
Chapter 14
Correspondence Analysis

Correspondence analysis provides tools for analyzing the associations between rows
and columns of contingency tables. A contingency table is a two-entry frequency
table where the joint frequencies of two qualitative variables are reported. For in-
stance a (2 × 2) table could be formed by observing from a sample of n individuals
two qualitative variables: the individual’s sex and whether the individual smokes.
The table reports the observed joint frequencies. In general (n × p) tables may be
considered.

The main idea of correspondence analysis is to develop simple indices that will
show the relations between the row and the columns categories. These indices will
tell us simultaneously which column categories have more weight in a row category
and vice-versa. Correspondence analysis is also related to the issue of reducing the
dimension of the table, similar to principal component analysis in Chapter 10, and
to the issue of decomposing the table into its factors as discussed in Chapter 9. The
idea is to extract the indices in decreasing order of importance so that the main
information of the table can be summarized in spaces with smaller dimensions. For
instance, if only two factors (indices) are used, the results can be shown in two-
dimensional graphs, showing the relationship between the rows and the columns of
the table.

Section 14.1 defines the basic notation and motivates the approach and Sec-
tion 14.2 gives the basic theory. The indices will be used to describe the χ2 statistic
measuring the associations in the table. Several examples in Section 14.3 show how
to provide and interpret, in practice, the two-dimensional graphs displaying the re-
lationship between the rows and the columns of a contingency table.

14.1 Motivation

The aim of correspondence analysis is to develop simple indices that show relations
between the row and columns of a contingency tables. Contingency tables are very
useful to describe the association between two variables in very general situations.
The two variables can be qualitative (nominal), in which case they are also referred
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to as categorical variables. Each row and each column in the table represents one
category of the corresponding variable. The entry xij in the table X (with dimension
(n × p)) is the number of observations in a sample which simultaneously fall in the
i-th row category and the j -th column category, for i = 1, . . . , n and j = 1, . . . , p.
Sometimes a “category” of a nominal variable is also called a “modality” of the
variable.

The variables of interest can also be discrete quantitative variables, such as the
number of family members or the number of accidents an insurance company had
to cover during one year, etc. Here, each possible value that the variable can have
defines a row or a column category. Continuous variables may be taken into account
by defining the categories in terms of intervals or classes of values which the variable
can take on. Thus contingency tables can be used in many situations, implying that
correspondence analysis is a very useful tool in many applications.

The graphical relationships between the rows and the columns of the table X
that result from correspondence analysis are based on the idea of representing all
the row and column categories and interpreting the relative positions of the points
in terms of the weights corresponding to the column and the row. This is achieved
by deriving a system of simple indices providing the coordinates of each row and
each column. These row and column coordinates are simultaneously represented in
the same graph. It is then clear to see which column categories are more important
in the row categories of the table (and the other way around).

As was already eluded to, the construction of the indices is based on an idea sim-
ilar to that of PCA. Using PCA the total variance was partitioned into independent
contributions stemming from the principal components. Correspondence analysis,
on the other hand, decomposes a measure of association, typically the total χ2 value
used in testing independence, rather than decomposing the total variance.

Example 14.1 The French “baccalauréat” frequencies have been classified into re-
gions and different baccalauréat categories, see Appendix, Table B.8. Altogether
n = 202100 baccalauréats were observed. The joint frequency of the region Ile-de-
France and the modality Philosophy, for example, is 9724. That is, 9724 baccalau-
réats were in Ile-de-France and the category Philosophy.

The question is whether certain regions prefer certain baccalauréat types. If we
consider, for instance, the region Lorraine, we have the following percentages:

A B C D E F G H

20.5 7.6 15.3 19.6 3.4 14.5 18.9 0.2

The total percentages of the different modalities of the variable baccalauréat are
as follows:

A B C D E F G H

22.6 10.7 16.2 22.8 2.6 9.7 15.2 0.2
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One might argue that the region Lorraine seems to prefer the modalities E, F,
G and dislike the specializations A, B, C, D relative to the overall frequency of
baccalauréat type.

