
Chapter 7
Hypothesis Testing

In the preceding chapter, the theoretical basis of estimation theory was presented.
Now we turn our interest towards testing issues: we want to test the hypothesis H0
that the unknown parameter θ belongs to some subspace of Rq . This subspace is
called the null set and will be denoted by �0 ⊂R

q .
In many cases, this null set corresponds to restrictions which are imposed on the

parameter space: H0 corresponds to a “reduced model”. As we have already seen in
Chapter 3, the solution to a testing problem is in terms of a rejection region R which
is a set of values in the sample space which leads to the decision of rejecting the null
hypothesis H0 in favour of an alternative H1, which is called the “full model”.

In general, we want to construct a rejection region R which controls the size of
the type I error, i.e. the probability of rejecting the null hypothesis when it is true.
More formally, a solution to a testing problem is of predetermined size α if:

P(Rejecting H0 | H0 is true) = α.

In fact, since H0 is often a composite hypothesis, it is achieved by finding R such
that

sup
θ∈�0

P(X ∈ R | θ) = α.

In this chapter we will introduce a tool which allows us to build a rejection region in
general situations; it is based on the likelihood ratio principle. This is a very useful
technique because it allows us to derive a rejection region with an asymptotically
appropriate size α. The technique will be illustrated through various testing prob-
lems and examples. We concentrate on multinormal populations and linear models
where the size of the test will often be exact even for finite sample sizes n.

Section 7.1 gives the basic ideas and Section 7.2 presents the general problem
of testing linear restrictions. This allows us to propose solutions to frequent types
of analyses (including comparisons of several means, repeated measurements and
profile analysis). Each case can be viewed as a simple specific case of testing lin-
ear restrictions. Special attention is devoted to confidence intervals and confidence
regions for means and for linear restrictions on means in a multinormal setup.
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194 7 Hypothesis Testing

7.1 Likelihood Ratio Test

Suppose that the distribution of {xi}ni=1, xi ∈ R
p , depends on a parameter vector θ .

We will consider two hypotheses:

H0 : θ ∈ �0

H1 : θ ∈ �1.

The hypothesis H0 corresponds to the “reduced model” and H1 to the “full
model”. This notation was already used in Chapter 3.

Example 7.1 Consider a multinormal Np(θ,I). To test if θ equals a certain fixed
value θ0 we construct the test problem:

H0 : θ = θ0

H1 : no constraints on θ

or, equivalently, �0 = {θ0}, �1 =R
p .

Define L∗
j = maxθ∈�j

L(X ; θ), the maxima of the likelihood for each of the
hypotheses. Consider the likelihood ratio (LR)

λ(X ) = L∗
0

L∗
1
. (7.1)

One tends to favour H0 if the LR is high and H1 if the LR is low. The likelihood
ratio test (LRT) tells us when exactly to favour H0 over H1. A likelihood ratio test
of size α for testing H0 against H1 has the rejection region

R = {X : λ(X ) < c}
where c is determined so that supθ∈�0

Pθ (X ∈ R) = α. The difficulty here is to
express c as a function of α, because λ(X ) might be a complicated function of X .

Instead of λ we may equivalently use the log-likelihood

−2 logλ = 2(�∗
1 − �∗

0).

In this case the rejection region will be R = {X : −2 logλ(X ) > k}. What is the
distribution of λ or of −2 logλ from which we need to compute c or k?

Theorem 7.1 (Wilks Theorem) If �1 ⊂ R
q is a q-dimensional space and if �0 ⊂

�1 is an r-dimensional subspace, then under regularity conditions

∀ θ ∈ �0 : −2 logλ
L−→ χ2

q−r as n → ∞.

An asymptotic rejection region can now be given by simply computing the 1 −α

quantile k = χ2
1−α;q−r

. The LRT rejection region is therefore

R = {X : −2 logλ(X ) > χ2
1−α;q−r }.
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Theorem 7.1 is thus very helpful: it gives a general way of building rejection regions
into many problems. Unfortunately, it is only an asymptotic result, meaning that
the size of the test is only approximately equal to α, although the approximation
becomes better when the sample size n increases. The question is “how large should
n be?”. There is no definite rule: we encounter here the same problem that was
already discussed with respect to the Central Limit Theorem in Chapter 4.

Fortunately, in many standard circumstances, we can derive exact tests even for
finite samples because the test statistic −2 logλ(X ) or a simple transformation of it
turns out to have a simple form. This is the case in most of the following standard
testing problems. All of them can be viewed as an illustration of the likelihood ratio
principle.

Test Problem 1 is an amuse-bouche: in testing the mean of a multinormal popu-
lation with a known covariance matrix the likelihood ratio statistic has a very simple
quadratic form with a known distribution under H0.

Test Problem 1 Suppose that X1, . . . ,Xn is an i.i.d. random sample from a
Np(μ,�) population.

H0 : μ = μ0, � known versus H1 : no constraints.

In this case H0 is a simple hypothesis, i.e., �0 = {μ0} and therefore the dimen-
sion r of �0 equals 0. Since we have imposed no constraints in H1, the space �1 is
the whole R

p which leads to q = p. From (6.6) we know that

�∗
0 = �(μ0,�) = −n

2
log |2π�| − 1

2
n tr(�−1S) − 1

2
n(x − μ0)

��−1(x − μ0).

Under H1 the maximum of �(μ,�) is

�∗
1 = �(x,�) = −n

2
log |2π�| − 1

2
n tr(�−1S).

Therefore,

−2 logλ = 2(�∗
1 − �∗

0) = n(x − μ0)
��−1(x − μ0) (7.2)

which, by Theorem 4.7, has a χ2
p-distribution under H0.

Example 7.2 Consider the bank data again. Let us test whether the population mean
of the forged bank notes is equal to

μ0 = (214.9,129.9,129.7,8.3,10.1,141.5)�.

(This is in fact the sample mean of the genuine bank notes.) The sample mean of
the forged bank notes is

x = (214.8,130.3,130.2,10.5,11.1,139.4)�.
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Suppose for the moment that the estimated covariance matrix Sf given in (3.5) is
the true covariance matrix �. We construct the likelihood ratio test and obtain

−2 logλ = 2(�∗
1 − �∗

0) = n(x − μ0)
��−1(x − μ0)

= 7362.32,

the quantile k = χ2
0.95;6 equals 12.592. The rejection consists of all values in the

sample space which lead to values of the likelihood ratio test statistic larger than
12.592. Under H0 the value of −2 logλ is therefore highly significant. Hence, the
true mean of the forged bank notes is significantly different from μ0!

Test Problem 2 is the same as the preceding one but in a more realistic situation
where the covariance matrix is unknown; here the Hotelling’s T 2-distribution will
be useful to determine an exact test and a confidence region for the unknown μ.

Test Problem 2 Suppose that X1, . . . ,Xn is an i.i.d. random sample from a
Np(μ,�) population.

H0 : μ = μ0, � unknown versus H1 : no constraints.

Under H0 it can be shown that

S0 = 1

n

[
x − 1nμ

�
0 − 1nx

� + 1nx
�]�[

x − 1nμ
�
0 − 1nx

� + 1nx
�]

= S + (x − μ0) (x − μ0)
�

�∗
0 = �(μ0,S + dd�), d = (x − μ0) (7.3)

and under H1 we have

�∗
1 = �(x,S).

This leads after some calculation to

−2 logλ = 2(�∗
1 − �∗

0)

= −n log |S| − n tr(S−1S) − n (x − x)� S−1 (x − x) + n log |S + dd�|
+n tr

[
(S + dd�)−1S

] + n (x − μ0)
� (S + dd�)−1 (x − μ0)

= n log

∣∣∣∣
S + dd�

S

∣∣∣∣ + n tr
[
(S + dd�)−1S

] + nd�(S + dd�)−1d − np

= n log

∣∣∣
∣
S + dd�

S

∣
∣∣
∣ + n tr

[
(S + dd�)−1(dd� + S)

] − np

= n log

∣∣∣
∣
S + dd�

S

∣
∣∣
∣

= n log |1 + S−1/2dd�S−1/2|.
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By using the result for the determinant of a partitioned matrix, it equals to

n log

∣∣∣∣
1 −d�S−1/2

S−1/2d I

∣∣∣∣

= n log

∣∣∣∣
∣∣∣∣
∣
∣
∣

1 −d�S−1/2
1 −d�S−1/2

2 . . . −d�S−1/2
p

S−1/2d1 1 0 . . . 0
S−1/2d2 0 1 0

...
...

. . .

S−1/2dp 0 0 . . . 1

∣∣∣∣
∣∣∣∣
∣
∣
∣

= n log 1 + n log
p∑

i=1

−d�S−1/2
i (−1)1+(i+1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣∣

S−1/2d1 1 0 . . . 0
S−1/2d2 0 1 . . . 0

...
. . .

