
Chapter 10
Principal Components Analysis

Chapter 9 presented the basic geometric tools needed to produce a lower dimen-
sional description of the rows and columns of a multivariate data matrix. Principal
components analysis has the same objective with the exception that the rows of the
data matrix X will now be considered as observations from a p-variate random
variable X. The principle idea of reducing the dimension of X is achieved through
linear combinations. Low dimensional linear combinations are often easier to in-
terpret and serve as an intermediate step in a more complex data analysis. More
precisely one looks for linear combinations which create the largest spread among
the values of X. In other words, one is searching for linear combinations with the
largest variances.

Section 10.1 introduces the basic ideas and technical elements behind principal
components. No particular assumption will be made on X except that the mean vec-
tor and the covariance matrix exist. When reference is made to a data matrix X in
Section 10.2, the empirical mean and covariance matrix will be used. Section 10.3
shows how to interpret the principal components by studying their correlations with
the original components of X. Often analyses are performed in practice by looking
at two-dimensional scatterplots. Section 10.4 develops inference techniques on prin-
cipal components. This is particularly helpful in establishing the appropriate dimen-
sion reduction and thus in determining the quality of the resulting lower dimensional
representations. Since principal component analysis is performed on covariance ma-
trices, it is not scale invariant. Often, the measurement units of the components of X

are quite different, so it is reasonable to standardize the measurement units. The nor-
malized version of principal components is defined in Section 10.5. In Section 10.6
it is discovered that the empirical principal components are the factors of appropriate
transformations of the data matrix. The classical way of defining principal compo-
nents through linear combinations with respect to the largest variance is described
here in geometric terms, i.e., in terms of the optimal fit within subspaces generated
by the columns and/or the rows of X as was discussed in Chapter 9. Section 10.9
concludes with additional examples.
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270 10 Principal Components Analysis

10.1 Standardized Linear Combination

The main objective of principal components analysis (PC) is to reduce the dimen-
sion of the observations. The simplest way of dimension reduction is to take just
one element of the observed vector and to discard all others. This is not a very rea-
sonable approach, as we have seen in the earlier chapters, since strength may be lost
in interpreting the data. In the bank notes example we have seen that just one vari-
able (e.g. X1 = length) had no discriminatory power in distinguishing counterfeit
from genuine bank notes. An alternative method is to weight all variables equally,
i.e., to consider the simple average p−1∑p

j=1 Xj of all the elements in the vector

X = (X1, . . . ,Xp)�. This again is undesirable, since all of the elements of X are
considered with equal importance (weight).

A more flexible approach is to study a weighted average, namely

δ�X =
p∑

j=1

δjXj , such that
p∑

j=1

δ2
j = 1. (10.1)

The weighting vector δ = (δ1, . . . , δp)� can then be optimized to investigate and
to detect specific features. We call (10.1) a standardized linear combination (SLC).
Which SLC should we choose? One aim is to maximize the variance of the projec-
tion δ�X, i.e., to choose δ according to

max
{δ:‖δ‖=1}

Var(δ�X) = max
{δ:‖δ‖=1}

δ� Var(X)δ. (10.2)

The interesting “directions” of δ are found through the spectral decomposition of
the covariance matrix. Indeed, from Theorem 2.5, the direction δ is given by the
eigenvector γ1 corresponding to the largest eigenvalue λ1 of the covariance matrix
� = Var(X).

Figures 10.1 and 10.2 show two such projections (SLCs) of the same data set with
zero mean. In Figure 10.1 an arbitrary projection is displayed. The upper window
shows the data point cloud and the line onto which the data are projected. The mid-
dle window shows the projected values in the selected direction. The lower window
shows the variance of the actual projection and the percentage of the total variance
that is explained.

Figure 10.2 shows the projection that captures the majority of the variance in the
data. This direction is of interest and is located along the main direction of the point
cloud. The same line of thought can be applied to all data orthogonal to this direction
leading to the second eigenvector. The SLC with the highest variance obtained from
maximizing (10.2) is the first principal component (PC) y1 = γ �

1 X. Orthogonal to
the direction γ1 we find the SLC with the second highest variance: y2 = γ �

2 X, the
second PC.

Proceeding in this way and writing in matrix notation, the result for a random
variable X with E(X) = μ and Var(X) = � = ���� is the PC transformation
which is defined as

Y = ��(X − μ). (10.3)

Here we have centered the variable X in order to obtain a zero mean PC variable Y .
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Fig. 10.1 An arbitrary SLC

MVApcasimu

Fig. 10.2 The most

interesting SLC
MVApcasimu

Example 10.1 Consider a bivariate normal distribution N(0,�) with � = ( 1 ρ

ρ 1

)
and

ρ > 0 (see Example 3.13). Recall that the eigenvalues of this matrix are λ1 = 1 + ρ

and λ2 = 1 − ρ with corresponding eigenvectors

γ1 = 1√
2

(
1

1

)

, γ2 = 1√
2

(
1

−1

)

.

The PC transformation is thus

Y = ��(X − μ) = 1√
2

(
1 1
1 −1

)

X

or
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(
Y1
Y2

)

= 1√
2

(
X1 + X2
X1 − X2

)

.

So the first principal component is

Y1 = 1√
2
(X1 + X2)

and the second is

Y2 = 1√
2
(X1 − X2).

Let us compute the variances of these PCs using formulas (4.22)–(4.26):

Var(Y1) = Var

{
1√
2
(X1 + X2)

}

= 1

2
Var(X1 + X2)

= 1

2
{Var(X1) + Var(X2) + 2 Cov(X1,X2)}

= 1

2
(1 + 1 + 2ρ) = 1 + ρ

= λ1.

Similarly we find that

Var(Y2) = λ2.

This can be expressed more generally and is given in the next theorem.

Theorem 10.1 For a given X ∼ (μ,�) let Y = ��(X − μ) be the PC transforma-
tion. Then

EYj = 0, j = 1, . . . , p (10.4)

Var(Yj ) = λj , j = 1, . . . , p (10.5)

Cov(Yi, Yj ) = 0, i �= j (10.6)

Var(Y1) ≥ Var(Y2) ≥ · · · ≥ Var(Yp) ≥ 0 (10.7)
p∑

j=1

Var(Yj ) = tr(�) (10.8)

p∏

j=1

Var(Yj ) = |�|. (10.9)

Proof To prove (10.6), we use γi to denote the ith column of �. Then

Cov(Yi, Yj ) = γ �
i Var(X − μ)γj = γ �

i Var(X)γj .
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As Var(X) = � = ����, ��� = I , we obtain via the orthogonality of �:

γ �
i ����γj =

{
0 i �= j

λi i = j.

In fact, as Yi = γ �
i (X − μ) lies in the eigenvector space corresponding to γi , and

eigenvector spaces corresponding to different eigenvalues are orthogonal to each
other, we can directly see Yi and Yj are orthogonal to each other, so their covariance
is 0. �

The connection between the PC transformation and the search for the best SLC is
made in the following theorem, which follows directly from (10.2) and Theorem 2.5.

Theorem 10.2 There exists no SLC that has larger variance than λ1 = Var(Y1).

Theorem 10.3 If Y = a�X is a SLC that is not correlated with the first k PCs of X,
then the variance of Y is maximized by choosing it to be the (k + 1)-st PC.

Summary
↪→ A standardized linear combination (SLC) is a weighted average

δ�X =∑p

j=1 δjXj where δ is a vector of length 1.

