
Chapter 18
Applications in Finance

A portfolio is a linear combination of assets. Each asset contributes with a weight
cj to the portfolio. The performance of such a portfolio is a function of the various
returns of the assets and of the weights c = (c1, . . . , cp)�. In this chapter we inves-
tigate the “optimal choice” of the portfolio weights c. The optimality criterion is the
mean-variance efficiency of the portfolio. Usually investors are risk-averse, there-
fore, we can define a mean-variance efficient portfolio to be a portfolio that has a
minimal variance for a given desired mean return. Equivalently, we could try to op-
timize the weights for the portfolios with maximal mean return for a given variance
(risk structure). We develop this methodology in the situations of (non)existence of
riskless assets and discuss relations with the Capital Assets Pricing Model (CAPM).

18.1 Portfolio Choice

Suppose that one has a portfolio of p assets. The price of asset j at time i is denoted
as pij . The return from asset j in a single time period (day, month, year etc.) is:

xij = pij − pi−1,j

pi−1,j

·

We observe the vectors xi = (xi1, . . . , xip)� (i.e., the returns of the assets which are
contained in the portfolio) over several time periods. We stack these observations
into a data matrix X = (xij ) consisting of observations of a random variable

X ∼ (μ,�).

The return of the portfolio is the weighted sum of the returns of the p assets:

Q = c�X, (18.1)

where c = (c1, . . . , cp)� (with
∑p

j=1 cj = 1) denotes the proportions of the assets
in the portfolio. The mean return of the portfolio is given by the expected value of
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Q, which is c�μ. The risk or variance (squared volatility) of the portfolio is given
by the variance of Q (Theorem 4.6), which is equal to two times

1

2
c��c. (18.2)

The reason for taking half of the variance of Q is merely technical. The optimization
of (18.2) with respect to c is of course equivalent to minimizing c��c. Our aim is to
maximize the portfolio returns (18.1) given a bound on the volatility (18.2) or vice
versa to minimize risk given a (desired) mean return of the portfolio.

Summary
↪→ Given a matrix of returns X from p assets in n time periods, and

that the underlying distribution is stationary, i.e., X ∼ (μ,�), then
the (theoretical) return of the portfolio is a weighted sum of the
returns of the p assets, namely Q = c�X.

↪→ The expected value of Q is c�μ. For technical reasons one con-
siders optimizing 1

2 c��c. The risk or squared volatility is c��c =
Var(c�X).

↪→ The portfolio choice, i.e., the selection of c, is such that the return
is maximized for a given risk bound.

18.2 Efficient Portfolio

A variance efficient portfolio is one that keeps the risk (18.2) minimal under the
constraint that the weights sum to 1, i.e., c�1p = 1. For a variance efficient portfolio,
we therefore try to find the value of c that minimizes the Lagrangian

L = 1

2
c��c − λ(c�1p − 1). (18.3)

A mean-variance efficient portfolio is defined as one that has minimal variance
among all portfolios with the same mean. More formally, we have to find a vec-
tor of weights c such that the variance of the portfolio is minimal subject to two
constraints:

1. a certain, pre-specified mean return μ has to be achieved,
2. the weights have to sum to one.

Mathematically speaking, we are dealing with an optimization problem under two
constraints.
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Fig. 18.1 Returns of six firms from January 2000 to December 2009 MVAreturns

The Lagrangian function for this problem is given by

L = c��c + λ1(μ − c�μ) + λ2(1 − c�1p).

With tools presented in Section 2.4 we can calculate the first order condition for a
minimum:

∂L
∂c

= 2�c − λ1μ − λ21p = 0. (18.4)

Example 18.1 Figure 18.1 shows the monthly returns from January 2000 to De-
cember 2009 of six stocks. The data is from Yahoo Finance. For each stock we
have chosen the same scale on the vertical axis (which gives the return of the stock).
Note how the return of some stocks, such as Forward Industries and Apple, are much
more volatile than the returns of other stocks, such as IBM or Consolidated Edison
(Electric utilities).

As a very simple example consider two differently weighted portfolios contain-
ing only two assets, IBM and Forward Industries. Figure 18.2 displays the monthly
returns of the two portfolios. The portfolio in the upper panel consists of approx-
imately 10% Forward Industries assets and 90% IBM assets. The portfolio in the
lower panel contains an equal proportion of each of the assets. The text windows on
the right of Figure 18.2 show the exact weights which were used. We can clearly see
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Fig. 18.2 Portfolio of IBM
and forward industries assets,
equal and efficient weights

MVAportfol

that the returns of the portfolio with a higher share of the IBM assets (which have a
low variance) are much less volatile.

