all instances without any branches. In other words, there is no
closed formula for extracting homogeneous coordinates for the two lines of a
degenerate conic. No matter which calculation is performed, there will always
be sporadic special cases that are not covered by the concrete formula. The
reason for this is essentially of a topological nature. No continuous formula
can be used for performing the splitting operation without any exceptions.
This is already the case for extracting the double line of a conic that consists
of a double line, as the next theorem shows.

Theorem 11.1. Let Deg = {llT | l ∈ R
3 −{(0, 0, 0)T}} be the set of all 3× 3

symmetric rank-1 matrices. Let φ : Deg → R
3 be a continuous function that

associates to each matrix ppT a real scalar multiple λp of the vector p. Then
there is a matrix A ∈ Deg for which φ(A) = (0, 0, 0)T .

Proof. Assume that φ is a continuous function that associates to each matrix
ppT a scalar multiple λp of p. We consider the path τ : [0, π] → R

3 with
τ(t) = (cos(t), sin(t), 0)T . By our assumption, the function φ(τ(t)τ(t)T ) must
be continuous on the interval [0, π]. We have τ(0) = (1, 0, 0)T =: a and τ(π) =
(−1, 0, 0)T = −a and therefore φ(τ(0)τ(0)T ) = φ(aaT ) = φ((−a)(−a)T ) =
φ(τ(π)τ(π)T ). By the definition of φ we must have φ(τ(t)τ(t)T ) = λ(τ(t)).
While t moves from 0 to π, the factor λ must itself behave continuously,
since in every sufficiently small interval at least one of the coordinates of
τ(t) is constantly nonzero. However, we have that φ(τ(0)τ(0)T ) = τ(0) and
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φ(τ(π)τ(π)T ) = φ(τ(0)) = −τ(π). Since λ was assumed to be real this implies
by the intermediate value theorem that for at least one parameter t0 ∈ [0, π]
we must have λ = 0. ��

The matrix llT that corresponds to the point p for which we have φ(llT ) =
(0, 0, 0)T = 0 · p does not lead to a meaningful nondegenerate evaluation
of φ. The interpretation of this fact is a little subtle. It means that on the
coordinate level there is no continuous way of extracting the double line
of a conic CA from a symmetric rank-1 matrix A. On the other hand, the
considerations of the last sections show that on the level of geometric objects
there is a way to extract the coordinates of the line l from the matrix llT which
must be necessarily continuous in the topology of our geometric objects.
There is just no way of doing these computations without using branching
within the calculations. This was reflected by the fact that we explicitly had
to search for nonzero entries in our 3 × 3 matrices.

In fact, the effect treated in this section is just the beginning of a long
story that leads to the conclusion that elementary geometry and effects from
complex function theory (such as monodromy, multivalued functions) are
intimately interwoven. We will return to these issues in the very final section
of this book.

11.3 Intersecting a Conic and a Line

After all this preparatory work the final task of this chapter turns out to be
relatively simple. We want to calculate the intersection of a conic given by a
symmetric 3× 3 matrix A and a line given by its homogeneous coordinates l.
Clearly the task is in essence nothing but solving a quadratic equation. How-
ever, we want to perform the operation that is as closely as possible related to
the coordinate representation. For this we will use the operation of splitting
a matrix that represents a degenerate conic as introduced in Section 11.1 as a
basic building block. Essentially, the square root needed to solve a quadratic
equation will be the one required for this operation.

Our aim will be to derive a closed formula for the degenerate conic that
consists of the line l as double line and whose dual consists of the two points
of intersection. Such a conic is given by a pair of matrices (A,B), where A
is a rank-1 symmetric matrix and describes the double line l and where B is
a symmetric rank-2 matrix with B� = A that describes the dual conic and
with this the position of the two points of intersection. Splitting the matrix
B yields the two points of intersection.

So, how do we derive the matrix B? We will characterize the matrix via
its properties. Let p and q be the two (not necessarily distinct) intersection
points. The quadratic form mTBm must have the property that it vanishes
for exactly those lines m that pass through (at least) one of the points p
and q. A matrix with these properties is given by
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p

q

l

Fig. 11.1 Intersecting a conic and a line: Consider the line as a conic consisting of a
double line and two points on it.

B = MT
l AMl.

To see this, we calculate the quadratic form mTBm. Using the property
Mlm = l ×m, we get

mTBm = mTMT
l AMlm = (Mlm)TA(Mlm) = (l ×m)TA(l ×m).

The right side of this chain of equations can be interpreted as follows: l×m
calculates the intersection of l and m. The condition (l×m)TA(l×m) tests
whether this intersection is also on the conic CA. Thus as claimed, MT

l AMl

is the desired matrix B. It is the matrix of a dual conic describing two points
on l. Splitting this matrix finally gives the intersections in question.

Compared to Section 11.1 we are this time in the dual situation. We want
to split a matrix of a dual conic into two points. For this we have to transform
it into an equivalent rank-1 matrix (one that defines the same conic) by
adding a skew-symmetric matrix. For the splitting procedure we do not have
to apply the full machinery of Section 11.1. This time we are in the good
situation that we already know the skew-symmetric matrix up to a multiple.
It must be the matrix Ml, since l was by definition the join of the two
intersection points. Thus the desired rank-1 matrix has the form

MT
l AMl + αMl

for a suitably chosen factor α. This factor must be chosen in a way that the
resulting matrix has rank 1. The parameter α can be simply determined by
considering a suitable 2 × 2 submatrix of the resulting matrix.

All in all, the procedure of calculating the intersections of a line l and a
conic given by A can be described as follows (without loss of generality we
assume that the last coordinate entry of l = (λ, μ, τ)T is nonzero):
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1: B = MT
l AMl;

2: α = 1
τ

√
−
∣∣∣ B1,1, B1,2
B1,2 B2,2

∣∣∣;
3: C = B + αMl;
4: Let (i, j) be the index of a nonzero element Ci,j of C;
5: p is the ith row of C, q is the jth column of C.

The choice of α in the second row ensures that the matrix C will have rank 1.
The particular sign of α is irrelevant, since a sign change would result in
interchanging the points p and q. If the entry τ of l were zero, one would have
to take a different 2 × 2 matrix for determining the value of α. It is also a
remarkable fact that if for some reason one is not interested in the individual
coordinates of p and q but is interested in treating them as a pair, then
all necessary information is already encoded in the matrix B. Furthermore,
notice that for the calculation of the individual coordinates it is necessary to
use a square-root operation just once. This is unavoidable, since intersecting
a conic and a line can be used to solve a quadratic equation.

11.4 Intersecting Two Conics

Now, we want to intersect two conics. For this we will use the considera-
tions of the last sections as auxiliary primitives and will reduce the problem
of intersecting two conics to the problem of intersecting a conic with a line.
Intersecting a conic and a line as considered in the previous section was essen-
tially equivalent to solving a quadratic equation. Therefore it was necessary
to use at least one square root operation. This will no longer be the case for
the intersection of two conics. There the situation will be worse. Generally,
two conics will have four more or less independent intersections. This indi-
cates that it is necessary to solve a polynomial equation of degree four for the
intersection operation. However, we will present a method that requires us
to solve only a cubic (degree-3) equation. This results from the fact that in a
certain sense the algebraic difficulty of solving degree-three and degree-four
equations is essentially the same.

The idea for calculating the intersection of two conics is very simple. We
assume that the two conics CA and CB are represented by matrices A and B.
It is helpful for the following considerations to assume that the two conics
have four real intersections. However, all calculations presented here can be
carried out as well over the complex numbers. All linear combinations λA+μB
of the matrices represent conics that pass through the same four points of
intersection as the original matrices. In the bundle of conics {λA+μB | λ, μ ∈
R} we now search for suitable parameters λ and μ such that the matrix λA+
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μB is degenerate. After this we split the degenerate conic by the procedure
described in Section 11.1. Then we just have to intersect the two resulting
lines with one of the conics CA, CB by the procedure described in Section 11.2.

In order to get a degenerate conic of the form λA+μB we must find λ, μ,
such that

det(λA + μB) = 0.

At least one of the parameters λ, μ must be nonzero in order to get a proper
conic. The problem of finding such parameters leads essentially to the problem
of solving a cubic equation. To see this, one can simply expand the above
determinant and observe that each summand contains a factor of the form
λiμ3−i with i ∈ {0, 1, 2, 3}. Collecting all these factors leads to a polynomial
equation of the form

α · λ3 + β · λ2μ+ γ · λμ2 + δ · μ3 = 0.

We can easily calculate the parameters α, β, γ, δ using the multilinearity of
the determinant function. Assume that the matrix A consists of column vec-
tors A1, A2, A3 and that the matrix B consists of column vectors B1, B2, B3.
Expanding det(λA+ μB) yields

det(λA+ μB) = λ3 [A1, A2, A3]
+ λ2μ ([A1, A2, B3] + [A1, B2, A3] + [B1, A2, A3])
+ λμ2 ([A1, B2, B3] + [B1, A2, B3] + [B1, B2, A3])
+ μ3 [B1, B2, B3].

Thus we get

α = [A1, A2, A3],
β = [A1, A2, B3] + [A1, B2, A3] + [B1, A2, A3],
γ = [A1, B2, B3] + [B1, A2, B3] + [B1, B2, A3],
δ = [B1, B2, B3].

If we find suitable λ, μ that solve α ·λ3 +β ·λ2μ+γ ·λμ2 + δ ·μ3 = 0, then
λA + μB will represent a degenerate conic. From this degenerate conic it is
easy to calculate the intersections of the original conics. Thus the problem
of intersecting two conics ultimately leads to the problem of solving a cubic
polynomial equation (and this is unavoidable). The story of solving cubic
equations goes back to the sixteenth century and has a long and exciting
history. (This is one of the legends in mathematics, including human tragedies,
challenges, vanity, competition. The main actors in this play were Scipione del
Ferro, Anton Maria Fior, Nicolo Tartaglia, Girolamo Cardano, and Lodovico
Ferrari, all of whom lived between 1465 and 1569. In Chapter 15 we will give
a brief historical overview. We refer readers interested in elaborate details to
the book by Yaglom [136], the novel “Der Rechenmeister” by Jörgensen [61],
and the numerous articles on this topic on the Internet.)
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For our purposes we will confine ourselves to a direct way for solving a
cubic equation. Our procedure has three nice features compared to usual
solutions of cubic equations. It works in the homogeneous setting where we
ask for values of λ and μ instead of just a one-variable version that does
not handle “infinite” cases properly. It needs to calculate exactly one square
root and exactly one cube root, and we will not have to take care which
specific roots of all complex possibilities we take. It works on the original
cubic equation (most solutions presented in the literature work only for a
reduced equation where β = 0).

All calculations in our procedure have to be carried out over the complex
numbers, since it may happen that intermediate results are no longer real.
For the computation we will need one of the cube roots of unity as a constant.
We abbreviate it by

ω = −1
2

+ i ·
√

3
4
.

A reasonable procedure for solving the equation

α · λ3 + β · λ2μ+ γ · λμ2 + δ · μ3 = 0

is given by the following sequence of operations (don’t ask why the parameters
and formulas work; it’s a long story):

1: W = −2β3 + 9αβγ − 27α2δ;

2: D = −β2γ2 + 4αγ3 + 4β3δ − 18αβγδ + 27α2δ3;

3: Q = W − α
√

27D;

4: R = 3
√

4Q;

5: L = (2β2 − 6αγ,−β,R)T ;

6: M = 3α(R, 1, 2)T ;

The two vectors L and M are the key to finding the three solutions for
the final computation of λ and μ. For this we have to compute

⎛
⎝
ω 1 ω2

1 1 1
ω2 1 ω

⎞
⎠
⎛
⎝
L1

L2

L3

⎞
⎠ =

⎛
⎝
λ1

λ2

λ3

⎞
⎠,

⎛
⎝
ω 1 ω2

1 1 1
ω2 1 ω

⎞
⎠
⎛
⎝
M1

M2

M3

⎞
⎠ =

⎛
⎝
μ1

μ2

μ3

⎞
⎠.

The pairs (λ1, μ1), (λ2, μ2), and (λ3, μ3) are the three solutions of the cubic
equation. In Step 4 of the above procedure we have to choose a specific cube
root. If R is one cube root, the other two cube roots are ωR and ω2R. The
reader is invited to convince himself that no matter which of these cube roots
we take, we obtain the same set of solutions (in fact they are permuted).
Similarly, if we change the sign of the square root in Step 3, two of the
solutions are interchanged.
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Fig. 11.2 Intersecting two conics: The original problem—the three degenerate conics—the
reduced problem.

After collecting all these pieces it is easy to use them to give a procedure
for intersecting two conics. We just have to put the pieces together. If A
and B are the two matrices representing the conics, we can proceed in the
following way (this time we just give rough explanations of the steps instead
of detailed formulas).

1: Calculate α, β, γ, δ as described before.

2: Find a solution (λ, μ) of the cubic equation α·λ3+β ·λ2μ+γ ·λμ2+δ ·μ3 =
0.

3: Let C = λA+ μB.

4: Split the conic C into two lines g and h.

5: Intersect both lines g and h with the conic CA.
All in all, we obtain four intersections, two for each of the two lines g and h.

Figure 11.2 illustrates the process. We start with the two conics and calculate
one degenerate conic that may be obtained as a linear combination of them.
Then we split this degenerate conic into two lines and intersect each of these
lines with one of the original conics. There are a few subtleties concerning
which intermediate results are real and which are complex. We will discuss
them in the next section.

11.5 The Role of Complex Numbers

Let us take a step back and look at what we did in the previous section. At
the beginning of our discussions on intersecting conics with conics we said
that all calculations should be carried out over the complex numbers. In all
previous chapters we focused on real projective geometry. However, solving
the cubic equation may make it inevitable to have complex numbers at least
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as an intermediate result (if the value of D calculated in step two of our cubic
equation procedure becomes negative).

We first discuss what it means to have a real object in the framework of
homogeneous coordinates. In all our considerations so far we have agreed to
identify coordinate vectors that differ only by a scalar multiple. If we work
with complex coordinates we will do essentially the same. However, this time
we will also allow complex multiples. We will call a coordinate vector p “real”
if there is a (perhaps complex) scalar s such that s·p has only real coordinates.
In this sense the vector (1+2i, 3+6i,−2−4i)T represents a real object, since
we can divide by 1 + 2i and obtain the real vector (1, 3,−2)T . Similarly,
the vector (1, i, 0) is a proper complex vector, since no matter by which
nonzero number we multiply it, at least one of the entries will be complex.
It is an amazing fact that we may get real objects from calculations with
proper complex objects. Consider the following calculation, which could be
considered the join of two proper complex points:

⎛
⎝

1 + 2i
3 + i
1 − i

⎞
⎠×
⎛
⎝

1 − 2i
3 − i
1 + i

⎞
⎠ =

⎛
⎝

8i
−6i
10i

⎞
⎠ = 2i ·

⎛
⎝

4
−3
5

⎞
⎠.

The coordinates of the result are complex, but they still represent the real
object (4,−3, 5)T . The reason for this is that in this example we took the join
of two complex conjugate points. More generally, we get for a point p + iq,
with real vectors p and q,

(p+ iq) × (p− iq) = p× p+ (iq) × p+ p× (−iq) + (iq) × (−iq) = 2i(q × p).

The join (meet) of two conjugate complex points (lines) is a real geometric
object. This perfectly fits in our geometric intuition. Imagine you intersect
a line l with a conic CA. If the line is entirely outside the conic, they do not
have real intersections. As algebraic solution we get two complex conjugate
points. Joining these two points, we get the real line l again. Generally, when
we deal with homogeneous coordinates we will call an object real if there is
a scalar multiple that simultaneously makes all entries real. We will apply
this definition to points, lines, conics, transformations and also to bundles of
objects parameterized by homogeneous coordinates.

Now let us return to the problem of intersecting conics. If we have two
real conics CA and CB, then the parameters α, . . . , δ for the cubic equation
will be real as well. A cubic equation in C has three solutions (if necessary
counted with multiplicity). Except for degenerate cases in which two or all
three of these solutions coincide, we will have one of the following two cases:
Either all these three solutions are real or just one of the solutions is real and
the other two are complex conjugates. In any case we will have at least one
real solution. The term “real solution” in the homogeneous setup in which we
identify scalar multiples of (λ, μ) means that there is a scalar s that makes
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Fig. 11.3 Real degenerate conics from a pair of conics.

both coordinates of s ·(λ, μ) simultaneously real. In other words, the quotient
λ/μ is real. Such a real solution corresponds to the fact that the degenerate
conic C = λA + μB is real again. If the conics have four points in common,
then we will have indeed three real solutions corresponding to the three real
solutions of the cubic equation. If the two conics have only two points in
common, then there will be only one real solution. This solution will consist
of two lines. One of these lines is the join of the intersection points; the
other is another line not hitting the conics in any real points, but still it
passes through the other two intersections of the conics, which are properly
complex and conjugates of each other. If the two conics do not have any real
intersection, then there is still a real solution to the cubic equation. We still
get one real degenerate conic in the bundle generated by the two conics. This
degenerate conic consists of two lines each of them passing through a pair
of complex conjugate intersection points. The three situations are shown in
Figure 11.3.

It is also very illuminating to study the case in which we pass from the
“three real solutions” situation to the “one real two complex conjugates”
situation. In this case the cubic equation will have a real double root and
a real single root. This means that two of the three real degenerate conics
in the bundle λA + μB will coincide. Geometrically, this corresponds to the
case in which the two conics meet tangentially at one point and have two real
intersections elsewhere. Figure 11.4 shows a situation an “epsilon” before the
tangent situation. In the picture we still have four real intersections. However,
two of them approach each other tightly. It can be seen how in this case two
of the degenerate conics almost coincide as well, and how one of the lines
of the other conic almost becomes a tangent. In the limit case the two first
degenerate conics will really coincide and the tangent line of the third conic
will really be a tangent at the point of tangency of the two conics.

What does all this mean for our problem of calculating the intersections
of two conics? If we want to restrict ourselves to real calculations whenever
possible, then it might be reasonable to pick the real solution of the cubic and
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proceed with this one. Then we finally have to intersect two real lines with a
conic. Still it may happen that one or both of the lines do not intersect the
conic in real points. However, whenever we have real intersection points we
will find them by this procedure by intersecting a real line and a real conic.

If we think of implementing such an operation in a computer program,
it may also be the case that the underlying math library can properly deal
with complex numbers (it should anyway for solving the cubic equation). In
such a case we do not have to explicitly pick a real solution. We can take any
solution we want. If we by accident pick a complex solution, then we will get
a complex degenerate conic, which splits into two complex lines. However,
intersecting the lines with one of the original conics will result in the correct
intersections. If the correct intersections turn out to be real points, then it just
may be necessary to extract a common complex factor from the homogeneous
coordinates.

11.6 One Tangent and Four Points

As a final example of a computation we want to derive a procedure that
calculates a conic that passes through four points and at the same time
is tangent to a line (see Figure 11.5 for the two possible solutions for an
instance of such a problem). Based on the methods we have developed so
far, there are several ways to approach this construction problem. Perhaps
the most straightforward is to construct a fifth point on the conic and then

Fig. 11.4 An almost degenerate situation.
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calculate the conic through these five points. This fifth point may be chosen
on the line itself. Then it must be at the position where the resulting conic
touches the line. Generally, there are two possible positions for such a point,
corresponding to the two possible conics that satisfy the tangency conditions.

The crucial observation that allows us to calculate these two points is the
fact that pairs of points that are generated by intersecting all possible conics
through four given points with a line l are the pairs of points of a projective
involution on the line. For this, recall that the conics through four points
A,B,C,D have the form

Cλ := {p | (A,B;C,D)p = λ},

where λ may take an arbitrary value in R ∪ {∞}. For each such conic there
exists a pair of points on l that are as well on Cλ. These pairs of points may
be both real, both complex, or coinciding. If the points coincide, then we are
exactly in the tangent situation. Let {pλ, qλ} be the pair of such points on
the conic Cλ. Then we have the following:

Lemma 11.2. There is a projective involution τ on l such that for any λ ∈
R ∪ {∞} we have τ(pλ) = qλ.

Proof. Instead of giving an algebraic proof we will directly use a geomet-
ric argument. With the help of Pascal’s theorem we can construct the point
qλ from A,B,C,D, and pλ without explicit knowledge of the conic Cλ. Fig-
ure 11.6 shows the construction. The black and white elements of the picture
depend only on A,B,C,D and pλ. Starting with the point pλ we have to

Fig. 11.5 Conics through four points and tangent to a line.
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Fig. 11.6 Using Pascal’s theorem to construct the second intersection.

construct first point r by intersecting pλA with CD, then we construct s by
intersecting rt with AB. Finally, we derive point qλ by intersecting sD with l.
In homogeneous coordinates the whole sequence of construction steps can be
expressed as a sequence of cross-product operations that use the coordinates
of point pλ exactly once. Thus if a and b are homogeneous coordinates of two
arbitrary distinct points on l and we express a point p on l by p = αa+ βb,
then a sequence of operations

xk × (xk−1 . . .× (x2 × (x1 × (αa+ βb))) . . .) =: α′a+ β′b

can be expressed as a single matrix multiplication

A

(
α
β

)
=
(
α′

β′

)
.

Thus it is a projective transformation by the fundamental theorem of projec-
tive geometry. It is clearly an involution, since the same construction could
be used to derive pλ from qλ. ��

Remark 11.1. Alternatively, the proof could also be carried out in purely
algebraic terms. We briefly sketch this. Let again a and b be two homogeneous
coordinates of two arbitrary distinct points on l and express a point p on l
as p = αa+ βb. The two points on l on the conic Cλ satisfy the relation

[αa+ βb,A,C][αa+ βb,B,D] = λ[αa+ βb,A,D][αa+ βb,B,C].
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Resolving for α and β yields the equation

(α, β)(X + λY )
(
α
β

)
= 0,

where X and Y are suitable symmetric 2×2 matrices in which all parameters
of the first equation have been encoded. Just knowing X and Y is enough
information to derive the matrix A with the property Apλ = qλ. The matrix
A can be calculated by the amazingly simple formula

A = X�Y − Y �X.

The reader is invited to check algebraically that A is an involution and that
it converts one solution of the quadratic equation into the other.

Lemma 11.2 reveals another remarkable connection between conics and
quadrilateral sets. If we consider three different conics through four points
A,B,C,D and consider the three point pairs that arise from intersecting
these conics with line l, then these three pairs of points form a quadrilat-
eral set. This is a direct consequence of Lemma 11.2 and Theorem 8.4 that
connects projective involutions to quadrilateral sets. A corresponding picture
that illustrates this fact is given in Figure 11.7. The incidence structure that
is supported by the four black points and their joins is a witness that the six
points on the black line form a quadrilateral set. In fact, the six lines of this
witness construction can themselves be considered three degenerate conics
that intersect the black line in a quadrilateral set.

Now we have collected all necessary pieces to construct the two tangent
conics to l through A,B,C,D. The four points induce a projective involu-
tion τ on l that associates the pairs of points that arise by intersection with
a conic through A,B,C,D. What we are looking for in order to construct
a tangent conic are the two fixed points of the involution τ . Our considera-
tions after Theorem 8.4 in Section 8.6 showed that these two fixed points x
and y are simultaneously harmonic to all point pairs (p, τ(p)). Thus we can
reconstruct the position of these points if we know two such point pairs by
solving a quadratic equation. We can construct even three such point pairs
by considering the three degenerate conics through A,B,C,D. The situation
is illustrated in Figure 11.8. Considering the line l as RP

1 and working with
homogeneous coordinates on this space, x and y must satisfy the equations

[a1, x][a2, y] = −[a1, y][a2, x] and [b1, x][b2, y] = −[b1, y][b2, x].

These equations are solved by the two solutions

x =
√

[a2, b1][a2, b2]a1 +
√

[a1, b1][a1, b2]a2,

y =
√

[a2, b1][a2, b2]a1 −
√

[a1, b1][a1, b2]a2
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Fig. 11.7 Quadrilateral sets from bundles of conics.

(observe the beautiful symmetry of the solution). This solution can be derived
as a variant of Plücker’s μ technique if we try to express the solution as a
linear combination λa1 +μa2. The solution can be easily verified by plugging
the expressions for x and y into the two equations and expanding the terms.

All in all, the procedure of calculating a conic through A,B,C,D tangent
to l can be summarized as follows (we formulate the procedure so that the
transition to the coordinates on l is only implicitly used):

1: Construct the four intersections a1 = AC ∧ l, a2 = BD ∧ l, b1 = AB ∧ l,
b2 = CD ∧ l.

2: Choose an arbitrary point o not on l.

3: Let x =
√

[o, a2, b1][o, a2, b2]a1 +
√

[o, a1, b1][o, a1, b2]a2.

4: Let y =
√

[o, a2, b1][o, a2, b2]a1 −
√

[o, a1, b1][o, a1, b2]a2.

5: Return the two conics through A,B,C,D, x and through A,B,C,D, y.
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Fig. 11.8 The final construction.
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Projective d-space

Es ist wünschenswert, daß neben der Euklidischen Methode
neuere Methoden der Geometrie in den Unterricht auf Gym-
nasien eingeführt werden.

Felix Klein, 1868
One of the “Theses” of his thesis defense

Mathematics is a game played according to certain simple
rules with meaningless marks on paper.

David Hilbert

Different topic! So far, we have dealt almost exclusively with projective geom-
etry of the line and of the plane. We explored the tight and very often elegant
relationships between geometric objects and their algebraic representations.
Our central issues were:

• Introducing elements at infinity to bypass many special cases of ordinary
Euclidean geometry,

• representing geometric objects by homogeneous coordinates,
• performing algebraic operations directly on geometric objects (via homo-

geneous coordinates),
• performing transformations by matrix multiplication,
• duality,
• expressing geometric relations by bracket expressions.

The close interplay of homogeneous coordinates, finite and infinite ele-
ments, and linear algebra made it possible to express geometric relations by
very elegant algebraic expressions. This chapter deals with generalizations of
these concepts to higher dimensions.

209
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Fig. 12.1 A projectively correct cube.

Here we will just scratch the surface—in the hope that the reader might get
a rough impression of the beauty and richness of the entire theory. It would
be easy to fill another 600 pages with an in-depth study of projective geom-
etry in higher dimensions. We will restrict ourselves here to representations
of basic objects (points, lines, planes, and transformations) and elementary
operations (join and meet). Most often we will not give explicit proofs and
confine ourselves with the general concepts.

12.1 Elements at Infinity

The three-dimensional projective space carries many similarities to the two-
dimensional projective plane. Similarly to our treatment of the two-dimen-
sional case we will start with our investigations by considering the usual
Euclidean space R

3. Like the Euclidean plane, this space is full of special
cases. Planes may, for instance, be parallel or meet in a line. Similarly to
the treatment of the projective plane we will extend the usual space R

3 by
elements at infinity to get rid of many of these special cases. For every bundle
of parallel lines of R

3 we introduce one point at infinity. The totality of all
points in R

3 together with these infinite points forms the set of points of the
three-dimensional projective space.

As usual, certain subsets of these points will be considered (projective)
lines, and (since we are in the three-dimensional case) there will also be
subsets that are considered projective planes. For every finite line l of R

3

there is a unique point at infinity corresponding to the parallel bundle of
this line. The finite part of l together with this point is considered a line
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in projective space. In addition, there are many lines that lie entirely at an
infinite position.

For this consider a usual finite plane h. This plane is extended by all
infinite points of lines that are contained in h. The extended plane is nothing
but a usual projective plane. All infinite points of this plane form a line at
infinity. This line consists entirely of infinite points. Every ordinary plane
of R

3 is extended by such a unique line at infinity.
There is one object we have not yet covered in our collection of points,

lines, and planes. All infinite points taken together again form a projective
plane: the plane at infinity. The lines of this plane are all the infinite lines.
We could say that the real projective three-space may be considered to be R

3

extended by a projective plane at infinity in the same way as we may say
that the real projective plane is R

2 together with a line at infinity.

In a way, this distinction of finite and infinite objects is confusing and
unnecessary. It is just meant as a dictionary to connect concepts of ordi-
nary Euclidean space to concepts of projective space. As one may expect the
projective space is much more homogeneous and symmetric than the usual
Euclidean space. The projective space is governed by the following incidence
properties (which are again analogues of the corresponding axioms of the
projective plane):

• Any two points span a unique line as long as they do not coincide.
• Any three points span a unique plane as long as they are not collinear.
• Any two planes meet in a unique line as long as they do not coincide.
• Any three planes meet in a unique point as long as they do not meet in a

line.
• Any pair of point and line span a unique plane as long as the point is not

on the line.
• Any pair of plane and line meet in a unique point as long as the line is

not contained in the plane.

It will be the task of the next few sections to express these operations of
join and meet in a suitable way that also generalizes to higher dimensions.

12.2 Homogeneous Coordinates and Transformations

How do we represent these elements algebraically? Essentially the process is
similar to the setup in the projective plane. Points in projective three-space
are represented by nonzero four-dimensional vectors. They are the homo-
geneous coordinates of the points. Nonzero scalar multiples of the vectors
are identified. In other words, we may represent the points of the projective
three-space as

RP
3 =

R
4 − {(0, 0, 0, 0)T}

R − {0} .
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In the standard embedding we may “imagine” the Euclidean R
3 embed-

ded in R
4 as an affine space parallel to the (x, y, z, 0)T space of R

4. If this is
too hard to imagine, then one can also proceed purely formally. In the stan-
dard embedding a point (x, y, z)T ∈ R

3 is represented by a four-dimensional
vector (x, y, z, 1)T ∈ R

4. Nonzero scalar multiples are identified. The infinite
points are exactly those nonzero vectors of the form (x, y, z, 0)T . They do
not correspond to Euclidean points. Vectors of the form (x, y, z, 0)T may also
be interpreted as homogeneous coordinates of the usual projective plane by
ignoring the last entry.

Thus we can literally say that RP
3 consists of R

3 (the homogeneous vec-
tors (x, y, z, 1)T ) and a projective plane at infinity (the homogeneous vectors
(x, y, z, 0)T ). We may also interpret this process inductively and consider the
projective plane itself as composed of the Euclidean plane R

2 (the vectors
(x, y, 1, 0)T ) and a line at infinity (the vectors (x, y, 0, 0)T ). The line may be
considered a Euclidean line (the vectors (x, 1, 0, 0)T ) and finally a point at
infinity (represented by (1, 0, 0, 0)T ).

The objects dual to points in RP
3 will be planes. Similarly to points,

planes will also be represented by four-dimensional vectors. In Euclidean
terms we may consider the vector (a, b, c, d)T as representing the parameters
that describe the affine plane {(x, y, z) ∈ R

3 | ax+by+cz+d = 0}. As usual,
nonzero scalar multiples of the vector represent the same geometric object.
If we interpret the equation in a setup of homogeneous coordinates, a point
(x, y, z, w)T is incident to a plane (a, b, c, d)T if and only if

ax+ by + cz + dw = 0.

As in the two-dimensional setup, incidence is simply expressed by a scalar
product being zero. The plane at infinity has homogeneous coordinates
(0, 0, 0, 1)T .

Finding a plane that passes through three given points pi = (xi, yi, zi, wi),
i = 1, 2, 3, thus translates to the task of solving a linear equation:

⎛
⎝
x1 y1 z1 w1

x2 y2 z2 w2

x3 y3 z3 w3

⎞
⎠

⎛
⎜⎜⎝
a
b
c
d

⎞
⎟⎟⎠ =

⎛
⎝

0
0
0

⎞
⎠ .

In the next section we will deal with methods of performing this calcula-
tion explicitly. However, before we do so we will consider transformations in
this homogeneous projective setup. The situation here is almost completely
analogous to the two-dimensional case. A transformation is represented by a
simple matrix multiplication. This time we need a 4× 4 matrix. The cases of
usual affine transformations in R

3 are again covered by special transformation
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matrices in which certain entries are zero. The following matrices represent
a linear transformation of R

3 with matrix A, a pure translation, a general
affine transformation, and a general projective transformation, respectively:

⎛
⎜⎜⎜⎝

A
0
0
0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

• • • •
• • • •
• • • •
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

• • • •
• • • •
• • • •
• • • •

⎞
⎟⎟⎠ .

A “•” stands for an arbitrary number. In every case we must assume that
the determinant of the matrix is nonzero.

Such a transformation T maps a point p to the associated image point. The
corresponding transformation that applies to the homogeneous coordinates
of a plane is (as in the two-dimensional case) given by (T−1)T . By this choice
incidence of points and planes is preserved by projective transformations:

〈p, h〉 = 0 ⇐⇒ 〈Tp, (T−1)Th〉 = 0.

Instead of the transposed inverse (T−1)T it is also possible to use the trans-
posed adjoint (T�)T , since they differ by only a scalar factor.

Remark 12.1. A word of caution: One should consider the setup of presenting
points and planes by four-dimensional vectors and expressing coincidence by
the standard scalar product as a kind of interim solution that will be replaced
by something more powerful later on. The problem that we will have to face
soon is that lines will be represented by six-dimensional vectors and we have
to create a notational system that handles points, lines, and planes in a
unified way. For this we will have to give up the concept of indexing a vector
entry with the position where it is placed in a vector. We will return to this
issue in Section 12.4.

12.3 Points and Planes in 3-Space

The task of this section is to give a closed formula for calculating the homo-
geneous coordinates of a plane spanned by three points. The corresponding
two-dimensional situation is governed by the cross product operation. The
line through two points p, q could be calculated by

l = p× q =

⎛
⎝
p1

p2

p3

⎞
⎠×
⎛
⎝
q1
q2
q3

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

+
∣∣∣∣
p2 q2
p3 q3

∣∣∣∣

−
∣∣∣∣
p1 q1
p3 q3

∣∣∣∣

+
∣∣∣∣
p1 q1
p2 q2

∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.
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The entries of the coordinates of the line are the 2 × 2 subdeterminants of
the matrix ⎛

⎝
p1 q1
p2 q2
p3 q3

⎞
⎠ .

One way of explaining this effect is to observe that an arbitrary point λp+μq
on this line must have a zero scalar product with l. We obtain

〈λp+ μq, l〉 = λ〈p, l〉 + μ〈q, l〉 = λdet(p, p, q) + μ det(q, p, q).

The last equation holds since if we plug the expression for l into 〈a, l〉, we
obtain the determinant det(a, p, q), as one can easily see if one develops this
determinant by the first column.

In a similar way we can obtain the coordinates of a plane h through three
points p, q, r in RP

3. We get

h = join(p, q, r) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+

∣∣∣∣∣∣
p2 q2, r2
p3 q3, r3
p4 q4, r4

∣∣∣∣∣∣

−
∣∣∣∣∣∣
p1 q1, r1
p3 q3, r3
p4 q4, r4

∣∣∣∣∣∣

+

∣∣∣∣∣∣
p1 q1, r1
p2 q2, r2
p4 q4, r4

∣∣∣∣∣∣

−
∣∣∣∣∣∣
p1 q1, r1
p2 q2, r2
p3 q3, r3

∣∣∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

So the coordinates are the 3 × 3 subdeterminants of the matrix
⎛
⎜⎜⎝
p1 q1 r1
p2 q2 r2
p3 q3 r3
p4 q4 r4

⎞
⎟⎟⎠ .

Equipped with alternating signs, they give the plane through these three
points. The argument for the correctness of this calculation is the same as
in the two-dimensional case. If we consider an arbitrary point a, then the
development of the determinant

det

⎛
⎜⎜⎝
a1 p1 q1 r1
a2 p2 q2 r2
a3 p3 q3 r3
a4 p4 q4 r4

⎞
⎟⎟⎠
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by the first column is just the scalar product 〈a, h〉 for the above definition
of h. If a is spanned by p, q, and r, then this determinant becomes zero (the
point a is on h). If the point is not spanned by p, q, and r, then the columns
are linearly independent and the determinant is nonzero. Thus a is not on h.
Geometrically speaking, we compute a vector h that is simultaneously or-
thogonal to all three vectors p, q, and r.

It may happen that the above operation (taking the four 3 × 3 subdeter-
minants of the 4 × 3 matrix) results in a zero vector. However, this could
happen only if the three column vectors were linearly dependent. In this case
the three points do not span a plane. Geometrically, there are several pos-
sibilities how this can happen. Either all points coincide (then the matrix
has rank 1) or the points lie on a unique common line (then the matrix has
rank 2). In both cases we have a degenerate situation in which the plane
through the points is not uniquely determined.

As in the planar case, the procedure described here covers all possible
cases of finite and infinite points. For instance, a plane through two finite
points p and q and one infinite point r is the unique plane that contains the
line pq and parallels in direction of r (as long as r is not on pq, which is a
degenerate situation). The plane through three infinite points is the plane at
infinity itself.

The same trick can also be used to calculate a point that is simultaneously
contained in three planes. Let h, g, f be the homogeneous coordinates of three
planes in RP

3. Assume that the three planes do not have a line in common.
In this case the planes contain a unique common point. The coordinates of
this point can be calculated as the 3 × 3 subdeterminants of the matrix

⎛
⎜⎜⎝
h1 g1 f1
h2 g2 f2
h3 g3 f3
h4 g4 f4

⎞
⎟⎟⎠

equipped with alternating signs. As in the dual case, degenerate cases result
in a zero vector. All special cases resulting, from finite or infinite points are
automatically covered as well. For instance, if h and g are two finite planes
and f is the plane at infinity, then the resulting point is the point at infinity
on the intersection of h and g.

There is one more or less obvious but remarkable fact that we want to
mention for further reference. If p, q, and r span a plane h and if a, b, and c
span the same plane, then the join operation that calculates the plane from
three points may have different results for p, q, and r and for a, b, and c.
However, the two results may differ at most by a non-zero scalar multiple.
One may view this result as a consequence of the fact that the plane h is
uniquely determined and thus vectors representing it only may differ by a
scalar multiple. However, one can obtain it also directly from the fact that
the operation join(p, q, r) is linear in each argument and anticommutative.
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Each of the points a, b, c is a linear combination of p, q, and r. So, if we, for
instance, replace p by a, we obtain

join(a, q, r) = join(λp+ μq + τr, q, r)
= λ · join(p, q, r) + μ · join(q, q, r) + τ · join(r, q, r)
= λ · join(p, q, r).

As a consequence of antisymmetry, terms with repeated letters can be can-
celed.

12.4 Lines in 3-Space

Now comes the tricky part. What is the good way of representing lines of
projective space? One could say that the answer to this question was, after
introduction of homogeneous coordinates, one of the major breakthroughs
of nineteenth-century geometry. More or less, the answer was independently
discovered by at least two people. Perhaps the first was Hermann Günther
Grassmann (1809–1877). In his work on Lineare Ausdehnungslehre [46] from
1844 he laid at the same time the basis for our modern linear algebra as well
as for multilinear algebra. One of the essential parts was a formal method
that made it possible to directly operate with points, lines, planes, etc. Un-
fortunately, Grassmann developed a kind of completely new mathematical
terminology and notation to deal with these kinds of objects. This caused
him to be more or less completely ignored by his contemporaries, and his
ideas did not become common mathematical knowledge until he completely
rewrote his book and published a second version [47] in 18621.

The second person involved was Julius Plücker (whom we have already met
frequently in this book). Not aware of Grassmann’s work, in 1868 he published
the first part of Neue Geometrie des Raumes, gegründet auf die Betrachtung
der geraden Linie als Raumelement [101] (New Geometry of space, based
on the straight line as space element) but died before the second part was
complete. Felix Klein at this time was his assistant and essentially completed
Plücker’s thoughts in his doctoral dissertation [64].

From a modern perspective the basic ideas are a straightforward gener-
alization of our considerations in the previous section. Nevertheless, these
ideas opened whole new branches of mathematics starting from projective

1 The first edition of his book was of about 900 copies, from of about 600 were pulped
since they simply could not be sold. The remaining 300 books were given away for free
to anyone who showed interest. In his second edition, Grassmann expresses his regret
that people do not take the time to follow another person’s thoughts. It is little known
among mathematicians that Grassmann was much more famous in his time for his works
on Indo-Germanic linguistics. He published the first German translation of the Rig-Veda
(an ancient indian document), and his Indo-German dictionaries are still in use today.
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geometry in arbitrary dimensions, via multilinear or exterior algebra up to
tensor calculus (which plays an omnipresent role in modern physics).

Let us return to our question: How do we represent a line in space? The
correct generalization of our considerations so far is as follows. If we want to
calculate the line spanned by two points p and q, then we consider the 4 × 2
matrix ⎛

⎜⎜⎝
p1 q1
p2 q2
p3 q3
p4 q4

⎞
⎟⎟⎠ .

From this matrix we take all 2 × 2 subdeterminants and collect them in a
six-dimensional vector. For reasons we will investigate later, we will equip
the entries of this vector only with positive signs. All in all, the coordinates
for the line through the two points are

l = p ∨ q :=

⎛
⎜⎜⎝
p1

p2

p3

p4

⎞
⎟⎟⎠ ∨

⎛
⎜⎜⎝
q1
q2
q3
q4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+
∣∣∣∣
p1 q1
p2 q2

∣∣∣∣

+
∣∣∣∣
p1 q1
p3 q3

∣∣∣∣

+
∣∣∣∣
p1 q1
p4 q4

∣∣∣∣

+
∣∣∣∣
p2 q2
p3 q3

∣∣∣∣

+
∣∣∣∣
p2 q2
p4 q4

∣∣∣∣

+
∣∣∣∣
p3 q3
p4 q4

∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us start to collect a few properties of this new operation p ∨ q.
Theorem 12.1. The operation p∨q is linear in each argument and anticom-
mutative.

Proof. The result is more or less obvious from the definition of the operation.
Each entry of the six-dimensional vector is a 2 × 2 matrix that is by itself
linear in p and q and anticommutative. Thus the whole operation p∨ q must
have these properties. ��

This implies another immediate result, which is very similar to operations
we have had so far.

Theorem 12.2. Let p, q be homogeneous coordinates of two points that span
a line l and let a, b be two other points that span the same line. Then p∨ q =
λ · (a ∨ b) for a suitable factor λ.
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Proof. The result is an immediate consequence of multilinearity and anti-
commutativity. If a and b are on l, then we may express them as linear
combinations of p and q, say

a = λ1p+ μ1q and b = λ2p+ μ2q.

Since a and b span the line, the determinant of the matrix
(
λ1 μ1
λ2 μ2

)
is nonzero.

Calculating the join, we obtain

a ∨ b = (λ1p+ μ1q) ∨ (λ2p+ μ2q)
= λ1λ2(p ∨ p) + λ1μ2(p ∨ q) + μ1λ2(q ∨ p) + μ1μ2(q ∨ q)
= (λ1μ2 − μ1λ2)(p ∨ q).

The factor λ turns out to be the determinant (λ1μ2 − μ1λ2). ��

The last result is crucial. It claims that the six-dimensional vector p∨ q is
(up to a scalar factor, as usual) a unique representation of the line spanned
by p and q. It does not depend on the special choice of the two spanning
points. This is similar to our observation in the last section, where we saw
that the join of three points depends only on the plane spanned by these
points, and not on their particular choice.

If we accept that a good representation of lines in space are six-dimensional
vectors, then we have to face another problem. There are only four degrees
of freedom necessary to parameterize lines in space. Here is a rough but in-
structive way to see this: Assume you have two parallel planes in R

3. Then
almost all lines in R

3 will intersect these planes (except those that are par-
allel to the planes). The two points of intersection (one on each plane) de-
termine those lines uniquely. This makes four degrees of freedom—two for
each plane. So, if we have just four degrees of freedom, how does this relate
to the six-dimensional vector that represents the line? One of the degrees of
freedom is “eaten up” by the irrelevant scalar factor that we have in any ho-
mogeneous approach. So there can be at least five relevant parameters in the
six-dimensional vector. The reason that we have five parameters and not four
is that the entries in our vector are not independent. They were defined to be
the 2× 2 subdeterminants of a 4× 2 matrix. In Section 6.5 we learned about
Grassmann-Plücker relations that form dependencies among such systems of
sub-determinants. In particular, we have

∣∣∣∣
p1 q1
p2 q2

∣∣∣∣
∣∣∣∣
p3 q3
p4 q4

∣∣∣∣−
∣∣∣∣
p1 q1
p3 q3

∣∣∣∣
∣∣∣∣
p1 q1
p4 q4

∣∣∣∣+
∣∣∣∣
p2 q2
p3 q3

∣∣∣∣
∣∣∣∣
p2 q2
p4 q4

∣∣∣∣ = 0.

Thus in general, if we know five entries of a six-dimensional vector that
describes a line, then we automatically know the last one (we have only to
be a bit careful with degenerate cases).
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Conversely, if we have a vector l = (a, b, c, d, e, f)T that satisfies the equa-
tion af − be+ cd = 0, Theorem 7.1 implies that there are two vectors p and q
with l = p∨ q. Vectors that satisfy such a condition are called decomposable.

12.5 Joins and Meets: A Universal System . . .

Before we play around with line coordinates in space we will first clear up
our notation and present a universal system that is capable of dealing with
points, lines and planes in a unified way. The situation is even better: we will
present a system that is capable of dealing with linear objects in arbitrary
projective spaces of any dimension. This will be a direct generalization of the
three-dimensional case.

The main problem so far is that points and planes are represented by four-
dimensional vectors, while lines are represented by six-dimensional vectors.
So a priori it is not clear how to define operators that work reasonably on
arbitrary collections of such objects. The key observation here is to give up
the idea that the coordinate entries belong to certain positions in a vector. It
will be much more useful to associate meaningful labels to the different entries
of a vector. In the three-dimensional case these labels will be the subsets of
the set {1, 2, 3, 4}. There are exactly four one-element subsets; they will label
the coordinate entries of a point. There are six two-element subsets; they will
label the entries of a line. And there are four three-element subsets and they
will be used to label the coordinate entries of a plane. So points and planes
are both represented by four-dimensional vectors, but they have explicitly
different meanings.

It is also reasonable to include the empty set { } and the full set {1, 2, 3, 4}
in our system. We will learn about their meaning soon. If we consider the num-
bers of subsets sorted by their cardinality, we obtain the sequence 1, 4, 6, 4, 1,
which is simply a sequence of binomial coefficients—the fifth row of Pascal’s
triangle.

We will (at least partially) follow Grassmann’s footprints in order to see
how the whole system of join and meet operations arises. In modern terms,
Grassmann states that if we want to work in projective (d − 1)-dimensional
geometry, we have to fix first of all a system of d units

e1, e2, e3, . . . , ed

that are by definition independent. You may think of them as the d-
dimensional unit vectors and associate the corresponding projective points
to them. These units are in a sense the most fundamental geometric objects,
and any other objects will be expressible in terms of units, real numbers,
and admissible operations. Furthermore, it is allowed to form products of
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units. These products are assumed to be anticommutative and linear in both
factors. Thus we have

eiej = −ejei if i �= j and eiei = 0.

Products of k units are called rank-k units. Thus e1, . . . , ed are rank-1 units,
e1e2, . . . , ed−1ed are rank-2 units, and so forth. Furthermore it is allowed to
form products and sums of objects. A geometric object of rank-k is a linear
combination of several rank-k units. One may think of rank-k objects as rep-
resenting a (k − 1)-dimensional linear object in the corresponding projective
space.

Let us see how these simple rules automatically create a system in which
multiplication corresponds to well-known arithmetic operations. Let us start
with the first nontrivial case d = 2. Rank-1 objects (points) are simply linear
combinations

λ1e1 + λ2e2.

Up to sign change there is only one nonvanishing rank-2 unit, namely e1e2 =
−e2e1. The product of two points turns out to be

(λ1e1 + λ2e2)(μ1e1 + μ2e2)
= λ1μ1e1e1 + λ1μ2e1e2 + λ2μ1e2e1 + λ2μ2e2e2

= (λ1μ2 − λ2μ1)e1e2,

which is up to the factor e1e2 just the determinant of the points. Products
of more than three points will always vanish completely.

Next is d = 3. We have three units e1, e2, e3 and (up to sign) three rank-2
units e1e2, e1e3, e2e3. Calculating the product of two points, we get

(λ1e1 + λ2e2 + λ3e3)(μ1e1 + μ2e2 + μ3e3)
= . . . expression with nine summands . . .
= (λ1μ2 − λ2μ1)e1e2 + (λ1μ3 − λ3μ1)e1e3 + (λ2μ3 − λ3μ2)e2e3,

which is essentially the cross product of the two points expressed as a linear
combination of rank-2 units. Thus the join operation of two points pops out
automatically (except for the sign change in the middle entry). If we proceed,
we see that the product of three points turns out to be

(λ1e1 + λ2e2 + λ3e3)(μ1e1 + μ2e2 + μ3e3)(τ1e1 + τ2e2 + τ3e3)
= . . . expression with 27 summands . . .
= (λ1μ2τ3 + λ2μ3τ1 + λ3μ1τ2 − λ1μ3τ2 − λ3μ2τ1 − λ2μ1τ3)e1e2e3,

which is just the determinant of the point coordinates times e1e2e3.
If we proceed in a similar manner, then we find out that for d = 4 the points

are represented by four-dimensional objects. The products of two points is a
linear combination of the six rank-2 units whose coefficients are exactly the
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entries of our join operation;

(λ1e1 + λ2e2 + λ3e3 + λ4e4)(μ1e1 + μ2e2 + μ3e3 + μ4e4)
= . . . expression with 16 summands . . .
= +(λ1μ2 − λ2μ1)e1e2 + (λ1μ3 − λ3μ1)e1e3 + (λ1μ4 − λ4μ1)e1e4

+(λ2μ3 − λ3μ2)e2e3 + (λ2μ4 − λ4μ2)e2e4 + (λ3μ4 − λ4μ3)e3e4.

(Now you see where the positive signs come from.) The product of three
points gives the coordinates of the plane expressed in rank-3 units. Finally,
the product of four points creates the determinant of the coordinate vectors
of the points times the rank-4 unit e1e2e3e4.

We see that all the ei in our expressions carry essentially no information.
The only thing that counts are the indices. Furthermore, the only combina-
tions of indices that really contribute are those with nonrepeating letters,
and it suffices to consider one unit for every subset of indices. Thus we can
go ahead and say that a rank-k object is a vector with

(
d
k

)
entries labeled

by the k-element subsets of {1, 2, . . . , d}. We identify these subsets with the
sequences of k ordered elements taken from {1, 2, . . . , d} =: Ed. Thus the
index set of a k-flat (this is a (k − 1)-dimensional linear object) in RP

d−1 is

Λ(d, k) := {(i1, . . . , ik) ∈ Ekd | i1 < i2 < · · · < ik}.

To further distinguish the Grassmann operation from ordinary multiplication
we introduce the symbol “∨” and call this the join operation. In general the
join operation can be determined by the following rules. If we are working in
RP

d−1, we can take the join of a k-flat P and an m-flat Q if k + m ≤ d. If
R = P ∨Q, then R is indexed by the elements of Λ(d, k +m). For an index
λ ∈ Λ(d, k +m) we can calculate the corresponding entry of R according to
the formula

Rλ =
∑

λ=μ∪τ
μ∈Λ(d,k)

τ∈Λ(d,m)

sign(μ, τ)PμQτ .

Here sign(μ, τ) is defined to be 1 or −1 depending on the parity of trans-
positions needed to sort the sequence (μ, τ). We will see in the next section
how this formula is used in practice. It allows us to calculate the join of two
arbitrary objects as long as the sum of their ranks does not exceed d. The
above formula filters exactly those terms that do not cancel in the Grassmann
product.

In a similar fashion we can define a meet operation. We will not develop
here the theory behind the exact definition. It is essentially defined in a way
that represents the dual of the join operation. If we work in RP

d−1, we are
allowed to take the meet of a k-flat P and an m-flat Q whenever k +m ≥ d.
We abbreviate the meet operator by “∧”. If R = P ∧ Q, then R is indexed
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by the elements of Λ(d, k +m− d). For an index λ ∈ Λ(d, k +m− d) we can
calculate the corresponding entry of R according to the formula

Rλ =
∑

λ=μ∩τ
μ∈Λ(d,k)

τ∈Λ(d,m)

sign(μ\λ, τ\λ)PμQτ .

12.6 . . . And How to Use It

In this section we will see what can be done with join and meet operations
and how they are calculated in practice. We will restrict our considerations
to d = 4, the spatial case. Everything carries over in a straightforward way
to higher (and lower) dimensions. First of all, we will start with a kind of
symbolic table that exemplifies the dimensions of the objects involved under
join and meet operations. For the join we obtain

point ∨ point = line,
point ∨ line = plane,
point ∨ plane = number,
line ∨ line = number,

point ∨ point ∨ point = plane,
point ∨ point ∨ line = number,

point ∨ point ∨ point ∨ point = number.

Every operation results in either a vector or a number. Whenever a zero vec-
tor or the number zero occurs as result, this indicates a degenerate situation
in which the objects are dependent. For instance, usually the join of a point
and a line results in the plane spanned by the point and the line. However,
if the point is on the line, then the join results in the zero vector. The con-
secutive join of four points results in a number, and this number is just the
determinant of the matrix formed by the vectors of the points as column
vectors. If the points are coplanar, then this join returns the number zero.
The join of two lines is zero if the two lines coincide. The join of a point and
a plane is a number. In principle, this number is just the scalar product of
the point and the plane. It is zero whenever the point is on the plane.

The meet operator performs the dual operations. Again the occurrence of
a zero or a zero vector indicates a degenerate situation. In detail, the meets
can be used to perform the following operations:
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plane ∧ plane = line,
plane ∧ line = point,
plane ∧ point = number,
line ∧ line = number,

plane ∧ plane ∧ plane = point,
plane ∧ plane ∧ line = number,

plane ∧ plane ∧ plane ∧ plane = number.

Again it should be mentioned that all operations based on join and meet fully
support all elements of projective geometry. Thus in the standard embedding
of R

3 elements at infinity are also processed correctly. For instance, the meet
of two parallel planes results in a line at infinity. To achieve a standard em-
bedding we have to make a choice of which the vectors e1, . . . , e4 is chosen
for homogenization purposes. If we choose e4 for this purpose, we may rep-
resent a point (x, y, z) ∈ R

3 as xe1 + ye2 + ze3 + e4. The plane at infinity
then corresponds to e1e2e3. The notation is much more familiar if we simply
represent the objects with associated labels. A Euclidean point (x, y, z) and
a Euclidean plane {(x, y, z)t | ax + by + cz + d = 0} then correspond to the
two vectors ⎛

⎜⎜⎝
1 x
2 y
3 z
4 1

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

123 −d
124 c
134 −b
234 a

⎞
⎟⎟⎠.

The minus signs in the plane coordinates are used to compensate the sign
changes caused by the join operator. The join operation of these two objects
results in a single number (labeled by “1234”); this number is simply calcu-
lated as ax + by + cz + d, as desired. It is zero if the point and the plane
coincide.

Let us perform a more elaborate example with concrete coordinates. Let
us first calculate the join of two points:

⎛
⎜⎜⎝

1 3
2 −2
3 4
4 1

⎞
⎟⎟⎠ ∨

⎛
⎜⎜⎝

1 −3
2 3
3 5
4 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

12 3·3 − (−2)·(−3)
13 3·5 − 4·(−3)
14 3·1 − 1·(−3)
23 (−2)·5 − 4·3
24 (−2)·1 − 1·3
34 4·1 − 1·5

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

12 3
13 27
14 6
23 −22
24 −5
34 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The result is a six-dimensional vector representing a line. In particular, this
vector must satisfy the Grassmann-Plücker relation. The Grassmann-Plücker
relation for a line l can be simply expressed as l ∨ l = 0 (where 0 is the zero
vector). This has a direct geometric interpretation: a line is incident to itself.
In our example, we get
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3·(−1) − 27·(−5) + 6·(−22) = −3 + 135 − 132 = 0,

as expected. We proceed by forming the meet of this line with some plane.
The result is the point where the plane intersects the line:
⎛
⎜⎜⎜⎜⎜⎜⎝

12 3
13 27
14 6
23 −22
24 −5
34 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

∧

⎛
⎜⎜⎝

123 4
124 2
134 1
234 5

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 3·1 − 27·2 + 6·4
2 3·5 − (−22)·2 + (−5)·4
3 27·5 − (−22)·1 + (−1)·4
4 6·5 − (−5)·1 + (−1)·2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 −27
2 39
3 153
4 33

⎞
⎟⎟⎠.

If everything went right with our calculation, the resulting point must lie on
the plane itself. Thus the join of the point and the plane must be simply zero.
We obtain

⎛
⎜⎜⎝

1 −27
2 39
3 153
4 33

⎞
⎟⎟⎠ ∨

⎛
⎜⎜⎝

123 4
124 2
134 1
234 5

⎞
⎟⎟⎠ =

(
1234 (−27)·5 − 39·1 + 153·2 − 33·4 ) = 0.

We finally will have a closer look at the representation of infinite lines
(in the usual embedding of R

3 in RP
3). There are two ways to derive a line

at infinity: either we join two infinite points or we meet two parallel planes.
Either way leads to the same characterization of infinite lines, though the
situations may be interpreted slightly differently from a geometric point of
view. Joining two infinite points. we obtain

⎛
⎜⎜⎝

1 x1

2 y1
3 z1
4 0

⎞
⎟⎟⎠ ∨

⎛
⎜⎜⎝

1 x2

2 y2
3 z2
4 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

12 x1y2 − x2y1
13 x1y3 − x3y1
14 0
23 x2y3 − x3y2
24 0
34 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

A line is infinite if the only nonzero entries are those not involving the label 4.
We also see that if we restrict the line to the labels 12, 13, and 23, then the
join of infinite points behaves like a cross product.

Two planes are parallel if they differ only in the 123entry. The meet of two
parallel planes is an infinite line:

⎛
⎜⎜⎝

123 d1

124 c
134 b
234 a

⎞
⎟⎟⎠ ∧

⎛
⎜⎜⎝

123 d2

124 c
134 b
234 a

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

12 d1c− d2c
13 d1b− d2b
14 cb− bc
23 d1a− d2a
24 ca− ac
34 ba− ab

⎞
⎟⎟⎟⎟⎟⎟⎠

= (d1 − d2) ·

⎛
⎜⎜⎜⎜⎜⎜⎝

12 c
13 b
14 0
23 a
24 0
34 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Again, as expected, the 14, 24, and 34 entries are zero. The other three
entries encode up to the usual sign changes the common normal vectors of
the planes. The factor d1 − d2 can be interpreted in the following way. If the
planes coincide then d1 = d2 and the meet operation results in a zero vector.
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Diagram Techniques

Notation, Notation, Notation.

Title of a book by Jim Blinn, 2002

We just reduced all of geometry to tensor multiplication (well,
almost all). And there are no embarrassing transposes. Row-
ness and column-ness is superseded by the more general con-
cept of covariant and contravariant indices. Plus we can feel
really cool by sharing notation with General Relativity.

Jim Blinn, 1992

It sometimes happens that reading a mathematical article sheds a completely
new light on subjects that one considered “personally well-under stood.” So
it happened to me when I did some research related to solving cubic equa-
tions and stumbled across a series of papers written by the computer sci-
entist Jim Blinn. The series was essentially about the expressive power of
tensor calculus applied to geometry [8, 9, 10, 11]. I always hated working
with tensors and avoided them wherever possible, because tensor notation
tends either to be very abstract or to clutter all the essential information of
a formula into indices and indices of indices and indices of indices of indices.
Jim Blinn’s papers were different. There tensor formulas were encoded as
diagrams, and suddenly all those terrible index battles became geometrically
meaningful structures. Moreover, this approach gives a unifying setup for
treating points, lines, planes, hyperplanes, transformations, quadratic forms,
algebraic curves, and surfaces in all dimensions. Everything becomes a ten-
sor, and every projective invariant becomes a diagram. The bookkeeping of
how to combine the coordinate entries of the tensors (for instance to derive

227
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the Plücker coordinates of a line) is completely driven by the structure of the
diagrams. It is the aim of this chapter to give a brief introduction to these
methods. As before, we want to remain as explicit as possible. We will first
translate the objects of our previous investigations to tensors and then trans-
late tensor formulas to tensor diagrams. The mathematically trained reader
may excuse that we again focus on concrete objects and focus on tensors
given by concrete coordinate values rather than taking the (more modern)
abstract point of view: “A tensor is an abstract element of a tensor space,. . .”

13.1 From Points, Lines, and Matrices to Tensors

So far, we have dealt with several types of objects. In RP
2 we had points

and lines. In RP
3 we had points, lines, and planes, and so on. Furthermore,

there were transformations (represented by d × d matrices) and quadratic
forms (also represented by d×d matrices). Our typical operations were scalar
products (to determine coincidences), and cross products (for join and meet),
exterior products, and matrix multiplications from the left and from the
right, depending on the context. Our previous chapter introduced exterior
products as a generalization of join and meet operations for the price that
the bookkeeping of how to perform the operations became a little complicated
(compare Section 12.5).

We will now (as a first step) consider all these objects as particular types
of tensors, and we will consider all operations as multiplication of tensors
with tensors. For this, let us look at a few of these operations from a very el-
ementary perspective, in which we neglect the difference of rows and columns
in matrices and vectors and represent all geometric quantities as arrays of
numbers and where we rebuild all elementary operations from scratch. Let
us consider the rank-three case RP

2 first. A point p has homogeneous coor-
dinates (p1, p2, p3); a line l has coordinates (l1, l2, l3); the scalar product of
the points and the line is

3∑
i=1

pili.

A transformation matrix T is a 3 × 3 array of numbers with entries tij . The
product of T and the point p is in elementary terms

⎛
⎝
t11 t12 t12
t21 t22 t22
t31 t32 t33

⎞
⎠ ·
⎛
⎝
p1

p2

p3

⎞
⎠ =

⎛
⎜⎝

∑3
i=1 pit1i∑3
i=1 pit2i∑3
i=1 pit3i

⎞
⎟⎠ .

The evaluation of the quadratic form pTAp turns out to be
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3∑
i=1

3∑
j=1

aijpipj.

If we want to evaluate the quadratic form for the transformed point Tp we
get

pTT TATp =
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

pitijajktklpl

(if you are patient you can check it). So, every single result or coordinate
of a result turns out to be expressible as a summation of suitable mono-
mials with carefully chosen indices. If we consider the vectors and matri-
ces as one-dimensional, resp. two-dimensional arrays, the summation tells
us explicitly how to perform the corresponding operation. Moreover, in the
final summation formula, rowness, columnness, transposition, left- and right-
multiplication, do not play a special role. Everything is encoded in the posi-
tion of the indices.

So let us redefine these operations from scratch based entirely on the notion
of multidimensional arrays and summation, thereby generalizing the concepts
of numbers, vectors, and matrices (which are tensors of grade 0, grade 1,
and grade 2, respectively). A tensor of grade1 k is a multidimensional array
of numbers ai1,i2,...,ik . Each of the numbers can be accessed by a suitable
sequence of indices i1, i2, . . . , ik. The range of the indices is for each j ∈
{1, . . . , k} restricted to a range 1 ≤ ij ≤ nl. We will call such hyperbox-like
structures that tell us the range of the indices the shape of a tensor. For most
of our applications the limits nl of the index ranges will all be equal to the
rank of the projective geometry. So for the projective plane RP

2 we will deal
with tensors of shape 3, 3 × 3, 3 × 3 × 3, 3 × 3 × 3 × 3, etc. They have the
grades 1, 2, 3, 4,. . ., respectively. Numbers will be identified with tensors of
grade 0. When we work in RP

1 we will have to deal with tensors of shape 2,
2× 2, 2× 2× 2, etc. Grade- 1 Tensors (which correspond to vectors) will not
have a predefined way of writing them as rows or columns. The coordinate
entries vi will simply be accessed by the single index i. Similarly, 2-tensors
(they correspond to matrices) will not have a row/column structure. The
coordinates will be simply accessed by the two indices.

Let us consider the RP
2 case first. A point p has homogeneous coordi-

nates (p1, p2, p3); a line l has homogeneous coordinates (l1, l2, l3). The scalar
product of p and l is

3∑
i=1

pili.

We have seen previously that expressions in projective geometry will tend
to have many summation signs, which do not carry much information. They

1 Often in the literature the term rank is used instead of grade. However, in our context
the term rank is already occupied in relation to the dimension of a projective geometry.



230 13 Diagram Techniques

just tell us from where to where an index runs, but this is already specified by
the shape of the tensors. So, let us drop the summation signs in our notation.
We use a formal trick that is known as Einstein’s summation convention. If
we want to sum over an index, then the index should occur exactly twice in a
formula, and it should be used once as a subscript and once as a superscript.
Thus our scalar product may be simply written as

pil
i.

In a similar fashion we can represent transformation matrices as grade-2
tensors.

Using Einstein’s summation convention we can write the multiplication of
a matrix by a vector (the classical matrix multiplication) as

tijpi.

We should step back for a moment and check that we indeed get the right
results. If we set qj = tijpi, the three entries of qj evaluate to

q1 =
3∑
i=1

ti1pi, q2 =
3∑
i=1

ti2pi, q3 =
3∑
i=1

ti3pi,

which are exactly the components of the result of usual matrix multiplication.
The upper and lower indices have one additional semantic meaning. We

have seen that lines were equipped with upper indices, whereas points were
equipped with lower indices. In a sense, all lower indices will turn out to be
“pointlike” and all upper indices will turn out to be “linelike.” In products of
tensors indices with the same letter occur only between an upper and a lower
entry. Thus in the product tijpi, the point p is connected via the index i to
the transformation matrix. The only index not “eaten up” by the summation
is the lower index j; thus the result is again a pointlike object.

In our previous investigation into conics (Sections 9 to 11), quadratic forms
were represented by a 3 × 3 matrix A. Evaluation of a quadratic form at a
point was done by the product pTAp. In the context of tensors, the matrix A
is different from a transformation matrix T . While the product of T with p
is again a point, the product of A with p must be linelike so that it can be
connected to another point. In other words, it must be possible to connect
the quadratic form represented by A to two points. Thus the matrix A is
represented as a grade-2 tensor with two upper indices, aij . The evaluation
of the quadratic form can be written as

aijpipj .

Observe that the order of the tensors becomes completely irrelevant, since
the summation is completely driven by the distribution of the indices. We can
also go one step further and combine points, transformations, and quadratic
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forms in one formula. For instance, the application of the transformed point
q = tijpi to the quadratic form aij becomes

pit
i
ja
jktlkpl.

Again the order of the different tensors in this formula is completely irrele-
vant. Only the position of the indices matters.

13.2 A Few Fine Points

Before we continue we will clarify a few points that may be confusing if one
has no prior experience with tensors.

• Tensors are neither vectors nor matrices: Tensors are just multidimen-
sional arrays of numbers. Semantically, grade-1 tensors are similar to
vectors, and grade 2-tensors to matrices. However, they do not have a
specific rowness or columnness. There is also nothing like a transpose of
a tensor.

• Tensor multiplication is commutative: We are used to noncommutativity
when we are dealing with matrices. In general, for matrices, AB is not
the same as BA, however, for the corresponding tensors aij and bij the
corresponding product is entirely expressed by the names and positions
of the indices. Thus one of the above products (say AB) corresponds to
aijb

k
i (which is the same as bki a

i
j). The other product is aji b

i
k (which is the

same as bika
j
i ).

• Every summation needs a new index letter: The indices are necessary
formal elements of any tensor-product formula. An index may occur once
or twice. If it occurs twice, then it has to occur as an upper and as a lower
index. The result no longer contains this index. If it occurs once, then
this index survives the multiplication. It becomes an index of the resulting
tensor. The number of indices that occur exactly once corresponds to the
grade of the resulting tensor. If every index occurs twice, then the result
is a tensor of grade 0. This is just a number.

• Position of indices matters: In a tensor that has several upper or lower
indices the sequence of the indices matters. The position of the indices
replaces and generalizes the row/column structure of matrices.

• Tensors do not have powers: One might be afraid that the upper indices
of tensors may be confused with powers of tensors. Fortunately, there
is no such notation of the power of a tensor. If a tensor is repeatedly
multiplied by itself, then this has to be written as tbat

c
bt
d
c t
e
d . . ..

• Tensors of the same shape may be added: This is similar to vectors and
matrices. Tensors are added componentwise. Tensors satisfy the left and
right distributive laws.



232 13 Diagram Techniques

We will see soon that tensors have a great unifying and clarifying power
when one is dealing with objects of projective geometry. However, with the
current notation (which is unfortunately the traditional one) there are a few
obvious drawbacks. Much important information is encoded by the name and
positions of the indices. As soon as we have more then 26 indices we will run
out of letters, but most probably we will lose the overview earlier. This is the
reason why tensor notation is not very common in books on projective geom-
etry. Before we continue with our considerations on tensors, we will introduce
a different notation that will make tensor operations more readable and give
additional structural insight into the interplay of the different objects.2

13.3 Tensor Diagrams

The human brain is not very well suited for dealing with formulas in which
everything depends on the names and positions of indices. This may be one of
the reasons why tensor notation did not become really popular in contexts of
incidence geometry (although it is extremely useful). This is where diagrams
come to the rescue. What does a pair of upper and lower indices mean?
The indices simply say that two tensors are connected in a certain way. For
instances in the formula

pit
i
ja
jktlkpl,

the point pi is connected to the transformation tensor tij . It becomes trans-
formed, and the result is connected to the quadratic form ajk via the index j.
Similarly, the point pl is connected to the transformation tlk. The result is
connected to the other “slot” of the quadratic form via the index k. In the
diagram notation that will be introduced, the above product will be written
as

pp T TA

So, here are the rules for converting tensor products to corresponding
diagrams:

(i) Every tensor in a product is represented by a node in a directed graph.

(ii) Every lower index corresponds to an outgoing edge.

(iii) Every upper index corresponds to an incoming edge.

(iv) Tensors that share an index are connected by an arrow.

2 Although we here will focus mainly on diagrammatic treatment of tensors, we want
to mention at least one classical book by Gurevich [55] on tensors that gives a brilliant
and deep introduction close to contexts of projective geometry with a special emphasis on
invariant-theoretic aspects.
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(v) Indices that are used only once correspond to unconnected arrows.

Thus in the above diagram the arrows from left to right correspond to the
index letters i, j, k, and l in this order. Furthermore, we will use lowercase
letters for tensors of grade 1 and uppercase letters for other tensors. Each
diagram will thereby represent a product of tensors. Since tensors of the same
shape can also be added, tensor diagrams can also be added if they have the
same number of incoming and outgoing edges of the same rank. However,
it has to be specified exactly which of the free arrows of one summand cor-
respond to which free arrows of the other summands. We will come to this
issue later. Diagrams that have no incoming and outgoing edges will be called
closed. Closed diagrams correspond to tensor products that will evaluate to
numbers.

We will systematically translate geometric constructions and invariant for-
mulas into the language of tensor diagrams. We start with the elementary
objects first. Points, lines, transformations, and quadratic forms are repre-
sented by the following diagram nodes:

p l T A

Semantically, it is meaningful to connect any two nodes along an incoming
and an outgoing edge. The simplest closed diagram we can form is

p l

This is nothing but the product pili, which is (in our old nomenclature) the
scalar product of p and l. This closed diagram has an immediate geometric in-
terpretation. If the diagram evaluates to zero, then p lies on l. Transformation
of a point p by a transformation T can be expressed by the diagram

p T

The outgoing arrow indicates that the result is again a point.

Let us now consider quadratic forms. Evaluation of the quadratic form pTAp
(classical notation) translates to

p pA

If this diagram evaluates to zero, then the point p lies on the conic described
by A. We have to be a little careful here. Since A has two incoming edges,
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it corresponds to a tensor Aij . A priori the two arrows may have different
meanings. This happens if there are index values i, j for which Aij �= Aji.
There is no problem if A is a symmetric tensor. This is a tensor for which
the order of the indices does not matter. Then all arrows of this vector are
equivalent. In our case A is symmetric if Aij = Aji for all values of i and j.
Since quadratic forms always can be represented by symmetric matrices, we
may also use a symmetric tensor.

What does the diagram

p A

mean? The incoming free arrow indicates that the diagram represents a line-
like object. In fact, it is nothing but the polar of the point p with respect
to A. We get a closed diagram if we glue another point (say q) to the free
arrow of the above diagram. We obtain the diagram

p qA

This diagram evaluates to zero if q lies on the polar of p. Equivalently, in this
case p lies on the polar of q. The little dotted line in the diagram indicates
that one can consider the diagram as the polar of p connected to q.

13.4 How Transformations Work

There was something remarkable about the closed tensor diagrams we have
considered so far. Whenever such a diagram evaluated to zero, this corre-
sponded to a projectively invariant property. In our examples these proper-
ties were coincidence of point and line, coincidence of point and conic, and
q coincidences with the polar of q. Thus the diagrams will turn out to be
invariant under projective transformations. For this, however, we have to
specify how an arbitrary tensor transforms under a projective transforma-
tion T . Let us recall the transformation behavior of our basic objects in the
classical matrix/vector notation. If we transform a point p by multiplying it
by a matrix T , we get the transformed point

p′ = Tp.

In Section 3.6 we learned that under this transformation, lines have to be
transformed by the matrix (T−1)T according to

l′ = (T−1)T l.
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In Section 10.4 we learned that if A is a matrix that represents a quadratic
form, it has to be transformed according to

A′ = (T−1)TAT−1.

If S is a transformation itself and we consider how we have to represent S in
a coordinate system after the transformation T , we obtain the similar matrix

S′ = TST−1.

We can easily express all these transformations in terms of tensor dia-
grams. There all the problems of whether the matrices T and T−1 have to be
multiplied from the left or from the right, transposed or nontransposed, will
be resolved. For this let T−1 be the tensor representing the inverse matrix
of T . We then have

T ji T
−1k

j = Eki ,

where Eki denotes the unit matrix. The unit matrix, however, may be simply
represented by a plain arrow in a diagram. Thus in diagram notation the
above equation reads

T T -1 =

The tensor T−1 is uniquely determined by the tensor T in the same way
as the inverse of a matrix is uniquely determined by the matrix. Now we
can specify how a tensor behaves under a projective transformation τ . This
transformation determines a tensor T that transform the points. Lines are
transformed by the tensor T−1. The general rule for transforming tensors is as
follows: Each outgoing edge must be connected to the tensor T . Each incoming
edge must be connected to the tensor T−1. Thus we obtain the following
transformation rules for points, lines, quadratic forms, and transformations:

p p

l l

SS

AA

T

T

T -1T -1

T -1

T -1
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Retranslating these rules in terms of matrices gives exactly the old trans-
formation rules we developed in previous chapters. These transformation rules
imply that all diagrams composed of points, lines, and quadratic forms are
projectively invariant in the following sense.

(i) Assume that the diagram has no free arrows. After transforming each
element according to the above rule the diagram will evaluate to exactly
the same number as before.

(ii) If the diagram has free arrows, the result of the evaluation will automat-
ically be transformed according to the above rules after the diagram is
transformed.

The reason for both effects is that along an arrow inside a diagram, trans-
formation of the involved tensors generates a pair of consecutive tensors T
and T−1 that cancel each other and leave the arrow unchanged. Consider,
for instance, the diagram

p qA

If each tensor is transformed, we get

p qA TT T -1T -1

The dotted lines indicate the separation into the different transformed ten-
sors. Each pair of tensors T and T−1 cancels, and we obtain the original
diagram again. In particular, if the diagram evaluates to zero before the
transformation, it will be zero after the transformation as well.

Let us spend a few words on common terminology to connect us to the
terms of the standard literature. Lower indices are usually called covariant
indices, while upper indices are usually called contravariant indices. Thus co-
variant indices correspond to outgoing (pointlike) arrows, while contravariant
indices correspond to incoming (linelike) arrows. Under a projective transfor-
mation all covariant indices transform according to T , while all contravariant
indices transform according to T−1.

13.5 The δ-tensor

There is one ingredient in the classical theory of tensors that remains almost
unnoticed in the context of tensor diagrams: The δ-tensor δji . This is a tensor
that is defined as the Kronecker delta. Thus it is a two-dimensional grade-2
tensor δji with one upper and one lower entry and defined by the property
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δji =
{

1 if i = j,
0 if i �= j.

It is nothing but a unit matrix in tensor form, δji = Eji . The corresponding
diagram for this transformation will simply be denoted by an arrow with no
node at all. In the tensor world it “just” relabels the indices. For instance,
we have pjδ

j
i = pi and pjδ

j
i l
i = pil

i. So the δ-tensor can be used to connect
a covariant and a contravariant tensor with different indices. In the context
of tensor diagrams a δ-tensor plays the role of an intermediate extra arrow
and remains essentially unnoticed. We will see that δ-tensors play an essential
role in this context when we start to transform diagrams into different-looking
equivalent ones.

13.6 ε-Tensors

The observant reader may have recognized that the diagrams we have con-
sidered so far were not very exciting. Each of them was essentially a linear
chain of tensors with matrices in the middle and perhaps points or lines at
the ends. The reason for this is that we only studied tensors that possess
one or two arrows. There was no possibility to generate branched structures.
This will now change dramatically, and this is the point where the game be-
comes really exciting. We will now introduce a special tensor, the so-called
ε-tensor (or sometimes also called the Levi-Civita symbol). Unlike points,
lines, quadratic forms, or transformations, the number of indices (the grade)
of an ε-tensor depends on its rank. A rank-3 ε-tensor will have three arrows,
a rank-2 ε-tensor will have two arrows, and a rank-4 ε-tensor will have four
arrows. For each rank there are two different variants of the ε-tensor: either
purely covariant or purely contravariant. We will start with an investigation
of the rank-3 ε-tensor and discuss the rank-4 case later.

The rank-3 ε-tensor occurs in two different forms, εijk and εijk. The tensor
εijk is a 3 × 3 × 3 tensor, since each index runs from 1 to 3. Thus it is
defined by 27 coordinate entries. Its crucial defining properties are that it
is completely antisymmetric and that ε123 = 1. Being antisymmetric means
that interchanging two indices reverses the sign (for instance ε123 = −ε132).
In particular, all entries where an index value occurs twice must be zero.
Thus the only nonzero entries are those where none of the indices occurs
twice. They are already determined by the alternating rule and ε123 = 1. We
get

ε123 = ε231 = ε312 = 1, ε132 = ε321 = ε213 = −1.