S−1/2di 0 0 . . . 0
...

S−1/2dp 0 0 . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣∣

= n log 1 +
p∑

i=1

−d�S−1/2
i (−1)2+iS−1/2di(−1)i+1

= n log(1 + d�S−1d). (7.4)

This statistic is a monotone function of (n − 1)d�S−1d . This means that
−2 logλ > k if and only if (n − 1)d�S−1d > k′. The latter statistic has by Corol-
lary 5.3, under H0, a Hotelling’s T 2-distribution. Therefore,

(n − 1)(x̄ − μ0)
�S−1(x̄ − μ0) ∼ T 2(p,n − 1), (7.5)

or equivalently
(

n − p

p

)
(x̄ − μ0)

�S−1(x̄ − μ0) ∼ Fp,n−p. (7.6)

In this case an exact rejection region may be defined as
(

n − p

p

)
(x̄ − μ0)

�S−1(x̄ − μ0) > F1−α;p,n−p.

Alternatively, we have from Theorem 7.1 that under H0 the asymptotic distribution
of the test statistic is

−2 logλ
L

−→ χ2
p, as n → ∞

which leads to the (asymptotically valid) rejection region

n log{1 + (x̄ − μ0)
�S−1(x̄ − μ0)} > χ2

1−α;p,

but of course, in this case, we would prefer to use the exact F -test provided just
above.
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Example 7.3 Consider the problem of Example 7.2 again. We know that Sf is the
empirical analogue for �f , the covariance matrix for the forged banknotes. The test
statistic (7.5) has the value 1153.4 or its equivalent for the F distribution in (7.6)
is 182.5 which is highly significant (F0.95;6,94 = 2.1966) so that we conclude that
μf �= μ0.

Confidence Region for μ

When estimating a multidimensional parameter θ ∈ R
k from a sample, we saw in

Chapter 6 how to determine the estimator θ̂ = θ̂ (X ). For the observed data we end
up with a point estimate, which is the corresponding observed value of θ̂ . We know
θ̂ (X ) is a random variable and we often prefer to determine a confidence region for
θ . A confidence region (CR) is a random subset of Rk (determined by appropriate
statistics) such that we are “confident”, at a certain given level 1−α, that this region
contains θ :

P(θ ∈ CR) = 1 − α.

This is just a multidimensional generalisation of the basic univariate confidence
interval. Confidence regions are particularly useful when a hypothesis H0 on θ is
rejected, because they eventually help in identifying which component of θ is re-
sponsible for the rejection.

There are only a few cases where confidence regions can be easily assessed, and
include most of the testing problems on mean presented in this section.

Corollary 5.3 provides a pivotal quantity which allows confidence regions for μ

to be constructed. Since (
n−p
p

)(x̄ − μ)�S−1(x̄ − μ) ∼ Fp,n−p , we have

P

{(
n − p

p

)
(μ − x̄)�S−1(μ − x̄) < F1−α;p,n−p

}
= 1 − α.

Then,

CR =
{
μ ∈R

p | (μ − x̄)�S−1(μ − x̄) ≤ p

n − p
F1−α;p,n−p

}

is a confidence region at level (1 − α) for μ. It is the interior of an iso-distance
ellipsoid in R

p centred at x̄, with a scaling matrix S−1 and a distance constant
(

p
n−p

)F1−α;p,n−p . When p is large, ellipsoids are not easy to handle for practical
purposes. One is thus interested in finding confidence intervals for μ1,μ2, . . . ,μp

so that simultaneous confidence on all the intervals reaches the desired level of
say, 1 − α.

Below, we consider a more general problem. We construct simultaneous confi-
dence intervals for all possible linear combinations a�μ, a ∈ R

p of the elements
of μ.

Suppose for a moment that we fix a particular projection vector a. We are back
to a standard univariate problem of finding a confidence interval for the mean a�μ
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of a univariate random variable a�X. We can use the t -statistics and an obvious
confidence interval for a�μ is given by the values a�μ such that

∣∣
∣∣∣

√
n − 1(a�μ − a�x̄)√

a�Sa

∣∣
∣∣∣
≤ t1− α

2 ;n−1

or equivalently

t2(a) = (n − 1){a�(μ − x̄)}2

a�Sa
≤ F1−α;1,n−1.

This provides the (1 − α) confidence interval for a�μ:

⎛

⎝a�x̄ −
√

F1−α;1,n−1
a�Sa

n − 1
≤ a�μ ≤ a�x̄ +

√

F1−α;1,n−1
a�Sa

n − 1

⎞

⎠ .

Now it is easy to prove (using Theorem 2.5) that:

max
a

t2(a) = (n − 1)(x̄ − μ)�S−1(x̄ − μ) ∼ T 2(p,n − 1).

Therefore, simultaneously for all a ∈R
p , the interval

(
a�x̄ −

√
Kαa�Sa, a�x̄ +

√
Kαa�Sa

)
(7.7)

where Kα = p
n−p

F1−α;p,n−p , will contain a�μ with probability (1 − α).
A particular choice of a are the columns of the identity matrix Ip , providing si-

multaneous confidence intervals for μ1, . . . ,μp . We therefore have with probability
(1 − α) for j = 1, . . . , p

x̄j −
√

p

n − p
F1−α;p,n−psjj ≤ μj ≤ x̄j +

√
p

n − p
F1−α;p,n−psjj . (7.8)

It should be noted that these intervals define a rectangle inscribing the confidence el-
lipsoid for μ given above. They are particularly useful when a null hypothesis H0 of
the type described above is rejected and one would like to see which component(s)
are mainly responsible for the rejection.

Example 7.4 The 95% confidence region for μf , the mean of the forged banknotes,
is given by the ellipsoid:

{
μ ∈ R

6 | (μ − x̄f )�S−1
f (μ − x̄f ) ≤ 6

94
F0.95;6,94

}
.

The 95% simultaneous confidence intervals are given by (we use F0.95;6,94 =
2.1966)
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214.692 ≤ μ1 ≤ 214.954

130.205 ≤ μ2 ≤ 130.395

130.082 ≤ μ3 ≤ 130.304

10.108 ≤ μ4 ≤ 10.952

10.896 ≤ μ5 ≤ 11.370

139.242 ≤ μ6 ≤ 139.658.

Comparing the inequalities with μ0 = (214.9,129.9,129.7,8.3,10.1,141.5)�
shows that almost all components (except the first one) are responsible for the re-
jection of μ0 in Examples 7.2 and 7.3.

In addition, the method can provide other confidence intervals. We have at the
same level of confidence (choosing a� = (0, 0, 0, 1, −1, 0))

−1.211 ≤ μ4 − μ5 ≤ 0.005

showing that for the forged bills, the lower border is essentially smaller than the
upper border.

Remark 7.1 It should be noted that the confidence region is an ellipsoid whose
characteristics depend on the whole matrix S . In particular, the slope of the axis
depends on the eigenvectors of S and therefore on the covariances sij . However, the
rectangle inscribing the confidence ellipsoid provides the simultaneous confidence
intervals for μj , j = 1, . . . , p. They do not depend on the covariances sij , but only
on the variances sjj (see (7.8)). In particular, it may happen that a tested value μ0
is covered by the confidence ellipsoid but not covered by the intervals (7.8). In this
case, μ0 is rejected by a test based on the simultaneous confidence intervals but not
rejected by a test based on the confidence ellipsoid. The simultaneous confidence in-
tervals are easier to handle than the full ellipsoid but we have lost some information,
namely the covariance between the components (see Exercise 7.14).

The following problem concerns the covariance matrix in a multinormal popula-
tion: in this situation the test statistic has a slightly more complicated distribution.
We will therefore invoke the approximation of Theorem 7.1 in order to derive a test
of approximate size α.

Test Problem 3 Suppose that X1, . . . ,Xn is an i.i.d. random sample from a
Np(μ,�) population.

H0 : � = �0, μ unknown versus H1 : no constraints.

Under H0 we have μ̂ = x, and � = �0, whereas under H1 we have μ̂ = x, and
�̂ = S . Hence
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�∗
0 = �(x,�0) = −1

2
n log |2π�0| − 1

2
n tr(�−1

0 S)

�∗
1 = �(x,S) = −1

2
n log |2πS| − 1

2
np

and thus

−2 logλ = 2(�∗
1 − �∗

0)

= n tr(�−1
0 S) − n log |�−1

0 S| − np.

Note that this statistic is a function of the eigenvalues of �−1
0 S . Unfortunately, the

exact finite sample distribution of −2 logλ is very complicated. Asymptotically, we
have under H0

−2 logλ
L→ χ2

m as n → ∞
with m = 1

2 {p(p + 1)}, since a (p × p) covariance matrix has only these m param-
eters as a consequence of its symmetry.