In correspondence analysis we try to develop an index for the regions so that
this over- or underrepresentation can be measured in just one single number. Simul-
taneously we try to weight the regions so that we can see in which region certain
baccalauréat types are preferred.

Example 14.2 Consider n types of companies and p locations of these companies.
Is there a certain type of company that prefers a certain location? Or is there a
location index that corresponds to a certain type of company?

Assume that n = 3, p = 3, and that the frequencies are as follows:

X =
⎛
⎝

4 0 2
0 1 1
1 1 4

⎞
⎠

← Finance

← Energy

← HiTech

↑ Frankfurt

↑ Berlin

↑ Munich

The frequencies imply that four type 3 companies (HiTech) are in location 3 (Mu-
nich), and so on. Suppose there is a (company) weight vector r = (r1, . . . , rn)

� such
that a location index sj could be defined as

sj = c

n∑
i=1

ri
xij

x•j
, (14.1)

where x•j = ∑n
i=1 xij is the number of companies in location j and c is a constant.

s1, for example, would give the average weighted frequency (by r) of companies in
location 1 (Frankfurt).

Given a location weight vector s∗ = (s∗
1 , . . . , s∗

p)�, we can define a company
index in the same way as

r∗
i = c∗

p∑
j=1

s∗
j

xij

xi•
, (14.2)

where c∗ is a constant and xi• = ∑p

j=1 xij is the sum of the i-th row of X , i.e., the
number of type i companies. Thus r∗

2 , for example, would give the average weighted
frequency (by s∗) of energy companies.

If (14.1) and (14.2) can be solved simultaneously for a “row weight” vector
r = (r1, . . . , rn)

� and a “column weight” vector s = (s1, . . . , sp)�, we may rep-
resent each row category by ri , i = 1, . . . , n and each column category by sj ,
j = 1, . . . , p in a one-dimensional graph. If in this graph ri and sj are in close
proximity (far from the origin), this would indicate that the i-th row category has
an important conditional frequency xij /x•j in (14.1) and that the j -th column cate-
gory has an important conditional frequency xij /xi• in (14.2). This would indicate a
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positive association between the i-th row and the j -th column. A similar line of ar-
gument could be used if ri was very far away from sj (and far from the origin). This
would indicate a small conditional frequency contribution, or a negative association
between the i-th row and the j -th column.

Summary
↪→ The aim of correspondence analysis is to develop simple indices

that show relations among qualitative variables in a contingency
table.

↪→ The joint representation of the indices reveals relations among the
variables.

14.2 Chi-square Decomposition

An alternative way of measuring the association between the row and column cat-
egories is a decomposition of the value of the χ2-test statistic. The well known
χ2-test for independence in a two-dimensional contingency table consists of two
steps. First the expected value of each cell of the table is estimated under the hy-
pothesis of independence. Second, the corresponding observed values are compared
to the expected values using the statistic

t =
n∑

i=1

p∑
j=1

(xij − Eij )
2/Eij , (14.3)

where xij is the observed frequency in cell (i, j) and Eij is the corresponding esti-
mated expected value under the assumption of independence, i.e.,

Eij = xi• x•j
x••

. (14.4)

Here x•• = ∑n
i=1 xi•. Under the hypothesis of independence, t has a χ2

(n−1)(p−1)
distribution. In the industrial location example introduced above the value of t =
6.26 is almost significant at the 5% level. It is therefore worth investigating the
special reasons for departure from independence.

