
Chapter 2
A Short Excursion into Matrix Algebra

This chapter serves as a reminder of basic concepts of matrix algebra, which are
particularly useful in multivariate analysis. It also introduces the notations used in
this book for vectors and matrices. Eigenvalues and eigenvectors play an important
role in multivariate techniques. In Sections 2.2 and 2.3, we present the spectral de-
composition of matrices and consider the maximisation (minimisation) of quadratic
forms given some constraints.

In analyzing the multivariate normal distribution, partitioned matrices appear nat-
urally. Some of the basic algebraic properties are given in Section 2.5. These prop-
erties will be heavily used in Chapters 4 and 5.

The geometry of the multinormal and the geometric interpretation of the multi-
variate techniques (Part III) intensively uses the notion of angles between two vec-
tors, the projection of a point on a vector and the distances between two points.
These ideas are introduced in Section 2.6.

2.1 Elementary Operations

A matrix A is a system of numbers with n rows and p columns:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 . . . . . . . . . a1p

... a22
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

an1 an2 . . . . . . . . . anp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We also write (aij ) for A and A(n × p) to indicate the numbers of rows and
columns. Vectors are matrices with one column and are denoted as x or x(p × 1).
Special matrices and vectors are defined in Table 2.1. Note that we use small letters
for scalars as well as for vectors.
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Table 2.1 Special matrices and vectors

Name Definition Notation Example

scalar p = n = 1 a 3

column vector p = 1 a

(
1

3

)

row vector n = 1 a�
(

1 3
)

vector of ones (1, . . . ,1︸ ︷︷ ︸
n

)� 1n

(
1

1

)

vector of zeros (0, . . . ,0︸ ︷︷ ︸
n

)� 0n

(
0

0

)

square matrix n = p A(p × p)

(
2 0

0 2

)

diagonal matrix aij = 0, i �= j , n = p diag(aii )

(
1 0

0 2

)

identity matrix diag(1, . . . ,1︸ ︷︷ ︸
p

) Ip

(
1 0

0 1

)

unit matrix aij = 1, n = p 1n1�
n

(
1 1

1 1

)

symmetric matrix aij = aji

(
1 2

2 3

)

null matrix aij = 0 0

(
0 0

0 0

)

upper triangular matrix aij = 0, i < j

⎛
⎜⎝

1 2 4

0 1 3

0 0 1

⎞
⎟⎠

idempotent matrix AA = A

⎛
⎜⎝

1 0 0

0 1
2

1
2

0 1
2

1
2

⎞
⎟⎠

orthogonal matrix A�A = I = AA�
⎛
⎝

1√
2

1√
2

1√
2

− 1√
2

⎞
⎠

Matrix Operations

Elementary operations are summarised below:

A� = (aji)

A+B = (aij + bij )
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A−B = (aij − bij )

c ·A = (c · aij )

A ·B = A(n × p) B(p × m) = C(n × m) =
⎛
⎝

p∑
j=1

aij bjk

⎞
⎠ .

Properties of Matrix Operations

A+B = B +A
A(B + C) = AB +AC

A(BC) = (AB)C
(A�)� = A
(AB)� = B�A�

Matrix Characteristics

Rank

The rank, rank(A), of a matrix A(n × p) is defined as the maximum number of
linearly independent rows (columns). A set of k rows aj of A(n × p) are said to
be linearly independent if

∑k
j=1 cj aj = 0p implies cj = 0,∀j , where c1, . . . , ck are

scalars. In other words no rows in this set can be expressed as a linear combination
of the (k − 1) remaining rows.

Trace

The trace of a matrix is the sum of its diagonal elements

tr(A) =
p∑

i=1

aii .

Determinant

The determinant is an important concept of matrix algebra. For a square matrix A,
it is defined as:

det(A) = |A| =
∑

(−1)|τ | a1τ(1) . . . apτ(p),
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the summation is over all permutations τ of {1,2, . . . , p}, and |τ | = 0 if the permu-
tation can be written as a product of an even number of transpositions and |τ | = 1
otherwise.

Example 2.1 In the case of p = 2, A = ( a11 a12
a21 a22

)
and we can permute the digits “1”

and “2” once or not at all. So,

|A| = a11 a22 − a12 a21.

Transpose

For A(n × p) and B(p × n)

(A�)� = A, and (AB)� = B�A�.

Inverse

If |A| �= 0 and A(p × p), then the inverse A−1 exists:

A A−1 = A−1 A = Ip.

