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Preface

Securing complex and networked systems has become increasingly important as
these systems play an indispensable role in modern life at the turn of the in-
formation age. Concurrently, security of ubiquitous communication, data, and
computing poses novel research challenges. Security is a multi-faceted problem
due to the complexity of underlying hardware, software, and network interde-
pendencies as well as human and social factors. It involves decision making on
multiple levels and multiple time scales, given the limited resources available to
both malicious attackers and administrators defending networked systems. De-
cision and game theory provides a rich set of analytical methods and approaches
to address various resource allocation and decision-making problems arising in
security.

This edited volume contains the contributions presented at the inaugural
Conference on Decision and Game Theory for Security - GameSec 2010. These
18 articles (12 full and 6 short papers) are thematically categorized into the
following six sections:

– “Security investments and planning” contains two articles, which present
optimization methods for (security) investments when facing adversaries.

– “Privacy and anonymity” has three articles discussing location privacy, on-
line anonymity, and economic aspects of privacy.

– “Adversarial and robust control” contains three articles, which investigate
security and robustness aspects of control in networks.

– “Network security and botnets” has four articles focusing on defensive strate-
gies against botnets as well as detection of malicious adversaries in networks.

– “Authorization and authentication” has an article on password practices and
another one presenting a game-theoretic authorization model.

– “Theory and algorithms for security” contains four articles on various theo-
retic and algorithmic aspects of security.

Considering that decision making for security is still a research topic in its in-
fancy, we believe that this edited volume as well as the GameSec conference will
be of interest to both researchers and students who work in this area and have
diverse backgrounds.

November 2010 Tansu Alpcan
Levente Buttyán

John Baras
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Rainer Böhme and Márk Félegyházi
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Design of Network Topology in an Adversarial
Environment

Assane Gueye, Jean C. Walrand, and Venkat Anantharam

University of California at Berkeley, EECS Department, Berkeley CA 94720, USA
{agueye,wlr,ananth}@eecs.berkeley.edu

Abstract. We study the strategic interaction between a network manager whose
goal is to choose (as communication infrastructure) a spanning tree of a network
given as an undirected graph, and an attacker who is capable of attacking a link
in the network. We model their interaction as a zero-sum game and discuss a
particular set of Nash equilibria. More specifically, we show that there always
exists a Nash equilibrium under which the attacker targets a critical set of
links. A set of links is called critical if it has maximum vulnerability, and the
vulnerability of a set of links is defined as the minimum fraction of links the
set has in common with a spanning tree. Using simple examples, we discuss
the importance of critical subsets in the design of networks that are aimed to be
robust against attackers. Finally, an algorithm is provided, to compute a critical
subset of a given graph.

Keywords: Network Topology, Connectivity, Graph Vulnerability, Span-
ning Trees, Minimum Cut Set, Game Theory, Nash Equilibrium, Linear
Programming, Blocking pairs of polyhedra, Polymatroid, Network Flow
Algorithm.

1 Introduction

In this work, we aim to study the strategic interaction between a network manager
whose goal is to choose a spanning tree of the network as communication infrastructure,
and an attacker who tries to disrupt the communication tree by attacking one link in the
network.

The network topology is given as a connected undirected graph. The formulation
of the problem extends naturally to the manager choosing a k-connected component
and the attacker selecting k′ ≥ k links to attack. For example, if k = 2, this problem
models the situation where the manager is choosing a primary communication tree and
a backup tree in the presence of an attacker who can attack more than 2 links in the
network. The discussion in the present paper, however, focuses attention only on the
case k = k′ = 1.

In general, each tree has a given cost which is the loss seen by the manager when one
of the edges of that tree is attacked. This cost (or a function of it) goes to the attacker.
Also, it is conceivable that the attacker incurs some cost by attacking a link. The goal
of the network manager is to minimize the cost of attack while the attacker is trying to
maximize the net attack reward.

T. Alpcan, L. Buttyan, and J. Baras (Eds.): GameSec 2010, LNCS 6442, pp. 1–20, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In a non-adversarial environment, choosing a minimum cost spanning tree (MST) of
the graph would be optimal for the network manager. Algorithms for calculating the
MST have been studied extensively since the work of Kruskal [15] and Prim [20].

In this paper, we will assume that every tree has equal cost. It is also assumed that
the cost of attacking any given link is zero for the attacker. These assumptions will be
relaxed in subsequent studies of the problem.

The communication networks community has spent a lot of effort studying the re-
liability/robustness of networks. The interested reader is referred to [21] and [12] and
the references therein. Robustness has mostly been considered against non-strategic
phenomena (e.g. random failures). However, network disruption can also be due to ma-
licious attackers. The nature of the attack can be varied. In an availability attack, the
attacker might be launching a denial of service (DoS) attack on some node/link, or
simply jam a communication channel. In a confidentiality attack, the attacker could be
choosing a link and observe/analyze the traffic that it carries. An integrity attack could
also be launched, where the attacker will try to modify the traffic (or generate traffic)
for a target link/node.

These problems have received a lot of attention specially in the area of mobile and
ad-hoc networks [5], [1] and mostly in a non-strategic framework. In an environment
where the adversary is cognitive, most of the results found in the literature do not apply
any more. For example, in the graph connectivity problem considered here, when the
attacker strategically chooses the edge to attack, it is no longer obvious how the network
manager should choose a spanning tree. For example, if the network manager were to
always choose a specific MST, the attacker could compute this MST and attack one of
its links to disconnect the network.

To understand how the network manager should choose a spanning component as
well as how an attacker could break the communication, we model their interaction as
a game where:

– the manager’s strategy set is the set of spanning trees of the graph;
– the attacker’s strategy set is the set of links;
– the goal of the manager is to minimize the average cost of getting attacked while

the goal of the attacker is to maximize that cost.

We assume that the network topology is known to both players. All trees have the same
cost, and there is no cost of attack. We would like to understand the structure of the (or
at least some) set of Nash equilibria of this one-shot, zero-sum game.

The organization of this paper is as follows. In the next section, we present the model
of the game considered in this paper. The notion of critical subset is discussed in sub-
section 2.1, followed by illustrative examples in subsection 2.2. The main result of the
paper (the critical subset attack theorem) is presented in subsection 2.3 and a brief dis-
cussion of this result is provided in subsection 2.4. A proof of the theorem is provided
in section 3. This proof requires the notions of blocking pairs of polyhedra and a char-
acterization of the spanning tree polyhedra. A tutorial presenting those notions is given
in appendix A. Section 4 presents an algorithm to compute a critical subset of a graph.
The algorithm is essentially based on the theory of polymatroids which we discuss in
section B. Concluding remarks and directions for future work are given in section 5.
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2 The Game

The network topology is given by a connected undirected graph G = (V , E) with |E| =
m links and |V| = n nodes. Let T be the set of spanning trees, and let N denote |T |.

We consider the 2-player, zero-sum game where player 1 (the network manager)
chooses a spanning tree according to some distribution on T to minimize the probabil-
ity (which, for equal unit cost of trees, corresponds to the cost) that the spanning tree
is disrupted. Player 2 (the attacker) chooses a link to attack according to some distribu-
tion on E to maximize this probability. A tree gets “disconnected” if the attacked link
belongs to it. We aim to analyze the set of Nash equilibria of this game.

More precisely, let A := {α ∈ �N
+ |
∑

T∈T αT = 1} be the set of mixed strategies
of the network manager and B := {β ∈ �m

+ |
∑

e∈E βe = 1} the set of mixed strategies
of the attacker.

The manager wants to minimize and the attacker wants to maximize C(α, β) where

C(α, β) =
∑
e∈E

∑
T∈T

αT βe1{e ∈ T }. (1)

2.1 Critical Set

We first characterize some subsets of edges as being most vulnerable to attack.

Definition 1 (Critical Set). For any nonempty subset of edges E ⊆ E , define

M(E) := min
T∈T

| T ∩E | and ϑ(E) :=
M(E)
|E| . (2)

We call ϑ(E) the vulnerability of E. It is the minimum fraction of links the set E has in
common with a spanning tree. A nonempty subset E of edges is said to be critical if

ϑ(E) = maxE′⊆E {ϑ(E′)} . (3)

In other words, a subset of links is critical if it has maximum vulnerability. The vulnera-
bility of a graph G is defined as the vulnerability of its critical subset(s), and is denoted
ϑ(G).

For each E ⊆ E we define TE ⊆ T by:

T ∈ TE ⇐⇒| T ∩ E |= M(E) . (4)

We will call any T ∈ TE an E-minimal spanning tree.

Our notion of graph vulnerability is related to a notion which has previously been pro-
posed in the graph theory literature (see [13], [8], [3]). However, to the authors’s knowl-
edge it seems to have not received a lot of attention. We briefly discuss those references
in section 2.4.
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2.2 Examples of Critical Sets

Let us illustrate the definitions with some examples, shown in Fig.1. For the network
in Fig.1(a), all spanning trees must go through the middle link (called a bridge), so that
ϑ(E) = 1 if E is the set with only that link. That set is critical and the attacker can
attack it and achieves the maximum cost of one.

In general, an edge that must be part of every spanning tree is called a bridge. Also,
it is not difficult to verify that the vulnerability of a subset E is equal to the maximum
value of 1 if and only if E is only composed of bridges.

The graph in Fig.1(b) contains 8 nodes and 14 links. It has one minimum cut set
composed of the links 6 and 8. If E = {6, 8}, then any spanning tree contains at least
one link in E. Thus, |T ∩ E| ≥ 1 for any tree T. Furthermore, there exists T such that
T ∩ E = {6}. Thus, M(E) = 1, giving a vulnerability of ϑ(E) = 1/2. This is the
maximum vulnerability of this graph (verification is left as an exercise for the interested
reader), which implies that E = {6, 8} is a critical subset. If we consider the set of all
links E = E , then |T ∩ E| = n − 1 = 7 for any tree T because any spanning tree
contains n− 1 links. This set is also critical because ϑ(E) = 7

14 = 1/2.
In general, there might be many critical subsets for a given graph. For instance, in

Fig.1(b), as shown above, E = {1, 2, 3, 4, 5, 6, 7, 8} is another critical subset. If E =
{1, 2, 4}, choosing T = {3, 6, 7, 8, 9, 13, 14} gives T ∩ E = ∅. Hence,M(E) = 0.

The minimum cut set of a graph is not always critical. In Fig.1(c) if E = {6, 8} then
ϑ(E) = 1/2. However choosing E = {6, 8, 9, 10, 11, 12, 13} gives ϑ(E) = 4/7 >
1/2. One can show that E = {6, 8, 9, 10, 11, 12, 13} is critical but E = {6, 8} is not.

(a) Graph with bridge

6

8

1

3
2

4
5

7

9

10
11

12
13

14

a b

c d

e f

g h

(b) Network where minimum
cut set is critical

6

8

1

3
2

4
5

7

9

10

11
12

13

a b

c d

e f

g h

(c) Minimum cut set is not crit-
ical

Fig. 1. Illustrative network examples. Example 1(a) is a network that contains a bridge (dotted
link). A bridge is always a critical set. The network in 1(b) is an example of graph where the
minimum cut set (dashed links) corresponds to a critical subset. Example 1(c) shows a graph
where the minimum cut set is not critical.

2.3 Critical Subset Attack

Next we give the structure of one particular class of Nash equilibria (NE) of the game
defined above. First, we let

α(e) :=
∑
T∈T

αT 1{e ∈ T }, for e ∈ E . (5)
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Theorem 1 (Critical Subset Attack Theorem). For each critical subset of edges, E,
there exists a NE under which the attacker uniformly and exclusively targets the edges
of the critical subset E and the network manager chooses only trees inside the set of
E-minimal spanning trees. Specifically, the strategy of the attacker is

βe =
1e∈E

|E| , (6)

and the strategy of the manager is α ∈ A such that{
αT ≥ 0 if T ∈ TE

αT = 0 otherwise
(7)

α(e) :=
∑
T∈T

αT 1{e ∈ T } = ϑ(E), ∀e ∈ E (8)

α(f) ≤ ϑ(E), ∀f /∈ E. (9)

The corresponding optimal payoff is equal to ϑ(E).

A proof of the theorem is provided in section 3.

2.4 Comments

A certain number of remarks are to be made about the previous result.

– The equilibrium strategy for the network α is such that each element of its support
(TE) meets the critical set in the minimum number of links. Furthermore, the sum
(α(e)) of the probability assigned to the trees crossing each link e ∈ E is the
same for all links in the critical subset. This sum is equal to the vulnerability of the
subset E.

– As we have seen in the examples of the previous section, a graph has in general
many critical subsets. As a consequence, there might be many NE (each with a
different α and β). There might even exist other Nash equilibria than the ones
isolated above. However, because the game is zero-sum, all equilibria have the same
payoff [24]. As a consequence, it is reasonable to use the terminology "vulnerability
of a graph" for ϑ(G), defined earlier as the vulnerability of any critical subset of its
links.

– Theorem 1 implies that every critical subset supports some Nash equilibrium (for
instance the critical subset attack equilibrium).

– Knowing the critical subsets (the weakest points of the network) is important for
the network manager. The example in Fig.2 is an illustration. Consider the network
in Fig.2(a) whose vulnerability is equal to 3

4 . In all these figures, the critical subset
is represented by the dashed edges. Suppose that the network manager has an extra
link to add to this network and would like to know the optimal way to add this link.
If the additional link is put in the position as in Fig.2(b), then the vulnerability of
the graph becomes 3

5 < 3
4 (the graph is always less vulnerable with an additional

link). If instead the link is added as in Fig.2(c), the vulnerability of the graph is
2
3 > 3

5 leading to a less robust network.
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a) b) c)

Fig. 2. Critical subset and topology design. Graphs (b) and (c) are two different ways of adding a
link to graph (a) which have a vulnerability of 3/4. If it is added as in (b), then the vulnerability
is 3

5
. If it is done as in (c), the vulnerability is 2

3
> 3

5
, which is leads to a less robust network.

– As was mentioned in section 2, the notion of graph vulnerability considered in this
paper has been previously (with some differences) defined in a related but slightly
different context. In [13], Gusfield discussed the consequences of Tutte [23] and
Nash-Williams’ theorem [19] and was particularly interested in the maximum num-
ber (M ) of edge-disjoint spanning trees of a graph G. Two spanning trees of G are
called disjoint if they have no edge in common.
Gusfield showed that

M = min
E⊆E

� |E|
Q(GĒ)− 1


 , (10)

where GĒ is the graph resulting from deleting the edges in E from G, and Q(GĒ)
is the number of connected components in GĒ . Ē denotes the complement of E
in E .

The quantity σ(G) = minE⊆E
(

|E|
Q(GĒ)−1

)
was then used as a measure of the

invulnerability of the graph, i.e. the smaller this is the more vulnerable the graph
is, in the sense of Gusfield. In that paper, any minimizing set for this quantity was
interpreted as a set of edges whose removal from G maximizes the number of addi-
tional components created, per edge removed. The main question that was asked in
that paper was whether there exists a polynomial time algorithm to compute σ(G).

Cunningham provided such an algorithm in [8]. Considering σ(G) as the
strength of G, he defined (in a non-game theoretic setting) an optimal attack prob-
lem as well as a network reinforcement problem. The optimal attack problem con-
sists of computing the strength of G and determining a minimizing set. Cunning-
ham considered edge-weighted graphs, with edge j having strength sj ; the strength

of the graph is defined as σ(G) = minE⊆E
( ∑

j∈E sj

Q(GĒ)−1

)
, which corresponds to

the invulnerability defined by Gusfield when sj = 1 for all j ∈ E . The network
reinforcement problem of [8] is related to minimizing the cost of increasing the
strengths of individual edges in order to achieve a target strength for the graph. For
details, see [8].

Using polymatroid theory and network flow analysis, Cunningham provided
polynomial time algorithmic solutions to both problems. In section 4, we discuss
this algorithm in the context of the present paper.

A more recent paper by Catlin et al. [3] generalizes Gusfield’s notion of invul-
nerability by imposing bounds on the number of connected components, Q(GĒ).
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In the present paper, the critical subsets, in our sense, have been found to corre-
spond to Nash equilibria of a zero-sum game. It is to be noticed that our definition
of vulnerability verifies ϑ(G) = σ(G)−1. To see that, one needs to show that,

Lemma 1. For any E ⊆ E ,

M(E) = Q(GĒ)− 1. (11)

Proof. The ideas in the proof is as follows. Consider the different connected compo-
nents of the graph when the edges in E are removed. Any spanning tree of the original
graph has to connected those components, and this connection is done by only using
edges in E. Since there are Q(GĒ) connected components, one needs exactly Q(GĒ)-
1 to connect them in a cycle-free way. A complete proof is given in [11].

It is interesting to note that, despite the fact that this metric (σ(G)) is more refined
than the edge connectivity (i.e. size of minimum cut set), it has largely not been used
in the graph theory community. One reason suggested by Gusfield is the complexity
of its computation. As was stated earlier, Cunningham [8] has subsequently provided a
polynomial time algorithm to compute σ(G) as well as a minimizing subset.

Our result shows that, in a environment where the adversary is cognitive, ϑ(G) is
indeed an appropriate metric of graph vulnerability.

From the discussion above, we can, by using Cunningham’s algorithm, compute a
critical set of a given graph. We present the details of the algorithm in section 4.

3 Proof of the Critical Subset Attack Theorem

In this section we present a proof of the critical subset attack theorem. The proof is
done in two parts. In the first part (section 3.1), we show that the strategy pair given in
Theorem 1 forms a pair of best responses to each other. In the second part of the proof
(section 3.2), we show that for any critical subset, there indeed exists a probability
distribution α that satisfies conditions (7-9).

3.1 Best Responses

Let (α, β) be a strategy pair. Observe that the attack cost is given by

C(α, β) =
∑
e∈E

∑
T∈T

αT βe1{e ∈ T } =
∑
e∈E

βeα(e). (12)

Let E ⊆ E be a critical subset and assume that α satisfies the conditions (7-9). Then,
any distribution β concentrated on E achieves the cost ϑ(E). This is the maximum
possible cost achievable for the attacker. To see this, observe that for any β,

C(α, β) =
∑

f

βfα(f) ≤
∑

f

βfϑ(E) ≤ ϑ(E). (13)
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Now assume that β is uniform on a critical set E. Then the distribution α achieves
the cost ϑ(E). This is the minimum possible cost. To see this, note that, for any α,

C(α, β) =
1

|E|
∑
e∈E

∑
T

αT 1{e ∈ T} =
1

|E|
∑
T

αT |T ∩ E| ≥ 1

|E|
∑

T

αTM(E) = ϑ(E),

(14)

where the next-to-last inequality uses the fact that |T ∩ E| ≥ M(E) for all T .

3.2 Existence of the Equilibrium Distribution

The claim is that one can find α ∈ A that satisfies (7-9). To prove that fact, we formulate
an optimization problem and we show in Theorem 2 that the solution is the desired α.

Let A be the edge-tree incidence matrix with A(f, T ) = 1{f ∈ T } for f ∈ E and
T ∈ T . The spanning tree polyhedron P is defined as the vector sum of the convex hull
of the columns of A and the nonnegative orthantRm

+ (see appendix A.2, and references
[10], [7]). It is known [4] that

P={x ∈ Rm
+ | x(E(P )) ≥ |P |−1, for all feasible partitions P ={V1, V2, . . . , V|P |}}.

(15)
In (15), P = {V1, V2, . . . , V|P |} is feasible if each Vi induces a connected subgraph
G(Vi) of G (see appendix A). |P | is the size of the partition. The notation x (E(P )) is
defined as x (E(P )) :=

∑
i∈E(P ) xi, where E(P ) is the set of all edges of G having

endpoints in different members of the partition.

Theorem 2. Let E be a critical subset of edges. Let x∗ ∈ RN be the solution of the
following problem:

Maximize 1′x

subject to Ax ≤ ϑ(E)1,x ≥ 0. (16)

Then
a) 1′x∗ ≤ 1;
b) 1′x∗ ≥ 1;
c) Ax∗(e) = ϑ(E), ∀e ∈ E.
As a consequence, α = x∗ satisfies (7)-(9).

Proof. a) Let w(f) = 1{f ∈ E} for f ∈ E . Note that A′w ≥ M(E)1, by definition
ofM(E). Hence, for all x ∈ RN satisfying (16),

1′x ≤M(E)−1w′Ax ≤M(E)−1w′ϑ(E)1 = 1, (17)

since w′1 = |E|.
b) The dual of the program (see [2]) is

Minimize ϑ(E)y′1
subject to A′y ≥ 1,y ≥ 0.
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The constraints of the dual program define the following polyhedron

P̂ =
{
y ∈ Rm

+ , s.t A′y ≥ 1
}

. (18)

By results of linear programming (strong duality [2]), the value of the dual program is
identical to that of the original program. Now we would like to show that the value of
the dual program is at least 1, i.e. ϑ(E)y′1 ≥ 1 for all y ∈ P̂.

An equivalent way of saying this is that γ := ϑ(E)1 belongs to the set

b(P̂) =
{
z ∈ Rm

+ , s.t z · P̂ ≥ 1
}

, (19)

where z · P̂ defines the inner product of z with any vector in P̂ .
According to standard terminology (see Fulkerson [10, pg. 171] or Chopra [4]), this

set is called the blocker of the polyhedron P̂. Since A is defined as (the transpose of)
the incidence matrix of the spanning trees, P̂ in (18) is also the blocker of the spanning
tree polyhedron P [4]. From the theory of blocking pairs of polyhedra (see appendix
A), we have: if B is a polyhedron and b(B) its blocker, then b (b(B)) = B. (B and b(B)
are said to form a blocking pair of polyhedra.)

Thus, since P̂ is the blocker of P , b(P̂) = P . Now, y′γ ≥ 1 for all y ∈ P̂ is
equivalent to saying that γ ∈ b(P̂) = P . From (15), this means

γ (E(P )) ≥ |P | − 1 (20)

for all feasible partitions P , E(P ) ⊆ E .
Now assume that this is not the case, i.e γ (E(P )) < |P | − 1 for some P . Then

∑
i∈E(P )

γi =
M(E)
|E|

∑
i∈E(P )

1 =
M(E)
|E| |E(P )| < |P | − 1, (21)

which implies that
M(E)
|E| <

P − 1
|E(P )| . (22)

This means that E(P ) is more vulnerable than E. Indeed, |P | − 1 is the minimum
number of edges in common with E(P ) that a spanning tree of G has.

Now, since the value of the dual program is at least 1, and the value of the primal
program is at most 1, we can conclude that the value of the primal problem is one.

c) Note that, 1′x∗ = 1 and (17) imply

w′Ax∗ = M(E). (23)

By (16), we have Ax∗(e) ≤ ϑ(E) for all e ∈ E . Thus w′Ax∗ ≤ M(E), but then by
(23) we also have Ax∗(e) = ϑ(E) for all e ∈ E. Finally, we see that if x∗(T ) > 0 for
any T /∈ TE , we would have w′Ax∗ >M(E), contradicting (23).
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4 An Algorithm to Compute a Critical Subset

In this section, we present an algorithm to compute the vulnerability of a graph ϑ(G) =
maxE⊆E {ϑ(E)}, as well as a maximizing subset (i.e. a critical subset). The algorithm
was first presented by Cunningham in [8]. For the sake of completeness, we discuss it
here, and adapt it to the context of this paper. A summary of the steps of the algorithm
is presented in section 4.1, and its details are discussed in section 4.2.

The discussion of section 4.2 needs the notions of matroid and polymatroid, which
we present in appendix B.1.

q

p

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

4/7 p/q

Directions where p/q
is increasing

2/3 2/6 2/10

5/10

1/4 1/8

3/93/5

4/11

7/11

1/111/1 1/2 1/3 1/5 1/6 1/7 1/9 1/10

2/2 2/4 2/5 2/7 2/8 2/9 2/11

3/3 3/4 3/6 3/7 3/8 3/10 3/11

4/8 4/9 4/10

5/9 5/11

6/10 6/11

Fig. 3. An illustration of the 2-dimensional search algorithm to find the vulnerability of a graph.
The dark (blue) region consists of p and q verifying p/q > 1. Since ϑ(G) ≤ 1, those values
do not need to be tested. The light (blue) consist of values of p and q such that p

q
> p0

q0
(here

p0
q0

= 4
7

). If ϑ(G) < p0
q0

, then, those values can be discarded from the test. The remaining
(uncolored) values are the only ones that need to be tested.

4.1 Summary of the Algorithm

Observing that M(E)
|E| takes values in a finite set (0 ≤ M(E) ≤ |V − 1| and 1 ≤

|E| ≤ |E|), we propose a binary search algorithm to find ϑ(G) (BinarySearch2D). This
requires an oracle to perform the test ϑ(G) ≤ p

q for some p and q, 1 ≤ p ≤ |V − 1| and
1 ≤ q ≤ |E|.

We show that such an oracle is equivalent to one that solves a minimization problem
on the subsets of E .

Solving this optimization problem will be further shown to be the same as finding a P -
basis of some properly defined polymatroid P (those notions are presented in appendix
B.1). A simple, greedy algorithm (CunninghamMin) will be used to find such P -basis.

The greedy algorithm will successively visit the edges of the graph, and for each
edge, solve a minimization problem that is related to the first one. This last minimization
can be solved by running a network flow algorithm on an appropriately defined graph.

4.2 Details of the Algorithm

In the process of computing the quantity ϑ(G) = maxE⊆E
(

M(E)
|E|

)
, we first notice

that, if there exists an oracle to test whether ϑ(G) ≤ p
q , then one will be able to compute

ϑ(G) using an efficient search algorithm. Indeed, the values of p and q for which one
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needs to test are in a finite range. We illustrate this 2-dimensional search in Figure 3.
Details of the algorithm will be discussed later.

Related to the test ϑ(G) ≤ p
q , we define the following problem (that Cunningham

calls the optimal attack problem)

minimize

(
p

q
|E| −M(E)

)
, (24)

where the minimization is carried out over all subsets of edges E ⊆ E , and p and q are
given numbers. The next lemma shows an equivalence between testing ϑ(G) ≤ p

q and
verifying whether the minimum in (24) is greater than or equal to zero.

Lemma 2. For fixed values of p and q (define ρ := p
q ), we have

ϑ(G) ≤ ρ ⇔ 0 ≤ min
E⊆E

(ρ|E| −M(E)) . (25)

Proof. The proof of the lemma is as follows:

ϑ(G) ≤ ρ ⇔ max
E⊆E

(
M(E)
|E|

)
≤ ρ ⇔ M(E)

|E| ≤ ρ, ∀ E ⊆ E

⇔ 0 ≤ ρ|E| −M(E), ∀ E ⊆ E
⇔ 0 ≤ min

E⊆E
(ρ|E| −M(E)) .

Now, we show how, by Lemma 1, we can rewrite the minimization using a function on
subsets of the edges of the graph G. More precisely, we define f(·) such that f(E) =
|V| − Q(GE), where Q(GE) is the number connected components of the subgraph
GE = (V , E), that only contains the edges in E (in the terminology of Appendix B,
f(·) is the rank function of the graphic matroid associated with G).

By definition of f(·), f(Ē) = |V| − Q(GĒ), where Ē, denotes the complement of
set the E. Using Lemma 1, we can writeM(E) = |V| − 1− f(Ē).

The minimization in (24) can now be written as

minimizeE⊆E
((

ρ|E|+ f(Ē)
)
− (|V| − 1)

)
. (26)

Thus, we can conclude that testing whether ϑ(G) ≤ ρ is equivalent to testing

|V| − 1 ≤ min
E⊆E

(
ρ|E|+ f(Ē)

)
. (27)

Since f(·) is the rank function of a matroid, it satisfies the hypothesis of Theorem 3
of appendix B. Using that theorem, the minimum in the RHS is achieved at an P (f)-
basis of the vector ρ1 ∈ R

|E|
+ , where P (f) is the polymatroid associated with f(·) (see

appendix B.1). Thus, any oracle that computes a P (f)-basis for the polymatroid will
suffice to compute a minimizer of (27) (and the minimum). Using such an oracle, we
can now implement the following search algorithm that computes ϑ(G), as well as a
critical set which is the minimizer provided by the algorithm when it terminates.

The search algorithm (summarized in Table 1) keeps a set of candidate values Pr for
p, and for each p ∈ Pr, a range {qmin(p), . . . , |E|} of values of q for which the test in
(27) will be carried out.
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Table 1. Left: Pseudocode of the BinarySearch2D algorithm to compute the vulnerability ϑ(G)
of a graph and a critical subset. The algorithm CunninghamMin is discussed in Appendix B. The
update method is presented in the right Table. Right: Pseudocode of the Update method.

BinarySearch2D
Input: connected graph G = (V, E), V = n, E = m

Output:ϑ(G) of G, E ⊆ E critical

1 begin
2 Pr = {1,2,...,n-1}
3 qmin = {1,2,...,n-1}
4 while |Pr|>0
5 p <-- random(Pr)
6 for q=m downto qmin(p)
7 (E,minpq) = CunninghamMin((p/q)*1,G)
8 if n-1 <= minpq then
9 (Pr,qmin) = update(Pr,p,q)
10 goto 4
11 end //if
12 end //for
13 Pr = Pr-p
14 end //while
15 return E, minpq
16 end // begin

Update
Input: Pr, p ∈ Pr, q ∈ {qmin, |E|}
Output: new Pr, qmin

1 begin
2 qmin(p) = q+1
3 for j=p+1 to |n|-1
4 qmin(j) = qmin(j-1)+1
5 if qmin(j)>m
6 Pr = Pr - j
7 end //if
8 end //for
9 return Pr, qmin
10 end //begin

At each iteration, for some p ∈ Pr and q ∈ {qmin(p), . . . , |E|}, a call is made to the
oracle; then Pr and qmin are updated. Pr is defined as Pr = {1, . . . , |V| − 1} at initial
time, and maintained as follows.

Since the vulnerability of a graph is always less than or equal to 1, the values of p
and q for which p/q > 1 can be ignored from the test. These values correspond to the
“dark” (blue) region above the first diagonal of Figure 3 (if the graph does not contain
a bridge, one can eliminate the values in the first diagonal as well). This implies that
for each p, there is a minimum value for q, call it qmin(p); i.e. when p is considered in
a given iteration, only values of q in the range {qmin(p), . . . , |E|} need to be used for
testing.

Also, if ϑ ≤ p0
q0

for some fixed (p0, q0), then ϑ ≤ p
q for all p

q > p0
q0

. As such,
those values can be safely discarded from the set of values to be tested. In Figure 3,
that set is represented by the “light” (blue) region for p0 = 4 and q0 = 7. It is the
set of numbers that are located in the 135 degrees range, from the first diagonal to
the horizontal axis (traveling counterclockwise). After removing this set, the values of
qmin(p) need to be updated for all p ≥ p0. If q0 is the first value of q (starting from |E|
going down) for which the test succeeds (i.e. ϑ(G) ≤ p0

q0
), then qmin(p0) = q0 + 1,

and for p ∈ {p0 + 1, . . . ,V − 1}, qmin(p) is obtained by adding 1 to qmin(p − 1). If
qmin(p) > |E|, then p can be removed from the set Pr of candidate values for p. If for
some p, the test fails for all q ∈ {qmin, . . . , |E|}, then p can also be discarded from Pr.
The algorithm stops when the test succeeds and |Pr| = 1.

For each value of p, the algorithm makes less than |E| calls to the oracle, and there
are at most |V| possible values for p (this is the worst case). Thus, computing a critical
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subset will take a polynomial time provided that Cunningham’s algorithm is polyno-
mial. We will see that it is indeed the case.

5 Conclusion and Future Work

The paper studies a 1-connection game where a network manager is choosing a span-
ning tree of a graph as communication infrastructure, and an attacker is trying to disrupt
the communication tree by attacking one link of the graph. We discovered that for every
critical subset of edges (a subset of edges of maximum vulnerability) there is a Nash
equilibrium such that the attacker attacks uniformly at random over this subset of edges.
The vulnerability of a subset of links E is defined as the minimum fraction of links it
has in common with any spanning tree. More precisely, we show that there always ex-
ists a NE under which an attacker targets uniformly and exclusively a critical subset
of links. The network manager chooses spanning trees that cross the critical set in the
minimum number of edges and such that the sum of the probabilities of all trees going
through any link in the critical set is the same. Since there exist, in general, multiple
critical subsets, the NE of this game is typically not unique. We show, using a simple
example, the importance of the critical subsets in the design of a robust network.

A polynomial time algorithm is presented, to compute the vulnerability of a graph
as well as a critical set. The algorithm was previously presented in the literature. We
discuss it and adapt it to the context of this paper.

A certain number of future directions are being explored by the authors. In the
present paper, results have been obtained by assuming zero-attack cost for the attacker
and an equal cost for all spanning trees in the network. Further investigations have
shown that the notion of criticality of a set generalizes to the case where the attacker
pays a certain cost to attack an edge. In this case, the definition of vulnerability needs a
slight change to reflect the cost of attack.

Finally, in this paper, we only discuss the 1-connection game in a graph. The case
where the network chooses a k-connected component (for k ≥ 2) and the attacker
simultaneously attacks k or more links will be the subject of subsequent publications.
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A Blocking Pairs of Polyhedra and the Spanning Tree Polyhedron

A.1 Blockers

Let N be a nonempty set that we will call the ground set, and let J = {J1, . . . , Jp} be
a family of nonempty subsets of N . A subset J0 of N is said to be a blocking set for J
if |J0 ∩ Jk| > 0 for all k ∈ {1, . . . , p}. The blocker of J is the family of all inclusion-
wise minimal blocking sets of J . As an example consider the graph G = (V , E) and let
N = E the set of edges of G. Then the set T of spanning trees of G forms a family of
subsets of E . Any edge-cutset of the graph is blocking T . The blocker of T is the set of
all minimal cutsets of G.

In [6], [17], [18], the concept of blocker is defined as a mapping on families of
subsets. More precisely:

Definition 2. Given a ground set N , the blocker map b(·) is a function from the class
JN of all families of subsets on N to itself which associates to each familyJ , its blocker

b(J ) = min{J ′ : J ′ ⊆ N, J ′ ∩ J �= ∅, ∀ J ∈ J } . (28)

It has been shown [9] that if J is a family such that each element is not contained in an-
other element (e.g. family of spanning trees), then the blocker map satisfies b (b(J )) =
J . As a consequence (since b (b(J )) uniquely defines J ); J and b(J ) are said to form
a blocking pair.

It is easy to see that ifJ = {J1, J2, . . . , Jk} is the blocker ofJ ′ = {J ′
1, J

′
2, . . . , J

′
p},

then |Ji ∩ J ′
j | > 0 ∀ J ′

j ∈ J ′ and for all i = 1, . . . , k. Thus, any Ji ∈ J is actually
blocking the family J ′.

A.2 Characterization of the Spanning Tree Family

We have seen above that the blocker of the set T of spanning trees is the set of minimum
cuts of the graph. Let M be the tree-link incidence matrix of T . It characterizes the
spanning tree polyhedron P which is defined as the vector sum of the convex hull of
the rows ofM and the nonnegative orthant:

P = conv{x | x is a row ofM}+ Rm
+ (29)

where m = |E|.
Next we give another characterization of P . Recall that for a connected graph G =

(V , E), a minimum cut partitions the node set V into two subsets V1 and V2, and includes
all the edges having one end point in V1 and the other one in V2. Furthermore, the
subgraphs, Gi = (Vi, E(Vi)), i = 1, 2 are connected. This notion can be generalized.
Consider a partition P = (V1, . . . ,VkP ) of the nodes of G such that each subgraph
Gi = (Vi, E(Vi)), i = 1, . . . , kP is connected. Such partition is said to be feasible.

The spanning tree polyhedron of the graph G is characterized by the following propo-
sition [4].
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Proposition 1. The spanning tree polyhedron of the graph G corresponds to the set

P =

⎧⎨
⎩x ∈ Rm

+ |
∑

e∈E(P )

xe ≥ kp − 1, ∀ P feasible partition

⎫⎬
⎭ ,

where E(P ) denotes the subset of edges that go between vertices in distinct elements of
the partition P .

The blocking polyhedron of P (corresponding to the minimal cuts) is given by (see
[10],[4], [7])

P̂ =
{
y ∈ Rm

+ | y · P ≥ 1
}

.

In other words, P̂ consists of all nonnegative m-vectors y such that y · x ≥ 1 for all
x ∈ P .

Let M̂ be the K ×m matrix whose rows correspond to the extreme points of P .

Proposition 2. The polyhedron P̂ is given by

P̂ =
{

y ∈ Rm
+ | M̂y ≥ 1

}
.

B Matroids, Polymatroids, and Network Flow

B.1 Matroids and Polymatroids

Let N be a finite set, and let r : 2N → N be a function from the family of subsets of
N to the set of non-negative integers N.

Definition 3. M = (N, r) is called a matroid if it satisfies the following properties:

r.0: For all J ⊆ N , r(J) ≤ |J |,
r.1: If J ′ ⊆ J ⊆ N , then r(J ′) ≤ r(J),
r.2: If J, J ′ ⊆ N , then r(J ∪ J ′) + r(J ∩ J ′) ≤ r(J) + r(J ′) (i.e. r(·) is submodular).

The subsets I ⊆ N that verify r(I) = |I| are called the independent sets of the matroid.
Let I be the family of all independent sets. Sometime, the matroid is referred to by using
the notation M = (N, I).

An example of a matroid is the collection of cycle-free subsets of edges of a graph
G = (V , E) on the ground set E . It is called the graphic matroid of the graph. Its rank
function is given by letting r(E) be defined as the maximum size of a subset of edges in
E that does not contain a loop. It is known to be equal to r(E) = |V| −Q(GE), where
Q(GE) is the number of connected components of the subgraph GE = (V , E). The
graphic matroid and its rank function will be very useful in the rest of this appendix.

More details about matroids can be found in [25].
In section 4, we have seen that, to compute the vulnerability of a graph, the search

algorithm needs an oracle that solves

min
E⊆E

(
y0(E) + f(Ē)

)
, (30)
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where y0 = p
q1 for p and q given by the search algorithm. Notice that y0(E) = p

q |E|
for any subset of edges E ⊆ E of the graph. In this section of the appendix, we discuss
how such an oracle can be built. We start by defining the notion of a polymatroid.

Definition 4. A real-valued function f(·), defined on subsets of N , is called a polyma-
troid function if it verifies

P.0: f(∅) = 0,
P.1: If J ⊆ J ′ ⊆ N , then f(J) ≤ f(J ′) (i.e. f(·) is non-decreasing),
P.2: If J, J ′ ⊆ N , then f(J∪J ′)+f(J∩J ′) ≤ f(J)+f(J ′) (i.e. f(·) is submodular) .

Given a polymatroid function f(·), the following polyhedron is called the polymatroid
associated to f :

P (f) =
{
x ∈ R

|N |
+ , x(J) ≤ f(J), ∀J ⊆ N

}
. (31)

For any y ∈ R
|N |
+ , x ∈ P (f) is called a P (f)-basis of y if x is a componentwise

maximal vector of the set {x, x ∈ P and x ≤ y}.
The matroid rank function defined above is an example of polymatroid function.

The following (max-min) theorem relates the minimizing subsets of (30) to the P (f)-
basis of y0. The proof of the theorem can be found in [8].

Theorem 3. Let f(·) be a polymatroid function on subsets of N . Then, for any y ∈
R

|N |
+ and any P (f)-basis x of y, we have

x(N) = min
(
y(J) + f(J̄), J ⊆ N

)
. (32)

From this theorem, we see that an oracle that computes a P (f)-basis of y0 suffices for
the minimization in (30). Let’s see how such an oracle can be built.

The definition of P (f)-basis implies a very simple method for finding a P (f)-basis

of any y ∈ R
|N |
+ . Namely,

start with x = 0 and successively increase each component of x as much as possible
while still satisfying x ≤ y, and x ∈ P (f).

Implementing this simple and greedy algorithm might, however, not be so simple. In
fact, it requires one to be able to compute, for a given x ∈ P (f) and any j ∈ N , the
quantity

εmax(j) = max(ε : x + ε1j ∈ P (f)) , (33)

where 1j is the incidence vector of subset {j}. εmax(j) is the maximum amount by
which component j of x can be increased while keeping x in P (f).

Verifying that a vector x belongs to the polymatroid can be done using the following
idea: if x /∈ P (f), then one can find a subset J for which x(J) ≤ f(J) is violated. If
x ∈ P (f) and j ∈ N , then any ε such that ε > minJ⊆N (f(J)− x(J), j ∈ J) will
send x + ε1j out of P (f).

Also, if x is a P (f)-basis of y, then for any j ∈ N , either x(j) = y(j) or x(J) =
f(J) for some subset J containing j. In fact, for all j ∈ N

εmax(j) = min
{
y(j)− x(j), min

J
(f(J)− x(J), j ∈ J ⊆ N)

}
. (34)
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If the minimum is achieved at y(j) − x(j), then x ← x + εmax(j)1j will satisfy
x(j) = y(j). Otherwise, there exists some Jj � j, such that x(Jj) = f(Jj) (Jj is
said to be tight). Letting J̄ =

⋃
j Jj , and x being the P (f)-basis obtained after running

the greedy algorithm, it can be shown (see [8]) that f(J̄) = x(J̄) (union of tight set is
tight). For such J̄ , we have that

x(N) = x(J) + x(J̄) = y(J) + f(J̄) . (35)

This is because x(J̄) = f(J̄) and if j /∈ J̄ , x(j) = y(j).
Based on these observations, Cunningham [8] proposed a modified version of the

greedy algorithm to compute a P (f)-basis, as well as a minimizing subset for the min-
imization in (32). The algorithm is presented in Table 2.

It starts with x = 0 and J̄ = ∅. For each j ∈ N , the component x(j) is increased
as much as possible: x ← x + εmax(j)1j . If the minimum in (34) is achieved at
minJ′ (f(J ′)− x(J ′), j ∈ J ′), then update J̄ ← J̄ ∪ J ′ where J ′ is a minimizer. At
the end of the algorithm, J̄ is a tight set and x is maximal. Also, it satisfies x ∈ P (f)
and x ≤ y, with x(N) = y(J) + f(J̄).

To find a P (f)-basis, Cunningham’s algorithm performs |E| computations of the the
minimization below:

min
J

(f(J)− x(J), j ∈ J ⊆ N) . (36)

Now, all that remains is to find an algorithm that computes the minimization in polyno-
mial time. This is the subject of the next section.

Table 2. Pseudocode of the oracle CunninghamMin that solves the minimization (36)

Cunningham
Input: Polymatroid function f , y ∈ R

|N|
+

Output: minimum eps, minimizer T

1 begin
2 x = 0
3 J := {}
4 for j in N
5 eps := min(f(J’)- x(J’): j in J’)
6 J’(j) := a minimizer
7 if eps <= y(j)- x then J:=J U J’(j)
8 else eps:= y(j)- x(j)
9 end //if
10 x= x+eps*1(j)
11 end //for
12 end //begin

B.2 Network Flow

In the notation of the last two sections, E below will be a ground set (N above), and
subsets of E will be referred to using E (J and I above).
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Let G = (V , E) be a connected graph and let f(·) the rank function of the graphic
matroid that is associated to G. We have seen above that f(E) = |V| − Q(GE). Let
P (f) be the polymatroid associated with f(·). An equivalent description of P (f) is
given as follows (see [8]):

P (f) =
{
x ∈ R

|E|
+ , x(γ(B)) ≤ |B| − 1 for all B, ∅ �= B ⊆ V

}
, (37)

where γ(B) denotes the set of edges with both ends in B.
Recall that our goal is, for a given j, to find a subset E, j ∈ E ⊆ E that minimizes

f(E)− x(E). This is equivalent to finding B that minimizes |B| − 1− x(γ(B)), with
j ∈ γ(B).

To find the minimizing subset of nodes, B, we define the following graph G′ for
a given polymatroid function f(·), x ∈ P (f), and edge j ∈ E . The vertices of G′

are V ∪ (r, s) for new vertices r and s. Each e ∈ E is an edge of G′, having the
same ends and having capacity 1

2xe. There is an edge joining v to s for each v ∈
V , it has capacity 1. There is an edge joining r to v for each v ∈ V . It has ca-
pacity ∞ if v is an end of j, and otherwise it has capacity x(δ(v)). (Here δ(B) =
{e ∈ E , e has exactly one end in B ⊆ V}, δ(v) is shorthand for δ({v}). This construc-
tion is illustrated in Figure 4(a). Its motivation is to ensure that j ∈ γ(B) as can be seen
next.

Now consider a cut in G′ induced by the set B ∪ {r}, where j ∈ B ⊆ V . It is the set
of links that have one end in B ∪ {r} and the other end in the complement of B ∪ {r}.
The capacity of such cut is (see an illustration in Figures 4(b))

|B|+ 1
2
x (δ(B)) + x

(
γ(B̄)

)
+

1
2
x (δ(B)) = |B|+ x(E) − x(γ(B)) (38)

= |B| − 1− x(γ(B)) + (x(E) + 1).
(39)

The first term in the LHS of equation (38) corresponds to edges going from nodes in B
to the sink s. There are |B| of them, each having capacity 1. The next term corresponds
to edges going from a node in B to a node in B̄. The last two terms correspond to edges
going from the root r to nodes in B̄. For each such edge (r, u), the capacity is defined
as 1

2δ({u}). Let e = (u, v) ∈ δ({u}). Then, if v ∈ B (i.e. e ∈ δ(B)), then x(e) appears
only in the capacity of (r, u); implying the term 1

2x (δ(B)). If, on the other hand, v /∈ B
(i.e. e ∈ γ(B̄)), then x(e) appears both in the capacity of (r, u), and in that of (r, v),
thus the term x

(
γ(B̄)

)
.

Now, since a cut induced by a subset of edges B will have infinite capacity if j /∈
γ(B), a minimum cut in G′ will indeed have the form B ∪ {r} with j ∈ B, hence,
minimizing |B| − 1 − x(γ(B)). As a consequence, any network flow algorithm can
serve as an oracle for Cunningham’s algorithm. Many polynomial implementations of
network flow algorithms ([22], [14]) have been proposed since the proof of the Max-
Flow Min-Cut theorem by Ford and Fulkerson [16] in 1962.
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Fig. 4. Constructing the graph G′ for the network flow algorithm. Figure 4(a) shows the construc-
tion of G′ from G. The edge under consideration in this example is j = 5. Examples in Figures
4(b) show the cut induced by B ∪{r} for B ⊆ V . In the left figure, B = {a, b} does not contain
j = 5. The capacity of this cut is equal to infinity. In the right figure, B = {a, c} which contains
edge j = 5 (the only edge). As can be seen in the figure, the capacity of the cut induced by this
choice of B is 2 + x(1) + x(2) + x(3) + x(4) which is finite.
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Abstract. Penetration testing, the deliberate search for potential vul-
nerabilities in a system by using attack techniques, is a relevant tool of
information security practitioners. This paper adds penetration testing
to the realm of information security investment. Penetration testing is
modeled as an information gathering option to reduce uncertainty in a
discrete time, finite horizon, player-versus-nature, weakest-link security
game. We prove that once started, it is optimal to continue penetration
testing until a secure state is reached. Further analysis using a new met-
ric for the return on penetration testing suggests that penetration testing
almost always increases the per-dollar efficiency of security investment.

1 Introduction

Information security investment decisions have recently attracted the attention
of researchers from computer science, economics, management science, and re-
lated disciplines. The emerging topic of the economics of information security
aims at formalizing these decisions, but there is still a gap between the formal
models and experiences in practice [1]. In particular, information gathering op-
tions of defenders of computer systems differ from other scenarios. Penetration
testing (short: pentesing), the focus of our paper, is an example of proactive in-
formation gathering options specific to computer systems. Penetration testing is
widely used in practice, but its effects have not been reflected in the information
security investment literature.

In this paper, we build a model on a simplified version of the iterated weak-
est link (IWL) model of dynamic security investment [2,3] which emphasizes
the role of uncertainty in security decision making. The original IWL model ex-
plains why a defender facing uncertainty about which threats are most likely to
realize might defer security investment and learn from observed attacks where
the investment is most needed. The benefits of more targeted investment may
outweigh the losses suffered through non-catastrophic attacks, thereby increas-
ing the return on security investment (ROSI). We extend the IWL model by an
option to commission pentests as a means to reduce uncertainty. Indeed, waiting
for actual attacks need not be the only way of gathering information to guide
security investment. Uncertainty can also be reduced by observing pre-cursors
of attacks or near misses [4], information sharing [5,6], or investment in informa-
tion gathering. Penetration testing can be seen as information gathering prior
to investing into protection against so-identified threats.

T. Alpcan, L. Buttyan, and J. Baras (Eds.): GameSec 2010, LNCS 6442, pp. 21–37, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Penetration testing is also referred to as “ethical hacking” because the com-
missioned penetration testers investigate the target system from an attacker’s
point of view, reporting weaknesses rather than exploiting them. The aim of
this work is to study the added benefits and costs of penetration testing to the
entire system defense. The similarity between pentesting and attacks leads to
the intuition that information revealed by pentests should be modeled in exactly
the same way as information revealed by attacks. Yet there exist differences on
the cost side: pentests cause calculable up-front costs, whereas costs associated
with successful attacks are typically more volatile, much higher, and borne ex
post. For all other modeling decisions, we stay close to the original IWL model,
and we refer the reader to [2] for a more detailed discussion of its features.

This paper makes the following contributions:

– it provides a first attempt to study information gathering options by pen-
testing in the framework of the economics of security investments;

– it contains a proof that in this model, pentesting should be done consistently
once started;

– it defines a metric for return on penetration testing (ROPT);
– and it demonstrates that pentesting not only increases total profit for the

defender, but also increases (most of the cases) the per dollar efficiency of
security investments.

The remainder of this paper is organized as follows. After recalling the context
of related work in Section 2, we describe in Section 3 our approach to include
penetration testing as information gathering step into an established model of
security investment. Section 4 presents solutions of the model. Section 5 defines
the ROPT metric and demonstrates how the model can be applied in investment
decision making. The final Section 6 concludes with discussion and outlook.

2 Related Work

Information security investment have been studied from the economics perspec-
tive. Gordon and Loeb [7] formulate a basic economic model. They argue that
taking both the risk profiles of vulnerabilities and the cost to protect them into
account, the best investment strategy for a defender is to protect the mid-range
of vulnerabilities.

Intrusion detection systems (IDS) build a solid line of defense against most
outside attackers, but the systems are notoriously difficult to configure. Cavu-
soglu et al. [8] study the value of intrusion detection systems and argue that the
main benefit of IDSs is not the increased detection rate, but the deterrence of
the system and the increased availability of information for forensics. Using their
analytical model, they found that an IDS is only valueable if the detection rate
is high enough. The authors show that the threshold for an IDS to be valuable is
determined by the attacker’s benefit. The attacker’s benefit is difficult to assess
in practice [9], that makes the model difficult to apply in practice. In a subse-
quent paper, Ogut et al. [10] study intrusion detection policies using a decision-
theoretic framework. They describe a scenario where defenders wait and gather
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more information about potentially malicious users instead of acting on IDS sig-
nals immediately. They propose an optimal waiting strategy as well as a myopic
heuristic that relies on less parameters; hence it is easier to apply in practice.

Penetration testing is an important method to assess the vulnerability of
a computer system before it is deployed. Geer and Harthorne [11] argue that
penetration testing requires special skills because attacks are unknowable and
hence innumerable in advance. They informally discuss the value of penetration
testing and connect it to the formulation of the return on security investments
(ROSI). The authors advocate the evaluation of penetration test results in the
light of a risk assessment. Arkin et al. [12] provide an insight into software
penetration testing practices. They mostly argue for better integration of testing
during the development cycle of software systems. They agree with [11] that
penetration test results should not be considered as a final checklist, but rather
as a sample from the potential problems. They emphasize that decision makers
often stop penetration testing after an initial round, because “having found the
issues” gives them a false sense of security.

A leading survey of industry participants ([13], Fig. 20) reveals that the ma-
jority of responding firms performs penetration testing in practice. Yet, we are
unaware of prior theoretical work that formalizes penetration testing as a specific
tool available to the information security manager.

