
Chapter 4
Multivariate Distributions

The preceeding chapter showed that by using the two first moments of a multivariate
distribution (the mean and the covariance matrix), a lot of information on the rela-
tionship between the variables can be made available. Only basic statistical theory
was used to derive tests of independence or of linear relationships. In this chapter
we give an introduction to the basic probability tools useful in statistical multivariate
analysis.

Means and covariances share many interesting and useful properties, but they
represent only part of the information on a multivariate distribution. Section 4.1
presents the basic probability tools used to describe a multivariate random variable,
including marginal and conditional distributions and the concept of independence.
In Section 4.2, basic properties on means and covariances (marginal and conditional
ones) are derived.

Since many statistical procedures rely on transformations of a multivariate ran-
dom variable, Section 4.3 proposes the basic techniques needed to derive the dis-
tribution of transformations with a special emphasis on linear transforms. As an
important example of a multivariate random variable, Section 4.4 defines the multi-
normal distribution. It will be analysed in more detail in Chapter 5 along with most
of its “companion” distributions that are useful in making multivariate statistical
inferences.

The normal distribution plays a central role in statistics because it can be viewed
as an approximation and limit of many other distributions. The basic justification
relies on the central limit theorem presented in Section 4.5. We present this central
theorem in the framework of sampling theory. A useful extension of this theorem
is also given: it is an approximate distribution to transformations of asymptotically
normal variables. The increasing power of computers today makes it possible to
consider alternative approximate sampling distributions. These are based on resam-
pling techniques and are suitable for many general situations. Section 4.8 gives an
introduction to the ideas behind bootstrap approximations.
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108 4 Multivariate Distributions

4.1 Distribution and Density Function

Let X = (X1,X2, . . . ,Xp)� be a random vector. The cumulative distribution func-
tion (cdf) of X is defined by

F(x) = P(X ≤ x) = P(X1 ≤ x1,X2 ≤ x2, . . . ,Xp ≤ xp).

For continuous X, a nonnegative probability density function (pdf) f exists, that

F(x) =
∫ x

−∞
f (u)du. (4.1)

Note that ∫ ∞

−∞
f (u)du = 1.

Most of the integrals appearing below are multidimensional. For instance,∫ x

−∞ f (u)du means
∫ xp

−∞ · · · ∫ x1
−∞ f (u1, . . . , up)du1 · · ·dup . Note also that the cdf

F is differentiable with

f (x) = ∂pF (x)

∂x1 · · · ∂xp

.

For discrete X, the values of this random variable are concentrated on a countable
or finite set of points {cj }j∈J , the probability of events of the form {X ∈ D} can
then be computed as

P(X ∈ D) =
∑

{j :cj ∈D}
P(X = cj ).

If we partition X as X = (X1,X2)
� with X1 ∈R

k and X2 ∈R
p−k , then the function

FX1(x1) = P(X1 ≤ x1) = F(x11, . . . , x1k,∞, . . . ,∞) (4.2)

is called the marginal cdf. F = F(x) is called the joint cdf. For continuous X the
marginal pdf can be computed from the joint density by “integrating out” the vari-
able not of interest.

fX1(x1) =
∫ ∞

−∞
f (x1, x2)dx2. (4.3)

The conditional pdf of X2 given X1 = x1 is given as

f (x2 | x1) = f (x1, x2)

fX1(x1)
· (4.4)

Example 4.1 Consider the pdf

f (x1, x2) =
{ 1

2
x1 + 3

2
x2 0 ≤ x1, x2 ≤ 1,

0 otherwise.
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f (x1, x2) is a density since

∫
f (x1, x2)dx1dx2 = 1

2

[
x2

1

2

]1

0

+ 3

2

[
x2

2

2

]1

0

= 1

4
+ 3

4
= 1.

The marginal densities are

fX1(x1) =
∫

f (x1, x2)dx2 =
∫ 1

0

(
1

2
x1 + 3

2
x2

)
dx2 = 1

2
x1 + 3

4
;

fX2(x2) =
∫

f (x1, x2)dx1 =
∫ 1

0

(
1

2
x1 + 3

2
x2

)
dx1 = 3

2
x2 + 1

4
·

The conditional densities are therefore

f (x2 | x1) =
1
2x1 + 3

2x2
1
2x1 + 3

4

and f (x1 | x2) =
1
2x1 + 3

2x2
3
2x2 + 1

4

·

Note that these conditional pdf’s are nonlinear in x1 and x2 although the joint pdf
has a simple (linear) structure.

Independence of two random variables is defined as follows.

Definition 4.1 X1 and X2 are independent iff f (x) = f (x1, x2) = fX1(x1)fX2(x2).

That is, X1 and X2 are independent if the conditional pdf’s are equal to the
marginal densities, i.e., f (x1 | x2) = fX1(x1) and f (x2 | x1) = fX2(x2). Indepen-
dence can be interpreted as follows: knowing X2 = x2 does not change the proba-
bility assessments on X1, and conversely.

�
�
��

�
�

!
Different joint pdf’s may have the same marginal pdf’s.

Example 4.2 Consider the pdf’s

f (x1, x2) = 1, 0 < x1, x2 < 1,

and

f (x1, x2) = 1 + α(2x1 − 1)(2x2 − 1), 0 < x1, x2 < 1, −1 ≤ α ≤ 1.

We compute in both cases the marginal pdf’s as

fX1(x1) = 1, fX2(x2) = 1.

Indeed
∫ 1

0
1 + α(2x1 − 1)(2x2 − 1)dx2 = 1 + α(2x1 − 1)[x2

2 − x2]1
0 = 1.

Hence we obtain identical marginals from different joint distributions.
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Fig. 4.1 Univariate estimates of the density of X4 (left) and X5 (right) of the bank notes
MVAdenbank2

Let us study the concept of independence using the bank notes example. Consider
the variables X4 (lower inner frame) and X5 (upper inner frame). From Chapter 3,
we already know that they have significant correlation, so they are almost surely
not independent. Kernel estimates of the marginal densities, f̂X4 and f̂X5 , are given
in Figure 4.1. In Figure 4.2 (left) we show the product of these two densities. The
kernel density technique was presented in Section 1.3. If X4 and X5 are independent,
this product f̂X4 · f̂X5 should be roughly equal to f̂ (x4, x5), the estimate of the joint
density of (X4,X5). Comparing the two graphs in Figure 4.2 reveals that the two
densities are different. The two variables X4 and X5 are therefore not independent.

An elegant concept of connecting marginals with joint cdfs is given by copu-
lae. Copulae are important in Value-at-Risk calculations and are an essential tool in
quantitative finance (Härdle, Hautsch and Overbeck, 2009).

For simplicity of presentation we concentrate on the p = 2 dimensional case.
A 2-dimensional copula is a function C : [0,1]2 → [0,1] with the following prop-
erties:

• For every u ∈ [0,1]: C(0, u) = C(u,0) = 0.
• For every u ∈ [0,1]: C(u,1) = u and C(1, u) = u.
• For every (u1, u2), (v1, v2) ∈ [0,1] × [0,1] with u1 ≤ v1 and u2 ≤ v2:

C(v1, v2) − C(v1, u2) − C(u1, v2) + C(u1, u2) ≥ 0 .

The usage of the name “copula” for the function C is explained by the following
theorem.
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Fig. 4.2 The product of univariate density estimates (left) and the joint density estimate (right) for

X4 (left) and X5 of the bank notes MVAdenbank3

Theorem 4.1 (Sklar’s theorem) Let F be a joint distribution function with marginal
distribution functions FX1 and FX2 . Then a copula C exists with

F(x1, x2) = C{FX1(x1),FX2(x2)} (4.5)

for every x1, x2 ∈R. If FX1 and FX2 are continuous, then C is unique. On the other
hand, if C is a copula and FX1 and FX2 are distribution functions, then the function
F defined by (4.5) is a joint distribution function with marginals FX1 and FX2 .

With Sklar’s Theorem, the use of the name “copula” becomes obvious. It was
chosen to describe “a function that links a multidimensional distribution to its one-
dimensional margins” and appeared in the mathematical literature for the first time
in Sklar (1959).

Example 4.3 The structure of independence implies that the product of the distribu-
tion functions FX1 and FX2 equals their joint distribution function F ,

F(x1, x2) = FX1(x1) · FX2(x2). (4.6)

Thus, we obtain the independence copula C = � from

�(u1, . . . , un) =
n∏

i=1

ui.

Theorem 4.2 Let X1 and X2 be random variables with continuous distribution
functions FX1 and FX2 and the joint distribution function F . Then X1 and X2 are
independent if and only if CX1,X2 = �.

Proof From Sklar’s Theorem we know that there exists an unique copula C with

P(X1 ≤ x1,X2 ≤ x2) = F(x1, x2) = C{FX1(x1),FX2(x2)}. (4.7)
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Independence can be seen using (4.5) for the joint distribution function F and the
definition of �,

F(x1, x2) = C{FX1(x1),FX2(x2)} = FX1(x1)FX2(x2). (4.8)
�

Example 4.4 The Gumbel-Hougaard family of copulae (Nelsen, 1999) is given by
the function

Cθ(u, v) = exp
[
−{

(− logu)θ + (− logv)θ
}1/θ

]
. (4.9)

The parameter θ may take all values in the interval [1,∞). The Gumbel-Hougaard
copulae are suited to describe bivariate extreme value distributions.

For θ = 1, the expression (4.9) reduces to the product copula, i.e., C1(u, v) =
�(u,v) = uv. For θ → ∞ one finds for the Gumbel-Hougaard copula:

Cθ(u, v)−→min(u, v) = M(u,v),

where the function M is also a copula such that C(u, v) ≤ M(u,v) for arbitrary
copula C. The copula M is called the Fréchet-Hoeffding upper bound.

Similarly, we obtain the Fréchet-Hoeffding lower bound W(u,v) = max(u+v −
1,0) which satisfies W(u,v) ≤ C(u, v) for any other copula C.

Summary
↪→ The cumulative distribution function (cdf) is defined as F(x) =

P(X < x).
↪→ If a probability density function (pdf) f exists then F(x) =∫ x

−∞ f (u)du.

↪→ The pdf integrates to one, i.e.,
∫ ∞
−∞ f (x)dx = 1.

↪→ Let X = (X1,X2)
� be partitioned into sub-vectors X1 and X2

with joint cdf F . Then FX1(x1) = P(X1 ≤ x1) is the marginal
cdf of X1. The marginal pdf of X1 is obtained by fX1(x1) =∫ ∞
−∞ f (x1, x2)dx2. Different joint pdf’s may have the same

marginal pdf’s.
↪→ The conditional pdf of X2 given X1 = x1 is defined as f (x2 | x1) =

f (x1, x2)
fX1(x1)

·
↪→ Two random variables X1 and X2 are called independent iff

f (x1, x2) = fX1(x1)fX2(x2). This is equivalent to f (x2 | x1) =
fX2(x2).
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Summary (continued)
↪→ Different joint pdf’s may have identical marginal pdf’s.

↪→ Copula is a function which connects marginals to form joint cdfs.

4.2 Moments and Characteristic Functions

Moments—Expectation and Covariance Matrix

If X is a random vector with density f (x) then the expectation of X is

EX =
⎛
⎜⎝

EX1
...

EXp

⎞
⎟⎠ =

∫
xf (x)dx =

⎛
⎜⎝

∫
x1f (x)dx

...∫
xpf (x)dx

⎞
⎟⎠ = μ. (4.10)

Accordingly, the expectation of a matrix of random elements has to be understood
component by component. The operation of forming expectations is linear:

E (αX + βY) = α EX + β EY. (4.11)

If A(q × p) is a matrix of real numbers, we have:

E(AX) = AEX. (4.12)

When X and Y are independent,

E(XY�) = EX EY�. (4.13)

The matrix

Var(X) = � = E(X − μ)(X − μ)� (4.14)

is the (theoretical) covariance matrix. We write for a vector X with mean vector μ

and covariance matrix �,

X ∼ (μ,�). (4.15)

The (p × q) matrix

�XY = Cov(X,Y ) = E(X − μ)(Y − ν)� (4.16)

is the covariance matrix of X ∼ (μ,�XX) and Y ∼ (ν,�YY ). Note that �XY = ��
YX

and that Z = (
X
Y

)
has covariance �ZZ = ( �XX �XY

�YX �YY

)
. From

Cov(X,Y ) = E(XY�) − μν� = E(XY�) − EX EY� (4.17)

it follows that Cov(X,Y ) = 0 in the case where X and Y are independent. We often
say that μ = E(X) is the first order moment of X and that E(XX�) provides the
second order moments of X:

E(XX�) = {E(XiXj )}, for i = 1, . . . , p and j = 1, . . . , p. (4.18)
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Properties of the Covariance Matrix � = Var(X)

� = (σXiXj
), σXiXj

= Cov(Xi,Xj ), σXiXi
= Var(Xi) (4.19)

� = E(XX�) − μμ� (4.20)

� ≥ 0 (4.21)

Properties of Variances and Covariances

Var(a�X) = a�Var(X)a =
∑
i,j

aiajσXiXj
(4.22)

Var(AX + b) = AVar(X)A� (4.23)

Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z) (4.24)

Var(X + Y) = Var(X) + Cov(X,Y ) + Cov(Y,X) + Var(Y ) (4.25)

Cov(AX,BY) = ACov(X,Y )B�. (4.26)

Let us compute these quantities for a specific joint density.