Example 7.5 Consider the US companies data set (Table B.5) and suppose we
are interested in the companies of the energy sector, analysing their assets (X1)

and sales (X2). The sample is of size 15 and provides the value of S = 107 ×[ 1.6635 1.2410
1.2410 1.3747

]
. We want to test if Var

(
X1
X2

) = 107 × [ 1.2248 1.1425
1.1425 1.5112

] = �0. (�0 is in
fact the empirical variance matrix for X1 and X2 for the manufacturing sector.) The
test statistic ( MVAusenergy) turns out to be −2 logλ = 5.4046 which is not
significant for χ2

3 (p-value = 0.1445). So we cannot conclude that � �= �0.

In the next testing problem, we address a question that was already stated in
Chapter 3, Section 3.6: testing a particular value of the coefficients β in a linear
model. The presentation is carried out in general terms so that it can be built on in
the next section where we will test linear restrictions on β .

Test Problem 4 Suppose that Y1, . . . , Yn are independent r.v.’s with
Yi ∼ N1(β

�xi, σ
2), xi ∈ R

p .

H0 : β = β0, σ 2 unknown versus H1 : no constraints.

Under H0 we have β = β0, σ̂
2
0 = 1

n
||y − Xβ0||2 and under H1 we have β̂ =

(X�X )−1X�y, σ̂ 2 = 1
n
||y −Xβ||2 (see Example 6.3). Hence by Theorem 7.1

−2 logλ = 2(�∗
1 − �∗

0)

= n log

( ||y −Xβ0||2
||y −X β̂||2

)

L−→ χ2
p.
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We draw upon the result (3.45) which gives us

F = (n − p)

p

( ||y −Xβ0||2
||y −X β̂||2 − 1

)
∼ Fp,n−p,

so that in this case we again have an exact distribution.

Example 7.6 Let us consider our “classic blue” pullovers again. In Example 3.11
we tried to model the dependency of sales on prices. As we have seen in Figure 3.5
the slope of the regression curve is rather small, hence we might ask if

( α
β

) = ( 211
0

)
.

Here

y =
⎛

⎜
⎝

y1
...

y10

⎞

⎟
⎠ =

⎛

⎜
⎝

x1,1
...

x10,1

⎞

⎟
⎠ , X =

⎛

⎜
⎝

1 x1,2
...

...

1 x10,2

⎞

⎟
⎠ .

The test statistic for the LR test is

−2 logλ = 9.10

which under the χ2
2 distribution is significant. The exact F -test statistic

F = 5.93

is also significant under the F2,8 distribution (F2,8;0.95 = 4.46).

Summary
↪→ The hypotheses H0 : θ ∈ �0 against H1 : θ ∈ �1 can be tested using

the likelihood ratio test (LRT). The likelihood ratio (LR) is the quo-
tient λ(X ) = L∗

0/L
∗
1 where the L∗

j are the maxima of the likelihood
for each of the hypotheses.

↪→ The test statistic in the LRT is λ(X ) or equivalently its logarithm
logλ(X ). If �1 is q-dimensional and �0 ⊂ �1 r-dimensional, then
the asymptotic distribution of −2 logλ is χ2

q−r . This allows H0
to be tested against H1 by calculating the test statistic −2 logλ =
2(�∗

1 − �∗
0) where �∗

j = logL∗
j .

↪→ The hypothesis H0 : μ = μ0 for X ∼ Np(μ,�), where � is known,
leads to −2 logλ = n(x − μ0)

��−1(x − μ0) ∼ χ2
p.

↪→ The hypothesis H0 : μ = μ0 for X ∼ Np(μ,�), where � is un-
known, leads to −2 logλ = n log{1 + (x −μ0)

�S−1(x −μ0)} −→
χ2

p, and (n − 1)(x̄ − μ0)
�S−1(x̄ − μ0) ∼ T 2(p,n − 1).
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Summary (continued)
↪→ The hypothesis H0 : � = �0 for X ∼ Np(μ,�), where μ is un-

known, leads to −2 logλ = n tr(�−1
0 S) − n log |�−1

0 S| − np −→
χ2

m, m = 1
2p(p + 1).

↪→ The hypothesis H0 : β = β0 for Yi ∼ N1(β
�xi, σ

2), where σ 2 is

unknown, leads to −2 logλ = n log
( ||y−Xβ0||2

||y−X β̂||2
)

−→ χ2
p.

7.2 Linear Hypothesis

In this section, we present a very general procedure which allows a linear hypothesis
to be tested, i.e., a linear restriction, either on a vector mean μ or on the coefficient
β of a linear model. The presented technique covers many of the practical testing
problems on means or regression coefficients.

Linear hypotheses are of the form Aμ = a with known matrices A(q × p) and
a(q × 1) with q ≤ p.

Example 7.7 Let μ = (μ1,μ2)
�. The hypothesis that μ1 = μ2 can be equivalently

written as:

Aμ = (
1 −1

)
(

μ1
μ2

)
= 0 = a.

The general idea is to test a normal population H0 : Aμ = a (restricted model)
against the full model H1 where no restrictions are put on μ. Due to the properties of
the multinormal, we can easily adapt the Test Problems 1 and 2 to this new situation.
Indeed we know, from Theorem 5.2, that yi =Axi ∼ Nq(μy,�y), where μy =Aμ

and �y =A�A�.
Testing the null H0 : Aμ = a, is the same as testing H0 : μy = a. The appropri-

ate statistics are ȳ and Sy which can be derived from the original statistics x̄ and S
available from X :

ȳ =Ax̄, Sy =ASA�.

Here the difference between the translated sample mean and the tested value is d =
Ax̄ − a. We are now in the situation to proceed to Test Problems 5 and 6.

Test Problem 5 Suppose X1, . . . ,Xn is an i.i.d. random sample from a
Np(μ,�) population.

H0 :Aμ = a, � known versus H1 : no constraints.
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By (7.2) we have that, under H0:

n(Ax̄ − a)�(A�A�)−1(Ax̄ − a) ∼X 2
q ,

and we reject H0 if this test statistic is too large at the desired significance level.

Example 7.8 We consider hypotheses on partitioned mean vectors μ = ( μ1
μ2

)
. Let us

first look at

H0 : μ1 = μ2, versus H1 : no constraints,

for N2p

(( μ1
μ2

)
,
(

� 0
0 �

))
with known �. This is equivalent to A = (I,−I), a =

(0, . . . ,0)� ∈R
p and leads to

−2 logλ = n(x1 − x2)(2�)−1(x1 − x2) ∼ χ2
p.

Another example is the test whether μ1 = 0, i.e.,

H0 : μ1 = 0, versus H1 : no constraints,

for N2p

(( μ1
μ2

)
,
(

� 0
0 �

))
with known �. This is equivalent to Aμ = a with A= (I,0),

and a = (0, . . . ,0)� ∈R
p . Hence

−2 logλ = nx1�
−1x1 ∼ χ2

p.

Test Problem 6 Suppose X1, . . . ,Xn is an i.i.d. random sample from a
Np(μ,�) population.

H0 : Aμ = a, � unknown versus H1 : no constraints.

From Corollary (5.4) and under H0 it follows immediately that

(n − 1)(Ax − a)�(ASA�)−1(Ax − a) ∼ T 2(q,n − 1) (7.9)

since indeed under H0,

Ax ∼ Nq(a,n−1A�A�)

is independent of

nASA� ∼ Wq(A�A�, n − 1).

Example 7.9 Let’s come back again to the bank data set and suppose that we want
to test if μ4 = μ5, i.e., the hypothesis that the lower border mean equals the larger
border mean for the forged bills. In this case:
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A = (0 0 0 1 −1 0 )

a = 0.

The test statistic is:

99(Ax̄)�(ASfA�)−1(Ax̄) ∼ T 2(1,99) = F1,99.

The observed value is 13.638 which is significant at the 5% level.

Repeated Measurements

In many situations, n independent sampling units are observed at p different times
or under p different experimental conditions (different treatments, . . . ). So here we
repeat p one-dimensional measurements on n different subjects. For instance, we
observe the results from n students taking p different exams. We end up with a
(n × p) matrix. We can thus consider the situation where we have X1, . . . ,Xn i.i.d.
from a normal distribution Np(μ,�) when there are p repeated measurements. The
hypothesis of interest in this case is that there are no treatment effects, H0 : μ1 =
μ2 = · · · = μp . This hypothesis is a direct application of Test Problem 6. Indeed,
introducing an appropriate matrix transform on μ we have

H0 : Cμ = 0 where C((p − 1) × p) =

⎛

⎜⎜⎜
⎝

1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 · · · 0 1 −1

⎞

⎟⎟⎟
⎠

. (7.10)

Note that in many cases one of the experimental conditions is the “control” (a
placebo, standard drug or reference condition). Suppose it is the first component.
In that case one is interested in studying differences to the control variable. The
matrix C has therefore a different form

C((p − 1) × p) =

⎛

⎜⎜⎜
⎝

1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

...
...