↪→ Maximizing the variance of δ�X leads to the choice δ = γ1, the
eigenvector corresponding to the largest eigenvalue λ1 of � =
Var(X).
This is a projection of X into the one-dimensional space, where
the components of X are weighted by the elements of γ1. Y1 =
γ �

1 (X − μ) is called the first principal component (PC).

↪→ This projection can be generalized for higher dimensions. The PC
transformation is the linear transformation Y = ��(X − μ), where
� = Var(X) = ���� and μ = EX.
Y1, Y2, . . . , Yp are called the first, second, . . . , and p-th PCs.

↪→ The PCs have zero means, variance Var(Yj ) = λj , and zero covari-
ances. From λ1 ≥ · · · ≥ λp it follows that Var(Y1) ≥ · · · ≥ Var(Yp).
It holds that

∑p

j=1 Var(Yj ) = tr(�) and
∏p

j=1 Var(Yj ) = |�|.
↪→ If Y = a�X is a SLC which is not correlated with the first k PCs

of X then the variance of Y is maximized by choosing it to be the
(k + 1)-st PC.
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10.2 Principal Components in Practice

In practice the PC transformation has to be replaced by the respective estimators: μ

becomes x, � is replaced by S , etc. If g1 denotes the first eigenvector of S , the first
principal component is given by y1 = (X − 1nx

�)g1. More generally if S = GLG�
is the spectral decomposition of S , then the PCs are obtained by

Y = (X − 1nx
�)G. (10.10)

Note that with the centering matrix H = I − (n−11n1�
n ) and H1nx

� = 0 we can
write

SY = n−1Y�HY = n−1G�(X − 1nx
�)�H(X − 1nx

�)G
= n−1G�X�HXG = G�SG = L (10.11)

where L = diag(
1, . . . , 
p) is the matrix of eigenvalues of S . Hence the variance
of yi equals the eigenvalue 
i !

The PC technique is sensitive to scale changes. If we multiply one variable by a
scalar we obtain different eigenvalues and eigenvectors. This is due to the fact that
an eigenvalue decomposition is performed on the covariance matrix and not on the
correlation matrix (see Section 10.5). The following warning is therefore important:

�
�
��

�
�

!
The PC transformation should be applied to data that have approximately

the same scale in each variable.

Example 10.2 Let us apply this technique to the bank data set. In this example we
do not standardize the data. Figure 10.3 shows some PC plots of the bank data set.
The genuine and counterfeit bank notes are marked by “o” and “+” respectively.

Recall that the mean vector of X is

x = (214.9, 130.1, 129.9, 9.4, 10.6, 140.5)� .

The vector of eigenvalues of S is


 = (2.985, 0.931, 0.242, 0.194, 0.085, 0.035)� .

The eigenvectors gj are given by the columns of the matrix

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.044 0.011 0.326 0.562 −0.753 0.098
0.112 0.071 0.259 0.455 0.347 −0.767
0.139 0.066 0.345 0.415 0.535 0.632
0.768 −0.563 0.218 −0.186 −0.100 −0.022
0.202 0.659 0.557 −0.451 −0.102 −0.035

−0.579 −0.489 0.592 −0.258 0.085 −0.046

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The first column of G is the first eigenvector and gives the weights used in the linear
combination of the original data in the first PC.
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Fig. 10.3 Principal components of the bank data MVApcabank

Example 10.3 To see how sensitive the PCs are to a change in the scale of the
variables, assume that X1, X2, X3 and X6 are measured in cm and that X4 and X5
remain in mm in the bank data set. This leads to:

x̄ = (21.49, 13.01, 12.99, 9.41, 10.65, 14.05)�.

The covariance matrix can be obtained from S in (3.4) by dividing rows 1, 2, 3, 6
and columns 1, 2, 3, 6 by 10. We obtain:


 = (2.101, 0.623, 0.005, 0.002, 0.001, 0.0004)�

which clearly differs from Example 10.2. Only the first two eigenvectors are given:

g1 = (−0.005, 0.011, 0.014, 0.992, 0.113, −0.052)�

g2 = (−0.001, 0.013, 0.016, −0.117, 0.991, −0.069)�.

Comparing these results to the first two columns of G from Example 10.2, a com-
pletely different story is revealed. Here the first component is dominated by X4
(lower margin) and the second by X5 (upper margin), while all of the other variables
have much less weight. The results are shown in Figure 10.4. Section 10.5 will show
how to select a reasonable standardization of the variables when the scales are too
different.
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Fig. 10.4 Principal components of the rescaled bank data MVApcabankr

Summary
↪→ The scale of the variables should be roughly the same for PC trans-

formations.
↪→ For the practical implementation of principal components analysis

(PCA) we replace μ by the mean x and � by the empirical co-
variance S . Then we compute the eigenvalues 
1, . . . , 
p and the
eigenvectors g1, . . . , gp of S . The graphical representation of the
PCs is obtained by plotting the first PC vs. the second (and eventu-
ally vs. the third).

↪→ The components of the eigenvectors gi are the weights of the orig-
inal variables in the PCs.

10.3 Interpretation of the PCs

Recall that the main idea of PC transformations is to find the most informative pro-
jections that maximize variances. The most informative SLC is given by the first
eigenvector. In Section 10.2 the eigenvectors were calculated for the bank data. In
particular, with centered x’s, we had:
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Table 10.1 Proportion of
variance of PC’s Eigenvalue Proportion of variance Cumulated proportion

2.985 0.67 0.67

0.931 0.21 0.88

0.242 0.05 0.93

0.194 0.04 0.97

0.085 0.02 0.99

0.035 0.01 1.00

y1 = −0.044x1 + 0.112x2 + 0.139x3 + 0.768x4 + 0.202x5 − 0.579x6

y2 = 0.011x1 + 0.071x2 + 0.066x3 − 0.563x4 + 0.659x5 − 0.489x6

and

x1 = length

x2 = left height

x3 = right height

x4 = bottom frame

x5 = top frame

x6 = diagonal.

Hence, the first PC is essentially the difference between the bottom frame vari-
able and the diagonal. The second PC is best described by the difference between
the top frame variable and the sum of bottom frame and diagonal variables.

The weighting of the PCs tells us in which directions, expressed in original co-
ordinates, the best variance explanation is obtained. A measure of how well the first
q PCs explain variation is given by the relative proportion:

ψq =
∑q

j=1 λj
∑p

j=1 λj

=
∑q

j=1 Var(Yj )
∑p

j=1 Var(Yj )
. (10.12)

Referring to the bank data Example 10.2, the (cumulative) proportions of ex-
plained variance are given in Table 10.1. The first PC (q = 1) already explains 67%
of the variation. The first three (q = 3) PCs explain 93% of the variation. Once
again it should be noted that PCs are not scale invariant, e.g., the PCs derived from
the correlation matrix give different results than the PCs derived from the covariance
matrix (see Section 10.5).

A good graphical representation of the ability of the PCs to explain the variation
in the data is given by the scree plot shown in the lower right-hand window of
Figure 10.3. The scree plot can be modified by using the relative proportions on the
y-axis, as is shown in Figure 10.5 for the bank data set.

