Chapter 16
Multidimensional Scaling

One major aim of multivariate data analysis is dimension reduction. For data mea-
sured in Euclidean coordinates, Factor Analysis and Principal Component Analysis
are dominantly used tools. In many applied sciences data is recorded as ranked in-
formation. For example, in marketing, one may record “product A is better than
product B”. High-dimensional observations therefore often have mixed data charac-
teristics and contain relative information (w.r.t. a defined standard) rather than abso-
lute coordinates that would enable us to employ one of the multivariate techniques
presented so far.

Multidimensional scaling (MDS) is a method based on proximities between ob-
jects, subjects, or stimuli used to produce a spatial representation of these items.
Proximities express the similarity or dissimilarity between data objects. It is a di-
mension reduction technique since the aim is to find a set of points in low di-
mension (typically 2 dimensions) that reflect the relative configuration of the high-
dimensional data objects. The metric MDS is concerned with such a representation
in Euclidean coordinates. The desired projections are found via an appropriate spec-
tral decomposition of a distance matrix.

The metric MDS solution may result in projections of data objects that conflict
with the ranking of the original observations. The nonmetric MDS solves this prob-
lem by iterating between a monotizing algorithmic step and a least squares projec-
tion step. The examples presented in this chapter are based on reconstructing a map
from a distance matrix and on marketing concerns such as ranking of the outfit of
cars.

16.1 The Problem

Multidimensional scaling (MDS) is a mathematical tool that uses proximities be-
tween objects, subjects or stimuli to produce a spatial representation of these items.
The proximities are defined as any set of numbers that express the amount of sim-
ilarity or dissimilarity between pairs of objects, subjects or stimuli. In contrast to
the techniques considered so far, MDS does not start from the raw multivariate data
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matrix &, but from a (n x n) dissimilarity or distance matrix, D, with the elements
d;j and d;; respectively. Hence, the underlying dimensionality of the data under in-
vestigation is in general not known.

MDS is a data reduction technique because it is concerned with the problem of
finding a set of points in low dimension that represents the “configuration” of data
in high dimension. The “configuration” in high dimension is represented by the
distance or dissimilarity matrix D.

MDS-techniques are often used to understand how people perceive and evalu-
ate certain signals and information. For instance, political scientists use MDS tech-
niques to understand why political candidates are perceived by voters as being sim-
ilar or dissimilar. Psychologists use MDS to understand the perceptions and evalua-
tions of speech, colors and personality traits, among other things. Last but not least,
in marketing researchers use MDS techniques to shed light on the way consumers
evaluate brands and to assess the relationship between product attributes.

In short, the primary purpose of all MDS-techniques is to uncover structural re-
lations or patterns in the data and to represent it in a simple geometrical model or
picture. One of the aims is to determine the dimension of the model (the goal is a
low-dimensional, easily interpretable model) by finding the d-dimensional space in
which there is maximum correspondence between the observed proximities and the
distances between points measured on a metric scale.

Multidimensional scaling based on proximities is usually referred to as metric
MDS, whereas the more popular nonmetric MDS is used when the proximities are
measured on an ordinal scale.

Example 16.1 A good example of how MDS works is given by Dillon and Goldstein
(1984) (Page 108). Suppose one is confronted with a map of Germany and asked to
measure, with the use of a ruler and the scale of the map, some inter-city distances.
Admittedly this is quite an easy exercise. However, let us now reverse the problem:
One is given a set of distances, as in Table 16.1, and is asked to recreate the map
itself. This is a far more difficult exercise, though it can be solved with a ruler and
a compass in two dimensions. MDS is a method for solving this reverse problem
in arbitrary dimensions. In Figure 16.2 you can see the graphical representation
of the metric MDS solution to Table 16.1 after rotating and reflecting the points
representing the cities. Note that the distances given in Table 16.1 are road distances

Table 16.1 Inter-city distances

Berlin Dresden Hamburg Koblenz Munich Rostock
Berlin 0 214 279 610 596 237
Dresden 0 492 533 496 444
Hamburg 0 520 772 140
Koblenz 0 521 687
Munich 0 771

Rostock 0
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that in general do not correspond to Euclidean distances. In real-life applications,
the problems are exceedingly more complex: there are usually errors in the data and
the dimensionality is rarely known in advance.