The diagrams for the contravariant and covariant ε-tensors are
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and

The ε-tensor is the key tool for performing geometric operations in the
context of tensors. As a first instance we investigate the tensor product

lk = piqjε
ijk.

The index k runs from 1 to 3. For calculating l1 we have to sum over all nine
possibilities for the indices i and j. There are only two such summands for
which the ε-tensor does not vanish, and we get

l1 = p2p3ε
231 + p3p2ε

321 = p2p3 − p3p2.

Similarly, we get

l2 = p1p3ε
132 + p3p1ε

312 = −p1p3 + p3p1

and
l3 = p1p2ε

123 + p2p1ε
213 = p1p2 − p2p1.

Thus piqjεijk evaluates exactly to the tensor that represents the cross product
of the points p and q. This tensor has one contravariant index and is therefore
linelike. It is exactly the join of p and q. In diagram notation we can write

p

q

l=

where l is the join of p and q. Similarly, we can calculate the meet of two
lines using the covariant ε-tensor:

p

m

l

=

If we plug three different points p, q, and r into a contravariant ε-tensor,
we get exactly the determinant of a matrix whose columns are formed by the
coordinates of the points:
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piqjrkε
ijk = det

⎛
⎝
p1 q1 r1
p2 q2 r2
p3 q3 r2

⎞
⎠ .

The reason for this is that the six nonzero entries of εijk filter exactly the right
summands with the correct signs for the determinant evaluation. Similarly,
the expression limjgkεijk calculates the determinant of the coordinates of
three lines. Thus vanishing of the diagrams

p

q

r

m

l

g

can be used to test whether three points are collinear or three lines meet in
a point, respectively.

One has to be a bit careful to respect the anticommutativity of the ε-
tensors when dealing with diagrams. Rotating the three slots of an ε-tensor
does not change the sign, while interchanging two arrows changes the sign.

13.7 The ε-δ Rule

We now want to investigate rules according to which diagrams can be trans-
ferred to equivalent diagrams. The key point here is an identity that allows
us to express the direct connection of a covariant and contravariant ε-tensor
by the sum of two simpler diagrams that do not contain any ε-tensor. This
identity is called the ε-δrule and reads

εijkεlmk = δilδ
j
m − δimδ

j
l .

This identity can be easily checked by direct expansion. There is one problem
in transferring this identity to a diagram. One has to be very careful about the
signs of the involved summands. The following sequence of diagram identities
leads to the diagrammatic form of the ε-δrule that we will use later on.
In order to make the diagram more readable, the different summands are
marked by a dashed box. In the ε-δrule the index k that is used by both
ε-tensors is at the same position. This is represented by the first picture in
the equation sequence. The second diagram is identical to the first one and
is simply a topological transformation of the first. Observe that l and m
become interchanged. We can reverse this interchange by simply multiplying
the diagram by −1. The last term in the equation sequence is just the right
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side of the ε-δrule: δilδ
j
m−δimδjl (the dotted boxes indicate the different terms

of a sum where necessary):

iiiii jjjjj

kk

k

k

llll
l

mm mm
m

−− ===

The last equation in the row (with both sides multiplied by −1) is the
version of the ε-δrule that will be useful for our purposes. We summarize it
in the following equation:

i ii j jj

k

l ll mm m

−=

Let us investigate an application of the ε-δrule. Consider two lines that
are spanned by two pairs of points a, b and c, d, respectively. The meet of
these two lines can be generated by the diagram on the left of the equal sign
in the diagram below. Applying the ε-δrule to the upper pair of ε-tensors
(along the blue arrow), we get the diagram on the right of the equal sign
(note that disconnected diagrams occurring in the same summand are simply
multiplied):

aaa

bbb

ccc

ddd

−=

Cleaning up a little we get
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aba b

cc dd

−

In terms of bracket algebra this diagram means nothing but

[acd]b− [bcd]a.

This this is exactly the bracket expression for this situation we derived in Sec-
tion 6.3 using Plückers μ. Equivalently, we could have performed the same
split along the green arrow. Then we would get the following equivalent ex-
pression for the meet:

aa

bb c

dc

d

−

Since both expressions must be equivalent, we can also combine them into
one equation and obtain

a a a a

b b

b b

c

c

c c

d

d d d

−− + 0=

This is just Cramer’s rule as we encountered it in Section 6.6. Plugging
the join of two points e and f into all open arrows, we get the four-summand
Grassmann-Plücker relation.

13.8 Transforming ε-Tensors

We have seen that diagrams containing ε-tensors also create geometrically
meaningful expressions. The deep reason for this is that ε-tensors behave
well under projective transformations. Applying a projective transformation
to an ε-tensor simply results in a tensor that is a multiple of the ε-tensor.
The scaling factor is the determinant of the transformation matrix. Thus we
have
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T

T

T

det(T )= (13.1)

Here the oval marked det(T ) on the right of the equation means that
the ε-tensor is multiplied by this factor. There are several ways to convince
oneself that this transformation rule is correct. First of all, one can simply
expand the formula on the left (since it is nothing but an explicit tensor
product T ai T

b
j T

c
kε
ijk) and observe that it expands to the ε-tensor times the

determinant. One can also derive the formula by examining the behavior of
points plugged into the open slots. We know that piqjrkεijk gives just the
determinant of the matrix with columns p, q, r. Thus paT ai qbT

b
j rcT

c
kε
ijk must

give det(T ) times this value. The diagram below illustrates this process:

T

T

TT

T

T

p

pp

q

qq

r

rr

det(T )==

We know that the diagram on the left where we connect three transformed
points to an ε-tensor must be (in classical notation) [Tp, T q, T r], which is
nothing but det(T )[p, q, r]. Regrouping the ingredients of this diagram, we see
that it is nothing but p, q, r plugged into the transformed ε-tensor. The only
possibility for this identity to hold for arbitrary p, q, r is that the transformed
ε-tensor is the original ε-tensor scaled by a factor of det(T ).

The transformation rule for the ε-tensor has a deep consequence for the
transformation behavior of closed diagrams consisting of tensors and ε-
tensors. We know that any such diagram evaluates to a single number if
concrete geometric objects are plugged in. If the objects are transformed,
this number is scaled by a number that depends only on the determinant of
the transformation matrix and the numbers of covariant and contravariant
ε-tensors. The exact relation is as follows:

Theorem 13.1. Let D be a closed tensor diagram consisting of tensors that
represent geometric objects and ε-tensors. If the geometric objects of D (all
tensors except for the ε-tensors) are transformed by a projective transforma-
tion given by a 3 × 3 matrix T , then the evaluation of the diagram is scaled
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by a factor det(T )k, where k is the difference of covariant and contravariant
ε-tensors.

Proof. Rather than giving a strictly formal proof, we confine ourselves here
to a “proof by example” that exemplifies the main principles in diagram
notation. We consider the following diagram, which consists of four points,
one line, and three ε-tensors (two of them are contravariant and two of them
are covariant):

p

q r

s

l

How does the evaluation change if we transform the geometric objects
by a projective transformation given by the pair (T, T−1)? Covariant arrows
(our points) of geometric objects have to be transformed by T , contravariant
arrows (our lines) have to be transformed by T−1, and we obtain

T

TT

T

T -1
p

q r

s

l

For evaluating this diagram we “blow up” the interior arrows by replacing
them by a pair of transformations T -1 T . After this procedure our dia-
gram looks as follows:
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T TT

TT

T

T -1T -1

T -1

p

q r

s

l

Now each contravariant ε-tensor is surrounded by a halo of T -tensors and
each covariant ε-tensor is surrounded by T−1-tensors. We can replace each
such ε-tensor together with its surrounding transforming matrices by an ε-
tensor multiplied by the corresponding determinant. Thus we get

p

q r

s

l
det(T )

det(T )

det( T -1)

This is just our original diagram multiplied by det(T )2 · det(T−1). Since the
determinant of T−1 is the inverse of the determinant of T , the final factor is
det(T ). In general, we obtain a factor that is det(T )k, where k is the number
of contravariant ε-tensors minus the number of covariant ε-tensors. ��

The situation is closely related to the situation of Theorem 6.1, where
we considered multihomogeneous bracket polynomials as projective invari-
ants. Each monomial summand of such a polynomial can be considered a
tensor diagram. For each bracket we get a contravariant ε-tensor connected
to three points. Thus the overall factor of such a bracket polynomial under
a transformation T is (det(T ))k, where k is the number of brackets in this
summand.
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13.9 Invariants of Line and Point Configurations

The previous section showed that diagrams formed by geometric objects and
ε-tensors form invariants under projective transformations in the same sense
as we encountered invariants in Section 7.2. There we discussed invariants
of configurations of points only and stated (Theorem 7.3) that each such
invariant can be expressed by a multihomogeneous bracket polynomial. This
is one version of the first fundamental theorem of invariant theory. Depending
on the class of objects under consideration and on the type of transformations
allowed, there are different versions of this theorem. One very general version
can be stated in terms of tensor algebra:

Every relatively invariant function of a collection of tensors can be ex-
pressed as a (multihomogeneous) linear combination of closed diagrams
that involve only these tensors and ε-tensors.

Here relatively invariant means that the evaluation of the linear combina-
tion of diagrams is invariant up to a factor of (det(T ))k. This theorem is very
strong and requires some technical lemmas to prove it. We will not do this
here (as we did not prove Theorem 7.3), since this is beyond the scope of this
text. A proof may be found in [55]. However, we will see how this general
form can be used to derive the corresponding version of the first fundamental
theorem if we consider configurations that contain points as well as lines.

Theorem 13.2. Every relatively invariant function of a collection of points
and lines can be expressed by a (multihomogeneous) polynomial that involves
determinants of points, determinants of lines, and scalar products between
points and lines.

Proof. The proof is a simple consequence of the ε-δrule. By the fundamental
theorem in its tensor version one can express each diagram as a multihomo-
geneous linear combination of closed diagrams. We focus on one summand
of this linear combination. The corresponding diagram may involve many
ε-tensors. If there are no internal arrows connecting two ε-tensors then the
diagram contains only factors of the following form: three points plugged
into a contravariant ε-tensor, three lines plugged into a covariant ε-tensor, or
points that are directly connected to lines. These three factors correspond to
determinants of points, determinants of lines, and scalar products between
points and lines, respectively.

Thus we have to consider the case that the diagram contains internal
arrows that connect two ε-tensors. In this case we may apply the ε-δrule.
By this the diagram is replaced by the difference of two other diagrams that
contain at least one such internal arrow fewer than in the original diagram.
By proceeding inductively we arrive at a linear combination of diagrams that
do not have arrows between ε-tensors. ��

We will exemplify this theorem by the example of our last section. This
diagram contains three ε-tensors and connects four points and one line:
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p

q r

s

l

Applying the ε-δrule once, we obtain

pp

qq rr

ss

ll

−

This diagram expresses the multihomogeneous expression

[rqs]〈q, l〉 − [rqs]〈p, l〉.
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Working with diagrams

When the proofs, the figure,
were ranged in columns before me,

When I was shown the charts and diagrams,
to add, divide, and measure them,. . .

Two lines of a poem by Walt Whitman (1819–1892)

The value of diagram techniques even at this rudimentary
level should be clear by now: it is easier to visualize where sim-
plifications may be found in a complicated network by search-
ing for a reducible linkage than by examining a complicated
algebraic expression.

Geoffrey E. Stedman,
Diagram Techniques in Group Theory (1990)

So much for the preliminaries. Now let us come to the real stuff about dia-
grams. In this chapter we will investigate more advanced applications of ten-
sors and diagrams. In particular, we will link tensor diagrams more closely to
geometric theorems and concepts we encountered in previous chapters. The
invariant character of closed diagrams and the ε-δ rule will play a prominent
role in this context. Moreover, we will revisit the theorems of Pappos and
Pascal once again.

247
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14.1 The Simplest Property: A Trace Condition

We will now consider closed diagrams in their simplest forms and examine
the geometric relevance of these diagrams. In particular, if a closed diagram
evaluates to zero, we have a projectively invariant property. The simplest
closed diagram we may think of consists of just one tensor and one arrow. It
looks as follows:

T

It is a transformation tensor with the same index co- and contravariant.
Algebraically this is T ii , which is the sum over all diagonal entries of the cor-
responding matrix: the trace of the transformation. Hence we may conclude
that a transformation T with trace(T ) = 0 is different from other projective
transformations.

We can observe a first special property of a trace-zero transformation T if
we apply the ε-δ rule to the pair of ε-tensors in following diagram:

T

Assuming trace(T ) = 0, we obtain the following chain of equivalent diagrams:

T

TTT

− ==

The first equal sign comes from the ε-δ rule. In the next expression the
second summand vanishes according to the trace-zero condition. Unwinding
the diagram, we see that the right side is just equivalent to the original
transformation. Thus for a trace-zero transformation we can exchange any
occurrence of T by the more complicated expression on the left. (One might
wonder what this is good for. We will see an application of this in the next
theorem.)

Transformations with vanishing trace are also characterized by the follow-
ing geometric property. This property characterizes the trace-zero condition
via incidence relations of images and preimages of three points (compare
Figure 14.1).

Theorem 14.1. Let τ be a projective transformation in RP
2 whose corre-

sponding matrix T satisfies trace(T ) = 0. Let a and b be two arbitrary
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a

b

c

a

bc

Fig. 14.1 Geometric characterization of trace-zero transformation.

points and a′, b′ their images under τ . Define c as the meet of join(a, b′)
and join(a′, b). Then the image c′ of c lies on the join of a and b.

Proof. It is not too hard to prove this fact entirely by methods of linear alge-
bra. However, we will investigate how the result can be obtained by shuffling
around diagrams. The incidence relation stated in the theorem can be ex-
pressed as follows: For every trace-zero transformation T and for arbitrary
points a and b, the following diagram vanishes:

a
a

a

b
b

b

c

a

b

cT

T

T

The small letters at the arrows refer to the corresponding points in the
theorem (a′ is the image of a, b′ is the image of b, c is the join of the two
lines, and c′ is the image of c). The diagram encodes the construction of
the theorem from left to right. The rightmost ε-tensor expresses that c′ is
incident to the join of a and b. So, how do we prove that this diagram always
vanishes? Applying the ε-δ rule to any of its internal arrows decomposes the
diagram into smaller units and we have no chance to apply the trace-zero
condition. However, we can proceed as follows:

First we exchange one occurrence of T by the more complicated diagram
we mentioned above and obtain
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a
a

a

b
b

b
T

T

T

This diagram is equivalent to the above one if T has vanishing trace. Applying
the ε-δrule to the red arrow in this diagram gives

a
a

a

a
a

a

b
b

b

b
b

b
T

T

T

T

T

T

−

Now we see that obviously both summands vanish, since in the first sum-
mands the two blue parts are identical (up to sign) and plugged into an
ε-tensor, and in the second summand the two green parts are identical and
plugged into an ε-tensor. Thus the entire diagram must be identically equal
to zero. ��

14.2 Pascal’s Theorem

We will now demonstrate how the bracket condition that characterizes that
six points are on a common conic (compare Sections 10.1 and 10.2) can
be derived by straightforward diagram manipulations starting from Pascal’s
theorem. According to Pascal’s theorem (compare Section 1) six points are
on a conic if and only if the three points

X = meet(join(a, b), join(e, d)),

Y = meet(join(e, f), join(c, b)),

Z = meet(join(c, d), join(a, f)),

are collinear. On the other hand, we learned in Section 10.2 that the algebraic
characterization of coconicality can be expressed by the bracket expression
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[abc][deb][cdf ][fae]− [abe][def ][cdb][fac] = 0.

We will now demonstrate how the algebraic expression follows from the geom-
etry in a straightforward manner. Since the construction of the points X,Y, Z
in Pascal’s theorem can be expressed as a sequence of join and meet oper-
ations, the collinearity of X,Y, Z corresponds to the vanishing of a certain
diagram, which turns out to be a tree of ε-tensors:

a
e c

d

b
f

Y X

Z

a

a

b

b

c

c

d

d
e

e

f

f

Applying the ε-δ-rule to the darkened edge, we arrive at the following dia-
gram:

a

a

a

a

b

b

b

b

c

c

c

c

d

d

d

d
e

e

e

e

f

f

f

f

−

Applying the ε-δ-rule again to all connected subdiagrams at the darkened
edges, we have an intermediate expression, in which every connected subdi-
agram is just an ε-tensor with three soldered points. In half of these sub-
diagrams one letter will appear twice (check it!). Collecting the remaining
terms, we end up with

a

a

a

a

b

b

b

b

c

cc

c

d

d

d

d

e

ee

e

f

f

f

f −
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This is exactly the characterization of coconicality we were heading after:

[abc][deb][cdf ][fae]− [abe][def ][cdb][fac] = 0.

Conversely (if one assumes this expression as given), one can read the di-
agrammatic calculations in the opposite directions and interpret them as a
proof of Pascal’s theorem.

14.3 Closed ε-Cycles

As a further example let us consider closed rings of ε-tensors (alternately co-
and contravariant) and investigate their geometric meaning under various
aspects. Since all our arrows are directed, the number of ε-tensors has to be
even, in order to get a closed cycle:

As a first instance, we will consider the meaning of a 2-cycle. This little
gadget will turn out to be useful as an auxiliary calculation that will be needed
in order to simplify the diagrams later on. The calculation is presented in the
following diagram and explains how double arrows between ε-tensors can be
replaced by a single arrow and a factor:

==== −− 3 −2 (14.1)

The first equality is just a topological deformation; the second is an applica-
tion of the ε-δ rule. The third equality is due to the fact that the closed loop

= δii = 3 is nothing but the trace of the unit matrix (here the dimension
enters the calculation as a number).

Let us now consider larger cycles. Each of these cycles has an alternat-
ing sequence of incoming and outgoing arrows along the boundary. We will
analyze the cases in which we attach points and lines in an alternating man-
ner. The vanishing of such a cycle encodes a projective condition that must
be fulfilled by the points and lines that are involved. For each cycle we will
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interpret this condition in two different ways. First we will give a geometric
interpretation of such a cycle being closed for general cycles. After this we will
analyze alternative geometric and algebraic characterizations by applying the
ε-δ-rule.

Let us first consider a general 2n-cycle with points and lines attached in
alternation (as a running example we consider a six-cycle; our considerations,
however, will apply to the general case). Assume that the points and lines
are attached in the interleaved order p1, l1, p2, l2, . . . , pn, ln. By breaking the
cycle at a specific arrow between two ε-tensors (say the ε-tensor attached to
p1 and the ε-tensor attached to ln) we derive a transformation T that takes
a point q as input and “calculates” a point q′:

p1

p1

p2p2

p3

p3

l1

l1

l2l2

l3

l3

q

q

q

q

T→ =

The vanishing of the closed cycle corresponds to the transformation T

having trace zero, since T = 0 by our cycle condition. Furthermore, T ,
considered as a matrix, must have at most rank 2, since the transformed
point q′ will always lie on ln. Geometrically, this transformation corresponds
to the chain of join and meet operations as indicated by the following picture:

p1

p2 p3

l1
l2 l3

q

q

The final point q′ will always lie on line ln. Thus if we assume that point q
was chosen also to lie on ln, then we obtain a (projective) transformation
from ln to ln. The cycle condition now translates to the following geometric
criterion:

Theorem 14.2. With all settings as above we assume that the points and
lines p1, l1, p2, l2, . . . , pn, ln are chosen such that the ε-cycle evaluates to zero.
Then for an arbitrarily chosen line g the following diagram will be zero as
well:
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g

g

ln

q q q
TT

Before we prove this theorem we will analyze its geometric significance. If
no degeneracy occurs along the construction, then by intersecting g with ln
(the first ε-tensor) we get an arbitrary point q on ln. Applying the chain of
joins and meets twice, we arrive at the point q′′, which will again lie on g and
thus be identical to q (since it also lies on ln). Thus either the sequence of
operations degenerates at some point (which results in a zero tensor) or the
mapping T restricted to ln is an involution.

Proof. We make simplifications according to the rule for trace-zero transfor-
mations derived at the beginning of Section 14.1 and to the ε-δ-rule (circles
around tensors are omitted):

g

g

g

g

g

g

g

g

lnln

lnln

T

T

T
T

T
T

TT

−=

=

Both summands of the final expression vanish, the first one since T produces
a point that lies on ln, the second one because of the fact that one ε-tensor
is connected to two identical chains of tensors. ��

Now we will calculate algebraic expressions for the 4-cycle and for the 6-
cycle. The 4-cycles turn out to be intimately related to harmonic relations of
points; 6-cycles turn out to be related to Pappos’s theorem.

4-cycles: A 4-cycle involves two points and two lines. If we apply the ε-δ-
rule to a four-cycle, we arrive at the following algebraic expression:

l1l1l1l1l1l1l1l1

l2l2l2l2l2l2l2l2 p1p1p1p1p1p1p1p1

p2p2p2p2p2p2p2p2

−− ++ === 2

Vanishing of the final expression in vector language is 〈p1,l1〉〈p2,l2〉
〈p1,l2〉〈p2,l1〉 = −1,

which is the algebraic condition for the situation that the line joining p1

and p2 intersects l1 and l2 in two points that are harmonic to the pair (p1, p2).
In Figure 14.2 on the left a corresponding situation is shown in which

p1, p2, l1, l2 satisfy the 4-cycle condition. The geometric statement derived
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by Theorem 14.2 reflects the algebraic condition for the harmonic situation.
The algebraic reduction for the 4-cycle that we performed by the ε-δ-rule is
unique in the sense that no matter in which order we perform ε-δ-rules to the
arrows, we will arrive at the same expression. Thus if we greedily perform
ε-δ-rules whenever two ε-tensors are connected, we always end up with the
same result.

6-cycles: A similar calculation to the one above can be performed for 6-
cycles. However, here the result of a greedy reduction process is not unique.
We obtain (intermediate reduction steps omitted) the following two irre-
ducible forms:

l1l1l1l1l1

l2l2l2l2l2

l3l3l3l3l3 p1p1p1p1p1

p2p2p2p2p2

p3p3p3p3p3 −−−=

l1l1l1l1

l2l2l2l2

l3l3l3l3 p1p1p1p1

p2p2p2p2

p3p3p3p3 −−=

We now study particular geometric situations under which the 6-cycle ex-
pression vanishes. First of all, since the 6-cycle is linear in the points and
lines, it follows that for every position of five of the elements there is at least
a one-dimensional space for the final object to obtain a vanishing cycle. We
will now consider special cases in which the cycle vanishes. These come from
the vanishing of the four summands in the first of the above expansions or
from vanishing of the three summands in the second expansion. The sum-

l1
l2

p1

p2

q

l1
l2

p1

p2

l3

p3

q

Fig. 14.2 Geometry of 4-cycles and 6-cycles.
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mands consisting of three arrows will vanish if at least one of the point/line
pairs connected by an arrow are incident. The summand with the two ε-
tensors will vanish if either the three points are collinear or the three lines
are concurrent. Whenever the cycle expression vanishes, Theorem 14.2 tells
us that starting with a point q on l3 and performing a cycle of six consecu-
tive join/meet operations (in the order specified by the cycle), we will either
run into a degenerate situation or the resulting point will coincide with q. A
careful case-by-case analysis shows that most of these cases lead to degen-
erate situations. There is only one possibility of coincidences that make the
cycle expression vanish and does not lead to degeneracy. This is achieved,
if the pairs (p1, l2), (p2, l3), (p3, l1) define coincidences. In this case, the first
expansion formula for the 6-cycle vanishes. The geometric situation is drawn
in Figure 14.2 on the right. If we start with a point q on l3 and cycle around
twice (as indicated by Theorem 14.2), we must end up at the starting point q.
This is nothing but our well-known Pappos’s theorem.

Remark 14.1. Another interesting fact concerning the expansions of a 6-cycle
arises if one considers the fact that both expansions must be algebraically
the same. By this we obtain an algebraic expansion of the product of two
determinants in terms of a linear combination of scalar products. Again re-
moving the points and the lines from this expression, we get the following
well-known identity on ε- and δ-tensors:

εabcεijk = det

⎛
⎝
δai δ

b
i δ

c
i

δaj δ
b
j δ

c
j

δak δ
b
k δ

c
k

⎞
⎠ .

This is essentially equivalent to the expansion formula for determinants. To
see this, one must simply connect three-dimensional vectors pa, pb, pc, pi, pj, pk

to both sides of the equation. The left side calculates the product of two 3×3
determinants formed by these vectors. The right side is the determinant of
the product of two matrices formed by rows pa, pb, pc and columns pi, pj, pk,
respectively. If the vectors pa, pb, pc are chosen to be the unit vectors, we get
the usual expansion formula.

14.4 Conics, Quadratic Forms, and Tangents

Let us now study some diagram invariants involving quadratic forms. We start
with diagrams that contain a contravariant symmetric quadratic form A. In
rank 3, such a quadratic form has two incoming arrows A . Being sym-
metric means that in any diagram we can interchange both arrows without
changing the value of the diagram. Connecting twice the same point to such
a diagram produces (as already mentioned in Section 13.3) the equation for
a conic. What is the simplest interesting closed diagram that we can produce
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exclusively by A and ε-tensors? Connecting both arrows of A to
the same ε-tensor forces the entire diagram to collapse, since A is symmetric
and the ε-tensor is antisymmetric. Hence we have

0AAA − ===

The first equality holds since we can interchange the arrows of the A-tensor
without changing the value of the diagram. The second equality holds since
interchanging the arrows of the ε-tensor reverses the sign. So in consequence
the diagram has to be the zero tensor. Connecting this tensor to any diagram
makes the diagram vanish.

So we need at least two different ε-tensors. We will first explore the mean-
ing of a simple non trivial (open) diagram involving two ε-tensors and two
A-tensors.

A

A

(14.2)

We can derive the geometric meaning of this diagram if we attach another
copy of A and study the diagram

A

A

A

The easiest way to see what the latter diagram represents is via a little
formal trick. Without changing the evaluation of a diagram we may reverse
the orientation of any interior arrow, if we consistently transfer covariant to
contravariant tensor indices. In the above diagram A corresponds to an

entirely contravariant tensor Aij . We now define a tensor Aji according to
the rule Aji = Aij for all i, j ∈ {1, 2, 3}. Both tensors have exactly the same
entries. We simply interpret one index differently (so formally they represent
different geometric objects). Since altering the direction of the arrow does
not change the summation in the diagram, we get

A

A

A

A

A

A

=
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In the second diagram we may now, however, interpret A as a transformation.
Thus we can apply equations (13.1) and (14.1) and obtain

A

A

A

A

A

A

===
det(A)det(A) −2

In other words, applying first A and then the diagram (14.2) we

get the identity transformation times −2 det(A). Hence the diagram (14.2) is
−2 det(A) times the inverse of A, or equivalently −2 times the adjoint of A.

In Section 9.3 we learned that the adjoint of A is the quadratic form
for the dual of the conic represented by A. Hence we get the following nice
closed-diagram encoding the condition for a line l being tangent to the conic
represented by A:

A

A

ll

Let us now switch to closed diagrams containing only A- and ε-tensors.
The simplest closed diagram we can form under the premise that no ε-tensor
is connected to the same A twice needs two ε-tensors and three A-tensors. It
is

A

A

A

Since it is a closed diagram, it must either vanish or represent a proper
projective invariant. Using our last result, we get

A

A

A

== det(A)

det(A)

−6
−2

The factor 3 in the last equality is induced by the closed ring, which calculates
the trace of the unit matrix. Thus the diagram evaluates to the determinant of
A times −6. Vanishing of this determinant is a projectively invariant property.
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14.5 Diagrams in RP
3

How does the machinery of tensor diagrams generalize to other dimensions?
As one might expect, most concepts can be carried over in a most natural
way. However, already in RP

3 there are some nice twists that enter the game
according to the fact that the most natural representation of a line in RP

3 is
by its six-dimensional Plücker vector. In what follows we will briefly sketch
some of the most crucial effects. The reader should always be aware that we
only scratch the surface and will leave aside many fascinating aspects of this
subject. For a more elaborate treatment we recommend [8].

We start with the obvious parts. As we saw in Section 12, the points in
RP

3 have to be represented by four-dimensional vectors. They in turn are
represented by a covariant tensor of grade 1 with four entries. In a diagram
such a point is simply represented by a node p with one outgoing arrow.
Similarly, a plane is represented by a contravariant tensor of grade 1 with
four entries, diagrammatically expressed by a node h with one incoming
arrow. Incidence of a point p and a plane h corresponds to vanishing of
the diagram p h . Transformations are grade-two tensors T ji of shape
4 × 4 with the entries of the corresponding transformation matrix and the
diagrammatic notation T .

Matters start to become interesting as soon as ε-tensors are involved. For
applications in RP

3 (i.e., rank 4) these are completely antisymmetric 4× 4×
4 × 4 tensors. There is a completely covariant version εijkl and a completely
contravariant version εijkl. As in rank 3, they are defined by the property
that they are completely antisymmetric and ε1234 = ε1234 = 1. The only
coordinate entries are 0, 1, and −1. There are exactly 24 nonzero entries that
appear at those places for which all indices i, j, k, l differ. If e1, . . . , e4 are the
four unit vectors in R

4, then we get a nice and easily memorizable description
of the coordinate entries of the ε-tensors by

εijkl = εijkl = det(ei, ej , ek, el).

In this equation the indices are not merely placeholders but concrete entries
(i, j, k, l) ∈ {i, j, k, j}4. Now, what is a good diagrammatic representations of
εijkl and εijkl? Each such tensor must be represented by a node with four
outgoing, resp. four incoming, arrows. Since the ε-tensors are completely an-
tisymmetric, interchanging of two indices (i.e., arrows) induces a sign-switch.
In fact, a perfect representation for these tensors would be to embed the dia-
grams in three-dimensional space and let the four arrows point from the cen-
ter to the four vertices of a tetrahedron. Rotations of this three-dimensional
diagram node would not affect the sign, while a mirror reflection of the node
would result in a sign inversion. This is elegant, but we do not want to cook
up three-dimensional diagrams here, in order not to overstress the geometry
behind the diagrams. We want to keep them as close to usual graphs with
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nodes and edges as possible. We will represent a rank-4 ε-tensor as a two-
dimensional graph node with four outgoing (or incoming) arrows. However,
we must keep in mind that interchanging two arrows causes a sign-switch. In
particular, this means that a cyclic shift of the arrows produces a sign-switch,
since this corresponds to an odd permutation. To take care of this effect we
draw the ε-tensor with a 180◦ symmetry, having in mind that a 90◦ rotation
produces a sign switch. The following chain of diagrams shows a covariant
rank-4 ε-tensor and illustrates how a chain of three index alternations can be
interpreted as a 90◦ turn that reverses the sign.

iiiii

jjjjj kkkkk

lllll

= = −= −= −

Here one has to be very carful what “rotation about 90◦” exactly means.
Whenever you have some diagram that involves a rank-4 ε-tensor , then
cutting the ε-tensor out (i.e., disconnecting its arrows), rotating it about 90◦,
and soldering the shifted arrows again into the diagram causes a sign-reversal.
Thus the i, j, k, l in the above diagrams indicate the connections of the ε-
tensor to the rest of the world. Thus the 180◦ rotational symmetry of the
rank-4 ε-tensornode represents the identity

εijkl = −εjkli = εklij = −εlijk.

In many respects the rank-4 ε-tensor behaves like its rank-3 counterpart.
Soldering it to four points calculates the determinant of the corresponding
4× 4 determinant. Soldering it to three points creates a contravariant tensor
that represents the plane through these four points. The antisymmetry of
the ε-tensor implies that as soon as two of the arrows are connected to the
same object, the whole diagram evaluates to the zero tensor. An interesting
situation arises when we connect the rank-4 ε-tensor to just two points. We
get a contravariant tensor with exactly two incoming arcs. This tensor resem-
bles a line through the two points. Dually, we can connect the tensors of two
planes with a covariant ε-tensor. We get a completely covariant tensor that
represents the intersection of the two planes. We will now study the most
important aspects of these two representations of a line:

= =

p

q

h

g

ll
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The diagram above shows the two situations whereby a line can be generated.
If we want to refer to the line as a single entity, we will represent it by one
triangular node that has two outgoing or incoming arrows. We will call them
respectively the contravariant, and covariant representations of a line.

Let us first focus on the contravariant representation that arises by con-
necting two points p and q to an ε-tensor. The resulting contravariant rank-4
order-2 tensor is a representation of the join of these two points. It is easy to
check that up to a scalar factor this tensor does not depend on the specific
choice of the points on a fixed line (just use linearity and antisymmetry to
prove this property). So as in the case of Plücker coordinates we get a (up
to nonzero scaler multiples) unique contravariant representation of a line.
This representation is perfect for example, for calculating a join operation.
Connecting a point r to the line node l generates a contravariant grade-1
rank-4 tensor that represents the plane h that is the join of the line and the
point. Dually, we can use the covariant representation of a line l to calculate
the meet p of l with some plane f . Both operations are represented in the
diagrams below:

r

h

l

=
f

p

l

=

One important point has to be mentioned here. Since line tensors are
obtained by connecting two elements to an ε-tensor , they are as well anti-
symmetric. Interchanging the arrows (i.e., indices) results in a sign-reversal.
In diagram notation we have

ii

jj

ll = − and

ii

jj

ll = −

So far, there is one really unfortunate issue in our system. We have two
different representations of a line, a covariant one that is good for performing
meet operations and a contravariant one that is good for performing join
operations. In one of the next sections we will overcome this difficulty by
explaining how these two representations can be mutually translated into
one another. However, before we do so we have to elaborate on the ε-δ-rule
in rank 4.
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14.6 The ε-δ-rule in Rank 4

In Section 13.6 we learned the ε-δ-rule for rank-3 tensors. In usual tensor
language it reads as

εijαεlmα = δilδ
j
m − δimδ

j
l = det

(
δil δjl
δim δjm

)
.

This expression straightforwardly generalizes to higher ranks. In particular,
for the rank-4 case we get

εijkαεmnrα = det

⎛
⎝
δim δjm δkm
δin δjn δkn
δir δjr δkr

⎞
⎠ .

We will not prove this here, since the proof is mainly an index and coeffi-
cient battle that can be obtained by brute-force expansion of the implicit
summation.

Remark 14.2. Although we will not prove this ε-δ-rule here, we will point out
the resemblance to the formula we observed in Remark 14.1. While the for-
mula there was essentially the factorization formula for determinants of the
product of two matrices, the general ε-δ-rule may be considered an expression
of the famous Cauchy-Binet formula. This formula expresses the determinant
of an n×m and an m×n matrix as a summation over products of two deter-
minants of corresponding minors of the two matrices. The ε-δ-rule generates
exactly this formula, where the summation is implicitly generated by the
summation over the indices shared by both ε-tensors.

Diagrammatically the rank-4 ε-δ-rule translates to the identity presented
below. (As always, one should be aware of the fact that the signs and the
orientations of the ε-tensors require a careful translation process.)

iiiiiii jjjjjjj kkkkkkk

nnnnnnn mmmmmmm rrrrrrr

= ++ −−−®

We will also need another version of the ε-δ-rule that expands the term
εijβαεmnβα. Also, here we could obtain the formula by brute force expansion
(we get (−2)(δilδ

j
m− δimδjl )). Instead, this time we will show how this formula

is derived directly by diagram calculations from the previous one. We simply
have to solder the two exits k and r in all subdiagrams. We get
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iiiiiii jjjjjjj

nnnnnnn mmmmmmm

= ++ −−−® ¯

After straightening the arrows, collecting crosswise and parallel connected
diagrams (thereby taking into account that a loop is the trace of a unit matrix
and evaluates to 4), and rotating one of the ε-tensors by 90◦ (and taking care
of the induced sign change), we get the following nice diagram formula (which
is up to the factor −2 analogous to the rank-3 ε-δ-rule):

i iiij jjj

n nnnm mmm

= = +2−2 (14.3)

14.7 Co- and Contravariant Lines in Rank 4

So, why did we introduce ε-δ-rules for rank-4 diagrams? We wanted to un-
derstand the relation between covariant and contravariant representations of
lines in rank 4. It turns out that the ε-δ-rule is exactly the desired translation
tool needed. For this, consider the following situation. Let l be a line gen-
erated as the join of two distinct points p and q. Consider the same line as
generated as meet of two planes h and g. We may consider h and g as being
spanned by point triples (p, q, r) and (p, q, s), respectively. Here r and s are
additional points on h and g not incident with the line l. Thus we get the
following contra- and covariant representations of the same line:
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p

q

l= and p

p

q

q

r

s

l=

Applying the rank-4 ε-δ-rule to the red arrow in the second representation
splits the left side of the equation into six summands. Each of them consists
of an ε-tensor connected to four points multiplied by the product of two other
points. Four of these summands will vanish due to the fact that either p or q is
connected twice to the ε-tensor. The only remaining terms can be rearranged
as

p

p

p

p
q

q

q

q rr

ss

l=−

The determinantal factor in both summands is identical, so it can be fac-
tored out. Hence the covariant form of the line has up to a scalar factor
exactly the same shape as the left side of equation (14.3) (connected to p
and q). Thus we obtain for a suitably chosen factor α the following simple
conversion formula:

pp
p

qq
q

ll === −2 +2 ®

We obtain (up to a scalar factor) the covariant line representation by
simply connecting an ε-tensor to the contravariant line representation—and
dually vice versa. Inspecting this chain of equations also reveals another in-
teresting property. The covariant representation of a line can (up to an unim-
portant factor) be calculated by summation of two different products of the
vectors p and q (this is what the last equality says). We can also think of the
covariant representation of l as a 4× 4 matrix L. In matrix language the last
equation reads αL = 2pqT − 2qpT .

It is an interesting exercise to calculate what happens if we append ε-
tensors twice to a line tensor. After all, we said that we must, up to a scalar
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factor, get a copy of the line tensor we started with. By applying the ε-δ-rule
to the double link of the ε-tensors we obtain

llll −2 +2 +4= =

The last equality is a consequence of the antisymmetry of the l tensor. Thus
transforming a contravariant tensor by appending a chain of two ε-tensors
results in multiplication by a factor of 4.

14.8 Tensors versus Plücker Coordinates

If we compare the representation of lines by tensors with the representation of
lines by Plücker coordinates, at first sight there is an amazing structural dif-
ference. While the Plücker coordinates of a line l were six-dimensional vectors
(g12, g13, g14, g23, g24, g34)T that satisfy the Grassmann-Plücker relations

g12g34 − g13g24 + g14g23 = 0,

the tensor representation looks quite different. A 4 × 4 tensor represents
essentially a matrix M with 16 different entries. However, both the covariant
and contravariant representations of the line tensor are antisymmetric. If M
is such a matrix we have M = −MT . This implies that each of the four
diagonal entries vanishes.

Furthermore, the lower left triangle determines the complete shape of the
matrix. This makes exactly six free entries. As in the case of Plücker coordi-
nates! The matrix M has the structure

M =

⎛
⎜⎜⎝

0 −a −b −c
a 0 −d −e
b d 0 −f
c e f 0

⎞
⎟⎟⎠ .

We will briefly analyze how these entries relate to the Plücker coordinates
of a line. For this we have to go down to the coordinate level once again.
Let p = (p1, p2, p3, p4)T and q = (q1, q2, q3, q4)T be two points that span the
line l. The Plücker coordinates of l then are gij =

∣∣∣ pi qi

pj qj

∣∣∣. Let lij = εαβijpαqβ

be the contravariant tensor that represents l and let l̃ij = piqj − pjqi be the
covariant representation of the line. We then get for specific values of i and j

lij = sign(i, j, α, β)
∣∣∣∣
pα qα
pβ qβ

∣∣∣∣ and l̃ij =
∣∣∣∣
pi qi
pj qj

∣∣∣∣ ,
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or more comprehensively in matrix notation,

l =

⎛
⎜⎜⎝

0 −g34 g24 −g23
g34 0 −g14 g13
−g24 g14 0 −g12
g23 −g13 g12 0

⎞
⎟⎟⎠ and l̃ =

⎛
⎜⎜⎝

0 −g12 −g13 −g14
g12 0 −g23 −g24
g13 g23 0 −g34
g14 g24 g34 0

⎞
⎟⎟⎠ .

The entries of the different line representations are noting but the entries
of the Plücker coordinates, suitably arranged. It comes as no surprise that
also on the tensor level we have immediate translations for the Grassmann-
Plücker relation of the coordinates. We get

lij l̃ij = 4(g12g34 − g13g24 + g14g23).

In tensor diagram notation we get various equivalent ways to express the
Grassmann-Plücker relation on the entries of the line tensor and have several
almost trivial ways to prove that this relation vanishes. Here are a few of
these representations:

llllll

All these diagrams are essentially equivalent, and each of them vanishes iden-
tically.

The leftmost diagram is a literal translation of the tensor expression lij l̃ij
that we just discovered to be equivalent to the Grassmann-Plücker relation.
We simply connect a co- and a contravariant representation of the same line.
The middle diagram connects two contravariant expressions via a covariant
ε-tensor. Up to a factor it is essentially identical to the leftmost diagram,
since we can group the ε-tensor together with its right neighbor to form a
covariant representation of the line. The dual statement holds for the right-
most diagram. To prove the Grassmann-Plücker relation diagrammatically
we simply have to verify that one of these diagrams vanishes. We invite he
reader to find his/her personal simplest diagrammatic proof for one of these
conditions.

We will end our little excursion on diagrams here with a few reading
suggestions on diagrammatic approaches to algebra. First traces of a dia-
grammatic treatment of geometric invariants can be traced back as far as
to Clifford and Sylvester [24, 128] in 1878. There are also amazing connec-
tions of tensor diagrams to knot theory [62] and to mathematical approaches
to quantum (information) theory [23, 123]. In Part III of this book we will
make an in-depth study of representing metric properties in a projective lan-
guage. Also there the diagrammatic approach can be very helpful. We invite
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the reader who is (after digesting at least Chapters 16–19) interested in this
direction to have a look at the articles [83, 84].



15

Configurations, Theorems,
and Bracket Expressions

Beauty depends on size as well as symmetry.

Aristotle (384–322 BCE), Poetics

Characteristic of Weyl was an aesthetic sense which
dominated his thinking on all subjects. He once said to me,
half-joking, “My work always tried to unite the true with the
beautiful; but when I had to choose one or the other, I usually
chose the beautiful.” (Hermann Weyl (1885–1955))

F. Dyson, in Nature, March 10, 1956

This section is devoted to several specific examples of theorems and con-
figurations in projective geometry. Clearly, our considerations in Chapter 5
demonstrated that there is an infinite variety of incidence theorems in real
projective geometry. Any polynomial identity like (x+y)2 = x2 +2 ·x ·y+y2

can be translated into an incidence theorem via von Staudt constructions.
For this, one models every elementary addition or multiplication by a suit-
able subconfiguration. The equality in the equation translates to a final co-
incidence of two lines that forms the conclusion of the theorem. Figure 15.1
shows a suitable geometric construction for the equation above (lines that
appear to be parallel are assumed to be parallel).

Clearly, most of the incidences obtained in this way will be very boring,
since they represent only more or less trivial facts about algebraic expres-
sions. In fact, the simplest algebraic expressions will surprisingly lead to
nicer geometric theorems than the complicated ones. For instance, we saw
in Section 5.7 that Pappos’s theorem expresses the equation x · y = y · x.

269
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0 1 x x2y y2xy 2xy x2 + 2xyx+y (x+y)2=x2+2xy+y2

Fig. 15.1 An incidence theorem from (x + y)2 = x2 + 2 · x · y + y2.

It is unreasonable to try to find a formal notion of mathematical beauty,
but nevertheless many geometric theorems are considered to be beautiful
mathematical objects. Typically there are several (interrelated) ingredients
that make a geometric theorem a nice result:

• simplicity (it is easy to state the theorem),
• symmetry (are there repeated patterns),
• surprising conclusions (is the conclusion somehow unexpected),
• size (the fewer hypotheses the better),
• generalizability (does the theorem extend to a whole class of objects).

In this section we want to explore several theorems and configurations that
are expressible in terms of projective geometry. In particular, we will explore
relations to bracket expressions and explore their combinatorial symmetries
and the symmetries of the corresponding bracket expressions. We will also
use this section to demonstrate several techniques that are useful in relating
geometric scenarios to algebraic expressions. Several times we will provide dif-
ferent proofs for the same facts in order to demonstrate different approaches.
I hope the reader will share the appreciation of the mathematical beauty of
many of these structures.1

15.1 Desargues’s Theorem

The first theorem we will meet is an incidence theorem similar to Pappos’s
theorem. However, in contrast, it requires 10 points and 10 lines. Each point

1 Some of the proofs presented here already occurred in the introductory Chapter 1, where
we explored different approaches to Pappos’s theorem. For matters of completeness they
are also included in this chapter.
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Fig. 15.2 Desargues’s theorem (left). A spatial interpretation (right)

lies on three lines and each line contains three points. The theorem is based
on a remarkable symmetric configuration in which the role of the conclusion
can be played by any line. Again we will restrict our considerations to real
projective planes. In fact, Desargues’s theorem holds in any projective plane
over a field, but not in arbitrary projective planes.

Theorem 15.1 (Desargues’s theorem). In the real projective plane let
A,B,C and A′, B′, C′ be two triples of points such that A∧A′, B∧B′, C∧C′

are distinct and meet in a point P . Then the three points (A∧B)∨ (A′ ∧B′),
(B ∧ C) ∨ (B′ ∧ C′), and (C ∧A) ∨ (C′ ∧A′) are collinear.

The theorem could as well be restated in a more compact manner.

Theorem 15.2 (Desargues’s theorem). If two triangles are perspective
with respect to a point P , then the intersections of corresponding triangle
sides are collinear.

There are several approaches to proving Desargues’s theorem. One of them
makes use of the surprising fact that the underlying configuration can be
interpreted as a projection of a spatial configuration. The following proof is
based on this observation.

Proof. Take the situation of Figure 15.2 on the left as starting point. Since
the formulation of the theorem requires only concepts from projective geom-
etry, we may without loss of generality assume that (perhaps after a suitable
projective transformation) all points are in a finite position in the drawing.
We assume that the position of the points of the configuration is given by
(x, y) coordinates in the drawing plane. We want to interpret this situation
as a projection of a spatial configuration. For this we assign altitudes to the
points P , A, B, and C. All other points remain in the drawing plane H ′
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(compare Figure 15.2 (right)). We may interpret the situation as follows: We
consider three planes in space which meet in a point P . Any pair of these
planes meet in a line that passes through P . There are three of these lines.
On each line we take a pair of points. We label these pairs (A,A′), (B,B′),
and (C,C′). The three points A, B, and C span a plane H , and the three
points A′, B′, and C′ span a plane H ′ (this is the drawing plane). These
two planes meet in a line. The four points A,A′, B, and B′ are on one of the
three initial planes. The intersection of this plane, H , and H ′ is the point Z
that also lies on �. Similarly, the points X and Y lie on �, which proves the
theorem. ��

The method of proof used here can be nicely generalized to prove other
theorems. Furthermore, it gives a nice insight into the combinatorial structure
of the underlying configuration of Desargues’s theorem. The spatial situation
consists altogether of five planes (the initial three planes together with H
and H ′), all ten intersections of pairs of these planes (the lines of the config-
uration), and all ten intersections of triples of these planes (the points of the
configuration). The projection of the lines and planes forms the planar De-
sargues’s configuration. This demonstrates that the configuration possesses a
very high degree of symmetry. In fact the combinatorial automorphism group
has 120 elements and is isomorphic to S5 the group of all permutations of
five elements.

In the next sections we will see also different algebraic proofs of Desargues’s
theorem that essentially make use of bracket calculations.

15.2 Binomial Proofs

The following proof technique is very far-reaching. It translates the hypothe-
ses and the conclusion of the theorem into multihomogeneous bracket poly-
nomials. The conclusion is then algebraically composed from the polynomials
of the hypotheses. Binomial proofs are now special in the respect that the
cancellation patterns between the algebraic terms are particularly simple.
Many proofs that can be found in classical literature on projective geometry
follow exactly the pattern we present here. The way we will approach bino-
mial proofs here has the advantage that one can even use them to implement
automatic provers for geometric theorems. Binomial proofs were first studied
in the context of oriented matroids [15] and were later used in the context of
automated theorem-proving [30, 109].

The theorems we will consider are (on the first level) those whose hy-
potheses and conclusions can be expressed as collinearity conditions of points.
Furthermore, we will also have to deal with nondegeneracy conditions that
prevent our configurations from being too special. Algebraically, the nonde-
generacy conditions prevent us from dividing by zero. The nondegeneracy
conditions will always be such that certain points are not allowed to be
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Fig. 15.3 A degenerate case of Desargues’s theorem.

collinear. Most often it will be sufficient to require that no two configura-
tion lines that meet in a configuration point coincide. We will call this the
generic nondegeneracy assumptions. A version of Desargues’s theorem in this
setup could be stated as follows.

Theorem 15.3. Let P,A,B,C,A′, B′, C′, X, Y, Z be ten points in the pro-
jective plane. If the triples (P,A,A′), (P,B,B′), (P,C,C′), (A,B,Z),
(A′, B′, Z), (B,C,X), (B′, C′, X), (A,C, Y ), (A′, C′, Y ) are collinear and
the generic non-degeneracy assumptions hold then also (X,Y, Z) is collinear.

Figure 15.3 exemplifies the necessity of the nondegeneracy conditions. In
this picture, all collinearity conditions of the hypotheses are satisfied, yet
the conclusion of the theorem does not hold. The reason for this is that the
lines (A,A′) and (B,B′) coincide, and hence the position of point Z (the
intersection of these lines) can be anywhere on this line.

We will now provide a binomial proof based on bracket calculations for
Desargues’s theorem. First consider one of the collinearities of the theorem,
say (A,B,Z). Let R and Q be two arbitrary points of the projective plane.
Via the Grassmann-Plücker relation

[Z,A,B][Z,Q,R] − [Z,A,Q][Z,B,R] + [Z,A,R][Z,B,Q] = 0,

this collinearity implies the equation

[Z,A,Q][Z,B,R] = [Z,A,R][Z,B,Q].

We will call such an expression with a bracket monomial on the right and a
bracket monomial on the left a binomial bracket expression. Now a binomial
proof consists of a collection of binomial bracket expressions (each one coming
from a hypothesis of the theorem) such that multiplying all left-hand sides,
multiplying all right-hand sides, and canceling all brackets that occur on
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both sides gives a bracket binomial that corresponds to the conclusion of the
theorem.

Proof. Binomial proof for Desargues’s theorem. The following collection of
binomials does the job for Desargues’s theorem:

[CY A] = 0 =⇒ [CY B][CAX ] = [CY X ][CAB]
[ABX ] = 0 =⇒ [ABC][AXP ] = [ABP ][AXC]
[PA′A] = 0 =⇒ [PA′X ][PAB] = [PA′B][PAX ]
[PCC′] = 0 =⇒ [PCZ][PC′B′] = [PCB′][PC′Z]
[C′ZB′] = 0 =⇒ [C′ZP ][C′B′A′] = [C′ZA′][C′B′P ]
[A′Y C′] = 0 =⇒ [A′Y B′][A′C′Z] = [A′Y Z][A′C′B′]
[PBB′] = 0 =⇒ [PBA′][PB′C] = [PBC][PB′A′]
[CBZ] = 0 =⇒ [CBP ][CZY ] = [CBY ][CZP ]

[A′B′X ] = 0 =⇒ [A′B′P ][A′XY ] = [A′B′Y ][A′XP ]

Each row corresponds to one of the hypotheses. The binomial equation is (via
a suitable Grassmann-Plücker relation) a consequence of one of the hypothe-
ses. Multiplying all left sides and all right sides gives a binomial equation
that has 18 brackets on the left and 18 brackets on the right. Taking into
account the alternating determinant rules, one observes that all but four
brackets (the underlined ones) occur on both sides. Canceling these brackets,
we are left with the expression [Y XA′][Y ZC] = [Y XC][Y ZA′]. The cancel-
lation process requires that none of the brackets that is canceled be zero.
This, in turn, is established by our nondegeneracy assumptions. Using again
a Grassmann-Plücker relation, one can conclude that

[Y XA′][Y ZC] = [Y XC][Y ZA′] =⇒ [Y XZ] = 0 or [Y CA′] = 0.

The collinearity of (Y,C,A′) would violate our nondegeneracy assump-
tions. Thus finally the points (X,Y, Z) must be collinear. ��

In Chapter 1 we presented a similar proof of Pappos’s theorem. The crucial
point in finding such a proof is the translation of collinearities to binomial
expressions. There is a lot of freedom in this translation. First observe that
for each triple of collinear points one of the points plays a special role in the
Grassmann-Plücker relation. Furthermore, there are two other configuration
points that are needed for the Grassmann-Plücker relation. They must be
chosen from the remaining points. Thus if the theorem involves n points,
there are altogether 3 · (n−2

2

)
possibilities to translate a collinearity into a

binomial expression. For each collinearity in the hypotheses one has to find
one (or more) suitable representations such that a combination of all binomial
expressions can be translated into the conclusion. If a “brute-force” approach
were the only way to find such a proof, one would end up with a computa-
tionally rather hard problem. Fortunately, the problem can be translated into
a linear problem by considering the exponent vectors. In this setup one has
to test whether a representation of the conclusion lies in the (linear) span
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Fig. 15.4 A nonrealizable 103 configuration.

of all representations of the hypotheses, which leads to algorithmically very
well behaved algorithms [109]. In this approach the determinants themselves
are treated as formal symbols (variables), and one has never to go down to
the concrete level of coordinates.

As another example of this kind of proof let us consider the configuration
shown in Figure 15.4. It shows a certain 103-configuration [81] (10 points,
10 lines, and three points on each line) that has the property that it is ge-
ometrically not realizable without additional degeneracies (observe that the
line (5, 6, 0) is slightly bent). The equations below demonstrate that if all 10
collinearities are satisfied as indicated in the picture, then (by the usual can-
cellation argument) we can conclude that also [157][250] = [150][257] holds:

(129) =⇒ [128][179] = +[127][189]
(136) =⇒ [146][130] = −[134][160]
(148) =⇒ [124][168] = −[128][146]
(235) =⇒ [234][250] = −[245][230]
(247) =⇒ [127][245] = −[124][257]
(304) =⇒ [134][230] = +[130][234]
(056) =⇒ [160][570] = +[150][670]
(759) =⇒ [157][789] = −[179][578]
(869) =⇒ [189][678] = −[168][789]
(780) =⇒ [578][670] = +[570][678]

[157][250] = +[150][257]
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Fig. 15.5 Pascal’s theorem.

This, however, implies that either (5, 1, 2) or (5, 7, 0) is collinear. Both
cases force a massive degeneration of the configuration.

The above proof technique was successfully applied in [30, 109] to cre-
ate algorithms that prove many theorems in projective geometry automat-
ically. The algorithm has the particularly nice feature that if it finds a
proof, the proof admits a clearly readable structure, such that its correct-
ness can be checked by hand easily. This is an interesting contrast to au-
tomatic proof techniques that are based on methods of commutative alge-
bra (such as Gröbner bases or Ritt’s algebraic decomposition method (see
[22, 76, 134, 135]) that produce proofs consisting of large polynomials of
generally high degree.

One might wonder whether the method of binomial proofs applies only
to theorems that have collinearity conditions as hypotheses and conclusions.
Fortunately, this is not the case. The method has a chance to be applied
whenever one succeeds in expressing the geometric statements that are in-
volved as a bracket binomial. As an example we show a proof of Pascal’s
theorem that takes advantage of the coconicality for the six-points condition
we proved in Section 10.2:

conic: =⇒[125][136][246][345] = [126][135][245][346]
(1, 5, 9) =⇒ [517][592] = [512][597]
(1, 6, 8) =⇒ [612][683] = [613][628]
(2, 4, 9) =⇒ [245][297] = [247][295]
(2, 6, 7) =⇒ [247][286] = [246][287]
(3, 4, 8) =⇒ [346][385] = [345][386]
(3, 5, 7) =⇒ [513][587] = [517][583]
(9, 8, 7) ⇐= [728][759] = [729][758]
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Fig. 15.6 Transforming cross-ratio information.

Later, in Chapter 18, we will see how similar proof techniques can be ap-
plied also to Euclidean theorems. For this it will be essential also to study
certain points with complex coordinates that help to encode Euclidean geo-
metric properties.

15.3 Chains and Cycles of Cross-Ratios

The famous theorems of Pappos, Pascal, and Desargues are more or less
a bit solitary or sporadic in the sense that a very special small configura-
tion of points and lines finally closes up to become a theorem. In this sec-
tion we will deal with structures that generate infinite classes of theorems.
Perspectivities—the central projection of points of one line to another line—
and cross-ratios will play a crucial role here. Each of these theorems will
essentially be based on an iterative application of the fact that the cross-
ratio is preserved under a perspectivity (compare Section 4.4.3).

So here is a prototypical application of this fact. Consider the image in
Figure 15.6. There a green configuration forces four points A,B,C,D on a
line to be in harmonic position, i.e., (A,B;C,D) = −1. A chain of perspec-
tivities “transports” the cross-ratio −1 of these points to the cross-ratio of
corresponding points on other lines. Finally, the figure is closed by a red
configuration that “tests” whether the final four points are also in harmonic
position. The last incidence has to be satisfied automatically by construction.

The idea to transport cross-ratios can also be used to build up cyclic
structures [119]. A first instance is given in Figure 15.7. There n = 6 blue
lines l1, . . . , ln meet in one point D. On the first line, three points A, B, C are
chosen. They are transferred by a chain of perspectivities to the last line ln.
Since all lines l1, . . . , ln meet in a point, each of these perspectivities leaves
the point D invariant. Hence the corresponding points A′, B′, C′ on the
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last line must be such that (A,B;C,D) = (A′, B′;C′, D). Now consider the
meet P of the two lines join(A,A′) and join(C,C′). Forming a perspective
from ln to l1 through P maps A′ to A, B′ to B, and D to D. Thus (since
the cross-ratio of the four corresponding points is identical) it must also map
C′ to C. In other words, join(C′, C) also passes through P . Clearly, this
construction produces a theorem for any integer n.

There is another nice variant of this construction. For this consider the left
drawing in Figure 15.8. Start with an odd number n of (blue) lines l1, . . . , ln
that meet in one common point O. On each of these lines li choose a point pi
(black) that will serve as a projection center of a perspectivity. Now start
with a point A1 on l1 and i = 1 and form a perspectivity through pi+(n−1)/2

on li+(n−1)/2. Call the new point A2 and proceed with this projection process
iteratively by an index shift of 1. After wrapping around twice, one ends up at
a point A2n+1 that coincides with A1. This theorem was originally discovered
by Armin Saam [118]. In principle, it is possible also to prove this theorem
by a “transfer of cross-ratio” argument. This argument is subdivided into
two steps. One of them is technically easy; the other is not. Assume that
one moves the point A1 in the drawing along l1 toward the center O of the
configuration. Alternatingly even and odd Ai will move inward and outward
with respect to the center O. In particular, the other point on l1 (the point
A(n+1)/2) will move in the opposite direction of A1. Eventually, there is a
position C where the moved points A1 and A(n+1)/2 coincide (this was the
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Fig. 15.7 Cycles of cross-ratios.
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Fig. 15.8 Saam’s theorem.

easy part). Now one can observe that the original points A1 and A(n+1)/2 are
in harmonic position to C and O (hard part!). The rest of the proof is easily
done by “transfer of cross-ratio.” We will not work out this proof in detail.
Instead, we will postpone to Section 15.5 a more elegant proof that avoids
the hard part and even generates a generalization of the theorem.

The theorems of this section were essentially based on chains or one-
dimensional cycles of perspectivities. In what follows we will elaborate on
the idea of cyclic structures. However, we will generalize the concept to cy-
cles on two-dimensional manifolds. For this we will first, in the next section,
study small configurations that serve as basic building blocks for the man-
ifolds. In Section 15.5 we will show how the building blocks can be glued
together to generate interesting theorems.

15.4 Ceva and Menelaus

In this section we deal with two structurally very simple theorems: the theo-
rems of Ceva and Menelaus (see [28]). At first sight, they have the flavor of Eu-
clidean, resp. affine, theorems, since they involve ratios (and not cross-ratios)
of lengths along the sides of a triangle. However, a slightly closer inspection
of these theorems reveals their projective nature. Moreover, on the level of
bracket algebra the proofs of these theorems are almost trivial. Nonethe-
less, these theorems turn out to be of key importance for understanding the
structures of other projective and Euclidean incidence theorems [110].2

2 Interesting generalizations of the theorems of Ceva and Menelaus have been intensively
studied by Grünbaum and Shephard [51, 52, 53, 54, 120].
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Fig. 15.9 Oriented length ratios and segment cuts in a triangle.

We begin our considerations with the Euclidean version of these theo-
rems. For both theorems the notion of oriented distance ratio is crucial. Let
A,X,B ∈ R be three points on the real number line. Then the oriented
distance ratio |A,X|

|X,B| is defined as

|A,X |
|X,B| =

A−X

X −B
.

Similarly, we can define the oriented length ratio for an arbitrary line by
considering this line as the real number line R. If X is between A and B
then this ratio is positive; if X is outside the line segment A,B then the ratio
is negative. For calculating the oriented distance ratio we can equivalently
calculate the ratio of ordinary distances and equip it with the appropriate
sign. It is important to notice that the sign of the distance ratio can be
assigned in a reasonable way only if the three points that are involved lie on
a common line. All cases that we will consider will be of this type.

There is also a way to express the oriented length ratio by quotients of
oriented triangle areas. For this let Δ(A,B, P ) be the oriented area of a
triangle (A,B, P ). The sign is positive if the points are in counterclockwise
order and negative if they are in clockwise order. Let us assume for a moment
thatA,B, P are in the standard embedding with last homogeneous coordinate
being 1. Then we have Δ(A,B, P ) = 1

2 [A,B, P ]. Since the triangle area can
be calculated by |A,B|·hP

2 , where hP is the altitude of P over the side (A,B),
we get for the oriented distance ratios

|A,X |
|X,B| =

Δ(A,X, P )
Δ(X,B, P )

=
[A,X, P ]
[X,B, P ]

. (15.1)

Here P is an arbitrary point not on the line (A,B) (compare Figure 15.9
(left)). Notice that the sign turns out to be automatically correct. We will
also need another expression for the oriented distance ratios. For this assume
that Q is another point on the line (X,P ) distinct from P , again in the
standard embedding. We then have X = (1 − λ)P + λQ, and obtain
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Fig. 15.10 Theorems of Ceva and Menelaus.

|A,X |
|X,B| =

[A,X, P ]
[X,B, P ]

=
[A, (1 − λ)P + λQ,P ]
[(1 − λ)P + λQ,B, P ]

=
[A,Q, P ]
[Q,B, P ]

. (15.2)

We will need (15.1) and (15.2) later.

The theorems of Ceva and Menelaus now deal with triangles (A,B,C) for
which each of the sides is dissected by one of the points X,Y, Z. In what
follows we will always assume that X is the cutting point for the segment
(A,B), that Y is the cutting point for (B,C), and that Z is the cutting point
for (C,A). We also assume that none of the points involved coincides with
another (compare Figure 15.9 (right)). The product

|AX |
|XB| ·

|BY |
|Y C| ·

|CZ|
|ZA| (15.3)

is now the first-class citizen in the theorems of Ceva and Menelaus; they are
illustrated in Figure 15.10.

Theorem 15.4 (Ceva’s theorem). If in a triangle (A,B,C), with cutting
points X,Y, Z as above, the lines (A, Y ), (B,Z), and (C,X) are concurrent,
then we have |AX |

|XB| ·
|BY |
|Y C| ·

|CZ|
|ZA| = 1.

Theorem 15.5 (Menelaus’s theorem). If in a triangle (A,B,C), with
cutting points X,Y, Z as above, the points X,Y, Z are collinear, then we have

|AX |
|XB| ·

|BY |
|Y C| ·

|CZ|
|ZA| = −1.

Before presenting proofs of these two theorems we will first explore their
projective nature. For this consider the following bracket formula on the points
A,B,C,X, Y, Z and one additional point P in generic position.
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[PAX ]
[PXB]

· [PBY ]
[PY C]

· [PCZ]
[PZA]

. (15.4)

By our considerations in Chapter 6 this is clearly a projective invariant
function, since it is the quotient of two multihomogeneous bracket polynomi-
als with same multidegree. On the other hand, we may assume that each of
the points is represented in standard homogeneous coordinates with the last
coordinate entry being 1. Then the brackets correspond to oriented triangle
areas and we get by applying 15.1,

|AX |
|XB| ·

|BY |
|Y C| ·

|CZ|
|ZA| =

[PAX ]
[PXB]

· [PBY ]
[PY C]

· [PCZ]
[PZA]

.

In other words, the above expression (15.3) looks as if it were a Euclidean
expression (since it involves quotients of segment lengths) but is indeed a
projective invariant. Applying a projective transformation does not alter the
value of (15.3). If we deal only with the bracket expression, we may even
drop the assumption that the points are in the standard embedding. The
theorems of Ceva and Menelaus deal with special cases of the values of the
expression (15.3): the cases +1 and −1.

We will give two different proofs of each of the two theorems. The first
proof for the two theorems will take direct advantage of the fact that (15.4)
is a projective invariant. The second proof will present an explicit bracket
cancellation pattern. We refer to Figure 15.10 for the labeling.

First proof of Ceva’s theorem: The observation that the product of the ratios
is a projective invariant gives an almost trivial proof of Ceva’s theorem. Since
by a projective transformation four points in general position can be mapped
to four other arbitrary points in general position, we can freely adjust the
positions of A,B,C,D in the drawing. Thus it is sufficient to verify Ceva’s
theorem just for one special case. By far the simplest situation is an equilat-
eral triangle with sides cut by the symmetry axes. There the three oriented
distance ratios are all equal to 1 and their product is 1 as well. ��
First proof of Menelaus’s theorem: A proof in the same spirit can be given
for Menelaus’s theorem. A projective transformation carries exactly enough
freedom to adjust the three corners of the triangles and the secant line. Thus
verifying one example suffices to prove the theorem. A suitable example is
given in Figure 15.11. There the calculation is

|AX |
|XB| ·

|BY |
|Y C| ·

|CZ|
|ZA| =

6
−2

· 2
2
· 1
3

= −1.

��

Second proof of Ceva’s theorem: Our second proof of Ceva’s theorem relies on
the equality (15.2). In order to prove Ceva’s theorem we consider the obvious
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Fig. 15.11 Proof by example.

identity
[ACD]
[CBD]

· [BAD]
[ACD]

· [CBD]
[BAD]

= 1,

(note that each determinant in the denominator occurs as well in the nu-
merator). This expression again is a projective invariant. Applying (15.2) we
get.

|AX |
|XB| ·

|BY |
|Y C| ·

|CZ|
|ZA| =

(
[ACD]
[CBD]

)
·
(

[BAD]
[ACD]

)
·
(

[CBD]
[BAD]

)
= 1

which proves Ceva’s theorem. ��
Second proof of Menelaus’s theorem: Similarly, a proof of Menelaus’s theo-
rem is derived. For this consider the special line as being generated by two
points D and E. We have

[ADE]
[BDE]

· [BDE]
[CDE]

· [CDE]
[ADE]

= 1.

Applying the identity (15.2) and taking into account the alternating deter-
minant rules, we get

|AX |
|XB| ·

|BY |
|Y C| ·

|CZ|
|ZA| =

(
[ADE]
[DBE]

)
·
(

[BDE]
[DCE]

)
·
(

[CDE]
[DAE]

)

=
(
− [ADE]

[BDE]

)
·
(
− [BDE]

[CDE]

)
·
(
− [CDE]

[ADE]

)

= −1,

which yields Menelaus’s theorem. ��

There are also interesting generalizations of the theorems of Ceva and
Menelaus to larger cyclic products of oriented distance ratios. The
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Fig. 15.12 Hoehn’s theorem and the generalized Menelaus theorem for n = 5.

generalization of Ceva’s theorem is known as Hoehn’s theorem (see Fig-
ure 15.12, left):

Theorem 15.6 (Hoehn’s theorem). Let n be an odd number and let
A1, . . . , An and P be n + 1 points in the plane such that P is distinct from
the lines (Ai, Ai+1), indices modulo n. Then let the points Bi be the intersec-
tion of the line (Ai, Ai+1) with the line (P,Ai+(n+3)/2), for i = 1, . . . , n with
indices modulo n. Then we get

n∏
i=1

|Ai, Bi|
|Bi, Ai+1| = 1.

Proof. The proof is analogous to the bracket proof of Ceva’s theorem. We
count indices modulo n and apply (15.2) in the standard embedding. We get
with k = (n+ 3)/2,

|Ai, Bi|
|Bi, Ai+1| =

[Ai, Ai+k, P ]
[Ai+k, Ai+1P ]

,

and hence
n∏
i=1

|Ai, Bi|
|Bi, Ai+1| =

n∏
i=1

[Ai, Ai+k, P ]
[Ai+k, Ai+1P ]

.

In the last expression (since k was chosen appropriately) each term in the
denominator occurs also in the numerator. Thus the whole expression must
be equal to 1. ��

The reader is invited to translate our investigations of Section 8.3 to de-
rive a corresponding generalization of Menelaus’s theorem. An appropriate
drawing is given in Figure 15.12 on the right.
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15.5 Gluing Ceva and Menelaus Configurations

The World Serpent was an enormous snake which wrapped
around the world and bit his own tail.

The legend of Thor

The reason why we spend so much time on the theorems of Ceva and Menelaus
is that according to their simple structure they are ideal basic building blocks
for more complicated statements. What is missing so far is a kind of glue to
link several copies of Ceva’s or Menelaus’s configurations. Indeed, gluing them
turns out to be an extremely natural (and powerful) process [110]. For this
consider two different Ceva configurations that are identified along one edge
such that the special point on the edge is shared by both configurations.
Before we do so, we fix several naming conventions. When in the future we
talk about the “Cevaexpression” (or “Menelausexpression”) for the triangle
A,B,C, the letters A, B, and C are assumed to be ordered as in (15.3). The
ordering A,C,B would generate the reciprocal expression. Furthermore, we
will call the points X , Y , and Z the edge points of the configuration. The
points A, B, and C will be called the vertices of the configuration. Point D
in a Ceva configuration will be called the Ceva point, and the secant line in
a Menelaus configuration is the Menelaus line.

Now consider the situation in which two triangles that are equipped with
a Ceva configuration share an edge and the corresponding edge point on
this edge (see the Figure 15.13). The triangle A,B,C yields a relation |AZ|

|ZB| ·
|BX|
|XC| · |CY |

|Y A| = 1, while the triangle C,B,D yields |CX|
|XB| · |BV |

|VD| · |DW |
|YW | = 1. The

quotient |BX|
|XC| occurs in the first expression, and its reciprocal occurs in the

second expression. If we multiply both expressions, this quotient cancels and
we are left only with terms that live on the boundary of the figure. We obtain

|AZ|
|ZB| ·

|CY |
|Y A| ·

|BV |
|V D| ·

|DW |
|YW | = 1.

We now consider a triangulated topological disk. All triangles of the tri-
angulation should be equipped with Ceva configurations that have the ad-
ditional property that points on interior edges are the shared edge points
of the two adjacent triangles. We consider the product of all corresponding
Cevaexpressions.

If the triangles are oriented consistently (adjacent triangles use the com-
mon edge in opposite directions), all quotients related to inner edges will
cancel. We are left with an expression that depends only on the position of
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Fig. 15.13 Pasting copies of Ceva’s theorem.

the boundary points (including the edge points along the boundary edges).
If in Figure 15.13 on the right the letters a1, b1, , . . . , a6, b6 correspond to the
oriented lengths around the boundary, we can conclude immediately that we
must have

a1

b1
· a2

b2
· a3

b3
· a4

b4
· a5

b5
· a6

b6
= 1.

Now consider any triangulated manifold that forms an oriented 2-cycle.
This cycle serves as a kind of frame for the construction of an incidence the-
orem. It is important to mention in what category we understand the term
“triangulated manifold.” We consider compact, orientable 2-manifolds with-
out boundary and subdivisions by CW-complexes whose faces are triangles.
For practical purposes this means that we have a collection of oriented tri-
angles glued along edges such that on a combinatorial level every edge is
shared exactly by two triangles in opposite directions. We do not care about
coincidence or overlapping of the triangles. So in principle, a subdivision of
a 2-sphere by two topological triangles, which are identified along the edges,
would be a feasible object for our considerations.

Consider such a cycle as being realized by flat triangles (it does not matter
whether these triangles intersect, coincide, or are coplanar as long as they
represent the combinatorial structure of the cycle). By the above argument
the presence of Ceva configurations on all but one of the faces will imply
automatically the existence of a Ceva configuration on the final face. Thus
at the final face the three lines connecting the edge points and the vertices
will meet automatically, and we have an incidence theorem. In what follows
we will study several concrete examples of this amazingly rich construction
technique.

As a first example take the projection of a tetrahedron (ABCD) to
R

2. Now choose points U, V,W,X, Y, Z, one on each of the edges of the
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tetrahedron. Assume that for three of the faces these points form a Ceva
configuration. Then they automatically form a Ceva configuration on the
last face: an incidence theorem. Here is a graphical representation, in which
the tetrahedron has been decomposed into a front and a back part—each
carrying two Ceva triangles:

A C

D

B

U
V

W
X

Y

+
A C

D

B

U
V

W
X

Z

=
A C

D

B

U
V

W
X

Y Z

Although the proof of this incidence theorem is already evident by our
above homotopy argument, we still want to present the algebraic cancellation
pattern in detail. Consider the following formula:

(
|AU|
|UB| · |BV |

|VC| · |CY |
|Y A|
)
·
(

|CW |
|WD| · |DX|

|XA| · |AY |
|Y C|
)
·(

|AX|
|XD| · |DZ|

|ZB| · |BU|
|UA|
)
·
(

|BZ|
|ZD| · |DW |

|WC| · |CV |
|V B|
)

= 1.

This formula is obviously true, since all lengths of the numerator occur in
the denominator as well and vice versa (this property is inherited from the
cyclic structure). On the other hand, each of the factors in brackets being 1
states the Ceva condition for one of the faces. Thus three of these conditions
imply the last one. The essential fact that makes this proof work is that
whenever two faces meet in an edge, the two corresponding ratios cancel. In
general we obtain (see [110]) the following

For any triangulated oriented 2-CW-cycle choose a point on each edge such that for
every face either a Ceva or a Menelaus condition is generated. If altogether an even
number of Menelaus configurations is involved, then the conditions on all but one
of the triangles automatically imply the condition on the last triangle.

We need an even number of Menelaus configurations, since each Menelaus
configuration accounts for a factor of −1 in the product. We will not exploit
the full power of this method. Rather than that, we will restrict ourselves to
a few illuminating examples.

As a second example we consider again four triangles. Two adjacent tri-
angles should carry Ceva configurations, and two other copies of the same (!)
triangles should carry Menelaus configurations. We identify the two sub-
configurations along the four boundary edges and make sure that the edge
points coincide. The following figure illustrates the situation:
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+ =

By our considerations above it is clear that the final coincidence in this
configuration has to be satisfied automatically. We again have an incidence
theorem. This incidence theorem has a nice projective interpretation. The
upper and the lower parts of the picture correspond to the construction of
a harmonic point that we met in Figure 5.1. The incidence theorem shows
that the construction is independent of the concrete choice of the auxiliary
construction points.

As a next example we consider again a tetrahedral structure, but now we
equip each of its triangular faces with a Menelaus configuration. The following
picture shows the resulting configuration:

+ =

This is again an incidence theorem. It consists of ten points and ten lines
and is nothing but Desargues’s theorem, which we met in Section 15.1.
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Fig. 15.14 A Cevaproof of Pappos’s theorem.

How about Pappos’s theorem? The amazing fact about Ceva/Menelaus
proofs of Pappos’s Theorem is that in that case the topological genus of the
underlying cycle must be more complicated. In fact, the proof of Pappos’s
theorem “lives on a torus.” For this consider six triangles that are glued
such that they form a hexagon where the six triangles meet at the center
(see Figure 15.14, left). In this figure we now identify opposite boundary
edges of the hexagon. The resulting manifold has the topological type of
a torus. In fact, the only way to “realize” this framework is to place the
triangles such that they all share the same three vertices, and these coincide.
Now on each of the triangles we place a Ceva configuration and make sure
that the edge points of identified edges coincide. A corresponding drawing
is shown in Figure 15.14 in the middle. The drawing consists of 18 points
(three vertices, six Ceva points, and nine edge points) and 12 lines (the three
triangle lines and the nine interior lines). None of the edge points contribute
to the incidence theorem, since they turn out to be the intersection of just two
lines. Removing them, we see that also the triangle sides do not contribute to
the incidence theorem. Removing them as well, we are left with nine points
and nine lines and an incidence theorem on them: Pappos’s theorem!

It is a really surprising fact that also in the case in which we assign to all
six triangles a Menelaus configuration we get a drawing of Pappos’s theorem.
Figure 15.15 shows a drawing of this configuration. The original triangle of
the manifold is the dark triangle in the right of the drawing. The additional
six lines in the drawing are the six Menelaus lines that cut all three edges of
the triangles. The nine points on the left of the configuration correspond to
the nine edges of the triangles in our torus. Similar to the fact that in the
last proof the edges of the triangles could be neglected, this time, the three
vertices are superfluous. A proof along these lines was first given in [28]. It
is amazing that this kind of proof technique seems in the case of Pappos’s
theorem to be intimately related to a torus. The combinatorial symmetry of
Pappos’s theorem is also intimately related to a torus. Its incidence graph
(a graph in which the nodes are the points and lines and the edges are the
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Fig. 15.15 A Menelausproof of Pappos’s theorem.

incidences of a configuration) can be embedded without intersections in a
torus, but not in a sphere (see [27] and [111]).