The covariance between the PC vector Y and the original vector X is calculated
with the help of (10.4) as follows:
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Fig. 10.5 Relative
proportion of variance

explained by PCs
MVApcabanki

Cov(X,Y ) = E(XY�) − EX EY� = E(XY�)

= E(XX��) − μμ�� = Var(X)�

= ��

= �����

= ��. (10.13)

Hence, the correlation, ρXiYj
, between variable Xi and the PC Yj is

ρXiYj
= γijλj

(σXiXi
λj )1/2

= γij

(
λj

σXiXi

)1/2

. (10.14)

Using actual data, this of course translates into

rXiYj
= gij

(

j

sXiXi

)1/2

. (10.15)

The correlations can be used to evaluate the relations between the PCs Yj where
j = 1, . . . , q , and the original variables Xi where i = 1, . . . , p. Note that

p∑

j=1

r2
XiYj

=
∑p

j=1 
jg
2
ij

sXiXi

= sXiXi

sXiXi

= 1. (10.16)

Indeed,
∑p

j=1 
jg
2
ij = g�

i Lgi is the (i, i)-element of the matrix GLG� = S , so that

r2
XiYj

may be seen as the proportion of variance of Xi explained by Yj .
In the space of the first two PCs we plot these proportions, i.e., rXiY1 versus

rXiY2 . Figure 10.6 shows this for the bank notes example. This plot shows which of
the original variables are most strongly correlated with PC Y1 and Y2.

From (10.16) it obviously follows that r2
XiY1

+ r2
XiY2

≤ 1 so that the points are
always inside the circle of radius 1. In the bank notes example, the variables X4, X5
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Fig. 10.6 The correlation of
the original variable with the

PCs MVApcabanki

Table 10.2 Correlation
between the original variables
and the PCs

rXiY1 rXiY2 r2
XiY1

+ r2
XiY2

X1 length −0.201 0.028 0.041

X2 left h. 0.538 0.191 0.326

X3 right h. 0.597 0.159 0.381

X4 lower 0.921 −0.377 0.991

X5 upper 0.435 0.794 0.820

X6 diagonal −0.870 −0.410 0.926

and X6 correspond to correlations near the periphery of the circle and are thus well
explained by the first two PCs. Recall that we have interpreted the first PC as being
essentially the difference between X4 and X6. This is also reflected in Figure 10.6
since the points corresponding to these variables lie on different sides of the vertical
axis. An analogous remark applies to the second PC. We had seen that the second
PC is well described by the difference between X5 and the sum of X4 and X6. Now
we are able to see this result again from Figure 10.6 since the point corresponding
to X5 lies above the horizontal axis and the points corresponding to X4 and X6 lie
below.

The correlations of the original variables Xi and the first two PCs are given in Ta-
ble 10.2 along with the cumulated percentage of variance of each variable explained
by Y1 and Y2. This table confirms the above results. In particular, it confirms that
the percentage of variance of X1 (and X2, X3) explained by the first two PCs is
relatively small and so are their weights in the graphical representation of the in-
dividual bank notes in the space of the first two PCs (as can be seen in the upper
left plot in Figure 10.3). Looking simultaneously at Figure 10.6 and the upper left



280 10 Principal Components Analysis

plot of Figure 10.3 shows that the genuine bank notes are roughly characterized by
large values of X6 and smaller values of X4. The counterfeit bank notes show larger
values of X5 (see Example 7.15).

Summary
↪→ The weighting of the PCs tells us in which directions, expressed

in original coordinates, the best explanation of the variance is ob-
tained. Note that the PCs are not scale invariant.

↪→ A measure of how well the first q PCs explain variation is given by
the relative proportion ψq =∑q

j=1 λj/
∑p

j=1 λj . A good graphical
representation of the ability of the PCs to explain the variation in
the data is the scree plot of these proportions.

↪→ The correlation between PC Yj and an original variable Xi is

ρXiYj
= γij (

λj

σXiXi
)1/2. For a data matrix this translates into r2

XiYj
=


j g2
ij

sXiXi
. r2

XiYj
can be interpreted as the proportion of variance of Xi

explained by Yj . A plot of rXiY1 vs. rXiY2 shows which of the orig-
inal variables are most strongly correlated with the PCs, namely
those that are close to the periphery of the circle of radius 1.

10.4 Asymptotic Properties of the PCs

In practice, PCs are computed from sample data. The following theorem yields re-
sults on the asymptotic distribution of the sample PCs.

Theorem 10.4 Let � > 0 with distinct eigenvalues, and let U ∼ m−1Wp(�,m)

with spectral decompositions � = ����, and U = GLG�. Then

(a)
√

m(
 − λ)
L−→ Np(0,2�2), where 
 = (
1, . . . , 
p)� and λ = (λ1, . . . , λp)�

are the diagonals of L and �,

(b)
√

m(gj − γj )
L−→ Np(0,Vj ), with Vj = λj

∑
k �=j

λk

(λk−λj )2 γkγ
�
k ,

(c) Cov(gj , gk) = Vjk , where the (r, s)-element of the matrix Vjk(p × p) is

− λj λkγrkγsj

m(λj −λk)
2 ,

(d) the elements in 
 are asymptotically independent of the elements in G.
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Example 10.4 Since nS ∼ Wp(�,n − 1) if X1, . . . ,Xn are drawn from N(μ,�),
we have that

√
n − 1(
j − λj )

L−→ N(0,2λ2
j ), j = 1, . . . , p. (10.17)

Since the variance of (10.17) depends on the true mean λj a log transformation is
useful. Consider f (
j ) = log(
j ). Then d

d
j
f |
j =λj

= 1
λj

and by the Transforma-
tion Theorem 4.11 we have from (10.17) that

√
n − 1(log
j − logλj )

L−→ N(0,2). (10.18)

Hence,
√

n − 1

2
(log
j − logλj )

L−→ N(0,1)

and a two-sided confidence interval at the 1 − α = 0.95 significance level is given
by

log(
j ) − 1.96

√
2

n − 1
≤ logλj ≤ log(
j ) + 1.96

√
2

n − 1
.

In the bank data example we have that


1 = 2.98.

Therefore,

log(2.98) ± 1.96

√
2

199
= log(2.98) ± 0.1965.

It can be concluded for the true eigenvalue that

P{λ1 ∈ (2.448,3.62)} ≈ 0.95.

Variance Explained by the First q PCs

The variance explained by the first q PCs is given by

ψ = λ1 + · · · + λq

p∑

j=1
λj

.

In practice this is estimated by

ψ̂ = 
1 + · · · + 
q

p∑

j=1

j

.
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From Theorem 10.4 we know the distribution of
√

n − 1(
 − λ). Since ψ is a non-
linear function of λ, we can again apply the Transformation Theorem 4.11 to obtain
that

√
n − 1(ψ̂ − ψ)

L−→ N(0,D�VD)

where V = 2�2 (from Theorem 10.4) and D = (d1, . . . , dp)� with

dj = ∂ψ

∂λj

=
⎧
⎨

⎩

1−ψ
tr(�)

for 1 ≤ j ≤ q,

−ψ
tr(�)

for q + 1 ≤ j ≤ p.

Given this result, the following theorem can be derived.

Theorem 10.5
√

n − 1(ψ̂ − ψ)
L−→ N(0,ω2),

where

ω2 =D�VD = 2

{tr(�)}2

{
(1 − ψ)2(λ2

1 + · · · + λ2
q) + ψ2(λ2

q+1 + · · · + λ2
p)
}

= 2 tr(�2)

{tr(�)}2
(ψ2 − 2βψ + β)

and

β = λ2
1 + · · · + λ2

q

λ2
1 + · · · + λ2

p

.