1 0 0 · · · −1

⎞

⎟⎟
⎟
⎠

.

By (7.9) the null hypothesis will be rejected if:

(n − p + 1)

p − 1
x̄�C�(CSC�)−1Cx̄ > F1−α;p−1,n−p+1.

As a matter of fact, Cμ is the mean of the random variable yi = Cxi

yi ∼ Np−1(Cμ,C�C�).
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Simultaneous confidence intervals for linear combinations of the mean of yi have
been derived above in (7.7). For all a ∈ R

p−1, with probability (1 − α) we have

a�Cμ ∈ a�Cx̄ ±
√

(p − 1)

n − p + 1
F1−α;p−1,n−p+1a

�CSC�a.

Due to the nature of the problem here, the row sums of the elements in C are zero:
C1p = 0, therefore a�C is a vector having sum of elements equals to 0. This is
called a contrast. Let b = C�a. We have b�1p = ∑p

j=1 bj = 0. The result above

thus provides for all contrasts of μ, and b�μ simultaneous confidence intervals at
level (1 − α)

b�μ ∈ b�x̄ ±
√

(p − 1)

n − p + 1
F1−α;p−1,n−p+1b

�Sb.

Examples of contrasts for p = 4 are b� = (1 −1 0 0) or (1 0 0 −1) or even
(1 − 1

3 − 1
3 − 1

3 ) when the control is to be compared with the mean of 3 different
treatments.

Example 7.10 Bock (1975) considers the evolution of the vocabulary of children
from the eighth through eleventh grade. The data set contains the scores of a vocab-
ulary test of 40 randomly chosen children. This is a repeated measurement situation,
(n = 40,p = 4), since the same children were observed from grades 8 to 11. The
statistics of interest are:

x̄ = (1.086,2.544,2.851,3.420)�

S =

⎛

⎜⎜
⎝

2.902 2.438 2.963 2.183
2.438 3.049 2.775 2.319
2.963 2.775 4.281 2.939
2.183 2.319 2.939 3.162

⎞

⎟⎟
⎠ .

Suppose we are interested in the yearly evolution of the children. Then the matrix C
providing successive differences of μj is:

C =
⎛

⎝
1 −1 0 0
0 1 −1 0
0 0 1 −1

⎞

⎠ .

The value of the test statistic is Fobs = 53.134 which is highly significant for F3.37.
There are significant differences between the successive means. However, the anal-
ysis of the contrasts shows the following simultaneous 95% confidence intervals

−1.958 ≤ μ1 − μ2 ≤ −0.959

−0.949 ≤ μ2 − μ3 ≤ 0.335

−1.171 ≤ μ3 − μ4 ≤ 0.036.
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Thus, the rejection of H0 is mainly due to the difference between the childrens’
performances in the first and second year. The confidence intervals for the following
contrasts may also be of interest:

−2.283 ≤ μ1 − 1

3
(μ2 + μ3 + μ4) ≤ −1.423

−1.777 ≤ 1

3
(μ1 + μ2 + μ3) − μ4 ≤ −0.742

−1.479 ≤ μ2 − μ4 ≤ −0.272.

They show that μ1 is different from the average of the 3 other years (the same being
true for μ4) and μ4 turns out to be higher than μ2 (and of course higher than μ1).

Test Problem 7 illustrates how the likelihood ratio can be applied to testing a
linear restriction on the coefficient β of a linear model. It is also shown how a
transformation of the test statistic leads to an exact F test as presented in Chapter 3.

Test Problem 7 Suppose Y1, . . . , Yn, are independent with Yi ∼ N1(β
�xi, σ

2),
and xi ∈ R

p .

H0 :Aβ = a, σ 2 unknown versus H1 : no constraints.

To get the constrained maximum likelihood estimators under H0, let f (β,λ) =
(y−xβ)�(y−xβ)−λ�(Aβ −a) where λ ∈ R

q and solve ∂f (β,λ)
∂β

= 0 and ∂f (β,λ)
∂λ

=
0 (Exercise 3.24), thus we obtain:

β̃ = β̂ − (X�X )−1A�{A(X�X )−1A�}−1(Aβ̂ − a)

for β and σ̃ 2 = 1
n
(y − X β̃)�(y − X β̃). The estimate β̂ denotes the unconstrained

MLE as before. Hence, the LR statistic is

−2 logλ = 2(�∗
1 − �∗

0)

= n log

( ||y −X β̃||2
||y −X β̂||2

)

L−→ χ2
q

where q is the number of elements of a. This problem also has an exact F -test since

n − p

q

( ||y −X β̃||2
||y −X β̂||2 − 1

)

= n − p

q

(Aβ̂ − a)�{A(X�X )−1A�}−1(Aβ̂ − a)

(y −X β̂)�(y −X β̂)
∼ Fq,n−p.
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Example 7.11 Let us continue with the “classic blue” pullovers. We can once more
test if β = 0 in the regression of sales on prices. It holds that

β = 0 iff (0 1 )

(
α

β

)
= 0.

The LR statistic here is

−2 logλ = 0.284

which is not significant for the χ2
1 distribution. The F -test statistic

F = 0.231

is also not significant. Hence, we can assume independence of sales and prices
(alone). Recall that this conclusion has to be revised if we consider the prices to-
gether with advertising costs and hours sales manager hours.

Recall the different conclusion that was made in Example 7.6 when we rejected
H0 : α = 211 and β = 0. The rejection there came from the fact that the pair of
values was rejected. Indeed, if β = 0 the estimator of α would be ȳ = 172.70 and
this is too far from 211.

Example 7.12 Let us now consider the multivariate regression in the “classic blue”
pullovers example. From Example 3.15 we know that the estimated parameters in
the model

X1 = α + β1X2 + β2X3 + β3X4 + ε

are

α̂ = 65.670, β̂1 = −0.216, β̂2 = 0.485, β̂3 = 0.844.

Hence, we could postulate the approximate relation:

β1 ≈ −1

2
β2,

which means in practice that augmenting the price by 20 EUR requires the adver-
tising costs to increase by 10 EUR in order to keep the number of pullovers sold
constant. Vice versa, reducing the price by 20 EUR yields the same result as be-
fore if we reduced the advertising costs by 10 EUR. Let us now test whether the
hypothesis

H0 : β1 = −1

2
β2

is valid. This is equivalent to

(
0 1

1

2
0
)

⎛

⎜
⎜
⎝

α

β1
β2
β3

⎞

⎟
⎟
⎠ = 0.
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The LR statistic in this case is equal to ( MVAlrtest)

−2 logλ = 0.012,

the F statistic is

F = 0.007.

Hence, in both cases we will not reject the null hypothesis.

Comparison of Two Mean Vectors

In many situations, we want to compare two groups of individuals for whom a set
of p characteristics has been observed. We have two random samples {xi1}n1

i=1 and
{xj2}n2

j=1 from two distinct p-variate normal populations. Several testing issues can
be addressed in this framework. In Test Problem 8 we will first test the hypothesis
of equal mean vectors in the two groups under the assumption of equality of the two
covariance matrices. This task can be solved by adapting Test Problem 2.

In Test Problem 9 a procedure for testing the equality of the two covariance ma-
trices is presented. If the covariance matrices differ, the procedure of Test Problem 8
is no longer valid. If the equality of the covariance matrices is rejected, an easy rule
for comparing two means with no restrictions on the covariance matrices is provided
in Test Problem 10.

Test Problem 8 Assume that Xi1 ∼ Np(μ1,�), with i = 1, . . . , n1 and Xj2 ∼
Np(μ2,�), with j = 1, . . . , n2, where all the variables are independent.

H0 : μ1 = μ2, versus H1 : no constraints.