As a final example we return to Saam’s theorem, which we encountered
in Section 15.3 and whose proof was still left open. We get the proof as an
application of Hoehn’s Theorem as a basic building block in our gluing tech-
nique. Figure 15.16 once more gives the configuration that underlies Saam’s
theorem. We recall that for this theorem one starts with a central point
and an odd number of lines passing through it. On each of these lines one
chooses a projection point Pi. Then one starts with a point A1 (compare to
the picture) and projects this point through P1 onto the next line. If one
continues projecting, then after cycling around twice one again reaches the
initial point A1. The picture on the right shows a way to prove this theorem
by a cycle construction. One forms an n-gon by the points Ai with odd i
and forms a pyramid over this n-gon. On all triangular faces one imposes

OP1
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Fig. 15.16 Saam’s theorem and its underlying cycle.
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Fig. 15.17 Carnot’s theorem and a cycle theorem involving conics.

a Ceva configuration, and on the n-gon one imposes a Hoehn configuration.
The usual cancellation procedure proves the theorem. It also becomes obvi-
ous that Saam’s theorem is only a special case of a more general theorem
that has the same underlying manifold proof, but in which the apex of the
pyramid does not coincide with the centerpoint of Hoehn’s configuration.

15.6 Furthermore . . .

We have only just touched the surface. There are still many interesting issues
that one could explore in the context of brackets, cycles, theorems, and proofs.
For instance it can be proved that binomial proofs and Ceva/Menelauscycle
proofs can be converted into each other (the translation is not trivial) [1, 110].
There are generalizations to higher dimensions; symmetry considerations;
relations to liftings; cycle proofs can also be applied to nonlinear situations;
finding cycle or binomial proofs can be automated to implement automatic
proving machines, etc. It is a striking fact that the rather abstract series of
papers by Dress and Wenzel (see [34, 35, 36, 87, 130]) centered on the topic
of Tutte groups of a matroid has a very close relation to the Ceva/Menelaus
setup presented in this chapter.

As a final example we will give a glimpse of the application of cycle proofs
for configurations that involve conics. Figure 15.17 (left) shows a theorem
of Carnot, which can be considered a generalization of Ceva’s theorem. In
Carnot’s theorem we consider a triangle with exactly two (distinct) edge
points per edge. We assume that the edge points are labeled 1, . . . , 6 and
that the corresponding length ratios are ai/bi. Carnot’s theorem states that
we have

a1

b1
· a2

b2
· a3

b3
· a4

b4
· a5

b5
· a6

b6
= 1
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if and only if the six edge points lie on a common conic. We can immediately
use Carnot’s configuration as a “primitive” to build theorems that also involve
conics. In Figure 15.17 on the right we present a small theorem that involves
only Carnotfaces: If one has a tetrahedron with two distinct points on each
edge and if the six edge points of three faces are coconical, then they will
be coconical for the last face automatically. In fact, there is nothing special
about the tetrahedron. Any oriented triangulated 2-manifold would serve as
a frame as well.



Part III

Measurements
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Bill Watterson, Calvin and Hobbes, 1988

Perhaps the most annoying thing about our current setup for projective ge-
ometry is the fact that concepts that one usually immediately associates with
geometry (such as circles, distances, and angles) do not have an immediate
correspondence. We obtained a very beautiful algebraic system for dealing
with geometry, but we paid a high price. Many interesting and nice results
from geometry cannot even be expressed by our language developed so far.
Essentially most concepts that belong to Euclidean geometry were abandoned
from our setup. We could talk about conic sections, but not about circles.
We could measure cross-ratios but not distances; we could intersect arbitrary
pairs of lines, but we lost the notion of angles.

Thus it is, for instance, impossible to formulate a simple statement like
“The altitudes in a triangle meet in a point”, since we do not have a concept
of perpendicularity. We also do not have any equivalents to Thales’ theorem
or the Pythagorean theorem, since we cannot speak about circles and right
triangles. It would seem then that we have developed a beautiful algebraic
system at the price of giving up Euclidean geometry!
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Here comes the good news: This is not true at all—there is a beautiful
system that allows us to express all Euclidean concepts and magnitudes in
a purely projective framework. Thus we can perform all nice operations of
projective geometry and still retain the expressive power and richness of
Euclidean geometry. Things are even better: if we properly understand how
to incorporate Euclidean geometry into projective geometry we will see that
Euclidean geometry is just a special case of several other ways to embed other
geometries. If we then play with the parameters, we will see that there is a
whole variety of other geometries expressible in a similar (and algebraically
smooth) manner. Euclidean geometry will just be a special case of a much
richer system. The larger system will contain prominent inhabitants such as
hyperbolic geometry and relativistic space-time geometry.

It is the purpose of this part of the book to develop this general theory.
As before, we will pay special attention to the question of how geometric
primitive operations can be carried out in the most general and at the same
time the simplest way. The key to everything will be the proper use of complex
numbers.
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Complex Numbers: A Primer

The Divine Spirit found a sublime outlet in that wonder of
analysis, that portent of the ideal world, that amphibian be-
tween being and not-being, which we call the imaginary root
of negative unity.

Gottfried Wilhelm Leibniz, 1702

So far, almost all our considerations have dealt with real projective geometry.
The main reason for this is that we wanted to stay with all our considerations
as concrete and close to imagination as possible. Nevertheless, almost all
considerations we have made so far carry over in a straightforward way to
other underlying fields. Only in very rare cases are small twists necessary,
and if so, they result from one of the following two facts:

• Depending on the field, certain equations may be solvable or not.
• Other fields may have other field automorphisms.

We now will be interested in particular in projective geometry over the
complex numbers. Since the complex numbers are algebraically closed (every
polynomial equation is solvable over the complex numbers), objects will have
intersections in general. For instance, over the complex numbers there is
always an intersection of a conic and a line, in contrast to the real case in
which we may have situations in which the two objects do not intersect. This
is the first benefit we will get from the use of complex numbers. They will
help in our efforts to exclude special cases.

Compared to real numbers, the complex numbers have more field automor-
phisms. Besides the identity (the only automorphism of the real numbers),
there is also the automorphism that sends x+ iy to x− iy.

297
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automorphism!of a field This automorphism corresponds to complex conju-
gation.1 Considering this fact under the light of the fundamental theorem
of projective geometry (compare Section 5.4), we see that over the complex
numbers there will be harmonic maps and collineations that do not corre-
spond to a matrix multiplication but come from complex conjugation. We
will have to deal with this difference later.

This section is meant as a very brief introduction to complex numbers.
Here we will highlight all ingredients we will need later. Readers who already
feel very familiar with complex numbers can skip this chapter with no harm.

16.1 Historical Background

The historical roots of complex numbers are closely related to the task of
finding solutions to polynomial equations [137]. It is an interesting fact that
complex numbers were first discovered in the context of cubic rather than
quadratic equations. Roughly, the story goes as follows:
quadratic equation
equation!quadratic In antiquity it was known how to solve quadratic equa-
tions x2 + px+ q = 0. The solution is given by the well-known formula

x1/2 = −p
2
±
√
p2

4
− q.

It was clear that there are instances in which no (real) solution would be
possible due to the fact that the square of a (real) number is always positive.
So for instance, the equation x2 = −1 was considered unsolvable.

Since then it remained a major open question how to generalize the solu-
tion of the quadratic equation to the next more complicated case, the cubic
equation.
cubic equation
equation!cubic In fact, it took several hundred years until a solution was found
(in the sixteenth century), and one can say that the developments triggered
by the discovery of this formula form the initial point of what one would
consider “modern mathematics.” The history around the discovery of the
solution (we already used a variant of it in Section 11.4 when we intersected
two conics) is exciting, full of personal tragedy, amusing—a prototype of a
mathematical “crime story” on priority disputes. Again, since this is not a
book on the history of mathematics we will only briefly outline the basic
plot and refer to history books for details [48, 137]. We also recommend
the novel [61]. Briefly, Scipione del Ferro was essentially the first to solve (a
special case of) the general cubic equation x3 +ax2 +bx+c = 0 around 1515.

1 These are the only continuous automorphisms of C. Indeed, in the presence of the axiom
of choice there are also uncountably many wild automorphisms of C.
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Unfortunately, he did not publish his result during his lifetime (he died in
1526). However, he told the solution to his scholar and relative Anton Maria
Fior (a more or less mediocre mathematician). After Scipione’s death, Anton
Maria Fior challenged the mathematician Nicolo Tartaglia (1499–1557) to a
mathematical tournament (which were quite common at this time). Tartaglia
was the best-known mathematician in Italy at this time and practiced in
Venice. Such a tournament consisted of 30 mathematical challenges, which
were given from either opponent to the other. Somehow, Tartaglia found out
that Fior knew the secret of how to solve cubic equations. Tartaglia suspected
correctly that all challenges he had to face would involve cubic equations. He
figured out how to solve (a special case of) the cubic equation by himself
and won the tournament handily—he solved all 30 problems within 2 hours.
At that time another Italian mathematician, Girolamo Cardano (1501–1576)
was working on a book that covered the mathematical knowledge known at
the time (Tartaglia had a similar project). Cardano importuned Tartaglia
to reveal his formula so that he could include it in his book. Tartaglia first
resisted, but after several attempts, he agreed to tell him the formula under
the condition that Cardano would not publish the formula in his own book.
Cardano even vowed not to tell Tartaglia’s formula in speech or in writing.
However, a few years later Cardano found out that Tartaglia was not the first
to have solved the cubic equation. Therefore, he felt released from the vow
and included Tartaglia’s formula in his book Ars magna (1545). Cardano even
generalized the solution and was able to solve all special cases of the equation.
For Tartaglia this was a great shock, and he began a long and public priority
fight with Cardano. The solution formula was until recently always called
“Cardano’s formula.” In recent years (and after some historical research) it
is more common to call it the “del Ferro/Tartaglia/Cardano formula.”

As we will see, despite all the priority disputes, Cardano made a contri-
bution in this context that is perhaps more important than the solution of
cubic equations itself. Tartaglia’s general formula for solving the cubic equa-
tion x3 +px+q = 0 (every cubic equation can be easily transformed into this
form) can in modern terms be formulated as:

x =
3

√
− q

2
+

√
q2

4
+
p3

27
+

3

√
− q

2
−
√
q2

4
+
p3

27
.

For instance, if one wants to find a solution of x3 − 24x− 72 = 0, one gets
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x = 3

√
−−72

2 +
√

722

4 + (−243)
27 + 3

√
−−72

2 −
√

722

4 + (−243)
27

= 3
√

36 +
√

1296− 512 + 3
√

36 −√
1296− 512

= 3
√

36 + 28 + 3
√

36 − 28

= 3
√

64 + 3
√

8

= 4 + 2

= 6.

And indeed, x = 6 is a solution of the cubic equation: 63 − 24 · 6 − 72 =
216 − 144 − 72 = 0.

Now, it is clear that every cubic equation of the above form must have
at least one solution, since as x runs from −∞ to +∞, the cubic itself runs
continuously from −∞ to +∞ and therefore has to pass through zero. Un-
fortunately, Tartaglia’s formula applied in a naive way does not always lead
to a solution. Consider, for instance, the problem x3 − 15x − 4 = 0. If we
proceed in the same way as before, we get

x = 3

√
−−4

2 +
√

42

4 + (−153)
27 + 3

√
−−4

2 −
√

42

4 + (−153)
27

= 3
√

2 +
√

4 − 125 + 3
√

2 −√
4 − 125

= 3
√

2 +
√−121 + 3

√
2 −√−121

= . . .

. . . and we are stuck! What should one do with the term
√−121? There is

no number (at least for del Ferro and Tartaglia) whose square is −121. Nev-
ertheless, there must be a solution of the cubic (in contrast to the quadratic
case, where nobody saw a reason for searching for a solution of x2 = −1).
This was the place where Cardano made his brilliant innovation. He simply
went on calculating, assuming that one could take the term

√−1 as a purely
formal expression with which one could do arithmetic. It behaves almost like
a usual number but must be used subject to the rule

√−1 · √−1 = −1. If we
do so, we can continue the above calculation

3
√

2 +
√−121 + 3

√
2 −√−121

= 3
√

2 + 11
√−1 + 3

√
2 − 11

√−1

= . . .

. . . and now we need two numbers a and b with the property that a3 =
2 + 11

√−1 and b3 = 2 − 11
√−1. In fact, a = 2 +

√−1 and b = 2 −√−1 do
the job (check it!) and we can proceed:
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Fig. 16.1 Function plots of the two cubic polynomials (x3 −24x−72)/50 and (x3−15x−
4)/50.

3
√

2 +
√−1 + 3

√
2 −√−1

= (2 + 11
√−1) + (2 − 11

√−1)

= 4.

Et voilà, right before the last equation the mysterious
√−1 disappears again,

and we end up with a nice, real (and correct) solution x = 4. Testing the
result we obtain 43 − 15 · 4 − 4 = 64 − 60 − 4 = 0.

In “modern times” things have been smoothed out. A new symbol “i” was
introduced that plays the role of the mysterious

√−1 and behaves subject to
i2 = −1. This number i is usually called the imaginary unit. We now usually
consider C = R[i] as a field extension of the real numbers, so that we can
consider complex numbers as numbers of the form x+ i ·y. Complex numbers
play a great unifying role in modern mathematics. With their help, seemingly
unrelated effects and topics may be interpreted as different sides of the same
coin. We will have a brief look at some of them.

16.2 The Fundamental Theorem

The fundamental theorem of algebra is a great example for the unifying power
of complex numbers. Complex numbers were originally introduced to perform
the calculations to solve cubic equations. However, they also generalize the
structure of the solution set. A view to the solution set of cubic equation from
the “real perspective” tells us that they will have one, two, or three solutions,
depending on the values of their parameters. From a “complex perspective”
one can prove that a cubic x3 +ax2 +bx+c can always be written in the form
(x−x1)(x−x2)(x−x3), where x1, x2, x3 are three (possibly complex) numbers.
Since this expression is zero if and only if x itself equals one of these numbers,
x1, x2, x3 must be solutions of the cubic equation x3+ax2+bx+c = 0. Thus in
a certain sense we could say that a cubic equation always has three solutions.
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They may occur with a multiplicity if the same linear expression is used more
than once in the expression (x− x1)(x− x2)(x− x3).

This is a special case of a much more general theorem: the fundamental
theorem of algebra. This theorem states that every polynomial

f(x) = xn + an−1x
n−1 + · · · + a1x+ a0

of degree n may be written as a product of n linear factors

(x− x1) · (x− x2) · · · · · (x− xn).

The numbers x1, . . . , xn are all solutions of the equation f(x) = 0. These
numbers may be real or complex, and they may occur with a certain multi-
plicity in the product expression.

Thus not only do complex numbers help to solve quadratic and cubic
equations, they also allow one to find all solutions of arbitrary polynomials.
The fundamental theorem is by far not easy to prove, and both proofs of
this theorem first known (one by Gauss and one by d’Alembert) turned out
to have some minor flaws.2 It is important to mention that the fundamental
theorem of algebra does not tell how to find the solutions of a polynomial
equation. It only states their existence.

Applied to geometric problems, the fundamental theorem has many im-
portant consequences concerning the intersection multiplicity of geometric
objects. It gives us the right to speak of intersections of objects even if we
do not see them. Thus a line and a nondegenerate conic will always have two
intersections, either real or complex. These two intersections coincide if the
line is tangent to the conic. Similarly, two conics will in general have four
points of intersection. Again these intersections may coincide.

16.3 Geometry of Complex Numbers

One of the most important aspects in relation to our investigations will be
a geometric interpretation of complex numbers. A complex number a + i · b
may be associated to the point (a, b) in the real plane R

2. Thus we may iden-
tify the field of complex numbers C with the real Euclidean plane R

2. Every
statement about complex numbers immediately possesses a geometric coun-
terpart. It is amazing that this (from a modern perspective almost obvious)
interpretation was made quite a while after the invention of complex num-
bers. The geometric interpretation was first published by Caspar Wessel in
1799 (this is about 250 years after complex numbers were introduced!). Later,

2 In fact, in 1799 Gauss published a proof in response to d’Alembert’s proof, since he
thought that this proof was not rigorous. However Gauss’s proof (based on a topological
argument) also contained some flaws. Perhaps the first complete and correct proof was
given in 1816 by Gauss.
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r

ri sin(ψ)

r cos(ψ)

r · cos(ψ) + r · i · sin(ψ)

ψ

Fig. 16.2 Expressing complex numbers by trigonometric functions.

the geometric interpretation was rediscovered independently by Argand and
by Gauss. The geometric interpretation of complex numbers as points in the
plane will be crucial for all our further investigations.

Let us see how elementary arithmetic operations translate into geometric
terms. If we add two complex numbers z1 = a1 + i · b1 and z2 = a2 + i · b2 we
simply have to add the real and imaginary parts, and we obtain

z1 + z2 = a1 + i · b1 + a2 + i · b2 = (a1 + a2) + i · (b1 + b2).

This is nothing but usual addition of vectors. Thus we can say that adding a
complex number z = a+ i · b causes a translation by the vector (a, b).

Multiplication is a bit more intricate. Using our rules for calculations with i
we get:

z1 · z2 = (a1 + i · b1) · (a2 + i · b2)
= a1a2 + i · b1a2 + i · a1b2 + i2 · b1b2
= (a1a2 − b1b2) + i · (b1a2 + a1b2).

At first sight, this formula does not reveal an obvious geometric interpreta-
tion. Nevertheless such an interpretation will turn out to be the major key
to all our applications of complex numbers to geometry.

To analyze what is going on, we introduce two magnitudes: the length
|a+ i · b| of a complex number, which is defined by

|a+ i · b| = a2 + b2,

and the angle of z = a+ i · b, which is the angle between the vector (a, b) and
the vector (1, 0) on the x-axis. The length is also sometimes called absolute
value or modulus of z. The angle is also called argument or phase of z. We will
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z1

z2

z1 + z2

z1

z2

z1 · z2

Fig. 16.3 Geometric interpretation of addition and multiplication.

prefer the geometric terms “length” and “angle.” It is clear that a complex
number is completely determined if we know its length r and its angle ψ.
The corresponding complex number then calculates (as can be seen by simple
trigonometry) to

z = r · cos(ψ) + r · i · sin(ψ).

Let us see what happens if we multiply a complex number z1 = a + i · b by
another number z2 that is defined by its length r and its angle ψ. We get

z1 · z2 = (a+ i · b) · (r · cos(ψ) + r · i · sin(ψ))
= (ar · cos(ψ) − br sin(ψ)) + i · (br · cos(ψ) + ar sin(ψ)).

If we abbreviate z1 · z2 = a′ + i · b′, we can express this formula by a matrix
multiplication: (

a′

b′

)
= r ·

(
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

)
·
(
a
b

)
.

This gives an immediate interpretation in geometric terms: multiplying by
a complex number with length r and angle ψ results in a rotation around
the origin by an angle of ψ combined with a stretch (or dilatation) by a
factor r. Figure 16.3 illustrates the geometric interpretation of addition and
multiplication of two complex numbers.

16.4 Euler’s Formula

Expressing complex numbers by trigonometric functions is a nice feature, but
it is not the most compact form in which we can write a complex number
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given by angle and length. There is a beautiful formula known as Euler’s
formula that closely relates trigonometric functions, complex numbers, and
the exponential function. One way to express this formula is

eix = cos(x) + i · sin(x).

If x is a real number, this means that the exponential of the purely imaginary
number ix can be expressed as combination of cos(x), which forms the real
part, and i · sin(x), which forms the imaginary part. In this form the formula
was published by Euler in 1748 (although it was discovered earlier by Roger
Cotes in 1714). Since the geometric interpretation of complex numbers was
not known at this time, both Cotes and Euler considered this result a purely
analytical statement.

When trying to interpret this formula, we encounter an important diffi-
culty: What is eix? How should we define the result of an analytic function
applied to a complex argument? The short answer to this goes as follows:
Whenever a function is expressible as a formal power series, one can use this
power series to evaluate the function also for complex arguments, as long as
it converges. In particular, the functions ex, sin(x), and cos(x) have formal
power series that converge for all complex numbers. These power series are

ex = 1 + x + x2

2! + x3

3! + x4

4! + x5

5! + x6

6! + x7

7! + · · · ,
sin(x) = x − x3

3! + x5

5! − x7

7! + · · · ,
cos(x) = 1 − x2

2! + x4

4! − x6

6! + · · · .
Comparing the entries of these power series, we observe a striking similarity

of the summands of the three power series. Up to sign changes, all summands
of ex occur in sin(x) or cos(x). So, how do we get the signs right? This is
where the number i enters the game. If we expand the function eix, we see
that depending on the power of the summand, the summand occurs either
with a factor i (for even powers) or not (for odd powers). By the rule i2 = −1
also the signs are altered according to a very regular pattern. In detail, we
get

eix = 1 + ix + (ix)2

2! + (ix)3

3! + (ix)4

4! + (ix)5

5! + (ix)6

6! + (ix)7

7! + . . .

= 1 + ix − x2

2! − ix
3

3! + x4

4! + ix
5

5! − x6

6! − ix
7

7! + · · · ,
i sin(x) = ix − ix

3

3! + ix
5

5! − ix
7

7! + · · · ,
cos(x) = 1 − x2

2! + x4

4! − x6

6! + · · · .

We have printed the power series for cos(x) and i sin(x) for reference purposes.
We see that eix splits into these two functions. So we have

eix = cos(x) + i · sin(x).
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This formula has many consequences. First of all, we see that if x is real, the
length of eix is one, since |eix| = | cos(x) + i · sin(x)| = cos(x)2 + sin(x)2 = 1.
Thus these numbers all lie on the unit circle in the complex plane. We may
think of x as an angle, and as x increases, the number eix rotates counter-
clockwise along the unit circle. In particular, we get eiπ = −1 and e2iπ = 1.3

If we consider ln(x) as the inverse function of ex, we must consider ln(x)
to be a many-valued function. If we search, for instance, for a number x with
ex = 1, any number in the set

{. . . ,−4iπ,−2iπ, 0, 2iπ, 4iπ, . . .}

will do. So we could say that ln(1) could be any of these numbers. In general,
the value of ln(x) is defined only up to additive constants of the form 2kiπ,
where k is an integer. Still, usually one prefers to define ln(x) as a single-
valued function and defines the principal value of ln(x) to be the value a+ ib,
where b is in the half-open interval (−π, π]. We will have to deal with the
many-valuedness of ln later on. It simply reflects the geometric fact that a
rotation by 360◦ is indistinguishable from the identity.

There is another important application of Euler’s formula. It allows us to
express a complex number directly by its length and its angle. If r is the
length and ψ is the angle, we get

z = r · eiψ.

This is the so-called polar representation of a complex number. It allows us
also immediately to understand how one can calculate the product of two
complex numbers using the rule ex · ey = ex+y. We get in polar coordinates

z1 · z2 = r1 · eiψ1 · r2 · eiψ2 = r1r2 · ei(ψ1+ψ2).

The angles add and the lengths multiply. Figure 16.4 compares the vector
and the polar representations of a complex number z = a+ i · b = r · eiψ.

Polar representations allow us also to easily describe division by a complex
number. If a number z �= 0 is given by z = r · eiψ, then its inverse z−1 is
given by z = 1

r · e−iψ, since we have

reiψ · 1
r e

−iψ = eiψ−iψ = e0 = 1.

In particular, numbers of the form eiψ can be considered numbers with
pure angle ψ. Thus these numbers can be considered synonymously to angles.
Adding angles corresponds to multiplication of these numbers. The behavior
of these numbers nicely reflects the fact that angles are usually defined only

3 Many consider eiπ +1 = 0 to be one of the most beautiful formulas in mathematics, since
it connects five very important mathematical constants: 0, 1, π, e, and i and nothing else.
Furthermore, this formula involves just four different basic operators: equality, addition,
multiplication, and exponentiation.
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1

i

a

b
z = a + i · b

r

ψ

z = r · eiψ

Fig. 16.4 Vector and polar representation of a complex number.

modulo 2π. Adding two angles of 270◦ and 180◦ results in an angle of 450◦.
For most applications, this angle is equivalent to the angle 450◦−360◦ = 90◦.
This is reflected by calculations with numbers of the form eiψ . We have

e
3
2 iπ · eiπ = e

5
2 iπ = e(2+

1
2 )iπ = e2iπ · e 1

2 iπ = 1 · e 1
2 iπ = e

1
2 iπ .

16.5 Complex Conjugation

We have seen that complex addition and complex multiplication can be used
nicely to express geometric transformations. Addition corresponds to trans-
lation, and multiplication can be used to express scaling and rotation (or
a combination of both). There is one Euclidean transformation that is still
missing: reflection.

Reflections are closely related to another operation on complex numbers:
conjugation. Conjugation has no counterpart in the field of real numbers.
Conjugation expresses a mirror reflection in the real axis of the complex
number plane. The conjugate of z = a+ i · b is denoted by z and is defined
by

z = a+ i · b = a− i · b.
If z = r · eiψ is given in polar coordinates, then the conjugate calculates as

z = r · eiψ = r · e−iψ.

Thus the conjugate of a real number is the number itself. The conjugate of a
purely imaginary number is its negative. Complex conjugation is a nontrivial
field automorphism. We have
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z = a + ib

z = a − ib

Fig. 16.5 Complex conjugation.

z1 + z2 = z1 + z2 and z1 · z2 = z1 · z2.

The first equation follows immediately from the vector representation; the
second follows immediately from the polar representation. In respect of the
fundamental theorem of projective geometry this means that in complex
projective spaces we will have harmonic maps or collinearities that do not
come from projective transformations. If we consider only continuous auto-
morphisms, complex conjugation is the only nontrivial field automorphism
of C, so that we do not get too many types of continuous harmonic maps or
collineations.

There are a few facts on complex conjugation that should be mentioned,
since they will turn out to be useful later. The first couple of facts concern
the relation of complex conjugates to the elementary arithmetic operations:

• Adding a number z to its own conjugate, we obtain twice the real part
of the number:

z + z = (a+ ib) + (a− ib) = 2a.

• Subtracting z from z, we obtain twice the imaginary part of the number:

z − z = (a+ ib) − (a− ib) = 2ib.

• Multiplying z by z, we obtain the square of the absolute value of z:

z · z = reiψ · re−iψ = r2eiψ−iψ = r2e0 = r2.

• Dividing z by z, we obtain the number that has length 1 and twice the
angle of z:

z/z = reiψ/re−iψ = eiψ+iψ = e2iψ.

It is a remarkable fact that complex conjugates and the four arithmetic
operations are so closely related to the parameters of a complex number. We
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will make use of this later on. In particular, the third equation implies that
one can define the absolute value of a complex number by |z| =

√
z · z.

Another important fact is that if we have a polynomial f(x) =
∑n

i=0 aix
i

with real parameters ai, then as mentioned before, not all zeros of this poly-
nomial may be real. However, if we have a complex root z of this polynomial,
then z will also be a root. This can be seen easily by evaluating f(z):

f(z) =
n∑
i=0

aiz
i =

n∑
i=0

ai z
i =

n∑
i=0

aizi =
n∑
i=0

aizi = 0 = 0.

The second equality holds since the ai were assumed to be real and hence we
have ai = ai.

The proof strategy we have used here may be viewed as a special case of a
more general concept. If we have any complex function f(z1, z2, . . . , zn) that
is composed only of the four arithmetic operations and complex conjugation,
then we will automatically have

f(z1, z2, . . . , zn) = f(z1, z2, . . . , zn).
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The Complex Projective Line

The shortest route between two truths in the real domain
passes through the complex domain.

Jacques Salomon Hadamard (1865–1963)

Now we will study the simplest case of a complex projective space: the com-
plex projective line. We will see that even this case has already very rich
geometric interpretations. The close relation of complex arithmetic opera-
tions to geometry allows us to express geometric properties by nice algebraic
structures. In particular, this case will be the first example of a projective
space in which we will be able to properly deal with circles.

17.1 CP
1

Let us recall how we introduced the real projective line. We took the one-
dimensional space R, considered it as a Euclidean line, and added one point
at infinity. Topologically, we obtained a circle. The best way to express the
elements of the real projective line algebraically was to introduce homoge-
neous coordinates. For this we associated to each number x ∈ R the vector
(x, 1)T and identified nonzero scalar multiples. Finally, we identified the vec-
tor (1, 0)T (and all its non-zero multiples) with the point at infinity. We ended
up with the space

RP
1 =

R
2 − {(0, 0)T }

R − {0} .

We will do exactly the same for the complex numbers! To obtain the
complex projective line we start with all the numbers in C. We associate

311
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every number z ∈ C with the vector (z, 1)T and identify nonzero scalar
multiples. By this we associate all vectors of the form (a, b)T ; b �= 0, to a
number in C. What is left is the vector (1, 0)T and all its nonzero multiples.
They will represent a unique point at infinity. All in all, we obtain the space
CP

1 defined by

CP
1 =

C
2 − {(0, 0)T }

C − {0} .

This space is isomorphic to all complex numbers together with one point at
infinity.

What is the dimension of this space? In a sense, this depends on the point
of view. From the perspective of real numbers, the complex plane C is a
two-dimensional object, since it requires two real parameters to specify the
objects of C. Hence one would say that also CP

1 is a real-two-dimensional
object, since it differs from C just by one point. On the other hand, from a
complex perspective, C is just a one-dimensional object. It contains just one
(complex) parameter. Since R is the real number line, one could consider C

the complex number line. Thus C is complex-one-dimensional, and so is CP
1.

This is the reason why we call the space CP
1 the complex projective line!

There is another issue important to mention in this context. Identifying
vectors that differ only by a nonzero scalar this time also includes multiplica-
tion by complex numbers. Thus (1, 2)T , (3i, 6i)T , (2+ i, 4+2i)T all represent
the same point. From every point represented by (a, b)T with b �= 0 we can
reconstruct the corresponding number of C by multiplication by 1/b. The
dehomogenized number is then a/b ∈ C. We will also frequently identify CP

1

with the space Ĉ := C ∪ {∞}. As in the case of real numbers, we use the
standard rules for arithmetic operations with ∞:

1/∞ = 0; 1/0 = ∞; 1 + ∞ = ∞; ∞ + ∞ = ∞.

17.2 Testing Geometric Properties

We will now identify the finite part of the complex projective line (i.e., C

as a part of CP
1) with the Euclidean plane R

2 and investigate how certain
geometric properties can be expressed in terms of algebraic expressions in C.
Most of these tests will, however, not correspond to projectively invariant
properties in CP

1.
We will first express the property that two vectors associated to two com-

plex numbers z1 and z2 point in the same (or in the opposite) direction. For
this we simply have to calculate the quotient z1/z2. Using polar coordinates,
we get (if z2 �= 0)

z1/z2 = (r1eiψ1/r2e
iψ2) = (r1/r2)ei(ψ1−ψ2).
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Fig. 17.1 Testing simple geometric properties.

If the two vectors point in the same direction, we have ψ1 = ψ2, and the above
expression is a positive real number. If they point in opposite directions we
have ψ1 = π + ψ2, and (since e−iπ = −1) the above number is real and
negative. In other words, we could say that in the complex plane 0, z1 and z2
are collinear if the quotient z1/z2 is real (provided z2 �= 0). Using complex
conjugation we can even turn this into an equality, since z is real if and only
if z = z. We get

z1 and z2 point in the same or opposite direction ⇐⇒ z1/z2 = z1/z2.

We can use a similar test to decide whether three arbitrary distinct num-
bers correspond to collinear points. Let A, B, and C be three points in the
complex plane. We represent these points by their corresponding complex
numbers. Then these three points are collinear if the quotient (B−A)/(C−A)
is real (provided the denominator does not vanish). This is an immediate con-
sequence of our previous considerations, since this quotient simply compares
the directions of the vectors B−A and C −A. Analogously to the last state-
ment, we get

A,B,C are collinear ⇐⇒ (B −A)/(C −A) = (B −A)/(C −A).

Unfortunately, the last two expressions do not fit into our concepts of
projective invariants. The next one, however, will. We will describe whether
four points lie commonly on a circle.

For this we first need a well-known theorem of elementary geometry: the
peripheral angle theorem. This theorem states that if we have a circle and a
secant from A to B on this circle, then all points on the circle on one side
of the secant “see” the secant under the same angle. The two (invariant)
angles on the left and on the right side of the secant sum to an angle of π.
These two cases completely characterize cocircularity. Figure 17.2 illustrates
this theorem. We omit a proof here (it can be found in many textbooks of
elementary geometry), but we formulate the theorem on the level of complex
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Fig. 17.2 The peripheral angle theorem.

numbers. For this we denote by ∠A(B,C) the counterclockwise angle between
the vectors B−A and C−A. We can summarize both cases of the peripheral
angle theorem by measuring angle differences modulo multiples of π. In such
a version the peripheral angle theorem reads as follows

Theorem 17.1. Let A, B, C, D be four points on a circle embedded in the
complex plane. Then the angle difference ∠C(A,B)−∠D(A,B) is a multiple
of π.

The “multiple of π” comes from the fact that if C and D are on the same
side of the secant through A and B, then both angles are equal and the
difference is 0 · π. If they are on opposite sides of the secant, the difference
is +π or −π depending on the order. Rather than proving this theorem,
we will use this elementary geometric fact as a basis to derive a projective
characterization of cocircularity in CP

1.
We will interpret this theorem in the light of complex numbers. The angle

∠C(A,B) can be calculated as the angle ψ1 of the following complex number:

C −A

C −B
= r1e

iψ1 .

Similarly, the angle ∠D(A,B) can be calculated as angle ψ2 of

D −A

D −B
= r2e

iψ2 .

We can get the difference of the angles simply by dividing these two numbers.
We get

C −A

C −B

/D −A

D −B
= (r1/r2)ei(ψ1−ψ2).
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Since the angle difference is a multiple of π by the peripheral angle theorem,
this number must be real. Now, the amazing fact is this: the expression on
the left is nothing but a cross-ratio in the complex projective plane. Thus we
can say that if the four points are on a circle, this cross-ratio (A,B;C,D) is
a real number. The converse is also “almost” true; we have only to include
the special case that the circle may have infinite radius and degenerate to
a line. It is easy to check that if A,B,C,D are collinear, the cross-ratio is
real as well. As usual, in our considerations we have to consider ∞ as a real
number as well. The cross-ratio assumes this value if either C = B or D = A.
All in all, we obtain the following beautiful theorem, which highlights the
close relationship between complex projective geometry and the geometry of
circles.

Theorem 17.2. Four points in CP
1 are cocircular or collinear if and only if

the cross-ratio (A,B;C,D) is in R ∪ {∞}.
We can even be more specific about the sign of the cross-ratio:

Theorem 17.3. If for four noncoinciding cocircular points in CP
1 the pair

(A,B) cyclically separates the pair (C,D), then (A,B;C,D) < 0. If (A,B)
does not separate (C,D), then (A,B;C,D) > 0.

Proof. We have seen that the cross-ratio calculates as

C −A

C −B

/D −A

D −B
= (r1/r2)ei(ψ1−ψ2),

where ψ1 and ψ2 are the angles under which C and D see the segment A,B.
If C and D are on the same side of the segment A,B, then these angles are
identical and we get ei(ψ1−ψ2) = e0 = 1, which implies a positive cross-ratio.
If C and D are on different sides, then the angles differ by π or by −π.
In both cases this gives ei(ψ1−ψ2) = e±iπ = −1, which implies a negative
cross-ratio. ��

17.3 Projective Transformations

A projective transformation in CP
1 can (as in the real case) be expressed

by a matrix multiplication. If the vector (z1, z2)T ∈ C
2 represents a point in

CP
1 by homogeneous coordinates, then a projective transformation can be

expressed as
τ : CP

1 → CP
1,

(
z1
z2

)
�→
(
a b
c d

)(
z1
z2

)
.

As usual, the matrix must be nondegenerate. All entries can be complex. Ma-
trices differing only by a nonzero scalar multiple represent the same projective
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transformation. Since the matrix has four complex parameters and scalar
multiples will be identified, we have three complex degrees of freedom (or six
real degrees of freedom, if one prefers). A complex projective transformation
is uniquely determined by fixing three pairs of images and preimages. The
same method as introduced in the proof of Theorem 3.4 can be used to obtain
the concrete matrix if three preimages and images are given.

Like all projective transformations, the projective transformations of CP
1

leave cross-ratios invariant. In particular if a cross-ratio of four points
A,B,C,D is real, then the cross-ratio of the image points τ(A), τ(B), τ(C),
τ(D) will be real again. Combining this fact with Theorem 16.2, we obtain
the following remarkable fact, which by projective transformations circles and
lines are transformed to circles and lines.

Theorem 17.4. Let τ be a projective transformation of CP
1. Let A,B,C,D

be four points on a circle or a line. Then the images τ(A), τ(B), τ(C), τ(D)
will also be on a circle or on a line.

Proof. The proof is immediate, since the fact that A,B,C,D are on a circle
or on a line is characterized by (A,B;C,D) ∈ R ∪ {∞}. After applying the
projective transformation, the cross-ratio is again in R ∪ {∞}. ��

For reasons of convenience we will consider lines to be very large circles.
One may think of lines as circles with infinite radius or alternatively as circles
that pass through the point at infinity ∞. With this convention we may
summarize the previous theorem in the simple statement that a circle is
mapped by a projective transformation τ : CP

1 → CP
1 again to a circle.

If we identify CP
1 with C∪{∞}, we may also express a projective transfor-

mation by a simple rational expression in z ∈ C∪{∞}. A projective transfor-

mation represented by the matrix
(

a b
c d

)
leads via a sequence of homogeniza-

tion/transformation/dehomogenization to the following rational mapping:

z �→
(
z
1

)
�→

(
a b
c d

)(
z
1

)
=
(
az + b
cz + d

)
�→ az + b

cz + d
.

Special care has to be taken if ∞ is involved, since ∞ is mapped to a/c and
if the denominator of the ratio is zero, then the result should be considered
infinite. Such a rational mapping Ĉ → Ĉ is called a Möbius transformation.
Möbius transformations are extensively studied in complex function theory.
Our considerations show that they are nothing but complex projective trans-
formations in CP

1.

We will briefly study different types of Möbius transformations. We will
illustrate them by pictures in the finite part of CP

1. We will go from the most
general to more special transformations. Fixed points of projective transfor-
mations correspond to the eigenvectors of the transformation matrices. In
contrast to the real case, in the complex case the fixed points will always be
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Fig. 17.3 Iterated application of a Möbius transformation.

elements of CP
1 (in the real case it might have happened that a fixed point

is complex and therefore not part of the real plane). If the two fixed points
are distinct we may specify a Möbius transformation by the position of the
two fixed points and another point and its image.

Figure 17.3 illustrates a most general Möbius transformation. The trans-
formation τ is defined by the two fixed points (the green points) and the two
red points: one red point is mapped by τ to the other. The picture shows the
iterated application of τ to one of the red points and the iterated application
of τ−1 to one of the red points. The yellow points represent these images.
The iterated application of τ and τ−1 converges to the two green fixed points,
respectively. Also the iterated images of a circle are shown. Observe that the
images are again circles.

Iterated application of a Möbius transformation may generate pictures of
mind-twisting beauty. Figure 17.4 shows an example of another Möbius trans-
formation (and its inverse) applied to a circle. As before, the transformation
is defined by two fixed points and another pair of points. The circles pro-
duced by the iterated application of the transformation are colored blue and
yellow alternately. A careful choice of the parameters produces interesting
circle-packing patterns with several spiraling structures.

Let us have a closer look at different kinds of Möbius transformations
that may occur. We will express the transformations in the form z �→ az+b

cz+d

with nonvanishing determinant
∣∣∣∣
a b
c d

∣∣∣∣. In particular, if c = 0 and d = 1, the

transformation assumes the simple form az+ b. Thus in particular, the linear
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Fig. 17.4 Iterated application of a Möbius transformation.

transformations are Möbius transformations. If furthermore a = 1, we have a
simple shift along a translation vector that corresponds to b considered as a
vector. If b = 0 and a is a real number, then z �→ a·z is a simple scaling around
the origin. If, on the other hand, b = 0 and a = eiψ, ψ ∈ R, is a number on the
unit circle, then the transformation represents a rotation around the origin
by an angle ψ. If a is neither real nor on the unit circle, the transformation
results in scaling around the origin combined with a rotation. If we iterate
this process, we produce spiral traces. The first row of Figure 17.5 represents
the cases “a is real,” “a is neither real nor on the unit circle,” “a is on the unit
circle.” Each arrow indicates the relationship between a particular point and
its image under the transformation. It is interesting to study the fixed points
for the simple mapping z �→ a·z. The corresponding matrix is

(
a 0
0 1

)
. The

eigenvectors are (0, 1)T and (1, 0)T . Thus these operations leave the point 0
and the point ∞ of Ĉ fixed. The second row of Figure 17.5 shows essentially
the same transformations. However, the fixed points have been moved to
other positions (namely −1 and 1). A projective transformation that maps 0
to −1 and maps ∞ to +1 is given, for instance, by
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z 	→ 1.2·z z 	→ (1.2·ei·2· π
36 )·z z 	→ ei·2· π

36 ·z

z 	→ (t−1)+(1+t)z
(1+t)+(t−1)z

z 	→ (t−1)+(1+t)z
(1+t)+(t−1)z

z 	→ (t−1)+(1+t)z
(1+t)+(t−1)z

t = 1.2 t = 1.2·ei·2· π
36 t = ei·2· π

36

Fig. 17.5 Prototypes of Möbius transformations.

g(z) =
−1 + z

1 + z
.

The inverse of this map is given by

g−1(z) =
−1 − z

−1 + z
.

Calculating z �→ g(t·g−1(z)) we obtain a transformation of the form

z �→ (t− 1) + (1 + t)z
(1 + t) + (t− 1)z

.

Such a transformation leaves −1 and +1 invariant and furthermore trans-
forms multiplication by the factor t to the situation with these new fixed
points. It is not an accident that the first and last pictures of the second
row somehow look like flux pictures from electrodynamics. Möbius transfor-
mations play an essential role in the field theory of electrostatic or magnetic
charges.
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17.4 Inversions and Möbius Reflections

There is one subtle but important point in the theory of transformations in
CP

1 that we have neglected so far. Our considerations of Chapter 5 differ-
entiated between harmonic maps and projective transformations. Over RP

1

these two concepts coincide. The fundamental theorem of projective geome-
try, however, states that harmonic maps are the more general concept. Every
harmonic map can be expressed by a field automorphism followed by a pro-
jective transformation. In fact, unlike R, the field C possesses a nontrivial
field automorphism: complex conjugation. And this is the only one. Thus
in addition to projective transformations, complex conjugation z �→ z also
leaves the set of circles invariant. Geometrically, this is not very surprising,
since complex conjugation just resembles a mirror reflection in the real axis.
The surprising fact is that such simple operations like reflection are not at all
covered by projective transformations in CP

1. In a certain sense all Möbius
transformations will be orientation-preserving.

The characteristic magnitude preserved by Möbius transformations can
be considered a kind of “circle sidedness predicate.” To make this precise we
define what we mean by the positive side of a circle in CP

1. To be precise
here we must consider oriented circles defined by three points A,B,C. We
denote such an oriented circle by ©(A,B,C). Such an oriented circle consists
of the circle through A,B,C together with some orientation information. One
may think of this orientation as a rotational sense on the boundary such that
we traverse the three points in the order A,B,C (if the circle degenerates
into a line, it may happen that one has to pass through infinity when one
traverses A,B,C in this order). At every point of the circle’s boundary one
may think of an arrow indicating the rotational sense. Now we rotate these
arrows counterclockwise by 90◦. The rotated arrows point to the side of the
circle that we call its “positive side.” It is important to notice that by this
definition the positive side may be either the interior or the exterior of the
circle, depending on the order of A,B,C. If the circle degenerates to a line,
then one of the two half-spaces defined by the line becomes positive, and the
other one becomes negative, again depending on the order of A,B,C.

There is also an easy algebraic characterization of the positive side of the
circle. We will take this as the formal definition.

Definition 17.1. Let A,B,C be three points in CP
1. The positive side of

the circle ©(A,B,C) defined by A,B,C is the set

{ p ∈ CP
1 | the imaginary part of (A,B;C, p) is positive }.

Thus the imaginary part of the cross-ratio specifies the sides of the circle. It
is positive on the positive side, zero on the boundary, and negative on the
negative side. The reader may convince himself that this definition agrees
with our geometric definition. Now it is immediate to see that we have the
following theorem:
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Theorem 17.5. Let A,B,C be three points of CP
1 and let τ be a projective

transformation in CP
1. Then τ maps the positive side of ©(A,B,C) to the

positive side of ©(τ(A), τ(B), τ(C)).

Proof. The proof is immediate. Since τ is a projective transformation, in
particular it preserves the sign of the imaginary part of cross-ratios. ��

Thus we may say that projective geometry in CP
1 deals not only with cir-

cles, but with oriented circles. Projective transformations map the positive
sides of oriented circles to the positive sides of other oriented circles. Hence
there cannot be a projective transformation that leaves the real axis point-
wise invariant and interchanges its upper and lower half-spaces. Likewise,
there cannot be a projective transformation that leaves a circle invariant and
interchanges its interior and its exterior.

Complex conjugation z �→ z helps to add these kinds of transformations
to our geometric system. It leaves the real axis (which is a special “circle”
with infinite radius) invariant. But it interchanges its positive and negative
sides.

A general harmonic map is a field automorphism followed by a projective
transformation. Hence we may express those harmonic maps that are not
projective transformations in the form

z �→ a·z + b

c·z + d
;
∣∣∣∣
a b
c d

∣∣∣∣ �= 0.

We will call a map of this kind an anti-Möbius transformation. Anti-Möbius
transformations preserve cocircularity but they interchange sidedness. In fact,
every anti-Möbius transformation has a circle that as a whole stays invariant
under the transformation. Its interior and its exterior will be interchanged. We
will not prove this here. Instead, we will restrict ourselves to a few important
examples of such maps with geometric significance.

One of those maps we already encountered, z �→ z, is the reflection in the
real axis. Another important map of this kind is given by

ι : CP
1 → CP

1,
z �→ 1

z .

This map is known as inversion in the unit circle. It leaves points on the
complex unit circle point-wise invariant and interchanges the interior and the
exterior of this circle. The map ι is an involution, since ι(ι(z)) = z, as an easy
computation shows. The origin is mapped to the point ∞. This operation is
sometimes also called circlereflection. However, one should be aware that this
operation does not represent a map that mimics optical reflection in a circle.
Reflections in other circles can also be expressed easily using conjugation with
a Möbius transformation τ . If τ maps the unit circle to another circle C, then
z �→ τ(ι(τ−1(z))) is the inversion in the circle C.
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The area of circle inversion is a very rich geometric field and by our con-
siderations can be considered very closely related to projective geometry.
However, we will not go into details here. The interested reader is referred
to the vast literature on inversive and circle geometry (for nice treatments
see [28, 49]).

17.5 Grassmann-Plücker relations

We now return to our main track and investigate what conclusions we may
draw from bracket expressions in CP

1. We will first investigate Grassmann-
Plücker relations. As in the real case, also in CP

1 the rank-2 three-term
Grassmann-Plücker relation holds. For any quadruple of points A,B,C,D ∈
CP

1 we have
[AB][CD] − [AC][BD] + [AD][BC] = 0.

There is an amazing consequence that we can draw from this formula that
has a completely Euclidean interpretation. For this, by |AB| we denote the
distance from a point A to a point B.

Theorem 17.6 (Ptolemy’s theorem). Let A,B,C,D be four points in the
Euclidean plane. Then we have

|AB||CD| + |AD||BC| ≥ |AC||BD|.

Equality holds if and only if the four points are on a common circle or line
in the cyclic order A,B,C,D.

Proof. First note the striking resemblance of Ptolemy’s formula and the
Grassmann-Plücker relations. The brackets simply seem to be replaced by
distances. In fact, we will see that Ptolemy’s theorem may be considered a
kind of “shadow” of the Grassmann-Plücker relation. For this we start with
the relation

[AB][CD]︸ ︷︷ ︸
α

− [AC][BD]︸ ︷︷ ︸
γ

+ [AD][BC]︸ ︷︷ ︸
β

= 0.

We represent each of the three summands by a single greek letter. Thus the
relation simply reads α − γ + β = 0. Rewriting this, we get α + β = γ.
These three variables are complex numbers. In polar coordinates they can be
written as rαeiψα , rβeiψβ , rγeiψγ . The length rα is just the product of the
lengths of [AB] and [CD]. If we assume that the points are embedded in the
standard homogenization with [XY ] = X−Y , we obtain that rα = |AB||CD|.
Similarly, we have rβ = |AD||BC| and rγ = |AC||BD|. By the triangle
inequality we get from α+ β = γ the inequality
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Fig. 17.6 Ptolemy’s theorem and the Pythagorean theorem.

|α| + |β| ≥ |γ|.

This is just Ptolemy’s expression.

Equality is obtained in this expression if all three vectors point in the same
direction. In this case we have

[AB][CD]
[AC][BD]

=
α

γ
∈ R

+ and
[AD][BC]
[AC][BD]

=
β

γ
∈ R

+.

Thus in the case of equality these two cross-ratios are real and positive. This
is the case if and only if the four points are cocircular in this order. ��

We will briefly have a look at a very special case of this theorem. Assume
that A,B,C,D are the points of a rectangle in this order. The four points
of a rectangle are cocircular. Furthermore, opposite sides have same lengths
and the diagonals have the same length. Thus the expression

|AB||CD| + |AD||BC| = |AC||BD|

may be written as
|AB|2 + |BC|2 = |AC|2.

If we denote the sides of the rectangle by a and b and its diagonal by c, then
we get

a2 + b2 = c2.

This is just the Pythagorean theorem! In other words, the Pythagorean the-
orem may be considered a shadow of a Grassmann-Plücker relation. Alge-
braically it has exactly the same shape.
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17.6 Intersection Angles

There is one more interesting geometric property that is directly related to
the cross-ratio: the intersection angle of two oriented circles C1 and C2. For
this we consider two intersecting oriented circles in CP

1 that intersect in two
points (see also [111]). At an intersection point we can attach two oriented
tangents to the two circles. By the intersection angle of these two oriented
circles we mean the angle ∠(C1, C2) that is needed to rotate the tangent at C1

to match the tangent at C2 in the same orientation. The situation for two
different circle orientations is shown in Figure 17.7. The notion of intersection
angle is well-defined, since it is independent of the choice of the intersection
point at which it is measured.

The intersection angle can be directly read off from a suitable cross-ratio.
For this assume that P1 and P2 are the two intersections of the circles. To
specify the orientation of C1 we choose a point Q1 on this circle such that
the cyclic order P1, Q1, P2 is in agreement with the orientation of the circle
(thus the order depends on the relative position of Q1 with respect to the line
spanned by P1, P2. With the notion of Section 17.4, C1 is the oriented circle
©(P1, Q1, P2). Similarly, we choose a point Q2 to specify the orientation
of C2 = ©(P1, Q2, P2). Now with these settings the intersection angle can
be simply calculated by evaluating the cross-ratio, as the following theorem
shows.

Theorem 17.7. With the settings described above, let reiψ = (Q1, Q2;P1, P2)
be the cross-ratio of the four points. Then ψ is the intersection angle of the
oriented circles C1 and C2.

Proof. The quotient Q1−P1
Q1−P2

= r1e
iψ1 is a complex number whose angle ψ1

measures the angle under which Q1 sees the points P1, P2. In particular, the
angle ψ1 is independent of the concrete choice of Q1 as long as it stays on the

Fig. 17.7 Intersection angles of oriented circles.
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Fig. 17.8 Computing the intersection angle.

same side of join(P1, P2). A similar statement holds for Q2 that sees P1, P2

under the angle ψ2. Thus the angle ψ1 − ψ2 of the cross-ratio

Q1 − P1

Q1 − P2

/Q2 − P1

Q2 − P2
= r1e

iψ1/r2e
iψ2 = rei(ψ1−ψ2)

depends only on the two circles and their orientation and not on the particular
choice of Q1, Q2. To see that ψ1 − ψ2 indeed equals the intersection angle of
the two circles we now consider the limit case in which Q1, Q2 asymptotically
approach P1. The cross-ratio may also be written

Q1 − P1

Q1 − P2
· Q2 − P2

Q2 − P1
=
Q1 − P1

Q2 − P1︸ ︷︷ ︸
=a

· Q2 − P2

Q1 − P2︸ ︷︷ ︸
=b

.

In the limit case the term a in this expression has an angle identical to the
intersection angle, since the numerator and the denominator describe complex
numbers that have the same directions as the oriented tangents at P1. The
term b has an angle of zero, since the point P2 is distinct from P1 that is
asymptotically approached by both Q1 and Q2. Hence the overall expression
of the cross-ratio has an angle equal to the intersection angle. ��

Figure 17.8 demonstrates how the intersection angle is composed from the
two angles at Q1 and Q2. Since cross-ratios remain invariant under Möbius
transformations, we immediately get the following consequence.

Corollary 17.1. The intersection angle of oriented circles is invariant under
Möbius transformations.

Remark 17.1. With a similar argument one can prove that anti-Möbius trans-
formations reverse all intersection angles.
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17.7 Stereographic Projection

There is one important issue about the complex projective line CP
1 that

we have not mentioned so far: it is topologically equivalent to a 2-sphere.
This can be seen nicely by exhibiting a concrete projection that maps every
point of CP

1 to a corresponding point on the 2-sphere. For this we first
identify the complex number plane with the xy-plane of a three-dimensional
real vector space via x + iy �→ (x, y, 0)T . We now consider a sphere sitting
tangentially on top of the complex number plane. We may assume that the
sphere has radius 1 and touches C at the origin. The equation of such a
sphere is x2 + y2 +(z−1)2 = 1. The north pole of the sphere has coordinates
N = (0, 0, 2)T . With this point as projection center we project each point of C

to the sphere. Since every line through N intersects the sphere in exactly one
additional point, this map is one-to-one. We can explicitly calculate this map
by taking a point p = (x, y, 0)T and finding the point on the line λp+(1−λ)N
that is on the sphere. This leads to the equation

λ2x2 + λ2y2 + ((1 − λ) · 2 − 1)2 = 1,

which reduces to
λ2x2 + λ2y2 + 4(λ2 − λ) = 0.

One of the solutions is λ = 0, which corresponds to the north pole (one of
the two intersection points). The other solution is

λ =
4

x2 + y2 + 4
,

which leads to the corresponding point

2
x2 + y2 + 4

⎛
⎝

2x
2y

x2 + y2

⎞
⎠. (17.1)

Points with large absolute value get mapped closer and closer to the north
pole. Thus in the limit, the point ∞ gets mapped to the north pole itself.
Thus we get

CP
1 ≈ C ∪ {∞} ≈ S2.

This bijective map has a few remarkable properties. Without proof, we
mention only a few of them.

– Circles in CP
1 map to circles on S2 and vice versa.

– The intersection angle of circles is preserved under this map.
– Reflection of the sphere with respect to the north-south equator corre-

sponds to inversion in the unit circle.
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Fig. 17.9 Stereographic projection.

– Möbius transformations can be considered as mapping CP
1 to the sphere,

then rotating the sphere, scaling it, moving it to a new still tangential
position, and finally projecting from the north pole of the moved sphere
back to CP

1.

For a more elaborate treatment of stereographic projection that in partic-
ular highlights the relations between projective geometry, complex numbers,
matrix groups, and quaternions, we recommend [111].
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Euclidean Geometry

Dieses schöne Resultat [...] blieb aber lange unbeachtet, ver-
mutlich, weil sich die Geometer an den Gedanken gewöhnt
hatten, daß Metrik und projektive Geometrie in keiner
Beziehung zueinander ständen.

Felix Klein about Laguerre’s formula,
Vorlesungen über Nicht-Euklidische Geometrie, 1928

In this chapter we will merge two different worlds: CP
1 and RP

2. Both can be
considered as representing a real two-dimensional plane. They have different
algebraic structures, and they both represent different compactifications of
the Euclidean plane: For RP

2 we added a line at infinity. For CP
1 we added a

point at infinity. Both spaces have different weaknesses and strengths. In the
first two parts of the book we learned that RP

2 is very well suited for dealing,
for instance, with incidences of lines and points, with conics in their general
form, and with cross-ratios. We did not have a proper way to talk about
circles, angles, and distances in RP

2. The previous two chapters introduced
CP

1. This space was very good for dealing with cocircularity and also for
dealing with angles. However, lines were poorly supported by CP

1. They
had to be considered circles with infinite radius, and they were not even
projectively invariant objects.

We will now introduce an algebraic system that is capable of merging
advantages of both worlds. We will end up with a framework in which we
express all Euclidean properties by projectively invariant expressions.

329
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18.1 The points I and J

The key to expressing Euclidean properties in projective geometry is as simple
as it is powerful. We have to introduce two special points. All Euclidean
properties will be expressed as projectively invariant expressions in which
these two points play a special role. There are several possibilities for the
choice of these points. However, there is a special choice for the two points
under which all formulas become very simple and elegant. The points are

I =

⎛
⎝
−i
1
0

⎞
⎠ and J =

⎛
⎝
i
1
0

⎞
⎠.

Strictly speaking, these points are not even members of RP
2, since they have

complex coordinates. We will consider them formally as members of CP
2. All

algebraic calculations will be carried out in CP
2 (we use homogeneous coor-

dinates with complex coordinate entries). However, the initial elements and
the results of our calculations will usually be in RP

2. All our considerations
will refer to the standard embedding of the Euclidean plane R

2 into RP
2 by

(
x
y

)
�→
⎛
⎝
x
y
1

⎞
⎠.

Thus as usual, the line at infinity will have coordinates l∞ = (0, 0, 1)T . We
will start by collecting a few useful properties of the points I and J.

I and J span the line at infinity: The points I and J both are on l∞, since
they have a zero in their last entry. Since they are two different points, they
even span l∞: ⎛

⎝
−i
1
0

⎞
⎠×
⎛
⎝
i
1
0

⎞
⎠ =

⎛
⎝

0
0

−2i

⎞
⎠ = −2i

⎛
⎝

0
0
1

⎞
⎠.

I and J can transfer finite points from RP
2 to C: Consider a point p with

homogeneous coordinates (a, b, 1)T in RP
2. In the Euclidean plane this point

would represent the point (a, b)T . In the complex plane it would represent
the point a+ ib. Now consider the 3 × 3 determinant [p, I, l∞]. We get

[p, I, l∞] =

∣∣∣∣∣∣
a −i 0
b 1 0
1 0 1

∣∣∣∣∣∣
= a+ ib.

Similarly, we get the conjugate a+ ib:
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[p, J, l∞] =

∣∣∣∣∣∣
a i 0
b 1 0
1 0 1

∣∣∣∣∣∣
= a− ib.

I and J can express determinants in CP
1 as determinants in RP

2: We con-
sider also the standard embedding in CP

1:

z �→
(
z
1

)
.

Now take two points p1 and p2 in RP
2 represented by vectors (a1, b1, 1)T

and (a2, b2, 1)T . In CP
1 they would represent points p̃1 = (a1 + ib1, 1) and

p̃2 = (a2 + ib2, 1). Considering the determinant [p1, p2, I], we get

[p1, p2, I] =

∣∣∣∣∣∣
a1 a2 −i
b1 b2 1
1 1 0

∣∣∣∣∣∣
= a2 − ib1 − a1 + ib2

= (a2 + ib2) − (a1 + ib1)

= [p̃2, p̃1].

And similarly we get the conjugate

[p1, p2, J] = [p̃2, p̃1].

Thus the use of I and J allows us to express determinants of CP
1 (and their

conjugates) as determinants of RP
2 involving I and J. The fact that we rely

on the standard embedding in both worlds will not harm us later on, since in
both worlds we will have to deal only with projectively invariant conditions.

The last property is crucial. It is the key to translating projective invariants
of CP

1 to projective invariants of RP
2.

18.2 Cocircularity

Let us begin applying I and J to express Euclidean properties. The strategy
here will be:

• Express the property in CP
1 as bracket identity.

• Translate the identity bracket by bracket to RP
2 (using I and J).

• Consider the translated identity as a projective invariant in RP
2.
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One of the most fundamental invariants of CP
1 is cocircularity. Four points

of CP
1 are cocircular if their cross-ratio is real. Assume that we are given

four points A,B,C,D in RP
2 (with respect to the standard embedding).

We consider their corresponding counterparts in CP
1, the complex points

Ã, B̃, C̃, D̃. It is easy to express cocircularity in terms of Ã, B̃, C̃, D̃. The
points are cocircular if

[ÃC̃][B̃D̃]

[ÃD̃][B̃C̃]
∈ R,

or equivalently

[ÃC̃][B̃D̃]

[ÃD̃][B̃C̃]
=

(
[ÃC̃][B̃D̃]

[ÃD̃][B̃C̃]

)
.

Expressing the brackets in RP
2, we get

[ACI][BDI]
[ADI][BCI]

=
[ACJ][BDJ]
[ADJ][BCJ]

.

We can also multiply by the denominators to obtain a projectively invariant
polynomial equation:

[ACI][BDI][ADJ][BCJ] = [ACJ][BDJ][ADI][BCI].

Summarizing, we get the following characterization of cocircularity:

Theorem 18.1. The points A,B,C,D in RP
2 are cocircular if

[ACI][BDI][ADJ][BCJ] = [ACJ][BDJ][ADI][BCI].

Comparing the above bracket expression with the expression derived in
Section 10.2 that characterizes whether six points are on a conic, we observe
that the expression

[ACI][BDI][ADJ][BCJ] = [ACJ][BDJ][ADI][BCI]

expresses the fact that A,B,C,D, I, J lie on a common conic (each point
occurs quadratically on either side). Thus we can reformulate the previous
theorem as follows:

Theorem 18.2. The points A,B,C,D in RP
2 are cocircular if A,B,C,D, I,

J are on a common conic.

Or in other words: Circles are conics through I and J!

This last fact can also be derived in a different way. If we consider the
(Euclidean) equation of a circle with midpoint (mx,my) and radius r,

(x −mx)2 + (x−my)2 = r2,
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Fig. 18.1 Projective interpretation of cocircularity.

we can translate this into a quadratic equation in homogeneous coordinates.
We obtain

x2 + y2 − 2mx · xz − 2my · yz + (m2
x +m2

y − r2) · z2 = 0,

which is for suitably chosen parameters a, b, c the special conic

x2 + y2 + a · xz + b · yz + c · z2 = 0.

Inserting the coordinates of I in this equation, we get

(−i)2 + 12 + a · 0 + b · 0 + c · 0 = −1 + 1 = 0.

Hence I lies on this arbitrarily chosen circle. A similar calculation also shows
that J lies on any circle as well.

Figure 18.1 illustrates the projective interpretation of cocircularity. Pro-
jectively, cocircularity of four points has to be considered the coconicality
of these four points with I and J. Usually one does not see I and J, since
they are complex (and at infinity). This characterization can also be used
to calculate the parameters of a circle through three points by applying the
method explained in Section 10.1.

18.3 The Robustness of the Cross-Ratio

At this point we want to stop a moment with our main stream of thought
and collect a few remarkable ways to calculate the same cross-ratio.

Theorem 18.3. Let A,B,C,D ∈ RP
2 be four finite points that are cocircular

in the standard embedding. Let Ã = (a, 1)T , B̃ = (b, 1)T , C̃ = (c, 1)T , D̃ =
(d, 1)T be the corresponding complex points in CP

1. We assume that the points
lie on a circle C in the order A,C,B,D. Then we have
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(A,B;C,D)C = (Ã, B̃; C̃, D̃) =
|a− c| · |b− d|
|a− d| · |b− c| .

The first equality also holds for an arbitrary order of the points.

Proof. We first prove the first equality. The expression (A,B;C,D)C is the
well-defined cross-ratio (A,B;C,D)P of the four points seen from a point P
on the conic (compare Theorem 10.1). In the proof of Theorem 10.1 the
particular choice of the underlying field is irrelevant. Thus we can in particular
set P = I. Using the relation [p1, p2, I] = [p̃2, p̃1] that relates the points
in RP

2 to their complex counterparts, we immediately get (A,B;C,D)C =
(A,B;C,D)I = (Ã, B̃; C̃, D̃).

Now for the second equality: a, b, c, d are the complex numbers representing
the four points in C in the standard embedding of the complex projective line.
The difference of two such numbers a, c has polar coordinates a−c = ra,ce

iψa,c

with ra,c = |a−c|. We define the radii and angles of the remaining differences
similarly. Then the cross-ratio (Ã, B̃; C̃, D̃) becomes

[ÃC̃][B̃D̃]

[ÃD̃][B̃C̃]
=

(a− c)(b − d)
(a− d)(b − c)

=
ra,crb,d
ra,drb,c

· e
iψa,ceiψb,d

eiψa,deiψb,c︸ ︷︷ ︸
=−1

.

The sign −1 of the phase part of this expression is implied by Theorem 17.3
and the assumption that A,B separates C,D in the circle. All in all, we get

(Ã, B̃; C̃, D̃) =
[ÃC̃] · [B̃D̃]

[ÃD̃] · [B̃C̃]
= −ra,c · rb,d

ra,d · rb,c ,

which is the claimed equality. ��
This theorem allows us to interpret the cross-ratio of four cocircular points

in various ways: as cross-ratios in the complex projective line, as cross-ratios
of four points on a circle, and as cross-ratios of absolute values of distances.

18.4 Transformations

Before we discuss further examples of expressing Euclidean properties in pro-
jective terms we will have a brief look at the “philosophy” behind the ap-
proach of Section 18.2. Our way of expressing cocircularity by a projectively
invariant expression relied heavily on the standard embedding of Euclidean
geometry into projective geometry (as well in RP

2 as in CP
1). This standard

embedding caused the particular choice of the coordinates for I and J. The
crucial property of I and J is that they, considered as a pair, remain invari-
ant under certain transformations (in particular under Euclidean transfor-
mations). At this point we have to be a little careful to specify exactly which



18.4 Transformations 335

groups of transformations we consider. Roughly speaking, the geometrically
relevant groups of transformations in RP

2 form a hierarchical system. In order
of generality the groups relevant for us are projective transformations, affine
transformations, similarity transformations, Euclidean transformations. The
following table lists transformations and invariant properties that belong to
these different subgroups of the projective transformations.

projective affine similarity Euclidean
Transformations :

general projective •
shearing • •
scaling • • •
rotation • • • •
reflection • • • •
translation • • • •

Invariants :
cross-ratio • • • •
ratios of lengths • • •
angles • •
distances •

We speak of projective geometry if we consider only properties that remain
invariant under projective transformations. We speak of affine geometry if we
consider only properties that remain invariant under affine transformations,
and so on. Thus Euclidean geometry deals with properties that remain invari-
ant under rotation, translation, and reflection. Our considerations will now
deal with similarity geometry. In addition to the Euclidean transformations
rotation, translation, and reflection, scaling is also allowed. Thus lengths are
not an intrinsic concept of similarity geometry, but angles and circles are.
Ratios of lengths are also a concept of similarity geometry.

In fact, in the context of geometric theorems, talking about similarity
geometry is usually more appropriate than talking about Euclidean geom-
etry. The only difference between the two geometries is that in Euclidean
geometry we can actually measure a length absolutely, whereas in similarity
geometry we can only compare lengths. Theorems of Euclidean geometry,
however, are most often not formulated on the level of concrete lengths. Usu-
ally they compare lengths only relative to each other (you would not start
any reasonable theorem with a sentence like: “Take a segment of length 3 cm
. . .”). So all the theorems we normally consider as Euclidean theorems are
in fact theorems of similarity geometry. We will see that this is exactly the
class of theorems governed by I and J.

In Section 3.6, when we introduced projective transformations, we first
started by expressing rotations and translations and scalings (with respect
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to the standard embedding) as multiplication by a 3 × 3 matrix. There we
obtained the following forms for each of the transformations, respectively:

⎛
⎝

cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

⎞
⎠;

⎛
⎝

1 0 tx
0 1 ty
0 0 1

⎞
⎠;

⎛
⎝
s 0 0
0 s 0
0 0 1

⎞
⎠.

A matrix that performs an orientation-preserving similarity transformation
(a combined rotation, translation, and scaling) has the general form

⎛
⎝
c s a
−s c b
0 0 1

⎞
⎠.

Similarly, a general orientation-reversing similarity transformation has the
form ⎛

⎝
c s a
s −c b
0 0 1

⎞
⎠.

In both cases we must require c2 + s2 �= 0 for having a nonzero determinant.

Theorem 18.4. With respect to the standard embedding, orientation-
preserving similarity transformations are exactly those matrices that leave I
and J invariant. Orientation-reversing similarity transformations are exactly
those matrices that interchange I and J.

Proof. Applying an orientation-preserving similarity transformation S to I,
we get

S · I =

⎛
⎝
c s a
−s c b
0 0 1

⎞
⎠ ·
⎛
⎝
−i
1
0

⎞
⎠ =

⎛
⎝
−ic+ s
is+ c

0

⎞
⎠ = (c+ is)

⎛
⎝
−i
1
0

⎞
⎠ = (c+ is)I.

The scalar c + is is nonzero, since c2 + s2 �= 0. Similarly, we obtain that
S · J = (c + is) · J. For an orientation-reversing similarity transformation R
the calculation is similar. We get

R · I =

⎛
⎝
c s a
s −c b
0 0 1

⎞
⎠ ·
⎛
⎝
−i
1
0

⎞
⎠ =

⎛
⎝
−ic+ s
−is− c

0

⎞
⎠ = (−c− is)

⎛
⎝
i
1
0

⎞
⎠ = (−c− is)J.

Again similarly we get R · J = (−c− is)I.
Now we conversely assume thatM is a matrix that leaves I invariant. Since

M is assumed to be a matrix that represents a projective transformation of
RP

2, we may assume that M has real entries. We then have M · I = λI. We
now successively determine constraints on the entries of M . We first consider
the first two entries of the last row of M :



18.4 Transformations 337

⎛
⎝
• • •
• • •
x y •

⎞
⎠ ·
⎛
⎝
−i
1
0

⎞
⎠ = λ

⎛
⎝
−i
1
0

⎞
⎠.

We get −ix+ y = 0. Since the entries of the matrix must be real, these two
entries must be zero. Since the matrix must have a nonvanishing determinant,
the last entry of the last row must be nonzero. We may assume that it is 1 by
rescaling the matrix. We now focus on the upper left 2 × 2 matrix. We have

⎛
⎝
u v •
w x •
0 0 1

⎞
⎠ ·
⎛
⎝
−i
1
0

⎞
⎠ = λ

⎛
⎝
−i
1
0

⎞
⎠.

Thus we have −ui+ v = −iλ and −wi+ x = λ. Subtracting i times the first
equation from the second, we get −u − iv − wi + x = 0. Since the matrix
entries are real, we must have u = x and v = −w. The remaining two matrix
entries can be arbitrary, since they are multiplied by 0. All in all, our matrix
has the form ⎛

⎝
c s a
−s c b
0 0 1

⎞
⎠,

an orientation-preserving similarity transformation. A similar calculation
shows that if M interchanges I and J we get an orientation-reversing simi-
larity transformation. ��

The last theorem states that we can characterize similarity transformations
by the property that the pair of points {I, J} is left-invariant. Thus we can, in
a sense, reverse our point of view and turn I and J into first-class citizens and
use them to define what “similarity geometry” means. We will now provide a
detailed example of how one can introduce the concepts of similarity geometry
entirely based on two special points I and J.

If I and J are fixed, we can define similarity transformations to be those
projective transformations that leave the pair {I, J} invariant. A property
that is invariant under similarity transformations is called a similarity prop-
erty. It will be our aim to base invariant properties and constructions of
similarity geometry directly on I and J without the detour via similarity
transformations.

In the previous section we already achieved this goal for one specific
similarity property: cocircularity. We expressed cocircularity of four points
A,B,C,D as a purely projective condition involving these points and the
pair {I, J}. Now we again change the point of view, make I and J the pri-
mary objects, and define cocircularity by the property of Theorem 18.2. Thus
we have:

• Similarity transformations are those that fix the pair {I, J}.
• A,B,C,D are cocircular if A,B,C,D, I, J lie on a conic.
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Fig. 18.2 Miquel’s theorem and its projective interpretation.

Based on these definitions we can derive the statement

• Cocircularity is invariant under similarity transformations.

Proof. A proof of this fact would look as follows: Assume that A,B,C,D are
cocircular (thus A,B,C,D, I, J lie on a conic) and assume that τ : RP

2 → RP
2

is a similarity transformation. We will prove that τ(A), τ(B), τ(C), τ(D) are
cocircular as well. Since τ is a projective transformation and being on a conic
is a projectively invariant property, the six points τ(A), τ(B), τ(C), τ(D),
τ(I), and τ(J) are on a conic as well.

Since τ is a similarity transformation either we have τ(I) = I and τ(J) = J
or we have τ(I) = J and τ(J) = I. In either case this implies that τ(A), τ(B),
τ(C), τ(D), I, and J are on a conic, which means that τ(A), τ(B), τ(C), τ(D),
are cocircular. ��

At first sight such reasoning may seem to be unnaturally complicated.
However, it is conceptually very nice, since we reduced the concept of co-
circularity entirely to the introduction of two special points I and J and to
projective invariants, without even referring to the particular coordinates of
I and J. If we choose special coordinates I = (−i, 1, 0)T and J = (i, 1, 0)T ,
then (with respect to the standard embedding) this setup specializes to our
usual picture of similarity transformations and cocircularity.

18.5 Translating Theorems

The considerations of the last section show that behind every theorem of
similarity geometry (or Euclidean geometry) there lies a projective truth.
We will exemplify this by a nice theorem that needs cocircularity as the only
predicate.
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Theorem 18.5 (Miquel’s theorem). Let A,B,C,D,E, F,G,H be eight
distinct points in the Euclidean plane such that the following quadru-
ples are cocircular: (A,B,C,D), (A,B,E, F ), (B,C, F,G), (C,D,G,H),
(D,A,H,E). Then (E,F,G,H) will be cocircular as well.

Proof. We will present a proof of Miquel’s theorem based on projective in-
variants. The hypotheses of the theorem imply that the following sextuples
lie on common conics: (A,B,C,D, I, J), (A,B,E, F, I, J), (B,C, F,G, I, J),
(C,D,G,H, I, J), (D,A,H,E, I, J). This produces the following five bracket
equations:

[CDJ][ABJ][BCI][ADI] = [ABI][CDI][ADJ][BCJ],
[ABI][AEJ][BFJ][EFI] = [ABJ][BFI][AEI][EFJ],
[BCJ][BFI][CGI][FGJ] = [BCI][BFJ][CGJ][FGI],

[CDI][CGJ][GHI][DHJ] = [CDJ][CGI][GHJ][DHJ],
[ADJ][AEI][EHJ][DHI] = [ADI][AEJ][EHI][DHJ].

All brackets in these expressions will be nonzero, since they always involve
two distinct finite points and either I or J. Multiplying all left sides and all
rights sides and canceling brackets that appear on both sides, we derive the
equation

[EFI][FGJ][EHJ][GHI] = [EFJ][FGI]EHI][GHJ].

This expression is exactly the condition that also (E,F,G,H, I, J) are on a
conic. And this implies the cocircularity of (E,F,G,H). ��

Our proof did not refer (except for nondegeneracy assumptions) to the
coordinates of I and J. The bracket argument also proves a corresponding
purely projective theorem about eight points and six conics, where I and J
are located at real and finite positions. The corresponding theorem is shown
in Figure 18.2 on the right. The labeling is consistent with the labeling of
Miquel’s theorem on the left.

18.6 More Geometric Properties

Our next aim is to derive projective conditions for other concepts of simi-
larity geometry. We start with perpendicularity. We want to characterize the
property that for three points A,B,C the lines AB and AC are perpendicular
to each other. If we associate the three points with the corresponding points
of the complex number plane Ã, B̃, and C̃, then we can represent the above
relation as an algebraic condition. For this we have to certify that the angle
between the complex numbers Ã − B̃ and Ã − C̃ is 90◦. This is the case if
and only if
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Fig. 18.3 Projective interpretation of orthogonality.

Ã− B̃

Ã− C̃
∈ iR.

This in turn translates to the equation

Ã− B̃

Ã− C̃
= −
(
Ã− B̃

Ã− C̃

)
.

As before, we reinterpret this equation in RP
2 with the help of I and J. We

get
[ABI]
[ACI]

= − [ABJ]
[ACJ]

.

Slightly reordering the terms, we get

−1 =
[ABI][ACJ]
[ACI][ABJ]

= (B,C; I, J)A.

We can formulate this characterization in the following result.

Theorem 18.6. The lines AB and AC are orthogonal if and only if the pairs
of lines (AB,AC) and (AI, AJ) are in harmonic position.

Alternatively, we can speak directly of orthogonal lines by considering their
intersections with the line at infinity in relation to I and J:

Theorem 18.7. Two lines l and m are orthogonal if and only if their inter-
sections with the line at infinity L = l× l∞ and M = m× l∞ are in harmonic
position with I and J.

Proof. Assume that l and m are orthogonal and that A is their intersection.
Let B be a point on l and let C be a point on m. The cross-ratio (B,C; I, J)A
is the same as the cross-ratio (L,M ; I, J). Hence by Theorem 18.6, the point
pairs {L,M} and {I, J} are in harmonic position.
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Conversely, assume that {L,M} and {I, J} are in harmonic position. Then
l and m cannot be parallel, since otherwise, the cross-ratio of the four infinite
points would be 1. Thus we may assume that l and m have a finite inter-
section A. After again introducing two auxiliary points B and C on the two
lines, Theorem 18.6 proves the claim. ��

The next geometric property we want to translate is closely related to
characterizing circles by their midpoint and a point on the circle boundary.

Theorem 18.8. If the distance from A to B equals the distance from A to C,
then [ABI][ACI][CBJ]2 = [ABJ][ACJ][CBI]2.