3 Model

Our model extends [2]. The defender operates a system that represents an asset
of value a yielding a return r per period. The defender protects this system
against a dispersed set of attackers. We do not distinguish between different
attackers, rather we consider the group of attackers as a single attacker entity
with enhanced capabilities. There exist n possible components of the system
that are threatened by an attack.1 Each threat can be prevented by investing
into the protection of the specific component and we assume that a protection
is always effective. The defender orders the threats according to their expected
cost x̄1 ≤ x̄i ≤ x̄n, but the true costs to attack xi is hidden from the defender.
This reflects the opinion of many practitioners who remain skeptical about the
quantifiability of attack probabilities but reckon it is possible to order threats
by severity. There are no restrictions about the source of prior beliefs about this
order. It can result from individual judgement, semi-formal aggregation of expert
opinions, or formal calculations of threat prioritization using system models[14].

We model the true costs to attack as

xi = sup(0, x̄i + χi) with χi ∼ N/(Δx)2 and x̄i = x̄1 + (i− 1) ·Δx, (1)

where N is a mean-free Gaussian random source with standard deviation σ ≥ 0.
This parameter controls the degree of uncertainty and it is key to analyze the
usefulness of penetration testing as uncertainty varies. Figure 1 visualizes the
1 Alternatively, the notion of ‘components’ can be substituted by ‘attack vectors’.
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Fig. 1. The defender forms expectations about the order of attack costs for different
threats (here: i = 1, . . . , 8) but remains ex ante uncertain about the true costs

influence of σ in introducing noise, i.e., adding unknown offsets between actual
and expected costs. Higher values of parameter σ indicate that the defender’s
order of threats differs more from the true order of costs to attack.

The order is relevant because in each round, the attacker exploits the weakest
link. That is, she attacks the unprotected component with the least true cost2

and loots a fraction of z from asset a. The attacker is opportunistic in that she
attacks only if the benefits (i.e., the defender’s losses) exceed the cost of attack.
Hence, a secure state can be reached when all vulnerable components that can
be attacked below the reservation cost of attack are protected.

We model the interaction between the defender and the attacker as a dynamic,
discrete time, finite horizon, player-versus-nature game. In the initial round (t =
0), the defender chooses her defense configuration to protect against the k most
possible threats 1, . . . , k. A unit cost of 1 is incurred per protection and round.
As the realizations of (x1, . . . , xn) are unknown, any other initial configuration
would lead to inferior outcomes on average.

In the following reactive rounds (t = 1, . . . , tmax), four steps are iterated:

1. The defender chooses whether or not to commission a pentest at cost c > 0.
2. If a pentest has been executed, it succeeds with probability p > 0 and re-

veals the next weakest link i with true attack cost i = argminj xj over all
unprotected links j. The defender protects i. This increases her defense cost
by 1 in the current and all subsequent rounds.3

2 The intuition is that our attacker model represents the ensemble of individual at-
tackers that are likely to discover the weakest link.

3 As defense costs are constant for each threat, the decision to defend upon revelation
is cogent. Otherwise it is always better not to commission the pentest in step 1.
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3. An attack occurs if at least one xi ≤ z · a. If so, the defender learns which
link i was the weakest and incurs a loss of z ·a. Otherwise the defender learns
that the system has reached a secure state.

4. The defender chooses whether to upgrade the defense configuration and pro-
tect against the threat revealed in the last attack. This increases her defense
cost by 1 for all subsequent rounds.

Observe that steps 3 and 4 exactly correspond to the original model in [2], steps
1 and 2 are new to introduce pentests as means of information gathering. For
simplicity, we do not consider sunk costs or interdependent defenses here, i.e.,
λ = 0 and ρ = 0 in the notation of [2]. Like the original model, the defender is
risk neutral.

4 Analysis

Although the model is simple, its solution is not trivial. Figure 2 depicts an
excerpt of the defender’s optimization problem in extensive form. Observe the
pairwise alternation of moves by player and nature and the repetition of steps 1
to 4 in each round.

The defender starts at node S and chooses the initial level of defense k. Nodes
annotated with T are terminal nodes:

T0: this singular case corresponds to knowingly indefensible situations, i.e., if
r ≥ z and a · (r − z) < E

[
1
n

∑
i xi

]
. In this case, the defender refrains from

investing in security and rather accepts the losses due to attacks in each
round. The value of this node is

T0 = tmax · a · (r − z). (2)

T1: this case corresponds to the arrival at a secure state. The defender’s goal
is to reach a node of type T1 as soon as possible. The deterministic value
of these nodes is a function of t, k, and the number of successful pentests
|M+|,

T1(t, k, |M+|) = (tmax − t + 1) · (r · a− t− k − |M+|+ 1). (3)

T2: this is the case when the system is found indefensible only after revelation of
realizations of nature. In an indefensible situation, the defender would always
prefer T0 over any T2 (where costs for ineffective defenses are unrecoverably
sunk). The deterministic value of these nodes is a function of t,

T2(t) = (tmax − t + 1) · a · (r − z). (4)

Since the influence of nodes T2 is negligible for the parameter settings used
throughout this paper, we do not consider them in the analysis for brevity.

The dashed branches leading to an asterisk node are decisions not to pentest
even though at least one pentest has been commissioned in an earlier round. The-
orem 1 states that these paths are strictly dominated by the alternative choice
and can indeed be eliminated to simplify the extensive form representation.
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Fig. 2. Extensive form of the optimization problem
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Theorem 1. Once the defender starts pentesting, she will keep doing it until a
secure state is reached.

Proof. We use Lemma 1 proven in the appendix. It gives us the following ex-
pression for the total profit of a defender as a function of the initial defense k,
the set of rounds in which pentests are commissioned M = {m1, . . . }, and a
fixed number of unprotected components K:

G =
K∑

t=1

(a(r−z)−(k+t−1))+
|M|∑
i=1

(az−c−(K−i−mi+2))+
tmax∑

t=K+1

(ar−(k+K)). (5)

The contribution of each pentest i to the total profit depends on the round
mi when the pentest is commissioned. The second sum of Eq. (5) shows that the
marginal benefit of penetration testing increases with the number of rounds in
the game. Thus, if a defender decides to commission pentests in round t, then
she will keep doing it in each round u > t until all weak links are discovered. ��

Pentests are successful with probability p. For p < 1, M can be partitioned
ex post into two disjoint subsets M = M+ ∪M− of rounds with successful,
respectively unsuccessful penetration tests. Since the pentests are independent
events, we can simply multiply their contribution with their respective proba-
bility. Hence the expected value of (5) becomes:

E[G] =
K∑

t=1

(a(r−z)−(k+t−1))+p

|M|∑
i=1

(az−c−(K−i−mi+2))+
tmax∑

t=K+1

(ar−(k+K)).

(6)
An intuitive way to analyze the composition of the revenue is a graphical

representation, as depicted in Fig. 3. The figures show a schematic representation
with infinitesimally small rounds. The costs are proportional to the shaded areas
defined by the asset value a, the loss due to attacks z, the total number of weak
links K, the number of proactive defenses k, the cost of a pentest c and the
probability of a successful pentest p.

The first figure shows the case when no pentests are commissioned and the
weak links are discovered one-by-one until all K are protected. During this time,
the attacker loots (K−k) ·a · z profit from the asset. While protecting the asset,
the defender spends the proactive protection cost (K − k) · k and the reactive
protection cost K−k

2 . In round K − k, all weak links are protected and the
defender maintains the defense cost K for all subsequent rounds. That prevents
the attacker from looting the asset.

The second figure shows4 that pentesting with p = 1 introduces two additional
costs: the cost of pentests c and the cost of the resulting protection; both costs
are shown as dark areas in Fig. 3. Pentesting has a benefit (the light grey areas
in Fig. 3) of discovering weak links earlier than without pentests and this reduces

4 We show the most likely case where the pentesting starts from the first round, but
the figures can easily be adapted to the case when pentesting starts at a later round.
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Fig. 3. Comparison of costs in scenario without (left) and with pentesting (p = 1,
center) for infinitesimally many rounds; costs are proportional to areas; the success
probability p defines the slope of the gradient towards reaching the secure level K
(center versus right); note that K is a random variable unknown to the decision maker
ex ante; pentesting is worthwhile if the expected value of the light area (savings) exceeds
the expected value of the dark area (direct and indirect cost of pentesting)

the looting cost from the attacker. Having p = 1 doubles the speed of discovering
weak links (the slope of protection costs is two) and halves the total looting cost.
The defender chooses to perform pentests as long as the benefit due to prevented
attacks is higher than the pentesting costs. The third figure shows a case when
pentests are less efficient and hence their effect to reduce cost due to attacks
decreases. Nonetheless, the defender has to pay the cost of pentesting for each
try.

From Theorem 1, we know that the defender performs pentests from m1 until
the attacks stop. Then, we can write the expected number of pentest as:

E[|M|] =
⌈

K + 1−m1

1 + p

⌉
(7)

The number of pentest depends on whether the last weakest link is protected
following a pentest or an attack. Let ε be an indicator variable showing if the last
weak link is fixed after a pentest or an attack. If the last weak link is discovered
by a pentest, then ε = 1, otherwise ε = 0.

From (7) and using ε, we can derive the optimal number of pentests and the
optimal time to start pentesting. The derivation is in the appendix. Substituting
the optimal number of pentests into (6), we obtain an expression for the expected
total profit with optimal number of pentests for a fixed K. The direct application
of this expression, however, is impeded by the fact that the overall profit is largely
determined by a discontinuous boundary condition and the randomness of K.

While k and m1 are choice variables, K is a discrete random variable with
known distribution but a priori unknown realization. Similar to [2], the optimal
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initial defense k
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profit

optimal k with pentest

optimal k without pentest

Fig. 4. Expected total return surface as a function of choice variables (k, m1) for the
following parameters: asset value a = 1000, return r = 5%, loss given attack z = 2.5%,
profile of expected attack costs (x1, Δx) = (15, 1), uncertainty σ = 4, pentest cost
c = 0.5, pentest success p = 100 %, n = tmax = 25; m1 = 0 means no pentest at all

defense strategy can also be found by numerically summing up the expected
total profit over the domain of K and finding the maximum of a grid search for
the tuple of choice variables (k, m1). A result of a numerical maximization with
a selected set of parameters is shown in Fig. 4, indicating the optimal strategies
with and without access to pentests. For our example set of parameters, the
total profit of the defender is optimal if she starts pentesting in the first round.
We also observe that the initial investment in defenses k is lower in the case
of pentesting as opposed to the case where no pentests are commissioned. The
reason is that some resources spent on proactive protection are now reallocated
to a more efficient discovery of weak links using pentests.

5 Return on Penetration Testing (ROPT)

Several definitions exist to measure the return on security investment (ROSI)
[15]. We follow the approach in [2] and choose an indicator normalized by the
average security investment per period [16]. Without pentesting we have,

ROSINPT =
ALE0 −ALENPT − avg. security investment

avg. security investment
, (8)
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where ALE is the annual (i.e., per period) loss expectation for two cases:

– ALE0: a baseline case where no security investment is made,
– ALENPT: with security investment but without pentesting.

Higher values of ROSINPT denote more efficient security investment. A natural
extension to penetration testing is to define:

– ALEPT: loss expectation with security investment and pentesting.

However, there is no straightforward way to measure the specific return on pen-
etration testing by plugging both ALENPT and ALEPT in the numerator of
Eq. (8). The reason is that the fraction of security investment related to pene-
tration testing is difficult to identify since it consists of direct costs c and indirect
costs from defenses set up earlier than without pentesting (cf. Fig. 3). Yet an-
other source of indirect benefits is not visible in Fig. 3. The possibility to do
pentests can lead to a lower optimal initial defense k (cf. Fig. 4). If these bene-
fits match or exceed the direct and indirect costs of pentesting, then the defender
can face situations where she invests equal or less and still achieves higher secu-
rity than without pentesting. In this case, funds are shifted from investment in
protective measures towards spending on information gathering. This seemingly
odd result once again demonstrates the special role of pentesting and the need
to appropriately reflect it in security investment models. For such special cases,
the normalizing term based on the simple difference becomes zero or negative.
This would lead to undefined values for ROSI.

To fully characterize the effects of pentesting, we propose the following metric
called return on penetration testing (ROPT):

ROPT = ROSIPT − ROSINPT, (9)

where ROSI is calculated according to Eq. (8) with ALEPT and ALENPT, re-
spectively. Consistent with the interpretation of ROSI as the dollar amount of
prevented losses per dollar of security spending, ROPT can be understood as the
dollar amount of additionally prevented losses per dollar if security investment
is optimized with penetration testing.

Fig. 5 shows numerical values of ROPT as a function of uncertainty for the
example set of parameters used in Fig. 4 and the pentest cost c. Observe for
each curve that ROPT first increases with σ, then decreases until it approaches
a constant value. The first increase in the ROPT values can be explained by the
benefit of pentesting to gather additional information. A defender who commis-
sions pentests invests less into proactive defenses and more into pentests and this
benefit increases as uncertainty about true attack costs increases. ROPT starts
to decrease when proactive defenses with pentest reach zero (e.g., kPT = 0)
meaning that a defender using pentests relies exclusively on reactive defenses,
whereas a defender who does not commission pentests still invests in proactive
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Fig. 5. Profile of return on penetration testing (ROPT) as uncertainty increases for
varying cost of pentesting (c = 0.5 is half of the cost per protection measure and round)

defenses (kNPT > 0). ROPT becomes constant when uncertainty is so high that
both defense strategies avoid the proactive defense period (kPT = kNPT = 0).

The ROPT value is mostly positive (can be as high as 50%), meaning that pen-
testing brings a significant per dollar efficiency to security investments. However,
if the pentesing cost c becomes relatively high (c = 10 is one order of magnitude
higher than the defense cost of a weak link) then ROPT might turn negative, in-
dicating that pentesting is a more costly security investment alternative than no
pentesting. We emphasize that even in this case, the total profit of the defender
increases with pentesting until the defense cost including pentesting reaches the
looting cost. Thus we conclude that pentesting is a beneficial defense option for
a wide range of parameters.

6 Discussion and Conclusion

In this paper, we leveraged the iterated weakest link model of [2] to propose
a framework that accounts for penetration testing, an important information
gathering option when making security investment decisions. To the best of our
knowledge, this is the first paper that explicitly models penetration testing and
shows its potentially catalyzing effect on the efficiency of security spending. We
are also the first to propose ROPT, a metric to account for the efficiency of
penetration testing.
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Our model formalizes much of the informal discussion in other papers about
security investments and pentesting. Ogut et al. [10] study intrusion detection
policies and propose a model for optimal waiting time to act on intrusion signals.
Our model recovers the same mentality by allowing the defender to invest less in
proactive security and fix the weak links reactively after an attack occurs. Our
model also formalizes the arguments of Geer and Harthorne [11] who emphasize
that the results of penetration testing should be considered in the light of risk
assessment rather then perceived as a security todo list. Arkin et al. [12] iterate
on this view by stating that security decision makers should follow-up on the
insights uncovered by pentesting. We proved that in the IWL framework, com-
missioning pentests is the best strategy for the defender until all weak links with
feasible attack costs are protected.

We conjecture that our model captures the basic mechanisms in security in-
vestments with pentesting. Nonetheless, as any formal model, it has its short-
comings. We model the security investment process as a finite-horizon game
between the defender and the nature player. A natural extension of this paper
to consider the attackers as rational players. We acknowledge this future direc-
tion, but point to the fact that the profit functions of the attackers are relatively
difficult to model [9]. There is some initial work to understand the profits of the
attackers in real life [17], but we are lacking of deeper understanding to properly
model attackers in security games. Our model assumes that the set of weak links
does not change within the finite horizon of the game. There are two improve-
ments one can consider regarding this assumption. First, the game is typically
a dynamic game that can be considered as an infinite game with discounting.
Second, the dynamics of changing weak links are worth exploring as well. Yet
another direction involves further refinement of the model to capture even more
specific details of security investment, such as the difference between black-box
and white-box testing. This choice defines the distribution of information and
should be modeled to affect the heuristic potential of pentesting to discover weak
links similar to a real attacker.

Our paper provides a theoretical framework for penetration testing. While this
exposition focused on the defender’s decision, we note that this kind of model
can also be solved for the cost of penetration testing to inform providers of pen-
test services and guide their price setting. One major question is how this model
and its conclusions fit to real data from industry sources. Obtaining such a con-
firmation is a potential future work. Finally, we will extend the IWL framework
considering other options for uncertainty reduction beyond penetration testing.
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A Appendix

A.1 Lemma: Independence of Pentests

Let us write the total profit for the defender as

F =
tmax∑
t=1

f(k, t). (10)

In (10), f(k, t) is the profit per round and can be written as follows:

f(k, t) = a(r − q · z)− ct, (11)

where q is an indicator variable that takes the value of 1 if an attack is successful
and 0 otherwise; and ct is the cost in round t.

The defender chooses the initial defense k and fixes one defense at the time as
discovered by the attacker. Let us now assume that without penetration testing,
the number of rounds with successful attacks is K (where k + K threats are
warded off). In this case, we can write the total profit for the defender F as

F =
K∑

t=1

f(k, t)+
tmax∑

t=K+1

f(k, t) =
K∑

t=1

(a(r−z)−(k+t−1))+
tmax∑

t=K+1

(ar−(k+K)). (12)

Let G be the total profit for the defender when commissioning pentests. We
can show that penetration test independently contribute to the total profit of
the defender.

Lemma 1. For every fixed proactive defense k, the contributions to the expected
total profit from individual reactive defenses to attacks and individual penetration
tests are independent and additive.

Proof. Let M = {m1, m2 . . . , m|M|} be the ordered set of rounds where the
defender commissions a pentest. Assuming p = 1 for now, we obtain

G =
K−|M|∑

t=1

(a(r − z)− ct) +
K∑

t=K−|M|+1

(ar − ct) +
tmax∑

t=K+1

(ar − ct),

where ct is the cost at round t.
Let us now separate the saved losses due to pentesting in the second sum,

G =
K−|M|∑

t=1

(a(r − z)− ct) +
K∑

t=K−|M|+1

(a(r − z)− ct) +
K∑

t=K−|M|+1

(az) +
tmax∑

t=K+1

(ar − ct)

=
K∑

t=1

(a(r − z)) +
K∑

t=K−|M|+1

(az)−
K−|M|∑

t=1

(ct)−
K∑

t=K−|M|+1

(ct) +
tmax∑

t=K+1

(ar − ct). (13)
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We now develop the costs ct for each period of the game. In the period of
attacks, each pentest contributes one more to the total number of protected
threats. In addition, each pentest costs c to perform. After the attacks stop, all
links are protected and the defense cost remains k + K for the rest of the game:

G =
K∑

t=1

(a(r − z)) + |M| · (az)− |M| · c−

−
m1−1∑
t=1

(k + t− 1)−
|M|−1∑

i=1

mi+1−1∑
t=mi

(k + t + i− 1)−
K−|M|∑
t=m|M|

(k + t + |M| − 1)−

−
K∑

t=K−|M|+1

(k + K) +
tmax∑

t=K+1

(ar − (k + K)).

Note that if the last weak link is fixed by a pentest, then m|M| = K − |M|+ 1
and the 5th sum does not exist.

Now splitting the last but one sum results in

G =
K∑

t=1

(a(r − z)) + |M| · (az)− |M| · c−

−
m1−1∑
t=1

(k + t− 1)−
|M|−1∑

i=1

mi+1−1∑
t=mi

(k + t + i− 1)−
K−|M|∑
t=m|M|

(k + t + |M| − 1)−

−
K∑

t=K−|M|+1

(k + t− 1)−
K∑

t=K−|M|+1

(K − t + 1) +
tmax∑

t=K+1

(ar − (k + K)).

This algebraic manipulation allows us to separate the contribution of attacks
and pentest to the total profit,

G =
K∑

t=1

(a(r − z)− (k + t− 1)) + |M| · (az − c)−

−
|M|−1∑

i=1

mi+1−1∑
t=mi

(i)−
K−|M|∑
t=m|M|

(|M|)−

−
K∑

t=K−|M|+1

(K − t + 1) +
tmax∑

t=K+1

(ar − (k + K)).

Instead of writing the costs of pentesting per round, we rewrite them as a sum
of costs per pentest,

G =
K∑

t=1

(a(r−z)− (k+ t−1))+ |M| · (az− c)−
|M|∑
i=1

K−i+1∑
t=mi

(1)+
tmax∑

t=K+1

(ar− (k+K)).
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Finally, we can write the expression for the total profit as

G =
K∑

t=1

(a(r−z)−(k+t−1))+
|M|∑
i=1

(az−c−(K−i−mi+2))+
tmax∑

t=K+1

(ar−(k+K)).

(14)
The first sum is the contribution of attacks to the profit, the second sum shows

the individual contributions of pentests and the last sum is the profit after the
original attacks would have stopped without pentests.

A.2 Optimal Number of Pentests

Now we show a detailed derivation for the optimal number of pentests. Pentests
are successful with probability p. Let E[g] be the contribution of pentesting to
the expected total profit (i.e., the second sum in (6)) and let us have a closer
look at it. Clearly, penetration testing has to contribute a positive profit to be
worth performing, i.e.,

E[g] = p

|M|∑
i=1

(az − c− (K − i−mi + 2)) > 0. (15)

Now we use Theorem 1 and replace mi by m1 + i− 1,

E[g] = p

|M|∑
i=1

(az − c− (K −m1 − 2i + 3))

= p|M| · (az − c−K + m1 − 3) + 2 ·
|M|∑
i=1

(i)

= p|M| · (az − c−K + m1 − 3) + |M| · (|M|+ 1)
= p|M| · (az − c−K + m1 + |M| − 2). (16)

From (7) and using ε, we have:

K −m1 = (1 + p)|M| − 1− ε. (17)

Hence, we can rewrite (16) as

E[g] = p|M| · (az − c− (1 + p)|M|+ 1 + ε + |M| − 2)
= p|M| · (az − c− p|M| − 1 + ε). (18)

The series of pentests is worth performing if the expected profit E[g] is positive,
meaning that

E[g] = p|M| · (az − c− p|M| − 1 + ε) > 0. (19)

Since 0 < m1 ≤ K, we have |M| > 0 from (7) and we can write the condition
for pentesting:

az − c− p|M| − 1 + ε > 0

az − c− p

⌈
K + 1−m1

1 + p

⌉
− 1 + ε > 0.
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We can obtain the optimal number of pentests |M|∗ as the value that maxi-
mizes (18),

|M|∗ = max
|M|

p|M| · (az− c− p|M|− 1 + ε) = −p2|M|2 + p|M| · (az− c− 1 + ε).

Derivation gives us the maximum value as follows:

|M|∗ =
az − c− 1 + ε

2p
, (20)

where 0 ≤ |M|∗ ≤
⌈

K+ε
1+p

⌉
. Note that the expression in (20) returns a real number

that is optimal only asymptotically. The decision criterion can be discretized
rounding off to the nearest integer or applying a randomized strategy.

A.3 Optimal Time to Start Pentesting

The substitution of (20) into (17) also gives us the optimal time to start pen-
testing m∗

1,

m∗
1 = K − 1 + p

2p
(az − c) +

1 + 3p− ε(1− p)
2p

, (21)

where 0 < m∗
1 ≤
⌈

K+ε
1+p

⌉
+ ε holds.

A.4 Expected Total Profit of Pentesting

Substituting the optimal number of pentests into (6), we obtain an expression
for the expected total profit with optimal number of pentests,

E[G] =
K∑

t=1

(a(r − z)− (k + t− 1)) + p

|M|∑
i=1

(az − c− (K − i−mi + 2)) +

+
tmax∑

t=K+1

(ar − (k + K))

= K(a(r − z)− (k − 1))− K(K + 1)
2

+

+ p|M|∗(az − c− p|M|∗ − 1 + ε)) + (tmax −K)(ar − (k + K))

= K(a(r − z)− (k − 1))− K(K + 1)
2

+ E[g] + (tmax −K)(ar − (k + K)),

(22)

where E[g] takes the values depending on the conditions in (20) as

E[g] =

⎧⎪⎪⎨
⎪⎪⎩

0, if |M|∗ = 0;(
az−c−1+ε

2

)2
, if 0 < |M|∗ <

⌈
K+ε
1+p

⌉
;

p
1+p

⌈
K+ε
1+p

⌉ (
az − c−K − 1 + p

1+p

⌈
K+ε
1+p

⌉)
, if |M|∗ =

⌈
K+ε
1+p

⌉
.

(23)
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Abstract. Users of mobile networks can change their identifiers in re-
gions called mix zones in order to defeat the attempt of third parties to
track their location. Mix zones must be deployed carefully in the network
to reduce the cost they induce on mobile users and to provide high loca-
tion privacy. Unlike most previous works that assume a global adversary,
we consider a local adversary equipped with multiple eavesdropping sta-
tions. We study the interaction between the local adversary deploying
eavesdropping stations to track mobile users and mobile users deploy-
ing mix zones to protect their location privacy. We use a game-theoretic
model to predict the strategies of both players. We derive the strategies
at equilibrium in complete and incomplete information scenarios and
propose an algorithm to compute the equilibrium in a large network.
Finally, based on real road-traffic information, we numerically quantify
the effect of complete and incomplete information on the strategy se-
lection of mobile users and of the adversary. Our results enable system
designers to predict the best response of mobile users with respect to
a local adversary strategy, and thus to select the best deployment of
countermeasures.

Keywords: Location Privacy, Game Theory, Mobile Networks, Mix
Zone.

1 Introduction

The advanced communication capabilities of mobile devices (e.g., WiFi or Blue-
tooth) enable the use of a new breed of mobile applications: mobile devices can
directly communicate in a peer-to-peer wireless fashion and exchange contex-
tual information, for example, about road-traffic conditions [16] or social pres-
ence [2, 25]. In such applications, mobile devices must unveil their identifiers
(e.g., pseudonyms or cryptographic credentials) to authenticate and identify each
other.

Yet, an adversary eavesdropping on such peer-to-peer wireless communica-
tions can, based on their identifiers, track mobile users. In order to protect their
location privacy, mobile nodes can use multiple pseudonyms that they change
over time. This approach has been adopted in cellular networks to achieve loca-
tion privacy with respect to external eavesdroppers: cellular operators identify

T. Alpcan, L. Buttyan, and J. Baras (Eds.): GameSec 2010, LNCS 6442, pp. 38–57, 2010.
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their subscribers with a “Temporary Mobile Subscriber Identity” (TMSI). Ev-
ery time a subscriber moves to a new geographical area, the cellular operator
issues a new TMSI. The use of multiple pseudonyms has also been investigated
to protect location privacy in mobile ad hoc networks [4, 10, 23]: in order to im-
pede the linkability of old and new pseudonyms by using spatial and temporal
correlation, pseudonym changes are coordinated in regions called mix zones [4].
In a mix zone, mobile users alter their spatial correlations by changing their
pseudonyms, and their temporal correlations by: (i) remaining silent for a short
period [17, 23], (ii) encrypting their communications [9], or (iii) using a mobile
proxy [30]. We call these regions active mix zones. Mix zones must be carefully
deployed in the network to reduce the cost they induce on users and to provide
high location privacy. Indeed, the placement of mix zones affects their perfor-
mance [18] and traversing mix zones incurs a communication overhead [31].

In contrast with most previous works on location privacy [3, 8, 10, 13, 23], we
do not restrict our model to a global adversary. The cost might be prohibitive for
an adversary to build and maintain a global eavesdropping system and to sort
and process all the received information. Instead, we consider a local adversary
with a limited budget and that eavesdrops on communications in only certain
regions of the network. In the worst case, a local adversary has an unlimited
budget and becomes global. The local adversary has to strategically deploy its
eavesdropping stations to gather information from the network. Mobile users can
take advantage of the presence of a local adversary and change pseudonyms in
regions where the adversary has no coverage [6]. We call these regions passive
mix zones.

In this paper, we investigate the strategic behavior of mobile users deploying
active and passive mix zones to protect their location privacy and the behavior
of a local adversary deploying eavesdropping stations to track mobile users. To
do so, we develop a game-theoretic framework to predict the strategies of the
adversary and of mobile users. We refer to these games as tracking games. We
first analyze the interaction between users and the adversary in a single road in-
tersection with complete information: the adversary and mobile users know each
others’ strategies and payoffs. We obtain one pure-strategy Nash equilibrium and
one mixed-strategy Nash equilibrium [26]. We generalize the results to a network
of intersections using the notion of supergames [11]. Then, we relax the com-
plete information assumption because mobile users may not know the position
of eavesdropping stations, and we study the incomplete information scenario.
We prove the existence of one pure-strategy Bayesian Nash equilibrium [15] in
the single road intersection game and extend the result to a network of intersec-
tions. Finally, we test our model using real road traffic statistics from Lausanne,
Switzerland, and obtain two important results. First, in complete information
scenarios, mobile users and the adversary tend to adopt complementary strate-
gies: users place mix zones where there is no eavesdropping station, and the
adversary deploys eavesdropping stations where there is no mix zone. Second, in
incomplete information scenarios, the location privacy level achieved by mobile
users depends on their level of uncertainty about the strategy of the adversary.
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To the best of our knowledge, this paper is the first investigation of the
strategic aspects of tracking games in mobile networks. Previous works aim
at optimizing privacy-preserving mechanisms with respect to a worst case ad-
versary [3, 10, 13]. In contrast, game theory allows us to further analyze the
interactions between privacy-conscious nodes and the adversary in order to pre-
dict their strategies. In this direction, previous works investigate pursuit-evasion
games (e.g., [20]) in which several users cooperate to locate one target user.
Tracking games complement this existing work by considering a new type of
game in which several users collaborate to protect their location privacy against
a rational adversary equipped with local eavesdropping devices. Our results al-
low system designers to predict the strategies of a local adversary and mobile
users with a limited budget. This paper is part of the trend of blending game
theory with security to predict the strategies of the rational parties involved
[1, 5, 7, 8, 12, 14, 21, 29, 33].

This paper is organized as follows. In Section 2, we present the system and
threat models, and describe how mix zones provide location privacy. We intro-
duce the game-theoretic framework in Section 3 and analyze it in Section 4. We
provide the main numerical results based on real-traffic data in Section 5 and
conclude in Section 6.

2 Preliminaries

In this section, we present the assumptions made throughout the paper. We also
introduce mix zones and define a metric to measure location privacy.

2.1 Mobile Network Model

We study a system composed of mobile nodes moving in a road network of
K intersections. Nodes are equipped with peer-to-peer wireless communication
technologies (e.g., WiFi) and can communicate with other nodes in transmis-
sion range. Mobile devices identify each other using pseudonyms [27]. In order
to prevent tracking by third parties, we assume that mobile nodes use multi-
ple pseudonyms that they change over time. An offline Certification Authority
(CA) run by an independent trusted third party provides mobile users, prior to
entering the network, with a set of pseudonyms, such as public/private key pairs.

For each intersection, we assume the knowledge of accurate statistics: the
parties know the number of vehicles per hour driving through any specific path,
i.e., for each entering and exiting road pair. In practice, such information can
be provided by city authorities in charge of road traffic optimization. Based on
these statistics, we express the traffic intensity for each specific path in each
intersection. The traffic intensity is defined in a normalized form as:

λi =
ni

μmax
(1)

where ni is the number of nodes going through intersection or road i per unit of
time and μmax is the maximum number of nodes driving through any intersection
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Fig. 1. Intersection i. Road 2 is one-way: no vehicle can enter the intersection from
there. The width of each flow is proportional to the traffic intensity. Vehicles entering
by roads 1 and 3 have 3 possible exits on each of them, whereas vehicles entering by
road 4 have 2 possible exits.

of the network per unit of time. Figure 1 shows an example of one particular
intersection i.

2.2 Threat Model

We consider a local adversary A that aims at tracking nodes: A has a limited
number of eavesdropping stations to deploy in the network. As road intersec-
tions are strategic points of the network (through which all mobile nodes pass),
we assume that the local adversary deploys its eavesdropping stations only at
these places. Eavesdropping stations have a coverage area large enough to detect
mobile nodes entering and exiting the intersection.

We assume a passive adversary: A cannot inject or modify messages [7]. A
collects pseudonyms sniffed at every intersection where it has an eavesdropping
station. Based on the collected information, it attempts to track the location of
mobile nodes. Hence, the adversary threatens the location privacy of nodes [4].

2.3 Location Privacy Model

In order to defeat the tracking by an adversary, nodes can use multiple
pseudonyms that they change over time. Nodes must coordinate pseudonym
changes in regions called mix zones in order to prevent the spatial and temporal
correlation of their location. We can distinguish between two types of mix zones:
first, those that, besides the pseudonym change, request user action, such as
turning their transceivers off [17, 23] or using a mobile proxy[30]; second, mix
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zones where the nodes merely take advantage of the adversary’s lack of coverage
to change pseudonyms without any other action [6]. In this paper, we refer to the
former as active mix zones and the latter as passive mix zones. In the following,
we consider active mix zones created using silent periods.

We now quantify the location privacy provided by active mix zones in the
presence of an attacker that eavesdrops on communications. As proposed in a
previous work [3], we measure the uncertainty of A in matching mobile nodes
that enter and exit an active mix zone. The uncertainty of the adversary is
measured with an information-theoretic metric, the entropy [32]. To generalize
this measure to an entire intersection, we compute the normalized entropy for
each incoming road k and sum over all possible incoming roads with a weighted
factor based on traffic intensity λk. We then divide the result by λi to get a
normalized entropy Hi at intersection i:

Hi =
1
λi

∑
∀k

λk

−
∑

∀j pi
kj log2 pi

kj

log2 Ri
k

(2)

where Ri
k is the total number of possible outgoing roads when entering at road k

in intersection i, and pi
kj is the probability that a node coming in intersection i

via road k leaves via road j. The normalized entropy Hi captures the uncertainty
of the adversary about the direction of nodes exiting an intersection.

Assuming that the monitoring and correlation processes become more difficult
for the adversary with a higher number of nodes within the intersection, the
uncertainty increases with the number of nodes entering the mix zone. Thus, we
assume that the mixing effectiveness at intersection i is mi = λiHi, where λi is
the total traffic intensity at intersection i.

In passive mix zones, mobile nodes can change pseudonyms in regions where
the adversary has no coverage while continuing to communicate. However, if
nodes change pseudonyms in a region where the adversary eavesdrops, the mixing
effectiveness becomes equal to zero because the adversary can easily link nodes
before and after a pseudonym change. If there is no eavesdropping station, we
have mi = 1. Note that we assume that at least two nodes traverse a passive
mix zone and change pseudonyms.

3 A Game-Theoretic Approach to Location Privacy

In order to model the interaction between a local adversary and mobile nodes
wanting to protect their location privacy, we define a static game G=(P , S,
U). P = {N ,A} is the players’ set, where N corresponds to the aggregation of
mobile nodes and A represents the adversary. S is the strategies’ set. At any
given intersection i, nodes can either abstain (A), deploy an active mix zone
(M) or a passive mix zone (P ), whereas the adversary can either abstain (A) or
eavesdrop (E) on wireless communications. Thus, we get S = {Si

N ,Si
A}K

i=1 with
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Table 1. Normal form of game G at intersection i

N\A Eavesdrop (E) Abstain (A)

Active mix zone (M) (λimi − ci
p − ci

q , λi(1 − mi) − cs) (λi − ci
p − ci

q , 0)

Passive mix zone (P) (−ci
p, λi − cs) (λi − ci

p, 0)

Abstain (A) (0, λi − cs) (0, 0)

Si
N = {M, P, A} and Si

A = {E, A}. Finally, U is the payoffs’ set, where utility u
for each player is equal to benefit b minus cost c.

When a player abstains, it has neither benefits nor costs, its payoff being zero
(Table 1). An eavesdropping station is worth cs for the adversary, regardless
of the intersection i. On the nodes’ side, a passive mix zone (P ) and an active
mix zone (M) cost ci

p = αλi and ci
m = ci

p + ci
q = (α + β)λi, respectively. Value

ci
p encompasses the cost of acquiring new pseudonyms, whereas ci

q is the cost
of remaining silent for a certain period. When the adversary plays E and the
nodes play M , the benefit of nodes is proportional to the mixing effectiveness
mi and the traffic intensity at intersection i (i.e., λimi) whereas the attacker’s
benefit is proportional to (1−mi) and the traffic intensity (i.e., λi(1 −mi)). If
the adversary plays A, mi is equal to 1 because the nodes are not tracked. Thus,
the nodes’ benefit is λi and the adversary’s benefit is zero. If the nodes play P
or A while the adversary plays E, nodes lose all their privacy benefits and the
attacker earns a maximal benefit (i.e., λi). Note finally that all players’ costs
(ci

m and cs) and benefits (λi and mi) are normalized between zero and one.
In real life, nodes may not know the total amount of investment Γ · cs (Γ

being the number of eavesdropping stations that the attacker can afford) made
by the adversary to eavesdrop on the communications, and thus its stations’
number and position around the network. Nodes have incomplete information
about the attacker’s strategy and payoff. To solve this problem, Harsanyi [15]
proposes to introduce a new player called Nature that turns an incomplete in-
formation game into an imperfect information game. To do so, Nature assigns a
type θ to the adversary’s power according to a probability density function f(θ)
known to the nodes. We assume here that the adversary is aware of the nodes’
costs ci

p and ci
q. We thus have an asymmetric information game, meaning that

the information sets of the players differ in ways relevant to their behavior. The
adversary has useful private information: an information partition that is differ-
ent and not worse than that of the nodes [28]. Table 2 summarizes the notation
used throughout the paper.

4 Game Results

In this section, we first analyze the complete information game, at one and then
at K intersections (C1-game and CK-game). Then, we extend the analysis to the
incomplete information I1-game and IK-game.
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Table 2. List of symbols

Symbol Definition

K Number of intersections in the network
N Mobile nodes
A Adversary
λi Normalized traffic intensity at intersection i
mi Mixing effectiveness of an active mix zone at intersection i
ci
p Nodes’ cost of changing pseudonyms at intersection i

α Cost of changing pseudonym per node
ci
q Nodes’ cost of remaining silent at intersection i

β Cost of being silent per node
ci
m Active mix zone cost: ci

p + ci
q

cs Adversary’s cost of installing an eavesdropping station
θ Nodes’ belief in the type of the adversary
f(θ) Probability density function of the nodes’ belief
F (θ) Cumulative distribution function of the nodes’ belief
Γ Total number of eavesdropping stations
zi
A Nodes’ belief in the presence of an eavesdropping station at intersection i

ui
N Nodes’ payoff function at intersection i

ui
A Adversary’s payoff function at intersection i

sN ,i Nodes’ strategy at intersection i
sA,i Adversary’s strategy at intersection i
s∗N ,i Nodes’ best response at intersection i
s∗A,i Adversary’s best response at intersection i
uN

tot Nodes’ global payoff function
uA

tot Adversary’s global payoff function

4.1 Complete Information Game

We begin the analysis with C1-game. The following theorem identifies all Nash
equilibria (NE) of the game at one intersection with complete information.1

Theorem 1. The C1-game has either a single pure-strategy Nash equilibrium:

(s∗N ,i, s
∗
A,i) =

⎧⎪⎪⎨
⎪⎪⎩

(M, E) if (cs < λi(1−mi)) ∧ (ci
m < λimi)

(P, A) if (cs > λi) ∧ (ci
p < λi)

(A, E) if (cs < λi) ∧ (ci
m > λimi)

(A, A) if (cs > λi) ∧ (ci
p > λi)

or a single mixed-strategy NE:

(s∗N ,i, s
∗
A,i) = (xi

N , xi
A) if (λi(1 −mi) < cs < λi) ∧ (ci

m < λimi)

where xi
N = λi−cs

λimi
is the probability of using an active mix zone at intersection

i and xi
A = min( ci

q

λimi
, 1) is the probability of eavesdropping at intersection i.

Moreover, P (s∗N ,i = P ) = 1− xi
N and P (s∗N ,i = A) = 0.

1 For convenience’s sake, we focus in this paper on strict inequalities between benefits
and costs.
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Proof. We first distinguish five different cases that encompass all possible sce-
narios. For four of them, we get pure-strategy Nash equilibria, computed by
finding both players’ best responses in Table 1. In the last case, if{

λi(1−mi) < cs < λi

ci
m < λimi

there is no pure-strategy Nash equilibrium. However, we can derive a mixed-
strategy Nash equilibrium. As nodes’ strategy A is dominated by strategy M ,
it will never be used by the nodes. Then, we can find the mixed-strategy Nash
equilibrium by simply finding the mixed-strategy Nash equilibrium of the 2-by-2
game shown in Table 3.

Table 3. Reduced C1-game for mixed-strategy Nash equilibrium

N\A Eavesdrop (E) Abstain (A)

Active mix zone (M) (λimi − ci
p − ci

q , λi(1 − mi) − cs) (λi − ci
p − ci

q , 0)

Passive mix zone (P) (−ci
p, λi − cs) (λi − ci

p, 0)

Assuming that {
Pr(sN ,i = M) = xi

N
Pr(sA,i = E) = xi

A
,

we can solve{
xi
A(λimi − ci

p − ci
q) + (1 − xi

A)(λi − ci
p − ci

q) = −xi
Aci

p + (1− xi
A)(λi − ci

p)
xi
N (λi(1−mi)− cs) + (1− xi

N )(λi − ci
s) = 0 ,

and obtain the following mixed-strategy Nash equilibrium:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P{si
N = M} = λi−cs

λimi

P{si
N = P} = 1− λi−cs

λimi

P{si
A = E} = min(

ci
q

λimi
, 1)

P{si
A = A} = max(1− ci

q

λimi
, 0)

��

Theorem 1 shows that participants’ strategies at NE are highly dependent on the
traffic profiles at each specific intersection. The adversary plays E at NE either if
the eavesdropping cost is low (cs < λi(1−mi)), or if it is not too high (cs < λi)
and the nodes do not use an active mix zone at the same place. The nodes
play M if ci

m is small enough for given traffic intensity and mixing effectiveness
(ci

m < λimi). If the adversary abstains and the cost of changing pseudonym
is not prohibitive (ci

p < λi), they play P . Nodes abstain if the adversary is
eavesdropping and ci

m is not small enough to be beneficial for them. For a high
pseudonym cost (ci

p > λi), nodes abstain as well, regardless of the adversary’s
strategy. Finally, if cs is neither too high nor too low and ci

m small, players’ best
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responses do not converge to a pure-strategy NE, leading to a mixed-strategy
NE as defined in the theorem.

We will now extend the C1-game to the CK-game for K intersections. The
CK-game can be viewed as a supergame with K simultaneous moves as defined
in [24]. Because the strategy profiles are independent at different intersections
and the set of strategies is not restricted by any constraints, both players can
determine their best responses with C1-games at K intersections and aggregate
them to get their CK-game best responses. This supergame NE can be defined
by the union of the K NE of C1-games as follows:

(s∗
N , s∗

A) =
K⋃

i=1

(s∗N ,i, s
∗
A,i) (3)

and the supergame payoff is the sum of payoffs provided by each C1-game:{
uN

tot(s
∗
N , s∗

A) =
∑K

i=1 ui
N (s∗N ,i, s

∗
A,i), for the nodes

uA
tot(s∗

N , s∗
A) =

∑K
i=1 ui

A(s∗N ,i, s
∗
A,i), for the adversary

(4)

However, a local adversary cannot afford an unlimited number of eavesdropping
stations. The total number of eavesdropping stations is thus assumed to be
capped by an upper bound Γ . Consequently, the NE strategy profile (s∗

N , s∗
A)

of the CΓ
K-game can be defined as:

s∗
N ∈ arg max

sN
uN

tot(sN , s∗
A) (5)

{
s∗
A ∈ arg max

sA
uA

tot(s∗
N , sA)

subject to
∑K

i=1 1sA,i=E ≤ Γ
(6)

where the ith row of vectors sN and sA is sN ,i and sA,i, respectively.
Algorithm BoundedAdvCoverage copes with the new constraint on adversary’s

eavesdropping stations in the CΓ
K-game. This algorithm enables us to find the

equilibrium of the game under the adversary’s constraint for the whole network.
In BoundedAdvCoverage, we assume that m1 < m2 < ... < mK , i.e. the first

intersection has the lowest mixing effectiveness. Using Theorem 1, the algorithm
first computes independently the Nash equilibria at each intersection (line 1).
Then, if the total number of eavesdropping stations among the K intersections
is larger than Γ , the adversary has to remove some of them.

First, the adversary changes strategy from xi
A to A at the intersections where

it has mixed strategies (lines 2 to 6). As the expected payoff of the adversary at
mixed-strategy NE is equal to zero, it will not lose anything with this change.
Note that the adversary starts with the intersection that has a mixed-strategy
NE with smallest i (line 2), as this removes a mixed strategy with the high-
est probability of eavesdropping. If the first move is not sufficient, it considers
the next intersection with a mixed-strategy NE. This continues until either the
number of eavesdropping stations is smaller than Γ , or there are no more inter-
sections with mixed-strategy NE. In the latter case, the adversary then moves to
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Algorithm 1. BoundedAdvCoverage.
1: compute the Nash equilibria at each intersection ⇒ (s∗

N ; s∗
A)

2: i = 1
3: while (

∑K
i=1 1s∗A,i

=E > Γ ) ∧ ((s∗N ,i; s
∗
A,i) = (xi

N , xi
A)) do

4: (s∗N ,i; s
∗
A,i) = (P ;A)

5: i = i + 1
6: end while
7: while (

∑K
i=1 1∗

sA,i=E > Γ ) do

8: j = arg min
i,ui

A �=0

ui
A(s∗N ,i, s

∗
A,i)

9: if (cj
p < λj) then

10: (s∗N ,j , s
∗
A,j) = (P, A)

11: else
12: (s∗N ,j , s

∗
A,j) = (A, A)

13: end if
14: end while

the second step of the algorithm (line 7) and removes its eavesdropping stations
at intersections with pure-strategy NE, starting with the intersection where its
payoff is the smallest (line 8). In this case, each time the adversary changes
strategy, it reduces its number of eavesdropping stations by one. The adversary
obviously stops this removal process when the constraint Γ is satisfied.

As nodes do not have any constraints on cost, they just concentrate on their
best responses with respect to the new strategy of the adversary. The nodes’
best response if the adversary does not have any eavesdropping station is to
deploy a passive mix zone if and only if ci

p < λi (line 9). In this case, a new local
equilibrium appears: (s∗N ,i, s

∗
A,i) = (P, A) (line 10). Whereas, if ci

p > λi, the new
NE is (s∗N ,i, s

∗
A,i) = (A, A) (line 12).

Theorem 2. The CΓ
K-game has a single Nash equilibrium, provided by the K

C1-games equilibria and the BoundedAdvCoverage algorithm.

Proof. The BoundedAdvCoverage algorithm removes the eavesdropping stations
in order to maximize the payoff of the adversary with the available eavesdrop-
ping stations, i.e. Γ . This algorithm also derives the nodes’ best response with
respect to the new adversary’s strategy. Hence, the strategy profile (s∗

N , s∗
A) is

an equilibrium because no player is interested in unilaterally changing strategy.
��

4.2 Incomplete Information Game

We extend the analysis to I-games, where the mobile nodes have incomplete
information about the adversary’s payoff and strategy. Nodes must predict the
attacker’s best strategy based on the probability distribution f(θ) representing
the nodes’ belief in the adversary’s type. For the purpose of analysis, we suppose
that the nodes know Γ but do not know cs that will be modeled by θ. Indeed, if
cs increases, the adversary will need more money if it wants to deploy the same
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number of eavesdropping stations. The power of the adversary is always relative
to the cost of eavesdropping.2

Definition 1. The strategy profile (s∗N ,i, s
∗
A,i) is a pure-strategy Bayesian Nash

equilibrium (BNE) of the I1-game at intersection i if and only if
⎧⎪⎨
⎪⎩

s∗N ,i ∈ argmax
sN ,i∈Si

N

Eθ[ui
N (sN ,i, s

∗
A,i(θ))]

s∗A,i ∈ argmax
sA,i∈Si

A

ui
A(s∗N ,i, sA,i)

(7)

Let zi
A = Pr{s∗A,i = E} be the probability that the adversary installs an eaves-

dropping station at intersection i, in a given equilibrium. The following lemma
provides the computation of zi

A by the nodes, for any given distribution of ad-
versary’s type.

Lemma 1. Supposing that F (θ) is the cumulative distribution function of the
type of the eavesdropping station’s cost, the nodes will assume that the adversary
will play E at intersection i with probability

zi
A =

{
F (λi(1−mi)) + min(

ci
q

λimi
, 1)(F (λi)− F (λi(1 −mi))) if ci

m < λimi

F (λi) if ci
m > λimi

(8)

Proof. Nodes would like to express the probability that the adversary places an
eavesdropping station based on the distribution probability f(θ) of the cost’s
type of such an eavesdropping station. First, let us define the cumulative distri-
bution function of the cost’s type:

F (θ) = P (Θ < θ) =
∫ θ

0

f(u)du

Moreover,

P (a < Θ < b) =
∫ b

a

f(u)du = F (b)− F (a)

Assuming that nodes know the probability density function (and thus the cu-
mulative distribution function), they can evaluate zi

A = P (s∗A,i = E) using the
law of total probability:

P (s∗A,i = E) = P (s∗A,i = E|Θ < λi(1−mi))P (Θ < λi(1−mi))

+ P (s∗A,i = E|λi(1−mi) < Θ < λi)P (λi(1 −mi) < Θ < λi)

+ P (s∗A,i = E|Θ > λi)P (Θ > λi)

2 It is similar to the purchasing power of consumers, which is relative to the level of
goods/services’ prices.
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As P (s∗A,i = E|Θ > λi) = 0 and P (s∗A,i = E|Θ < λi(1−mi)) = 1, we get

P (s∗A,i = E) = P (Θ < λi(1−mi))

+ P (s∗A,i = E|λi(1 −mi) < Θ < λi)P (λi(1−mi) < Θ < λi)

= F (λi(1 −mi))
+ P (s∗A,i = E|λi(1 −mi) < Θ < λi)(F (λi)− F (λi(1 −mi)))

There remains to express P (s∗A,i = E|λi(1−mi) < Θ < λi). Nodes can evaluate
this probability using results of Theorem 1:

P (s∗A,i = E|λi(1−mi) < Θ < λi) =

{
1 if ci

m > λimi

min( ci
q

λimi
, 1) if ci

m < λimi

��

Using Lemma 1, the nodes can then find their best response that maximizes
their payoff. This is shown with the following lemma.

Lemma 2. The nodes’ best response in I1-game is:

s∗N ,i =

⎧⎨
⎩

M if (ci
q < zi

Aλimi) ∧ (ci
m < λi(1− zi

A(1−mi)))
P if (ci

q > zi
Aλimi) ∧ (ci

p < (λi(1− zi
A))

A if (ci
m > λi(1− zi

A(1−mi))) ∧ (ci
p > λi(1− zi

A))
(9)

Proof. First, let us explicitly write the expected payoff:

Eθ[ui
N (sN ,i, s

∗
A,i(θ))] = zi

Aui
N (sN ,i, s

∗
A,i = E) + (1− zi

A)ui
N (sN ,i, s

∗
A,i = A)

In order to get s∗N ,i = M , we must verify both conditions below:

{
Eθ[ui

N (sN ,i = M, s∗A,i(θ))] > Eθ[ui
N (sN ,i = P, s∗A,i(θ))]

Eθ[ui
N (sN ,i = M, s∗A,i(θ))] > Eθ[ui

N (sN ,i = A, s∗A,i(θ))]

or, explicitly:{
zi
A(λimi − ci

p − ci
q) + (1− zi

A)(λi − ci
p − ci

q) > −zi
Aci

p + (1− zi
A)(λi − ci

p)
zi
A(λimi − ci

p − ci
q) + (1− zi

A)(λi − ci
p − ci

q) > 0

or, by simplifying: {
ci
q < zi

Aλimi

ci
p + ci

q = ci
m < λi(1− zi

A(1−mi))

We can prove in the same way both other best responses. For s∗N ,i = P ,

{
Eθ[ui

N (sN ,i = P, s∗A,i(θ))] > Eθ[ui
N (sN ,i = M, s∗A,i(θ))]

Eθ[ui
N (sN ,i = P, s∗A,i(θ))] > Eθ[ui

N (sN ,i = A, s∗A,i(θ))]
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must be verified, and{
Eθ[ui

N (sN ,i = A, s∗A,i(θ))] > Eθ[ui
N (sN ,i = M, s∗A,i(θ))]

Eθ[ui
N (sN ,i = A, s∗A,i(θ))] > Eθ[ui

N (sN ,i = P, s∗A,i(θ))]

for s∗N ,i = A. ��

Note that the adversary has complete information, and consequently can obtain
its best response using the calculated payoffs in Table 1. This is shown by the
following lemma.