For small matrices, the inverse of A = (aij ) can be calculated as

A−1 = C
|A| ,

where C = (cij ) is the adjoint matrix of A. The elements cji of C� are the co-factors
of A:

cji = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1(j−1) a1(j+1) . . . a1p

...

a(i−1)1 . . . a(i−1)(j−1) a(i−1)(j+1) . . . a(i−1)p

a(i+1)1 . . . a(i+1)(j−1) a(i+1)(j+1) . . . a(i+1)p

...

ap1 . . . ap(j−1) ap(j+1) . . . app

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

G-inverse

A more general concept is the G-inverse (Generalised Inverse) A− which satisfies
the following:

A A−A = A.
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Later we will see that there may be more than one G-inverse.

Example 2.2 The generalised inverse can also be calculated for singular matrices.
We have: (

1 0
0 0

)(
1 0
0 0

)(
1 0
0 0

)
=

(
1 0
0 0

)
,

which means that the generalised inverse of A = ( 1 0
0 0

)
is A− = ( 1 0

0 0

)
even though

the inverse matrix of A does not exist in this case.

Eigenvalues, Eigenvectors

Consider a (p × p) matrix A. If there a scalar λ and a vector γ exists such as

Aγ = λγ, (2.1)

then we call

λ an eigenvalue
γ an eigenvector.

It can be proven that an eigenvalue λ is a root of the p-th order polynomial
|A − λIp| = 0. Therefore, there are up to p eigenvalues λ1, λ2, . . . , λp of A. For
each eigenvalue λj , a corresponding eigenvector γj exists given by equation (2.1).
Suppose the matrix A has the eigenvalues λ1, . . . , λp . Let � = diag(λ1, . . . , λp).

The determinant |A| and the trace tr(A) can be rewritten in terms of the eigen-
values:

|A| = |�| =
p∏

j=1

λj (2.2)

tr(A) = tr(�) =
p∑

j=1

λj . (2.3)

An idempotent matrix A (see the definition in Table 2.1) can only have eigenvalues
in {0,1} therefore tr(A) = rank(A) = number of eigenvalues �= 0.

Example 2.3 Let us consider the matrix A =
(

1 0 0
0 1

2
1
2

0 1
2

1
2

)
. It is easy to verify that

AA = A which implies that the matrix A is idempotent.
We know that the eigenvalues of an idempotent matrix are equal to 0 or 1. In this

case, the eigenvalues of A are λ1 = 1, λ2 = 1, and λ3 = 0 since

⎛
⎝

1 0 0
0 1

2
1
2

0 1
2

1
2

⎞
⎠

⎛
⎝

1
0
0

⎞
⎠ = 1

⎛
⎝

1
0
0

⎞
⎠ ,

⎛
⎝

1 0 0
0 1

2
1
2

0 1
2

1
2

⎞
⎠

⎛
⎜⎝

0√
2

2√
2

2

⎞
⎟⎠ = 1

⎛
⎜⎝

0√
2

2√
2

2

⎞
⎟⎠ ,
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and
⎛
⎝

1 0 0
0 1

2
1
2

0 1
2

1
2

⎞
⎠

⎛
⎜⎝

0√
2

2

−
√

2
2

⎞
⎟⎠ = 0

⎛
⎜⎝

0√
2

2

−
√

2
2

⎞
⎟⎠ .

Using formulas (2.2) and (2.3), we can calculate the trace and the determinant
of A from the eigenvalues: tr(A) = λ1 + λ2 + λ3 = 2, |A| = λ1λ2λ3 = 0, and
rank(A) = 2.

Properties of Matrix Characteristics

A(n × n), B(n × n), c ∈ R

tr(A+B) = trA+ trB (2.4)

tr(cA) = c trA (2.5)

|cA| = cn|A| (2.6)

|AB| = |BA| = |A||B| (2.7)

A(n × p), B(p × n)

tr(A·B) = tr(B·A) (2.8)

rank(A) ≤ min(n,p)

rank(A) ≥ 0 (2.9)

rank(A) = rank(A�) (2.10)

rank(A�A) = rank(A) (2.11)

rank(A+B) ≤ rank(A) + rank(B) (2.12)

rank(AB) ≤ min{rank(A), rank(B)} (2.13)

A(n × p), B(p × q), C(q × n)

tr(ABC) = tr(BCA)

= tr(CAB) (2.14)

rank(ABC) = rank(B) for nonsingular A,C (2.15)

A(p × p)

|A−1| = |A|−1 (2.16)

rank(A) = p if and only if A is nonsingular. (2.17)
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Summary
↪→ The determinant |A| is the product of the eigenvalues of A.

↪→ The inverse of a matrix A exists if |A| �= 0.

↪→ The trace tr(A) is the sum of the eigenvalues of A.