Proof. Again we first consider the situation realized in the complex number
plane C. If |AB| = |AC|, then the three points A, B, C form an isosceles
triangle. In this case the angle ∠B(A,C) is the same as the angle ∠C(B,A).
This means that we have

Ã− B̃

C̃ − B̃

/ B̃ − C̃

Ã − C̃
∈ R.

This is equivalent to

(Ã− B̃)(Ã− C̃)

(C̃ − B̃)(B̃ − C̃)
=

(
(Ã− B̃)(Ã− C̃)

(C̃ − B̃)(B̃ − C̃)

)
.

Translated to RP
2, this reads as

[ABI][ACI][CBJ]2 = [ABJ][ACJ][CBI]2,

which is the desired equation. ��
Observe that also the characterization in the last theorem turns out to be

a projectively invariant expression. However, it is only a necessary condition
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for |AB| = |AC|. The point A occurs quadratically in this expression. Thus
we may expect a conic section as locus for A if B and C are fixed. In fact,
this conic consists of two lines. One is the median of B and C; the other is
the join of B and C. The equation is satisfied if A is on one of these lines.
Thus the case of A being the midpoint of a circle through B and C is only
one situation in which the above expression vanishes. The other is a being on
the join of B and C. Later in this section we will also learn about a necessary
and sufficient characterization of |AB| = |AC|.

18.7 Laguerre’s Formula

So far we have used I and J only to express properties that are invariant under
similarity transformations. We can even go one step further and perform
measurements using I and J.

In Section 4 we learned that the simplest way to extract projectively in-
variant data from point configurations is by calculating cross-ratios. We will
now use cross-ratios in combination with I and J to mimic measurements in
a projective setup. The key result (which has also many beautiful general-
izations, as we will see later) is Laguerre’s formula. It was found in 1851 by
Edmond Laguerre when he was just 19 years old [77, 68]. It allows one to
measure the angle between two lines. Before we state Laguerre’s formula we
will clarify what exactly we mean by the angle between two lines l and m.
Let us assume first that these two lines intersect in a single finite point O
of the Euclidean plane. By the angle ∠(l,m) from l to m we mean the angle
by which l has to be rotated counterclockwise around O until it coincides
with m. Thereby the angle between two distinct lines will always lie in the
open interval between 0 and π. If lines coincide or are parallel, then the an-
gle between them is 0. Alternatively one could say that the angle between l
and m corresponds to the angle about which l has to be rotated so that its
direction coincides with that of m. One might expect that angles should be
measured between 0 and 2π. However, this makes no sense for unoriented
lines. Now we are ready to state Laguerre’s formula.

Theorem 18.9. Let l and m be two finite lines of RP
2 and let L = l × l∞

and M = m× l∞ be the corresponding intersections with the line at infinity.
Then the angle between l and m is (modulo π)

1
2i

· ln((M,L; I, J)
)
.

Proof. The proof of this surprising result is straightforward using the method
of transferring geometric properties from RP

2 to C. Let l = (l1, l2, l3)T and
m = (m1,m2,m3)T be the homogeneous coordinates of the lines. Then L
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and M have the coordinates L = (l2,−l1, 0)T and M = (m2,−m1, 0)T . The
first two entries of these vectors are normal vectors to the two lines. The angle
of these normal vectors (modulo π) is exactly the angle between the two lines.
We translate the normal vectors to two corresponding complex numbers

zl = l2 − i·l1 = rl·eiψl and zm = m2 − i·m1 = rm·eiψm .

The angle ψm −ψl modulo π is exactly the angle we are looking for. We can
extract this angle by forming the following ratio:

zm · zl
zm · zl =

rm·eiψm · rl·e−iψl

rm·e−iψm · rl·eiψl
=
eiψm · e−iψl

e−iψm · eiψl
= e2i(ψm−ψl).

In the last expression the absolute values of zl and zm cancel, since each
number (or its conjugate) is used in the numerator and in the denominator.
Our considerations of Section 18.1 show that we have

zl = [L, I, l∞]; zl = [L, J, l∞]; zm = [M, I, l∞]; zm = [M, J, l∞].

Using these determinants to express the above expression, we get

(M,L; I, J) =
[M, I, l∞][L, J, l∞]
[M, J, l∞][L, I, l∞]

=
zm · zl
zm · zl = e2i(ψm−ψl).

Resolving for the desired angle, we get

ψm − ψl =
1
2i

· ln((M,L; I, J)
)
,

which is exactly Laguerre’s formula. ��

Laguerre’s formula relates the properties of angles to the properties of
cross-ratios in a surprising way. We will collect a few of these properties:

Measurement modulo π: The fact that angles between lines are measured
modulo π is reflected in the fact that the natural logarithm function is unique
only modulo a factor of 2πi (we have ea = ea+2πi) together with the factor 1

2i
in Laguerre’s formula.

Real lines generate real angles: At first it is surprising that La-
guerre’s formula indeed produces only real values. If fact, if the lines have
real coordinates, then the numerator and the denominator of (M,L; I, J) =
[M,I,l∞][L,J,l∞]
[M,J,l∞][L,I,l∞] are complex conjugates. Dividing two conjugate numbers pro-
duces a complex number on the unit circle. Its logarithm is purely imaginary.
This is compensated by the factor 1

2i .

Interchange of lines reverses angle: We must have ∠(l,m) = −∠(m, l)
modulo π. Interchanging L and M transforms the cross-ratio to its inverse:
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(L,M ; I, J) = 1/(M,L; I, J). Since ln(a) = − ln(1/a) modulo 2πi, this pro-
duces the desired sign change.

Angles are additive: If we have three lines h, l,m we must have ∠(l,m)+
∠(m,h) = ∠(l, h) modulo π. This formula expresses the multiplicativity of
the cross-ratio. We have

(M,L; I, J) · (H,M ; I, J) =
[M, I, l∞][L, J, l∞]
[M, J, l∞][L, I, l∞]

· [H, I, l∞][M, J, l∞]
[H, J, l∞][M, I, l∞]

=
[H, I, l∞][L, J, l∞]
[H, J, l∞][L, I, l∞]

= (H,L; I, J).

By ln(a · b) = ln(a) + ln(b) modulo 2πi this translates to additivity of
angles.

Orientation-preserving similarity transformations leave angles in-
variant: If τ is an orientation-preserving similarity transformation, we
must have ∠(l,m) = ∠(τ(l), τ(m)) (here we interpret τ(l) as the correspond-
ing action of τ on a line by multiplication of the inverse transformation ma-
trix). To see this identity, we calculate

(M,K, I, J) = (τ(M), τ(K); τ(I), τ(J))
= (τ(M), τ(K); I, J).

Hence the angle is the same after the transformation.

Orientation-reversing similarity transformations reverse angles:
If τ is an orientation-reversing similarity transformation, we must have
∠(l,m) = −∠(τ(l), τ(m)). We get

(M,K, I, J) = (τ(M), τ(K); τ(I), τ(J))
= (τ(M), τ(K); J, I)
= 1/(τ(M), τ(K); I, J),

which produces (via the logarithm) the reversed angle.

One should also observe that Laguerre’s formula contains as a special
case the characterization of right angles. If l and m are orthogonal, then
∠(l,m) = π

2 . Since eiπ = −1, this translates via Laguerre’s formula to the
condition (M,L; I, J) = −1. This is exactly our characterization given in
Theorem 18.7.
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18.8 Distances

Using I and J we can also express distances between two points P and Q in
Euclidean geometry. This formula is a little bit “tricky,” and we will present
it here without a strictly formal proof. First of all, we cannot expect to
express the distance purely as a projectively invariant formula only involving
P , Q, I, and J, since distance is not an invariant of similarity geometry. The
only thing we can hope for is that we obtain a formula that compares the
distance between P and Q to the distance between two reference points A
and B. Thus we will compute a formula for |P,Q|

|A,B| . If the distance |A,B| is
normalized to be the unit length, we will have a formula for the distance of
two arbitrary points. We will finally have an invariant expression in the six
points A,B, P,Q, I, J.

For two points P = (p1, p2) and Q = (q1, q2) in the Euclidean plane R
2,

we usually calculate the distance via Pythagorean theorem:

|P,Q| =
√

(p1 − q1)2 + (p2 − q2)2.

We will first express this formula in terms of determinants and then en-
large this formula to get a projectively invariant expression. Again we assume
that P and Q have homogeneous coordinates with respect to the standard
embedding. Thus we have P = (p1, p2, 1)T and Q = (q1, q2, 1)T . We now
consider the expression

√
[P,Q, I][P,Q, J]. Expanding this term, we get

√√√√√
∣∣∣∣∣∣
p1 q1 −i
p2 q2 1
1 1 0

∣∣∣∣∣∣

∣∣∣∣∣∣
p1 q1 i
p2 q2 1
1 1 0

∣∣∣∣∣∣
=
√

((q1 − p1) + i(q2 − p2)) · ((q1 − p1) − i(q2 − p2))

=
√

(p1 − q1)2 + (p2 − q2)2

= |P,Q|.

This is exactly the desired distance. Unfortunately, the expression
√

[P,Q, I][P,Q, J]

is not at all a projective invariant. The following expression, however, is:
√

[P,Q, I][P,Q, J][A, I, J][B, I, J]√
[A,B, I][A,B, J][P, I, J][Q, I, J]

= |PQ|.

This expression indeed is a projective invariant (each letter occurs with the
same power in numerator and denominator). Furthermore, for the case of
the standard embedding and |A,B| = 1 we get exactly the right distance
function (as the following comparison of terms shows):
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|P,Q|︷ ︸︸ ︷√
[P,Q, I][P,Q, J]

−2i︷ ︸︸ ︷
[A, I, J]

−2i︷ ︸︸ ︷
[B, I, J]√

[A,B, I][A,B, J]︸ ︷︷ ︸
1

[P, I, J]︸ ︷︷ ︸
−2i

[Q, I, J]︸ ︷︷ ︸
−2i

= |P,Q|.

All in all we get the following result:

Theorem 18.10. The Euclidean distance |P,Q| between two points P and Q
can be calculated by

√
[P,Q, I][P,Q, J][A, I, J][B, I, J]√
[A,B, I][A,B, J][P, I, J][Q, I, J]

,

if |A,B| = 1 is a reference length.

It is also instructive to inspect this formula more closely. The occurrence
of the square-root function expresses that it makes sense to speak of distances
only up to a global sign. We can also compare the last result to the formula
derived in Theorem 18.8, where we expressed a necessary condition for the
property |AB| = |AC|. Theorem 18.10 contains this situation as special case.
If we set P = A and Q = C and square the expression of Theorem 18.10, we
get

1 =

(√
[A,C, I][A,C, J][A, I, J][B, I, J]√
[A,B, I][A,B, J][A, I, J][C, I, J]

)2

=
[A,C, I][A,C, J][A, I, J]2[B, I, J]2

[A,B, I][A,B, J][A, I, J]2[C, I, J]2

=
[A,C, I][A,C, J][B, I, J]2

[A,B, I][A,B, J][C, I, J]2
.

This is also a necessary condition for |AB| = |AC|. In the formula

1 =
[A,C, I][A,C, J][B, I, J]2

[A,B, I][A,B, J][C, I, J]2
(18.1)

the points A, B, and C occur quadratically. If we fix two of the points, then
the locus for the remaining one must be a conic. The conic for B is the circle
with center A and perimeter point C. Similarly, the conic for B is the circle
with center A and perimeter point B. The conic for A turns out to consist
of two lines. One of the lines is the median of B and C; the other is the line
at infinity (as a simple calculation shows). If we combine the equation

[A,C, I][A,C, J][B, I, J]2 = [A,B, I][A,B, J][C, I, J]2
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with the equation of Theorem 18.8,

[A,B, I][A,C, I][C,B, J]2 = [A,B, J][A,C, J][C,B, I]2,

by multiplying left and right sides we get

[A,C, I]2[C,B, J]2[B, I, J]2 = [A,B, J]2[C,B, I]2[C, I, J]2.

Taking the square root on both sides, we arrive at

[A,C, I][C,B, J][B, I, J] = ±[A,B, J][C,B, I][C, I, J].

After choosing the right sign in this expression, it turns out to be a necessary
and sufficient condition for |AB| = |AC|. The formula that characterizes this
case is

[A,C, I][C,B, J][B, I, J] = −[A,B, J][C,B, I][C, I, J].

Observe that A occurs linearly in this formula, and both B and C occur
quadratically.
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Euclidean Structures from a Projective
Perspective

Projective geometry does not start where elementary Geome-
try leaves off; that is to say, it does not presuppose any of the
results of elementary Geometry. It stands by itself, and is de-
veloped logically from its own initial propositions. The reader
will find, however, that the two subjects are not entirely un-
connected, for it will appear that elementary Geometry is a
particular case of Projective Geometry. As a consequence of
the fact that it is not dependent on elementary Geometry he
must not expect to find that the initial propositions are famil-
iar to him from what he already knows. Indeed, it is only at the
end of the development that he will see elementary Geometry

emerging. But it must not be supposed that the only aim of
Projective Geometry is to establish the results of elementary
Geometry; it does this incidentally, but at the same time it
shows them in their true perspective, for it shows clearly what
places in the hierarchy of Geometry this and other Geometries
occupy.

C.W. O’Hara and D.R. Ward,
An Introduction to Projective Geometry, 1937

In the previous chapter we laid the foundations for representing Euclidean
concepts (transformations, angles, distances, orthogonality, cocircularity . . .)
in a projective framework. In this chapter we will apply these concepts. We
will give a loose and by no means complete collection of interesting construc-
tions/calculations/theorems in Euclidean geometry that can be nicely carried
out in our projective framework. Here we will strictly follow the concept that

Euclidean geometry is projective geometry together with I and J.

349
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In all our considerations we will use only a projective framework and the
two special points I and J. Euclidean definitions and properties will always
strictly be expressed using these two points in special position.

Our examples will cover three different aspects. We will consider elemen-
tary geometric constructions, calculations, and geometric theorems. The con-
structions will essentially be based on constructive primitive operations such
as join, meet, intersection of conics and lines, tangents to conics. All these
constructions were introduced algebraically earlier in this book. We will show
how these operations together with I and J can be used to derive elegant
constructions for typical geometric problems. For instance, we will see that
a mirror image of a point can be constructed using only a few join and meet
operations.

We will also extend our sampler of algebraic “implementations” for ge-
ometric primitive operations and provide approaches for typical Euclidean
problems. In particular, we will derive nice formulas for angle bisectors, and
for conics for which the foci are given. Finally, we will demonstrate how
bracket algebra can be used to derive nice and short proofs for facts from
elementary geometry, such as the typical triangle theorems. Derivations in
a similar spirit may be found in the beautiful book on projective geometry
by W. Blaschke [6] and in the book on hyperbolic geometry by M.J. Green-
berg [49].

19.1 Mirror Images

We begin with the geometric construction (and characterization) of the mirror
image of a point with respect to a line. Given the point p and the reflection
line l, the following seven-step construction constructs the Euclidean mirror
image p′ of p with respect to l:

1: lp,I = join(p, I);
2: lp,J = join(p, J);
3: a = meet(lp,I, l);
4: b = meet(lp,J, l);
5: lp′,J = join(a, J);
6: lp′,I = join(b, I);
7: p′ = meet(lp′,I, lp′,J).

The situation is illustrated in Figure 19.1 on the left. There the points I
and J have, as usual for our pictures, been moved to a finite position. The
correctness of the construction can be proven by verifying two characteris-
tic properties of the Euclidean mirror image: The line g = join(p, p′) must
be orthogonal to l and the intersection m of these two points must be the
midpoint of p and p′.
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Fig. 19.1 Constructing the mirror image of a point.

To verify the first property we refer to our characterization of orthogonality
from Section 18.6. Let l∞ be the line at infinity. Let L = meet(l, l∞) and
G = meet(g, l∞) be the infinite points of l and g. We have to show that the
point pairs (L,G) and (I, J) form a harmonic point set. This can easily be
seen from the drawing in Figure 19.1 (right), where a few auxiliary points
and lines have been added to the construction. There are exactly six lines in
addition to the line at infinity. These six lines form our witness construction
(compare Figure 5.1) that the point pairs (L,G) and (I, J) indeed form a
harmonic quadruple.

The second part of the statement is that m forms the midpoint of p and p′.
This can be shown by considering four points on the line g. If the pairs (p, p′)
and (m,G) form a harmonic set, then m is the midpoint of p and p′ (recall
that G was an infinite point). Also this harmonic relation can be directly read
off from the picture. All lines except for g form the witness for the harmonic
set construction.

19.2 Angle Bisectors

Our next example will demonstrate how to calculate the pair of angle bi-
sectors of a given pair of lines. It is a good exercise in the kind of projec-
tive/Euclidean thinking we propagate in this chapter. All calculations are
straightforward; nevertheless, the result is somewhat surprising and remark-
ably simple.

Let l and m be two lines and let a be an angle bisector of the two lines.
We assume that l and m are not parallel, i.e., their intersection O does not
lie on the line at infinity. Theorem 18.9 taught us that the angle between
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l

m

a−

a+

O

Fig. 19.2 Angle bisectors of two lines.

two lines can be calculated as 1
2i · ln((L,M ; I, J)) with L and M being the

intersections of l and m with the line at infinity l∞. Let A be the intersection
of a with l∞. Then a is an angle bisector if and only if

(L,A; I, J) = (A,M ; I, J). (19.1)

Finding the correct position for A solves the problem of calculating the angle
bisector: it is then simply join(A,O).

Now let P be an arbitrary point not on l∞ that we can use to express the
cross-ratios in terms of 3× 3 determinants. Then on the bracket level, (19.1)
reads

[P,L, I][P,A, J]
[P,L, J][P,A, I]

=
[P,A, I][P,M, J]
[P,A, J][P,M, I]

,

or equivalently,

[P,L, I][P,M, I][P,A, J]2 = [P,M, J][P,L, J][P,A, I]2.

The point A is on l∞ = join(I, J). Thus for suitable λ and μ we have A =
λI + μJ. Inserting this into the bracket expression, we get

[P,L, I][P,M, I][P, λI + μJ, J]2 = [P,M, J][P,L, J][P, λI + μJ, I]2.

And after expanding and removing brackets with identical letters, we have

[P,L, I][P,M, I][P, λI, J]2 = [P,M, J][P,L, J][P, μJ, I]2.

Extracting λ and μ leads to

λ2[P,L, I][P,M, I][P, I, J]2 = μ2[P,M, J][P,L, J][P, J, I]2.

Thus after canceling [P, J, I]2, we get

λ2[P,L, I][P,M, I] = μ2[P,M, J][P,L, J],
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and a suitable choice for λ and μ is

λ = ±
√

[P,L, J][P,M, J] and μ = ±
√

[P,L, I][P,M, I].

Inserting this into A = λI + μJ, we get the nicely symmetric formula

A± =
√

[P,L, J][P,M, J] · I±
√

[P,L, I][P,M, I] · J.

The choice of the sign corresponds to the fact that two lines in general
have two angle bisectors. It is also easy to check that the two possible angle
bisectors are orthogonal to each other, since for an arbitrary pair of points
of the forms A+ = λI + μJ and A− = λI− μJ we get

(A+, A−; I, J)P =
[PA+, I, ][P,A−, J]
[P,A+, J][P,Ai, I]

=
[PλI + μJ, I, ][P, λI − μJ, J]
[P, λI + μJ, J][P, λI− μJ, I]

=
[PμJ, I, ][P, λI, J]

[P, λI, J][P,−μJ, I]
= −1.

Summarizing these results, we have the following theorem:

Theorem 19.1. With the notation as above, the angle bisectors of l and m
may be calculated by join(A,O) with

A± =
√

[P,L, J][P,M, J] · I±
√

[P,L, I][P,M, I] · J.

The two angle bisectors are perpendicular to each other.

It is also interesting to see what being an angle bisector means alge-
braically. We will consider the slightly more general case in which we want
to test whether for four lines l,m, a, b the angle enclosed between l and a
equals the angle enclosed between b and m. Setting a = b, we obtain the
special case of an angle bisector. We again let L,M,A,B be the correspond-
ing intersections of the lines with l∞. From Laguerre’s formula we obtain the
condition

(L,A; I, J) = (B,M ; I, J).

We may permute the entries on the left and right side, of this equation con-
sistently and still obtain the same condition. For instance, we get

(L, I;A, J) = (B, I;M, J).

Again using a suitably generic point P distinct from l∞, we may write the
above equation on the level of brackets as
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Fig. 19.3 Construction of the center of a circle.

[P,L,A][P, I, J]
[P,L, J][P, I, A]

=
[P,B,M ][P, I, J]
[P,B, J][P, I,M ]

,

or after cancellation of [P, I, J] and shuffling denominators,

[P,L,A][P,B, J][P, I,M ] = [P,L, J][P,B,M ][P, I, A].

Comparing this condition with the characterizing equation for quadrilateral
sets from Section 8.2, we see that on a projective level we get the condition
that (L,M ;B,A; I, J) forms a quadrilateral set.

19.3 Center of a Circle

We now deal with the problem of constructing (or calculating) the center of
a given circle in projective terms. The construction is of striking simplicity
and we will give a geometric as as well an algebraic proof of it.

Theorem 19.2. Let C be a circle. Then the tangents to C at the points I
and J intersect in the center of C.

Before presenting the proofs we will highlight a few fine points of this
construction. First of all it must be mentioned that since C is a circle, the
points I and J are incident with it. Thus it is totally feasible to speak of
the tangents at the points I and J. Secondly, both tangents turn out to be
completely complex objects (one would never “see” them in a real picture).
However, they are complex conjugates such that their intersection is again a
real point. Figure 19.3 illustrates the construction with I and J located at
finite real positions.
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Algebraically, this construction can also be translated into a very simple
calculation. Let Q be the matrix of the quadratic form that represents C. The
tangents at I and J can be calculated by Q · I and Q · J. Their intersection
is simply

MC = (Q · I) × (Q · J).

Algebraic proof: A simple calculation verifies that MC is indeed the center
of the circle. We assume that C has a center with Euclidean coordinates
(mx,my)T . The circle equation then is of the form

(x −mx)2 + (x−my)2 = r2.

The corresponding matrix of the quadratic form is

Q =

⎛
⎝

1 0 −mx

0 1 −my

−mx −my α

⎞
⎠

for a suitable α. By expanding (QI) × (QJ), we get

(QI) × (QJ) =

⎛
⎝

1 0 −mx

0 1 −my

−mx −my α

⎞
⎠
⎛
⎝
−i
1
0

⎞
⎠ ×

⎛
⎝

1 0 −mx

0 1 −my

−mx −my α

⎞
⎠
⎛
⎝

i
1
0

⎞
⎠

=

⎛
⎝

−i
1

imx − my

⎞
⎠ ×

⎛
⎝

i
1

−imx − my

⎞
⎠

=

⎛
⎝
−2imx

−2imy

−2i

⎞
⎠

= −2i

⎛
⎝

mx

my

1

⎞
⎠.

This proves that this point is the center of the circle. ��
An even simpler geometric argument can be used as well to show the

midpoint property. For this recall that for three collinear points A,B,M on
a line l we can characterize the fact that M is the midpoint of A and B by
the condition that (A,B;M,L) are in harmonic position (here L is again the
intersection of l and l∞). Thus the center M of a circle C is characterized by
the following property. For a line l that passes through M let A and B be the
intersections of l and C and let L be the intersection of l and l∞. The point
M is the center of the circle if for any such line, (A,B;M,L) are in harmonic
position.
Geometric proof: Let M be the intersection of the two tangents at I and J.
The only thing we have to prove is that for an arbitrary line l through M
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Fig. 19.4 Proving the midpoint property.

the points (A,B;L,M) as defined above are in harmonic position. Refer to
Figure 19.4 for the labeling. In Section 10.7 we saw that in this situation
every point P on the circle sees the points (A,B; I, J) in harmonic relation.
This means that the connecting lines from P to these points are in harmonic
relation. In particular, this is the case for P = I. Thus the lines (a, b; l∞,m)
in Figure 19.4 are in harmonic relation. Hence the points (A,B;L,M) are
harmonic, since they are the intersections of the line l with the four lines
a, b, l∞,m. ��

19.4 Constructing the Foci of a Conic

The previous construction has a remarkable generalization. With the help of
I and J it is possible to construct the foci of a conic by just drawing four
tangents and intersecting them. In fact, projectively speaking, this construc-
tion is an appropriate way to define foci of conics (and then checking that
the definition agrees with the classical one). To appreciate the following con-
struction we first need a characterizing property of foci in classical terms.
An ellipse has the property that there are two so-called foci. These are two
points F1 and F2 inside the ellipse with the following geometric property.
If a light ray is emitted from F1 and reflected at the conic’s boundary, the
reflected light ray passes through F2. Figure 19.5 (left) shows a collection
of light rays emitted from one of the foci, and the corresponding reflected
rays. In the drawing on the right one single light ray and its reflection are
shown. Reflection at the conic means that at the position at which the ray
hits the conic, we may locally consider a tangent to the conic as a planar
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Fig. 19.5 Definition of the foci of a conic.

mirror. Thus the supporting lines of the original ray and the reflected one
are mirror symmetric with respect to this tangent. A similar characterization
also holds for a hyperbola. A hyperbola also has two foci, with the property
that if a ray is emitted from F1, then the supporting line of the reflected ray
is incident with F2. In the case of a circle the two foci will coincide with the
center.

We will now give a projective construction involving I and J that creates
focal points with exactly the property described above. In order to get a
nondegenerate construction we will assume (for the moment) that the conic
under consideration C is not a circle. We will see later on that the construction
also covers this case. If C is not a circle, then I and J are not coincident with it.
Thus we can draw two tangents i1 and i2 from I at the conic C. Similarly, we
can draw two tangents j1 and j2 from J. The intersections of these tangents
turn out to be foci (see Figure 19.6).

F2

F1

G1

G2

F2

F1

I

J

Fig. 19.6 Construction of foci using I and J.



358 19 Euclidean Structures from a Projective Perspective

F1

F2

F1

F2

m

P

Fig. 19.7 Reflection property of foci.

Theorem 19.3. The pairs of points (F1, F2) = (meet(i1, j1),meet(i2, j2))
and (G1, G2) = (meet(i1, j2),meet(i2, j1)) form two pairs of foci of the
conic C.

Proof. The proof is nontrivial in the sense that it needs several constructions
and facts that we encountered before and requires some preparation. It relies
on the characterization of the mirror image of a point given in Section 19.1.
Furthermore, we need a degenerate version of Brianchon’s theorem (the dual
of Pascal’s theorem) that we introduced in Section 10.6. And we need a
reasonably simple incidence-theoretic characterization of the focus property.

Let us start with the latter. For this consider once more the situation in
Figure 19.5 on the right. The reflection property states that a ray emitted
from F1 and reflected by the focus hits F2. One can reinterpret this in the
following way. Take the tangent m at point P where the ray hits the conic.
Reflecting the two foci at the tangent m produces two images F ′

1 and F ′
2. The

reflection property is equivalent to saying that F1, P , and F ′
2 are collinear

independently of the choice of the specific ray. Figure 19.7 illustrates this
property. Thus one can ensure that F1 and F2 are foci by verifying the fol-
lowing property: take an arbitrary point P on the conic and the tangent m at
this point. Reflect F2 at this tangent to obtain the mirror image F ′

2. Then F1

and F2 are foci if independently of the choice of P , the points F1, F2, P are
collinear.

As a second ingredient we need Brianchon’s theorem. A picture of this
theorem is given in Figure 19.8 on the left. This theorem states that if we draw
six tangents t1, . . . , t6 to a conic and cyclically (indices modulo 6) intersect ti
and ti+1, we get points 1, . . . , 6 with the property that the lines join(1, 4),
join(2, 5), and join(3, 6) are concurrent. We will need a limit case of this
theorem for which two adjacent tangents (green in the picture) coincide. This
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Fig. 19.8 Brianchon’s theorem, and a limit case of it.

situation is shown in Figure 19.8 on the right. Notice that the corresponding
intersection point of the two tangents in the limit case becomes the point at
which the tangent touches the conic.

Now we are almost done. Consider Figure 19.9. There you see the con-
struction of the presumed foci by intersecting the tangents of I and J to the
conic. Let us focus on one pair of foci, namely F1 and F2. Now consider an
arbitrary point P on the conic and the corresponding tangent m. Using the
construction of Section 19.1, we construct the reflection of F2 of one of the
foci with respect to the line m. For this we connect I and J with F2 (the lines
are already there) in order to get the two intersections X and Y of these lines
with m. Then we connect X and Y crosswise with I and J. The intersection
of these two lines is the reflected focus F ′

2. Inspecting the drawing, we see that
we have just constructed the hypotheses of the degenerate version of Brian-
chon’s theorem. The theorem tells us that F1, F ′

2, and P are collinear. This
proves that F1 and F2 are foci. By symmetry of the construction a similar
argument also holds for the pair G1 and G2. ��

Again a few subtle matters deserve to be mentioned.

• First of all it is clear that all our drawings used in the proof are just real
counterparts of configurations that mainly consist of complex objects. If I
and J are at their proper positions, almost everything in the construction
becomes complex. Nevertheless, we can argue with the real pictures, since
the theorems we used (in particular Brianchon’s theorem) hold also for
projective planes over the complex numbers.

• The second and perhaps most striking fact is the problem that our con-
struction generates four foci, whereas commonly one observes only two
foci for an ellipse or a hyperbola. The resolution of this problem again
lies in the relation of complex to real elements. The tangents j1 and j2
related to J are the complex conjugates to the tangents i1 and i2 related
to I. If we intersect complex conjugates, we get a real meet. Thus out
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Fig. 19.9 Proof of the focal property.

of the four possible combinations exactly two yield real foci. The two
complex foci still algebraically satisfy the condition of being a focus of
the conic, but are simply not visible.

• One might wonder whether it is possible to give a construction that exclu-
sively creates the real foci, without any inspection to determine which of
the tangents are conjugate to each other. In fact, this is not the case. It is
possible to continuously deform a conic through the complex coordinate
space such that the pairs (G1, G2) and (F1, F2) continuously interchange
their roles.

19.5 Constructing a Conic by Foci

Let us now face the opposite problem: Given a pair of foci F1, F2 and a
boundary point P , find a conic that passes through P and has these foci. The
structural insights from the last section help to reduce this problem to a
problem we have already solved, namely the problem of constructing a conic
through four points and tangent to a line (compare Section 11.6).

To understand this connection let us first analyze how many conics there
possibly are that satisfy the requirements for this construction. Figure 19.10
illustrates for fixed foci a bundle of ellipses (left) and a bundle of hyperbolas
(right). Through each given point in the plane that is distinct from the foci
there are exactly one ellipse and one hyperbola in these bundles. Thus in
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Fig. 19.10 Confocal ellipses and confocal hyperbolas.

general, there are two different solutions to the above construction problem.
This is also justified if we look at the projective characterization of foci.
Assume that a pair of foci F1, F2 is given. For any conic with these two foci,
tangents through I and J pass through F1 and F2. We can explicitly construct
these tangents without knowing a specific conic. We simply have to construct

t1 = join(F1, I), t2 = join(F1, J), t3 = join(F2, I), t4 = join(F2, J).

Now the problem reduces to finding a conic that is simultaneously tangent
to t1, . . . , t4 and passes through the given point P . This problem, however, is
dual to the problem of constructing a conic through four points and tangent
to a line that we attacked in Section 11.6. There we showed that this problem
leads to a quadratic equation and derived a method to explicitly give the two
solutions. Figure 19.11 illustrates the existence of the two solutions to the
construction problem.

All in all, the construction problem may then be expressed in the following
(mainly algebraic) algorithm:

1. Construct the four lines t1, . . . , t4 as described above.
2. Consider the homogeneous coordinates t1, . . . , t4 as point coordinates and

consider the homogeneous coordinate P as line coordinate. Use them as
input for the method of Section 11.6 to find matrices A1, A2 that describe
two conics through t1, . . . , t4 and tangent to P .

3. Invert the matrices A1 and A2 to get two matrices describing conics with
the desired properties.

This method also works for the limit case in which the two foci F1 and F2

coincide. In this case one of the solutions turns out to be a circle with center
F1 = F2. Clearly, there are simpler ways to calculate a circle with prescribed
center and boundary point. Nevertheless, it is nice to see how this fits into the
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Fig. 19.11 The two conics with foci F1, F2 through a point P .

more general framework. Later on we will return to the problem of calculating
such circles in the even broader context of non-Euclidean geometries.

19.6 Triangle Theorems

So far we have used the projective setup for Euclidean geometry mainly for
solving construction problems. We will now consider a few typical Euclidean
theorems, demonstrate how they translate to a projective framework, and
show how they may be proved projectively. One of the main messages of this
section is that every Euclidean theorem can be translated into a projective
theorem. In the translation process every relation involving angles or dis-
tances must simply be translated into the corresponding projective terms.
Very often, the translation process sheds new light on the original problem.
Sometimes it unifies a bunch of theorems and shows that they are actually
birds of a feather. Conversely, there are often several different ways to find
Euclidean interpretations for projective theorems, depending on which points
are playing the roles of I and J. We already encountered one example of the
projective explanation of a Euclidean theorem in Section 18.2, where we
proved Miquel’s theorem on six circles by proving a corresponding theorem
for six conics that meet in a pair of points.

In this section we will focus on extremely simple theorems about triangles:
those Euclidean theorems that are already treatable on the level of secondary
school mathematics. Nevertheless, the projective viewpoint gives some new
perspectives on them and very often leads to interesting generalizations or
interesting proofs. (The reader should not expect these proofs to be sim-
pler than the secondary-school-level proofs, but he/she may appreciate how



19.6 Triangle Theorems 363

B

C

A

Y

Z

X

M

B

C

A

Y

Z

X

B

C

A

Y

Z

X

Y

Z

X
M

l∞

B

C

A

Y

Z

X

Y

Z

X

l∞

Fig. 19.12 Medians—Euclidean and projective.

everything fits together into our general setup.) As throughout the entire
book, we will try to present a variety of proof methods and connect them to
different parts of earlier chapters.

The medians of a triangle meet in a point: What does this theorem
mean on a projective level? The midpoint of a segment (A,B)1 is the point M
such that (A,B;M,L) are in harmonic relation. Here L is the infinite point
of the line supporting the segment (compare Lemma 5.3). Thus the theorem
that states that the medians of a triangle meet in a point is (from a pro-
jective perspective) a theorem about harmonic relations. It translates to the
following fact.

Theorem 19.4. Let A, B, C, be three points in the projective plane and let
l be a line not incident with any of these points. Furthermore, let Z ′, X ′, Y ′

be the intersections of the lines (A,B), (B,C), (C,A) with l and let X, Y ,
Z be such that (A,B;Z,Z ′), (B,C;X,X ′), and (C,A;Y, Y ′) are harmonic
quadruples. Then the lines (A,X), (B, Y ), and (C,Z) are concurrent.

Proof. One elegant way to formulate the proof is to set it in the context of
the Ceva and Menelaus configurations we dealt with in Section 15.4 and 15.5.

1 In what follows we will frequently write (A, B) as shorthand for the segment from A to
B. Whenever no confusion can arise we will use (A, B) as shorthand for the supporting
line join(A, B) of this segment.



364 19 Euclidean Structures from a Projective Perspective

For this we consider the triangle A,B,C and points X,Y, Z on its edges (with
incidences as in the theorem). The points X ′, Y ′, Z ′ are the corresponding
harmonic points on the triangle edges. The theorem states that if X ′, Y ′, Z ′

are the edge points of a Menelaus configuration (they are all on l∞), then
X,Y, Z are the edge points of a Ceva configuration; X ′, Y ′, Z ′ being the edge
points of a Menelaus configuration implies (with oriented lengths along each
of the triangle edges)

|A,Z ′|
|Z ′, B| ·

|B,X ′|
|X ′, C| ·

|C, Y ′|
|Y ′, A| = −1.

The harmonic conditions imply

|A,Z ′|
|A,Z| · |B,Z|

|B,Z ′| = −1,
|B,X ′|
|B,X | ·

|C,X |
|C,X ′| = −1,

|C, Y ′|
|C, Y | · |A, Y |

|A, Y ′| = −1.

Multiplying all four expressions and canceling lengths if possible yields

|A,Z|
|Z,B| ·

|B,X |
|X,C| ·

|C, Y |
|Y,A| = −1,

the algebraic condition for X,Y, Z being the edge points of a Menelaus con-
figuration. ��

Figure 19.12 on the left top row illustrates the usual Euclidean situation.
The left bottom row shows the corresponding projective situation. The line
incident to X ′, Y ′, Z ′ plays the role of the line at infinity l∞.

Remark 19.1. It is interesting to notice that the argument in the proof works
as well the other way around. If the lines (A,X), (A, Y ), (C,Z) are concur-
rent, then the corresponding harmonic points X ′, Y ′, Z ′ are automatically
collinear. By this (projectively speaking), for every fixed choice of A,B,C,
and M in the projective plane we get a kind of relative line at infinity with
respect to which M plays the role of the intersection point of the median.

Remark 19.2. There is another interesting fact that has an immediate projec-
tive interpretation. The connection of two midpoints in the Euclidean draw-
ing is parallel to the triangle side that is not incident with either of them.
In the projective interpretation this means that the point triples (X,Y, Z ′),
(Y, Z,X ′), and (Z,X, Y ′) are collinear (see right column of the picture). To
prove this on a projective level, observe that the three proposed collinearities
are part of witness configurations for the harmonic relations along the sides.
The reader is invited to derive a geometric proof of Theorem 19.4 based on
this observation.

It should also be mentioned that the configuration is projectively unique.
As soon as the vertices of the triangle and the intersection of the medians M
are fixed, the points
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meet(join(A,B), join(X,Y )) and meet(join(B,C), join(Y, Z))

determine the position of l∞.Desargues’s theorem applied to the two triangles
(A,B,C) and (X,Y, Z) implies that meet(join(A,C), join(X,Z)) is also
on l∞.

The altitudes of a triangle meet in a point: In contrast to the previ-
ous theorem, the meeting of the altitudes makes a reference to explicit angles.
Altitudes are orthogonal to the sides of the triangle. Thus in the projec-
tivization I and J also play a role. This time we will express the projective
version entirely on the level of line slopes or, equivalently, on the level in-
tersection points on the line at infinity. In Section 8.2 we learned that six
lines r, s, t, u, v, w whose intersections R, . . . ,W with the line at infinity are
known may support the edges of a projected tetrahedron (i.e. a Ceva con-
figuration) if and only if (R,U ;S, V ;T,W ) forms a quadrilateral set. Refer
to Figure 19.13 for the labeling. Algebraically, this means that on the line
at infinity the following projectively invariant bracket relation holds (with
respect to an arbitrary basis on l∞):

[R,W ][S,U ][T, V ] = [R, V ][S,W ][T, U ]. (19.2)

This criterion can be nicely used to characterize the concurrence of three
lines that pass through the triangle vertices. We will apply it to the alti-
tudes. Characterizing orthogonality is the point at which I and J enter the
game. If the lines r and u are orthogonal, this means that (I, J;R,U) form a
harmonic quadruple. Similarly, u, v, w being altitudes implies that (I, J;S, V )
and (I, J;T,W ) are in harmonic position as well. Thus we get the equations
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Fig. 19.14 Two cases for angle bisectors.

[I, R][J, U ] = −[I, U ][J, R]
[I, S][J, V ] = −[I, V ][J, S]

[I, T ][J,W ] = −[I,W ][J, T ]
(19.3)

Furthermore, all right angles are equal to each other. At the end of Sec-
tion 19.2 we saw that the angle between g and h is identical to the an-
gle between l and m if for the corresponding infinite points G,H,L,M the
collection (G,L;H,M ; I, J) is a quadrilateral set. Applying this to the alti-
tudes in a triangle, we in addition get the quadrilateral sets (I, J;R,S;U, V ),
(I, J;S, T ;V,W ) and (I, J;T,R;W,U). This implies the equations

[I, V ][R, J][U, S] = [I, S][R, V ][U, J]
[I,W ][S, J][V, T ] = [I, T ][S,W ][V, J]
[I, U ][T, J][W,R] = [I, R][T, U ][W, J]

(19.4)

Multiplying all left and right sides of the equations in (19.3) and (19.4), taking
care of the alternating determinant law, and canceling terms that occur on
both sides, we obtain (19.2). This proves the altitude theorem projectively.

We briefly mention another projective approach to the theorem from a
transformational point of view (we already met this approach in Section 8.6).
Rotating a Euclidean line by 90◦ induces a map on the line at infinity. We
associate each infinite point A of a line a to the infinite point τ(A) = B
of the line rotated by 90◦. This map is well-defined. In fact, it is a projec-
tive transformation on l∞ and it is an involution, since τ(τ(A)) = A. In
Theorem 8.2 we showed that if R,S, T are three distinct points on l∞ and
U = τ(R), V = τ(S),W = τ(T ) are their images under a projective involu-
tion, then (R,U ;S, V ;T,W ) forms a quadrilateral set. From this the altitudes
theorem follows easily. Moreover, a simple calculation shows that I and J are
the fixed points of τ . Theorem 8.4 tells us that (as we know) (I, J;R,U),
(I, J;S, V ), (I, J;T,W ) are in harmonic position.

The angle bisectors of a triangle meet in a point: Also the angle
bisectors in a triangle meet in a point. Again in the projective interpretations
the points I and J must play a role, since angles are involved. As before, we
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encode the relevant line slopes by the intersection points with the line at
infinity. For the labeling we again refer to Figure 19.13. If line W is an angle
bisector of the lines r and s, this implies (according to Section 19.2) that
(I, J;R,S;W,W ) is a quadrilateral set. Applying this fact to all three angle
bisectors, we obtain the three conditions

[I,W ][R, J][W,S] = [I, S][R,W ][W, J]
[I, U ][S, J][U, T ] = [I, T ][S,U ][U, J]
[I, V ][T, J][V,R] = [I, R][T, V ][V, J]

(19.5)

One might expect that multiplying left and right sides and canceling as usual
gives the desired result. Unfortunately, not a single bracket cancels. However,
there is a nice trick that provides three more equations that make things
cancel. The roles of I and J are interchangeable in the quadrilateral set
relations. This implies that we also get the following three equations:

[J,W ][R, I][W,S] = [J, S][R,W ][WI]
[J, U ][S, I][U, T ] = [J, T ][S,U ][U, I]
[J, V ][T, I][V,R] = [J, R][T, V ][V, I]

(19.6)

Multiplying left and right sides of (19.5) and (19.6) and canceling brackets
now leaves us with the equation

([W,S][U, T ][V,R])2 = ([R,W ][S,U ][T, V ])2.

Thus we can conclude that either

[R, V ][S,W ][T, U ] = +[R,W ][S,U ][T, V ] or
[R, V ][S,W ][T, U ] = −[R,W ][S,U ][T, V ]

is true. The first equation describes the quadrilateral set equation we are
looking for. The second equation encodes the fact that the intersections
meet(r, u), meet(s, v), and meet(t, w) are collinear. In fact, with the given
hypotheses this is the best we could hope for, since any pair of lines has
two angle bisectors. If we made a proper choice, they are collinear; otherwise
(in half of the possible cases), we get the collinearity condition. Figure 19.14
illustrates the two possible cases for one given triangle.

The Euler line: The intersection of the medians M , the intersection of
the altitudes H (called the orthocenter), and the circumcenter O are always
collinear. They lie on the so-called Euler line (see Figure 19.15 (left)). From
a projective viewpoint it turns out that this theorem is a direct consequence
of Desargues’s theorem. To see this, first observe that for the Euler line the-
orem it is not necessary to draw all three altitudes, all three medians, and
all three perpendicular bisectors. Two of each suffice to determine the three
intersection points O, M , and H . Figure 19.15 (right) shows a drawing in
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which only two of each type of lines are drawn. Furthermore, a line between
the two midpoints X and Y is drawn. From our considerations about medians
(Remark 19.2) we know that this line is parallel to A,B. Also, the perpendic-
ular bisectors are parallel to the sides of the altitudes associated to the same
side of the triangle. Hence, the three sides of the red triangle are parallel to
the three sides of the green triangle. So they meet at three points that all
lie on the line at infinity. Desargues’s theorem now tells us that in this case
the two triangles must be perspective with respect to a point. Thus the line
join(O,H) must pass through the intersection of join(A,X) and join(B, Y ).

19.7 Hybrid Thinking

The world is neither Euclidean nor projective—it simply is. We may look at
it only through certain filters of perception. In the final section of this chapter
we want to demonstrate how a kind of hybrid thinking, where one takes a pro-
jective or Euclidean viewpoint, whichever seems to be more appropriate, can
lead to interesting proofs and generalizations of theorems. Again, one could
fill a whole book with this. We here will limit ourselves to one example only,
namely the nine-point circle, which is one of the more advanced theorems in
elementary triangle geometry.2 The theorem is kind of surprising. However,

2 In fact, I have to admit that I personally hate these overcrowded elementary geometric
drawings that show up in many textbooks dealing with advanced triangle geometry. When
I started to think about this section I thought, It would be nice to include also some-
thing about the nine-point circle of a triangle. Starting thinking on this, I was trapped!
The mutual relations and correspondences are so nice, surprising, and overwhelming that
I continued to produce exactly the same kind of overcrowded pictures over and over on
my computer. The situation got even worse when I started to think about possible pro-
jectivizations of these relations. New theorems and relations, beautiful configurations, and
nice relaxations showed up every minute, many more than would fit into single chapter
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it is not too difficult to prove. It states that in any triangle the midpoints of
the sides, the feet of the altitudes, and the midpoints of the segments that
join the orthocenter H with each vertex all lie on a common circle (see Fig-
ure 19.16). A standard (Euclidean) proof technique of this result goes along
the following lines: The crucial observation is that the line that joins the mid-
points in a triangle is parallel to the third side of the triangle. (We will need
this fact frequently later on and simply refer to it as (M).This implies that
(Y,R) as well as (Z,Q) is parallel to (A,H). Also (R,Q) is parallel to (B,C)
and hence orthogonal to (Y,R). Taking these statements together, one can
conclude that (Y,R,Q,Z) is a rectangle. Thus its vertices lie on a circle. Sim-
ilarly, one can prove that (X,Q, P, Y ) and (Z,P,R,X) are rectangles. This
implies that all midpoints (the blue points in the drawing) P,Q,R,X, Y, Z
are on a circle. Since (Y,R,Q,Z) is a rectangle, the segment (Y,Q) is a diam-
eter of the circle. Thales’ theorem implies that also the foot point E (a green
point) must be on the circle. Similarly, F and D are on the circle. The right
side of Figure 19.16 illustrates the two ingredients necessary for this proof.

At first sight this argument is far from being projective. However, every
single step can be carefully translated to a projective argument (try it), and
we end up with a rather lengthy projective proof. This is not what we are
aiming for. Instead, this time we are aiming for a closely related, though
different, projective theorem. This theorem will show that many of the co-
incidences of the nine-point circle are still true after the hypotheses of the
theorem are somehow relaxed. By this we want to demonstrate how one could
approach a theorem with a projective eye and how this may lead to interesting
Euclidean and projective variants, relaxations, and generalizations (for even
more variants see also [95]). We try to use arguments, based on our (so far)
well-understood projective concepts like Desargues’s theorem (Section 15.1),

of this book. Here I will present a small collection of some of them. I tried to separate
different statements into several hopefully not so overcrowded pictures.
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Fig. 19.17 The midpoints are on a conic.

Pascal’s theorem (Section 10.6), and Hesse’s transfer principle (Section 10.5).
Our fundamental relaxation is that the points H will no longer be required
to be the orthocenter—it may just be an arbitrary point that is not on a line
supporting the triangle’s edges.

Observation 1: Midpoints are on a conic. From a projective point of
view the first interesting relation occurs already on the level of the midpoints
X,Y, Z, P,Q,R in the configuration. Constructing a midpoint is not depen-
dent on the points I and J. It is an affine but not a genuinely Euclidean
operation. Thus if we start with the points A,B,C, and H , we may suspect
that even then the six midpoints of pairs of such points lie on a conic. Here H
is assumed to be an arbitrary point and not necessarily the orthocenter. (We
may not expect that the midpoints still lie on a circle, since I and J are not
contained in the hypotheses.) In fact, this conjecture turns out to be true
and not hard to prove at all. Figure 19.17 (left) shows the theorem and adds
a few lines (red lines in the right picture) that immediately provide a proof.
(We may think projectively and still draw Euclidean pictures and are aware
of the special role of the line at infinity.) By fact (M) we know that (Y,R)
and (A,H) are parallel (i.e., they meet at the line at infinity) and that (Z,Q)
and (A,H) are parallel. Hence (Y,R) and (Z,Q) meet at the line at infinity.
Similarly, the pair of lines (Y, P ) and (X,Q) are parallel, as well as (Z,P )
and (X,R). In other words, in the drawing the red lines form a hexagon with
opposite sides being parallel. This in turn can be used as the hypotheses
for Pascal’s theorem, which then implies that X,Y, Z, P,Q,R are on a conic.
Observe that this argument used only the parallelism of the red and green
lines (the former altitudes) in the picture.

Observation 2: The hexagon is symmetric. There is one more property
that attracts attention when we look at Figure 19.17 (right). The hexagon is
point-symmetric. In other words, if one joins opposite points of the hexagon,
then the three resulting segments meet in the center of symmetry of the
hexagon (see the blue lines in Figure 19.18, left). How can this be proved?
Again a projective argument helps immediately. Similarly to what we did be-
fore, we can (now using parallelism to the black triangle edges and fact (M))
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Fig. 19.18 Segments between opposite midpoints intersect.

show that in Figure 19.18 (right) the sides of the orange triangle are parallel
to the sides of the red triangle. Desargues’s theorem implies that they are
perspective with respect to each other. This forces that the blue lines meet
in the point of perspectivity.

Observation 3: Also the foot points are on the conic. Now comes an
amazing and remarkable observation. The conic through the six midpoints,
passes also through the foot points D,E, F where the green lines (the for-
mer altitudes) hit the triangle edges. Figure 19.19 illustrates the effect. This
statement is by far not as easy to prove as the previous ones. In the literature,
only proofs involving loci of polars with respect to pencils of conics seem to be
available (compare [95]). We here want to follow a more incidence-geometric
approach and base the proof on Hesse’s principle of transfer (see in particular
Figure 10.10).

Hesse’s principle of transfer states that if we have six points on a conic
such that the lines spanned by pairs of them are concurrent, then the condi-
tion of a seventh point being on the conic is characterized by the fact that
it sees the six points in a quadrilateral set relation. We are in the lucky

A
B

C

D

E

F

P

Q

R

H

X
Y

Z

Fig. 19.19 Foot points are on the conic.
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Fig. 19.20 Foot points are on the conic (proof).

situation that our midpoints X,Y, Z, P,Q,R are located in a way such that
(X,P ), (Y,Q), and (Z,R) are concurrent. Thus we can prove that the foot
point F is on the conic by showing that F sees the midpoints in a quad-
set relation (X,P ;Y,Q;Z,R)F . To prove that this is indeed the case, con-
sider Figure 19.20 (I apologize for the rather crowded picture). The red lines
all pass through point F . They are the joins to the six segment midpoints
that lie on the conic. To prove that F is on the conic, we must show that
suitable pairs of them are in a quadrilateral set relation. The four orange
lines form a corresponding witness configuration. Such a witness must sat-
isfy the following requirements: Take one point on each of the lines (F, Y ),
(F,R), and (F,X). (We take Y,R,X themselves.) Show that the intersections
V = meet(join(F, P ), join(Y,R)), W = meet(join(F,Q), join(R, Y )), and
U = meet(join(F,Z), join(X,Y )), are collinear. The point U is located at
the line at infinity, since (X,Y ) and (A,B) are parallel (fact (M)). Thus it
remains to prove that (V,W ) is parallel to the line l on which A,B, F , and Z
lie. We also know that (P,Q) is parallel to l. Thus it suffices to prove the par-
allelism of (V,W ) and (P,Q). This, in turn, can be achieved by Desargues’s
theorem. We apply it to the two triangles (V,R,W ) and (P,H,Q), which
are perspective to each other (seen from point F ). Thus the intersections
of corresponding sides are collinear. We know that the sides (V,R), (P,H)
are parallel as well as the sides (R,W ) and (H,Q) (again by fact (M)).
Desargues’s theorem now implies the parallelism of (V,W ) and (P,Q).

What did we prove? We did not prove the nine-point circle theorem in
this way. What we proved is in one respect weaker, in the other, stronger.
In our hypotheses we did not assume that H is the orthocenter. Still under
this relaxation we could prove that the relevant nine points lie on a common
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conic. If H is the orthocenter, then in addition this conic becomes a circle.
Thus for this special situation we projectively get two additional incidences
with I and J. For this reason the nine-point circle is sometimes also called
the eleven-point conic.

Figure 19.21 shows another way to look at what we proved. There we
consider a projective transformation of our theorem, in which M no longer is
the (Euclidean) median. Points H and M play completely symmetric roles,
and thus we may also construct the three additional points that we obtain
when H plays the role of the median and M plays the role of the orthocenter.
Also, these three points must lie on our conic. So we may even speak of a
twelve-point conic in this purely projective scenario!

Remark 19.3. The reader may observe that the points in which the three
red and the three orange lines meet, respectively, are also collinear with M
and H . This is in fact related to a projective generalization of the Euler line.
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Cayley-Klein Geometries

It ain’t necessarily so.

George and Ira Gershwin

We started out developing projective geometry for two reasons: It was al-
gebraically nice and it helped us to get rid of the treatment of many spe-
cial situations that are omnipresent in Euclidean geometry. Then, to express
Euclidean geometry in a projective setup, we needed the help of complex
numbers, our special points I and J, cross-ratios, and Laguerre’s formula.
We now come to another pivot point in our explanations: We will see that
our treatment of Euclidean geometry in a projective framework is only a spe-
cial case of a variety of other reasonable geometries. One might ask what it
means to be a geometry in that context. For us it means that there are notions
of points, lines, incidence, distances, and angles with a certain reasonable in-
terplay. Besides Euclidean geometry, among those geometries there are quite
a few prominent examples, such as hyperbolic geometry, elliptic geometry, and
relativistic space-time geometry.

In all these geometries the fundamental notions of measurement are based
on a conic that plays the role of infinitely distant elements. The type of conic
determines the type of geometry we get. So the classification of conics we
provided in Section 9.5 will play a crucial role in this context.

It is difficult to recommend particular places in the mathematical literature
where one can dive into this subject more deeply. Many modern texts are
fairly abstract, and the classical texts may be difficult to access. I personally
like best the classical book by Klein [68] and his original papers “On the so-
called non-Euclidean geometry” from 1872 [66] and 1874 [67]. The first one
is translated and reprinted in [125]. More modern treatments may be found
in [91, 75]. A very accessible exposition may be found in [3].

375
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20.1 I and J Revisited

As we saw in Section 18.7, the measurement of angles in Euclidean geometry
is expressed by Laguerre’s formula:

∠(l,m) =
1
2i

· ln((L,M ; I, J)
)
,

with L and M being the infinite points of l and m. It is the aim of this chap-
ter to generalize this formula. One might think that this generalization will
be carried out by generalizing the way that the elements are arithmetically
connected by cross-ratios and logarithms. But actually it will be the elements
that enter the formula themselves that are subject to the generalization. For
this, observe that we may consider the pair of points (I, J) a degenerate dual
conic consisting of the two complex conjugate points I and J. The setup for
general Cayley-Klein geometries will be to admit a general conic instead of
I and J.

To see how this will work, we reexamine I and J, now interpreted as a
conic. In Chapter 9 we learned that a dual conic may degenerate into a pair
of points (either real or complex conjugate). In the case that these two points
do not coincide, the corresponding primal conic must be the doubly covered
line that connects these two points. In the case of I and J, a corresponding
primal/dual pair Ceuc = (A,B) of matrices (in the sense of Definition 9.5) is
given by

A =

⎛
⎝

0 0 0
0 0 0
0 0 1

⎞
⎠ = BΔ and B =

⎛
⎝

1 0 0
0 1 0
0 0 0

⎞
⎠.

Here B is the matrix that describes the degenerate dual quadratic form
lTBl = 0; A describes the primal form pTAp = 0. The primal equation
(which describes which points are on the conic) pTAp = 0 with p = (x, y, z)T

becomes z2 = 0. The points that satisfy this equation are all those of the form
(x, y, 0), i.e., the points on the line at infinity (doubly covered). The solutions
of the dual equation (which describes which lines are tangent to the conic)
lTBl = 0 with l = (a, b, c)T must satisfy a2 + b2 = 0. Up to a scalar multi-
ple these are all lines of the form (−i, 1, α) =: iα and (i, 1, α) := jα with a
free parameter α. These are two bundles of lines through two different points,
namely I and J. Lines of the form iα satisfy 〈I, iα〉 = (−i)·(−i)+1·1+0·α = 0
and pass through I. Lines of the form jα satisfy 〈J, jα〉 = i · i+1 ·1+0 ·α= 0
and pass through J. The tangents of a point p to the conic Ceuc are the two
lines join(p, I) and join(p, J). Thus we can reinterpret Laguerre’s formula
for calculating the angle between two lines in the following way:

Assume that the lines l and m meet at a point p. Construct the two
tangents t1 and t2 from p to Ceuc. The angle between l and m is then
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Fig. 20.1 Definition of distances and angles.

∠(l,m) =
1
2i

· ln((l,m; t1, t2)
)
.

This is our point of departure. We will now base angle measurement (as well
as distance measurement) on the relation of objects to an arbitrary conic.
This conic will be called the fundamental object of the geometry.

20.2 Measurements in Cayley-Klein Geometries

To define a Cayley-Klein geometry we need three ingredients: two constants
cdist and cang and a fundamental conic F given by a primal/dual pair of
matrices. The constants play merely a cosmetic role. They will be chosen in a
way such that the measurements are in general real numbers and agree with
other common definitions. The really decisive part is the choice of the conic.
Since F is given as a primal/dual pair, calculating the tangents to F from
an arbitrary point p as well as intersecting F with an arbitrary line l are
well-defined operations.

A Cayley-Klein geometry is a triple K := (F , cdist, cang). Once these pa-
rameters are given, the measurement of distances and angles is described by
the following recipe:

Distance measurement: To measure the distance between two points p
and q, take a line l incident with both of them. Take the two intersection
points X,Y of l with F . The distance between p and q is defined by

distK(p, q) = cdist · ln
(
(p, q;X,Y )

)
.

Situations with p=X=Y and q=X=Y are excluded and called exceptional.

The angle measurement is defined in a completely dual fashion:
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Angle measurement: To measure the angle between two lines l and m
take a point p incident with both of them. Take the two tangents X,Y from p
to F . The angle between l and m is defined by

angK(l,m) = cang · ln
(
(l,m;X,Y )

)
.

Situations with l=X=Y and m=X=Y are excluded and called exceptional.

The geometric position of the elements involved is illustrated in Figure 20.1.
Let us point out a few subtleties of these two definitions of measurement.

• The distance measurement remains well-defined even if the two points
p and q coincide. If this happens, any line l through them will give a
measurement of the form cdist·ln

(
(p, p;X,Y )

)
= cdist ·ln(1) = 0. Similarly,

the angle of coinciding lines is also zero.
• In many practical situations it may make sense to define distance and

angles as the absolute values of the measurements defined above. We
will make this precise later on. The situation is similar to the situation
in the usual Euclidean plane. There along one line it makes sense to
speak of oriented distances. However, if one measures distances in the
plane without reference to a particular line, it is reasonable to switch to
absolute values.

• There are two ambiguities in the definitions of measurement. Firstly, the
order of the elements X,Y is not specified. Interchanging their roles al-
ters the sign of the measurement (one more reason to consider absolute
values). Secondly, on a function theoretic level the logarithm is a multi-
valued function. It is determined only up to multiples of 2πi. We will see
that for all practical purposes we can deal nicely with these ambiguities.

• Perhaps the most important point is that the elements X,Y may either
be real, coincide, or be complex conjugates. Each of these three possibil-
ities leads to a qualitatively different behavior of the measurement. The
pictures in Figure 20.1 represent the situation in which X and Y are dis-
tinct and real. We get a complex situation for the distance measurement
if line l does not intersect the conic. We get a complex situation for the
angle measurement if the lines l and m intersect inside the conic.

• In the definition we will explicitly allow the fundamental conic to be
completely complex. Thus equations like x2 + y2 + z2 = 0 are completely
suitable fundamental objects. (In fact, they will lead to very interesting
geometries.)

• If F is a degenerate conic, then it may happen that X and Y coincide
for all distance or angle measurements. In that case we get, for instance,
a degenerate length measurement of the form cdist · ln

(
(p, q;X,X)

)
=

cdist · ln(1) = 0. We will dedicate an entire section to the treatment of
such degenerate cases.

• It may happen that in the cross-ratio (p, q;X,Y ) = [p,X ][q,Y ]/[p,Y ][q,X ]
both the denominator and the numerator become zero and p and q do not
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coincide (for instance if q = X = Y ). Then the evaluation of the cross-
ratio is of the form 0/0. The corresponding length (resp. angle) is then
an undefined value. We call such point pairs (or line pairs) exceptional.

We will soon see how all these subtleties fit nicely into the picture as a whole.
In a sense, each of them makes the whole theory a bit more beautiful.

20.3 Nondegenerate Measurements along a Line

We will first study how the above notion of distance applies to the points of
one single line. Let l be this line and let X and Y be the two intersections of
this line with the fundamental conic F . While restricting the measurements
to the line l we keep these two points fixed during the entire section. Since
the definitions of distance and angle measurement are completely dual, the
corresponding dual statements apply analogously for angle measurement.

Since the logarithm has to be considered a multivalued function that is
determined only modulo 2πi, all equations on distance measurement that
follow have to be considered to be true modulo cdist2πi. Analogously, angle
measurements are determined only modulo cang2πi.1

Theorem 20.1. Let K := (F , cdist, cang) be a Cayley-Klein geometry and let
l be an arbitrary line that intersects F in two distinct points X,Y . For two
points p and q on l we set distK(p, q) = cdist · ln

(
(p, q;X,Y )

)
. Then (modulo

cdist2πi) we get for points p, q, r on l,

(i) distK(p, p) = 0,

(ii) distK(p, q) = −distK(q, p),

(iii) distK(p, q) + distK(q, r) = distK(p, r).

Proof. (i): For cross-ratios we have (p, p;X,Y ) = 1. This implies

distK(p, p) = cdist · ln
(
(p, p;X,Y )

)
= cdist · ln

(
1) = 0.

(ii): For cross-ratios the relation (p, q;X,Y ) = 1/(q, p;X,Y ) holds. Hence we
get

distK(p, q) = cdist · ln
(
(p, q;X,Y )

)

= −cdist · ln
(
1/(p, q;X,Y )

)

= −cdist · ln
(
(q, p;X,Y )

)

= −distK(q, p).

1 We know this effect from the usual angle measurement. Given two (unoriented) lines, the
angle between them is determined only modulo π. This agrees with Laguerre’s formula,
where cang = 1/2i.
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(iii): For cross-ratios the relation (p, q;X,Y ) · (q, r;X,Y ) = (p, r;X,Y ) holds.
Hence we get

distK(p, r) = cdist · ln
(
(p, r;X,Y )

)

= cdist · ln
(
(p, q;X,Y ) · (q, r;X,Y )

)

= cdist · ln
(
(p, q;X,Y )) + cdist · ln

(
(q, r;X,Y )

)

= distK(p, q) + distK(q, r)

��
We see that the logarithm turns the multiplicative properties of cross-ratios

into additive properties of distances. Along a fixed line it makes perfect sense
to speak of oriented distances, and the above statements in essence introduce
a distance scale along such a line. As soon as a point p on l is singled out, one
can consistently measure the position of all other points on l with respect to p
by the value of distK(p, r). This is in a sense similar to the situation on the
real number line, where one can also measure distances as soon as an origin
is fixed (in fact, there is a subtle difference between these two pictures, which
we will encounter later on). We now want to analyze how this measurement
behaves qualitatively. The intersections of l with the fundamental conic arise
as the solutions of a quadratic equation. Thus up to equivalence by real
projective transformations we have to consider only three different cases:

(a) X,Y are real and distinct,
(b) X,Y are complex conjugates,
(c) X,Y are identical and real.

We will first focus on the cases (a) and (b).

Case (a) – hyperbolic measurement: For this we fix two points X =
(−1, 1) and Y = (1, 1) on the projective line l. We will study the measurement
between points (p, 1) and (q, 1). Since all our considerations will be restricted
to the line l, we may simply identify a point (x, 1) with the number x and
calculate the cross-ratio by quotients of differences between these numbers.
The measurement between two points p and q with respect to X and Y then
becomes

dist(p, q) = cdist · ln
(

(p+ 1)(q − 1)
(p− 1)(q + 1)

)
.

In particular, if we set p = 0 to be the origin, we get the distance function

dist(0, q) = cdist · ln
(

(1 − q)
(1 + q)

)
.

The expression in the logarithm is positive whenever q is in the open interval
from −1 to 1. If p traverses this interval continuously then the logarithm in
the above formula will traverse values from ∞ to −∞. More generally, the
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Fig. 20.2 Distance functions for hyperbolic and elliptic measurement.

function ln
(

(p+1)(q−1)
(p−1)(q+1)

)
is real-valued if (along the real projective (!) line l)

the points p and q are not separated by −1 and 1. It is complex or infinite
otherwise.

We now come to a particular choice of the constant cdist. A reasonable
distance measure should behave in a way such that points that are “near”
each other (and not separated by −1 or by 1) have a small real distance. Since
in such a proximity situation the logarithm is real-valued, we can achieve
this by choosing cdist to be a real number. One particularly nice choice is to
choose this number such that locally for very small numbers q the function
dist(0, q) is asymptotically close to q itself (i.e., around 0 it approximates
the usual Euclidean measurement on the real number line). Considering the
derivative

d dist(0, q)
d q

= cdist ·
d ln
(

(1−q)
(1+q)

)

d q
= cdist · 2

q2 − 1
,

we see that by setting cdist = −1/2 we get the desired local approximation
behavior around q = 0. Although all other constants lead to essentially iso-
morphic measurements, we will continue with this special setting and define
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Fig. 20.3 Unit steps in hyperbolic measurement.

disthyp(p, q) := −1
2
· ln
(

(p+ 1)(q − 1)
(p− 1)(q + 1)

)
.

This type of measurement is called hyperbolic measurement. The green graph
in Figure 20.2 shows the function disthyp(0, x). Between −1 and 1 it sweeps
from −∞ to +∞, approximating the identity around the origin.

The qualitative behavior of this measurement is best understood by cal-
culating a sequence of points between −1 and +1 such that the hyperbolic
distance between two consecutive points is constant. This task is in a sense
purely projective, since it involves only relations of the cross-ratios of the
points. We set p0 = 0 and p1 = t. We are interested in a sequence of points
. . . , p−2, p−1, p0, p1, p2, p3, . . . such that

disthyp(pi, pi+1) = disthyp(p0, p1)

for all i. This is equivalent to the requirement that

(pi + 1)(pi+1 − 1)
(pi − 1)(pi+1 + 1)

=
(0 + 1)(t− 1)
(0 − 1)(t+ 1)

=: α.

To resolve this recurrence one first observes that the cross-ratio

c := (0, q; 1,−1) =
(0 + 1)(q − 1)
(0 − 1)(q + 1)

uniquely determines the position of q by

q = − (c− 1)
(c+ 1)

.

On the other hand, we can compute the cross-ratio (0, pi; 1,−1) as a tele-
scoping product from the above recurrence relation to be simply αi. Thus
we get
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pi = − (αi − 1)
(αi + 1)

.

Figure 20.3 shows the collection of (red) points (pi, 1) in the R
2 plane for

a certain step width. There are also rays that connect these points to the
origin. They are elongated until they hit the hyperbola branch given by the
function

√
1 + x2. An amazing connection of our measurement to this graph

(and to the arcsinh function) provides the result that in this drawing all the
(almost triangular) regions cut out by consecutive rays and the hyperbola
have exactly equal area. Although it does not belong to the core topics of
this book, we will give a short proof of this amazing fact. We can equivalently
state it in the following way (see Figure 20.4, left).

Theorem 20.2. The function disthyp(p, q) equals twice the area enclosed by
the hyperbola branch

√
1 + x2 and the two rays connecting the origin to (p, 1)

and (q, 1).

Proof. We will provide a proof that does not require an explicit knowledge
of the arcsinh function. First we observe that it suffices to prove the theorem
for p = 0. The general case follows from the additivity of area and of the
disthyp(p, q) function.

We will calculate the area of the yellow sector of Figure 20.4. We will
reduce the calculation of the area F of the yellow region plus the area G of
the red region (Figure 20.4, right). The area F +G can be easily calculated
as an integral. First observe that the line through the origin and (q, 1) hits
the hyperbola branch at the point (q, 1)/

√
1 − q2. We set x = q/

√
1 − q2

and get

F =
∫ x

0

√
t2 + 1 dt−G.

A modest orgy of calculus (or a computer algebra system) shows that

∫ x

0

√
t2 + 1 dt =

1
2

⎛
⎜⎝x
√

1 + x2 + ln(x+
√

1 + x2)︸ ︷︷ ︸
=arcsinh(x)

⎞
⎟⎠ .

We furthermore have G = (x · √1 + x2)/2 and thus we obtain

F =
∫ x

0

√
t2 + 1 dt−G =

1
2
· ln(x+

√
1 + x2).

We now insert x = q/
√

1 − q2, multiply both sides by 2, and get
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Fig. 20.4 Unit steps in hyperbolic and elliptic measurement.

2F = ln

(
q√

1 − q2
+

√
1 +

q2

1 − q2

)

= ln

(
q√

1 − q2
+

1√
1 − q2

)

= ln

(
q + 1√
1 − q2

)

= ln
(

q + 1√
1 + q

√
1 − q

)

= ln
(√

q + 1√
1 − q

)

= −1
2

ln
(
q − 1
q + 1

)

= disthyp(0, q).

This proves the claim. ��
The distribution of the points in Figure 20.3 tells us a lot about the qual-

itative behavior of the hyperbolic measurement. Assume that you are some
strange one-dimensional being that lives on the line l between the points −1
and 1. Furthermore, assume that you are able to measure distances only ac-
cording to the disthyp(p, q) formula. If you walk in unit steps in one direction
(I have no idea where your legs are, but this is your problem), then you are
able to walk on and on but you will never reach one of the boundary points,
which in your perception are infinitely far away. A being that looks at you
from the outside equipped with our usual Euclidean way of measurement
will observe that your steps become smaller and smaller, in such a way that
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you can never reach the boundary of the interval (−1, 1). In the chapter on
hyperbolic geometry we will investigate this effect more closely.

In the case that one of the points p and q is between −1 and 1 and the
other one is outside (i.e., p and q are projectively separated by −1 and 1),
the cross-ratio inside the logarithm of the distance measurement becomes a
negative real number. Taking the logarithm and multiplying by cdist leaves
us with a number of the form a± i ·π/2. Thus, in this case we get a complex
distance, which indicates that the two points are unreachably far apart.

Case (b) – elliptic measurement: We now come to the second qualita-
tive possibility for a measurement in which the intersections X and Y are
complex conjugates. Again, we may, up to a real projective transformation
on l, restrict our considerations to a convenient special case. This time we
choose X = (−i, 1) and Y = (i, 1). For the measurement (which is called
elliptic in contrast to hyperbolic) we obtain the formula

dist(p, q) = cdist · ln
(

(p+ i)(q − i)
(p− i)(q + i)

)
.

Since p and q are assumed to be real numbers, the numerator and denomina-
tor inside the logarithm are complex conjugates. The quotient of two complex
conjugate numbers is always a complex number on the unit circle eit; t ∈ R.
Taking the logarithm of such a number results in a number it that has no
real component. The number t corresponds to the angle that the cross-ratio
(as a complex number) forms with the positive part of the real axis. Here
it becomes important that the logarithm is determined only up to a factor
of 2πi, which corresponds to the usual ambiguity of angle measurement. So,
this time—in order to get a real measurement—it is reasonable to choose the
constant cdist as a purely imaginary number. Considering the derivative

d dist(0, q)
d q

= cdist ·
d ln
(

(i−q)
(i+q)

)

d q
= cdist · 2i

p2 + 1

shows that setting cdist = 1/2i is the choice that makes this function approx-
imate the identity if p is close to the origin. Similarly to the hyperbolic case
we define the elliptic distance function on l to be

distell(p, q) :=
1
2i

· ln
(

(p+ i)(q − i)
(p− i)(q + i)

)
.

The red graph in Figure 20.2 shows the function distell(0, x). The reader
should notice the correspondence to Laguerre’s formula, and indeed, if we
consider the dual case in which we consider a bundle of lines through a point,
then this formula measures the angle enclosed between two lines p and q.
Figure 20.5 shows a sequence of points on the line l for which consecutive
points all have an identical elliptic distance. This time, the measurement
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1 − x2
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1−1

Fig. 20.5 Unit steps in elliptic measurement.

is qualitatively different from the hyperbolic case. Starting at q = 0 and
proceeding in steps of small but constant elliptic distance, the steps become
(from a Euclidean perspective) larger and larger and even so large that they
surpass the (Euclidean) infinite point on l and come back from the other side.

The circle in Figure 20.5 illustrates quantitatively what this measurement
corresponds to. If we consider regions that are cut out by rays connecting
consecutive points of the sequence to the origin and the unit circle function√

1 − x2, then all these regions have identical area. We only have to be a bit
careful when we surpass the infinite point of l. If one point has already passed
the infinite point of l but the other has not, we have to consider the area as
negative. This is nicely compensated by the fact that the measurement is
ambiguous modulo π. The reader is invited to check the details.

We can also interpret this measurement in a different but equivalent way.
By homogenization the points on l correspond to antipodal point pairs on
the unit circle. The distance function distell(p, q) measures the (oriented)
distance of two such antipodal point pairs along the boundary of the unit
circle. It corresponds to the length of the boundary segment that is covered
if we start at one representative of p and proceed clockwise until we meet a
representative of q.

20.4 Degenerate Measurements along a Line

So far, we have dealt with the nondegenerate measurements for whichX �= Y .
We still have to explain what happens in the degenerate case.

Case (c) – parabolic measurement: We will now deal with the degener-
ate case X = Y and both real. Throughout this section we make the general
assumption that neither p nor q equals the points X = Y . Thus the cross-
ratio is defined and no measurements are exceptional. At first sight there is
not much to do. If we calculate
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Fig. 20.6 Columbus1D’s journey.

dist(p, q) = cdist · ln
(
(p, q;X,X)

)
= cdist · ln(1) = 0,

we plainly get zero. However, the formula still carries more information than
is obvious at first sight. We will see that it is still possible to compare dis-
tances in a well-defined and reasonable way. We know this effect from our
usual Euclidean geometry. Also in this situation there is no absolute way
of measuring. We first have to define a reference length (for instance a unit
meter) and measure all distances relative to this unit length. We already
met this phenomenon in Theorem 18.10, where we explained the distance
measurement on the basis of I and J. Also there we had to perform the
measurement relative to a reference length |A,B|.

Before we derive formulas for this measurement on the basis of Cayley-
Klein geometries we want to relate it to the measurements of Case (a) (hyper-
bolic) and Case (b) (elliptic) we have dealt with so far. These measurements
have a remarkable property. The mere existence of X and Y defined an ab-
solute scale of measure with respect to which we could declare a distance
function. This becomes most transparent in the case of elliptic measurement,
for which the total circumference of the unit circle defines a length with re-
spect to which we could compare all other distances. On a qualitative level
this effect may be explained as follows. Imagine you are a being living in
a one-dimensional space that arises from a sphere with antipodal pairs of
points identified (topologically this is actually RP

1, but we want to explic-
itly inherit the arc-length measurement of the sphere). Assume that you are
relatively small compared to the sphere. If you are able to move only in your
direct neighborhood, you may define a certain unit length (your personal step
width) and measure every distance with respect to this unit length. You have
a friend whose name is Columbus1D the great explorer, who once decided to
continue walking in one direction as long as he could. After you said goodbye
you never expected to see him again. But—surprise—after about three years
he returned to you from the opposite direction with the great news that it
took him 13986242 unit steps to make this journey. Now you know that your
world is not infinite and there is a kind of absolute measurement of length
with respect to the perimeter of your world.2

2 Algebraically, the hyperbolic measurement also possesses an absolute distance measure-
ment, although there is no such nice intuitive story for it.
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Intuitively speaking, the degenerate measurement caseX = Y is about the
situation in which you have a sphere of infinite radius and Columbus1D will in
fact never return. For dealing with the degenerateX = Y case analytically we
will, for the moment, drop our assumption that X and Y are fixed. Instead,
we will consider them as members of a continuous family of measurements (we
blow up the world). For this we consider the quadratic equation αx2−y2 = 0
and assume that X,Y are the homogeneous coordinates of the solutions of
this equation. For α = 1 we get the situation of the hyperbolic case Xhyp =
(−1, 1)T and Yhyp = (1, 1)T . For α = −1 we get the situation of the elliptic
caseXell = (−i, 1)T and Yell = (i, 1)T . In the general case we get the solutions
(1,±√

α)T . If the parameter α is moved continuously from 1 to −1, we start
with the pair of points (Xhyp, Yhyp). Then they move away from the origin
in opposite directions. They will coincide for α = 0 at the infinite point of l.
After this they continue as complex conjugates, to finally reach the position
(Xell, Yell) for α = −1. We now consider the measurement between two points
(0, 1) and (q, 1), both different from (1, 0). We consider the behavior of the
logarithm

ln

⎛
⎜⎜⎝

∣∣∣∣
0 1
1 −√

α

∣∣∣∣
∣∣∣∣
q 1
1
√
α

∣∣∣∣∣∣∣∣
0 1
1
√
α

∣∣∣∣
∣∣∣∣
q 1
1 −√

α

∣∣∣∣

⎞
⎟⎟⎠ = ln

(
q
√
α− 1

−q√α− 1

)
= ln(q

√
α− 1) − ln(−q√α− 1).