Example 10.5 From Section 10.3 it is known that the first PC for the Swiss bank
notes resolves 67% of the variation. It can be tested whether the true proportion is
actually 75%. Computing

β̂ = 
2
1


2
1 + · · · + 
2

p

= (2.985)2

(2.985)2 + (0.931)2 + · · · (0.035)2
= 0.902

tr(S) = 4.472

tr(S2) =
p∑

j=1


2
j = 9.883

ω̂2 = 2 tr(S2)

{tr(S)}2
(ψ̂2 − 2β̂ψ̂ + β̂)

= 2 · 9.883

(4.472)2

{
(0.668)2 − 2(0.902)(0.668) + 0.902

}= 0.142.
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Hence, a confidence interval at a significance of level 1 − α = 0.95 is given by

0.668 ± 1.96

√
0.142

199
= (0.615,0.720).

Clearly the hypothesis that ψ = 75% can be rejected!

Summary
↪→ The eigenvalues 
j and eigenvectors gj are asymptotically, nor-

mally distributed, in particular
√

n − 1(
 − λ)
L−→ Np(0,2�2).

↪→ For the eigenvalues it holds that
√

n−1
2 (log
j − logλj )

L−→
N(0,1).

↪→ Given an asymptotic, normal distribution approximate confidence
intervals and tests can be constructed for the proportion of variance
which is explained by the first q PCs. The two-sided confidence

interval at the 1−α = 0.95 level is given by log(
j )−1.96
√

2
n−1 ≤

logλj ≤ log(
j ) + 1.96
√

2
n−1 .

↪→ It holds for ψ̂ , the estimate of ψ (the proportion of the variance

explained by the first q PCs) that
√

n − 1(ψ̂ − ψ)
L−→ N(0,ω2),

where ω is given in Theorem 10.5.

10.5 Normalized Principal Components Analysis

In certain situations the original variables can be heterogeneous w.r.t. their vari-
ances. This is particularly true when the variables are measured on heterogeneous
scales (such as years, kilograms, dollars, . . . ). In this case a description of the infor-
mation contained in the data needs to be provided which is robust w.r.t. the choice
of scale. This can be achieved through a standardization of the variables, namely

XS = HXD−1/2 (10.19)

where D = diag(sX1X1, . . . , sXpXp). Note that xS = 0 and SXS
= R, the correla-

tion matrix of X . The PC transformations of the matrix XS are refereed to as the
Normalized Principal Components (NPCs). The spectral decomposition of R is

R = GRLRG�
R, (10.20)

where LR = diag(
R1 , . . . , 
Rp ) and 
R1 ≥ · · · ≥ 
Rp are the eigenvalues of R with

corresponding eigenvectors gR1 , . . . , gRp (note that here
∑p

j=1 
Rj = tr(R) = p).
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The NPCs, Zj , provide a representation of each individual, and is given by

Z =XSGR = (z1, . . . , zp). (10.21)

After transforming the variables, once again, we have that

z = 0, (10.22)

SZ = G�
RSXS

GR = G�
RRGR = LR. (10.23)

�
�
��

�
�

!
The NPCs provide a perspective similar to that of the PCs, but in terms of

the relative position of individuals, NPC gives each variable the same weight (with
the PCs the variable with the largest variance received the largest weight).

Computing the covariance and correlation between Xi and Zj is straightforward:

SXS,Z = 1

n
X�

S Z = GRLR, (10.24)

RXS,Z = GRLRL−1/2
R = GRL1/2

R . (10.25)

The correlations between the original variables Xi and the NPCs Zj are:

rXiZj
=√


jgR,ij (10.26)
p∑

j=1

r2
XiZj

= 1 (10.27)

(compare this to (10.15) and (10.16)). The resulting NPCs, the Zj , can be interpreted
in terms of the original variables and the role of each PC in explaining the variation
in variable Xi can be evaluated.

10.6 Principal Components as a Factorial Method

The empirical PCs (normalized or not) turn out to be equivalent to the factors that
one would obtain by decomposing the appropriate data matrix into its factors (see
Chapter 9). It will be shown that the PCs are the factors representing the rows of the
centered data matrix and that the NPCs correspond to the factors of the standardized
data matrix. The representation of the columns of the standardized data matrix pro-
vides (at a scale factor) the correlations between the NPCs and the original variables.
The derivation of the (N)PCs presented above will have a nice geometric justifica-
tion here since they are the best fit in subspaces generated by the columns of the
(transformed) data matrix X . This analogy provides complementary interpretations
of the graphical representations shown above.

Assume, as in Chapter 9, that we want to obtain representations of the individuals
(the rows of X ) and of the variables (the columns of X ) in spaces of smaller dimen-
sion. To keep the representations simple, some prior transformations are performed.
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Since the origin has no particular statistical meaning in the space of individuals, we
will first shift the origin to the center of gravity, x, of the point cloud. This is the
same as analyzing the centered data matrix XC =HX . Now all of the variables have
zero means, thus the technique used in Chapter 9 can be applied to the matrix XC .
Note that the spectral decomposition of X�

C XC is related to that of SX , namely

X�
C XC = X�H�HX = nSX = nGLG�. (10.28)

The factorial variables are obtained by projecting XC on G,

Y =XCG = (y1, . . . , yp). (10.29)

These are the same principal components obtained above, see formula (10.10).
(Note that the y’s here correspond to the z’s in Section 9.2.) Since HXC = XC ,
it immediately follows that

y = 0, (10.30)

SY = G�SXG = L = diag(
1, . . . , 
p). (10.31)

The scatterplot of the individuals on the factorial axes are thus centered around the
origin and are more spread out in the first direction (first PC has variance 
1) than
in the second direction (second PC has variance 
2).

The representation of the variables can be obtained using the Duality Rela-
tions (9.11), and (9.12). The projections of the columns of XC onto the eigenvectors
vk of XCX�

C are

X�
C vk = 1√

n
k

X�
C XCgk =√

n
kgk. (10.32)

Thus the projections of the variables on the first p axes are the columns of the matrix

X�
C V = √

nGL1/2. (10.33)

Considering the geometric representation, there is a nice statistical interpretation of
the angle between two columns of XC . Given that

x�
C[j ]xC[k] = nsXj Xk

, (10.34)

||xC[j ]||2 = nsXj Xj
, (10.35)

where xC[j ] and xC[k] denote the j -th and k-th column of XC , it holds that in the
full space of the variables, if θjk is the angle between two variables, xC[j ] and xC[k],
then

cos θjk = x�
C[j ]xC[k]

‖xC[j ]‖ ‖xC[k]‖ = rXj Xk
(10.36)

(Example 2.11 shows the general connection that exists between the angle and cor-
relation of two variables). As a result, the relative positions of the variables in the
scatterplot of the first columns of X�

C V may be interpreted in terms of their correla-
tions; the plot provides a picture of the correlation structure of the original data set.
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Clearly, one should take into account the percentage of variance explained by the
chosen axes when evaluating the correlation.

The NPCs can also be viewed as a factorial method for reducing the dimension.
The variables are again standardized so that each one has mean zero and unit vari-
ance and is independent of the scale of the variables. The factorial analysis of XS

provides the NPCs. The spectral decomposition of X�
S XS is related to that of R,

namely

X�
S XS = D−1/2X�HXD−1/2 = nR= nGRLRG�

R.

The NPCs Zj , given by (10.21), may be viewed as the projections of the rows of XS

onto GR .
The representation of the variables are again given by the columns of

X�
S VR = √

nGRL1/2
R . (10.37)

Comparing (10.37) and (10.25) we see that the projections of the variables in the
factorial analysis provide the correlation between the NPCs Zk and the original
variables x[j ] (up to the factor

√
n which could be the scale of the axes).