The method of χ2 decomposition consists of finding the SVD of the matrix
C (n × p) with elements

cij = (xij − Eij )/E
1/2
ij . (14.5)

The elements cij may be viewed as measuring the (weighted) departure between the
observed xij and the theoretical values Eij under independence. This leads to the
factorial tools of Chapter 9 which describe the rows and the columns of C.
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For simplification define the matrics A (n × n) and B (p × p) as

A = diag(xi•) and B = diag(x•j ). (14.6)

These matrices provide the marginal row frequencies a(n × 1) and the marginal
column frequencies b(p × 1):

a =A1n and b = B1p. (14.7)

It is easy to verify that

C
√

b = 0 and C�√
a = 0, (14.8)

where the square root of the vector is taken element by element and R = rank(C) ≤
min{(n − 1), (p − 1)}. From (9.14) of Chapter 9, the SVD of C yields

C = ����, (14.9)

where � contains the eigenvectors of CC�, � the eigenvectors of C�C and � =
diag(λ

1/2
1 , . . . , λ

1/2
R ) with λ1 ≥ λ2 ≥ · · · ≥ λR (the eigenvalues of CC�). Equa-

tion (14.9) implies that

cij =
R∑

k=1

λ
1/2
k γikδjk. (14.10)

Note that (14.3) can be rewritten as

tr(CC�) =
R∑

k=1

λk =
n∑

i=1

p∑
j=1

c2
ij = t. (14.11)

This relation shows that the SVD of C decomposes the total χ2 value rather than,
as in Chapter 9, the total variance.

The duality relations between the row and the column space (9.11) are now for
k = 1, . . . ,R given by

δk = 1√
λk

C�γk,

γk = 1√
λk

Cδk.

(14.12)

The projections of the rows and the columns of C are given by

Cδk = √
λkγk,

C�γk = √
λkδk.

(14.13)

Note that the eigenvectors satisfy

δ�
k

√
b = 0, γ �

k

√
a = 0. (14.14)

From (14.10) we see that the eigenvectors δk and γk are the objects of interest when
analyzing the correspondence between the rows and the columns. Suppose that the
first eigenvalue in (14.10) is dominant so that

cij ≈ λ
1/2
1 γi1δj1. (14.15)
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In this case when the coordinates γi1 and δj1 are both large (with the same sign)
relative to the other coordinates, then cij will be large as well, indicating a positive
association between the i-th row and the j -th column category of the contingency
table. If γi1 and δj1 were both large with opposite signs, then there would be a
negative association between the i-th row and j -th column.

In many applications, the first two eigenvalues, λ1 and λ2, dominate and the
percentage of the total χ2 explained by the eigenvectors γ1 and γ2 and δ1 and δ2

is large. In this case (14.13) and (γ1, γ2) can be used to obtain a graphical display
of the n rows of the table ((δ1, δ2) play a similar role for the p columns of the
table). The interpretation of the proximity between row and column points will be
interpreted as above with respect to (14.10).

In correspondence analysis, we use the projections of weighted rows of C and
the projections of weighted columns of C for graphical displays. Let rk(n × 1) be
the projections of A−1/2C on δk and sk(p × 1) be the projections of B−1/2C� on γk

(k = 1, . . . ,R):

rk = A−1/2Cδk = √
λkA−1/2γk,

sk = B−1/2C�γk = √
λkB−1/2δk.

(14.16)

These vectors have the property that

r�
k a = 0,

s�
k b = 0.

(14.17)

The obtained projections on each axis k = 1, . . . ,R are centered at zero with the
natural weights given by a (the marginal frequencies of the rows of X ) for the row
coordinates rk and by b (the marginal frequencies of the columns of X ) for the
column coordinates sk (compare this to expression (14.14)). As a result, the origin
is the center of gravity for all of the representations. We also know from (14.16) and
the SVD of C that

r�
k Ark = λk,

s�
k Bsk = λk.

(14.18)

From the duality relation between δk and γk (see (14.12)) we obtain

rk = 1√
λk

A−1/2CB1/2sk,

sk = 1√
λk

B−1/2C�A1/2rk,

(14.19)

which can be simplified to

rk =
√

x••
λk

A−1X sk,

sk =
√

x••
λk

B−1X�rk.

(14.20)
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These vectors satisfy the relations (14.1) and (14.2) for each k = 1, . . . ,R simulta-
neously.

As in Chapter 9, the vectors rk and sk are referred to as factors (row factor and
column factor respectively). They have the following means and variances:

rk = 1

x••
r�
k a = 0,

sk = 1

x••
s�
k b = 0,

(14.21)

and

Var(rk) = 1

x••

n∑
i=1

xi•r2
ki = r�

k Ark

x••
= λk

x••
,

Var(sk) = 1

x••

p∑
j=1

x•j s2
kj = s�

k Bsk

x••
= λk

x••
.

