
Chapter 3
Moving to Higher Dimensions

We have seen in the previous chapters how very simple graphical devices can help in
understanding the structure and dependency of data. The graphical tools were based
on either univariate (bivariate) data representations or on “slick” transformations
of multivariate information perceivable by the human eye. Most of the tools are
extremely useful in a modelling step, but unfortunately, do not give the full picture
of the data set. One reason for this is that the graphical tools presented capture
only certain dimensions of the data and do not necessarily concentrate on those
dimensions or sub-parts of the data under analysis that carry the maximum structural
information. In Part III of this book, powerful tools for reducing the dimension of
a data set will be presented. In this chapter, as a starting point, simple and basic
tools are used to describe dependency. They are constructed from elementary facts
of probability theory and introductory statistics (for example, the covariance and
correlation between two variables).

Sections 3.1 and 3.2 show how to handle these concepts in a multivariate setup
and how a simple test on correlation between two variables can be derived. Since lin-
ear relationships are involved in these measures, Section 3.4 presents the simple lin-
ear model for two variables and recalls the basic t-test for the slope. In Section 3.5,
a simple example of one-factorial analysis of variance introduces the notations for
the well known F -test.

Due to the power of matrix notation, all of this can easily be extended to a more
general multivariate setup. Section 3.3 shows how matrix operations can be used to
define summary statistics of a data set and for obtaining the empirical moments of
linear transformations of the data. These results will prove to be very useful in most
of the chapters in Part III.

Finally, matrix notation allows us to introduce the flexible multiple linear model,
where more general relationships among variables can be analysed. In Section 3.6,
the least squares adjustment of the model and the usual test statistics are presented
with their geometric interpretation. Using these notations, the ANOVA model is just
a particular case of the multiple linear model.
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74 3 Moving to Higher Dimensions

3.1 Covariance

Covariance is a measure of dependency between random variables. Given two (ran-
dom) variables X and Y the (theoretical) covariance is defined by:

σXY = Cov(X,Y ) = E(XY) − (EX)(EY). (3.1)

The precise definition of expected values is given in Chapter 4. If X and Y are
independent of each other, the covariance Cov(X,Y ) is necessarily equal to zero,
see Theorem 3.1. The converse is not true. The covariance of X with itself is the
variance:

σXX = Var(X) = Cov(X,X).

If the variable X is p-dimensional multivariate, e.g., X =
⎛
⎝

X1

...
Xp

⎞
⎠, then the theoreti-

cal covariances among all the elements are put into matrix form, i.e., the covariance
matrix:

� =
⎛
⎜⎝

σX1X1 . . . σX1Xp

...
. . .

...

σXpX1 . . . σXpXp

⎞
⎟⎠ .

Properties of covariance matrices will be detailed in Chapter 4. Empirical versions
of these quantities are:

sXY = 1

n

n∑
i=1

(xi − x)(yi − y) (3.2)

sXX = 1

n

n∑
i=1

(xi − x)2. (3.3)

For small n, say n ≤ 20, we should replace the factor 1
n

in (3.2) and (3.3) by 1
n−1 in

order to correct for a small bias. For a p-dimensional random variable, one obtains
the empirical covariance matrix (see Section 3.3 for properties and details)

S =
⎛
⎜⎝

sX1X1 . . . sX1Xp

...
. . .

...

sXpX1 . . . sXpXp

⎞
⎟⎠ .

For a scatterplot of two variables the covariances measure “how close the scatter
is to a line”. Mathematical details follow but it should already be understood here
that in this sense covariance measures only “linear dependence”.
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Example 3.1 If X is the entire bank data set, one obtains the covariance matrix S
as indicated below:

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.14 0.03 0.02 −0.10 −0.01 0.08
0.03 0.12 0.10 0.21 0.10 −0.21
0.02 0.10 0.16 0.28 0.12 −0.24

−0.10 0.21 0.28 2.07 0.16 −1.03
−0.01 0.10 0.12 0.16 0.64 −0.54

0.08 −0.21 −0.24 −1.03 −0.54 1.32

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.4)

The empirical covariance between X4 and X5, i.e., sX4X5 , is found in row 4 and
column 5. The value is sX4X5 = 0.16. Is it obvious that this value is positive? In
Exercise 3.1 we will discuss this question further.

If Xf denotes the counterfeit bank notes, we obtain:

Sf =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.123 0.031 0.023 −0.099 0.019 0.011
0.031 0.064 0.046 −0.024 −0.012 −0.005
0.024 0.046 0.088 −0.018 0.000 0.034

−0.099 −0.024 −0.018 1.268 −0.485 0.236
0.019 −0.012 0.000 −0.485 0.400 −0.022
0.011 −0.005 0.034 0.236 −0.022 0.308

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.5)

For the genuine Xg , we have:

Sg =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.149 0.057 0.057 0.056 0.014 0.005
0.057 0.131 0.085 0.056 0.048 −0.043
0.057 0.085 0.125 0.058 0.030 −0.024
0.056 0.056 0.058 0.409 −0.261 −0.000
0.014 0.049 0.030 −0.261 0.417 −0.074
0.005 −0.043 −0.024 −0.000 −0.074 0.198

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.6)

Note that the covariance between X4 (distance of the frame to the lower border)
and X5 (distance of the frame to the upper border) is negative in both (3.5) and
(3.6). Why would this happen? In Exercise 3.2 we will discuss this question in more
detail.

At first sight, the matrices Sf and Sg look different, but they create almost the
same scatterplots (see the discussion in Section 1.4). Similarly, the common prin-
cipal component analysis in Chapter 10 suggests a joint analysis of the covariance
structure as in Flury and Riedwyl (1988).

Scatterplots with point clouds that are “upward-sloping”, like the one in the up-
per left of Figure 1.14, show variables with positive covariance. Scatterplots with
“downward-sloping” structure have negative covariance. In Figure 3.1 we show the
scatterplot of X4 vs. X5 of the entire bank data set. The point cloud is upward-
sloping. However, the two sub-clouds of counterfeit and genuine bank notes are
downward-sloping.

Example 3.2 A textile shop manager is studying the sales of “classic blue” pullovers
over 10 different periods. He observes the number of pullovers sold (X1), variation
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Fig. 3.1 Scatterplot of
variables X4 vs. X5 of the

entire bank data set
MVAscabank45

in price (X2, in EUR), the advertisement costs in local newspapers (X3, in EUR)
and the presence of a sales assistant (X4, in hours per period). Over the periods, he
observes the following data matrix:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

230 125 200 109
181 99 55 107
165 97 105 98
150 115 85 71

97 120 0 82
192 100 150 103
181 80 85 111
189 90 120 93
172 95 110 86
170 125 130 78

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

He is convinced that the price must have a large influence on the number of pullovers
sold. So he makes a scatterplot of X2 vs. X1, see Figure 3.2. A rough impression
is that the cloud is somewhat downward-sloping. A computation of the empirical
covariance yields

sX1X2 = 1

9

10∑
i=1

(
X1i − X̄1

) (
X2i − X̄2

) = −80.02,

a negative value as expected.
Note: The covariance function is scale dependent. Thus, if the prices in this ex-

ample were in Japanese Yen (JPY), we would obtain a different answer (see Exer-
cise 3.16). A measure of (linear) dependence independent of the scale is the corre-
lation, which we introduce in the next section.
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Fig. 3.2 Scatterplot of
variables X2 vs. X1 of the

pullovers data set
MVAscapull1

Summary
↪→ The covariance is a measure of dependence.

↪→ Covariance measures only linear dependence.

↪→ Covariance is scale dependent.

↪→ There are nonlinear dependencies that have zero covariance.

↪→ Zero covariance does not imply independence.

↪→ Independence implies zero covariance.

↪→ Negative covariance corresponds to downward-sloping scatter-
plots.

↪→ Positive covariance corresponds to upward-sloping scatterplots.

↪→ The covariance of a variable with itself is its variance Cov(X,X) =
σXX = σ 2

X.