Both samples provide the statistics x̄k and Sk , k = 1,2. Let δ = μ1 − μ2. We
have

(x̄1 − x̄2) ∼ Np

(
δ,

n1 + n2

n1n2
�

)
(7.11)

n1S1 + n2S2 ∼ Wp(�,n1 + n2 − 2). (7.12)

Let S=(n1 + n2)
−1(n1S1 + n2S2) be the weighted mean of S1 and S2. Since the

two samples are independent and since Sk is independent of x̄k (for k = 1,2) it
follows that S is independent of (x̄1 − x̄2). Hence, Theorem 5.8 applies and leads
to a T 2-distribution:

n1n2(n1 + n2 − 2)

(n1 + n2)2
{(x̄1 − x̄2) − δ}� S−1 {(x̄1 − x̄2) − δ}) ∼ T 2(p,n1 + n2 − 2)

(7.13)
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or

{(x̄1 − x̄2) − δ}� S−1 {(x̄1 − x̄2) − δ} ∼ p(n1 + n2)
2

(n1 + n2 − p − 1)n1n2
Fp,n1+n2−p−1.

This result, as in Test Problem 2, can be used to test H0: δ=0 or to construct a
confidence region for δ ∈R

p . The rejection region is given by:

n1n2(n1 + n2 − p − 1)

p(n1 + n2)2 (x̄1 − x̄2)
� S−1 (x̄1 − x̄2) ≥ F1−α;p,n1+n2−p−1. (7.14)

A (1 − α) confidence region for δ is given by the ellipsoid centred at (x̄1 − x̄2)

{δ − (x̄1 − x̄2)}�S−1{δ − (x̄1 − x̄2)} ≤ p(n1 + n2)
2

(n1 + n2 − p − 1)(n1n2)
F1−α;p,n1+n2−p−1,

and the simultaneous confidence intervals for all linear combinations a�δ of the
elements of δ are given by

a�δ ∈ a�(x̄1 − x̄2) ±
√

p(n1 + n2)2

(n1 + n2 − p − 1)(n1n2)
F1−α;p,n1+n2−p−1a

�Sa.

In particular we have at the (1 − α) level, for j = 1, . . . , p,

δj ∈ (x̄1j − x̄2j ) ±
√

p(n1 + n2)2

(n1 + n2 − p − 1)(n1n2)
F1−α;p,n1+n2−p−1sjj . (7.15)

Example 7.13 Let us come back to the questions raised in Example 7.5. We compare
the means of assets (X1) and of sales (X2) for two sectors, energy (group 1) and
manufacturing (group 2). With n1 = 15, n2 = 10, and p = 2 we obtain the statistics:

x̄1 =
(

4084.0
2580.5

)
, x̄2 =

(
4307.2
4925.2

)

and

S1 = 107
(

1.6635 1.2410
1.2410 1.3747

)
, S2 = 107

(
1.2248 1.1425
1.1425 1.5112

)
,

so that

S = 107
(

1.4880 1.2016
1.2016 1.4293

)
.

The observed value of the test statistic (7.14) is F = 2.7036. Since F0.95;2,22 =
3.4434 the hypothesis of equal means of the two groups is not rejected although
it would be rejected at a less severe level (F > F0.90;2,22 = 2.5613). By directly
applying (7.15), the 95% simultaneous confidence intervals for the differences
( MVAsimcidif) are obtained as:
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−4628.6 ≤ μ1a − μ2a ≤ 4182.2

−6662.4 ≤ μ1s − μ2s ≤ 1973.0.

Example 7.14 In order to illustrate the presented test procedures it is interesting to
analyse some simulated data. This simulation will point out the importance of the
covariances in testing means. We created 2 independent normal samples in R

4 of
sizes n1 = 30 and n2 = 20 with:

μ1 = (8,6,10,10)�

μ2 = (6,6,10,13)�.

One may consider this as an example of X = (X1, . . . ,Xn)
� being the students’

scores from 4 tests, where the 2 groups of students were subjected to two different
methods of teaching. First we simulate the two samples with � = I4 and obtain the
statistics:

x̄1 = (7.607,5.945,10.213,9.635)�

x̄2 = (6.222,6.444,9.560,13.041)�

S1 =

⎛

⎜
⎜
⎝

0.812 −0.229 −0.034 0.073
−0.229 1.001 0.010 −0.059
−0.034 0.010 1.078 −0.098

0.073 −0.059 −0.098 0.823

⎞

⎟
⎟
⎠

S2 =

⎛

⎜⎜
⎝

0.559 −0.057 −0.271 0.306
−0.057 1.237 0.181 0.021
−0.271 0.181 1.159 −0.130

0.306 0.021 −0.130 0.683

⎞

⎟⎟
⎠ .

The test statistic (7.14) takes the value F = 60.65 which is highly significant: the
small variance allows the difference to be detected even with these relatively mod-
erate sample sizes. We conclude (at the 95% level) that:

0.6213 ≤ δ1 ≤ 2.2691

−1.5217 ≤ δ2 ≤ 0.5241

−0.3766 ≤ δ3 ≤ 1.6830

−4.2614 ≤ δ4 ≤ −2.5494

which confirms that the means for X1 and X4 are different.
Consider now a different simulation scenario where the standard deviations are

4 times larger: � = 16I4. Here we obtain:

x̄1 = (7.312,6.304,10.840,10.902)�

x̄2 = (6.353,5.890,8.604,11.283)�

S1 =

⎛

⎜⎜
⎝

21.907 1.415 −2.050 2.379
1.415 11.853 2.104 −1.864

−2.050 2.104 17.230 0.905
2.379 −1.864 0.905 9.037

⎞

⎟⎟
⎠



212 7 Hypothesis Testing

S2 =

⎛

⎜⎜
⎝

20.349 −9.463 0.958 −6.507
−9.463 15.502 −3.383 −2.551

0.958 −3.383 14.470 −0.323
−6.507 −2.551 −0.323 10.311

⎞

⎟⎟
⎠ .

Now the test statistic takes the value 1.54 which is no longer significant (F0.95,4,45 =
2.58). Now we cannot reject the null hypothesis (which we know to be false!) since
the increase in variances prohibits the detection of differences of such magnitude.

The following situation illustrates once more the role of the covariances between
covariates. Suppose that � = 16I4 as above but with σ14 = σ41 = −3.999 (this
corresponds to a negative correlation r41 = −0.9997). We have:

x̄1 = (8.484,5.908,9.024,10.459)�

x̄2 = (4.959,7.307,9.057,13.803)�

S1 =

⎛

⎜
⎜
⎝

14.649 −0.024 1.248 −3.961
−0.024 15.825 0.746 4.301

1.248 0.746 9.446 1.241
−3.961 4.301 1.241 20.002

⎞

⎟
⎟
⎠

S2 =

⎛

⎜⎜
⎝

14.035 −2.372 5.596 −1.601
−2.372 9.173 −2.027 −2.954

5.596 −2.027 9.021 −1.301
−1.601 −2.954 −1.301 9.593

⎞

⎟⎟
⎠ .

The value of F is 3.853 which is significant at the 5% level (p-value = 0.0089).
So the null hypothesis δ = μ1 − μ2 = 0 is outside the 95% confidence ellipsoid.
However, the simultaneous confidence intervals, which do not take the covariances
into account are given by:

−0.1837 ≤ δ1 ≤ 7.2343

−4.9452 ≤ δ2 ≤ 2.1466

−3.0091 ≤ δ3 ≤ 2.9438

−7.2336 ≤ δ4 ≤ 0.5450.

They contain the null value (see Remark 7.1 above) although they are very asym-
metric for δ1 and δ4.

Example 7.15 Let us compare the vectors of means of the forged and the genuine
bank notes. The matrices Sf and Sg were given in Example 3.1 and since here
nf = ng = 100, S is the simple average of Sf and Sg : S = 1

2 (Sf + Sg).

x̄g = (214.97,129.94,129.72,8.305,10.168,141.52)�

x̄f = (214.82,130.3,130.19,10.53,11.133,139.45)�.

The test statistic is given by (7.14) and turns out to be F = 391.92 which is highly
significant for F6,193. The 95% simultaneous confidence intervals for the differences
δj = μgj − μfj , j = 1, . . . , p are:
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−0.0443 ≤ δ1 ≤ 0.3363

−0.5186 ≤ δ2 ≤ −0.1954

−0.6416 ≤ δ3 ≤ −0.3044

−2.6981 ≤ δ4 ≤ −1.7519

−1.2952 ≤ δ5 ≤ −0.6348

1.8072 ≤ δ6 ≤ 2.3268.

All of the components (except for the first one) show significant differences in
the means. The main effects are taken by the lower border (X4) and the diago-
nal (X6).

The preceding test implicitly uses the fact that the two samples are extracted from
two different populations with common variance �. In this case, the test statistic
(7.14) measures the distance between the two centres of gravity of the two groups
w.r.t. the common metric given by the pooled variance matrix S . If �1 �= �2 no
such matrix exists. There are no satisfactory test procedures for testing the equality
of variance matrices which are robust with respect to normality assumptions of the
populations. The following test extends Bartlett’s test for equality of variances in
the univariate case. But this test is known to be very sensitive to departures from
normality.