(14.22)

Hence, λk/
∑j

k=1 λj , which is the part of the k-th factor in the decomposition of the
χ2 statistic t , may also be interpreted as the proportion of the variance explained by
the factor k. The proportions

Ca(i, rk) = xi•r2
ki

λk

, for i = 1, . . . , n, k = 1, . . . ,R (14.23)

are called the absolute contributions of row i to the variance of the factor rk . They
show which row categories are most important in the dispersion of the k-th row
factors. Similarly, the proportions

Ca(j, sk) = x•j s2
kj

λk

, for j = 1, . . . , p, k = 1, . . . ,R (14.24)

are called the absolute contributions of column j to the variance of the column
factor sk . These absolute contributions may help to interpret the graph obtained by
correspondence analysis.

14.3 Correspondence Analysis in Practice

The graphical representations on the axes k = 1,2, . . . ,R of the n rows and of the p

columns of X are provided by the elements of rk and sk . Typically, two-dimensional
displays are often satisfactory if the cumulated percentage of variance explained by
the first two factors, 
2 = λ1+λ2∑R

k=1 λk

, is sufficiently large.

The interpretation of the graphs may be summarized as follows:

• The proximity of two rows (two columns) indicates a similar profile in these two
rows (two columns), where “profile” referrs to the conditional frequency distri-
bution of a row (column); those two rows (columns) are almost proportional. The
opposite interpretation applies when the two rows (two columns) are far apart.
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• The proximity of a particular row to a particular column indicates that this row
(column) has a particularly important weight in this column (row). In contrast to
this, a row that is quite distant from a particular column indicates that there are
almost no observations in this column for this row (and vice versa). Of course, as
mentioned above, these conclusions are particularly true when the points are far
away from 0.

• The origin is the average of the factors rk and sk . Hence, a particular point (row
or column) projected close to the origin indicates an average profile.

• The absolute contributions are used to evaluate the weight of each row (column)
in the variances of the factors.

• All the interpretations outlined above must be carried out in view of the quality of
the graphical representation which is evaluated, as in PCA, using the cumulated
percentage of variance.

Remark 14.1 Note that correspondence analysis can also be applied to more general
(n × p) tables X which in a “strict sense” are not contingency tables.

As long as statistical (or natural) meaning can be given to sums over rows and
columns, Remark 14.1 holds. This implies, in particular, that all of the variables
are measured in the same units. In that case, x•• constitutes the total frequency of
the observed phenomenon, and is shared between individuals (n rows) and between
variables (p columns). Representations of the rows and columns of X , rk and sk ,
have the basic property (14.19) and show which variables have important weights
for each individual and vice versa. This type of analysis is used as an alternative to
PCA. PCA is mainly concerned with covariances and correlations, whereas corre-
spondence analysis analyzes a more general kind of association. (See Exercises 14.3
and 14.11.)

Example 14.3 A survey of Belgium citizens who regularly read a newspaper was
conducted in the 1980’s. They were asked where they lived. The possible an-
swers were 10 regions: 7 provinces (Antwerp, Western Flanders, Eastern Flanders,
Hainant, Liège, Limbourg, Luxembourg) and 3 regions around Brussels (Flemish-
Brabant, Wallon-Brabant and the city of Brussels). They were also asked what kind
of newspapers they read on a regular basis. There were 15 possible answers split up
into 3 classes: Flemish newspapers (label begins with the letter v), French newspa-
pers (label begins with f ) and both languages together (label begins with b). The
data set is given in Table B.9. The eigenvalues of the factorial correspondence anal-
ysis are given in Table 14.1.

Two-dimensional representations will be quite satisfactory since the first two
eigenvalues account for 81% of the variance. Figure 14.1 shows the projections of
the rows (the 15 newspapers) and of the columns (the 10 regions).