↪→ For small n, we should replace the factor 1
n

in the computation of
the covariance by 1

n−1 .
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3.2 Correlation

The correlation between two variables X and Y is defined from the covariance as
the following:

ρXY = Cov(X,Y )√
Var(X)Var(Y )

· (3.7)

The advantage of the correlation is that it is independent of the scale, i.e., changing
the variables’ scale of measurement does not change the value of the correlation.
Therefore, the correlation is more useful as a measure of association between two
random variables than the covariance. The empirical version of ρXY is as follows:

rXY = sXY√
sXXsYY

· (3.8)

The correlation is in absolute value always less than 1. It is zero if the covariance
is zero and vice-versa. For p-dimensional vectors (X1, . . . ,Xp)� we have the theo-
retical correlation matrix

P =
⎛
⎜⎝

ρX1X1 . . . ρX1Xp

...
. . .

...

ρXpX1 . . . ρXpXp

⎞
⎟⎠ ,

and its empirical version, the empirical correlation matrix which can be calculated
from the observations,

R=
⎛
⎜⎝

rX1X1 . . . rX1Xp

...
. . .

...

rXpX1 . . . rXpXp

⎞
⎟⎠ .

Example 3.3 We obtain the following correlation matrix for the genuine bank notes:

Rg =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.00 0.41 0.41 0.22 0.05 0.03
0.41 1.00 0.66 0.24 0.20 −0.25
0.41 0.66 1.00 0.25 0.13 −0.14
0.22 0.24 0.25 1.00 −0.63 −0.00
0.05 0.20 0.13 −0.63 1.00 −0.25
0.03 −0.25 −0.14 −0.00 −0.25 1.00

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.9)

and for the counterfeit bank notes:

Rf =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.00 0.35 0.24 −0.25 0.08 0.06
0.35 1.00 0.61 −0.08 −0.07 −0.03
0.24 0.61 1.00 −0.05 0.00 0.20

−0.25 −0.08 −0.05 1.00 −0.68 0.37
0.08 −0.07 0.00 −0.68 1.00 −0.06
0.06 −0.03 0.20 0.37 −0.06 1.00

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.10)
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As noted before for Cov(X4,X5), the correlation between X4 (distance of the frame
to the lower border) and X5 (distance of the frame to the upper border) is negative.
This is natural, since the covariance and correlation always have the same sign (see
also Exercise 3.17).

Why is the correlation an interesting statistic to study? It is related to indepen-
dence of random variables, which we shall define more formally later on. For the
moment we may think of independence as the fact that one variable has no influence
on another.

Theorem 3.1 If X and Y are independent, then ρ(X,Y ) = Cov(X,Y ) = 0.

�
�
��

�
�

!
In general, the converse is not true, as the following example shows.

Example 3.4 Consider a standard normally-distributed random variable X and a
random variable Y = X2, which is surely not independent of X. Here we have

Cov(X,Y ) = E(XY) − E(X)E(Y ) = E(X3) = 0

(because E(X) = 0 and E(X2) = 1). Therefore ρ(X,Y ) = 0, as well. This exam-
ple also shows that correlations and covariances measure only linear dependence.
The quadratic dependence of Y = X2 on X is not reflected by these measures of
dependence.

Remark 3.1 For two normal random variables, the converse of Theorem 3.1 is true:
zero covariance for two normally-distributed random variables implies indepen-
dence. This will be shown later in Corollary 5.2.

Theorem 3.1 enables us to check for independence between the components
of a bivariate normal random variable. That is, we can use the correlation and
test whether it is zero. The distribution of rXY for an arbitrary (X,Y ) is unfor-
tunately complicated. The distribution of rXY will be more accessible if (X,Y )

are jointly normal (see Chapter 5). If we transform the correlation by Fisher’s Z-
transformation,

W = 1

2
log

(
1 + rXY

1 − rXY

)
, (3.11)

we obtain a variable that has a more accessible distribution. Under the hypothesis
that ρ = 0, W has an asymptotic normal distribution. Approximations of the expec-
tation and variance of W are given by the following:

E(W) ≈ 1

2
log

(
1 + ρXY

1 − ρXY

)

Var(W) ≈ 1

(n − 3)
·

(3.12)

The distribution is given in Theorem 3.2.
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Fig. 3.3 Mileage (X2) vs.
weight (X8) of U.S. (star),
European (plus signs) and

Japanese (circle) cars
MVAscacar

Theorem 3.2

Z = W − E(W)√
Var(W)

L−→ N(0,1). (3.13)

The symbol “
L−→” denotes convergence in distribution, which will be explained

in more detail in Chapter 4.
Theorem 3.2 allows us to test different hypotheses on correlation. We can fix the

level of significance α (the probability of rejecting a true hypothesis) and reject the
hypothesis if the difference between the hypothetical value and the calculated value
of Z is greater than the corresponding critical value of the normal distribution. The
following example illustrates the procedure.

Example 3.5 Let’s study the correlation between mileage (X2) and weight (X8) for
the car data set (B.3) where n = 74. We have rX2X8 = −0.823. Our conclusions
from the boxplot in Figure 1.3 (“Japanese cars generally have better mileage than
the others”) needs to be revised. From Figure 3.3 and rX2X8 , we can see that mileage
is highly correlated with weight, and that the Japanese cars in the sample are in fact
all lighter than the others.

If we want to know whether ρX2X8 is significantly different from ρ0 = 0, we
apply Fisher’s Z-transform (3.11). This gives us

w = 1

2
log

(
1 + rX2X8

1 − rX2X8

)
= −1.166 and z = −1.166 − 0√

1
71

= −9.825,

i.e., a highly significant value to reject the hypothesis that ρ = 0 (the 2.5% and
97.5% quantiles of the normal distribution are −1.96 and 1.96, respectively). If we
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Fig. 3.4 Hours of sales
assistants (X4) vs. sales (X1)

of pullovers
MVAscapull2

want to test the hypothesis that, say, ρ0 = −0.75, we obtain:

z = −1.166 − (−0.973)√
1

71

= −1.627.

This is a non-significant value at the α = 0.05 level for z since it is between the
critical values at the 5% significance level (i.e., −1.96 < z < 1.96).

Example 3.6 Let us consider again the pullovers data set from Example 3.2. Con-
sider the correlation between the presence of the sales assistants (X4) vs. the number
of sold pullovers (X1) (see Figure 3.4). Here we compute the correlation as

rX1X4 = 0.633.

The Z-transform of this value is

w = 1

2
loge

(
1 + rX1X4

1 − rX1X4

)
= 0.746. (3.14)

The sample size is n = 10, so for the hypothesis ρX1X4 = 0, the statistic to consider
is:

z = √
7(0.746 − 0) = 1.974 (3.15)

which is just statistically significant at the 5% level (i.e., 1.974 is just a little larger
than 1.96).

Remark 3.2 The normalising and variance stabilising properties of W are asymp-
totic. In addition the use of W in small samples (for n ≤ 25) is improved by
Hotelling’s transform (Hotelling, 1953):

W ∗ = W − 3W + tanh(W)

4(n − 1)
with Var(W ∗) = 1

n − 1
.
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The transformed variable W ∗ is asymptotically distributed as a normal distribution.

Example 3.7 From the preceding remark, we obtain w∗ = 0.6663 and
√

10 − 1w∗ =
1.9989 for the preceding Example 3.6. This value is significant at the 5% level.

Remark 3.3 Note that the Fisher’s Z-transform is the inverse of the hyperbolic tan-

gent function: W = tanh−1(rXY ); equivalently rXY = tanh(W) = e2W −1
e2W +1

.

Remark 3.4 Under the assumptions of normality of X and Y , we may test their
independence (ρXY = 0) using the exact t-distribution of the statistic

T = rXY

√
n − 2

1 − r2
XY

ρXY =0∼ tn−2.

Setting the probability of the first error type to α, we reject the null hypothesis
ρXY = 0 if |T | ≥ t1−α/2;n−2.