Example 4.5 Consider the pdf of Example 4.1. The mean vector μ = ( μ1
μ2

)
is

μ1 =
∫ ∫

x1f (x1, x2)dx1dx2 =
∫ 1

0

∫ 1

0
x1

(
1

2
x1 + 3

2
x2

)
dx1dx2

=
∫ 1

0
x1

(
1

2
x1 + 3

4

)
dx1 = 1

2

[
x3

1

3

]1

0

+ 3

4

[
x2

1

2

]1

0

= 1

6
+ 3

8
= 4 + 9

24
= 13

24
,

μ2 =
∫ ∫

x2f (x1, x2)dx1dx2 =
∫ 1

0

∫ 1

0
x2

(
1

2
x1 + 3

2
x2

)
dx1dx2

=
∫ 1

0
x2

(
1

4
+ 3

2
x2

)
dx2 = 1

4

[
x2

2

2

]1

0

+ 3

2

[
x3

2

3

]1

0

= 1

8
+ 1

2
= 1 + 4

8
= 5

8
·

The elements of the covariance matrix are

σX1X1 = EX2
1 − μ2

1 with

EX2
1 =

∫ 1

0

∫ 1

0
x2

1

(
1

2
x1 + 3

2
x2

)
dx1dx2 = 1

2

[
x4

1

4

]1

0

+ 3

4

[
x3

1

3

]1

0

= 3

8
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σX2X2 = EX2
2 − μ2

2 with

EX2
2 =

∫ 1

0

∫ 1

0
x2

2

(
1

2
x1 + 3

2
x2

)
dx1dx2 = 1

4

[
x3

2

3

]1

0

+ 3

2

[
x4

2

4

]1

0

= 11

24

σX1X2 = E(X1X2) − μ1μ2 with

E(X1X2) =
∫ 1

0

∫ 1

0
x1x2

(
1

2
x1 + 3

2
x2

)
dx1dx2 =

∫ 1

0

(
1

6
x2 + 3

4
x2

2

)
dx2

= 1

6

[
x2

2

2

]1

0

+ 3

4

[
x3

2

3

]1

0

= 1

3
.

Hence the covariance matrix is

� =
(

0.0815 0.0052
0.0052 0.0677

)
.

Conditional Expectations

The conditional expectations are

E(X2 | x1) =
∫

x2f (x2 | x1) dx2 and E(X1 | x2) =
∫

x1f (x1 | x2) dx1. (4.27)

E(X2|x1) represents the location parameter of the conditional pdf of X2 given that
X1 = x1. In the same way, we can define Var(X2|X1 = x1) as a measure of the
dispersion of X2 given that X1 = x1. We have from (4.20) that

Var(X2|X1 = x1) = E(X2 X�
2 |X1 = x1) − E(X2|X1 = x1) E(X�

2 |X1 = x1).

Using the conditional covariance matrix, the conditional correlations may be defined
as:

ρX2 X3|X1=x1 = Cov(X2,X3|X1 = x1)√
Var(X2|X1 = x1) Var(X3|X1 = x1)

.

These conditional correlations are known as partial correlations between X2 and
X3, conditioned on X1 being equal to x1.

Example 4.6 Consider the following pdf

f (x1, x2, x3) = 2

3
(x1 + x2 + x3) where 0 < x1, x2, x3 < 1.
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Note that the pdf is symmetric in x1, x2 and x3 which facilitates the computations.
For instance,

f (x1, x2) = 2

3

(
x1 + x2 + 1

2

)
0 < x1, x2 < 1

f (x1) = 2

3
(x1 + 1) 0 < x1 < 1

and the other marginals are similar. We also have

f (x1, x2|x3) = x1 + x2 + x3

x3 + 1
, 0 < x1, x2 < 1

f (x1|x3) = x1 + x3 + 1
2

x3 + 1
, 0 < x1 < 1.

It is easy to compute the following moments:

E(Xi) = 5

9
; E(X2

i ) = 7

18
; E(XiXj ) = 11

36
(i 
= j and i, j = 1,2,3)

E(X1|X3 = x3) = E(X2|X3 = x3) = 1

12

(
6x3 + 7

x3 + 1

)
;

E(X2
1|X3 = x3) = E(X2

2|X3 = x3) = 1

12

(
4x3 + 5

x3 + 1

)

and

E(X1X2|X3 = x3) = 1

12

(
3x3 + 4

x3 + 1

)
.

Note that the conditional means of X1 and of X2, given X3 = x3, are not linear
in x3. From these moments we obtain:

� =
⎛
⎝

13
162 − 1

324 − 1
324

− 1
324

13
162 − 1

324
− 1

324 − 1
324

13
162

⎞
⎠ in particular ρX1X2 = − 1

26
≈ −0.0385.

The conditional covariance matrix of X1 and X2, given X3 = x3 is

Var

((
X1

X2

)
| X3 = x3

)
=

⎛
⎝

12x2
3+24x3+11

144(x3+1)2
−1

144(x3+1)2

−1
144(x3+1)2

12x2
3+24x3+11

144(x3+1)2

⎞
⎠ .

In particular, the partial correlation between X1 and X2, given that X3 is fixed at x3,
is given by ρX1X2|X3=x3 = − 1

12x2
3+24x3+11

which ranges from −0.0909 to −0.0213

when x3 goes from 0 to 1. Therefore, in this example, the partial correlation may be
larger or smaller than the simple correlation, depending on the value of the condition
X3 = x3.
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Example 4.7 Consider the following joint pdf

f (x1, x2, x3) = 2x2(x1 + x3); 0 < x1, x2, x3 < 1.

Note the symmetry of x1 and x3 in the pdf and that X2 is independent of (X1,X3).
It immediately follows that

f (x1, x3) = (x1 + x3) 0 < x1, x3 < 1

f (x1) = x1 + 1

2
;

f (x2) = 2x2;
f (x3) = x3 + 1

2
.

Simple computations lead to

E(X) =

⎛
⎜⎜⎜⎝

7
12

2
3

7
12

⎞
⎟⎟⎟⎠ and � =

⎛
⎝

11
144 0 − 1

144
0 1

18 0
− 1

144 0 11
144

⎞
⎠ .

Let us analyze the conditional distribution of (X1,X2) given X3 = x3. We have

f (x1, x2|x3) = 4(x1 + x3)x2

2x3 + 1
0 < x1, x2 < 1

f (x1|x3) = 2

(
x1 + x3

2x3 + 1

)
0 < x1 < 1

f (x2|x3) = f (x2) = 2x2 0 < x2 < 1

so that again X1 and X2 are independent conditional on X3 = x3. In this case

E

((
X1

X2

)
|X3 = x3

)
=

(
1
3

(
2+3x3
1+2x3

)
2
3

)

Var

((
X1

X2

)
|X3 = x3

)
=

(
1
18

(
6x2

3+6x3+1
(2x3+1)2

)
0

0 1
18

)
.

Properties of Conditional Expectations

Since E(X2|X1 = x1) is a function of x1, say h(x1), we can define the random vari-
able h(X1) = E(X2|X1). The same can be done when defining the random variable
Var(X2|X1). These two random variables share some interesting properties:

E(X2) = E{E(X2|X1)} (4.28)

Var(X2) = E{Var(X2|X1)} + Var{E(X2|X1)}. (4.29)
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Example 4.8 Consider the following pdf

f (x1, x2) = 2e
− x2

x1 ; 0 < x1 < 1, x2 > 0.

It is easy to show that

f (x1) = 2x1 for 0 < x1 < 1; E(X1) = 2

3
and Var(X1) = 1

18

f (x2|x1) = 1

x1
e
− x2

x1 for x2 > 0; E(X2|X1) = X1 and Var(X2|X1) = X2
1.

Without explicitly computing f (x2), we can obtain:

E(X2) = E {E(X2|X1)} = E(X1) = 2

3

Var(X2) = E {Var(X2|X1)} + Var {E(X2|X1)} = E(X2
1) + Var(X1) = 2

4
+ 1

18
= 10

18
.

The conditional expectation E(X2|X1) viewed as a function h(X1) of X1 (known
as the regression function of X2 on X1), can be interpreted as a conditional approxi-
mation of X2 by a function of X1. The error term of the approximation is then given
by:

U = X2 − E(X2|X1).

Theorem 4.3 Let X1 ∈ R
k and X2 ∈ R

p−k and U = X2 − E(X2|X1). Then we
have:

(1) E(U) = 0
(2) E(X2|X1) is the best approximation of X2 by a function h(X1) of X1 where

h : Rk −→ R
p−k . “Best” is the minimum mean squared error (MSE), where

MSE(h) = E[{X2 − h(X1)}� {X2 − h(X1)}].

Characteristic Functions

The characteristic function (cf) of a random vector X ∈R
p (respectively its density

f (x)) is defined as

ϕX(t) = E(eit�X) =
∫

eit�xf (x) dx, t ∈ R
p,

where i is the complex unit: i2 = −1. The cf has the following properties:

ϕX(0) = 1 and |ϕX(t)| ≤ 1. (4.30)

If ϕ is absolutely integrable, i.e., the integral
∫ ∞
−∞ |ϕ(x)|dx exists and is finite, then

f (x) = 1

(2π)p

∫ ∞

−∞
e−it�xϕX(t) dt. (4.31)
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If X = (X1,X2, . . . ,Xp)�, then for t = (t1, t2, . . . , tp)�

ϕX1(t1) = ϕX(t1,0, . . . ,0), . . . , ϕXp(tp) = ϕX(0, . . . ,0, tp). (4.32)

If X1, . . . ,Xp are independent random variables, then for t = (t1, t2, . . . , tp)�

ϕX(t) = ϕX1(t1)· . . . ·ϕXp(tp). (4.33)

If X1, . . . ,Xp are independent random variables, then for t ∈ R

ϕX1+···+Xp(t) = ϕX1(t)· . . . ·ϕXp(t). (4.34)

The characteristic function can recover all the cross-product moments of any order:
∀jk ≥ 0, k = 1, . . . , p and for t = (t1, . . . , tp)� we have

E
(
X

j1
1 · . . . ·Xjp

p

)
= 1

ij1+···+jp

[
∂ϕX(t)

∂t
j1
1 · · · ∂t

jp
p

]

t=0

. (4.35)

Example 4.9 The cf of the density in Example 4.5 is given by

ϕX(t) =
∫ 1

0

∫ 1

0
eit�xf (x)dx

=
∫ 1

0

∫ 1

0
{cos(t1x1 + t2x2) + i sin(t1x1 + t2x2)}

(
1

2
x1 + 3

2
x2

)
dx1dx2

= 0.5 ei t1
(
3 i t1 − 3 i ei t2 t1 + i t2 − i ei t2 t2 + t1 t2 − 4 ei t2 t1 t2

)
t12 t22

− 0.5
(
3 i t1 − 3 i ei t2 t1 + i t2 − i ei t2 t2 − 3 ei t2 t1 t2

)
t12 t22

.

Example 4.10 Suppose X ∈R
1 follows the density of the standard normal distribu-

tion

fX(x) = 1√
2π

exp

(
−x2

2

)

(see Section 4.4) then the cf can be computed via

ϕX(t) = 1√
2π

∫ ∞

−∞
eitx exp

(
−x2

2

)
dx

= 1√
2π

∫ ∞

−∞
exp

{
−1

2
(x2 − 2itx + i2t2)

}
exp

{
1

2
i2t2

}
dx

= exp

(
− t2

2

) ∫ ∞

−∞
1√
2π

exp

{
− (x − it)2

2

}
dx

= exp

(
− t2

2

)
,

since i2 = −1 and
∫ 1√

2π
exp

{− (x−it)2

2

}
dx = 1.
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Table 4.1 Characteristic functions for some common distributions

pdf cf

Uniform f (x) = I(x ∈ [a, b])/(b − a) ϕX(t) = (eibt − eiat )/(b − a)it

N1(μ,σ 2) f (x) = (2πσ 2)−1/2 exp{−(x − μ)2/2σ 2} ϕX(t) = eiμt−σ 2 t2/2

χ2(n) f (x) = I(x > 0)xn/2−1e−x/2/{�(n/2)2n/2} ϕX(t) = (1 − 2it)−n/2

Np(μ,�) f (x) = |2π�|−1/2 exp{−(x − μ)��(x − μ)/2} ϕX(t) = eit�μ−t��t/2

A variety of distributional characteristics can be computed from ϕX(t). The stan-
dard normal distribution has a very simple cf, as was seen in Example 4.10. Devia-
tions from normal covariance structures can be measured by the deviations from the
cf (or characteristics of it). In Table 4.1 we give an overview of the cf’s for a variety
of distributions.

