
Chapter 11
Factor Analysis

A frequently applied paradigm in analyzing data from multivariate observations is to
model the relevant information (represented in a multivariate variable X) as coming
from a limited number of latent factors. In a survey on household consumption, for
example, the consumption levels, X, of p different goods during one month could
be observed. The variations and covariations of the p components of X throughout
the survey might in fact be explained by two or three main social behavior fac-
tors of the household. For instance, a basic desire of comfort or the willingness to
achieve a certain social level or other social latent concepts might explain most of
the consumption behavior. These unobserved factors are much more interesting to
the social scientist than the observed quantitative measures (X) themselves, because
they give a better understanding of the behavior of households. As shown in the ex-
amples below, the same kind of factor analysis is of interest in many fields such as
psychology, marketing, economics, politic sciences, etc.

How can we provide a statistical model addressing these issues and how can we
interpret the obtained model? This is the aim of factor analysis. As in Chapter 9 and
Chapter 10, the driving statistical theme of this chapter is to reduce the dimension of
the observed data. The perspective used, however, is different: we assume that there
is a model (it will be called the “Factor Model”) stating that most of the covariances
between the p elements of X can be explained by a limited number of latent fac-
tors. Section 11.1 defines the basic concepts and notations of the orthogonal factor
model, stressing the non-uniqueness of the solutions. We show how to take advan-
tage of this non-uniqueness to derive techniques which lead to easier interpretations.
This will involve (geometric) rotations of the factors. Section 11.2 presents an em-
pirical approach to factor analysis. Various estimation procedures are proposed and
an optimal rotation procedure is defined. Many examples are used to illustrate the
method.
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11.1 The Orthogonal Factor Model

The aim of factor analysis is to explain the outcome of p variables in the data ma-
trix X using fewer variables, the so-called factors. Ideally all the information in X
can be reproduced by a smaller number of factors. These factors are interpreted as
latent (unobserved) common characteristics of the observed x ∈ R

p . The case just
described occurs when every observed x = (x1, . . . , xp)� can be written as

xj =
k∑

�=1

qj�f� + μj , j = 1, . . . , p. (11.1)

Here f�, for � = 1, . . . , k denotes the factors. The number of factors, k, should al-
ways be much smaller than p. For instance, in psychology x may represent p results
of a test measuring intelligence scores. One common latent factor explaining x ∈ R

p

could be the overall level of “intelligence”. In marketing studies, x may consist of p

answers to a survey on the levels of satisfaction of the customers. These p measures
could be explained by common latent factors like the attraction level of the product
or the image of the brand, and so on. Indeed it is possible to create a representa-
tion of the observations that is similar to the one in (11.1) by means of principal
components, but only if the last p − k eigenvalues corresponding to the covariance
matrix are equal to zero. Consider a p-dimensional random vector X with mean μ

and covariance matrix Var(X) = �. A model similar to (11.1) can be written for X

in matrix notation, namely

X = QF + μ, (11.2)

where F is the k-dimensional vector of the k factors. When using the factor
model (11.2) it is often assumed that the factors F are centered, uncorrelated
and standardized: E(F ) = 0 and Var(F ) = Ik . We will now show that if the last
p − k eigenvalues of � are equal to zero, we can easily express X by the factor
model (11.2).

The spectral decomposition of � is given by ����. Suppose that only the first
k eigenvalues are positive, i.e., λk+1 = · · · = λp = 0. Then the (singular) covariance
matrix can be written as

� =
k∑

�=1

λ�γ�γ
�
� = (�1�2)

(
�1 0
0 0

)(
��

1

��
2

)
.

In order to show the connection to the factor model (11.2), recall that the PCs are
given by Y = ��(X−μ). Rearranging we have X−μ = �Y = �1Y1 +�2Y2, where
the components of Y are partitioned according to the partition of � above, namely

Y =
(

Y1
Y2

)
=

(
��

1

��
2

)
(X − μ), where

(
��

1

��
2

)
(X − μ) ∼

(
0,

(
�1 0
0 0

))
.

In other words, Y2 has a singular distribution with mean and covariance matrix equal
to zero. Therefore, X − μ = �1Y1 + �2Y2 implies that X − μ is equivalent to �1Y1,
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which can be written as

X = �1�
1/2
1 �

−1/2
1 Y1 + μ.

Defining Q = �1�
1/2
1 and F = �

−1/2
1 Y1, we obtain the factor model (11.2).

Note that the covariance matrix of model (11.2) can be written as

� = E(X − μ)(X − μ)� = QE(FF�)Q� = QQ� =
k∑

j=1

λjγjγ
�
j . (11.3)

We have just shown how the variable X can be completely determined by a weighted
sum of k (where k < p) uncorrelated factors. The situation used in the derivation,
however, is too idealistic. In practice the covariance matrix is rarely singular.

It is common praxis in factor analysis to split the influences of the factors into
common and specific ones. There are, for example, highly informative factors that
are common to all of the components of X and factors that are specific to certain
components. The factor analysis model used in praxis is a generalization of (11.2):

X = QF + U + μ, (11.4)

where Q is a (p × k) matrix of the (non-random) loadings of the common factors
F(k × 1) and U is a (p × 1) matrix of the (random) specific factors. It is assumed
that the factor variables F are uncorrelated random vectors and that the specific
factors are uncorrelated and have zero covariance with the common factors. More
precisely, it is assumed that:

EF = 0,

Var(F ) = Ik,

EU = 0, (11.5)

Cov(Ui,Uj ) = 0, i �= j

Cov(F,U) = 0.

Define

Var(U) = � = diag(ψ11, . . . ,ψpp).

The generalized factor model (11.4) together with the assumptions given in (11.5)
constitute the orthogonal factor model.