Summary
↪→ The correlation is a standardised measure of dependence.

↪→ The absolute value of the correlation is always less than one.

↪→ Correlation measures only linear dependence.

↪→ There are nonlinear dependencies that have zero correlation.

↪→ Zero correlation does not imply independence.

↪→ Independence implies zero correlation.

↪→ Negative correlation corresponds to downward-sloping scatter-
plots.

↪→ Positive correlation corresponds to upward-sloping scatterplots.

↪→ Fisher’s Z-transform helps us in testing hypotheses on correlation.

↪→ For small samples, Fisher’s Z-transform can be improved by the
transformation W ∗ = W − 3W+tanh(W)

4(n−1)
.
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3.3 Summary Statistics

This section focuses on the representation of basic summary statistics (means, co-
variances and correlations) in matrix notation, since we often apply linear transfor-
mations to data. The matrix notation allows us to derive instantaneously the corre-
sponding characteristics of the transformed variables. The Mahalanobis transforma-
tion is a prominent example of such linear transformations.

Assume that we have observed n realisations of a p-dimensional random vari-
able; we have a data matrix X (n × p):

X =

⎛
⎜⎜⎜⎜⎝

x11 · · · x1p

...
...

...
...

xn1 · · · xnp

⎞
⎟⎟⎟⎟⎠

. (3.16)

The rows xi = (xi1, . . . , xip) ∈ R
p denote the i-th observation of a p-dimensional

random variable X ∈ R
p .

The statistics that were briefly introduced in Sections 3.1 and 3.2 can be rewritten
in matrix form as follows. The “centre of gravity” of the n observations in R

p is
given by the vector x of the means xj of the p variables:

x =
⎛
⎜⎝

x1
...

xp

⎞
⎟⎠ = n−1X�1n. (3.17)

The dispersion of the n observations can be characterised by the covariance ma-
trix of the p variables. The empirical covariances defined in (3.2) and (3.3) are the
elements of the following matrix:

S = n−1X�X − x x� = n−1(X�X − n−1X�1n1�
n X ). (3.18)

Note that this matrix is equivalently defined by

S = 1

n

n∑
i=1

(xi − x)(xi − x)�.

The covariance formula (3.18) can be rewritten as S = n−1X�HX with the centring
matrix

H = In − n−11n1�
n . (3.19)

Note that the centring matrix is symmetric and idempotent. Indeed,

H2 = (In − n−11n1�
n )(In − n−11n1�

n )

= In − n−11n1�
n − n−11n1�

n + (n−11n1�
n )(n−11n1�

n )

= In − n−11n1�
n = H.
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As a consequence S is positive semidefinite, i.e.

S ≥ 0. (3.20)

Indeed for all a ∈ R
p ,

a�Sa = n−1a�X�HXa

= n−1(a�X�H�)(HXa) since H�H =H,

= n−1y�y = n−1
p∑

j=1

y2
j ≥ 0

for y = HXa. It is well known from the one-dimensional case that n−1 ∑n
i=1(xi −

x)2 as an estimate of the variance exhibits a bias of the order n−1 (Breiman, 1973).
In the multi-dimensional case, Su = n

n−1 S is an unbiased estimate of the true co-
variance. (This will be shown in Example 4.15.)

The sample correlation coefficient between the i-th and j -th variables is rXiXj
,

see (3.8). If D = diag(sXiXi
), then the correlation matrix is

R =D−1/2SD−1/2, (3.21)

where D−1/2 is a diagonal matrix with elements (sXiXi
)−1/2 on its main diagonal.

Example 3.8 The empirical covariances are calculated for the pullover data set.
The vector of the means of the four variables in the dataset is x = (172.7,104.6,

104.0,93.8)�.

The sample covariance matrix is S =

⎛
⎜⎜⎝

1037.2 −80.2 1430.7 271.4
−80.2 219.8 92.1 −91.6
1430.7 92.1 2624 210.3

271.4 −91.6 210.3 177.4

⎞
⎟⎟⎠ .

The unbiased estimate of the variance (n = 10) is equal to

Su = 10

9
S =

⎛
⎜⎜⎝

1152.5 −88.9 1589.7 301.6
−88.9 244.3 102.3 −101.8
1589.7 102.3 2915.6 233.7

301.6 −101.8 233.7 197.1

⎞
⎟⎟⎠ .

The sample correlation matrix is R=

⎛
⎜⎜⎝

1 −0.17 0.87 0.63
−0.17 1 0.12 −0.46

0.87 0.12 1 0.31
0.63 −0.46 0.31 1

⎞
⎟⎟⎠ .

Linear Transformation

In many practical applications we need to study linear transformations of the orig-
inal data. This motivates the question of how to calculate summary statistics after
such linear transformations.
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Let A be a (q × p) matrix and consider the transformed data matrix

Y = XA� = (y1, . . . , yn)
�. (3.22)

The row yi = (yi1, . . . , yiq) ∈ R
q can be viewed as the i-th observation of a q-

dimensional random variable Y = AX. In fact we have yi = xiA�. We immediately
obtain the mean and the empirical covariance of the variables (columns) forming the
data matrix Y :

y = 1

n
Y�1n = 1

n
AX�1n = Ax (3.23)

SY = 1

n
Y�HY = 1

n
AX�HXA� = ASXA�. (3.24)

Note that if the linear transformation is non-homogeneous, i.e.,

yi = Axi + b where b(q × 1),

only (3.23) changes: y = Ax + b. The formulas (3.23) and (3.24) are useful in the
particular case of q = 1, i.e., y = Xa, i.e. yi = a�xi; i = 1, . . . , n:

y = a�x

Sy = a�SX a.

Example 3.9 Suppose that X is the pullover data set. The manager wants to compute
his mean expenses for advertisement (X3) and sales assistant (X4).

Suppose that the sales assistant charges an hourly wage of 10 EUR. Then the
shop manager calculates the expenses Y as Y = X3 + 10X4. Formula (3.22) says
that this is equivalent to defining the matrix A(4 × 1) as:

A = (0,0,1,10).

Using formulas (3.23) and (3.24), it is now computationally very easy to obtain the
sample mean y and the sample variance Sy of the overall expenses:

y = Ax = (0,0,1,10)

⎛
⎜⎜⎝

172.7
104.6
104.0

93.8

⎞
⎟⎟⎠ = 1042.0

SY = ASXA� = (0,0,1,10)

⎛
⎜⎜⎝

1152.5 −88.9 1589.7 301.6
−88.9 244.3 102.3 −101.8
1589.7 102.3 2915.6 233.7

301.6 −101.8 233.7 197.1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0
1

10

⎞
⎟⎟⎠

= 2915.6 + 4674 + 19710 = 27299.6.
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Mahalanobis Transformation

A special case of this linear transformation is

zi = S−1/2(xi − x), i = 1, . . . , n. (3.25)

Note that for the transformed data matrix Z = (z1, . . . , zn)
�,

SZ = n−1Z�HZ = Ip. (3.26)

So the Mahalanobis transformation eliminates the correlation between the variables
and standardises the variance of each variable. If we apply (3.24) using A = S−1/2,
we obtain the identity covariance matrix as indicated in (3.26).

Summary
↪→ The centre of gravity of a data matrix is given by its mean vector

x = n−1X�1n.
↪→ The dispersion of the observations in a data matrix is given by the

empirical covariance matrix S = n−1X�HX .
↪→ The empirical correlation matrix is given by R = D−1/2SD−1/2.

↪→ A linear transformation Y = XA� of a data matrix X has mean
Ax and empirical covariance ASXA�.

↪→ The Mahalanobis transformation is a linear transformation zi =
S−1/2(xi − x) which gives a standardised, uncorrelated data ma-
trix Z .