We now want to compare the distance measure generated by this expression
with the measurement from (0, 1) to a fixed point (a, 1) that will play the
role of the unit length. The relation of these two measurements (notice that
cdist cancels) is

fa(α, q) :=
ln(q

√
α− 1) − ln(−q√α− 1)

ln(a
√
α− 1) − ln(−a√α− 1)

.

For α = 0 this gives an undefined expression 0/0. However, we may still
consider the limit situation limα→0 fa(α, q). This limit value can be easily
calculated using the L’Hospital’s rule. For this we differentiate the numerator
and denominator of fa(α, q) with respect to α and divide the two expressions
(we omit the boring details of the calculation):

lim
α→0

fa(α, q) = lim
α→0

q√
α(αq2−1)

a√
α(αa2−1)

= lim
α→0

q
(
αa2 − 1

)
a(αq2 − 1)

=
q

a
.

In the limit case the comparison of the two Cayley-Klein measures turns out
to be just a comparison of the usual Euclidean distances. In other words,
performing a relative measurement with respect to a unit length converges
to the usual Euclidean measurement of lengths.
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Fig. 20.7 Situations for distance measurement.

In the literature there are two names for this kind of measurement:
parabolic measurement to emphasize the fact that the measurement is the
limit case between elliptic and hyperbolic, and Euclidean measurement to
emphasize the fact that it just corresponds to the measurement in usual Eu-
clidean geometry. A word of caution is appropriate here. We obtained the
correspondence to Euclidean measurement only under the assumption that
X = Y is the infinite point on l. If X = Y is at some finite position, then we
get a projective scale as was introduced in Section 5.3.

20.5 A Planar Cayley-Klein Geometry

We now return to the planar case. Before we give an overview of all possible
Cayley-Klein geometries in the next section, we consider one concrete ex-
ample in which all different types of measurements for angles and distances
arise. We study the case of a Cayley-Klein geometry K = (F , cdist, cang) that
arises from a nondegenerate real conic F . We set cdist = − 1

2 and cang = 1
2i .

The choice of the constants implies that certain measurements of distances
and angles become real and others become complex.

We begin our considerations with distance measurement. For this consider
Figure 20.7. What are the distance measurements distK(p, q) that arise for
different positions of p and q? In the leftmost picture, both points are in-
side the fundamental object F . Hence their join l intersects F in two real
points X and Y and we get a hyperbolic measurement. Since p and q are
not separated by the pair (X,Y ), the cross-ratio (p, q;X,Y ) is positive and
hence its logarithm is real. With our specific choice of cdist = − 1

2 , this implies
that in this case the entire measurement distK(p, q) is real. Forming a chain
of points on l starting with p and q such that two consecutive points have
the same distance would (we have a hyperbolic measurement) get closer and
closer to F but never exceed its boundary. Figure 20.8 illustrates a related
effect. There curves of constant real distance from p are shown. The curve
closest to p has some distance d, the next curves have distance 2d, 3d, 4d, etc.
The sequence of these curves tends to the conic F as a limiting object of
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p
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Fig. 20.8 Curves of constant real distance to p.

infinite distance. You should observe that all equidistant curves turn out to
be conics themselves. We will come to this effect later.

In Figure 20.7 (middle and left) both points are outside the fundamental
object F . To determine the type of measurement in such a situation the actual
position of p and q is relevant. If their join still intersects the fundamental
object in two points, then the situation is similar to the previous one. We
get a real hyperbolic measurement along l. Starting at p and proceeding
in constant real steps, we approach the fundamental object, this time from
the outside. Again, the boundary can never be surpassed. A sequence of

p

l

p∗

F

Fig. 20.9 Curves of constant real distance to p.
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Fig. 20.10 Curves of constant purely imaginary distance to p.

curves of constant distance to p is shown in Figure 20.9. The situation is
qualitatively different if l does not intersect the fundamental object. Then
the points X and Y are no longer real. They become complex conjugates and
we get an elliptic measurement along l. The cross-ratio (p, q;X,Y ) then will
be a complex number on the unit circle, and its logarithm will be of the form
i · t, t ∈ R. With our choice of the constant cdist we get a distance that is
purely imaginary. Proceeding in constant (imaginary) steps away from p will
ultimately make a cycle along the projective line l. Qualitatively this is an
elliptic measurement as described, for instance, in Figure 20.5. Figure 20.10
shows a sequence of curves of constant imaginary distance from p.

At this point the reader should observe two important facts (which we will
prove later): All curves of constant distance are again conics. These conics
have two points of tangency with the fundamental objects. They are the
same for every such conic, namely the intersections of the polar of p with
respect to F with F itself. One might wonder what happens to this tangency
for the curves shown in Figure 20.8, in which the curves do not touch the
fundamental object. Well, they still do! The points of tangency only become
complex in this case, so that we do not see them.

We have left out two interesting cases for the position of p and q so far.
First, it may happen that one point is inside and the other is outside. In
this case the cross-ratio (p, q;X,Y ) is real and negative. We then will get a
logarithm of the type a+ i · π, an entirely complex number, which indicates
that q is unreachable from q by real steps. It may also happen that l is tangent
to the fundamental object F . In this case we get a parabolic measurement
on the line l in the sense of Section 20.5.
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Fig. 20.11 Curves of constant distances of all kinds.

In Figure 20.11 all types of different curves of constant distance to a point p
outside F (the black dot) are shown. With our distance measure, the blue
curves have a constant real distance. The green curves have a constant dis-
tance of the form i · t, t ∈ R. The red curves have a distance of the form
a+ i · π/2, a ∈ R.

We next consider the measurement of angles between two lines l and m.
Recall that we set cang = 1

2i . Figure 20.12 shows two qualitatively differ-
ent situations. In the left picture the lines intersect at a point p inside the

p

l m

F
p

l

m

F

Fig. 20.12 Situations for angle measurement.
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Fig. 20.13 Sequences of equiangular lines.

fundamental object. The tangents from p to F are complex conjugates, and
we get an elliptic measurement. With our choice of a complex constant cang

this results in a real angle measurement. In the other situation on the right
the point p is outside F . The two tangents are real and distinct. This leads to
a hyperbolic type of measurement. With our specific choice of cang this leads
to purely imaginary angles. It may also happen that p lies on the fundamental
conic. Then we get a parabolic measurement of angles.

In Figure 20.13 we show three situations of bundles of lines in which each
consecutive pair of lines encloses the same angle. In the right situation the
angle is real; in the other two pictures the angle is purely imaginary.

20.6 A Census of Cayley-Klein Geometries

Our next aim is a systematic study of all possible Cayley-Klein geometries.
Clearly, there are infinitely many of such geometries, since there are infinitely
many choices of each of the ingredients F , cdist, and cang. Changes of the two
constants (while leaving F invariant) essentially lead to isomorphic geome-
tries. Still, a change here may affect which distances and angles are considered
to be real numbers and which are not. We will return to this issue later in
this section and for now focus on the influence of F . Since the measurements
are based on projective operations such as taking joins, meets, tangents, in-
tersections with conics, and cross-ratios, we may focus on a classification
modulo projective transformations of RP

2. Two Cayley-Klein geometries are
equivalent if their fundamental conic differs only by such a projective trans-
formation. At this point it must be emphasized that the projective transfor-
mations under consideration have real parameters. Admitting also complex
transformations can in principle be done. However, then one must consider
Cayley-Klein geometries in CP

2 instead of RP
2, which leads to different clas-

sification issues.
Up to real projective transformations we already classified primal-dual

pairs (A,B) of conics in Section 9.5. There we saw that the classification
essentially depends on the signature of the eigenvalues of the matrices A
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and B, which is the essential invariant that cannot be changed by a real
projective transformation. We repeat the table here, since it essentially gives
the classification of possible Cayley-Klein geometries.

A B type

I (+,+,+) (+,+,+) complex nondegenerate
conic

II (+,+,−) (+,+,−) real nondegenerate conic

III (+,+, 0) (+, 0, 0) two complex lines and a
real double point on them

IV (+,−, 0) (+, 0, 0) two real lines and a double
real point on them

V (+, 0, 0) (+,+, 0)
two complex points and a
real double line through
them

VI (+, 0, 0) (+,−, 0) two real points and a real
double line through them

VII (+, 0, 0) (+, 0, 0) a real double line and a
real double point on it

Each of these seven cases leads to a genuine Cayley-Klein geometry not
isomorphic to the others. We will briefly discuss the different situations and
propose appropriate choices of cdist and cang.

Type I: The fundamental object of type I is a conic whose primal and
dual forms are described by an equation of the form x2 + y2 + z2 = 0. This
object has no real points in the projective plane, nor does it admit real tan-
gents. Thus if we measure the distance between two points p and q, then the
corresponding points X and Y are always complex conjugates and we end
up with an elliptic measurement along every line in RP

2. Similarly, for the
measurement of angles between lines l and m we have to form tangents X
and Y from the intersection of l and m to F . Also these tangents turn out
to be complex conjugates. Thus we also get an elliptic angle measurement.
A good choice for cdist and cang is cdist = cang = 1/2i. If we furthermore
choose F to be the conic defined by the primal equation x2 + y2 + z2 = 0,
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Fig. 20.14 Distance and angle measurement in the spherical model of elliptic geometry.

this leads to the following geometric situation: If we interpret the projec-
tive plane RP

2 as the points (x, y, z) on the unit sphere x2 + y2 + z2 = 1
with antipodal points identified, then the above Cayley-Klein measurement
can be interpreted in the following way: The distance between two points p
and q is the spherical distance between representatives of them on the unit
sphere. The angle between two lines is the spherical angle between the two
great circles that correspond to the lines. The maximal distance between two
points is π, which is the semiperimeter of an equator on the unit ball. The
maximal angle between two lines is π as well. This geometry is usually called
elliptic geometry. It should not be confused with the closely related spherical
geometry for which antipodal points on the sphere are not identified.

Type II: Here we have a geometry where (up to isomorphism) the primal
fundamental object has the form x2 +y2−z2 = 0. This is the real unit circle.
In a sense, this is the most complicated Cayley-Klein geometry, since all
different kinds of measurements may arise as well for distances as for angles.
We dealt with this geometry at length in the previous section. The choice of
cdist and cang depends on what measurements one wants to be real. We will
later see that a particularly interesting situation arises if one limits oneself to
the interior of the unit circle only. In this case the distance between two points
will always lead to a hyperbolic measurement, and cdist = −1/2 is a good
choice. If one considers only angles of lines that intersect inside the unit circle,
then angle measurement results in an elliptic situation. Hence, cang = 1/2i
is a good choice. From a certain perspective this restriction to the interior
is a reasonable choice. Imagine you are a being inside the circle. There is no
way for you to get out of there by real step width only. Your universe is the
interior, which seems infinite to you. We will dedicate the entire Chapter 25
and Chapter 26 to this situation. It is called hyperbolic geometry. However,
one should be aware that from the perspective of Cayley-Klein geometries,
hyperbolic geometry is only a substructure of a larger ambient situation.
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So far, we have dealt with all completely nondegenerate geometries. For
types III through VII at least one of the two measurements is necessarily
degenerate. An associated Cayley-Klein geometry requires either parabolic
distance measurement or parabolic angle measurement or even both. Ignoring
the numerical order, we begin with the best-known of these geometries.

Type V: This type is our usual Euclidean geometry. It has a dual conic con-
sisting of two complex conjugate points, and a primal conic that is a doubly
covered line connecting these two points. A good choice for the coordinates
of F is given by the primal/dual pair given in Section 20.1 (i.e., dual conic
a2 +b2 = 0 and primal conic z2 = 0). With this choice the complex conjugate
points of the dual conic become I and J. The primal conic becomes the doubly
covered line at infinity. Cayley-Klein geometry gives us exactly the desired
behavior: an elliptic measurement of angles and a degenerate measurement
of distances. The choice cang = 1/2i gives the usual angle measurement that
we know from Laguerre’s formula. The choice of cdist does not matter at all,
since we have a parabolic distance measurement in which it is not meaningful
to speak of absolute lengths. Still, along each line we may compare distances
to a given unit length. There is one subtlety about degenerate measurement
in the plane. Our considerations in Section 20.4 demonstrated how to com-
pare lengths along a single line. It did not explain how measurement with
respect to different lines are interrelated. We will not go into this issue in
detail here and just mention the final result. With the setup of F as above
it turns out that a suitable limit process proves that in Euclidean geometry
the distance between two points p = (px, py, 1) and q = (qx, qy, 1) is, up to
a scalar factor, given by the expression

√
(px − qx)2 + (py − qy)2, the usual

Euclidean measurement. This fact is a consequence of the characterization of
circles as conics that pass through I and J.

Type VI: This is one more geometry with two single points on a double
line as fundamental object. Compared to type V, this time the two points are
real. A way to represent this geometry is given by the dual conic a2 − b2 = 0
and the primal conic z2 = 0. Thus the role of the points I and J is now
played by the two real infinite points I′ = (−1, 1, 0) and J′ = (1, 1, 0). This
geometry is often called pseudo-Euclidean geometry. All our considerations
of Chapter 18 and Chapter 19 apply in an analogous way to this geometry.
Distance measurement is again parabolic along each line. However, angle
measurement now is hyperbolic. Usually one chooses cang = −1/2. Thus a
bundle of lines through a point with equal angles between two consecutive
lines now does not wrap around. Instead, the sequence converges to a limit
line. Analogously to Euclidean geometry, circles are conics through I′ and J′.
Thus a circle in this geometry is a hyperbola whose asymptotes are parallel to
the two lines x = y and x = −y. All incidence theorems of Euclidean geometry
may be transferred to pseudo-Euclidean geometry analogously. For instance,
take the theorem that for three intersecting circles, the lines connecting the
intersection points of pairs of circles meet in a point. The same theorem
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Fig. 20.15 A theorem in Euclidean and pseudo-Euclidean geometry.

also holds for pseudo-Euclidean circles (see Figure 20.15). According to the
fact that circles are now hyperbolas with prescribed asymptotes, we now
get a different distance measure in the limit case (along each line it is still
parabolic, but the interrelation of the lines is different). The distance between
two points p = (px, py, 1) and q = (qx, qy, 1) is up to a scalar factor given by
the expression

√
(px − qx)2 − (py − qy)2. This distance may even become a

complex number, which indicates that certain points cannot be connected by
finitely many real steps.

The pseudo-Euclidean geometry plays a crucial role in the theory of spe-
cial relativity. There it is also known under the name Minkowski geometry.
The physical interpretation of this geometry is as follows. We consider a
one-dimensional physical line � on which objects may move in both direc-
tions. Interpret the x-direction of the pseudo-Euclidean plane as time and
the y-direction as location on this line. A straight line in this geometry now
corresponds to a uniformly moving object on �. The fact that two directions
(the lines that pass through I′ and J′) play a special role corresponds to
the fact that the speed of light plays a special role in special relativity. The
fact that physical addition of speeds may never exceed the speed of light
corresponds to the fact that addition of angles tends to a limit line. Distance
being an invariant in pseudo-Euclidean geometry corresponds to the fact that
there is a relativistic invariant of space-time events. An exhaustive treatment
of pseudo-Euclidean geometry may be found in [86].

Type III: This is the dual to Euclidean geometry. Here the distance mea-
surement turns out to be elliptic, while the angle measurement is degenerate.
We will not consider this geometry in depth here.

Type VI: This is the dual to pseudo-Euclidean geometry. Here the distance
measurement turns out to be hyperbolic, while the angle measurement is
degenerate. We will not consider this geometry in depth here.

Type VII: Finally, in this type the angle measurement as well as the dis-
tance measurement turns out to be degenerate. The choice of cdist and cang
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does not play a role at all. Instead, we need a unit length and a unit angle as
objects of comparison. Also, this geometry is physically relevant, since it de-
scribes the limit case from relativistic physics to classical physics, where the
speed of light is assumed to be infinite. For this reason it is frequently called
Galilean geometry. We will have a closer look at this geometry in Section 23.5.
A very nice treatment of this geometry may be found in [136].

20.7 Coarser and Finer Classifications

There are also other ways to structure the realm of Cayley-Klein geome-
tries. We saw that from an incidence-theoretic point of view, the Euclidean
and pseudo-Euclidean geometries are closely related. The reason for this is
that the incidence theory depends only on algebraic relations between the
objects. These relations are not influenced by a complex projective transfor-
mation. Thus any two Cayley-Klein geometries whose fundamental objects
are related by a complex projective transformation have identical incidence-
theoretic structures. The only thing that may change is the question as to
which of the objects are real and which are not. One may also be a bit more
radical and study complex planar projective geometry, where the question of
being real or not does not matter. In this sense we get a coarser classifica-
tion of Cayley-Klein geometries into four equivalence classes, {I, II}, {III, IV},
{V,VI}, and {VII}.

Another way to classify Cayley-Klein geometries depends on the prop-
erty whether the measurements are elliptic, hyperbolic, or parabolic. There
are nine different combinations for the distance and angle measurements.
We have seen that types I and III–VII are associated with specific types
of measurements. The remaining three combinations may all be found as
substructures of type II. The table below associates the different types of
measurement with the possible types of geometry.

��������Angle

Distance
hyp ell par

hyp IIa IIb VI

ell IIc I V

par VI III VII

We will not follow this finer classification here, since in particular, in case
of type II it obscures the wholeness and unity of the underlying geometric
and algebraic structures.
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Measurements and Transformations

Projective geometry is all geometry.

Arthur Cayley, as cited by F. Klein

While in the last chapter we have focused on measurement aspects and re-
lated analytic issues, we will return to more qualitative relations of objects
in a Cayley-Klein geometry. In this and the next chapter we will mainly
study the projective nature of Cayley-Klein geometries. This chapter focuses
on aspects concerning transformations, their (projective) invariants, and the
behavior of measurements under these transformations. The next chapter
treats geometric objects and their elementary geometric properties, includ-
ing some elementary geometric theorems. Although Cayley-Klein geometries
unify several rather different types of geometric playgrounds in a common
projective framework, each type of geometry (in the sense of Section 20.6)
has its very special properties. This is due to the fact that the degenera-
cies of the fundamental conic of the geometry lead to degeneracies in the
relevant geometric constructions. For this reason we will sometimes have to
perform a special case analysis for the different types of Cayley-Klein geome-
tries. Sometimes one general definition covers a certain effect (for instance
reflection) in all types of geometries. Still it may be instructive to consider
its particular specialization to certain geometries. Since we do not want to
become too encyclopedic, we will confine ourselves to highlighting only some
of the interesting situations. For any statement and concept we will make
clear to which types of geometries it applies and under which circumstances
degenerate situations arise. Since again the relevant concepts are quite inter-
woven, we recommend reading this and the following chapter at least twice.
Some relations may become clear only at second reading.

399
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21.1 Measurements vs. Oriented Measurements

Before considering transformations and transformation groups, we will clarify
how the measurements defined in the last chapter can be interpreted entirely
in a projective framework. Since we now want to compare distances (resp.
angles) among arbitrary points (resp. lines) in a Cayley-Klein geometry, we
will first have to deal with the various ambiguities of the measurements.

Considering the projective aspects of Cayley-Klein geometries, one im-
portant aspect comes into play: If we consider the distance measurement
distK(p, q) = cdist · ln

(
(p, q;X,Y )

)
, each possible value of the cross-ratio

(p, q;X,Y ) leads to a different value of distK(p, q) modulo 2πicdist. Thus any
qualitative relation between distances (like distK(p, q) = distK(r, s)) can al-
ready be expressed on the level of cross-ratios. A similar statement holds for
angle measurements. In a sense, applying the logarithm is a convenient way
to translate the (multiplicative) projective world of cross-ratios into the (ad-
ditive) world of distance and angle measurement we are used to. Moreover,
the multiplications by constants are used to make things even more famil-
iar insofar as we get real measurements whenever we are expecting them.
Nevertheless, staying directly on the level of the projectively invariant cross-
ratios has its advantages. First of all, from a projective viewpoint, taking the
logarithm is just an unnecessary “cosmetic isomorphism.” Secondly, taking
the logarithm even introduces (unnecessary) ambiguities of the measurement
modulo 2πicdist (resp. 2πicang) that are not essential for the theory.

If we want to operate on the level of cross-ratios instead of measurements,
we have to face a formal problem whose solution is essential for making precise
statements later on. In our definition of the measurements distK(p, q), besides
the intrinsic ambiguity of the logarithm there was another serious ambiguity
that we did not really care about so far. In Section 20.3 we learned that
if we restrict distance measurements to one single line (resp. restrict angle
measurement to one single line bundle), it is possible to fix a priori the
elements X and Y and thereby arrive at oriented measurements.

This is no longer the case if we do measurements without referring to an a
priori chosen line (resp. bundle). If we want to measure the distance between
two points p and q we first have to construct the points X and Y . There is
no reasonable way to prefer one order of the points X and Y over the other.
Hence in performing the distance measurement, one might either get

d = cdist · ln
(
(p, q;X,Y )

)
or − d = cdist · ln

(
(p, q;Y,X)

)
.

One might be tempted to resolve this problem by simply referring instead
to the absolute value of a measurement. However, this approach has two
problems. Firstly, the result of a measurement may well be a complex number.
By taking its absolute value one loses not only the information about its sign
but also about its direction, which is unnecessarily coarse. Secondly, we will
try to express as many geometric properties as possible directly on the level



21.2 Transformations 401

of cross-ratios and not on the level of distances (or angles). For the cross-ratio
the sign change of the measurement corresponds to the reciprocal connection
(p, q;X,Y ) = 1/(p, q;Y,X). In order to deal with these ambiguities properly
we will introduce two special equivalence classes (this is slightly uncommon in
the literature on Cayley-Klein geometries, but it resolves the situation most
appropriately). We set



 x 

 := {x,−x} and 

◦ x 

◦ := {x, 1/x}.
Thus for comparing unoriented distances, an expression like



 distK(p, q) 

 = 

 distK(r, s) 



is a reasonable formulation. To compare two cross-ratios where the order of
X,Y is undetermined,



◦ (p, q;X,Y ) 

◦ = 

◦ (r, s;X,Y ) 

◦

is a good shorthand. Alternatively, one could use squared distances only and,
on the level of cross-ratios, a function that symmetrically uses a cross-ratio
and its inverse. We will do this later on, too. However, for the moment we
prefer the above notation since, it is a bit closer to the fundamental definition
of measurement.

21.2 Transformations

Cayley-Klein geometries are projective geometries equipped with certain ad-
ditional measurements for distances and angles. While a projective trans-
formation is a transformation that leaves fundamental projective properties
invariant (incidences, tangencies, etc.), a transformation in a Cayley-Klein
geometry in addition preserves distance and angle measurement.

Since Cayley-Klein geometries make it eventually necessary to deal also
with complex elements, we will first briefly specify the setup in which ob-
jects and transformations are considered in this context. Ultimately, we want
to make statements about the real projective plane RP

2 equipped with the
measurements of a Cayley-Klein geometry. Thus the only transformations we
will consider are projective transformations τ of the real projective plane.
They are represented by a pair of real nondegenerate matrices (T, T−1) that
are used to transform geometric elements. In homogeneous coordinates a
point p is transformed according to τ(p) = T · p; A line l is transformed
by τ(l) = (T−1)T · l (compare Section 3.6). A primal quadratic form A is
transformed by τ(A) = (T−1)TAT−1, and a dual quadratic form B is trans-
formed by τ(B) = TBT T (compare Section 10.4). As usual, we must identify
nonscalar multiples of matrices and vectors.
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In all our operations we will admit the following objects as input elements:

• All points, lines, and primal or dual quadratic forms of RP
2.

• The primal and dual fundamental object of the Cayley-Klein geometry.

We admit arbitrary projectively reasonable operations between these objects,
no matter whether they result in real or complex elements. This is in the same
spirit as our treatment of Euclidean geometry in Chapter 18 and Chapter 19,
in which we also had to face the problem that intermediate construction ele-
ments may become complex. Whenever we speak of transformational invari-
ance of a certain property we limit ourselves to real projective transformation
matrices (still they might be applied to complex objects).

We are now going to define motion in a Cayley-Klein geometry K :=
(F , cdist, cang). Here as usual F is given as a primal/dual pair of matrices
(A,B). There are two possible ways to approach the concept of motion. The
first approach asks for those projective transformations that leave the dis-
tance and angle measurements invariant. However, in the case of degenerate
measurements of both distances and angles (as they appear in Galilean ge-
ometries) one would unavoidably have to consider also degenerate measure-
ments, which makes things more complicated. The second approach defines
K-motions as those projective transformations that leave the fundamental ob-
ject F invariant. As a consequence, such transformations also leave distances
and angles invariant. We will follow this second approach.

Definition 21.1. Let K be a Cayley-Klein geometry whose fundamental ob-
ject F is defined by the primal/dual pair of matrices (A,B). Let τ be a
projective transformation in RP

2. We call τ a K-motion if it leaves both A
and B invariant.

Theorem 21.1. Let τ be a K-motion. Then we have

(i) 

 distK(p, q) 

 = 

 distK(τ(p), τ(q)) 

 for all points p and q,
(ii) 

 angK(l,m) 

 = 

 angK(τ(l), τ(m)) 

 for all lines l and m.

Proof. We start with the proof of (i). Without loss of generality we may
assume that the distance measurement is not degenerate (i.e., the primal conic
is not a double line), since otherwise all distance measurements distK(p, q)
are zero anyway. Let p and q be two arbitrary points in RP

2 and let τ be a
K-motion. Let l be a line to which both p and q are incident. Then τ(l) is a
line incident to both τ(p) and τ(q). Now let X and Y be the intersection of l
with the fundamental conic F and let X ′ and Y ′ be the intersection of τ(l)
with the fundamental conic F (in any order). The distance measurement of
p and q depends on (p, q;X,Y ), while the distance measurement of τ(p) and
τ(q) depends on (τ(p), τ(q);X ′, Y ′). Since projective transformations preserve
incidence relations and F is mapped to itself under τ we have either

X ′ = τ(X) and Y ′ = τ(Y )
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p

q

X

Y

τ(p)

τ(q)

τ(X)

τ(Y )

F = τ(F)

Fig. 21.1 Invariance of distance measurement.

or
X ′ = τ(Y ) and Y ′ = τ(X).

This implies



◦ (τ(p), τ(q);X ′, Y ′) 

◦ = 

◦ (τ(p), τ(q); τ(X), τ(Y )) 

◦ = 

◦ (p, q;X,Y ) 

◦ .

The last equation holds since the cross-ratio is a projective invariant. On the
level of distances this gives the desired relation



 distK(p, q) 

 = 

 distK(τ(p), τ(q)) 

 .

This proves the claim for distance measurement. Exactly the dual argument
proves the corresponding situation for the angle measurement. ��

Remark 21.1. In fact, for all Cayley-Klein geometries except for those of
type VII one can prove that the preservation of distances and angles au-
tomatically leads to a K-motion in the sense of Definition 21.1. Still our
definition is preferable for two reasons. On the one hand, it also covers the
case of type-VII Cayley-Klein geometries. On the other hand, it is closer to
the terms of projective geometry, since it requires the projective invariance
of the fundamental object itself and not of a measurement dependent on it.

What is the number of degrees of freedom for defining a K-motion? We
know that a planar projective transformation is determined uniquely by its
action on four points. However, the notion of K-motions is by far more restric-
tive. The degrees of freedom depend on the specific type of the Cayley-Klein
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geometry: the more degenerate the fundamental object is, the more degrees
of freedom we have. Considering the number of degrees of freedom, we may
distinguish three different situations: the nondegenerate cases, the singly de-
generate cases, and the doubly degenerate cases.

Nondegenerate cases: For types I and II, the fundamental object con-
sists of a nondegenerate conic (real or complex). Since in the nondegenerate
case the primal conic given by the matrix A uniquely defines the dual conic
B = A−1, it is sufficient to study those transformations that leave the ma-
trix A invariant. Without loss of generality we may choose the transformation
matrix T to have determinant det(T ) = 1. Thus we are looking for transfor-
mations T ∈ SL(R, 3) such that (T−1)TAT−1 = A. One could consider this a
purely algebraic problem. At first sight, the problem seems to be identical for
both nondegenerate geometries. However, the requirement that the entries
of the transformation matrix have to be real-valued results in two different
transformation groups. We study the two situations of type I (elliptic case)
and type II (hyperbolic case) Cayley-Klein geometries separately, since both
of them lead to interesting geometric structures.
Type I, the elliptic case: In this situation up to isomorphism the matrix A
may be chosen to be the unit matrix E. The invariance property then reads

(T−1)TT−1 = E.

This, in turn, is exactly the definition of an orthogonal matrix (the inverse
is the transpose). Such a matrix T ∈ O(3) describes either a rotation or a
reflection in R

3. We can immediately interpret this fact geometrically. We
may represent each point p ∈ RP

2 by an antipodal pair of points on the
unit sphere in R

3. Now an elliptic transformation is a rotation or a reflection
of this sphere. This is nicely consistent with the fact that elliptic measure-
ment may be interpreted as spherical distances and angles on this sphere
(compare Figure 20.13). The number of degrees of freedom for this trans-
formation group is exactly three, corresponding to the degrees of freedom of
a rotation or reflection in R

3. There is an important difference between the
elliptic transformation group and the matrix group O(3). In the elliptic trans-
formation group, according to the projective setup, the matrices T and −T
are identified. Therefore O(3) is a double cover of the elliptic transformation
group.

Type II, the hyperbolic case: The fundamental conic F of a Cayley-Klein ge-
ometry of type II is a real nondegenerate conic. This gives us the possibility
to describe these transformations directly in terms of projective geometry.
In Section 10.4 we studied projective transformations that leave a given real
nondegenerate conic invariant. Recall that the points on the primal funda-
mental object may be considered an isomorphic image of a one-dimensional
projective line under stereographic projection (compare Figure 10.7). The
set of projective transformations that leave a nondegenerate conic invariant
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τ

Fig. 21.2 A hyperbolic transformation.

is governed by our results in Theorem 10.3 and Theorem 10.4: a projec-
tive transformation in RP

2 that leaves the fundamental object F invariant
induces a projective transformation on the primal conic itself (considered
a one-dimensional projective line). Conversely, every such one-dimensional
transformation of F induces a unique projective transformation in RP

2. Thus
the group of motions of a type-II Cayley-Klein geometry is isomorphic to the
group of projective transformations of RP

1. It is completely described by the
action on the primal conic.

We will call this transformation group the hyperbolic transformations, for
reasons we will see in the subsequent chapters. We can use the geometric
description of the transformations to give a nice algorithm for calculating a
hyperbolic transformation after the image/preimage pairs of points on the
primal fundamental conic are given. For this assume that A,B,C are three
points on the conic F , and that A′, B′, C′ are their proposed images under
a hyperbolic transformation. This implies that these images also lie on F .
Choose an arbitrary pointD on F distinct from A,B,C. Determine the cross-
ratio (A,B;C,D)F (recall this is the well-defined cross-ratio under which
A,B,C,D are seen from an arbitrary point on F). Determine a point D′ on F
such that α = (A,B;C,D)F = (A′, B′;C′, D′)F . Find the unique projective
transformation τ with τ(A) = A′, τ(B) = B′, τ(C) = C′, τ(D) = D′. This is
the desired hyperbolic transformation.

Figure 21.2 illustrates one such transformation. For better readability the
image and preimages have been separated into two different pictures. The
black bold circle in the left part of the picture plays the role of the funda-
mental conic in the preimage space. On this circle four (red) points A, . . . ,D
are placed. In the right part of the picture the corresponding circle is shown
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again with four points on it. The position of the last point is determined
by the above recipe. The underlying grid illustrates the action of the corre-
sponding projective transformation τ . A few significant points (white) on the
circle are shown, together with their images under τ . It is rather amazing
that although the projective grid is quite disturbed, the mapped circle is still
a circle.

Hyperbolic transformations admit three degrees of freedom. They can be
directly associated with the position of the three image points on the bound-
ary.

Singlydegenerate cases: For Cayley-Klein geometries of types III–VI ei-
ther the primal or the dual fundamental conic (but not both) is degenerate.
This results in one more degree of freedom for the transformation group. In
both cases the degeneration may occur again in two different ways: either a
pair of complex conjugate points (lines), or a pair of real noncoinciding points
(lines). Thus we get the four different cases:

Type III: two complex conjugate lines and a double point

Type IV: two distinct lines and a double point

Type V: two complex conjugate points and a double line

Type VI: two distinct real points and a double line

In Chapter 19 we studied type V in detail. The two complex conjugate points
may be considered to be I and J. The double line is the line at infinity. We
get four degrees of freedom corresponding to translations (2 DOF), rotations
(1 DOF), and scaling (1 DOF). The additional degree of freedom associated
to scaling comes from the fact that the distance measurement is degenerate
and no absolute length measurement is available in this geometry.

The case of type-VI geometries is the so-called pseudo-Euclidean geometry.
Here the role of I and J is played by two real points. For a detailed treatment
of its transformation group we recommend [136] and [86]. Also this geometry
does not admit an absolute distance measurement.

The cases III and IV are dually isomorphic to the Euclidean and pseudo-
Euclidean geometries. Also here we have four degrees of freedom. In these
geometries there is an absolute distance measurement. However, the angle
measurement becomes degenerate. The fourth degree of freedom corresponds
to scaling of angle measurement.

Doublydegenerate cases: Finally, case VII corresponds to the situation
in which the conic consists of a double point on a double line. In this geometry
the measurement is degenerate as well for distances as it is for angles. The
transformation group has five degrees of freedom, two of them corresponding
to angle scaling and distance scaling. We will not treat this geometry in detail
here. A detailed discussion of it is given in [136].
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21.3 Getting Rid of X and Y

For the following derivations in later chapters it is useful to have various
equivalent ways to express the cross-ratios (p, q;X,Y ) (resp. (l,m;X,Y ))
that occur over and over in our measurements. We here consider the case
of point measurements only. The line case is just dual to it. Recall that for
p �= q the points X and Y are the intersection of l = join(p, q) with the
primal fundamental object given by a matrix A. So in particular, it is helpful
to express (p, q;X,Y ) directly in terms of p, q, and A. To do so we introduce
a local coordinate system on the line l with points p and q as a basis. Each
point r on l can be represented by parameters (λ, μ)T subject to r = λp+μq.
In particular, X = λ1p+ μ1q and Y = λ2p+ μ2q correspond to the solutions
of the quadratic equation (λp+μq)TA(λp+μq) = 0 (i.e., X and Y lie on the
conic A). Expanding this equation yields

λ2pTAp+ 2λμpTAq + μ2qTAq = 0.

For better readability we abbreviate Ωpp = pTAp, Ωpq = pTAq, Ωqq = qTAq.
Our equation then reads

λ2Ωpp + 2λμΩpq + μ2Ωqq = 0

and has (up to scalar multiples) the two solutions

(
λ
μ

)
=

(
Ωqq

Ωpq ±
√
Ω2
pq −ΩppΩqq

)
. (21.1)

The two possible choices of the sign correspond to the points X and Y ,
respectively. It is important to observe that these solutions are homogeneous
in each of the involved objects. Hence, scaling of one of the objects just results
in a scaling of the representation in the local coordinate system. Within
the local coordinate system p and q are represented by the unit vectors.
Abbreviating Δpq = Ω2

pq − ΩppΩqq to be the discriminant of the quadratic
equation, we can calculate the cross-ratio (p, q;X,Y ) as

(p, q;X,Y ) =

∣∣∣∣
1 Ωqq
0 Ωpq −

√
Δpq

∣∣∣∣
∣∣∣∣
0 Ωqq
1 Ωpq +

√
Δpq

∣∣∣∣
∣∣∣∣
1 Ωqq
0 Ωpq +

√
Δpq

∣∣∣∣
∣∣∣∣
0 Ωqq
1 Ωpq −

√
Δpq

∣∣∣∣
=
Ωpq +

√
Δpq

Ωpq −
√
Δpq

.

When evaluating this formula we have to be slightly careful with the sign of
the square root. We understand this formula to mean that for every evaluation
of
√
Δpq we take the same branch of the square-root function. Interchanging

the roles of X and Y corresponds to interchanging the two solutions of the
quadratic equations (i.e., the branch of the square-root evaluation) and results
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in taking the inverse of the cross-ratio, as expected. The situation Δpq = 0
corresponds to the case that X and Y coincide. We know that in the case
of an exceptional measurement (and only in this case) the cross-ratio (and
hence also this expression) assumes the form 0/0. It is instructive to analyze
the geometric situation in the exceptional case. Then we have X = Y , which
means thatΔpq = 0 and thus the join of p and q is tangent to the fundamental
conic. In addition, either p = X or q = X . Without loss of generality we
assume that p = X . Thus the tangent join(p, q) is the polar of p, and q lies
on this polar. This means that Ωpq is also zero.

21.4 Comparing Measurements

The formula we just derived expresses the cross-ratio (p, q;X,Y ) directly in
terms of the quadratic form Ω. If one wants to test whether the distance
from a to b equals the distance from p to q, one can do this directly by
testing

Ωab +
√
Δab

Ωab −
√
Δab

=
Ωpq +

√
Δpq

Ωpq −
√
Δpq

without calculating the intersections of the lines ab and pq with the funda-
mental conic. There are several other versions of such comparisons that give
additional geometric (and algebraic) insight. We will briefly consider a few
of them.

Since the order of X and Y in a measurement is not previously specified
in the cross-ratio, (p, q;X,Y ) is on an equal footing with its inverse. We can
account for that fact by applying a function to

α =
Ωpq +

√
Δpq

Ωpq −
√
Δpq

that treats α and 1/α symmetrically. A particularly interesting choice is

α �→ 1
2

(√
α+

1√
α

)
=
α+ 1
2
√
α

=: f(α).

After applying this transformation and a few elementary calculations, we get

f

(
Ωpq +

√
Δpq

Ωpq −
√
Δpq

)
=

Ωpq√
ΩppΩqq

=: β.

Still there is some ambiguity in this formula, since we introduced a square root
whose sign we did not specify. We will take care of that in a minute. Before
this, we will inspect the above formula and discuss its geometric significance.
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For this we consider the following formula, which connects the logarithm and
the (arc) cosine function:

ln(α) = 2i arccos
(
α+ 1
2
√
α

)
.

(This function follows from the Euler formula eix = cos(x) + i · sin(x) =
cos(x) + i ·√1 − (cos(x))2 and a few elementary calculations.) The expres-
sion under the arccos(. . .) function exactly corresponds to our transforming
function f(α). Thus we get (for cdist = 1/2i)

dist(p, q) =
1
2i

ln((p, q;X,Y )) = arccos

(
Ωpq√
ΩppΩqq

)
.

This formula is remarkable, since it nicely generalizes a well-known fact to ar-
bitrary Cayley-Klein geometries. The well-known fact is that we can measure
the angle between two vectors p and q in R

3 by the following formula:

cos(∠p, q) :=
〈p, q〉√〈p, p〉〈q, q〉 .

This formula is exactly our general formula applied to elliptic geometry in
the standard representation where A is the unit matrix. In this case we get
Ωp,q = pTAq = pT q = 〈p, q〉. The sign ambiguity resembles the fact that
there is some ambiguity on the direction in which the angle is measured. A
similar (completely dual) statement also holds for angle measurement.

Still there are some other nice representations for the comparison of mea-
surements. The above representation has two major drawbacks. Firstly, the
square root in the function introduces a sign ambiguity. Secondly, the for-
mula is usable only for nondegenerate measurements. If A is a rank-1 matrix
(A = llT ) then the expression β always evaluates to 1. This simply means
that for degenerate measurements all point pairs have the same degenerate
distance zero. There is an amazing trick with which we can use the same
(projectively invariant) formula for comparison of measurements for the de-
generate and for the nondegenerate case. In principle, this trick encapsulates
the limit argument that we made in Section 20.4 by using a suitable replace-
ment for the discriminant Δpq. Let us first deal with the first problem, the
sign ambiguity. For this we simply square the expression β. It turns out that
it is even better to transform according to

β �→ β2 − 1 =: g(β).

We get

g

(
Ωpq√
ΩppΩqq

)
=
Ω2
pq −ΩppΩqq

ΩppΩqq
=

Δpq

ΩppΩqq
=: Φpq. (21.2)
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This formula now encodes in a square-root-free fashion a number that encap-
sulates all information about the distance between two points. If Φpq = Φab
in a given geometry, then p, q has the same distance as a, b.

The nice fact about this formula is that it is simply a polynomial identity
in the coordinates of the points involved and the fundamental object. We
obtain an equal distance if and only if

ΔpqΩaaΩbb = ΔabΩppΩqq . (21.3)

But still this formula carries another surprise. As mentioned before, if we
apply the formula in case of a degenerate length measurement, then we simply
get 0 = 0. The reason for this is that in this case X and Y will coincide and
the discriminant

Δpq = −
∣∣∣∣
pTAp pTAq
pTAq qTAq

∣∣∣∣
will be zero. One might attempt to compensate for a degeneration process
by the following strategy. Assume that in a limit process the matrix A passes
from a nondegenerate matrix to a degenerate one. During this process one
could systematically replace A in the discriminant with k ·A, with a suitable
factor k that compensates for the degeneration of A. Such a factor would
cancel out in equation (21.3). Fortunately, there is a direct way to replace
the discriminant Δpq with some other quadratic form that still carries infor-
mation in the degenerate case and is a multiple of Δpq in all nondegenerate
situations. To see this, let us first analyze the geometric meaning of Δpq.
The discriminant Δpq is a polynomial that occurs when we want to calculate
the points of intersection of a line spanned by p and q with the fundamen-
tal object. If we represent the points on the line by λp + μq, then the two
intersection points are given by equation (21.1). They coincide if Δpq = 0.
In other words, Δpq = 0 if the line join(p, q) is tangent to the fundamental
conic. Furthermore, Δpq is quadratic in both p and q. For the nondegener-
ate case there is another expression with exactly the same properties. The
line l = p × q being tangent to the fundamental conic can also be tested by
checking lTBl = 0, the quadratic form of the dual conic. Thus the expression

(p× q)TB(p× q)

is also quadratic in both p and q and has exactly the same zero set (the pairs
of points p and q that lead to a tangent situation). Hence, up to a factor k it
must equal the discriminant. Thus we can rewrite equation (21.3) as

(p× q)TB(p× q) ·ΩaaΩbb = (a× b)TB(a× b) ·ΩppΩqq. (21.4)

In the nondegenerate case (where A has still at least rank 2) this equation
is equivalent to (21.3). In the degenerate case the part that replaced the
discriminant is in general still not zero, and we can still use the formula
to compare measurements. A suitable limit argument shows that by passing
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from a nondegenerate to the degenerate case with rank A being 1, everything
behaves continuously and the above equation corresponds to the test for equal
distance in the degenerate case.

In the case that p and q are in located such that an exceptional measure-
ment arises, both expressions (p × q)TB(p × q) and ΩppΩqq vanish, so that
formula (21.4) is satisfied independently of the position of a and b. As already
mentioned, this case does not allow for a reasonable distance measurement.

We want to explore the geometric and invariant-theoretic meaning of the
above equation in the degenerate case. The interesting situation arises when
the primal conic described by A degenerates to a double line. Then B might
have either rank 2 or rank 1. We analyze the case in which B has rank 2.
In this case B describes two distinct points on the double line. We will call
these two points I and J for the moment, to remind ourselves of the special
role played by the points I and J in Euclidean geometry. In the standard
embedding of Euclidean geometry we have I = I and J = J. The dual conic
is described by the matrix B = IJT + JIT . The primal conic is described by
the matrix A = (I × J)(I × J)T . Plugging this into our condition for equal
measurement, we get

(p× q)T (IJT + JIT )(p× q) · aT (I × J)(I × J)T a · bT (I × J)(I × J)T b
= (a× b)T (IJT + JIT )(a× b) · pT (I × J)(I × J)T p · qT (I × J)(I × J)T q.

At first sight this looks frightening, but let us analyze the different parts of
this formula. We get

(p× q)T (IJT )(p× q) = ((p× q)T I) · (JT (p× q)) = [pqI][pqJ]

and
(p× q)T (JIT )(p× q) = ((p× q)T J) · (IT (p× q)) = [pqJ][pqI].

Hence
(p× q)T (IJT + JIT )(p× q) = 2[pqI][pqJ].

Furthermore, we get

aT (I × J)(I × J)T a = (aT (I × J)) · ((I × J)T a) = [aIJ]2.

We get similar translations for the other subexpressions involved. Thus the
entire large equation translates to

[pqI][pqJ][aIJ]2[bIJ]2 = [abI][abJ][pIJ]2[qIJ]2.

This is exactly expression (18.1), which we obtained in Section 18.8, now
generalized to general Cayley-Klein geometries with a degenerate primal ma-
trix and a rank-2 dual matrix. For reversed roles of a degenerate angle and
nondegenerate distance measurement a corresponding dual formula applies.

Thus instead of considering the function Φpq we consider the function
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Ψpq :=
(p× q)TB(p× q)
pTAp · qTAq .

For the nondegenerate case these two functions differ only by a factor de-
pendent only on A and B. However, this factor is chosen so well, that it
compensates for the degeneration in a limiting process and that Ψpq is still
suitable for comparing distances also in degenerate cases. Let us briefly exam-
ine what this expression becomes for concrete typical choices of degenerate
A and rank-2 matrix B. First notice that in this formula p and q both occur
quadratically in the numerator and in the denominator. Hence the result of
the formula is independent of a specific choice of a representative of these
points. The standard embedding of Euclidean geometry is given by the ma-
trices

A =

⎛
⎝

0 0 0
0 0 0
0 0 1

⎞
⎠ and B =

⎛
⎝

1 0 0
0 1 0
0 0 0

⎞
⎠.

Representing p = (px, py, 1)T and q = (qx, qy, 1)T by the standard Euclidean
embedding with last coordinate 1, we get pTAp = qTAq = 1. Furthermore,
we get

p× q =

⎛
⎝
px
py
1

⎞
⎠×
⎛
⎝
px
py
1

⎞
⎠ =

⎛
⎝

py − qy
qx − px

pxqy − pyqx

⎞
⎠.

Hence

(p× q)TB(p× q)
pTAp · qTAq = (p× q)TB(p× q) = (px − qx)2 + (py − qy)2,

the squared Euclidean distance! Replacing A or B by a scalar multiple of
these matrices only results in a global rescaling of this measurement, which
is an inherent ambiguity of Euclidean distance measurement anyway. If we
evaluate the same expression with the fundamental object defined by the
matrices

A =

⎛
⎝

0 0 0
0 0 0
0 0 1

⎞
⎠ and B =

⎛
⎝

1 0 0
0 −1 0
0 0 0

⎞
⎠,

we get squared distance measurement in pseudo-Euclidean geometry:

(p× q)TB(p× q)
pTAp · qTAq = (px − qx)2 − (py − qy)2.

Compared to the Euclidean case this expression may as well be positive as
negative. Thus we may have points with real or imaginary distances. Fig-
ure 21.3 (left) shows circles around a point p of radius 0 (black), 1, 2, 3, 4,
5 (green) in Euclidean geometry. On the right the corresponding circles in
pseudo-Euclidean geometry and in addition circles with the imaginary radii
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Fig. 21.3 Circles in Euclidean and pseudo-Euclidean geometry.

i, 2i, 3i, 4i, 5i (red) are shown. Notice that in pseudo-Euclidean geometry
the circle of radius 0 is not just a point but a real pair of lines.

21.5 Reflections and Pole/Polar Pairs

It is a particularly interesting task to study reflections in the context of
Cayley-Klein geometries. A reflection will be a K-motion τ with τ2 = Id.
In planar Euclidean geometry we are used to distinguishing between line
reflections (mirrors) and point reflections. We will see that at least in the
nondegenerate Cayley-Klein geometries this distinction is not necessary. We
start by considering involutory projective transformations on a general level.
We will later on see that every reflection in a Cayley-Klein geometry turns
out to be a particular such projective involution.

Theorem 21.2. Let τ be a projective transformation in RP
2 with τ2 = Id.

Then

(i) there is a line m with τ(p) = p for every point p incident with m,
(ii) there is a point o with τ(l) = l for every line l incident with o.

Proof. We may assume that τ �= Id since otherwise the theorem holds triv-
ially. Assume that the (primal) projective transformation is given by a matrix
T with τ(p) = Tp. The matrix T is nonsingular, and we may (possibly after
rescaling) assume that det(T ) = 1. The matrix T must be similar to a Jordan
matrix J = S−1TS. Hence also J2 = E. The only Jordan matrices with this
property are diagonal matrices with diagonal entries +1 or −1. Hence T is
diagonalizable, the eigenvalues are ±1, and there exists a basis of eigenvec-
tors. Since the product of the eigenvalues is det(T ) = 1 and T is not the
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identity, exactly two eigenvalues are −1 and one eigenvalue is +1. We have
S−1TS = J = diag(−1,−1, 1). Now let s1, s2, s3 be a basis of eigenvectors
(the columns of S). We have Ts1 = −s1, Ts2 = −s2, and Ts3 = s3. The si
correspond to fixed points of τ , since their image differs from the preimage
only by a scalar multiple. Now consider a point p = λs1 + μs2 on the line
m = join(s1, s2). We get Tp = T (λs1 +μs2) = −λs1−μs2 = −1. Thus also p
is a fixed point of τ . Hence τ leaves all points on m invariant. This proves (i).
Furthermore, τ leaves the point o := s3 invariant. Since the eigenvectors form
a basis, p does not lie on l. Thus every line l through o can be expressed as
the join of o and a suitable point p on m. Since both points o and p are
invariant under τ , the line l is also invariant under τ . This proves (ii). ��

We call the point o the center of the involution and the line m its mirror.
If a projective involution has more fixed points than the points of m and o, it
must necessarily be the identity, since in this case we find a projective basis
that remains fixed. We call an involution proper if this is not the case. Once
the line m and the point o of a proper projective involution are given, it is
easy to construct concretely the involution τ .

Theorem 21.3. Let τ be a proper involution with mirror m and center o.
Then the image of a point p �= o under τ can be constructed as the unique
point p′ such that (p, p′; pm, o) = −1, with pm being the intersection of m and
the line joining o and p.

Proof. The image τ(p) of p under τ must lie on l := join(o, p), since this line
is invariant under τ . Let pm be the intersection of m and l. This is also a
fixed point. Projective transformations leave cross-ratios invariant. Hence we
have

(o, pm; p, τ(p)) = (τ(o), τ(pm); τ(p), τ(τ(p)))
= (o, pm; τ(p), p)
= 1/(o, pm; p, τ(p)).

This implies (o, pm; p, τ(p)) = −1 which proves the claim. ��
There is also a purely geometric way to derive the harmonic condition for

the reflected point. To see this, consider Figure 21.4 (left). Assume that we
have a projective transformation τ that leaves every point onm invariant and
in addition leaves the point o invariant. We consider two points p and q and
their reflected images p′ = τ(p) and q′ = τ(q). The image of the line join(p, q)
is join(p′, q′). The intersection of these two lines must lie on the mirror m.
Similarly, join(p, q′) and join(p′, q) also must meet at m. Furthermore, the
lines join(p, p′) and join(q, q′) are invariant and must pass through o. These
conditions uniquely determine the positions of p′ and q′. The resulting figure
forms a witness configuration that o, r; p, p′ are in harmonic position, where r
is the intersection of m with the line joining o and p.

Figure 21.4 (right) shows the effect of an involution on two little copies (red
and blue) of a drawing (for this we borrowed the character of Dr. Stickler from
the marvelous book Indra’s Pearls [94]). We see that close to the mirror linem
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Fig. 21.4 The effect of a projective involution.

the projective involution behaves like a distorted Euclidean line reflection.
Close to the center o it behaves like a distorted Euclidean point reflection. In
fact, if o moves to a properly chosen point on the Euclidean line at infinity,
we get an undistorted Euclidean line reflection in m. Conversely, if o is a
finite point and m is the line at infinity, we get an undistorted Euclidean
point reflection in o. We will now see that these are special cases of general
reflections in Cayley-Klein geometries.

Before coming to this point we will give an explicit formula or the matrix
of a reflection once m and o are given.

Theorem 21.4. The point transformation matrix T of a projective involu-
tion τ with center o and mirror m is given by

〈o,m〉E − 2omT .

Proof. Let p be distinct from o. How can we calculate the reflected point
p′ = τ(p) of p? It must lie on the line l spanned by o and p, and thus it
has coordinates of the form p′ = λp + μo. The intersection r of the lines l
and m is (by the usual Plücker’s μ trick) r = 〈o,m〉p − 〈p,m〉o. To satisfy
the harmonic condition (p, p′; o, r) = −1 we may restrict ourselves to a local
coordinate system on l given by the basis p, o. These two points correspond
to the unit vectors (1, 0) and (0, 1). The point p′ has local coordinates (λ, μ),
and r has local coordinates (〈o,m〉,−〈p,m〉). The harmonic condition then
reads ∣∣∣∣

1 0
0 1

∣∣∣∣ ·
∣∣∣∣
λ 〈o,m〉
μ −〈p,m〉

∣∣∣∣∣∣∣∣
1 〈o,m〉
0 −〈p,m〉

∣∣∣∣ ·
∣∣∣∣
λ 0
μ 1

∣∣∣∣
= −1.

Hence we have
−λ〈p,m〉 − μ〈o,m〉 = 〈p,m〉λ.

Resolving for λ and μ gives (up to a scalar multiple)



416 21 Measurements and Transformations

(λ, μ) = (〈o,m〉,−2〈p,m〉).

Thus we can express p′ as

p′ = 〈o,m〉p− 2〈p,m〉o = (〈o,m〉E − 2omT )p.

Thus the transformation matrix is T = 〈o,m〉E − 2omT . ��

Let us now define reflections in general Cayley-Klein geometries. They will
be projective involutions that leave the fundamental conic invariant. We want
to define reflections in a way that is as general as possible and also covers
degenerate cases. For this we will need the concept of a pole/polar pair of
point and line.

Definition 21.2. Let (A,B) be the primal/dual pair of matrices that defines
the fundamental conic of a Cayley-Klein geometry K. A pole/polar pair (o,m)
of K is a line m and a point o such that there exist constants λ, μ ∈ R with
λm = Ao and μo = Bm.

We get the usual degeneracy/nondegeneracy effects for the different ge-
ometries. In the case of a nondegenerate fundamental conic each member of
a pole/polar pair (o,m) uniquely defines the other. So m is simply the po-
lar of o with respect to the fundamental conic in the sense of Section 9.2. If
(A,B) come from a singly degenerate Cayley-Klein geometry, then one of the
members might uniquely define the other, but not vice versa. For instance, in
Euclidean geometry an arbitrary finite line m forms a pole/polar pair with
the point o on the line at infinity in the direction orthogonal to m. The line
at infinity forms a pole/polar pair with every point.

We now may define a proper reflection in a given Cayley-Klein geometry

Definition 21.3. Let (o,m) be a pole/polar pair of a Cayley-Klein geometry
K such that o is not incident with m. Then the projective involution with
center o and mirror m is called a K-reflection.

Theorem 21.5. Every K-reflection is a K-motion.

Proof. We have to show that a K-reflection leaves the fundamental conic of K
invariant. Let (o,m) be the corresponding pole/polar pair and let (A,B) be
the primal/dual pair of the fundamental conic. Hence we have λm = Ao and
μo = Bm. By Theorem 21.4 every point is mapped according to p �→ Tp
with T = 〈o,m〉E − 2omT . We may choose the scalar factor of the elements
involved such that the determinant of T becomes 1 and we have T 2 = E
or equivalently T−1 = T . The matrix A is transformed by T according to
A �→ T TAT ; the matrix B is transformed according to B �→ TBT T (compare
Section 9.4). We get
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Fig. 21.5 Cayley-Klein reflections in the hyperbolic case.

TBT T = (〈o,m〉E − 2omT ) ·B · (〈o,m〉E − 2omT )T

= 〈o,m〉2B − 2〈o,m〉BmoT − 2〈o,m〉omTB + 4omTBmoT

= 〈o,m〉2B − 2〈o,m〉μooT − 2〈o,m〉μooT + 4μo(mT o)oT

= 〈o,m〉2B.
In this chain of equations the second equality results simply from expanding
the term while transposing the matrix omT . The third equality follows due
to the fact that μo = Bm. Since we assumed in the theorem that o and m are
not incident, 〈o,m〉2 is nonzero. Therefore B is mapped to a nonzero multiple
of itself. The corresponding property for A follows dually. ��This proof

also states in a more concrete manner how the matrices A and B behave. We
encapsulate the basic facts in a theorem that will be needed later:

Theorem 21.6. Let T be the primal transformation matrix of a K-reflection.
Then T TAT = det(T )2A and TBT T = det(T )2B.

Proof. For T = 〈o,m〉E − 2omT we have T 2 = 〈o,m〉2E. Thus det(T )2 =
〈o,m〉2. The dual part of the theorem follows from this and the equation
TBT T = 〈o,m〉2B derived in the proof of the last theorem. The primal part
follows analogously. ��

Figure 21.5 shows two possible situations of a reflection for a Cayley-
Klein geometry of type II. Since the fundamental object remains invariant
under the reflection in this case, no K-motion can interchange the interior
and the exterior of the fundamental conic. Thus we obtain two qualitatively
different situations depending on the position of the center o with respect to
the conic. If o is outside the conic, thenm cuts the conic, and we get a “mirror-
reflection-like” behavior in the interior of the conic. If o is inside, we get a
“point-reflection-like” behavior in the interior of the conic. The situation that
o is incident with the conic does not lead to a proper reflection, since in this
case m and o coincide, and this was explicitly forbidden by Definition 21.3.

The situation is subtly different in the case of Cayley-Klein geometries of
type I (the elliptic case). Figure 21.6 illustrates the situation. We have seen
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Fig. 21.6 Cayley-Klein reflections in the spherical case.

that (up to projective equivalence) this geometry is nicely represented by
considering the sphere with antipodal pairs identified as a double cover of
the projective plane. Cayley-Klein measurement then corresponds to length
measurement with geodesics (shortest paths on the sphere). The fact that in
elliptic geometry antipodal pairs of the sphere are identified implies that on
the sphere every object is present twice. The antipodal object occurs with
reversed orientation. A K-reflection corresponds to a reflection in a great
circle of the sphere. There is no distinction of point and line reflection in
this geometry! A reflection with respect to the line m may equally well be
achieved by a rotation of 180◦ with respect to the pole o.

In Euclidean geometry a K-reflection leads again to two different situa-
tions. If the line m is finite, the point o lies on the fundamental object (the
line at infinity) and we get a line reflection. If o is finite then m is necessarily
the line at infinity and we get a point reflection. The reader is invited to
work out the different situations that may arise in the other Cayley-Klein
geometries.

We have seen that depending on the degree of degeneration of a Cayley-
Klein geometry we obtain different degrees of freedom for the associated
transformations. While the nondegenerate geometries (types I and II) admit
three degrees of freedom, the singly degenerate types (types III to VI) admit
four degrees of freedom. Finally, the doubly degenerate geometry (type VII)
admits five degrees of freedom. In types I and II every K-motion leaves dis-
tances and angles invariant. In types III and VI there exist in addition K-
motions that alter the angle. In types V and VI there exist K-motions that
alter the distance (for instance scalings in Euclidean geometry). In type VII
there exist K-motions that alter both angles and distances. Now, reflections
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have the remarkable property that they leave also measurements invariant.1

We will prove this for distance measurement. The proof for angle measure-
ments is just the dual. We will base the distance comparison directly on the
function

Ψpq =
(p× q)TB(p× q)
pTAp · qTAq ,

since this function is also applicable in the case of degenerate measurements.

Theorem 21.7. Let p and q be two points and let τ be a K-reflection. Let
p′ = τ(p) and q′ = τ(q). Then we have

Ψpq = Ψp′q′ .

In other words, the distance between two points (even for degenerate mea-
surements) is invariant under τ .

Proof. Let T be the transformation matrix that realizes τ via p �→ Tp. With-
out loss of generality we may assume that T is chosen such that det(T ) = 1.
For arbitrary points p and q we have (Tp× Tq) = T−1T (p× q) (since p× q
represents the line through p and q). Since T is a reflection, we have T−1 = T .
Evaluating the term Ψp′q′ , we get

Ψp′q′ =
(Tp× Tq)TB(Tp× Tq)

(Tp)TA(Tp) · (Tq)TA(Tq)
=

(p× q)T
B︷ ︸︸ ︷

(TBT T )(p× q)
pT (T TAT )︸ ︷︷ ︸

A

p · qT (T TAT )︸ ︷︷ ︸
A

q
= Ψpq.

The replacements of T TAT and TBT T use det(T ) = 1 and Theorem 21.6. ��
In fact, all distance-preserving transformations can be generated by com-

binations of reflections. We will not prove this fact here formally, but we will
(in the following section) analyze some of the different situations that may
appear as the product of an even number of reflections and play the role of
generalized rotations and translations.

21.6 From Reflections to Rotations

Perhaps you once visited a hall of mirrors, in which you could observe iter-
ated mirror reflections of yourself. If you have two parallel mirrors and place
yourself between them, you see a mirror image in each of the mirrors. But
the mirror images are reflected again, and you see reflected, reflected images

1 In a sense this is not too surprising, since we know this effect from Euclidean geometry,
which is a degenerate Cayley-Klein geometry: A mirror image has the same size as its
preimage.
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Fig. 21.7 Iterated reflections in parallel mirrors.

of yourself. They are reflected again,. . . . . . What you see is an endlessly re-
peating chain of copies of yourself reaching out in both directions to infinity.
Alternatingly, these mirror images are left-handed and right-handed (if you
have some writing on your sweater you can properly read it in every second
image). Figure 21.7 gives an impression of the geometry of this situation. You
(or your alter ego Dr. Stickler) are green and stand between the two bold lines
that act as mirrors. The light lines indicate the reflected mirror axes. The
red/green coloring indicates the handedness of the mirror images. If for a mo-
ment you concentrate only on the green copies, you observe that they form
a chain of translated copies of yourself. If the mirror operations are called
A and B, then one of the green copies next to you arises as A(B(yourself)),
while the other arises as B(A(yourself)). The intersection of the two mirror
axes (which is infinitely far away) is a fixed point of both reflections and
hence a fixed point of the translation A ◦B.

What happens if you slightly tilt one of the mirrors so that the parallelism
is broken? You will observe the chain of reflected copies of yourself bending
in a circular arc. Each second copy is a slightly rotated copy of yourself. The
center of the rotations is again the common fixed point of the two reflections.
However, this time, since the mirror axes are not parallel, it is located at a
finite point. The angle of rotation is twice the angle enclosed by the mirror
axes. Figure 21.8 illustrates the situation.

So why do we care about such elementary Euclidean considerations? The
effects that we observe in the Euclidean case are again only very special
cases of general effects occurring in the more general Cayley-Klein geometries.

Fig. 21.8 Iterated reflections in nonparallel mirrors.
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Fig. 21.9 Dr. Stickler between two hyperbolic mirrors.

Assume that you have two different K-reflections τS and τT in a Cayley-
Klein geometry K. The composition of these two reflections will again be
a K-motion. Since τS and τT are both angle- and distance-preserving, the
composition τ = τS ◦ τT preserves distances and angles as well.

The K-motion τ has (at least) one fixed point and (at least) one fixed
line. If mT and pT were the mirror and center of the reflection τT , and
mS and pS were the mirror and center of the reflection τS , then the point
c = meet(mS ,mT ) is not affected by either transformation and is hence a
fixed point of τ . Dually, the line join(oT , oS) is not affected by the reflection
and is (as a whole) fixed under τ . It is instructive to study the different
combinations that may arise in Euclidean geometry.

• If τT and τS are both line reflections (i.e., the poles oT and oS both lie on
the line at infinity), then τ is a rotation if the intersection of the mirrors
is finite. The fixed point is the center of the rotation and the fixed line is
the line at infinity.

• If τT is a line reflection (finite mirror mT , infinite center oT ) and τS is a
point reflection (finite center oS , infinite mirror l∞), then the fixed point
of τ is the infinite point of mT . The fixed line is the line through oS
orthogonal to mT . This (orientation-reversing) motion turns out to be a
glide reflection.

• If both τT and τS are point reflections, then the fixed line is the join of
the two centers. All points on the line at infinity remain fixed (since the
mirror lines coincide) and we obtain a translation.

Thus by composing two reflections we may obtain rotations, translations, or
glide reflections. Rotations arise only if the intersection of the mirror lines is
finite.
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The situation becomes more involved (or better, “less commonly known”)
in the other Cayley-Klein geometries. We will briefly have a look at what hap-
pens for Cayley-Klein geometries of type II for which the fundamental conic
is nondegenerate and real. Figure 21.9 illustrates two qualitatively different
scenarios. Again the two mirror lines are drawn as bold blue lines. In the left
picture the two mirror lines intersect outside the fundamental conic. Within
the line bundle through the intersection of the mirrors we have a hyperbolic
angle measurement. This results in an endless chain of reflected mirror im-
ages reaching out to both sides and never approaching the boundary. If you
were Dr. Stickler, for you the situation would look much like the situation be-
tween two parallel Euclidean mirrors—endless repetition in both directions.
However, projectively the situation is slightly different, since the two limiting
iterations never will touch each other, as they did in the Euclidean case. In a
sense, we could call such a transformation composed of the two reflections a
hyperrotation—a rotation whose rotation center is “more than infinitely far
away” (see Chapter 23). Such a hyperrotation has a single fixed line that
passes through the interior of the fundamental object. This is a remarkable
difference to the Euclidean case of parallel mirrors, where a translation has
infinitely many fixed lines.

The right picture represents the situation in which the intersection of the
mirror line is in the finite region. The angle measurement around the intersec-
tion of the mirrors is elliptic. Here the situation is much like the Euclidean
case of nonparallel mirrors. If in addition the angle is a divisor of the full
circle, the chain of reflections closes up and the group generated by the two
reflections is finite. This is the situation shown in the picture. The composi-
tion of the two reflections is called a rotation. This operation also has a fixed
line. However, this line is outside the horizon. It is the polar of the rotation
center.

In between these two cases lies the situation in which the intersection of
the mirrors is on the boundary of the fundamental object. This case is even
more like the situation of Euclidean parallel mirrors, since now the limiting
pictures in both directions again meet in a single point.

Remark 21.2. It should be finally mentioned that in many interesting sit-
uations the transformation τ = τT ◦ τS can be considered a member of a
continuous family of distance-preserving K-motions that connects τ continu-
ously with the identity transformation (as in Euclidean geometry, for which
a rotation or translation can be considered a continuous process of moving
an object to a new position). We briefly discuss this in type-II geometries.
There the mirror uniquely determines the center of a reflection, which makes
things a little easier. Take τT and τS to be reflections with axis mT and mS .
Consider the continuous family of reflections τλ with axis (1− λ)mT + λmS .
As λ moves from 0 to 1, the reflection τT ◦ τλ interpolates between the iden-
tity and τ . As long as throughout this process τλ is always admissible (i.e.,
the mirror is not a tangent to the fundamental conic), we get the desired
continuous family of transformations.
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Cayley-Klein Geometries at Work

Diese Überlegung gibt uns ein schönes Beispiel dafür, wie die
dualen Sätze der elliptischen Geometrie beim Übergang zur

euklidischen Geometrie in Trümmer fallen.

Felix Klein on the angle bisector theorem,
Vorlesungen über Nicht-Euklidische Geometrie, 1928

Based on the measurement in a Cayley-Klein geometry, we can now define
specific geometric objects and relations. For instance a circle may be defined
as the set of all points that have a constant distance to a given point. Being
orthogonal may be defined as a certain angle relation between two lines. In
each type of a Cayley-Klein geometry the objects and relations will have very
specific properties. In this chapter we will deal with aspects of elementary
geometry in the context of Cayley-Klein geometries. Following the spirit of
this book, we will again focus on (algebraic and geometric representations
of) geometric primitive operations, on incidence theorems, and on invariance
properties. Again we try to present the definitions and statements in a way
that they apply as generally as possible to degenerate Cayley Klein geome-
tries. Still some statements may break down if the geometric configurations
or the underlying geometry becomes too degenerate. Since we do not want
to spend most of the exposition mainly with pathological degenerate cases,
we will base our definitions whenever possible on constructive approaches
that allow us to explicitly calculate the objects involved. The reader should
be aware that this chapter is by far more about the “how” than about the
“what.” The ways theorems are interpreted and proved is more central than
the theorems themselves. Nice treatments of elementary geometric theorems
may also be found in [49, 86, 136].

423
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22.1 Orthogonality

We start with the notion of orthogonality. In Euclidean geometry two distinct
lines l and m are considered orthogonal if the oriented angle ∠(l,m) is iden-
tical to the oriented angle ∠(m, l). To transfer this notion into the context
of Cayley-Klein geometries, assume that p is the intersection of l and m and
that X and Y are the two tangents from p to the fundamental object. Thus
we are looking for a line with the property (l,m;X,Y ) = (m, l;X,Y ) �= 1.
Using the fact that interchanging the roles of l and m inverts the cross-ratio,
we see that this can be the case only if (m, l;X,Y ) = −1. As usual, X and Y
are the two tangents of p to the fundamental conic. In order to cover also de-
generate cases of coinciding lines in which both numerator and denominator
of the cross-ratio vanish, we prefer the following characterization.

Definition 22.1. Two distinct lines l and m are orthogonal in the Cayley-
Klein geometry K if (with notions as above)

[h, l,X ][h,m, y] = −[h, l, Y ][h,m,X ] (22.1)

for a line h not through the intersection p of l and m.

We will now derive an equivalent more concise algebraic definition for
two lines l and m being orthogonal that directly relates orthogonality to
the fundamental conic. For this we introduce a local coordinate system on
the line bundle around p with l and m as a basis. Every line through p is
expressible as a linear combination λl + μm. In particular, X and Y have
such a representation. In Section 21.3 we made a consideration dual to this
in order to eliminate the points X and Y in a distance measurement. Now we
want to do exactly the same with the lines X and Y . By an argument exactly
dual to the content of Section 21.3 we can prove that with the abbreviations
Θll = lTBl, Θlm = lTBm, Θmm = mTBm, and Δ = Θ2

lm − ΘllΘmm, the
condition (22.1) is equivalent to

Θlm +
√
Δ = −Θlm +

√
Δ.

The expressions on the left and the negative of the expression on the right of
this equation represent the numerator and the denominator of the cross-ratio.
From this we easily get the following theorem.

Theorem 22.1. Let K be a Cayley-Klein geometry and let B be the matrix
representing the dual fundamental conic. Then a pair of distinct lines l,m is
orthogonal in K if lTBm = 0.

Proof. In the expression Θlm +
√
Δ = −Θlm +

√
Δ the term

√
Δ cancels. So

it is equivalent to 0 = Θlm = lTBm, as claimed. ��
We can use this condition also in the case of coinciding lines l and m.

In this case lTBm = 0 means that l = m is a tangent to the fundamental
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Fig. 22.1 Constructing a perpendicular.

conic. In other words, a tangent to the fundamental conic may be considered
orthogonal to itself.

If the term lTB is nonzero, it represents the pole of l with respect to the
fundamental conic F . Thus in this situation m is orthogonal to l if it passes
through the pole of l with respect to F . Similarly, if Bm is nonzero, then l
and m are orthogonal if l passes through the pole of m. In most cases the
situation will be suitably nondegenerate so that each line passes through the
pole of the other.

It is instructive to analyze what the condition lTBm = 0 means for various
situations in various geometries.

Nondegenerate fundamental conic: The situation is easiest in nonde-
generate geometries (type I and type II). There B is regular and the poles
always exist. Thus l passes through the pole of m and vice versa. Figure 22.1
shows the situation for the case of a nondegenerate real fundamental conic.
If the line l intersects the conic in two real points, then the usual tangent
construction provides the polar l∗. Comparing this image with Figure 10.13,
we may also derive another characterization of perpendicularity in the case
of a nondegenerate fundamental conic.

Theorem 22.2. In a Cayley-Klein geometry with nondegenerate fundamen-
tal conic F , two lines l and m are perpendicular if their intersections Xl, Yl
and Xm, Ym are in harmonic position considered as points on a conic, i.e.,
(Xl, Yl;Xm, Ym)F = −1.

Proof. The fact that m has to pass through the polar of l leads to the con-
struction of Figure 22.1. Comparing this with the Theorem 10.8 immediately
proves the claim.

Euclidean and pseudo-Euclidean geometry: If B has rank 2 (i.e., we
are either in type V or in type VI), the fundamental conic consists of a
double line �∞ with two points I and J on it. The orthogonality condition says
that the intersections of the two lines with �∞ and these two points form a
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harmonic quadruple. As expected, this agrees nicely with the characterization
of Euclidean orthogonality we derived in Theorem 18.6. In pseudo-Euclidean
geometry the two points I and J are real. A line passing through these points
is self-orthogonal.

There is one interesting case covered by lTBm = 0 that is still missing:
The double line �∞ is orthogonal to every other line l. This is the case since
B�∞ = (IJT +JIT )�∞ = 0. In this situation the pole of l is no longer uniquely
specified.

The remaining cases: In all other cases the matrix B has rank 1 and is
of the form B = qqT . The point q is the double point representing the dual
fundamental object. The situation lTBm = 0 can arise only if either l or m
is incident with q. Thus if one line does not pass through q, then in case of
orthogonality the other must pass through q. The point q is the pole of every
line that does not already pass through it.

We now turn to simple theorems involving orthogonality. In the case that
the expression Bl is not zero, it represents the pole of l with respect to
the fundamental conic. Then we get, for instance, an easy explicit method to
construct a perpendicular to l through a given point p. Expressed in algebraic
terms this reads as:

1: Construct the pole l∗ = B · l of l.

2: Join l∗ with p.

As an application of expressing perpendicularity in a Cayley-Klein geom-
etry we will show that also in a Cayley-Klein geometry the altitudes of a
triangle meet in a point. A corresponding picture for a nondegenerate funda-
mental conic F is shown in Figure 22.2. The three black points in the interior
are the vertices of the triangle. Its sides are the lines l1, l2, l3. The polars of
these lines are shown in corresponding colors. Joining the polars with the
corresponding opposite vertices results in the three altitudes that meet in a
point. Essentially this theorem of metric character is again translated into an
entirely projective statement. We could provide geometric proofs for the non-
degenerate and the degenerate cases. However, we prefer to give an algebraic
proof that simultaneously covers both cases.

Theorem 22.3. Let K be a Cayley-Klein geometry with dual fundamental
conic B and let l1, l2, l3 be the sides of a triangle. If Bl1, Bl2, and Bl3 are
all nonzero, then the altitudes of the triangle are uniquely defined and meet
in one point.

Proof. Let l1, l2, l3 be the lines supporting the sides of the triangle and let B
be the matrix of the dual fundamental conic. The polars of the lines are given
by Bl1, Bl2, Bl3. The altitude h1 to line l1 thus can be uniquely (!) written as
h1 = join(meet(l2, l3), Bl1). In terms of cross products this can be expressed
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Fig. 22.2 The altitudes meet in a point.

as (l2× l3)×Bl1. Applying the identity (v1×v2)×v3 = 〈v1, v3〉v2−〈v2, v3〉v1,
we get

h1 = 〈l2, Bl1〉l3 − 〈l3, Bl1〉l2.
Similarly, we get

h2 = 〈l3, Bl2〉l1 − 〈l1, Bl2〉l3,
h3 = 〈l1, Bl3〉l2 − 〈l2, Bl3〉l1.

Now we want to prove that h1, h2, h3 are concurrent. Thus we want to ex-
pand the determinant [h1, h2, h3]. Since each row in this expression has two
summands, this expansion has eight summands. However, it is easy to check
that all terms involving a left term and a right term of the above equations
must vanish identically, since two rows become linearly dependent. Thus we
get

[h1, h2, h3] = +[〈l2, Bl1〉l3, 〈l3, Bl2〉l1, 〈l1, Bl3〉l2]
−[〈l3, Bl1〉l2, 〈l1, Bl2〉l3, 〈l2, Bl3〉l1] = 0.

This proves the claim. ��

22.2 Constructive versus Implicit Representations

One might wonder how important the nondegeneracy assumptions “Bl1, Bl2,
and Bl3 are all nonzero” in Theorem 22.3 were. In fact, we formulated the
theorem in a way that kept us on the safe side. Let us now explore to what
extent a statement like the following is true:
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Let l1, l2, l3 be lines that support the three sides of a triangle and let
g1, g2, g3 be three lines such that li and gi for i = 1, . . . , 3 are orthogonal
and gi passes through the vertex meet(lj , lk) with {i, j, k} = {1, 2, 3} for
i = 1, . . . , 3 (i.e., the gi are altitudes). Then g1, g2, g3 have a point in
common.

Compared to Theorem 22.3 this statement characterizes orthogonality only
implicitly via the equations lTi Bgi = 0. This statement is not true in general,
but still many cases not covered by Theorem 22.3 turn out to be true. Let
us explore the different situations. If all poles exist, the statement is true as
a consequence of Theorem 22.3. Let us first consider the case of Euclidean
geometry. The only situation not already covered is the case that one of the
lines (say l1) is the line at infinity (every finite line has a unique pole). In
this case two of the triangles vertices (those incident with l1) are the infinite
points of l2 and l3. The altitude g2 of l2 passes through the pole of l2 (this
is an infinite point) and through the infinite point of l3. Hence this altitude
is the line at infinity. Similarly, g3 is also the line at infinity. This implies
that no matter what g1 is, the three altitudes have a point in common. Thus
the above statement also holds in general in the Euclidean plane. The same
argument applies to pseudo-Euclidean geometry.

In the remaining cases the dual conic is a double point q. As long as the
three lines l1, l2, l3 do not pass through this point, they have a unique polar
(the point q itself), and Theorem 22.3 applies and proves that the altitudes
meet. Actually, they will meet in the double point itself. What happens if
one or more lines go through the double point? In the case of only one line
(say l1) the two altitudes g2 and g3 must still go through q. Since also l1 goes
through q, the two altitudes g2 and g3 must coincide with l1, and again the
statement is true.