For an exact analysis of the optimization problem (18.4) we distinguish between
two cases: the existence and nonexistence of a riskless asset. A riskless asset is an
asset such as a zero bond, i.e., a financial instrument with a fixed nonrandom return
(Franke, Härdle and Hafner, 2011).

Nonexistence of a Riskless Asset

Assume that the covariance matrix � is invertible (which implies positive def-
initeness). This is equivalent to the nonexistence of a portfolio c with variance
c��c = 0. If all assets are uncorrelated, � is invertible if all of the asset returns
have positive variances. A riskless asset (uncorrelated with all other assets) would
have zero variance since it has fixed, nonrandom returns. In this case � would not
be positive definite.

The optimal weights can be derived from the first order condition (18.4) as

c = 1

2
�−1(λ1μ + λ21p). (18.5)

Multiplying this by a (p × 1) vector 1p of ones, we obtain

1 = 1�
p c = 1

2
1�
p �−1(λ1μ + λ21�

p ),

which can be solved for λ2 to get:

λ2 = 2 − λ11�
p �−1μ

1�
p �−11p

.
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Plugging this expression into (18.5) yields

c = 1

2
λ1

(

�−1μ − 1�
p �−1μ

1�
p �−11p

�−11p

)

+ �−11p

1�
p �−11p

. (18.6)

For the case of a variance efficient portfolio there is no restriction on the mean of
the portfolio (λ1 = 0). The optimal weights are therefore:

c = �−11p

1�
p �−11p

. (18.7)

This formula is identical to the solution of (18.3). Indeed, differentiation with
respect to c gives

�c = λ1p

c = λ�−11p.

If we plug this into (18.3), we obtain

L = 1

2
λ21p�−11p − λ(λ1p�−11p − 1)

= λ − 1

2
λ21p�−11p.

This quantity is a function of λ and is minimal for

λ = (1p�−11p)−1

since

∂2L
∂c�∂c

= � > 0.

Theorem 18.1 The variance efficient portfolio weights for returns X ∼ (μ,�) are

copt = �−11p

1�
p �−11p

. (18.8)

Existence of a Riskless Asset

If an asset exists with variance equal to zero, then the covariance matrix � is not
invertible. The notation can be adjusted for this case as follows: denote the return of
the riskless asset by r (under the absence of arbitrage this is the interest rate), and
partition the vector and the covariance matrix of returns such that the last component
is the riskless asset. Thus, the last equation of the system (18.4) becomes

2 Cov(r,X) − λ1r − λ2 = 0,
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and, because the covariance of the riskless asset with any portfolio is zero, we have

λ2 = −rλ1. (18.9)

Let us for a moment modify the notation in such a way that in each vector and matrix
the components corresponding to the riskless asset are excluded. For example, c

is the weight vector of the risky assets (i.e., assets with positive variance), and c0
denotes the proportion invested in the riskless asset. Obviously, c0 = 1 − 1�

p c, and
� the covariance matrix of the risky assets, is assumed to be invertible. Solving
(18.4) using (18.9) gives

c = λ1

2
�−1(μ − r1p). (18.10)

This equation may be solved for λ1 by plugging it into the condition μ�c = μ.
This is the mean-variance efficient weight vector of the risky assets if a riskless asset
exists. The final solution is:

c = μ�−1(μ − r1p)

μ��−1(μ − r1p)
. (18.11)

The variance optimal weighting of the assets in the portfolio depends on the
structure of the covariance matrix as the following corollaries show.

Corollary 18.1 A portfolio of uncorrelated assets whose returns have equal vari-
ances (� = σ 2Ip) needs to be weighted equally:

copt = p−11p.

Proof Here we obtain 1�
p �−11p = σ−21�

p 1p = σ−2p and therefore c = σ−21p

σ−2p
=

p−11p . �

Corollary 18.2 A portfolio of correlated assets whose returns have equal vari-
ances, i.e.,

� = σ 2

⎛

⎜
⎜
⎜
⎝

1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1

⎞

⎟
⎟
⎟
⎠

, − 1

p − 1
< ρ < 1

needs to be weighted equally:

copt = p−11p.