3.4 Linear Model for Two Variables

We have looked several times now at downward and upward-sloping scatterplots.
What does the eye define here as a slope? Suppose that we can construct a line
corresponding to the general direction of the cloud. The sign of the slope of this
line would correspond to the upward and downward directions. Call the variable on
the vertical axis Y and the one on the horizontal axis X. A slope line is a linear
relationship between X and Y :

yi = α + βxi + εi, i = 1, . . . , n. (3.27)

Here, α is the intercept and β is the slope of the line. The errors (or deviations from
the line) are denoted as εi and are assumed to have zero mean and finite variance
σ 2. The task of finding (α,β) in (3.27) is referred to as a linear adjustment.
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In Section 3.6 we shall derive estimators for α and β more formally, as well
as accurately describe what a “good” estimator is. For now, one may try to find a
“good” estimator (̂α, β̂) via graphical techniques. A very common numerical and
statistical technique is to use those α̂ and β̂ that minimise:

(̂α, β̂) = arg min
(α,β)

n∑
i=1

(yi − α − βxi)
2. (3.28)

The solution to this task are the estimators:

β̂ = sXY

sXX

(3.29)

α̂ = y − β̂x. (3.30)

The variance of β̂ is:

Var(β̂) = σ 2

n · sXX

. (3.31)

The standard error (SE) of the estimator is the square root of (3.31),

SE(β̂) = {Var(β̂)}1/2 = σ

(n · sXX)1/2
. (3.32)

We can use this formula to test the hypothesis that β = 0. In an application the
variance σ 2 has to be estimated by an estimator σ̂ 2 that will be given below. Under
a normality assumption of the errors, the t-test for the hypothesis β = 0 works as
follows.

One computes the statistic

t = β̂

SE(β̂)
(3.33)

and rejects the hypothesis at a 5% significance level if |t | ≥ t0.975;n−2, where the
97.5% quantile of the Student’s tn−2 distribution is clearly the 95% critical value
for the two-sided test. For n ≥ 30, this can be replaced by 1.96, the 97.5% quantile
of the normal distribution. An estimator σ̂ 2 of σ 2 will be given in the following.

Example 3.10 Let us apply the linear regression model (3.27) to the “classic blue”
pullovers. The sales manager believes that there is a strong dependence on the num-
ber of sales as a function of price. He computes the regression line as shown in
Figure 3.5.

How good is this fit? This can be judged via goodness-of-fit measures. Define

ŷi = α̂ + β̂xi, (3.34)

as the predicted value of y as a function of x. With ŷ the textile shop manager in
the above example can predict sales as a function of prices x. The variation in the
response variable is:

nsYY =
n∑

i=1

(yi − y)2. (3.35)
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Fig. 3.5 Regression of sales
(X1) on price (X2) of

pullovers MVAregpull

The variation explained by the linear regression (3.27) with the predicted values
(3.34) is:

n∑
i=1

(ŷi − y)2. (3.36)

The residual sum of squares, the minimum in (3.28), is given by:

RSS =
n∑

i=1

(yi − ŷi )
2. (3.37)

An unbiased estimator σ̂ 2 of σ 2 is given by RSS/(n − 2).
The following relation holds between (3.35)–(3.37):

n∑
i=1

(yi − y)2 =
n∑

i=1

(ŷi − y)2 +
n∑

i=1

(yi − ŷi )
2, (3.38)

Total variation = Explained variation + Unexplained variation.

The coefficient of determination is r2:

r2 =

n∑
i=1

(ŷi − y)2

n∑
i=1

(yi − y)2
= explained variation

total variation
· (3.39)

The coefficient of determination increases with the proportion of explained variation
by the linear relation (3.27). In the extreme cases where r2 = 1, all of the variation
is explained by the linear regression (3.27). The other extreme, r2 = 0, is where the
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Fig. 3.6 Regression of sales
(X1) on price (X2) of
pullovers. The overall mean is

given by the dashed line
MVAregzoom

empirical covariance is sXY = 0. The coefficient of determination can be rewritten
as

r2 = 1 −

n∑
i=1

(yi − ŷi )
2

n∑
i=1

(yi − y)2
. (3.40)

From (3.39), it can be seen that in the linear regression (3.27), r2 = r2
XY is the

square of the correlation between X and Y .

Example 3.11 For the above pullover example, we estimate

α̂ = 210.774 and β̂ = −0.364.

The coefficient of determination is

r2 = 0.028.

The textile shop manager concludes that sales are not influenced very much by the
price (in a linear way).

The geometrical representation of formula (3.38) can be graphically evaluated
using Figure 3.6. This plot shows a section of the linear regression of the “sales”
on “price” for the pullovers data. The distance between any point and the overall
mean is given by the distance between the point and the regression line and the
distance between the regression line and the mean. The sums of these two distances
represent the total variance (solid blue lines from the observations to the overall
mean), i.e., the explained variance (distance from the regression curve to the mean)
and the unexplained variance (distance from the observation to the regression line),
respectively.
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Fig. 3.7 Regression of X5
(upper inner frame) on X4
(lower inner frame) for

genuine bank notes
MVAregbank

In general the regression of Y on X is different from that of X on Y . We will
demonstrate this, once again, using the Swiss bank notes data.

Example 3.12 The least squares fit of the variables X4 (X) and X5 (Y ) from the
genuine bank notes are calculated. Figure 3.7 shows the fitted line if X5 is approxi-
mated by a linear function of X4. In this case the parameters are

α̂ = 15.464 and β̂ = −0.638.

If we predict X4 by a function of X5 instead, we would arrive at a different
intercept and slope

α̂ = 14.666 and β̂ = −0.626.

The linear regression of Y on X is given by minimising (3.28), i.e., the vertical
errors εi . The linear regression of X on Y does the same but here the errors to be
minimised in the least squares sense are measured horizontally. As seen in Exam-
ple 3.12, the two least squares lines are different although both measure (in a certain
sense) the slope of the cloud of points.

As shown in the next example, there is still one other way to measure the main di-
rection of a cloud of points: it is related to the spectral decomposition of covariance
matrices.

Example 3.13 Suppose that we have the following covariance matrix:

� =
(

1 ρ

ρ 1

)
.

Figure 3.8 shows a scatterplot of a sample of two normal random variables with
such a covariance matrix (with ρ = 0.8).
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Fig. 3.8 Scatterplot for a
sample of two correlated
normal random variables
(sample size n = 150,

ρ = 0.8)
MVAcorrnorm

The eigenvalues of � are, as was shown in Example 2.4, solutions to:

∣∣∣∣
1 − λ ρ

ρ 1 − λ

∣∣∣∣ = 0.

Hence, λ1 = 1 + ρ and λ2 = 1 − ρ. Therefore 
 = diag(1 + ρ,1 − ρ). The eigen-
vector corresponding to λ1 = 1 + ρ can be computed from the system of linear
equations:

(
1 ρ

ρ 1

)(
x1
x2

)
= (1 + ρ)

(
x1
x2

)

or

x1 + ρx2 = x1 + ρx1
ρx1 + x2 = x2 + ρx2

and thus

x1 = x2.

The first (standardised) eigenvector is

γ1 =
(

1
/√

2
1
/√

2

)
.

The direction of this eigenvector is the diagonal in Figure 3.8 and captures the main
variation in this direction. We shall come back to this interpretation in Chapter 10.
The second eigenvector (orthogonal to γ1 ) is

γ2 =
(

1
/√

2
−1

/√
2

)
.
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So finally

� = (
γ1, γ2

) =
(

1
/√

2 1
/√

2
1
/√

2 −1
/√

2

)

and we can check our calculation by

� = � 
 ��.

The first eigenvector captures the main direction of a point cloud. The linear
regression of Y on X and X on Y accomplished, in a sense, the same thing. In
general the direction of the eigenvector and the least squares slope are different.
The reason is that the least squares estimator minimises either vertical or horizontal
errors (in 3.28), whereas the first eigenvector corresponds to a minimisation that is
orthogonal to the eigenvector (see Chapter 10).