Lemma 3. The adversary’s best response of the I1-game is

s∗A,i =
{

E if (cs < λi(1−mi)) ∨ ((λi(1−mi) < cs < λi) ∧ (s∗N ,i �= M))
A if (cs > λi) ∨ ((λi(1−mi) < cs < λi) ∧ (s∗N ,i = M))

(10)

Considering Lemmas 1, 2 and 3, we immediately have the following theorem.

Theorem 3. The I1-game has at least one pure-strategy Bayesian Nash equi-
librium.

Proof. As the Bayesian NE is defined by the players’ mutual best responses
(Definition 1), the result follows from Lemmas 1, 2, and 3. ��

Note that, comparing to the C1-game, (M, A) and (P, E) can also be pure-
strategy BNE for the I1-game. For example, (M, A) is a BNE if the nodes
believe that the cost of an eavesdropping station is small, whereas in reality the
actual cost of an eavesdropping station is high (typically greater than λi). If the
mobile nodes had perfect knowledge about the adversary’s payoff, they would
have deployed a passive mix zone instead of an active mix zone. Similarly, the
nodes deploy passive mix zone at (P, E) BNE due to incomplete information
about the adversary, which degrades their location privacy.

We now generalize our I1-game to the IΓ
K -game by aggregating all the equi-

libria at each intersection and sum the payoffs of all intersections to obtain
the supergame payoffs for both participants. Similarly, the BNE strategy profile
(s∗

N , s∗
A) can be expressed as:

s∗
N ∈ argmax

sN

K∑
i=1

Eθ[ui
N (sN ,i, s

∗
A,i(θ))] (11)

{
s∗
A ∈ argmax

sA

∑K
i=1 ui

A(s∗N ,i, sA,i)

subject to
∑K

i=1 1sA,i=E ≤ Γ
(12)

BayesianBoundedAdvCoverage algorithm enables the players to find the BNE
of the IΓ

K -game.
The algorithm first computes the BNE at each intersection independently,

using Theorem 3. Then, the adversary removes eavesdropping stations at inter-
sections where they provide the smallest payoffs (lines 3 and 4), until its total
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Algorithm 2. BayesianBoundedAdvCoverage.
1: compute the Bayesian Nash equilibria at each intersection ⇒ (s∗

N ; s∗
A)

2: while (
∑K

i=1 1∗
sA,i=E > Γ ) do

3: j = arg min
i,ui

A �=0

ui
A(s∗N ,i, s

∗
A,i)

4: s∗A,j = A
5: end while
6: for i = 1 : K − Γ do
7: j = arg min

i�=k,∀k<i
E[ui

A(s∗N ,i, s
∗
A,i = E)]

8: if (cj
p < λj) then

9: s∗N ,j = P
10: else
11: s∗N ,j = A
12: end if
13: end for

Table 4. Number of NE (among all intersections)

scenario\NE (M,E) (A,E) (P, A) mixed

cs = 0.1, Γ = 23 17 6 0 0

cs = 0.1, Γ = 5 2 3 18 0

cs = 0.5, Γ = 23 2 3 5 13

cs = 0.5, Γ = 5 2 3 18 0

number of eavesdropping stations satisfies the upper bound Γ . The mobile nodes
find the K − Γ intersections where the expected payoff of the adversary playing
E is the smallest (line 7). Indeed, these intersections are those where there is the
highest probability that the adversary removes its eavesdropping stations. The
nodes then play P at these intersections if cj

p < λj or play A if cj
p is prohibitive.

5 Numerical Results

In this section, we evaluate our game-theoretic model by means of numerical re-
sults based on traffic data3 from Lausanne [22]. For convenience, we concentrate
on the K = 23 main intersections of Lausanne and use Matlab to numerically
evaluate the results. We test both the CΓ

K-game and the IΓ
K-game, with different

costs. Benefits depend on the traffic parameters λi and mi.

5.1 Complete Information Game

Table 4 summarizes the results with different players’ costs in the complete
information scenario. In all of the four cases, nodes’ costs are fixed: ci

p = αλi =
0.1λi and ci

q = βλi = 0.1λi. We sum the different NE at each intersection and

3 The data are publicly available on http://icapeople.epfl.ch/mhumbert/tracking.
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Table 5. Number of Bayesian Nash equilibria (BNE) among all intersections

scenario\BNE (M, E) (P, E) (A, E) (M, A) (P, A) (A, A)

θ ∼ U(0,1), cs = 0.2, Γ = 23 10 13 0 0 0 0

θ ∼ U(0,1), cs = 0.2,Γ = 5 1 4 0 0 18 0

θ ∼ β(2, 5), cs = 0.2, Γ = 23 16 3 4 0 0 0

θ ∼ β(2, 5), cs = 0.2, Γ = 5 1 0 4 0 18 0

θ ∼ β(2, 5), cs = 0.5, Γ = 23 2 0 2 14 3 2

θ ∼ β(2, 5), cs = 0.5, Γ = 5 1 1 2 0 17 2

provide the results for two values of cs (0.1 and 0.5). For each case, we solve the
game with an unlimited and a limited number of stations (Γ = 23 and Γ = 5).

In the first scenario, as cs is very low, the adversary plays E at each inter-
section. On the contrary, the nodes decide to abstain at six intersections, where
mi is too low to get a significant benefit, despite the relatively low price of
an active mix zone (Figure 2(a)). In the second scenario, the adversary keeps
eavesdropping stations at two intersections where there are active mix zones,
instead of placing them at intersections free of mix zones (Figure 2(b)). This is
due to the fact that, at those two intersections, the number of vehicles per hour
is quite high, with a mixing effectiveness that does not confuse the adversary
too much (mi < 0.5). Finally, we notice that the nodes take advantage of their
complete knowledge of the adversary’s payoff to use passive mix zones wherever
the attacker ceases eavesdropping.

If cs increases to 0.5 (third and fourth scenarios), the adversary deploys fewer
eavesdropping stations, five in total without any limit on the stations’ number
(Figure 3). The eavesdropping stations tend to be placed at intersections with
the lowest mixing effectiveness. Most surprising here is that the nodes’ best
responses change as well, showing that they are not independent of the adver-
sary’s strategies. Except for two intersections, the nodes and the adversary adopt
complementary strategies. If the adversary places an eavesdropping station, the
nodes abstain, whereas, if the adversary abstains, the nodes place a (passive)
mix zone. If we limit the number of stations to five, we get the same resulting
equilibrium as in Figure 2(a) and reach the same conclusions.

5.2 Incomplete Information Game

We model the imperfect nodes’ knowledge of cs by using two different probability
distributions. First, the uniform distribution U(0, 1) represents the case when
mobile nodes have no idea about cs. Second, the beta distribution β(2, 5)4 models
the case when the nodes’ belief in cs is more accurate. Table 5 summarizes the
results of the IΓ

K -game.
In the first scenario, we notice that there are 13 intersections where the nodes

deploy passive mix zones while the adversary is eavesdropping at the same places.
4 The beta distribution is a family of continuous probability distributions defined on

the interval [0, 1]. β(2, 5) is maximal in 0.2 and its mean is equal to 2/7.
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= E

= A

= M
= P
= A

Mixed strategies:

Pure strategies:

Adversary Nodes

(a)

(b)

Fig. 2. Maps of Lausanne downtown and strategies chosen (at the main 23 intersec-
tions) with α = 0.1, β = 0.1 and cs = 0.1. (a) Equilibrium with an unlimited number
of eavesdropping stations, (b) Equilibrium with a limited number of eavesdropping
stations (equal to five).
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= E

= A

= M
= P

Mixed strategies:

Pure strategies:

Adversary Nodes

= A

Fig. 3. Map of downtown Lausanne with α = 0.1, β = 0.1 and cs = 0.5. Equilibrium
with an unlimited number of eavesdropping stations.

Nodes lose all their location privacy and pay the cost of changing pseudonyms,
which leads to a negative payoff. The nodes have no clue about cs, and thus must
lay a bet on the adversary’s payoff. Nodes believe that cs is close to E[Θ] = 0.5,
whereas cs = 0.2. Thus, the nodes think that the adversary will not play E
everywhere, whereas it will, because of low actual cs. We also notice that the
nodes privilege passive mix zones at intersections with low mi and active mix
zones where mi is higher. This is surprising because nodes should expect that
the adversary places eavesdropping stations where the mi is low, and thus deploy
active mix zones at these intersections, instead of passive ones. In the second
scenario, the nodes take advantage of the limited number of eavesdropping sta-
tions to deploy more passive mix zones. However, the nodes still have passive mix
zones at four intersections out of five where the adversary keeps eavesdropping.
Hence, in this case either, the BNE is not optimal for the nodes.

In the third and fourth scenarios, we observe that if nodes’ knowledge about
cs becomes more accurate, the nodes’ strategy at equilibrium leads to a higher
payoff. There are three and no (P, E) in the third and fourth cases, respectively.
The nodes know that E[Θ] = 2/7 ≈ 0.29, which is quite close to cs = 0.2, leading
to a much better strategy than with the uniform distribution.

The last two cases depict a nodes’ wrong belief in cs. Their belief is the same
as in cases 3 and 4, but the real cs is higher. This inaccuracy leads to a decrease
on the nodes’ payoff at BNE but not as significant as with a uniform distribution.
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We can observe this especially in the fifth scenario. In this case, there are 14
(M, A) at BNE, whereas with a good knowledge on cs, the nodes would have
played P instead of M . Thus, nodes adopt non-optimal strategies, leading to a
decrease in payoff equal to ci

q (for intersection i). We also notice in the last case a
single (P, E) and a single (M, E). The difference between these two intersections
is in the value of mi (both values of λi are high). In the former intersection,
mi = 0.42, whereas in the latter mi = 0.35. Thus, nodes probably believe that
the adversary ceases eavesdropping at the intersection with highest mi, whereas
it does not.

6 Conclusion

We have considered the problem of deploying mix zones in the presence of a
passive adversary equipped with a limited number of eavesdropping stations.
We have proposed a game-theoretic model to evaluate the strategic behaviors of
both players in such tracking games. First, we analyze the complete information
game and derive an algorithm to obtain NE strategy profiles for a large network.
Second, we evaluate the incomplete information game where mobile nodes are
uncertain about the placement of eavesdropping stations. We obtain a single
pure-strategy Bayesian NE at one intersection. We also describe an algorithm
to obtain the equilibrium in a large network. Finally, we evaluate using real
road traffic statistics both the complete information and incomplete information
games. Among other results, the numerical evaluations show that the adversary
and mobile nodes often adopt complementary strategies when they have com-
plete information: nodes place (passive) mix zones at locations where there are
no eavesdropping stations, whereas the adversary deploys eavesdropping stations
at places where there are no (active) mix zones. In the incomplete information
case, we notice that mobile nodes’ strategy (and thus payoff) highly depends on
their belief about the type of adversary. Our results quantify how the lack of
information by mobile nodes about the attacker’s strategy leads to a significant
decrease in the achievable location privacy level at BNE. In summary, our results
enable system designers to predict the strategy of a local adversary and mobile
nodes with limited capabilities in tracking games.

For future work, we intend to test our results by using traffic data from other
cities and more precisely measure the mixing effectiveness using the sojourn
times and the evolution of traffic over time. Moreover, we would like to ex-
tend our results to other kinds of mobile networks, such as pedestrian ones. We
would also like to enrich our analysis by developing a scenario where the attacker
leverages on the geographical positions and the interdependence of the intersec-
tions to improve his tracking power. This approach would require more complex
strategies and utility functions, and the games at different intersections would
no longer be independent [19]. Another extension of this work is the evaluation
of the interactions between the attacker and the defenders by using repeated
games.
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Abstract. In this paper, we address the problem of defending against entry-exit
linking attacks in Tor, a popular anonymous communication system. We formal-
ize the problem as a repeated non-cooperative game between the defender and
the adversary (i.e., controller of the compromised Tor nodes to carry out entry-
exit linking attacks). Given the current path selection algorithm of Tor, we derive
an optimal attack strategy for the adversary according to its utility function, fol-
lowed by an optimal defensive strategy against this attack. We then repeat such
interactions for three additional times, leading to three design principles, namely
stratified path selection, bandwidth order selection, and adaptive exit selection.
We further develop gPath, a path selection algorithm that integrates all three prin-
ciples to significantly reduce the success probability of linking attacks. Using a
combination of theoretical analysis and experimental studies on real-world Tor
data, we demonstrate the superiority of our algorithm over the existing ones.

1 Introduction

Anonymous Communication Systems: In this paper, we address the problem of de-
fending against entry-exit linking attacks in Tor, a popular anonymous communication
system [1, 2]. Tor is an overlay system over the existing Internet. It consists of thou-
sands of computers distributed around the world, each of which is called a Tor node
and donates its bandwidth to relay traffic in the Tor network. Along with the Tor nodes,
the Tor network maintains a Tor directory server which holds descriptive information
about all Tor nodes.

A Tor client can be a computer or mobile device which makes use of Tor - it does not
have to be a Tor node. To achieve anonymous communication with a destination host,
a Tor client in general chooses three Tor nodes (namely entry, middle, and exit nodes)
based on information stored in the directory server (we shall describe the details of node
selection later in the paper), and then constructs a path (called Tor circuit) with these
three nodes to relay packets to/from the destination. To construct the path, the Tor client
needs to negotiate session keys with all three Tor nodes on the path. This is because Tor
uses layered encryption - i.e., at each hop, a Tor node removes a layer of encryption to

T. Alpcan, L. Buttyan, and J. Baras (Eds.): GameSec 2010, LNCS 6442, pp. 58–71, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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learn where to forward the packet. The destination, after receiving the packet, sees it as
coming from the exit Tor node on the path. Note that each Tor node on the path also
has the knowledge of the preceding node. Thus, a return packet (from the destination)
can take an exact reverse of the path and arrive at the Tor client. One can see that the
destination is oblivious to the fact that it is actually communicating with the Tor client,
hence achieving anonymous communication.

Defense Against Entry-Exit Linking Attacks: While the volunteer-based nature of
Tor reduces its chance of being controlled/manipulated by a single organization or gov-
ernment, recent studies discovered powerful techniques for a small number of malicious
Tor nodes to collude with each other and identify the real source and destination of a
packet. There are various types of such linking attacks. For example, one type of at-
tacks manipulates the packet inter-arrival time with a secret pattern at the entry node,
and then observes whether such pattern emerges at the exit node [3, 4]. Another type
intentionally replays a packet at the entry node [5]. Since Tor uses counter mode AES
(AES-CTR) for encryption, the duplicate packet will incur a decryption error the exit
node, causing a pair of colluding entry-exit nodes to identify the real source and desti-
nation of a packet. A common property of these attacks is that they require the colluding
nodes to be selected as both the entry and the exit nodes of a Tor path.

There are two possible strategies to defend against such entry-exit linking attacks.
One is to revise the design of Tor communication protocol specifically counteract each
entry-exit linking attack (e.g., use padding to counteract timing-based attacks [6, 7]).
The other is to revise the path selection algorithm to minimize the probability for an
adversary to control both entry and exit of a Tor path. Comparing these two strategies,
the first one may completely eliminate a linking attack while the second one naturally
cannot - there is always a small albeit nonzero probability for the entry and exit nodes to
collude with each other. Nonetheless, the second strategy produces a more generic so-
lution that may significantly reduce the success probability of entry-exit linking attacks.
We focus on the second strategy in this paper.

Various path selection rules have already been adopted by Tor to reduce the chance
of selecting two colluding nodes as entry and exit. For example, to construct a path,
Tor picks at most one node from a /16 subnetwork (i.e., with a common 16-bit routing
prefix). While this rule may limit the success of a resource-limited adversary, an adver-
sary with sufficient resources may soon learn to bypass it by spreading the malicious
nodes across different /16 networks. Similar to the arm races between the adversary
and the defender in many other domains (e.g., email spam detection [8], intrusion de-
tection [9, 10]), once the path selection algorithm is updated to detect certain types of
colluding nodes, adversaries start using new ones to evade such detections.

To the best of our knowledge, no systematic approach has been developed to for-
mally analyze the arm race between the design of the path selection algorithm and the
adversarial strategies for deploying collusive Tor nodes. Indeed, it is unclear how to
counteract entry-exit linking attacks with the presence of a smart adversary that strate-
gically deploys a set of malicious Tor nodes into the system.

Outline of Technical Results: In this paper, we present the first game-theoretic study
on the design of path selection algorithm against entry-exit linking attacks. Our goal is
to provide a set of principles for the design of path selection algorithms.
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To this end, we first observe that a path selection algorithm has to make a proper
tradeoff between the privacy and utility of the constructed path. The key privacy-
preserving measure we consider in the paper is the success rate of an entry-exit linking
attack. The key utility factor we consider is the bandwidth of the constructed Tor path.
To achieve a higher utility, the path selection algorithm should use high-bandwidth
nodes as much as possible for path construction. However, an adversary may adapt to
this strategy and inject high-bandwidth nodes to facilitate linking attacks, leading to a
dilemma on the design of path selection algorithms. On the other hand, the adversary
is also bandwidth-sensitive in that the bandwidth it can assign to malicious nodes is not
unlimited. Thus, the adversary must determine an optimal distribution of bandwidth to
the colluding nodes under its control.

We formalize the problem as a repeated non-cooperative game between a bandwidth-
sensitive path selection algorithm and a bandwidth-sensitive adversary which controls
a number of colluding nodes. Given the current path selection algorithm of Tor, we de-
rive the optimal strategy for the adversary. Then, we produce the optimal path selection
algorithm against this adversarial strategy. We repeat such interactions for three times,
leading to three design principles that we then prove to significantly reduce the suc-
cess probability of linking attacks without substantially affecting the bandwidth of the
constructed Tor paths. The three design principles are listed as follows:

– The path selection algorithm should draw the entry and exit nodes from separate
pools. That is, an exit-eligible node should not be considered for the entry.

– While choosing the entry and middle nodes, the path selection algorithm should
ensure that the middle node has equal or higher bandwidth than the entry node.

– The path selection algorithm should draw the entry and middle nodes before choos-
ing the exit node based on the bandwidths of the entry and middle nodes. In par-
ticular, let entry and middle nodes’ bandwidth be bi and bj , respectively. To draw
the exit node, all nodes with bandwidth not exceeding min(bi, bj) should be chosen
with equal probability1.

Next, we develop gPath, a path selection algorithm that integrates all three principles
to effectively reduce the success probability of linking attacks. We derive theoretical
bounds on the performance of gPath and validate the analytical results with experiments
on real-world data of Tor nodes. Both theoretical and experimental results demonstrate
the effectiveness of our algorithm. In particular, while our algorithm incurs virtually no
loss on the utility (i.e., bandwidth) of constructed Tor paths, it is capable of reducing
the success probability of entry-exit linking attacks by orders of magnitude.

The rest of the paper is organized as follows. We introduce the system framework
in Section 2, followed by a game-theoretic model in Section 3. Then, we present an
analysis of the repeated interactions in Section 4. Also in this section, we derive the
three design principles and describe gPath, our path selection algorithm. We present
the experimental evaluation in Section 5, followed by a review of the related work in
Section 6 and the final remarks in Section 7.

1 Since we focus on the bandwidth factor in the paper, here we assume that the entry, middle,
and exit nodes are from different subnetworks.
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2 System Model

2.1 Model of Tor

Consider a system consisting of n Tor nodes Ω = {v1, . . . , vn}. Each node vi specifies
two parameters: the donated bandwidth bi and whether it is willing to serve as an exit
node, denoted by ci. Here ci = 1 if vi is willing to serve, and 0 otherwise. Without
loss of generality, normalize (and discretize, if necessary) the bandwidth to an integer
bi ∈ [1, 100]. Let Ω1 ⊆ Ω be the subset of nodes that are willing to serve as exit nodes,
i.e., Ω1 = {vi|ci = 1}.

Each path P : 〈vi, vj , vk〉 constructed by Tor consists of the following three nodes:
the entry vi, the middle vj , and the exit vk. There must be vk ∈ Ω1. For our pur-
pose, it suffices to consider the bandwidth of a path to follow a simple model of bP =
min(bi, bj, bk).

2.2 Adversary Model

We consider an adversary which launches entry-exit linking attacks to compromise the
communication anonymity of Tor users. In the following, we first describe the model of
such an attack, and then define the adversarial strategy to launch it.

Let ΩA be the set of nodes in Ω which the adversary has compromised. As we
described in Section 1, the entry-exit linking attack succeeds for a constructed path
P : 〈vi, vj , vk〉 if and only if vi ∈ ΩA and vk ∈ ΩA.

To launch such an entry-exit linking attack, an adversary has three possible strategies:
(i) add nodes controlled by the adversary into Tor network, (ii) compromise existing
Tor nodes, or (iii) a combination of these two strategies. Barring the difference between
the cost associated with adding a new Tor node and compromising an existing one,
these three strategies are essentially equivalent for the purpose of this paper because
of two reasons: First, in practice, the number of Tor nodes that can be controlled by
an adversary is significantly smaller than the total number of Tor nodes. Thus, adding
or compromising the same number of nodes will lead to almost equal percentage of
compromised Tor nodes in the system. Second, once compromised, an existing Tor
node can change its bandwidth and exit-eligibility, i.e., bi and ci. Thus, the space of
parameter settings available to the adversary remains the same for all strategies.

Therefore, without loss of generality, we shall consider an universal setting where the
adversary is in control of a subset of nodes Ω. The adversarial strategy is to set bi and
ci for each compromised node such that the entry-exit linking attack has the maximum
success probability Pr{{vi, vk} ⊆ P}. We shall introduce the precise semantics of the
adversarial strategy in the game-theoretic setting presented in the next subsections.

2.3 Performance of Path Selection

The performance of path selection should be measured in terms of two metrics: (1)
Privacy (resilience against linking attacks): The construction of P : 〈vi, vj , vk〉 should
minimize the success probability of linking attack, i.e., Pr{{vi, vk} ⊆ ΩA}. (2) Utility
(efficiency of communication): The construction of P : 〈vi, vj , vk〉 should maximize
the path bandwidth bP = min(bi, bj, bk).
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3 Proposed Game-Theoretic Framework

We consider a non-cooperative game between the defender (i.e., the designer of the path
selection algorithm) and the adversary (i.e., controller of the compromised Tor nodes
to carry out entry-exit linking attacks). In this section, we define the strategies and the
utility functions for the adversary and the defender, respectively. After that, we discuss
the objective of our game-theoretic analysis.

3.1 Adversary and Defender’s Strategies

Adversary’s Strategy: The adversary is controlling a subset of nodes in {v1, . . . , vn}.
Suppose that each adversary can only control (up to) nA nodes where 1 � nA � n.
Let the adversary-controlled subset be denoted as ΩA where |ΩA| = nA. The strategy
of the adversary can be formalized as choosing bi and ci for all vi ∈ ΩA.

Defender’s Strategy: Since the adversarial nodes may be distributed not only over
different subnetworks but also geographically over different locations, we consider the
worst-case scenario where the defender does not have the ability to distinguish between
honest and malicious Tor nodes. As such, the defensive strategy is essentially the path
selection algorithm, i.e., how to construct a path with three parties: the entry N1, the
middle node N2, and the exit node N3. Such a construction algorithm can be modeled as
selecting the probability for any three given nodes to be selected in oder - i.e., selecting
a function f(bi, ci, bj , cj , bk) ∈ [0, 1] for three nodes vi, vj , vk which is the probability
for the three nodes to be chosen as N1, N2, N3, respectively, when ck = 1.

3.2 Adversary and Defender’s Utility Functions

Adversary’s Objective: The adversary only has one objective: to compromise the
anonymity of as many paths as possible. Recall that the adversary breaks the anonymity
of a path if and only if it compromises both the entry and exit nodes. Thus, the adver-
sary’s objective can be formalized as maximizing its utility function

uA(f, ΩA) =
∑

vi,vk∈ΩA,vj∈Ω and ck=1

f(bi, ci, bj, cj , bk), (1)

i.e., the probability for the adversary to compromise a path generated by f .

Defender’s Objective: The objective of the defender is two-fold: One is to minimize
uA(f, ΩA) to protect the anonymity of communication. The other is to maximize the
bandwidth of constructed path. In particular, consider

β(f) =
∑

vi,vj ,vk∈Ω,ck=1

(f(bi, ci, bj, cj , bk) ·min(bi, bj, bk)), (2)

which is the expected bandwidth of a path constructed by the defender’s strategy f . The
defender’s objective can be formalized as maximizing its utility function

uD(f, ΩA) = rD · β(f)− (1− rD) · uA(f, ΩA), (3)

where rD ∈ [0, 1] is the preference parameter of the defender while capturing the
defender’s preference between protecting anonymity and maximizing bandwidth.
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3.3 Objective of Game-Theoretic Analysis

Note that both the attacking and defensive strategies form finite sets. Thus, Nash equi-
librium (i.e., a state in which no player can benefit by unilaterally changing its strategy)
always exist for the game. Nonetheless, it may not be practical to expect that the de-
fender and adversary can actually reach this state due mainly to the possible irrationality
of players and the intractability of computing the Nash equilibrium. Thus, in this paper
we do not focus on the derivation of the Nash equilibrium. Instead, we consider the
problem from a practical standpoint and analyze the strategies of the defender and the
adversary in an iterative fashion. In particular, we consider a repeated game where each
player makes a move sequentially, starting from the current path selection algorithm
used by Tor. In the next section, we shall analyze the first four rounds of this repeated
game, and derive three design principles that will not only hold for these iterations, but
also in general can be applied to the design of any Tor path selection algorithm. Note
that while the analysis of future rounds (i.e., fifth and later) of interactions is possible,
we did not find additional design principles from such analysis which can be intuitively
explained and applied to the design of path selection algorithms in practice.

4 Interactions

In this section, we consider four rounds of interactions between the defender and the
adversary. Each round consists of two steps: (i) the defender makes a move on its path
selection algorithm by devising an optimal countermeasure to the adversarial strategy
in the previous round (in the first round, the defender will devise the current Tor al-
gorithm), and (ii) the adversary will respond by changing its strategy to the optimal
one against the defender’s new algorithm. The defensive algorithm used in the first step
is a simplified version of the current algorithm used in Tor [1, 2]. For each subsequent
round, we shall first describe the main idea of our defensive strategy, and then derive the
optimal attacking strategy against it. Finally, we draw observations from the defensive
strategy design in each step to form the three design principles that we propose.

4.1 Round 1: Basic Design

Defender (Tor)’s Current Strategy: We start with a simplified version of the path se-
lection strategy currently used in Tor. With this strategy, the exit node is first selected
from all nodes with ci = 1. The selection is preferential according to a node’s (claimed)
bandwidth. In particular, suppose that the probability of selecting a node vi is propor-
tional to w(bi) ∈ [0, 1]. According to the current strategy adopted by Tor, w(bi) satisfies
the following two properties: (1) When bi < bL where bL is a pre-determined thresh-
old, w(bi) monotonically increases with an increasing bi, because a larger bandwidth is
preferred by the path selection algorithm. (2) When bi ≥ bL, w(bi) = w(bL).

The introduction of the threshold bL is to prevent a Tor node from claiming an ar-
bitrarily large bandwidth to maximize its selection probability. After the exit node is
selected, the entry and the middle nodes are selected, in turn, from all remaining nodes
with probability proportional to the weight function w(·). Besides the natural rule that
the entry, middle, and exit nodes must be unique, the selections of these three nodes are
independent of each other.
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Adversary’s Strategy: We now analyze the optimal attacking strategy against the cur-
rent Tor path selection algorithm. Note that the attack success probability is monotonic
with bi and bk. Thus, the optimal strategy for the adversary is to make the bandwidths of
compromised nodes as large as bL. In addition, since an exit-eligible node is considered
in the selection of all three nodes, the adversary should make all compromised nodes
exit-eligible. In other words, ci = 1 for all vi ∈ ΩA. In this case,

uA =
nA · w(bL)

w1R + nA · w(bL)
· (nA − 1) · w(bL)
wR + (nA − 1) · w(bL)

, (4)

where wR =
∑

i∈Ω\ΩA
w(bi) and w1R =

∑
i∈Ω\ΩA,ci=1 w(bi) are the total weights

for all bona fide nodes not controlled by the adversary and eligible to serve as the exit
node, respectively. Note that the value of uA - i.e., the probability for the adversary to
successfully launch the entry-exit linking attack - can be high even with a small value of
nA. For example, in our experiments with the current Tor node bandwidth distribution,
the probability for an adversary to compromise both the entry and the exit nodes of a
path is greater than 5% when only 1% of all Tor nodes (i.e., 15 nodes) are compromised.

4.2 Round 2: Stratified Path Selection

Defender’s Strategy: Given the optimal adversarial strategy in Round 1, let us now
consider the defender’s next move to best block the attack. We consider a simple way
to defend against this adversarial strategy - to select the entry node from only the nodes
that refuse to serve as the exit - i.e., we ensure f(vi, vj , vk) = 0 if vi ∈ Ω1. Note that
this defensive strategy chooses vi and vk from mutually exclusive subsets of Ω. Thus,
we call it stratified path selection.

If the adversary still uses the first round’s optimal strategy, its entry-exit linking
attack will never succeed because no compromised node can serve as the entry node.
Thus, stratified path selection will force the adversary to change its strategy, as shown
in our following discussion of the adversary’s optimal response in Round 2.

The expected bandwidth of a constructed path is barely affected by stratified path
selection because the average bandwidth of current Tor nodes with ci = 0 is actually
higher than that of nodes with ci = 1. For example, with the Tor node bandwidth
distribution we recorded in January 10, 2010, nodes with ci = 0 and 1 have average
bandwidth of 341.87 and 257.27 KB/s, respectively.

Adversary’s Strategy: What stratified path selection does not change is the optimal
value of the bandwidth to assign to the compromised nodes. The adversary can still
increase the success probability of its attack by choosing a bandwidth as large as bL for
all compromised nodes. The defender’s adoption of stratified path selection only affects
the adversary’s assignments of ci. In particular, we derive the following theorem.

Theorem 1. The optimal strategy of the adversary is to assign bandwidth bL to all nA

compromised nodes, and to assign ci = 0 to pc · nA of them, where

pc =
w1R · d0 −

√
w2

1R · d2
0 − d0 · w1RnAw(bL)(d1 − d0)
d1 − d0

, (5)
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where d0 = w0R+nA·w(bL), d1 = w1R+nA·w(bL), and w0R =
∑

i∈Ω\ΩA,ci=0 w(bi)
(i.e., the total weight for all bona fide exit-ineligible nodes).

All proofs in the paper are not included due to the space limitation.
As an example of the optimal strategy derived in Theorem 1, when w1R = w0R,

the optimal strategy for the adversary is to specify pc = 0.5. As we shall show in the
experimental evaluation section, given the current distribution of Tor node bandwidth,
the derived optimal strategy yields a success probability of 1% for the attack when the
adversary is capable of compromising 1% of all Tor nodes. One can see that this is
significantly lower than that after Round 1 (i.e., ≈ 5%).

Observation from Round 2: A key observation from Round 2 is that the anonymous
routing system should draw the entry and exit nodes from separate pools, such that the
adversary cannot “double-dip” a compromised node by making it exit-eligible. While
the separation is done based on ci in the above discussions, it may also be conducted
based on other criteria. For example, when the majority of nodes are exit-eligible (i.e.,
with ci = 1), the system may designate a subset of them as the pool for exit node
selection, and use the remaining ones along with the exit-ineligible nodes to choose the
entry node. We will not elaborate on this option because it does not represent the current
distribution of Tor nodes.

4.3 Round 3: Bandwidth Order Selection

Defender’s Strategy: Round 2 focuses on the adversary’s selection of ci, and devises
a defensive strategy that forces the adversary to separate the compromised nodes into
two groups, with ci = 0 and 1, respectively. The adversary, in response, computes
an optimal allocation of compromised nodes between the two groups. In Round 3, we
focus on the adversary’s bandwidth selection strategy and aim at forcing it to reduce bi

and therefore settle with a smaller success probability of the entry-exit linking attacks.
The key idea for the defensive strategy is to add one step after the node selections:

if the entry node has higher bandwidth than the middle node, then swap the entry and
middle nodes to ensure that the entry has a lower bandwidth. We call this method band-
width order selection. The premise of bandwidth order selection is that the adversary is
forced to reduce the bandwidth of compromised nodes with ci = 0, because otherwise
it can compromise the entry node only if all three chosen nodes have bi ≥ bL.

Adversary’s Strategy: Given the defender’s updated strategy, what does not change
for the adversary is to assign bandwidth of at least bL to all exit-eligible nodes (with
ci = 1). On the other hand, the adversary has to reduce bi for an exit-ineligible node
in order to increase its probability of being chosen as the entry node. In particular, we
derive the following theorem:

Theorem 2. With stratified path selection and bandwidth order selection, the optimal
strategy for the adversary is to assign b = bentry, where

bentry =
w0R · 100

nA · (1 − pc) · (1 − 2w0R) · 100 + 2w0R
. (6)
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Observe from the experimental evaluation section that, given the current Tor node band-
width distribution, an adversary with 1% compromised node now only has a success
probability of less than 0.7% for launching entry-exit linking attacks.

Observation from Round 3: In the first two rounds, the selection of the entry, middle,
and exit nodes are independent. A key observation from Round 3 is that the defender
should draw the entry and middle nodes in a correlated fashion - e.g., to ensure that the
middle node has higher bandwidth than the entry node. By doing so, the path bandwidth
is not influenced, while the attack success probability is significantly reduced.

4.4 Round 4: Adaptive Exit Selection

Defender’s Strategy: Round 4 focuses on answering a simple question for the de-
fender: Since Round 2 dictates the selection of entry and exit nodes to be from mutually
exclusive subsets, should the defender select the entry or the exit first?

Given the optimal strategy of the adversary in Round 3, the key idea for the de-
fender’s response in Round 4 can be stated as follows: First, the defender selects the
entry and middle nodes vi and vj . Then, while selecting the exit node vk, the defender
no longer needs to distinguish between nodes with bandwidth b ≥ min(bi, bj), be-
cause if one of these nodes is chosen as the exit, the bottleneck on bandwidth will
be on the entry or middle node. In particular, while choosing the exit node, we set
w(b) = w(min(bi, bj)) if and only if b ≥ min(bi, bj). To maintain the same probability
of bk ≥ min(bi, bj), we also adjust the weight for b < min(bi, bj) accordingly:

wnew(b) = w(b) ·
∑n

h=1 w(bi)−
∑

h:bh≥min(bi,bj)
w(min(bi, bj))∑

h:bh<min(bi,bj)
w(bh)

. (7)

We call this strategy adaptive exit selection. It has no impact on the path bandwidth.
Meanwhile, if the adversary still uses Round 3 strategy, the attack success probability
will decrease because a compromised node becomes less likely to be chosen as the exit.

Adversary’s Strategy: The optimal adversarial strategy remains the same as Round 3.

Observation from Round 4: In the first three rounds, the order of selection for the
nodes is not a factor. A key observation from Round 4 is that the defender should draw
the entry and middle nodes first. Then, while drawing the exit node, it should weigh
equally all nodes with bandwidth no less than min(vi, vj). By doing so, the path band-
width is not affected, while the attack success probability can be significantly reduced.

4.5 gPath: Our Proposed Algorithm

1: Randomly choose two nodes vi, vj from Ω such that the probability for a node
v : 〈b, c〉 to be picked up is proportional to w(b) if c = 0, and 0 if c = 1.

2: Choose the node with smaller bandwidth as the entry node, the other one as the
middle node. Break tie arbitrarily.

3: Randomly choose node vk from Ω such that the probability for a node v : 〈b, c〉 to
be picked up is proportional to min(w(b), w(min(bi, bj))) if c = 1, and 0 if c = 0.
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5 Experimental Evaluation

Experimental Setup: We used the configuration of Tor nodes according to a snapshot
captured on Jan 10, 2010. There are 1541 Tor nodes with an average bandwidth of
308.82KB. Among them, 602 nodes are exit-eligible with an average bandwidth of
257.27KB. The average bandwidth of an exit-ineligible node is 341.87KB. The lowest
and highest bandwidth are 0 and 9995KB, respectively. We set the number of nodes
compromised by the adversary to be 1% of total nodes, i.e., 15 nodes.

In this section, we focus on presenting experimental results on the privacy measure,
i.e., how gPath reduces the probability for an entry-exit attack to succeed. The utility
measure, i.e., the bandwidth of a constructed Tor path, is barely affected in the experi-
ments, as discussed in the theoretical analysis in Section 4. Due to the space limitation,
we do not include experimental results on the utility measure in the paper.

0 200 400 600 800
0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of Non−Exit Nodes

P
ro

ba
bi

lit
y 

of
 S

uc
ce

ss
fu

l A
tta

ck

Round 2 Defense
Round 1 Defense

Fig. 1. Effect of Stratified Path
Selection

0 200 400 600 800
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of Non−Exit Nodes

P
ro

ba
bi

lit
y 

of
 S

uc
ce

ss
fu

l A
tta

ck

Fig. 2. Effect After Bandwidth
Adjustment

0 10 30 50 70 90
0

1

2

3

4

5

6
x 10−3

Bandwidth (MB)

P
ro

ba
bi

lit
y 

of
 A

tta
ck

 S
uc

ce
ss

Fig. 3. Effect of Bandwidth
Order Selection

Round 2 (Stratified Path Selection): Round 2 defense chooses the entry/middle nodes
and the exit node from disjoint sets. Figure 1 shows the success probability of the op-
timal adversarial strategy given the stratified path selection defense. We conducted ex-
periments with a fixed number (602) of exit-eligible nodes while varying the number
of exit-ineligible nodes from 1 to 939, the actual number of exit-ineligible nodes in our
snapshot of Tor, in order to demonstrate the change of attack performance given differ-
ent exit-eligible/ineligible ratios. Figure 1 demonstrates that, compared with the current
path selection algorithm, the stratified path selection algorithm significantly reduces the
attack success probability from more than 5% to less than 1%. Also, the attack success
probability decreases when more (honest) exit-ineligible nodes exit in the system.

Recall from Section 4 that if the number of exit-ineligible nodes is too small, then
we have to place exit-eligible nodes into the pool for entry and the middle node in
order to maximize the path bandwidth. We tested the performance of stratified path
selection while maintaining equal total bandwidth for the exit and entry/middle pools.
Figure 2 depicts the results. One can see that the probability of a successful attack
remains substantially lower than that according to the defensive strategy in Round 1.

Round 3 (Bandwidth Order Selection): Compared with Round 2 defense, the defen-
sive strategy in Round 3 further requires the middle node to have the highest bandwidth.
We tested the performance of Round 3 defense while varying the attacking strategy with
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bandwidth from 0MB to 90MB. Figure 3 depicts the results which show that while a
larger bandwidth still makes an attack more likely to succeed (as in Rounds 1 and 2),
the probability of a successful attack is an order of magnitude lower than that in Round
2. For example, even the highest bandwidth only yields a success probability of 0.6%
in Round 3, as compared with more than 6% in Round 2.

We also tested the performance of Round 3 defense given the optimal attacking strat-
egy while varying the number of non-exit nodes from 1 to 939. The results are depicted
in Figure 4. Observe that, for any number of non-exit nodes, the attack success proba-
bility is consistently an order of magnitude lower than that in Round 2.

Round 4 (Adaptive Exit Selection): Finally, Round 4 defense further requires the en-
try and middle nodes to be chosen before the exit node, so that any candidate for the
exit node can be treated evenly as long as its bandwidth is greater than the smaller of
the entry and middle nodes. Figure 5 depicts the success probability for the optimal
adversarial strategy when the number of non-exit nodes varies from 1 to 939. From this
figure we conclude that the probability is further reduced by an order of magnitude as
compared with Round 3 (e.g., from 0.6% to less than 0.04%).
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6 Related Work

Chaum [11] pioneered the idea of anonymous communication. A survey of various
anonymous communication systems can be found in [1, 12]. There exists a lot of re-
search on compromising anonymous communication systems based on the network
traffic analysis, most of which falls into the category of entry-exit linking attacks stud-
ied in this paper. Technically, these entry-exit linking attacks can largely be categorized
into two groups: passive traffic analysis and active watermarking.

With passive traffic analysis, the attacker eavesdrops traffic passively and aims to
identify the similarity between the entry’s inbound traffic and the exit’s outbound traffic
[13,14]. For example, a cross-correlation based similarity measure was studied in [14],
whereas similarity measures based on packet size and timing were studied in [15,16,17].

With active watermarking, the attacker designs a secret signal (i.e., watermark) and
embeds it into the inbound traffic of the entry node, aiming to identify the secret pat-
tern from the observed outbound traffic of the exit node [4, 18]. Also in this category,
Murdoch et al. [19] investigated a timing-based attacks on Tor by using a number of
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compromised Tor node. Overlier et al. [20] studied a scheme using one compromised
node to identify the “hidden server” anonymized by Tor. The attacks studied in [3, 5]
exploit the design of cell packet delivery in Tor to carry out linking attacks.

The application of game theory has also been extensively studied in many aspects
of network security [21, 22, 23, 24, 25, 26, 27]. The interactions between defender and
adversary, in particular, have been studied with various game-theoretic models such as
static [28], stochastic [10,29], and repeated games [30,31]. Based on such models, most
existing work focused on the modeling of adversarial intent, objectives, and strategies,
as well as the corresponding defensive countermeasures. More closely related to our
work is [32] which analyzed the initial rounds of interactions between email spammers
and spam email detectors to produce a spam-email classification algorithm. Compared
with the above existing work, our work is the first to draw design principles of an
anonymous communication system from a novel game-theoretic analysis.

7 Final Remarks

In this paper, we have presented the first game-theoretic study on the design of path
selection algorithm against entry-exiting linking attack in anonymous communicating
systems such as Tor. Based on the model of a non-cooperative game between the de-
fender (i.e., the designer of the path selection algorithm) and the adversary (i.e., con-
troller of the compromised Tor nodes to carry out entry-exit linking attacks), we ana-
lyzed three rounds of the repeated arm race between the two players, and derived three
design principles. These principles are stratified path selection, bandwidth order selec-
tion, and adaptive exit selection, which can effectively reduce the success probability
of the attack without substantially affecting the bandwidth of the constructed Tor paths.
Using a combination of theoretical analysis and experimental studies, we demonstrate
the superiority of our developed algorithm over the existing ones.
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Abstract. Privacy is a central concern in the information age. In some
circumstances, customers’ decisions whether to use firms’ services rely
on the extent of privacy that firms are able to provide, for example,
the use of certain banking services, health care information technology
[7]...etc. Firms thus face crucial assessment of investment on privacy-
preserving technologies. Two important factors affect firms’ valuation:
(1) a customer’s valuation of his private information and (2) a cus-
tomer’s profitability to the firm. The former determines the potential
customer base that a firm can exploit given certain privacy protection,
and the latter establishes profits that a firm can make. Both factors
have some random components which can be best described by their de-
scriptive probability distributions. We view firms’ evaluation processes
as a variant of Stackelberg type leader-follower game under complete
information with customers taking the role of the follower. Firms inte-
grate customers’ optimal decisions into their valuation. Rational utility
maximizing customers optimally decide whether to use firms’ services
by linking to their own decision threshold. The threshold is their own
fair valuation of privacy connected to their private information. This
fair privacy valuation is determined by a standardized premium over a
fixed privacy rank related to values of private information common to
the general population. This assertion is motivated by a recent research
study [2]. We explore how the two underlying distributions and their de-
pendence structures impact firms’ investment valuation. Copulas, useful
tools to study the relationship between random variables, are used to al-
low great flexibility on constructing bivariate distribution functions from
arbitrarily univariate marginals with various dependence structures. We
find that dependence structures and underlying univariate distributions
have significant impacts on valuation. This suggests that, for appropri-
ate investment decision making, firms shall be cautious on estimating
underlying univariate distributions and their dependence structures. If
distribution validation is not empirically possible, firms shall proceed
with distributions and dependence structures which are practically jus-
tifiable for their market segments/industries. Our results identify several
cases where the government intervention may be required to have firms
invest in privacy-preserving technologies.
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1 Introduction

Consumers place a positive value on their private information and in many cases
act upon their values of privacy to decide whether to use a firm’s services. [7]
shows that a major barrier to consumer acceptance of a health information
technology, in particular personal health records, is that private information may
not be adequately protected. On the other hand, firms make investment decisions
about privacy-preserving technologies, which require the technology adoption
to yield them enough compensation for making investment. We are interested
in assessing privacy-preserving technologies to formulate useful guidelines for
firms’ investment decisions and to make inferences, if any, about the necessity
of government intervention to encourage firms’ investment in privacy-preserving
technologies. This job distinguishes our work from other privacy related works.

In general, most privacy related works focus on issues related to clarifying
the privacy trade-offs that individuals will make to gain access to specific ser-
vices or quantifying individuals’ privacy values. [2] seeks to quantify how general
privacy attitudes impact the price participants set for revealing private informa-
tion. Through experimental auctions, they show that a trait’s desirability in
relation to the group plays a key role in the amount people demand to publicize
private information. [4] suggests that the information-seeking organization has
to offer financial incentives and convenience (i.e., privacy mitigation strategies)
in exchange for individuals to relinquish personal information. They apply the
expectancy theory of motivation, and find that benefits – monetary reward and
future convenience – significantly affect individuals’ preferences over Web sites
with different privacy policies. Using the technique of conjoint analysis on sur-
vey data collected from participating institutions, they are also able to quantify
the value of Web site privacy protection. Observing that research has uncov-
ered a dichotomy between stated attitudes and actual behavior of individuals
facing decisions, privacy and personal information security, [1] provides an anal-
ysis of the dichotomy, outlining an experimental design to test their hypothe-
ses about the observed inconsistency. More recently, multidisciplinary fields of
human-computer interaction (HCI) have emerged with a raft of work on privacy
in computing. [3] updates the development of HCI from psychology aspects, giv-
ing explicit attention to the emergence of computer-supported cooperative work
and pointing out that having both “useful and usable” computing systems are
of paramount importance. In accordance with the “useful and usable” criterion
postulated by [3], [6] proposes a privacy expectations and security assurance
offer system satisfying this criterion. Under the proposed system, the on-line
organization offers consumers choices of privacy preferences and security levels
with fee schedules. Consumers will get compensated if their designated privacy
is violated. This proposed system thus bears the benefits of enhancing consumer
privacy choices, creating a market for privacy preferences, and providing direct
incentives for privacy offering organizations to care about the security of personal
information.



74 M. Kantarcioglu, A. Bensoussan, and S.(C.) Hoe

Two unique factors affect firms’ investment valuation in our model: (1) a cus-
tomer’s valuation of his private information and (2) a customer’s profitability to
a firm. The former determines the potential customer base that firms can exploit
given certain privacy protection and the latter establishes profits that firms can
make from customers using firms’ services. For example, a customer who wants
to use banking services may consider his total wealth as private information. At
the same time, it may be the case that the wealthier the customer, the more
profitable it is to the bank. Clearly, different customers could demand different
levels of privacy protection. For example, a very wealthy individual would care
more about keeping his investments private compared to an average customer.
A similar phenomenon can also be observed in medical research domain. A per-
son who is HIV positive could be more valuable to medical researchers working
on a vaccine for HIV. On the other hand, such HIV positive patients may be
more sensitive about their privacy. In this paper, our goal is to analyze how
the relationship between these two factors affects firms’ decisions to invest in
privacy-preserving technologies.

In our valuation process, we view firms’ evaluation processes as a variant of
a Stackelberg leader-follower type game under complete information with cos-
tumers taking the role of the follower. We assume homogenous customers. Each
costumer chooses whether to use a firm’s services by solving his own utility maxi-
mization problem. In our model, customers’ utilities link directly to the degree of
privacy which they believe that the firm can provide. Rational utility maximizing
customers will use a firm’s services if and only if the firm’s privacy-preserving
technology can provide a level of privacy protection no less than their thresholds.
The threshold is their own “fair” rank/level of privacy connected to their val-
uation of private information. When individuals are more sensitive about their
private information, they will assign higher values for their private information.
This fair privacy rank is determined by a standardized premium over a fixed
rank of privacy related to values of private information common to the general
population. In the context of this paper, a privacy-preserving technology could
be anything ranging from specialized tools to protect individual privacy to the
simple promise of not sharing customer data with outside companies. Clearly,
each of these cases can have different costs to the firm. For example, a firm may
loose some potential income if it is not selling its customers’ information.

The specification of fair privacy rank is motivated by the study of [2] which
shows that, with more than 95 percent statistical confidence, a linear relation-
ship exists between an individual’s belief about a trait and the private value he
places on it. For example, overweight people tend to valuate their private weight
information with higher prices. By using standard tools for analyzing Stackelberg
games, we find the equilibrium behavior using backward induction. Customers
(the follower) decide whether to use firms’ services by maximizing their util-
ity functions given firms’ privacy-preserving technologies adopted. Firms (the
leader) then integrate customers’ decisions into their valuation and will adopt
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the technology if and only if technology adoption yields them nonnegative prof-
its. We simplify the game setting without considering competition among firms,
which could lead to potentially dynamic movements among customers. In addi-
tion, we do not consider the existence of certain privacy regulations. Instead, we
focus on analyzing the impacts of two underlying univariate distributions and
their dependence structures. We leave such extensions to future work.

To allow sufficient flexibility in formulating bivariate distribution functions, we
employ copula functions. Copula functions describe the interrelation of several
random variables separated from the marginals to arrive at the joint distribu-
tion function. There are several advantages to use copulas, including: (1) We
may know a great deal about (or it’s easier to estimate) marginal distributions
of two underlying individual variables, but we may know little about (or it’s
difficult to estimate) their joint behaviors. Copulas allow us to piece together
joint distributions when only the marginals are known with certainty (or can be
best guessed). (2) Using a copula as a basis for constructing bivariate joint dis-
tribution functions is flexible because no restrictions are placed on the marginal
distributions, i.e., marginals can come from different families. (3) The separa-
tion of dependence structure and marginals permits great flexibility in deriving
a richer class of joint distribution functions, in which the level of dependence
among variables can go beyond standard ones.