Proof � can be rewritten as � = σ 2{(1 − ρ)Ip + ρ1p1�
p }. The inverse is

�−1 = Ip

σ 2(1 − ρ)
− ρ1p1�

p

σ 2(1 − ρ){1 + (p − 1)ρ}
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since for a (p × p) matrix A of the form A = (a − b)Ip + b1p1�
p the inverse is

generally given by

A−1 = Ip

(a − b)
− b 1p1�

p

(a − b){a + (p − 1)b} ·

Hence

�−11p = 1p

σ 2(1 − ρ)
− ρ1p1�

p 1p

σ 2(1 − ρ){1 + (p − 1)ρ}

= [{1 + (p − 1)ρ} − ρp]1p

σ 2(1 − ρ){1 + (p − 1)ρ} = {1 − ρ}1p

σ 2(1 − ρ){1 + (p − 1)ρ}

= 1p

σ 2{1 + (p − 1)ρ}
which yields

1�
p �−11�

p = p

σ 2{1 + (p − 1)ρ}
and thus c = p−11p . �

Let us now consider assets with different variances. We will see that in this case
the weights are adjusted to the risk.

Corollary 18.3 A portfolio of uncorrelated assets with returns of different vari-
ances, i.e., � = diag(σ 2

1 , . . . , σ 2
p), has the following optimal weights

cj,opt = σ−2
j

∑p

l=1 σ−2
l

, j = 1, . . . , p.

Proof From �−1 = diag(σ−2
1 , . . . , σ−2

p ) we have 1�
p �−11�

p = ∑p

l=1 σ−2
l and

therefore the optimal weights are cj = σ−2
j /

∑p

l=1 σ−2
l . �

This result can be generalized for covariance matrices with block structures.

Corollary 18.4 A portfolio of assets with returns X ∼ (μ,�), where the covariance
matrix has the form:

� =

⎛

⎜
⎜
⎜
⎜
⎝

�1 0 . . . 0

0 �2
. . .

...
...

. . .
. . .

...

0 . . . 0 �r

⎞

⎟
⎟
⎟
⎟
⎠
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has optimal weights c = (c1, . . . , cr )
� given by

cj,opt = �−1
j 1

1��−1
j 1

, j = 1, . . . , r.

Summary
↪→ An efficient portfolio is one that keeps the risk minimal under the

constraint that a given mean return is achieved and that the weights
sum to 1, i.e., that minimizes L = c��c + λ1(μ − c�μ) + λ2(1 −
c�1p).

↪→ If a riskless asset does not exist, the variance efficient portfolio
weights are given by

c = �−11p

1�
p �−11p

.

↪→ If a riskless asset exists, the mean-variance efficient portfolio
weights are given by

c = μ�−1(μ − r1p)

μ��−1(μ − r1p)
.

↪→ The efficient weighting depends on the structure of the covariance
matrix �. Equal variances of the assets in the portfolio lead to
equal weights, different variances lead to weightings proportional
to these variances:

cj,opt = σ−2
j

∑p

l=1 σ−2
l

, j = 1, . . . , p.

18.3 Efficient Portfolios in Practice

We can now demonstrate the usefulness of this technique by applying our method to
the monthly market returns computed on the basis of transactions at the New York
stock market and the NASDAQ stock market between January 2000 to December
2009 (Berndt, 1990).

Example 18.2 Recall that we had shown the portfolio returns with uniform and
optimal weights in Figure 18.2. The covariance matrix of the returns of IBM and
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Forward Industries is

S =
(

0.0073 0.0023
0.0023 0.0454

)

.

Hence by (18.7) the optimal weighting is

ĉ = S−112

1�
2 S−112

= (0.8952,0.1048)�.

The effect of efficient weighting becomes even clearer when we expand the port-
folio to six assets. The covariance matrix for the returns of all six firms introduced
in Example 18.1 is

S = 10−3

⎛

⎜
⎜
⎜
⎜
⎝

7.3 6.2 3.1 2.3 −0.1 5.2
6.2 23.9 4.3 2.1 0.4 6.4
3.1 4.3 19.5 −0.9 1.1 3.7
2.3 2.1 −0.9 45.4 −2.1 0.8

−0.1 0.4 1.1 −2.1 2.4 −0.1
5.2 6.4 3.7 0.8 −0.1 14.7

⎞

⎟
⎟
⎟
⎟
⎠

.