Orthogonal Factor Model
X = Q F + U + μ

(p × 1) (p × k) (k × 1) (p × 1) (p × 1)
μj = mean of variable j

Uj = j -th specific factor
F� = �-th common factor
qj� = loading of the j -th variable on the �-th factor

The random vectors F and U are unobservable and uncorrelated.
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Note that (11.4) implies for the components of X = (X1, . . . ,Xp)� that

Xj =
k∑

�=1

qj�F� + Uj + μj , j = 1, . . . , p. (11.6)

Using (11.5) we obtain σXj Xj
= Var(Xj ) = ∑k

�=1 q2
j� + ψjj . The quantity h2

j =
∑k

�=1 q2
j� is called the communality and ψjj the specific variance. Thus the covari-

ance of X can be rewritten as

� = E(X − μ)(X − μ)� = E(QF + U)(QF + U)�

= QE(FF�)Q� + E(UU�) = QVar(F )Q� + Var(U)

= QQ� + �. (11.7)

In a sense, the factor model explains the variations of X for the most part by a small
number of latent factors F common to its p components and entirely explains all
the correlation structure between its components, plus some “noise” U which allows
specific variations of each component to enter. The specific factors adjust to capture
the individual variance of each component. Factor analysis relies on the assumptions
presented above. If the assumptions are not met, the analysis could be spurious. Al-
though principal components analysis and factor analysis might be related (this was
hinted at in the derivation of the factor model), they are quite different in nature. PCs
are linear transformations of X arranged in decreasing order of variance and used
to reduce the dimension of the data set, whereas in factor analysis, we try to model
the variations of X using a linear transformation of a fixed, limited number of la-
tent factors. The objective of factor analysis is to find the loadings Q and the specific
variance � . Estimates of Q and � are deduced from the covariance structure (11.7).

Interpretation of the Factors

Assume that a factor model with k factors was found to be reasonable, i.e., most
of the (co)variations of the p measures in X were explained by the k fixed latent
factors. The next natural step is to try to understand what these factors represent. To
interpret F�, it makes sense to compute its correlations with the original variables
Xj first. This is done for � = 1, . . . , k and for j = 1, . . . , p to obtain the matrix
PXF . The sequence of calculations used here are in fact the same that were used to
interprete the PCs in the principal components analysis.

The following covariance between X and F is obtained via (11.5),

�XF = E{(QF + U)F�} = Q.

The correlation is

PXF = D−1/2Q, (11.8)
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where D = diag(σX1X1, . . . , σXpXp). Using (11.8) it is possible to construct a fig-
ure analogous to Figure 10.6 and thus to consider which of the original variables
X1, . . . ,Xp play a role in the unobserved common factors F1, . . . ,Fk .

Returning to the psychology example where X are the observed scores to p dif-
ferent intelligence tests (the WAIS data set in Table B.12 provides an example), we
would expect a model with one factor to produce a factor that is positively corre-
lated with all of the components in X. For this example the factor represents the
overall level of intelligence of an individual. A model with two factors could pro-
duce a refinement in explaining the variations of the p scores. For example, the first
factor could be the same as before (overall level of intelligence), whereas the second
factor could be positively correlated with some of the tests, Xj , that are related to
the individual’s ability to think abstractly and negatively correlated with other tests,
Xi , that are related to the individual’s practical ability. The second factor would then
concern a particular dimension of the intelligence stressing the distinctions between
the “theoretical” and “practical” abilities of the individual. If the model is true, most
of the information coming from the p scores can be summarized by these two latent
factors. Other practical examples are given below.

Invariance of Scale

What happens if we change the scale of X to Y = CX with C = diag(c1, . . . , cp)? If
the k-factor model (11.6) is true for X with Q=QX , � = �X , then, since

Var(Y ) = C�C� = CQXQ�
XC� + C�XC�,

the same k-factor model is also true for Y with QY = CQX and �Y = C�XC�.
In many applications, the search for the loadings Q and for the specific variance
� will be done by the decomposition of the correlation matrix of X rather than the
covariance matrix �. This corresponds to a factor analysis of a linear transformation
of X (i.e., Y = D−1/2(X − μ)). The goal is to try to find the loadings QY and the
specific variance �Y such that

P =QY Q�
Y + �Y . (11.9)

In this case the interpretation of the factors F immediately follows from (11.8) given
the following correlation matrix:

PXF = PYF =QY . (11.10)

Because of the scale invariance of the factors, the loadings and the specific variance
of the model, where X is expressed in its original units of measure, are given by

QX = D1/2QY

�X = D1/2�Y D1/2.

It should be noted that although the factor analysis model (11.4) enjoys the scale
invariance property, the actual estimated factors could be scale dependent. We will
come back to this point later when we discuss the method of principal factors.
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Non-uniqueness of Factor Loadings

The factor loadings are not unique! Suppose that G is an orthogonal matrix. Then X

in (11.4) can also be written as

X = (QG)(G�F) + U + μ.

This implies that, if a k-factor of X with factors F and loadings Q is true, then
the k-factor model with factors G�F and loadings QG is also true. In practice, we
will take advantage of this non-uniqueness. Indeed, referring back to Section 2.6 we
can conclude that premultiplying a vector F by an orthogonal matrix corresponds
to a rotation of the system of axis, the direction of the first new axis being given by
the first row of the orthogonal matrix. It will be shown that choosing an appropriate
rotation will result in a matrix of loadings QG that will be easier to interpret. We
have seen that the loadings provide the correlations between the factors and the
original variables, therefore, it makes sense to search for rotations that give factors
that are maximally correlated with various groups of variables.

From a numerical point of view, the non-uniqueness is a drawback. We have
to find loadings Q and specific variances � satisfying the decomposition � =
QQ�+� , but no straightforward numerical algorithm can solve this problem due to
the multiplicity of the solutions. An acceptable technique is to impose some chosen
constraints in order to get—in the best case—an unique solution to the decomposi-
tion. Then, as suggested above, once we have a solution we will take advantage of
the rotations in order to obtain a solution that is easier to interprete.