Thanks to copulas, we are able to explore values of privacy-preserving tech-
nologies with a richer class of joint distribution. In majority cases, the mean
of distribution of customers’ profitability to firms is positively related to firms’
revenues. On the other hand, the impact of its volatility is inconclusive. We cau-
tion that this does not mean “volatility” doesn’t really matter if for instance
the confidence interval of expected profits is discussed. Furthermore, the distri-
bution of customers’ valuation of private information affects firms’ investment
decision making in accordance with two underlying marginals. In some cases,
the investment evaluation is irrelevant to the mean and the standard deviation
of customers’ valuation of private information. In these cases, it suggests that
the customer base is implicitly given by the adjusted excess level of privacy pro-
tection from technology adoption (i.e., αp−b

a to be formally defined in Sect.2.2).
This in turn implicitly suggests that, given these situations, firms would likely in-
vest in privacy-preserving technologies requiring significant costs if government
regulation provides additional motivation. Finally, we find that the impact of
dependence structure on firms’ investment decision making hinges on underly-
ing univariate marginals. The Pearson correlation, ρ, measures the dependence
structure of two underlying marginals under the Gaussian copula. Depending on
the two univariate underlying marginals, ρ may be independent of, negatively
related to, or positively related to the possibility of firms’ privacy-preserving
technology adoption. In some cases, the necessity of government is positively
related to the correlation of the two underlying marginals. Our results draw at-
tention to the importance of thorough estimation when obtaining the underlying
marginals and dependence structures for optimal decision making.
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2 The Model

2.1 Background Information

We consider a firm facing a privacy-preserving technology investment problem.
The adoption of this privacy-preserving technology, P , will pose a fixed invest-
ment cost K.1 Alternatively, we can view that the technology adoption would
cause a firm an opportunity cost K due to preventing the firm from using certain
private information (eg. facebook’s new privacy controls). In return for the cost
K, the firm will make profits from customers who use firm’s services given that
the privacy-preserving technology can provide them with the required level of
privacy protection. For a firm’s potential customer group, I, each individual is
assigned a customer profile characterized by his valuation of private information
and his profitability to the firm. For example, for customer i ∈ I, his profile re-
vealed to the firm is (xi, yi), where xi represents customer i’s valuation of private
information and yi represents customer i’s profitability to the firm. We assume
complete information, that is, xi and yi are publicly available information2. The
random variables associated with customers’ valuation of private information,
X , and customers’ profitability to a firm, Y , can be best described by their de-
scriptive probability distributions, which can be characterized by corresponding
cumulative distribution functions, FX(x) and FY (y) respectively. We proceed
with the firm’s valuation as a Stackelberg leader-follower type game with cus-
tomers as the follower. In our simplified game setting, a customer’s strategy is
defined to be a set of D = {0, 1} with 0 representing not to use firm’s services
and 1 otherwise. Following standard procedures, we solve the problem back-
wards. Given the firm’s adoption of the technology, P , customers (the follower)
choose their strategies, which are to use or not to use the firm’s services, by
solving their utility maximization problem. In our specification, customers’ util-
ity maximization links directly to their valuation of private information and the
level of privacy protection that the firm’s privacy-preserving technology can pro-
vide. The firm (the leader) then integrates customers’ decisions (i.e., the best
response function in the terminology of game theory) into their valuation. Given
the customers’ decision function, the firm’s expected revenues from technology
adoption is the expected values it can receive from customers under the joint
distribution function FX,Y (x, y). Clearly, the market mechanism makes it the

1 It does not necessarily mean that this analysis work is only appropriate for valu-
ating a single privacy-preserving technology adoption. Rather, we can consider the
privacy-preserving technology P as any possible combination of available technolo-
gies resulting in different services and costs. That is, P can be considered as an
element of the power set P(S), S = {s1, s2, ..., sn}, n ≥ 1 where si, i = 1, 2...n
represents different technologies. Apparently, there would be at most 2n possible
combinations as well as associated costs. When P = ∅, it indicates that no privacy-
preserving technology is evaluated; hence K = 0 in this scenario. When n = 1, it
resorts to the valuation of single technology adoption. When n > 1, we can valu-
ate all potential combinations and rank them in order to make the best investment
decision.

2 In practice, we can identify these information through marketing research for example.
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case that the firm will make the investment if and only if the investment yields
non-negative profits.

2.2 Customer’s (Follower’s) Decision Function

We solve the problem backwards. Given the firm’s adoption of the technology, P ,
an individual customer chooses his strategy, D, which maximizes his utility. We
assume homogenous individuals. For each individual customer i ∈ I, we define
his utility function as:

U(xi, D) = (2D − 1)
(
αP − (a× |xi − μX |

σX
+ b)
)

where D = {0, 1}, μX and σX represent the mean and the standard deviation
of X respectively, both a > 0 and b > 0 are constants, and αP > b is a con-
stant representing the level of privacy protection that the privacy-preserving
technology P can provide3. Obviously, rational customers would choose D = 1 if
αP ≥ (a× |xi−μX |

σX
+b) and D = 0 otherwise. That is, a customer’s optimal strat-

egy in response to his utility maximization solution relies solely on his value of
private information and privacy protection that the firm’s privacy-preservation
technology can provide. That is, a customer’s best response exclusively depends
on the threshold, which is his own fair valuation of privacy connected to his
private information. For facilitating our further exposition, we define such a rule
as a customer’s decision function given:

D(xi) = �
a× |xi−μX |

σX
+b≤αP

,

The basic intuition behind this decision function is that a customer would use
a firm’s services if the level of privacy protection provided by the technology
is no less than his “fair” level of privacy connected to his valuation of private
information. The fair level of privacy consists of two components: (1) a basic
level of privacy related to values of private information common to the popula-
tion, b (exogenously determined in our model), and (2) an extra level of privacy
determined by a weight, a (given in our model), of his mean absolute devia-
tion standardized by volatility, |xi−μX |

σX
. This specification is motivated by [2] in

which the authors show that an individual in a group would demand a higher
value of private information if his trait deviates from that of average population
segment in the group, and the further his trait is away from that of average
population segment, the higher the value of private information is demanded.
We set αP = 0 if the firm does not invest the privacy-preserving technology;
therefore, the firm would definitely lose all customers and make no money if not
investing technology P at a cost K.4

3 Again, we assume complete information; thus all parameter values are publicly avail-
able information.

4 Alternatively, denoting α0 as a level of privacy preservation provided by a firm
without investing technology P , we can set α0 = αP − ε > b, ε > 0. It would
guarantee that a larger portion of customers is obtained if investing technology P ,
a property we’d like to retain.
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2.3 Firm’s (Leader’s) Valuation Function

Once customers’ optimal decisions have been solved, the firm solves the invest-
ment problem by integrating customers’ decisions into their valuation. Therefore,
the firm’s expected profits from investing technology P is the expected profits
generated from customers using firm’s services given:

V (x, y, K, D(x)) =
∫

X×Y

yD(x)dFX,Y (x, y)−K. (1)

From (1), a clearly defined joint distribution function is required for valua-
tion. To arrive a richer class of joint distribution functions, we employ copula
functions, which describe the interrelation of several random variables separated
from the marginals to arrive at the joint distribution function.

3 Copulas

We first present a generalized version of copula definition along with important
theorems when exploiting copulas, i.e., Sklar’s Theorem and Invariant Theorem.

Definition 1. Copula, expressed as C, is a multi-dimensional function having
uniform marginal distribution that satisfies the following three conditions:

1. C : [0, 1]n → [0, 1];
2. C is a grounded and n-increasing function;
3. C has margins Ci that satisfy Ci(u) = C(1, ..., 1, u, 1, ...1) = u, u ∈ [0, 1].

We next state the important Sklar’s Theorem (1959) which shows the existence
of the copula function and the relation between the univariate margins and the
multivariate distribution function.

Theorem 1. For any multivariate distribution function F (x1, ..., xn) = P (X1 ≤
x1, ..., Xn ≤ xn) with continuous marginal functions Fi(xi) = P (Xi ≤ xi) for
i ≤ i ≤ n, there exists a unique n-dimensional copula function, C(u1, ..., un)
such that

F (x1, x2, ..., xn) = C(F1(x1), F2(x2), ..., Fn(xn)). (2)

Corollary 1. From (2), under the assumption that Fi and C are differentiable,
the following canonical representation holds:

f(x1, x2, ..., xn) = c(u1, u2, ..., un)×
n∏

i=1

fi(xi) (3)

where

– f(x1, x2, ..., xn) is the density corresponding to F (x1, x2, ..., xn) and fi(xi)
is the density corresponding to Fi(xi).

– c(u1, u2, ..., un) = ∂nC(u1,...,un)
∂u1...∂un

is called the copula density.
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Equation (3) states that, under appropriate conditions, the joint density can be
written as a product of marginal densities and the copula density. It is clear that
the copula density c encodes information about the dependence among Xi’s;
thus, c is sometimes called a dependence function. We will rely much on this
formulation in our valuation. The Invariant Theorem (stated below) shows that
the dependence between random variables is completely captured by the copula,
independent of the shape of the marginals.

Theorem 2. Consider n random variables X1, ..., Xn with a copula C. Then, if
g1(X1), ..., gn(Xn) are continuously strictly increasing on the ranges of X1, ..., Xn,
then the random variables Y1 = g1(X1), ..., Yn = gn(Xn) have exactly the same
copula C.

4 Valuation under Various Copulas

We are interested in understanding how the two underlying univariate marginals,
FX(x) and FY (y), and their dependence structures would affect our valuation.
We accomplish this goal by making use of copulas. We explore the impacts of
different copulas (equivalently dependence structure) and marginals. We start
first with the independent copula to capture the independent case. We then
explore the elliptical copulas derived from elliptical distributions. We focus on
the Gaussian copula, a member of elliptical copula families, which bears the
Gaussian distribution type dependence structure.

4.1 Independent Copula

We first consider the case that the random variables, customers’ valuation of
private information, X , and customers’profitability to a firm, Y , are independent.
As a consequence of Sklar’s theorem, random variables are independent if and
only if their copula is the independent copula given as: C(u1, u2) = u1u2. By
using the independent copula, the joint distribution function FXY (x, y) is given:
FXY (x, y) = C(FX(x), FY (y)) = FX(x)FY (y), and, assuming FX and FY are
differentiable, we have: fXY (x, y) = fX(x)fY (y), where fX and fY are density
functions corresponding to FX and FY respectively.

Proposition 1. 1. The firm’s revenue is positively related to the mean of cus-
tomers’ profitability to the firm, μY , and independent of the shape of distri-
bution of Y .

2. If X ∈ IR and is a symmetric probability distribution (ex. Gaussian), the
firm’s revenue is positively related to the excess level of privacy protection,
αP − b, and is negatively related to the ”weight”, a. The valuation is inde-
pendent of mean and standard deviation of customers’ valuation of private
information, μX and σX .

3. If X ∈ IR+, the firm’s revenue is positively related to �F , where �F =
FX( (αP −b)×σX

a + μX)− FX

(
(−(αP −b)×σX

a + μX)+
)
.

Proof. See Appendix A. ��
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Proposition 1 indicates that if two distributions are independent, the firm’s in-
vestment tendency in privacy-preserving technologies increases with increases in
the mean of customers’ profitability to a firm. In addition, the smaller “adjusted”
weight a and the basic level of privacy, b, the greater the probability that firms
will make the investment. Moreover, if the distribution of customers’ valuation
of private information is symmetric with domain IR, the customer base is im-
plicitly given by the adjusted excess level of privacy protection from adopting
technology, i.e., αp−b

a . This in turn suggests implicitly that firms would likely
invest in privacy-preserving technologies requiring significant investment costs if
government takes intervention.

Corollary 2. The break-even investment amount, which defines the threshold
of firms’ investment cost in privacy-preserving technologies5, is:

Kbrk =

⎧⎪⎪⎨
⎪⎪⎩

(
FX( (αP −b)×σX

a
+ μX ) − FX

(
(−(αP −b)×σX

a
+ μX)+

))
μY , if X ∈ IR+(

FX( (αP −b)×σX
a

+ μX ) − FX(−(αP −b)×σX
a

+ μX)

)
μY , if X ∈ IR

.

4.2 Elliptical Copula

Elliptical copulas are the distribution functions of componentwise transformed
elliptically distributed random vectors. We choose to work on the Gaussian cop-
ula for two reasons: (1) Bivariate normal distributions are widely used in mod-
eling works due to its convenient available formulation of distribution function
with linear correlation structures. (2) We can contrast how the results may be
misleading if the underlying marginals are not normal but only correlated with
Gaussian distribution type correlation structures. For this latter purpose, we
work on underlying marginals from either exponential or pareto distributions.
The results are different and we caution that management should exercise careful
attention to estimating or justifying the underlying marginals.

Gaussian Copula. By C(u1, u2) = F (F−1
1 (u1), F−1

2 (u2)), we obtain the two
dimensional Gausian copula:

CGa(u1, u2; ρ) = ΦΣ

(
Φ−1

1 (u1), Φ
−1
2 (u2)

)
=

∫ φ−1
1 (u1)

−∞

∫ φ−1
2 (u2)

−∞

1

2π
√

1 − ρ2
exp

(
− s2

1 − 2ρs1s2 + s2
2

2(1 − ρ2)

)
ds1ds2,

(4)

where Σ is the 2 × 2 matrix with 1 on the diagonal and ρ otherwise. Φ is the
cumulative distribution function (cdf) of a standard normal distribution while

5 This is the largest investment cost that a firm would be willing to tolerate for un-
dertaking the investment.
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ΦΣ is the cdf for a bivariate normal distribution with zero mean and correlation
matrix Σ. Since FX(X) ∼ U1 and FY (Y ) ∼ U2, we again can write

FXY (x, y) = CGa(u1, u2; ρ) = CGa(FX(x), FY (y); ρ),

and assuming that FX(x) and FY (y) are differentiable, we have:

fXY (x, y) = cGa(FX(x), FY (y))fX(x)fY (y), (5)

where cGa is the Gaussian copula density, and by (4), we have:

cGa(u1, u2) =
1√

1− ρ2
e

ξ2
1+ξ2

2
2 +

2ρξ1ξ2−ξ2
1−ξ2

2
2(1−ρ2) (6)

where ξ1 = φ−1(u1) and ξ2 = φ−1(u2).

A. Both Random Variables are from Normal Distributions. The nor-
mal distribution is often used to describe any variable that tends to cluster
around the mean, and this may well be the case in our two variables. There-
fore, we first suppose that both variables X and Y are from normal distribu-
tions. That is, X ∼ N(μX , σX) and Y ∼ N(μY , σY ), thus we have: FX(x) =

1
2

[
1 + erf( x−μX√

2σ2
X

)
]
, fX(x) = 1√

2πσ2
X

e
− (x−μX )2

2σ2
X , FY (y) = 1

2

[
1 + erf( y−μY√

2σ2
Y

)
]
, and

fY (y) = 1√
2πσ2

Y

e
− (y−μY )2

2σ2
Y , where erf(x) =

∫ x

0
2√
π
e−t2dt, an error function. Then,

by (5) and (6) with ξ1 = φ−1(FX(x)) = x−μX√
σ2

X

and ξ2 == φ−1(FY (y)) =
y−μY√

σ2
Y

where we use the fact that φ−1(z) =
√

2erf−1(2z − 1), z ∈ (0, 1), we

obtain:

fXY (x, y) =
1

2πσXσY

√
1− ρ2

e
−

(x−μX )2

σ2
X

−2ρ(
x−μX

σX
)(

y−μY
σY

)+
(y−μy )2

σ2
Y

2(1−ρ2) (7)

which arrives the bivariate normal distribution with the correlation structure ρ.

Proposition 2. 1. The firm’s revenue is positively related to the mean of cus-
tomers’ profitability to the firm, μY , and is independent of the standard de-
viation.

2. The firm’s revenue is positively related to the excess level of privacy protec-
tion, αP − b and is negatively related to the weight, a. The firm’s revenue
is independent of mean and standard deviation of customers’ valuation of
private information, μY and σY .

3. The Pearson correlation structure, ρ, does not have impacts on the valuation.

Proof. See Appendix B. ��
Proposition 2 yields a surprising result that when two underlying distributions
are from normal, the correlation structure does not affect valuation. The invest-
ment rule prediction is exactly the same as that proposed in the independent
case.
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Corollary 3. The break-even investment cost is: Kbrk = erf[αP−b)√
2a

]× μY .

B. Both Random Variables are from Exponential Distributions. By (5)
and (6) with ξ1 = φ−1(FX(x)) =

√
2erf−1(2FX(x)−1) and ξ2 =

√
2erf−1(2FY (y)

− 1), we obtain the general form of a bivariate joint distribution density under
Gaussian correlated structure:

fXY (x, y) =
1√

1− ρ2
e

(
√

2erf−1
(2FX (x)−1))2+(

√
2erf−1

(2FY (y)−1))2

2

× e
2ρ(

√
2erf−1

(2FX (x)−1))(
√

2erf−1
(2FY (y)−1))−(

√
2erf−1

(2FX (x)−1))2−(
√

2erf−1
(2FY (y)−1))2

2(1−ρ2)

× fX(x) × fY (y) . (8)

Though the exponential distribution is applied mainly in reliability model-
ing, due to its mathematical simplicity, it has been applied in various other
situations such as the product demand distribution, the distribution of indi-
vidual income...etc. We now assume that the random variables, X and Y , are
from exponential distributions. That is, X ∼ Exp(λX) and Y ∼ Exp(λY ), thus
we have: FX(x) = 1 − e−λXx, fX(x) = λXe−λXx, FY (y) = 1 − e−λY y, and
fY (y) = λY e−λY y. Moreover, they are jointly distributed with a Gaussian dis-
tribution type correlation structure with the correlation ρ. We can easily obtain
fXY (x, y) by plugging FX , fx, FY , and fY into (8).

Proposition 3. 1. The firm’s revenue is independent of the mean and stan-
dard deviation of X, but is positively related to the mean and standard devi-
ation of customers’ profitability to the firm.

2. The firm’s revenue is positively related to the excess level of privacy protec-
tion, αP − b, and is negatively related to the adjusted weight, a.

3. The firm’s revenue is negatively related to the correlation ρ.

Proof. See Appendix C. ��

Proposition 3 exhibits that although the mean and the standard deviation of
customers’ valuation of private information are still irrelevant to the valuation,
the correlation affects the valuation. The valuation results are negatively related
to ρ. In this case, the necessity of government intervention is positively related
to the correlation of the underlying two distributions.

C. Both Random Variables are from Pareto Distributions. The Pareto
distribution shows rather well in describing the allocation of wealth among in-
dividuals. In some cases, customers profits to the firm may be well correlated
to individual wealth, for example the usage of some banking services. In view of
this, we assume that both random variables X and Y are from Pareto distribu-
tions. That is, X ∼ Pareto(xm, α), xm > 0, α > 0, x ∈ [xm,∞) and Y ∼
Pareto(ym, β), ym > 0, β > 0, y ∈ [ym,∞) , thus we have: FX(x) = 1 − (xm

x )α,

fX(x) = αxα
m

xα+1 , FY (y) = 1 − (ym

x )β , and fY (y) = βyβ
m

yβ+1 . In addition, we assume
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α > 2, and β > 2 to guarantee that the second moment of the distribution is
defined. Moreover, they are jointly distributed with a Gaussian distribution type
correlation structure with the correlation ρ. We can easily obtain fXY (x, y) by
plugging FX , fx, FY , and fY into (8).

Proposition 4. 1. The firm’s revenue is negatively related to ρ, and given ρ,
the positivity yields better valuation results.

2. The firm’s revenue is positively related to the mean and standard deviation
of customers’ profitability to the firm.

3. The firm’s revenue is negatively related to the mean and standard deviation
of customers’ valuation of private information.

Proposition 4 is obtained through numerical integration with convergence guar-
anteed. The impacts of correlation structure are similar to those of Proposition
3 with an additional property that, given ρ, the positivity results in better val-
uation. Unlike Proposition 2 and 1, firms have stronger tendency to invest in
privacy-preserving technologies if the distribution of customers’ valuation of pri-
vate information is less volatile, even when it links to the smaller mean.

5 Conclusion

We study firms’ optimal investment decisions on privacy-preserving technology
adoption in a Stackelberg leader-follower game. We solve the problem backwards.
The market mechanism ensured that it is benefitial for firms to undertake the
investment as long as it yields non-negative profits. We arrive at the explicit
formula for the threshold of a firm’s investment cost in privacy-preserving tech-
nologies, which is the largest investment cost that a firm would accept for un-
dertaking the investment. By means of copulas, we are able to explore values of
privacy-preserving technologies with a richer class of joint distribution functions.
We find that dependence structures and underlying distributions affect valuation
significantly. Our results identify several cases where the government interven-
tion may be required to have firms invest in privacy-preserving technologies.

For all cases under the independent copula and the Gaussian copula, the mean
of distribution of customers’ profitability to firms is positively related to firms’
revenues. That is, the higher the mean, the stronger is the motivation that firms
have to adopt privacy-preserving technologies. However, the impact of its volatil-
ity is inconclusive. We caution that this does not mean ”volatility” doesn’t really
matter if for instance the confidence interval of expected profits is discussed; we
leave this for our future work. The impact of the distribution of customers’ val-
uation of private information varies with the two underlying marginals. For the
independent case, if customers’ valuation of private information is a symmetric
distribution with domain IR, the investment evaluation is irrelevant to its mean
and standard deviation. The bi-normal and the bi-exponential distributions yield
the same conclusion. In all these three cases, the customer base is implicitly given
by the adjusted excess level of privacy protection from technology adoption (i.e.,
αp−b

a ). This in turn implicitly suggests that given these situations, in majority
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cases, firms would likely invest in privacy-preserving technologies requiring sig-
nificant costs if the government regulation provides additional motivation. For
the bi-pareto distribution, both mean and volatility affect valuation negatively;
that is, in this scenario, firms may be motivated to invest in privacy-preserving
technologies if its mean and volatility are small. Finally, the dependence struc-
ture under Gaussian copulas exhibits different effect for different underlying
univariate marginals. Surprisingly, for a bivariate normal distribution, Pearson
correlation, ρ, does not affect firms’ valuation. This would yield the same in-
vestment rule as the independent case. For a bi-exponential distribution and a
bi-pareto distribution, the possibility of firms’ investment in privacy-preserving
technologies is negatively related to ρ. For the bi-exponential distribution, the
necessity of government intervention is positively related to the correlation of the
two underlying marginals. In addition, for a bi-pareto distribution, given ρ, the
positivity yields better valuation results. Thus, for appropriate investment de-
cision making, firms should be cautious about estimating underlying univariate
distributions and their dependence structures. If distribution validation is not
empirically possible, firms should proceed with distributions and dependence
structures which are practically justifiable for their market segments/industries.

Since the Gaussian copula function is radial symmetric and thus does not
have tail dependence6, it may give misleading results if used in the model when
in fact the joint distribution has the asymmetric tail dependence property. We
suspect that in some market segments/industry, the asymmetric tail dependence
property may actually exist and may affect valuation significantly. Therefore, we
will study Archimedean copula families which allow for capturing the tail depen-
dence in future work. In addition, the dependence structure may vary as time
progresses. Thus, working with dynamic copulas should be an interesting exten-
sion. Moreover, the extension to integrating Bayesian learning and competition
among firms into our valuation model is left for our future study.
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A Proof of Proposition 1

Proof. The firm’s expected profit from investing technology P is given:

V (x, y, K) =
∫

Y

∫
X

�
a× |x−μX |

σX
+b<αP

fX(x)yfY (y)dxdy −K . (9)

If X ∈ IR, from (9), we have:

V (x, y, K) =
∫

Y

∫ (αP −b)×σX
a +μX

−(αP −b)×σX
a +μX

fX(x)yfY (y)dxdy −K

=
(
FX(

(αP − b)× σX

a
+ μX)− FX(

−(αP − b)× σX

a
+ μX)

)
μY

−K , (10)

and if X ∈ IR+, we have:

V (x, y, K) =
(

FX(
(αP − b)× σX

a
+ μX)− FX

(
(
−(αP − b)× σX

a
+ μX)+

))
μY

−K . (11)

All propositions directly follow from (10) and (11). ��

B Proof of Proposition 2

Proof. Using (7), the firm’s expected profit from investing technology P is given:

V (x, y, K) =
∫ μX+

σX
a (αP −b)

μX−σX
a (αP −b)

∫
Y

y

× 1

2πσXσY

√
1− ρ2

e
−

(x−μX )2

σ2
X

−2ρ(
x−μX

σX
)(

y−μY
σY

)+
(y−μY )2

σ2
Y

2(1−ρ2) dydx−K

= erf[
αP − b√

2a
]× μY −K . (12)

All results follow directly. ��
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C Proof of Proposition 3

Proof. The firm’s expected profit from investing technology P is given:

V (x, y, K) =
∫ 1

λX
(1+αP −b)

1
λX

(1−αP −b)+
cGa(FX(x), FY (y))× λXe−λXxdx

∫
Y

yλY e−λY ydy

−K . (13)

Using (6) in the above equation with FX(x) = 1 − e−λXx, FY (y) = 1 − e−λY y

and performing change of variables in x, it follows immediately that λX does
not impact V (x, y, K), but V (x, y, K) is positively related to the term αP −b

a . In
addition, 1

λY
is positively related to V (x, y, K). We perform numerical integra-

tion for the effect of ρ. ��
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Abstract. We consider a multi-criteria control problem that arises in a
delay tolerant network with two adversarial controllers: the source and
the jammer. The source’s objective is to choose transmission probabilities
so as to maximize the probability of successful delivery of some content
to the destination within a deadline. These transmissions are subject to
interference from a jammer who is a second, adversarial type controller,
We solve three variants of this problem: (1) the static one, where the
actions of both players, u and w, are constant in time; (2) the dynamic
open loop problem in which all policies may be time varying, but inde-
pendent of state, the number of already infected mobiles; and (3) the
dynamic closed-loop feedback policies where actions may change in time
and may be specified as functions of the current value of the state (in
which case we look for feedback Nash equilibrium). We obtain some ex-
plicit expressions for the solution of the first game, and some structural
results as well as explicit expressions for the others. An interesting out-
come of the analysis is that the latter two games exhibit switching times
for the two players, where they switch from pure to mixed strategies and
vice versa. Some numerical examples included in the paper illustrate the
nature of the solutions.

Keywords: Delay-tolerant networks, nonzero-sum game, switching
strategies.

1 Introduction

We consider in this paper a delay tolerant network, i.e. a sparse network of mobile
relay nodes, where connectivity is very low. There is some source that transmits
a file to mobiles that are in the communication range. Each mobile is assumed to
be in range with the source at some instants that form a Poisson process. A node
that receives a copy of the file stores it so that it may transmit it to some potential
destinations that may search for a copy of the file. We consider two controllers
whose goals are not aligned: the source and the jammer. They both determine at
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each time the probability of transmission. Transmission at a time t is successful
if and only if the source attempts transmission while the jammer is silent.

We consider three frameworks, which lead to three different games:

(1) The static one, where the actions of both players, that is the probabilities
of transmission and of jamming, u and w, respectively, are considered to be
constant in time;

(2) The dynamic open-loop problem. Here, all policies may be time varying,
but dependent only on the initial state. In solving the open-loop problem, we
first show that the game is equivalent (strategically) to a zero-sum differential
game, and then seek the saddle-point solution of that game.

(3) The dynamic closed-loop framework, where actions that may change in time
are allowed to depend on the current value of the state (the number of mobiles
with a copy of the file). In this case the underlying game is a genuine nonzero-sum
differential game, where the solution sought is the feedback Nash equilibrium.

This work is another step in our effort of developing a control methodology
for delay tolerant networks, which we initiated with our paper [1]. In contradis-
tinction with the simple threshold structure of [1], we obtain here a much richer
set of possible structures for the equilibrium policies, exhibiting in some cases
multiple switching times between pure and proper mixed strategies.

The use of game theory for jamming problems. Jamming problems are
among the first capturing conflicts in networks that have been modeled and
solved using tools and the conceptual framework of game theory. The first pub-
lications on these games go back almost thirty years with the pioneering work
[6] The question of the capacity achievable in channels prone to jamming was
one of the main concerns, and was thus naturally studied within the information
theory community, as for example in [7,9]. For a recent survey on wireless games
that includes jamming games, see [12]. Jamming of specific wireless local area
networks were investigated in [11] who study the jamming of IEEE802.11 and
[10] who study the jamming of slotted ALOHA. Our current paper falls in this
category of papers by specializing to the context of DTNs.

The paper is organized as follows. The next section (Section 2) provides a
precise formulation of the problem, which is followed by Sections 3 and 4 which
discuss the static and dynamic cases, respectively. These are followed by Section 5
which includes a number of numerical examples, and the concluding remarks of
Section 6 concludes the paper.

2 Model and Problem Formulation

2.1 Model

In the model adopted in this paper, there are n relay mobile nodes, a source,
and a destination which is assumed to be static. The network serves as a channel
that enables the information to reach the destination. Whenever a relay mobile
meets the source, the source may forward a packet to it. We consider the two-hop
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routing scheme [4] in which a mobile that receives a copy of the packet from the
source can only forward it if it meets the destination. It cannot copy it into the
memory of another mobile. The details of the basic model are as follows:

The source meets each relay node according to a Poisson process with a pa-
rameter λ. Each relay node meets the destination according to another Poisson
process, with parameter ν. The source attempts to maximize the probability that
a packet arrives successfully at a given destination by time ρ. A second trans-
mitter (jammer), however, tries to jam the transmission, and hence attempts
to minimize this probability. The jammer is assumed to be located close to the
source. Jamming relay nodes is a separate problem that will be considered later.
Note that we consider only two hop routing. Therefore jamming at the relays
means jamming when transmitting to the destination.

Let X(t), ut, wt denote, respectively, the fraction of mobiles with the mes-
sage, the source’s control, and the jammer’s control. Here ut is the probability
to transmit at time t if at that time the source meets a relay and wt is the
probability of jamming at time t. We assume that if jamming and transmission
occur simultaneously, then the transmitted packet is lost.

Let xt = E[X(t)] be the expected value of X(t). Then xt is generated by

ẋt = ut(1− wt)λ(n− xt), (1)

with known initial condition x0 at t = 0, and this constitutes the system dynamics.

2.2 Performance Measure: Successful Delivery Probability

During the incremental time interval [t, t + dt), the number of copies of the
packet in the network is X(t)dt. Then the number of packets that the destination
receives during this time interval is a Poisson random variable with parameter
νX(t)dt. In particular, the probability of not receiving any copy of the packet
during [0, ρ], conditioned on X(t), is given by

P (T > ρ|X(t), 0 ≤ t ≤ ρ) = exp
(
−
∫ ρ

0

νX(t)dt

)

where T is the random variable describing the instant when the packet first
reaches the destination. Its expectation (over X(t)) gives the failure probability,
i.e. the complementary of the probability of successful delivery.

Instead of minimizing P (T > ρ), we will minimize a bound on that quantity:

P (T > ρ) = E

[
exp
(
−
∫ ρ

0

νX(t)dt

)]
≤ exp

(
−E

∫ ρ

0

νX(t)dt

)
(2)

where the inequality is obtained by applying Jensen’s inequality to the concave
function exp(−x). Minimizing the latter (and hence the upper bound on P (T >
ρ)) is equivalent to maximizing the quantity

J(u, w) :=
∫ ρ

0

νxtdt , (3)

which we will take as the utility function of the source.
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We consider the mean field limit (when we have large number of nodes), in
which the randomness in the number of mobiles that have a copy of the nodes
as a function of time disappears (we obtain a deterministic time varying limit).
In this regime, the difference between the objective function (the delivery failure
probability) and the bound (2) vanishes. Indeed, the bound was obtained by
exchanging the order of expectation and exponent (using Jensen’s inequality),
but in the mean-field regime, Jensen’s inequality is obtained with equality since
the randomness vanishes.

2.3 Related Game Theory Concepts and Some Properties

Saddle-point, maximin and minimax policies: Let J(u, w) be the utility
function of the source, as introduced earlier by (3). We assume that the jammer
wishes to minimize this quantity and the source wishes to maximize it.

Let Πc be a set of policies for the controller (both source and relay mobiles)
and let Πj be a set of policies for the jammer. (We will introduce later specific
classes of policies.)

We say that u∗ ∈ Πc and w∗ ∈ Πj are saddle-point policies for the game
(J, Πc, Πj) if for every u ∈ Πc and w ∈ Πj we have1

J(u, w∗) ≤ J(u∗, w∗) ≤ J(u∗, w)

J(u∗, w∗) is then called the value of the game.
In a general zero-sum game saddle-point need not exist. In that case, we are

interested in the upper and lower values (V and V ) which are always well defined:

V = inf
w∈Πj

sup
u∈Πc

J(u, w), V = sup
u∈Πc

inf
w∈Πj

J(u, w),

w∗ is optimal for the minimax problem if V = supu∈Πc
J(u, w∗). Given such a

w∗, the controller u∗ is a best response policy if V = J(u∗, w∗). Likewise, u∗ is
optimal for the maximin problem if V = infw∈Πj J(u∗, w) , and given such a u∗,
w∗ is a best response policy if V = J(u∗, w∗).

A policy is said to be open loop if it does not depend on the state of the
system. It is said to be Markov (or a feedback policy) if it takes at time t an
action that is allowed to depend not only on t but also on the state at time
t. A pure policy is one for which the actions at all times are deterministic. For
example, a pure policy u for the source is a mixed strategy that takes as values
only 0 or 1, with a possibility of switching between the two values, depending
on t and possibly also the state.2

1 By some abuse of notation, we will be using u and w both as policies as well as the
realized values of these policies under the adopted information structures which also
characterize the sets of policies for the two players (controller and jammer).

2 Note that this definition is somewhat unconventional, and is made to capture the
realization that the ‘actions’ of the players here are actually probabilities, and hence
if these probabilities take the extreme values, 0 or 1, and if this is true for all t, then
we call the underlying policies pure.
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A multiple-criteria game: We next introduce a multiple-criteria problem
(game) as follows. The source wishes to maximize with respect to u the function
Lu(x0, u, w), where

Lu(x0, u, w) = J(x, u, w)− μ

∫ ρ

0

utdt ,

and the jammer wishes to minimize with respect to w the function

Lw(x0, u, w) = J(x, ρ, u, w) + θ

∫ ρ

0

wtdt ,

where we have included x0 in the set of arguments of J (defined earlier by
(3)) to emphasize the dependence on the initial state. The pair (u∗, w∗) is a
Nash equilibrium for this multiple-criteria problem (nonzero-sum game) if u∗

maximizes Lu(x, ρ, u, w∗) over u ∈ Πc and w∗ minimizes Lw(x, ρ, u∗, w) over
w ∈ Πj .

Note that in the multi-criteria game, there is antagonism between the two
players (related to success probability), but yet it is not a zero-sum game because
each player has in addition a second term in his objective function, its own
energy cost. However, we can show that this nonzero-sum game is strategically
equivalent to a zero-sum game [3], as long as the underlying information structure
is open loop; hence every open-loop Nash equilibrium of the multi-criteria game
is a saddle-point equilibrium for that particular zero-sum game and vice versa.

A strategically equivalent zero-sum game: Let the information structure
be open loop for both players, and introduce the objective function

L(x, u, w) := J(x, u, w) − μ

∫ ρ

0

utdt + θ

∫ ρ

0

wtdt ,

which is obtained by adding θ
∫ ρ

0 wtdt to Lu or equivalently by subtracting
μ
∫ ρ

0 utdt from Lw. Let Gzs be the zero-sum game in which the source max-
imizes L(x, ρ, u, w) and the jammer minimizes it. Note that the addition and
subtraction of these additional terms have not changed the Nash equilibrium of
the multi-criteria game, because the first term does not depend on the control of
the source and the second term does not depend on the control of the jammer,
that is3

max
u

L(x, u, w) = max
u

Lu(x, u, w) + θ

∫ ρ

0

wtdt = [max
u

Lu(x, u, w)] + θ

∫ ρ

0

wtdt,

min
w

L(x, u, w) = min
w

Lw(x, u, w)− μ

∫ ρ

0

utdt = [min
w

Lw(x, u, w)]− μ

∫ ρ

0

utdt ,

where the first one holds for all open-loop w and the second one for all open-
loop u. Then clearly if (u∗, w∗) is an open-loop Nash equilibrium for (Lu,−Lw)
3 This argument is not valid if the control policies depend on the state, that is if they

are for example feedback policies.
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where both players are maximizers, it is also an open-loop Nash equilibrium for
(L,−L), and hence an open-loop saddle-point of L (that is game Gzs). Likewise,
any open-loop saddle-point solution of the zero-sum game Gzs is also an open-
loop Nash equilibrium of (L,−L), and hence of (Lu,−Lw).

2.4 The Constrained Problem: Energy Constraints

We introduce the constrained game as finding the saddle-point of J(x, ρ, u, w)
subject to the following constraints on the source and the jammer controls∫ ρ

0

utdt ≤ Ds, and
∫ ρ

0

wtdt ≤ Dj , respectively.

This constrained problem turns out to be related to the open-loop zero-sum
game in the following sense: (u∗, w∗) is a saddle-point if and only if u∗ is optimal
against w∗ and vice versa. By the Karush-Kuhn-Tucker (KKT) conditions, there
exists μ ≥ 0 such that u∗ is optimal against w∗ if u∗ achieves the maximum of
Lμ(x, u, w∗), where

Lμ(x, u, w) = J(x, u, w)− μ(
∫ ρ

0

utdt−Ds).

Similarly, there exists θ ≥ 0 such that w∗ is optimal against u∗ if w∗ achieves
the minimum of Lθ(x, u∗, w), where

Lθ(x, u, w) = J(x, u, w) + θ(
∫ ρ

0

wtdt−Dj)

Hence (u∗, w∗) is an equilibrium in the constrained problem if it is a saddle-point
in the zero-sum game

L(x, u, w) = J(x, u, w) − μ

∫ ρ

0

utdt + θ

∫ ρ

0

wtdt for some μ and θ.

As indicated earlier, we will take the success delivery probability as a perfor-
mance measure, so that

J(x, u, w) =
∫ ρ

0

νxtdt ,

where xt is generated by (1), with initial state x0.

3 The Static Game

We first restrict the analysis to u and w that are constants in time, in which
case we have the unique solution of (1), with initial state x0, given by

xt = n + (x0 − n) exp(−λκt) (4)
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where κ := u(1 − w). Then the objective function of the equivalent zero-sum
game can be expressed as:

L(x0, u, w) = ν

∫ ρ

0

xtdt− ρ(μu − θw) = −ν(n− x0)F (κ) + νnρ− ρ(μu− θw) ,

where

F (κ) :=
1− exp(−κλρ)

λκ
.

With F ′ denoting the first derivative of F (κ) with respect to κ, and F ′′ its second
derivative, we readily have, for κ ∈ (0, 1]:

F ′(κ) =
−1 + (1 + κλρ) exp(−κλρ)

λκ2

F ′′(κ) =
−κ3λ2ρ2 exp(−κλρ) + 2κ− 2κ(1 + κλρ) exp(−κλρ)

λκ4

=
2− (2 + 2κλρ + κ2λ2ρ2) exp(−κλρ)

λκ3

>
2− 2 exp(κλρ) exp(−κλρ)

λκ3
= 0

and for κ = 0,

F ′(0) = −λρ2

2
, F ′′(0) =

λ2ρ3

3
.

Hence F (κ) is strictly convex in κ, on [0, 1], which implies that L(x0, u, w) is
strictly convex in κ = u(1−w) as long as x0 < n. Since the additional terms in
L that depend on u and w are linear, this readily implies that for each x0 < n
L(x0, u, w) is strictly concave-convex in the pair (u, w) on (0, 1] × [0, 1), and
concave-convex on the closed square [0, 1] × [0, 1]. Hence, we have a concave-
convex game defined on a closed and bounded subset of a finite-dimensional
space, which is known to admit a saddle-point solution [3].This result is now
captured in the following theorem, which also addresses the uniqueness and
characterization:

Theorem 1. Assume throughout that x0 < n. Then:

(i) The static zero-sum game has a saddle-point on [0, 1] × [0, 1], and it is
unique.

(ii) If ν(n− x0)ρλ ≤ 2μ, (u∗ = 0, w∗ = 0) is the unique saddle-point.
(iii) The game cannot have a saddle-point with w = 1.
(iv) If ν(n− x0)ρλ > 2μ, the unique saddle-point is in (0, 1]× (0, 1).

Proof:

i) As stated prior to the statement of the theorem, existence follows from
a standard result in game theory. since we have a concave-convex game.
Uniqueness will follow from the proofs of parts (ii) and (iv) below, carried
out separately in two regions of the parameter space.
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ii) Let M(u) := −ν(n − x0)F (u) − ρμu , and note that M ′(u) = −ν(n −
x0)F ′(u) − μρ . Using the earlier expression for F ′(0), M ′(0) = ν(n −
x0)ρ2λ/2 − μρ and thus M ′(0) ≤ 0 under the given condition. Further,
since F ′′(u) > 0 for all u, F ′(u) is an increasing function of u and hence
M ′(u) is decreasing for all u, which means that

M ′(0) < 0 implies M ′(u) < 0 for all u > 0. ,

and hence that M(u) attains its maximum uniquely at u = 0. This means
that u = 0 is the unique best response to w = 0. Further, since L(x0, 0, w) =
νx0ρ + ρθw, the unique minimizing response to u = 0 on [0, 1] is w = 0.
Hence, (0, 0) is a saddle-point solution, and by the ordered interchangeability
property of multiple saddle-points and the uniqueness of responses in this
case, there can be no other saddle-point.

iii) This readily follows from the observation that the unique maximizing re-
sponse to w = 1 is u = 0 while the unique minimizing response to u = 0 is
w = 0. Hence w = 1 cannot be part of a saddle-point.

iv) From part (i), we already know that there exists a saddle-point under this
condition. Suppose that the saddle-point is not unique, and let (u∗, w∗)
and (ũ, w̃) be two such solutions. By ordered interchangeability of multiple
saddle-points, (ũ, w∗) and (u∗, w̃) are also saddle-point solutions. We know
from part (iii) that w∗ �= 1, w̃ �= 1, and hence under each of them the
objective function is strictly concave in u, which implies that the only way
for both u∗ and ũ to be optimal responses to w∗ (as well as w̃)) is if they
are equal. Hence, u∗ has to be unique. Now, if u∗ �= 0, then L(x0, u

∗, w)
is strictly convex in w, and hence the optimal response by the jammer is
unique; hence w∗ = w̃ if u∗ �= 0. This then leaves out only the case u∗ = 0
not covered. We already know from the proof of part (ii) that the unique
minimizing response to u = 0 on [0, 1] is w = 0, and under the given
condition u = 0 is not a maximizing response to w = 0 since M ′(0) > 0.
Hence, u∗ = 0 is ruled out. What we then have is that the saddle-point
solution (u∗, w∗) is unique, and necessarily u∗ ∈ (0, 1] and w∗ ∈ (0, 1). �

We now further elaborate on the case when the saddle-point is inside the square,
which we know from part (iv) of the Theorem that it happens only when the
condition ν(n− x0)ρλ > 2μ holds. We also know that for an inner saddle-point
solution, since the game kernel is strictly concave-convex, and jointly contin-
uously differentiable, a necessary and sufficient condition is satisfaction of the
stationarity conditions. Toward this end, let

K(κ) := −ν(n− x0)
dF (κ)

dκ
= −ν(n− x0)×

−1 + (1 + κλρ) exp(−κλρ)
λκ2

Then, the inner saddle-point solution (u∗, w∗) uniquely solves

dL(x, u∗, w∗)
du

= 0,
dL(x, u∗, w∗)

dw
= 0 ,
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which can be written as

K(κ)(1− w)− ρμ = 0, −K(κ)u + ρθ = 0.

We thus conclude that θ(1− w∗) = μu∗ , which leads to

κ∗ = u∗(1− w∗) = (u∗)2μ/θ or u∗ =
√

θκ∗/μ

Finally, substituting this into the second stationarity condition above leads to a
single equation for κ∗ as below: K(κ∗)

√
κ∗ = ρ

√
θμ , which we know admits a

unique solution in (0, 1). u∗ and w∗ are then obtained from

u∗ =
√

θκ∗/μ and w∗ = 1− (μ/θ)u∗ .

4 The Dynamic Game

We now return to the original dynamic game, and discuss derivation of the
equilibrium solution, first for the case of open-loop information and following
that for the closed-loop feedback case.

4.1 Open-Loop Information

As discussed earlier, in the open-loop case, every Nash equilibrium of the original
differential game is also saddle-point equilibrium of a related strategically equiv-
alent zero-sum differential game. Following the standard derivation of open-loop
saddle-point solution [3], we have the single Hamiltonian

H(u, w; x, p) = −μu + θw + νx + pu(1− w)λ(n − x), (5)

which will be maximized over u ∈ [0, 1] and minimized over w ∈ [0, 1]. Here p is
the co-state variable, which satisfies the associated co-state equation:

ṗ = −∂H

∂x
= pu(1− w)λ − ν , p(ρ) = 0 , (6)

which constitutes a two-point boundary value problem along with the original
state equation

ẋ = u(1− w)λ(n − x) . (7)

The source will be maximizing H , and the jammer will be minimizing the same,
and if exists we seek a saddle-point solution (u∗, w∗) for the game, which nec-
essarily will also be a saddle-point solution for the Hamiltonian for each t, that
is

max
u∈[0,1]

H(u, w∗; x, p) = min
w∈[0,1]

H(u∗, w; x, p) = H(u∗, w∗; x, p) .
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Now, maximizing H(u, w; x, p) over u ∈ [0, 1] for each w ∈ [0, 1], and mini-
mizing the same over w ∈ [0, 1] for each u ∈ [0, 1] we obtain the complete set of
solutions:

arg max
u∈[0,1]

H(u, w; x, p) =

⎧⎨
⎩

1 if p(1− w)λ(n − x) > μ
0 if p(1− w)λ(n − x) < μ

[0, 1] if p(1− w)λ(n − x) = μ
(8)

arg min
w∈[0,1]

H(u, w; x, p) =

⎧⎨
⎩

1 if puλ(n− x) > θ
0 if puλ(n− x) < θ

[0, 1] if puλ(n− x) = θ
(9)

Since p(ρ) = 0, the unique saddle-point of the Hamiltonian at the terminal
time t = ρ is clearly u∗ = w∗ = 0. And clearly, by continuity, the same holds in
some left neighborhood of ρ. Integrating the co-state equation backwards from
t = ρ with u = w = 0, we obtain p(t) = ν(ρ − t). Note that u∗(t) = w∗(t) = 0
is a valid solution as long as

p(t)λ(n − xt) < μ , (10)

and the first time (in retrograde time) this is violated will determine the switch
time from u∗ = 0 to some other action for the source. Further note that it is
the inequality associated with the source and not the one associated with the
jammer that will determine the switching time (in retrograde time) because the
LHS of the inequality associated with the jammer, (9), is zero as long as u = 0.
We denote this switching time by t̄s,

t̄s := sup{t ≤ ρ : ν(ρ− t)λ(n− xt) < μ}

When θ > μ, there exists another threshold ts such that during the interval
[ts, t̄s],

μ ≤ p(t)λ(n− xt) < θ

and hence from (8) and (9) u∗ = 1 while w∗ = 0 during [ts, t̄s].
The above two switch times also depend on xt and p(t), which in turn are

generated under the players’ actions in the earlier stages of the game. Another
observation worth pointing out is that it is not possible for w∗(t) = 1 for any t,
because this would imply that u∗(t) = 0, which in turn implies that w∗(t) = 0,
a contradiction.

All this reasoning leads to the following theorem which captures the saddle-
point solution to the open-loop differential game.

Theorem 2. (i) If θ > μ, there exist two switch times ts, t̄s with ts < t̄s ≤ ρ
and there exists a saddle-point solution given by

u(t) =

⎧⎨
⎩

θ
m(t) when t < ts
1 when ts < t < t̄s
0 when t ≥ t̄s

and w(t) =

⎧⎨
⎩

1− μ
m(t) when t < ts

0 when ts < t < t̄s
0 when t ≥ t̄s.
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(ii) When θ ≤ μ, there exists a single switch time ts such that for t > ts, the
saddle-point solution dictates both players to play u∗(t) = w∗(t) = 0, and
for t < ts

u∗(t) =
θ

m(t)
, w∗(t) = 1− μ

m(t)
where

m(t) := p(t)λ(n− ξ(t)),

with p and ξ solving the coupled set of mixed boundary differential equa-
tions:

ξ̇ =
θμ

p2λ(n− ξ)
, ξ(0) = x0 ; ṗ =

θμ

pλ(n− ξ)2
− ν , p(ts) = ν(ρ− ts)

and ts is solved from m(ts) = μ.

Proof: Please see the Appendix, where also the computation of the two switch
times, ts, t̄s, are discussed. �

Remarks: The following are some observations on the saddle-point solution
(equivalently Nash solution) obtained in Theorem 2:

– It is an open-loop Nash equilibrium, i.e., the policies obtained depend only
upon the time t elapsed from the birth of the message and not on the state
x, the number of already infected messages.

– When μ > θ, i.e., when the power constraint on the source is higher than that
on the jammer, the jammer and source are active during the same period
and switch off at the same time threshold (ts of Theorem 2). In a way the
jammer is dominating here as it has bigger power resources and hence keeps
jamming whenever the source is active.

– When θ > μ, i.e., when the power constraint on the jammer is high, the jam-
mer is forced to switch off even when the source is active (at time threshold
ts of Theorem 2). The source continues being active for a longer time, until
time threshold t̄s. In fact after ts, the policy is similar to situation with-
out jammer ([1]): the source always infects the contacted mobiles till the
threshold t̄s after which it never infects any further mobiles.

– During the initial time interval, i.e., in the interval [0, ts] (when the policies
are equalizing in nature), the source’s probability of transmitting is high
whenever the jammer’s probability of jamming is low and vice versa.

4.2 Closed-Loop Feedback Information

Here we have to stay with the non-cooperative game framework, and seek for
Nash equilibria (NE). Let V u and V w be the value functions for the two play-
ers, where again player u is maximizer and Player w is minimizer. Assuming
that these value functions are continuously differentiable jointly in (x, t) (they
can even be piecewise continuously differentiable solutions with possibly a finite



98 E. Altman, T. Başar, and V. Kavitha

number of discontinuities in the derivative), the associated HJB equations are
([3]):

∂V u

∂t
+ maxu∈[0,1]

[
∂V u

∂x u(1− w∗)λ(n− x) + νx− μu
]

= 0 (11)

∂V w

∂t
+ minw∈[0,1]

[
∂V w

∂x u∗(1− w)λ(n − x) + νx + θw
]

= 0 (12)

with boundary conditions V u(ρ, x) ≡ V w(ρ, x) ≡ 0 where (u∗, w∗) is a NE. The
corresponding feedback policies are:

u∗(x, t) = arg max
u∈[0,1]

[
∂V u

∂x
λu(1− w∗)(n− x)− μu

]
(13)

w∗(x, t) = arg min
w∈[0,1]

[
∂V w

∂x
λu∗(1− w)(n − x) + θw

]
(14)

Using these two dynamic programming equations, one can easily establish the
following two lemmas.

Lemma 1. Any feedback Nash equilibrium (NE) will feature a jammer policy
taking values only in the semi-open interval [0, 1).

Proof: If w∗ was 1, at some (t, x), then, from equation (13) the corresponding
optimal controller would be u∗ = 0. This in turn implies from equation (14) that
w∗ = 0, which is a contradiction. �

Lemma 2. If νλ(n − x0)ρ < μ then at NE, u∗ = w∗ ≡ 0, i.e., the optimal
policies of both the jammer and the source are to never jam/transmit.

Proof: From the pair of HJB equations (11) and (12), if it is possible to make
the point-wise optimizers in both the Hamiltonians equal to zero, the solution
of both PDEs would have been V u(x, t) = V w(x, t) = νx(ρ− t) for all x, t. And
this is exactly the case under the given hypothesis as for any x ∈ [x0, n], t ∈ [0, ρ]
and for any w ∈ [0, 1],

∂V u

∂x
u(1− w)λ(n− x) = ν(ρ− t)(1− w)λ(n − x) < νρλ(n− x0) < μ

and hence u∗ ≡ 0, and thus from equation (14) w∗ ≡ 0 �

The first lemma rules out the possibility of pure-strategy NE with nonzero jam-
mer policy.4 What this leaves as possibility is a NE which is 1) completely inner
(or completely mixed NE, i.e., where both players’ policies take values in the
open interval (0, 1)) for some states and time and 2) with w∗ = 0 for the rest
of the states and time. Lemma 2 gives the condition under which the second
4 Again, by pure strategy here we mean one that does not take the extreme values 0

or 1, for both players. A mixed-strategy NE in this context is one where at least one
player’s policy takes values in the open interval (0, 1) for some time and state.
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situation always (for all states and time) happens. We now consider the case in
which this condition is negated, i.e., henceforth we assume that νλ(n−x0)ρ > μ.
We show the existence of a switching time until which the first possibility occurs
and beyond which the second scenario (that of w∗ = 0) occurs.

Let us consider the first possibility. This would happen if the policies would ac-
tually be equalizer rules, with u∗ ∈ (0, 1) making the expression to be minimized
on the right-hand-side of (14) independent of w, and simultaneously w∗ ∈ (0, 1)
making the expression to be maximized on the right-hand-side of (13) indepen-
dent of u. Such a (u∗, w∗) would be the solution of the fixed point equations:

∂V u

∂x
λ(1− w∗)(n− x(t)) = μ (15)

and

∂V w

∂x
λu∗(n− x(t)) = θ. (16)

If there exist such solutions, then the HJB equations will be simplified to

∂V u

∂t
+ νx = 0 ,

∂V w

∂t
+ νx + θ1{u∗>0} = 0; (17)

V u(ρ, x) = 0 = V w(ρ, x) for all x.