There are not many cases left, but now the statement finally breaks apart
if at least two of the lines li (say l1 and l2) pass through the double point q.
In this case every line g1 is orthogonal to l1 and every line g2 is orthogonal
to l2. Thus no matter where g3 is, these lines can be chosen in a way that
the three altitudes do not meet.

This is what Felix Klein meant in the quotation used as the epigraph to this
chapter when he said that “theorems fall to pieces” if the underlying geometry
is too degenerate. What makes the theorem remain true in so many cases and
finally collapse in the last mentioned case? The deep reason for this is that
each the “good” cases could be considered a limiting case of a nondegenerate
situation. However, in the last case we forced the poles of l1 and l2 to move to
different places and still represent a double-point degeneracy. This can never
happen as a limiting case of a sequence of nondegenerate situations.
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Fig. 22.3 The altitudes theorem in pseudo-Euclidean geometry.

22.3 Commonalities and Differences

We have seen that a theorem like “the altitudes meet in a point” in essence
remains true throughout all Cayley-Klein geometries. However, concerning
orthogonality there are many fine points of commonalities and differences
between the different Cayley-Klein geometries that are worth mentioning.
We only will sketch a few of them in the hope that the reader works out
many others on his/her own. Let us start with comparing the notion of or-
thogonality in Euclidean geometry with that in the closely related pseudo-
Euclidean geometry. For both geometries we assume that they are given by
the standard embedding. Thus if again I and J are the two points of the
(dual) fundamental conic, we choose them as I = I and J = J in Euclidean
geometry and as I = (1, 1, 0)T =: IP and J = (1,−1, 0)T =: JP in pseudo-
Euclidean geometry. We now will look at the pictures of pseudo-Euclidean
geometry with “Euclidean eyes.” Two finite lines l and g that intersect in
p in pseudo-Euclidean geometry are orthogonal if their infinite points are in
harmonic position with IP and JP . Since in the standard embedding the lines
join(p, IP ) and join(p, IP ) form lines with slopes 1 and −1, this means that
l and m have inverse slopes. In other words, with respect to the Euclidean (!)
notion of reflection they are symmetric with respect to a slope-1 line through
p. Figure 22.3 (left) illustrates the situation. From this we can get a Euclidean
interpretation of the pseudo-Euclidean altitude theorem. Draw a triangle with
sides l1, l2, l3. For each line li construct a line gi with inverse slope through
the vertex not on li. These three lines g1, g2, g3 meet in a point. Figure 22.3
(right) illustrates the situation. The observant reader may recognize that we
met this theorem before in a different context. It is the “mirroring slopes
theorem” shown in Figure 8.12.

One remarkable fact has to be mentioned. The angle measurement in
pseudo-Euclidean geometry is hyperbolic. Thus usually the constant cdist

is chosen to be −1/2. This implies that the angle between two orthogonal
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Fig. 22.4 Thales’ theorem in pseudo-Euclidean geometry.

lines is the complex number −iπ/2. In fact, in pseudo-Euclidean geometry it
is not possible to move a line into one of its orthogonals by any sequence of
finite rotations (i.e., those with a real rotation angle). Figure 22.4 shows an-
other interesting instance of a theorem that remains true in pseudo-Euclidean
geometry: Thales’s theorem. In this geometry circles are (Euclidean) hyper-
bolas whose asymptotes have slopes 1 and −1. Thales’ theorem states that
each point S on a circle “sees” the endpoints P and Q of any diameter of the
circle in a right angle.

Let us now turn to hyperbolic geometry (i.e., we have a real nondegen-
erate fundamental object). Perhaps one of the most striking and important
differences to Euclidean geometry is the one indicated in Figure 22.5. There
a pentagon is shown. Every side of the pentagon is incident with the poles of
the two adjacent sides. Hence the edges of the pentagon meet orthogonally
at the corner. We get a pentagon with five right vertex angles. Indeed, it is
possible for every n ≥ 5 to have n-gons with only right angles. We will have

Fig. 22.5 A hyperbolic pentagon with only right angles.
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a closer look at this important phenomenon later when we discuss hyperbolic
geometry.

22.4 Midpoints and Angle Bisectors

Two other interesting geometric primitive operations are the construction
of midpoints and of angle bisectors. In Cayley-Klein geometries these two
concepts are intimately related, since one is the dual of the other. The reason
that these concepts are not obviously dual in Euclidean geometry (there are
two angular bisectors of a pair of lines but only one midpoint of a pair of
points) is that there the fundamental conic itself is not self-dual and induces
qualitatively different behavior for angles and for distances.

Let us begin with the consideration of midpoints of two points p and q in
a general Cayley-Klein geometry. We first treat the case of a nondegenerate
distance measurement given by a primal matrix A of rank 2 at least. Again
we abbreviate Ωpq = pTAq. Let p and q be arbitrary points. A midpoint1 of p
and q is a point on the line l = join(p, q) with distK(p,m) = distK(m, q).
Here the distance measurement is considered an oriented measurement with
respect to the line l. Thus if X and Y are the two points where l meets the
fundamental object, we are looking for a point m such that

(p,m;X,Y ) = (m, q;X,Y ).

We will now explicitly calculate the solutions of this equation. While perform-
ing the calculation we will have to make a few nondegeneracy assumptions—
we will remove them in later considerations wherever possible. The cross-ratio
equation above is equivalent to

(p,X ;m,Y ) = (m,X ; q, Y ). (22.2)

This equation is obtained by permuting the two middle letters on each side of
the equation. For the moment we will assume that p and q are distinct points.
So we can introduce a local coordinate system on l by representing every point
λp+μq by the coordinates (λ, μ). By multiplying by the denominators of the
cross-ratios and canceling [X,Y ] we can now write condition (22.2) as the
bracket expression

[p,m][m,Y ][X, q] = [m, q][p, Y ][X,m]. (22.3)

We set m = λp+ μq and try to find the (λ, μ) that satisfy the equation. We
get the following condition:

[p, λp+ μq][λp+ μq, Y ][X, q] = [λp+ μq, q][p, Y ][X,λp+ μq].

1 Note that we deliberately do not speak of the midpoint.



432 22 Cayley-Klein Geometries at Work

Expanding, eliminating brackets with double letters, collecting terms, and
canceling the nonzero factor [p, q] yields

μ2[X, q][q, Y ] = λ2[p, Y ][X, p].

Now we use the fact that in Section 21.3 we found that X,Y are represented
in the form λp+ μq by the two points

(
Ωqq

Ωpq ±
√
Ω2
pq −ΩppΩqq

)
.

Furthermore, p corresponds to (1, 0) and p to (0, 1). Plugging in these values,
the above condition yields

μ2Ω2
qq = λ2(Ω2

pq − (Ω2
pq −ΩppΩqq)).

Canceling Ωqq once on each side, we get

μ2Ωqq = λ2Ωpp.

Thus we get the amazingly simple formula

m =
√
Ωqq · p±

√
Ωpp · q. (22.4)

Let us for a moment analyze the nondegeneracy assumptions that entered
this calculation. There were three of them. In the very last step we divided by
Ωqq. In fact, this is not much of a restriction, since there is a completely anal-
ogous way of deriving the result by dividing by Ωpp. However, it is essential
that at least one of these expressions is nonzero. Otherwise, expression (22.4)
would be identically zero. The second nondegeneracy assumption was that p
and q are distinct points. So let us see what happens to (22.4) if p and q are
identical. Evaluating the expression with the “+” sign results in the point
p again (which is a reasonable choice for the midpoint of p and p). Evalu-
ating the expression with the “−” sign results in the zero vector, a sign of
degeneracy. Finally, we assumed that the distance measurement is nondegen-
erate. This means that X and Y are distinct and we can divide by [X,Y ].
We made use of this when we derived the bracket expression (22.3). However,
this expression is still meaningful for coinciding points X and Y . If X and Y
coincide, then this equation becomes

[p,m][m,X ][X, q] = [m, q][p,X ][X,m].

This condition is satisfied either if X and m coincide or if (m,X ; p, q) are a
harmonic quadruple. This agrees with our usual interpretation of midpoints
in a degenerate distance measurement. For instance, in Euclidean geometry
the midpoint of p and q is the harmonic conjugate of the infinite point X
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on join(p, q) with respect to the pair (p, q); and there is another point that
has the same distance to p and q, namely X itself. Thus we can without any
problem use our derivations (and in particular the nice formula (22.4)) also
for a degenerate distance measurement.

It is an amazing fact that by this point of view we also obtain two points
that deserve the name midpoint of p and q in Euclidean geometry. The or-
dinary midpoint and the corresponding infinite point on join(p, q). We will
briefly inspect how formula (22.4) behaves for degenerate distance measure-
ments. In this case the matrix A has rank 1. Thus it is of the form A = ��T ,
where � represents the line that plays the role of the line at infinity. Expres-
sion (22.4) becomes

m =
√
qT ��T q · p±

√
pT ��T p · q = 〈q, �〉 · p± 〈q, �〉 · q.

The formula 〈q, �〉 · p + 〈q, �〉 · q gives the usual midpoint. The expression
〈q, �〉 · p − 〈q, �〉 · q can be interpreted as Plücker’s μ trick for calculating a
point on � and on join(p, q). Thus the second midpoint is, as expected, the
intersection of join(p, q) with the line at infinity. This point has the same
distance to p and q: it is infinitely far away.

We also want to mention the following important relation between the two
midpoints of p and q.

Theorem 22.4. Let m+ and m− be the two midpoints of p and q. Then the
pairs (p, q) and (m+,m−) are in harmonic relation.

Proof. Expanding the condition for harmonicity

[p,m+][q,m−] + [p,m−][q,m+] = 0

yields under the use of m+ = λp+ μq and m− = λp− μq

[p,m+][q,m−] + [p,m−][q,m+]

= [p, λp+ μq][q, λp− μq] + [p, λp− μq][q, λp+ μq]

= −μλ[p, q][q, p] + μλ[p, q][q, p]

= 0,

which is obviously true. ��

Remark 22.1. The observant reader should notice that we did essentially the
same calculation earlier, namely when we proved in Section 19.3 that the two
Euclidean angle bisectors of a line pair are perpendicular.

Let us turn to a generalization of the Euclidean “the medians meet in a point”
theorem. We will see that from the six possible midpoints of the points of a
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triangle, we get even more collinearities and concurrences than in the usual
Euclidean statement. Nevertheless, if we include infinite objects in Euclidean
geometry these extra collinearities and concurrences will be present there as
well.

Theorem 22.5. Let p, q, r be three points such that none of them lies on the
fundamental conic. Let

mσ1
pq =

√
Ωqq · p+ σ1

√
Ωpp · q,

mσ2
qr =

√
Ωrr · q + σ2

√
Ωqq · r,

mσ3
pr =

√
Ωpp · r + σ3

√
Ωrr · p,

be the three midpoints for σi ∈ {+1,−1}. Then mσ1
pq ,m

σ2
qr ,m

σ3
pr are collinear if

σ1σ2σ3 = −1. Furthermore, the lines join(mσ1
pq , r), join(mσ2

qr , p), join(mσ3
pr , q)

are concurrent if σ1σ2σ3 = 1.

Proof. Calculating the determinant of mσ1
pq ,m

σ2
qr ,m

σ3
pr yields

[mσ1
pq ,m

σ2
qr ,m

σ3
pr ] =

√
ΩppΩqqΩrr[p, q, r] + σ1σ2σ3 ·

√
ΩppΩqqΩrr[p, q, r].

This equation becomes zero if either all or exactly one of the σi is zero. This
corresponds to all four combinations of the claimed collinearities.

The statement about the concurrence of certain line triples is a direct
consequence of the harmonicity conditions of Theorem 22.4, the collinearity
just proved, and Theorem 19.4, which relates harmonicity, collinearity, and
concurrence of points on triangle sides. ��

Figure 22.6 illustrates the full theorem. The original triangle vertices are
bold and black. The six midpoints are white. The claimed collinearities corre-
spond to the blue lines. The six medians are the green lines. The little black
dots indicate the four places where the medians meet. Considering only the
blue and the green lines and the points at which triples of them meet, we get
exactly Desargues’s configuration (see Section 15.1).

The theorem is true in all Cayley-Klein geometries, in particular in Eu-
clidean geometry. There the points m−

pq,m
−
qr,m

−
pr are the infinite points on

the lines supporting the triangle sides.

Dual to the concept of midpoints is the concept of angle bisectors. Given
two lines l and g meeting at p we are looking for lines a through p with

(l, a;X,Y ) = (a, g;X,Y ).

The calculations we just did apply in direct duality, and we the following
equation for the two angle bisectors:

a =
√
Θll · g ±

√
Θgg · l.
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Fig. 22.6 The complete midpoint theorem.

In particular, the dual of Theorem 22.5 corresponds to the angle bisector
theorem in its full generality. (As an exercise try to interpret this theorem
for the special case of Euclidean geometry.)

We want to mention one more amazing connection of the angle bisector
theorem to another theorem of projective geometry. For this we have to con-
sider the special case of this theorem in hyperbolic geometry (nondegenerate
real fundamental object). We first consider two lines g and l passing through
the interior of the fundamental object. In what follows we assume thatm does
not lie on the fundamental conic. Thus we have mTAm �= 0. The following
construction generates their angle bisectors.

1. For each line construct the two tangents (t1l , t
2
l ) and (t1g, t

2
g) of its inter-

section points with the fundamental conic to that conic.
2. The lines

join(meet(t1l , t
1
g, ),meet(t2l , t

2
g, )),

join(meet(t1l , t
2
g, ),meet(t2l , t

1
g, ))

are the two angle bisectors.
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l

g

Fig. 22.7 Constructing angle bisectors.

The construction is illustrated in Figure 22.7 (left). The lines l and g are
blue, the tangents are green, and the resulting angle bisectors are red. One
way to see the correctness of this construction is to apply a projective trans-
formation that maps the fundamental conic to a circle and the intersection
of the lines to the center of the circle. For this situation the correctness of
the construction is an obvious Euclidean fact that follows by symmetry. The
reader is invited to create a purely projective proof based on the notion of
hyperbolic reflections.

We now want to construct the angle bisectors of a triangle by this con-
struction. Figure 22.7 (right) shows the construction of the three interior
angle bisectors. We already know that they must meet in a point, but this
figure indicates another projective reason. If we focus on the green lines, the
white points, and the conic, they form the hypotheses of Brianchon’s theorem
(see Theorem 10.7). This theorem then states that the three red lines must
meet in a point. Figure 22.8 shows a configuration for which all six angle
bisectors were constructed in this way.

Remark 22.2. The same construction also works in elliptic geometry. How-
ever, there the tangents turn out to have complex coordinates. The angle
bisectors are real objects again.
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Fig. 22.8 The complete angle bisector theorem.

22.5 Trigonometry

Large parts of classical Euclidean, spherical (elliptic in our setup), and hy-
perbolic geometry are dedicated to the classical topic of trigonometry. This
topic deals with interrelations of angles and distances in triangles. Angle
functions such sin(. . .), cos(. . .), tan(. . .) and in the hyperbolic case sinh(. . .),
cosh(. . .), tanh(. . .) play a prominent role in this context. In fact, almost
all trigonometric formulas can be considered shadows of projective relations.
These projective relations very often cover a broader context and specialize
in different flavors to the well-known trigonometric formulas in the different
geometries. On the level of projective geometry the theorems very often have
almost trivial proofs (at least from a projective perspective). We want to
exemplify this effect with just one theorem—the law of sines. In Euclidean
geometry it says that in a triangle with sides a, b, c and corresponding oppo-
site interior angles α, β, γ the relations

sin(α)
a

=
sin(β)
b

=
sin(γ)
c
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hold (with interior angles always measured with positive sign). There is a
corresponding theorem in elliptic geometry (which we for a moment consider
as geometry on the sphere, ignoring the identification of antipodal points). We
consider a sphere of radius 1, so that the total circumference is 2π. If we have
a spherical triangle with (geodesic) side lengths a, b, c and and corresponding
opposite interior angles α, β, γ, the relation

sin(α)
sin(a)

=
sin(β)
sin(b)

=
sin(γ)
sin(c)

holds. In hyperbolic geometry (we will learn more about hyperbolic geometry
in Chapter 24) the corresponding formula assumes the shape

sin(α)
sinh(a)

=
sin(β)
sinh(b)

=
sin(γ)
sinh(c)

.

The occurrence of the sinh(. . .) function reflects the fact that the length
measurement on a hyperbolic line is hyperbolic.

In what follows we will first connect the trigonometric functions to their
projective counterparts. We will see that all three formulas are just incarna-
tions of the same projective theorem. Then we will provide a conceptually
simple proof for this underlying projective theorem. To avoid the sign ambi-
guity that arises from measuring angles and distances in a certain direction
we will consider squares of the fractions in the above expressions.

Already in Section 21.4 we connected trigonometric functions to our pro-
jective ways of measuring. We will briefly redo this here in a self-contained
way in order to cover as well the case of the sinh(. . .) function. For this recall
that

sin(x) :=
eix − e−ix

2i
, sinh(x) :=

ex − e−x

2
.

In Section 20.3 we introduced the standard constants 1/2i and −1/2 as scaling
factors for elliptic, resp. hyperbolic, measurements. Using these constants, we
obtain for an elliptically measured size α = (1/2i) · ln(Ξ) (with Ξ playing
the role of the cross-ratio)

sin(α) = sin
(

1
2i

· ln(Ξ)
)

=
ei

1
2i ·ln(Ξ) − e−i

1
2i ·ln(Ξ)

2i

=
e

1
2 ·ln(Ξ) − e−

1
2 ·ln(Ξ)

2i

=
√
Ξ − 1/

√
Ξ

2i
.
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Analogously, for sinh(α) in a hyperbolic measurement α = (−1/2) · ln(Ξ) we
get

sinh(α) =
1/

√
Ξ −√

Ξ

2
.

This is up to a factor the same expression. So, how can we interpret the term√
Ξ − 1/

√
Ξ? In order to be able to neglect the sign right away we instead

consider (
√
Ξ−1/

√
Ξ)2 = Ξ+1/Ξ−2. In the following considerations we refer

to distance measurements; angle measurements are completely analogous. In
Section 21.3 we proved that for a (distance) measurement between p and q
the involved cross-ratio is

Ξ = (p, q;X,Y ) =
Ωpq +

√
Δpq

Ωpq −
√
Δpq

.

Inserting this in the expression Ξ + 1/Ξ − 2 and abbreviating Ω := Ωpq and
Δ = Δpq, we get

Ξ + 1/Ξ − 2 =
Ω +

√
Δ

Ω −√
Δ

+
Ω −√

Δ

Ω +
√
Δ

− 2

=
2Ω2 + 2Δ
Ω2 −Δ

− 2

=
4Δ

Ω2 −Δ

=
4Δpq

ΩppΩqq
.

This is (up to the factor of 4) exactly the function Φpq that we defined in
Section 21.4 in equation (21.2). There we also showed that this function (again
up to a constant factor depending only on A and B) equals the expression

Ψpq =
(p× q)TB(p× q)
pTAp · qTAq .

This expression was also used as a squared distance measurement for degen-
erate Cayley-Klein geometries. Thus the expression Ψpq can be interpreted in
three different ways. Up to a constant scalar factor it is . . .

. . . (sin(distK(p, q)))2 in an elliptic distance measurement,

. . . (sinh(distK(p, q)))2 in a hyperbolic distance measurement,

. . . the squared length in a degenerate length measurement.

Corresponding dual statements for angle measurements hold for the expres-
sion
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sin(α)
a

=
sin(β)

b
=

sin(γ)
c

P Q

R

p

q

r

ΨP Q

Ψ∗
pq

=
ΨQR

Ψ∗
qr

= ΨRP
Ψ∗

rp

Fig. 22.9 The law of sines in its projective version relates the cross-ratios (or equivalently
the measurements) at the points and sides of a triangle, with respect to the fundamental
object.

Ψ∗
lg :=

(l × g)TA(l × g)
lTBl · gTBg .

Now we are in a position to base all three versions of the law of sines on
a unified projective basis. All three statements essentially express the same
theorem (which extends even to the other types of Cayley-Klein geometries).
In the following theorem the role of A and B is usually played by the pri-
mal and dual matrices of the fundamental conic of a Cayley-Klein geometry,
although this is not essential for the theorem to hold.

Theorem 22.6. Let P,Q,R be three distinct points in the projective plane
and let be p, q, r coordinates of lines connecting these points: p = join(Q,R),
q = join(R,P ), r = join(P,Q). Let A and B be two arbitrary 3×3 matrices.
Assume that none of the points is on the primal conic described by A and
none of the lines is tangent to the dual conic described by B. Then we have

ΨPQ
Ψ∗
pq

=
ΨQR
Ψ∗
qr

=
ΨRP
Ψ∗
rp

.

Proof. For symmetry reasons it suffices to prove only one equality between
the involved fractions. We consider ΨPQ

Ψ∗
pq

= ΨQR

Ψ∗
qr

. The nondegeneracy assump-
tion in the theorem ensures that none of the quadratic forms in the following
expressions becomes zero. Expanding the functions Ψ and Ψ∗, we get

(P ×Q)TB(P ×Q)
PTAP ·QTAQ

/(p× q)TA(p× q)
pTBp · qTBq =

(Q×R)TB(Q×R)
QTAQ ·RTAR

/(q × r)TA(q × r)
qTBq · rTBr .
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Rewriting this into multiplicative form and canceling terms that occur on the
left and on the right, we are left with

(P ×Q)TB(P ×Q) · pTBp · RTAR · (q × r)TA(q × r) =

PTAP · (p× q)TA(p× q) · (Q×R)TB(Q×R) · rTBr.

Notice that each letter involved occurs equally often on the left and on the
right of the equation. So multiplying any of them by a nonzero scalar factor
does not change the truth of the equation. Now we can use the fact that there
are certain incidence relations between the points and lines. We have

r = join(P,Q); R = meet(p, q); p = join(Q,R); P = join(q, r).

In fact, it is possible to choose the scaling of the homogeneous coordinates
such that we have

r = P ×Q; R = p× q; p = Q×R; P = q × r.

We will encapsulate the proof of this nice little fact in a lemma after this proof.
Inserting these relations into our above expression, we get the replacements

rT

︷ ︸︸ ︷
(P ×Q)T B

r︷ ︸︸ ︷
(P ×Q) ·pTBp ·RTAR ·

PT

︷ ︸︸ ︷
(q × r)T A

P︷ ︸︸ ︷
(q × r) =

PTAP · (p× q)T︸ ︷︷ ︸
RT

A (p× q)︸ ︷︷ ︸
R

· (Q×R)T︸ ︷︷ ︸
pT

B (Q×R)︸ ︷︷ ︸
p

·rTBr,

which leaves us with

rTBr · pTBp ·RTAR · PTAP = PTAP ·RTAR · pTBp · rTBr.

Obviously every quadratic form on the left occurs also on the right, which
proves the theorem. ��

Although the proof contains quite a number of letters and symbols, the
reader should be aware of the fact that it is structurally extremely simple.
After the replacement of the crossproducts we have only a simple cancellation
argument. In essence, it boils down to a strategy of the form, Formulate the
theorem in the appropriate form—see immediately that it is true. Further-
more, the proved fact is by far more general than the usual law of sines. It
even applies to matrices A and B that have nothing to do with each other.

Still we have to prove the little lemma required for the theorem.

Lemma 22.1. For three distinct points P,Q,R of a triangle and the three
lines p, q, r supporting the sides, let

r = join(P,Q); R = meet(p, q); p = join(Q,R); P = join(q, r).
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Then we can choose the concrete coordinates such that

r = P ×Q; R = p× q; p = Q×R; P = q × r.

Proof. We choose P,Q, p, q as coordinates representing the corresponding
points that in addition satisfy 〈Q, p〉 = 0. This can be done by suitable
scaling of Q. We set r = P × Q and R = p × q. Inserting r = P × Q into
P = q × r, we get

q × r = q × (P ×Q) = 〈q, P 〉Q− 〈q,Q〉P = 〈q,Q〉P.

Similarly, we get

Q×R = Q× (p× q) = 〈Q, p〉q − 〈Q, q〉p = 〈Q, p〉p.

This proves the claim. ��

Let us at the end of this section summarize several projective algebraic
terms and provide a table of useful relations and what they mean with re-
spect to the various measurements. We assume that the constants are as
usual chosen to be 1/2i for elliptic measurements and −1/2 for hyperbolic
measurements. We assume that we measure the distance between two points
p and q. The cross-ratio (p, q;X,Y ) will be abbreviated by Ξ. The distance
in the various measurements is a := distK(p, q). The expressions in each row
are identical.

Ξ-expression Ω-expression elliptic hyperbolic Euclidean

1/Ξ+Ξ−2
4

Δpq

ΩppΩqq
− sin2(a) sinh2(a) k · |a|2

1/Ξ+Ξ+2
4

Ω2
pq

ΩppΩqq
cos2(a) cosh2(a) k · |a|2 + 1

The expressions in the second row have been discussed at length in this
section. The factor k depends on the unit scale in the corresponding Euclidean
measurement. The expressions in the third row can be easily derived from the
second row using the identities Δpq = Ω2

pq − ΩppΩqq , cos2(a) + sin2(a) = 1
and cosh2(a) − sinh2(a) = 1. As usual, there are also analogous statements
for angle measurements.
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Circles and Cycles

Do not disturb my circles.

Archimedes of Syracuse
(287–212 BCE)

Let us come to another interesting class of geometric objects: circles.
Speaking about circles in general Cayley-Klein geometries first raises a con-
ceptual issue. Euclidean circles have several geometric properties on which
one could base a more general definition. They are. . .

. . . objects of constant distance to a given point m—the circle’s center,

. . . objects that have the property that every incident point “sees” a given
segment with endpoints on the circle under the same (directed) angle,

. . . objects that admit a continuous group of isometries under which any
point on the object can be mapped to any other.

At first sight it is not at all clear that these properties are all equivalent for
different Cayley-Klein geometries (in fact, they are not). So, what are rea-
sonable properties on which one should base a general definition of a circle?
Closely related to this question is, again, the problem of degenerate situa-
tions. Questions like “Should one admit centers on the line at infinity?” “How
should one deal with degenerate measurements?” arise naturally in this con-
text. In fact, it turns out that (with a proper treatment of infinite radii)
the above concepts are equivalent only for Euclidean and pseudo-Euclidean
geometry. For different reasons these properties begin to diverge in all other
geometries. We here will again take a road that is on the pragmatic side and
forms a compromise between conceptual understanding and easily accessible
concrete calculational formulas. We first will stick mainly to the first property

443
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(constant distance to the center). At the end of this chapter we will discuss
alternative definitions and dedicate a short section to the subtleties of circles
in type-VII (Galilean) geometries.

23.1 Circles via Distances

So for now let us take the obvious definition and define circles to be objects
of constant distance to a given point m, the circle’s center. We start our
investigations by expressing this property in terms of the quadratic forms A
and B of the primal/dual pair of the fundamental conic F of the geometry. In
Section 21.4 we showed that (also for degenerate measurements) the function

Ψpq :=
(p× q)TB(p× q)
pTAp · qTAq (23.1)

is bijectively related to the distance between p and q: different values of Ψpq
mean different distances and vice versa. Applying this to the case of circles
with center m, we see that a circle is the set of points p for which

(m× p)TB(m× p) = k ·mTAm · pTAp (23.2)

for some constant k. There is one important difference between the two formu-
las (23.1) and (23.2). By rewriting (23.1) in the form (23.2) we have silently
dealt with the case of exceptional measurements between m and p. In (23.1)
they lead simply to an undefined expression 0/0. In (23.2) they lead to equa-
tions of the form 0 = 0, independently of the choice of k. Thus if m, is
a proposed center and e is an exceptional point with respect to m then e
automatically lies on every circle around m. We know this effect from Eu-
clidean geometry. The points I and J are exceptional with respect to every
center m, their distance to any m is undetermined, and every circle passes
through them. Depending on the fundamental conic F and on the position
of m relative to it, the exceptional points with respect to m may be real or
complex.

Equation (23.2) imposes a quadratic condition on p. Thus in particular a
circle (including the exceptional points with respect to m) is a special conic.
We can make the quadratic condition more explicit if we rewrite the p ×m
operator using matrix multiplication. For m = (x, y, z)T we set

M :=

⎛
⎝

0 z −y
−z 0 x
y −x 0

⎞
⎠

and get m× p = M · p (we used this trick already in Section 11.1). Thereby
and with k′ = k ·mTAm, equation (23.2) becomes
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pTMTBMp = k′ · pTAp.

Equivalently for suitable λ and μ we can rewrite this equation as

pT (λ ·MTBM + μ · A)︸ ︷︷ ︸
Cλ,μ

p = 0.

The λ, μ notion has the advantage that (as commonly in projective geom-
etry) we can also deal with the case k′ = ∞ in a clean way. The matrix
Cλ,μ represents the quadratic form of the circle. The circles with center m
are parameterized by the homogeneous coordinates (λ, μ). We get two ex-
treme situations C1,0 = MTBM and C0,1 = A. The first quadratic form
pTC1,0p = pTMTBMp = 0 encodes the geometric condition that the line
p ×m is tangent to the fundamental conic. For the other extreme situation
the equation pTC0,1p = pTAp = 0 simply says that p is on the fundamental
conic. It is illustrative to analyze the corresponding radii for these extreme
situations. We have to do this for degenerate and non-degenerate distance
measurement separately.

If the measurement is degenerate, we have seen at the end of Section 21.4
that Ψmp itself is (up to a scalar normalization factor) the squared distance
measure. For a point with pTMTBMp = 0 the numerator of Ψmp becomes
zero. Thus the circle represented by C1,0 is a circle with radius 0. For a
point with pTAp = 0 the denominator of Ψmp becomes zero. Thus the circle
represented by C0,1 is a circle with radius 1/0 = ∞.

The situation is the same in the nondegenerate case, although there the
reasoning is slightly different. For a point p on pTMTBMp = 0 the line
join(m, p) is tangent to the fundamental conic. Thus the distance measure-
ment is degenerate, since X and Y will coincide and we get a distance of
zero. A point p with pTAp = 0 is on the fundamental conic. Thus it coincides
with X or Y and the distance measurement will become infinite.

In both cases the different circles Cλ,μ with center m can be considered a
linear interpolation between a circle with zero radius and a circle with infinite
radius around m. If, for instance, we want to create a circle with center m
and through a given point p, then we can calculate its coordinates by the
usual Plücker’s μ trick and obtain immediately the following result:

Theorem 23.1. Let K be a Cayley-Klein geometry and let m be a point not
on the fundamental conic of K. Let p be an arbitrary point not on the funda-
mental conic. Then the set of all points q having the same distance to m as
p united with the points exceptional with respect to m is a conic given by the
quadratic equation qTXq = 0 with

X = (pTAp) ·MTBM − (pTMTBMp) ·A.

Proof. Let k be the constant such that
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pTMTBMp = k · pTAp.

The quadratic equation qTXq = 0 expands to

0 = (pTAp) · (qTMTBMq) − (pTMTBMp) · (qTAq).

Inserting the above expression gives

0 = (pTAp) · (qTMTBMq) − (k · pTAp) · (qTAq).

Canceling pTAp proves that q lies on the same circle around m as p, which
proves the claim. ��

23.2 Relation to the Fundamental Conic

We will now study how a general circle (with the constant-distance-from-
center definition and center not on the fundamental conic) is related to the
fundamental conic. We start with the situation in nondegenerate Cayley-
Klein geometries. In these geometries there is one more circle around m that
deserves special attention. In Section 21.4 we have seen that in the nondegen-
erate case the discriminant Δmp = Ω2

mp − ΩmmΩpp up to a scalar multiple
equals the expression (m× p)TB(m× p). We can rewrite the discriminant as
a quadratic form in p by

Δmp = pTAmmTAp−mTAmpTAp = pT (AmmTA−
β·C0,1︷ ︸︸ ︷

mTAm · A)︸ ︷︷ ︸
α·C1,0

p.

Thus up to a scalar multiple the matrices AmmTA−mTAm·A andMTBM =
C1,0 are identical. Rewriting the above expression with AmmTA on one side
of the equality sign gives

AmmTA = α · C1,0 + β · C0,1 = Cα,β .

This implies that in the nondegenerate case the matrix AmmTA represents
a special circle around m. The line m∗ = Am is the polar line of m with
respect to the fundamental conic. So the circle represented by the matrix
AmmTA = (m∗)T (m∗) is the doubly counted polar line of the center m.
This means that in particular this doubly covered polar of m must be con-
sidered a circle with center m. This tells us something about the relation
of general circles to the fundamental conic. In Section 11.4 we studied the
problem of intersecting two conics given by matrices C and D. The strat-
egy there was to generate a degenerate conic in the bundle λC + μD that
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consisted only of two lines. Intersecting this degenerate conic with the conic
represented by C, we get the intersections of the two original conics. Now, in
case of intersecting a circle Cμ,λ different from F having center m with the
fundamental conic F , our considerations imply that we always get the fol-
lowing degenerate situation. The degenerate conic AmmTA is in the bundle
spanned by the two conics. Consequently, the intersections of Cμ,λ and F are
the same as the intersections of AmmTA with F . Since AmmTA represents
a double line, we get two pairs of coinciding points of intersection. These
points that are at the same time on the polar of m and on F are exactly
the two points that have an exceptional measurement with respect to m. All
circles around m have these exceptional points with respect to m in common.
This is where they touch the fundamental conic. The situation is illustrated
in Figure 23.1. All in all we obtain the following:

Theorem 23.2. In a nondegenerate Cayley-Klein geometry every circle of
finite positive radius meets the fundamental object in two double points.

In other words, in nondegenerate Cayley-Klein geometries a circle is touching
the fundamental conic in two (generally different) points. The reader should
at this point look back at Figures 20.7, 20.8, 20.9, and 20.10. The curves
shown there are circles. The double contact is obvious for the last three
figures, where the center lies outside the fundamental object. In Figure 20.7
the center lies in the interior of the fundamental conic. One might wonder
where the points of double contact are in these situations. They are still
present, only they become complex. So far, we have not treated the situation
that the center lies on the fundamental conic. This is a limiting case of the
situation described above in which the two touching points become coincident
and the circles have even fourfold contact with the fundamental conic.

What happens in other geometries? We will not go encyclopedically
through all different situations. We mention only Euclidean and pseudo-
Euclidean geometry. There the dual conic is of the form B = IJT + JIT .
The primal conic is of the form A = (I × J)(I × J)T . A circle around m must
satisfy the equation

(p×m)T (IJT + JIT )(p×m) = k · pT (I × J)(I × J)p.

This equation can be rewritten as

2[p,m, I][p,m, J] = k · [p, I, J]2.

In particular, this equation is satisfied by p = I and p = J. As one might have
guessed, circles are conics through I and J.
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m

A

MT BM

AmmT A

Fig. 23.1 Three interesting circles around m: The fundamental conic with radius ∞
(black), the pair of tangents through m with radius 0 (green) and the doubly counted
polar of m (blue). The white points have exceptional measure with respect to m.

23.3 Centers at Infinity

So far, we have always assumed that the center m of the circle does not lie
on the fundamental conic. If the center m is on the fundamental conic then
all points have an infinite or exceptional distance to m (independently of the
distance measurement being degenerate or not). Again limit considerations
are necessary to derive a reasonable concept of a circle. However, we will only
briefly touch this subject.

For nondegenerate Cayley-Klein geometries the situation is comparably
simple. We have seen that for a fixed center m all circles lie in the span

λ ·MTBM + μ · A. (23.3)

The matrix MTBM describes the degenerate conic consisting of the two
tangents from m to F . In the limit case that m is on the fundamental conic
given by A, these two tangents coincide, and MTBM becomes a rank-1 ma-
trix and is up to a scalar factor identical to AmmTA. The conic described
by this matrix is still different from the fundamental object. Accordingly,
λ ·MTBM + μ · A still describes a one-dimensional bundle of conics. Each
conic in this bundle may be considered a conic with “center” m. The two
exceptional points with respect to m coincide, and these circles touch the
fundamental object in one point. “Circles” of this type are called horocy-
cles. They can occur as real objects only in the case of a nondegenerate
and real fundamental conic. For good reasons they are called “cycles” in-
stead of circles, since the usual points-of-same-distance definition no longer
applies to them. Figure 23.2 shows three different types of circle-like objects
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m1
m2

m3

F

p

Fig. 23.2 Three types of hyperbolic cycles. A circle (blue), a horocycle (red), and a
hypercycle (green)
.

in hyperbolic geometry (the general term is cycle). The blue object is a usual
circle. The corresponding center m1 lies inside the fundamental conic. All
points on the circle have real distance to the center. The circle has no real
intersections with the fundamental conic. The red cycle is a horocycle. There
the two contact points with the fundamental conic coincide. This means that
it touches the fundamental conic of order 4. The center m2 lies on (!) the
cycle. All points of the cycle have an infinite distance to the center. However,
this is no longer a characterizing property for them. Finally, the green cycle
is a so-called hypercycle. Its center m3 is outside the fundamental conic. It
touches the fundamental conic in the two points that have exceptional mea-
sure with respect to m3. All points on the hypercycle have complex distance
to the center.

The situation is slightly more complicated in the case of Euclidean or
pseudo-Euclidean geometry. We study the situation in the standard embed-
ding of Euclidean; geometry, the situation for pseudo-Euclidean geometry is
analogous. The fundamental conic and a point m = (a, b, c)T are given by

m =

⎛
⎝
a
b
c

⎞
⎠, A =

⎛
⎝

0 0 0
0 0 0
0 0 1

⎞
⎠, and B =

⎛
⎝

1 0 0
0 1 0
0 0 0

⎞
⎠.

We get
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MTBM =

⎛
⎝

0 c −b
−c 0 a
b −a 0

⎞
⎠ ·
⎛
⎝

1 0 0
0 1 0
0 0 0

⎞
⎠ ·
⎛
⎝

0 −c b
c 0 −a
−b a 0

⎞
⎠ =

⎛
⎝

c2 0 −ac
0 c2 −bc

−ac −bc a2 + b2

⎞
⎠.

If m is at infinity (this means c = 0), then the matrix MTBM is a multiple
of the matrix A, and λ ·MTBM +μ ·A no longer generate a bundle of circles.
Let us study the limit case in which c approaches 0 and we keep a finite point
p = (x, y, 1) on the circle fixed. The corresponding circle is given by

(pTAP ) ·MTBM − (pTMTBMp) · A.

Plugging in the value of p, we get

12 ·MTBM − (a2 + b2 − 2axc− 2byc+ c2(x2 + y2)) ·A,

which leads to the matrix
⎛
⎝

c2 0 −ac
0 c2 −bc

−ac −bc 2axc+ 2byc− c2(x2 + y2)

⎞
⎠.

From this matrix we now can extract a factor c. Extracting this factor first,
canceling it by homogenization, and setting c = 0 in the remaining expression
leads to the matrix ⎛

⎝
0 0 −a
0 0 −b
−a −b 2ax+ 2by

⎞
⎠.

This matrix describes a degenerate conic consisting of the line at infinity and
a line through p in the direction orthogonal to m. This can be easily seen by
checking that each infinite point and each point of the form p+ α(−b, a, 0)T

lies on the corresponding conic.
It is interesting that in the limiting case it is reasonable to consider also the

line at infinity as part of the circle. (Depending on the geometric setup of a
certain problem, this may make sense or not.) Considering the line at infinity
as part of a circle with “infinite radius” and center at infinity is consistent
with our observation that circles are conics through I and J (resp. I and J,
in general). The line at infinity passes through these two points, and those
conics that have this line as a component are exactly the degenerate conics
that consist of the line at infinity and an arbitrary other line.

23.4 Organizing Principles

So what are general properties that characterize a general circle in an ar-
bitrary Cayley-Klein geometry? This question is unexpectedly difficult to
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answer, since it depends a bit on the point of view and the properties that
one wants to generalize. We will discuss here only some approaches and collect
a few general properties that all cycles (this is what we will call the gener-
alizations of circles) should have. Some of the issues will be touched only
briefly, since they are closely related to differential geometry and we do not
want to develop here the necessary differential-geometric machinery. In what
follows, we will use the more general name cycle for circle-like objects and
reserve the word circle strictly for the points-with-contant-distance-to-center
definition.

Cycles as limiting cases: We have seen that in the nondegenerate cases
(geometries of type I and type II and finite center) it is clear what a circle
should look like. It is the set of all points having a fixed distance from the
center m together with the points that have exceptional measure with respect
to m, or in algebraic terms the points p that satisfy the equation

pTMTBMp = k · pTAp.

Perhaps the most reasonable definition for a general cycle is to say that
these are all objects that arise as a continuous limit case of a sequence of
nondegenerate circles. During the limiting process the matrices A and B
may approach the matrices of a degenerate Cayley-Klein geometry and/or
the point m may approach a position on the fundamental conic.

One might wonder why there is any difficulty at all, since we already
characterized circles with infinitely distant centers in Section 23.3 for different
geometries and from there derived general definitions of a cycle in these cases.
We obtained there:

• In hyperbolic and elliptic geometry circles are conics that have tangential
contact with the fundamental conic in two points (that may be complex).
If the center is on the fundamental conic, these points of contact may
coincide and generate an osculation of order four.

• In Euclidean and pseudo-Euclidean geometry cycles are conics through
I and J, the two special points on the (degenerate) fundamental conic.
This definition also covers the case of an infinitely distant center. Then the
cycle degenerates into two lines one of which is the (primal) fundamental
conic itself.

One can prove (we will not do this here) that by these characterizations
all limiting cases in these geometries are properly covered. So all that is
left is the case of dual Euclidean and dual pseudo-Euclidean geometry and
the case of doublydegenerate (Galilean) geometry. In fact, the definition for
dual Euclidean and dual pseudo-Euclidean geometry can be easily dealt with
by dualizing the second of the above characterizations (we will see this in a
minute). However, in the case of Galilean geometry the concepts of circles and
cycles break apart seriously. We will come back to this issue in Section 23.5
in some detail. But we will now at least roughly state what happens.
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The reason why we can deal in a reasonably tame way with limit cases of
circles in the geometries of types I to VI is that there the limiting consider-
ations can be made intrinsically within a single specific geometry:

In Cayley-Klein geometries of types I to VI the limits of circles that
we obtain by moving the center m to the fundamental conic are exactly
the same as the limit cases we get when moving at the same time the
fundamental conic (A,B) and m to a degenerate situation.

The proof of this fact is quite technical, and we will not carry it out here.
The statement allows us to do the limit considerations of circles with infinite
center without changing the fundamental conic. This fact breaks down for the
geometries of type VII for which as well the distance as the angle measure-
ment is degenerate. Let us exemplify this for a concrete choice of matrices
(A,B) that represent a Galilean geometry. We set

m =

⎛
⎝
a
b
c

⎞
⎠, A =

⎛
⎝

0 0 0
0 0 0
0 0 1

⎞
⎠, and B =

⎛
⎝

0 0 0
0 1 0
0 0 0

⎞
⎠.

Thus the fundamental conic consists of the (doubly covered) line with co-
ordinates l∞ = (0, 0, 1)T (this is the usual line at infinity in our standard
embedding) and on it the double point p∞ = (0, 1, 0)T (this is the infinite
point of the usual y-axis). We get

MTBM =

⎛
⎝

0 c −b
−c 0 a
b −a 0

⎞
⎠ ·
⎛
⎝

0 0 0
0 1 0
0 0 0

⎞
⎠ ·
⎛
⎝

0 −c b
c 0 −a
−b a 0

⎞
⎠ =

⎛
⎝

c2 0 −ac
0 0 0

−ac 0 a2

⎞
⎠.

The squared distance from m to a point p = (x, y, z)T is given by

pTMTBMp

pTAp ·mTAm
=

(cx− az)2

z2c2
. (23.4)

For finite points p and m we can normalize this equation by setting c =
z = 1 and simply obtain (x − a)2. Thus the distance of p = (x, y, 1)T and
m = (a, b, 1)T in the standard embedding is (up to sign) simply the difference
of the x-coordinates of the points. The set of all points equidistant to p with
respect to the center m is a pair of vertical lines, one of which passes through
p, and the other lies symmetrically with respect to m (see Figure 23.3, left).
If m is moved to an infinite point (for instance by moving it vertically up),
then this qualitative property of being a conic that decomposes into a pair
of lines does not change. Performing a calculation similar to the one we
did for Euclidean geometry, we obtain that in the limit situation the points
equidistant to p still form a pair of parallel vertical lines.

If we consider the more general situation in which we simultaneously de-
form the primal dual pair (A,B) and the position of m, we get more general
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Fig. 23.3 A Galilean circle vs. a Galilean cycle.

conics. For this we consider a primal/dual pair of matrices

A =

⎛
⎝

0 0 0
0 0 0
0 0 1

⎞
⎠ and B =

⎛
⎝
k 0 0
0 1 0
0 0 0

⎞
⎠.

If the parameter k traverses the interval [−1, 1], we move continuously from
the situation of pseudo-Euclidean geometry (k < 0) via the degenerate case
of Galilean geometry (k = 0) to the Euclidean case (k > 0). The points I
and J are the solutions of k · x2 + y2 = 0 and z = 0. In the first situation
I and J are real. In the process of deformation they approach each other.
They coincide for k = 0 with I = J = (0, 1, 0)T = p∞, and branch off as
complex conjugates when k enters the positive region. We now consider the
situation of a circle through three finite points p, q, r. We could make the
effort to perform the rather tedious explicit calculation, but we may also
argue directly in geometric terms. For each choice of k �= 0 the corresponding
circle is the unique conic through the five points p, q, r, I, J. Throughout the
deformation process the line join(I, J) stably remains l∞ = (0, 0, 1)T , the
primal fundamental conic. In the limiting case k = 0 the points I and J
coincide, and the conic through the five points becomes a conic through
p, q, r and p∞ = I = J tangent to l∞. Figure 23.4 illustrates this passage for
the situation in which l∞ and p∞ were moved to finite positions. The middle
picture corresponds to the case of Galilean geometry. If, as in our original
choice of the fundamental conic, l∞ = (0, 0, 1)T and p∞ = (0, 1, 0)T , then
in the pseudo-Euclidean case cycles look like (usual) hyperbolas, since they
intersect l∞ twice. In the Euclidean case they look like (usual) ellipses, since
they do not intersect l∞, and in the Galilean case they look like parabolas
of the form y = β(x − α)2 + γ, since they touch l∞ at the point p∞. Thus
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Fig. 23.4 Limiting case for a Galilean cycle.

each parabola with vertical symmetry axis corresponds to a cycle of Galilean
geometry. As special limiting cases we here again get degenerate parabolas
that either consist of two vertical lines (these are the circles) or consist of l∞
and an arbitrary other line. Figure 23.3 (right) shows one possible cycle.

One might wonder what these general parabola-shaped cycles have to do
with ordinary circles in Galilean geometry. For instance, one might be in-
terested in the question, “where is the center?” In fact, a careful analysis
shows what happens to the center: it moved to the position p∞, and indeed
this point has the same distance to all points of a parabola. The distance
is infinite. However, this is no longer a characterizing property. Later, in
Section 23.5, we will learn about other surprising (and more illuminating)
properties that are shared by a circle and a parabola.

Duality of circles: We now want to highlight another property of general
cycles. The attribute of being a circle carries some nice duality properties.
Knowing only about Euclidean geometry, these duality properties are usually
obscured by the fact that the fundamental conics of this geometry is not self-
dual. The duality properties are best observed in self-dual geometries where
the primal and dual fundamental conic have the same degree of degeneracy
(these are hyperbolic, elliptic, and Galilean geometry). So let us start our
investigations with the definition of a usual (nondegenerate) circle and dualize
it word by word.

Primal: A circle is a curve consisting of all points that have a fixed
constant distance to a given center.

Dual: A dual circle is a curve all of whose tangents have a fixed constant
angle to a given line.

At first sight it is not evident whether and if so how these primal and
dual circles are related. It turns out that for nondegenerate geometries both
definitions describe exactly the same class of objects. For every circle we find
a suitable line with respect to which it is a dual circle. We can even be more
specific. If m is the center of the circle, then its dual m∗ = Am with respect
to the fundamental conic of the geometry is the line that appears in the dual
circle definition. By switching to algebraic terms we may right away include
the case of circles with infinite radius. The following theorem formalizes this
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Fig. 23.5 The (oriented) angle of tangents to a circle with the polar of the center is
constant.

duality. We recall that for nondegenerate geometries the matrix of a circle
with center m can be written as a linear combination α ·AmmTA+ β ·A. A
circle with infinite radius corresponds to (α, β) = (0, 1). Analogously, a dual
circle can be described by a linear combination α′ ·B(m∗)(m∗)TB + β′ ·B.

Theorem 23.3. Let (A,B) be the primal/dual pair of a nondegenerate Cayley-
Klein geometry. Let m be a point and let X = α · AmmTA + β · A be the
matrix representing a circle with center m. Then the line m∗ = Am has the
property that for suitable α′, β′ the matrix X ′ := α′ ·BmmTB+β′ ·B satisfies
X ·X ′ = μE for some parameter μ (and hence X ′ describes a conic dual to
the circle X).

Proof. We prove this theorem by directly multiplying X and X ′, thereby
deriving conditions for α′ and β′. Since we are in the nondegenerate case, we
may without loss of generality assume that B = A−1. We thus havem∗ = Am
and m = Bm∗. The matrices X and X ′ may be rewritten as

X = α(m∗)(m∗)T + βA and X ′ = α′mmT + β′A−1.

The case (α, β) = (0, 1) immediately leads to the condition (α′, β′) = (0, 1).
Since only the ratio of the parameter pair (α, β) is relevant, we can (in order
to deal with the remaining cases) without loss of generality set α = 1. The
following calculation shows that we find a suitable pair (α′, β′) also for α′ = 1.
In this case we get



456 23 Circles and Cycles

X ·X ′ = ((m∗)(m∗)T + βA) · (mmT + β′A−1)

= (m∗)(m∗)TmmT + βAmmT + β′(m∗)(m∗)TA−1 + ββ′AA−1

= ((m∗)Tm)(m∗)mT + β(m∗)mT + β′(m∗)mT + ββ′E

= ((m∗)Tm+ β + β′)︸ ︷︷ ︸
=:0

(m∗)mT + ββ′E.

The condition (m∗)Tm + β + β′ = 0 can be easily satisfied by setting
β′ = −β − mTAm. Thus (α′, β′) = (1,−β − mTAm) is the choice whose
existence is claimed by the theorem. ��

This theorem also implies that the tangents to a circle form a constant
angle with the polar of the center of the circle. Figure 23.5 illustrates this
theorem for a hyperbolic circle (left) and for an elliptic circle (right). The
elliptic picture is as usual represented on the sphere that is a double cover of
the projective plane. There the theorem becomes an almost obvious geometric
fact. The figure consisting of the center, the circle, and the polar of the center
forms an object that has a rotational symmetry whose axis is the line joining
the two antipodal representations of the center. Any tangents to the circle
can be moved into each other by a simple rotation around this axis. Thus the
angle under which they meet the polar must be constant, since it remains
invariant under the continuous rotation.

What happens to this duality relation in Euclidean geometry? The polar of
any finite point is the line at infinity. Every finite line cuts the line at infinity
under the constant angle π/2. Thus in particular, all tangents to a circle cut
the polar of the center under this angle. Unfortunately, the situation is very
degenerate. This has the consequence that the definition of a dual cycle by all
tangents having a fixed angle with respect to a line describes only pathological
situations. If the line is finite, then all lines cutting this line at a constant
angle form a bundle of parallels. The conic that has those tangents consists
of a single point at infinity. If it is the line at infinity, the only angle that
may occur is π/2. Thus the bundle of lines meeting at this angle consists of
all finite lines and does no longer describe the tangents of a conic. The same
reasoning applies to pseudo-Euclidean geometry.

Our last consideration also tells us something important about cycles in
dual Euclidean or dual pseudo-Euclidean geometry. There the primal defini-
tion via centers contains only pathological examples. In these geometries it
is more reasonable to base the definition of a cycle on the dual situation and
to prefer “midlines” to centers.

Curves of constant curvature: Here comes another definition of a cycle
that one often finds in the literature.

In any geometry a cycle is a curve of constant curvature.
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Fig. 23.6 Bicycling with constant curvature.

Curvature is a notion related to differential geometry. Roughly speaking, for
a smooth curve it describes the amount of turn at each point while the curve
is traversed. If you have a constant turn while you traverse, you will travel
on a cycle. A good way of imagining local curvature is to assume that the
curve is a road that you travel on a bicycle. The amount of local curvature
corresponds to the angle of your handlebar at each moment. If you fix the
handlebar of your bicycle at a certain angle, you will travel along a circular
path. This includes the limiting case of fixing the handlebar at a straight
position (frontwheel aligned to rearwheel) that takes you on a straight linear
road.

In contrast to our previous characterizations, the cycle definition via cur-
vature does not a priori state the existence of a center (or a midline), nor does
it state that the resulting curve has the shape of a conic. It uses only local
differential properties, and the concrete shape and the existence of centers
can be derived as secondary properties. However, one has to be very careful,
since this local definition introduces some subtle (but extremely important)
differences to the concepts we introduced in our previous sections. Very often
in the literature these differences are overlooked or ignored leading to partial
misunderstandings, at least for the novice in the field. Since we here do not
want to develop all the necessary tools from differential geometry, we explain
these differences on a more phenomenological level.

Compared to our more algebraic language, this more local differential ge-
ometric approach has some remarkable differences. They already become vis-
ible in Euclidean geometry. For the special case of a handlebar fixed in the
straight position this definition gives us the line as a cycle, but does not con-
tain the line at infinity as a component. The situation becomes more drastic
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in hyperbolic geometry. For this we refer to Figure 23.6 (this figure is very
closely related to Figure 23.2, in which we described the qualitatively differ-
ent types of circles). Imagine you start your bicycling trip at point p. You
may fix your handlebar at a position that gives you just the right amount of
turn to traverse the blue circle. What will happen? With this fixed curvature
you will traverse the blue circle round and round. You may start again this
time fixing the handlebar to traverse the red curve (the horocycle). What will
happen? While you traverse the curve you will get closer and closer to the
point where the horocycle touches the fundamental conic. However, you will
never reach it, since in the metric of the corresponding Cayley-Klein geometry
the path to this point has infinite length. If we look at the situation “from the
outside,” your bike seems to shrink as it approaches the boundary (like the
fishes in an Escher circle limit picture). You yourself will never recognize this
shrinking process, since during your trip all parts of the environment (trees,
houses, your eye, your brain) will shrink as well in the same proportional
amount. By starting from point p in the opposite direction with the same
turning angle you may still traverse the other part of the curve that is below
point p. Although the red curve is still connected in the inner topology of
your habitat, it is topologically different from the blue circle. It seems like a
line infinite in both directions. The situation becomes even more drastic when
you travel along the green curve. Again you will never be able to tour beyond
the points where the green curve touches the fundamental conic. However,
this time this prevents you from reaching a whole part of the green curve.
The segment (dimmed green) between the two touching points that does not
contain p is not reachable by traveling on a curve with constant curvature.
Similarly, if you started on this dimmed green part you would never by able
to reach the other part by traveling with the corresponding constant curva-
ture. If we define a cycle via the local curvature property, we must consider
the green curve as two different unconnected cycles. In our algebraic setup
we treated it as one cycle, since both branches lie on the same conic. We will
return to this issue later when we speak about hyperbolic geometry.

We will briefly mention that the effect we just explained is also very much
related to generating circular shapes by a sequence of iterated reflections. If
you look back at Figure 21.9, you observe that the feet of Dr. Stickler in the
hall of mirrors stand on a circular path. If the two mirror axes meet inside
the fundamental conic, this path will be a full circle. If they meet outside,
then the mirror images will appear on only one branch of the cycle. We may
consider the transformations of the green copies of Dr. Stickler as a kind of
discrete version of the bicycle metaphor. To get from one green copy to the
next, Dr. Stickler must take a step of constant width and then turn around
by a constant angle.1

1 In a sense, this is a kind of Cayley-Klein-turtle-graphics: move forward—turn—move
forward—turn—move forward—turn—. . .
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23.5 Cycles in Galilean Geometry

We will finish our bestiary of circles by considering the situation in type-VII
Cayley-Klein geometries (Galilean geometry) a bit more closely. We already
mentioned that in this geometry the definitions of circles and cycles differ
most significantly. While circles (as curves of constant distance to a finite
point) are a pair of parallel vertical lines, cycles are general parabola shaped
curves with vertical symmetry axis. There are significantly more cycles than
circles in this geometry. The general equation of such a parabola has three
free parameters; the circles have only two free parameters. Furthermore (if
we include limit cases of parabolas), every circle is a cycle. In this chapter
we want to show how several theorems that are well known for Euclidean
geometry transfer to Galilean geometry. Before we go into the details of the
theorems, we will give two more indications why the parabola shaped cycles
are the right object to consider in Galilean geometry. Firstly, if we take
the path of constant curvature definition of a cycle, then it turns out that
in Galilean geometry these curves are exactly the parabolas with vertical
symmetry axis. Secondly, if we consider the iterated reflections of two mirrors,
we also get parabola shaped traces of the mirror images of an object. To see
this, we have to reconsider our precise definition of a reflection in a Cayley-
Klein geometry. This was defined by a line and a point that form a pole/polar
pair in the geometry. Now, in Galilean geometry every pair of a line incident
with p∞ and a point on l∞ form such a pole/polar pair. Figure 23.7 shows a
computer experiment of placing Dr. Stickler inside a hall of mirrors consisting
of two vertical mirrors (they pass through p∞) with corresponding mirror
points on the line at infinity (not visible in the picture). The iterated reflection
generates a parabola shaped trace. The exact position of the mirror points of
the reflections determine the position and steepness of the observed parabola.

Before studying elementary geometric theorems in Galilean geometry we
must discuss the precise notion of distances and angles. Both types of mea-
surements (distances and angles) are degenerate, and concerning distances we
have already done this. In equation (23.4) we have shown that in the standard
embedding with l∞ = (0, 0, 1)T and p∞ = (0, 1, 0)T , the squared distance of
two points with homogeneous coordinates p = (xp, yp, zp)T , q = (xq , yq, zq)T

is
(xpzq − xqzp)2

z2
pz

2
q

=
(
xp
zp

− xq
zq

)2

.

We may directly use the term

dist(p,m) =
xp
zp

− xq
zq

as oriented distance in this geometry, since along the line join(p,m) the
measurements always refer to the same objects on the fundamental conic.
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Fig. 23.7 Dr. Stickler in a Galilean mirror cabinet.

Since the fundamental conic is self-dual (point p∞ incident to line l∞) we
get a corresponding formula for angles between lines. If l = (al, bl, cl) and
g = (ag, bg, cg) are given, then a similar calculation shows that the (oriented)
angle is

ang(l, g) =
al
bl

− ag
bg
.

Bearing in mind that in the standard embedding the line l has the equation
x · al + y · bl + cl = 0, which (if l is nonvertical) is equivalent to

y = −al
bl

· x− cl
bl
,

we see that (up to a sign change) the Galilean angle of two lines is just
the difference of their slopes. Since Galilean geometry is a rather degenerate
environment, the distance and angle measurement turn out to be performable
without much calculation. For the moment we may make our life a little
easier and strip off our projective framework and directly express Galilean
measurements in unusual R

2 coordinates. For this we will simply ignore points
at infinity (i.e., points on l∞), and ignore vertical lines (i.e., lines through
p∞)as well. 2. In this simplified framework the points p and q are given by
the two-dimensional coordinates p = (xp, yp) and q = (xq, yq). The lines l
and g are represented by equations y = kl · x + rl and y = kg · x + rg. The
formulas for distance and included angle then simply become

2 In a sense, we are dealing for a moment with Galilean geometry in the same way we
dealt with Euclidean geometry before projective geometry was invented.
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Fig. 23.8 The peripheral angle theorem in Euclidean and Galilean geometry. In the Eu-
clidean case it states that the Euclidean angles at X and X′ are identical. In the Galilean
case it states that the Galilean angles at X and X′ are identical. This means that the
differences of corresponding line slopes are equal.

dist(p,m) = xp − xq and ang(l, g) = kl − kg.

We will soon consider theorems that involve exactly one Galilean cycle.
By applying a suitable Galilean transformation this cycle can without loss
of generality always be chosen to be the unit parabola y = x2. This can be
seen as follows. Galilean transformations are those projective transformations
that leave l∞ and p∞ invariant. In other words, they preserve (Euclidean)
parallelism and the property of being a vertical line. Expressed in R

2, two
types of such transformations are translations (x, y) �→ (x + tx, y + ty) and
scaling of the y-axis (x, y) �→ (x, y · s) with s �= 0. Using a combination of
these two operations every parabola can be transformed into the form y = x2.

Equipped with these preconsiderations that allow for reasonably simple
calculations, we now study a few theorems about cycles in Galilean geome-
try. The first problem is to identify theorems in other Cayley-Klein geometries
that may have a chance to be still not too degenerate to be meaningful in
Galilean geometry. The problem is that theorems involving, for instance, cen-
ters of circles (or cycles) automatically become too degenerate. If a cycle is a
circle (two vertical lines), then it has infinitely many possible centers, namely
all points on the middle axes of the two lines that constitute the circle. If the
cycle is a parabola, then the center is automatically p∞, so all such cycles
share this center. As a consequence, also the notion of a “diameter” is quite
degenerate. It is a line through the center of a cycle. So for a parabola shaped
cycle this is just any vertical line. The following are interesting exercises that
I want to leave to the reader. What are the Galilean analogues for Thales’
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theorem, the angle bisector theorem for a triangle, and the medians-meet-in-
a-point theorem?

So, what are possible interesting theorems that may be interpreted in
Galilean geometry? Such theorems should directly make statements about
measurements and their relations without making reference to objects that
become degenerate. One such theorem is the peripheral angle theorem in
Euclidean geometry:

Let A and B be two points on a circle. Then every other point X on
the circle “sees” A and B under the same oriented angle (see also The-
orem 17.1).

A corresponding theorem in Galilean geometry translates to this:

Let A and B be two points on a parabola then for every other point x
on the parabola the difference of the slopes of the lines AX and BX is
a constant depending only on A and B.

The difference of the slopes corresponds to the angle under which the points
are seen in the Euclidean version.

In principle, this Galilean version follows instantly by a limit argument
that deforms Euclidean geometry into Galilean geometry and the fact that
the peripheral angle theorem does hold in Euclidean geometry. We here pro-
vide a sketch of the limit argument, which goes as follows. We know that
the peripheral angle theorem holds in Euclidean geometry. We deform the
fundamental object by introducing a parameter k that traverses the interval
[0, 1] from 1 to 0 moving I = (−ik, 1, 0) and J = (ik, 1, 0) to finally become
coincident at p∞. As long as k > 0, the geometry thereby defined is still
Euclidean (although not identical to our standard embedding with I = J
and J = J). Hence with the corresponding measurement of the geometry the
peripheral angle theorem still holds. In the limit case (at k = 0) the geome-
try becomes Galilean. The circle becomes a cycle in this Galilean geometry,
lines remain lines, and the comparison of angle measurement in Euclidean
geometry asymptotically becomes the comparison of angle measurement in
Galilean geometry (this requires a little work analogous to our considerations
of Section 20.4). As a consequence, the corresponding Galilean theorem holds
as well.

Nevertheless, since the Galilean statement is of a very elementary nature,
we also want to provide an elementary proof for it.

Proof. Without loss of generality we may limit ourselves to the case of a stan-
dard parabola y = x2. The points involved in the theorem have coordinates
A = (a, a2), B = (b, b2), and X = (x, x2). The slopes of the lines AX and
BX calculate to

a2 − x2

a− x
and

b2 − x2

b− x
.
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Fig. 23.9 The product of the lengths of the two sections of a secant depends only on the
circle and the cutting point X. This holds as well in Euclidean as in Galilean geometry. In
the latter the lengths are the differences of the ordinates.

Since X was assumed to be distinct from A and B, we may factor out the
denominators and obtain the slopes

a+ x and b+ x.

Thus the difference of the slopes is simply a− b and does not depend on the
position of X . ��

Let us close this section with one more example of a Euclidean theorem
that nicely translates to Galilean geometry.

Let P be an arbitrary point and let C be a circle. Let l be a line through
p that intersects C in two distinct points A and B. Then the product of
lengths the of the segments (P,A) and (P,B) depends only on P and C.

The Galilean analogue of this theorem becomes the following:

Let P = (xp, yp) be an arbitrary point and let P be a parabola. Let l be a
line through p that intersects P in two distinct points A = (xa, ya) and
B = (xb, yb). Then the product (xa−xp)(xb−xp) depends on P and P.

Again, the Galilean theorem can be proved by limit considerations from
the Euclidean one. But again we will provide an elementary proof.

Proof. We may assume that P is the unit parabola y = x2. Then A and B
may be represented by coordinates A = (a, a2) and B = (b, b2). Let P have
coordinates P = (x, y). The collinearity of P,A,B may be expressed as
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0 = det

⎛
⎝
a b x
a2 b2 y
1 1 1

⎞
⎠ = ab2+by+a2x−ay−ba2−b2x = (ab+y−(b+a)x)(b−a).

Dividing by (b − a) (the points A and B are distinct) gives

(ab+ y − (b+ a)x) = 0. (23.5)

Now we consider the product (a− x)(b− x), which is claimed to be constant
by the theorem. Expanding gives

(a− x)(b − x) = ab− x(a+ b) + x2.

Subtracting (23.5) from this expression, which means subtracting zero, gives

(a− x)(b − x) = −y + x2. (23.6)

Thus the product depends only on x and y, as claimed by the theorem. ��
There is a remarkable connection of this theorem to a theorem we already

proved earlier. Lemma 10.1 provided a kind of mechanical multiplication
device based on a parabola (see also Figure 10.9). The theorem we just proved
can be directly used to demonstrate that this multiplication device works
properly. Lemma 10.1 just corresponds to the special case x = 0 in which
equation (23.6) becomes a · b = −y.
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Non-Euclidean Geometry: A Historical
Interlude

Some of the men stood talking in this room, and at the right
of the door a little knot had formed round a small table, the
center of which was the mathematics student, who was ea-
gerly talking. He had made the assertion that one could draw
through a given point more than one parallel to a straight line;
Frau Hagenström had cried out that this was impossible, and
he had gone on to prove it so conclusively that his hearers

were constrained to behave as though they understood.

Thomas Mann, Little Herr Friedemann

History will teach us nothing.

Sting

Imagine you are a two-dimensional being living in the interior of a real non-
degenerate fundamental conic of a Cayley-Klein geometry. All your measure-
ments (distances and angles) are done with respect to this Cayley-Klein ge-
ometry, and you have no knowledge of the fact that your world is embedded in
some larger space (the projective plane in which the Cayley-Klein geometry
is defined). One day your dog, your ruler, and you decide to take a long, long
walk always following the same direction. How would that feel? In a sense it
would not feel very exciting, and this is indeed an exciting thing. The three
of you simply go on without anything remarkable happening. A person from
the outside observing you will see you all getting smaller and smaller as you
approach the boundary of the fundamental object. With your legs shrinking,
your step size (observed from the outside) is getting smaller and smaller, too.
Every single step will be very small compared to your current distance to the
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boundary. You yourself will recognize nothing of this change of size. Together
with you your dog, your shoes, your ruler, everything shrinks by the same
amount. So when in regular intervals of time you measure the size of your
dog (this is an old habit of yours), it neither shrinks nor grows. What does
measuring mean? Well, you take your ruler and compare it to the length of
your dog. Your dog was three times as long as your ruler when you started
your trip and it is so every time you redo the measurement. So who could
daresay that something has changed?

24.1 The Inner Geometry of a Space

In this little story there are two observers: you inside the conic and a person
looking from the outside. Both describe the same situation in different terms.
You from the inside observe an infinite space. The person from the outside
observes you constantly shrinking within a finite space. Both descriptions are
perfectly legitimate. Yours describes the inner geometry of the space you live
in. The person outside describes the scenario he sees in terms of the geometry
he lives in (and perhaps as an irony of fate his world is also embedded in some
strange way into a larger space he does not know about).

Do you as an inhabitant of the interior of the conic have any chance to find
out that the world you live in is indeed the finite interior of a conic? Does this
question even make sense? In a way yes, in a way no, and a good answer to
these questions becomes philosophical sooner or later. You as a being in your
world have very good reasons to call it infinite in every direction. However,
your intellect (after quite a lot of mathematical thought) may tell you that
there are ways to realize your world (to find a model for it consistent with
your experiences) in a way that it fits into the finite region of the interior
of a conic. However, in order to make some predictions about the geometric
behavior of your habitat it does not matter which way you describe it. So
both standpoints (the inside/infinite view and the outside/finite view) may
be equally appropriate as long as they make the same predictions about what
will happen.

We have seen in the previous chapters that compared to the Euclidean
geometry we learn in school (and which is perhaps—at least locally—the
geometry of the space we are living in), the geometry in a general Cayley-
Klein geometry may be significantly different (one may have, for instance,
hyperbolic angle measurement, so that it is not possible to turn around one’s
own axis and face the same direction again). But what is it like inside the
nondegenerate and real conic? There angle measurement is elliptic as we are
used to from Euclidean geometry: turning around by 360◦ brings you back to
your old position. Distance measurement is in a good sense infinite in each
direction, as in Euclidean geometry. However, the differences to Euclidean
geometry come into play whenever distance and angle measurements interact.
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Fig. 24.1 Dr. Stickler making an infinite walk (left) and performing the square-walk
experiment (right).

So here is a little experiment one might perform that might be illuminating
about the inner geometry of the space one is living in:

– First construct a device with which you can measure a right angle (per-
haps take a piece of paper, fold it and fold it again so that your first
fold comes to lie on itself. After unfolding the paper you see four right
angles).1

– Put a pin at your start position,
– Then choose any direction and walk 1000 steps straight in this direction.

Make a right turn by exactly 90◦, walk 1000 steps straight, make a right
turn again, walk 1000 steps, make a final right turn again, and finally
walk once more 1000 steps.

After this procedure, where are you? In Euclidean geometry you would ex-
actly end up at the position you started. In the Cayley-Klein geometry inside
the nondegenerate fundamental conic you would end up at some different
place. (The prediction where you end up does not depend on the inner or
outer description. Both are equally legitimate and describe the same situa-
tion.)

The geometric situation within the real nondegenerate fundamental conic
has historically played an eminently important role in mathematics, since
it differs only so subtly from the commonly used Euclidean geometry. Its
discovery was pivoted for several branches of mathematics and is closely
interwoven with the way we nowadays treat mathematics. Several equivalent
models of this space were discovered—one of them is in terms of Cayley-
Klein geometries. Others use only intrinsic properties of local curvatures, still
others embed this space into regions of the complex number plane. All these

1 Let us neglect the fact that paper-folding requires three dimensions to be performed.
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approaches are equally legitimate, since they all lead to the same qualitative
results. The Cayley-Klein approach has the advantage to embed this special
geometry into a larger system of other possible geometries.

This chapter is perhaps a bit different from the others in this book and
offers more philosophical and historical background dealing with the nature
of space and the nature of geometry. Still we here can only scratch the surface
and advise the reader to consult some of the really brilliant books and papers
on this topic. We here want to recommend four books that provide interesting
insights in the history of development of these ideas. The very wellwritten
book of Marvin Jay Greenberg on hyperbolic geometry [49] dedicates entire
chapters to the historical and philosophical aspects of hyperbolic geometry.
The books by Jeremy Gray Worlds out of nothing [48] and by Isaak Moisee-
vich Yaglom Felix Klein and Sophus Lie—Evolution of the Idea of Symmetry
in the Nineteenth Century [137] tell essentially the entire story of the de-
velopment of hyperbolic geometry, including the origins of modern algebra
and projective geometry. Finally, F. Klein’s Development of mathematics in
the 19th century [69, 70] gives a kind of first-hand treatment of the subject.
Although it sometimes lacks the distance of a historian, it gives very deep
insights into important streams of thought of these times.

24.2 Euclid’s Postulates

In the books (the Elements) that Euclid wrote around 300 BCE about math-
ematics and geometry, he tried to lay a rigorous foundation of the matters
he was writing about. Compared to modern standards there are still a few
gaps in his reasoning, but he came pretty close. In a sense, his treatment of
mathematics served as a blueprint for the way we do mathematics nowadays:
Base your formal treatment on axioms and definitions; then do admissible
formal reasoning to derive theorems based only on these axioms, definitions,
and things you have already proved. Thus ultimately the proof of every sin-
gle theorem can be traced back to your axioms, definitions, and logically
admissible reasoning steps.

In Euclid’s treatment of geometry, after specifying the objects (points,
segments, circles), which he treats in very general terms by sentences like
“A point is that which has no part” etc.), he describes the relations between
these objects by a set of five axioms, often called his postulates:

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight line.

3. Given any straight line segment, a circle can be drawn having the segment
as radius and one endpoint as center.

4. All right angles are congruent.
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Fig. 24.2 One of the oldest surviving fragments of Euclid’s Elements, found at
Oxyrhynchus and dated to circa 100 CE. The diagram accompanies Book II, Proposi-
tion 5.

5. If two lines are drawn which intersect a third in such a way that the sum
of the inner angles on one side is less than two right angles, then the
two lines inevitably must intersect each other on that side if extended far
enough.

All further conclusions are based on these five axioms and logical reasoning
(at least they are intended to be). Already a superficial look at these axioms
shows a significant difference between the first four and the fifth postulate.
The first four are brief and concise, while the fifth postulate looks more like
the fine print in a license agreement of a cell phone contract. The reasons for
this remarkable difference are somehow buried in history. One could speculate
that Euclid himself was of the opinion that the geometric property expressed
by the fifth postulate is of crucial importance and he wanted to be on the
watertight side. At least Euclid was somehow reluctant to make use of the
fifth postulate, and his first 28 theorems are proved without referring to it.

No matter what was the actual reason for Euclid’s reluctance, at some time
mathematicians were beginning to speculate whether the fifth postulate was
indeed necessary. It might well be a consequence of the first four postulates.
Attempts to prove the fifth postulate from the remaining four can be traced
back to a time more than 1000 years ago. Ibn al-Haytham (Alhazen) (965–
1039), an Iraqi mathematician, is the first person known to have worked on
this problem. Over the years, along with the many attempts to prove the fifth
postulate from the other four (or to show its independence), mathematicians
(too many to be named all here) came up with several concise formulations
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equivalent to the fifth postulate in the presence of the other four. Here we
list a few of them:

a. At most one line can be drawn through any point not on a given line
parallel to the given line in a plane.

b. The sum of the angles in every triangle is 180◦.

c. There exists a triangle whose angles add up to 180◦.

d. There exists a pair of similar, but not congruent, triangles.

e. If three angles of a quadrilateral are right angles, then the fourth angle
is also a right angle.

f. There exists a quadrilateral of which all angles are right angles.

g. In a right-angled triangle, the square of the hypotenuse equals the sum
of the squares of the other two sides (Pythagorean theorem).

h. There is no upper limit to the area of a triangle.

The first of these formulations is often called the parallel postulate, and it
traces back to John Playfair (1748–1819). Formulations b. to d. demonstrate
that the problem is intimately related to the angular sum of a triangle. For-
mulations e. and f. show that our walk in a square experiment from the last
chapter was ultimately a test for the truth of the fifth postulate. Formulation
g. shows that the Pythagorean theorem is essentially equivalent to the fifth
postulate, and finally formulation h. shows that the area of a triangle will be
bounded if the contrary of the fifth postulate holds.

24.3 Gauss, Bolyai, and Lobachevsky

Surprisingly, the problem of the independence of the fifth postulate was not
resolved to full satisfaction until approximately between 1820 and 1882, and
the Cayley-Klein geometries we discuss in in this book play a crucial role in
this development. The story is long, surprisingly emotional, involves personal
fate and has several surprising twists. Here we will give only a brief outline
of what happened in the final and crucial years.

The main actors in this part of mathematical history were Carl Friedrich
Gauss (1777–1855), János Bolyai (1802–1860), Nikolai Ivanovich Lobachevsky
(1792–1856), Eugenio Beltrami (1835–1900), Felix Christian Klein (1849–
1925) and Jules Henri Poincaré (1854–1912). One should also mention Farkas
Bolyai (1775–1856), the father of János, because of his personal involvement
and the fact that he somehow formed a bridge between Gauss and his own
son.

In short, the story can be told as follows. In the first half of the nineteenth
century several mathematicians were attempting to show that the parallel
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C.F. Gauss N.I. Lobachevsky

E. Beltrami

E. Beltrami
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Fig. 24.3 The non-Euclidean geometry hall of fame.

postulate (or some of the other equivalent formulations) was indeed depen-
dent on the other four of Euclid’s postulates. Many of these attempts were
based on a “reductio ad absurdum” argument: Assume the fifth postulate is
not true and try to derive a contradiction from this assumption. Thereby
several mathematicians drew conclusions about a system consisting of the
first four postulates and the negation of the fifth postulate. Some of them
proceeded without finding a contradiction and at some point gave up with
more or less desperation. Others stopped at a point when they arrived at a
conclusion that in their opinion contradicted common sense (like “the area
of a triangle is bounded”), claiming that this proves the dependence of the
fifth postulate. In fact, they were wrong, as we will soon see.

There were three persons who went in a sense further than others without
ending up in desperation: Gauss, Bolyai (junior), and Lobachevsky. A point
on which historians agree nowadays is that their closely related results were
indeed individual and independent developments. All three of them developed
a geometric system based on the postulates one to four and the negation of
the fifth postulate. The system derived was comparably rich as Euclidean
geometry, and seemingly free of contradictions. In this new non-Euclidean
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geometry there were perfectly reasonable notions of elementary geometry,
differential geometry, mechanics, etc. Many Euclidean theorems had a non-
Euclidean analogue that was often related to the corresponding Euclidean
one by just a small but essential twist.