Test Problem 9 (Comparison of Covariance Matrices) Let Xih ∼ Np(μh,�h),
i = 1, . . . , nh, h = 1, . . . , k be independent random variables,

H0 : �1 = �2 = · · · = �k versus H1 : no constraints.

Each sub-sample provides Sh, an estimator of �h, with

nhSh ∼ Wp(�h,nh − 1).

Under H0,
∑k

h=1 nhSh ∼ Wp(�,n − k) (Section 5.2), where � is the common

covariance matrix Xih and n = ∑k
h=1 nh. Let S = n1S1+···+nkSk

n
be the weighted

average of the Sh (this is in fact the MLE of � when H0 is true). The likelihood
ratio test leads to the statistic

−2 logλ = n log |S| −
k∑

h=1

nh log |Sh| (7.16)

which under H0 is approximately distributed as a X 2
m where m = 1

2 (k − 1)p(p + 1).
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Example 7.16 Let’s come back to Example 7.13, where the mean of assets and
sales have been compared for companies from the energy and manufacturing sector
assuming that �1 = �2. The test of �1 = �2 leads to the value of the test statistic

−2 logλ = 0.9076 (7.17)

which is not significant (p-value for a χ2
3 = 0.82). We cannot reject H0 and the

comparison of the means performed above is valid.

Example 7.17 Let us compare the covariance matrices of the forged and the genuine
bank notes (the matrices Sf and Sg are shown in Example 3.1). A first look seems to
suggest that �1 �= �2. The pooled variance S is given by S = 1

2 (Sf +Sg) since here
nf = ng . The test statistic here is −2 logλ = 127.21, which is highly significant
χ2 with 21 degrees of freedom. As expected, we reject the hypothesis of equal
covariance matrices, and as a result the procedure for comparing the two means in
Example 7.15 is not valid.

What can we do with unequal covariance matrices? When both n1 and n2 are large,
we have a simple solution:

Test Problem 10 (Comparison of two means, unequal covariance matrices,
large samples) Assume that Xi1 ∼ Np(μ1,�1), with i = 1, . . . , n1 and Xj2 ∼
Np(μ2,�2), with j = 1, . . . , n2 are independent random variables.

H0 : μ1 = μ2 versus H1 : no constraints.

Letting δ = μ1 − μ2, we have

(x̄1 − x̄2) ∼ Np

(
δ,

�1

n1
+ �2

n2

)
.

Therefore, by (5.4)

(x̄1 − x̄2)
�

(
�1

n1
+ �2

n2

)−1

(x̄1 − x̄2) ∼ χ2
p.

Since Si is a consistent estimator of �i for i = 1,2, we have

(x̄1 − x̄2)
�

(S1

n1
+ S2

n2

)−1

(x̄1 − x̄2)
L→ χ2

p. (7.18)

This can be used in place of (7.13) for testing H0, defining a confidence region for
δ or constructing simultaneous confidence intervals for δj , j = 1, . . . , p.

For instance, the rejection region at the level α will be

(x̄1 − x̄2)
�

(S1

n1
+ S2

n2

)−1

(x̄1 − x̄2) > χ2
1−α;p (7.19)
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and the (1 − α) simultaneous confidence intervals for δj , j = 1, . . . , p are:

δj ∈ (x̄1 − x̄2) ±
√√√√χ2

1−α;p

(
s
(1)
jj

n1
+ s

(2)
jj

n2

)

(7.20)

where s
(i)
jj is the (j, j) element of the matrix Si . This may be compared to (7.15)

where the pooled variance was used.

Remark 7.2 We see, by comparing the statistics (7.19) with (7.14), that we mea-
sure here the distance between x̄1 and x̄2 using the metric (S1

n1
+ S2

n2
). It should

be noted that when n1 = n2, the two methods are essentially the same since then
S = 1

2 (S1 + S2). If the covariances are different but have the same eigenvectors
(different eigenvalues), one can apply the common principal component (CPC) tech-
nique, see Chapter 10.

Example 7.18 Let us use the last test to compare the forged and the genuine bank
notes again (n1 and n2 are both large). The test statistic (7.19) turns out to be 2436.8
which is again highly significant. The 95% simultaneous confidence intervals are:

−0.0389 ≤ δ1 ≤ 0.3309

−0.5140 ≤ δ2 ≤ −0.2000

−0.6368 ≤ δ3 ≤ −0.3092

−2.6846 ≤ δ4 ≤ −1.7654

−1.2858 ≤ δ5 ≤ −0.6442

1.8146 ≤ δ6 ≤ 2.3194

showing that all the components except the first are different from zero, the largest
difference coming from X6 (length of the diagonal) and X4 (lower border). The
results are very similar to those obtained in Example 7.15. This is due to the fact
that here n1 = n2 as we already mentioned in the remark above.

Profile Analysis

Another useful application of Test Problem 6 is the repeated measurements problem
applied to two independent groups. This problem arises in practice when we observe
repeated measurements of characteristics (or measures of the same type under dif-
ferent experimental conditions) on the different groups which have to be compared.
It is important that the p measures (the “profile”) are comparable, and, in particular,
are reported in the same units. For instance, they may be measures of blood pres-
sure at p different points in time, one group being the control group and the other
the group receiving a new treatment. The observations may be the scores obtained
from p different tests of two different experimental groups. One is then interested in
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Fig. 7.1 Example of

population profiles
MVAprofil

comparing the profiles of each group: the profile being just the vectors of the means
of the p responses (the comparison may be visualised in a two dimensional graph
using the parallel coordinate plot introduced in Section 1.7).

We are thus in the same statistical situation as for the comparison of two means:

Xi1 ∼ Np(μ1,�) i = 1, . . . , n1

Xi2 ∼ Np(μ2,�) i = 1, . . . , n2

where all variables are independent. Suppose the two population profiles look like
in Figure 7.1.

The following questions are of interest:

1. Are the profiles similar in the sense of being parallel (which means no interaction
between the treatments and the groups)?

2. If the profiles are parallel, are they at the same level?
3. If the profiles are parallel, is there any treatment effect, i.e., are the profiles hori-

zontal (profiles remain the same no matter which treatment received)?

The above questions are easily translated into linear constraints on the means and a
test statistic can be obtained accordingly.

Parallel Profiles

Let C be a (p − 1) × p matrix defined as

C =

⎛

⎜
⎜⎜
⎝

1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 · · · 0 1 −1

⎞

⎟
⎟⎟
⎠

.
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The hypothesis to be tested is

H
(1)
0 : C(μ1 − μ2) = 0.

From (7.11), (7.12) and Corollary 5.4 we know that under H0:

n1n2

(n1 + n2)2
(n1 + n2 − 2) {C(x̄1 − x̄2)}� (CSC�)−1C(x̄1 − x̄2)

∼ T 2(p − 1, n1 + n2 − 2) (7.21)

where S is the pooled covariance matrix. The hypothesis is rejected if

n1n2(n1 + n1 − p)

(n1 + n2)2(p − 1)
(Cx̄)�(CSC�)−1Cx̄ > F1−α;p−1,n1+n2−p.

Equality of Two Levels

The question of equality of the two levels is meaningful only if the two profiles are
parallel. In the case of interactions (rejection of H

(1)
0 ), the two populations react

differently to the treatments and the question of the level has no meaning.
The equality of the two levels can be formalised as

H
(2)
0 : 1�

p (μ1 − μ2) = 0

since

1�
p (x̄1 − x̄2) ∼ N1

(
1�
p (μ1 − μ2),

n1 + n2

n1n2
1�
p �1p

)

and

(n1 + n2)1
�
pS1p ∼ W1(1

�
p �1p,n1 + n2 − 2).

Using Corollary 5.4 we have that:

n1n2

(n1 + n2)2
(n1 + n2 − 2)

{1�
p (x̄1 − x̄2)}2

1�
pS1p

∼ T 2(1, n1 + n2 − 2) (7.22)

= F1,n1+n2−2.

The rejection region is

n1n2(n1 + n2 − 2)

(n1 + n2)2

{1�
p (x̄1 − x̄2)}2

1�
pS1p

> F1−α;1,n1+n2−2.
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Treatment Effect

If it is rejected that the profiles are parallel, then two independent analyses should
be done on the two groups using the repeated measurement approach. But if it is
accepted that they are parallel, then we can exploit the information contained in
both groups (possibly at different levels) to test a treatment effect, i.e., if the two
profiles are horizontal. This may be written as:

H
(3)
0 : C(μ1 + μ2) = 0.

Consider the average profile x̄

x̄ = n1x̄1 + n2x̄2

n1 + n2
.