Theorem 4.4 (Cramer-Wold) The distribution of X ∈R
p is completely determined

by the set of all (one-dimensional) distributions of t�X where t ∈ R
p .

This theorem says that we can determine the distribution of X in R
p by specify-

ing all of the one-dimensional distributions of the linear combinations

p∑
j=1

tjXj = t�X, t = (t1, t2, . . . , tp)�.

Cumulant Functions

Moments mk = ∫
xkf (x)dx often help in describing distributional characteris-

tics. The normal distribution in d = 1 dimension is completely characterised by
its standard normal density f = ϕ and the moment parameters are μ = m1 and
σ 2 = m2 − m2

1. Another helpful class of parameters are the cumulants or semi-
invariants of a distribution. In order to simplify notation we concentrate here on the
one-dimensional (d = 1) case.

For a given one dimensional random variable X with density f and finite mo-
ments of order k the characteristic function ϕX(t) = E(eitX) has the derivative

1

ij

[
∂j log {ϕX(t)}

∂tj

]
t=0

= κj , j = 1, . . . , k.

The values κj are called cumulants or semi-invariants since κj does not change
(for j > 1) under a shift transformation X 
→ X + a. The cumulants are natural
parameters for dimension reduction methods, in particular the Projection Pursuit
method (see Section 19.2).
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The relationship between the first k moments m1, . . . ,mk and the cumulants is
given by

κk = (−1)k−1

∣∣∣∣∣∣∣∣∣∣∣

m1 1 . . . 0

m2

(
1
0

)
m1 . . .

...
...

. . .
...

mk

(
k−1

0

)
mk−1 . . .

(
k−1
k−2

)
m1

∣∣∣∣∣∣∣∣∣∣∣
. (4.36)

Example 4.11 Suppose that k = 1, then formula (4.36) above yields

κ1 = m1.

For k = 2 we obtain

κ2 = −
∣∣∣∣∣
m1 1

m2

(
1
0

)
m1

∣∣∣∣∣ = m2 − m2
1.

For k = 3 we have to calculate

κ3 =
∣∣∣∣∣∣
m1 1 0
m2 m1 1
m3 m2 2m1

∣∣∣∣∣∣ .

Calculating the determinant we have:

κ3 = m1

∣∣∣∣m1 1
m2 2m1

∣∣∣∣ − m2

∣∣∣∣ 1 0
m2 2m1

∣∣∣∣ + m3

∣∣∣∣ 1 0
m1 1

∣∣∣∣
= m1(2m2

1 − m2) − m2(2m1) + m3

= m3 − 3m1m2 + 2m3
1. (4.37)

Similarly one calculates

κ4 = m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1. (4.38)

The same type of process is used to find the moments from the cumulants:

m1 = κ1

m2 = κ2 + κ2
1

m3 = κ3 + 3κ2κ1 + κ3
1

m4 = κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1 .

(4.39)
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A very simple relationship can be observed between the semi-invariants and the
central moments μk = E(X − μ)k , where μ = m1 as defined before. In fact, κ2 =
μ2, κ3 = μ3 and κ4 = μ4 − 3μ2

2.
Skewness γ3 and kurtosis γ4 are defined as:

γ3 = E(X − μ)3/σ 3

γ4 = E(X − μ)4/σ 4.
(4.40)

The skewness and kurtosis determine the shape of one-dimensional distributions.
The skewness of a normal distribution is 0 and the kurtosis equals 3. The relation of
these parameters to the cumulants is given by:

γ3 = κ3

κ
3/2
2

. (4.41)

From (4.39) and Example 4.11

γ4 = κ4 + 3κ2
2 + κ4

1 − m4
1

σ 4
= κ4 + 3κ2

2

κ2
2

= κ4

κ2
2

+ 3. (4.42)

These relations will be used later in Section 19.2 on Projection Pursuit to determine
deviations from normality.

Summary
↪→ The expectation of a random vector X is μ = ∫

xf (x) dx, the co-
variance matrix � = Var(X) = E(X − μ)(X − μ)�. We denote
X ∼ (μ,�).

↪→ Expectations are linear, i.e., E(αX + βY) = α EX + β EY . If X

and Y are independent, then E(XY�) = EX EY�.
↪→ The covariance between two random vectors X and Y is �XY =

Cov(X,Y ) = E(X − EX)(Y − EY)� = E(XY�) − EX EY�. If X

and Y are independent, then Cov(X,Y ) = 0.
↪→ The characteristic function (cf) of a random vector X is ϕX(t) =

E(eit�X).
↪→ The distribution of a p-dimensional random variable X is com-

pletely determined by all one-dimensional distributions of t�X

where t ∈R
p (Theorem of Cramer-Wold).

↪→ The conditional expectation E(X2|X1) is the MSE best approxima-
tion of X2 by a function of X1.
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4.3 Transformations

Suppose that X has pdf fX(x). What is the pdf of Y = 3X? Or if X = (X1,X2,X3)
�,

what is the pdf of

Y =
⎛
⎝ 3X1

X1 − 4X2
X3

⎞
⎠?

This is a special case of asking for the pdf of Y when

X = u(Y ) (4.43)

for a one-to-one transformation u: Rp → R
p . Define the Jacobian of u as

J =
(

∂xi

∂yj

)
=

(
∂ui(y)

∂yj

)

and let abs(|J |) be the absolute value of the determinant of this Jacobian. The pdf
of Y is given by

fY (y) = abs(|J |) · fX{u(y)}. (4.44)

Using this we can answer the introductory questions, namely

(x1, . . . , xp)� = u(y1, . . . , yp) = 1

3
(y1, . . . , yp)�

with

J =
⎛
⎜⎝

1
3 0

. . .

0 1
3

⎞
⎟⎠

and hence abs(|J |) = ( 1
3 )p . So the pdf of Y is 1

3p fX(
y
3 ).

This introductory example is a special case of

Y = AX + b, where A is nonsingular.

The inverse transformation is

X = A−1(Y − b).

Therefore

J = A−1,

and hence

fY (y) = abs(|A|−1)fX{A−1(y − b)}. (4.45)
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Example 4.12 Consider X = (X1,X2) ∈R
2 with density fX(x) = fX(x1, x2),

A =
(

1 1
1 −1

)
, b =

(
0

0

)
.

Then

Y = AX + b =
(

X1 + X2
X1 − X2

)

and

|A| = −2, abs(|A|−1) = 1

2
, A−1 = −1

2

(−1 −1
−1 1

)
.

Hence

fY (y) = abs(|A|−1) · fX(A−1y)

= 1

2
fX

{
1

2

(
1 1
1 −1

)(
y1
y2

)}

= 1

2
fX

{
1

2
(y1 + y2),

1

2
(y1 − y2)

}
. (4.46)

Example 4.13 Consider X ∈ R
1 with density fX(x) and Y = exp(X). According

to (4.43) x = u(y) = log(y) and hence the Jacobian is

J = dx

dy
= 1

y
.

The pdf of Y is therefore:

fY (y) = 1

y
fX{log(y)}.

Summary
↪→ If X has pdf fX(x), then a transformed random vector Y , i.e., X =

u(Y ), has pdf fY (y) = abs(|J |) · fX{u(y)}, where J denotes the
Jacobian J = ( ∂u(yi )

∂yj

)
.

↪→ In the case of a linear relation Y = AX + b the pdf’s of X and Y

are related via fY (y) = abs(|A|−1)fX{A−1(y − b)}.
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4.4 The Multinormal Distribution

The multinormal distribution with mean μ and covariance � > 0 has the density

f (x) = |2π�|−1/2 exp

{
−1

2
(x − μ)��−1(x − μ)

}
. (4.47)

We write X ∼ Np(μ,�).
How is this multinormal distribution with mean μ and covariance � related to

the multivariate standard normal Np(0,Ip)? Through a linear transformation using
the results of Section 4.3, as shown in the next theorem.

Theorem 4.5 Let X ∼ Np(μ,�) and Y = �−1/2(X − μ) (Mahalanobis transfor-
mation). Then

Y ∼ Np(0,Ip),

i.e., the elements Yj ∈ R are independent, one-dimensional N(0,1) variables.

Proof Note that (X − μ)��−1(X − μ) = Y�Y . Application of (4.45) gives J =
�1/2, hence

fY (y) = (2π)−p/2 exp

(
−1

2
y�y

)
(4.48)

which is by (4.47) the pdf of a Np(0,Ip). �

Note that the above Mahalanobis transformation yields in fact a random variable
Y = (Y1, . . . , Yp)� composed of independent one-dimensional Yj ∼ N1(0,1) since

fY (y) = 1

(2π)p/2
exp

(
−1

2
y�y

)

=
p∏

j=1

1√
2π

exp

(
−1

2
y2
j

)

=
p∏

j=1

fYj
(yj ).

Here each fYj
(y) is a standard normal density 1√

2π
exp(− y2

2 ). From this it is clear

that E(Y ) = 0 and Var(Y ) = Ip .
How can we create Np(μ,�) variables on the basis of Np(0,Ip) variables? We

use the inverse linear transformation

X = �1/2Y + μ. (4.49)

Using (4.11) and (4.23) we can also check that E(X) = μ and Var(X) = �. The
following theorem is useful because it presents the distribution of a variable after it
has been linearly transformed. The proof is left as an exercise.
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Fig. 4.3 Scatterplot of a normal sample and contour ellipses for μ =
(

3
2

)
and � =

(
1

−1.5
−1.5

4

)

MVAcontnorm

Theorem 4.6 Let X ∼ Np(μ,�) and A(p × p), c ∈ R
p , where A is nonsingular.

Then Y =AX + c is again a p-variate Normal, i.e.,

Y ∼ Np(Aμ + c,A�A�). (4.50)

Geometry of the Np(μ,�) Distribution

From (4.47) we see that the density of the Np(μ,�) distribution is constant on
ellipsoids of the form

(x − μ)��−1(x − μ) = d2. (4.51)

Example 4.14 Figure 4.3 shows the contour ellipses of a two-dimensional normal
distribution. Note that these contour ellipses are the iso-distance curves (2.34) from
the mean of this normal distribution corresponding to the metric �−1.

According to Theorem 2.7 in Section 2.6 the half-lengths of the axes in the con-
tour ellipsoid are

√
d2λi where λi are the eigenvalues of �. If � is a diagonal

matrix, the rectangle circumscribing the contour ellipse has sides with length 2dσi

and is thus naturally proportional to the standard deviations of Xi (i = 1,2).
The distribution of the quadratic form in (4.51) is given in the next theorem.
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Theorem 4.7 If X ∼ Np(μ,�), then the variable U = (X − μ)��−1(X − μ) has
a χ2

p distribution.

Theorem 4.8 The characteristic function (cf) of a multinormal Np(μ,�) is given
by

ϕX(t) = exp

(
it�μ − 1

2
t��t

)
. (4.52)

We can check Theorem 4.8 by transforming the cf back:

f (x) = 1

(2π)p

∫
exp

(
−it�x + it�μ − 1

2
t��t

)
dt

= 1

|2π�−1|1/2|2π�|1/2

·
∫

exp

[
−1

2
{t��t + 2it�(x − μ) − (x − μ)��−1(x − μ)}

]

· exp

[
−1

2
{(x − μ)��−1(x − μ)}

]
dt

= 1

|2π�|1/2
exp

[
−1

2
{(x − μ)��(x − μ)}

]

since∫
1

|2π�−1|1/2
exp

[
−1

2
{t��t + 2it�(x − μ) − (x − μ)��−1(x − μ)}

]
dt

=
∫

1

|2π�−1|1/2
exp

[
−1

2
{(t + i�−1(x − μ))��(t + i�−1(x − μ))}

]
dt

= 1.

Note that if Y ∼ Np(0,Ip) (e.g., the Mahalanobis-transform), then

ϕY (t) = exp

(
−1

2
t�Ipt

)
= exp

(
−1

2

p∑
i=1

t2
i

)

= ϕY1(t1) · . . . · ϕYp(tp)

which is consistent with (4.33).

Singular Normal Distribution

Suppose that we have rank(�) = k < p, where p is the dimension of X. We define
the (singular) density of X with the aid of the G-Inverse �− of �,

f (x) = (2π)−k/2

(λ1 · · ·λk)1/2
exp

{
−1

2
(x − μ)��−(x − μ)

}
(4.53)

where
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(1) x lies on the hyperplane N�(x − μ) = 0 with N (p × (p − k)) :N�� = 0 and
N�N = Ik .