Example 16.2 A further example is given in Table 16.2 where consumers noted their
impressions of the dissimilarity of certain cars. The dissimilarities in this table were
in fact computed from Table B.7 as Euclidean distances

8
Z(xl'z —xjn)?
I=1
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Table 16.2 Dissimilarities
Audi 100  BMW 5 Citroen AX  Ferrari

for cars
Audi 100 0 2.232 3.451 3.689
BMW 5 2.232 0 5.513 3.167
Citroen AX 3.451 5.513 0 6.202
Ferrari 3.689 3.167 6.202 0
Fig. 16.3 MDS solution on Metric MDS
the car data ‘@ ® ferrari
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MDS produces Figure 16.3 which shows a nonlinear relationship for all the cars
in the projection. This enables us to build a nonlinear (quadratic) index with the
Wartburg and the Trabant on the left and the Ferrari and the Jaguar on the right. We
can construct an order or ranking of the cars based on the subjective impression of
the consumers.

What does the ranking describe? The answer is given by Figure 16.4 which shows
the correlation between the MDS projection and the variables. Apparently, the first
MDS direction is highly correlated with service (—), value (—), design (—), sporti-
ness (—), safety (—) and price (4+). We can interpret the first direction as the price
direction since a bad mark in price (‘“high price”’) obviously corresponds with a good
mark, say, in sportiness (“‘very sportive”). The second MDS direction is highly posi-
tively correlated with practicability. We observe from this data an almost orthogonal
relationship between price and practicability.

In MDS a map is constructed in Euclidean space that corresponds to given
distances. Which solution can we expect? The solution is determined only up
to rotation, reflection and shifts. In general, if Py, ..., P, with coordinates x; =
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(xi1, ..., x,-p)T for i =1,...,n represents a MDS solution in p dimensions, then

yi = Ax; + b with an orthogonal matrix A and a shift vector b also represents a
MBDS solution. A comparison of Figures 16.1 and 16.2 illustrates this fact.

Solution methods that use only the rank order of the distances are termed non-
metric methods of MDS. Methods aimed at finding the points P; directly from a
distance matrix like the one in Table 16.2 are called metric methods.

Summary

< MDS is a set of techniques which use distances or dissimilarities to
project high-dimensional data into a low-dimensional space essen-
tial in understanding respondents perceptions and evaluations for
all sorts of items.

< MDS starts with a (n x n) proximity matrix D consisting of dis-
similarities §; ; or distances d;;.

< MDS is an explorative technique and focuses on data reduction.

< The MDS-solution is indeterminate with respect to rotation, reflec-
tion and shifts.

< The MDS-techniques are divided into metric MDS and nonmetric
MDS.
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16.2 Metric Multidimensional Scaling

Metric MDS begins with a (n x n) distance matrix D with elements d;; where i,
j =1,...,n. The objective of metric MDS is to find a configuration of points in p-
dimensional space from the distances between the points such that the coordinates
of the n points along the p dimensions yield a Euclidean distance matrix whose
elements are as close as possible to the elements of the given distance matrix D.

The Classical Solution

The classical solution is based on a distance matrix that is computed from a Eu-
clidean geometry.

Definition 16.1 A (n x n) distance matrix D = (d;;) is Euclidean if for some points
Xlyeooy Xy € Rp;dizj = (x; —xj)T(x,- —Xj).

The following result tells us whether a distance matrix is Euclidean or not.

Theorem 16.1 Define A= (a;j),a;j = —%dizj and B = HAH where H is the cen-
tering matrix. D is Euclidean if and only if B is positive semidefinite. If D is the
distance matrix of a data matrix X, then B ="HXX "H. B is called the inner prod-
uct matrix.

Recovery of Coordinates

The task of MDS is to find the original Euclidean coordinates from a given distance
matrix. Let the coordinates of n points in a p dimensional Euclidean space be given
by x; (i =1,...,n) where x; = (xi1, ..., %;p) . Call X = (x1,...,x,)" the coor-
dinate matrix and assume X = (. The Euclidean distance between the i-th and j-th
points is given by:

P
d} = Z(xik —xji)2 (16.1)
k=1
The general b;; term of 13 is given by:
P
biJ'Zink)Cjk =xl-TXj. (16.2)
k=1

It is possible to derive B from the known squared distances d;;, and then from B the
unknown coordinates.

dlzl :xiTx,- +x;rxj —2xl~ij
=bji +bjj —2b;;. (16.3)
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Centering of the coordinate matrix X implies that ) ;_, b;; = 0. Summing (16.3)
over i, over j, and over i and j, we find:

1 & 1 &
2
i=1 i=1
1 & 1
;Zdizjzb,'i-l—;ijj (16.4)
j=1 j=1

1 n n 2 n
2 _ .
522 =" bii
i=1j=1 i=1
Solving (16.3) and (16.4) gives:
1
bij = —E(d,?j —d}, —d}; +d2,). (16.5)