An obvious question is: what kind of constraints should we impose in order to
eliminate the non-uniqueness problem? Usually, we impose additional constraints
where

Q��−1Q is diagonal (11.11)

or

Q�D−1Q is diagonal. (11.12)

How many parameters does the model (11.7) have without constraints?

Q(p × k) has p · k parameters, and

�(p × p) has p parameters.

Hence we have to determine pk + p parameters! Conditions (11.11) respec-
tively (11.12) introduce 1

2 {k(k − 1)} constraints, since we require the matrices to
be diagonal. Therefore, the degrees of freedom of a model with k factors is:

d = (# parameters for � unconstrained) − (# parameters for � constrained)

= 1

2
p(p + 1) −

(
pk + p − 1

2
k(k − 1)

)

= 1

2
(p − k)2 − 1

2
(p + k).
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If d < 0, then the model is undetermined: there are infinitely many solutions
to (11.7). This means that the number of parameters of the factorial model is larger
than the number of parameters of the original model, or that the number of factors
k is “too large” relative to p. In some cases d = 0: there is a unique solution to
the problem (except for rotation). In practice we usually have that d > 0: there are
more equations than parameters, thus an exact solution does not exist. In this case
approximate solutions are used. An approximation of �, for example, is QQ� +� .
The last case is the most interesting since the factorial model has less parameters
than the original one. Estimation methods are introduced in the next section.

Evaluating the degrees of freedom, d , is particularly important, because it already
gives an idea of the upper bound on the number of factors we can hope to identify in
a factor model. For instance, if p = 4, we could not identify a factor model with 2
factors (this results in d = −1 which has infinitly many solutions). With p = 4, only
a one factor model gives an approximate solution (d = 2). When p = 6, models with
1 and 2 factors provide approximate solutions and a model with 3 factors results in
an unique solution (up to the rotations) since d = 0. A model with 4 or more factors
would not be allowed, but of course, the aim of factor analysis is to find suitable
models with a small number of factors, i.e., smaller than p. The next two examples
give more insights into the notion of degrees of freedom.

Example 11.1 Let p = 3 and k = 1, then d = 0 and

� =
⎛

⎝
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎞

⎠ =
⎛

⎝
q2

1 + ψ11 q1q2 q1q3

q1q2 q2
2 + ψ22 q2q3

q1q3 q2q3 q2
3 + ψ33

⎞

⎠

with Q =
(

q1
q2
q3

)
and � =

(
ψ11 0 0

0 ψ22 0
0 0 ψ33

)
. Note that here the constraint (11.8) is

automatically verified since k = 1. We have

q2
1 = σ12σ13

σ23
; q2

2 = σ12σ23

σ13
; q2

3 = σ13σ23

σ12

and

ψ11 = σ11 − q2
1 ; ψ22 = σ22 − q2

2 ; ψ33 = σ33 − q2
3 .

In this particular case (k = 1), the only rotation is defined by G = −1, so the other
solution for the loadings is provided by −Q.

Example 11.2 Suppose now p = 2 and k = 1, then d < 0 and

� =
(

1 ρ

ρ 1

)
=

(
q2

1 + ψ11 q1q2

q1q2 q2
2 + ψ22

)
.

We have infinitely many solutions: for any α (ρ < α < 1), a solution is provided by

q1 = α; q2 = ρ/α; ψ11 = 1 − α2; ψ22 = 1 − (ρ/α)2.
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The solution in Example 11.1 may be unique (up to a rotation), but it is not proper
in the sense that it cannot be interpreted statistically. Exercise 11.5 gives an example
where the specific variance ψ11 is negative.

�
�
��

�
�

!
Even in the case of a unique solution (d = 0), the solution may be incon-

sistent with statistical interpretations.

Summary
↪→ The factor analysis model aims to describe how the original p vari-

ables in a data set depend on a small number of latent factors k < p,
i.e., it assumes that X = QF +U +μ. The (k-dimensional) random
vector F contains the common factors, the (p-dimensional) U con-
tains the specific factors and Q(p × k) contains the factor loadings.

↪→ It is assumed that F and U are uncorrelated and have zero means,
i.e., F ∼ (0,I), U ∼ (0,�) where � is diagonal matrix and
Cov(F,U) = 0.
This leads to the covariance structure � = QQ� + �.

↪→ The interpretation of the factor F is obtained through the correla-
tion PXF = D−1/2Q.

↪→ A normalized analysis is obtained by the model P = QQ� + �.
The interpretation of the factors is given directly by the loadings
Q : PXF = Q.

↪→ The factor analysis model is scale invariant. The loadings are not
unique (only up to multiplication by an orthogonal matrix).

↪→ Whether a model has an unique solution or not is determined by
the degrees of freedom d = 1/2(p − k)2 − 1/2(p + k).

11.2 Estimation of the Factor Model

In practice, we have to find estimates Q̂ of the loadings Q and estimates �̂ of the
specific variances � such that analogously to (11.7)

S = Q̂Q̂� + �̂,

where S denotes the empirical covariance of X . Given an estimate Q̂ of Q, it is
natural to set
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ψ̂jj = sXj Xj
−

k∑

�=1

q̂2
j�.

We have that ĥ2
j = ∑k

�=1 q̂2
j� is an estimate for the communality h2

j .
In the ideal case d = 0, there is an exact solution. However, d is usually greater

than zero, therefore we have to find Q̂ and �̂ such that S is approximated by Q̂Q̂� +
�̂ . As mentioned above, it is often easier to compute the loadings and the specific
variances of the standardized model.

Define Y =HXD−1/2, the standardization of the data matrix X , where, as usual,
D = diag(sX1X1 , . . . , sXpXp) and the centering matrix H = I − n−11n1�

n (recall

from Chapter 2 that S = 1
n
X�HX ). The estimated factor loading matrix Q̂Y and

the estimated specific variance �̂Y of Y are

Q̂Y =D−1/2Q̂X and �̂Y =D−1�̂X.