(2) �− is the G-Inverse of �, and λ1, . . . , λk are the nonzero eigenvalues of �.

What is the connection to a multinormal with k-dimensions? If

Y ∼ Nk(0,�1) and �1 = diag(λ1, . . . , λk), (4.54)

then an orthogonal matrix B(p × k) with B�B = Ik exists that means X = BY + μ

where X has a singular pdf of the form (4.53).

Gaussian Copula

In Examples 4.3 and 4.4 we have introduced copulae. Another important copula is
the Gaussian or normal copula,

Cρ(u, v) =
∫ �−1

1 (u)

−∞

∫ �−1
2 (v)

−∞
fρ(x1, x2)dx2dx1, (4.55)

see Embrechts, McNeil and Straumann (1999). In (4.55), fρ denotes the bivariate
normal density function with correlation ρ for n = 2. The functions �1 and �2
in (4.55) refer to the corresponding one-dimensional standard normal cdfs of the
margins.

In the case of vanishing correlation, ρ = 0, the Gaussian copula becomes

C0(u, v) =
∫ �−1

1 (u)

−∞
fX1(x1)dx1

∫ �−1
2 (v)

−∞
fX2(x2)dx2

= uv

= �(u,v).

Summary
↪→ The pdf of a p-dimensional multinormal X ∼ Np(μ,�) is

f (x) = |2π�|−1/2 exp

{
−1

2
(x − μ)��−1(x − μ)

}
.

The contour curves of a multinormal are ellipsoids with half-
lengths proportional to

√
λi , where λi denotes the eigenvalues of

� (i = 1, . . . , p).
↪→ The Mahalanobis transformation transforms X ∼ Np(μ,�) to Y =

�−1/2(X − μ) ∼ Np(0,Ip). Going in the other direction, one can
create a X ∼ Np(μ,�) from Y ∼ Np(0,Ip) via X = �1/2Y + μ.
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Summary (continued)
↪→ If the covariance matrix � is singular (i.e., rank(�) < p), then it

defines a singular normal distribution.
↪→ The Gaussian copula is given by

Cρ(u, v) =
∫ �−1

1 (u)

−∞

∫ �−1
2 (v)

−∞
fρ(x1, x2)dx2dx1.

↪→ The density of a singular normal distribution is given by

(2π)−k/2

(λ1 · · ·λk)1/2
exp

{
−1

2
(x − μ)��−(x − μ)

}
.

4.5 Sampling Distributions and Limit Theorems

In multivariate statistics, we observe the values of a multivariate random variable
X and obtain a sample {xi}ni=1, as described in Chapter 3. Under random sampling,
these observations are considered to be realisations of a sequence of i.i.d. random
variables X1, . . . ,Xn, where each Xi is a p-variate random variable which replicates
the parent or population random variable X. Some notational confusion is hard to
avoid: Xi is not the ith component of X, but rather the ith replicate of the p-variate
random variable X which provides the ith observation xi of our sample.

For a given random sample X1, . . . ,Xn, the idea of statistical inference is to anal-
yse the properties of the population variable X. This is typically done by analysing
some characteristic θ of its distribution, like the mean, covariance matrix, etc. Sta-
tistical inference in a multivariate setup is considered in more detail in Chapters 6
and 7.

Inference can often be performed using some observable function of the sample
X1, . . . ,Xn, i.e., a statistics. Examples of such statistics were given in Chapter 3: the
sample mean x̄, the sample covariance matrix S . To get an idea of the relationship
between a statistics and the corresponding population characteristic, one has to de-
rive the sampling distribution of the statistic. The next example gives some insight
into the relation of (x, S) to (μ,�).

Example 4.15 Consider an iid sample of n random vectors Xi ∈R
p where E(Xi) =

μ and Var(Xi) = �. The sample mean x̄ and the covariance matrix S have already
been defined in Section 3.3. It is easy to prove the following results

E(x̄) = n−1
n∑

i=1

E(Xi) = μ

Var(x̄) = n−2
n∑

i=1

Var(Xi) = n−1� = E(x̄x̄�) − μμ�
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E(S) = n−1 E

{
n∑

i=1

(Xi − x̄)(Xi − x̄)�
}

= n−1 E

{
n∑

i=1

XiX
�
i − nx̄x̄�

}

= n−1{n(
� + μμ�) − n

(
n−1� + μμ�)}

= n − 1

n
�.

This shows in particular that S is a biased estimator of �. By contrast, Su = n
n−1S

is an unbiased estimator of �.

Statistical inference often requires more than just the mean and/or the variance
of a statistic. We need the sampling distribution of the statistics to derive confidence
intervals or to define rejection regions in hypothesis testing for a given significance
level. Theorem 4.9 gives the distribution of the sample mean for a multinormal
population.

Theorem 4.9 Let X1, . . . ,Xn be i.i.d. with Xi ∼Np(μ,�). Then x̄ ∼Np(μ,n−1�).

Proof x̄ = n−1 ∑n
i=1 Xi is a linear combination of independent normal variables,

so it has a normal distribution (see Chapter 5). The mean and the covariance matrix
were given in the preceding example. �

With multivariate statistics, the sampling distributions of the statistics are often
more difficult to derive than in the preceding Theorem. In addition they might be
so complicated that approximations have to be used. These approximations are pro-
vided by limit theorems. Since they are based on asymptotic limits, the approxima-
tions are only valid when the sample size is large enough. In spite of this restriction,
they make complicated situations rather simple. The following central limit theorem
shows that even if the parent distribution is not normal, when the sample size n is
large, the sample mean x̄ has an approximate normal distribution.

Theorem 4.10 (Central Limit Theorem (CLT)) Let X1,X2, . . . ,Xn be i.i.d. with
Xi ∼ (μ,�). Then the distribution of

√
n(x − μ) is asymptotically Np(0,�), i.e.,

√
n(x − μ)

L−→ Np(0,�) as n −→ ∞.

The symbol “
L−→” denotes convergence in distribution which means that the

distribution function of the random vector
√

n(x̄ − μ) converges to the distribution
function of Np(0,�).

Example 4.16 Assume that X1, . . . ,Xn are i.i.d. and that they have Bernoulli dis-
tributions where p = 1

2 (this means that P(Xi = 1) = 1
2 , P (Xi = 0) = 1

2 ). Then



4.5 Sampling Distributions and Limit Theorems 131

μ = p = 1
2 and � = p(1 − p) = 1

4 . Hence,

√
n

(
x − 1

2

)
L−→ N1

(
0,

1

4

)
as n −→ ∞.

The results are shown in Figure 4.4 for varying sample sizes.

Fig. 4.4 The CLT for
Bernoulli distributed random
variables. Sample size n = 5

(up) and n = 35 (down)
MVAcltbern
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Fig. 4.5 The CLT in the two-dimensional case. Sample size n = 5 (up) and n = 85 (down)
MVAcltbern2

Example 4.17 Now consider a two-dimensional random sample X1, . . . ,Xn that is
i.i.d. and created from two independent Bernoulli distributions with p = 0.5. The
joint distribution is given by P(Xi = (0,0)�) = 1

4 , P(Xi = (0,1)�) = 1
4 , P(Xi =

(1,0)�) = 1
4 , P(Xi = (1,1)�) = 1

4 . Here we have

√
n

{
x̄ −

( 1
2
1
2

)}
= N2

((
0

0

)
,

( 1
4 0
0 1

4

))
as n −→ ∞.

Figure 4.5 displays the estimated two-dimensional density for different sample
sizes.

The asymptotic normal distribution is often used to construct confidence intervals
for the unknown parameters. A confidence interval at the level 1 − α, α ∈ (0,1), is
an interval that covers the true parameter with probability 1 − α:

P(θ ∈ [θ̂l , θ̂u]) = 1 − α,

where θ denotes the (unknown) parameter and θ̂l and θ̂u are the lower and upper
confidence bounds respectively.

Example 4.18 Consider the i.i.d. random variables X1, . . . ,Xn with Xi ∼ (μ,σ 2)

and σ 2 known. Since we have
√

n(x̄ −μ)
L→ N(0, σ 2) from the CLT, it follows that

P

(
−u1−α/2 ≤ √

n
(x̄ − μ)

σ
≤ u1−α/2

)
−→ 1 − α, as n −→ ∞
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where u1−α/2 denotes the (1 − α/2)-quantile of the standard normal distribution.
Hence the interval [

x̄ − σ√
n

u1−α/2, x̄ + σ√
n

u1−α/2

]

is an approximate (1 − α)-confidence interval for μ.

But what can we do if we do not know the variance σ 2? The following corollary
gives the answer.

Corollary 4.1 If �̂ is a consistent estimate for �, then the CLT still holds, namely

√
n �̂−1/2(x̄ − μ)

L−→ Np(0,I) as n −→ ∞.

Example 4.19 Consider the i.i.d. random variables X1, . . . ,Xn with Xi ∼ (μ,σ 2),
and now with an unknown variance σ 2. From Corollary 4.1 using σ̂ 2 = 1

n

∑n
i=1(xi −

x̄)2 we obtain

√
n

(
x̄ − μ

σ̂

)
L−→ N(0,1) as n −→ ∞.

Hence we can construct an approximate (1 − α)-confidence interval for μ using the
variance estimate σ̂ 2:

C1−α =
[
x̄ − σ̂√

n
u1−α/2, x̄ + σ̂√

n
u1−α/2

]
.

Note that by the CLT

P(μ ∈ C1−α) −→ 1 − α as n −→ ∞.

Remark 4.1 One may wonder how large should n be in practice to provide reason-
able approximations. There is no definite answer to this question: it mainly depends
on the problem at hand (the shape of the distribution of the Xi and the dimension of
Xi ). If the Xi are normally distributed, the normality of x̄ is achieved from n = 1. In
most situations, however, the approximation is valid in one-dimensional problems
for n larger than, say, 50.

Transformation of Statistics

Often in practical problems, one is interested in a function of parameters for which
one has an asymptotically normal statistic. Suppose for instance that we are inter-
ested in a cost function depending on the mean μ of the process: f (μ) = μ�Aμ

where A > 0 is given. To estimate μ we use the asymptotically normal statistic x̄.
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The question is: how does f (x̄) behave? More generally, what happens to a statis-
tic t that is asymptotically normal when we transform it by a function f (t)? The
answer is given by the following theorem.

Theorem 4.11 If
√

n(t − μ)
L−→ Np(0,�) and if f = (f1, . . . , fq)� : Rp → R

q

are real valued functions which are differentiable at μ ∈ R
p , then f (t) is asymptot-

ically normal with mean f (μ) and covariance D��D, i.e.,

√
n{f (t) − f (μ)} L−→ Nq(0,D��D) for n −→ ∞, (4.56)

where

D =
(

∂fj

∂ti

)
(t)

∣∣∣∣
t=μ

is the (p × q) matrix of all partial derivatives.

Example 4.20 We are interested in seeing how f (x̄) = x̄�Ax̄ behaves asymptoti-
cally with respect to the quadratic cost function of μ,f (μ) = μ�Aμ, where A > 0.

D = ∂f (x̄)

∂x̄

∣∣∣∣
x̄=μ

= 2Aμ.

By Theorem 4.11 we have

√
n(x̄�Ax̄ − μ�Aμ)

L−→ N1 (0,4μ�A�Aμ).

Example 4.21 Suppose

Xi ∼ (μ,�); μ =
(

0

0

)
, � =

(
1 0.5

0.5 1

)
, p = 2.

We have by the CLT (Theorem 4.10) for n → ∞ that

√
n(x − μ)

L−→ N(0,�).

Suppose that we would like to compute the distribution of
(

x2
1−x2

x1+3x2

)
. According to

Theorem 4.11 we have to consider f = (f1, f2)
� with

f1(x1, x2) = x2
1 − x2, f2(x1, x2) = x1 + 3x2, q = 2.

Given this f (μ) = (0
0

)
and

D = (dij ), dij =
(

∂fj

∂xi

)∣∣∣∣
x=μ

=
(

2x1 1
−1 3

)∣∣∣∣
x=0

.
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Thus

D =
(

0 1
−1 3

)
.

The covariance is
(

0 −1
1 3

) (
1 1

2
1
2 1

) (
0 1

−1 3

)
=

(
0 −1
1 3

) (− 1
2

5
2−1 7
2

)
=

(
1 − 7

2− 7
2 13

)

D� � D D� �D D��D
,

which yields

√
n

(
x2

1 − x2
x1 + 3x2

)
L−→ N2

((
0

0

)
,

(
1 − 7

2− 7
2 13

))
.