With a;j = —3d};, and

1 n
die =~ Zaij
j=1
1 n
dej = ;Zaij (16.6)
i=1

1 n n
(oo = I’l_2 Z Zaij

i=1 j=I

we get:
bij =ajj — Gje — Qqj + Uee. (16.7)
Define the matrix A as (a;;), and observe that:
B=HAHN. (16.8)
The inner product matrix B can be expressed as:
B=xxT, (16.9)
where X = (x1, ..., x,) " is the (n x p) matrix of coordinates. The rank of B is then
rank(B) = rank(X X' ") = rank(X) = p. (16.10)

As required in Theorem 16.1 the matrix B is symmetric, positive semidefinite and
of rank p, and hence it has p non-negative eigenvalues and n — p zero eigenvalues.
B can now be written as:

B=TAT" (16.11)
where A =diag(A1, ..., A,), the diagonal matrix of the eigenvalues of B, and I' =
(1, ..., ¥p), the matrix of corresponding eigenvectors. Hence the coordinate matrix

X containing the point configuration in R” is given by:

X =TAZ. (16.12)
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How Many Dimensions?

The number of desired dimensions is small in order to provide practical interpreta-
tions, and is given by the rank of B or the number of nonzero eigenvalues A;. If B is
positive semidefinite, then the number of nonzero eigenvalues gives the number of
eigenvalues required for representing the distances d;;.

The proportion of variation explained by p dimensions is given by

p
Ziz 1 A
1.
Dot A
It can be used for the choice of p. If B is not positive semidefinite we can mod-
ify (16.13) to

(16.13)

Zf:l Ai

> (“positive eigenvalues™)

(16.14)

In practice the eigenvalues A; are almost always unequal to zero. To be able to
represent the objects in a space with dimensions as small as possible we may modify
the distance matrix to:

D¥ = di*j (16.15)
with
0; i=j
*® )
d"f_{di.,-—i-ezO; oy (16.16)
where e is determined such that the inner product matrix B becomes positive
semidefinite with a small rank.

Similarities

In some situations we do not start with distances but with similarities. The standard
transformation (see Chapter 12) from a similarity matrix C to a distance matrix D
is:

dij = (cii — 2¢ij + ij)%' (16.17)

Theorem 16.2 IfC < 0, then the distance matrix D defined by (16.17) is Euclidean
with centered inner product matrix B=HCH.

Relation to Factorial Analysis

Suppose that the (n x p) data matrix X is centered so that X' T X’ equals a multiple
of the covariance matrix nS. Suppose that the p eigenvalues A1, ..., A, of nS are
distinct and non zero. Using the duality Theorem 9.4 of factorial analysis we see that
M, ..., Ap are also eigenvalues of XY X' "= B when D is the Euclidean distance ma-
trix between the rows of X'. The k-dimensional solution to the metric MDS problem
is thus given by the & first principal components of X'.
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Optimality Properties of the Classical MDS Solution

Let X be a (n x p) data matrix with some inter-point distance matrix D. The ob-
jective of MDS is thus to find &7, a representation of X in a lower dimensional
Euclidean space R whose inter-point distance matrix Dj is not far from D. Let
L= (L1,Lr)bea (px p)orthogonal matrix where L is (p x k). X1 = XL rep-
resents a projection of X on the column space of L;; in other words, X; may be
viewed as a fitted configuration of X in R¥. A measure of discrepancy between D
— (DY 5o o
and Dy = (dij ) is given by

¢= Z(d,j—d,‘,” : (16.18)

i,j=1

Theorem 16.3 Among all projections X L1 of X onto k-dimensional subspaces
of R? the quantity ¢ in (16.18) is minimized when X is projected onto its first k
principal factors.

We see therefore that the metric MDS is identical to principal factor analysis as
we have defined it in Chapter 9.

Summary

<> Metric MDS starts with a distance matrix D.

<> The aim of metric MDS is to construct a map in Euclidean space
that corresponds to the given distances.
<> A practical algorithm is given as:

1. start with distances d;;

2. define A= —3d7

3. put B= (al] alo Qej + (ee)

4. find the eigenvalues Aq,...,A, and the associated eigenvec-
tors 1, ..., yp where the eigenvectors are normalized so that
ViTVi =1

5. Choose an appropriate number of dimensions p (ideally p = 2).

6. The coordinates of the n points in the Euclidean space are given
byx,j_y,j forz—l wnand j=1,...,p.

<> Metric MDS is identical to principal components analysis.
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16.3 Nonmetric Multidimensional Scaling

The object of nonmetric MDS, as well as of metric MDS, is to find the coordinates
of the points in p-dimensional space, so that there is a good agreement between the
observed proximities and the inter-point distances. The development of nonmetric
MDS was motivated by two main weaknesses in the metric MDS (Fahrmeir and
Hamerle, 1984, p. 679):

1. the definition of an explicit functional connection between dissimilarities and
distances in order to derive distances out of given dissimilarities, and

2. the restriction to Euclidean geometry in order to determine the object configura-
tions.