As expected, there is a high association between the regions and the type of news-
papers which is read. In particular, vb (Gazet van Antwerp) is almost exclusively
read in the province of Antwerp (this is an extreme point in the graph). The points
on the left all belong to Flanders, whereas those on the right all belong to Wallonia.
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Table 14.1 Eigenvalues and
percentages of the variance
(Example 14.3)

λj Percentage
of variance

Cumulated
percentage

183.40 0.653 0.653

43.75 0.156 0.809

25.21 0.090 0.898

11.74 0.042 0.940

8.04 0.029 0.969

4.68 0.017 0.985

2.13 0.008 0.993

1.20 0.004 0.997

0.82 0.003 1.000

0.00 0.000 1.000

Fig. 14.1 Projection of rows (the 15 newspapers) and columns (the 10 regions) MVAcor-
rjourn

Notice that the Wallon-Brabant and the Flemish-Brabant are not far from Brussels.
Brussels is close to the center (average) and also close to the bilingual newspapers.
It is shifted a little to the right of the origin due to the majority of French speaking
people in the area.

The absolute contributions of the first 3 factors are listed in Tables 14.2 and 14.3.
The row factors rk are in Table 14.2 and the column factors sk are in Table 14.3.
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Table 14.2 Absolute
contributions of row
factors rk

Ca(i, r1) Ca(i, r2) Ca(i, r3)

va 0.0563 0.0008 0.0036

vb 0.1555 0.5567 0.0067

vc 0.0244 0.1179 0.0266

vd 0.1352 0.0952 0.0164

ve 0.0253 0.1193 0.0013

ff 0.0314 0.0183 0.0597

fg 0.0585 0.0162 0.0122

fh 0.1086 0.0024 0.0656

fi 0.1001 0.0024 0.6376

bj 0.0029 0.0055 0.0187

bk 0.0236 0.0278 0.0237

bl 0.0006 0.0090 0.0064

vm 0.1000 0.0038 0.0047

fn 0.0966 0.0059 0.0269

f0 0.0810 0.0188 0.0899

Total 1.0000 1.0000 1.0000

Table 14.3 Absolute
contributions of column
factors sk

Ca(j, s1) Ca(j, s2) Ca(j, s3)

brw 0.0887 0.0210 0.2860

bxl 0.1259 0.0010 0.0960

anv 0.2999 0.4349 0.0029

brf 0.0064 0.2370 0.0090

foc 0.0729 0.1409 0.0033

for 0.0998 0.0023 0.0079

hai 0.1046 0.0012 0.3141

lig 0.1168 0.0355 0.1025

lim 0.0562 0.1162 0.0027

lux 0.0288 0.0101 0.1761

Total 1.0000 1.0000 1.0000

They show, for instance, the important role of Antwerp and the newspaper vb in
determining the variance of both factors. Clearly, the first axis expresses linguistic
differences between the 3 parts of Belgium. The second axis shows a larger disper-
sion between the Flemish region than the French speaking regions. Note also that the
3-rd axis shows an important role of the category “fi” (other French newspapers)
with the Wallon-Brabant “brw” and the Hainant “hai” showing the most important
contributions. The coordinate of “fi” on this axis is negative (not shown here) so
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Fig. 14.2 Correspondence analysis including Corsica MVAcorrbac

Table 14.4 Eigenvalues and
percentages of explained
variance (including Corsica)

Eigenvalues λ Percentage
of variances

Cumulated
percentage

2436.2 0.5605 0.561

1052.4 0.2421 0.803

341.8 0.0786 0.881

229.5 0.0528 0.934

152.2 0.0350 0.969

109.1 0.0251 0.994

25.0 0.0058 1.000

0.0 0.0000 1.000

are the coordinates of “brw” and “hai”. Apparently, these two regions also seem to
feature a greater proportion of readers of more local newspapers.

Example 14.4 Applying correspondence analysis to the French baccalauréat data
(Table B.8) leads to Figure 14.2. Excluding Corsica we obtain Figure 14.3. The
different modalities are labeled A, . . . , H and the regions are labeled ILDF, . . . ,
CORS. The results of the correspondence analysis are given in Table 14.4 and Fig-
ure 14.2.