Clearly,

x̄ ∼ Np

(
n1μ1 + n2μ2

n1 + n2
,

1

n1 + n2
�

)
.

Now it is not hard to prove that H
(3)
0 with H

(1)
0 implies that

C
(

n1μ1 + n2μ2

n1 + n2

)
= 0.

So under parallel, horizontal profiles we have

√
n1 + n2Cx̄ ∼ Np(0,C�C�).

From Corollary 5.4 we again obtain

(n1 + n2 − 2)(Cx̄)�(CSC�)−1Cx̄ ∼ T 2(p − 1, n1 + n2 − 2). (7.23)

This leads to the rejection region of H
(3)
0 , namely

n1 + n2 − p

p − 1
(Cx̄)�(CSC�)−1Cx̄ > F1−α;p−1,n1+n2−p.

Example 7.19 Morrison (1990b) proposed a test in which the results of 4 sub-tests
of the Wechsler Adult Intelligence Scale (WAIS) are compared for 2 categories of
people: group 1 contains n1 = 37 people who do not have a senile factor and group 2
contains n2 = 12 people who have a senile factor. The four WAIS sub-tests are X1

(information), X2 (similarities), X3 (arithmetic) and X4 (picture completion). The
relevant statistics are

x̄1 = (12.57,9.57,11.49,7.97)�

x̄2 = (8.75,5.33,8.50,4.75)�
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S1 =

⎛

⎜⎜
⎝

11.164 8.840 6.210 2.020
8.840 11.759 5.778 0.529
6.210 5.778 10.790 1.743
2.020 0.529 1.743 3.594

⎞

⎟⎟
⎠

S2 =

⎛

⎜⎜
⎝

9.688 9.583 8.875 7.021
9.583 16.722 11.083 8.167
8.875 11.083 12.083 4.875
7.021 8.167 4.875 11.688

⎞

⎟⎟
⎠ .

The test statistic for testing if the two profiles are parallel is F = 0.4634, which is
not significant (p-value = 0.71). Thus it is accepted that the two are parallel. The
second test statistic (testing the equality of the levels of the 2 profiles) is F = 17.21,
which is highly significant (p-value ≈ 10−4). The global level of the test for the
non-senile people is superior to the senile group. The final test (testing the horizon-
tality of the average profile) has the test statistic F = 53.32, which is also highly
significant (p-value ≈ 10−14). This implies that there are substantial differences
among the means of the different subtests.

Summary
↪→ Hypotheses about μ can often be written as Aμ = a, with matrix

A, and vector a.
↪→ The hypothesis H0 : Aμ = a for X ∼ Np(μ,�) with � known

leads to −2 logλ = n(Ax − a)�(A�A�)−1(Ax − a) ∼ χ2
q , where

q is the number of elements in a.
↪→ The hypothesis H0 : Aμ = a for X ∼ Np(μ,�) with � unknown

leads to −2 logλ = n log{1+ (Ax −a)�(ASA�)−1(Ax −a)} −→
χ2

q , where q is the number of elements in a and we have an exact

test (n − 1)(Ax̄ − a)�(ASA�)−1(Ax̄ − a) ∼ T 2(q,n − 1).

↪→ The hypothesis H0 : Aβ = a for Yi ∼ N1(β
�xi, σ

2) with σ 2 un-

known leads to −2 logλ = n
2 log

( ||y−X β̃||2
||y−X β̂||2 − 1

)
−→ χ2

q , with q

being the length of a and with

n − p

q

(Aβ̂ − a){A(X�X )−1A�}−1(Aβ̂ − a)

(y −X β̂)�(y −X β̂)
∼ Fq,n−p.
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7.3 Boston Housing

Returning to the Boston housing data set, we are now in a position to test if the
means of the variables vary according to their location, for example, when they are
located in a district with high valued houses. In Chapter 1, we built 2 groups of
observations according to the value of X14 being less than or equal to the median of
X14 (a group of 256 districts) and greater than the median (a group of 250 districts).
In what follows, we use the transformed variables motivated in Section 1.9.

Testing the equality of the means from the two groups was proposed in a multi-
variate setup, so we restrict the analysis to the variables X1, X5, X8, X11, and X13
to see if the differences between the two groups that were identified in Chapter 1 can
be confirmed by a formal test. As in Test Problem 8, the hypothesis to be tested is

H0 : μ1 = μ2, where μ1 ∈ R
5, n1 = 256, and n2 = 250.

� is not known. The F -statistic given in (7.13) is equal to 126.30, which is much
higher than the critical value F0.95;5,500 = 2.23. Therefore, we reject the hypothesis
of equal means.

To see which component, X1, X5, X8, X11, or X13, is responsible for this rejec-
tion, take a look at the simultaneous confidence intervals defined in (7.14):

δ1 ∈ ( 1.4020, 2.5499)

δ5 ∈ ( 0.1315, 0.2383)

δ8 ∈ (−0.5344,−0.2222)

δ11 ∈ ( 1.0375, 1.7384)

δ13 ∈ ( 1.1577, 1.5818).

These confidence intervals confirm that all of the δj are significantly different from
zero (note there is a negative effect for X8: weighted distances to employment cen-
tres) MVAsimcibh.

We could also check if the factor “being bounded by the river” (variable
X4) has some effect on the other variables. To do this compare the means of
(X5,X8,X9,X12,X13,X14)

�. There are two groups: n1 = 35 districts bounded
by the river and n2 = 471 districts not bounded by the river. Test Problem 8
(H0 : μ1 = μ2) is applied again with p = 6. The resulting test statistic, F = 5.81, is
highly significant (F0.95;6,499 = 2.12). The simultaneous confidence intervals indi-
cate that only X14 (the value of the houses) is responsible for the hypothesis being
rejected. At a significance level of 0.95

δ5 ∈ (−0.0603,0.1919)

δ8 ∈ (−0.5225,0.1527)

δ9 ∈ (−0.5051,0.5938)

δ12 ∈ (−0.3974,0.7481)

δ13 ∈ (−0.8595,0.3782)

δ14 ∈ ( 0.0014,0.5084).
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Testing Linear Restrictions

In Chapter 3 a linear model was proposed that explained the variations of the price
X14 by the variations of the other variables. Using the same procedure that was
shown in Testing Problem 7, we are in a position to test a set of linear restrictions
on the vector of regression coefficients β .

The model we estimated in Section 3.7 provides the following ( MVAlin-
regbh):

Variable β̂j SE(β̂j ) t p-value

constant 4.1769 0.3790 11.020 0.0000

X1 −0.0146 0.0117 −1.254 0.2105

X2 0.0014 0.0056 0.247 0.8051

X3 −0.0127 0.0223 −0.570 0.5692

X4 0.1100 0.0366 3.002 0.0028

X5 −0.2831 0.1053 −2.688 0.0074

X6 0.4211 0.1102 3.822 0.0001

X7 0.0064 0.0049 1.317 0.1885

X8 −0.1832 0.0368 −4.977 0.0000

X9 0.0684 0.0225 3.042 0.0025

X10 −0.2018 0.0484 −4.167 0.0000

X11 −0.0400 0.0081 −4.946 0.0000

X12 0.0445 0.0115 3.882 0.0001

X13 −0.2626 0.0161 −16.320 0.0000

Recall that the estimated residuals Y −X β̂ did not show a big departure from nor-
mality, which means that the testing procedure developed above can be used.

1. First a global test of significance for the regression coefficients is performed,

H0 : (β1, . . . , β13) = 0.

This is obtained by defining A = (013,I13) and a = 013 so that H0 is equivalent
to Aβ = a where β = (β0, β1, . . . , β13)

�. Based on the observed values F =
123.20. This is highly significant (F0.95;13,492 = 1.7401), thus we reject H0. Note
that under H0 β̂H0 = (3.0345,0, . . . ,0) where 3.0345 = y.

2. Since we are interested in the effect that being located close to the river has on
the value of the houses, the second test is H0 : β4 = 0. This is done by fixing

A= (0,0,0,0,1,0,0,0,0,0,0,0,0,0)�

and a = 0 to obtain the equivalent hypothesis H0 : Aβ = a. The result is again
significant: F = 9.0125 (F0.95;1,492 = 3.8604) with a p-value of 0.0028. Note
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that this is the same p-value obtained in the individual test β4 = 0 in Chapter 3,
computed using a different setup.