For the correlation matrix R of X , we have that

R= Q̂Y Q̂�
Y + �̂Y .

The interpretations of the factors are formulated from the analysis of the load-
ings Q̂Y .

Example 11.3 Let us calculate the matrices just defined for the car data given in
Table B.7. This data set consists of the averaged marks (from 1 = low to 6 = high)
for 24 car types. Considering the three variables price, security and easy handling,
we get the following correlation matrix:

R =
⎛

⎝
1 0.975 0.613

0.975 1 0.620
0.613 0.620 1

⎞

⎠ .

We will first look for one factor, i.e., k = 1. Note that (# number of parameters of �

unconstrained− # parameters of � constrained) is equal to 1
2 (p − k)2 − 1

2 (p + k) =
1
2 (3 − 1)2 − 1

2 (3 + 1) = 0. This implies that there is an exact solution! The equation

⎛

⎝
1 rX1X2 rX1X3

rX1X2 1 rX2X3

rX1X3 rX2X3 1

⎞

⎠ =R=
⎛

⎝
q̂2

1 + ψ̂11 q̂1q̂2 q̂1q̂3

q̂1q̂2 q̂2
2 + ψ̂22 q̂2q̂3

q̂1q̂3 q̂2q̂3 q̂2
3 + ψ̂33

⎞

⎠

yields the communalities ĥ2
i = q̂2

i , where

q̂2
1 = rX1X2rX1X3

rX2X3

, q̂2
2 = rX1X2rX2X3

rX1X3

and q̂2
3 = rX1X3rX2X3

rX1X2

.
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Combining this with the specific variances ψ̂11 = 1 − q̂2
1 , ψ̂22 = 1 − q̂2

2 and ψ̂33 =
1 − q̂2

3 , we obtain the following solution

q̂1 = 0.982 q̂2 = 0.993 q̂3 = 0.624

ψ̂11 = 0.035 ψ̂22 = 0.014 ψ̂33 = 0.610.

Since the first two communalities (̂h2
i = q̂2

i ) are close to one, we can conclude that
the first two variables, namely price and security, are explained by the single factor
quite well. This factor can be interpreted as a “price+security” factor.

The Maximum Likelihood Method

Recall from Chapter 6 the log-likelihood function � for a data matrix X of observa-
tions of X ∼ Np(μ,�):

�(X ;μ,�) = −n

2
log |2π�| − 1

2

n∑

i=1

(xi − μ)�−1(xi − μ)�

= −n

2
log |2π�| − n

2
tr(�−1S) − n

2
(x − μ)�−1(x − μ)�.

This can be rewritten as

�(X ; μ̂,�) = −n

2
{log |2π�| + tr(�−1S)}.

Replacing μ by μ̂ = x and substituting � =QQ� + � this becomes

�(X ; μ̂,Q,�) = −n

2
[log{|2π(QQ� + �)|} + tr{(QQ� + �)−1S}]. (11.13)

Even in the case of a single factor (k = 1), these equations are rather complicated
and iterative numerical algorithms have to be used (for more details see Mardia
et al. (1979, p. 263ff)). A practical computation scheme is also given in Supple-
ment 9A of Johnson and Wichern (1998).

Likelihood Ratio Test for the Number of Common Factors

Using the methodology of Chapter 7, it is easy to test the adequacy of the factor
analysis model by comparing the likelihood under the null (factor analysis) and
alternative (no constraints on covariance matrix) hypotheses.

Assuming that Q̂ and �̂ are the maximum likelihood estimates corresponding
to (11.13), we obtain the following LR test statistic:

−2 log

(
maximized likelihood under H0

maximized likelihood

)
= n log

(
|Q̂Q̂� + �̂|

|S|

)
, (11.14)

which asymptotically has the χ2
1
2 {(p−k)2−p−k} distribution.
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The χ2 approximation can be improved if we replace n by n − 1 − (2p + 4k +
5)/6 in (11.14) (Bartlett, 1954). Using Bartlett’s correction, we reject the factor
analysis model at the α level if

{n − 1 − (2p + 4k + 5)/6} log

(
|Q̂Q̂� + �̂|

|S|

)
> χ2

1−α;{(p−k)2−p−k}/2, (11.15)

and if the number of observations n is large and the number of common factors k is
such that the χ2 statistic has a positive number of degrees of freedom.

The Method of Principal Factors

The method of principal factors concentrates on the decomposition of the correla-
tion matrix R or the covariance matrix S . For simplicity, only the method for the
correlation matrix R will be discussed. As pointed out in Chapter 10, the spec-
tral decompositions of R and S yield different results and therefore, the method of
principal factors may result in different estimators. The method can be motivated as
follows: Suppose we know the exact � , then the constraint (11.12) implies that the
columns of Q are orthogonal since D = I and it implies that they are eigenvectors
of QQ� =R− � . Furthermore, assume that the first k eigenvalues are positive. In
this case we could calculate Q by means of a spectral decomposition of QQ� and
k would be the number of factors.

The principal factors algorithm is based on good preliminary estimators h̃2
j of the

communalities h2
j , for j = 1, . . . , p. There are two traditional proposals:

• h̃2
j , defined as the square of the multiple correlation coefficient of Xj with (Xl),

for l �= j , i.e., ρ2(V ,Wβ̂) with V = Xj , W = (X�)��=j and where β̂ is the least
squares regression parameter of a regression of V on W .

• h̃2
j = max��=j |rXj X�

|, where R = (rXj X�
) is the correlation matrix of X .