The simplification in the second PDE is obtained using (16). For future reference
we note that we would have arrived at these PDEs if both u and w were taken
to be identically zero–a property we will have occasion to utilize shortly.

One can easily solve and obtain the solution V u(t, x) = νx(ρ − t) and hence
that ∂V u/∂x = ν(ρ− t). Hence the objective function in (13) is non-positive for
all t > tc(x), where

tc(x) :=
ρνλ(n− x)− μ

νλ(n− x)
and hence u∗(x, t) = 0 for all t ≥ tc(x).

This in turn yields from equation (14) that w∗(x, t) = 0 for all t ≥ tc(x). Now
the second PDE in (17) can be solved:

V w(t, x) = θ(tc(x)− t)1{t<tc(x)} + νx(ρ − t).

Both PDEs can be brought to the above simplified form and hence the simplified
solutions of the fixed point equations (15) and (16) can be obtained for all
t ≤ tc(x). By definition of tc, whenever t < tc(x), the fixed point equation (15)
can be satisfied with a w∗ ∈ (0, 1) if we assume μ/θ− λ(ρ− tc(x0)) > 1 as then

∂V w(t, x)
∂x

λ(n− x) =
(

ν(ρ− t)− μθ

νλ(n− x)2

)
λ(n− x)

> μ− μθ

ν(n− x)
= θ
(μ

θ
− λ(ρ− tc)

)
> θ

for all (t, x) with t < tc(x). Under this assumption, the fixed point equation (16)
can also be satisfied with 0 < u∗ < 1. Thus we have
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Theorem 3. Under the assumption μ/θ − λ(ρ − tc(x0)) > 1, the closed-loop
mixed strategy NE exists with the optimal state trajectory given as the solution
of the following ODE:

�
x= f(x, t) with f(x, t) :=

μθ(n− x)
(ρ− t)(ν2λ(ρ− t)(n− x)2 − μθ)

1{t≤tc(x)}.

and the optimal controls are given by,

u∗(t) =
θ1{t≤tc(xt)}

λ(n − xt)
(
ν(ρ − t) − μθ

νλ(n−xt)2

)
w∗(t) =

(
1 − μ

ν(ρ − t)λ(n − xt)

)
1{t≤tc(xt)}. �

Optimal controls for larger values of θ. Now we consider the cases that
may not satisfy μ/θ−λ(ρ− tc(x0)) > 1. We may not find a w∗ ≤ 1 that satisfies
the fixed point equation (16) for all t ≤ tc. Let us start with the extreme case:
assume θ is very large (θ >> μ) such that the fixed point equation can not be
satisfied for all (x, t) with t ≤ tc(x). In this case, one can easily verify that the
jammer’s optimal strategy is to never jam (i.e., w∗ ≡ 0) and the source’s optimal
policy is

ū(t, x) := 1{λ(n−x) dV̄ u

dx >μ}

where V̄ u is the solution of the PDE

dV̄ u

dt
+ νx +

(
λ(n− x)

dV̄ u

dx
− μ

)
ū(t, x); V̄ u(ρ, x) = 0 (18)

and the optimal state trajectory x∗ is the solution of
�
x (t) = λ(n − x)ū(t, x).

The corresponding Hamiltonian PDE for the jammer will be

dV̄ w

dt
+ νx + ū(t, x)λ(n − x)

dV̄ w

dx
= 0. (19)

Thus, a sufficient condition for the optimal jammer policy to be zero is that

dV̄ w

dt
λ(n− x)ū(t, x) < θ for all (x, t). (20)

This condition can only be verified on numerical examples.

Remark: The PDE solutions V̄ u, V̄ w are both equal to νx(ρ − t) for all (x, t)
with t > tc(x) (the boundary condition is at left boundary t = ρ). Thus, ū(t, x) =
w̄(t, x) = 0 for all (x, t) with t ≤ tc(x). �

Continuing further, consider now the case when (20) is not true for some (x, t).
Then there exists an 0 ≤ t̄c(x) ≤ tc(x) such that,

t̄c(x) = inf
t<tc(x)

{
dV̄ w

dx
ū(t, x)λ(n − x) > θ

}
. (21)
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Let Ṽ u, Ṽ w represent the solutions of the PDEs,

dṼ u

dt
+ νx +

(
λ(n − x)

dṼ u

dx
− μ

)
ū(t, x)1{t̄c(x)≤t<tc(x)} = 0; Ṽ u(ρ, x) = 0

dṼ w

dt
+ νx + ū(t, x)λ(n − x)

dṼ w

dx
1{t̄c(x)≤t<tc(x)} + θ1{t<t̄c(x)} = 0; Ṽ w(ρ, x) = 0

Then the optimal controls will be given by,

u∗
t : = ũ(t, x∗

t ) with ũ(t, x) := ū(t, x)1{t≥t̄c(x)} + 1{t<t̄c(x)}
θ

dṼ w

dx
λ(n − x)

(22)

w∗
t : = w̃(t, x∗

t ) with w̃(t, x) := 1{t<t̄c(x)}

(
1 − μ

dṼ u

dx
λ(n − x)

)
(23)

where x∗
t is now the solution of the ODE,

�
x= λ(n− x)ũ(t, x)(1 − w̃(t, x)).

Remark. The PDE solutions (Ṽ u, Ṽ w) equal to (V̄ u, V̄ w) for all (x, t) with
t > t̄c(x). Further, the solution can be obtained numerically. �

Remarks: The following are some observations on the closed-loop feedback NE
policies:

– The solution is a genuine closed-loop feedback NE, i.e., the policies depend
both upon the time t elapsed from the birth of the message and upon the
state x, the number of already infected messages.

– The nature of these controls is exactly the same as that in the case of open
loop controls.
• When μ/θ − λ(ρ − tc(x0)) > 1 (the case of Theorem 3), i.e., when the

power constraint on the source is higher than that on the jammer, the
jammer and source are active during the same period and switch off
at the same time threshold (tc(x),). The jammer is dominating even in
closed-loop strategies, as it has bigger power resources and hence keeps
jamming whenever the source is active. The switch off threshold tc, unlike
in the case of open loop strategies, also depends upon the number of
infected mobiles, x.

• When the power constraint on the jammer is high, the jammer is forced
to switch off even when the source is active (at time threshold t̄c(x)
given by (21)). The source continues being active for a longer time, till
time threshold tc(x). In fact after t̄c(x), the policy is similar to situation
without jammer ([1]): the source always infects the contacted mobiles
till the threshold t̄s after which it never infects any further mobiles.

5 Numerical Examples

We now compute the optimal policies obtained in the previous section for the
closed-loop case for some numerical examples and verify the same using HJB
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equations. For example, to verify that (u∗, w∗) is a NE, we obtain a second set
of PDEs by replacing the optimal value in the Hamiltonians of (11), (12) with
the values evaluated at u∗, w∗ respectively. We compare the solutions of this
new set of PDEs with that of the HJB solutions.

The two sets of PDE solutions are compared in Figure 1. In Figure 1 the thick
lines represent the solution of the simplified HJB equations (17) while thin dotted
curves represent the corresponding ones of the PDEs with the optimal policies.
We note that the two trajectories almost match, thereby reinforcing the existence
of Mixed strategy NE. We also plot the optimal policies as a function of time in
Figure 2. It is interesting to observe that the jammer jams with higher probability
in the beginning while the probability, with which the source transmits, increases
with time till it reaches the switching threshold. This behavior could be because,
whenever the jammer jams with large probability, the source better attempt with
smaller probability and use the resources at some other time point. Further both
the jammer and the source do not transmit after the switching threshold. Note
that this threshold is given by inft{t > tc(x∗

t )} where x∗
t is the optimal state

trajectory.
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tions at the computed NE
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Fig. 2. Optimal Controls

We conclude this section with an example which considers two values of θ in
Figures 3 4, 5 and 6. For θ = 9, the condition of Theorem 2 is satisfied and
hence the optimal control is given by Theorem 2. For θ = 200, we compute the
optimal policies using the procedure explained and verify the same by showing
that the optimal policies satisfy the HJB equations given earlier in this section.
We plot the optimal policies for both cases in Figure 4 while both optimal
state trajectories are plotted in Figure 3. In this example, the switching period
tc(x0) ≈ 1981 is very close to ρ = 2000 and hence in both cases the source is
active for almost all the time. We notice that with large θ, there exists another
switching time t̄c ≈ 1698 beyond which the source is completely active, while
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the jammer is completely inactive. For small θ t̄c coincides with tc. And before
this switching time the optimal policies are always mixed in nature (equalizer
rules) for all the cases. We finally verify that the optimal policies satisfy the HJB
equations and the corresponding PDE solution is plotted in Figure 5 for large θ.
Both the switching periods tc, t̄c , when θ = 200, are plotted as functions of x in
Figure 6. We also plot the two optimal state trajectories in Figure 3. For larger
values of θ the jammer is constrained more and hence the infected population
size at any point in time is bigger with larger θ.
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6 Conclusions

We have considered a multi-criteria control problem that arises in a delay tol-
erant network with two adversarial controllers: the source and the jammer. The
source’s objective was to choose transmission probabilities so as to maximize
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the probability of successful delivery of some content to the destination within a
given time interval, and the jammer’s objective was to cause collisions. We con-
sidered two types of information structures; the closed loop and the open loop.
In the closed loop structure we assume both the jammer and the source have
the knowledge of the current number of mobiles with a copy of the message and
in this case the game is a genuine nonzero-sum differential game. In the open
loop structure they do not have such knowledge and the game becomes strate-
gically equivalent to a zero-sum differential game. The structure of the policies
are similar for both types of information structures. In both cases, the optimal
policies have two or one switch time(s) depending upon the energy constraints
of the source and the jammer. When the jammer has a tighter constraint on
its energy resources than the source, the policies have two switch times. Before
the first switch time, both the source and jammer policies are inner (i.e., the
transmission probabilities are not one of the extreme cases, 0 or 1) and are given
by equalizer policies. After the first switch time, the jammer switches off and
the source continues transmitting at maximum probability and after the second
switch time, both the source and jammer are off. When the source has a tighter
constraint on its energy resources than the jammer, there exists only one switch
time before which both use inner equalizer policies and after which both are
switched off.
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Appendix: Proof of Theorem 2

Case 1: θ > μ: In the interval [0, ts], both u∗ and w∗ are simultaneously inner
(i.e., have values in (0,1)). For this to happen, we need equalizer policies, i.e., u∗

should make Hamiltonian (5) independent of w and w∗ should make the same
Hamiltonian independent of u simultaneously. Thus,

u(t) =
θ

m(t)
and w(t) = 1− μ

m(t)
where m(t) := p(t)λ(n− x(t)).

In the above, p(t) and x(t) are the co-state and state trajectories for the saddle-
point that we are constructing and these are obtained in retrograde while con-
structing the saddle-point policy. The equalizer policies must be in open interval
(0, 1) and hence for all t < ts,

m(t) > max{θ, μ} = θ.

Thus ts is given by
ts = inf{t : m(t) ≤ θ}

or by continuity it satisfies m(ts) = θ. Substituting the policies back in the state
and co-state equations, the state and co-state trajectories in the interval [0, ts]
are obtained by solving the ODE’s:

ẋ =
μθ

λp2(n− x)
with x(0) = x0 (24)

ṗ =
μθ

pλ(n− x)2
− ν with p(ts) = pts . (25)

where the expression for pts will be given shortly.
In the interval [ts, t̄s], u∗ = 1 and w∗ = 0 and μ < m(t) ≤ θ and hence the

co-state trajectory can be solved for this interval as

p(t) = c(t̄s)et + ν with c(t) := e−t (pt̄s
− ν) for all t ∈ [ts, t̄s], (26)

where the expression for pt̄s
will also be given shortly. Now pts is calculated in

terms of pt̄s
as:

pts = c(t̄s)ets + ν = ets−t̄s (pt̄s
− ν) + ν.

http://www.methodshop.com/gadgets/reviews/celljammers
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The state trajectory in this interval would be,

x(t) = n− (n− x(ts))e−λ(t−ts) for all t ∈ [ts, t̄s]. (27)

For all t > t̄s u∗(t) = 0 = w∗(t). Thus solving backwards,

p(t) = ν(ρ− t) and x(t) = x(t̄s) for all t ∈ [t̄s, ρ].

Thus,

pt̄s
= ν(ρ− t̄s) and hence pts = ets−t̄s (ν(ρ− t̄s)− ν) + ν. (28)

Further,
m(t) = λν(n− x(t̄s))(ρ − t) for all t ∈ [t̄s, ρ]

and hence m(t) is strictly decreasing for t beyond t̄s, i.e., in the interval [t̄s, ρ].
It is possible that there can be no t ≤ ρ for which m(t) = μ and in this case
we define t̄s = ρ. In the other case we define t̄s as the time which satisfies the
equation m(t̄s) = μ, i.e.,

λν(n− x(t̄s))(ρ− t̄s) = μ.

From (27),
x(t̄s) = n− (n− x(ts))e−λ(t̄s−ts)

and hence

λν(n − x(ts))e−λ(t̄s−ts)(ρ− t̄s) = μ. (29)

From (26) and (27) for all t ∈ [ts, t̄s],

m(t) = λc(t̄s)e(1−λ)t(n− (xts))e
λts + λν(n− x(ts))e−λ(t−ts)

= λν(n− x(ts))
(
e−(t̄s−t)(ρ− t̄s − 1) + 1

)
e−λ(t−ts) (30)

Further at ts, m(ts) = θ and hence we get the second equation in terms of ts
and t̄s:

m(ts) = λν(n − x(ts))
(
(ρ− t̄s − 1)ets−t̄s + 1

)
= θ (31)

The thresholds ts and t̄s are obtained by solving (29) and (31), and by further
using the solutions of the ODEs (24) and (25) with boundary condition (28).

Case 2: μ ≥ θ: The solution can be obtained as in the previous case but now
with t̄s = ts. With μ ≥ θ, at ts m(t) = max{μ, θ} = μ and hence it is not possible
for u∗ to be 1. Thus the solutions are obtained by solving the joint ODEs (24)
and (25) where ts is obtained from (29) after replacing t̄s = ts. �
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Abstract. This paper studies the security choices of identical plant- con-
troller systems, when their security is interdependent due the exposure to
network induced risks. Each plant is modeled by a discrete-time stochastic
linear system, which is sensed and controlled over a communication net-
work. We model security decisions of the individual systems (also called
players) as a game. We consider a two-stage game, in which first, the
players choose whether to invest in security or not; and thereafter, choose
control inputs to minimize the average operational costs. We fully char-
acterize equilibria of the game, which give us the individually optimal
security choices. We also find the socially optimal choices. The presence
of security interdependence creates a negative externality, and results in a
gap between the individual and the socially optimal security choices for a
wide range of security costs. Due to the negative externality, the individual
players tend to under invest in security.

1 Introduction

In this article, we investigate security choices of individual operators of net-
worked controlled systems (NCS) when security interdependencies are present
due to network induced risks. Today, NCS already exhibit substantial interde-
pendence. An imminent wider deployment of smart devices is only likely to
result in a higher degree of interdependence [26],[5].

The current state-of-the-art literature on NCS assumes independent and iden-
tically distributed (IID) packet losses for systems, even when the systems use
the same communication network for their operation [16],[18],[23],[12],[2]. In
such settings, attacks on the availability of sensor and control data packets for
one system do not affect the availability of data packets for other systems.

The analysis based on the IID packet loss models does not capture the envi-
ronments in which an attack on the availability of data packets of one system can
propagate to other systems due to fact that they share the same communication
network. An important example of such attacks are the so-called distributed-
denial-of-service (DDOS) attacks [26],[9],[2]. Since the DDOS attacks affect the
availability of sensor and control data packets of multiple systems, any security
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choice of one system is also likely to influence the security of other systems.
This paper contributes to the existing literature by considering a setting where
security of one system affects security of other systems.

Several factors exacerbate the severity of the losses which may be caused by
security interdependencies. First, only a small number of vendors provide em-
bedded controller devices [26], causing a danger of highly correlated software–
hardware malfunctions. Due to the prevalence of identical devices, a single
glitch could bring major disruption of NCS functioning. Second, since the NCS
will soon govern the operation of critical infrastructure systems, the NCS inter-
dependencies could be exploited by nation states. So far, no such occurrences
have been recorded, but presence of aforementioned cyber attack capabilities is
well documented [25], and cannot be ignored [26]. The risks of such rare (but
extremely disruptive) events are similar to risks of terrorist attacks [7], and it
is established that private mitigation of such risks fails, thus likely requiring
governments to step in [15].

We model the problem of operator’s security choice as a non-cooperative
two-stage game between M plant-controller systems (or players). Each of these
players is modeled in a standard NCS setting (see for e.g., [18],[23]). In the first
stage, each player has a binary choice of investing versus non-investing into
enhanced security measures at his plant. In the second stage, players choose
optimal control inputs for their respective plants. Each players’ objective is to
minimize the average long-term cost, which is comprised of the plant oper-
ating costs and the cost of security measures. We compare the individually
optimal choices with that of the social planner, whose objective is to minimize
the sum of aggregate operating costs of all the players (which include costs of
security measures). The approach in this paper compliments the existing and
growing literature on investment efficient security strategies for critical systems
systems [10],[11],[1],[6]. By imposing penalties on the players not investing in
security, we induce individually optimal player choices that coincide with the
socially optimal ones. Such correction of individual incentives is frequently
referred as internalizing the externalities [1].

The importance of network externalities for incentives to invest in security
have been noted and modeled by numerous researches (see for e.g., [3],[8] and
the references therein). The relevance of these effects for critical infrastructures,
and in particular, the provision of electricity was raised in [4],[5], but to the
best of our knowledge, so far nobody attempted formal modeling of security
interdependencies in NCS. The closest models to ours are the application of
security interdependencies to Internet security such as [21], where the authors
apply [15], and present an analytical model, which permits them to study the
deployment of security features and protocols in the sub-nets with different
network topologies. Also, [20] expands on [15] to study economics of malware
(propagation of viruses and worms).

Our modeling of security choices builds on the Heal and Kunreuther’s in-
terdependent security model (see [15],[14],[19]). We refer the reader to [22],
[13],[17] for similar approaches.
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This paper is organized as follows: In Section 2, we formulate the game
between NCS when interdependencies are present. In Sections 3 and 4, we
present the analysis of the game of two and M players respectively. Concluding
remarks are drawn in Section 5.

S/N S/N S/N
Plant 1 Plant 2 Plant M

Controller 1 ControllerMController 2

Communication Network

y1u1 y2u2 yMuM

Fig. 1. Networked Control System (NCS)

2 Problem Setup and Preliminaries

We consider M identical NCS; each of these systems consist of a plant and a
controller communicating over a network [18] as shown in Fig. 1. We model
the interaction of these systems, henceforth referred as players, as a two-stage
game. In the first stage, each player chooses to make a security investment (S)
or not (N). Once player security choices are made, they are irreversible and
observable by all the players. In the second stage, each player chooses a control
input sequence u0,i, u1,i, . . . . Each player objective in the game is to minimize an
infinite-horizon average expected cost criterion, as defined in Section 2.3.

Let Li denote the security choice of player i:

Li �

⎧
⎪⎪⎨
⎪⎪⎩

S, player i invests in security,
N , player i does not invest in security

and let L denote the vector of security choices of all players:

L �
(

L1, . . . , LM

)

.

We also define the indicator function:

Ii �

⎧
⎪⎪⎨
⎪⎪⎩

0, Li = S,
1, Li = N .

For each plant, the sensor measurements yt,i are sent to the respective con-
troller over a communication network. The controller sends the computed con-
trol inputs ut,i to the actuators over the network. The sensor-controller and
controller-actuator communication links are subject to losses induced by the
network. Following [18],[23], we model the loss processes of the sensor and
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control communication channel of the i−th system at time t ∈ N as Bernoulli
random processes γt,i and νt,i with the respective failure probabilities γ̃i and ν̃i:

P[γt,i = 0] = γ̃i, P[νt,i = 0] = ν̃i.

In contrast to [18],[23], we assume that the failure probabilities γ̃i and ν̃i

are interdependent due to the exposure to network induced insecurities. To
reflect security interdependencies, in our model, the failure probabilities for
each player depend on the player’s own security choice and on the security
choices of other players.

2.1 Security Interdependence

To start, let us consider a two player game (M = 2), where in the first stage
the players choose S or N . We assume the following failure probabilities for
player i:

γ̃i(L) = Iiγ̄ + (1 − Iiγ̄)α(Ii, I−i),
ν̃i(L) = Iiν̄ + (1 − Iiν̄)α(Ii, I−i),

(1)

where the subscript −i denotes the other player. In (1), the first term reflects
the probability of a direct failure, and the second term reflect an indirect failure
probability. This second term in (1) reflects player interdependence due to being
networked and subjected to external attacks, for e.g., distributed denial-of-
service (DDOS) attacks. We define the interdependence term α(·, ·) : {0, 1}2 →
]0, 1[ as follows

0 � α(0, 0) = α(1, 0) < α(0, 1)� α
¯
< α(1, 1) � ᾱ < 1,

where ᾱ is such that γ̄ + (1 − γ̄)ᾱ < 1, and ν̄ + (1 − ν̄)ᾱ < 1. Thus, we assume
that the second term becomes higher when more players are insecure. Notice
that γ̄ (resp. ν̄) respectively denote the failure probabilities of the sensor (resp.
control) communication links (identical for both players) if α(Ii, I−i) would have
been zero, i.e., no interdependence. Then, the failure probabilities in our model
coincide with the existing literature [18],[23].

From (1), when player i invests in security, he reduces his direct probability
of failure (the first term in (1)) to 0. However, the players are unable to affect
(and thus reduce) the indirect probability of failure resulting from network
interdependence (the second term in (1)).

We now generalize (1) to any M ∈N players by assuming:

γ̃i(L) = Iiγ̄ + (1 − Iiγ̄)α(η−i),
ν̃i(L) = Iiν̄ + (1 − Iiν̄)α(η−i),

(2)

where η−i �
∑

−i Ij

M−1 denotes the fraction of players (excluding player i) who have
chosen N . As in the two-player case, the failure probabilities should be higher
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when a higher fraction of players is insecure. To reflect this, we assume that the
interdependence term α(η−i) increases with η−i. With a slight abuse of notation,
we define α(·) : (0, 1) −→ (0, 1) as follows

0 � α (0) < · · · < α (
η
)
< · · · < α (1) � ᾱ < 1, (3)

where γ̄ + (1 − γ̄)ᾱ < 1, and ν̄ + (1 − ν̄)ᾱ < 1.
In contrast to (1), the interdependence for the i−th system as defined in (2)

does not depend its own choice of security investment. Notice that although we
do not specifically model the interdependencies between the failure probabilities
of sensor and control links, these links are also interdependent due to the term α
in (1) and (2).

2.2 LQG Problem

Consider the following discrete-time stochastic linear system:

xt+1,i = Axt,i + Bνt,iut,i + wt,i,

yt,i = γt,iCxt,i + vt,i,
t ∈N0, (4)

where xt,i ∈ Rd is the state of the i−th player’s system at time t, ut,i ∈ Rm

is the control input, and yt,i ∈ Rp is the measured output. The matrix A ∈
R

d×d is the dynamics matrix, B ∈ Rd×m is the input matrix, C ∈ Rp×d is the
observation matrix. TheRd-valued system noise process wt,i (resp. theRp-valued
measurement noise process vt,i) is a Gaussian processes with mean 0 (resp. 0)
and covariance Q (resp. R). The initial condition x0,i is also Gaussian with mean
x̄0 and covariance P̄0. We assume uncorrelated x0,i, wt,i, and vt,i.

Let us define the information vector Xt,i as follows1:

X0,i �
(

L, y0,i, γ0,i

)

,

and for t = 1, 2, 3, . . . ,

Xt,i �
(

L, y0,i, . . . , yt,i, ν0,i, . . . , νt−1,i, γ0,i, . . . , γt,i

)

.

We consider the class of control policies consisting of the sequence of measur-
able functions πi = {μ0,i, μ1,i, . . . }, where each function maps the information set
available to player i at time t ∈N0, denoted Xt,i into the control space (hereRm):

ut,i = μt,i(Xt,i), t ∈N0, i = 1 . . .M.

Let
U � {ut,1, . . . , ut,M|t ∈N0}.

1 This information set corresponds to the packet acknowledgment behavior of TCP-like
protocols (see [18]).
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For given choices L and U, the LQG infinite-horizon average cost for the
system (4) can be defined as follows:

Ji(L,U) = lim sup
T−→∞

1
T

E

⎡
⎢⎢⎢⎢⎢⎣

T−1∑

t=0

x�t,iGxt,i + νt,iu�t,iHut,i

⎤
⎥⎥⎥⎥⎥⎦
, (5)

where G > 0 and H � 0 are the matrices of appropriate dimensions.
The above infinite horizon LQG problem is addressed in [23], and we will

draw on these results2. Following Theorem 5.6 of [23], we will assume that
the maximum failure probabilities are below certain thresholds γ̃c

i and ν̃c
i , i.e.,

γ̄ + (1 − γ̄)ᾱ < γ̃c
i and ν̄ + (1 − ν̄)ᾱ < ν̃c

i .
For a given choice of security levels L, let the minimum average LQG cost

be denoted as J∗i (L). The corresponding failure probabilities γ̃i(L) and ν̃i(L) are
given by definitions (1) and (2) for the case of 2 and M players respectively.
In general, an analytical expression of J∗i (L) can not be obtained; however, [23]
provide analytical expressions for the upper and lower bounds of this cost (see
Appendix A for these expressions).

To simplify the exposition, we will restrict our attention to the special case of
invertible observation matrix C and the measurement noise covariance matrix
R = 03. Then, the upper and lower bounds on the minimum expected average
cost coincide. This cost can be computed as:

J∗i (L) = γ̃i(L) tr
(

(A�S∞,iA + G − S∞,i)P¯∞,i
)

+ tr(S∞,iQ) (6)

Here S∞,i and P∞,i are the positive definite solutions of the following algebraic
matrix equations:

S∞,i = A�S∞,iA + G

− (1 − ν̃i(L))A�S̄∞,iB(B�S∞,iB +H)−1B�S∞,iA,
P
¯∞,i
= γ̃i(L)AP

¯∞,i
A� +Q.

(7)

We will make use of the following lemma.

Lemma 1. For any γ̃i(L1) < γ̃i(L2) and ν̃i(L1) < ν̃i(L2),

J∗i (L
1) < J∗i (L

2). (8)

Proof. From (7) S∞,i and P
¯∞,i

are increasing with ν̃i and γ̃i respectively. The proof
follows from (6). �

Intuitively, Lemma 1 provides that expected minimum cost decreases in failure
probabilities.

2 In [23], these expressions are given for the arrival probabilities 1− γ̃i and 1− ν̃i, while
we work with failure probabilities here.

3 One could always deal with a general case by using empirically computed minimum
average cost obtained via Monte-Carlo simulations.
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Example 1. Consider (4) for the scalar setting with d = 1, B = 1, C = 1. Then
Q,R,G,H are scalars. For |A| > 1, the critical failure probability is A−2 for both
sensor and control links. Let γ̃ < A−2 and ν̃ < A−2. Using Appendix A, the upper
and lower bounds for the optimal cost J∗ simplify to:

Jmax∞ = QS + P̄
(

P̄γ̃ + R

P̄ + R

)
(

(A2 − 1)S + G
)

,

Jmin∞ = QS + γ̃P
¯

(

(A2 − 1)S + G
)

,

(9)

where

P̄ =
(A2R +Q − R) +

√
(A2R +Q − R)2 + 4QR(1 − A2γ̃)
2(1 − A2γ̃)

, P
¯
=

Q
1 − A2γ̃

,

and

S =
(A2H + G −H) +

√

(A2H + G −H)2 + 4GH(1− A2ν̃)
2(1 − A2ν̃)

.

Notice that Jmax∞ = Jmin∞ if R = 0. �

2.3 The Game

The objective of player i in our game M players is to minimize the following
average expected cost:

Fi(L,U) = Ji(L,U) + (1 − Ii)�, (10)

where � ∈ [0,∞) is the per period security cost (incurred only if in first stage, the
player i has chosen S). In the first stage, each player (say i) chooses the security
level Ii ∈ {0, 1}. In the subgame that starts after the first stage, i.e., once the
security choices Ii are made, each player i chooses the control input sequence
u0,i, u1,i, . . . to minimize the LQG cost (5). The solution concept for our two-stage
game is subgame perfect Nash equilibrium.

Finally, we also introduce the baseline case: the game of a social planner,
whose objective is to minimize the aggregate average costs given by

Fso =
M∑

i=1

Fi(L,U). (11)

3 Equilibria for Two Player Game

Consider a game with 2 players and interdependent failure probabilities speci-
fied by (1). For any fixed player security choices, the minimum expected costs are
obtained in Section 2.2, and player objectives (10) become as shown in Fig. 2(top).
Minimum expected costs for the social planner are shown in Fig. 2(bottom).
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Player 1

Player 2
S N

S J∗(S,S) + �, J∗(S,S) + � J∗(S,N) + �, J∗(N ,S)
N J∗(N ,S), J∗(S,N) + � J∗(N ,N), J∗(N ,N)

Player 1

Player 2
S N

S 2(J∗(S,S) + �) J∗(S,N) + J∗(N ,S) + �
N J∗(S,N) + J∗(N ,S) + � 2J∗(N ,N)

Fig. 2. Costs: 2−player game (top) & social planner (bottom)

Next, we derive player optimal actions in the first stage. We will distinguish
the following two cases:

J∗(N ,N)− J∗(S,N) � J∗(N ,S) − J∗(S,S), (12)
J∗(N ,S) − J∗(S,S) � J∗(N ,N)− J∗(S,N). (13)

If (12) holds and a player invests in security, then other player gain from in-
vesting in security increases. On the other hand, if (13) holds, then each player
decision to secure decreases the other player gain from investing in security.

Next, in Sections 3.1 and 3.2, we present equilibria for different �, and compare
with social optima.

3.1 Increasing Incentives [(12) Imposed]

Let (12) hold, and let us define

�
¯1 � J∗(N ,N) − J∗(S,N), �̄1 � J∗(N ,S) − J∗(S,S).

Using Fig. 2(top), we infer that if � < �
¯1 (resp. � > �̄1) then (S,S) (resp.

(N ,N)) is unique Nash equilibrium. Thus, �
¯1 (resp. �̄1) is the cut-off cost below

(resp. above) which both players invest (resp. neither player invests) in security.
However, if

�
¯1 � � � �̄1, (14)

then both, (S,S) and (N ,N) are individually optimal.
For the social planner, from Fig. 2(bottom), the optimum is (S,S) if � < �so

1 ,
with

�so
1 � min [J∗(N ,N) − J∗(S,S), J∗(N ,S) + J∗(S,N) − 2J∗(S,S)]
= J∗(N ,N)− J∗(S,S),

and the second equality is due to (12). From (8), if (14) holds, for � in the entire
range �̄1 < � � �so

1 , individually optimal decision is (N ,N), while the socially
optimal decision is still (S,S). Finally, if � > �so

1 , the individual and socially
optimum choices coincide at (N ,N). Fig. 3, Case 1, summarizes the equilibria
for different �.
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�
(S,S) (N ,N)mixed

(S,S) (N ,N)
social optimum

mixed

�̄so
2

�
(S,S) (N ,N)

(S,S) mixed (N ,N)

�
(S,S) (N ,N)(S,S) & (N ,N)

(S,S) (N ,N)
social optimum

social optimum

mixed

�̄so
2�

¯
so
2

�
¯
so
2

�so
1�

¯1 �̄1

�
¯2

�
¯2

�̄2

�̄2

Case 1

Case 2(i)

Case 2(ii)

Fig. 3. Nash equilibria and social optima for different �

3.2 Decreasing Incentives [(13) Imposed]

Let (13) hold, and let us define

�
¯2 � J∗(N ,S) − J∗(S,S), �̄2 � J∗(N ,N) − J∗(S,N).

Using Fig. 2(top), we infer that if � < �
¯2 (resp. � > �̄2) then (S,S) (resp. (N ,N)) is

unique Nash equilibrium. Thus, �
¯2 (resp. �̄2) is the cut-off cost below (resp. above)

which both players invest (resp. neither player invests) in security. However, if
� is in the intermediate range, i.e.,

�
¯2 < � < �̄2, (15)

then no pure strategy equilibrium exists. In this case, equilibrium will be mixed.
Let θi (resp. (1−θi)) denote the mixing probability with which a player chooses
S (resp. N). Then, the probability θi, for which the player i expected cost,
independent of the realizations S or N , is obtained as the positive solution of
the following quadratic equation:

θiθ−i(J∗(S,S) + �) + θi(1 − θ−i)(J∗(S,N) + �)
= (1 − θi)θ−i(J∗(N ,S)) + (1 − θi)(1 − θ−i)J∗(N ,N),

Then, by writing a similar equation for player−i, it is easy to check that θi = θ−i.
Thus, mixed equilibrium is symmetric.

From Fig. 2(bottom), the social optimum is (S,S) if � � �
¯
so
2 , with

�
¯
so
2 � min [J∗(N ,N) − J∗(S,S), J∗(N ,S) + J∗(S,N) − 2J∗(S,S)]
= J∗(N ,S) + J∗(S,N) − 2J∗(S,S),
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and the second equality is due to (13). Notice that �
¯
so
2 can be either above or

below the cut-off cost �̄2, i.e.,

�̄2 < �¯
so
2 , (16)

or

�̄2 > �¯
so
2 . (17)

If (15) and (16) hold, the social optimum is (S,S), while the individually optimal
outcome is a mixed equilibrium. The social optimum is (N ,N) if � > �̄so

2 , where

�̄so
2 � 2J∗(N ,N) − J∗(S,N) − J∗(N ,S).

Cases 2(i) and 2(ii) of Fig. 3 summarize the equilibria for different � when (16)
and (17) hold respectively. (Notice that �

¯2 < �¯
so
2 < J∗(N ,N)− J∗(S,S) < �̄so

2 ).
We now provide an example system for each case of Fig 3.

Example 2. Case 1. Let A = 0.80, G = Q = H = R = 1, and γ̄ = ν̄ = α
¯
= ᾱ = 0.1.

From (9), this system satisfies (12). Case 2(i). Let A = 1.2, G = H = Q = R = 1,
γ̄ = ν̄ = 0.1, α

¯
= ᾱ = 0.25. This system satisfies (13) and (16). Case 2(ii). Let

γ̄ = ν̄ = 0.25 and all other parameters be as in Case 2(i). This system satisfies
(13) and (17). �

4 Equilibria for M Player Game

We now extend the analysis of Section 3 to the case of M identical players.
Here we will focus on two instructive cases, which generalize the increasing
and decreasing incentive cases for the two-player game (Sections 3.1 and 3.2
respectively). Recall from Section 2.1 that η−i denotes the fraction of insecure
players (excluding player i). To simplify the notation, we will henceforth omit
the subscript −i. The player failure probabilities are interdependent as specified
by (2), and the interdependence term α(η) satisfies (3) for η = 0, 1

M−1 ,
2

M−1 , . . . , 1.
Consider the scenario when the i−th player chooses S orN , and the security

choices of all other players are fixed. Let the fraction η of other players be
insecure. Without loss of generality, we can assume that the players 1, . . . , i − 1
are secure and the players i+ 1, . . . ,M are insecure, where M−i−1

M−1 = η. We use the
following simplifying notation:

L =

⎧
⎪⎪⎨
⎪⎪⎩

(S, η), L1 = · · · = Li = S, Li+1 = · · · = LM = N ,
(N , η), L1 = · · · = Li−1 = S, Li = · · · = LM = N . (18)

4.1 Increasing Incentives

Let the following M − 1 conditions hold:

J∗
(N , η) − J∗

(S, η) < J∗
(N , η−) − J∗

(S, η−)
)
, (19)
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where η = 1
M−1 ,

2
M−1 , . . . , 1, and η− �

(

η − 1
M−1

)

corresponds to the fraction
for which one more player invests in security than η. In (19), the left-hand-
side term J∗

(N , η) − J∗
(S, η) is a player’s gain from investing in security when

the fraction η of other players are insecure. Similarly, the right-hand-side term
J∗

(N , η−) − J∗
(S, η−)

)
is a player gain from securing when one more player

invests in security (relative to the fraction η).
Thus, similar to (12), (19) corresponds to the case when the decision of an

extra player to invest in security increases other players’ gains from investing in
security. Analogous to Section 3.1, we have:

Theorem 1. In the game of M players with (19) imposed, a pure strategy equilibrium
exists, and is symmetric.

Proof. First, with (19) imposed, the existence of symmetric pure strategy Nash
equilibrium is straightforward from adopting the construction of Section 3.1.
Depending on the magnitude of � ∈ [0,∞[, the equilibrium is

(S, . . . ,S) if � < J∗(N , 1) − J∗(S, 1), (20)
(N , . . . ,N) if � > J∗(N , 0)− J∗(S, 0), (21)

(S, . . . ,S) or (N , . . . ,N) if � is such that
J∗(N , 1) − J∗(S, 1) � � � J∗(N , 0)− J∗(S, 0).

(22)

Second, we show that no asymmetric equilibrium exists. Assume on the
contrary that (S, . . . ,S,N) is an equilibrium, i.e., the first M − 1 players invest
in security and the M-th player does not. Since the M-th player choosesN over
S and η = 0 because all other players are secure, we have

J∗(N , 0)− J∗(S, 0) < �. (23)

Since the (M − 1)-th player chooses S, when M − 2 players choose S and the
M-th player chooses N , we have

� < J∗
(N , η) − J∗

(S, η) , (24)

where η = 1
M−1 . From (23) and (24):

J∗(0,N)− J∗(0,S) < J∗
(N , η) − J∗

(S, η) ,

which contradicts (19) for η = 1
M−1 . Thus, (S, . . . ,S,N) is not an equilibrium.

The same contradiction could be demonstrated for any other asymmetric
equilibrium. Indeed, let (S, . . . ,S,N . . . ,N

︸����︷︷����︸

M1 players

) be an equilibrium, i.e., when the

first M −M1 players invest in security and the last M1 players do not. For the
(M −M1 + 1)-th player,

J∗(N , η−) − J∗(S, η−)) < �,
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where η− = M1−1
M−1 , and for the (M −M1)-th player,

� < J∗
(N , η) − J∗

(S, η) ,

where η = M1
M−1 . Combining these two inequalities contradicts (19) for η = M1

M−1 .
Thus, we have proven that no asymmetric equilibrium exists, and the theorem
is proven. �

From the proof of Theorem 1, in equilibrium, if � is below a critical minimum
value (given by (20)) all players invest in security (S, . . . ,S). If � exceeds a critical
maximum value (given by (21)) no player invests in security (N , . . . ,N); for �
between these critical values (see (22)), both outcomes (S, . . . ,S) and (N , . . . ,N)
are equilibria.

4.2 Decreasing Incentives

Now, let the following M − 1 conditions hold:

J∗
(N , η−) − J∗

(S, η−) < J∗
(N , η) − J∗

(S, η) , (25)

where η = 1
M−1 ,

2
M−1 . . . 1. Notice that analogous to (13), from (25), each player

gain from security investment decreases as more players invest in security. Anal-
ogous to Section 3.2, we have:

Theorem 2. In the game of M players with (25) imposed, equilibrium exists; it is
unique and symmetric.

Proof. First, the existence of equilibrium follows by adopting the construction
of Section 3.2. Depending on the magnitude of �, the equilibrium is:

(S, . . . ,S) if � < J∗(N , 0)− J∗(S, 0), (26)
(N , . . . ,N) if � > J∗(N , 1) − J∗(S, 1), (27)

Mixed if � is such that
J∗(N , 0) − J∗(S, 0) < � < J∗(N , 1)− J∗(S, 1).

(28)

Next, we show that the mixed equilibrium is symmetric. Assume on the
contrary, i.e, without loss of generality, let the first two players mix with different
probabilities θ1 � θ2, and other players’ mixing probabilities be fixed. Then, as
in Section 3.2, we have θ1 = θ2. Thus, only a symmetric mixed equilibrium
exists.

Lastly, uniqueness is obvious from construction. �

From the computation of mixed strategies, we have:

Remark 1. When the equilibrium is mixed, the probability of investment in se-
curity decreases with �. �
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5 Discussion and Concluding Remarks

In this paper, we investigated the incentives to invest in security for players
which operate interdependent and identical NCS. We presented a new model of
interdependendent NCS, where the players’ failure probabilities are dependent
on the security investments of other players.

In our setting, player actions differ from social optimum ones; this reflects the
presence of externalities. Indeed, in general, when player costs are affected by
other player’s choices, players impose externalities on each other. The external-
ities manifest by the gap between the individually and socially optimal security
choices [1]. In the case of negative externalities, players tend to under-invest in
security. This is commonly referred to free-riding in economics.

We hope that our findings are relevant for analyzing the effects of DDoS at-
tacks on NCS governing the critical infrastructures, for e.g., the next generation
electric power grid. It is well accepted that in the future grid, a large number
of commodity IT solutions will be deployed [26],[24]. A wider deployment of
smart devices is likely to result in a higher number of players (higher M), a
higher degree of interdependence between the players (a higher second terms
in (3)), and also a higher security cost � due to the increased configuration (and
overall system) complexity. Thus, we expect that with the NCS becoming in-
creasingly ”smarter”, the magnitude of negative externalities, and therefore the
gap between the individually and socially optimal outcomes will only widen.

Such underinvestment in the presence of interdependencies raises the pos-
sibility of major breakdowns, see [26],[7], which would create losses (due to
higher costs) far beyond the NCS losses considered in this paper. Our model
does not incorporate these extra loses, which makes our estimates of security
investments, including the socially optimal ones, rather conservative.
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A LQG Cost for Optimization General Case

We describe the computation of minimum expected average cost for the general
case with non-invertible C and R � 0. Following [23], we assume that γ̃i <
γ̃c

i , ν̃i < ν̃c
i , (A,B) and (A,Q1/2) are controllable, and (A,C) and (A,G1/2) are

observable. Then J∗i (L) can be computed by taking the limit T −→ ∞ of 1
T J∗i,T(L),

where J∗i,T(L) is the finite-horizon optimal LQG cost.
The state estimate x̂t,i = E[xt,i|Xt,i], and error covariance matrix

Pt,i =
[
(xt,i − x̂t,i)(xt,i − x̂t,i)�|Xt,i

]

are given by the following update equations starting with x̂0 = x̄0 and P̄0 = P̄0:

x̃t,i = Ax̂t−1,i + (1 − νt,i)But−1,i,

P̃t,i = APt−1,iA� +Q,

and

x̂t,i = x̃t,i + (1 − γt,i)P̃t,iC�
(

CP̃t,iC� + R
)−1

(yt,i − Cx̃t,i),

Pt,i = P̃t,i − (1 − γt,i) × P̃t,iC�
(

CP̃t,iC� + R
)−1

CP̃t,i.

The optimal control input ut,i is given by

ut,i = −(B�St+1,iB +H)−1B�St+1,iAx̂t,i,

where matrices St,i are computed using the following (backward) recursion
starting with ST = G:

St,i = A�St+1,iA + G

− (1 − ν̃i)A�S̄t+1,iB(B�St+1,iB +H)−1B�St+1,iA.

The finite-horizon optimal LQG cost J∗i,T(L) is:

J∗i,T(L) = x̄S0,ix̄ + tr(S0P̄0) +
T−1∑

t=0

tr(St,iQ)

+

T−1∑

t=0

tr
(

(A�St+1,iA + G − St,i)Eγi[Pt,i]
)

,

(29)



122 S. Amin, G.A. Schwartz, and S.S. Sastry

where the notation Eγi [·] indicates that the expectation is taken w.r.t. {γk,i}tk=0.
Following [23], we note that due to the nonlinear dependence of Pt,i on {γk,i}tk=0,
the expected error covariance matrix Eγi [Pt,i] (and hence J∗i,T(L)) cannot be com-
puted analytically. However, one can find upper and lower bounds of J∗i,T(L) by
two deterministic sequences

Jmin
i,T (L) � J∗i,T(L) � Jmax

i,T (L).

Under the assumption of γ̃i < γ̃c
i and ν̃i < ν̃c

i , the infinite-horizon optimal
cost J∗i (L) is bounded from below and above by Jmin

i,∞ (L) and Jmax
i,∞ (L) respectively,

where Jmin
i,∞ (L) � limT−→∞ 1

T Jmin
i,T (L) is same as (6), and

Jmax
i,∞ (L) � lim

T−→∞
1
T

Jmax
i,T (L)

= tr
{
(A�S∞,iA + G − S∞,i) × (P̄∞,i

− (1 − γ̃i(L))P̄∞,iC�(CP∞,iC� + R)−1CP̄∞,i)
}

+ tr(S∞,iQ).

Here S∞,i and P
¯∞,i

are the positive definite solutions of the system of equa-
tions (7), and P̄∞,i is the positive definite solution of:

P̄∞,i = AP̄∞,iA� +Q

− (1 − γ̃i(L)) × AP̄∞,iC�
(
CP̄∞,iC� + R

)−1 CP̄∞,iA�.

Notice, that for the special case of invertible C and R = 0, the upper and lower
bounds for the infinite-horizon optimal cost coincide.
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Abstract. We consider a two-hop routing delay-tolerant network. When
the source encounters a mobile then it transmits, with some probability,
a file to that mobile, with the probability itself being a decision variable.
The number of mobiles is not fixed, with new mobiles arriving at some
constant rate. The file corresponds to some software that is needed for
offering some service to some clients, which themselves may be mobile
or fixed. We assume that mobiles have finite life time due to limited
energy, but that the rate at which they die is unknown. We use an H∞

approach which transforms the problem into a worst case analysis, where
the objective is to find a policy for the transmitter which guarantees
the best performance under worst case conditions of the unknown rate.
This problem is formulated as a zero-sum differential game, for which we
obtain the value as well as the saddle-point policies for both players.

1 Introduction

We consider in this paper a delay tolerant network, i.e. a sparse network of
mobile relay nodes, where connectivity is very low. There is some source that
transmits a file to mobiles that are in the communication range. Each mobile is
assumed to be in range with the source at some instants that form a Poisson
process. A node that receives a copy of the file stores it so that it may transmit
it to some potential destinations that may search for a copy of the file.

We assume that it is desirable that the number of mobiles that have a copy
of the file be close to some fixed threshold. Distributing the file to a number of
mobiles larger than this threshold is not desirable since transmitting and storing
the file costs resources (such as memory).

We further assume that the life time of the mobiles is finite due to the finite
energy stored in their battery. There is some rate at which the battery empties,
which is assumed to be unknown and to change in time in an unpredictable way.
We call this the departure rate.
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In order to compensate for the mobiles that become not operational due to
battery energy limitation, other mobiles are added to the network (these could
be viewed as mobiles that managed to recharge their battery). The new mobiles
join at some instants, described by a Poisson process. The rate of this process is
assumed to be controlled by the network.

We describe the random evolution of this system and obtain an ODE (ordinary
differential equation) for the evolution of the expected number of mobiles that
have a copy of the file and of those that do not. We assume that the departure
rate od mobiles is unknown and may change in time in an unpredictable way.
We then formulate a robust control problem, that of obtaining a policy for the
network control that guarantees the best performance under the worst (time
varying) departure rate. We formulate the problem as a H∞ control problem,
which we transform into an equivalent zero-sum differential game. We provide
an explicit solution to this game using the theory of linear-quadratic zero-sum
differential games [5,11]. This problem can thus be seen as one with an additional
malicious player that has an opposite performance objective.

Various adversarial approaches have been often used in networking to solve
problems in which some parameter may vary in time in an unknown way. A
paradigm that has been used frequently in scheduling and routing problems
which falls into this category is the competitive online algorithmic paradigm
[1]. The H∞ control theory [5] that we use here is yet another such paradigm
that has been used in the context of flow control [3,6,16]. We are not aware of
previous applications of adversarial type approachess for the control of epidemic
type models.

The two-hop routing protocol considered here was first introduced by Gröss-
glauser and Tse in [9]; the main goal there was to characterize the capacity of
mobile ad-hoc networks and the two-hop protocol was meant to overcome severe
limitations of static networks capacity obtained in [10]. Two-hop routing, in
particular, provides a convenient compromise of energy versus delay compared
to epidemic routing; the standard reference work for the analysis of the two-hop
relaying protocol is [8]. Fluid approximations and infection spreading models
similar to those we use here are described extensively in [13].

Algorithms to control forwarding in DTNs have been proposed in the recent
literature, e.g, [12], [7]. In [12], the authors describe an epidemic forwarding
protocol based on the susceptible-infected-removed (SIR) model [13]. They show
that it is possible to increase the message delivery probability by tuning the
parameters of the underlying SIR model. In [7] a detailed general framework is
proposed in order to capture the relative performances of different self-limiting
strategies. Finally, under a fluid model approximation, the work in [4] provides
a general framework for the optimal control of the broad class of monotone relay
strategies, i.e., policies where the number of copies do not decrease over time. It
is proved there that optimal forwarding policies are of threshold type.

The present paper is the first one we know of that utilizes tools and framework
of robust control and linear-quadratic zero-sum differential games in the context
of controlling DTNs, or more generally, controlling propagations of epidemics.
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2 The Model

Each mobile of the DTN is assumed to be in the communication range of the
source at some time instant governed by a Poisson process with rate ηt. Further:

– x is the expected number of nodes that have the file and y is the expected
number of nodes that do not, with xt and yt denoting their values at time t.

– The source is in contact with each mobile without file at a rate ηt. Thus at
a rate of ηtyt, mobiles without a file transform into type xt mobiles.

– There is a stream of new mobiles (without files) that join the system at a
rate λt

– Mobiles that have the file die at a rate νtx, where νt is unknown to the
source and may change in time.

Introduce the following pair of coupled ordinary differential equations (ODEs),
for t ≥ 0: {

ẋt = ηtyt − νtxt , x0 = 0 ,
ẏt = −ηtyt + λt , y0 = 0 .

(1)

These equations can be shown to correspond to the mean field limit of the ac-
tual number of mobiles with and without the file, with some appropriate scalings
when scaled properly [15,17]. Interestingly, however, these are not just approx-
imations; they in fact describe the precise dynamics of the expected numbers
of mobiles with and without a copy of the file.

We will now let ut := ηtyt and μt := νtxt, in view of which (1) is written as:{
ẋt = ut − μt , x0 = 0 ,
ẏt = −ut + λt , y0 = 0 ,

(2)

which is a linear, controlled dynamics.
Next we introduce the cost structure. We assume that it is desired for some

target number x of nodes to have a copy of the file. Due to energy and memory
constraints, it is desirable not to exceed this number. The energy for the source
to transmit at a rate ut increases with ut, so the corresponding cost should be
an increasing function of ut.

The reasoning above as well as practical implementations lead to the following
instantaneous cost:

c(t) = (xt − x̄)2 + u2
t (3)

The controller, u, will be picked to minimize C given by

C(u, μ) =
∫ tf

0

c(t)dt , (4)

where [0, tf ] is the horizon of interest.

Remark 1. Since, as it will turn out, ut is positive and xt < x, the instantaneous
cost is indeed an increasing function of ut, and it forces xt to stay close to x.
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Remark 2. As another motivation or justification for the quadratic cost on the
control, we offer the following explanation. Signaling is needed in order for the
source to be able to know whether a mobile that does not have the file is within
its transmission range. Assume that this signaling is done by each such mobile
by periodical sending of beacons. The control variable ηt can then be interpreted
as the frequency of beaconing per mobile, and ut is the total beaconing rate of
all mobiles. Thus ut can be interpreted as the signaling energy expended by all
terminals.