↪→ The sum of the traces of two matrices equals the trace of the sum
of the two matrices.

↪→ The trace tr(AB) equals tr(BA).

↪→ The rank(A) is the maximal number of linearly independent rows
(columns) of A.

2.2 Spectral Decompositions

The computation of eigenvalues and eigenvectors is an important issue in the analy-
sis of matrices. The spectral decomposition or Jordan decomposition links the struc-
ture of a matrix to the eigenvalues and the eigenvectors.

Theorem 2.1 (Jordan Decomposition) Each symmetric matrix A(p × p) can be
written as

A = � � �� =
p∑

j=1

λjγj
γ �

j
(2.18)

where

� = diag(λ1, . . . , λp)

and where

� = (γ1 , γ2, . . . , γp )

is an orthogonal matrix consisting of the eigenvectors γ
j

of A.

Example 2.4 Suppose that A = ( 1 2
2 3

)
. The eigenvalues are found by solving |A −

λI| = 0. This is equivalent to
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∣∣∣∣
1 − λ 2

2 3 − λ

∣∣∣∣ = (1 − λ)(3 − λ) − 4 = 0.

Hence, the eigenvalues are λ1 = 2 + √
5 and λ2 = 2 − √

5. The eigenvectors are
γ1 = (0.5257,0.8506)� and γ2 = (0.8506,−0.5257)�. They are orthogonal since
γ �

1 γ2 = 0.

Using spectral decomposition, we can define powers of a matrix A(p ×p). Sup-
pose A is a symmetric matrix with positive eigenvalues. Then by Theorem 2.1

A = ����,

and we define for some α ∈R

Aα = ��α��, (2.19)

where �α = diag(λα
1 , . . . , λα

p). In particular, we can easily calculate the inverse of
the matrix A. Suppose that the eigenvalues of A are positive. Then with α = −1,
we obtain the inverse of A from

A−1 = ��−1��. (2.20)

Another interesting decomposition which is later used is given in the following
theorem.

Theorem 2.2 (Singular Value Decomposition) Each matrix A(n × p) with rank r

can be decomposed as

A = � � 	�,

where �(n × r) and 	(p × r). Both � and 	 are column orthonormal, i.e.,
��� = 	�	 = Ir and � = diag(λ

1/2
1 , . . . , λ

1/2
r ), λj > 0. The values λ1, . . . , λr

are the non-zero eigenvalues of the matrices AA� and A�A. � and 	 consist of
the corresponding r eigenvectors of these matrices.

This is obviously a generalisation of Theorem 2.1 (Jordan decomposition). With
Theorem 2.2, we can find a G-inverse A− of A. Indeed, define A− = 	 �−1 ��.
Then A A− A = � � 	� = A. Note that the G-inverse is not unique.

Example 2.5 In Example 2.2, we showed that the generalised inverse of A = ( 1 0
0 0

)
is A−( 1 0

0 0

)
. The following also holds

(
1 0
0 0

)(
1 0
0 8

)(
1 0
0 0

)
=

(
1 0
0 0

)

which means that the matrix
( 1 0

0 8

)
is also a generalised inverse of A.
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Summary
↪→ The Jordan decomposition gives a representation of a symmetric

matrix in terms of eigenvalues and eigenvectors.
↪→ The eigenvectors belonging to the largest eigenvalues indicate the

“main direction” of the data.
↪→ The Jordan decomposition allows one to easily compute the power

of a symmetric matrix A: Aα = ��α��.
↪→ The singular value decomposition (SVD) is a generalisation of the

Jordan decomposition to non-quadratic matrices.

2.3 Quadratic Forms

A quadratic form Q(x) is built from a symmetric matrix A(p × p) and a vector
x ∈R

p:

Q(x) = x� A x =
p∑

i=1

p∑
j=1

aij xixj . (2.21)

Definiteness of Quadratic Forms and Matrices

Q(x) > 0 for all x �= 0 positive definite
Q(x) ≥ 0 for all x �= 0 positive semidefinite

A matrix A is called positive definite (semidefinite) if the corresponding quadratic
form Q(.) is positive definite (semidefinite). We write A > 0 (≥ 0).

Quadratic forms can always be diagonalized, as the following result shows.

Theorem 2.3 If A is symmetric and Q(x) = x�Ax is the corresponding quadratic
form, then there exists a transformation x 
→ ��x = y such that

x� A x =
p∑

i=1

λiy
2
i ,

where λi are the eigenvalues of A.