This implies that a deeper interpretation of the representation of the individuals
can be obtained by looking simultaneously at the graphs plotting the variables. Note
that

x�
S[j ]xS[k] = nrXj Xk

, (10.38)

‖xS[j ]‖2 = n, (10.39)

where xS[j ] and xS[k] denote the j -th and k-th column of XS . Hence, in the full
space, all the standardized variables (columns of XS ) are contained within the
“sphere” in R

n, which is centered at the origin and has radius
√

n (the scale of
the graph). As in (10.36), given the angle θjk between two columns xS[j ] and xS[k],
it holds that

cos θjk = rXj Xk
. (10.40)

Therefore, when looking at the representation of the variables in the spaces of re-
duced dimension (for instance the first two factors), we have a picture of the cor-
relation structure between the original Xi ’s in terms of their angles. Of course, the
quality of the representation in those subspaces has to be taken into account, which
is presented in the next section.

Quality of the Representations

As said before, an overall measure of the quality of the representation is given by

ψ = 
1 + 
2 + · · · + 
q
∑p

j=1 
j

.
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In practice, q is chosen to be equal to 1, 2 or 3. Suppose for instance that ψ = 0.93
for q = 2. This means that the graphical representation in two dimensions captures
93% of the total variance. In other words, there is minimal dispersion in a third
direction (no more than 7%).

It can be useful to check if each individual is well represented by the PCs. Clearly,
the proximity of two individuals on the projected space may not necessarily coin-
cide with the proximity in the full original space R

p , which may lead to erroneous
interpretations of the graphs. In this respect, it is worth computing the angle ϑik

between the representation of an individual i and the k-th PC or NPC axis. This can
be done using (2.40), i.e.,

cosϑik = y�
i ek

‖yi‖‖ek‖ = yik

‖xCi‖
for the PCs or analogously

cos ζik = z�
i ek

‖zi‖‖ek‖ = zik

‖xSi‖
for the NPCs, where ek denotes the k-th unit vector ek = (0, . . . ,1, . . . ,0)�. An
individual i will be represented on the k-th PC axis if its corresponding angle is
small, i.e., if cos2 ϑik for k = 1, . . . , p is close to one. Note that for each individual i,

p∑

k=1

cos2 ϑik = y�
i yi

x�
CixCi

= x�
CiGG�xCi

x�
CixCi

= 1.

The values cos2 ϑik are sometimes called the relative contributions of the k-th axis
to the representation of the i-th individual, e.g., if cos2 ϑi1 + cos2 ϑi2 is large (near
one), we know that the individual i is well represented on the plane of the first two
principal axes since its corresponding angle with the plane is close to zero.

We already know that the quality of the representation of the variables can be
evaluated by the percentage of Xi ’s variance that is explained by a PC, which is
given by r2

XiYj
or r2

XiZj
according to (10.16) and (10.27) respectively.

Example 10.6 Let us return to the French food expenditure example, see Ap-
pendix B.6. This yields a two-dimensional representation of the individuals as
shown in Figure 10.7.

Calculating the matrix GR we have

GR =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.240 0.622 −0.011 −0.544 0.036 0.508
−0.466 0.098 −0.062 −0.023 −0.809 −0.301
−0.446 −0.205 0.145 0.548 −0.067 0.625
−0.462 −0.141 0.207 −0.053 0.411 −0.093
−0.438 −0.197 0.356 −0.324 0.224 −0.350
−0.281 0.523 −0.444 0.450 0.341 −0.332

0.206 0.479 0.780 0.306 −0.069 −0.138

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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Fig. 10.7 Representation of the individuals MVAnpcafood

Table 10.3 Eigenvalues and
explained variance eigenvalues proportion of variance cumulated proportion

4.333 0.6190 61.9

1.830 0.2620 88.1

0.631 0.0900 97.1

0.128 0.0180 98.9

0.058 0.0080 99.7

0.019 0.0030 99.9

0.001 0.0001 100.0

which gives the weights of the variables (milk, vegetables, etc.). The eigenvalues 
j

and the proportions of explained variance are given in Table 10.3.
The interpretation of the principal components are best understood when looking

at the correlations between the original Xi ’s and the PCs. Since the first two PCs
explain 88.1% of the variance, we limit ourselves to the first two PCs. The results are
shown in Table 10.4. The two-dimensional graphical representation of the variables
in Figure 10.8 is based on the first two columns of Table 10.4.

The plots are the projections of the variables into R
2. Since the quality of the

representation is good for all the variables (except maybe X7), their relative angles
give a picture of their original correlation: wine is negatively correlated with the veg-
etables, fruits, meat and poultry groups (θ > 90◦), whereas taken individually this
latter grouping of variables are highly positively correlated with each other (θ ≈ 0).
Bread and milk are positively correlated but poorly correlated with meat, fruits and
poultry (θ ≈ 90◦).
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Table 10.4 Correlations with
PCs rXiZ1 rXiZ2 r2

XiZ1
+ r2

XiZ2

X1: bread −0.499 0.842 0.957

X2: vegetables −0.970 0.133 0.958

X3: fruits −0.929 −0.278 0.941

X4: meat −0.962 −0.191 0.962

X5: poultry −0.911 −0.266 0.901

X6: milk −0.584 0.707 0.841

X7: wine 0.428 0.648 0.604

Fig. 10.8 Representation of

the variables
MVAnpcafood

Now the representation of the individuals in Figure 10.7 can be interpreted bet-
ter. From Figure 10.8 and Table 10.4 we can see that the the first factor Z1 is a
vegetable–meat–poultry–fruit factor (with a negative sign), whereas the second fac-
tor is a milk–bread–wine factor (with a positive sign). Note that this corresponds to
the most important weights in the first columns of GR. In Figure 10.7 lines were
drawn to connect families of the same size and families of the same professional
types. A grid can clearly be seen (with a slight deformation by the manager fami-
lies) that shows the families with higher expenditures (higher number of children)
on the left.

Considering both figures together explains what types of expenditures are re-
sponsible for similarities in food expenditures. Bread, milk and wine expenditures
are similar for manual workers and employees. Families of managers are charac-
terized by higher expenditures on vegetables, fruits, meat and poultry. Very often
when analyzing NPCs (and PCs), it is illuminating to use such a device to introduce
qualitative aspects of individuals in order to enrich the interpretations of the graphs.
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Summary
↪→ NPCs are PCs applied to the standardized (normalized) data ma-

trix XS .
↪→ The graphical representation of NPCs provides a similar type of

picture as that of PCs, the difference being in the relative position
of individuals, i.e., each variable in NPCs has the same weight (in
PCs, the variable with the largest variance has the largest weight).

↪→ The quality of the representation is evaluated by ψ =
(
∑p

j=1 
j )
−1(
1 + 
2 + · · · + 
q).

↪→ The quality of the representation of a variable can be evaluated by
the percentage of Xi’s variance that is explained by a PC, i.e., r2

XiYj
.

10.7 Common Principal Components

In many applications a statistical analysis is simultaneously done for groups of data.
In this section a technique is presented that allows us to analyze group elements that
have common PCs. From a statistical point of view, estimating PCs simultaneously
in different groups will result in a joint dimension reducing transformation. This
multi-group PCA, the so called common principle components analysis (CPCA),
yields the joint eigenstructure across groups.

In addition to traditional PCA, the basic assumption of CPCA is that the space
spanned by the eigenvectors is identical across several groups, whereas variances
associated with the components are allowed to vary.