Because of the way the control u was introduced, as a control policy we have
to restrict it to depend on the current value of y and not on the current value
of x, and hence with respect to state x it is an open-loop policy. Note also that
since the cost does not depend on y, the value of y (and hence the dynamics
that generate y) does not enter into the optimization problem. Hence we can
essentially work with a scalar state equation, and once we obtain the optimal u
(say u∗

t at time t) the optimal value of the original decision variable η can be
obtained by dividing u∗

t by yt, assuming that the latter is nonzero.
Now, since μt drives the state equation (and hence affects the value of the

cost function), optimal choice of the control cannot be obtained independently
of μ. Further, since the control does not know μt, it is reasonable to adopt a
worst-case approach, where we see μ as controlled by an adversary. This is the
framework of robust control, or H∞ control [5], where the goal is to minimize the
effect of μ on C, by a proper choice of u. We therefore seek to solve the inf sup
problem:

inf
u

sup
μ

C(u, μ)
1
2

‖μ‖ =: γ∗

where ‖μ‖2 :=
∫ tf

0
μ2

t dt, and are interested in the corresponding minimizing
control u∗. Since, it is not always possible to achieve γ∗, it would be sufficient
to find a control that would achieve a value of γ slightly higher than γ∗, say by
an ε > 0. Then what we are looking for is a control uγ achieving1

sup
μ

C(uγ , μ)
1
2

‖μ‖ ≤ γ∗ + ε =: γ(ε)

Now following [5], this is equivalent to finding uγ that guarantees that

Lγ(uγ , μ) := C(uγ , μ)− γ2‖μ‖2 ≤ 0

for all μ, and doing this for “smallest” possible γ. What we have here is a zero-
sum differential game with kernel Lγ(u, μ), parametrized by γ. It turns out [5]

1 Since the goal is to drive x to x and not to zero as in standard H∞ control, the
formulation here does not fit the standard H∞ optimal control formulation, but
after the problem is brought into the linear-quadratic differential game format, the
standard theory becomes applicable as to be seen shortly.
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that for each γ > γ∗ this differential game admits a saddle-point solution, that
is (uγ , μγ) such that for every u and μ,

Lγ(uγ , μ) ≤ Lγ(uγ , μγ) ≤ Lγ(u, μγ) .

Here Lγ(uγ , μγ) is the value of the game with objective function

Lγ(u, μ) =
∫ tf

0

((x − x)2 + u2 − γ2μ2)dt

An interpretation of the zero-sum differential game

We may view the above zero-sum differential game as arising in the context of
a transmission problem with a malicious player. Instead of assuming that each
mobile leaves at an unknown rate of νt, we assume that it would stay in the
system in the absence of the malicious player. However, the latter transmits to
the mobiles some virus at a rate of μt = νtxt, and as a result, these mobiles go
out of operation at the rate μt. And the malicious player attempts to maximize
the quantity the control is trying to minimize, by also respecting some cost on
energy

D =
∫ tf

0

μ2
t dt

which enters the objective function as a soft constraint. Note that, because of the
relationship μt = νtxt, we are looking for a maximizing policy that is a function
of the state x, that is a closed-loop policy. As well known from theory of H∞

control, however, whether the maximizing player uses closed-loop or open-loop
policy is inconsequential, and the optimum value of γ, γ∗, does not depend on it
[5]. Accordingly, in the presentation of the solution in the next section, we will
occasionally also use open-loop policies for the maximizer.

3 The Saddle-Point Solution

Our goal is to find a saddle point of Lγ . Introducing the shifted state variable,

x̃t := xt − x ,

we have:
˙̃x = ut − μt , x̃0 = −x̄ , (5)

Lγ(u, μ) =
∫ tf

0

(x̃2
t + u2

t − γ2μ2
t )dt . (6)

This is a standard linear quadratic zero-sum differential game (the dynamics
are linear and the cost is quadratic in both the state and the control variables
(of both players)), and recall also that as discussed in the previous section the
minimizing player has access to open-loop information (that is u will be only a
function of t and x), whereas the maximizing player has access to closed-loop
information but could as well be taken (initially) also to be open loop without
any loss (or gain) in performance. The theory of chapter 4 of [5] directly applies,
and we have the solution presented in stages in the subsections below.
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3.1 Computing the Value γ∗

Before solving for the saddle point, we first need to determine the values of
γ > 0 for which such a saddle point exists, or in other words the upper value
of the game is bounded. The answer lies in the solution of the following Riccati
differential equation

ṡ + 1 +
1
γ2

s2 = 0 , s(tf ) = 0 , (7)

which has the following general solution:

s = γ
a cos t

γ − b sin t
γ

a sin t
γ + b cos t

γ

(8)

Using the terminal condition s(tf ) = 0, we get

tan
tf
γ

=
a

b
(9)

A feasible γ is one for which s is finite in the interval [0, tf ], that is there is no
finite escape. S goes to infinity only if the term in the denominator goes to zero,
which will happen for all times t that satisfy tan(t/γ) = −b/a = −1/ tan(tf/γ).
Hence γ is feasible if the t that satisfies this condition falls outside the interval
[0, tf ], which happens if tf/γ < π, or in other words, γ > tf/π. Therefore, the
open-loop zero sum differential game has a unique open-loop saddle point for all
γ >

tf

π , and the γ∗ introduced earlier is equal to this value, that is γ∗ = tf

π . For
γ < γ∗, the upper value of the game is unbounded when the minimizing player
is restricted to open-loop policies.

3.2 The Solution

We now proceed to solve for the saddle point. The relevant Riccati differential
equation in this case is (see, [5], p. 135):

ż = −1 + qz2; z(tf ) = 0, q := (1− 1
γ2

) (10)

The general solution for z is −t + k if γ = 1. Else, z = −ẇ/qw, where w solves

ẅ − qw = 0 , (11)

which admits the general solution

w =
{

a exp +
√

qt + b exp−√qt , q > 0
a sin

√−qt + b cos
√−qt , q < 0 (12)

where a and b are parameters to be determined from the terminal condition
(actually, the only relevant quantity is a/b, and thus we henceforth let b = 1).
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Note also that we are interested in this solution to the extent that w remains
bounded away from zero, because at w(t) = 0, z will be unbounded. As we will
see next, this will place a restriction on the range of values q and thus γ can
take. What we know (without doing any computation), however, is that the the
Riccati differential equation (10) will admit a unique solution whenever (7) does,
and hence if (γ,∞) is the range of feasible values of γ for (10), then γ < γ∗, and
further that γ < 1; see [5].

Therefore, we have (as the solution to the original Riccati differential equation
(10)):

z =

⎧⎪⎨
⎪⎩

−1√
q

a exp
√

qt−exp(−√
qt)

a exp
√

qt+exp(−√
qt) γ > 1

−t + k γ = 1
1√−q

a cos
√
−qt−sin

√
−qt

a sin
√−qt+cos

√−qt
γ < γ < 1

(13)

where the parameters a and k are determined by the condition z(tf) = 0, and
γ is the value of γ which makes the denominator of the third expression in (13)
zero. Carrying this out, we obtain: k = tf ,

a =
{

exp(−2
√

qtf ) , γ > 1
tan

√−qtf , γ < γ < 1 (14)

and γ = 2tf/
√

π2 + 4t2f . In view of these, (13) becomes (parameterized by γ)

zγ =

⎧⎪⎨
⎪⎩

1√
q tanh(

√
q(tf − t)) γ > 1

tf − t γ = 1
1√
−q

tan(
√−q(tf − t)) γ < γ < 1

(15)

The open-loop saddle-point solution is given by

u∗
t = −zγ(t)x̃∗

t , μ∗
t = −γ−2zγ(t)x̃∗

t ,

where γ has to satisfy γ > γ∗ = tf/π, and x̃∗
t , t ≥ 0, is the corresponding

trajectory of the shifted state, obtained from

˙̃x∗
t = −(1− γ−2)zγ(t)x̃∗

t , x̃∗
0 = −x̄ . (16)

The corresponding trajectory for y can be obtained by substituting u back into
the second ODE of (1):

y∗
t =
∫ t

0

[zγ(s)x̃∗
s + λs] dt .

To ensure that y∗ stays positive, the input rate should be chosen to satisfy

λt > −zγ(t)x̃∗
t
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A few remarks are in order here:

First, for the saddle-point solution obtained above to relate to the original
problem posed, we have to have x∗

t positive for all t, which means that x̃∗
t should

be nondecreasing in t. This will be achieved only if γ > 1, and hence we need
(in view of the earlier open-loop condition)

γ > max(1, tf/π) .

Second, to obtain the corresponding contact rate (ηt), we have to divide u∗
t

by y∗
t , leading to

η∗
t = −zγ(t)x̃∗

t /y∗
t ,

which is positive. This, however, is well defined as long as we start y∗ not at
0 at t = 0, but at some positive value (that is, the expected value of mobiles
without the file initially, or at the time optimization kicks in, should be positive);
otherwise the rate will be infinite.

Third, to obtain the corresponding dying rate, we have to divide μ∗
t by x∗

t ,
leading to

ν∗
t = −γ−2zγ(t)x̃∗

t /(x̃∗
t + x) ,

which is positive. Again, the denominator of this expression is 0 at t = 0, and
hence an adjustment has to be made so that x∗

0 > 0 and not 0, which would be
a small perturbation on the initial state.

Note that the condition on the positivity of the initial conditions is not consis-
tent with the assumption that we had made in eq (1) (that the initial conditions
are zero). However, since the solutions are continuous in the initial conditions,
the departure from optimality will be tolerable if we take them to be positive
but close to zero.

One can obtain explicit expressions for the corresponding contact rate and
the dying rate by first noting that

dx̃

dt
= −qzγ(t)x̃

Hence

ln(−x̃(T ))− ln(−x̃(0)) = −q

∫ T

0

1
√

q
tanh(

√
q(tf − t))dt

= −√q

∫ T

0

tanh(
√

q(tf − t))dt

= −√q

∫ T

0

exp(
√

q(tf − t))− exp(−√q(tf − t))
exp(

√
q(tf − t)) + exp(−√q(tf − t))

dt

=
∫ exp(

√
q(tf−T ))+exp(−√

q(tf−T ))

exp(
√

qtf )+exp(−√
qtf )

1
u

du
(with the change of variable

u = exp(
√

q(tf − t))
+exp(−√

q(tf − t)))

= ln

(
cosh(

√
q(tf − T ))

cosh(
√

qtf )

)
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Hence, for any γ > 1, we have:

x̃t = −x

(
cosh(

√
q(tf − t))

cosh(
√

qtf )

)

We obtain finally the following expression for the control ηt, which gives the
the arrival rate of mobiles with the file:

ut

yt
=

−zγ(t)x̃∗
t∫ t

0
[zγ(s)x̃∗

s + λs] dt
=

x√
q

sinh(
√

q(tf−t))

cosh(
√

qtf )

−x√
q

∫ t

0

sinh(
√

q(tf−t))

cosh(
√

qtf ) dt +
∫ t

0
λsdt + y0

=
x√
q

sinh(
√

q(tf−t))

cosh(
√

qtf )

x
q

cosh(
√

q(tf−t))−cosh(
√

qtf )

cosh(
√

qtf ) +
∫ t

0 λsdt + y0

=
x
√

qsinh(
√

q(tf − t))

xcosh(
√

q(tf − t))− xcosh(
√

qtf ) + qcosh(
√

qtf )
(∫ t

0 λsdt + y0

) (17)

For ν we get the following expression:

1−q√
q sinh(

√
q(tf − t))

cosh(
√

qtf )− cos(
√

q(tf − t))

Numerical examples. Below we present the evolution of the states and con-
trollers over the time interval ≤ 0 ≤ 10. We use the parameters λ = 3 (constant
in time), y0 = 4, γ = 5, x = 40. The figures display the mean number of infected
nodes, the control actions of both controllers and the instantaneous cost; all
these are plotted against time.
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4 Conclusions

DTNs exhibit many special features that make them hard to control: the popu-
lation of mobiles may be large, relevant information may be unavailable or may
take time to arrive. The complexity of these systems often pushes us to come
with simplified models (including Poisson contact processes) which allows us to
describe some features of the model through exact closed form formulas. The lin-
ear quadratic control is one central framework that enables derivation of optimal
control through the use of closed form formulae.

In deriving simplified control models, it is desirable to have not only simplicity
but also robustness. In particular, the model should not to be too sensitive to
the simplifying assumptions that lead to it. The H∞ control is an appropriate
framework that allows one on the one hand to include the simplicity of the linear
quadratic framework, and, on the other, to account for some complexities and
imprecisions. To our knowledge, this is the first attempt to use the H∞ paradigm
in the context DTNs. The problem presented here is not directly one of security,
but the solution approach is well adapted to many potential security problems.
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Abstract. Botnets are networks of computers infected with malicious
programs that allow cybercriminals/botnet herders to control the in-
fected machines remotely without the user’s knowledge. In many cases,
botnet herders are motivated by economic incentives and try to signif-
icantly profit from illegal botnet activity while causing significant eco-
nomic damage to society. To analyze the economic aspects of botnet
activity and suggest feasible defensive strategies, we provide a compre-
hensive game theoretical framework that models the interaction between
the botnet herder and the defender group (network/computer users). In
our framework, a botnet herder’s goal is to intensify his intrusion in a
network of computers for pursuing economic profits whereas the defender
group’s goal is to defend botnet herder’s intrusion. The percentage of in-
fected computers in the network evolves according to a modified SIS
(susceptible-infectious-susceptible) epidemic model. For a given level of
network defense, we define the strategy of the botnet herder as the solu-
tion of a control problem and obtain the optimal strategy as a feedback
on the rate of infection. In addition, using a differential game model, we
obtain two possible closed-loop Nash equilibrium solutions. They depend
on the effectiveness of available defense strategies and control/strategy
switching thresholds, specified as rates of infection. The two equilibria
are either (1) the defender group defends at maximum level while the
botnet herder exerts an intermediate constant intensity attack effort or
(2) the defender group applies an intermediate constant intensity defense
effort while the botnet herder attacks at full power.

Keywords: Botnet Defense, Differential Game, Nash Equilibrium.

1 Introduction

According to recent reports from Russian-based Kaspersky Labs [22] and Syman-
tec [21], botnets (zombie networks)currently pose the biggest threat to the
cybersecurity. In fact, Botnets have become a significant source of income for
cybercriminals. According to [18], sources of income for the botnet business
include distributed denial of service attacks, theft of confidential information,
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spam, phishing, search engine optimization spam, click fraud, and distribution
of adware and malicious programs.

To analyze the economic aspects of botnet activity and suggest feasible de-
fensive strategies, we provide a comprehensive game theoretical framework that
models the interaction between the botnet herder and the defender group (net-
work/computer users). In our framework, a botnet herder’s goal is to maxi-
mize his profits (equivalently minimize his cost) by intensifying his intrusion in
a network of computers whereas the defender group’s goal is to maximize his
profits/benefits (equivalently minimize his cost/loss) by defending the infection
of computers. In view of the contagion of malicious programs used to expand
botnets among computers, we model the evolution of percentage of infected com-
puters in the network with an SIS epidemic model, in which a computer state
may be either susceptible or infectious. The reason we work on an SIS model
is due to the fact that a computer may be subject to multiple vulnerabilities
and thus a computer is still vulnerable even recovering from one susceptibility.
Moreover, [3] has confirmed that an SIS model depicts the dynamics of botnet
transmission well in a 6-month experimental study.

Under a fixed level of defense applied by the defender group, we define botnet
herder’s optimal attack strategy as the solution to a cost minimization control
problem. In addition, we solve the simultaneous move differential game between
the botnet herder and the defender group. Each player optimizes his objective
while considering their opponent’s action. For the differential game, under equi-
librium, we predict that either one of the players but not both will always play
“full effort” strategy. The outcome hinges on the effectiveness of available de-
fense strategies and control/strategy switching thresholds. Switching thresholds
are determined by rates of infection, at which point the player alters his action
optimally. The existence of playing “full effort” strategy by one party under
equilibrium is because the intermediate effort level strategy is not admissible.
When the most effective defense strategy available cannot efficiently reduce the
spread of malicious program, it drives the botnet activity towards the equilib-
rium such that the defender group defends at maximum level and the botnet
herder exerts an intermediate constant attack effort. One point to mention here
is that the defender group may reduce the equilibrium infection size by posing
severe penalties to botnet herder’s attack effort. The other equilibrium is that
the defender group exerts an intermediate constant defense effort and the bot-
net herder attacks at full power. This equilibrium occurs when the least effective
defense strategy cannot efficiently deter the propagation of malicious program
but the most effective one can reduce the infection successfully. These results
indicate that in some cases trying to defend against botnet activity may not
be economically feasible instead the goal should be to limit the damage to an
acceptable level. Also when significant resources are allocated to defend against
particular botnet activity, botnet herders will choose to reduce their attack effort
even if the defensive strategies are not very effective. To our knowledge, none of
previous works suggested these two different equilibrium strategies.
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2 Related Work

Our framework exploits the epidemic model to characterize the fact that bots
(infected machines) may spread malware to other hosts connected to the network.
Studies related to epidemic models and computer worms in networks center on
two themes. One theme focuses on the study of the epidemic thresholds on the
network, for example [7]. The other theme combines the epidemic model with
defense measures to study worm propagation or the optimal patch deployment
process across networks, for example, [14], [10] and among others.

Recognizing the interdependent security impacts, researchers recently have
combined the epidemic model with game theoretical modeling to capture inter-
dependent security decisions, for example [5], [11], [12] and among others. Our
paper instead focuses on strategic interactions between the botnet herder and
the defender group in which both groups can affect infection evolution with in-
terdependent security problems captured by the contact transmission dynamics.

We develop a differential game model between the botnet herder and the
defender group for simultaneous moves. Both players take actions that optimize
their objective while also considering the actions of their opponent. The use of
game theory in modeling interactions between an attacker and a defender has
been adopted widely in the computer security domain recently, for example, [16],
[17] and [9] among others. Most of the works focus on the matrix game setting.
Our work focuses on continuous time state evolution and control application,
solving differential games for optimal policies.

As botnet threats have become an increasing concern, the volume of research
papers dealing with this issue increases. [18] discusses the economics of botnet
in detail. [15] studies the use of honeypots to deter the development of a botnet.
[11] studies the botnet security problem focusing on the interconnected host’s
security solution to the contagious risk. [19] models botnet related cybercrimes
as a result of profit-maximizing decision making from the economic prospectives
of both botnet masters and renters/attackers.

We study botnet problems in a game theoretical framework from two different
angles. For a given level of network defense, like [19], we consider botnet related
cybercrimes as a result of profit-maximizing (equivalently cost minimization)
decision making. However, instead of studying uncertainty impacts from honey-
pots, we concentrate on finding the botnet herder’s optimal attack strategy. This
provides a useful idea of potential botnet activity equilibrium for a given level of
network defense. Unlike [19] but similar to [11], the contagious risk of malware
propagation is considered to incorporate interdependent security. Nevertheless,
we employ the epidemic evolutionary process directly rather than exogenously
assigning the transition probability of states as in [11]. For simultaneous moves,
different from [11] which considers the defender group’s interdependent secu-
rity game, we work on the botnet herder’s and the defender group’s strategic
optimization in response to their opponent’s actions while incorporating inter-
dependent security problems.
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The other article similar to ours is [13] in which they mainly focus on one shot
game and analyze botnet herder’s attack coordinations as well as defender’s inter-
dependent security defense decision. They obtain multiple Nash equilibria under
different conditions. We focus on a continuous state evolution model, in which
the state evolves according to the botnet herder’s and the defender group’s ac-
tions and contact transmission, so do both players’ corresponding payoffs/costs.
For a given level of network defense, we obtain botnet herder’s optimal attack
strategy as a feedback on the rate of infection. The steady state equilibrium exists
with an intermediate constant intensity attack effort . This prediction is some-
what similar to that of short discussion of extensive-form games in the appendix
of [13]. Surprisingly, for simultaneous moves, we arrive at different equilibrium
results in which either one of the players will always play “full effort” strategies.

3 Epidemic Model

In the area of virus and worm modeling, many studies have employed epidemi-
ological models to understand the general characteristic of worm propagation.
Depending on the model specifications, the state of a computer at a given time
can be infectious, susceptible (vulnerable to a worm) or immune (excluded from
further dynamics). In this study, we base our dynamics of percentage of infected
computers in a network on a modified SIS model. This allows us to incorporate
the attacker’s and defender’s strategies into the system dynamics.

3.1 Deterministic SIS Model

Because a computer may be subject to multiple vulnerabilities, a computer is still
vulnerable even recovering from one susceptibility. Therefore, it is reasonable to
work on an SIS model. Moreover, [3] has confirmed that an SIS model depicts the
dynamics of botnet transmission well in a 6-month experimental study. In the
classical SIS model, such as [8] and [4], a recovered host immediately becomes
susceptible again. That is, each host stays in one of two states: susceptible or
infectious. For a fixed population system with N hosts, let S(t) and I(t) denote
the number of susceptible and infectious hosts at time t respectively; then the
dynamic of the system is described by the following set of differential equations:{

dy(t)
dt = −βx(t)y(t) + γx(t), y(0) = 1− x0

dx(t)
dt = βx(t)y(t) − γx(t), x(0) = x0, 0 ≤ x0 ≤ 1

, (1)

where y(t) = S(t)/N , the percentage of susceptible nodes at time t, x(t) =
I(t)/N , the percentage of infectious nodes at time t, β ≥ 0 is the average number
of transmissions possible from a given infected host in each period, and γ ≥ 0 is
the recovery rate.
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3.2 Modified SIS Model − The State Equation

Our model bases on the classical SIS model with some modifications given1:

dx(t)
dt

=cvH(t)
(
1− x(t)

)
+ βx(t)

(
1− x(t)

)
−
(
γmin + vD(t)(γmax − γmin)

)
x(t), x(0) = x0, 0 ≤ x0 ≤ 1 (2)

The time argument will be suppressed in future where no confusion arises.
In (2),

1. cvH(1− x) expresses the increment of percentage of infected computers due
to botnet herder’s ongoing direct attack effort (not from contagion), where
c is the average attack successful rate and vH ∈ [0, 1] is the attack effort
intensity, the botnet herder’s control, indicating how aggressively the botnet
herder tries to intensify his intrusion2.

2. vD ∈ [0, 1] depicts the defender group’s defense effort, the defender group’s
control. In our specification, we assume that there is a set of available defense
strategies which can range the effectiveness of defense from minimum level to
maximum level. We relate the effectiveness to the recovery rate coefficient3

γ, and associate defensive strategies with minimum and maximum effective-
ness by γmin and γmax respectively. From the term γmin + vD(γmax − γmin),
it is clear that, through the defense effort, vD, the defender group is able
to attain the defense effectiveness within the range of minimal and maxi-
mal effectiveness provided by available defense strategies. That is, vD signals
the defense strategy chosen by the defender group. For example, if vD = 1,
the defender group exerts a full defense effort to achieve the maximal effec-
tiveness, γmax. In other words, the defender group chooses the best defense
strategy available.

4 Game between Botnet Herder and Defender Group

We begin with a simplified game, in which the botnet herder solves his optimal
intrusion in response to a given level of defense strategies, and continue with a
simultaneous move game between the botnet herder and the defender group, in
which both parties solve their own optimal strategy in response to their oppo-
nent’s action.
1 From (1), dx(t)/dt+dy(t)/dt = 0 and x(0)+y(0) = 1, this implies that x(t)+y(t) = 1

for all t ≥ 0 . Now let y(t) = 1 − x(t) , we need only use the percentage of infected
computers to completely describe the network dynamics.

2 In [13], they do not consider the evolution explicitly, and they assume that the
attacker has the control of successful attack rate; in such a setting, we simply let
c = 1 and then vH will be equivalent to what they refer as a probability of successful
attack, p.

3 To control the defense effectiveness from recovery coefficient has the similar impli-
cations as control from the other coefficients, such as β, c.
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4.1 Main Assumption

We first briefly justify the rationality of main assumptions used in the model.

1. Botnet herder’s operational cost function fH(x) satisfies the conditions fH(x)′

< 0 and fH(x)′′ > 0. This assumption implies that botnet herder’s opera-
tional cost decreases at a decreasing rate as the number of infected computer
increases. In fact, the botnet herder’s operational cost can be defined as the
sum of fixed development cost4 and the loss from mismatching market de-
mand5. We next illustrate a possible cost function. Given a fixed network size
N , assuming that the development cost of the malicious program is C > 0 and
per unit loss from mismatching marketing demand, D > 0, is b > 0, the botnet
herder’s operational cost function can be specified as:fH(x) = C + b×eD−Nx.
The first term captures the fact of free duplicates after development, and the
second term captures the loss from mismatching market demand.

2. The defender group is assumed to be homogenous; thus we do not consider
the externality effect caused by the heterogenous behavior. We leave this for
our future work.

3. Defender group’s operational cost function (equivalently, loss value function)
fD(x) satisfies fD(x)′ > 0 and fD(x)′′ > 0. It is expected that the defend-
ing cost increases at an increasing rate as the number of infected machine
increases because the complexity of workloads and defense software program-
ming escalates and more professionals are needed to fix the problem.

4. The recovery rate provided by the defense strategy is faster than the contact
transmission rate, i.e., γ > β (or γmax > β). This is a reasonable assumption
since otherwise it may imply the case that all computers in the network are
compromised.

5. x∗
H < x∗

D: The steady-state infection percentage achieved when the botnet
herder exerts an intermediate attack effort and the defender group defends
at the maximum level is less than steady-state infection percentage reached
by the situation where the defender group exerts an intermediate defense
effort and the botnet herder attacks at the maximum level. This assumption
is intuitively understandable, since, cetris paribus, full attack coupled with
an intermediate level of defense shall cause a higher infection rate than the
maximal defense coupled with an intermediate level of attack.

4.2 Game under a Fixed Level of Defense

In this game, we solve the botnet herder’s best response when facing a fixed
level of defense. 6 The problem of interest here is the botnet herder’s optimal
4 Once the malicious program is developed, it is free to duplicate.
5 By [18], the more bots that the botnet herder owns, the more they can charge for

their bots.
6 It is reasonable to assume that defenders’ actions are observable to the botnet herder

since defenders are ”known” subjects to the botnet herder, but not vice versa. In
addition, to focus on an interested subject’s problem, it is common to fix a counter-
party’s strategy, for example [6] solves defenders’ five different interdependent secu-
rity games by assuming a certain level of attack.
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strategy. We do not need to consider the defender group’s various strategies and
action (the control); thus, for ease of presentation, we rewrite the state equation
(2) as:

dx

dt
= cv(1 − x) + βx(1 − x)− γx, x(0) = x0, 0 ≤ x0 ≤ 1 . (3)

Let f(x) be botnet herder’s cost function with f ′(x) < 0, and f ′′(x) > 0.
Next, let k > 0, a constant, be the per unit time cost associated with botnet
herder’s attack effort; thus his total cost of attack effort per unit time is v×k. We
may interpret this effort cost as the extra penalty cost from increasing probability
of getting caught due to the increasing severity of attack. This interpretation
is supported by an observed phenomenon in the real world botnet operation as
suggested by [20] and [13]. The botnet herder’s objective, subject to the dynamics
of (3), is to seek optimal intensity of attack effort v for minimizing discounted
total cost (operation cost plus effort cost) with a constant discount rate r over
an infinite time horizon:

inf
v(·)

{
Jx

(
v(·)
)

=
∫ ∞

0

e−rt
(
f(x) + kv

)
dt
}
, 0 ≤ v ≤ 1 . (4)

To solve the minimization problem, we form the current value Hamiltonian
associated with (4) given:

H(x, v(t), p) = f(x) + kv + p
(
cv(1− x) + βx(1 − x)− γx) . (5)

The first two terms in (5), f(x) + kv, represent botnet herder’s instantaneous
cost, while the third term represents the future cost of percentage change of
infected computers. We can interpret p(t) as the botnet herder’s marginal cost
at time t. The optimal control, v̂(t), is obtained by minimizing the Hamiltonian
H . Because the Hamiltonian is linear in v(t), the optimal control, v̂(t) takes the
following bang-bang and (a possible) singular form:

v̂(t) = �Hv<0 + u�Hv=0 with 0 < u < 1, to be determined, (6)

where Hv = ∂H
∂v(t) = k + pc(1 − x). When Hv < 0, the botnet herder exerts full

attack effort (v̂(t) = 1), and when Hv > 0, the botnet herder exerts zero attack
effort (v̂(t) = 0). When Hv = 0 and stays at this value, an intermediate level
of effort 0 < u < 1 is exerted. This phase is referred to as singular, which has
the additional steady-state property that the values of the control and the state
variables are constant in this region.

The adjoint equation is:

ṗ = −∂H

∂x
+ rp = −f ′(x) + p

(
cv + β(2x− 1) + γ + r

)
. (7)

Substituting (3) and (7) into Ḣv(= ∂Hv

∂t ) = ṗc(1− x)− pcẋ, and setting it equal
to zero, we obtain:

f ′(x) =
k

c(1− x)
(
β(1 − x)− γ

1− x
− r
)

. (8)
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We can solve (8) for the steady state percentage of infected computers, x∗, a
constant; the optimal feedback v̂(x) in this singular region is a fixed rate and
found by solving ẋ = 0 at x∗:

v̂(x∗) = u = −βx∗(1− x∗)− γx∗

c(1 − x∗)
. (9)

Theorem 1. The optimal feedback of the botnet herder is given:

v̂(x) = 1 if x < x∗; v̂(x) = u if x = x∗; v̂(x) = 0 if x > x∗, (10)

where u = −βx∗(1− x∗)− γx∗

c(1− x∗)
, and x∗ <

√
(c+γ−β)2+4cβ−(c+γ−β)

2β .

Proof. See Appendix A in [2]. ��

Theorem 1 states that if the starting percentage of infected computer x0 > x∗,
then it is optimal for the botnet herder to “reduce” his percentage of invasion
in the network to x∗ by exerting zero attack effort, v̂(x) = 0. The reason is that
once the percentage of infection passes the steady-state level, x∗, the opportunity
cost of getting caught/traced outweighs the size benefits of the operation cost.
If x0 < x∗, then the botnet herder aggressively leverages his infection in the
network up to x∗ by applying full attack effort, v̂(x) = 1. If x = x∗, then the
constant intensity of attack effort, v̂(x) = u, would be implemented and stays
at the same level afterwards. It may not be optimal for botnet herders to infect
too many computers since it would then attract too much attention. Therefore,
the possibility of getting caught increases, and in turn the botnet business may
eventually get hurt. The prediction of converging to an optimal steady state level
is supported by the recent observation of dormant Confiker botnet [20].

4.3 Nash Game between Botnet Herder and Defender Group

We now consider a simultaneous move game in which each player optimizes his
objective while considering his opponent’s action.

A. Botnet Herder. The botnet herder’s problem is similar to Sect. 4.2 except
that now he must consider defender group’s strategic interaction in solving his
optimization problem. Due to introducing another player, we now denote botnet
herder’s cost function, control, and the cost of effort per unit time by fH(·), vH(x)
and kH respectively.

B. Defender Group. As described in Sect. 3.2, there exists a set of available
defense strategies which can range the effectiveness of defense from minimal level
to maximal level, and we relate defense strategies with minimal and maximal
effectiveness by γmin, and γmax respectively. The defender group optimizes their
defense strategy by exerting their defense effort vD ∈ [0, 1], which can in turn
allow them to attain the effectiveness of defense within the range of minimal
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effectiveness and maximal effectiveness. That is, it signals the defense strategy
chosen by the defender group.

Without doubt, the defender group needs to pay costs to defend against infec-
tion. We relate the defender group’s operational cost with percentage of infected
computers denoted by fD(x) with f ′

D(x) > 0, and f ′′
D(x) > 0. In addition, the

defender group needs to pay extra costs as additional efforts taken to achieve
higher levels of defense. Let kD > 0, a constant, be the per unit time cost asso-
ciated with the defense effort; then the defender group’s total defense effort cost
per unit time is vD × kD. The defender group’s goal is to seek optimal intensity
of defense effort vD for minimizing discounted total cost over an infinite time
horizon taking into account the botnet herder’s action.

C. State Equation Recall. From Sect. 3.2, the dynamics of percentage of
infected computers in a network considering both parties’ strategies is given:

dx

dt
= cvH(1− x) + βx(1 − x)−

(
γmin + vD(γmax − γmax)

)
x, 0 ≤ x0 ≤ 1 . (11)

D. Differential Game. The botnet herder’s optimization problem is given:{
φH(x) = infvH(·)

{
JH

x

(
vH(·), vD(·)

)
=
∫∞
0 e−rt

(
fH(x) + kHvH

)
dt
}

0 ≤ vH ≤ 1
,

and the defender group’s optimization problem is given:{
φD(x) = infvD(·)

{
JD

x

(
vH(·), vD(·)

)
=
∫∞
0

e−rt
(
fD(x) + kDvD

)
dt
}

0 ≤ vD ≤ 1
;

both are subject to the dynamics of (11). The current value Hamiltonian asso-
ciated with the botnet herder’s and defender group’s optimization problems are
given in (12) and (13) respectively:

HH(x, vH(t), vD, p1) =fH(x) + vHkH + p1

(
cvH(1− x)

+ βx(1 − x)−
(
γmin + vD(γmax − γmin)

)
x
)

. (12)

HD(x, vH(t), vD, p2) =fD(x) + vDkD + p2

(
cvH(1− x)

+ βx(1 − x)−
(
γmin + vD(γmax − γmin)

)
x
)

. (13)

The interpretations of (12) and (13) are similar to (5). Since the Hamiltonian is
linear in the corresponding controls, vH and vD, the optimal controls, v̂H and v̂D,
take the bang-bang-(possible)singular forms, given in (14) and (15) respectively:

v̂H = �HH
vH

<0 + uH�HH
vH

=0, where 0 < uH < 1 is to be determined, (14)

v̂D = �HD
vD

<0 + uD�HD
vD

=0, where 0 < uD < 1 is to be determined, (15)

where HH
vH

= ∂HH

∂vH
= kH + p1c(1 − x) and HD

vD
= ∂HD

∂vD
= kD − p2(γmax − γmin).

The interpretations for (14)and (15) are the same as that for (6).
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E. Equilibrium Solution. We look for a Nash equilibrium solution such that

JH
x

(
v̂H(·), v̂D(·)

)
≤ JH

x

(
vH(·), v̂D(·)

)
, vH ∈ [0, 1] . (16)

JD
x

(
v̂H(·), v̂D(·)

)
≤ JD

x

(
v̂H(·), vD(·)

)
, vD ∈ [0, 1] . (17)

Employing (14) and (15), we can write the Hamiltonians ,(12) and (13), as:

ĤH(x, v̂H, v̂D, p1, p2) = fH(x) −
(
kH + p1cvH(1 − x)

)−
+ p1

(
βx(1 − x)− γminx

)
− p1(γmax − γmin)x

(
�HD

vD
<0 + uD�HD

vD
=0

)
. (18)

ĤD(x, v̂H, v̂D, p1, p2) = fD(x) −
(
kD − p2(γmax − γmin)x

)−
+ p2(βx(1 − x) − γminx) + p2c(1 − x)

(
�HH

vH
<0 + uH�HH

vH
=0

)
. (19)

From Dynamic Programming, the Nash equilibrium solution must satisfy the
following system of Bellman equations:{

rφH(x) = ĤH(x, v̂H, v̂D, φ′
H(x), φ′

D(x))
rφD(x) = ĤD(x, v̂H, v̂D, φ′

H(x), φ′
D(x))

. (20)

For facilitating presentation, we define the following notations:

(1) Define θH as the switching threshold for the botnet herder such that
v̂(θH) = 1 if x < θH, and v̂(θH) = 0 if x > θH.

(2) Define θD as the switching threshold for the defender group such that
v̂(θD) = 0 if x < θD, and v̂(θD) = 1 if x > θD.

(3) Set γ = γmax − γmin.

We are now ready to state solutions related to (20).

Theorem 2. Assume x∗
H < x∗

D where x∗
H and x∗

D are solutions to FH(x) =
f ′

H(x)c(1−x)+kH

(
r−β(1−x)+ γmax

1−x

)
= 0 and FD(x) = f ′

D(x)γx−kD

(
r+βx+ c

x

)
=

0 respectively. There exist two Nash equilibrium solutions:

1. For θH = x∗
H and θD ≤ x∗

H.
Assume (i) β < γmax and (ii) c(1− x∗

H) + βx∗
H(1− x∗

H)− γmaxx
∗
H > 0.

There exists a equilibrium solution at x∗
H such that the botnet herder ap-

plies optimal feedback policy with v̂H(x∗
H) = uH = − 1

c(1−x∗
H)

(
βx∗

H(1 − x∗
H) −

γmaxx
∗
H

)
and the defender group applies the optimal policy v̂D(x∗

H) = 1. The
optimal feedback for the botnet herder and the defender group can be sum-
marized as:
Botnet Herder:

v̂H(x) = 1 if x < x∗
H; v̂H(x) = uH if x = x∗

H; v̂H(x) = 0 if x > x∗
H. (21)

Defender Group:

v̂D(x) = 1 if x > θD; v̂D(x) = 0 if x < θD; v̂D(x∗
H) = 1. (22)
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2. For θD = x∗
D and x∗

D < θH.
Assume (i) c(1−x∗

D)+βx∗
D(1−x∗

D)−γmaxx
∗
D < 0. and (ii) c(1−x∗

D)+βx∗
D(1−

x∗
D)−γminx

∗
D > 0. There exists a equilibrium solution at x∗

D such that the bot-
net herder applies optimal feedback policy with v̂H(x∗

D) = 1 and the defender
group applies the optimal policy v̂D(x∗

D) = uD = c(1−x∗
D)+βx∗

D(1−x∗
D)−γmaxx∗

D
γx∗

D
.

The optimal feedback for the botnet herder and the defender group can be
summarized as:
Botnet Herder:

v̂H(x) = 1 if x < θH; v̂H(x) = 0 if x > θH; v̂H(x∗
D) = 1. (23)

Defender Group:

v̂D(x) = 1 if x > x∗
D; v̂D(x) = uD if x = x∗

D; v̂D(x) = 0 if x < x∗
D. (24)

In addition, if (1) c(1−x∗
H)+βx∗

H(1−x∗
H)−γmaxx

∗
H > 0, (2) c(1−x∗

D)+βx∗
D(1−

x∗
D)−γmaxx

∗
D < 0, (3) c(1−x∗

D)+βx∗
D(1−x∗

2)−γminx
∗
D > 0, and x̃H > x∗

D, x̃D < x∗
H,

we can either take θH = θD = x∗
H or θH = θD = x∗

D.

Proof. See Appendix B in [2]. ��

The above theorem states that there are two possible Nash equilibria. One equi-
librium occurs at the infection rate equal to x∗

H, a steady-state solution to the
botnet herder’s minimization problem given the full defense effort exerted from
the defender group. This equilibrium occurs where the most effective defense
strategy available cannot efficiently reduce the spread of malicious program;
thus an intermediate defense effort is not an admissible strategy (control) to
the defender group. This is an equilibrium such that the infection percentage
remains at x∗

H > θD. The botnet herder will exert full attack effort if x < x∗
H,

exert zero attack effort if x > x∗
H, and apply the intermediate constant control

v̂H(x∗) = uH when x = x∗
H and the state and the attack effort will remain at

this level. The defender group applies zero defense effort (v̂D = 0) if x < θD and
maximum defense effort (v̂D = 1) if x > θD. At x = θD, the defender group is
indifferent in taking either control since the state cannot remain on θD. When
the state reaches x∗

H, the equilibrium occurs and will stay at this level in which
the botnet herder applies the intermediate constant control uH and the defender
group maximizes his defense effort.

The other equilibrium occurs at the infection rate x∗
D < θH, a solution to

the defender group’s steady-state minimization problem given the full attack
effort from the botnet herder. This equilibrium occurs where the least effective
defense strategy cannot efficiently deter the propagation of malicious program,
but the one with maximal effectiveness can reduce the infection successfully. In
this environment, an intermediate level of attack effort is not admissible to the
botnet herder. This is an equilibrium such that the infection percentage remains
at x∗

D < θH with an intermediate constant defense effort from the defender group



146 A. Bensoussan, M. Kantarcioglu, and S.(C.) Hoe

and maximum attack from the botnet herder. The interpretation of the optimal
feedback policy for both parties is similar to the above paragraph.

We find that the equilibrium solution in which the botnet herder exerts a
constant attack effort, uH ∈ (0, 1) and the defender group maximizes his de-
fense level may be supported by the observation of Confiker botnet. It seems
that the Confiker botnet herder chooses to stay dormant to reduce its size since
the infection size may pass the optimal one, causing severe penalties from high
probability of getting caught. In addition, there may not be a powerful defense
strategy which could effectively deter this botnet. In the equilibrium, the best
that the defender group could do would be to apply maximal defense level avail-
able and the Confiker botnet owner may exert an intermediate constant attack
effort to stay at the optimal infection size for minimizing costs. We thus expect
this botnet may not stay dormant forever. It is to mention that the defender
group may reduce the equilibrium infection size by posing severe penalties. The
other equilibrium solution where the defender group exerts a constant defense
level, uD ∈ (0, 1) and the botnet herder maximizes his attack may predict a
situation such that this equilibrium infection size may yield the most benefits to
both parties.

5 Conclusion

We employ a game theoretical framework to analyze the economic aspects of
botnet activities and suggest feasible defensive strategies. The dynamics of in-
fected computers evolve according to a modified SIS epidemic model considering
both parties’ actions. For a given level of network defense, we obtain the botnet
herder’s optimal strategy as a feedback on the rate of infection. For simultaneous
moves, we solve the differential game and obtain two possible closed-loop Nash
equilibrium solutions. These predictions provide insights to the network soci-
ety as to how the equilibrium botnet activity might be given available defense
strategies. In addition, the optimal feedback policies may offer guidelines for the
network society to respond to the botnet attack strategically optimal. Realizing
that the evolution of infected computers may in fact not be fully controlled by
both parties’ actions alone, we are working on extending this SIS dynamics to
incorporating stochastic disturbances [1].

In addition, to implement the optimal control policies suggested by the model,
effective parameter values need to be obtained. We suggest to estimate the values
from empirical data. If the data is not empirically available, we suggest to imple-
ment an experimental project to simulate the possible attack-defense dynamics
for obtaining justifiable parameter values.

Acknowledgments. This work is partially funded by Office of Naval Research
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Abstract. Botnets are a serious threat on the Internet and require huge resources
to be thwarted. ISPs are in the best position to fight botnets and there are a number
of recently proposed initiatives that focus on how ISPs should detect and reme-
diate bots. However, it is very expensive for ISPs to do it alone and they would
probably welcome some external funding. Among others, botnets severely af-
fect ad networks (ANs), as botnets are increasingly used for ad fraud. Thus, ANs
have an economic incentive, but they are not in the best position to fight botnet
ad fraud. Consequently, ANs might be willing to subsidize the ISPs to do so. We
provide a game-theoretic model to study the strategic behavior of ISPs and ANs
and we identify the conditions under which ANs are likely to solve the problem
of botnet ad fraud by themselves and those under which the AN will subsidize
the ISP to achieve this goal. Our analytical and numerical results show that the
optimal strategy depends on the ad revenue loss of the ANs due to ad fraud and
the number of bots participating in ad fraud.

Keywords: Ad Fraud, Botnets, ISP, Ad Network, Security, Game Theory.

1 Introduction

Today, botnets are a very popular tool for perpetrating distributed attacks on the Internet.
Botnets are a serious threat for a number of entities: end users, enterprises with online
businesses, websites, Internet Service Providers (ISPs), advertisers and ad networks
(ANs). Botnets usually consist of compromised end users’ PCs. Thus, depending on the
malware, the consequences for end users can be severe (e.g., stolen credentials). Very
often botnets are used for sending spam, which creates problems for ISPs, enterprises
and end users. Botnet operators (aka bot masters) also use botnets to extort money from
websites’ owners under the threat of Distributed Denial of Service Attacks (DDoS).
Lately, it is becoming more and more popular to use botnets for ad fraud [4], which
creates a loss of ad revenue for advertisers, associated websites and ad networks and
security threats for end users (e.g., fraudulent ads that lead to phishing attacks).

Consequently, thwarting botnets would benefit everyone and would reduce the level
of online crime on the Internet. However, the problem of botnets in general cannot be
solved exclusively by users (lack of know-how), ISPs (too expensive to fight botnets
alone), ad networks, advertisers, websites and enterprises (lack of tools and resources).

Recent initiatives propose that ISPs should perform the detection of botnets and re-
mediation of the infected devices [20] [24]. Indeed, it is the ISPs that are in the best
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position to detect the presence of a botnet and to take measures against it. Yet, the
revenue of ISPs are not (directly) affected by the botnets and ISPs would probably wel-
come some external funding in the efforts to fight botnets. One possible approach is a
government-sponsored program, as in Australia [7] and Germany [10]. In the case gov-
ernments are unwilling to fund these initiatives, ISPs need to find a way to make them,
at the very least, cost neutral if not cost positive.

Over the last decade, online advertising has become a major component of the Web,
leading to annual revenues expressed in tens of billions of US Dollars (e.g., $22.4 billion
in the US in 2009 [5]). The business model of a fast growing number of online services
is based on online advertising and much of the Internet activity depends on that source
of revenue. Unsurprisingly, the ad revenue has caught the eye of many ill-intentioned
people who have started abusing the advertising system in various ways. In particular,
click fraud has become a phenomenon of alarming proportions [4]. Recently, a new
type of ad fraud attack has appeared, consisting in the on-the-fly modification of the
ads themselves. A prominent example is the Bahama botnet, in which malware causes
infected systems to display altered ads, as well as altered results for Google or Yahoo
searches to the end users [17]. Another example of such a botnet is Gumblar [16]. If the
modification of ads is successful, users see ads that are different from what they would
otherwise be. Consequently, users’ clicks on the altered ads generate a revenue for the
bot master instead of the AN. Thus, the modification of the ads negatively affects the
revenues of the “legitimate” advertisers and undermines the business model of the ANs.

Considering the increasing trend of botnet ad-fraud attacks and the consequently in-
creasing loss of ad revenue for ad networks, ANs have economic incentives to fight
botnets. However, ANs are not in the best position to thwart botnets themselves and
thus ANs might be willing to subsidize the ISPs to achieve that goal. In this paper, we
investigate whether ad fraud botnets alone are cause enough for ISPs and ANs to coop-
erate. Such cooperation would help ISPs deploy detection and remediation mechanisms
and would be a first step towards fighting all botnets.

The contributions of our paper are threefold. First, we identify two potential counter-
measures that ANs could use to address the problem of botnet ad fraud and we propose
a cooperation scheme in which ISPs and ANs jointly fight botnets. Second, we provide
a game-theoretic model to study the interactions between ISPs and ANs, as well as to
identify an optimal countermeasure strategy of ANs and ISPs under different condi-
tions. Finally, we apply the results to a real data set to study the practical impact. To
the best of our knowledge, this paper is the first to model the behavior of ISPs and ad
networks facing botnet ad fraud.

The rest of the paper is organized as follows. After a brief presentation of the state of
the art in Section 2, we describe the impact of botnets on the online advertising business
in Section 3. We then address the various threats and countermeasures in Section 4
and provide a case study of a botnet ad fraud in Section 5. In Section 6, we present a
game-theoretic model with two players, the ISP and the AN, and identify equilibrium
outcomes of that game. We provide a numerical example to study the practical impact
of the obtained results in Section 7 and conclude the paper in Section 8.
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2 Related Work

There are two main categories of literature that are relevant to our work: research on
fraud in online advertising and analyses of security investments on the Internet.

Research on online advertising fraud is mostly focused on click fraud [12] [15] [21].
Many problems that stem from online advertising and security gaps, especially the
consequences for the end users, are addressed in [13]. The economics of click fraud
are briefly addressed in [21]. In [8], the economic analysis based on a game-theoretic
model of the online advertising market, shows that ad networks that deploy effective
algorithms for click fraud detection gain a significant competitive advantage. If it is the
case that some ad networks do not fight click fraud, mechanisms are proposed in [14] to
protect online advertisers from paying for fraudulent clicks. In comparison, our model
does not address click fraud detection mechanisms but introduces a new strategic player
- the ISP - in addition to the traditional players in online advertising (i.e., ad networks,
advertisers and publishers). Our results show that this player can yield significant im-
plications for the security of the Internet.

In [30], the authors investigate novel man-in-the-middle attacks on online advertising
systems, which can be perpetrated by access networks (e.g., an ISP) to exploit online
advertising systems. The authors propose a collaborative secure scheme that relies on
web servers and ad networks to fix the identified vulnerabilities of online advertising
systems. This solution also relies on the fact that most of online advertising networks
own digital authentication certificates and can become a source of trust. The authors
explain why the deployment of this solution would benefit the Web browsing security in
general. In this paper we propose new approaches to thwart distributed ad fraud attacks,
where we address the possibility of collaboration between ISPs and ad networks.

Related to the second issue - finding the right incentives to increase the security
on the Internet - there are several contributions in the literature. The game-theoretic ap-
proach of [18] models how users choose between investments in security (e.g., firewalls)
or insurance (e.g., backup) mechanisms. The positive effect of cyberinsurance on the in-
vestment of agents in self-protection is analyzed using a game-theoretic model in [23].
The main conclusion of this work is that cyberinsurance without regulation does not
provide sufficient incentives for self-protection. Another line of work proposes a cen-
tralized certification mechanism to encourage ISPs to secure their traffic and analyzes
the resulting scheme using game theory [33]. In contrast to these works, our analysis
shows that Internet security can be increased, under given conditions, without any cen-
tral oversight and thanks to self-interested decisions by only a few key players (namely,
the ad networks and the ISPs).

In [31], the authors investigate the recent problem of ISPs becoming strategic partic-
ipants in the online advertising business. They propose a game-theoretic model of this
problem to study the behavior and interactions of the ISPs and ANs. Their results show
that if the users private information can improve ad targeting significantly and if ad net-
works do not have to pay a high share of revenue to the ISPs, ad networks and ISPs will
cooperate to jointly provide targeted online ads. Otherwise, ISPs will divert part of the
online ad revenue for themselves. In that case, if the diverted revenue is small, ad net-
works will not react. However, if their revenue loss is significant, the ad networks will
invest into improving the security of the Web and protecting their ad revenue. Our work
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also concludes that, when facing ad fraud, ANs are willing to collaborate with ISPs in
order to protect their ad revenue. However, since we consider a distributed threat (in
contrast to the centralized model in [31]) we propose new collaborative approach that
takes into consideration the economic incentives of the ANs and ISPs.

3 System Model

We consider a system consisting of an online advertising system, a number of bots that
attempt to exploit the online advertising system and an ISP, as depicted in Figure 1.

Ad Server
(AS)

User
(U)

1.
2.

3.
4.

Advertiser 1
(AV)

Advertiser 2
(AV)

Advertiser 3 
(AV)

Ad Network

ISP
Botnets

Website
(WS)

Fig. 1. System model: Online advertising system, ISP and bots exploiting the advertising system

3.1 Online Advertising Systems

The most prevalent model of serving online ads to end users is depicted in Figure 1.
To have their ads appear with the appropriate web content, Advertisers (AV) subscribe
with an ad network (AN) whose role is to automatically embed ads into web pages. Ad
networks have contracts with Websites (WS) that want to host advertisements. When
a User (U) visits a website (Figure 1, step 1) that hosts ads, while downloading the
content of the web page (step 2), the user’s browser will be directed to communicate
with one of the Ad Servers (AS) belonging to the ad network (step 3). The AS chooses
and serves (step 4) the most appropriate ads to the user, such that users’ interests are
matched and the potential revenue is maximized. Throughout the rest of the paper, we
use the terms “user” and “user’s browser” interchangeably.

In the most popular ad revenue model [5], advertisers pay a cost-per-click (CPC)
to the ad network for each user-generated click that directs the user’s browser to the
advertised website. The AN gives a fraction of the ad generated revenue to the WS that
hosted the ad. Popular websites that attract more visitors create more traffic towards
advertised websites, thus generating more revenue for themselves and for the associated
ad networks. Since we consider a single AN in our system model, we assume that all
the websites that host online ads are associated to that AN.

3.2 Botnets

A botnet is a collection of software robots, or bots, that run autonomously and automat-
ically. Bots are typically compromised computers running software, usually installed



ISPs and Ad Networks Against Botnet Ad Fraud 153

via drive-by downloads exploiting Web browser vulnerabilities, worms, Trojan horses
or backdoors, under a common command-and-control infrastructure. Recently, a botnet
of compromised wireless routers has been detected [25]. Such a botnet has the advan-
tage of having the bots almost always connected to the Internet (compared to the typical
end-user machine that is connected to the Internet only from time to time). In addition,
it is more difficult to detect that a device has been compromised, due to the lack of
security software for such devices (e.g., no anti-virus software) or by a user.