Summary
↪→ The linear regression y = α + βx + ε models a linear relation be-

tween two one-dimensional variables.
↪→ The sign of the slope β̂ is the same as that of the covariance and the

correlation of x and y.
↪→ A linear regression predicts values of Y given a possible observa-

tion x of X.
↪→ The coefficient of determination r2 measures the amount of varia-

tion in Y which is explained by a linear regression on X.

↪→ If the coefficient of determination is r2 = 1, then all points lie on
one line.

↪→ The regression line of X on Y and the regression line of Y on X are
in general different.

↪→ The t-test for the hypothesis β = 0 is t = β̂

SE(β̂)
, where SE(β̂) =

σ̂

(n·sXX)1/2 .

↪→ The t-test rejects the null hypothesis β = 0 at the level of signifi-
cance α if |t | ≥ t1−α/2;n−2 where t1−α;n−2 is the 1 − α/2 quantile
of the Student’s t-distribution with (n − 2) degrees of freedom.

↪→ The standard error SE(β̂) increases/decreases with less/more
spread in the X variables.

↪→ The direction of the first eigenvector of the covariance matrix of
a two-dimensional point cloud is different from the least squares
regression line.
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Table 3.1 Observation
structure of a simple ANOVA Sample element Factor levels l

1 y11 · · · y1l · · · y1p

2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

k yk1 · · · ykl · · · ykp

.

.

.
.
.
.

.

.

.
.
.
.

m = n/p ym1 · · · yml · · · ymp

3.5 Simple Analysis of Variance

In a simple (i.e., one–factorial) analysis of variance (ANOVA), it is assumed that
the average values of the response variable y are induced by one simple factor.
Suppose that this factor takes on p values and that for each factor level, we have
m = n/p observations. The sample is of the form given in Table 3.1, where all of
the observations are independent.

The goal of a simple ANOVA is to analyse the observation structure

ykl = μl + εkl for k = 1, . . . ,m, and l = 1, . . . , p. (3.41)

Each factor has a mean value μl . Each observation ykl is assumed to be a sum of the
corresponding factor mean value μl and a zero mean random error εkl . The linear
regression model falls into this scheme with m = 1, p = n and μi = α +βxi , where
xi is the i-th level value of the factor.

Example 3.14 The “classic blue” pullover company analyses the effect of three mar-
keting strategies

1 advertisement in local newspaper,
2 presence of sales assistant,
3 luxury presentation in shop windows.

All of these strategies are tried in 10 different shops. The resulting sale observa-
tions are given in Table 3.2.

There are p = 3 factors and n = mp = 30 observations in the data. The “classic
blue” pullover company wants to know whether all three marketing strategies have
the same mean effect or whether there are differences. Having the same effect means
that all μl in (3.41) equal one value, μ. The hypothesis to be tested is therefore

H0 : μl = μ for l = 1, . . . , p.

The alternative hypothesis, that the marketing strategies have different effects, can
be formulated as

H1 : μl �= μl′ for some l and l′.

This means that one marketing strategy is better than the others.
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Table 3.2 Pullover sales as
function of marketing strategy Shop

k

Marketing strategy

factor l

1 2 3

1 9 10 18

2 11 15 14

3 10 11 17

4 12 15 9

5 7 15 14

6 11 13 17

7 12 7 16

8 10 15 14

9 11 13 17

10 13 10 15

The method used to test this problem is to compute as in (3.38) the total variation
and to decompose it into the sources of variation. This gives:

p∑
l=1

m∑
k=1

(ykl − ȳ)2 = m

p∑
l=1

(ȳl − ȳ)2 +
p∑

l=1

m∑
k=1

(ykl − ȳl)
2. (3.42)

The total variation (sum of squares = SS) is:

SS(reduced) =
p∑

l=1

m∑
k=1

(ykl − ȳ)2 (3.43)

where ȳ = n−1 ∑p

l=1

∑m
k=1 ykl is the overall mean. Here the total variation is de-

noted as SS(reduced), since in comparison with the model under the alternative H1,
we have a reduced set of parameters. In fact there is 1 parameter μ = μl under H0.
Under H1, the “full” model, we have three parameters, namely the three different
means μl .

The variation under H1 is therefore:

SS(full) =
p∑

l=1

m∑
k=1

(ykl − ȳl)
2 (3.44)

where ȳl = m−1 ∑m
k=1 ykl is the mean of each factor l. The hypothetical model H0

is called reduced, since it has (relative to H1) fewer parameters.
The F -test of the linear hypothesis is used to compare the difference in the vari-

ations under the reduced model H0 (3.43) and the full model H1 (3.44) to the vari-
ation under the full model H1:

F = {SS(reduced) − SS(full)}/{df (r) − df (f )}
SS(full)/df (f )

. (3.45)
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Here df (f ) and df (r) denote the degrees of freedom under the full model and the
reduced model respectively. The degrees of freedom are essential in specifying the
shape of the F -distribution. They have a simple interpretation: df (·) is equal to the
number of observations minus the number of parameters in the model.

From Example 3.14, p = 3 parameters are estimated under the full model, i.e.,
df (f ) = n − p = 30 − 3 = 27. Under the reduced model, there is one parameter to
estimate, namely the overall mean, i.e., df (r) = n − 1 = 29. We can compute

SS(reduced) = 260.3

and

SS(full) = 157.7.

The F -statistic (3.45) is therefore

F = (260.3 − 157.7)/2

157.7/27
= 8.78.

This value needs to be compared to the quantiles of the F2,27 distribution. Looking
up the critical values in a F -distribution shows that the test statistic above is highly
significant. We conclude that the marketing strategies have different effects.

The F -test in a Linear Regression Model

The t-test of a linear regression model can be put into this framework. For a linear
regression model (3.27), the reduced model is the one with β = 0:

yi = α + 0 · xi + εi .

The reduced model has n−1 degrees of freedom and one parameter, the intercept α.
The full model is given by β �= 0,

yi = α + β · xi + εi,

and has n − 2 degrees of freedom, since there are two parameters (α,β).
The SS(reduced) equals

SS(reduced) =
n∑

i=1

(yi − ȳ)2 = total variation.

The SS(full) equals

SS(full) =
n∑

i=1

(yi − ŷi )
2 = RSS = unexplained variation.
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The F -test is therefore, from (3.45),

F = (total variation − unexplained variation)/1

(unexplained variation)/(n − 2)
(3.46)

= explained variation

(unexplained variation)/(n − 2)
. (3.47)

Using the estimators α̂ and β̂ the explained variation is:

n∑
i=1

(
ŷi − ȳ

)2 =
n∑

i=1

(
α̂ + β̂xi − ȳ

)2

=
n∑

i=1

{
(ȳ − β̂x̄) + β̂xi − ȳ

}2

=
n∑

i=1

β̂2(xi − x̄)2

= β̂2nsXX.

From (3.32) the F -ratio (3.46) is therefore:

F = β̂2nsXX

RSS/(n − 2)
(3.48)

=
(

β̂

SE(β̂)

)2

. (3.49)

The t-test statistic (3.33) is just the square root of the F - statistic (3.49).
Note, using (3.39) the F -statistic can be rewritten as

F = r2/1

(1 − r2)/(n − 2)
.

In the pullover Example 3.11, we obtain F = 0.028
0.972

8
1 = 0.2305, so that the null hy-

pothesis β = 0 cannot be rejected. We conclude therefore that there is only a minor
influence of prices on sales.

Summary
↪→ Simple ANOVA models an output Y as a function of one factor.

↪→ The reduced model is the hypothesis of equal means.

↪→ The full model is the alternative hypothesis of different means.
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Summary (continued)
↪→ The F -test is based on a comparison of the sum of squares under

the full and the reduced models.
↪→ The degrees of freedom are calculated as the number of observa-

tions minus the number of parameters.
↪→ The F -statistic is

F = {SS(reduced) − SS(full)}/{df (r) − df (f )}
SS(full)/df (f )

.