The idea of a nonmetric MDS is to demand a less rigid relationship between the
dissimilarities and the distances. Suppose that an unknown monotonic increasing
function f,

dij = f (i), (16.19)

is used to generate a set of distances d;; as a function of given dissimilarities J;;.
Here f has the property that if 6;; < &4, then f(5;;) < f(dr5). The scaling is based
on the rank order of the dissimilarities. Nonmetric MDS is therefore ordinal in char-
acter.

The most common approach used to determine the elements d;; and to obtain
the coordinates of the objects x1, x3, ..., x, given only rank order information is an
iterative process commonly referred to as the Shepard-Kruskal algorithm.

Shepard-Kruskal Algorithm

In a first step, called the initial phase, we calculate Euclidean distances di((.)) from an
arbitrarily chosen initial configuration Xy in dimension p*, provided that all objects
have different coordinates. One might use metric MDS to obtain these initial co-

ordinates. The second step or nonmetric phase determines disparities c?l.(]o) from the
distances d l.(/(.)) by constructing a monotone regression relationship between the dl.(j(.)) ’s
and §;;’s, under the requirement that if §;; < J,, then c?l.(;)) < ﬁ,(g). This is called the
weak monotonicity requirement. To obtain the disparities c?i(p), a useful approxi-
mation method is the pool-adjacent violators (PAV) algorithm (see Figure 16.5).
Let

(i1, j1) > (2, j2) > - -+ > (i, ji) (16.20)
be the rank order of dissimilarities of the k =n(n — 1)/2 pairs of objects. This cor-
responds to the points in Figure 16.6. The PAV algorithm is described as follows:

“beginning with the lowest ranked value of §;;, the adjacent dl.((.)) values are com-
pared for each §;; to determine if they are monotonically related to the §;;’s. When-

ever a block of consecutive values of d,.(?) are encountered that violate the required
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monotonicity property the di(](.)) values are averaged together with the most recent

non-violator di((.)) value to obtain an estimator. Eventually this value is assigned to
all points in the particular block”.

In a third step, called the metric phase, the spatial configuration of &) is altered to
obtain X. From X the new distances di(jl) can be obtained which are more closely

related to the disparities ‘;'i(/(‘)) from step two.

Example 16.3 Consider a small example with 4 objects based on the car marks
data set, see Table 16.3. Our aim is to find a representation with p* =2 via MDS.
Suppose that we choose as an initial configuration of Xy the coordinates given in
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Table 16.3 Dissimilarities

8;j for car marks J 1 2 3 4
i Mercedes Jaguar Ferrari VW
1 Mercedes -
2 Jaguar 3 -
3 Ferrari 2 1 -
4 \AV 5 4 6 -
Table 16.4 Initial i
coordinates for MDS ! Xi1 Xi2
1 Mercedes 2
2 Jaguar 7
3 Ferrari 3
4 VW 10 4
Table 16.5 Ranks and .
distances LJ djj rank(d;j) dij
1,2 5.1 3 3
1,3 2.2 1 2
1,4 7.3 4 5
2,3 4.1 2 1
2,4 8.5 5 4
34 9.1 6 6

Table 16.4. The corresponding distances d;; = \/ (xi —x j)T(xi — x;) are calculated

in Table 16.5.

A plot of the dissimilarities of Table 16.5 against the distance yields Figure 16.8.
This relation is not satisfactory since the ranking of the §;; did not result in a mono-
tone relation of the corresponding distances d;;. We apply therefore the PAV algo-
rithm.

The first violator of monotonicity is the second point (1, 3). Therefore we average
the distances d13 and dp3 to obtain the disparities

A A diz+dyy 22+44.1
diy=dp3 = — R

Applying the same procedure to (2,4) and (1,4) we obtain dyy =dis =79. The
plot of §;; versus the disparities d; j represents a monotone regression relationship.

In the initial configuration (Figure 16.7), the third point (Ferrari) could be moved
so that the distance to object 2 (Jaguar) is reduced. This procedure however also
alters the distance between objects 3 and 4. Care should be given when establishing
a monotone relation between §;; and d;;.
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In order to assess how well the derived configuration fits the given dissimilarities
Kruskal suggests a measure called STRESSI1 that is given by

STRESS1 =

Yo (dij —dij)?