Hence the optimal weighting is

ĉ = S−116

1�
6 S−116

= (0.1894,−0.0139,0.0094,0.0580,0.7112,0.0458)�.

As we can clearly see, the optimal weights are quite different from the equal
weights (cj = 1/6). The weights which were used are shown in text windows on the
right hand side of Figure 18.3.

This efficient weighting assumes stable covariances between the assets over time.
Changing covariance structure over time implies weights that depend on time as
well. This is part of a large body of literature on multivariate volatility models. For
a review refer to Franke et al. (2011).

Fig. 18.3 Portfolio of all six
assets, equal and efficient

weights MVAportfol
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Summary
↪→ Efficient portfolio weighting in practice consists of estimating the

covariances of the assets in the portfolio and then computing effi-
cient weights from this empirical covariance matrix.

↪→ Note that this efficient weighting assumes stable covariances be-
tween the assets over time.

18.4 The Capital Pricing Model (CAPM)

The CAPM considers the relation between a mean-variance efficient portfolio and
an asset uncorrelated with this portfolio. Let us denote this specific asset return by
y0. The riskless asset with constant return y0 ≡ r may be such an asset. Recall from
(18.4) the condition for a mean-variance efficient portfolio:

2�c − λ1μ − λ21p = 0.

In order to eliminate λ2, we can multiply (18.4) by c� to get:

2c��c − λ1μ̄ = λ2.

Plugging this into (18.4), we obtain:

2�c − λ1μ = 2c��c1p − λ1μ̄1p
(18.12)

μ = μ̄1p + 2

λ1
(�c − c��c1p).

For the asset that is uncorrelated with the portfolio, equation (18.12) can be written
as:

y0 = μ̄ − 2

λ1
c��c

since y0 = r is the mean return of this asset and is otherwise uncorrelated with the
risky assets. This yields:

λ1 = 2
c��c

μ̄ − y0
(18.13)

and if (18.13) is plugged into (18.12):

μ = μ̄1p + μ̄ − y0

c��c
(�c − c��c1p)

μ = y01p + �c

c��c
(μ̄ − y0) (18.14)

μ = y01p + β(μ̄ − y0)
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with

β
def= �c

c��c
.

The relation (18.14) holds if there exists any asset that is uncorrelated with the
mean-variance efficient portfolio c. The existence of a riskless asset is not a neces-
sary condition for deriving (18.14). However, for this special case we arrive at the
well-known expression

μ = r1p + β(μ̄ − r), (18.15)

which is known as the Capital Asset Pricing Model (CAPM), see Franke et al.
(2011). The beta factor β measures the relative performance with respect to riskless
assets or an index. It reflects the sensitivity of an asset with respect to the whole
market. The beta factor is close to 1 for most assets. A factor of 1.16, for example,
means that the asset reacts in relation to movements of the whole market (expressed
through an index like DAX or DOW JONES) 16 percents stronger than the index.
This is of course true for both positive and negative fluctuations of the whole mar-
ket.

Summary
↪→ The weights of the mean-variance efficient portfolio satisfy 2�c −

λ1μ − λ21p = 0.
↪→ In the CAPM the mean of X depends on the riskless asset and the

pre-specified mean μ as follows μ = r1p + β(μ − r).
↪→ The beta factor β measures the relative performance with respect

to riskless assets or an index and reflects the sensitivity of an asset
with respect to the whole market.

18.5 Exercises

Exercise 18.1 Prove that the inverse of A= (a − b)Ip + b1p1�
p is given by

A−1 = Ip

(a − b)
− b 1p1�

p

(a − b){a + (p − 1)b} ·

Exercise 18.2 The empirical covariance between the 120 returns of IBM and For-
ward Industries is 0.0023 (see Example 18.2). Test if the true covariance is zero.
Hint: Use Fisher’s Z-transform.
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Exercise 18.3 Explain why in both Figures 18.2 and 18.3 the portfolios have nega-
tive returns just before the end of the series, regardless of whether they are optimally
weighted or not! (What happened in in the mid 2007?)

Exercise 18.4 Apply the method used in Example 18.2 on the same data (Table B.5)
including also the Digital Equipment company. Obviously one of the weights is
negative. Is this an efficient weighting?

Exercise 18.5 In the CAPM the β value tells us about the performance of the port-
folio relative to the riskless asset. Calculate the β value for each single stock price
series relative to the “riskless” asset IBM.
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