Given ψ̃jj = 1 − h̃2
j we can construct the reduced correlation matrix, R− �̃ . The

Spectral Decomposition Theorem says that

R− �̃ =
p∑

�=1

λ�γ�γ
�
� ,

with eigenvalues λ1 ≥ · · · ≥ λp . Assume that the first k eigenvalues λ1, . . . , λk are
positive and large compared to the others. Then we can set

q̂� = √
λ� γ�, � = 1, . . . , k

or

Q̂ = �1�
1/2
1
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with

�1 = (γ1, . . . , γk) and �1 = diag(λ1, . . . , λk).

In the next step set

ψ̂jj = 1 −
k∑

�=1

q̂2
j�, j = 1, . . . , p.

Note that the procedure can be iterated: from ψ̂jj we can compute a new reduced
correlation matrix R− �̂ following the same procedure. The iteration usually stops
when the ψ̂jj have converged to a stable value.

Example 11.4 Consider once again the car data given in Table B.7. From Exer-
cise 10.4 we know that the first PC is mainly influenced by X2–X7. Moreover, we
know that most of the variance is already captured by the first PC. Thus we can
conclude that the data are mainly determined by one factor (k = 1).

The eigenvalues of R− �̂ for �̂ = (maxj �=i |rXiXj
|) are

(5.448,0.003,−.246,−0.646,−0.901,−0.911,−0.948,−0.964)�.

It would suffice to choose only one factor. Nevertheless, we have computed two
factors. The result (the factor loadings for two factors) is shown in Figure 11.1.

We can clearly see a cluster of points to the right, which contain the factor load-
ings for the variables X2–X7. This shows, as did the PCA, that these variables are
highly dependent and are thus more or less equivalent. The factor loadings for X1

(economy) and X8 (easy handling) are separate, but note the different scales on the
horizontal and vertical axes! Although there are two or three sets of variables in the
plot, the variance is already explained by the first factor, the “price+security” factor.

Fig. 11.1 Loadings of the
evaluated car qualities, factor

analysis with k = 2
MVAfactcarm
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The Principal Component Method

The principal factor method involves finding an approximation �̃ of � , the matrix
of specific variances, and then correcting R, the correlation matrix of X, by �̃ .
The principal component method starts with an approximation Q̂ of Q, the factor
loadings matrix. The sample covariance matrix is diagonalized, S = ����. Then
the first k eigenvectors are retained to build

Q̂= [√λ1γ1, . . . ,
√

λkγk]. (11.16)

The estimated specific variances are provided by the diagonal elements of the ma-
trix S − Q̂Q̂�,

�̂ =

⎛

⎜⎜⎜⎝

ψ̂11 0
ψ̂22

. . .

0 ψ̂pp

⎞

⎟⎟⎟⎠ with ψ̂jj = sXjXj −
k∑

�=1

q̂2
j�. (11.17)

By definition, the diagonal elements of S are equal to the diagonal elements of
Q̂Q̂� + �̂ . The off-diagonal elements are not necessarily estimated. How good then
is this approximation? Consider the residual matrix

S − (Q̂Q̂� + �̂)

resulting from the principal component solution. Analytically we have that
∑

i,j

(S − Q̂Q̂� − �̂)2
ij ≤ λ2

k+1 + · · · + λ2
p.

This implies that a small value of the neglected eigenvalues can result in a small
approximation error. A heuristic device for selecting the number of factors is to
consider the proportion of the total sample variance due to the j -th factor. This
quantity is in general equal to

(A) λj/
∑p

j=1 sjj for a factor analysis of S ,
(B) λj/p for a factor analysis of R.

Example 11.5 This example uses a consumer-preference study from Johnson and
Wichern (1998). Customers were asked to rate several attributes of a new prod-
uct. The responses were tabulated and the following correlation matrix R was con-
structed:

Attribute (Variable)
Taste 1
Good buy for money 2
Flavor 3
Suitable for snack 4
Provides lots of energy 5

⎛

⎜⎜⎜⎜⎝

1.00 0.02 0.96 0.42 0.01
0.02 1.00 0.13 0.71 0.85
0.96 0.13 1.00 0.50 0.11
0.42 0.71 0.50 1.00 0.79
0.01 0.85 0.11 0.79 1.00

⎞

⎟⎟⎟⎟⎠
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Table 11.1 Estimated factor loadings, communalities, and specific variances

Estimated factor
loadings

Communalities Specific
variances

Variable q̂1 q̂2 ĥ2
j ψ̂jj = 1 − ĥ2

j

1. Taste 0.56 0.82 0.98 0.02

2. Good buy for money 0.78 −0.53 0.88 0.12

3. Flavor 0.65 0.75 0.98 0.02

4. Suitable for snack 0.94 −0.11 0.89 0.11

5. Provides lots of energy 0.80 −0.54 0.93 0.07

Eigenvalues 2.85 1.81

Cumulative proportion of total
(standardized) sample variance

0.571 0.932

The bold entries of R show that variables 1 and 3 and variables 2 and 5 are highly
correlated. Variable 4 is more correlated with variables 2 and 5 than with variables 1
and 3. Hence, a model with 2 (or 3) factors seems to be reasonable.

The first two eigenvalues λ1 = 2.85 and λ2 = 1.81 of R are the only eigenval-
ues greater than one. Moreover, k = 2 common factors account for a cumulative
proportion

λ1 + λ2

p
= 2.85 + 1.81

5
= 0.93

of the total (standardized) sample variance. Using the principal component method,
the estimated factor loadings, communalities, and specific variances, are calculated
from formulas (11.16) and (11.17), and the results are given in Table 11.1.