Proof A = � � ��. By Theorem 2.1 and y = ��α we have that x�Ax =
x�����x = y��y = ∑p

i=1 λiy
2
i . �
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Positive definiteness of quadratic forms can be deduced from positive eigenval-
ues.

Theorem 2.4 A> 0 if and only if all λi > 0, i = 1, . . . , p.

Proof 0 < λ1y
2
1 + · · · + λpy2

p = x�Ax for all x �= 0 by Theorem 2.3. �

Corollary 2.1 If A > 0, then A−1 exists and |A| > 0.

Example 2.6 The quadratic form Q(x) = x2
1 + x2

2 corresponds to the matrix A =( 1 0
0 1

)
with eigenvalues λ1 = λ2 = 1 and is thus positive definite. The quadratic form

Q(x) = (x1 − x2)
2 corresponds to the matrix A = ( 1 −1

−1 1

)
with eigenvalues λ1 =

2, λ2 = 0 and is positive semidefinite. The quadratic form Q(x) = x2
1 − x2

2 with
eigenvalues λ1 = 1, λ2 = −1 is indefinite.

In the statistical analysis of multivariate data, we are interested in maximising
quadratic forms given some constraints.

Theorem 2.5 If A and B are symmetric and B > 0, then the maximum of x�Ax
x�Bx

is

given by the largest eigenvalue of B−1A. More generally,

max
x

x�Ax

x�Bx
= λ1 ≥ λ2 ≥ · · · ≥ λp = min

x

x�Ax

x�Bx
,

where λ1, . . . , λp denote the eigenvalues of B−1A. The vector which maximises

(minimises) x�Ax
x�Bx

is the eigenvector of B−1A which corresponds to the largest

(smallest) eigenvalue of B−1A. If x�Bx = 1, we get

max
x

x�Ax = λ1 ≥ λ2 ≥ · · · ≥ λp = min
x

x�Ax.

Proof By definition, B1/2 = �B �
1/2
B ��

B is symmetric. Then x�Bx = ‖x�B1/2‖2 =
‖B1/2x‖2. Set y = B1/2x‖B1/2x‖ , then

max
x

x�Ax

x�Bx
= max

{y:y�y=1}
y�B−1/2 AB−1/2y. (2.22)

From Theorem 2.1, let

B−1/2 A B−1/2 = � � ��

be the spectral decomposition of B−1/2 A B−1/2. Set

z = ��y, then z�z = y�� �� y = y�y.
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Thus (2.22) is equivalent to

max
{z:z�z=1}

z� � z = max
{z:z�z=1}

p∑
i=1

λiz
2
i .

But

max
z

∑
λiz

2
i ≤ λ1 max

z

∑
z2
i︸ ︷︷ ︸

=1

= λ1.

The maximum is thus obtained by z = (1,0, . . . ,0)�, i.e.,

y = γ1, hence x = B−1/2γ1 .

Since B−1A and B−1/2 A B−1/2 have the same eigenvalues, the proof is complete.
To maximise (minimise) x�Ax under x�Bx = 1, below is another proof using

the Lagrange method.

max
x

x�Ax = max
x

[x�Ax − λ(x�Bx − 1)].

The first derivative of it in respect to x, is equal to 0:

2Ax − 2λBx = 0,

so

B−1Ax = λx.

By the definition of eigenvector and eigenvalue, our maximiser x∗ is B−1A’s eigen-
vector corresponding to eigenvalue λ. So

max
{x:x�Bx=1}

x�Ax = max
{x:x�Bx=1}

x�BB−1Ax = max
{x:x�Bx=1}

x�Bλx = maxλ

which is just the maximum eigenvalue of B−1A, and we choose the corresponding
eigenvector as our maximiser x∗. �

Example 2.7 Consider the following matrices

A =
(

1 2
2 3

)
and B =

(
1 0
0 1

)
.

We calculate

B−1A =
(

1 2
2 3

)
.

The biggest eigenvalue of the matrix B−1A is 2+√
5. This means that the maximum

of x�Ax under the constraint x�Bx = 1 is 2 + √
5.

Notice that the constraint x�Bx = 1 corresponds, with our choice of B, to the
points which lie on the unit circle x2

1 + x2
2 = 1.
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Summary
↪→ A quadratic form can be described by a symmetric matrix A.

↪→ Quadratic forms can always be diagonalised.

↪→ Positive definiteness of a quadratic form is equivalent to positive-
ness of the eigenvalues of the matrix A.

↪→ The maximum and minimum of a quadratic form given some con-
straints can be expressed in terms of eigenvalues.