Example 4.22 Let us continue the previous example by adding one more compo-
nent to the function f . Since q = 3 > p = 2, we might expect a singular normal
distribution. Consider f = (f1, f2, f3)

� with

f1(x1, x2) = x2
1 − x2, f2(x1, x2) = x1 + 3x2, f3 = x3

2 , q = 3.

From this we have that

D =
(

0 1 0
−1 3 0

)
and thus D��D =

⎛
⎝ 1 − 7

2 0
− 7

2 13 0
0 0 0

⎞
⎠ .

The limit is in fact a singular normal distribution!

Summary
↪→ If X1, . . . ,Xn are i.i.d. random vectors with Xi ∼ Np(μ,�), then

x̄ ∼ Np(μ, 1
n
�).

↪→ If X1, . . . ,Xn are i.i.d. random vectors with Xi ∼ (μ,�), then the
distribution of

√
n(x−μ) is asymptotically N(0,�) (Central Limit

Theorem).
↪→ If X1, . . . ,Xn are i.i.d. random variables with Xi ∼ (μ,σ ), then

an asymptotic confidence interval can be constructed by the CLT:
x̄ ± σ̂√

n
u1−α/2.

↪→ If t is a statistic that is asymptotically normal, i.e.,
√

n(t − μ)
L−→

Np(0,�), then this holds also for a function f (t), i.e.,
√

n{f (t) −
f (μ)} is asymptotically normal.
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Fig. 4.6 Comparison of the pdf of a standard Gaussian (blue) and a Cauchy distribution (red) with

location parameter 0 and scale parameter 1 MVAgausscauchy

4.6 Heavy-Tailed Distributions

Heavy-tailed distributions were first introduced by the Italian-born Swiss economist
Pareto and extensively studied by Paul Lévy. Although in the beginning these dis-
tributions were mainly studied theoretically, nowadays they have found many ap-
plications in areas as diverse as finance, medicine, seismology, structural engineer-
ing. More concretely, they have been used to model returns of assets in financial
markets, stream flow in hydrology, precipitation and hurricane damage in meteo-
rology, earthquake prediction in seismology, pollution, material strength, teletraffic
and many others.

A distribution is called heavy-tailed if it has higher probability density in its tail
area compared with a normal distribution with same mean μ and variance σ 2. Fig-
ure 4.6 demonstrates the differences of the pdf curves of a standard Gaussian distri-
bution and a Cauchy distribution with location parameter μ = 0 and scale parameter
σ = 1. The graphic shows that the probability density of the Cauchy distribution is
much higher than that of the Gaussian in the tail part, while in the area around the
centre, the probability density of the Cauchy distribution is much lower.

In terms of kurtosis, a heavy-tailed distribution has kurtosis greater than 3 (see
Chapter 4, formula (4.40)), which is called leptokurtic, in contrast to mesokurtic dis-
tribution (kurtosis = 3) and platykurtic distribution (kurtosis < 3). Since univariate
heavy-tailed distributions serve as basics for their multivariate counterparts and their
density properties have been proved useful even in multivariate cases, we will start
from introducing some univariate heavy-tailed distributions. Then we will move on
to analyse their multivariate counterparts, and their tail behavior.
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Fig. 4.7 pdf (left) and cdf (right) of GH (λ = 0.5), HYP and NIG with α = 1, β = 0, δ = 1, μ = 0

MVAghdis

Generalised Hyperbolic Distribution

The generalised hyperbolic distribution was introduced by Barndorff-Nielsen and at
first applied to model grain size distributions of wind blown sands. Today one of
its most important uses is in stock price modelling and market risk measurement.
The name of the distribution is derived from the fact that its log-density forms a
hyperbola, while the log-density of the normal distribution is a parabola.

The density of a one-dimensional generalised hyperbolic (GH) distribution for
x ∈R is

fGH (x;λ,α,β, δ,μ)

= (
√

α2 − β2/δ)λ√
2πKλ(δ

√
α2 − β2)

Kλ−1/2{α
√

δ2 + (x − μ)2}√
δ2 + (x − μ)2/α)1/2−λ

eβ(x−μ) (4.57)

where Kλ is a modified Bessel function of the third kind with index λ

Kλ(x) = 1

2

∫ ∞

0
yλ−1e− x

2 (y+y−1)dy. (4.58)

The domain of variation of the parameters is μ ∈R and

δ ≥ 0, |β| < α, if λ > 0

δ > 0, |β| < α, if λ = 0

δ > 0, |β| ≤ α, if λ < 0.

The generalised hyperbolic distribution has the following mean and variance

E[X] = μ + δβ√
α2 + β2

Kλ+1(δ
√

α2 + β2)

Kλ(δ
√

α2 + β2)
(4.59)
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Var[X] = δ2

[
Kλ+1(δ

√
α2 + β2)

δ
√

α2 + β2Kλ(δ
√

α2 + β2)
+ β2

α2 + β2

[
Kλ+2(δ

√
α2 + β2)

Kλ(δ
√

α2 + β2)

−
{

Kλ+1(δ
√

α2 + β2)

Kλ(δ
√

α2 + β2)

}2]]
, (4.60)

where μ and δ play important roles in the density’s location and scale respectively.
With specific values of λ, we obtain different sub-classes of GH such as hyperbolic
(HYP) or normal-inverse Gaussian (NIG) distribution.

For λ = 1 we obtain the hyperbolic distributions (HYP)

fHYP(x;α,β, δ,μ) =
√

α2 − β2

2αδK1(δ
√

α2 − β2)
e{−α

√
δ2+(x−μ)2+β(x−μ)} (4.61)

where x,μ ∈R, δ ≥ 0 and |β| < α.
For λ = −1/2 we obtain the normal-inverse Gaussian distribution (NIG)

fNIG(x;α,β, δ,μ) = αδ

π

K1
(
α
√

(δ2 + (x − μ)2)
)

√
δ2 + (x − μ)2

e{δ
√

α2−β2+β(x−μ)}. (4.62)

Student’s t-distribution

The t -distribution was first analysed by Gosset (1908). He published his results
under his pseudonym “Student” by request of his employer. Let X be a normally
distributed random variable with mean μ and variance σ 2, and Y be the random

Fig. 4.8 pdf (left) and cdf (right) of t -distribution with different degrees of freedom (t3 stands for

t -distribution with degree of freedom 3) MVAtdis



4.6 Heavy-Tailed Distributions 139

variable such that Y 2/σ 2 has a chi-square distribution with n degrees of freedom.
Assume that X and Y are independent, then

t
def= X

√
n

Y
(4.63)

is distributed as Student’s t with n degrees of freedom. The t -distribution has the
following density function

ft (x;n) = �(n+1
2 )√

nπ�(n
2 )

(
1 + x2

n

)− n+1
2

(4.64)

where n is the number of degrees of freedom, −∞ < x < ∞, and � is the gamma
function, e.g. Giri (1996),

�(α) =
∫ ∞

0
xα−1e−xdx. (4.65)

The mean, variance, skewness, and kurtosis of Student’s t -distribution (n > 4) are:

μ = 0

σ 2 = n

n − 2
Skewness = 0

Kurtosis = 3 + 6

n − 4
.

The t -distribution is symmetric around 0, which is consistent with the fact that its
mean is 0 and skewness is also 0.

Student’s t -distribution approaches the normal distribution as n increases, since

lim
n→∞ft (x;n) = 1√

2π
e− x2

2 . (4.66)

In practice the t -distribution is widely used, but its flexibility of modelling is re-
stricted because of the integer-valued tail index.

In the tail area of the t -distribution, x is proportional to |x|−(n+1). In Figure 4.13
we compared the tail-behaviour of t -distribution with different degrees of freedom.
With higher degree of freedom, the t -distribution decays faster.

Laplace Distribution

The univariate Laplace distribution with mean zero was introduced by Laplace
(1774). The Laplace distribution can be defined as the distribution of differences
between two independent variates with identical exponential distributions. There-
fore it is also called the double exponential distribution.
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Fig. 4.9 pdf (left) and cdf (right) of Laplace distribution with zero mean and different scale pa-

rameters (L1 stands for Laplace distribution with θ = 1) MVAlaplacedis

The Laplace distribution with mean μ and scale parameter θ has the pdf

fLaplace(x;μ,θ) = 1

2θ
e− |x−μ|

θ (4.67)

and the cdf

FLaplace(x;μ,θ) = 1

2

{
1 + sign(x − μ)(1 − e− |x−μ|

θ )
}
, (4.68)

where sign is sign function. The mean, variance, skewness, and kurtosis of the
Laplace distribution are

μ = μ

σ 2 = 2θ2

Skewness = 0

Kurtosis = 6.

With mean 0 and θ = 1, we obtain the standard Laplace distribution

f (x) = e−|x|

2
(4.69)

F(x) =
{

ex

2 for x < 0
1 − e−x

2 for x ≥ 0.
(4.70)

Cauchy Distribution

The Cauchy distribution is motivated by the following example.
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Fig. 4.10 Introduction to
Cauchy distribution - robber
vs. policeman

Example 4.23 A gangster has just robbed a bank. As he runs to a point s meters
away from the wall of the bank, a policeman reaches the crime scene. The robber
turns back and starts to shoot but he is such a poor shooter that the angle of his fire
(marked in Figure 4.10 as α) is uniformly distributed. The bullets hit the wall at
distance x (from the centre). Obviously the distribution of x, the random variable
where the bullet hits the wall, is of vital knowledge to the policeman in order to
identify the location of the gangster. (Should the policeman calculate the mean or
the median of the observed bullet hits xi?)

Since α is uniformly distributed:

f (α) = 1

π
I(α ∈ [−π/2,π/2])

and

tanα = x

s

α = arctan
(x

s

)

dα = 1

s

1

1 + ( x
s
)2

dx.

For a small interval dα, the probability is given by

f (α)dα = 1

π
dα

= 1

sπ

1

1 + ( x
s
)2

dx

with
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∫ π
2

− π
2

1

π
dα = 1

∫ ∞

−∞
1

sπ

1

1 + ( x
s
)2

dx = 1

π

{
arctan

(x

s

)}∞
−∞

= 1

π

{π

2
−

(
−π

2

)}

= 1.

So the pdf of x can be written as:

f (x) = 1

sπ

1

1 + ( x
s
)2

.

The general formula for the pdf and cdf of the Cauchy distribution is

fCauchy(x;m,s) = 1

sπ

1

1 + ( x−m
s

)2
(4.71)

FCauchy(x;m,s) = 1

2
+ 1

π
arctan

(
x − m

s

)
(4.72)

where m and s are location and scale parameter respectively. The case in the above
example where m = 0 and s = 1 is called the standard Cauchy distribution with pdf
and cdf as following,

fCauchy(x) = 1

π(1 + x2)
(4.73)

FCauchy(x;m,s) = 1

2
+ arctan(x)

π
. (4.74)

The mean, variance, skewness and kurtosis of Cauchy distribution are all undefined,
since its moment generating function diverges. But it has mode and median, both
equal to the location parameter m.

Mixture Model

Mixture modelling concerns modelling a statistical distribution by a mixture (or
weighted sum) of different distributions. For many choices of component density
functions, the mixture model can approximate any continuous density to arbitrary
accuracy, provided that the number of component density functions is sufficiently
large and the parameters of the model are chosen correctly. The pdf of a mixture
distribution consists of n distributions and can be written as:

f (x) =
L∑

l=1

wlpl(x) (4.75)
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Fig. 4.11 pdf (left) and cdf (right) of Cauchy distribution with m = 0 and different scale parame-

ters (C1 stands for Cauchy distribution with s = 1) MVAcauchy

under the constraints:

0 ≤ wl ≤ 1
L∑

l=1

wl = 1

∫
pl(x)dx = 1

where pl(x) is the pdf of the l’th component density and wl is a weight. The mean,
variance, skewness and kurtosis of a mixture are

μ =
L∑

l=1

wlμl (4.76)

σ 2 =
L∑

l=1

wl{σ 2
l + (μl − μ)2} (4.77)

Skewness =
L∑

l=1

wl

{(
σl

σ

)3

SKl + 3σ 2
l (μl − μ)

σ 3
+

(
μl − μ

σ

)3
}

(4.78)

Kurtosis =
L∑

l=1

wl

{(
σl

σ

)4

Kl + 6(μl − μ)2σ 2
l

σ 4
+ 4(μl − μ)σ 3

l

σ 4
SKl

+
(

μl − μ

σ

)4
}

, (4.79)

where μl, σl, SKl and Kl are respectively mean, variance, skewness and kurtosis of
l’th distribution.
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Fig. 4.12 pdf (left) and cdf (right) of a Gaussian mixture (Example 4.23) MVAmixture

Mixture models are ubiquitous in virtually every facet of statistical analysis,
machine learning and data mining. For data sets comprising continuous variables,
the most common approach involves mixture distributions having Gaussian compo-
nents.