The first two factors explain 80% of the total variance. It is clear from Fig-
ure 14.2 that Corsica (in the upper left) is an outlier. The analysis is therefore
redone without Corsica and the results are given in Table 14.5 and Figure 14.3.
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Fig. 14.3 Correspondence analysis excluding Corsica MVAcorrbac

Table 14.5 Eigenvalues and
percentages of explained
variance (excluding Corsica)

Eigenvalues λ Percentage
of variances

Cumulated
percentage

2408.6 0.5874 0.587

909.5 0.2218 0.809

318.5 0.0766 0.887

195.9 0.0478 0.935

149.3 0.0304 0.971

96.1 0.0234 0.994

22.8 0.0056 1.000

0.0 0.0000 1.000

Since Corsica has such a small weight in the analysis, the results have not changed
much.

The projections on the first three axes, along with their absolute contribution
to the variance of the axis, are summarized in Table 14.6 for the regions and in
Table 14.7 for baccalauréats.

The interpretation of the results may be summarized as follows. Table 14.7 shows
that the baccalauréats B on one side and F on the other side are most strongly re-
sponsible for the variation on the first axis. The second axis mostly characterizes
an opposition between baccalauréats A and C. Regarding the regions, Ile de France
plays an important role on each axis. On the first axis, it is opposed to Lorraine
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Table 14.6 Coefficients and absolute contributions for regions, Example 14.4

Region r1 r2 r3 Ca(i, r1) Ca(i, r2) Ca(i, r3)

ILDF 0.1464 0.0677 0.0157 0.3839 0.2175 0.0333

CHAM −0.0603 −0.0410 −0.0187 0.0064 0.0078 0.0047

PICA 0.0323 −0.0258 −0.0318 0.0021 0.0036 0.0155

HNOR −0.0692 0.0287 0.1156 0.0096 0.0044 0.2035

CENT −0.0068 −0.0205 −0.0145 0.0001 0.0030 0.0043

BNOR −0.0271 −0.0762 0.0061 0.0014 0.0284 0.0005

BOUR −0.1921 0.0188 0.0578 0.0920 0.0023 0.0630

NOPC −0.1278 0.0863 −0.0570 0.0871 0.1052 0.1311

LORR −0.2084 0.0511 0.0467 0.1606 0.0256 0.0608

ALSA −0.2331 0.0838 0.0655 0.1283 0.0439 0.0767

FRAC −0.1304 −0.0368 −0.0444 0.0265 0.0056 0.0232

PAYL −0.0743 −0.0816 −0.0341 0.0232 0.0743 0.0370

BRET 0.0158 0.0249 −0.0469 0.0011 0.0070 0.0708

PCHA −0.0610 −0.1391 −0.0178 0.0085 0.1171 0.0054

AQUI 0.0368 −0.1183 0.0455 0.0055 0.1519 0.0643

MIDI 0.0208 −0.0567 0.0138 0.0018 0.0359 0.0061

LIMO −0.0540 0.0221 −0.0427 0.0033 0.0014 0.0154

RHOA −0.0225 0.0273 −0.0385 0.0042 0.0161 0.0918

AUVE 0.0290 −0.0139 −0.0554 0.0017 0.0010 0.0469

LARO 0.0290 −0.0862 −0.0177 0.0383 0.0595 0.0072

PROV 0.0469 −0.0717 0.0279 0.0142 0.0884 0.0383

Table 14.7 Coefficients and absolute contributions for baccalauréats, Example 14.4

Baccal s1 s2 s3 Ca(j, s1) Ca(j, s2) Ca(j, s3)

A 0.0447 −0.0679 0.0367 0.0376 0.2292 0.1916

B 0.1389 0.0557 0.0011 0.1724 0.0735 0.0001

C 0.0940 0.0995 0.0079 0.1198 0.3556 0.0064

D 0.0227 −0.0495 −0.0530 0.0098 0.1237 0.4040

E −0.1932 0.0492 −0.1317 0.0825 0.0141 0.2900

F −0.2156 0.0862 0.0188 0.3793 0.1608 0.0219

G −0.1244 −0.0353 0.0279 0.1969 0.0421 0.0749

H −0.0945 0.0438 −0.0888 0.0017 0.0010 0.0112

and Alsace, whereas on the second axis, it is opposed to Poitou-Charentes and
Aquitaine. All of this is confirmed in Figure 14.3.