More formally, the hypothesis of common principle components can be stated in
the following way (Flury, 1988):

HCPC : �i = ��i�
�, i = 1, . . . , k

where �i is a positive definite p × p population covariance matrix for ev-
ery i, � = (γ1, . . . , γp) is an orthogonal p × p transformation matrix and �i =
diag(λi1, . . . , λip) is the matrix of eigenvalues. Moreover, assume that all λi are
distinct.

Let S be the (unbiased) sample covariance matrix of an underlying p-variate
normal distribution Np(μ,�) with sample size n. Then the distribution of nS has
n−1 degrees of freedom and is known as the Wishart distribution (Muirhead, 1982,
p. 86):

nS ∼Wp(�,n − 1).
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The density is given in (5.16). Hence, for a given Wishart matrix Si with sample
size ni , the likelihood function can be written as

L(�1, . . . ,�k) = C

k∏

i=1

exp

[

tr

{

−1

2
(ni − 1)�−1

i Si

}]

|�i |− 1
2 (ni−1) (10.41)

where C is a constant independent of the parameters �i . Maximizing the likelihood
is equivalent to minimizing the function

g(�1, . . . ,�k) =
k∑

i=1

(ni − 1)
{
log |�i | + tr(�−1

i Si )
}
.

Assuming that HCPC holds, i.e., in replacing �i by ��i�
�, after some manipu-

lations one obtains

g(�,�1, . . . ,�k) =
k∑

i=1

(ni − 1)

p∑

j=1

(

logλij + γ �
j Siγj

λij

)

.

As we know from Section 2.2, the vectors γj in � have to be orthogonal. Orthog-
onality of the vectors γj is achieved using the Lagrange method, i.e., we impose
the p constraints γ �

j γj = 1 using the Lagrange multipliers μj , and the remaining

p(p −1)/2 constraints γ �
h γj = 0 for h �= j using the multiplier 2μhj (Flury, 1988).

This yields

g∗(�,�1, . . . ,�k) = g(·) −
p∑

j=1

μj (γ
�
j γj − 1) − 2

p∑

h=1

p∑

j=h+1

μhjγ
�
h γj .

Taking partial derivatives with respect to all λim and γm, it can be shown that the
solution of the CPC model is given by the generalized system of characteristic equa-
tions

γ �
m

{
k∑

i=1

(ni − 1)
λim − λij

λimλij

Si

}

γj = 0, m, j = 1, . . . , p, m �= j. (10.42)

This system can be solved using

λim = γ �
m Sγm, i = 1, . . . , k, m = 1, . . . , p

under the constraints

γ �
m γj =

{
0 m �= j

1 m = j.

Flury (1988) proves existence and uniqueness of the maximum of the likelihood
function, and Flury and Gautschi (1986) provide a numerical algorithm.

Example 10.7 As an example we provide the data sets XFGvolsurf01, XFGvol-
surf02 and XFGvolsurf03 that have been used in Fengler, Härdle and Villa (2003)
to estimate common principle components for the implied volatility surfaces of
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Fig. 10.9 Factor loadings of
the first (thick), the second
(medium), and the third (thin)

PC MVAcpcaiv

the DAX 1999. The data has been generated by smoothing an implied volatility
surface day by day. Next, the estimated grid points have been grouped into maturi-
ties of τ = 1, τ = 2 and τ = 3 months and transformed into a vector of time series of
the “smile”, i.e., each element of the vector belongs to a distinct moneyness ranging
from 0.85 to 1.10.

Figure 10.9 shows the first three eigenvectors in a parallel coordinate plot. The
basic structure of the first three eigenvectors is not altered. We find a shift, a slope
and a twist structure. This structure is common to all maturity groups, i.e., when
exploiting PCA as a dimension reducing tool, the same transformation applies to
each group! However, by comparing the size of eigenvalues among groups we find
that variability is decreasing across groups as we move from the short term contracts
to long term contracts.

Before drawing conclusions we should convince ourselves that the CPC model is
truly a good description of the data. This can be done by using a likelihood ratio test.
The likelihood ratio statistic for comparing a restricted (the CPC) model against the
unrestricted model (the model where all covariances are treated separately) is given
by

T(n1,n2,...,nk) = −2 log
L(�̂1, . . . , �̂k)

L(S1, . . . ,Sk)
.

Inserting the likelihood function, we find that this is equivalent to

T(n1,n2,...,nk) =
k∑

i=1

(ni − 1)
det (�̂i)

det (Si )
,
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which has a χ2 distribution as min(ni) tends to infinity with

k

{
1

2
p(p − 1) + 1

}

−
{

1

2
p(p − 1) + kp

}

= 1

2
(k − 1)p(p − 1)

degrees of freedom. This test is included in the quantlet MVAcpcaiv.
The calculations yield T(n1,n2,...,nk) = 31.836, which corresponds to the p-value

p = 0.37512 for the χ2(30) distribution. Hence we cannot reject the CPC model
against the unrestricted model, where PCA is applied to each maturity separately.

Using the methods in Section 10.3, we can estimate the amount of variability,
ζl , explained by the first l principal components: (only a few factors, three at the
most, are needed to capture a large amount of the total variability present in the
data). Since the model now captures the variability in both the strike and matu-
rity dimensions, this is a suitable starting point for a simplified VaR calculation for
delta-gamma neutral option portfolios using Monte Carlo methods, and is hence a
valuable insight in risk management.

10.8 Boston Housing

A set of transformations were defined in Chapter 1 for the Boston Housing data set
that resulted in “regular” marginal distributions. The usefulness of principal com-
ponent analysis with respect to such high-dimensional data sets will now be shown.
The variable X4 is dropped because it is a discrete 0–1 variable. It will be used later,
however, in the graphical representations. The scale difference of the remaining 13
variables motivates a NPCA based on the correlation matrix.

The eigenvalues and the percentage of explained variance are given in Table 10.5.

Table 10.5 Eigenvalues and
percentage of explained
variance for Boston housing

data MVAnpcahousi

Eigenvalue Percentages Cumulated percentages

7.2852 0.5604 0.5604

1.3517 0.1040 0.6644

1.1266 0.0867 0.7510

0.7802 0.0600 0.8111

0.6359 0.0489 0.8600

0.5290 0.0407 0.9007

0.3397 0.0261 0.9268

0.2628 0.0202 0.9470

0.1936 0.0149 0.9619

0.1547 0.0119 0.9738

0.1405 0.0108 0.9846

0.1100 0.0085 0.9931

0.0900 0.0069 1.0000
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Table 10.6 Correlations of
the first three PC’s with the
original variables

MVAnpcahous

PC1 PC2 PC3

X1 −0.9076 0.2247 0.1457

X2 0.6399 −0.0292 0.5058

X3 −0.8580 0.0409 −0.1845

X5 −0.8737 0.2391 −0.1780

X6 0.5104 0.7037 0.0869

X7 −0.7999 0.1556 −0.2949

X8 0.8259 −0.2904 0.2982

X9 −0.7531 0.2857 0.3804

X10 −0.8114 0.1645 0.3672

X11 −0.5674 −0.2667 0.1498

X12 0.4906 −0.1041 −0.5170

X13 −0.7996 −0.4253 −0.0251

X14 0.7366 0.5160 −0.1747

The first principal component explains 56% of the total variance and the first
three components together explain more than 75%. These results imply that it is
sufficient to look at 2, maximum 3, principal components.

Table 10.6 provides the correlations between the first three PC’s and the original
variables. These can be seen in Figure 10.10.