Take a look at:

Q̂Q̂� + �̂ =

⎛

⎜⎜⎜⎜⎝

0.56 0.82
0.78 −0.53
0.65 0.75
0.94 −0.11
0.80 −0.54

⎞

⎟⎟⎟⎟⎠

(
0.56 0.78 0.65 0.94 0.80
0.82 −0.53 0.75 −0.11 −0.54

)

+

⎛

⎜⎜⎜⎜⎝

0.02 0 0 0 0
0 0.12 0 0 0
0 0 0.02 0 0
0 0 0 0.11 0
0 0 0 0 0.07

⎞

⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

1.00 0.01 0.97 0.44 0.00
0.01 1.00 0.11 0.79 0.91
0.97 0.11 1.00 0.53 0.11
0.44 0.79 0.53 1.00 0.81
0.00 0.91 0.11 0.81 1.00

⎞

⎟⎟⎟⎟⎠
.
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This nearly reproduces the correlation matrix R. We conclude that the two-factor
model provides a good fit of the data. The communalities (0.98,0.88,0.98,0.89,

0.93) indicate that the two factors account for a large percentage of the sample vari-
ance of each variable. Due to the nonuniqueness of factor loadings, the interpretation
might be enhanced by rotation. This is the topic of the next subsection.

Rotation

The constraints (11.11) and (11.12) are given as a matter of mathematical conve-
nience (to create unique solutions) and can therefore complicate the problem of
interpretation. The interpretation of the loadings would be very simple if the vari-
ables could be split into disjoint sets, each being associated with one factor. A well
known analytical algorithm to rotate the loadings is given by the varimax rotation
method proposed by Kaiser (1985). In the simplest case of k = 2 factors, a rotation
matrix G is given by

G(θ) =
(

cos θ sin θ

− sin θ cos θ

)
,

representing a clockwise rotation of the coordinate axes by the angle θ . The corre-
sponding rotation of loadings is calculated via Q̂∗ = Q̂G(θ). The idea of the varimax
method is to find the angle θ that maximizes the sum of the variances of the squared
loadings q̂∗

ij within each column of Q̂∗. More precisely, defining q̃j l = q̂∗
j l/ĥ

∗
j , the

varimax criterion chooses θ so that

V = 1

p

k∑

�=1

[
p∑

j=1

(q̃∗
j l)

4 −
{

1

p

p∑

j=1

(q̃∗
j l)

2

}2]

is maximized.

Example 11.6 Let us return to the marketing example of Johnson and Wichern
(1998) (Example 11.5). The basic factor loadings given in Table 11.1 of the first
factor and a second factor are almost identical making it difficult to interpret the fac-
tors. Applying the varimax rotation we obtain the loadings q̃1 = (0.02,0.94,0.13,

0.84,0.97)� and q̃2 = (0.99,−0.01,0.98,0.43,−0.02)�. The high loadings, indi-
cated as bold entries, show that variables 2, 4, 5 define factor 1, a nutricional factor.
Variables 1 and 3 define factor 2 which might be referred to as a taste factor.

Summary

↪→ In practice, Q and � have to be estimated from S = Q̂Q̂� + �̂.
The number of parameters is d = 1

2 (p − k)2 − 1
2 (p + k).
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Summary (continued)
↪→ If d = 0, then there exists an exact solution. In practice, d is usually

greater than 0, thus approximations must be considered.
↪→ The maximum-likelihood method assumes a normal distribution

for the data. A solution can be found using numerical algorithms.
↪→ The method of principal factors is a two-stage method which cal-

culates Q̂ from the reduced correlation matrix R − �̃, where
�̃ is a pre-estimate of �. The final estimate of � is found by
ψ̂ii = 1 − ∑k

j=1 q̂2
ij .

↪→ The principal component method is based on an approximation, Q̂,
of Q.

↪→ Often a more informative interpretation of the factors can be found
by rotating the factors.

↪→ The varimax rotation chooses a rotation θ that maximizes V =
1
p

∑k
�=1

[∑p

j=1(q̃
∗
j l)

4 − { 1
p

∑p

j=1(q̃
∗
j l)

2
}2].

11.3 Factor Scores and Strategies

Up to now strategies have been presented for factor analysis that have concentrated
on the estimation of loadings and communalities and on their interpretations. This
was a logical step since the factors F were considered to be normalized random
sources of information and were explicitely addressed as nonspecific (common fac-
tors). The estimated values of the factors, called the factor scores, may also be useful
in the interpretation as well as in the diagnostic analysis. To be more precise, the fac-
tor scores are estimates of the unobserved random vectors Fl , l = 1, . . . , k, for each
individual xi , i = 1, . . . , n. Johnson and Wichern (1998) describe three methods
which in practice yield very similar results. Here, we present the regression method
which has the advantage of being the simplest technique and is easy to implement.

The idea is to consider the joint distribution of (X − μ) and F , and then to
proceed with the regression analysis presented in Chapter 5. Under the factor
model (11.4), the joint covariance matrix of (X − μ) and F is:

Var

(
X − μ

F

)
=

(
QQ� + � Q

Q� Ik

)
. (11.18)

Note that the upper left entry of this matrix equals � and that the matrix has size
(p + k) × (p + k).

Assuming joint normality, the conditional distribution of F |X is multinormal,
see Theorem 5.1, with

E(F |X = x) =Q��−1(X − μ) (11.19)

and using (5.7) the covariance matrix can be calculated:

Var(F |X = x) = Ik −Q��−1Q. (11.20)
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In practice, we replace the unknown Q, � and μ by corresponding estimators, lead-
ing to the estimated individual factor scores:

f̂i = Q̂�S−1(xi − x). (11.21)

We prefer to use the original sample covariance matrix S as an estimator of �,
instead of the factor analysis approximation Q̂Q̂� + �̂ , in order to be more robust
against incorrect determination of the number of factors.

The same rule can be followed when using R instead of S . Then (11.18) remains
valid when standardized variables, i.e., Z = D−1/2

� (X −μ), are considered if D� =
diag(σ11, . . . , σpp). In this case the factors are given by

f̂i = Q̂�R−1(zi), (11.22)

where zi = D−1/2
S (xi − x), Q̂ is the loading obtained with the matrix R, and DS =

diag(s11, . . . , spp).
If the factors are rotated by the orthogonal matrix G, the factor scores have to be

rotated accordingly, that is

f̂ ∗
i = G�f̂i . (11.23)

A practical example is presented in Section 11.4 using the Boston Housing data.