On the right side are the more classical baccalauréats and on the left, more tech-
nical ones. The regions on the left side have thus larger weights in the technical
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Table 14.8 Eigenvalues and
explained proportion of
variance, Example 14.5

λj Percentage
of variance

Cumulated
percentage

4399.0 0.4914 0.4914

2213.6 0.2473 0.7387

1382.4 0.1544 0.8932

870.7 0.0973 0.9904

51.0 0.0057 0.9961

34.8 0.0039 1.0000

0.0 0.0000 0.0000

baccalauréats. Note also that most of the southern regions of France are concen-
trated in the lower part of the graph near the baccalauréat A.

Finally, looking at the 3-rd axis, we see that it is dominated by the baccalau-
réat E (negative sign) and to a lesser degree by H (negative) (as opposed to A (pos-
itive sign)). The dominating regions are HNOR (positive sign), opposed to NOPC
and AUVE (negative sign). For instance, HNOR is particularly poor in baccalau-
réat D.

Example 14.5 The U.S. crime data set (Table B.10) gives the number of crimes in
the 50 states of the U.S. classified in 1985 for each of the following seven categories:
murder, rape, robbery, assault, burglary, larceny and auto-theft. The analysis of the
contingency table, limited to the first two factors, provides the following results (see
Table 14.8).

Looking at the absolute contributions (not reproduced here, see Exercise 14.6), it
appears that the first axis is robbery (+) versus larceny (−) and auto-theft (−) axis
and that the second factor contrasts assault (−) to auto-theft (+). The dominating
states for the first axis are the North-Eastern States MA (+) and NY (+) constrasting
the Western States WY (−) and ID (−). For the second axis, the differences are
seen between the Northern States (MA (+) and RI (+)) and the Southern States
AL (−), MS (−) and AR (−). These results can be clearly seen in Figure 14.4
where all the states and crimes are reported. The figure also shows in which states
the proportion of a particular crime category is higher or lower than the national
average (the origin).

Biplots

The biplot is a low-dimensional display of a data matrix X where the rows and
columns are represented by points. The interpretation of a biplot is specifically di-
rected towards the scalar products of lower dimensional factorial variables and is
designed to approximately recover the individual elements of the data matrix in
these scalar products. Suppose that we have a (10 × 5) data matrix with elements
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Fig. 14.4 Projection of rows (the 50 states) and columns (the 7 crime categories) MVAcor-
rcrime

xij . The idea of the biplot is to find 10 row points qi ∈ R
k (k < p, i = 1, . . . ,10)

and 5 column points tj ∈ R
k (j = 1, . . . ,5) such that the 50 scalar products between

the row and the column vectors closely approximate the 50 corresponding elements
of the data matrix X . Usually we choose k = 2. For example, the scalar product
between q7 and t4 should approximate the data value x74 in the seventh row and
the fourth column. In general, the biplot models the data xij as the sum of a scalar
product in some low-dimensional subspace and a residual “error” term:

xij = q�
i tj + eij

=
∑

k

qiktjk + eij . (14.25)

To understand the link between correspondence analysis and the biplot, we need to
introduce a formula which expresses xij from the original data matrix (see (14.3))
in terms of row and column frequencies. One such formula, known as the “reconsti-
tution formula”, is (14.10):

xij = Eij

⎛
⎝1 +

∑R
k=1 λ

1
2
k γikδjk√

xi•x•j

x••

⎞
⎠ (14.26)