2.4 Derivatives

For later sections of this book, it will be useful to introduce matrix notation for
derivatives of a scalar function of a vector x with respect to x. Consider f : Rp →
R and a (p × 1) vector x, then ∂f (x)

∂x
is the column vector of partial derivatives

{ ∂f (x)
∂xj

}, j = 1, . . . , p and ∂f (x)

∂x� is the row vector of the same derivative ( ∂f (x)
∂x

is
called the gradient of f ).

We can also introduce second order derivatives: ∂2f (x)

∂x∂x� is the (p × p) matrix of

elements ∂2f (x)
∂xi∂xj

, i = 1, . . . , p and j = 1, . . . , p. ( ∂2f (x)

∂x∂x� is called the Hessian of f .)

Suppose that a is a (p × 1) vector and that A = A� is a (p × p) matrix. Then

∂a�x

∂x
= ∂x�a

∂x
= a, (2.23)

∂x�Ax

∂x
= 2Ax. (2.24)

The Hessian of the quadratic form Q(x) = x�Ax is:

∂2x�Ax

∂x∂x� = 2A. (2.25)

Example 2.8 Consider the matrix

A =
(

1 2
2 3

)
.

From formulas (2.24) and (2.25) it immediately follows that the gradient of Q(x) =
x�Ax is

∂x�Ax

∂x
= 2Ax = 2

(
1 2
2 3

)
x =

(
2x 4x

4x 6x

)
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and the Hessian is

∂2x�Ax

∂x∂x� = 2A = 2

(
1 2
2 3

)
=

(
2 4
4 6

)
.

2.5 Partitioned Matrices

Very often we will have to consider certain groups of rows and columns of a matrix
A(n × p). In the case of two groups, we have

A =
(
A11 A12
A21 A22

)

where Aij (ni × pj ), i, j = 1,2, n1 + n2 = n and p1 + p2 = p.
If B(n × p) is partitioned accordingly, we have:

A+B =
(
A11 +B11 A12 +B12
A21 +B21 A22 +B22

)

B� =
(
B�

11 B�
21

B�
12 B�

22

)

AB� =
(
A11B�

11 +A12B�
12 A11B�

21 +A12B�
22

A21B�
11 +A22B�

12 A21B�
21 +A22B�

22

)
.

An important particular case is the square matrix A(p × p), partitioned in such a
way that A11 and A22 are both square matrices (i.e., nj = pj , j = 1,2). It can be
verified that when A is non-singular (AA−1 = Ip):

A−1 =
(
A11 A12

A21 A22

)
(2.26)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A11 = (A11 −A12A−1
22 A21)

−1 def= (A11·2)−1

A12 = −(A11·2)−1A12A−1
22

A21 = −A−1
22 A21(A11·2)−1

A22 = A−1
22 +A−1

22 A21(A11·2)−1A12A−1
22 .

An alternative expression can be obtained by reversing the positions of A11 and A22
in the original matrix.

The following results will be useful if A11 is non-singular:

|A| = |A11||A22 −A21A−1
11 A12| = |A11||A22·1|. (2.27)

If A22 is non-singular, we have that:

|A| = |A22||A11 −A12A−1
22 A21| = |A22||A11·2|. (2.28)
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A useful formula is derived from the alternative expressions for the inverse and
the determinant. For instance let

B =
(

1 b�
a A

)

where a and b are (p × 1) vectors and A is non-singular. We then have:

|B| = |A− ab�| = |A||1 − b�A−1a| (2.29)

and equating the two expressions for B22, we obtain the following:

(A− ab�)−1 = A−1 + A−1ab�A−1

1 − b�A−1a
. (2.30)

Example 2.9 Let’s consider the matrix

A =
(

1 2
2 2

)
.

We can use formula (2.26) to calculate the inverse of a partitioned matrix, i.e., A11 =
−1,A12 = A21 = 1,A22 = −1/2. The inverse of A is

A−1 =
(−1 1

1 −0.5

)
.

It is also easy to calculate the determinant of A:

|A| = |1||2 − 4| = −2.

Let A(n × p) and B(p × n) be any two matrices and suppose that n ≥ p.
From (2.27) and (2.28) we can conclude that∣∣∣∣

−λIn −A
B Ip

∣∣∣∣ = (−λ)n−p|BA− λIp| = |AB − λIn|. (2.31)

Since both determinants on the right-hand side of (2.31) are polynomials in λ, we
find that the n eigenvalues of AB yield the p eigenvalues of BA plus the eigenvalue
0, n − p times.

The relationship between the eigenvectors is described in the next theorem.

Theorem 2.6 For A(n × p) and B(p × n), the non-zero eigenvalues of AB and
BA are the same and have the same multiplicity. If x is an eigenvector of AB for an
eigenvalue λ �= 0, then y = Bx is an eigenvector of BA.