A bot master controls the botnet remotely, usually through a covert channel (e.g.,
Internet Relay Chat) and usually for nefarious purposes. According to Click Forensics,
a company that produces tools to detect and filter fraudulent clicks, for the third quarter
of 2009, 42.6% of fraudulent clicks came from bots (Figure 2)1 [4]. The number is
the highest in four years (since Click Forensics has been producing the reports). For
the same period in 2008, botnets accounted for 27.5% of fraudulent clicks. The data
show that using botnets for ad fraud is becoming more and more popular. This creates a
problem for advertisers, ad networks and websites as they lose a part of the ad revenue.
In the system model, we consider a number of compromised devices that run a malware
that causes infected machines to participate in an advertising fraud.

Fig. 2. Significance of botnet ad fraud: Botnet Click Fraud by Quarter

3.3 Internet Service Providers

The traditional role of an ISP is to provide Internet access to end users and to forward
users’ traffic in compliance with the Network Neutrality policy [11]. However, recently,
ISPs have begun taking on additional roles. In the EU, ISPs have to obtain and keep
the records about their users’ online activities and provide them upon request to law
enforcement agencies [1].

A new IETF intitiative focuses on how ISPs can manage the effects of devices used
by their subscribers, detect those that have been infected with malicious bots, notify the
subscribers and remediate the infection via various techniques [20]. The Internet Indus-
try Association (IIA) has also drafted a new code of conduct that suggests ISPs should
detect malware-infected machines of their subscribers and actually take the action to

1 Permission for inclusion obtained from ClickForensics Inc.
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address the problem [24]. Complying with these initiatives, ISPs would make it more
difficult for botnets to operate, thus helping to reduce the level of online crime on the
Web. However, the problem is that ISPs have to find funding for those initiatives.

One possible approach is a government-sponsored program, such as the Australian
Internet Security Initiative, in which a third-party helps identify malware-infected
devices, notifies the appropriate ISP which then notifies and helps the subscriber to
remedy the problem. About 90% of Australian ISP subscribers are covered by this ini-
tiative. A similar program is ready to be launched in 2010 in Germany, where ISPs are
cooperating with the German Federal Office for Information Security [10]. In the case
governments are unwilling to fund the initiative, ISPs need to find a way to make it, at
the very least, cost neutral if not cost positive. In our model, we consider an ISP that is
willing to comply to the initiative, if doing so is at least cost neutral.

4 Ad Fraud: Threats and Countermeasures

Due to the immense revenues generated by online advertising, the temptation to exploit
the online advertising system is high. The loss of revenue for ad networks due to ad
fraud is substantial. Based on the report from Click Forensics, the overall click-fraud
rate was around 14.1% in the third quarter of 2009 [4], which means that 14.1% of
the clicks on the ads were bogus. Thus, click fraud alone creates a significant loss of
revenue for ad networks, advertisers and publishers. In addition, ANs lose ad revenue
due to new types of ad fraud, such as injecting ads into the content of webpages on-the-
fly between a web server and a user [19, 26, 29].

One possible approach for ad networks to protect their revenue is to improve the se-
curity of the online advertising systems, thus making it more difficult for an adversary to
successfully exploit those systems. In [31], the authors use game theory to model AN’s
economic incentives and show that when facing ad fraud attacks securing ad systems
may maximize the revenue of a rational AN. For example, ad fraud can be reduced if
webpages and ads are served over HTTPS instead of HTTP. The cost of implementing
HTTPS at a web server includes the cost of obtaining a valid X.509 authentication cer-
tificate. Usually, website owners are not willing to bear this cost. Thus, if an ad network
wants the secure protocol to be deployed, it should cover the costs itself. As explained
previously, websites are not of the same value to the ad network, because of the differ-
ent ad revenue they generate, but the cost of securing the ad revenue from a website is
the same for all websites. Therefore, the ad network may decide to selectively secure
only the websites that generate sufficient ad revenue that would compensate the costs.

Another possible approach for ad networks to protect their revenue is to cooperate
with ISPs and eliminate the major cause of the revenue loss, botnets. They can do so by
funding the existing initiatives for IPSs to detect and remove botnets, since ISPs are in
a privileged position to fight botnets. As removing botnets would benefit ad networks,
they have economic incentives to subsidize ISPs to fight botnets.

Thus, we can envision the following two scenarios of ad networks fighting ad fraud:
(i) improving the security of the online advertising systems or (ii) funding ISPs to fight
botnets involved in ad frauds.
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5 Botnet Ad Fraud: A Case Study

Consider the system as described in Section 3, in which NB devices (e.g., end-users’s
computers or routers) have been infected by a malware and participate in ad fraud.
We consider exclusively the types of ad fraud: (i) that has been the most prominent
lately [16,17], in which malware causes infected devices to return altered Search Engine
Result Pages (SERPs) or altered content of the ads in web pages, due to DNS poisoning
and (ii) in which subverted users’ routers modify ad traffic on-the-fly between a web
server and a user [29]. In the example of Bahama botnet, malware uses DNS poisoning
by modifying HOSTS files on infected machines to redirect traffic to rogue Google
servers which return altered results [9]. Thus, affected users see ads and links that are
different from what they would otherwise be. When users click on the altered ads, the
clicks generate revenue for the bot master instead of the ad network. Thus, the bots
divert a part of the ad revenue from the ad network. For simplicity of treatment, we
assume that each bot diverts an equal part of the revenue and in aggregate, all the bots
together divert λ ∈ (0, 1] fraction of the total ad network’s revenue P . Thus, the revenue
of the AN in the case of ad fraud is P (1− λ).

The popularity of websites, and consequently the number of user-generated clicks
on ads, follow a heavy-tail distribution [6]. We infer the generated volume of clicks
on ads on the 1000 most popular websites, based on the data of page views on each
website in 2009, obtained from Compete.com. The exposure of users to online ads has
been evaluated extensively in [22], showing that 58% of the top 1000 websites host
advertisements and there are 8 ads per web page on average. The probability that a
click occurs on an advertisement is 0.1% [2]. Consequently, to convert the number of
page views into the number of clicks on ads on each website, we use the following
formula: Q(n)=(Page views on the website n )×0.58× 8× 0.001. Figure 3 shows the
annual number of clicks Q(n) on ads , where n ∈ {1, 2, · · ·1000} is the popularity rank
of a website.

Applying curve fitting to the data set, we obtain that the distribution of clicks on ads
across websites corresponds to the power law Q(n) = α·n−β , where Q(n) is the annual
number of clicks on ads that occurred at the website with the n-th rank. The obtained
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curve, Q(n) = αn−β = 3.18 · 109n−1.044
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parameters of the power law are α = 3.18 · 109 and β = 1.044 as shown in Figure 3. In
general, we assume that the number of clicks on ads follows the power law distribution
Q(n) = α ·n−β , where Q(n) is the annual number of clicks on ads that occurred at the
website with the n-th rank and β > 1 [6]. Note that the value of parameters α and β
are a characteristic of a given AN and depend on the number and the type of associated
websites. In order to extend our analysis and investigate what would be the effect on
the entire Web (i.e., for all websites), we extrapolate the data set we have obtained from
Compete.com with the obtained power law.

Given the power law distribution of the clicks, the ad revenue generated by the top x
websites can be estimated by2

k

∫ x

1

αn−βdn = k
α

(β − 1)
(1− x1−β),

where k is the amount of revenue that each click on ads generates for the ad network3.
If P is the total revenue of the ad network, generated by all the websites (i.e., when
x → ∞), then per-click revenue can be calculated by k = P (β−1)

α . According to the
reports [5], the total ad revenue P in 2009 in the US is 22.4 billion dollars.

In the following two subsections, we analyze the two proposed strategies (i.e., im-
proving the security of the online advertising system and cooperation between the AN
and the ISP) to fight botnet ad fraud. Table 1 shows the used notation.

5.1 Securing Websites

As a countermeasure to the considered type of ad fraud (i.e., rogue servers deliver-
ing altered ads due to DNS poisoning attack on users machines or on-the-fly traffic
modifications by compromised users’ routers), the AN can secure the communication
between users and web servers as well as between users and ad servers. For example,
secure communication can be provided by the HTTPS protocol. Deploying HTTPS re-
quires web servers to obtain an authentication certificate from a trusted third party. In
the case when websites and ad servers deploy HTTPS with valid authentication certifi-
cates, even if an adversary successfully mounts a DNS poisoning attack and redirects
users’ communication to rogue servers, the rogues servers cannot serve valid authenti-
cation certificates that correspond to the domain names users originally wanted to visit,
thus browsers will detect security issues. HTTPS also prevents on-the-fly modifications
of the content. Consequently, users would receive unaltered links and ads and the clicks
on unaltered ads would generate revenue for the intended AN, not the adversary.

As discussed in Section 4, website owners usually lack incentive to bear the cost
of obtaining a valid certificate. Thus, to secure the communication, and consequently
the ad revenue, the AN would have to pay a cost of securing the website. The cost of
deploying HTTPS at ad servers can be considered negligible, given that the AN already

2 Due to the impossibility of obtaining closed-form expressions in the discrete domain, we per-
form computations in the continuous domain. The upper bound of the error is 8% [32].

3 Modeling auctions and different per click revenue for ad networks is out of the scope of this
paper, thus we assume that all the clicks are of the same quality.
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Table 1. Table of symbols

Symbol Definition

NB Number of bots
λ Fraction of diverted ad revenue by the botnet
P Total online advertising revenue of the AN
k Amount of generated revenue for each click
Q(n) Number of clicks per year for the top 1000 websites
n Popularity rank of the websites
α and β Estimated parameters of power law distribution for Q(n)
cS Cost of securing a website
NS Optimal number of secured websites with S strategy
NSC Optimal number of secured websites with S + C strategy
PD Fraction of bots detected by the ISP
cD Cost of the botnet detection system
cR Cost for the ISP per remediated infected device
R Cost for the AN per remediated infected device
NR Optimal number of remediated infected devices
C Cooperation strategy (employed by the ISP or the AN)
S Secure websites strategy by the AN
S + C Simultaneous Secure and Cooperation strategy by the AN
A Abstain Strategy (employed by the ISP or the AN)

has a valid certificate and that there are typically only a few ad servers (compared to the
number of web servers).

Let cS be the cost of securing a website, i.e., the cost of obtaining a certificate and
deploying HTTPS at a web server. Then the AN should pay NS · cS to secure NS

websites. NS is the optimal number of websites that AN secures to maximize its payoff
in the presence of NB bots diverting fraction λ of the revenue. It can be calculated by
the following lemma.

Lemma 1. If the ad network fights botnet ad fraud by securing the websites, the optimal

number of those secured websites is equal to NS =
(

P
cS

λ(β − 1)
) 1

β

.

Proof. The total amount of revenue for the ad network (uAN ) when it secures x web-
sites, due to the attack of NB bots diverting fraction λ of the revenue, can be estimated
by

uAN = k

∫ x

1

αn−βdn + (1− λ)k
∫ ∞

x

αn−βdn− cSx.

Recall that k is the revenue generated per each click and can be calculated as P (β−1)
α .

The first term in the revenue equation represents the revenue that the AN obtains from
clicks generated on secured websites. The second term shows that the AN obtains only
the remaining fraction (1− λ) of the revenue from clicks generated on unsecured web-
sites, as the bots divert the fraction λ of the revenue.
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After simplifications we obtain: uAN = P (1 − λx1−β) − cSx, which is a concave
function of x. We can obtain the optimal NS by finding the root of the first derivation

of uAN with respect to x, that is
(

P
cS

λ(β − 1)
) 1

β

. ��

5.2 ISP and Ad Network Cooperation

In addition to the just described countermeasure of securing websites, the AN can offer
the ISP to cooperate in the fight against botnets. The AN has an economic incentive
to fund the ISP to perform detection of the botnets and remediation of the infected
devices, as discussed in Section 3. To detect bots in the network, the ISP must deploy
a detection system [20,24]. We note the deployment cost of the detection system as cD

and we assume that such a system can successfully detect a fraction PD of the bots in
the network. The proposed initiatives [20,24] envision an online help desk where all the
subscribers whose devices have been detected as bots can obtain instructions on how to
remediate the problem and restore the functionality of their devices. Thus, the ISP has
a cost per each remediated infected device, which we note as cR.

For the ISP to cooperate with the AN, the AN has to provide a sufficient reward such
that the detection and remediation is at least cost neutral for the ISP. Let R represent
the reward the AN should pay to the ISP for the remediation of each infected device.4

If the AN and the ISP agree to cooperate, the outcome is that the ISP remediates NR

infected devices and the AN pays NR · R to the ISP. The optimal NR that maximizes
both revenues, of the ISP and the AN, can be calculated by the following lemma.

Lemma 2. The cooperative ISP and the cooperative AN can maximize their revenues
by remediation of NR = PDNB infected devices.

Proof. The total amount of revenue that the ISP can obtain by cooperation and re-
mediation of x infected devices is x(R − cR) − cD which is a linear function of
x. Therefore, the ISP can maximize its revenue by remediating all of detected bots
PDNB . Remediation of x infected devices reduces the aggregate power of the bots
in the network, and together they can divert only a fraction λ(1 − x

NB
) of the rev-

enue. The total amount of revenue that the AN can obtain by cooperation is then

P (1 − λ(1 − x
NB

)) − xR =
(

Pλ
NB

−R
)

x + P (1 − λ), which is a linear function

with respect to x and will be maximized at x = NR = PDNB , i.e., for all of the de-
tected bots. ��
In summary, the ad network can use one of the above two actions to fight botnet ad
fraud in the Internet. Each strategy has different benefits and costs for the ISP and the
AN. In the next section, we use game theory to model this situation and consequently
predict the behavior of the AN and the ISP in different situations.

6 Game-Theoretic Model

In this section, we introduce a static game G to analyze the interaction between the ISP
and the AN. Our model considers potential strategies of the ISP and the AN to protect

4 Our model also applies to the case when ISPs and ANs jointly bear the costs (i.e., when it is
cost negative for ISPs to thwart the botnets) by adapting the values R or cR.
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Table 2. Static game: ISP chooses an action from {A, C}; AN from {A, C, S+C, S}. Strategy
profiles (C, A) and (S + C, A) are not applicable unless when ISP plays C.

ISP
A C

AN

A (0, P (1 − λ)) (−cD, P (1 − λ))

C N/A
(

NR(R − cR) − cD , P (1 − λ(1 − NR
NB

)) − NRR
)

S+C N/A
(

NR(R − cR) − cD, P (1 − λ(1 − NR
NB

)N1−β
SC ) − NSCcS − NRR

)
S
(
0, P (1 − λN1−β

S ) − NScS

) (
−cD, P (1 − λN1−β

S ) − NScS

)

the systems against the above defined threats. Considering the benefits and the costs of
different strategies we also present the equilibria for the defined game. The key points
of our game-theoretic analysis is that by using the computed equilibria it is possible to
choose the optimal countermeasure protocol for different situations. Note that our game
is a perfect and complete information game. We assume that the players have common
knowledge about their strategies and payoffs and can observe the actions of each other.

6.1 Game Model: Strategies and Payoffs

Table 2 shows the normal form of the proposed static game G. In this game, the players
play simultaneously. The ISP can choose between the following two actions: Abstain
(A) and Cooperate (C). The Abstain action models the behavior of the ISP that is not
willing to participate in the detection and rememediation of the bots . Hence the payoff
of the ISP is 0, when it plays A. The cooperative ISP (that plays C) first detects the
bots and then remediates the infected devices. In return, the ISP receives a reward NRR
from the AN. Recall that the cost for the ISP to remediate all detected devices is cRNR.
Consequently, when the ISP and the AN cooperate, the payoff of the ISP is NR(R −
cR)− cD.

In our model, the AN can choose one of the following four possible actions: Abstain
(A), Cooperate (C), Secure and Cooperate (S + C), and Secure (S). With the Abstain
action we model the behavior of the AN that is not willing to perform any countermea-
sures. In this case, the payoff of the AN will decrease to P (1−λ). Recall that λ ∈ [0, 1]
is the fraction of diverted ad revenue by the bots.

If the AN cooperates with the ISP, its utility will increase to P
(
1− λ(1− NR

NB
)
)

,

where NR is the optimal number of infected devices remediated by the ISP, which can
be calculated by Lemma 2. However, the AN should pay NRR to the ISP for NR reme-
diated devices. As a result, the total payoff of the AN when both players are cooperative

is P
(
1− λ(1 − NR

NB
)
)
−NRR.

The AN can also secure the websites by choosing the action S, as discussed in Sec-
tion 5.1. The AN should pay NScS to secure NS websites. The benefit of the AN will
then increase to P (1−λN1−β

S ). Consequently, the total payoff of the AN when it plays
S is P (1 − λN1−β

S )−NScS , independently of whether the ISP plays C or A.
Finally, the AN can choose to simultaneously secure some of the websites and coop-

erate with the ISP to remediate some of the infected devices. This action is represented
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by S + C and the total payoff of the AN in this case is P (1 − λN1−β
SC (1 − NR

NB
)) −

NSCcS −NRR, where NSC is the optimal number of secured websites when the AN
plays S + C and can be obtained by the following lemma.

Lemma 3. If the AN fights botnet ad fraud with both countermeasures (action S + C),

the optimal number of secured websites is equal to NSC =
(

P
cS

λ(β − 1)(1− NR

NB
)
) 1

β

.

Proof. The proof is similar to Lemma 1. We can obtain the optimal NSC , by maximiz-
ing the total payoff of the AN when it plays S + C. ��

Lemma 3 shows that when the AN plays S + C a smaller number (NSC) of websites is
secured, compared to the number (NS) of secured websites when the AN plays S (i.e.,
NSC = NS(1− NR

NB
)

1
β < NS).

6.2 Game Results

In order to predict and choose the optimal action for the ISP and the AN, we investigate
all Nash equilibrium strategy profiles of the defined game. In other words, we are in-
terested in finding the strategy profiles, where neither the ISP nor the AN can increase
their payoffs by unilaterally changing their strategies. We will check the existence of
Nash equilibria by comparing the payoffs obtained in the game G.

The following theorem states conditions when the AN does not provide sufficient
incentive to the ISP, such that the ISP will abstain at the Nash equilibrium.

Theorem 1. In G, if R < cD

NR
+ cR, the best response of the ISP is to play action A.

Proof. By comparing the ISP’s payoff when it plays C (i.e., whether −cD or NR(R −
cR) − cD) with that of A (i.e., 0) we obtain that the best response of the ISP is A if
NR(R− cR)− cD < 0 or R < cD

NR
+ cR. ��

This means that if the reward for remediation of the infected devices is small, the ISP
will not be willing to cooperate with the AN to fight the bots.

The following theorem states when the revenue loss due to ad fraud is not significant
enough to cause the AN and the ISP to perform any countermeasure against the bots.

Theorem 2. In G, if R < cD

NR
+ cR and λ ≤ NScS

P (1−N1−β
S )

, the action A by the ISP and

the AN result in a Nash equilibrium.

Proof. Considering Theorem 1, the ISP chooses A as its best response. The AN also
plays A if its payoff when playing A (i.e., P (1 − λ)) is bigger than its payoff when
playing S (i.e., P (1 − λN1−β

S ) − NScS). Comparing these two payoffs results in the
second condition of this theorem, i.e., λ ≤ NScS

P (1−N1−β
S )

. ��

In other words, if the reward provided by the AN does not generate sufficient incentives
for the ISP to cooperate, and the amount of revenue diverted by the bots is smaller than
a given threshold, both the ISP and the AN choose A to be at Nash equilibrium.

Theorem 3 shows when the AN fights the bots alone by securing some of the websites.
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Theorem 3. In G, if R < cD

NR
+ cR and λ > NScS

P (1−N1−β
S )

, action A by the ISP and

action S by the AN result in a Nash equilibrium.

Proof. The proof is similar to Theorem 2. ��

This result shows that the amount of diverted ad revenue is significant such that a coun-
termeasure should be deployed, but the ISP does not have enough incentive to cooperate
and fight bots at this equilibrium. Consequently, the AN secures some of the websites.

Let us assume that λ is very small. Considering all the possible actions and the
corresponding payoffs for the AN, the Abstain results in maximum payoff for the AN. In
fact, action A avoids unnecessary costs for the AN, such as NScS or NRR = PDNBR.
These results are also in line with Theorem 2 meaning that playing A by both players
results in a Nash equilibrium when λ is very small.

When λ increases (i.e., more ad revenue is diverted by the bots) the AN should
deviate from A and select one of the three remaining actions as its best response. The
following lemma states when the AN should begin securing NS websites.

Conjecture 1. In G, the AN should start securing the websites (Play S) when λ >
NScS

P (1−N1−β
S )

, which corresponds to the equilibrium presented by Theorem 3.

Proof. We should compare the payoffs of the AN when it plays S or C, with the one
obtained by playing the action A. The AN should then play C if λ > RNB

P = λ1 and
should play S if λ > NScS

P (1−N1−β
S )

= λ2. One can show that λ1 > λ2 when λ, and

consequently NS , is small enough. This means that the AN switches from A to S at
equilibrium, when λ increases. ��

Note that the AN does not switch from the A to the S + C, when λ increases, because
the AN can protect the revenue first by playing S. In other words, the AN does not need
to pay NRR to the ISP, since the cost would exceed the revenue loss. Consequently, the
equilibrium of G corresponds to the one presented by Theorem 3. Finally, the following
conjecture shows when the AN plays S + C in the response to the cooperative ISP.

Conjecture 2. In G, if the ISP is cooperative, the best response of the AN is action
S + C if λ > NRR−NScSG

PN1−β
S G

, where G = 1− (1− NR

NB
)

1
β .

Proof. The above threshold can be obtained by comparing the payoffs of the AN when
it plays S + C and S. ��

Conjecture 2 shows that if the bots divert even more revenue from the ad network, the
AN will cooperate with the ISP and pay NRR to the ISP to remediate NR bots. It will
then secure a smaller number of websites compared to the case when it plays S.

7 Numerical Analysis

In order to understand implications of the analytical results (presented in Section 6) in
reality, we simulate the game using the real data. We compute numerically the payoffs
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Fig. 4. Outcomes of the game applied to real data when NB = 104: (a) Number of the most
popular websites that should be secured; (b) Fraction of infected devices remediated by the ISP

of the static game (Table 2), identify the resulting equilibria and present conclusions. To
investigate the effect on the entire Web (i.e., for all websites), we extrapolate the data
set we have obtained from Compete.com with the obtained power law, as explained in
Section 5.

We use the following estimated costs in our evaluations: (i) the cost of deploying
HTTPS at a web server is cS = $400 [28]; (ii) the cost of remediating an infected
device cR = $100 (given that it is done via online support [20], it is the estimated
cost of human labor for remediating one device per hour); (iii) the cost of the intrusion
detection system cD = $100k [27].

We take into account different values of the fraction λ ∈ (0, 1] of the ad revenue that
the AN loses due to botnet ad fraud and the number of bots NB . Given that the largest
botnets detected so far [3] had several million bots each, we consider the total number
of infected devices that participate in the ad fraud considered in our case study to be up
to 100 million (regardless of whether they form a single or multiple botnets).

We represent the outcomes of the game for NB = 104 in Figure 4. Figure 4(a)
shows the number of secured websites depending on the level of threat λ. When the
AN cooperates with the ISP, the fraction of remediated devices depending on the level
of threat λ is shown in Figure 4(b). We consider three scenarios (the three curves in
Figure 4), for three different efficiencies of the detection system employed by the ISP
(i.e., when the fraction of detected bots is PD = 0.1, PD = 0.5 and PD = 0.9).

When the threat of the botnet ad fraud is very small, λ < 2 · 10−6, the AN does
not perceive the need to perform any countermeasure against bots. Thus, there are no
websites that are secured (NS = 0 in Figure 4(a))5 and no devices are remediated
(NR = 0 in Figure 4(b)). This result corresponds to Theorem 2.

When the bots divert a higher fraction of ad revenue, λ > 2 · 10−6, the AN first
secures a number of websites (Figure 4(a)). As there is no cooperation with the ISP
(NR = 0 in Figure 4(b)) the number of secured websites does not depend on PD, thus
it is the same in all three scenarios. The result corresponds to the finding of Theorem 3,

5 Absence of curves in Figure 4(a) signifies log(0), i.e., that zero websites are secured.
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i.e., the best choice for the AN is to play Secure and for the ISP to Abstain. The intuition
behind this result is that the relatively small threat λ is distributed over NB infected
devices, thus each bot diverts a small amount of ad revenue. The cost of remediating the
infected device would be higher than the loss of ad revenue the bot causes, thus it does
not pay off for the AN to cooperate with the ISP. However, the loss is significant enough
that the AN has to deploy a countermeasure, hence it secures some of the websites. The
number of secured websites corresponds to the Lemma 1.

We observe that the higher λ is, the higher is the number of websites to be secured
(Figure 4(a)), until λ reaches a threshold value (λ1 = 1.12 · 10−4, λ2 = 6.6 · 10−5

and λ3 = 6 · 10−5 for PD = 0.1, PD = 0.5 and PD = 0.9, respectively). At the
threshold values the AN starts cooperating with the ISP (NR becomes greater than zero,
Figure 4(b)). Thus, the threshold value of λ represents the level of threat after which it
is not enough to only secure the websites, but the AN will also cooperate with the ISP
to fight bots (i.e., plays S + C). This result corresponds to Lemma 2.

When the AN plays S +C, each countermeasure protects a given part of the revenue
that is otherwise diverted by the bots. The total loss of revenue for the AN due to ad
fraud committed by NB bots is Pλ. The remediation of NR infected devices reduces the
loss of revenue to Pλ(1− NR

NB
). As the part of the revenue loss is now eliminated by the

ISP, the remaining part is smaller and consequently the AN secures a smaller number
of websites. This explains the drop in the number of secured websites (Figure 4(a)),
which happens at the threshold value of λ when the AN starts cooperating with the ISP.
When λ increases (for values of λ greater than the thresholds), since NR is constant for
a given PD (Figure 4(b)), in order to eliminate the increasing loss, the AN secures an
increasing number of websites for the increasing λ (Figure 4(a)).

In Figure 4(b), we observe that the number of remediated devices is equal to PDNB ,
which confirms analytical results stated by Lemma 2. The higher the PD is, the bigger
the benefit of cooperation is, because a larger number of devices is remediated. Conse-
quently, the AN secures a smaller number of websites for a higher PD (Figure 4(a)).

In summary, the obtained results illustrate that: (i) For a very low level of threat λ,
no countermeasures will be taken against bots; (ii) When the fraction λ of the diverted
revenue increases, the AN secures a number of websites; (iii) Securing websites is not
sufficient for an even higher level of threats, thus the AN will cooperate with the ISP to
remediate infected devices.

Next, we analyze the effect of the number of bots NB in the system on the equilib-
rium outcomes of the game.

Figure 5 represents the outcomes of the game, in the case of NB = 107. Figure 5(a)
shows the number of secured websites depending on the level of threat λ. The fraction
of remediated devices depending on the level of threat λ is shown in Figure 5(b). As
before, the three curves in Figures 5(a) and 5(b), correspond to the three scenarios
(PD = 0.1, PD = 0.5 and PD = 0.9).

We observe the same behavior as in the case of NB = 104 bots in the system. The
difference in the results for the case of NB = 107 (Figure 5) compared to results for the
case of NB = 104 (Figure 4 in Section 7) is that the threshold values of λ, for which
the AN begins to cooperate with the ISP, are higher. The explanation for this results is
the following.
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Fig. 5. Outcomes of the game applied to real data when NB = 107: (a) Number of the most
popular websites that should be secured; (b) Fraction of infected devices remediated by the ISP

When cooperating, the ISP remediates PDNB devices, and the AN pays PDNB ·
R to the ISP. Therefore, the cost of cooperation for the AN is higher when NB is
higher. Whereas, the benefit for the AN, due to remediation of NR = PDNB devices
is PλNR

NB
= PλPD , which does not depend on NB . For a given PD, the cooperation

benefit for the AN is higher only for the higher threat λ. Hence, when the number of bots
NB is high, the AN agrees to cooperate and pay the high cost PDNBR, only when the
fraction λ of the revenue bots divert is high. Because only for the high λ the cooperation
benefit PλPD is high enough to justify the costs of cooperation.
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Fig. 6. Threshold values of λ for which the AN begins cooperating with the ISP, in addition to
securing the websites

Figure 6 illustrates the threshold values of λ for different numbers of bots NB in the
system and for different efficiencies PD of the detection system. For example, in the
system with PD = 0.5 and NB = 104 the AN is cooperative when λ > 6.6 · 10−5.
Whereas, if NB is much higher, NB = 108, the AN is cooperative only if the fraction
of diverted revenue is much higher, λ > 0.8. The results confirm that for a system
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with a given PD, when the number of bots is high, the AN is cooperative only when
the revenue loss is very high. Based on the results in Figure 6, we also observe that
the threshold value of λ does not vary much for different values of PD . Hence, we can
conclude that the value of NB is the dominant factor in the decision of the AN whether
to cooperate with the ISP or not. These results are also confirmed by Lemma 2.

8 Conclusion

In this paper, we have investigated the novel situation of ISPs and ad networks behaving
as strategic participants in the efforts to fight botnets. Due to the revenue loss caused by
botnet ad fraud, ad networks have economic incentives to protect their revenue by either:
(i) improving the security of the online advertising systems or (ii) fighting the major
cause of the revenue loss, botnets. To fight botnets, ad networks might need help from
ISPs, who are in a better position to deploy detection and remediation mechanisms.
We have proposed a game-theoretic model to study the behavior and interactions of
the ISPs and ad networks. We have applied our model to the real data to understand
the meaning of the results in practice. Our analysis shows that cooperation between the
AN and the ISP could emerge under certain conditions that mostly depend on: (i) the
number of infected devices (ii) the aggregate power with which bots divert revenue from
the ad network and (iii) the efficiency of the botnet detection system. The cooperation
is a win-win situation where: (i) users benefit from the ISP’s help in maintaining the
security of users’ devices; (ii) the AN protects its ad revenue as the botnet ad fraud is
reduced; (iii) it is at least cost neutral, if not cost positive for the ISP to fight botnets.
Cooperation between the AN and the ISP would help to reduce the level of online crime
and improve the Web security in general.
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Abstract. Wireless Sensor Networks (WSNs) support data collection
and distributed data processing by means of very small sensing devices
that are easy to tamper and clone: therefore classical security solutions
based on access control and strong authentication are difficult to deploy.
In this paper we look at the problem of assessing the reliability of node
localization data from a game theoretical viewpoint. In particular, we
analyze the scenario in which Verifiable Multilateration (VM) is used to
localize nodes and a malicious node (i.e., the adversary) try to masquer-
ade as non-malicious. We resort to non-cooperative game theory and we
model this scenario as a two-player game. Thus, we were able to compute
an upper bound to the error that an attacker can induce in localization
data, given the number of available verifiers. We focused on the max-
imum deception, that is the distance between the inferred position of
an unknown node and the actual one: we found that if the verifiers are
placed opportunely, the deception is at most 25% of the power range,
and can be halved by triplicating the number of the verifiers.

1 Introduction

Wireless sensor networks (WSNs) [1,2] become increasingly popular in many ap-
plication domains: indoor/outdoor surveillance systems, traffic monitoring and
control systems for urban and sub-urban areas, systems supporting tele-medicine,
attendance to disable or elderly people, environment monitoring, localization and
recognition of services and users, monitoring and control of manufacturing pro-
cesses in industry, etc. Most of these activities greatly rely on data about the
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positions of sensor nodes, which is not necessarily known before hand. In fact,
nodes are often deployed randomly or they even move, and one of the challenges
is computing localization at time of operations. Several localization approaches
have been proposed (for example, [4,5,7,8,15,11,13,14]), but most of the current
approaches omit to consider that WSNs could be deployed in an adversarial set-
ting, where hostile nodes under the control of an attacker coexist with faithful
ones. In fact, wireless communications are easy to tamper and nodes are prone to
physical attacks and cloning: thus classical solutions, based on access control and
strong authentication, are difficult to deploy.

A well defined approach to localize nodes even when some of them are com-
promised was proposed in [6] by Čapkun et al. and it is known as Verifiable
Multilateration (VM). VM computes an unknown location by leveraging on a
set of trusted landmark nodes, named verifiers. Although VM is able to rec-
ognize reliable localization measures (known as robust computations) and sure
malicious behaviors, it allows for undecided positions (unknown nodes), i.e.,
cases in which localization data do not provide enough information to support
a certain marking as robust or malicious. A conservative approach could be to
discard every undecided measure, but this could be unfeasible in some scenar-
ios. This weakness could be exploited by a malicious node to masquerade as
an unknown one, pretending to be in a position that is still compatible with all
verifiers’ information. To the best of our knowledge, the analysis of this scenario,
in terms of how a malicious, on the one side, could act and, on the other side,
could be faced, has not been explored so far in the literature. This constitutes
the original contribution of our work.

To study the properties of a system based on VM deployed in an adversarial
setting, we resort to non-cooperative game theory. More precisely, we model it
as a two-player game, where the first player employs a number of verifiers to do
VM computations and the second player is a malicious node. The verifiers act
to securely localize the malicious node, while the malicious node acts to mas-
querade as unknown, since when it is recognized as malicious its influence on
the system is ruled out by VM. As is customary in game theory, the players are
considered rational (i.e., maximizers). This amounts to say that the malicious
node is modeled as the strongest adversary. Thanks to game theory model the
potentialities of VM are analyzed in depth showing interesting information that
should improve the defender’s strategy. In [9] we studied the game wherein the
verifiers and the malicious node act simultaneously characterizing the players’
equilibrium strategies. In this paper, we model the game in extensive form as-
suming that the malicious node, at first, observes the verifiers’ actions and, then,
takes its action. This model captures more satisfactorily real world situations.
We show how the verifiers should be placed to put a bound on the error the at-
tacker might induce if the defender accepted also unknown positions. Moreover,
the study of VM by a game theoretical approach improved our insight in VM
properties giving us a tool to quantify the overall robustness of the localization
protocol.
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The paper is organized as follows: Section 2 provides a short overview about
Verifiable Multilateration; Section 3 shortly describes secure localization game,
providing some basic concepts; Section 4 analyzes the game in its extensive form
and discusses the impact of multiple verifiers in an ad-hoc topology. Section 5
draws some conclusions and provides hints for future works.

2 Verifiable Multilateration

Multilateration is a technique used in WSNs to estimate the coordinates of the
unknown nodes, given the positions of some given landmark nodes, sometimes
called anchor nodes, whose positions are known. The position of the unknown
node U is computed by geometric inference based on the distances between the
anchor nodes and the node itself. However, the distance is not measured directly;
instead, it is derived by knowing the speed of the signal in the medium used in
the transmission, and by measuring the time needed to get an answer to a beacon
message sent to U .

Unfortunately, if this computation is carried on without any precaution, U
might fool the anchors by delaying the beacon message. However, since in most
settings a malicious node can delay the answer beacon, but not speed it up,
under some conditions it is possible to spot malicious behaviors. VM uses three
or more anchor nodes to detect misbehaving nodes. In VM the anchor nodes
work as verifiers of the localization data and they send to the sink node B
the information needed to evaluate the consistency of the coordinates computed
for U . The basic idea of VM is shown in Figure 1: each verifier Vi computes
its distance bound [3] to U ; any point P �= U inside the triangle formed by
V1V2V3 has necessarily at least one of the distance to the Vi enlarged. This
enlargement, however, cannot be masked by U by sending a faster message to
the corresponding verifier.

v1 v2

v3

u
db1 db2

db3

Fig. 1. Verifiable multilateration

Under the hypothesis that verifiers are trusted and they can securely com-
municate with B, the following verification process can be used to check the
localization data in a setting in which signals cannot be accelerated:

1. Each verifier Vi sends a beacon message to U and records the time τi needed
to get an answer;
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2. Each verifier Vi (whose coordinates 〈xi, yi〉 are known) sends to B a message
with its τi;

3. From τi, B derives the corresponding distance bound dbi (that can be easily
computed if the speed of the signal is known) and it estimates U ’s coordinates
by minimizing the sum of squared errors

ε =
∑

i

(dbi −
√

(x− xi)2 + (y − yi)2)2

where 〈x, y〉 are the (unknown) coordinates to be estimated1;
4. B can now check if 〈x, y〉 are feasible in the given setting by two incremental

tests: (a) δ-test: For all verifiers Vi, compute the distance between the esti-
mated U and Vi: if it differs from the measured distance bound by more than
the expected distance measurement error, the estimation is affected by mali-
cious tampering; (b) Point in the triangle test: Distance bounds are reliable
only if the estimated U is within at least one verification triangle formed by
a triplet of verifiers, otherwise the estimation is considered unverified.

If both the δ and the point-in-the-triangle tests are positive, the distance
bounds are consistent with the estimated node position, which moreover falls in
at least one verification triangle. This means that none of the distance bounds
were enlarged. Thus, the sink can consider the estimated position of the node as
robust; else, the information at hands is not sufficient to support the reliability
of the data. An estimation that does not pass the δ test is considered malicious.
In all the other cases, the sink marks the estimation as unknown. In an ideal
situation where there are no measurement errors, there are neither malevolent
nodes marked as robust, nor benevolent ones marked as malicious. Even in
this ideal setting, however, there are unknown nodes, that could be malevolent
or not. In other words there are no sufficient information for evaluating the
trustworthiness of node position. In fact, U could pretend, by an opportune
manipulation of delays, to be in a position P that is credible enough to be taken
into account. No such points exist inside the triangles formed by the verifiers
(this is exactly the idea behind verifiable multilateration), but outside them some
regions are still compatible with all the information verifiers have.

Consider N verifiers that are able to send signals in a range R. Let x0 and y0

the real coordinates of U . They are unknown to the verifiers, but nevertheless
they put a constraint on plausible fake positions, since the forged distance bound
to Vi must be greater than the length of UVi.

Thus, any point P = 〈x, y〉 that is a plausible falsification of U has to agree
to the following constraints, for each 1 ≤ i ≤ N :

1 In an ideal situation where there are no measurement errors and/or malicious delays
this is equivalent to finding the (unique) intersection of the circles defined by the
distance bounds and centered in the Vi (see Figure 1) and ε = 0. In general the
above computation in presence of errors is not trivial: this has several consequences
on the trust model; see [10].
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{
(y − yi)

2 + (x− xi)
2

< R2

(y − yi)
2 + (x− xi)

2
> (y0 − yi)

2 + (x0 − xi)
2 (1)

The constraints in (1) can be understood better by looking at Figure 2, where
three verifiers are depicted: the green area around each verifier denotes its power
range, and the red area is the bound on the distance that U can put forward
credibly. Thus, any plausible P must lay outside every red region and inside
every green one (and, of course, outside every triangle of verifiers).

V1 V2

V3

UPP

V1VV

P

V1VV1VVV V2VV

PP

V3VV

UUU

Fig. 2. Plausible falsification region: P is a plausible fake position for U since lays
outside every red region and inside every green one whose radius is R (moreover it is
outside the triangle of verifiers)

3 Secure Localization Game

Our aim is the study of the behavior of a possible malicious node that acts to
masquerade as an unknown node and, at the same time, how the malicious node
can be faced at best by the verifiers. This is a typical non-cooperative setting
that can be analyzed by leveraging on game theoretical models. A game is de-
scribed by a couple: mechanism and strategies. The mechanism defines the rules
of the game in terms of number of players and actions available to the play-
ers. When the mechanism prescribes that the players act simultaneously (e.g.,
rock-paper-scissors game), the game is said to be in strategic form. Instead,
when the mechanism prescribes that the players act sequentially (e.g., chess)
the game is said to be in extensive form. The strategies describe the behaviors of
the players during the game in terms of played actions. Strategies can be pure,
when a player acts one action with a probability of one, or they can be mixed,
when a player randomizes over a set of actions. The players’ strategies define an
outcome (if the strategies are pure) or a randomization over the outcomes (if
mixed). Players have preferences over the outcomes expressed by utility functions
and each player is rational, acting to maximize its own utility. Solving a game
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means to find a profile of strategies (i.e., a set specifying one strategy for each
player) such that the players’ strategies are somehow in equilibrium. The most
known equilibrium concept is Nash where each player cannot improve its own
utility by deviating unilaterally (a detailed treatment of Nash equilibrium can be
found in [12]): a fundamental result in the study of equilibria is that every game
admits at least one Nash equilibrium in mixed strategies, while pure strategy
equilibrium might not exist.

We now formally state our secure localization game as a two-step extensive-
form game where the first player to act is the defender (i.e., the verifiers) and
then the attacker (i.e., the malicious node) acts. This capture real-world settings
where, usually, at first the verifiers are placed and subsequently nodes whose
position has to be determined appear. The game is a tuple 〈Q, A, u〉. Set Q
contains the players and is defined as Q = {v,m} (v denotes the verifiers and m
denotes the malicious node). Set A contains the players actions. More precisely,
given a surface S ⊆ R2, the actions available to v are all the possible tuples of
positions 〈V1, . . . , Vn〉 of the n verifiers with V1, . . . , Vn ∈ S, while the actions
available to m are all the possible couples of positions 〈U, P 〉 with U, P ∈ S
(where U and P are the same as defined in Section 2). We denote by σv the
strategy of v and by σm the strategy of m. Given a strategy profile σ = (σv, σm)
in pure strategy, it is possible to check whether or not constraints (1) are satisfied.
The outcomes of the game can be {malicious,robust,unknown}; we denote
respectively with σM , σR, σU any strategy profile that has one of the stated
outcome. Set u contains the players’ utility functions, denoted by uv(·) and um(·)
respectively, that define their preferences over the strategy profiles. We define
ui(σM ) = ui(σR) = 0 for i ∈ {v,m}; since 0 will be the maximum for v and the
minimum for m, this captures the fact that an outcome in {malicious,robust}
impedes the malicious node from influencing the knowledge of the verifier. ui(σU )
can be defined differently according to different criteria. A simple criterion could
be to assign uv(σU ) = −1 and um(σU ) = 1. However, our intuition is that the
unknown outcomes are not the same for the players, because m could prefer
those in which the distance between U and P is maximum. In particular we
propose three main criteria to characterize unknown outcomes:

1. maximum deception, um is defined as the distance between U and P , while
uv is defined as the additive inverse;

2. deception area, um is defined as the size of the region S′ ⊆ S such that
P ∈ S′ is marked as unknown, while uv is defined as the opposite;

3. deception shape, um is defined as the number of disconnected regions S′ ⊆ S
such that P ∈ S′ is marked as unknown, while uv is defined as the opposite.

Players could even use different criteria, e.g., v and m could adopt the maximum
deception criterion and the deception shape respectively. However, when players
adopt the same criterion, the game is zero-sum, the sum of the players’ utilities
being zero. This class of games is easy and has the property that the maxmin,
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minmax, and Nash strategies are the same. In this case calculations are simplified
by the property that uv = −um; in the following we shall adopt this assumption.

4 Game Analysis

For the sake of simplicity, we focus on the case in which both players adopt the
maximum deception criterion (a reasoning on the same lines can be applied to
the other possibilities). In this section we build upon our previous work [9] to
analyze the game its extensive form and we finally draw some conclusions valid
in the multiple verifier case.

4.1 Maxmin Solution with Three Verifiers

We focus on the case with three verifiers. In our analysis of the game, we consider
only the case in which

∀i, j ViVj ≤ R (2)

In fact, if we allowed ViVj > R, then there could be several unreasonable
equilibria. For instance, an optimal verifiers’ strategy would prescribe that the
verifiers were positioned such that only one point satisfied constraints (1). This
strategy would assures the verifiers the largest utility (i.e., zero), no unknown
positions being possible. However, it is not reasonable because the area moni-
tored by the verifiers has a null measure (in the sense of Lebesgue).

At first, we can show that for each action of the verifiers (under the assump-
tion (2)), there exists an action of the malicious node such that this is marked
as unknown. Therefore, there is no verifiers’ strategy such that, for all the ma-
licious node’s actions, the malicious node is marked as robust or malicious.

Theorem 1. For each tuple 〈V1, V2, V3〉 such that ViVj ≤ R for all i, j, there
exists at least a couple 〈U, P 〉 such that um > 0.

Proof. Given V1, V2, V3 such that ViVj ≤ R for all i, j, choose a Vi and call X
the point on the line VkVj (k, j �= i) closest to Vi. Assign U = X . Consider
the line connecting Vi to X , assign P to be any point X ′ on this line such that
ViX ≤ ViX ′ ≤ R. Then, by construction um > 0. ��

We discuss what is the configuration of the three verifiers, such that the maxi-
mum deception is minimized.

Theorem 2. Any tuple 〈V1, V2, V3〉 such that ViVj = R for all i, j minimizes
the maximum deception.

Proof. Since we need to minimize the maximum distance between two points,
by symmetry, the triangle whose vertexes are V1, V2, V3 must have all the edges
with the same length. We show that ViVj = R. It can easily seen, by geometric
construction, that U must be necessarily inside the triangle. As shown in Sec-
tion 2, P must be necessarily outside the triangle and, by definition, the optimal
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P will be on the boundary constituted by some circle with center in a Vi and
range equal to R (otherwise P could be moved farther and P would not be op-
timal). As ViVj decreases, the size of the triangle reduces, while the boundary is
unchanged, and therefore UP does not decrease. ��

We are now in the position to find the maxmin value (in pure strategies) of
the verifiers, i.e., the action that maximizes the verifiers’ utility given that the
malicious node will minimize it. The problem of finding the maxmin strategy can
be formulated as the following non-linear optimization problem, given V1, V2, V3

such that ViVj = R for all i, j:

max
U,P∈S

UP

constraints (1) ∧ P outside V1V2V3

We normalized the problem assigning R = 1 and we solved it by using con-
jugated subgradients. We report the solution. Let W be the orthocenter of the
triangle, U and P can be expressed more easily with polar coordinates with origin
in W . We assume that θ = 0 corresponds to a line connecting W to a Vi. We have,
U = (ρ = 0.1394R, θ = π

6 ) and P = (ρ = 0.4286R, θ = π
6 +0.2952), and, for sym-

metry, U = (ρ = 0.1394R, θ = −π
6 ) and P = (ρ = 0.4286R, θ = −π

6 − 0.2952).
Therefore, there are six optimal couples 〈U, P 〉s. In Figure 3(a) depicts one ma-
licious node’s best action and Figure 3(b) shows all the other symmetrical posi-
tions. The value of um (i.e., the maximum deception) is 0.2516R. In other words,
when the verifiers compose an equilateral triangle, a malicious node can mas-
querade as unknown and the maximum deception is about 25% of the verifiers’
range R.

V1 V2

V3

U

P

VVVV1VV V2VVVV

P

UUU

V3VV

PPPP

(a)

V1 V2

V3

WU

P

U

P

U

P

U

PU

P

U

P

(b)

Fig. 3. Malicious node’s best responses (maximum deception is UP = 0.2516R)
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(a) Maximum deception with four veri-
fiers is still UP = 0.2516R

V1 V2

V3

VVV1 V2VVV1VV VVV
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(b) U positions that allows for
plausible P s

Fig. 4. Impact of verifiers on U ability to fake positions

4.2 Maximum Deception with Multiple Verifiers

The result exposed in Section 4.1 are the basis to study situations with multiple
verifiers. Our main result is the derivation of a bound between the maximum
deception and the number of multiple verifiers.

Initially consider the simple situation in which we have four verifiers and
they constitute two adjacent equilateral triangles as shown in Figure 4(a). The
maximum deception does not change with respect to the case with three verifiers,
since some of the best responses depicted in Figure 3(b) are still available. In
fact, the fourth verifier is useful to rule out only the two positions that are on
the edge V4 faces: on this side any fake P would surely marked as malicious (or
even robust if P ≡ U) since it would be inside the triangle V2V3V4. The proof
is straightforward. Consider (without loss of generality) the triangle V1V2V3 in
Figure 4(a). In order for a node not to be marked as malicious, U must be in
the areas depicted in Figure 4(b). Moreover, any plausible P cannot be neither
inside the triangle V1V2V3 nor inside the triangle V2V3V4, otherwise the node
would be marked as malicious. In fact, any plausible fake P , given a U in the
blue area between V2 and V3 (see Figure 4(b)), cannot be in regions that are
outside both the triangles V1V2V3 and V2V3V4.

The above observation can be leveraged to give a bound over the maximum
deception with a given number of verifiers opportunely placed and tuned such
that the shape of the area they monitored is a triangle.

Theorem 3. Given a triangular area, in order to have a maximum deception
not larger than 0.2516R

2k we need at least 2 +
∑k

i=0 3i verifiers.

Proof. Consider the basic case with three verifiers (composing an equilateral
triangle) with range R and ViVj = R. As shown in Section 4.1 the maximum
deception is then 0.2516R. Introduce now more three verifiers such that we have
four equilateral triangles with edge R

2 as shown in Figure 5. The range of all
the verifiers is set equal to R

2 (i.e., they could just ignore any beacon message



A Localization Game in Wireless Sensor Networks 177

V1 V2
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VVV V2VVV1 VV
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V4 V5
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Fig. 5. Maximum deception with six verifiers is UP = 0.2516R
2

that takes longer than needed to cover the distance R
2 ). Since the edge of the

small triangles is now R
2 , the maximum deception here is 0.2516R

2 and no U
positions are possible in the central triangle V4V5V6: indeed all the edges of the
central triangle are adjacent to the edge of other triangles. This last result allows
us not to consider the central triangle when we want to reduce the maximal
deception, the malicious node never positioning itself within it. The basic idea
is that if we want to halve the maximum deception we need to decompose all
the triangles vulnerable by the malicious node by introducing three verifiers. By
introducing three new verifiers per triangle we obtain four sub-triangles with an
edge that is the half of the original triangle and therefore the maximum deception
is halved. In general, in order to have a maximum deception of 0.2516R

2k , the
number of required verifiers2 is 3

2 (1+3k), as shown in Table 6(b). In Figure 6(a)
we report an example with k = 2 and 15 verifiers. Notice that when we introduce
new verifiers we need to halve the range. In general, we will have verifiers with
multiple different ranges. ��

The number of verifiers increases according to the formula n(k) = n(k − 1) +
3k. Asymptotically limk→∞

n(k+1)
n(k) = 3, thus we need to multiply by three the

number of verifiers to divide by two the maximum deception. Notice that, as
shown in the proof of Theorem 3, the verifiers are required to have different
ranges. Increasing the number of verifiers require to add new verifiers with range
smaller than those already present in the network.

2 That is the number of vertices in Sierpinski triangle of order k; see [16].
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(a) 15 verifiers (k = 2) give a maximum deception
UP = 0.2516R

4
= 0.0629 R (b) Maximum deception

k # ver. max. deception

0 3 0.2516 R
1 6 0.1258 R
2 15 0.0629 R
3 42 0.02145 R
4 123 0.015725 R
5 366 7.8625 · 10−3R

Fig. 6. Maximum deception is reduced by increasing the number of verifiers

5 Conclusion

The trust we put on wireless sensor node localization information is the funda-
mental base to provide trust to context aware applications and data. Verifiable
Multilaterion is a secure localization algorithm, which is able to deal with nodes
that falsify their data. VM defines two tests for evaluating node behavior as
malicious, or robust, or in the worst case as unknown. Unknown nodes could be
simply ignored since VM has not enough information for evaluating the trustwor-
thiness of the node. But unknown nodes could also be faithful, thus by ignoring
that source of information, the system loses some opportunities. However, by
considering it, we give to a potential attacker the chance of introducing false
data into the system. In this paper, by modelling the localization behavior of
VM as non-cooperative game we were able to compute an upper bound to the er-
ror that an attacker can induce in localization data, given the number of available
verifiers. We focused on the maximum deception, that is the distance between
the inferred position of an unknown node and the actual one: we found that if
the verifiers are placed opportunely, the deception is at most 25% of the power
range, and can be halved by triplicating the number of the verifiers. Currently,
our results are valid only with a single attacker, since this is key to the assump-
tion that signals cannot be accelerated. In future, we shall consider situations
where a malicious attacker can manipulate more nodes.