Consider now the row profiles xij /xi• (the conditional frequencies) and the average
row profile xi•/x••. From (14.26) we obtain the difference between each row profile
and this average:
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(
xij

xi•
− xi•

x••

)
=

R∑
k=1

λ
1
2
k γik

(√
x•j

xi•x••

)
δjk. (14.27)

By the same argument we can also obtain the difference between each column pro-
file and the average column profile:

(
xij

x•j
− x•j

x••

)
=

R∑
k=1

λ
1
2
k γik

(√
xi•

x•j x••

)
δjk. (14.28)

Now, if λ1 � λ2 � λ3 · · ·, we can approximate these sums by a finite number of K

terms (usually K = 2) using (14.16) to obtain

(
xij

x•j
− xi•

x••

)
=

K∑
k=1

(
x•i√
λkx••

rki

)
skj + eij , (14.29)

(
xij

xi•
− x•j

x••

)
=

K∑
k=1

(
x•j√
λkx••

skj

)
rki + e′

ij , (14.30)

where eij and e′
ij are error terms. (14.30) shows that if we consider displaying the

differences between the row profiles and the average profile, then the projection of
the row profile rk and a rescaled version of the projections of the column profile sk
constitute a biplot of these differences. (14.29) implies the same for the differences
between the column profiles and this average.

Summary
↪→ Correspondence analysis is a factorial decomposition of contin-

gency tables. The p-dimensional individuals and the n-dimensional
variables can be graphically represented by projecting onto spaces
of smaller dimension.

↪→ The practical computation consists of first computing a spectral
decomposition of A−1XB−1X� and B−1X�A−1X which have
the same first p eigenvalues. The graphical representation is ob-
tained by plotting

√
λ1r1 vs.

√
λ2r2 and

√
λ1s1 vs.

√
λ2s2. Both

plots maybe displayed in the same graph taking into account the
appropriate orientation of the eigenvectors ri , sj .

↪→ Correspondence analysis provides a graphical display of the asso-
ciation measure cij = (xij − Eij )

2/Eij .
↪→ Biplot is a low-dimensional display of a data matrix where the rows

and columns are represented by points.
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14.4 Exercises

Exercise 14.1 Show that the matrices A−1XB−1X� and B−1X�A−1X have an
eigenvalue equal to 1 and that the corresponding eigenvectors are proportional
to (1, . . . ,1)�.

Exercise 14.2 Verify the relations in (14.8), (14.14) and (14.17).

Exercise 14.3 Do a correspondence analysis for the car marks data (Table B.7)!
Explain how this table can be considered as a contingency table.

Exercise 14.4 Compute the χ2-statistic of independence for the French baccalau-
réat data.

Exercise 14.5 Prove that C = A−1/2(X − E)B−1/2√x•• and E = ab�
x•• and ver-

ify (14.20).

Exercise 14.6 Do the full correspondence analysis of the U.S. crime data (Ta-
ble B.10), and determine the absolute contributions for the first three axes. How
can you interpret the third axis? Try to identify the states with one of the four re-
gions to which it belongs. Do you think the four regions have a different behavior
with respect to crime?

Exercise 14.7 Repeat Exercise 14.6 with the U.S. health data (Table B.16). Only
analyze the columns indicating the number of deaths per state.

Exercise 14.8 Consider a (n × n) contingency table being a diagonal matrix X .
What do you expect the factors rk, sk to be like?

Exercise 14.9 Assume that after some reordering of the rows and the columns, the
contingency table has the following structure:

X =
J1 J2

I1 ∗ 0
I2 0 ∗

That is, the rows Ii only have weights in the columns Ji , for i = 1,2. What do you
expect the graph of the first two factors to look like?

Exercise 14.10 Redo Exercise 14.9 using the following contingency table:

X =
J1 J2 J3

I1 ∗ 0 0
I2 0 ∗ 0
I3 0 0 ∗
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Exercise 14.11 Consider the French food data (Table B.6). Given that all of the
variables are measured in the same units (Francs), explain how this table can be
considered as a contingency table. Perform a correspondence analysis and compare
the results to those obtained in the NPCA analysis in Chapter 10.
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