Corollary 2.2 For A(n × p), B(q × n), a(p × 1), and b(q × 1) we have

rank(Aab�B) ≤ 1.

The non-zero eigenvalue, if it exists, equals b�BAa (with eigenvector Aa).
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Proof Theorem 2.6 asserts that the eigenvalues of Aab�B are the same as those
of b�BAa. Note that the matrix b�BAa is a scalar and hence it is its own eigen-
value λ1.

Applying Aab�B to Aa yields

(Aab�B)(Aa) = (Aa)(b�BAa) = λ1Aa. �

2.6 Geometrical Aspects

Distance

Let x, y ∈R
p . A distance d is defined as a function

d : R2p →R+ which fulfills

⎧⎨
⎩

d(x, y) > 0 ∀x �= y

d(x, y) = 0 if and only if x = y

d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z.

A Euclidean distance d between two points x and y is defined as

d2(x, y) = (x − y)T A(x − y) (2.32)

where A is a positive definite matrix (A > 0). A is called a metric.

Example 2.10 A particular case is when A = Ip , i.e.,

d2(x, y) =
p∑

i=1

(xi − yi)
2. (2.33)

Figure 2.1 illustrates this definition for p = 2.

Note that the sets Ed = {x ∈ R
p | (x −x0)

�(x −x0) = d2} , i.e., the spheres with
radius d and centre x0, are the Euclidean Ip iso-distance curves from the point x0
(see Figure 2.2).

The more general distance (2.32) with a positive definite matrix A (A > 0) leads
to the iso-distance curves

Ed = {x ∈R
p | (x − x0)

�A(x − x0) = d2}, (2.34)

i.e., ellipsoids with centre x0, matrix A and constant d (see Figure 2.3).

Fig. 2.1 Distance d
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Fig. 2.2 Iso-distance sphere

Fig. 2.3 Iso-distance
ellipsoid

Let γ1, γ2, . . . , γp be the orthonormal eigenvectors of A corresponding to the
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp . The resulting observations are given in the next
theorem.

Theorem 2.7

(i) The principal axes of Ed are in the direction of γi; i = 1, . . . , p.

(ii) The half-lengths of the axes are
√

d2

λi
; i = 1, . . . , p.

(iii) The rectangle surrounding the ellipsoid Ed is defined by the following inequal-
ities:

x0i −
√

d2aii ≤ xi ≤ x0i +
√

d2aii , i = 1, . . . , p,

where aii is the (i, i) element of A−1. By the rectangle surrounding the el-
lipsoid Ed we mean the rectangle whose sides are parallel to the coordinate
axis.

It is easy to find the coordinates of the tangency points between the ellipsoid and
its surrounding rectangle parallel to the coordinate axes. Let us find the coordinates
of the tangency point that are in the direction of the j -th coordinate axis (positive
direction).

For ease of notation, we suppose the ellipsoid is centred around the origin (x0 =
0). If not, the rectangle will be shifted by the value of x0.

The coordinate of the tangency point is given by the solution to the following
problem:

x = arg max
x�Ax=d2

e�
j x (2.35)
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where e�
j is the j -th column of the identity matrix Ip . The coordinate of the tan-

gency point in the negative direction would correspond to the solution of the min
problem: by symmetry, it is the opposite value of the former.

The solution is computed via the Lagrangian L = e�
j x − λ(x�Ax − d2) which

by (2.23) leads to the following system of equations:

∂L

∂x
= ej − 2λAx = 0 (2.36)

∂L

∂λ
= xT Ax − d2 = 0. (2.37)

This gives x = 1
2λ
A−1ej , or componentwise

xi = 1

2λ
aij , i = 1, . . . , p (2.38)

where aij denotes the (i, j)-th element of A−1.
Premultiplying (2.36) by x�, we have from (2.37):

xj = 2λd2.

Comparing this to the value obtained by (2.38), for i = j we obtain 2λ =
√

ajj

d2 .

We choose the positive value of the square root because we are maximising e�
j x. A

minimum would correspond to the negative value. Finally, we have the coordinates
of the tangency point between the ellipsoid and its surrounding rectangle in the
positive direction of the j -th axis:

xi =
√

d2

ajj
aij , i = 1, . . . , p. (2.39)

The particular case where i = j provides statement (iii) in Theorem 2.7.

Remark: Usefulness of Theorem 2.7

Theorem 2.7 will prove to be particularly useful in many subsequent chapters. First,
it provides a helpful tool for graphing an ellipse in two dimensions. Indeed, knowing
the slope of the principal axes of the ellipse, their half-lengths and drawing the
rectangle inscribing the ellipse, allows one to quickly draw a rough picture of the
shape of the ellipse.