The way the three mathematicians dealt with their results was quite dif-
ferent. Gauss was perhaps the first person who was convinced that there is
an equally justified non-Euclidean geometry. However, he was reluctant to
publish anything on this topic. He was afraid of the at that time dominant
philosophical school of Immanuel Kant. One of Kant’s fundamental state-
ments in his epistemology was that the properties of a straight line are a
priori clear and cannot be further discussed. Starting an intellectual dispute
about non-Euclidean geometry would exactly mean to discuss the very mean-
ing of a straight line. Nevertheless, to the outside world there was indeed some
evidence that Gauss was well aware of all the subtleties around the parallel
postulate. As the leading mathematician of his day he often received letters
with supposed proofs of the dependence of Euclid’s fifth postulate. On these
occasions he often responded very soon, pointing the finger to the place of
the logical flaw in the supposed argumentation. Still, during his lifetime he
did not publish anything on this subject.

Farkas Bolyai, the father of János Bolyai, was a school friend of Gauss.
Farkas himself was deeply committed to the problem of the parallel postulate
and worked on it for several decades (without real success). When his son
told him that he was as well planing to spend significant time working on the
parallel postulate, the father beseeched him not to do so. To get an impression
how emotionally tense the subject was, here is an excerpt from a letter Farkas
Bolyai wrote to his son János trying to prevent him from doing research on
the parallel postulate. For those readers capable of reading German I include
the full original passage, which may be found, for instance, in [104]. After
this I include an abridged translation that can be found in [49].

Du darfst die Parallelen auf jenem Wege nicht versuchen; ich kenne diesen Weg bis
an sein Ende. Auch ich habe diese bodenlose Nacht durchmessen, jedes Licht, jede
Freude meines Lebens sind in ihr ausgelöscht worden; ich beschwöre Dich bei Gott!
Lass die Lehre von den Parallelen in Frieden. Du sollst davor denselben Abscheu
haben, wie vor einem liederlichen Umgang, sie kann Dich um all Deine Muße, um
die Gesundheit, um Deine Ruhe und um Dein ganzes Lebensglück bringen. Diese
grundlose Finsternis würde vielleicht tausend Newtonsche Riesentürme verschlingen,
es wird nie auf Erden hell werden, und das armselige Menschengeschlecht wird nie et-
was vollkommen Reines haben, selbst die Geometrie nicht; es ist in meiner Seele eine
tiefe und ewige Wunde. Behüt Dich Gott, dass diese sich (bei Dir) je so tief hinein-
nagen möchte. Diese raubt einem die Lust zur Geometrie, zum irdischen Leben.
Ich hatte mir vorgenommen, mich für die Wahrheit aufzuopfern; ich wäre bereit
gewesen, zum Märtyrer zu werden, damit ich nur die Geometrie von diesem Makel
gereinigt dem menschlichen Geschlecht übergeben könnte. Schauderhafte, riesige
Arbeiten habe ich vollbracht, habe bei weitem Besseres geleistet als bisher (geleis-
tet wurde), aber keine vollkommene Befriedigung habe ich je gefunden. Hier aber
gilt es: Si paullum a summo discessit, vergit ad imum. Ich bin zurückgekehrt, als
ich durchschaut habe, dass man den Boden dieser Nacht von der Erde aus nicht
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erreichen kann, ohne Trost, mich selbst und das ganze Geschlecht bedauernd. Lerne
an meinem Beispiel; indem ich die Parallelen kennen wollte, blieb ich unwissend,
diese haben mir all die Blumen meines Lebens und meiner Zeit weggenommen. Hier
steckt sogar die Wurzel aller meiner späteren Fehler, und es hat darauf aus den
häuslichen Gewölken geregnet. Wenn ich die Parallelen hätte entdecken können,
so wäre ich ein Engel geworden, wenn es auch niemand gewusst hätte, dass ich
sie gefunden habe. . . . Versuche es nicht, Du wirst es nie zeigen, dass je mit den
unaufhörlichen Einbiegungen desselben Maßes die untere Gerade geschnitten werde,
es steckt in dieser materia ein ewig in sich zurückdrehender circulus - ein Labyrinth,
das einen immer hineinlockt -, wer sich hineinbegibt, verarmt, wie ein Schatzgräber,
und bleibt unwissend. Solltest Du auf was für immer ein absurdum geraten, alles ist

umsonst. Du kannst es nicht als ein Axiom hinstellen. . . . Die Säulen des Herkules
stehen in diesen Gegenden, gehe nicht um einen einzigen Schritt weiter, sonst bist
Du verloren.

And here the abridged translation:

You must not attempt this approach to parallels. I know this way to its very end. I
have traversed this bottomless night, which extinguished all light and joy of my life. I
entreat you, leave the science of parallels alone . . . I thought I would sacrifice myself
for the sake of the truth. I was ready to become a martyr who would remove the
flaw from geometry and return it purified to mankind. I accomplished monstrous,
enormous labors; my creations are far better than those of others and yet I have not
achieved complete satisfaction. For here it is true that si paullum a summo discessit,
vergit ad imum. I turned back when I saw that no man can reach the bottom of this
night. I turned back unconsoled, pitying myself and all mankind. . . do not go any
step further; otherwise, you are lost.

János Bolyai did not stop. He continued and developed the above-
mentioned rich system of non-Euclidean geometry. After he convinced his
father that he had indeed gone further in this subject than other contempo-
rary mathematicians, his father sent his son’s notes to his youth friend Gauss.
He wanted to let Gauss approve (or disapprove) the mathematical thoughts
of his son and to get advice how to proceed. Gauss answered in a letter, of
which here is an extract (again in German):

Jetzt über die Arbeiten deines Sohnes.—Wenn ich damit anfange, das ich solche nicht

loben darf, so wirst Du wohl einen Augenblick stutzen, aber ich kann nicht anders;
sie loben hieße mich selbst zu loben, denn der ganze Inhalt der Schrift, der Weg, den
Dein Sohn eingeschlagen hat, und die Resultate, zu denen er geführt ist, kommen fast
durchgehends mit meinen eigenen, zum Teile schon seit 20–25 Jahren angestellten
Meditationen berein. In der Tat bin ich dadurch auf das Äußerste überrascht. – Mein
Vorsatz war, bei meinen Lebzeiten gar nichts bekannt werden zu lassen. Die meisten
Menschen haben gar nicht den rechten Sinn für das, worauf es dabei ankommt,
und ich habe nur wenige Menschen gefunden, die das was ich ihnen mitteilte mit
besonderem Interesse aufnahmen. Um das zu können, muß man erst recht lebendig
gefühlt haben, was eigentlich fehlt, und darüber sind die meisten Menschen ganz
unklar. Dagegen war meine Absicht mit der Zeit alles zu Papier zu bringen, daß
es mit mir dereinst nicht unterginge. – Sehr bin ich also überrascht, daß gerade
der Sohn meines alten Freundes es ist, der mir auf eine so merkwürdige Art zuvor
gekommen ist.

Abridged translation:



474 24 Non-Euclidean Geometry: A Historical Interlude

If I commenced by saying that I am unable to praise this work, you would certainly
be surprised for a moment. But I cannot say otherwise. To praise it would be to
praise myself. Indeed the whole contents of the work, the path taken by your son,
the results to which he is led, coincide almost entirely with my meditations, which
have occupied my mind partly for the last thirty or thirty-five years. So I remained
quite stupefied. So far as my own work is concerned, of which up till now I have
put little on paper, my intention was not to let it be published during my lifetime.
. . . I have found very few people who could regard with any special interest what
I communicated to them on this subject. . . .it was my idea to write down all this
later so that at least it should not perish with me. It is therefore a pleasant surprise
for me that I am spared this trouble, and I am very glad that it is just the son of

my old friend, who takes the precedence of me in such a remarkable manner.

Finally János Bolyai could publish his explorations as an appendix in a
book written by his father.

The third person who arrived at essentially the same system was N.I. Lo-
bachevsky, a mathematics professor at the university of Kazan, in Russia. He
as well started to derive conclusions from the negated parallel postulate and
made perhaps the furthest-reaching investigations of differential-geometric
structures in his non-Euclidean geometry. In a letter Gauss also expressed
great appreciation of the work of Lobachevsky. Not seldom is the term
Lobachevskian Geometry used synonymously with the term non-Euclidean
geometry.

The story continues. The two Bolyais falsely believed that Lobachevsky
was a pseudonym of Gauss under which he incognito had published his
thoughts on non-Euclidean geometry2. And unfortunately, neither Bolyai nor
Lobachevsky received recognition of their work until Gauss died in 1855. With
Gauss’s death his private letters became public, and with them also a wealth
of private thoughts of the world’s leading mathematician on the subject of
non-Euclidean geometry, including references to Bolyai and Lobachevsky.
During their lifetimes only few mathematicians knew about the groundbreak-
ing work of these two mathematical revolutionaries.

24.4 Beltrami and Klein

So what was the achievement of the three protagonists of our last section?
They went further than others in deriving consequences of the negated par-
allel postulate. By this they developed a system of geometric terms at least

2 This almost curious fact is mentioned in Klein’s historical book [69] and can be traced
back to a text Bemerkungen ueber Nicolaus Lobatschefskijs Untersuchungen zur Theorie
der Parallellinien Bolyai wrote around 1851. There he writes: “Für noch wahrscheinlicher
aber halte ich, daß der ohnedem an Schätzen so reiche Koloß Gauss es nicht ertragen kon-
nte, daß ihm jemand auch in dieser Sache zuvorgekommen sei, und, da er dies durchaus
nicht mehr verhindern konnte, das Werk selbst bearbeitet hat und unter Lobatschefskijs
Namen hat herausgeben lassen.” Further details on this fascinating part of the story may
be found in [122].
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as rich as Euclidean geometry in which Euclid’s fifth postulate does not hold.
However, by this they did not prove the independence of the fifth postulate
from the other axioms. Still there was a slight chance that if one went further
and further making logically correct conclusions one could arrive at a point
where a statement and at the same time its negation could be proved. If this
happened, then the system of non-Euclidean geometry would turn out to be
self-contradictory and inconsistent.

In fact, this state of matters is not as dramatic as it may sound at first. In
a sense, the new non-Euclidean geometry was in no worse state than the tra-
ditional Euclidean geometry. Also, under the assumption of Euclid’s original
five axioms it was not impossible that by drawing further and further con-
clusions one might end up with a self-contradiction of the system. A certain
element of belief is necessary for both types of geometry.

From a more modern standpoint of formal logic the situation looks as fol-
lows. When doing mathematics one has first to agree on several conventional
facts (the axioms) and rules of logical inference (as Euclid did). From this
starting point a system of conclusions and derivations can take off and form
the rich platform of an interesting mathematical subject. One cannot a priori
rule out the possibility that such a system of axioms and inference rules may
not be self-contradictory. The situation is even worse: In 1931 the famous
mathematician Kurt Gödel proved that any such system if it is sufficiently
complex3 is incapable of proving its own consistency. Nevertheless, and for
good reasons, there are systems in mathematics in whose consistency math-
ematicians “trust.” The system of natural numbers is one of them; Euclid’s
geometry is another. The trust comes from two sources: the experience that
even centuries of mathematical research did not reveal an inconsistency and
the fact that these systems have counterparts (physical models) in the real
world. However, also in this respect, for traditional Euclidean geometry the
state of affairs is not that clear. Some of Euclid’s postulates make statements
about the behavior of lines of infinite extent. In practice, one does not have
access to such lines. So compared to that, what is the state of a new devel-
opment like non-Euclidean geometry à la Gauss, Bolyai, and Lobachevsky?
First of all, it comes neither with experience nor with a directly accessible
physical model. So what the triumvirate of non-Euclidean geometry achieved
was in a sense developing a dense network of concepts that made it more and
more likely that it would obtain the trust of the mathematical community.

The next fundamental step in the development was taken 13 years after
Gauss’s death and is intimately related to the names of Beltrami and Klein.
In 1868, E. Beltrami was able to provide a model for non-Euclidean geometry,
not a physical model but a formal model in terms of traditional Euclidean
geometry. In other words, equipped with the language of Euclidean geome-
try he was able to define objects and relations between them that behave in
such a way that the first four postulates and the negated fifth postulate were

3 This means sufficiently complex that one can express the natural numbers in it.
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satisfied. This put non-Euclidean geometry on a new footing. If you trust
in the consistency of Euclidean geometry, then you must also trust in the
consistency of non-Euclidean geometry, since the latter can be consistently
described in terms of the first. Also conversely it is possible to describe Eu-
clidean geometry in terms of hyperbolic geometry. Thus either one trusts in
the consistency of both geometries or in neither of them. This finally provided
a satisfactory answer to the problem of the independence of the parallel pos-
tulate. No matter whether one takes Euclid’s first four postulates together
with the parallel postulate or with its negation to define a geometric system,
it is possible to obtain a model of the other possibility inside this system.

Beltrami’s work (a reprint of a translation can be found in [125]) was based
essentially on differential-geometric arguments. He embedded hyperbolic ge-
ometry in a surface of constant negative curvature (the pseudosphere). This
surface was itself embedded in (three-dimensional) Euclidean space. A few
years later, Felix Klein was able to streamline these thoughts and prove the
interrelated consistency of the two geometries without referring to differen-
tial geometry or higher-dimensional spaces. He used a method published by
the brilliant British mathematician Arthur Cayley [21] in 1859 to express
measurements in terms of projective relations with respect to a conic. Klein
greatly generalized Cayley’s methods and arrived at the Cayley-Klein ge-
ometries we have been dealing with here for four chapters. Along the way
he could show that the Cayley-Klein geometry with a nondegenerate real
fundamental conic restricted to the interior of this conic formed a perfect
model for non-Euclidean geometry à la Gauss, Bolyai, and Lobachevsky. In
two groundbreaking articles published in 1871 to 1873 entitled “On the so-
called non-Euclidean geometry” (see [66, 67, 125]) Klein exposed this whole
chain of ideas describing a comparably simple model of non-Euclidean geom-
etry within Euclidean (or better projective) geometry. The same model can
as well be extracted from Beltrami’s works. This is why this model is often
referred to as the Beltrami-Klein model of non-Euclidean geometry.

24.5 The Beltrami-Klein Model

This section is dedicated to the problem of explaining how the Beltrami-Klein
model relates to the Euclidean postulates. There is one technical (or better
historical) problem that we cannot completely resolve on the following two
pages. Compared to modern standards, Euclid’s definitions and postulates are
not completely rigorous. Several implicit assumptions are made by Euclid,
and it would be much better to base the following consideration on how
Euclid used his postulates than on how he formulated them. For instance,
when in the second postulate Euclid says that a line segment can be extended
indefinitely in a straight line he implicitly assumes that this straight line is
being infinitely extended in both directions and that it is not the case that it
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topologically may close up to form a circle. He uses this implicit assumption,
for instance, when he proves that the exterior angle in a triangle is always
larger than each of its opposite interior angles. There are several more implicit
assumptions on the notions of betweenness, the character of congruence, and
so forth.

A strict (in modern standards) axiomatic treatment of what we call Eu-
clidean geometry was done as late as 1899 in David Hilbert’s book Grundlagen
der Geometrie [58]. Hilbert there presented a set of 20 axioms forming a wa-
tertight basis for Euclidean geometry. He later on also formulated a similar
set of axioms for projective geometry and for non-Euclidean geometry.4 So
when we here want to see how the Beltrami-Klein model is indeed a model
of Euclidean geometry it would be by far more appropriate to relate it to
Hilbert’s axioms than to Euclid’s postulates. We will not do this here and
refer to other books for this topic [48]. We will content ourselves with a brief
and commented version of Euclid’s postulates and their relationship to the
Beltrami-Klein model.

In principle, within the preceding chapters we have done all preparations
to explain the Beltrami-Klein model in comparatively simple terms. So, what
do we want? We need a geometric system whose objects are lines, planes, and
circles, equipped with a notion of measurement for distances and angles, that
satisfies the first four of Euclid’s postulates and the negation of the fifth. So,
here it is: We start with a nondegenerate real conic in the projective plane.
For reasons of simplicity and without loss of generality we choose the unit
circle F defined by x2 + y2 = 1. This has the advantage that all points we
will consider now are part of the usual Euclidean plane, and by this it is not
explicitly necessary to refer to projective geometry and elements at the line
at infinity. The points of our geometry are all interior points of the unit circle.
The lines of the geometry are the (nonempty) intersections of an ordinary
line with the interior of the unit circle. Distance measurement and angle
measurement are those of the Cayley Klein geometry K = (F ,−1/2,−1/2i).
With respect to this measurement we can define, in agreement with Euclid’s
definitions,5 that a circle is the set of all points having constant distance from
another point. Furthermore, we define that an angle between two lines is right
if the two angles to the left and to the right of one of the lines and on the
same side of the other have equal size.

Equipped with these definitions, we will now analyze how this system of
geometric objects relates to Euclid’s postulates. For this we take the intrinsic
viewpoint. We argue as a being that lives inside the reality of the interior of
the unit circle equipped with the Cayley-Klein measurement.

4 It is an interesting fact that in Hilbert’s axioms the term circle is not at all used or
defined. Circles in this setup are secondary objects whose definition is based on the axioms
of measurement and incidence.
5 We have not reproduced all these 23 definitions here.
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Fig. 24.4 The violation of the parallel postulate in hyperbolic geometry.

1st Postulate: A straight line segment can be drawn joining any
two points. From the line that connects two points inside F we take the
segment that connects the two points inside the unit disk. This is the segment.

2nd Postulate: Any straight line segment can be extended indefi-
nitely in a straight line This is the infinite walk of you and your dog
in one fixed direction described at the beginning of this chapter. Here Eu-
clid’s implicit assumption on the infinite extent of lines comes into play. This
implicit assumption implies that the distance measurement is of hyperbolic
type. If it were elliptic, we would eventually return to our starting point. If
we dropped this implicit assumption, then also elliptic geometry would be a
candidate for a non-Euclidean geometry

3rd Postulate: Given any straight line segment, a circle can be
drawn having the segment as radius and one endpoint as center.
The set of points having a fixed real distance to a point inside the unit disk
constitutes the circle. In fact, the elliptic angle measurement ensures that
these circles are always closed curves.

4th Postulate: All right angles are congruent. We have a right angle
if a line g passes through the pole of the other line l. If we have right angles
between two different pairs of lines, then there is always a corresponding K
motion of one pair that makes it congruent to the other. Here several implicit
assumptions on continuous rigid motions and congruence are necessary. The
K-motions are in full agreement with all of them.

5th Postulate: Now comes the important point (and in a surprising sense it
is somehow the easiest). In the Cayley-Klein model, Euclid’s fifth postulate
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does not hold. We here take the slightly simpler approach of considering the
parallel postulate instead of the fifth postulate. The parallel postulate states
that through any point p not on l there is exactly one line not meeting l. In the
Cayley-Klein model this statement is violated in the following way: For every
line l and point p not on l there are infinitely many lines passing through p that
do not cut l. The reason for this becomes obvious if one looks at Figure 24.4.
In principle, there is also another possibility to violate the parallel postulate.
We could try to define a geometry in which there is no line through p that
does not intersect l. Indeed, if we drop our implicit assumption that lines
have infinite extent, then this is also possible and leads to the Cayley-Klein
geometry of type I: the elliptic geometry.

To summarize, if we take the first four of Euclid’s postulates (without
the implicit assumption on the infinite extent of lines), they in particular
imply that the angle measurement is elliptic. There are three Cayley-Klein
geometries in agreement with that: type II (restricted to the interior of the
fundamental conic)—hyperbolic geometry; type I—spherical geometry; type
V—usual Euclidean geometry. They relate to the parallel postulate and the
infinite length assumption as follows (let p and l be an arbitrary noncoincident
point/line pair):

Euclidean geometry: Lines have infinite extent. There is exactly one line
through p not cutting l.

Hyperbolic geometry: Lines have infinite extent. There are infinitely
many lines through p not cutting l.

Elliptic geometry: Lines have only finite extent. There is no line through
p not cutting l.

Thus in the presence of the infinite-extent assumption, Euclidean and hy-
perbolic geometry are the only two Cayley-Klein geometries in accordance
with the first four postulates. In fact, it can be proved that every formal sys-
tem that satisfies the first four postulates and the implicit -extent assumption
is automatically isomorphic to one of these two geometries.

24.6 Poincaré

Still we left out one of the main protagonists of the early years of non-
Euclidean geometry: Henri Poincaré. His contribution was to provide still
another model for hyperbolic geometry. This model turned out to be a crucial
link to many other branches of mathematics, including complex function
theory, the theory of automorphic functions, differential equations and many
more. A reprint of his essential articles can again be found in [125].

Poincaré interpreted hyperbolic geometry directly in the complex number
plane C. For us his model is also very interesting from a projective point
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of view. While the Beltrami-Klein model is best understood embedded in
the two-dimensional real projective space RP

2, the Poincaré model is best
understood embedded in the one-dimensional complex projective space CP

1.
In the Poincaré disk model of the hyperbolic plane the region of relevant
points is as in the Beltrami-Klein model restricted to the interior points of a
circle (one may again choose the unit circle for convenience). The hyperbolic
lines are circular arcs that meet the unit circle orthogonally. We will give a
detailed description of the Poincaré disk model later in the next chapters.
Here we just collect a few of the essential features.6

At first sight one might wonder why it would be advantageous to represent
hyperbolic lines by circular arcs. In fact, losing straightness of lines is only a
small drawback compared to the advantages of the Poincaré disk model. The
important point is that the Poincaré disk model is conformal. This means
that it represents intersection angles in an unperturbed way. In this model
the hyperbolic angle under which two hyperbolic lines meet corresponds ex-
actly to the angle under which the associated two circular arcs meet. As a
consequence of conformality, circles are represented by proper circles in the
Poincaré disk model. The feature of conformality is also the reason that this
model and with it hyperbolic geometry plays a fundamental role in complex
function theory.

There is a very simple relationship between the Poincaré disk model and
the Beltrami-Klein model. For both geometries let the points be those in the
interior of the unit circle. We may identify the interior of the unit disk in
CP

1 with the interior of the unit disk in RP
2 as usual by the map x + iy �→

(x, y, 1)T . Now, if z with ‖z‖ < 1 is a point in the Poincaré disk and w is
the corresponding point in the Beltrami-Klein model, then these points are
related by

z �→ 2z
1 + ‖z‖2

= w and w �→ w

1 +
√

1 − ‖w‖2
= z.

Thus the Poincaré disk is only a deformed copy of the Beltrami-Klein
disk. The deformation function is centrally symmetric. In moving from the
Beltrami-Klein model to the Poincaré model the interior of the disk is shrunk
and the boundary is blown up.Visually, this is a very good feature, since we
get a higher “resolution” at the boundary, which thereby contains most of
the hyperbolic plane. Visually it is also very pleasant that intersection angles
of objects appear at their proper geometric size.

As an example of the visual advantages of the Poincaré model consider
Figure 24.5. It shows an identical arrangement of infinitely many lines in

6 In the literature one frequently also finds the Poincaré half-plane model, where the active
points are all points above the real axis of C and the lines are circular arcs that meet the
real axis orthogonally. From a projective viewpoint this model is exactly equivalent to the
disk model, since any open half-plane can be mapped to any interior of a circle by a CP

1

transformation. This map preserves the set of lines and circles and the intersection angle
of these objects.
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Fig. 24.5 Comparing the Beltrami-Klein representation and the Poincaré representation
of an arrangement of lines.

both models (left Beltrami-Klein, right Poincaré). The arrangement of lines
cuts out a tessellation of the hyperbolic plane constituted of infinitely many
pentagons with only right angles at the corners (yes, such weird things exist
in the hyperbolic plane). Notice that in the Poincaré model one can at the
same time perceive much more detail of the tessellation and directly see that
the vertices of the pentagons are rectangular.

Which of the two models is preferable under algebraic aspects depends a
lot on the concrete circumstances. Later on, we will give a dictionary that
helps to translate concepts from one model into the other.
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Hyperbolic Geometry

To infinity . . . and beyond!

Buzz Lightyear (Toy Story, Disney)

Back to mathematics! This chapter is dedicated to several interesting topics
in hyperbolic geometry. With our previous knowledge on the real projective
plane RP

2, on the complex projective line CP
1, and of Cayley-Klein geome-

tries we have an ideal departure point to explain several hyperbolic effects
from an elegant and advanced standpoint. In particular, we will work out the
relations between the Beltrami-Klein model and the Poincaré disk model.
Compared to the general considerations in Chapters 20–23 we are now in a
somewhat better situation. When we dealt with general Cayley-Klein geome-
tries we spent a lot of our efforts on the treatment of case distinctions that
arose from the various degrees of degeneracy of the fundamental conic. The
algebraic structure became easier the less degenerate the fundamental conic
was. Now we will deal only with one particular Cayley-Klein geometry, which
in addition is nondegenerate.

25.1 The Staging Ground

In everything that follows we refer to the Cayley-Klein geometry defined by
the following parameters. The fundamental conic F = (A,B) is given by

A =

⎛
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎠ and B =

⎛
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎠.

483
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Fig. 25.1 The intersection of hyperbolic medians may be a hyperinfinite point.

The scaling parameters are

cdist = −1
2

and cang =
1
2i
.

The fundamental conic is the unit disk in the standard embedding of RP
2.

We will later give reasons why this specific choice of parameters is most
appropriate. Furthermore, we will (at least mostly) restrict our considerations
to the points in the interior of the unit disk.

At this time we should once more clarify the difference between the in-
trinsic viewpoint of “living in hyperbolic space” and the extrinsic/algebraic
viewpoint of having an appropriate algebraic description, like our Cayley-
Klein geometry. We will exemplify this by the concept of a line. From the
intrinsic viewpoint a line consists only of those points that lie in the interior
of the unit circle. A line in RP

2 that does not intersect the unit circle at
all is materially nonexistent from the intrinsic viewpoint. Points outside the
unit circle are as well nonexistent. Now, as an example, consider the prob-
lem of intersecting the medians of a triangle A,B,C (compare Figure 25.1).
If the triangle is near to being equilateral, then the medians intersect in a
point m that lies in the interior of the triangle (left picture). This point is
in addition the center of the circumcircle of the triangle. Now we may move
point A toward the segment B,C. At a certain point the circumcenter moves
out of the triangle (middle picture). This is not very spectacular because we
know this effect from Euclidean geometry (there an obtuse triangle has its
circumcenter outside the triangle). If point A approaches the segment B,C
closer and closer the circumcenter m moves even out of the unit circle. How
should we interpret this case? The answer is not that easy. From the intrin-
sic viewpoint the medians no longer intersect. Strictly speaking, the triangle
does not even have a circumcircle, since there is no material point that has
the same distance to all three triangle points. So from the intrinsic viewpoint
we might say that the triangle has moved to a new qualitative state (a special
case, so to speak) in which the medians simply no longer intersect and the
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circumcircle disappears. Were we to do so, hyperbolic geometry would suffer
from the treatment of many many case distinctions.

Now it may happen that a clever mathematician in the hyperbolic world
comes along and says, Well, the intersection of the medians may disappear in
our world, but if we introduce a suitable algebraic structure to coordinatize
our points and lines (namely homogeneous coordinates) and if we further-
more describe our angle measurement by a certain formula (Cayley-Klein
geometry), then we may think of our world as realized within a certain ob-
ject (the unit disk). If we do all that, then I can say that it is reasonable
to extend our lines even further than their infinity points to, let’s call it hy-
perinfinite points. In this representation two lines always intersect, and it
makes total sense always to speak of the intersection of the medians. They
may intersect at finite, infinite, or hyperinfinite points. There is always also a
circumcenter. If it is a hyperinfinite point, its distance to the triangle vertices
becomes complex. But who cares, I am a mathematician and I am allowed
to do abstractions.

In a sense, the situation is similar to the introduction of infinite points
in Euclidean geometry. One may either accept that there are many case dis-
tinctions or accept that there is a nicer algebraic system that gets rid of the
special cases for the price of being more abstract and by adding elements
that have no material counterpart. So also from an intrinsic viewpoint it is
totally legitimate to represent hyperbolic geometry in terms of Cayley-Klein
geometries and their measurements. This means simply to allow for infinite
and hyperinfinite elements and using the corresponding algebraic represen-
tations.

In what follows we will denote the interior of the unit circle by H and
the unit circle itself by H. The interior H is the staging ground to which we
relate all our geometric considerations. However, we will freely make use of
its nice algebraic representation in RP

2.

25.2 Hyperbolic Transformations

After these quite philosophical considerations we will return to concrete cal-
culations. We will start with a topic we already touched in Section 21.2:
hyperbolic transformation. In our setup with the unit circle as fundamental
object these are exactly those projective transformations in RP

2 that leave
the unit circle invariant. Fixing the images of three points A,B,C ∈ H on the
unit circle determines such a hyperbolic transformation τ uniquely. The image
points A′, B′, C′ ∈ H must also lie on the unit circle. The matrix of the hyper-
bolic transformation can be calculated in the following way. The three points
A,B,C determine a projective scale on H. Every other point D on H has a
unique and well-defined cross-ratio (A,B;C,D)P under which it is seen from
a generic point P on H. So we can determine the unique position D on H such
that (A,B;C,D)P = −1. Similarly, we get a unique point D′ in harmonic
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p

l

τ(p)τ(l)

Fig. 25.2 Moving a point to the center of H.

position to A′, B′, C′. The hyperbolic transformation is the unique projective
transformation that maps A,B,C,D to the corresponding primed points (see
also Figure 21.2). We recall that our Theorems 10.3 and 10.4 imply that this
procedure indeed generates a map that leaves H invariant and that the group
of all such transformations is isomorphic to the group of projective transfor-
mations of the real projective line RP

1. Since we will quite frequently refer
to the cross-ratio of four points A,B,C,D on H seen from a generic other
point P , we abbreviate this cross-ratio by (A,B;C,D)H := (A,B;C,D)P .
Theorem 10.1 ensures that this value is independent of the specific choice
of P and hence well-defined. It is easy to show that a hyperbolic transforma-
tion automatically also maps H to H.

Theorem 25.1. Let τ be a projective transformation that maps H to H.
Then it also maps H to itself bijectively.

Proof. Since projective transformations are automatically bijections, the only
thing we have to prove is that under τ the image of every point p ∈ H is again
in H. For this we choose two arbitrary lines l and g through p. Since p is in
the interior of the unit disk, the lines l and g intersect H in two pairs of points
Al, Bl and Ag, Bg, respectively. Since the two lines intersect in the interior
of H, the intersections with g and l alternate when traversing H cyclically.
This in turn implies that the cross-ratio (Al, Bl;Ag, Bg) is negative. Hence
also the cross-ratio (τ(Al), τ(Bl); τ(Ag), τ(Bg)) is negative. Thus the image
points alternate as well. Accordingly also τ(l) and τ(p) intersect in the interior
of the unit disk. This implies τ(p) ∈ H. ��

We now study the transitivity properties of hyperbolic transformation.
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Theorem 25.2. Let p ∈ H and l be a point and a line incident to each other.
Then there exists a hyperbolic transformation τ such that τ(p) = (0, 0, 1)T is
the origin and τ(l) = (0, 1, 0) is the x-axis.

Proof. We can base the proof on the observation of Theorem 22.2 that states
that in the case of a nondegenerate fundamental conic two lines l and m are
orthogonal if and only if their intersections with the fundamental conic are
in harmonic position. Thus we may take the line l and its unique hyperbolic
perpendicular through p, the line g. Then the intersections Al, Bl, Ag, and Bg
with H are in harmonic position: (Al, Bl;Ag, Bg)H = −1. The intersections
Ah,Bh of the (horizontal) x-axis with H and the intersections Av,Bv of the
(vertical) y-axis with H are also in harmonic position. Thus the hyperbolic
transformation τ with τ(Al) = Ah, τ(Bl) = Bh, τ(Ag) = Av automatically
satisfies τ(Bg) = Bv. By this l is mapped to the x-axis and g is mapped
to the y-axis. Furthermore, p (the intersection of l and g) is mapped by this
transformation to the origin (the intersection of the x-axis and the y-axis). ��

This theorem enables us to do many of the following derivations without
loss of generality for the special case that a certain point p is located at
the center of the hyperbolic disk. Furthermore, it shows that any pair of
coincident point and line in H can be mapped to any other such pair in H.
An illustration of the construction in the proof is given in Figure 25.2.

25.3 Angles and Boundaries

The theorem we just proved has another advantage related to angle measure-
ment. For lines through the origin the angle measurement agrees with the
usual Euclidean angle measurement, as the following theorem shows. Thus
by the previous theorem we may always move to a situation with a compar-
atively simple angle measurement.

Theorem 25.3. Let l and m be two lines that pass through the origin (0, 0, 1).
Let αE be the Euclidean angle between them and αH the hyperbolic angle
between them. Then |αE | = |αH |.
Proof. In our standard representation of hyperbolic geometry the measure-
ment of angles between two lines l and m through a point p is by definition
given as

1
2i

· ln(l,m;X,Y ).

Here X and Y are the tangents through p to the fundamental conic. These
tangents are the lines that connect p to the intersections of the polar of p
(with respect to H) with the fundamental conic H. In the standard embedding
the polar of the origin with respect to the unit circle is the line at infinity
l∞ = (0, 0, 1)T . The intersection of this line with any circle (in particular
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with the unit circle) is I and J. Hence for measurements of angles between
lines through p we have X = I and Y = J, or vice versa. Thus up to a
possible sign change the angle measurement agrees with Laguerre’s formula
(Theorem 18.9) and hence is just the Euclidean measurement. ��

Remark 25.1. We have seen in Section 22.3 that if we perform measurement
only for lines through one point p, then we may without any problem talk
about oriented angle measurement. Since in this case the two tangents X
and Y are always the same, we can fix their roles once and forall. Now it is
possible to prove the following fact. Assume you move a point pt continuously
parameterized by a parameter t ∈ [0, 1] such that pt always stays in H. The
motion of pt induces two continuous pathsXt and Yt of the two corresponding
tangents. In principle, it may happen that for a round trip with p0 = p1 the
two tangents may interchange their roles (this is, for instance, possible in an
analogous situation in elliptic geometry). However, if pt stays inside H, the
two tangents Xt and Yt will never coincide, and as a consequence one has
X0 = X1 and Y0 = Y1 (the argument for this is not totally trivial and involves
some elementary topology). From this it can be shown that for an arbitrary
endpoint p1 the order of the tangents is independent of the concrete path.
Thus we may transfer the oriented angle measurement in a unique way to a
globally consistent oriented angle measurement on all of H. The hyperbolic
plane is orientable!

We now will give an explicit method for calculating the angle between two
oriented lines. By this we mean the absolute value of the angle that is needed
to rotate one of the lines to match the other in the same orientation. The
fact that four points on the unit circle are in harmonic position if and only if
the lines joining alternating pairs of them are perpendicular is only a special
case of the following theorem. The theorem allows us to calculate the angle
directly from the intersection of the two lines with the unit circle.

Theorem 25.4. Let l and m be two oriented lines intersecting H in points
Al, Bl, resp. Am, Bm. The lines are assumed to be oriented from B to A.
Then the hyperbolic angle between l and m can be calculated as

2 arctan
(√

−(Al, Bl;Am, Bm)H

)
.

Proof. We first prove the theorem for the special case that the intersection
of the two lines passes through the origin. Then we have a situation as shown
in Figure 25.3. We consider the rectangle whose vertices are the intersec-
tions of the two lines with the unit circle. By Theorem 18.3 and the fact
that on the unit circle the points Al, Bl separate Am, Bm, the cross-ratio
(Al, Bl;Am, Bm)H can be calculated as −a·a′

b·b′ , where a, a′, b, b′ are the lengths
of the sides of the rectangle. Since a = a′ and b = b′, the cross-ratio becomes
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Fig. 25.3 Determining an angle from boundary points.

(Al, Bl;Am, Bm)H = −a
2

b2
= −(tan(α/2))2.

The last equation holds since the (Euclidean) angle at Bm shown in the
picture is half the angle between l and m. The tangent of this angle is exactly
a/b. This proves

α = 2 arctan
(√

−(Al, Bl;Am, Bm)H

)

for the special case of lines that intersect in the origin.
Now assume that l and m are arbitrary intersecting lines. By Theo-

rem 25.2 there is a hyperbolic transformation τ that moves the intersection
of these two lines to the origin. This transformation leaves the cross-ratio
(Al, Bl;Am, Bm)H as well as the angle α invariant, which proves the theo-
rem. ��

25.4 The Poincaré Disk

We now introduce the Poincaré disk model for hyperbolic geometry. For
this we again consider a unit circle around the origin as the staging ground.
However, this time we interpret it as a circle in the complex number plane C.
Again it is highly appropriate to compactify C and right away consider the
complex projective line CP

1 where the point at infinity has been added. As in
RP

2 the region outside the unit circle helps us to understand the underlying
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geometric and algebraic structure of the model. However, in this model the
region outside the unit circle will play a fundamentally different role from
that in the Beltrami-Klein model. Inside the unit disk both models are only
deformed images of one another. The following lists give a dictionary of how
objects of the hyperbolic plane are modeled in the Poincaré disk model.
Roughly speaking, the . . .

. . . points of the hyperbolic plane are represented by all points inside the unit
circle,

. . . lines of the hyperbolic plane are represented by circular arcs inside the
unit circle that intersect the unit circle orthogonally,

. . . hyperbolic transformations are those Möbius transformations and those
anti-Möbius transformations (compare Section 17.4) that leave the unit
circle invariant.

Furthermore, the Poincaré disk has several advantages related to measure-
ments. In the Poincaré disk model the . . .

. . . hyperbolic angle between two lines is the (Euclidean) intersection angle
between the corresponding circular arcs,

. . . circles (as loci of real(!) constant distance to a point) are represented by
Euclidean circles,

. . . hyperbolic distances can still be calculated as the logarithm of a certain
cross-ratio.

In what follows (if not explicitly stated otherwise), by a circle in CP
1 we

will always mean either a usual circle or a circle with infinite radius (i.e., a
line). Lines are those circles that pass through the infinite point ∞ of CP

1.
The possibility to translate terms from the Beltrami-Klein model that resides
in RP

2 and that is based essentially on linear structures to the Poincaré disk
model that resides in CP

1 and that is based essentially on circular structures
in such a nice way comes from a rich interplay and network of concepts
relating the two worlds. Again we will here give only a rough impression of
this rich topic. Projective geometry allows us to formulate many concepts on
an advanced structural level. However, it will also be helpful to apply some
simple theorems from elementary geometry in this context.

We first aim at a proof that both models indeed represent structures that
are isomorphic inside the unit circle. What do we have to do for this? In the
Beltrami-Klein model a hyperbolic line is represented by a line segment a
that connects two points of H. In the Poincaré disk model the corresponding
line is represented by a circular arc a′ that connects the same two points.
In addition, a′ has to intersect the unit circle orthogonally. This requirement
makes a′ uniquely defined. We now must verify that this way of mapping lines
between the two models leads to a consistent specification for the mapping of
points. A point p in the Poincaré disk model may be uniquely specified as the
intersection of two distinct lines a and b that contain it. The corresponding
circular arcs a′ and b′ associated to these two lines again have a unique
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Fig. 25.4 From Beltrami-Klein to Poincaré.

intersection p′. This point p′ must be the point in the Poincaré disk model
that represents p. We now must show that p′ is well-defined. This means
that it is independent of the specific choice of a and b. In other words, if
we have a third line c (in the Beltrami-Klein model) that passes through p,
then the corresponding circular arc c′ must also pass through p′. Figure 25.4
illustrates the situation. Thus, in order to show the isomorphism between the
two models we have to prove the following incidence theorem.

Theorem 25.5. Let a, b, c be three chords of the unit circle and let a′, b′,
c′ be three circular arcs intersecting the unit circle orthogonally in the cor-
responding endpoints of the chords. Then a, b, c intersect in a point p if and
only if a′, b′, c′ intersect in a point p′.

There are several ways to approach a proof of this crucial theorem. One
possibility would be to simply translate it into corresponding analytic terms
and do the proof by straightforward calculations (which in between will be-
come a little messy). We will provide a proof that is closely related to the pro-
jective approaches by homogeneous coordinates used throughout this book.
For this we will first aim at a nice algebraic characterization of those circles
that are orthogonal to the unit circle. A circle with center m = (mx,my) and
radius r is represented by the equation

(x−mx)2 + (y −my) = r2, or equivalently ax+ by + c+ d(x2 + y2) = 0,

with a = −2mx, b = −2mx, c = m2
y + m2

y − r2, d = 1. We will now use the
(homogeneous) coordinate quadruple (a, b, c, d) as coordinates for the circle.
As usual, nonzero multiples of such a vector represent the same geometric
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Fig. 25.5 Condition for being orthogonal (red) and calculation of the map that connects
the Beltrami-Klein model to the Poincaré disk model (blue).

object. The circles with d = 0 cover the case of circles with infinite radius
(i.e., lines).1 The unit circle H itself has coordinates H = (0, 0,−1, 1).

Now, as a consequence of the Pythagorean theorem, a circle with center m
and radius r intersects the unit circle orthogonally if |m|2 − r2 = 1 (compare
Figure 25.5). Usingmx = −a/2d,my = −b/2d, r2 = −c/d+(a/2d)2+(b/2d)2,
this equation translates to

(a/2d)2 + (b/2d)2︸ ︷︷ ︸
|m|2

+ c/d− (a/2d)2 − (b/2d)2︸ ︷︷ ︸
−r2

= 1 ⇔ c = d.

Thus in the (a, b, c, d) coordinate representation, being orthogonal to the unit
circle simply corresponds to a linear condition. Let C1 = (a1, b1, c1, d1) and
C2 = (a2, b2, c2, d2) be two coordinate vectors of circles. The linear combina-
tions λC1+μC2 correspond to linear combinations of the circle equations and
hence represent all the circles that pass through the common intersection of
the circles represented by C1 and C2. Thus if C1 and C2 are both orthogonal
to the unit circle, then all circles of the form λC1 + μC2 are also orthogonal
to the unit circle. Within the bundle λC1 + μC2 there is also one special
circle of infinite radius. If the two circles intersect in two points, then this is
the unique line connecting these two points. Applying the usual Plücker’s μ
trick to obtain a zero in the last coordinate, one sees that this line has the
coordinates d2C1 − d1C2.

We now want to relate the coordinates of a circle C = (a, b, c, c) that is
orthogonal to the unit circle to the coordinates of the chord that connects
its two intersections with the unit circle. The circle of infinite radius in the
bundle λC + μH is

1 · C − c ·H = (a, b, c, c) − (0, 0,−c, c) = (a, b, 2c, 0).

1 The (a, b, c, d) coordinates represent circles as objects in a projective space RP
3.
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It represents the line ax+by+2c = 0 with homogeneous coordinates (a, b, 2c).
All in all, we may represent the linear map that connects circles orthogonal
to H to their chords by Ψ((a, b, c, c)) := (a, b, 2c).

Proof of Theorem 25.5: With these preparations the proof of Theorem 25.5
is simple. Three distinct circles represented by C1, C2, C3 pass through a
common point if and only if their coordinates are linearly dependent. Since
the circles are assumed to be distinct, no two of them are dependent and we
have a relation λ · C1 + μ · C2 = C3. This implies λ · Ψ(C1) + μ · Ψ(C2) =
Ψ(C3). Thus also the coordinates of the corresponding chords are linearly
dependent and they meet in a point. Since Ψ relates circles orthogonal to H
and the possible chords bijectively, the argument applies as well in the other
direction. ��

So, what have we achieved so far? We have proved that the mapping of
lines in the Beltrami-Klein model (the chords) to the lines in the Poincaré
model extends to a well-defined mapping of the points. Since in the particular
case of a diameter of the unit circle both models agree in the representation
of the lines, we now can easily calculate this map (the isomorphism between
the two models) explicitly. For a point p inside H (considered as a Beltrami-
Klein point) we consider a diameter l that passes through this point. If p �=
o this diameter is unique, but this does not matter here. Furthermore, we
consider the chord g that passes through this point and is orthogonal to l.
The corresponding point p′ can now be calculated as the intersection of the
representations of l and g in the Poincaré disk model. Since l is a diameter, it
is represented again by l in the Poincaré disk. The line g becomes a circular
arc perpendicular to H having the same endpoints as l. We now calculate
how p and p′ are related. For this again consider Figure 25.5. Assume that
the distance from p′ to the origin is z, and that the distance of p to the origin
is w. Then |m|−z = r. We furthermore see that 1/w = |m|/1. Expressing |m|
by w, we get 1/w−z = r. Squaring both sides and applying the Pythagorean
theorem gives

1
w2

− 2
z

w
+ z2 = r2 = |m|2 − 12 =

1
w2

− 1,

which immediately leads to

2
z

w
− z2 = 1.

Resolving this expression for w gives

w =
2z

1 + z2
.

In these considerations z and w were just real numbers expressing the radial
distance to the origin of the points p′ and p. We get a radial scaling factor of

2
1+z2 . We may also consider H embedded in the complex plane and consider z
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Fig. 25.6 Projections relating the Beltrami-Klein model to the Poincaré disk.

and w as complex numbers directly encoding the positions of p′ and p. We
have only to be careful to replace z by |z| in the scaling factor. In this complex
world the mapping becomes

w =
2z

1 + |z|2 . (25.1)

Resolving for z in an analogous way, we get (with z and w being again
complex numbers representing the positions of p′ and p)

z =
w

1 +
√

1 − |w|2 . (25.2)

The square root in this formula is understood to be positive. This ensures that
the function maps again into H (and in fact is bijective on H). Replacing the
square root of the last expression by its negative gives the second intersection
of the line supporting the diameter through p with the circle supporting the
arc representing g in the Poincaré disk. This second intersection lies outside
the unit disk.

There is also a nice way to interpret the mapping from the Beltrami-
Klein model to the Poincaré disk as a sequence of two projections. For this
consider Figure 25.6, which is an enhanced version of a picture that appears in
Klein’s Vorlesungen über nicht-euklidische Geometrie [68]. Consider the unit
circle that represents the Beltrami-Klein model (plane in the first picture).
Embed the plane supporting this circle in a three-dimensional space. On top
of the circle place a sphere of radius 1 and project every point of the circle
to the lower hemisphere of this sphere by an orthogonal projection parallel
to the z-axis. By this a chord in the unit disk gets mapped to a half-circle
whose support plane is orthogonal to the equator plane of the sphere. Now
the second projection projects the lower hemisphere back to the plane by a
projection whose center is the north pole of the sphere. Such a projection is
the stereographic projection we got to know in Section 17.7. It has the property
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that it maps circles to circles and preserves intersection angles of circles. The
stereographic projection maps the equator to unit circle 2H scaled the by a
factor of two. The arcs intersecting the equator orthogonally are mapped to
arcs that intersect 2H orthogonally. Scaling down the region 2H by a factor
of 2 leaves us with our version of the Poincaré disk. To see that this is indeed
the right mapping, consider a point (x, y, 0)T in the Poincaré disk embedded
in R

2. Scaling by a factor of 2 gives (2x, 2y, 0)T . Mapping this point to the
sphere by stereographic projection via formula (17.1) results in

⎛
⎝

2x
2y
0

⎞
⎠ �→ 2

x2 + y2 + 1

⎛
⎝

x
y

x2 + y2

⎞
⎠.

Projecting down to the plane exactly results in

1
x2 + y2 + 1

⎛
⎝

2x
2y
0

⎞
⎠.

Omitting the last coordinate, this is our formula (25.1) that relates the points
of the Poincaré disk to the points in the Beltrami-Klein model.

The scaling factor of the map (25.1) for points close to the center is asymp-
totically 2. This means that objects close to the center in the Poincaré disk
model appear half the size that they appear in the Beltrami-Klein model.
They thereby leave more space for the other objects that are squeezed close
to the boundary. Thus the Poincaré disk model appears visually more bal-
anced, an effect that we could observe for instance in Figure 24.5.

In our translation process one final point deserves to be mentioned: the
role of the exterior of H in the Poincaré disk model. Referring once more to
Figure 25.6, we see that in the second projection the upper hemisphere of the
sphere is mapped to the outside of the Poincaré disk. The vertical projection
that relates the Beltrami-Klein model to the sphere produces in essence two
intersections: one at the lower hemisphere and one at the upper hemisphere.
Thus projecting also the upper hemisphere to CP

1, each point inside H in
the Beltrami-Klein model is related to two points in CP

1, one point inside the
unit disk and one point outside the unit disk. They correspond to the choice of
the sign of the square root in (25.2). Both representing points w

1+
√

1−|w|2 and
w

1−
√

1−|w|2 have the same direction with respect to the origin but different

distances. In fact, the radii are reciprocal, as the following calculation shows.
The product of the distances of these two points to the origin evaluates to

|w|
1 +
√

1 − |w|2 · |w|
1 −√1 − |w|2 =

|w|2
1 − (1 − |w|2) = 1.
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Both of them are related by an inversion in the unit circle z �→ 1
z . Thus the

outside of the Poincaré disk is just a mirror image (by reflection in the unit
circle) of the inside. The points outside the unit circle in the Beltrami-Klein
model have no direct counterpart in the Poincaré disk.

25.5 CP
1 Transformations and the Poincaré Disk

So far, we have defined hyperbolic transformations only in the world of
the Beltrami-Klein model. They are the projective RP

2 transformations τ
that leave the unit circle as a whole invariant. Via the isomorphism of
the Poincaré disk and the Beltrami-Klein model (explicitly given by equa-
tions (25.1) and (25.2)), the map τ induces an action τ̃ in the Poincaré
disk model. The map τ̃ is the corresponding hyperbolic transformation in
the Poincaré disk model. It will turn out that these hyperbolic transforma-
tions τ̃ in the Poincaré disk are exactly those Möbius transformations and
anti-Möbius transformations that leave the unit circle invariant. The rea-
son for this nice interplay of (certain) RP

2 projective transformations and
(certain) CP

1 projective transformations is that a hyperbolic transformation
must leave the unit circle as a whole invariant. In both cases this induces a
transformation of the points on the unit circle that is a projective transfor-
mation on the points of H.

Since the situation involves simultaneously several interpretations of the
same objects in different mathematical spaces, it may become quite confus-
ing. To avoid this confusion we will first specify these different spaces and
their interrelations. Most of these relations have already been established in
previous chapters.

The relation of RP
2 and CP

1: We identify the finite part of both spaces
by the map (x, y, 1)T �→ (x + iy, 1). In particular, this map relates the unit
circle and its interior in both spaces bijectively. We will use the same symbols
H and H for the unit circle and its interior in both spaces. As before, for a
point p ∈ RP

2 we will denote its counterpart in CP
1 by p̃.

The unit circle in RP
2 and its relation to RP

1: The unit circle H is
a special conic satisfying the (homogeneous) equation x2 + y2 − z2 = 0. In
Section 10.2 we learned that we can bijectively relate each nondegenerate
conic to the space RP

1 by (stereographically) projecting its points to a line
(compare Figure 10.7). Equivalently, this bijection can also be calculated by
a cross-ratio with respect to the conic. For this we consider R ∪ {∞} as a
copy of RP

1 and define a specific bijection Ψ : H → R ∪ {∞} = RP
1. We fix

three mutually different points 0,1,∞ on the conic and for every other point
x = (x, y, 1)T on the conic calculate

Ψ(x) := (0,∞;x,1)H.



25.5 CP
1 Transformations and the Poincaré Disk 497

τ

Fig. 25.7 A hyperbolic transformation.

In a natural way we may call a map f : H → H a projective map if the
composition Ψ ◦f ◦Ψ−1 is a projective transformation on RP

1. Theorem 10.3
states that every projective transformation on RP

2 that leaves H invariant
induces a projective map (a RP

1 action) on the points of H.

The unit circle in CP
1 and its relation to RP

1: We can also relate the
unit circle in CP

1 in a natural way to the real projective line. For this we also
fix three points 0̃, 1̃, ∞̃ on H and consider the map Φ : H → R∪{∞} = RP

1

defined by
Φ(x̃) := (0̃, ∞̃; x̃, 1̃),

the cross-ratio this time considered over CP
1. This expression maps into

R∪ {∞} since four cocircular points in CP
1 always produce a real or infinite

cross-ratio. In fact, Theorem 18.3 tell us that both ways to relate the unit
circle to RP

1 are identical. We have

Ψ(x) = (0,∞;1,x)H = (0̃, ∞̃; 1̃, x̃) = Φ(x̃). (25.3)

We may even interpret the map Φ as a projective map that sends the circle H
to the real points RP

1 = {(a, b)T |a, b,∈ R}−{(0, 0)T} in CP
1 by sending 0̃ �→

(0, 1)T , 1̃ �→ (1, 1)T , and ∞̃ �→ (1, 0)T . Again in a natural way we may call a
map f : H → H a projective map if Φ ◦ f ◦Φ−1 is a projective transformation
on RP

1. By the equivalence of the two cross-ratios in equation (25.3) the two
concepts of projective transformations on H are equivalent.

Now, a projective transformation τ ′ in CP
1 that leaves H invariant can

be interpreted as a projective transformation on the points of H (considered
as a RP

1) via Φ ◦ τ ′ ◦ Φ−1. Figure 25.7 illustrates the effect of a projective
CP

1 transformation that leaves the unit circle invariant. Notice that the grid
of lines is mapped to a grid of circular arcs. The map induces a transforma-
tion on the unit circle itself. This transformation is projective. The specific
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transformation in Figure 25.7 has been chosen such that the image of three
points is exactly the same as in the RP

2 transformation shown in Figure 21.2.
This implies that both maps agree on the unit circle.
Moreover, and this is important for us, we get the following lemma.

Lemma 25.1. Let f : H → H be a projective map. Then this map can be
uniquely extended to a projective transformation τ ′ in CP

1.

Proof. Let f : H → H be a projective map on H. This implies that the map
g := Φ ◦ f ◦ Φ−1 is a projective map RP

1 → RP
1 on the usual projective

line. Thus g can be represented by a 2 × 2 matrix with real coefficients. We
may interpret this map as a projective map g : CP

1 → CP
1. We now can pull

back this CP
1 action to H by setting τ ′ = Φ−1 ◦ g ◦ Φ. In other words, every

projective map on H can be written as a 2×2 matrix and by this interpreted
as a projective map on CP

1. ��

After these conceptual considerations we are ready to prove that hyper-
bolic transformations in the Poincaré disk are either Möbius or anti-Möbius
transformations. For a given hyperbolic transformation τ (in the Beltrami-
Klein model) we want to compute the corresponding effect in the Poincaré
disk model, i.e., the map τ̃ . In principle, this could be done by directly cal-
culating the effect of a projective transformation under a conjugation by
the transformation equations (25.1) and (25.2). However, we again can avoid
these rather tedious calculations by performing some structural analysis of
the situation. Within the Poincaré disk model we may compute the image
under τ̃ of a point p inside H by the following alternative procedure.

1: Take two distinct circular arcs l and g intersecting H orthogonally (two
Poincaré lines) that both pass through p.

2: The two arcs intersect H in two pairs of points (Al, Bl) and (Ag, Bg).

3: Take the images (τ(Al), τ(Bl)) and (τ(Ag), τ(Bg)) of these point pairs
under τ (this is the same image as under τ̃ (l)).

4: They determine two new circular arcs τ̃(l) and τ̃ (g) (orthogonal to H)
inside H. These are the images of l and g in the Poincaré model.

5: Their intersection corresponds to the image τ̃ (p) of p.

This can be used to prove the following theorem.

Theorem 25.6. Let τ be a hyperbolic transformation. If τ preserves the ori-
entation of H, then τ̃ is the unique Möbius transformation that agrees with τ
on H. If τ reverses the orientation of H then τ̃ is a composition of the unique
Möbius transformation that agrees with τ on H followed by a circle inversion
in the unit circle.
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o
A

BC = C

A

B

Fig. 25.8 Circles under circle inversion.

Proof. Let τ be a hyperbolic transformation in the Beltrami-Klein model.
Its action on the boundary H is a projective RP

1 map on H, and it agrees
with the action of τ̃ . By Lemma 25.1 we can extend this map on H to a pro-
jective transformation τ ′ : CP

1 → CP
1. This transformation τ ′ maps circles

to circles and preserves oriented intersection angles. Therefore in particular,
circles orthogonal to H are again mapped to circles orthogonal to H. If the
two intersections of such a circle with H are fixed this, circle is uniquely
determined.

We first study the effect of τ ′ on the circular arcs representing lines in the
Poincaré disk model. For this let l be such a circular arc in the interior H that
intersects H orthogonally. If C is the circle supporting the arc representing
the hyperbolic line l, then the arc representing the image τ̃ (l) is supported
by the circle τ ′(C). Now we have to distinguish between the two cases that τ ′

preserves the orientation of H and that it reverses it. In the first case τ ′ does
not interchange the interior and exterior of H; in the second case it does. In
both cases we have to identify a map that maps the arc l to the arc τ̃ (l).
This arc τ̃ (l) must satisfy two requirements. Firstly, it must be supported
by the circle τ ′(C), since this circle is uniquely determined by the position of
the intersection with H and the orthogonality condition. Secondly, it must
lie in the interior H. If interior and exterior are not interchanged, then we
can simply set τ̃(l) = τ ′(l). In case that they are interchanged we have to
combine τ ′ with an inversion in the unit circle ι (compare Section 17.6).
The inversion in the unit circle is the specific anti-Möbius transformation
ι(z) = 1/z. It leaves all points on the unit circle invariant and interchanges
its interior and exterior. Since the intersection angle of circles is reversed by
this transformation, it maps circles orthogonal to H onto themselves, thereby
interchanging the interior and the exterior arcs (see Figure 25.8). Thus in the
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Fig. 25.9 The difference of projective and Möbius transformations that fix the unit circle.

second case we must set τ̃ (l) = (ι ◦ τ ′)(l). The map τ̃ depended only on
the action to the points on H that was inherited from τ . Since every point
in H can be determined as the intersection of two hyperbolic lines (see the
procedure above), the map τ̃ is the required hyperbolic transformation in the
Poincaré disk. ��

Figure 25.9 demonstrates the difference between the real projective trans-
formations and the Möbius transformations that leave the unit circle invari-
ant. The top row shows the effect of two such real projective transformations
τ1 and τ2 that fix the unit circle. The transformations are uniquely determined
by the image of three points on the unit circle. While the transformation τ2
preserves the orientation of the unit circle, the transformation τ1 reverses it.
In both cases the image of Dr. Stickler is inside the unit circle. The orienta-
tion under τ1 is reversed. In contrast to this, the lower row shows the effect of
the two Möbius transformations determined by the images of the same three
points. The situation for τ ′2 is qualitatively the same as for τ2. Dr. Stickler
appears inside the circle and his orientation is preserved. The situation for τ ′1
is significantly different from τ1. The Möbius transformation interchanges
the interior and exterior of the circle but still keeps their orientation stable.
Thus Dr. Stickler is mapped to the exterior of the circle with his original
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orientation. The map τ ′1 followed by a circle inversion ι would be the hyper-
bolic transformation that corresponds to τ1 in the Poincaré disk model.

25.6 Angles and Distances in the Poincaré Disk

The hard part of the work is done. From what we have established so far it
is relatively easy to determine the computation of angles and distances di-
rectly in the Poincaré disk model. The fact that hyperbolic transformations
are essentially expressed by Möbius transformations and anti-Möbius trans-
formations helps to transfer (without loss of generality) the measurement to
almost trivial situations. We start with angles between hyperbolic lines. We
have seen that lines in the Poincaré model correspond to circular arcs inside H
orthogonal to the unit circle. We again consider angles between oriented lines
as in Section 25.3. First of all, the formula for computing the angles from the
intersections of lines with the unit circle from Theorem 25.4 still applies to
the Poincaré disk, since it agrees with the Beltrami-Klein model along the
unit circle. From this we also see that the situation is most trivial for lines
through the origin.

Lemma 25.2. Let l and g be two oriented hyperbolic lines in the Poincaré
disk that pass through the origin. Then the angle between them is exactly the
Euclidean angle between them.

Proof. Hyperbolic lines through the origin in the Poincaré model are just
straight diameters of the unit circle. Thus the representation of lines through
the origin is the same as in the Beltrami-Klein model, and the lemma follows
by Theorem 25.3. ��

The property of Möbius transformations to preserve the intersection angles
of circles helps to transfer this result to arbitrary intersection of hyperbolic
lines.

Theorem 25.7. Let l and g be two arbitrary intersecting oriented hyperbolic
lines in the Poincaré disk. Then the angle between them is exactly the Eu-
clidean intersection angle between the corresponding Euclidean arcs.

Proof. Apply a hyperbolic transformation τ that maps the intersection of
the two lines under consideration to the origin (such a transformation exists
by Theorem 25.2). The construction in the proof of this theorem allowed
us to choose this transformation to be order-preserving. In the Poincaré
disk model this corresponds to a Möbius transformation by Theorem 25.6.
The preservation of intersection-angles property of Möbius transformations
(Corollary17.1) ensures that the intersection angles of the circular arcs before
and after the transformation are identical. Finally, Lemma 25.2 ensures that
the intersection angle matches the Euclidean intersection angle. ��
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Fig. 25.10 Angle between lines in the Poincaré disk.

This gives us an important property of the Poincaré disk model: The an-
gles are represented conformally. One can simply measure the Euclidean in-
tersection angle between the circular arcs that represent the lines to get the
hyperbolic intersection angle between the lines. Figure 25.10 illustrates the
situation.

It is also instructive to figure out how the hyperbolic distance between
two points can be calculated directly in the Poincaré disk model. For this we
use the transformation (25.1) and relate certain cross-ratios in the Beltrami-
Klein model (i.e. in RP

2) and in the Poincaré disk (i.e., in CP
1). We again

pull back to a situation that is algebraically nicely accessible.

Lemma 25.3. Let P and Q be two points on the x-axis in the Poincaré disk.
Then the hyperbolic distance between P and Q is | ln((P,Q;X,Y ))|, where X
and Y are the two intersections of the x-axis with the unit circle.

Proof. We may represent the points by their x-coordinates p and q. By for-
mula (25.1) the corresponding points P ′ and Q′ in the Beltrami-Klein model
are also on the x-axis and have coordinates p′ = 2p

1+p2 and q′ = 2q
1+q2 . The

absolute value of the hyperbolic distance is given by
∣∣∣∣
1
2

ln ((P ′, Q′;X ;Y ))
∣∣∣∣ =
∣∣∣∣
1
2

ln
(

(p′ − 1)(q′ + 1)
(p′ + 1)(q′ − 1)

)∣∣∣∣ .

Inserting the expression for p′ in (p′−1)
(p′+1) gives

p′ − 1
p′ + 1

=
2p− 1 − p2

1 + p2
· 1 + p2

2p+ 1 + p2
=
(
p− 1
p+ 1

)2

.
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A similar expression holds for q, and we obtain

(p′ − 1)(q′ + 1)
(p′ + 1)(q′ − 1)

=
(

(p− 1)(q + 1)
(p+ 1)(q − 1)

)2

.

This shows that
(P ′, Q′;X,Y ) = (P,Q;X,Y )2.

Inserting this in the distance formula yields
∣∣∣∣
1
2

ln ((P ′, Q′;X,Y ))
∣∣∣∣ =
∣∣∣∣
1
2

ln
(
(P,Q;X,Y )2

)∣∣∣∣ = |ln ((P,Q;X,Y ))| .

This is what is claimed by the theorem. ��
We again can use this result to get a general method to calculate distances

in the Poincaré model.

Theorem 25.8. Let P and Q be two arbitrary points in the Poincaré disk.
Then the hyperbolic distance between P and Q is | ln((P,Q;X,Y ))|, where X
and Y are the intersections of the hyperbolic line through P and Q with the
unit circle.

Proof. Let P and Q be two arbitrary points in the Poincaré disk. By Theo-
rem 25.2 there is a hyperbolic transformation that maps them to two points
τ(P ) and τ(Q) on the x-axis. This transformation is a Möbius transforma-
tion τ that fixes the unit circle, and hence X and Y get mapped to two
points τ(X) and τ(Y ) that are the intersections X ′ and Y ′ of the x-axis
with the unit circle. Thus we have (P,Q;X,Y ) = (τ(P ), τ(Q); τ(X), τ(Y )) =
(τ(P ), τ(Q);X ′, Y ′), and Lemma 25.3 can be applied to finally prove the
theorem. ��

It is an amazing fact that when calculating the hyperbolic distance in
the Poincaré model via the cross-ratio in CP

1 the factor 1/2 in the distance
formula has to be dropped, in order to be consistent with the Beltrami-Klein
model.
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Selected Topics in Hyperbolic
Geometry

Out of nothing I created a strange
new universe!

János Bolyai

After having mastered the basics of hyperbolic geometry, having learned how
to calculate distances and angles, perform transformations, represent it in
two different models, a whole world of interesting topics opens, by far more
than can be covered here in this book. We now want to focus on a few of
these topics that are of particular beauty and show specific relationships to
our projective approaches to hyperbolic geometry.

26.1 Circles and Cycles in the Poincaré Disk

Without going too much into detail we want to explain a few effects concern-
ing circles and cycles in the Poincaré disk model. For this we again have to
distinguish carefully between different types of cycles, a topic we already en-
countered in Chapter 23. We here should again recall that the points outside
the unit disk in the Beltrami-Klein model do not have a proper counterpart
in the Poincaré disk. For this reason we will prominently consider those cy-
cles that have a nonempty intersection with the interior of the unit disk (in
the Beltrami-Klein model). As developed in Section 23.3, these cycles fall
into three classes. Members of the the first class will be called proper real
circles. They are a set of points inside the unit disk that have a real hy-
perbolic distance to a center m inside the unit disk. In the Beltrami-Klein

505
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Fig. 26.1 Circles and cycles in the Beltrami-Klein model and the Poincaré disk.

model they correspond to conics that have two complex contact points with
our fundamental conic—the unit circle.

Other cycles that may have nonempty intersection with the interior of the
unit disk are the hypercycles and the horocycles. Horocycles have a center
that lies on the unit circle. In the Beltrami-Klein model they are conics that
osculate with the unit circle of order four (i.e. the two contact points coincide).
The distance of the cycle points to such a center is always infinite and cannot
be used as a characterizing property for the points on the cycle. Hypercycles
are those conics that have a center outside the unit circle. They have order
two contact with the unit circle in two real points. The distance of the points
of the cycle to the center is a complex number. Summarizing, one can say that
in the Beltrami-Klein model, cycles are conics that have contact to the unit
circle in two points that may be distinct complex conjugates, distinct real
points, or real and coinciding points. All three types of curves have constant
curvature, except for the points where they meet the unit circle.

How are these types of cycles represented in the Poincaré model? Fig-
ure 26.1 shows three cycles: a proper real circle (blue), a horocycle (red),
and a hypercycle (green) in the Beltrami-Klein model and the corresponding
cycles in the Poincaré model. If possible also the centers are indicated. We
once more recall our discussion from Section 23.4 concerning the question
whether a hypercycle should be considered one cycle or two cycles. There
were good reasons for both of these viewpoints. The reason to consider the
hypercycle to be two cycles comes from the differential geometric viewpoint:
It is impossible to get from one half to the other by a finite journey along
the circle in hyperbolic space. Both branches are curves of constant curva-
ture of infinite length. The reason to consider them to be one branch came
from the algebraic treatment. The entire cycle should be an algebraically
closed curve: a complete conic. We will see that both viewpoints again have
their counterparts in the Poincaré disk model. First we will briefly explain
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the characteristic features of the three types of cycles in the Poincaré disk
model.

Proper real circles: In the Poincaré disk a proper real circle (blue) is
represented by a curve that looks like a usual Euclidean circle that lies en-
tirely in H. This can easily be seen as follows. Assume that the center of the
circle is the origin. Since the distance function with respect to to the origin
is rotationally symmetric, such a circle must look like a usual Euclidean cir-
cle. Now every circle can be obtained from a circle centered at the origin by
a suitable hyperbolic transformation. In the Poincaré disk these hyperbolic
transformations correspond to Möbius transformations, which again map cir-
cles to circles. Hence every proper real circle must in fact be represented by
something that “looks like” a Euclidean circle. It is interesting to observe that
although in the Poincaré disk hyperbolic circles look like Euclidean circles,
their centers in general do not look like centers. Their position gets distorted
by the hyperbolic metric.

Horocycles: Horocycles (red) do not offer much spectacularly new. In the
Poincaré disk they are still represented by Euclidean circles. They arise as a
limit case of proper real circles that touch the boundary. The center is then
exactly located at this touching point. It is an interesting observation that
the deformation function from the Beltrami-Klein model to the Poincaré disk
behaves such that the osculation of order four in the Beltrami-Klein model
now becomes a contact only of order two between two circles.

Hypercycles: A slight surprise arises for the case of hypercycles (green).
The corresponding image in the Poincaré disk consists of two circular arcs
that form a lune-shaped region. The deformation between the two models
is such that the contact of order two in the Beltrami-Klein model becomes
a sharp edge between two circular arcs. There is a completely different way
of looking at the two circular arcs in the Poincaré disk that also explains
their mutual relationship. We have seen in Section 25.4 that every point z
inside the unit circle has an associated point outside the unit circle located at
1/z = ι(z) that arises from a circular reflection at the unit circle. Structurally,
both points represent the same point in the hyperbolic plane. This is the
reason why we could restrict ourselves to the interior and the boundary of
the unit circle. Now, if we have a proper real circle, it has (via z �→ ι(z))
an associated circle that lies completely outside the unit circle (compare for
instance the red circle in Figure 25.8). Now, what happens if we move such a
proper real circle to a position where it intersects the unit circle in two points
(and hence is no longer a proper real circle in our sense)? Part of the original
circle sticks outside the unit circle, and its reflection via ι forms a second
circular arc inside the Poincaré disk. This is exactly the second arc we see in
a hypercycle. It is completely determined by the other arc and arises as circle
reflection of the outside part of the first circle. To see this effect consider
the blue circles in Figure 25.8. Since the center of such a hypercycle in the
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Fig. 26.2 Four A-circles through three points.

Beltrami-Klein model lies outside the unit circle, it has no visual counterpart
in the Poincaré model.

So we see that the two branches of a hypercycle in the Poincaré disk model
indeed translate into two distinct (though closely related) circular arcs. Let
us finally exemplify how the different viewpoints of what is a circle sensibly
influence some of the fundamental statements of elementary geometry. In Eu-
clidean geometry we are used to the fact that through three finite points there
always passes a unique circle. What is the counterpart of this in hyperbolic
geometry? This depends on your definition of what is a cycle. Let us take two
extreme positions. We first formulate them in the Beltrami-Klein model. Let
us call an A-circle (A for algebraic) for a given center m any conic described
by the matrix

λ ·MTBM + μ ·A
(compare Equation (23.3)), that is, the complete conic that corresponds to
a circle, a horocycle or a hypercycle. Let us call a C-circle (C for curvature)
any curve of constant curvature that arises from starting at a point inside
the unit disk and following with the same curvature in both directions. Thus
the hypercycles get cut into two branches. In the Poincaré disk the A-circles
correspond to full (Euclidean) circles in the closure of H and pairs of circular
arcs that are related by ι as described above. The C-circles arise simply as
intersections of ordinary Euclidean circles with the interior H of the unit
circle. For three points A,B,C inside H we now have the following:

There is exactly one C-circle through these three points. As long as
A,B,C are not on a hyperbolic line, there are exactly four A-circles
through these three points.

In the Poincaré model the unique C-circle arises as the intersection of the
unique Euclidean circle through A,B,C with H. The four A-circles arise
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Fig. 26.3 Decomposing a hyperbolic polygon into triangles.

in the following way. Consider the points A0 = A, A1 = ι(A), B0 = B,
B1 = ι(B), C0 = C, C1 = ι(C). Each selection Ai, Bj , Ck with i, j, k ∈ {0, 1}
defines a unique Euclidean circle. The intersections of these branches with H
constitute all branches of the four A-circles. Figure 26.2 shows the situation
inside H for three generically chosen points.

26.2 Area and Angle Defect

One of the most popularly known effects of hyperbolic geometry is the relation
of the angle defect of a triangle and its area: It can be shown that in hyperbolic
geometry the angle sum α + β + γ of a triangle is always less then π.1 We
will now prove that the angle defect π − α − β − γ (the deviation of the
angle sum from π) is directly related to the hyperbolic area enclosed by the
triangle sides. The larger the angle defect, the larger the area of the triangle.
So far, we have not even defined what we mean by a hyperbolic area, and
we will do this now by specifying two crucial properties that a function that
measures area should have. It should be additive and invariant under motion.
To make our development a bit simpler we restrict ourselves to regions inside
the unit circle that are bounded by a Jordan curve consisting of finitely many
hyperbolic line segments. We will call such a region simple. An area function
is a continuous function area(R) that assigns a real number to such a simple
region. The function must in addition have the following properties.

Additivity: This means that if we have one region R = U ∪ V that is the
union of two other simple regions U and V with disjoint interior, then

1 If you prefer measuring angles in degrees, set π = 180◦.
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π α
α β

Fig. 26.4 Calculating the area of special hyperbolic triangles.

area(R) = area(U) + area(V ).

Motion invariance: If τ is a hyperbolic transformation and a R a simple
region, we require

area(R) = area(τ(R)).

Any function that satisfies these properties will be called an area function.
We will now outline a stream of arguments that shows that the above two
properties already determine the area function up to a constant multiplicative
factor and directly relate it to the angle deficit.

Triangles are enough: It can be proved that every simple region can be
decomposed as a union of triangles. The additivity property implies that an
area function is completely specified if its values on all triangles are deter-
mined (compare Figure 26.3). Thus it is now our task to determine the area
of a triangle. In hyperbolic geometry the shape of a triangle is completely
determined by its three vertex angles. Thus up to a motion (that leaves the
area invariant) we can talk of the triangle Δα,β,γ with vertex angles α, β, γ.
We will now investigate how additivity and motion invariance restrict the
function area(Δα,β,γ). In particular, we will also admit triangles whose ver-
tices are on the unit circle. The corresponding vertex angle at such a vertex
is 0. All accompanying pictures for the following explanations will be in the
Poincaré disk model, since there it is possible to directly perceive the vertex
angles.

The infinite triangle Δ0,0,0: We will start by fixing the area function
for one specific triangle. Conceptually, there are two extremes that are a
good starting point for such a convention: infinitesimally small triangles and
the largest triangles possible. In fact, we want infinitesimally small regions
of the hyperbolic plane to behave asymptotically like the Euclidean plane.
Accordingly, our definition of length measurement

|dist(p, q)| =
∣∣∣∣−

1
2

ln(p, q,X, Y )
∣∣∣∣
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determines the area of infinitesimally small triangles. We want (if possible) to
construct our area function such that a right triangle whose legs have length
a has the area a2/2 as a → 0. Starting with this assumption is a possible
way to go, but leads to rather messy calculations. We will go the other way
around and fix the area for a triangle that is as large as possible and at
the end show that our choice is consistent with the above requirement for
infinitesimal triangles. The largest triangle possible is a triangle all of whose
vertices are “at infinity” (i.e., they are on the unit circle). For such a triangle
all vertex angles are 0. We define

area(Δ0,0,0) := π.

We will see that this choice uniquely determines all other triangle areas. It is
clear that all triangles with all vertices on the unit circle are hyperbolically
congruent, since a projective RP

1 transformation on the unit circle can map
every triple of points to every other one. The left picture in Figure 26.4
illustrates such an infinite triangle.

Triangles of shape Δα,0,0: We next determine the area for triangles with
all but one vertex at infinity (see Figure 26.4 in the middle). The function
f(α) := area(Δα,0,0) should be continuous in α. Furthermore it should satisfy
f(0) = π (the area of the infinite triangle) and f(π) = 0 (a degenerate triangle
has zero area). Figure 26.4 (right) reveals another important identity of the
function f . It must satisfy

f(α) + f(β) = f(α+ β) + π.

This can easily be seen by considering the quadrangle Q formed by the four
vertices in this pictures decomposed in two different ways. Taking the deriva-
tive of both sides with respect to α, we get

f ′(α) = f ′(α+ β),

which implies that f ′(α) is constant and hence f(α) must be a linear function.
Together with f(0) = π and f(π) = 0 this implies

area(Δα,0,0) = π − α.

Triangles of general shape Δα,β,γ: Now it is easy to determine the area
of a general triangle Δα,β,γ . For this consider Figure 26.5. It shows how the
infinite triangle can be decomposed into a triangle of shape Δα,β,γ and three
other triangles of shapes Δπ−α,0,0, Δπ−β,0,0, and Δπ−γ,0,0. The additivity
property implies that
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Fig. 26.5 Calculating the area of a general hyperbolic triangle.

area(Δ0,0,0) = area(Δα,β,γ)
+ area(Δπ−α,0,0)
+ area(Δπ−β,0,0)
+ area(Δπ−γ,0,0)

Inserting the area formulas we already established, we get

π = area(Δα,β,γ) + α+ β + γ

or in other words,
area(Δα,β,γ) = π − α− β − γ.

The area of a triangle equals precisely the angle defect!

Infinitesimally small triangles: We want to conclude this section with
the observation that our initial choice area(Δ0,0,0) := π is consistent with the
requirement that infinitesimally small triangles have asymptotically the same
area as in Euclidean geometry. It is sufficient to show this for one particular
(small) triangle. Within our standard embedding with the hyperbolic plane
located inside the unit disk we consider the right triangle with vertices located
at (0, 0), (a, 0), (0, a). It is of shape Δπ/2,α,α with α→ π/4 as a→ 0. We want
to express α in terms of a and compare the desired asymptotic Euclidean area
formula to the angle defect formula area(Δπ/2,α,α) = π− π/2− 2α. We only
sketch these calculations, since they are fairly standard.

Let us first derive the asymptotic Euclidean area formula. For this we
must calculate the hyperbolic side length of the two legs of the triangle. By
symmetry it is sufficient to calculate the distance between o = (0, 0) and
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p = (a, 0). For the line supporting these two points we get X = (−1, 0) and
Y = (1, 0). Thus we get with choice of our constant cdist = −1/2 (which now
really enters as a significant constant)

disthyp(o, p) = −1/2 ln
(

1 − a

1 + a

)
.