↪→ The F -test rejects the null hypothesis if the F -statistic is larger than
the 95% quantile of the Fdf (r)−df (f ),df (f ) distribution.

↪→ The F -test statistic for the slope of the linear regression model yi =
α + βxi + εi is the square of the t-test statistic.

3.6 Multiple Linear Model

The simple linear model and the analysis of variance model can be viewed as a
particular case of a more general linear model where the variations of one variable y

are explained by p explanatory variables x respectively. Let y (n×1) and X (n×p)

be a vector of observations on the response variable and a data matrix on the p

explanatory variables. An important application of the developed theory is the least
squares fitting. The idea is to approximate y by a linear combination ŷ of columns
of X , i.e., ŷ ∈ C(X ). The problem is to find β̂ ∈R

p such that ŷ =X β̂ is the best fit
of y in the least-squares sense. The linear model can be written as

y =Xβ + ε, (3.50)

where ε are the errors. The least squares solution is given by β̂:

β̂ = arg min
β

(y −Xβ)�(y −Xβ) = arg min
β

ε�ε. (3.51)

Suppose that (X�X ) is of full rank and thus invertible. Minimising the expres-
sion (3.51) with respect to β yields:

β̂ = (X�X )−1X�y. (3.52)

The fitted value ŷ =X β̂ =X (X�X )−1X�y =Py is the projection of y onto C(X )

as computed in (2.47).
The least squares residuals are

e = y − ŷ = y −X β̂ =Qy = (In −P)y.

The vector e is the projection of y onto the orthogonal complement of C(X ).

Remark 3.5 A linear model with an intercept α can also be written in this frame-
work. The approximating equation is:
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yi = α + β1xi1 + · · · + βpxip + εi; i = 1, . . . , n.

This can be written as:

y = X ∗β∗ + ε

where X ∗ = (1n X ) (we add a column of ones to the data). We have by (3.52):

β̂∗ =
(

α̂

β̂

)
= (X ∗�X ∗)−1X ∗�y.

Example 3.15 Let us come back to the “classic blue” pullovers example. In Ex-
ample 3.11, we considered the regression fit of the sales X1 on the price X2 and
concluded that there was only a small influence of sales by changing the prices. A
linear model incorporating all three variables allows us to approximate sales as a
linear function of price (X2), advertisement (X3) and presence of sales assistants
(X4) simultaneously. Adding a column of ones to the data (in order to estimate the
intercept α) leads to

α̂ = 65.670 and β̂1 = −0.216, β̂2 = 0.485, β̂3 = 0.844.

The coefficient of determination is computed as before in (3.40) and is:

r2 = 1 − e�e∑
(yi − y)2

= 0.907.

We conclude that the variation of X1 is well approximated by the linear relation.

Remark 3.6 The coefficient of determination is influenced by the number of regres-
sors. For a given sample size n, the r2 value will increase by adding more regres-
sors into the linear model. The value of r2 may therefore be high even if possibly
irrelevant regressors are included. A corrected coefficient of determination for p

regressors and a constant intercept (p + 1 parameters) is

r2
adj = r2 − p(1 − r2)

n − (p + 1)
. (3.53)

Example 3.16 The corrected coefficient of determination for Example 3.15 is

r2
adj = 0.907 − 3(1 − 0.9072)

10 − 3 − 1
= 0.818.

This means that 81.8% of the variation of the response variable is explained by the
explanatory variables.

Note that the linear model (3.50) is very flexible and can model nonlinear re-
lationships between the response y and the explanatory variables x. For example,
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a quadratic relation in one variable x could be included. Then yi = α + β1xi +
β2x

2
i + εi could be written in matrix notation as in (3.50), y =Xβ + ε where

X =

⎛
⎜⎜⎜⎝

1 x1 x2
1

1 x2 x2
2

...
...

...

1 xn x2
n

⎞
⎟⎟⎟⎠ .

Properties of ̂β

When yi is the i-th observation of a random variable Y , the errors are also random.
Under standard assumptions (independence, zero mean and constant variance σ 2),
inference can be conducted on β . Using the properties of Chapter 4, it is easy to
prove:

E(β̂) = β

Var(β̂) = σ 2(X�X )−1.

The analogue of the t -test for the multivariate linear regression situation is

t = β̂j

SE(β̂j )
.

The standard error of each coefficient β̂j is given by the square root of the diagonal
elements of the matrix Var(β̂). In standard situations, the variance σ 2 of the error ε

is not known. One may estimate it by

σ̂ 2 = 1

n − (p + 1)
(y − ŷ)�(y − ŷ),

where (p + 1) is the dimension of β . In testing βj = 0 we reject the hypothesis at
the significance level α if |t | ≥ t1−α/2;n−(p+1). More general issues on testing linear
models are addressed in Chapter 7.

The ANOVA Model in Matrix Notation

The simple ANOVA problem (Section 3.5) may also be rewritten in matrix terms.
Recall the definition of a vector of ones from (2.1) and define a vector of zeros as
0n. Then construct the following (n × p) matrix, (here p = 3),

X =
⎛
⎝

1m 0m 0m

0m 1m 0m

0m 0m 1m

⎞
⎠ , (3.54)

where m = 10. Equation (3.41) then reads as follows.
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The parameter vector is β = (μ1,μ2,μ3)
�. The data set from Example 3.14 can

therefore be written as a linear model y = Xβ + ε where y ∈ R
n with n = m · p

is the stacked vector of the columns of Table 3.1. The projection into the column
space C(X ) of (3.54) yields the least-squares estimator β̂ = (X�X )−1X�y. Note
that (X�X )−1 = (1/10)I3 and that X�y = (106,124,151)� is the sum

∑m
k=1 ykj

for each factor, i.e., the 3 column sums of Table 3.1. The least squares estimator
is therefore the vector β̂H1 = (μ̂1, μ̂2, μ̂3) = (10.6,12.4,15.1)� of sample means
for each factor level j = 1,2,3. Under the null hypothesis of equal mean values
μ1 = μ2 = μ3 = μ, we estimate the parameters under the same constraints. This
can be put into the form of a linear constraint:

−μ1 + μ2 = 0

−μ1 + μ3 = 0.

This can be written as Aβ = a, where

a =
(

0
0

)

and

A =
(−1 1 0

−1 0 1

)
.

The constrained least-squares solution can be shown (Exercise 3.24) to be given by:

β̂H0 = β̂H1 − (X�X )−1A�{A(X�X )−1A�}−1(Aβ̂H1 − a). (3.55)

It turns out that (3.55) amounts to simply calculating the overall mean ȳ = 12.7 of
the response variable y: β̂H0 = (12.7,12.7,12.7)�.

The F-test that has already been applied in Example 3.14 can be written as

F = {||y −X β̂H0 ||2 − ||y −X β̂H1 ||2}/2

||y −X β̂H1 ||2/27
(3.56)

which gives the same significant value 8.78. Note that again we compare the RSSH0

of the reduced model to the RSSH1 of the full model. It corresponds to comparing
the lengths of projections into different column spaces. This general approach in
testing linear models is described in detail in Chapter 7.

Summary
↪→ The relation y = Xβ + e models a linear relation between a one-

dimensional variable Y and a p-dimensional variable X. Py gives
the best linear regression fit of the vector y onto C(X ). The least
squares parameter estimator is β̂ = (X�X )−1X�y.



3.7 Boston Housing 101

Summary (continued)
↪→ The simple ANOVA model can be written as a linear model.

↪→ The ANOVA model can be tested by comparing the length of the
projection vectors.

↪→ The test statistic of the F-Test can be written as

{||y −X β̂H0 ||2 − ||y −X β̂H1 ||2}/{df (r) − df (f )}
||y −X β̂H1 ||2/df (f )

.

↪→ The adjusted coefficient of determination is

r2
adj = r2 − p(1 − r2)

n − (p + 1)
.