Practical Suggestions

No one method outperforms another in the practical implementation of factor anal-
ysis. However, by applying a tâtonnement process, the factor analysis view of the
data can be stabilized. This motivates the following procedure.

1. Fix a reasonable number of factors, say k = 2 or 3, based on the correlation
structure of the data and/or screeplot of eigenvalues.

2. Perform several of the presented methods, including rotation. Compare the load-
ings, communalities, and factor scores from the respective results.

3. If the results show significant deviations, check for outliers (based on factor
scores), and consider changing the number of factors k.

For larger data sets, cross-validation methods are recommended. Such methods in-
volve splitting the sample into a training set and a validation data set. On the training
sample one estimates the factor model with the desired methodology and uses the
obtained parameters to predict the factor scores for the validation data set. The pre-
dicted factor scores should be comparable to the factor scores obtained using only
the validation data set. This stability criterion may also involve the loadings and
communalities.

Factor Analysis versus PCA

Factor analysis and principal component analysis use the same set of mathematical
tools (spectral decomposition, projections, . . .). One could conclude, on first sight,
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that they share the same view and strategy and therefore yield very similar results.
This is not true. There are substantial differences between these two data analysis
techniques that we would like to describe here.

The biggest difference between PCA and factor analysis comes from the model
philosophy. Factor analysis imposes a strict structure of a fixed number of common
(latent) factors whereas the PCA determines p factors in decreasing order of impor-
tance. The most important factor in PCA is the one that maximizes the projected
variance. The most important factor in factor analysis is the one that (after rotation)
gives the maximal interpretation. Often this is different from the direction of the first
principal component.

From an implementation point of view, the PCA is based on a well-defined,
unique algorithm (spectral decomposition), whereas fitting a factor analysis model
involves a variety of numerical procedures. The non-uniqueness of the factor anal-
ysis procedure opens the door for subjective interpretation and yields therefore a
spectrum of results. This data analysis philosophy makes factor analysis difficult
especially if the model specification involves cross-validation and a data-driven se-
lection of the number of factors.

11.4 Boston Housing

To illustrate how to implement factor analysis we will use the Boston housing data
set and the by now well known set of transformations. Once again, the variable X4
(Charles River indicator) will be excluded. As before, standardized variables are
used and the analysis is based on the correlation matrix.

In Section 11.3, we described a practical implementation of factor analysis.
Based on principal components, three factors were chosen and factor analysis was
applied using the maximum likelihood method (MLM), the principal factor method
(PFM), and the principal component method (PCM). For illustration, the MLM will
be presented with and without varimax rotation.

Table 11.2 gives the MLM factor loadings without rotation and Table 11.3 gives
the varimax version of this analysis. The corresponding graphical representations
of the loadings are displayed in Figures 11.2 and 11.3. We can see that the vari-
max does not significantly change the interpretation of the factors obtained by the
MLM. Factor 1 can be roughly interpreted as a “quality of life factor” because it is
positively correlated with variables like X11 and negatively correlated with X8, both
having low specific variances. The second factor may be interpreted as a “residential
factor”, since it is highly correlated with variables X6, and X13. The most striking
difference between the results with and without varimax rotation can be seen by
comparing the lower left corners of Figures 11.2 and 11.3. There is a clear separa-
tion of the variables in the varimax version of the MLM. Given this arrangement
of the variables in Figure 11.3, we can interpret factor 3 as an employment factor,
since we observe high correlations with X8 and X5.

We now turn to the PCM and PFM analyses. The results are presented in Ta-
bles 11.4 and 11.5 and in Figures 11.4 and 11.5. We would like to focus on the
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Table 11.2 Estimated factor loadings, communalities, and specific variances, MLM
MVAfacthous

Estimated factor loadings Communalities Specific
variances

q̂1 q̂2 q̂3 ĥ2
j ψ̂jj = 1 − ĥ2

j

1. crime 0.9295 0.1653 0.1107 0.9036 0.0964

2. large lots −0.5823 0.0379 0.2902 0.4248 0.5752

3. nonretail acres 0.8192 −0.0296 −0.1378 0.6909 0.3091

5. nitric oxides 0.8789 0.0987 −0.2719 0.8561 0.1439

6. rooms −0.4447 0.5311 −0.0380 0.4812 0.5188

7. prior 1940 0.7837 −0.0149 −0.3554 0.7406 0.2594

8. empl. centers −0.8294 −0.1570 0.4110 0.8816 0.1184

9. accessibility 0.7955 0.3062 0.4053 0.8908 0.1092

10. tax-rate 0.8262 0.1401 0.2906 0.7867 0.2133

11. pupil/teacher 0.5051 −0.1850 0.1553 0.3135 0.6865

12. African American 0.4701 −0.0227 −0.1627 0.2480 0.7520

13. lower status 0.7601 −0.5059 −0.0070 0.8337 0.1663

14. value −0.6942 0.5904 −0.1798 0.8628 0.1371

Fig. 11.2 Factor analysis for Boston housing data, MLM MVAfacthous
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Table 11.3 Estimated factor loadings, communalities, and specific variances, MLM, varimax ro-