2
Zi<j dij

An alternative stress measure is given by

STRESS2 =

iz (dij—dij)?

Bl—

Yo j(dij—d)?

where d denotes the average distance.

(16.21)

(16.22)
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Table 16.6 STRESS calculations for car marks example

@ J) 3ij dij dij (d;j —tij)2 d,-zj (dij —d)?
2,3) 1 4.1 3.15 0.9 16.8 3.8
(1,3) 2 2.2 3.15 0.9 4.8 14.8
(1,2) 3 5.1 5.1 0 26.0 0.9
2,4) 4 8.5 7.9 0.4 72.3 6.0
(1,4) 5 7.3 7.9 0.4 53.3 1.6
3,4) 6 9.1 9.1 0 82.8 9.3
) 36.3 2.6 256.0 36.4

Example 16.4 Table 16.6 presents the STRESS calculations for the car example.
The average distance is d = 36.4/6 = 6.1. The corresponding STRESS measures
are:

STRESS1 =/2.6/256 =0.1
STRESS2 = /2.6/36.4 =0.27.

The goal is to find a point configuration that balances the effects STRESS and
non monotonicity. This is achieved by an iterative procedure. More precisely, one
defines a new position of object i relative to object j by

d::
xff Y =it (1 - dl) (e —xi), I=1,...,p" (16.23)
ij
Here « denotes the step width of the iteration.
By (16.23) the configuration of object i is improved relative to object j. In order
to obtain an overall improvement relative to all remaining points one uses:

« dij
xf,VEW=x,»,+—n_ > (1—%)(xﬂ—xﬂ), I=1,...,p"  (16.24)

ij

The choice of step width « is crucial. Kruskal proposes a starting value of o« = 0.2.
The iteration is continued by a numerical approximation procedure, such as steepest
descent or the Newton-Raphson procedure.

In a fourth step, the evaluation phase, the STRESS measure is used to evaluate
whether or not its change as a result of the last iteration is sufficiently small that
the procedure is terminated. At this stage the optimal fit has been obtained for a
given dimension. Hence, the whole procedure needs to be carried out for several
dimensions.

Example 16.5 Let us compute the new point configuration for i = 3 (Ferrari). The
initial coordinates from Table 16.4 are

X31 = 1 and X32 = 3.
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Applying (16.24) yields (for « = 3):

NEW 3 - 623./‘

j=1,j#3 3

_1 1 3.15 3_1 q 3.15 5_1 ] 9.1 10— 1
= +< _2._2>( - )+< —H)( - )+( —a)( -1

=1-0.86+0.23+40
=0.37.

Similarly we obtain xgszW =4.36.

To find the appropriate number of dimensions, p*, a plot of the minimum
STRESS value as a function of the dimensionality is made. One possible criterion
in selecting the appropriate dimensionality is to look for an elbow in the plot. A rule
of thumb that can be used to decide if a STRESS value is sufficiently small or not is
provided by Kruskal:

S >20%, poor; S =10%, fair; S <5%, good; S =0, perfect. (16.25)

Summary

<> Nonmetric MDS is only based on the rank order of dissimilarities.

<> The object of nonmetric MDS is to create a spatial representation
of the objects with low dimensionality.
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Summary (continued)
< A practical algorithm is given as:

Choose an initial configuration.

Find d;; from the configuration.

Fit d; j» the disparities, by the PAV algorithm.

Find a new configuration &}, 1 by using the steepest descent.
Go to 2.

Nk

16.4 Exercises

Exercise 16.1 Apply the MDS method to the Swiss bank note data. What do you
expect to see?

Exercise 16.2 Using (16.6), show that (16.7) can be written in the form (16.2).

Exercise 16.3 Show that

1. bll_a.. 2al.9bij:aij_aio_aoj+aoo;i?éj
2. B= Zl | XiX;
3. Y k=2 bll:ﬁ

i, j=1%ij

Exercise 16.4 Redo a careful analysis of the car marks data based on the following
dissimilarity matrix:

Jj 1 2 3 4
i Nissan Kia BMW Audi
1 Nissan -
2 Kia 2
3 BMW 4 6 -
4 Audi 3 1 -

Exercise 16.5 Apply the MDS method to the U.S. health data. Is the result in ac-
cordance with the geographic location of the U.S. states?

Exercise 16.6 Redo Exercise 16.5 with the U.S. crime data.

Exercise 16.7 Perform the MDS analysis on the Athletic Records data in Ap-
pendix B.18. Can you see which countries are “close to each other”?
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