The pdf for a Gaussian mixture is:

fGM(x) =
L∑

l=1

wl√
2πσl

e
− (x−μl )

2

2σ2
l . (4.80)

For a Gaussian mixture consisting of Gaussian distributions with mean 0, this can
be simplified to:

fGM(x) =
L∑

l=1

wl√
2πσl

e
− x2

2σ2
l , (4.81)

with variance, skewness and kurtosis

σ 2 =
L∑

l=1

wlσ
2
l (4.82)

Skewness = 0 (4.83)

Kurtosis =
L∑

l=1

wl

(
σl

σ

)4

3. (4.84)

Example 4.24 Consider a Gaussian Mixture which is 80% N(0,1) and 20%
N(0,9). The pdf of N(0,1) and N(0,9) are
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Table 4.2 basic statistics of
t , Laplace and Cauchy
distribution

t Laplace Cauchy

mean 0 μ not defined

variance n
n−2 2θ2 not defined

skewness 0 0 not defined

kurtosis 3 + 6
n−4 6 not defined

fN(0,1)(x) = 1√
2π

e− x2
2

fN(0,9)(x) = 1

3
√

2π
e− x2

18

so the pdf of the Gaussian Mixture is

fGM(x) = 1

5
√

2π

(
4e− x2

2 + 1

3
e− x2

18

)
.

Notice that the Gaussian Mixture is not a Gaussian distribution:

μ = 0

σ 2 = 0.8 × 1 + 0.2 × 9 = 2.6

Skewness = 0

Kurtosis = 0.8 ×
(

1√
2.6

)4

× 3 + 0.2 ×
( √

9√
2.6

)4

× 3 = 7.54.

The kurtosis of this Gaussian mixture is higher than 3.

A summary of the basic statistics is given in Table 4.2.

Multivariate Generalised Hyperbolic Distribution

The multivariate Generalised Hyperbolic Distribution (GHd ) has the following pdf

fGHd
(x;λ,α,β, δ,�,μ) = ad

K
λ− d

2
{α√

δ2 + (x − μ)��−1(x − μ)}
{α−1

√
δ2 + (x − μ)��−1(x − μ)} d

2 −λ
eβ�(x−μ)

(4.85)

ad = ad(λ,α,β, δ,�) = (
√

α2 − β��β/δ)λ

(2π)
d
2 Kλ(δ

√
α2 − β��β

, (4.86)

and characteristic function
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Table 4.3 basic statistics of GH distribution and mixture model

GH

mean μ + δβ√
α2+β2

Kλ+1(δ
√

α2+β2)

Kλ(δ
√

α2+β2)

variance δ2

[
Kλ+1(δ

√
α2+β2)

δ
√

α2+β2Kλ(δ
√

α2+β2)
+ β2

α2+β2

[
Kλ+2(δ

√
α2+β2)

Kλ(δ
√

α2+β2)
−

{
Kλ+1(δ

√
α2+β2)

Kλ(δ
√

α2+β2)

}2]]

Mixture

mean
∑L

l=1 wlμl

variance
∑L

l=1 wl{σ 2
l + (μl − μ)2}

skewness
∑L

l=1 wl

{(
σl

σ

)3
SKl + 3σ 2

l (μl−μ)

σ 3 + (
μl−μ

σ

)3
}

kurtosis
∑L

l=1 wl

{(
σl

σ

)4
Kl + 6(μl−μ)2σ 2

l

σ 4 + 4(μl−μ)σ 3
l

σ 4 SKl + (
μl−μ

σ

)4
}

φ(t) =
(

α2 − β��β

α2 − β��β + 1
2 t��t − iβ��t

) λ
2

×
Kλ(δ

√
α2 − β��β� + 1

2 t��t − iβ��t)

Kλ(δ
√

α2 − β��β�)
. (4.87)

These parameters have the following domain of variation:

λ ∈R, β,μ ∈R
d

δ > 0, α > β��β

� ∈ R
d×d positive definite matrix

|�| = 1.

For λ = d+1
2 we obtain the multivariate hyperbolic (HYP) distribution; for λ = − 1

2
we get the multivariate normal inverse Gaussian (NIG) distribution.

Blæsild and Jensen (1981) introduced a second parameterization (ζ,�,�),
where

ζ = δ

√
α2 − β��β (4.88)

� = β

√
�

α2 − β��β
(4.89)

� = δ2�. (4.90)

The mean and variance of X ∼ GHd

E[X] = μ + δRλ(ζ )��
1
2 (4.91)

Var[X] = δ2{ζ−1Rλ(ζ )� + Sλ(ζ )(��
1
2 )�(��

1
2 )

}
(4.92)

where
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Rλ(x) = Kλ+1(x)

Kλ(x)
(4.93)

Sλ(x) = Kλ+2(x)Kλ(x) − K2
λ+1(x)

K2
λ(x)

. (4.94)

Theorem 4.12 Suppose that X is a d-dimensional variate distributed according to
the generalised hyperbolic distribution GHd . Let (X1,X2) be a partitioning of X,
let r and k denote the dimensions of X1 and X2, respectively, and let (β1, β2) and
(μ1,μ2) be similar partitions of β and μ, let

� =
(

�11 �12
�21 �22

)
(4.95)

be a partition of � such that �11 is a r × r matrix. Then one has the following

1. The distribution of X1 is the r-dimensional generalised hyperbolic distribution,
GHr(λ

∗, α∗, β∗, δ∗,μ∗,�∗), where

λ∗ = λ

α∗ = |�11|− 1
2r {α2 − β2(�22 − �21�

−1
11 �12)β

�
2 } 1

2

β∗ = β1 + β2�21�
−1
11

δ∗ = δ|�11|
1

2ρ

μ∗ = μ1

�∗ = |�|− 1
r �11.

2. The conditional distribution of X2 given X1 = x1 is the k-dimensional gener-
alised hyperbolic distribution GHk(λ̃, α̃, β̃, δ̃, μ̃, �̃),where

λ̃ = λ − r

2

α̃ = α|�11| 1
2k

β̃ = β2

δ̃ = |�11|− 1
2k {δ2 + (x1 − μ1)�

−1
11 (x1 − μ1)

�} 1
2

μ̃ = μ2 + (x1 − μ1)�
−1
11 �12

�̃ = |�11| 1
k (�22 − �21�

−1
11 �12).

3. Let Y = XA+B be a regular affine transformation of X and let ||A|| denote the
absolute value of the determinant of A. The distribution of Y is the d-dimensional
generalised hyperbolic distribution GHd(λ+, α+, β+, δ+,μ+,�+),where

λ+ = λ

α+ = α||A||− 1
d

β+ = β(A−1)�

δ+ = ||A|| 1
d
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μ+ = μA + B

�+ = ||A||− 2
d A��A.

Multivariate t-distribution

If X and Y are independent and distributed as Np(μ,�) and X 2
n respectively, and

X
√

n/Y = t − μ, then the pdf of t is given by

ft (t;n,�,μ) = � {(n + p)/2}
�(n/2)np/2πp/2 |�|1/2 {1 + 1

n
(t − μ)��−1(t − μ)}(n+p)/2

.

(4.96)

The distribution of t is the noncentral t -distribution with n degrees of freedom and
the noncentrality parameter μ, Giri (1996).

Multivariate Laplace Distribution

Let g and G be the pdf and cdf of a d-dimensional Gaussian distribution Nd(0,�),
the pdf and cdf of a multivariate Laplace distribution can be written as

fMLaplaced
(x;m,�) =

∫ ∞

0
g(z− 1

2 x − z
1
2 m)z− d

2 e−zdz (4.97)

FMLaplaced
(x,m,�) =

∫ ∞

0
G(z− 1

2 x − z
1
2 m)e−zdz (4.98)

the pdf can also be described as

fMLaplaced
(x;m,�) = 2ex��−1m

(2π)
d
2 |�| 1

2

(
x��−1x

2 + m��−1m

) λ
2

×Kλ

(√
(2 + m��−1m)(x��−1x)

)
(4.99)

where λ = 2−d
2 and Kλ(x) is the modified Bessel function of the third kind

Kλ(x) = 1

2

(
x

2

)λ ∫ ∞

0
t−λ−1e−t− x2

4t dt, x > 0. (4.100)

Multivariate Laplace distribution has mean and variance

E[X] = m (4.101)

Cov[X] = � + mm�. (4.102)
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Fig. 4.13 Tail comparison of t -distribution, pdf (left) and approximation (right) MVAtdis-
tail

Multivariate Mixture Model

A multivariate mixture model comprises multivariate distributions, e.g. the pdf of a
multivariate Gaussian distribution can be written as

f (x) =
L∑

l=1

wl

|2π�l | 1
2

e− 1
2 (x−μl)

��−1(x−μl). (4.103)

Generalised Hyperbolic Distribution

The GH distribution has an exponential decaying speed

fGH(x;λ,α,β, δ,μ = 0) ∼ xλ−1e−(α−β)x as x → ∞, (4.104)

Figure 4.14 illustrates the tail behaviour of GH distributions with different value of
λ with α = 1, β = 0, δ = 1,μ = 0. It is clear that among the four distributions, GH
with λ = 1.5 has the lowest decaying speed, while NIG decays fastest.

In Figure 4.15, Chen, Härdle and Jeong (2008), four distributions and especially
their tail-behaviour are compared. In order to keep the comparability of these dis-
tributions, we specified the means to 0 and standardised the variances to 1. Further-
more we used one important subclass of the GH distribution: the normal-inverse
Gaussian (NIG) distribution with λ = − 1

2 introduced above. On the left panel, the
complete forms of these distributions are revealed. The Cauchy (dots) distribution
has the lowest peak and the fattest tails. In other words, it has the flattest distribu-
tion. The NIG distribution decays second fast in the tails although it has the highest
peak, which is more clearly displayed on the right panel.
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Fig. 4.14 Tail comparison of GH distribution (pdf) MVAghdistail

Fig. 4.15 Graphical comparison of the NIG distribution (line), standard normal distribution
MVAghadatail

4.7 Copulae

The cumulative distribution function (cdf) of a 2-dimensional vector (X1,X2) is
given by

F (x1, x2) = P (X1 ≤ x1, Y1 ≤ y1) . (4.105)

For the case that X1 and X2 are independent, their joint cumulative distribution
function F(x1, x2) can be written as a product of their 1-dimensional marginals:

F(x1, x2) = FX1 (x1)FX2 (x2) = P (X1 ≤ x1)P (X2 ≤ x2) . (4.106)

But how can we model dependence of X1 and X2? Most people would suggest lin-
ear correlation. Correlation is though an appropriate measure of dependence only
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when the random variables have an elliptical or spherical distribution, which in-
clude the normal multivariate distribution. Although the terms “correlation” and
“dependency” are often used interchangeably, correlation is actually a rather imper-
fect measure of dependency, and there are many circumstances where correlation
should not be used.

Copulae represent an elegant concept of connecting marginals with joint cu-
mulative distribution functions. Copulae are functions that join or “couple” mul-
tivariate distribution functions to their 1-dimensional marginal distribution func-
tions. Let us consider a d-dimensional vector X = (X1, . . . ,Xd)�. Using copulae,
the marginal distribution functions FXi

(i = 1, . . . , d) can be separately modelled
from their dependence structure and then coupled together to form the multivari-
ate distribution FX . Copula functions have a long history in probability theory and
statistics. Their application in finance is very recent. Copulae are important in Value-
at-Risk calculations and constitute an essential tool in quantitative finance (Härdle
et al. (2009)).

First let us concentrate on the 2-dimensional case, then we will extend this con-
cept to the d-dimensional case, for a random variable in R

d with d ≥ 1. To be able
to define a copula function, first we need to represent a concept of the volume of a
rectangle, a 2-increading function and a grounded function.

Let U1 and U2 be two sets in R = R∪ {+∞} ∪ {−∞} and consider the function
F : U1 × U2 −→R.

Definition 4.2 The F -volume of a rectangle B = [x1, x2] × [y1, y2] ⊂ U1 × U2 is
defined as:

VF (B) = F(x2, y2) − F(x1, y2) − F(x2, y1) + F(x1, y1). (4.107)

Definition 4.3 F is said to be a 2-increasing function if for every B = [x1, x2] ×
[y1, y2] ⊂ U1 × U2,

VF (B) ≥ 0. (4.108)

Remark 4.2 Note, that “to be 2-increasing function” neither implies nor is implied
by “to be increasing in each argument”.

The following lemmas (Nelsen, 1999) will be very useful later for establishing
the continuity of copulae.

Lemma 4.1 Let U1 and U2 be non-empty sets in R and let F : U1 × U2 −→ R be a
two-increasing function. Let x1, x2 be in U1 with x1 ≤ x2, and y1, y2 be in U2 with
y1 ≤ y2. Then the function t 
→ F(t, y2)−F(t, y1) is non-decreasing on U1 and the
function t 
→ F(x2, t) − F(x1, t) is non-decreasing on U2.