tation MVAfacthous

Estimated factor loadings Communalities Specific
variances

q̂1 q̂2 q̂3 ĥ2
j ψ̂jj = 1 − ĥ2

j

1. crime 0.7247 −0.2705 −0.5525 0.9036 0.0964

2. large lots −0.1570 0.2377 0.5858 0.4248 0.5752

3. nonretail acres 0.4195 −0.3566 −0.6287 0.6909 0.3091

5. nitric oxides 0.4141 −0.2468 −0.7896 0.8561 0.1439

6. rooms −0.0799 0.6691 0.1644 0.4812 0.5188

7. prior 1940 0.2518 −0.2934 −0.7688 0.7406 0.2594

8. empl. centers −0.3164 0.1515 0.8709 0.8816 0.1184

9. accessibility 0.8932 −0.1347 −0.2736 0.8908 0.1092

10. tax-rate 0.7673 −0.2772 −0.3480 0.7867 0.2133

11. pupil/teacher 0.3405 −0.4065 −0.1800 0.3135 0.6865

12. African American −0.3917 0.2483 0.1813 0.2480 0.7520

13. lower status 0.2586 −0.7752 −0.4072 0.8337 0.1663

14. value −0.3043 0.8520 0.2111 0.8630 0.1370

Fig. 11.3 Factor analysis for Boston housing data, MLM after varimax rotation MVAfact-
hous
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Table 11.4 Estimated factor loadings, communalities, and specific variances, PCM, varimax ro-

tation MVAfacthous

Estimated factor loadings Communalities Specific
variances

q̂1 q̂2 q̂3 ĥ2
j ψ̂jj = 1 − ĥ2

j

1. crime 0.6034 −0.2456 0.6864 0.8955 0.1045

2. large lots −0.7722 0.2631 0.0270 0.6661 0.3339

3. nonretail acres 0.7183 −0.3701 0.3449 0.7719 0.2281

5. nitric oxides 0.7936 −0.2043 0.4250 0.8521 0.1479

6. rooms −0.1601 0.8585 0.0218 0.7632 0.2368

7. prior 1940 0.7895 −0.2375 0.2670 0.7510 0.2490

8. empl. centers −0.8562 0.1318 −0.3240 0.8554 0.1446

9. accessibility 0.3681 −0.1268 0.8012 0.7935 0.2065

10. tax-rate 0.3744 −0.2604 0.7825 0.8203 0.1797

11. pupil/teacher 0.1982 −0.5124 0.3372 0.4155 0.5845

12. African American 0.1647 0.0368 −0.7002 0.5188 0.4812

13. lower status 0.4141 −0.7564 0.2781 0.8209 0.1791

14. value −0.2111 0.8131 −0.3671 0.8394 0.1606

Fig. 11.4 Factor analysis for Boston housing data, PCM after varimax rotation MVAfact-
hous
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Table 11.5 Estimated factor loadings, communalities, and specific variances, PFM, varimax rota-

tion MVAfacthous

Estimated factor loadings Communalities Specific
variances

q̂1 q̂2 q̂3 ĥ2
j ψ̂jj = 1 − ĥ2

j

1. crime 0.5477 −0.2558 −0.7387 0.9111 0.0889

2. large lots −0.6148 0.2668 0.1281 0.4655 0.5345

3. nonretail acres 0.6523 −0.3761 −0.3996 0.7266 0.2734

5. nitric oxides 0.7723 −0.2291 −0.4412 0.8439 0.1561

6. rooms −0.1732 0.6783 0.1296 0.0699 0.5046

7. prior 1940 0.7390 −0.2723 −0.2909 0.7049 0.2951

8. empl. centers −0.8565 0.1485 0.3395 0.8708 0.1292

9. accessibility 0.2855 −0.1359 −0.8460 0.8156 0.1844

10. tax-rate 0.3062 −0.2656 −0.8174 0.8325 0.1675

11. pupil/teacher 0.2116 −0.3943 −0.3297 0.3090 0.6910

12. African American 0.1994 0.0666 0.4217 0.2433 0.7567

13. lower status 0.4005 −0.7743 −0.2706 0.8333 0.1667

14. value −0.1885 0.8400 0.3473 0.8611 0.1389

Fig. 11.5 Factor analysis for Boston housing data, PFM after varimax rotation MVAfact-
hous
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PCM, because this 3-factor model yields only one specific variance (unexplained
variation) above 0.5. Looking at Figure 11.4, it turns out that factor 1 remains a
“quality of life factor” which is clearly visible from the clustering of X5, X3, X10

and X1 on the right-hand side of the graph, while the variables X8, X2, X14, X12

and X6 are on the left-hand side. Again, the second factor is a “residential factor”,
clearly demonstrated by the location of variables X6, X14, X11, and X13. The inter-
pretation of the third factor is more difficult because all of the loadings (except for
X12) are very small.

11.5 Exercises

Exercise 11.1 In Example 11.4 we have computed Q̂ and �̂ using the method of
principal factors. We used a two-step iteration for �̂ . Perform the third iteration step
and compare the results (i.e., use the given Q̂ as a pre-estimate to find the final �).

Exercise 11.2 Using the bank data set, how many factors can you find with the
Method of Principal Factors?

Exercise 11.3 Repeat Exercise 11.2 with the U.S. company data set!

Exercise 11.4 Generalize the two-dimensional rotation matrix in Section 11.2 to
n-dimensional space.

Exercise 11.5 Compute the orthogonal factor model for

� =
⎛

⎝
1 0.9 0.7

0.9 1 0.4
0.7 0.4 1

⎞

⎠ .

[Solution: ψ11 = −0.575, q11 = 1.255]

Exercise 11.6 Perform a factor analysis on the type of families in the French food
data set. Rotate the resulting factors in a way which provides the most reasonable
interpretation. Compare your result with the varimax method.

Exercise 11.7 Perform a factor analysis on the variables X3 to X9 in the U.S. crime
data set (Table B.10). Would it make sense to use all of the variables for the analysis?

Exercise 11.8 Analyze the athletic records data set (Table B.18). Can you recognize
any patterns if you sort the countries according to the estimates of the factor scores?

Exercise 11.9 Perform a factor analysis on the U.S. health data set (Table B.16) and
estimate the factor scores.
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Exercise 11.10 Redo Exercise 11.9 using the U.S. crime data in Table B.10. Com-
pare the estimated factor scores of the two data sets.

Exercise 11.11 Analyze the vocabulary data given in Table B.17.
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