3.7 Boston Housing

The main statistics presented so far can be computed for the data matrix X (506 ×
14) from our Boston Housing data set. The sample means and the sample medians
of each variable are displayed in Table 3.3. The table also provides the unbiased
estimates of the variance of each variable and the corresponding standard devia-
tions. The comparison of the means and the medians confirms the assymmetry of
the components of X that was pointed out in Section 1.9.

Table 3.3 Descriptive
statistics for the Boston
Housing data set

MVAdescbh

X x median(X) Var(X) std(X)

X1 3.61 0.26 73.99 8.60

X2 11.36 0.00 543.94 23.32

X3 11.14 9.69 47.06 6.86

X4 0.07 0.00 0.06 0.25

X5 0.55 0.54 0.01 0.12

X6 6.28 6.21 0.49 0.70

X7 68.57 77.50 792.36 28.15

X8 3.79 3.21 4.43 2.11

X9 9.55 5.00 75.82 8.71

X10 408.24 330.00 28405.00 168.54

X11 18.46 19.05 4.69 2.16

X12 356.67 391.44 8334.80 91.29

X13 12.65 11.36 50.99 7.14

X14 22.53 21.20 84.59 9.20
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The (unbiased) sample covariance matrix is given by the following (14 × 14)

matrix Sn:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

73.99 −40.22 23.99−0.12 0.42 −1.33 85.41 −6.88 46.85 844.82 5.40 −302.38 27.99 −30.72
−40.22 543.94 −85.41−0.25−1.40 5.11−373.90 32.63 −63.35−1236.45−19.78 373.72 −68.78 77.32

23.99 −85.41 47.06 0.11 0.61 −1.89 124.51 −10.23 35.55 833.36 5.69 −223.58 29.58 −30.52
−0.12 −0.25 0.11 0.06 0.00 0.02 0.62 −0.05 −0.02 −1.52 −0.07 1.13 −0.10 0.41

0.42 −1.40 0.61 0.00 0.01 −0.02 2.39 −0.19 0.62 13.05 0.05 −4.02 0.49 −0.46
−1.33 5.11 −1.89 0.02−0.02 0.49 −4.75 0.30 −1.28 −34.58 −0.54 8.22 −3.08 4.49
85.41 −373.90 124.51 0.62 2.39 −4.75 792.36 −44.33 111.77 2402.69 15.94 −702.94 121.08 −97.59
−6.88 32.63 −10.23−0.05−0.19 0.30 −44.33 4.43 −9.07 −189.66 −1.06 56.04 −7.47 4.84
46.85 −63.35 35.55−0.02 0.62 −1.28 111.77 −9.07 75.82 1335.76 8.76 −353.28 30.39 −30.56

844.82−1236.45 833.36−1.52 13.05−34.58 2402.69−189.66 1335.76 28404.76 168.15−6797.91 654.71−726.26
5.40 −19.78 5.69−0.07 0.05 −0.54 15.94 −1.06 8.76 168.15 4.69 −35.06 5.78 −10.11

−302.38 373.72−223.58 1.13−4.02 8.22−702.94 56.04−353.28−6797.91−35.06 8334.75−238.67 279.99
27.99 −68.78 29.58−0.10 0.49 −3.08 121.08 −7.47 30.39 654.71 5.78 −238.67 50.99 −48.45

−30.72 77.32 −30.52 0.41−0.46 4.49 −97.59 4.84 −30.56 −726.26−10.11 279.99 −48.45 84.59

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the corresponding correlation matrix R(14 × 14) is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00−0.20 0.41−0.06 0.42−0.22 0.35−0.38 0.63 0.58 0.29−0.39 0.46−0.39
−0.20 1.00−0.53−0.04−0.52 0.31−0.57 0.66−0.31−0.31−0.39 0.18−0.41 0.36

0.41−0.53 1.00 0.06 0.76−0.39 0.64−0.71 0.60 0.72 0.38−0.36 0.60−0.48
−0.06−0.04 0.06 1.00 0.09 0.09 0.09−0.10−0.01−0.04−0.12 0.05−0.05 0.18

0.42−0.52 0.76 0.09 1.00−0.30 0.73−0.77 0.61 0.67 0.19−0.38 0.59−0.43
−0.22 0.31−0.39 0.09−0.30 1.00−0.24 0.21−0.21−0.29−0.36 0.13−0.61 0.70

0.35−0.57 0.64 0.09 0.73−0.24 1.00−0.75 0.46 0.51 0.26−0.27 0.60−0.38
−0.38 0.66−0.71−0.10−0.77 0.21−0.75 1.00−0.49−0.53−0.23 0.29−0.50 0.25

0.63−0.31 0.60−0.01 0.61−0.21 0.46−0.49 1.00 0.91 0.46−0.44 0.49−0.38
0.58−0.31 0.72−0.04 0.67−0.29 0.51−0.53 0.91 1.00 0.46−0.44 0.54−0.47
0.29−0.39 0.38−0.12 0.19−0.36 0.26−0.23 0.46 0.46 1.00−0.18 0.37−0.51

−0.39 0.18−0.36 0.05−0.38 0.13−0.27 0.29−0.44−0.44−0.18 1.00−0.37 0.33
0.46−0.41 0.60−0.05 0.59−0.61 0.60−0.50 0.49 0.54 0.37−0.37 1.00−0.74

−0.39 0.36−0.48 0.18−0.43 0.70−0.38 0.25−0.38−0.47−0.51 0.33−0.74 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Analyzing R confirms most of the comments made from examining the scatterplot
matrix in Chapter 1. In particular, the correlation between X14 (the value of the
house) and all the other variables is given by the last row (or column) of R. The
highest correlations (in absolute values) are in decreasing order X13,X6,X11,X10,

etc.
Using the Fisher’s Z-transform on each of the correlations between X14 and the

other variables would confirm that all are significantly different from zero, except
the correlation between X14 and X4 (the indicator variable for the Charles River).
We know, however, that the correlation and Fisher’s Z-transform are not appropriate
for binary variable.

The same descriptive statistics can be calculated for the transformed variables
(transformations were motivated in Section 1.9). The results are given in Table 3.4
and as can be seen, most of the variables are now more symmetric. Note that the
covariances and the correlations are sensitive to these nonlinear transformations.
For example, the correlation matrix is now
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Table 3.4 Descriptive
statistics for the Boston
Housing data set after the
transformation

MVAdescbh

X̃ x̃ median(X̃) Var(X̃) std(X̃)

X̃1 −0.78 −1.36 4.67 2.16

X̃2 1.14 0.00 5.44 2.33

X̃3 2.16 2.27 0.60 0.78

X̃4 0.07 0.00 0.06 0.25

X̃5 −0.61 −0.62 0.04 0.20

X̃6 1.83 1.83 0.01 0.11

X̃7 5.06 5.29 12.72 3.57

X̃8 1.19 1.17 0.29 0.54

X̃9 1.87 1.61 0.77 0.87

X̃10 5.93 5.80 0.16 0.40

X̃11 2.15 2.04 1.86 1.36

X̃12 3.57 3.91 0.83 0.91

X̃13 3.42 3.37 0.97 0.99

X̃14 3.03 3.05 0.17 0.41

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00−0.52 0.74 0.03 0.81−0.32 0.70−0.74 0.84 0.81 0.45−0.48 0.62−0.57
−0.52 1.00−0.66−0.04−0.57 0.31−0.53 0.59−0.35−0.31−0.35 0.18−0.45 0.36

0.74−0.66 1.00 0.08 0.75−0.43 0.66−0.73 0.58 0.66 0.46−0.33 0.62−0.55
0.03−0.04 0.08 1.00 0.08 0.08 0.07−0.09 0.01−0.04−0.13 0.05−0.06 0.16
0.81−0.57 0.75 0.08 1.00−0.32 0.78−0.86 0.61 0.67 0.34−0.38 0.61−0.52

−0.32 0.31−0.43 0.08−0.32 1.00−0.28 0.28−0.21−0.31−0.32 0.13−0.64 0.61
0.70−0.53 0.66 0.07 0.78−0.28 1.00−0.80 0.47 0.54 0.38−0.29 0.64−0.48

−0.74 0.59−0.73−0.09−0.86 0.28−0.80 1.00−0.54−0.60−0.32 0.32−0.56 0.41
0.84−0.35 0.58 0.01 0.61−0.21 0.47−0.54 1.00 0.82 0.40−0.41 0.46−0.43
0.81−0.31 0.66−0.04 0.67−0.31 0.54−0.60 0.82 1.00 0.48−0.43 0.53−0.56
0.45−0.35 0.46−0.13 0.34−0.32 0.38−0.32 0.40 0.48 1.00−0.20 0.43−0.51

−0.48 0.18−0.33 0.05−0.38 0.13−0.29 0.32−0.41−0.43−0.20 1.00−0.36 0.40
0.62−0.45 0.62−0.06 0.61−0.64 0.64−0.56 0.46 0.53 0.43−0.36 1.00−0.83

−0.57 0.36−0.55 0.16−0.52 0.61−0.48 0.41−0.43−0.56−0.51 0.40−0.83 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Notice that some of the correlations between X̃14 and the other variables have in-
creased.