Definition 4.4 If U1 and U2 have a smallest element minU1 and minU2 respec-
tively, then we say, that a function F : U1 × U2 −→ R is grounded if:



152 4 Multivariate Distributions

for all x ∈ U1 : F(x,minU2) = 0 and (4.109)

for all y ∈ U2 : F(minU1, y) = 0. (4.110)

In the following, we will refer to this definition of a cdf.

Definition 4.5 A cdf is a function from R
2 
→ [0,1] which

i) is grounded.
ii) is 2-increasing.

iii) satisfies F (∞,∞) = 1.

Lemma 4.2 Let U1 and U2 be non-empty sets in R and let F : U1 × U2 −→ R be a
grounded two-increasing function. Then F is non-decreasing in each argument.

Definition 4.6 If U1 and U2 have a greatest element maxU1 and maxU2 respec-
tively, then we say, that a function F : U1 × U2 −→ R has margins and that the
margins of F are given by:

F(x) = F(x,maxU2) for all x ∈ U1 (4.111)

F(y) = F(maxU1, y) for all y ∈ U2. (4.112)

Lemma 4.3 Let U1 and U2 be non-empty sets in R and let F : U1 × U2 −→ R

be a grounded two-increasing function which has margins. Let (x1, y1), (x2, y2) ∈
S1 × S2. Then

|F(x2, y2) − F(x1, y1)| ≤ |F(x2) − F(x1)| + |F(y2) − F(y1)|. (4.113)

Definition 4.7 A two-dimensional copula is a function C defined on the unit square
I 2 = I × I with I = [0,1] such that

i) for every u ∈ I holds: C(u,0) = C(0, v) = 0, i.e. C is grounded.
ii) for every u1, u2, v1, v2 ∈ I with u1 ≤ u2 and v1 ≤ v2 holds:

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0, (4.114)

i.e. C is 2-increasing.
iii) for every u ∈ I holds C(u,1) = u and C(1, v) = v.

Informally, a copula is a joint distribution function defined on the unit square
[0,1]2 which has uniform marginals. That means that if FX1(x1) and FX2(x2) are
univariate distribution functions, then C{FX1(x1),FX2(x2)} is a 2-dimensional dis-
tribution function with marginals FX1(x1) and FX2(x2).

Example 4.25 The functions max(u+v−1,0), uv, min(u, v) can be easily checked
to be copula functions. They are called respectively the minimum, product and max-
imum copula.
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Fig. 4.16 Surface plot of the
Gumbel-Hougaard copula,

θ = 3 MVAghsurface

Example 4.26 Consider the function

CGauss
ρ (u, v) = �ρ

{
�−1(u),�−1(v)

}

=
∫ �−1

1 (u)

−∞

∫ �−1
2 (v)

−∞
fρ(x1, x2)dx2dx1 (4.115)

where �ρ is the joint 2-dimensional standard normal distribution function with cor-
relation coefficient ρ, while �1 and �2 refer to standard normal cdfs and

fρ(x1, x2) = 1

2π
√

1 − ρ2
exp

{
−x2

1 − 2ρx1x2 + x2
2

2(1 − ρ2)

}
(4.116)

denotes the bivariate normal pdf.
It is easy to see, that CGauss is a copula, the so called Gaussian or normal copula,

since it is 2-increasing and

�ρ

{
�−1(u),�−1(0)

} = �ρ

{
�−1(0),�−1(v)

} = 0 (4.117)

�ρ

{
�−1(u),�−1(1)

} = u and �ρ

{
�−1(1),�−1(v)

} = v. (4.118)

A simple and useful way to represent the graph of a copula is the contour diagram
that is, graphs of its level sets - the sets in I 2 given by C(u, v) = a constant. In
Figures 4.16–4.17 we present the countour diagrams of the Gumbel-Hougard copula
(Example 4.4) for different values of the copula parameter θ .

For θ = 1 the Gumbel-Hougaard copula reduces to the product copula, i.e.

C1(u, v) = �(u,v) = uv. (4.119)

For θ → ∞, one finds for the Gumbel-Hougaard copula:

Cθ(u, v) −→ min(u, v) = M(u,v) (4.120)

where M is also a copula such that C(u, v) ≤ M(u,v) for an arbitrary copula C.
The copula M is called the Fréchet-Hoeffding upper bound.
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Fig. 4.17 Contour plots of the Gumbel-Hougard copula MVAghcontour

The two-dimensional function W(u,v) = max(u + v − 1,0) defines a copula
with W(u,v) ≤ C(u, v) for any other copula C. W is called the Fréchet-Hoeffding
lower bound.

In Figure 4.18 we show an example of Gumbel-Hougaard copula sampling for
fixed parameters σ1 = 1, σ2 = 1 and θ = 3.

One can demonstrate the so-called Fréchet-Hoeffding inequality, which we have
already used in Example 1.3, and which states that each copula function is bounded
by the minimum and maximum one:

W(u,v) = max(u + v − 1,0) ≤ C(u, v) ≤ min(u, v) = M(u,v). (4.121)

The full relationship between copula and joint cdf depends on Sklar theorem.

Example 4.27 Let us verify that the Gaussian copula satisfies Sklar’s theorem in
both directions. On the one side, let

F(x1, x2) =
∫ x1

−∞

∫ x2

−∞
1

2π
√

1 − ρ2
exp

{
−x2

1 − 2ρx1x2 + x2
2

2(1 − ρ2)

}
dx2dx1 (4.122)
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Fig. 4.18 10000-sample
output for σ1 = 1, σ2 = 1,

θ = 3
MVAsample1000

be a 2-dimensional normal distribution function with standard normal cdf’s FX1(x1)

and FX2(x2). Since FX1(x1) and FX2(x2) are continuous, a unique copula C exists

such that for all x1, x2 ∈ R
2

a 2-dimensional distribution function can be written as
a copula in FX1(x1) and FX2(x2):

F (x1, x2) = C
{
�X1 (x1) ,�X2 (x2)

}
. (4.123)

The Gaussian copula satisfies the above equality, therefore it is the unique copula
mentioned in Sklar’s theorem. This proves that the Gaussian copula, together with
Gaussian marginals, gives the two-dimensional normal distribution.

Conversely, if C is a copula and FX1 and FX2 are standard normal distribution
functions, then

C
{
FX1(x1),FX2(x2)

}

=
∫ φ−1

1

{
FX1 (x1)

}

−∞

∫ φ−1
2

{
FX2 (x2)

}

−∞
1

2π
√

1 − ρ2
exp

{
−x2

1 − 2ρx1x2 + x2
2

2(1 − ρ2)

}
dx2dx1

(4.124)

is evidently a joint (two-dimensional) distribution function. Its margins are

C
{
FX1(x1),FX2(+∞)

} = �ρ

[
�−1 {

FX1(x1)
}
,+∞] = FX1(x1) (4.125)

C
{
FX1(+∞),FX2(x2)

} = �ρ

[+∞,�−1 {
FX2(x2)

}] = FX2(x2). (4.126)

The following proposition shows one attractive feature of the copula represen-
tation of dependence, i.e. that the dependence structure described by a copula is
invariant under increasing and continuous transformations of the marginal distribu-
tions.
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Theorem 4.13 If (X1,X2) have copula C and set g1, g2 two continuously increas-
ing functions, then {g1 (X1) , g2 (X2)} have the copula C, too.

Example 4.28 Independence implies that the product of the cdf’s FX1 and FX2

equals the joint distribution function F , i.e.:

F(x1, x2) = FX1(x1)FX2(x2). (4.127)

Thus, we obtain the independence or product copula C = �(u,v) = uv.

While it is easily understood how a product copula describes an independence
relationship, the converse is also true. Namely, the joint distribution function of two
independent random variables can be interpreted as a product copula. This concept
is formalised in the following theorem:

Theorem 4.14 Let X1 and X2 be random variables with continuous distribution
functions FX1 and FX2 and the joint distribution function F . Then X1 and X2 are
independent if and only if CX1,X2 = �.

Example 4.29 Let us consider the Gaussian copula for the case ρ = 0, i.e. vanishing
correlation. In this case the Gaussian copula becomes

CGauss
0 (u, v) =

∫ �−1
1 (u)

−∞
ϕ(x1)dx1

∫ �−1
2 (v)

−∞
ϕ(x2)dx2

= uv

= �(u,v). (4.128)

The following theorem, which follows directly from Lemma 4.3, establishes the
continuity of copulae.

Theorem 4.15 Let C be a copula. Then for any u1, v1, u2, v2 ∈ I holds

|C(u2, v2) − C(u1, v1)| ≤ |u2 − u1| + |v2 − v1|. (4.129)

From (4.129) it follows that every copula C is uniformly continuous on its do-
main.

A further important property of copulae concerns the partial derivatives of a cop-
ula with respect to its variables:

Theorem 4.16 Let C(u, v) be a copula. For any u ∈ I , the partial derivative ∂C(u,v)
∂v

exists for almost all u ∈ I . For such u and v one has:

∂C(u, v)

∂v
∈ I. (4.130)

The analogous statement is true for the partial derivative ∂C(u,v)
∂u

:
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∂C(u, v)

∂u
∈ I. (4.131)

Moreover, the functions

u 
→ Cv(u)
def= ∂C(u, v)/∂v and

v 
→ Cu(v)
def= ∂C(u, v)/∂u

are defined and non-increasing almost everywhere on I .

Until now, we have considered copulae only in a 2-dimensional setting. Let us
now extend this concept to the d-dimensional case, for a random variable in R

d with
d ≥ 1.

Let U1,U2, . . . ,Ud be non-empty sets in R and consider the function F : U1 ×
U2 × · · · × Ud −→ R. For a = (a1, a2, . . . , ad) and b = (b1, b2, . . . , bd) with a ≤ b

(i.e. ak ≤ bk for all k) let B = [a, b] = [a1, b1] × [a2, b2] × · · · × [an, bn] be the
d-box with vertices c = (c1, c2, . . . , cd). It is obvious, that each ck is either equal to
ak or to bk .

Definition 4.8 The F -volume of a d-box B = [a, b] = [a1, b1] × [a2, b2] × · · · ×
[ad, bd ] ⊂ U1 × U2 × · · · × Ud is defined as follows:

VF (B) =
d∑

k=1

sign(ck)F (ck) (4.132)

where sign(ck) = 1, if ck = ak for even k and sign(ck) = −1, if ck = ak for odd k.

Example 4.30 For the case d = 3, the F -volume of a 3-box B = [a, b] = [x1, x2] ×
[y1, y2] × [z1, z2] is defined as:

VF (B) = F(x2, y2, z2) − F(x2, y2, z1) − F(x2, y1, z2) − F(x1, y2, z2)

+ F(x2, y1, z1) + F(x1, y2, z1) + F(x1, y1, z2) − F(x1, y1, z1).

Definition 4.9 F is said to be a d-increasing function if for all d-boxes B with
vertices in U1 × U2 × · · · × Ud holds:

VF (B) ≥ 0. (4.133)

Definition 4.10 If U1,U2, . . . ,Ud have a smallest element minU1,minU2, . . . ,

minUd respectively, then we say, that a function F : U1 × U2 × · · · × Ud −→ R

is grounded if :

F(x) = 0 for all x ∈ U1 × U2 × · · · × Ud (4.134)

such that xk = minUk for at least one k.

The lemmas, which we presented for the 2-dimensional case, have analogous
multivariate versions, see Nelsen (1999).
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Definition 4.11 A d-dimensional copula (or d-copula) is a function C defined on
the unit d-cube I d = I × I × · · · × I such that

i) for every u ∈ I d holds: C(u) = 0, if at least one coordinate of u is equal to 0;
i.e. C is grounded.

ii) for every a, b ∈ I d with a ≤ b holds:

VC([a, b]) ≥ 0; (4.135)

i.e. C is 2-increasing.
iii) for every u ∈ I d holds: C(u) = uk , if all coordinates of u are 1 except uk .

Analogously to the 2-dimensional setting, let us state the Sklar’s theorem for the
d-dimensional case.

Theorem 4.17 (Sklar’s theorem in d-dimensional case) Let F be a d-dimensional
distribution function with marginal distribution functions FX1,FX2, . . . ,FXd

. Then

a d-copula C exists such that for all x1, . . . , xd ∈ R
d
:

F (x1, x2, . . . , xd) = C
{
FX1 (x1) ,FX2 (x2) , . . . ,FXd (xd)

}
. (4.136)

Moreover, if FX1,FX2, . . . ,FXd
are continuous then C is unique. Otherwise C

is uniquely determined on the Cartesian product Im(FX1) × Im(FX2) × · · · ×
Im(FXd

).
Conversely, if C is a copula and FX1,FX2, . . . ,FXd

are distribution functions
then F defined by (4.136) is a d-dimensional distribution function with marginals
FX1,FX2, . . . ,FXd

.