In Chapter 7, it is shown that the confidence region for the vector μ of a multivari-
ate normal population is given by a particular ellipsoid whose parameters depend on
sample characteristics. The rectangle inscribing the ellipsoid (which is much easier
to obtain) will provide the simultaneous confidence intervals for all of the compo-
nents in μ.

In addition it will be shown that the contour surfaces of the multivariate normal
density are provided by ellipsoids whose parameters depend on the mean vector
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and on the covariance matrix. We will see that the tangency points between the
contour ellipsoids and the surrounding rectangle are determined by regressing one
component on the (p − 1) other components. For instance, in the direction of the
j -th axis, the tangency points are given by the intersections of the ellipsoid contours
with the regression line of the vector of (p − 1) variables (all components except
the j -th) on the j -th component.

Norm of a Vector

Consider a vector x ∈ R
p . The norm or length of x (with respect to the metric Ip)

is defined as

‖x‖ = d(0, x) =
√

x�x.

If ‖x‖ = 1, x is called a unit vector. A more general norm can be defined with
respect to the metric A:

‖x‖A =
√

x�Ax.

Angle Between Two Vectors

Consider two vectors x and y ∈ R
p . The angle θ between x and y is defined by the

cosine of θ :

cos θ = x�y

‖x‖ ‖y‖ , (2.40)

see Figure 2.4. Indeed for p = 2, x = ( x1
x2

)
and y = ( y1

y2

)
, we have

‖x‖ cos θ1 = x1; ‖y‖ cos θ2 = y1

‖x‖ sin θ1 = x2; ‖y‖ sin θ2 = y2,
(2.41)

Fig. 2.4 Angle between
vectors
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Fig. 2.5 Projection

therefore,

cos θ = cos θ1 cos θ2 + sin θ1 sin θ2 = x1y1 + x2y2

‖x‖ ‖y‖ = x�y

‖x‖ ‖y‖ .

Remark 2.1 If x�y = 0, then the angle θ is equal to π
2 . From trigonometry, we

know that the cosine of θ equals the length of the base of a triangle (||px ||) divided
by the length of the hypotenuse (||x||). Hence, we have

||px || = ||x||| cos θ | = |x�y|
‖y‖ , (2.42)

where px is the projection of x on y (which is defined below). It is the coordinate
of x on the y vector, see Figure 2.5.

The angle can also be defined with respect to a general metric A

cos θ = x�Ay

‖x‖A ‖y‖A . (2.43)

If cos θ = 0 then x is orthogonal to y with respect to the metric A.

Example 2.11 Assume that there are two centred (i.e., zero mean) data vectors. The
cosine of the angle between them is equal to their correlation (defined in (3.8)).
Indeed for x and y with x = y = 0 we have

rXY =
∑

xiyi√∑
x2
i

∑
y2
i

= cos θ

according to formula (2.40).

Rotations

When we consider a point x ∈R
p , we generally use a p-coordinate system to obtain

its geometric representation, like in Figure 2.1 for instance. There will be situations
in multivariate techniques where we will want to rotate this system of coordinates
by the angle θ .
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Consider for example the point P with coordinates x = (x1, x2)
� in R

2 with
respect to a given set of orthogonal axes. Let � be a (2 × 2) orthogonal matrix
where

� =
(

cos θ sin θ

− sin θ cos θ

)
. (2.44)

If the axes are rotated about the origin through an angle θ in a clockwise direction,
the new coordinates of P will be given by the vector y

y = � x, (2.45)

and a rotation through the same angle in a anti-clockwise direction gives the new
coordinates as

y = �� x. (2.46)

More generally, premultiplying a vector x by an orthogonal matrix � geometri-
cally corresponds to a rotation of the system of axes, so that the first new axis is
determined by the first row of �. This geometric point of view will be exploited in
Chapters 10 and 11.

Column Space and Null Space of a Matrix

Define for X (n × p)

Im(X )
def= C(X ) = {x ∈ R

n | ∃a ∈ R
p so that Xa = x},

the space generated by the columns of X or the column space of X . Note that
C(X ) ⊆R

n and dim{C(X )} = rank(X ) = r ≤ min(n,p).

Ker(X )
def= N(X ) = {y ∈R

p |Xy = 0}
is the null space of X . Note that N(X ) ⊆R

p and that dim{N(X )} = p − r .