If we want to explain the variations of the price X̃14 by the variation of all the
other variables X̃1, . . . , X̃13 we could estimate the linear model

X̃14 = β0 +
13∑

j=1

βj X̃j + ε. (3.57)

The result is given in Table 3.5.
The value of r2 (0.765) and r2

adj (0.759) show that most of the variance of X14 is
explained by the linear model (3.57).

Again we see that the variations of X̃14 are mostly explained by (in decreasing
order of the absolute value of the t-statistic) X̃13, X̃8, X̃11, X̃10, X̃12, X̃6, X̃9, X̃4
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Table 3.5 Linear regression
results for all variables of
Boston Housing data set

MVAlinregbh

Variable β̂j SE(β̂j ) t p-value

constant 4.1769 0.3790 11.020 0.0000

X̃1 −0.0146 0.0117 −1.254 0.2105

X̃2 0.0014 0.0056 0.247 0.8051

X̃3 −0.0127 0.0223 −0.570 0.5692

X̃4 0.1100 0.0366 3.002 0.0028

X̃5 −0.2831 0.1053 −2.688 0.0074

X̃6 0.4211 0.1102 3.822 0.0001

X̃7 0.0064 0.0049 1.317 0.1885

X̃8 −0.1832 0.0368 −4.977 0.0000

X̃9 0.0684 0.0225 3.042 0.0025

X̃10 −0.2018 0.0484 −4.167 0.0000

X̃11 −0.0400 0.0081 −4.946 0.0000

X̃12 0.0445 0.0115 3.882 0.0001

X̃13 −0.2626 0.0161 −16.320 0.0000

and X̃5. The other variables X̃1, X̃2, X̃3 and X̃7 seem to have little influence on
the variations of X̃14. This will be confirmed by the testing procedures that will be
developed in Chapter 7.

3.8 Exercises

Exercise 3.1 The covariance sX4X5 between X4 and X5 for the entire bank data
set is positive. Given the definitions of X4 and X5, we would expect a negative
covariance. Using Figure 3.1 can you explain why sX4X5 is positive?

Exercise 3.2 Consider the two sub-clouds of counterfeit and genuine bank notes in
Figure 3.1 separately. Do you still expect sX4X5 (now calculated separately for each
cloud) to be positive?

Exercise 3.3 We remarked that for two normal random variables, zero covariance
implies independence. Why does this remark not apply to Example 3.4?

Exercise 3.4 Compute the covariance between the variables

X2 = miles per gallon,

X8 = weight

from the car data set (Table B.3). What sign do you expect the covariance to have?
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Exercise 3.5 Compute the correlation matrix of the variables in Example 3.2. Com-
ment on the sign of the correlations and test the hypothesis

ρX1X2 = 0.

Exercise 3.6 Suppose you have observed a set of observations {xi}ni=1 with x = 0,
sXX = 1 and n−1 ∑n

i=1(xi − x)3 = 0. Define the variable yi = x2
i . Can you imme-

diately tell whether rXY �= 0?

Exercise 3.7 Find formulas (3.29) and (3.30) for α̂ and β̂ by differentiating the
objective function in (3.28) w.r.t. α and β .

Exercise 3.8 How many sales does the textile manager expect with a “classic blue”
pullover price of x = 105?

Exercise 3.9 What does a scatterplot of two random variables look like for r2 = 1
and r2 = 0?

Exercise 3.10 Prove the variance decomposition (3.38) and show that the coeffi-
cient of determination is the square of the simple correlation between X and Y .

Exercise 3.11 Make a boxplot for the residuals εi = yi − α̂ − β̂xi for the “classic
blue” pullovers data. If there are outliers, identify them and run the linear regression
again without them. Do you obtain a stronger influence of price on sales?

Exercise 3.12 Under what circumstances would you obtain the same coefficients
from the linear regression lines of Y on X and of X on Y ?

Exercise 3.13 Treat the design of Example 3.14 as if there were thirty shops and
not ten. Define xi as the index of the shop, i.e., xi = i, i = 1,2, . . . ,30. The null hy-
pothesis is a constant regression line, EY = μ. What does the alternative regression
curve look like?

Exercise 3.14 Perform the test in Exercise 3.13 for the shop example with a 0.99
significance level. Do you still reject the hypothesis of equal marketing strategies?

Exercise 3.15 Compute an approximate confidence interval for ρX2X8 in Exam-
ple 3.2. Hint: start from a confidence interval for tanh−1(ρX2X8) and then apply the
inverse transformation.

Exercise 3.16 In Example 3.2, using the exchange rate of 1 EUR = 106 JPY, com-
pute the same empirical covariance using prices in Japanese Yen rather than in Eu-
ros. Is there a significant difference? Why?

Exercise 3.17 Why does the correlation have the same sign as the covariance?
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Exercise 3.18 Show that rank(H) = tr(H) = n − 1.

Exercise 3.19 Show that X∗ = HXD−1/2 is the standardized data matrix, i.e.,
x∗ = 0 and SX∗ = RX .

Exercise 3.20 Compute for the pullovers data the regression of X1 on X2,X3 and
of X1 on X2,X4. Which one has the better coefficient of determination?

Exercise 3.21 Compare for the pullovers data the coefficient of determination for
the regression of X1 on X2 (Example 3.11), of X1 on X2,X3 (Exercise 3.20) and of
X1 on X2,X3,X4 (Example 3.15). Observe that this coefficient is increasing with
the number of predictor variables. Is this always the case?

Exercise 3.22 Consider the ANOVA problem (Section 3.5) again. Establish the
constraint Matrix A for testing μ1 = μ2. Test this hypothesis via an analog of (3.55)
and (3.56).

Exercise 3.23 Prove (3.52). (Hint, let f (β) = (y − xβ)�(y − xβ) and solve
∂f (β)

∂β
= 0.)

Exercise 3.24 Consider the linear model Y = Xβ + ε where β̂ = arg minβ ε�ε is
subject to the linear constraints Aβ̂ = a where A(q × p), (q ≤ p) is of rank q and
a is of dimension (q × 1). Show that

β̂ = β̂OLS − (X�X )−1A� (
A(X�X )−1A�)−1 (

Aβ̂OLS − a
)

where β̂OLS = (X�X )−1X�y. (Hint, let f (β,λ) = (y −xβ)�(y −xβ)−λ�(Aβ −
a) where λ ∈R

q and solve ∂f (β,λ)
∂β

= 0 and ∂f (β,λ)
∂λ

= 0.)

Exercise 3.25 Compute the covariance matrix S = Cov(X ) where X denotes the
matrix of observations on the counterfeit bank notes. Make a Jordan decomposition
of S . Why are all of the eigenvalues positive?

Exercise 3.26 Compute the covariance of the counterfeit notes after they are lin-
early transformed by the vector a = (1,1,1,1,1,1)�.
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