3. A third test notices the fact that some of the regressors in the full model (3.57)
appear to be insignificant (that is they have high individual p-values). It can
be confirmed from a joint test if the corresponding reduced model, formulated
by deleting the insignificant variables, is rejected by the data. We want to test
H0 : β1 = β2 = β3 = β7 = 0. Hence,

A=

⎛

⎜
⎜
⎝

0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0

⎞

⎟
⎟
⎠

and a = 04. The test statistic is 0.9344, which is not significant for F4,492. Given
that the p-value is equal to 0.44, we cannot reject the null hypothesis nor the
corresponding reduced model. The value of β̂ under the null hypothesis is

β̂H0 = (4.16,0,0,0,0.11,−0.31,0.47,0,−0.19,0.05,−0.20,−0.04,

0.05,−0.26)�.

A possible reduced model is

X14 = β0 + β4X4 + β5X5 + β6X6 + β8X8 + · · · + β13X13 + ε.

Estimating this reduced model using OLS, as was done in Chapter 3, provides
the results shown in Table 7.1.

Note that the reduced model has r2 = 0.763 which is very close to r2 = 0.765
obtained from the full model. Clearly, including variables X1,X2,X3, and X7

does not provide valuable information in explaining the variation of X14, the
price of the houses.

Table 7.1 Linear regression
for Boston housing data set

MVAlinreg2bh

Variable β̂j SE t p-value

const 4.1582 0.3628 11.462 0.0000

X4 0.1087 0.0362 2.999 0.0028

X5 −0.3055 0.0973 −3.140 0.0018

X6 0.4668 0.1059 4.407 0.0000

X8 −0.1855 0.0327 −5.679 0.0000

X9 0.0492 0.0183 2.690 0.0074

X10 −0.2096 0.0446 −4.705 0.0000

X11 −0.0410 0.0078 −5.280 0.0000

X12 0.0481 0.0112 4.306 0.0000

X13 −0.2588 0.0149 −17.396 0.0000
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7.4 Exercises

Exercise 7.1 Use Theorem 7.1 to derive a test for testing the hypothesis that a dice
is balanced, based on n tosses of that dice. (Hint: use the multinomial probability
function.)

Exercise 7.2 Consider N3(μ,�). Formulate the hypothesis H0 : μ1 = μ2 = μ3 in
terms of Aμ = a.

Exercise 7.3 Simulate a normal sample with μ = ( 1
2

)
and � = ( 1 0.5

0.5 2

)
and test

H0 : 2μ1 − μ2 = 0.2 first with � known and then with � unknown. Compare the
results.

Exercise 7.4 Derive expression (7.3) for the likelihood ratio test statistic in Test
Problem 2.

Exercise 7.5 With the simulated data set of Example 7.14, test the hypothesis of
equality of the covariance matrices.

Exercise 7.6 In the U.S. companies data set, test the equality of means between the
energy and manufacturing sectors, taking the full vector of observations X1 to X6.
Derive the simultaneous confidence intervals for the differences.

Exercise 7.7 Let X ∼ N2(μ,�) where � is known to be � = ( 2 −1
−1 2

)
. We have an

i.i.d. sample of size n = 6 providing x̄� = (1 1
2 ). Solve the following test problems

(α = 0.05):

a) H0 : μ = (
2, 2

3

)�
H1 : μ �= (

2, 2
3

)�

b) H0 : μ1 + μ2 = 7
2 H1 : μ1 + μ2 �= 7

2

c) H0 : μ1 − μ2 = 1
2 H1 : μ1 − μ2 �= 1

2

d) H0 : μ1 = 2 H1 : μ1 �= 2.

For each case, represent the rejection region graphically (comment).

Exercise 7.8 Repeat the preceeding exercise with � unknown and S = ( 2 −1
−1 2

)
.

Compare the results.

Exercise 7.9 Consider X ∼ N3(μ,�). An i.i.d. sample of size n = 10 provides:

x̄ = (1,0,2)�

S =
⎛

⎝
3 2 1
2 3 1
1 1 4

⎞

⎠ .
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a) Knowing that the eigenvalues of S are integers, describe a 95% confidence
region for μ. (Hint: to compute eigenvalues use |S| = ∏3

j=1 λj and tr(S) =
∑3

j=1 λj .)
b) Calculate the simultaneous confidence intervals for μ1, μ2 and μ3.
c) Can we assert that μ1 is an average of μ2 and μ3?

Exercise 7.10 Consider two independent i.i.d. samples, each of size 10, from two
bivariate normal populations. The results are summarised below:

x̄1 = (3,1)�; x̄2 = (1,1)�

S1 =
(

4 −1
−1 2

)
; S2 =

(
2 −2

−2 4

)
.

Provide a solution to the following tests:

a) H0 : μ1 = μ2 H1 : μ1 �= μ2

b) H0 : μ11 = μ21 H1 : μ11 �= μ21

c) H0 : μ12 = μ22 H1 : μ12 �= μ22.

Compare the solutions and comment.

Exercise 7.11 Prove expression (7.4) in the Test Problem 2 with log-likelihoods �∗
0

and �∗
1. (Hint: use (2.29).)

Exercise 7.12 Assume that X ∼ Np(μ,�) where � is unknown.

a) Derive the log likelihood ratio test for testing the independence of the p com-
ponents, that is H0 : � is a diagonal matrix. (Solution: −2 logλ = −n log |R|
where R is the correlation matrix, which is asymptotically a χ2

1
2 p(p−1)

un-

der H0.)
b) Assume that � is a diagonal matrix (all the variables are independent). Can an

asymptotic test for H0 : μ = μo against H1 : μ �= μo be derived? How would this
compare to p independent univariate t -tests on each μj ?

c) Show an easy derivation of an asymptotic test for testing the equality of the p

means (Hint: use (CX̄)�(CSC�)−1CX̄ → χ2
p−1 where S = diag(s11, . . . , spp)

and C is defined as in (7.10).) Compare this to the simple ANOVA procedure
used in Section 3.5.

Exercise 7.13 The yields of wheat have been measured in 30 parcels that have been
randomly attributed to 3 lots prepared by one of 3 different fertilisers A, B and C.
The data are
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Fertilizer yield A B C

1 4 6 2

2 3 7 1

3 2 7 1

4 5 5 1

5 4 5 3

6 4 5 4

7 3 8 3

8 3 9 3

9 3 9 2

10 1 6 2

Using Exercise 7.12,

a) test the independence between the 3 variables.
b) test whether μ� = [2 6 4] and compare this to the 3 univariate t-tests.
c) test whether μ1 = μ2 = μ3 using simple ANOVA and the χ2 approximation.

Exercise 7.14 Consider an i.i.d. sample of size n = 5 from a bivariate normal dis-
tribution

X ∼ N2

(
μ,

(
3 ρ

ρ 1

))

where ρ is a known parameter. Suppose x̄� = (1 0). For what value of ρ would the
hypothesis H0 : μ� = (0 0) be rejected in favour of H1 : μ� �= (0 0) (at the 5%
level)?

Exercise 7.15 Using Example 7.14, test the last two cases described there and test
the sample number one (n1 = 30), to see if they are from a normal population with
� = 4I4 (the sample covariance matrix to be used is given by S1).

Exercise 7.16 Consider the bank data set. For the counterfeit bank notes, we want
to know if the length of the diagonal (X6) can be predicted by a linear model in X1

to X5. Estimate the linear model and test if the coefficients are significantly different
from zero.

Exercise 7.17 In Example 7.10, can you predict the vocabulary score of the children
in eleventh grade, by knowing the results from grades 8–9 and 10? Estimate a linear
model and test its significance.

Exercise 7.18 Test the equality of the covariance matrices from the two groups in
the WAIS subtest (Example 7.19).
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Exercise 7.19 Prove expressions (7.21), (7.22) and (7.23).

Exercise 7.20 Using Theorem 6.3 and expression (7.16), construct an asymptotic
rejection region of size α for testing, in a general model f (x, θ), with θ ∈ R

k , H0 :
θ = θ0 against H1 : θ �= θ0.

Exercise 7.21 Exercise 6.5 considered the pdf f (x1, x2) = 1
θ2

1 θ2
2 x2

e
−(

x1
θ1x2

+ x2
θ1θ2

)
,

x1, x2 > 0. Solve the problem of testing H0 : θ� = (θ01, θ02) from an iid sample
of size n on x = (x1, x2)

�, where n is large.

Exercise 7.22 In Olkin and Veath (1980), the evolution of citrate concentrations in
plasma is observed at 3 different times of day, X1 (8 am), X2 (11 am) and X3 (3 pm),
for two groups of patients who follow different diets. (The patients were randomly
attributed to each group under a balanced design n1 = n2 = 5.) The data are:

Group X1 (8 am) X2 (11 am) X3 (3 pm)

I 125 137 121

144 173 147

105 119 125

151 149 128

137 139 109

II 93 121 107

116 135 106

109 83 100

89 95 83

116 128 100

Test if the profiles of the groups are parallel, if they are at the same level and if they
are horizontal.
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