The correlations with the first PC show a very clear pattern. The variables X2,
X6, X8, X12, and X14 are strongly positively correlated with the first PC, whereas
the remaining variables are highly negatively correlated. The minimal correlation in
the absolute value is 0.5. The first PC axis could be interpreted as a quality of life
and house indicator. The second axis, given the polarities of X11 and X13 and of
X6 and X14, can be interpreted as a social factor explaining only 10% of the total
variance. The third axis is dominated by a polarity between X2 and X12.

The set of individuals from the first two PCs can be graphically interpreted if
the plots are color coded with respect to some particular variable of interest. Fig-
ure 10.11 color codes X14 > median as red points. Clearly the first and second PCs
are related to house value. The situation is less clear in Figure 10.12 where the color
code corresponds to X4, the Charles River indicator, i.e., houses near the river are
colored red.

10.9 More Examples

Example 10.8 Let us now apply the PCA to the standardized bank data set (Ta-
ble B.2). Figure 10.13 shows some PC plots of the bank data set. The genuine and
counterfeit bank notes are marked by “o” and “+” respectively.

The vector of eigenvalues of R is


 = (2.946,1.278,0.869,0.450,0.269,0.189)� .
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Fig. 10.10 NPCA for the Boston housing data, correlations of first three PCs with the original

variables MVAnpcahousi

The eigenvectors gj are given by the columns of the matrix

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.007 −0.815 0.018 0.575 0.059 0.031
0.468 −0.342 −0.103 −0.395 −0.639 −0.298
0.487 −0.252 −0.123 −0.430 0.614 0.349
0.407 0.266 −0.584 0.404 0.215 −0.462
0.368 0.091 0.788 0.110 0.220 −0.419

−0.493 −0.274 −0.114 −0.392 0.340 −0.632

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Each original variable has the same weight in the analysis and the results are inde-
pendent of the scale of each variable.

The proportions of explained variance are given in Table 10.7. It can be con-
cluded that the representation in two dimensions should be sufficient. The correla-
tions leading to Figure 10.14 are given in Table 10.8. The picture is different from
the one obtained in Section 10.3 (see Table 10.2). Here, the first factor is mainly
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Fig. 10.11 NPC analysis for the Boston housing data, scatterplot of the first two PCs. More ex-

pensive houses are marked with red color MVAnpcahous

Table 10.7 Eigenvalues and
proportions of explained
variance


j Proportion of variances Cumulated proportion

2.946 0.491 49.1

1.278 0.213 70.4

0.869 0.145 84.9

0.450 0.075 92.4

0.264 0.045 96.9

0.189 0.032 100.0

Table 10.8 Correlations
with PCs rXiZ1 rXiZ2 r2

XiZ1
+ r2

XiZ2

X1: length −0.012 −0.922 0.85

X2: left height 0.803 −0.387 0.79

X3: right height 0.835 −0.285 0.78

X4: lower 0.698 0.301 0.58

X5: upper 0.631 0.104 0.41

X6: diagonal −0.847 −0.310 0.81

a left–right vs. diagonal factor and the second one is a length factor (with nega-
tive weight). Take another look at Figure 10.13, where the individual bank notes
are displayed. In the upper left graph it can be seen that the genuine bank notes
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Fig. 10.12 NPC analysis for the Boston housing data, scatterplot of the first two PCs. Houses

close to the Charles River are indicated with red squares MVAnpcahous

Fig. 10.13 Principal components of the standardized bank data MVAnpcabank
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Fig. 10.14 The correlations
of the original variable with

the PCs
MVAnpcabanki

are for the most part in the south-eastern portion of the graph featuring a larger di-
agonal, smaller height (Z1 < 0) and also a larger length (Z2 < 0). Note also that
Figure 10.14 gives an idea of the correlation structure of the original data ma-
trix.

Example 10.9 Consider the data of 79 U.S. companies given in Table B.5. The data
is first standardized by subtracting the mean and dividing by the standard deviation.
Note that the data set contains six variables: assets (X1), sales (X2), market value
(X3), profits (X4), cash flow (X5), number of employees (X6).

Calculating the corresponding vector of eigenvalues gives


 = (5.039,0.517,0.359,0.050,0.029,0.007)�

and the matrix of eigenvectors is

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.340 −0.849 −0.339 0.205 0.077 −0.006
0.423 −0.170 0.379 −0.783 −0.006 −0.186
0.434 0.190 −0.192 0.071 −0.844 0.149
0.420 0.364 −0.324 0.156 0.261 −0.703
0.428 0.285 −0.267 −0.121 0.452 0.667
0.397 0.010 0.726 0.548 0.098 0.065

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Using this information the graphical representations of the first two principal com-
ponents are given in Figure 10.15. The different sectors are marked by the following
symbols:
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Fig. 10.15 Principal components of the U.S. company data MVAnpcausco

H . . . Hi Tech and Communication

E . . . Energy

F . . . Finance

M . . . Manufacturing

R . . . Retail

� . . . all other sectors.

The two outliers in the right-hand side of the graph are IBM and General Electric
(GE), which differ from the other companies with their high market values. As can
be seen in the first column of G, market value has the largest weight in the first
PC, adding to the isolation of these two companies. If IBM and GE were to be
excluded from the data set, a completely different picture would emerge, as shown
in Figure 10.16. In this case the vector of eigenvalues becomes


 = (3.191,1.535,0.791,0.292,0.149,0.041)� ,

and the corresponding matrix of eigenvectors is

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.263 −0.408 −0.800 −0.067 0.333 0.099
0.438 −0.407 0.162 −0.509 −0.441 −0.403
0.500 −0.003 −0.035 0.801 −0.264 −0.190
0.331 0.623 −0.080 −0.192 0.426 −0.526
0.443 0.450 −0.123 −0.238 −0.335 0.646
0.427 −0.277 0.558 0.021 0.575 0.313

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.



300 10 Principal Components Analysis

Fig. 10.16 Principal components of the U.S. company data (without IBM and General Electric)

MVAnpcausco2

Table 10.9 Eigenvalues and
proportions of explained
variance


j Proportion of variance Cumulated proportion

3.191 0.532 0.532

1.535 0.256 0.788

0.791 0.132 0.920

0.292 0.049 0.968

0.149 0.025 0.993

0.041 0.007 1.000

The percentage of variation explained by each component is given in Table 10.9.
The first two components explain almost 79% of the variance. The interpretation
of the factors (the axes of Figure 10.16) is given in the table of correlations (Ta-
ble 10.10). The first two columns of this table are plotted in Figure 10.17.

From Figure 10.17 (and Table 10.10) it appears that the first factor is a “size
effect”, it is positively correlated with all the variables describing the size of the
activity of the companies. It is also a measure of the economic strength of the firms.
The second factor describes the “shape” of the companies (“profit-cash flow” vs.
“assets-sales” factor), which is more difficult to interpret from an economic point of
view.

Example 10.10 Volle (1985) analyzes data on 28 individuals (Table B.14). For each
individual, the time spent (in hours) on 10 different activities has been recorded over
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Table 10.10 Correlations
with PCs rXiZ1 rXiZ2 r2

XiZ1
+ r2

XiZ2

X1: assets 0.47 −0.510 0.48

X2: sales 0.78 −0.500 0.87

X3: market value 0.89 −0.003 0.80

X4: profits 0.59 0.770 0.95

X5: cash flow 0.79 0.560 0.94

X6: employees 0.76 −0.340 0.70

Fig. 10.17 The correlation of
the original variables with the

PCs MVAnpcausco2i

100 days, as well as informative statistics such as the individual’s sex, country of
residence, professional activity and matrimonial status. The results of a NPCA are
given below.