In order to illustrate the d-copulae we present the following examples:

Example 4.31 Let � denote the univariate standard normal distribution function
and ��,d the d-dimensional standard normal distribution function with correlation
matrix �. Then the function

CGauss
ρ (u,�) = ��,d

{
�−1(u1), . . . ,�

−1(ud)
}

=
∫ φ−1

1 (ud )

−∞
· · ·

∫ φ−1
2 (u1)

−∞
f�(x1, . . . , xn)dx1 · · ·dxd (4.137)

is the d-dimensional Gaussian or normal copula with correlation matrix �. The
function

fρ(x1, . . . , xd) = 1√
det(�)

× exp

{
− (�−1(u1), . . . ,�

−1(ud))�(�−1 − Id)(�−1(u1), . . . ,�
−1(ud))

2

}

(4.138)
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is a copula density function. The copula dependence parameter α is the collection of
all unknown correlation coefficients in �. If α 
= 0, then the corresponding normal
copula allows to generate joint symmetric dependence. However, it is not possible
to model a tail dependence, i.e. joint extreme events have a zero probability.

Example 4.32 Let us consider the following function

CGH
θ (u1, . . . , ud) = exp

[
−

{
d∑

j=1

(− loguj

)θ

}1/θ]
. (4.139)

One recognize this function is as the d-dimensional Gumbel-Hougaard copula func-
tion. Unlike the Gaussian copula, the copula (4.139) can generate an upper tail de-
pendence.

Example 4.33 As in the 2-dimensional setting, let us consider the d-dimentional
Gumbel-Hougaard copula for the case θ = 1. In this case the Gumbel-Hougaard
copula reduces to the d-dimensional product copula, i.e.

C1(u1, . . . , ud) =
d∏

j=1

uj = �d(u). (4.140)

The extension of the 2-dimensional copula M , which one gets from the d-
dimensional Gumbel-Hougaard copula for θ → ∞ is denoted Md(u):

Cθ(u1, . . . , ud) −→ min(u1, . . . , ud) = Md(u). (4.141)

The d-dimensional function

Wd(u) = max(u1 + u2 + · · · + ud − d + 1,0) (4.142)

defines a copula with W(u) ≤ C(u) for any other d-dimensional copula function
C(u). Wd(u) is the Fréchet-Hoeffding lower bound in the d-dimensional case.

The functions Md and �d are d-copulae for all d ≥ 2, whereas the function Wd

fails to be a d-copula for any d > 2 (Nelsen, 1999). However, the d-dimensional
version of the Fréchet-Hoeffding inequality can be written as follows:

Wd(u) ≤ C(u) ≤ Md(u). (4.143)

As we have already mentioned, copula functions have been widely applied in
empirical finance.

Summary
↪→ The cumulative distribution function (cdf) is defined as F(x) =

P(X < x).
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Summary (continued)
↪→ If a probability density function (pdf) f exists then F(x) =∫ x

−∞ f (u)du.

↪→ The pdf integrates to one, i.e.,
∫ ∞
−∞ f (x)dx = 1.

4.8 Bootstrap

Recall that we need large sample sizes in order to sufficiently approximate the crit-
ical values computable by the CLT. Here large means n > 50 for one-dimensional
data. How can we construct confidence intervals in the case of smaller sample sizes?
One way is to use a method called the Bootstrap. The Bootstrap algorithm uses the
data twice:

1. estimate the parameter of interest,
2. simulate from an estimated distribution to approximate the asymptotic distribu-

tion of the statistics of interest.

In detail, bootstrap works as follows. Consider the observations x1, . . . , xn of the
sample X1, . . . ,Xn and estimate the empirical distribution function (edf) Fn. In the
case of one-dimensional data

Fn(x) = 1

n

n∑
i=1

I(Xi ≤ x). (4.144)

This is a step function which is constant between neighboring data points.

Example 4.34 Suppose that we have n = 100 standard normal N(0,1) data points
Xi , i = 1, . . . , n. The cdf of X is �(x) = ∫ x

−∞ ϕ(u)du and is shown in Figure 4.19
as the thin, solid line. The empirical distribution function (edf) is displayed as a thick
step function line. Figure 4.20 shows the same setup for n = 1000 observations.

Now draw with replacement a new sample from this empirical distribution. That
is we sample with replacement n∗ observations X∗

1, . . . ,X∗
n∗ from the original sam-

ple. This is called a Bootstrap sample. Usually one takes n∗ = n.
Since we sample with replacement, a single observation from the original sample

may appear several times in the Bootstrap sample. For instance, if the original sam-
ple consists of the three observations x1, x2, x3, then a Bootstrap sample might look
like X∗

1 = x3, X∗
2 = x2, X∗

3 = x3. Computationally, we find the Bootstrap sample by
using a uniform random number generator to draw from the indices 1,2, . . . , n of
the original samples.

The Bootstrap observations are drawn randomly from the empirical distribution,
i.e., the probability for each original observation to be selected into the Bootstrap
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Fig. 4.19 The standard
normal cdf (thick line) and
the empirical distribution
function (thin line) for

n = 100
MVAedfnormal

Fig. 4.20 The standard
normal cdf (thick line) and
the empirical distribution
function (thin line) for

n = 1000
MVAedfnormal

sample is 1/n for each draw. It is easy to compute that

EFn(X
∗
i ) = 1

n

n∑
i=1

xi = x̄.

This is the expected value given that the cdf is the original mean of the sample
x1. . . . , xn. The same holds for the variance, i.e.,

VarFn(X
∗
i ) = σ̂ 2,

where σ̂ 2 = n−1 ∑
(xi − x̄)2. The cdf of the bootstrap observations is defined as in

(4.144). Figure 4.21 shows the cdf of the n = 100 original observations as a solid
line and two bootstrap cdf’s as thin lines.
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Fig. 4.21 The cdf Fn (thick
line) and two bootstrap cdf‘s

F ∗
n (thin lines)

MVAedfbootstrap

The CLT holds for the bootstrap sample. Analogously to Corollary 4.1 we have
the following corollary.

Corollary 4.2 If X∗
1, . . . ,X∗

n is a bootstrap sample from X1, . . . ,Xn, then the dis-
tribution of

√
n

(
x̄∗ − x̄

σ̂ ∗

)

also becomes N(0,1) asymptotically, where x∗ = n−1 ∑n
i=1 X∗

i and (̂σ ∗)2 =
n−1 ∑n

i=1(X
∗
i − x̄∗)2.

How do we find a confidence interval for μ using the Bootstrap method? Recall
that the quantile u1−α/2 might be bad for small sample sizes because the true dis-
tribution of

√
n(

x̄−μ
σ̂

) might be far away from the limit distribution N(0,1). The

Bootstrap idea enables us to “simulate” this distribution by computing
√

n( x̄∗−x̄
σ̂ ∗ )

for many Bootstrap samples. In this way we can estimate an empirical (1 − α/2)-
quantile u∗

1−α/2. The bootstrap improved confidence interval is then

C∗
1−α =

[
x̄ − σ̂√

n
u∗

1−α/2, x̄ + σ̂√
n

u∗
1−α/2

]
.

By Corollary 4.2 we have

P(μ ∈ C∗
1−α) −→ 1 − α as n → ∞,

but with an improved speed of convergence, see Hall (1992).
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Summary
↪→ For small sample sizes the bootstrap improves the precision of the

confidence interval.
↪→ The bootstrap distribution L{√n(x∗ − x)/σ̂ ∗} converges to the

same asymptotic limit as the distribution L{√n(x∗ − x)/σ̂ }.

4.9 Exercises

Exercise 4.1 Assume that the random vector Y has the following normal distribu-
tion: Y ∼ Np(0,I). Transform it according to (4.49) to create X ∼ N(μ,�) with
mean μ = (3,2)� and � = ( 1 −1.5

−1.5 4

)
. How would you implement the resulting

formula on a computer?

Exercise 4.2 Prove Theorem 4.7 using Theorem 4.5.

Exercise 4.3 Suppose that X has mean zero and covariance � = ( 1 0
0 2

)
. Let Y =

X1 + X2. Write Y as a linear transformation, i.e., find the transformation matrix A.
Then compute Var(Y ) via (4.26). Can you obtain the result in another fashion?

Exercise 4.4 Calculate the mean and the variance of the estimate β̂ in (3.50).

Exercise 4.5 Compute the conditional moments E(X2 | x1) and E(X1 | x2) for the
pdf of Example 4.5.

Exercise 4.6 Prove the relation (4.28).

Exercise 4.7 Prove the relation (4.29). Hint: Note that

Var(E(X2|X1)) = E(E(X2|X1)E(X�
2 |X1)) − E(X2)E(X�

2 ))

and that

E(Var(X2|X1)) = E[E(X2X
�
2 |X1) − E(X2|X1)E(X�

2 |X1)].
Exercise 4.8 Compute (4.46) for the pdf of Example 4.5.

Exercise 4.9 Show that

fY (y) =
{ 1

2
y1 − 1

4
y2 0 ≤ y1 ≤ 2, |y2| ≤ 1 − |1 − y1|

0 otherwise

is a pdf.
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Exercise 4.10 Compute (4.46) for a two-dimensional standard normal distribution.
Show that the transformed random variables Y1 and Y2 are independent. Give a
geometrical interpretation of this result based on iso-distance curves.

Exercise 4.11 Consider the Cauchy distribution which has no moment, so that the
CLT cannot be applied. Simulate the distribution of x (for different n’s). What can
you expect for n → ∞?

Hint: The Cauchy distribution can be simulated by the quotient of two indepen-
dent standard normally distributed random variables.

Exercise 4.12 A European car company has tested a new model and reports the
consumption of petrol (X1) and oil (X2). The expected consumption of petrol is 8
liters per 100 km (μ1) and the expected consumption of oil is 1 liter per 10.000
km (μ2). The measured consumption of petrol is 8.1 liters per 100 km (x1) and
the measured consumption of oil is 1.1 liters per 10,000 km (x2). The asymptotic
distribution of

√
n
{( x1

x2

) − ( μ1
μ2

)}
is N

(( 0
0

)
,
( 0.1 0.05

0.05 0.1

))
.

For the American market the basic measuring units are miles (1 mile ≈ 1.6 km)
and gallons (1 gallon ≈ 3.8 liter). The consumptions of petrol (Y1) and oil (Y2) are
usually reported in miles per gallon. Can you express y1 and y2 in terms of x1 and
x2? Recompute the asymptotic distribution for the American market.

Exercise 4.13 Consider the pdf f (x1, x2) = e−(x1+x2), x1, x2 > 0 and let U1 =
X1 + X2 and U2 = X1 − X2. Compute f (u1, u2).

Exercise 4.14 Consider the pdf‘s

f (x1, x2) = 4x1x2e
−x2

1 x1, x2 > 0,

f (x1, x2) = 1 0 < x1, x2 < 1 and x1 + x2 < 1

f (x1, x2) = 1

2
e−x1 x1 > |x2|.

For each of these pdf’s compute E(X),Var(X),E(X1|X2),E(X2|X1),V (X1|X2)

and V (X2|X1).

Exercise 4.15 Consider the pdf f (x1, x2) = 3
2x

− 1
2

1 , 0 < x1 < x2 < 1. Compute
P(X1 < 0.25),P (X2 < 0.25) and P(X2 < 0.25|X1 < 0.25).

Exercise 4.16 Consider the pdf f (x1, x2) = 1
2π

, 0 < x1 < 2π , 0 < x2 < 1. Let U1 =
sinX1

√−2 logX2 and U2 = cosX1
√−2 logX2. Compute f (u1, u2).

Exercise 4.17 Consider f (x1, x2, x3) = k(x1 + x2x3); 0 < x1, x2, x3 < 1.

a) Determine k so that f is a valid pdf of (X1,X2,X3) = X.
b) Compute the (3 × 3) matrix �X .
c) Compute the (2 × 2) matrix of the conditional variance of (X2,X3) given X1 =

x1.
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Exercise 4.18 Let X ∼ N2
(( 1

2

)
,
( 2 a

a 2

))
.

a) Represent the contour ellipses for a = 0; − 1
2 ; + 1

2 ; 1.
b) For a = 1

2 find the regions of X centred on μ which cover the area of the true
parameter with probability 0.90 and 0.95.

Exercise 4.19 Consider the pdf

f (x1, x2) = 1

8x2
e
−(

x1
2x2

+ x2
4 )

x1, x2 > 0.

Compute f (x2) and f (x1|x2). Also give the best approximation of X1 by a function
of X2. Compute the variance of the error of the approximation.

Exercise 4.20 Prove Theorem 4.6.
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