We already studied this function in Section 20.3. Figure 20.2 shows a plot
of this function that demonstrates that for small a this function is asymp-
totically close to the identity (this is how cdist was chosen). Thus in the
asymptotic situation we can replace the hyperbolic distance simply by a it-
self. So we get a right triangle whose legs (asymptotically) are of length a.
The corresponding Euclidean area function for such a triangle is a2/2. We
now must show that asymptotically the angle defect approximates closely
this value. The value of α can be calculated from a by the formula

cos(α) =
Θlm√
ΘllΘmm

,

with l = (0, 1, 0)T and m = (−1,−1, a) being the homogeneous coordinates
of a leg and the hypotenuse. Inserting in the above formula gives

α = arccos
(

1√
2 − a2

)

Inserting this in the angle deficit formula yields

area(Δπ/2,α,α) =
π

2
− 2 arccos

(
1√

2 − a2

)
.

By standard techniques from a first-year calculus course it can be shown that
for as a→ 0 we have

a2

2
≈ π

2
− 2 arccos

(
1√

2 − a2

)
.

It is an amazing effect (and one of the beautiful coincidences that make
mathematics a fascinating subject) that the choice area(Δ0,0,0) := π of the
area of the largest possible triangle leads to the simplest possible formulas
for the area in general and even leads to formulas for very small triangles
that approximate the Euclidean area function.
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40◦ 40◦

90◦

Fig. 26.6 The peripheral angle configuration (left and middle) and Thales’ theorem in
hyperbolic geometry (right).

26.3 Thales and Pythagoras

As we did in Chapter 19 for Euclidean geometry, we now want to have a
brief look at elementary geometry in the hyperbolic plane from a projective
perspective. We already supplied many results in this direction in Chapter 22
on the level of general Cayley-Klein geometries. There we proved theorems
on altitudes, angle bisectors, medians and an analogue of the law of sines
for triangles. We here will look at some of the peculiarities that are more or
less special to hyperbolic geometry.2 We will focus on two well-known theo-
rems from Euclidean geometry and look for their counterparts in hyperbolic
geometry: The theorems of Thales and Pythagoras.

Thales’ theorem can be considered a special case of the peripheral angle
theorem for circles. The peripheral angle theorem states that (modulo π)
every point of a circle sees a fixed chord under a fixed angle. Thales’ theorem
is the special case in which the chord becomes a diameter and the angle is a
right angle. Let us first see what still remains of the peripheral angle theorem
in hyperbolic geometry. The left and middle pictures of Figure 26.6 show (in
the Beltrami-Klein model) a segment (black) and the locus of all points that
see this segment under a hyperbolic angle of 40◦. The left picture illustrates
that the locus is topologically still of the type of a circle. However, metrically
it is not a circle at all, not even a conic. It turns out to be a branch of
an algebraic curve of degree four. The light curve shown in this picture is
the locus of points that see the segment under an angle of −40◦. This locus
forms another branch of the same curve. The picture in the middle shows
the analogous situation of a segment that intersects the fundamental conic.
Algebraically, for this situation it is still feasible to speak of the locus of
all points that see the segment under an angle of 40◦. In this case the two
branches merge and form a more complicated curve. The picture on the right

2 To be more precise, it would perhaps be better to say “are more or less special to
Cayley-Klein geometries with nondegenerate fundamental conic,” since on the algebraic
side hyperbolic and elliptic geometry are essentially equivalent and each statement in one
geometry has its counterpart in the other.
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now shows the locus of all points that see the segment under a right angle
(this is the case of a hyperbolic analogue of Thales’ theorem). In this case the
two branches of the curve overlap and form one curve of degree 2: a conic.
Thus Thales’ theorem survives in the following restricted form, and with a
projective way of thinking it is almost trivial to prove it.

Theorem 26.1 (Hyperbolic Thales). The points that see a given segment
in hyperbolic geometry under a right angle all lie (in the Beltrami-Klein
model) on a conic.

Proof. Let A and B be the two endpoints of the segment. Let l be a line
through A. We calculate the (unique) line through B perpendicular to l. This
is g = B × l∗ with l∗ being the polar of l with respect to the fundamental
conic. If we consider the two line bundles LA and LB through A and B and
equip each of them with a projective basis, then the transition from l to g is
just a projective transformation. Theorem 10.2 implies that the locus of all
intersections of l and g is a conic. ��

Let us stay with right triangles and come to a hyperbolic version of perhaps
the most famous theorem in geometry: the Pythagorean theorem. The essence
of the Pythagorean theorem is that it allows one to calculate the side length
of the hypotenuse of a right triangle from the side lengths of the two legs. In
hyperbolic geometry the Pythagorean theorem takes the following surprising
form:

Theorem 26.2 (Hyperbolic Pythagoras). Let a, b, c be the three hyper-
bolic side lengths of a hyperbolic right triangle with c being the hypotenuse
and a, b being the legs. Then

cosh(a) · cosh(b) = cosh(c).

Proof. We will again attempt to prove this theorem in essentially projective
terms. By this we will also see more projective reformulations of the same
statement. Recall from Section 22.5 (see the summary table there at the end)
that with respect to hyperbolic distance measurement we have

cosh2(dist(p, q)) =
Ω2
pq

ΩppΩqq
.

We assume that the three vertices of the triangle are p, q, r such that c =
dist(p, q) and the right angle is at point r. Since for real x the function
cosh(x) is always positive, the statement of the theorem is equivalent to

cosh2(a) · cosh2(b) = cosh2(c).

Applying the above identity, this translates to
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Ω2
qr

ΩppΩrr
· Ω2

rq

ΩrrΩqq
=

Ω2
pq

ΩppΩqq
.

Canceling terms that occur on both sides and clearing denominators gives

Ω2
pr ·Ω2

rq = Ω2
pq ·Ω2

rr.

Thus we are done if we prove

Ωpr ·Ωrq = Ωpq ·Ωrr,

or equivalently
(pTAr) · (rTAq) = (pTAq) · (rTAr), (26.1)

for a triangle p, q, r with right angle at r. The condition for the orthogonal-
ity of the lines join(r, p) and join(r, q) can according to Theorem 22.1 be
expressed by

(r × p)TB(r × q) = 0. (26.2)

Proving the hyperbolic Pythagorean theorem thus results in proving the
equivalence of equations (26.1) and (26.2). Perhaps the simplest and most
direct proof of this equivalence goes via the use of tensor diagrams (see Chap-
ter 13 and Chapter14). So we will make one small exception to our rule not
to use diagram techniques. The matrix B may be chosen to be the adjoint
AΔ of the primal fundamental conic A. Thus the diagram of (r×p)TB(r× q)
is given by

A

A

rr

qp

Here the dotted part plays the role of B = AΔ. Applying the ε-δ-rule reduces
this diagram to

−
A

A

A

A

rrrr

pp qq

which is nothing but twice the diagram

A

A

r

r

p

q
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Applying the ε-δ-rule again leaves us with twice

−
A

A

A

A

r

r

r

r

pp

qq

Thus we have

(r × p)TAΔ(r × q) = 2
(
(pTAq) · (rTAr) − (pTAr) · (rTAq)) ,

and the theorem follows. ��
The reader should again go over the proof and see how every single argu-

ment involved in the proof is just a straightforward step in a projective setup
of the statement.

Remark 26.1. The reader might wonder why in hyperbolic geometry the
Pythagorean theorem takes a multiplicative form instead of the usual addi-
tive structure a2 + b2 = c2. The reason for this is that the cosh(. . .) functions
are not the analogues of the Euclidean lengths. This analogue is played by the
sinh(. . .) functions. Using cosh2(x) − sinh2(x) = 1, Theorem 26.2 translates
to

(1 + sinh2(a))(1 + sinh2(b)) = (1 + sinh2(c)).

Simplification yields

sinh2(a) + sinh2(b) + sinh2(a) sinh2(b) = sinh2(c).

In this form the theorem is very close to the form a2 + b2 = c2. However, in
hyperbolic geometry a correction term sinh2(a) sinh2(b) is needed.

26.4 Constructing Regular n-Gons

A regular hyperbolic n-gon is a polygon whose n sides are hyperbolic line
segments of equal length d and with identical angles ψ at each vertex. In
contrast to in the Euclidean case (where regular polygons can be arbitrarily
scaled) in hyperbolic geometry the angle ψ and the number n already com-
pletely determine the side length d. It is the aim of this section to give a
procedure that once n and ψ are known allows us to determine d and the
radius (the distance of the vertices to the center of symmetry) of the n-gon.

This task can be reduced to the following problem. Letting α and β be
the two leg angles of a right triangle, compute the corresponding hypotenuse.
To see how a solution of this problem leads to a construction of a regular
n-gon with prescribed vertex angle, consider Figure 26.7. This picture shows
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Fig. 26.7 A hexagon with only right angles decomposed into right triangles.

a hexagon (thus n = 6) all whose vertex angles are ψ = 90◦. It can be
decomposed into a ring of 12 = 2n right triangles. The two leg angles are
π/n = 30◦ for those angles that meet in the center of the hexagon and
β = ψ/2 = 45◦ for the angle that meets at the vertex of the n-gon. Conversely,
a collection of 2n right triangles with leg-corner angles β = ψ/2 and α = π/n
can be used to assemble an n-gon with vertex angle ψ.

So, how can we solve the above problem and construct the length c of
the hypotenuse from α and β? This is a relatively simple task if apply some
hyperbolic trigonometry. For the labeling we refer to Figure 26.7 (right).
From the Pythagorean theorem we know that

cosh(a) · cosh(b) = cosh(c).

We can rewrite this as

sinh2(a) + sinh2(b) + sinh2(a) sinh2(b) = sinh2(c).

Furthermore, the sine theorem tells us that

sin(α)
sinh(a)

=
sin(β)
sinh(b)

=
sin(γ)
sinh(c)

.

Since γ = 90◦, we have sin(γ) = 1, and we get

sin(α) sinh(c) = sinh(a) and sin(β) sinh(c) = sinh(b).
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Inserting this in the above equation gives

sin2(α) sinh2(c) + sin2(β) sinh2(c) + sin2(α) sin2(β) sinh4(c) = sinh2(c).

Canceling sinh2(c) yields

sin2(α) + sin2(β) + sin2(α) sin2(β) sinh2(c) = 1.

Resolving for the remaining sinh2(c) gives

sinh2(c) =
1 − sin2(α) − sin2(β)

sin2(α) sin2(β)
=

1
tan2(α) tan2(β)

− 1.

The above equation is a consequence of simple trigonometric identities. Given
the last identity, it is an easy task to compute the length c of the hypotenuse
c from the two angles α and β.

The fact that the angle sum in a hyperbolic triangle is always less than 180◦

is reflected by the following fact. Let p and q be the endpoints of the hy-
potenuse c. They are both inside the unit disk (the fundamental conic) if the
cross-ratio Ξ = (p, q;X,Y ) is positive. Since sinh(c) = (1/Ξ +Ξ − 2)/4, the
term sinh(c) must be positive for the hypotenuse to lie entirely in the unit
disk. This implies that in this case 1

tan2(α) tan2(β) − 1 must be positive. This
is the case only if |α| + |β| < 45◦.

26.5 Symmetry Groups

No exposition on hyperbolic geometry would be complete without mention-
ing the fascinating symmetry properties regular hyperbolic tesselations can
have. The reason for this richness of structure comes from the fact that in
the hyperbolic plane one can have polygons all of whose vertex angles are
arbitrary small divisors of 360◦. Consider, for instance a regular hyperbolic
pentagon whose vertex angles are all 90◦. One can take four such pentagons
and arrange them such that they meet tightly in a common vertex, like the
squares in a Euclidean checkerboard. One can infinitely repeat this process
and fill the entire hyperbolic plane with an infinite collection of such right-
angled pentagons, four of them meeting at every vertex. Figure 26.8 shows
such an arrangement where in addition the pentagons are colored alternately
black and white. It is possible to create such a tiling with arbitrary hyperbolic
right-angled n-gons. The considerations of our last section imply that such
n-gons exist whenever n > 4. We then only have to choose α = 180◦/n and
β = 45◦. Such tilings by regular n-gons are not only restricted to right angles.
As long as the parameters n and β satisfy 360◦/n+ ψ < 90◦ and ψ = 2β is
a divisor of 360◦, the corresponding polygon will seamlessly tile the hyper-
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Fig. 26.8 A pentagonal hyperbolic checkerboard.

bolic plane. In other words, the tiling condition is α = 180◦/n, β = 180◦/m
together with the inequality 1/n+ 1/m < 1/2.

One should be aware that this is in sharp contrast to the case of Euclidean
geometry, where the only possible tilings by regular polygons are those cre-
ated by regular triangles, squares, and hexagons. This is the case since as
tiling condition in the Euclidean plane the equation 1/n+1/m= 1/2 for the
angles α = 180◦/n, β = 180◦/m has to be satisfied sharply.

Also other effects that are well known in Euclidean geometry have their
counterpart in hyperbolic geometry and lead there to an infinite variety of
different objects. One example is kaleidoscopes. A triangular kaleidoscope
(kaleido = beauty, scope = viewer) consists of three mirrors that meet at
angles α = 180◦/a, β = 180◦/b, γ = 180◦/c that are divisors of 180◦ (i.e.,
a, b, c ∈ N). In Euclidean geometry there are only three such arrange-
ments of mirrors. They have vertex angles (60◦, 60◦, 60◦), (90◦, 60◦, 30◦),
and (90◦, 45◦, 45◦), since in Euclidean geometry the angle sum must be ex-
actly 180◦. Translated in terms of the integers a, b, c, this gives the condition

1
a

+
1
b

+
1
c

= 1.
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Fig. 26.9 Dr. Stickler in a hyperbolic mirror cabinet.

In hyperbolic geometry the angle sum is less than 180◦, and consequently
there are infinitely many possibilities for such triangles. All integer solutions
of

1
a

+
1
b

+
1
c
< 1

lead to an appropriate kaleidoscope. Why are such triangles whose vertex
angles are divisors of 180◦ good candidates for a kaleidoscopic cell? For this
assume that the sides of the triangle are made of a reflecting material. Around
each vertex the iterated reflections of the triangle in the two mirrors that meet
at this vertex produce a ring of triangles that closes up tightly, since the vertex
angle was chosen to be a divisor of 180◦. Thus by iteratively reflecting the
triangle in its own edges, the entire hyperbolic plane gets filled seamlessly
and free of overlaps with infinitely many copies of the original triangle.

Figure 26.9 demonstrates this effect for a hyperbolic triangle with vertex
angles (60◦, 45◦, 45◦). We placed Dr. Stickler in the middle of one kaleido-
scope cell. One can observe how the entire hyperbolic plane is covered by
copies of Dr. Stickler (the copies are alternately red and green to indicate the
handedness of the mirror images).

Finally, there are also more complicated symmetric patterns than those
coming from reflection groups. For this we may consider a (possibly infinite)
group G consisting of a set of isometries acting on a certain metric space X



522 26 Selected Topics in Hyperbolic Geometry

Fig. 26.10 The parade of dragoncats (artwork by the author).

(for instance a Cayley-Klein geometry). Each point p ∈ X has an orbit under
the group p = {g ◦ p | g ∈ G}. The group is said to be a discrete group on
X if the orbit p of every point p ∈ X does not have an accumulation point
with respect to the distance measure in X . This rather abstract concept
has nice visual representations. In particular, the reflection groups generated
by kaleidoscopic mirror triangles are discrete groups. In practice, this means
that each point of the orbit of every point can be surrounded by a small circle
that does not contain any other point of the orbit. Discrete groups are by
far more general than reflection groups. In Euclidean geometry the discrete
groups are classified into two infinite classes (the rosette groups, having a
single center of rotational symmetry), the seven frieze groups (they have a
translational symmetry in only one direction), and the 17 wallpaper groups
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(they have translatorial symmetry in two directions). Most prominent are
the 17 wallpaper groups forming the mathematical basis of most symmetric
planar geometric structures, such as the ornamental patterns of Islamic art
and many drawings by the famous Dutch artist M.C. Escher. A fundamental
region of such a group is a connected subset F of X such that the orbits of F
form a disjoint union of X . In Euclidean geometry the wallpaper groups are
exactly those with a finite fundamental region. In a wallpaper ornament each
fundamental region could be considered a tile whose symmetric repetition
according to the rules of the group forms the entire ornament.

Also here the structure in hyperbolic geometry is by far richer. The ana-
logues of the Euclidean wallpaper groups are those discrete hyperbolic groups
having a finite fundamental region, and (no surprise) there are infinitely many
of them. (The structure has a fascinating richness.) Figure 26.10 shows such
a hyperbolic ornament, a hyperbolic tiling where each of the tiles is ani-
mal shaped and all the tiles fit seamlessly together to cover the hyperbolic
plane. Recall that in the hyperbolic plane each of these animals indeed has
exactly the same size and shape. Notice also the subtle color symmetries of
this drawing.3

3 Figures 26.8, 26.9, 26.10 were generated with the software morenaments, which is part
of a joint project of Martin von Gagern and the author of this book [43, 42].
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What We Did Not Touch

This is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning

Winston Churchill

This book now comes to an end, and it became considerably fatter than
originally intended. Still there are many interesting, amazing, deep, esthetic
topics that we did not touch at all. This final chapter is intended to give a
very brief overview of a loose selection of topics that I think are among the
most fascinating ones among them.

27.1 Algebraic Projective Geometry

Throughout this book we have dealt mainly with linear objects (lines, planes,
flats) and quadratic objects (conics). Many fascinating effects occur when one
deals with algebraic curves of higher degree in a projective framework. New
types of incidence theorems, interesting singularities, and a surprising theory
of duality arise (see for instance [19, 40]). Also the interplay of complex
and real parts of curves becomes an interesting subject. We will scratch the
surface of a few of these topics. An algebraic curve is the solution set of a
homogeneous polynomial equation in three variables x, y, z. For instance, an
algebraic cubic (a curve of degree three) is the set of all points (x, y, z)T that
satisfy an equation

p1x
3+p2x

2y+p3x
2z+p4xy

2+p5xyz+p6xz
2+p7y

3+p8y
2z+p9yz

2+p10z
3 = 0.
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Fig. 27.1 An incidence theorem on cubics.

The parameter vector (p1, p2, . . . , p10) determines the cubic uniquely. In gen-
eral, an algebraic curve of degree d has

(
d
2

)
parameters. The parameters them-

selves are homogeneous coordinates of the curve. So the set of all cubics has
nine degrees of freedom. This implies that in general, a cubic is uniquely
determined by the position of nine points (in suitably “general” position)
that lie on it. This is analogous to the fact that a conic is determined by five
points. In the same way as conics may degenerate into a pair of lines, cubics
can also degenerate into curves of lower degree. They may degenerate into
either three lines or a pair of a line and a conic.

Incidence theorems: As for conics and lines, there are also incidence
theorems involving higherorder algebraic curves. Since algebraic curves carry
much more information than conics or lines, there exist already incidence
theorems with relatively few such curves. Perhaps the smallest one is the
following:

Theorem 27.1. Let C1, C2, and C3 be three cubic curves. If C1 and C2 have
nine distinct points in common and if C3 passes through eight of these points,
then it automatically passes through the last point as well.

We will not prove this result here. This theorem is known as the Cayley-
Bacharach-Chasles theorem (for two nice comprehensive overviews see [38,
63]), and a variation of it was given in Section 1.5. Figure 27.1 illustrates a
few instances of this theorem. It is particularly interesting to consider de-
generate cases of the Cayley Bacharach theorem in which some of the cubics
degenerate. There are many of them, and it is a good exercise to enumerate
and classify all possible degenerate situations. The rightmost drawing in Fig-
ure 27.1 illustrates such a degenerate situation that involves five lines and two
conics. The middle picture shows a situation that is close to this degenerate
situation. If all three conics degenerate into line triples, we obtain (surprise)
Pappos’s theorem (see also Figure 1.17).

The proof of the Cayley Bacharach theorem relies heavily on another beau-
tiful (and powerful) result about algebraic curves: Bézout’s theorem. This
theorem gives a precise account of the number of intersections two algebraic



27.1 Algebraic Projective Geometry 527

x2 + y3 − y2 = 0 x2 + y3 = 0 x2 + y3 + y2 = 0

Fig. 27.2 Singularities of a cubic

curves can have. Here one has to be careful to get the right concept of inter-
sections and intersection multiplicity. For instance, the point at which a line
touches a conic in tangential position has to be counted as a double inter-
section, since an ε-perturbation of the situation immediately generates two
intersections. Also, complex intersections and intersections at infinity have to
be counted. So here again it is inevitable to have a framework that is both
projective and complex: see [19]. With such an advanced understanding of
the concept of intersection, Bézout’s theorem can be stated as follows:

Theorem 27.2. Two algebraic curves of degree n and m either meet in n ·
m points (counted with correct multiplicity) or have a whole component in
common.

We have encountered several special cases of this theorem already. Two
lines meet in one point, a line and a conic meet in two points, and two conics
meet in four points. Concerning cubics we now see that a general line meets
a cubic in three points (this corresponds to the fact that a polynomial of
degree three has three solutions), a conic meets a cubic in six points, and two
cubics meet in nine points.

Special points on curves: Algebraic curves may have very interesting
points with special properties. We have seen only one type of such special
points: a conic may intersect itself in a point if the conic degenerates into
two lines. Already starting with degree three, other interesting special points
occur. For this consider Figure 27.2, in which several interesting examples
are shown. All curves shown there are of degree three and in fact belong
to a one-parameter continuous family of curves (implicit equations of the
curves in inhomogeneous coordinates are given). In the first picture the
curve intersects itself. Such a situation in which one part of the curve passes
transversally through another part of the curve is called a simple singularity
or double point. For every nonsingular point of the curve it is possible to
assign a unique tangent. This is no longer the case for a double point. In a
certain sense (which involves the technique of a blowup of a singularity) one
can assign two well-defined tangents at this point of the curve, one for every
smooth branch of the curve passing through it. The second picture shows
the limit situation, in which the loop that exists in the first picture is just
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Fig. 27.3 Real inflection points of a (blue) cubic and the structure of all inflection points.

about to vanish. Considering the tangent situation such a curve has a sharp
edge. A point traversing the curve would have to change its direction in such
a singularity. Such a situation is called a cusp. In a sense, cusps are degen-
erate double points. In the third picture the double point has (seemingly)
completely vanished. The red curve seems to be perfectly smooth. Care has
to be taken here, since the interplay of complex and real numbers comes into
play. First observe that the point (x, y) = (0, 0) still satisfies the equation
of the curve although it is no longer on the red curve. The point (0, 0) is an
isolated point of the curve and in fact has to be counted as a double point,
since it is the real (!) intersection of two complex conjugate tangents that may
be associated at this point. Going from the left to the right in Figure 27.2,
the point (0, 0) has first two real tangents. In the middle picture these two
tangents coincide, and in the last picture they became complex conjugates.
Singularity theory is a very wide field, and much more complicated situa-
tions than shown above may arise. However, also here a projective viewpoint
is always the right starting point.

There is one more type of special point on curves that is not singular but
still plays an important role for the theory: the inflection points. Roughly
speaking, a point of an algebraic curve is an inflection point if the curvature
in this point changes its sign. To return to our metaphor of riding a bike
along a curved road, an inflection point is at the position at which your
handle bar is in momentarily straight position and back and front wheel are
aligned. Figure 27.3 shows the three (real) inflection points of a cubic (the
blue curve). As we will soon see the interplay of real and complex again offers
some surprises. There is an amazingly elegant way to calculate the position
of the inflection points. All inflection points lie on the so-called Hessian of
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p

Fig. 27.4 Tangents to a cubic.

the algebraic curve f(x, y, z) = 0 (named after Otto Hesse). The Hessian of
a curve that is the zero set of a polynomial f is the algebraic curve given by
the following equation:

det

⎛
⎜⎜⎜⎝

∂2f
∂x∂x

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y∂y

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z∂z

⎞
⎟⎟⎟⎠ = 0.

The Hessian is again an algebraic curve. If f has degree d, then each of the
partial derivatives occurring in the above determinant has degree d−2. Thus
the Hessian has degree 3d−6. The inflection points are the intersections of the
original curve with its Hessian. By Bézout’s theorem there are (with proper
counting of multiplicities, complex and infinite points) (3d − 6)d inflection
points. In the case of a cubic there are exactly nine of them. In the left
picture of Figure 27.3 we see three of them. The other six are complex. The
Hessian is drawn in red.

One might wonder whether there is a better example in which one can
see all inflection points. In fact, it turns out that this is impossible. For a
suitably generic cubic always exactly three inflection points are real. Again
an incidence theorem occurs that shows that these inflection points are even
collinear. The right picture of Figure 27.3 indicates the combinatorial struc-
ture of the collinearities of the nine inflection points. It turns out that they
form an amazingly symmetrical configuration such that there are even twelve
collinearities among them. On every line there are three points, and through
every point pass four lines. If in the picture one deletes all lines of one color,
one is left with Pappos’s configuration. This very special point configuration
cannot be represented such that all points are real.
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Fig. 27.5 A cubic curve (green) and its polar (red).

Duality: As in every field of projective geometry there is also a dual-
ity theory for the realm of algebraic curves. We briefly recall the situation
for conics. The polar of a conic is again a conic. This could be derived in
the following way. We consider all tangents to a conic f(x, y, z) = 0. The
collection of them describes the polar of the conic. The algebraic equation
f∗(a, b, c) = 0 of a polar of a conic is a polynomial that has the homogeneous
coordinates of these tangents as zeros. From each point not on the conic there
are exactly two tangents (perhaps complex). Hence, the polar of a conic is
again a conic. The situation changes drastically if one increases the degree of
the algebraic curve f(x, y, z) = 0. From a generic point there are in general
d(d − 1) different tangents to an algebraic curve f(x, y, z) = 0 of degree d
(see Figure 27.4 for an example of tangents to a cubic). This implies that the
equation f∗(a, b, c) = 0 for the tangents is a curve of degree d(d − 1). Thus
the polar of a general cubic is a curve of degree 6. Stop! There is a problem.
From usual polarity structures we know that we can go back and forth and
we would expect (f∗)∗ = f . The above formula, however, indicates that the
polar f∗ of a cubic f is of degree 6 and the polar (f∗)∗ of this curve is of
degree 30. In the early days of projective geometry this issue was for a long
time known as the polarity paradox. It was nicely resolved by Julius Plücker
(see [101]). It led to the Plücker formulas for the degrees of polar curves. An
excellent account of the historical background can be found in [48].

The point is that the presence of singularities in the primal curve results
in an overcounting of the degree of the polar curve (we here do not explain
why). The presence of a double point leads to an overestimation of 2, and the
presence of a cusp leads to an overestimation of 3. Thus the correct formula
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for the degree of a polar of a curve f of degree d is given by

deg(f∗) = d(d− 1) − 2 · #(double points of f) − 3 · #(cusps of f).

How does this help in the case of a cubic? It turns out that the presence of an
inflection point in f causes the presence of a cusp in f∗. Thus a (non singular)
cubic describe, by f has degree 3 and possesses nine inflection points. The
curve polar f∗ has indeed degree 6 and possesses nine cusps (six of them are
complex). The degree of the polar of f∗ then amounts to

6 · 5 − 2 · 0 − 3 · 9 = 30 − 27 = 3.

The polar of a polar of a cubic has again degree three and is the original
cubic.

Figure 27.5 illustrates this. There a cubic (green) and its polar (red) are
shown. The polar is also drawn as a point curve. The polar is of degree 6 and
possesses three visual cusps. The other six are complex. The three tangents in
these visual cusps indeed meet in a point, since the corresponding inflection
points are collinear. The two curves shown in the picture are related in the
following way. The circle shown in the picture is used as a conic with respect
to which a concrete polarity is defined. The polars of the tangents to one
curve are the points of the other curve and vice versa.

27.2 Projective Geometry and Discrete Mathematics

After this little excursion to the mathematics of continuous structures such
as algebraic curves and their singularities let us go to the other extreme
and study the underlying combinatorial properties of linear configurations.
Throughout this book we have dealt with geometric configurations mostly
on a very concrete level. Points and lines were represented by certain coordi-
nates; the incidence relation of points and lines could be tested by algebraic
calculations. The hypotheses and the conclusions of theorems, however, were
often of a more combinatorial nature: “Let these and these points be inci-
dent with these and these lines . . . then these and these points are collinear
as well.” In fact, there are two powerful purely combinatorial theories that
deal with projective configurations on a mainly incidence-geometric level:
the theories of matroids [92] and of oriented matroids [7, 13, 116]. These
theories encapsulate the combinatorial essence of projective point and line
configurations. While matroid theory deals only with incidences, the theory
of oriented matroids also carries relative position information (such as how a
line spanned by two points subdivides some other points). We will give here
a brief introduction to the (richer) theory of oriented matroids. We will only
briefly touch matroid theory. We will also restrict ourselves to the planar case
only.
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Fig. 27.6 An arrangement of points and some of its covectors (left) and the dual situation,
an arrangement of lines and its covectors (right). In the primal case covectors correspond to
point partitions by hyperplanes; in the dual case they correspond to signatures of regions.

The theory of oriented matroids has several facets, and in fact it was
“invented” independently at several places by researchers working in projec-
tive geometry, linear programming [2], graph theory, topology [41], structural
chemistry, computational geometry [71], and polytope theory [80]. In all these
different fields certain combinatorial axiom systems were found to be at the
core of the research problems. Later on, it turned out that all these different
axiom systems were essentially cryptomorphic (this means that the terms of
each one of them could be translated into the terms of the others), which
made oriented matroids a useful link between quite different branches of
mathematics. We will here briefly sketch different approaches and give hints
to why they are equivalent.

A common feature of many of the different approaches to oriented matroid
theory is that they are most easily expressed when one considers oriented pro-
jective geometry (see [124]) instead of projective geometry. In projective ge-
ometry we express points by homogeneous coordinates where nonzero scalar
multiples are considered to be equivalent. In contrast to this, in oriented pro-
jective geometry one considers only positive scalar multiples to be equivalent.
So in a sense we study points on the sphere S2 ⊃ R

3, and in contrast to in our
usual setup, this time we do not identify antipodal points. It is relatively easy
to get from oriented projective geometry to projective geometry by forming
suitable 2-element equivalence classes. If we want to think projectively, we
may consider each point in the projective plane to be equipped with a “+” or
a “−” sign encoding its orientation. We now consider a sequence of vectors
V = (v1, . . . , vn) ∈ R

3·n (they may represent oriented points in the projective
plane). From these vectors we will now extract combinatorial information in
various ways.

Covectors of V : We first study the so-called covectors of V . They encode
all possible ways in which an (oriented) line can separate the set of points
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associated to the vectors. Equivalently, these are the partitions of the vectors
in V by linear hyperplanes. Formally, the set of covectorsL(V ) may be defined
as follows.

L(V ) :=
{
(sign(vT1 h), . . . , sign(vTnh)) | h ∈ R

3
}
.

The vector h plays the role of the normal vector of the dividing hyperplane.
As only exception we also admit the vector h = (0, 0, 0)T , which leads to
the all-zero covector. Figure 27.6 shows an example of a configuration of
five points p1, . . . , p5. The corresponding vectors in the standard embedding
have coordinates v1 = (x1, y2, 1), . . . , v5 = (x5, y5, 1). The picture on the left
indicates (in blue) all lines that are spanned by the points in the configuration.
Each one is equipped with an orientation. This leads to a sign vector that
indicates the relative position of the points w.r.t this line. For instance, the
oriented line through the points 1 and 2 leads to the the signvector (00+0−).
This indicates that also point 4 is on this line, that 3 is on the positive side,
and 5 is on the negative side of this line (an opposite orientation would lead to
a negated signvector). In the picture, besides the lines spanned by points, also
one more general line is given (in black and dashed). This line passes through
none of the points and has signvector (+++−−). Notice that there are many
more such covectors of this point configuration (altogether 58). They encode
characteristic relative position and incidence information of the configuration.
For instance, the fact that (00+0−) contains zeros at positions 1, 2, and 4
indicates that these three points are collinear. The covector (++00+) tells
us that the points 3 and 4 span a segment of the convex hull.

There is also a nice dual interpretation of the covectors. Consider Fig-
ure 27.6 on the right. It shows the dual situation. Now every vector vi is
interpreted as homogeneous coordinates of an (oriented) line. The labeling in
the picture indicates which line corresponds to which point. Now each cov-
ector corresponds to the signature of a point w.r.t the lines in this diagram
of oriented lines. The (blue) lines spanned by points in the primal picture
correspond to the (blue) points that are intersections of the lines in the dual
picture. For instance, in the dual picture the intersection of 1 and 2 generates
the covector (00+0−), indicating that also line 4 passes through it and that
it lies on the positive side of 3 and the negative side of 5. The black point in
the drawing corresponds to the point dual to the black dotted line in the left
picture. Again the sign vector indicates the relative position with respect to
the lines. In the dual picture the covectors are in a sense easier to visualize.
Within a region not separated by lines the sign vector does not change. Thus
the sign vectors encode the signatures of every full-dimensional cell, every
segment or ray not separated by a point, and the intersection points as well.
From the signatures of the covectors it is possible to completely reconstruct
the topological structure of the line arrangement (this is like a little puzzle).

The covectors satisfy several interesting and characteristic combinatorial
properties. They are best explained if we first introduce a few notions. We



534 27 What We Did Not Touch

denote by E = {1, . . . , n} the index set of the point configuration and set L =
L(V ). Furthermore, we set for C,D ∈ L S(C,D) := {e ∈ E|Ce = −De �= 0}
(the so-called separating set) and define a composition operator C ◦D by

(C ◦D)e :=
{
Ce if Ce �= 0,
De otherwise.

For instance, if C := (+,+,−, 0,−,+, 0, 0) and D := (0, 0,−,+,+,−, 0,−),
then we have

C ◦D = (+,+,−,+,−,+, 0,−), S(C,D) = {5, 6}.

The following properties are satisfied by all sets of covectors coming from a
vector configuration. (It is not important now what they exactly mean or why
they are true. We will only refer to the mere existence of these properties.)

(CV0) 0 ∈ L,
(CV1) C ∈ L =⇒ −C ∈ L,
(CV2) C,D ∈ L =⇒ C ◦D ∈ L,
(CV3) C,D ∈ L, e ∈ S(C,D) =⇒

there is a Z ∈ L with Ze = 0 and with Zf = (C ◦D)f
for f ∈ E \ S(C,D).

The first property states that the zero vector is a covector. The second states
that with each covector also its negative is a covector. The third property
describes a kind of ε−perturbation. If out start at a covector C and perturb
in the direction of a covector D, the result is the covector C ◦ D. The last
property encodes a kind of elimination property.

If a collection L of sign vectors on E satisfies the properties (CV0–CV3),
then the pair (E,L) is called an oriented matroid. One thing is important to
be mentioned. Not every oriented matroid comes from a vector configuration.
Oriented matroids (E,LV ) that come from a vector configuration V are called
realizable.

At first sight this definition of an oriented matroid may seem a bit arbitrary
and very abstract. However, in a very precise sense it encodes the combina-
torial essence of an arrangement of points or an arrangement of lines, as we
will see now.

Arrangements of pseudolines: We have mentioned that from the infor-
mations carried by the covectors of V one can reconstruct the combinatorics
of the associated arrangements of lines. Without giving technical details, this
procedure goes roughly as follows. One starts with a covector C �= 0 that
has a maximal number of zeros. Such a covector corresponds to some in-
tersection pC of some of the lines involved. Next one collects all covectors
that differ from C in just one sign that was a zero in C. This must be the
segments incident with the point pC . The cyclic order of these segments can
be reconstructed by identifying the covectors that form the two-dimensional
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Fig. 27.7 A smallest nonstretchable arrangement of pseudolines.

cells between these segments. Also, the other endpoints of the segments can
easily be identified. Proceeding inductively one obtains a rough sketch of the
cell complex cut out by the original lines. The only problem is that the lines
are now decomposed into a chain of segments, which may not necessarily be
aligned. Finding a picture where the lines are really straight is another prob-
lem: the so-called realizability problem (or stretchability problem). One could
also phrase this in rather intuitive terms. We will do this now.

A pseudoline in RP
2 is a smooth curve that is topologically equivalent

to a line in RP
2. This means that it is obtained by a smooth deformation

of a line in RP
2. In particular, a pseudoline is free of self-intersections. An

arrangement of pseudolines is a collection of many pseudolines such that any
two of them cross exactly once. Thus an arrangement of pseudolines behaves
just like an arrangement of lines only that the pseudolines do not have to
be straight (compare [50, 85, 117]). Figure 27.7 shows such an arrangement
of pseudolines. The lines have to be considered as reaching out to infinity
to both ends. By assigning an orientation to each of the pseudolines, each
of the regions, segments, and points in the arrangement gets a signature.
Although the lines in this example are not straight, we get again a collection
of covectors of an oriented matroid. In fact, it turns out that both concepts
are essentially equivalent:

From each oriented matroid an (up to smooth deformation) unique ar-
rangement of oriented pseudolines can be reconstructed. Each arrange-
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ment of oriented pseudolines generates the covectors of an oriented ma-
troid.

The arrangement in Figure 27.7 is a nonstretchable one. The reason for
this is Pappos’s theorem. This can be seen as follows. If one compares this
arrangement of pseudolines with the lines of Pappos’s theorem as shown in
Figure 6.3, one recognizes in essence the same structure with one significant
difference. The coincidence of the three red lines has been perturbed and
replaced by a triangle. Still, each of the red lines meets the others in exactly
one point—but they do not all meet in a single point. Assume that all pseu-
dolines were realized by straight lines, then Pappos’s theorem would imply
that also the three red lines had to be concurrent—a contradiction.

In fact, it turns out that this example with nine lines is the smallest non-
stretchable arrangement of pseudolines. All arrangements with eight or fewer
pseudolines are indeed stretchable.

Chirotopes: Here comes another approach to oriented matroids again
based on vectors and on the algebraic properties of determinants.

Let again V = (v1, . . . , vn) ∈ R
3·n be a collection of vectors (considered

as oriented homogeneous coordinates of a point configuration with n points).
Let En = {1, . . . , n} be the index set of the points. We define a map χV :
E3 → {−1, 0,+1} according to

χV (i, j, k) = sign(det(vi, vj , vk)).

Thus to each triple (i, j, k) we assign the orientation of the basis given by
the vectors vi, vj , vj if they are linearly independent; otherwise, we assign 0.
Such a map is called a chirotope of V . It is sufficient to provide the values
for strictly ordered sequences of indices. The rest is determined by the alter-
nating determinant rules. For instance, the chirotope for the configuration in
Figure 27.6 is determined by the following list of signs:

χ(1, 2, 3) = +, χ(1, 2, 4) = 0, χ(1, 2, 5) = −, χ(1, 3, 4) = −, χ(1, 3, 5) = −,
χ(1, 4, 5) = −, χ(2, 3, 4) = −, χ(2, 3, 5) = 0, χ(2, 4, 5) = −, χ(3, 4, 5) = −.
From the chirotope χV the set of covectors LV can be reconstructed. Con-

versely, if on fixes the sign of only one basis in χV , the signs of the remaining
bases are determined by LV .

What are the conditions that a given sign list χ corresponds to the
covectors of a general oriented matroid? It turns out that this question
is closely related to the Grassmann-Plücker relations. In general, a map
χ : E3 → {−1, 0,+1} is called a chirotope if it satisfies the following two
properties.

(Chi0) The map is alternating.
(Chi1) It is in “no obvious contradiction” to the Grassmann-Plücker re-
lations.
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The first statement means that interchanging two indices reverses the sign.
The second slightly loosely formulated statement means the following. Con-
sider a specific Grassmann-Plücker relation; as an example we take

[1, 2, 3][1, 4, 5]− [1, 2, 4][1, 3, 5] + [1, 2, 5][1, 3, 4] = 0.

The chirotope χ now proposes a sign for each of the brackets. By this we can
deduce the signs of the summands. There would be an obvious contradiction
to this equation if one summand turned out to be positive and no other
summand compensated for this by being negative. This is not allowed to
happen for any Grassmann-Plücker relation.

It turns out that whenever the map χ is a chirotope, then it is consistent
with an oriented matroid and vice versa. Thus chirotopes, arrangements of
pseudolines, and oriented matroids are essentially the same objects.

Realizability: There are many fascinating theorems on oriented matroids
and still many interesting research areas. We want to briefly mention one
of the most fascinating concepts, the realizability problem (see [7, 16, 50]).
It is perhaps most easily stated in terms of chirotopes. Given a chirotope
χ, when does it come from a vector configuration χ = χV ? In a sense, the
axiomatization of chirotopes rules out the “stupidest reasons” for a sign map
E3 → {−1, 0,+1} not to come from a vector configuration. At least it must
be alternating, since it is modeling the behavior of determinants. And it
must at least be consistent with the Grassmann-Plücker relations. These are
exactly the two chirotope axioms. They are checkable in polynomial time.
Since planar Grassmann-Plücker relations involve at most six points, we can
also say that we require that at least all subconfigurations with at most six
points be realizable.

From this point on, things get amazingly hard. It turns out that this lo-
cal realizability implies that the smallest nonrealizable chirotope comes from
a perturbed Pappos’s configuration. In fact, every nonrealizable chirotope
is related to some perturbed incidence theorem. Thus knowing about non-
realizable oriented matroids means knowing about incidence theorems. The
proof methods for incidence theorems from Chapter 15 had their origins in
automated nonrealizability proofs for chirotopes (see [15, 105]). One can even
prove (and this is a famous theorem in oriented matroid theory) the so-called
universality theorem:

Deciding whether a chirotope is realizable is as hard as solving
an arbitrary system of polynomial inequalities and equations.

At the core of the proof of this theorem are the von Staudt constructions
we used in Chapter 5 to encode addition and multiplication on the level
of projective incidence configurations (for details see [96, 97, 107, 121]). Also
with projective methods a similar statement can be proved for the realization
spaces of polytopes [106, 108].
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27.3 Projective Geometry and Quantum Theory

It is always an amazing phenomenon when a mathematical field has appli-
cations to subjects that at the first sight seem to be not related at all to
it. Many of the methods presented in this book have very close relations-
ships to various branches of physics (among them quite modern ones). For
instance, Cayley-Klein geometries can be used as a very good framework to
model space-time coordinate systems (and their invariants) in special rela-
tivity theory. A bit more surprising is the relation of projective geometry
to quantum physics. Again we can give only a glimpse of the subject. For
matters of brevity we limit ourselves to the rather restricted area of quan-
tum information theory (see for instance [90]). This subject deals with the
concept of information on the quantum level. While in the usual framework
of information theory the fundamental unit of information is a bit (a single
0/1 decision), in quantum information theory the fundamental unit of infor-
mation is a qubit (short for quantumbit). A carrier of such a single piece of
information can be, for instance, an elementary particle such as an electron
or a photon.

Qubits and CP
1: As a first step we have to clarify how an electron or a

photon can carry information. For this we have to deal with quantum states
and measurements. A quantum state completely describes the physical prop-
erties of an elementary particle such as an electron or a photon. Typically
these states can be expressed as the (complex) superposition of several mutu-
ally exclusive elementary states. These elementary states will be represented
by an orthogonal basis of vectors. For the situation we are interested in, the
electron spin, we will need two such elementary states. In the physics litera-
ture these base states are usually denoted by |0〉 and |1〉. The superposition
is

|ψ〉 = α0|0〉 + α1|1〉.
Here α0, α1 ∈ C. For reasons related to the measurement of quantum prop-
erties one furthermore requires |α0|2 + |α1|2 = 1. From a mathematical point
of view we can simply identify the base states with two unit vectors of CP

2

and get

|ψ〉 = α0|0〉 + α1|1〉 = α0

(
1
0

)
+ α1

(
0
1

)
=
(
α0

α1

)
.

The normalization |α0|2 + |α1|2 = 1 says that the vector length of |ψ〉 con-
sidered as composed of four real components (the two real and imaginary
parts of α0 and α1) is normalized to 1. In addition (also due to the proper-
ties of measurements explained later), states that differ only by a complex
unit eit, t ∈ R, are considered to represent the same state: |ψ〉 ∼ eit|ψ〉.
From a projective point of view, after considering states differing by a phase
shift to be equivalent, the normalization is superfluous. We may equally well
represent a state simply by a linear combination α0|0〉 + α1|1〉 and identify
nonzero complex multiples. So a state vector is nothing but an element of
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CP
1. Nevertheless, the normalization will be technically helpful when we con-

sider measurements later on. This identification of states and points in CP
1

can be made very concrete for the case of an electron spin or photon polariza-
tion. For reasons of brevity we will restrict ourselves to the case of electron
spin (and by neglecting the photon miss another geometrically fascinating
interpretation of qubits).

In the case of the electron, the state |ψ〉 encodes all information about the
spin of the electron. The spin is a quantum phenomenon that has no classical
analogue. Nevertheless, a good way (at least good enough for our purposes)
to think about it is to visualize the electron as a spinning sphere. The spin
corresponds to the direction of the rotation axes. Since the rotation has a
direction, also the axis is directed by a kind of right-hand rule (the fingers
indicate the rotation and the thumb points in the direction of the axis).1 So
the spin is essentially a point on the unit sphere. A vector connecting the
origin to this point indicates the directed axis. This is the moment when
projective geometry comes into play. In Section 17.7 we have seen how the
complex projective line CP

1 can be identified with the unit sphere via stereo-
graphic projection (see Figure 17.9). As a consequence of this interpretation,
by stereographic projection two basic states |0〉 and |1〉 correspond to two op-
posite directions of the spin pointing to the southpole and to the northpole.
More generally, any pair of antipodal points on the projected sphere becomes
a pair of homogeneous coordinates whose inner product vanishes.

The linear combinations of the basic states α0|0〉+α1|1〉 resemble the space
of all possible states. For instance, all states of the form 1√

2
(eit|0〉 + α1|1〉)

with t ∈ R represent electron spins whose rotation axis meets the equator,
the great circle of all points halfway between the north and southpoles.

To understand why firstly the normalization |α0|2+|α1|2 = 1 and secondly
the identification of states differing only by a phase make sense, it is essential
to understand the measurement process that transfers quantum states in clas-
sical observables. It is one of the fundamental properties of quantum states
that they are not directly accessible by classical observations. They only in-
fluence the probability of the outcome of certain measurements. In the case
of the electron spin, the situation is as follows. Typically, when measuring the
electron spin one has to decide before the measurement with respect to which
axis one wants to measure. So when an electron is exhibited to a measuring
device, the device performs the measurement and outputs “yes” or “no” de-
pending on the direction of the spin of the electron. If the electron spin points
in the direction of the measurement, the answer is surely “yes.” If it points
in the opposite direction of the measurement, the answer is surely “no.” For
all other spin directions the probability of a “yes” a or “no” depends on the
proximity of the spin direction and the measurement direction. Measurements
have the strange property that after the measurement, the electron is indeed

1 Do not think about all the other properties one would classically associate to a rotation
such like speed and acceleration. The electron spin just has a direction; that’s it.
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Fig. 27.8 Measurement of electron spin.

in the state that has been measured. Thus the measurement influences the
quantum state of the electron.2 Figure 27.8 roughly illustrates this process.
An electron with an arbitrary spin enters the measurement device that tests
for a spin pointing upward. After it leaves the device there are two possible
results of the measurement. Either the output is “yes” and the spin then
really points upward, or the output is “no” and the spin then really points
downward.

Mathematically speaking, measurements are expressed in a similar way as
states. A measurement is a linear combination of two directions

〈φ| = β0〈0| + β1〈1|

of two mutually exclusive unit states 〈0| = (1, 0), 〈1| = (0, 1). Note that this
time we use row vectors. We make an important twist to the representation
of states. The complex numbers β0 and β1 are the complex conjugates of the
numbers α0 and α1 that would encode the same direction as a spin. So if
|ψ〉 = α0|0〉 + α1|1〉 is the state (i.e., direction) of a spin, then

〈ψ| = α0〈0| + α1〈1| = (α0, α1)

encodes the measurement in exactly the same direction. In other words, di-
rections of measurement are represented by the Hermitian conjugates of the
corresponding directions of states. The Hermitian conjugate is derived by

2 Do not try to understand in classical terms how this can happen. It is one of the (more
harmless) mysteries of quantum mechanics.
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simultaneously transposing and conjugating. If we denote the Hermitian con-
jugate of a vector v by v†, then we get 〈ψ| = |ψ〉†.

The states 〈0| = (1, 0) and 〈1| = (0, 1) represent opposite directions in
the measurement space. Again every other direction can be expressed as a
linear combination of the basis states. The probability that a measurement
〈φ| responds with “yes” to a state |ψ〉 is calculated by

|〈φ|·|ψ〉|2 = |α0β0|2 + |α1β1|2.

Measuring a state |ψ〉 = α0|0〉 + α1|1〉 with respect to its own direction 〈ψ|
results in the probability

|〈ψ|·|ψ〉|2 = α0α0 + α1α1 = |α0|2 + |α1|2 = 1.

This a posteriori justifies the normalization |α0|2 + |α1|2 = 1 and |β0|2 +
|β1|2 = 1. Also an easy calculation shows that a phase shift (i.e., replacing
|ψ〉 by eit|ψ〉) does not influence the probability of the measurement, and by
this will have no effect on the classical world.

Let us see what happens if one measures one of the equatorial states |ψ〉 =
1√
2
(eit|0〉+α1|1〉) with respect to the south direction 〈1|. For the probability

of getting “yes” we get

|〈1|·|ψ〉|2 =
(

1√
2

)2

(|0 · 1|2 + |1 · eit|)2 =
1
2
.

This corresponds to the physically reasonable fact that measurements of an
equatorial spin with respect to the south direction produces a “yes” equally
often as it produces a “no.”

There is one important point on possible local transformations of a qubit.
Our choice of the basis |0〉, |1〉 was somehow random. We could equally well
have chosen a pair of other opposite directions as basis. In other words there
are some basis transformations of the mathematical representation that do
not alter the physical reality. Let |0̃〉 = α0|0〉+α1|1〉 be one such state (with
|α0|2 + |α1|2 = 1). Then |1̃〉 = −α1|0〉+α1|1〉 represents the state with oppo-
site spin direction. Thus a basis transformation from the (|0̃〉, |1̃〉)-basis to the
(|0〉, |1〉)-basis is given by a transformation matrix

(
α0 −α1
α1 α0

)
. This is a matrix

from the matrix group SU(2) of unitary matrices with determinant 1. Such
an SU(2) matrix can also be used to describe rotation of the measurement
device. From a projective point of view such transformations are nothing
but special projective transformations of CP

1. Similarly to the fact that we
could describe hyperbolic transformations in the Poincaré model by certain
CP

1 transformations, the SU(2) transformations represent transformations of
elliptic geometry in a suitable CP

1 representation.

One note on notation. From a mathematical point of view the states and
the measurements are nothing but a fancy notation for column and row
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Fig. 27.9 The parameters of systems of two and three qubits

vectors. Still this notion turns out to be extremely compact and insightful in
many practical applications. The expression 〈φ|·|ψ〉 corresponds to a usual
Hermitian bilinear product 〈φ, ψ〉 on a complex vector space, sometimes also
called a bracket. This is the reason why the measurement 〈φ| is often called
a bra and the state |ψ〉 is called a ket. A bra and a ket together make a
bra-(c)-ket. It is also often written as 〈φ|ψ〉.

One note on physical interpretation. An expression like 1√
2
|0〉+ 1√

2
|1〉 can

be interpreted in various ways. It can be interpreted, for instance, as an elec-
tron with a spin in one specific direction. When a measurement comes, this
direction influences the probability of the outcome of the measurement. It
could also be interpreted as a (complex) superposition of the two states |0〉
and|1〉. The electron is “at the same time” in both states. When a measure-
ment arises, it “decides” in which of its two schizophrenically superimposed
states it prefers to be. It is one of the secrets of dealing with quantum theory
that both viewpoints are essentially equivalent and lead to the same classical
observations.

Many qubits: What happens if we have not only one qubit, but two, three
or more. Imagine that there are n electrons whose spins are independently
measured. Each measurement results in a classical “yes” or “no” answer. So
the classical experiment has 2n possible outcomes. Each outcome excludes the
other. These classical alternatives form the basis vectors of a vector space of
suitably high dimension. A quantum state of the system of n electrons is a
(complex) superposition of these classical alternatives.

We will exemplify this concept by systems of two and of three qubits.
We assume that we measure each of these qubits with respect to the same
direction, say the north direction. Such a measurement of a two-qubit system
has four possible outcomes, whose states are denoted by

|00〉, |01〉, |10〉, |11〉.
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The superposition of these states is given by

|ψ〉 = α00|00〉+ α01|01〉 + α10|10〉 + α11|11〉.

Since the outcomes are mutually exclusive, we may again represent them as
mutually orthogonal unit vectors and get

|ψ〉 =

⎛
⎜⎜⎝
α00

α01

α10

α11

⎞
⎟⎟⎠ .

As before, we have to assume that this vector is normalized, i.e., we have
|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. The obvious combinatorics of the indices
of the four different entries indicates that it might be reasonable to arrange
these indices not as a vector but as a matrix:

|ψ〉 =
(
α00 α01

α10 α11

)
.

Again a common phase shift is irrelevant. This together with the normal-
ization implies once more that we may equivalently skip normalization and
phase-shifting and instead consider the states that differ by a complex scalar
to be equivalent. Thus the state space is nothing but CP

3.
If we perform the same considerations with three instead of two qubits, we

will get eight possible classical outcomes of the measurements. We will have
eight controlling (complex) parameters. This time it is best to locate these
eight parameters at the eight vertices of a cube. Again complex multiples
represent the same state and we get a projective space CP

7 as state space.
One might consider such a state, as a 2×2×2 tensor (in fact tensor diagram
techniques are rather common in quantum physics [23, 123]).

So a system of n qubits is described by a 2n-dimensional vector repre-
senting the complex (homogeneous) coordinates. It can also considered a
2 × 2 × · · · × 2 tensor. From an information-theoretic viewpoint this is re-
markable. A single qubit is an element of CP

1 and by this has in essence
one complex parameter. A system of two qubits is an element of CP

3 and has
three complex parameters. A system of three qubits is an element of CP

7 and
has essentially seven complex parameters. So the collection of the parts car-
ries significantly (exponentially) more information than all individual parts
taken together.

What does this mean and how could this happen? The key to this seem-
ingly paradoxical situation is a concept called entanglement, which has no
classical counterpart at all. We again start our explanations with the two-
qubit case. Consider some kind of particle decay that emits two electrons in
opposite directions. The two electrons form a 2-qubit quantum ensemble, and
their quantum state is described by |ψ〉 = α00|00〉+α01|01〉+α10|10〉+α11|11〉.
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Fig. 27.10 Measurement of electron spin.

Now imagine that both electrons travel and at some point in time become
considerably separated by space and reach two observers Alice and Bob, who
measure their spins. For Alice and Bob the two electrons appear as individ-
uals, although they are related by a joint quantum state. The measurements
of Alice and Bob must be such that they could be at the same time inter-
preted by the electrons having an individual quantum state and Alice and
Bob ignoring the existence of each other and on the other hand as having a
common quantum state. We will exemplify the situations with two concrete
quantum states that have in a sense extreme properties. These two quantum
states X and Y correspond to the matrix representations

X =

(
1
2

1
2

1
2

1
2

)
and Y =

1√
2

(
0 1
1 0

)
.

In the case of the joint quantum state X we have a superposition with each
of the four basis states equally weighted. Thus measuring the state of both
electrons with respect to the measurement 〈00| has a probability of 1/4.
If Alice alone measures the spin of her electron with respect to 〈0|, then
she will get a probability 1/2. In half of the situations where Alice get a
“yes” Bob also will get a “yes.” In a sense, for state X both electrons are
independent. The outcome of the measurement of one is not correlated to
the outcome of the measurement of the other. The situation is very different
for state Y . For this state, measuring the joint state w.r.t 〈00| or 〈11| will
always result in a “no.” The other two measurements 〈01| and 〈10| will each
have probability 1/2. For Alice (at least as long as she does not know of the
other electron and Bob’s existence), the situation did not change. Measuring
with respect to 〈0| will still have a probability 1/2 of a “yes.” However, this
time if she gets a “yes,” Bob will surely get a “no” and vice versa. The states
are strongly negatively correlated. A state like Y is called a totally entangled
state. A state like X is called totally independent. Intermediate situations of
partial entanglement are also possible. Figure 27.10 illustrates the situation
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for state Y . A measurement of both electrons results either in situation of
the two yellow electrons or in the situation of the two red electrons.

One might say, “So what, where is the problem? Both electrons already
have their spin when they leave their particle source, like two coins in two
closed boxes that are opened only when the measurement is performed. The
outcome of measurement of the electrons is governed by some hidden vari-
ables.” Although from a classical perspective this seems to be a reasonable
explanation, one can show that this is definitely not the case. This effect is
known as the Einstein-Podolsky-Rosen paradox (EPR) and has been con-
firmed by experiments [37, 12]. The outcome of the measurement by Alice is
really completely undetermined unless the measurement has been performed.
By some mysterious principle of nonlocality, the outcome of the measurement
is somehow transported to Bobs measurement device and influences his mea-
surement. How this happens is still an open problem.3

Entanglement invariants: Understanding the mathematics of entangle-
ment brings us again back to projective geometry and invariant theory (see
[127]). We here will be able to give only a rough sketch of what happens.
We again start with the 2-qubit case. The transformations acting on the
combined space of the two electron spins within the space CP

3 is given by
all matrix operations in SU(4). This is a certain subgroup of all projective
transformations of CP

3. Compared to this, Alice and Bob have only very re-
stricted influence on the state space. Each of them can act with an SU(2) on
their individual electrons. Thus after the electrons have been separated, only
SU(2) × SU(2) ⊂ SU(4) actions are possible. Alice’s action corresponds to a
left multiplication of the state matrix with an SU(2) matrix. Bob’s action cor-
responds to a right multiplication of the matrix with an SU(2) matrix. Such
actions cannot change the degree of entanglement. For instance, it can be
shown that for state Y , if Alice decides to measure her electron with respect
to another basis, there is a corresponding basis for Bob such that he still will
always get the opposite answer to Alice’s. Similarly, in case of state X there
is no choice of the bases such that the measurements become correlated.

In fact, it turns out that completely independent states correspond to
rank-1 state matrices (α0|0〉 + α1|1〉)(β0|0〉 + β1|1〉)T . They are always com-
pletely unentangled. The rank-1 property cannot be influenced by the local
perturbations. It turns out that the absolute value of the determinant of
the state matrix is an entanglement invariant. It cannot be altered by local
transformations. After normalization this absolute value of the determinant
can take values between 0 and 1. The state X results in a value of 0 (nonen-
tangled); the value Y results in a value 1 (fully entangled). The space of all
nonentangled states forms a conic in the state space CP

3.
The situation becomes more complicated if more than two qubits are in-

volved. In principle, one is interested in all

3 Do not try to understand in classical terms how this can happen. It is one of the (less
harmless) mysteries of quantum mechanics.
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Fig. 27.11 The entanglement invariants of a three-qubit system.

SU(2) × · · · × SU(2)︸ ︷︷ ︸
n

⊂ SU(2n)

invariants of a combined system of n qubits that lives in CP
2n−1. The search

of such invariants can be attacked by diagram techniques described in Chap-
ter 13 and Chapter 14. One considers each qubit a tensor of rank n and
considers closed diagrams involving ε-tensors, the qubit tensor, and a special
tensor that encodes that we are interested in SU transformations (in prin-
ciple, this tensor can “forget” the direction of the arrows). Each arc coming
from a quantum-state tensor in a diagram has a color (which encodes the
integrity of the corresponding electron), and one has to make sure that only
arcs of equal color are connected. Figure 27.11 shows diagrams for a gener-
ating set of the entanglement invariants of a three-qubit system [127, 114].
Many of these invariants can be directly interpreted in projective terms [5].
For instance, I2 has the following projective interpretation. Take the cube in
Figure 27.9 that encodes the parameters of the state. Slice it in a top and a
bottom plane. Consider each plane as a four-dimensional vector v1 and v2.
The invariant is the square of absolute value of the Plücker product of the
two vectors:

I2 = ‖v1 ∨ v2‖2.

Similar interpretations hold for I3 and I4. The invariant I6 is the well-known
hyperdeterminant of a 2 × 2 × 2 tensor, which also plays an important role
in the theory of projective geometry of algebraic curves.

27.4 Dynamic Projective Geometry

The connection of geometric configurations and complex numbers is even
deeper than may be apparent so far. Until now we have considered most of our
geometric scenarios as a kind of static snapshot capturing a certain geometric
effect. However, very often it is reasonable to consider geometric constructions
as dynamic constructions in which certain free elements are allowed to move
freely while other elements of the constructions (the dependent elements)
are moved according to certain relations with respect to the free elements.
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1: A=FreePoint;
2: B=FreePoint;
3: C=FreePoint;
4: a=Join(A,B);
5: b=Join(B,C);
6: c=Join(A,V);
7: d=AngleBisector(b,c);
8: e=AngleBisector(a,c);
9: f=AngleBisector(a,b);
10: D=Meet(d,e);
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Fig. 27.12 A geometric construction, a static instance, and a dynamic movement.

A geometric theorem can very often be considered a statement of a certain
property that is invariant within the configuration space of the construction
(see [72, 73, 74]). Almost all drawings in this book were constructed by this
paradigm of treating a geometric construction as a dynamic picture. Usually,
first a rough sketch was created in which care was taken only about the logical
relations between the elements of the construction. Then in a second step the
free elements of the construction were moved such that the whole picture
became esthetically pleasing and showed the intended effect in a clear way.

The pictures were constructed with a “dynamic geometry system” (DGS).
The specific program that was used is the program Cinderella [112, 113],
which was developed by Ulrich Kortenkamp and the author of this book.
During the period of developing this program (which is a kind of never-ending
story) many fascinating and interesting problems arose with sometimes sur-
prising solutions. This section is about one of these problems, whose solution
exemplifies once more the close connection between geometry and complex
numbers. It should be emphasized at the beginning that the following expo-
sitions can be also interpreted in a context of pure mathematics having no
direct relation to the implementation of a DGS.

Typical tasks of a DGS: We start by sketching the typical tasks that a
dynamic geometry system should be able to perform. With such a system it
should be possible to do elementary geometric constructions. Typically, such
constructions start with a bunch of freely positioned elements (very often
points) and proceed by a sequence of construction steps that generate geo-
metric elements depending on the already constructed ones. The construction
steps may include operations like join of two points, meet of two lines, mid-
point of two points, circle by center and boundary point, conic through five
points, intersection of a conic and a line, intersection of two conics, angle
bisector of two lines. Once a construction is created, it should be possible
to select the free elements with the mouse and drag them while the entire
construction moves according to the rules of the construction. Sometimes
also half-free elements are admitted, such as a point moving on a circle or
a line through an already existing point. Figure 27.12 shows a construction
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Fig. 27.13 The entanglement invariants of a three-qubit system.

sequence (leftmost picture) and (in the middle) an image of a static instance
of this sequence. An instance of the construction sequence is a concrete as-
signment of geometric objects to each construction step that is consistent
with the construction sequence. The rightmost picture indicates a dynamic
scenario in which point A is moved by some mouse interaction.

Many DGS are implemented in a straightforward way. Points are imple-
mented by real xy-coordinates, lines by a Hesse normal form, circles by center
and a radius. The explanations in this book make clear that already at a very
elementary level it is reasonable to rely on more advanced techniques, i.e.,
to represent points and lines by homogeneous coordinates, to represent cir-
cles and conics by quadratic forms, etc. By this projective approach a proper
treatment of infinite elements and of many degenerate situations is possible.
It is also a reasonable choice to allow for the use of complex coordinates. In
particular, this simplifies the treatment of various measurements, since the
techniques using the points I and J as well as general Cayley-Klein geometries
become accessible.4

In a sense, the problems resolved by the use of homogeneous and/or com-
plex coordinates are still of a static nature. These approaches may become
relevant for certain instances of a construction sequence, for instance when
lines whose intersection is formed become parallel. However, even beyond
these static issues there are certain questions in the modeling of DGS that
need advanced mathematical techniques that are intimately related to the
dynamic nature of a DGS. The requirement that constructions remain stable
under a continuous movement of the free elements once more indicates the
use of complex numbers.

The problem of jumping elements: If one analyzes the behavior of
many of the available DGS programs, one observes an amazing effect. If a
construction becomes more and more complicated, it may happen that a
small change of the free elements may suddenly result in a large jump of
some of the dependent elements. The reason for this lies in the fundamental

4 It still remains a modeling decision how far calculations with homogeneous and complex
coordinates should be transparent to a user. We will not elaborate on this topic here, since
it involves educational, software, ergonomic, and mathematical considerations.
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Fig. 27.14 In iterated angle bisector.

nature of certain geometric primitive operations. Some operations, such as
intersecting a line with a circle, intersecting two circles, calculating the angle
bisector of two lines, and intersecting two conics, are intrinsically ambiguous.
In these cases the input elements do not uniquely determine the output ele-
ments. Intersecting a circle with a line in general has two solutions, as well
as intersecting a circle and a circle. Two lines have two angle bisectors. Two
conics in general intersect in four different points. We dealt with each of these
primitives in the context of this book. For the first three cases a square-root
operation (which carries an intrinsic ambiguity) is involved in the computa-
tion of the output (compare Section 11.3 and Section 19.2). For intersection
of two conics solving a polynomial of degree three and square roots are in-
volved (compare Section 11.4). Figure 27.13 shows some instances of these
ambiguous operations together with the different outputs of the primitive
operations (indicated by different colors).

For an initial instance of a geometric construction in a DGS it is usually
clear (by user interaction) which of the several outputs of an ambiguous
operation has to be taken. However, when the free points of a construction
are dragged, the computer has to decide which of the outputs for ambiguous
operations has to be taken. It may happen that the computer makes a decision
in which a dependent element suddenly jumps from one position to the other.

One might think that there are appropriate simple heuristics that depend-
ing on the position of the free elements allow one to chose the dependent
elements such that no such discontinuous jumping arises. In fact, one can
prove by a relatively simple argument that every implementation that avoids
discontinuous behavior of the dependent elements must take the history of
the movement into account [74]. For this consider Figure 27.14. It shows the
iteration of an angle bisector. The red line is the angle bisector of the two
black lines (one of them is the x-axis). The green line is the angle bisector of
the red line and the x-axis. The blue line is the angle bisector of the green



550 27 What We Did Not Touch

line and the x-axis. Now imagine that the steep black line is rotated about
the intersection of the lines with an angle velocity of ω. Then the red, green
and blue lines rotate with angle velocities ω/2, ω/4, ω/8, respectively. This
means that if the black line is rotated by 360◦, then the red line makes a 180◦

turn, the green line a 90◦ turn, and the blue line a 45◦ turn. Although the
(half-)free elements of the construction are back at their original positions,
the green and the blue lines continuously moved to another position. Thus if
one wants to have a continuous behavior, one has to take the history of the
movement into account.

The mathematical modeling of the situation is not completely elemen-
tary and involves the consideration of complex ambient spaces of the objects,
Riemann surfaces for the configuration spaces involved, and analytic contin-
uation. Again we can only give a rough impression of the underlying theory.
For more details see [72, 73, 74].

Constructions and movements: The key to a mathematically satisfac-
tory resolution of the jumping elements problem is the observation that the
coordinates of the output of a geometric primitive operation are analytic
functions in the coordinates of the input. For instance, the intersections of a
line and a circle can be calculated using the four basic arithmetic operations
and a square-root operator (one can even exclude division if homogeneous
coordinates are used). The intrinsic ambiguity of the square-root operator
(the solution of x2 = y for given y) leads to the intrinsic ambiguity of the
geometric operations. By embedding the entire geometric construction in a
complex ambient space (as we did throughout this book) it is possible to trace
the different branches generated by the ambiguities of a moving construction
by analytic continuation—at least if no degenerate situations arise during the
movement. In a very sketchy way the basic strategy for the resolution of the
jumping elements problem can be phrased as follows:

• admit complex coordinates,
• trace elements by analytic continuation,
• resolve singularities by taking complex detours.

The detailed and exact mathematical modeling of a DGS is a very subtle
issue and full of small hidden technical pitfalls. Nevertheless, we will give
an abridged version of it that neglects the problem of modeling the concrete
geometric primitive operations. A construction sequence Γ = (Γ0, . . . , Γk)
consists of a sequence of k geometric primitive operations Γi. For simplicity
we restrict ourselves to the following operations: free point, join of two points,
meet of two lines, circle by center and a perimeter point, intersection of a
circle and a line, intersection of two circles.

Except for free points, the input elements of each operation must be spec-
ified in the previous construction steps. Notice that each operation specifies
the type of the corresponding output element. It is important that each of
the construction steps be considered a relation rather than a function to
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handle the possibility of ambiguous output. Now, an instance of a geometric
construction is a sequence X0, X1, , . . . , Xk of geometric objects whose types
are consistent with the geometric operations specified by the construction.
Furthermore, in an instance of Γ each object Xi must be consistent with the
geometric requirements of its corresponding relation Γi specified by the i-th
construction step.

Now assume that a construction sequence Γ and an appropriate start
instance X = (X0, X1, , . . . , Xk) are given. We want to model the dynamic
behavior of the construction under the movement of a free element. Without
loss of generality assume that X0 is a free point that is moved from a position
A to another position B. We may assume that the coordinates of X0 are
given by homogeneous coordinates A,B ∈ RP

2. The movement X0(t) of the
point may be parameterized by a parameter t ∈ [0, 1]. We assume that X0(t)
is a coordinatewise analytic function with X0(0) = A and X0(1) = B. A
continuous movement given by (Γ,X, X0(t)) is an assignment of continuous
functions X(t) = (X0(t), X1(t), . . . , Xk(t)) such that

(i) X(0) = X,
(ii) for each t ∈ [0, 1] the values X(t) are an instance of Γ,
(iii) all other free elements except for X0 remain constant.

It is not clear in advance whether a given triple (Γ,X, X0(t)) admits a
continuous movement at all. In particular, this depends on the detailed mod-
eling of the semantics of the geometric primitive operations and on the special
path X0(t). If we allow complex geometric elements, then the major problem
is degenerate solutions for which some of the primitive operations may not
be performable.

If the path X0(t) is fixed in advance, it may be unavoidable to come across
degenerate situations during a movement (for instance, two points involved in
a join operation may pass through each other). However, if one is interested
only in the initial position X0(0) = A and in the end position X0(1) = B
and if one in particular allows also the point X0 to become complex, one
can always find a path X0(t) such that the construction avoids all critical
situations during the move (except perhaps for the endpoint B). We first
specify what exactly we mean by critical. A (partial) instanceX0, . . . , Xj, j ≤
k, of a construction Γ = (Γ0, . . . , Γk) is called critical if either the operation
in step Γj+1 becomes degenerate or if in one of the ambiguous operations
among Γ0, . . . , Γj some of the possible outputs coincide. So critical situations
arise, for instance, if a join of two identical points is requested or if one wants
to construct the intersection of a circle and a line tangent to it.

One can prove the following fact: Let as before X be a (noncritical) ini-
tial instance of Γ. If X0(t) is a coordinatewise analytic path of the control
point X0, then we can uniquely assign a continuous (even analytic) move-
ment (X)(t) given by (Γ,X, X0(t)). The proof of this result essentially goes
by induction on the number of construction steps. It uses the fact that the
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branches of the output of any geometric primitive operation can be calcu-
lated by analytic functions (for details see [74]). By the absence of critical
situations it is always possible to distinguish the branches of an ambiguous
operation. To stay with the example of intersecting a line and a circle: if no
critical situations are involved, the two intersections never coincide (however,
they might become complex). By this every noncritical movement of the line
and the circle can be used to reconstruct a unique path for the two branches of
possible intersections. The assumption of being noncritical is essential to get
a uniqueness of the branches of the intersection. If the line becomes tangent
to the circles, the two branches will eventually meet.

So the main issue becomes the avoidance of critical points. As long as we
are interested only in the initial point and in the endpoint of X0(t) we have
sufficient freedom to chose the path such that all critical points are avoided.
For this we consider the linear interpolation

X0(t) := (1 − λ(t)) · A+ λ(t) · B,

where now λ : [0, 1] → C is an analytic function with λ(0) = 0 and λ(1) = 1
on the interval [0, 1]. It is possible—by methods of complex function theory—
to prove that λ can always be chosen in a way such that the resulting path
of the construction is noncritical for t ∈ [0, 1). In fact, the critical situations
arise only as pointlike singularities in C, the space in which λ is defined.
For that reason it is always possible to circumvent critical situations by a
suitable complex detour. Allowing complex values for X0(t) is essential. If
one requires λ(t) to be real, it may be unavoidable to pass through critical
situations.

One might wonder why one allows the free choice of a path X0(t) and
even with complex coordinates. This resembles very much the information
situation in a real dynamic geometry system implemented on a computer. In
dragging a free point, the only information on the user input is the mouse
interaction. This information, however, consists of a sequence of discrete sam-
pling points (the mouse-drag information). The above strategy uses this free-
dom to interpolate this information by noncritical analytic paths. All in all,
this method allows for a continuous movement of the dependent elements
for any specific mouse movement and by this resolves the jumping elements
problem.

A simple example: We will end with a minimal example that illustrates
the complex tracing process. We consider a unit circle c and a vertical line l
whose position is controlled by some free point (it is easy to construct such a
situation in a DGS). We want to analyze the behavior of the two intersection
points. Since all relevant elements stay finite, it is admissible to do the analysis
by considering the usual Euclidean xy-coordinates. The points of the circle are
all points {(x, y) | x2+y2 = 1}. Let la be the vertical line with x-coordinate a.
The two intersections of c and la have the coordinates p± = (a,±√

1 − a2).
For all a in the open interval (−1, 1) we have two real solutions. For a = ±1 we
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detour

Fig. 27.15 Intersections of a vertical line and a circle under a movement (left). The space
of the controlling parameter of the line (right).

have critical situations. For all other a the two intersections have a complex
y-coordinate. If we move the controlling parameter a continuously from 0 to
2 along the real axis, we will necessarily pass through the critical situation at
a = 1. However, we may take a detour through complex space (for instance
a = −e−itπ + 1, t ∈ [0, 1]) that easily avoids the singularity. Inserting this
path into the y-coordinate of p±, we get

y = ±
√

(1 − (−e−itπ + 1)2 = ±
√
−e−2itπ + 2e−itπ.

The expression under the square root describes a cycloid (the sum of two
cyclic motions) whose absolute value is always greater than or equal to 1. So

Re(x)

Re(y)

Im(y)

Fig. 27.16 The intersections of a line and a circle with complex y-coordinate. The left
picture shows the situation for a real path of a; the right picture shows the path of the
intersections under a controlling path a(t) = 1 + cos(t) + ib sin(t), t ∈ [0, π], for various
values of b.
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Fig. 27.17 Now the control parameter a(t) = 1 + cos(t) + ib sin(t) is taken to traverse a
full cycle t ∈ [0, 2π] for various values of b.

the two branches will never meet. Figure 27.15 (left) illustrates the geometric
situation of the intersection, while the right picture shows the situation in
the parameter space of a. The green path is the detour described above that
avoids the singularity.

Figure 27.16 shows the situation in a way that visualizes the y-coordinates
of the intersection in the full complex plane. The left picture shows the sit-
uation where the parameter a is moved continuously from 0 to 2 along the
real axis. The two real branches that move along the circle meet at (1, 0) and
branch off in two complex conjugate values. There is no reasonable way to
assign the complex paths to the individual branches of the intersections, since
the situation is completely symmetric. Choosing a path that avoids the singu-
larity breaks the symmetry. The right picture shows the situation where the
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parameter a is moved along a closed path a(t) = 1+cos(t)+ib sin(t), t ∈ [0, 2π]
for the values of b ∈ { 1

20 ,
2
20 , . . . ,

19
20 , 1}.

Finally, Figure 27.17 demonstrates what happens if the control parame-
ter a describes a full round trip around the singularity. It is a remarkable fact
that in this case, such a circular path of the control parameter causes the two
intersections to continuously interchange their roles, without ever meeting.
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Nineteenths Century, Birkhäuser, Boston, Basel, 1988.

138. G. M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics 152,
Springer-Verlag, New York 1995; Updates, corrections, and more available per WWW
from http://www.math.tu-berlin.de/∼ziegler



Index

C, 297–309
CP

1, 311–327, 479, 538

RP
1, 69–78

RP
2, 47–66, 479

RP
3, 211–219, 259–267

RP
d, 219–225

a priori knowledge, 472

absolute distance measurement, 387

absolute value, 303
addition, 90, 136, 303

additivity, 509
adjoint, 155, 258

affine geometry, 335
affine transformation, 59, 335

algebraic curve, 23, 525

algebraic geometry, 525
altitudes of a triangle, 141, 365, 426

ambiguous operations, 548
analytic path, 551

angle, 27, 313, 324, 335, 437
Euclidean, 342

angle bisector, 351, 549

angle bisectors of a triangle, 366, 431, 434
angle defect, 509

angle measurement
hyperbolic, 487, 501

in Cayley-Klein Geometries, 377
angle sum, 469

anti-commutative, 217
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descriptive geometry, 38

determinant, 9, 13, 72, 94–107, 110, 111,
151, 214, 221, 238, 256, 331

determinant vector, 110, 117

diagrams
closed, 233

diagrams of tensors, 232
differential geometry, 457

dimension, 36, 52, 312
discrete mathematics, 531
distance, 341, 437, 444

Euclidean, 345
oriented, 280

distance measurement
hyperbolic, 501

in Cayley-Klein Geometries, 377
in hyperbolic geometry, 477

distances, 335
division, 306
dog, 465

Doppelverhältnis, 74
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