The eigenvalues of the correlation matrix are given in Table 10.11. Note that the
last eigenvalue is exactly zero since the correlation matrix is singular (the sum of all
the variables is always equal to 2400 = 24 × 100). The results of the 4 first PCs are
given in Tables 10.12 and 10.13.

From these tables (and Figures 10.18 and 10.19), it appears that the professional
and household activities are strongly contrasted in the first factor. Indeed on the
horizontal axis of Figure 10.18 it can be seen that all the active men are on the right
and all the inactive women are on the left. Active women and/or single women are
inbetween. The second factor contrasts meal/sleeping vs. toilet/shopping (note the
high correlation between meal and sleeping). Along the vertical axis of Figure 10.18
we see near the bottom of the graph the people from Western-European countries,
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Table 10.11 Eigenvalues of
correlation matrix for the
time budget data


j Proportion of variance Cumulated proportion

4.59 0.459 0.460

2.12 0.212 0.670

1.32 0.132 0.800

1.20 0.120 0.920

0.47 0.047 0.970

0.20 0.020 0.990

0.05 0.005 0.990

0.04 0.004 0.999

0.02 0.002 1.000

0.00 0.000 1.000

Table 10.12 Correlation of
variables with PCs rXiW1 rXiW2 rXiW3 rXiW4

X1: prof 0.9772 −0.1210 −0.0846 0.0669

X2: tran 0.9798 0.0581 −0.0084 0.4555

X3: hous −0.8999 0.0227 0.3624 0.2142

X4: kids −0.8721 0.1786 0.0837 0.2944

X5: shop −0.5636 0.7606 −0.0046 −0.1210

X6: pers −0.0795 0.8181 −0.3022 −0.0636

X7: eati −0.5883 −0.6694 −0.4263 0.0141

X8: slee −0.6442 −0.5693 −0.1908 −0.3125

X9: tele −0.0994 0.1931 −0.9300 0.1512

X10: leis −0.0922 0.1103 0.0302 −0.9574

who spend more time on meals and sleeping than people from the U. S. (who can
be found close to the top of the graph). The other categories are inbetween.

In Figure 10.19 the variables television and other leisure activities hardly play
any role (look at Table 10.12). The variable television appears in Z3 (negatively
correlated). Table 10.13 shows that this factor contrasts people from Eastern coun-
tries and Yugoslavia with men living in the U.S. The variable other leisure activities
is the factor Z4. It merely distinguishes between men and women in Eastern coun-
tries and in Yugoslavia. These last two factors are orthogonal to the preceeding axes
and of course their contribution to the total variation is less important.

10.10 Exercises

Exercise 10.1 Prove Theorem 10.1. (Hint: use (4.23).)
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Table 10.13 PCs for time
budget data Z1 Z2 Z3 Z4

maus 0.0633 0.0245 −0.0668 0.0205

waus 0.0061 0.0791 −0.0236 0.0156

wnus −0.1448 0.0813 −0.0379 −0.0186

mmus 0.0635 0.0105 −0.0673 0.0262

wmus −0.0934 0.0816 −0.0285 0.0038

msus 0.0537 0.0676 −0.0487 −0.0279

wsus 0.0166 0.1016 −0.0463 −0.0053

mawe 0.0420 −0.0846 −0.0399 −0.0016

wawe −0.0111 −0.0534 −0.0097 0.0337

wnwe −0.1544 −0.0583 −0.0318 −0.0051

mmwe 0.0402 −0.0880 −0.0459 0.0054

wmwe −0.1118 −0.0710 −0.0210 0.0262

mswe 0.0489 −0.0919 −0.0188 −0.0365

wswe −0.0393 −0.0591 −0.0194 −0.0534

mayo 0.0772 −0.0086 0.0253 −0.0085

wayo 0.0359 0.0064 0.0577 0.0762

wnyo −0.1263 −0.0135 0.0584 −0.0189

mmyo 0.0793 −0.0076 0.0173 −0.0039

wmyo −0.0550 −0.0077 0.0579 0.0416

msyo 0.0763 0.0207 0.0575 −0.0778

wsyo 0.0120 0.0149 0.0532 −0.0366

maes 0.0767 −0.0025 0.0047 0.0115

waes 0.0353 0.0209 0.0488 0.0729

wnes −0.1399 0.0016 0.0240 −0.0348

mmes 0.0742 −0.0061 −0.0152 0.0283

wmes −0.0175 0.0073 0.0429 0.0719

mses 0.0903 0.0052 0.0379 −0.0701

fses 0.0020 0.0287 0.0358 −0.0346

Exercise 10.2 Interpret the results of the PCA of the U.S. companies. Use the anal-
ysis of the bank notes in Section 10.3 as a guide. Compare your results with those
in Example 10.9.

Exercise 10.3 Test the hypothesis that the proportion of variance explained by the
first two PCs for the U.S. companies is ψ = 0.75.

Exercise 10.4 Apply the PCA to the car data (Table B.7). Interpret the first two
PCs. Would it be necessary to look at the third PC?
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Fig. 10.18 Representation of the individuals MVAnpcatime

Fig. 10.19 Representation of

the variables
MVAnpcatime

Exercise 10.5 Take the athletic records for 55 countries (Appendix B.18) and apply
the NPCA. Interpret your results.
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Exercise 10.6 Apply a PCA to � = ( 1 ρ

ρ 1

)
, where ρ > 0. Now change the scale of

X1, i.e., consider the covariance of cX1 and X2. How do the PC directions change
with the screeplot?

Exercise 10.7 Suppose that we have standardized some data using the Mahalanobis
transformation. Would it be reasonable to apply a PCA?

Exercise 10.8 Apply a NPCA to the U.S. CRIME data set (Table B.10). Interpret
the results. Would it be necessary to look at the third PC? Can you see any difference
between the four regions? Redo the analysis excluding the variable “area of the
state.”

Exercise 10.9 Repeat Exercise 10.8 using the U.S. HEALTH data set (Table B.16).

Exercise 10.10 Do a NPCA on the GEOPOL data set (see Table B.15) which com-
pares 41 countries w.r.t. different aspects of their development. Why or why not
would a PCA be reasonable here?

Exercise 10.11 Let U be an uniform r.v. on [0,1]. Let a ∈ R
3 be a vector of con-

stants. Suppose that X = Ua� = (X1,X2,X3). What do you expect the NPCs of X

to be?

Exercise 10.12 Let U1 and U2 be two independent uniform random variables
on [0,1]. Suppose that X = (X1,X2,X3,X4)

� where X1 = U1, X2 = U2, X3 =
U1 + U2 and X4 = U1 − U2. Compute the correlation matrix P of X. How many
PCs are of interest? Show that γ1 = ( 1√

2
, 1√

2
,1,0)� and γ2 = ( 1√

2
, −1√

2
,0,1)� are

eigenvectors of P corresponding to the non trivial λ’s. Interpret the first two NPCs
obtained.

Exercise 10.13 Simulate a sample of size n = 50 for the r.v. X in Exercise 10.12
and analyze the results of a NPCA.

Exercise 10.14 Bouroche and Saporta (1980) reported the data on the state ex-
penses of France from the period 1872 to 1971 (24 selected years) by noting the
percentage of 11 categories of expenses. Do a NPCA of this data set. Do the three
main periods (before WWI, between WWI and WWII, and after WWII) indicate a
change in behavior w.r.t. to state expenses?
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