Remark 2.2 N(X�) is the orthogonal complement of C(X ) in R
n, i.e., given a

vector b ∈R
n it will hold that x�b = 0 for all x ∈ C(X ), if and only if b ∈ N(X�).

Example 2.12 Let X =
(

2 3 5
4 6 7
6 8 6
8 2 4

)
. It is easy to show (e.g. by calculating the deter-

minant of X ) that rank(X ) = 3. Hence, the columns space of X is C(X ) =R
3. The

null space of X contains only the zero vector (0,0,0)� and its dimension is equal
to rank(X ) − 3 = 0.

For X =
(

2 3 1
4 6 2
6 8 3
8 2 4

)
, the third column is a multiple of the first one and the matrix

X cannot be of full rank. Noticing that the first two columns of X are independent,
we see that rank(X ) = 2. In this case, the dimension of the columns space is 2 and
the dimension of the null space is 1.
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Projection Matrix

A matrix P(n × n) is called an (orthogonal) projection matrix in R
n if and only if

P = P� = P2 (P is idempotent). Let b ∈ R
n. Then a = Pb is the projection of b

on C(P).

Projection on C(X )

Consider X (n × p) and let

P = X (X�X )−1X� (2.47)

and Q = In −P . It’s easy to check that P and Q are idempotent and that

PX = X and QX = 0. (2.48)

Since the columns of X are projected onto themselves, the projection matrix P
projects any vector b ∈ R

n onto C(X ). Similarly, the projection matrix Q projects
any vector b ∈R

n onto the orthogonal complement of C(X ).

Theorem 2.8 Let P be the projection (2.47) and Q its orthogonal complement.
Then:

(i) x = Pb entails x ∈ C(X ),
(ii) y = Qb means that y�x = 0 ∀x ∈ C(X ).

Proof (i) holds, since x = X (X�X )−1X�b = Xa, where a = (X�X )−1X�b ∈
R

p .
(ii) follows from y = b − Pb and x = Xa. Hence y�x = b�Xa −

b�X (X�X )−1X�Xa = 0. �

Remark 2.3 Let x, y ∈ R
n and consider px ∈ R

n, the projection of x on y (see
Figure 2.5). With X = y we have from (2.47)

px = y(y�y)−1y�x = y�x

‖y‖2
y (2.49)

and we can easily verify that

‖px‖ =
√

p�
x px = |y�x|

‖y‖ .

See again Remark 2.1.
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Summary
↪→ A distance between two p-dimensional points x and y is a quadratic

form (x −y)�A(x −y) in the vectors of differences (x −y). A dis-
tance defines the norm of a vector.

↪→ Iso-distance curves of a point x0 are all those points that have the
same distance from x0. Iso-distance curves are ellipsoids whose
principal axes are determined by the direction of the eigenvectors
of A. The half-length of principal axes is proportional to the inverse
of the roots of the eigenvalues of A.

↪→ The angle between two vectors x and y is given by cos θ =
x�Ay

‖x‖A ‖y‖A w.r.t. the metric A.

↪→ For the Euclidean distance with A = I the correlation between two
centred data vectors x and y is given by the cosine of the angle
between them, i.e., cos θ = rXY .

↪→ The projection P = X (X�X )−1X� is the projection onto the col-
umn space C(X ) of X .

↪→ The projection of x ∈R
n on y ∈ R

n is given by px = y�x

‖y‖2 y.

2.7 Exercises

Exercise 2.1 Compute the determinant for a (3 × 3) matrix.

Exercise 2.2 Suppose that |A| = 0. Is it possible that all eigenvalues of A are posi-
tive?

Exercise 2.3 Suppose that all eigenvalues of some (square) matrix A are different
from zero. Does the inverse A−1 of A exist?

Exercise 2.4 Write a program that calculates the Jordan decomposition of the ma-
trix

A =
⎛
⎝

1 2 3
2 1 2
3 2 1

⎞
⎠ .

Check Theorem 2.1 numerically.

Exercise 2.5 Prove (2.23), (2.24) and (2.25).

Exercise 2.6 Show that a projection matrix only has eigenvalues in {0,1}.
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Exercise 2.7 Draw some iso-distance ellipsoids for the metric A = 
−1 of Exam-
ple 3.13.

Exercise 2.8 Find a formula for |A + aa�| and for (A + aa�)−1. (Hint: use the
inverse partitioned matrix with B = (

1 −a�
a A

)
.)

Exercise 2.9 Prove the Binomial inverse theorem for two non-singular matrices
A(p × p) and B(p × p): (A+B)−1 =A−1 −A−1(A−1 +B−1)−1A−1. (Hint: use

(2.26) with C =
( A Ip

−Ip B−1

)
.)
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