A Localization Game in Wireless Sensor Networks 179

Acknowledgment

This research has been partially funded by the European Commission, Pro-
gramme IDEAS-ERC, Project 227977-SMScom.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on wireless
sensor network. IEEE Wireless Communications 40(8), 102–114 (2002)

2. Baronti, P., Pillai, P., Chook, V.W.C., Chessa, S., Gotta, A., Hu, Y.F.: Wireless
sensor networks: A survey on the state of the art and the 802.15.4 and zigbee
standards. Computer Communications 30(7), 1655–1695 (2007)

3. Brands, S., Chaum, D.: Distance-bounding protocols. In: De Santis, A. (ed.) EU-
ROCRYPT 1994. LNCS, vol. 950. Springer, Heidelberg (1995)

4. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low-cost outdoor localization for
very small devices. IEEE Personal Communications 7(5), 28–34 (2000)
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Abstract. Many computer protection tools incorporate learning tech-
niques that build mathematical models to capture the characteristics of
system’s activity and then check whether live system’s activity fits the
learned models. This approach, referred to as anomaly detection, has
enjoyed immense popularity because of its effectiveness at recognizing
unknown attacks (under the assumption that attacks cause glitches in
the protected system). Typically, instead of building a single complex
model, smaller, partial models are constructed, each capturing differ-
ent features of the monitored activity. Such multimodel paradigm raises
the non-trivial issue of combining each partial model to decide whether
or not the activity contains signs of attacks. Various mechanisms can be
chosen, ranging from a simple weighted average to Bayesian networks, or
more sophisticated strategies. In this paper we show how different aggre-
gation functions can influence the detection accuracy. To mitigate these
issues we propose a radically different approach: rather than treating the
aggregation as a calculation, we formulate it as a decision problem, im-
plemented through cooperative negotiation between autonomous agents.
We validated the approach on a publicly available, realistic dataset, and
show that it enhances the detection accuracy with respect to a system
that uses elementary aggregation mechanisms.

Keywords: Anomaly detection, cooperative negotiation.

1 Introduction

As a growing number of business and personal activities are conducted over the
Internet, cybercrime has became a growing concern [1]. In the current threat
landscape, 0-day exploits and site-specific attacks are at the same time the most
challenging and frequent threats [2]. 0-day exploits take advantage of vulnerabil-
ities not publicly disclosed, whereas site-specific attacks target a specific applica-
tion, such as custom product, rather than a widely deployed system. Among the
defense tools, anomaly detectors leverage a description of the normal activity
of the protected system, and are therefore potentially effective against attacks
never seen before. The assumption (and, to some extent, the limitation) is that
attacks would leave traces that can be automatically recognized as anomalous.
On the other hand, misuse-based detectors, which rely on a list of signatures of

T. Alpcan, L. Buttyan, and J. Baras (Eds.): GameSec 2010, LNCS 6442, pp. 180–191, 2010.
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known attacks, only offer protection against attack vectors that have been pub-
licly disclosed. Despite its remarkable precision at detecting known threats, the
misuse-based paradigm offer no help against 0-day and custom-made attacks.

A long-standing approach in the design of complex systems is the use of
multiple models [3, 4]. This paradigm is also effective for anomaly detection, as
proven by the recent literature detection [5, 6, 7, 8, 9, 10, 11, 12] and lies in the
decomposition of a complex problem (i.e., capturing the “normal behavior” of a
potentially large and complex system) into simpler sub-problems, each tackled
by one mathematical model. For example, there are systems that analyze the
observed activity (e.g., the HTTP requests and responses) and build models such
as the average length of a request, or the relative frequency of ASCII symbols into
an HTTP request body. Usually, such models have a numerical representation
that contributes to an overall evaluation of the degree of anomaly. The models
can be encapsulated into autonomous agents [13]. This technique have been
shown to be as effective as the traditional, multimodel approach [14, 15, 16, 17,
18,19], with the benefit of a more natural design and the existence of a plethora
of multiagent programming frameworks [20]. Unfortunately, while the use of
multiagent systems may improve the ease of design of anomaly detectors, the
problem of aggregating the models persists.

The core point of this paper is that the aggregation phase is crucial to achieve
good precision. We propose to tackle this problem and its issues (described in
Section 2.1) by exploiting the multiagent framework beyond its architectural
properties. More precisely, we use cooperative negotiation to implement the ag-
gregation task as a decision problem. This approach is inspired by the seminal
study described in [21], where cooperative negotiation has been used to classify
the payloads of TCP packets. However, the study was explicitly a toy exam-
ple, tested on artificial, outdated traffic (i.e., IDEVAL [22]). We further develop
the idea, adapt it to real-world settings, and examine carefully the impact of
the negotiation protocol’s parameters. The contributions of this paper can be
summarized as follows.

– In Section 2 we discuss the issues caused by simple aggregation strategies,
and motivate why this problem should be addressed to achieve reliable attack
detection.

– In Section 3 we present a simple, yet very effective, technique that leverage
cooperative negotiation between autonomous agents to decide whether or
not a given event is an attack and detail how we incorporated this technique
in an anomaly detector.

– In Section 4 we evaluate the detection capabilities of the tool obtained over
a realistic, publicly-available data set, and discuss its limitations.

The results of our experiments show that the proposed technique alleviates the
detection errors caused by inaccurate combinations of models. Our approach
applies to any multimodel system. However, due to the popularity of web ap-
plications and web-based attacks, we validate it on a recent anomaly detector
designed to protect web applications.
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2 Multimodel Anomaly Detection

A learning-based anomaly detector learns the normal activity by observing a
system’s activity. In the representative, simple example of HTTP, such activ-
ity consists in the HTTP requests and responses exchanged between servers
and clients. Requests, or queries, Q = {q1, q2, . . . , qj , . . .}, are usually decom-
posed into resources (i.e. paths) and parameters. For instance, the request ‘GET
/page?uid=u44&p=14&do=delete’ contains the resource ‘/page’ and the pa-
rameters {〈uid, ‘u44’〉, 〈g, 14〉, 〈do, ‘delete’〉}.

During an initial learning (or training) phase, a multimodel detector instanti-
ates different mathematical models, m(1), . . . , m(Z), to compute certain features,
1, . . . , Z, on each training sample (e.g., an HTTP request, response, or a sequence
of requests-responses). The specific models and the strategy to combine their
output determine the classes of attacks that can be detected. Typical models
proposed in literature capture features such as the average length of the string
parameters, their character distribution and probabilistic grammar, or the order
in which parameters appear across the requests against the each resource. Unfor-
tunately, due to space limitations, we must refer the interested reader to [12,9,23]
for more details. During detection, the model instances computed during train-
ing are used as maps, m(z) : Q "→ [0, 1], ∀z, and their outputs are aggregated
into an overall anomaly score. This score is checked against thresholds and alerts
are fired accordingly. Thresholds are fixed a priori or, usually, computed during
learning. The improvements proposed in this work — validated using the set
of models implemented in Masibty [12] — are independent from the particular
models, and thus can be easily applied to any learning-based detector.

2.1 Drawbacks of Model Aggregation

In the design of a multimodel anomaly detector, the value aggregation [24] phase
has a significant impact on the quality of detection results. Just for simplicity in
illustrating our point, we can roughly distinguish between simple and complex
aggregation strategies, and in both cases such strategies can be parametric or
non-parametric.

An example of simple, non-parametric aggregation strategy is the arithmetic
mean. While this type of approach requires no user intervention and is very
simple to understand, the lack of a differentiation between the models does not
allow to control the impact of models with poor performance on the overall
detection. The most natural solution to this issue is the use of parametric aggre-
gation functions (e.g., a weighted average), with different parameters assigned to
the models in order to optimize detection quality. These mechanisms obviously
create the non-trivial problem of choosing the parameters (e.g., the weights),
which clearly influence the final value. In addition, if the system employs a large
set of models, it might be difficult to properly set all the weights. Although the
optimal weights can be computed automatically from the data, as demonstrated
by the results of the experiment described in Section 4.1, this is not sufficient to
achieve good detection accuracy if a simplistic aggregation method is used. More



Effective Multimodel Anomaly Detection Using Cooperative Negotiation 183

complex strategies, such as Bayesian networks (or ad-hoc aggregation criteria),
can perform very well under the conditions they have been designed for, but un-
fortunately their inherent complexity makes manual tuning and improvements
difficult for the end-users. Our aggregation approach, which performances are
comparable to such methods, have the advantage of being easier to manually
configure.

From the previous observations, it follows that the design of a simpler, generic
method to reduce detection errors caused by model aggregation is necessary to
obtain a reasonable level of protection from multimodel anomaly detectors.

3 Exploiting Cooperative Negotiation

We implemented our model aggregation approach by modifying the training and
detection algorithms of Masibty [12].

3.1 Modifications to the Learning Phase

To fully implement the detection phase detailed in Section 3.2, the learning phase
of a traditional multimodel detector requires some minor modifications. In par-
ticular, every model, m(z), must implement a trust model, T

(z)
j : Q "→ [0, 1], that

assesses the “reliability” of m(z), up to the j-th training step (i.e., after the j-th
training has been analyzed). As motivated in Section 3.2, this model is required
for completing the cooperative negotiation correctly. The final decision indeed
depends upon the agents with higher trust level, while the impact of poorly-
trained agents (which may lead to overfitting) is minimized. For this reason, the
trust functions must be designed in such a way that models that have received
ample training are assigned high trusts, since they are likely to produce accurate
and reliable detections. For example, one of the models checks for the presence
of parameters in each HTTP request and computes their appearance ratio across
all the requests. The anomaly score is calculated as 1−min (M

R , min (P
R )), where

M and P , respectively, indicate the number of missing and present parameters,
while R is the total number of requests. The trust level is high if the presence
is nearly constant, while it decreases if an application exhibits variations. The
trust function is thus 1− M

R . Due to space limitations, we refer the reader to [12]
for details on the models implemented on the prototype (see Fig. 1 in [12]) used
for our experiments.

Optionally, the trust level can also be exploited to optimize training, by stop-
ping it automatically when a sufficient amount of data is received by each model.
For example, we adopted δW (j) := maxj∈W T

(z)
j −minj∈W T

(z)
j , where W is a

sliding window1. By choosing a small ε > 0 (we used ε = 0.003 and W = 5),
a model is considered stable after the j-th training sample if δW (j) ≤ ε. Al-
though more sophisticated criteria can be designed, we noticed that, under the
1 The sliding window size influences the training duration: smaller values tend to stop

training early, while higher values result in a longer and more conservative training.
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conditions described in Section 4, this is sufficient to achieve good detection
results. This optimization, however, is not necessary to adopt our cooperative
negotiation approach, and we will evaluate its impact separately.

3.2 Modifications of the Detection Phase

We translate the value aggregation problem that arises during detection into a
decision problem implemented via cooperative negotiation between autonomous
agents. In artificial intelligence, an agent is the abstraction of an entity capable
of reading inputs by observing the environment, and to perform actions toward
the achievement of certain goals. In our context, the environment is the network
segment which the agent receives HTTP messages from. No other input than the
HTTP messages is passed to the agents. The goal is to find the correct degree
of anomaly, that is, the numeric value that would minimize the detection errors.
Multiagent systems comprise a coordination protocol, implemented by the agents
(and a mediator, if present) to achieve a global goal. In general, these protocols
can be competitive, when the goals of the agents are conflicting, or cooperative,
when the agents pursue a common goal. A form of coordination is negotiation,
where the agents tend to “harmonize” conflicting goals toward the achievement
of the global goal.

We specifically propose to use a cooperative negotiation protocol, described
in the following, to reach an agreement on the anomaly score used to classify
HTTP messages as benign or malicious.

Cooperative negotiation protocol. Our system comprises n agents, M1, . . . ,
Mi, . . . , Mn, and a mediator M . Each agent embeds exactly one of the partial
models implemented in the original prototype [12, Section IV], and communi-
cates only with the mediator (which embeds no models).

The protocol is initiated every time a new sample, qj , is observed. The j-th
session iterates multiple times. Each iteration is denoted with t and begins at
t = 0. We define the partial degree of anomaly pt

i ∈ [0, 1] as the degree of anomaly
computed by the i-th agent using its embedded model m(zi) at iteration t. The
protocol proceeds as follows:

1. each Mi receive the sample qj and calculates its offer, pt
i = m(zi)(qj).

2. pt
i is sent to M along with the agent’s trust level, wi = T (zi).

3. M receives pt
i and wi, ∀i = 1, . . . , n, and calculates an agreement at by using

the agreement function at = A(pt
1, w1, p

t
2, w2, . . . , p

t
n, wn).

4. M sends its counter offer at to all the agents.
5. Each Mi calculates the new offer pt+1

i by using a negotiation function pt+1
i =

Fi(pt
i, a

t).
6. Each Mi sends pt+1

i to M , and steps 3. to 6. are repeated until an agreement,
a, for the j-th session, a = aj, is reached (i.e., until pi = pi′ , ∀i �= i′).

The global evaluation of the anomaly score for the sample qj is thus aj .
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We define the agreement function to be the weighted average of the offers,
where weights are the trust levels: A(pt

1, w1, pt
2, w2, . . ., pt

n, wn) :=
∑n

i=1 pt
iwi∑n

i=1 wi
.

The trust level is constant throughout the negotiation.
The negotiation function is Fi(pt

i, a
t) = pt

i+αi(at−pt
i), where at−pt

i expresses
a measure of disagreement between agent Mi and the global system. Note that
pt+1

i is determined only by values at time t: for this reason, and because each
agent does not change the evaluation of its embedded model over time (for
a given qj), it is unnecessary to actually perform a two-way communication
between the agents and the mediator. Instead, upon receiving all the initial offers,
the mediator can run the negotiation protocol without communicating with the
agents. The cooperative negotiation protocol described does not impose any
negotiation strategy to the agents, that is indeed related to the implementation
of both functions detailed above.

The agreement coefficient, αi ∈ (0, 1), expresses the willingness of agent Mi

to propose its offer versus the counter-offer received from the mediator. When
αi → 0 each agent tends not to modify its offer, while αi → 1 causes each agent to
agree with the counter-offer. We compute the agreement coefficient as a function
of the trust level of the agent’s embedded model. If the trust level is close to 0,
then its evaluation would not be reliable; thus, during the negotiation session
its influence should be minimized to “ignore” its offers. On the other hand, a
trust level close to 1 means maximum reliability. A sigmoid-shaped function
fα(wi) = 1

1+eh(wi−k) is a good implementation of the above rationale, where h is
the smoothness and k is the central value.

It can be shown that h has negligible impact on the final agreement (in our
experiments, we used h = 7.5) and only influences the speed of the negotiations.
We adopted k = 0.5 to express that all the agents have neutral impact on the
agreement against the mediator, and such impact only depends on the trust
levels computed from data during training. In other words, 0.5 is the natural
value of k if one needs to avoid biased detections. It can be shown that also k
has a negligible impact on the results. We demonstrate both observations with
an experiment described in Section 4.2.

The cooperative negotiation mechanism described is proved to be connectively
stable in [25]. This means that agents will reach a stable agreement on attack
probability, regardless of their initial offer and for any n. In order to prove our
point that just by modifying the negotiation protocol we could improve the
quality of the results, we did not modify the original detection phase of the
system any further. In particular, we have not modified the way global anomaly
thresholds are calculated and used to raise alerts.

In addition to the traditional sensitivity parameter, used in every anomaly-
based detector to trade off False Positive Rate (FPR) versus Detection Rate
(DR), h and k are the only parameters strictly required by our approach, and
their choice has a very limited impact on the system performance. W and ε are
required only for optimized learning.
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4 Evaluation

To validate our approach, we conducted two experiments on the traffic2 captured
during the International Capture the Flag 2008, organized by the University of
California, Santa Barbara. The traffic, mostly HTTP, contains 0-day vulnera-
bilities, and the majority of the players were skilled hackers, able to prepare
custom and diverse exploits. Unfortunately, this causes the lack of any ground
truth other than the list of (known) attacks detectable with the Snort misuse-
based system. To alleviate this issue we used the portion of the dataset that
contains clean background traffic, and injected custom, real-world attacks dur-
ing detection. In this way, the ground truth is perfectly known. The background
traffic contains 44,102 HTTP messages, i.e., 22,051 request-response couples. We
cross-validated our system by using 14,961 request-response couples for training
and 7,090 for detection. More precisely, we injected instances of the three most
common types of attacks against web applications3, such as cross-site scripting
(XSS) (e.g., CVE-2009-0781), SQL injections (e.g., CVE-2009-1224), and com-
mand injections (e.g., CVE-2009-0258). The XSS attacks are variations on those
listed in [26], the SQL injections were created similarly from [27], and the com-
mand execution exploits are variations of common command injections against
the Linux and Windows platforms. In addition to cross-validation, to avoid bi-
ased experiments on the same attack instances, the injected strings are randomly
drawn from a set of alternatives. In particular, we used 14 different SQL injec-
tion vectors, 4 command injections, and 94 XSSs. Note that, this is similar to
the use of variants of the same dataset, as it avoids using the same exact set
of attacks over and over. To this end, using a uniform probability distribution,
we randomized (1) the type of attack, (2) the HTTP parameter to use for the
injection, and (3) the vector (of a given type) to inject. The resulting traffic
contains 1,000 randomized attacks in every experiment.

4.1 Benefit of Cooperative Negotiation

This experiment aims at showing that our approach can effectively mitigate de-
tection errors better than a technique based solely on value aggregation (i.e.,
weighted average). To this end, we ran the original prototype in its original
configuration, as described in [12], then with the modifications described in Sec-
tion 3, and finally implementing also the optimization for the learning phase
briefly described in Section 3.1 (which is optional).

The comparison is show in Fig. 1, with a ROC curve showing DR and FPR for
different working points. As it can be seen, the cooperative negotiation dramati-
cally improves the classification accuracy with respect to the simplistic weighted
average. For instance, at FPR = 0.1, the cooperative negotiation yields an in-
crement of about 54% on the DR. It must be noted that, in the paper that

2 Available for download at http://ictf.cs.ucsb.edu/data/ictf2008/
3 http://owasptop10.googlecode.com/files/OWASPTop10-2010.pdf

http://ictf.cs.ucsb.edu/data/ictf2008/
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2010.pdf
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Fig. 1. ROC curve of the original prototype (solid line) and with the modifications we
propose (dashed line), and with optimized training (dotted line)

describes the original prototype, the experiments leveraged a completely artifi-
cial, small dataset, comprising only a limited number of attacks: this explains
why the original system performs significantly worse in this experiment.

The accuracy can be further improved by adopting the optimization of the
learning phase (see Section 3.1), although this is not required to apply the co-
operative negotiation.

4.2 Influence of the Parameters

This experiment shows that the parameters introduced by our approach, i.e., the
smoothness, h, and the central value, k, of the alpha function, fα, only marginally
impact the detection quality. In addition, we provide guidance to choose these
parameters to minimize the negotiation overhead. To this end, we used all of
the modifications described in Section 3 (with optimized learning) at a fixed
ROC working point, and varied h ∈ {2.5, 5, 7.5, 10}, k ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
As shown in Fig. 2, the influence of these parameters on (a) DR and (b) FPR is
barely noticeable.

Rather than providing a theoretical complexity boundary to the computa-
tional overhead induced by the negotiation process, we estimate it under real
conditions. As shown in Fig. 2(c), h and k have significant impact on the com-
putational overhead (e.g., number of iterations I), necessary to complete the
negotiation. However, as seen in Fig. 2(a-b), these parameters have almost no
impact on the detection accuracy. Thus, setting k ≥ 0.5 and choosing a safe
value of h allows to limit the number of iterations. For example, in the experi-
ment discussed in Section 4.1 we used h = 7.5.
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Fig. 2. Negligible influence of k and h on the detection quality of our system (a-b) and
noticeable influence on the length of the negotiation, I

4.3 Discussion and Limitations

It is important to clarify the main limitations of our approach. Firstly, an incor-
rect choice of h and k may cause the negotiation protocol not to terminate in
a reasonable amount of time. However, in Section 4.2, we show that these pa-
rameters do not influence the detection quality and, more importantly, provide a
guidance for setting h and k to safe values. Secondly, as described in Section 3.2,
the trust level is constant throughout all the negotiations. In our opinion, this
does not impact the detection accuracy significantly, although this needs to be
assessed thoroughly.

From our experiments we conclude, however, that the technique described in
Section 3 effectively improves the detection capabilities of a multimodel anomaly
detector.

5 Related Work

Anomaly-based approaches have been proposed to protect computer systems
from attacks by exploiting learning algorithms in different veins. Ensembles of
simple models (e.g., character distribution) are effective at capturing the nor-
mal characteristics of computer programs [10, 11], network traffic [7], or HTTP
messages [9, 12], respectively. Unfortunately, due to space limitations, we must
refer the reader to a comprehensive survey on anomaly detection [28].

Multiagent systems are very useful for implementing complex systems [14] and
have been applied also to intrusion detection as a handy replacement of classic
multimodel architectures. For instance, in [13] an agent is assigned to each sys-
tem component or task (e.g., network sniffing, stream reassembly). However, in
this type of approaches, only the architecture of a multiagent system is exploited.
Instead, our approach exploits multiagent systems as a paradigm: not only each
agent embeds a detection procedure, but proper algorithms drawn from artifi-
cial intelligence are leveraged to perform the decision. One of the first attempts
of translating the intrusion detection problem to an interaction between agents
appeared in [15], where the use different classes of agents, which do not com-
municate to each other, is used to detect different types of anomalies, and to
aggregate the decisions through a special agent. Unfortunately, some malicious
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activity (e.g., distributed attacks or evasion attacks) are difficult to detect if the
agents do not communicate, since each agent has a limited view of the attacks.
This idea is improved in [16, 18] by introducing communication between agents
and by embedding a Bayesian network into each agent. Different decision tech-
niques have been embedded in the multiagent detector described in [17], where
special agents called “decisors” use fuzzy inference to bid for the most appropri-
ate actions to counteract the anomalies reported by other agents. CAMNEP [19]
has two important analogies with our work, since each agent (1) learns a dif-
ferent model (similar to those cited in Section 2) and, (2) is assigned a trust
level that reflects the completeness of its training. Unfortunately, this approach
do not fully exploit artificial intelligence algorithms as results from each agents
are simply averaged. The exploratory work described in [21] uses the intrusion
detection task as a case study to apply cooperative negotiation algorithms to
detect attacks. Although the results are promising, the approach reduces the
computation of the trust to a constant function. More importantly, the agree-
ment coefficient devised by the authors causes the agents to agree on results that
once again tend to approximate a weighted average. Recent proposals focused
on updating the learned specifications dynamically at run-time, hence requiring
no or little human intervention also in the case of concept drifts [29,30]. Among
this research line, the technique described in [31] is applied to the aforemen-
tioned CAMNEP multiagent anomaly detector. However, although these model-
updating techniques can certainly improve the accuracy of an existing detector
such as the one described in this paper, they do not constitute a new detection
mechanism per sé, while in this work we focused on multiagent algorithms for
designing effective detection strategies.

6 Conclusions

In this work, we have analyzed an issue that occurs in virtually any multimodel,
anomaly-based intrusion detection system: the detection errors caused when the
outputs of each partial model are aggregated together to form a global evalua-
tion, used to decide whether or not a certain event is an attack. We proposed to
embed detection models into separate agents, in a multiagent system, and then to
exploit cooperative negotiation to implement a more robust value-aggregation
strategy. To test our approach, we modified a web anomaly detection system
which used a simple weighted average, to use cooperative negotiation.

The results obtained by testing the original versus the modified system are
promising. More precisely, our approach can improve the detection rate dra-
matically at parity of false positive rate. In addition, the detection quality is not
influenced by new parameters we introduced, thus our approach does not require
any further tuning effort and could be effortlessly applied to any learning-based
anomaly detector that employs simpler aggregation approaches.

As future work, besides addressing the limitations discussed in Section 4.3, we
plan to evaluate the performance overhead introduced by our approach more thor-
oughly, with particular attention to the time necessary to complete the negotiation
phase and the comparison to other simpler, yet less formal, aggregation methods.
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K., Engel, T.: Runtime monitoring and dynamic reconfiguration for intrusion de-
tection systems. In: RAID 2009: Proceedings of the 12th International Symposium
on Recent Advances in Intrusion Detection, pp. 61–80. Springer, Heidelberg (2009)

http://ha.ckers.org/xss.html
http://ha.ckers.org/sqlinjection/


The Password Game: Negative Externalities

from Weak Password Practices

Sören Preibusch and Joseph Bonneau

University of Cambridge, Computer Laboratory
Cambridge CB3 0FD, UK

{sdp36,jcb82}@cl.cam.ac.uk

Abstract. The combination of username and password is widely used as
a human authentication mechanism on the Web. Despite this universal
adoption and despite their long tradition, password schemes exhibit a
high number of security flaws which jeopardise the confidentiality and
integrity of personal information. As Web users tend to reuse the same
password for several sites, security negligence at any one site introduces
a negative externality into the entire password ecosystem. We analyse
this market inefficiency as the equilibrium between password deployment
strategies at security-concerned Web sites and indifferent Web sites.

The game-theoretic prediction is challenged by an empirical analy-
sis. By a manual inspection of 150 public Web sites that offer free yet
password-protected sign-up, complemented by an automated sampling of
2184 Web sites, we demonstrate that observed password practices follow
the theory: Web sites that have little incentive to invest in security are
indeed found to have weaker password schemes, thereby facilitating the
compromise of other sites. We use the theoretical model to explore which
technical and regulatory approaches could eliminate the empirically de-
tected inefficiency in the market for password protection.

1 Password Practices on the Web

Computer systems have traditionally authenticated users by prompting for a
username and textual password. This practice has proliferated on the Web as
users now create new login credentials on a monthly basis. More than 90% of
the 100 most visited destinations on the Web and more than 80% of the top
1000 Web sites collect passwords from their users. Well-known weaknesses of
password schemes were inherited by the Web, including weak user-chosen pass-
words and password-reuse across domains. These problems were exacerbated by
self-enrolment on the Web and the proliferation of password accounts per user
(estimated to be over 25 [9]).

Numerous password enhancement schemes have been proposed, including im-
proved cryptographic protocols and alternative means for creating and entering
passwords such as graphical passwords. The merit of such alternative authen-
tication schemes remains contested as users continue to pick easily guessable
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secrets and fall for simple social engineering attacks. Automatic management
tools beyond simple browser password caches have seen limited deployment [14].

In parallel, with the advent of global social networks as new identity providers,
single sign-on schemes (SSO) have gained new interest after previous attempts
such as Microsoft Passport have failed. Service providers have started to ac-
cept Facebook Connect for general-purpose Web authentication [2], whilst the
non-proprietary OpenID [13] has gained an enthusiastic following but limited
deployment.

In an earlier investigation, we set out to quantitatively assess the current
state of password implementations on the Web [5]. In the first large-scale sur-
vey of current password practices, we surveyed 150 sites equally sampled from
mainstream and less popular Web sites. We concluded that a large number of
technical issues remain on the Web, with almost all sites studied demonstrating
some security weaknesses and many sites implementing unique and inconsistent
password security policies.

In this work, we present a fresh game-theoretic analysis into the economics
behind these technical failures. Building on our previous identification of two
key negative externalities in the password market, we model firms’ decisions to
invest in password security as a simple game between security-interested Web
sites and security-indifferent Web sites. This partition is supported by the ex-
isting password landscape. We demonstrate that the empirical evidence about
inefficient password practices matches the theoretical prediction from the game-
theoretic model. We affirm the validity of our empirical evidence by analysing
a second sample of public Web sites which is larger by an order of magnitude.
We conclude that market failures provide a pertinent economic explanation as
to why password security weaknesses are so commonly observed.

2 Incentives for Password Deployment

From a service provider’s perspective, passwords enable authentication by en-
suring that a specific identity can only be used by parties knowing the correct
password. Passwords may also sustain real-world authorisation decisions if a
username/password combination is tied to a pre-established offline identity, as
in the case of online banking or corporate email facilities. Merchant Web sites,
which often enable users to store payment details for future shopping, have di-
rect incentives to secure password authentication, as they can be held liable for
any purchases made using stolen password credentials.

In other sites, interaction with other users of the same site (e.g., social net-
working) or beyond (e.g., webmail) introduces the risk of harmful actions if
authentication fails, such as fraud, spam, or blackmail which may damage the
reputation of the operator of the Web site as well as harm users. Passwords
are intended to make users accountable for their actions and eliminate plausible
deniability. In some European jurisdictions at least, operators of interactive sites
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can be held responsible for their users’ actions if they fail to take appropriate
counter-measures. Banning users, locking accounts, and keeping evidence from
electronic discovery for court trials would become impossible if access were not
restricted. Some operators therefore have an intrinsic motivation to secure their
Web sites to protect their own assets, notwithstanding the negative business
impact which careless practices can bring.1

These incentives to secure password authentication do not hold for all Web
sites using passwords, such as free news Web sites, which use passwords to pro-
vide access to a stored identity for customisation. From a security point of view,
it is not clear why a service that is offered for free requires authentication. As
long as users can create an unlimited number of free accounts, password au-
thentication seems dispensable. It places no restrictions on the user other than
the hassle of account creation—which is a rather weak throttling mechanism.
The motivation for password deployment may be revenue rather than security.
In combination with usernames, passwords act as persistent identifiers; they in-
crease the accuracy of behavioural profiling. Password collection also initiates
account creation during which further personal information is collected, includ-
ing contact information such email address and socio-demographic details. This
data may be used directly for targeted advertising or indirectly when aggre-
gated to construct an audience profile, based on which advertising businesses
book slots on the Web site. Password-protected accounts facilitate the extrac-
tion and monetarisation of customer data even when they have dubious security
value.

Regardless of the motivation, there are costs associated with deploying pass-
word authentication which rise with the sophistication of password security
mechanisms. These include at least the need for skilled programmers to imple-
ment and maintain the system and operating costs of password storage servers.
Passwords also add communication overhead, which can be exacerbated by the
need to transmitted encrypted data.

3 Negative Externalities from Password Deployment

Password deployment by one company generates negative externalities in two
ways: first, consumers are asked to remember yet another password; second due
to password reuse each password server is an additional failure point for the
entire system.

3.1 Too Many Passwords: Tragedy of the Commons

Given the low adoption of password management tools [14], mental storage ca-
pacity has the characteristics of a common good to password-collecting compa-
nies. A common good is a good from which no consumer can be excluded, as
1 For example, a well-publicised password database compromise at the social gaming

Web site RockYou brought both a storm of negative publicity and pressure from
Facebook, a key business partner [15].
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consumption is not or cannot be regulated and there is no cost for consuming
the good. Unlike public goods, however, the quality of a common good decreases
as more people consume it. There is an incentive to overuse the common good
to the detriment of society as a whole, as one is not held accountable for the
deterioration of the good’s value. The resulting inefficiency is described as the
“tragedy of the commons” in reference to pastures which were often over-grazed
by the local community of farmers. Any given farmer could fully appropriate the
benefits from sending another sheep to the commons, but the negative effects as
the pasture depleted affected the entire community equally.

Humans have limited physiological capacity to remember random data. Pass-
words consume this capacity and as the total number of passwords remembered
grows, the risk of forgetting typically increases. Indeed, the majority of surveyed
users indicate that they do not use stronger passwords because they simply have
too many to remember [11]. Yet companies can continue to ask consumers to
register new passwords at no expense. Mental password storage capacity, there-
fore, exhibits characteristics of a common good: access to it is neither limited nor
priced; with increased usage, its quality in terms of recall decreases. To cope with
this password overload and maintain an acceptably low rate of forgotten pass-
words, consumers must lower their overall password quality. With per-password
strength requirements in place, password reuse is a common coping strategy to
lower the burden of remembering strong passwords.

3.2 Password Reuse: Negative Externalities of Insecurity

Password reuse enables each site to introduce a further negative externality on
the password market. As companies have differing incentives to invest in pass-
word security, the resulting security of their password implementations inevitably
differs. As the vast majority of consumers reuse the same password across multi-
ple sites [10,9], passwords for high-security accounts such as banking and email
are often held by less secure Web sites as well. The accumulation of high-security
login credentials at Web sites with weaker incentives for security presents an at-
tractive attack strategy: compromise a low-security site and attempt to use the
login credentials at higher security sites. The feasibility of this attack has been
strengthened by the trend towards all Web sites using email addresses as user
identifiers, as observed at 87% of sites in our recent survey [5].

Indeed, within the past year strong evidence has emerged that this attack is
not only feasible but is occurring in the wild. The January 2010 compromise of
social gaming Web site RockYou! leaked over 32 million email/password pairs of
which over 10% were claimed to be directly usable at PayPal [15]. The reuse of
passwords from compromises at low-security sites is acknowledged as a common
means of attack in documentation at both Windows Live [3] and Yahoo! [4]. The
strongest evidence comes from Twitter, which in January 2010 forced millions of
users to reset their passwords after detecting a large scale attack using a stolen
list of credentials from a torrenting Web site [12].
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Web sites with weak password security can thus create a real negative exter-
nality for more secure Web sites. As operators of low-security site do not bear the
social costs of weak password practices, there is a tendency for under-investment
in good password practices.

4 Password Implementers: Game-Theoretical Model

To understand the net incentive for companies to deploy password schemes and
to invest into their security, we understand the Web as an arena where a password
requirements game is played. We model password design choices as actions in a
game with two players: one Web site operator with an intrinsic incentive to invest
in security, the other without such an incentive, as detailed in Section 2. In the
following, these two players will be labelled the security-sensitive Web site (Ws)
and the security-indifferent Web site (Wi), respectively. The firms’ payoffs in this
game reflect how their own decisions to enforce passwords as well as those of the
other firm affect their performance, risk exposure, and implementation costs.
The resulting game-theoretic model will also serve to analyse the efficiency of
the overall password practices on the Web.

4.1 Action Spaces and Timing

The action each Web site can take is to specify the set S of permissible passwords.
When first using the site’s service, users will need to create a password from
within the set of permissible passwords. For simplicity, we assume there are
weak passwords (wp) and strong passwords (sp). Although in reality password
strength is a spectrum and little consensus exists as to how exactly two medium-
strength passwords should be ranked in terms of security, the extremes can be
identified quite easily.2 Web sites Ws and Wi thus choose their action from the
powerset of {wp,sp}: only strong passwords ({sp}), only weak passwords ({wp}),
any password ({wp,sp}) or no password protection at all (∅).

For simplicity, the Web sites choose their password schemes simultaneously.
Still, the following analysis and conclusions would not differ much if the password
requirements game is understood as a market entry game, where a newly created
Web site and an incumbent Web site have to respond to the other player’s past
or pre-empted decisions. The timing of the game effectively determines how users
can reuse their passwords, since only the password created with incumbent at
an earlier point in time could be reused with the entrant at a later point in time.
This directedness of the externality effect is removed in a simultaneous game.
We believe sequential moves are contrary to the observation that, first, users’
ability to change their passwords removes the relevance of timing, and second,
the effects of password leakage do not depend on whether it was used originally
or reused at the leaking site.
2 Conflicting estimates of expected password strength given a set of requirements are

found in NIST’s Electronic Authentication Guideline [7] and the BSI IT-Grundschutz
Methodology Catalogues [6], although both agree that phrases such as pass or
password are weak.
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4.2 Payoffs

The pay-offs in the password requirements game are determined by the summed
positive and negative effects of password implementations, including interaction
effects. Quantification of each of these seven effects is difficult. The rationale is
as follows, expressed in terms of costs and benefits; a summary is provided in
Table 1.

protection benefit. The security-concerned player receives a strictly greater
payoff from requiring some password than from requiring no password at all.
For a security-concerned Web site, the protection effect mitigates liability
and convinces users they interact securely with the site.

data collection benefit. For a security-indifferent Web site, requiring any form
of user accounts triggers the inflow of personal information that can be re-
purposed, as detailed in Section 2.

fortification benefit. Following a similar argument, the payoff for Ws de-
creases if weak passwords are accepted (Ss = {wp} or Ss = {wp, sp}), since
these provide less protection against fraudulent access. The benefit from
strengthening password protection applies to Ws only.

development costs. Any password scheme will require resources to be devel-
oped and/or deployed. Password implementation costs are nil if no passwords
are collected, they are low if passwords are collected but no restrictions are
enforced.

strength assessment costs. More restrictive password schemes require tech-
nical skill; higher implementation costs make payoffs decrease. Implemen-
tation costs do not differ in the required strength (only weak versus only
strong), since only allowing strong passwords is equivalent to filtering out
weak passwords.

sharpness benefit. If Ws is the only player who enforces passwords (isolated
deployment), it can make people care more about passwords and there
is no obtunding effect. The sharpness effect eliminates the tragedy of the
commons.

negative externality costs. The payoff for Ws is severely affected if pass-
words created with Wi are also permissible atWs and vice versa, as detailed
in Section 3.2. We note that the positive sharpness effect will not be observed
together with the negative externality.

The negative externality effect on payoffs captures the interaction of password
practices: an indifferent company Wi as described above will take inadequate
measures to protect user account details, because the site has no incentive to
do so. The interest an indifferent site has in the data is mainly their suitability
for advertising or resale. Leaking that data through security holes corresponds
to giving the data away for free, which would still not be a direct problem for
the indifferent Web site. Subject to compatible password requirements, users
may reuse passwords created with Wi for Ws (Si ⊆ Ss) or vice versa (Ss ⊆

Si). The negative externality of bi-directional reuse thus dissipates when sets of
permissible passwords overlap (Si ∩ Ss ≠ ∅).
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Table 1. Summary of costs (−) and benefits (+) summing up to the payoffs in the
password game. Summands negative in value are underlined. The last two columns
enumerate the player’s own and the opponent’s strategies for which the respective
effect applies.

payoff component applies to if own strategy if opponent’s strategy

d development − Ws, Wi {wp}, {sp}, {wp,sp} any
s strength assessment − Ws, Wi {wp}, {sp} any

c data collection + Wi {wp}, {sp}, {wp,sp} any

p protection + Ws {wp}, {sp}, {wp,sp} any
f fortification + Ws {sp} any
i sharpness + Ws {wp}, {sp}, {wp,sp} {}
r neg. externality − Ws {wp}, {sp}, {wp,sp} any overlapping

4.3 Security-Indifferent Web Sites Wi

For the security-indifferent Web site, player Wi, strategies {wp} and {sp} are
dominated by {wp,sp}, because d+ c− ∣s∣ ⩽ d+ c. A security-indifferent Web site
either implements no password scheme at all (Si = {}), or a scheme that accepts
weak and strong passwords alike (Si = {wp, sp}). The latter will be beneficial
if the opportunity costs of missing out on collecting personal information from
Web users prevail over deployment costs of a password scheme.

Ignoring future maintenance, password deployment can be thought of as an
investment for Wi: initial costs of d, result in accruing inflow of personal infor-
mation. This data needs to be monetised to amortise the investment. c would
therefore be the expected net present value from turning collected data into
profits.

Deploying no password scheme will become the profit-maximising strategy if,
first, Wi is unable to monetise the personal information it collects through own
or third-party use, or second, if personal information can be acquired without
requiring passwords.

4.4 Security-Concerned Web Sites Ws

Given that Wi will play {} or {wp,sp}, the security-concerned Web site Ws will
always prefer {sp} over {wp} as it provides extra fortification f . This preference
would only be affected by the relative impact of r, the negative externality from
password reuse, which does not make a difference except when Wi would play
{sp}—a dominated strategy. Quite intuitively, allowing weak passwords only is
a dominated strategy for Web sites sensitive to securing their systems.

As its opponent plays neither {sp} nor {wp}, the difference in payoff for
Ws between {sp} and {wp,sp} lies in s + f , that is the extra profit from strong
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passwords versus the costs to identify and to enforce them. An argument could
even be made that this sum actually is a negligible quantity: if the effort in
identifying strong passwords is expertise rather than the technical implementa-
tion, the difficulty lies in determining what non-trivial characteristics a strong
password should have. Then, if f materialises in the form of reduced liability for
the Web site when strong passwords are used, this is a result from a regulation
prescribing “strong passwords” which would also hint at how to make technical
systems compatible with the strength requirements.

4.5 Equilibria

In the light of the foregoing argument, two kinds of market equilibria are ex-
pected. First, the security-indifferent Web site accepts any password, and the
security-concerned Web site requires strong passwords and potentially allows
weak passwords as well, depending on the relative importance of the fortifi-
cation effect compared to costs of assessing and enforcing password strength.
This group of equilibria is inefficient due to negative externalities from password
reuse. The second group of equilibria is reached if the security-indifferent Web
site renounces password collection. Again, the concerned Web site may enforce
strong passwords or accept weak and strong passwords. Collectively, this group
of equilibria is socially better than the first (Pareto-superior): because Si = {}

instead of Si = {wp, sp} requires c + d ⩽ 0 by definition, and in addition it holds
that i ⩾ 0 ⩾ r, the social costs are lower if no password scheme is put in place at
indifferent Web sites.

We now assume the likely case that benefits of protection are high for the
security-concerned Web site (p is very high and f outweighs s). We also assume
the indifferent Web site is similarly keen on collecting passwords (c+d is positive).
The password game then exhibits a single Nash equilibrium. This equilibrium is
in dominant strategies, (Ss, Si) = ({sp},{wp, sp}). There is a unique combination
of strategies that maximises social welfare, the sum of payoffs: ({sp},{wp}); the
payoff for the security-sensitive site is maximised in ({sp},{}).

The Nash equilibrium is found, when the security-sensitive site enforces strong
passwords, and also the indifferent site requires passwords but any password—
weak or strong—will do there. In the Nash equilibrium, Wi will receive a high
payoff, since personal information (which translates to a revenue stream for the
indifferent site) is collected, but little development effort is necessary. As the in-
different site will accept any password, weak or strong ({wp,sp}), practically no
validity checking needs to be performed on the user-chosen passwords, eliminat-
ing the development costs s. The security-sensitive firm suffers from the negative
externalities r this behaviour dissipates: due to password reuse, passwords from
the security-sensitive site spill over to the indifferent site, where they are then
subject to inadequate protection.

The security-sensitive site would get a maximum payoff if no indifferent site
implemented any passwords (Si = {}). Both the fortification effect and absence
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Table 2. Algebraic expression of payoffs for the row player (Ws, above the line) and
the column-player (Wi, below the line). Letters denote the cost/benefit effects from
Table 1.

Ws
Wi

{} {wp} {sp} {wp,sp}

{} 0
0

0
c+d+s

0
c+d+s

0
c+d

{wp} p+d+s+i
0

p+d+s+r
c+d+s

p+d+s
c+d+s

p+d+s+r
c+d

{sp} p+d+s+f+i
0

p+d+s+f
c+d+s

p+d+s+f+r
c+d+s

p+d+s+f+r
c+d

{wp,sp} p+d+i
0

p+d+r
c+d+s

p+d+r
c+d+s

p+d+r
c+d

of negative externalities make this market outcome attractive for Ws. Its only
costs are the implementation effort for making only strong passwords acceptable.
However, an indifferent site will not renounce password schemes since they act
as a means to collect email addresses, for instance, and thereby realise positive
payoffs c.

Comparing the Nash equilibrium with the social optimum is instructive. Both
are Pareto-optimal; not both companies can improve their payoffs at once, com-
pared to these strategy combinations. Maximum differentiation in the password
requirements space maximise social welfare: the indifferent firm accepts only
weak passwords and the security-sensitive firm accepts only strong passwords.3

The reason this equilibrium is not realised is the disincentive for the indifferent
site to invest in restricting permissible passwords. The combined payoff in the
social optimum is higher by ∣s − r∣ than in the Nash equilibrium.

Interestingly, if the security-sensitive site would subsidise the indifferent site
to help it in developing desirable password schemes which only accept weak
passwords, the social optimum could be achieved. Ws would need to transfer an
amount between ∣r∣ and ∣s∣ toWi. Alternatively,Ws could lower the development
costs for Wi, to make this site prefer Si = {wp} over Si = {wp, sp}. Whilst this
approach is equivalent to a subsidisation, it provides a technical rather than
a transfer solution to the market failure. Indeed, the security-concerned Web
site has already invested s in a password-strength assessment technology. These
alternatives for regulation are discussed in greater detail in Section 6.

3 The reversed maximum differentiation yields a lower overall payoff since the fortifi-
cation effect f does not apply to Wi.
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5 Password Implementers: Empirical Evidence

Analysis of the password practices at 150 public Web sites in the areas of elec-
tronic commerce, identity services such as emailing and social networking, and
content services such as news, reveals market-wide technical and organisational
shortcomings [5]. While problems are widespread, there is evidence that weak
password practices are more common in the news industry and lower-tier Web
sites. This observed dichotomy is confirmed in a larger sample of 2184 automat-
ically analysed public Web sites.

5.1 Notes on the Datasets

Password practices in the wild are quantitatively assessed using two datasets,
called the “Password Thicket” dataset and the “BugMeNot / Alexa” dataset
respectively.

The Password Thicket dataset comprises 150 manually surveyed Web sites,
equally sampled from mainstream and less popular Web sites [5]. The sample is
organised by industry into three equally sized groups: identity sites (which use
passwords to protect a user’s identity for interacting with other users, notably
webmail and social networking), electronic commerce sites (designed for purchas-
ing goods with no interaction with other users), as well as news and content sites
(using passwords to customise site layout or limiting access to account holders
only). Our methodology to assess the quality of password implementations was
based on manual inspection of the security measures during enrolment (account
creation), login, password reset, and password recovery. The details of our exper-
imental setup and our main technical findings are reported elsewhere [5]. This
dataset is characterised by the depth of investigation for each Web site in the
sample.

The “BugMeNot / Alexa” (BMN ) dataset comprises 2184 Web sites listed on
www.bugmenot.com. BugMeNot is a major credential-swapping site “created as
a mechanism to quickly bypass the login of Web sites that require compulsory
registration and/or the collection of personal/demographic information”, a prac-
tice considered a “pointless” exercise [1]. Users of BugMeNot can upload new
username/password combinations for a given Web site. Fellow visitors of Bug-
MeNot can retrieve these credentials for free. Web site operators can request to
be removed from BugMeNot, and it is possible to check which sites have taken
this step. BugMeNot explicitly bans pay-per-view sites, community sites for in-
teraction amongst members, sites with a fraud risk due to banking/commerce
details stored with the user accounts. When browsing the BugMeNot repository,
sites which were blocked can be told apart from sites for which no passwords
have been submitted yet.

We crawled BugMeNot in a two-step process. First, the 3172 most popular
Web sites were retrieved from Alexa Top Sites, an Amazon Web service. Pop-
ularity is measured by the proprietary Alexa rank to which traffic rank is a
paramount ingredient. Popularity in the USA is used rather than the interna-
tional ranking to avoid having localised versions of the same site showing up

www.bugmenot.com
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twice (e.g., google.de on position 15 and google.com.hk on position 16). For each
Web site in this top list, the Alexa Web Information Service was queried for the
date the site went online, for the median load time, for whether it contains adult
content, and for the first three categories this site pertains to.

A Web site’s category correspond to the classification in the Open Directory
Project. These categories are used for coarse, keyword-based binary identification
of news/weather/magazine Web sites. Whilst classification was automatic, one
of the authors and another non-expert but skilled rater also classified a random
subset of 388 of the sites (12%). These raters agreed on the classification at
an intraclass correlation coefficient 0.64 (model 2, single measure). Although
agreement with the automated classification was at an ICC of 0.49 and 0.42
respectively, the programmatic rating was judged acceptable, since inspection of
diverging ratings indicated that manual classification resulted in a broader set
of news sites (i.e. the automated rating was typically stricter). In summary, 274
sites are classified as news sites, 2882 as non-news sites; for 16 sites, the category
information was missing and no classification was performed.

In a second step, each of the top Web sites was matched mechanically against
BugMeNot. The listing status was recorded as one of ‘ok’ (there are accounts
listed for this sites), ‘blocked’ (the Web site is barred from BugMeNot), or ‘miss-
ing’ (the Web site is not listed on BugMeNot). Missing Web sites may simply
have never been registered by the community and never been blocked by the site
operators, or may not collect passwords at all. For the sites in our survey, the
majority of missing Web sites appear to not collect passwords. In total, 988 of the
top sites were not listed in BugMeNot; the remaining 2184 sites making up the
BMN dataset are divided into 531 ‘blocked’ Web sites and 1653 ‘ok’ Web sites.
In summary, the BMN dataset is characterised by the breadth of investigation
and focuses on the most popular destinations on the Web.

5.2 Practices at Content Sites

Content sites are the prototypical example of security-indifferent Web sites that
use passwords as a trigger for harvesting profile information (Section 2). They
are significantly more likely to collect personal information at the time when
a new password is created. All but 2% collect email addresses on a mandatory
basis and they are more likely to verify these with very high significance.

Password carelessness is more prevalent at news sites with high significance.
This is manifested in very significantly lower adoption of TLS to protect pass-
words and sending the cleartext passwords in a welcome email or “forgotten
password” responses. Also, news sites place fewer limits on guessing passwords,
so they could be abused as password oracles in brute-force attacks against more
security-sensitive sites. Users of news sites are rarely given password advice or
hints on how to make a password more secure, for instance by including digits
or via a graphical password strength indicator.
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5.3 Practices at Sites with Merchant Facilities

Merchant facilities are not exclusive to e-commerce sites but may be used at
other Web sites as well. Sites which store users’ payment details perform signifi-
cantly better on overall password security and in several key measures, including
TLS deployment and notification to users about password reset events. Although
the lack of encrypted data transmission is widespread, the dichotomy between
content sites and e-commerce sites is very strongly significant and TLS deploy-
ment is strongly correlated with merchant facilities. It holds that sites which
process and store fraud-prone details such as payment information take more
care in handling passwords securely and offer more advanced security features
overall.

Critically, we observe that sites with merchant facilities are also significantly
more likely to impose minimum password lengths and to blacklist common pass-
words. If sites with merchant facilities are interpreted to represent the class of
security-interested Web sites, this directly supports the predictions of the pass-
word game.

5.4 Prevention of Credential Sharing

Web site operators’ eagerness to stop the sharing of credentials amongst their
users can be interpreted as an indication of whether or not password compromise
is deemed a serious risk. In merging BugMeNot data with Alexa traffic rank data,
we observe that very-high traffic Web sites are much more likely to block listing
of their credential of BugMeNot (Fig. 1; 28% blocked in upper half versus 20%
in lower half, highly significant).

After the top 50 Web sites, there is a small and gradual decrease in the rate
of blocking. However, blocking is still quite common among the lower ranked
sites, at above 25% in the band of the 500th to 1000th most popular sites, and
17% around rank 3000. Password collection remains at a high level of above 80%
through the entire range up to the 1000th rank and is still at 69% for up to the
3000th rank. Thus, accross a range of Web sites BugMeNot blocking is a useful
indicator of Web sites’s real security motivations for collecting passwords.

We see a pronounced trend towards news Web sites blocking BugMeNot shar-
ing significantly less often. We observed 18% of non-news sites to block Bug-
MeNot sharing, while only 8% of news Web sites did so. If we restrict ourselves
to only Web sites which exist in BugMeNot’s database the divide is even stronger,
with 26% of non-news Web sites blocking BugMeNot sharing and only 9% of news
Web sites doing so. Both results are highly statistically significant (p < 0.0001 us-
ing a two-tailed G-test). Thus, the BugMeNot data provides strong evidence that
news Web sites do have lower security concerns than other password-collecting
Web sites.

In summary, a Web site’s password practices improve with popularity, indus-
try-specific leadership, and growth. Password deployments are prevalent across
popularity strata, but the most popular sites are also most likely to exhibit
password care in taking measures to prevent password sharing amongst users.
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Fig. 1. Proportion of sites collecting passwords (upper curve) and amongst these, the
proportion of sites blocking password sharing (lower curve). Ratios given for top k US
sites with k up to 3200. Bumps are artefacts of the increasing window size for the
arithmetic mean.

5.5 Limitations

Despite these consistent results, we acknowledge there are limitations inherent
to our empirical and theoretical methodologies.

First, the game-theoretic model may not have captured all intricacies of the
players’ payoffs. A notable simplification is the symmetry in the cost structures.
It seems convincing that security-concerned Web sites exhibit a structural differ-
ence compared to other Web sites which would lower their costs for developing
standard or sophisticated password schemes. Yet, the current model would then
be an underestimation of the resulting inefficiency on the market. A more fun-
damental question seems to be whether password deployment decisions can be
modelled as a game which has the underlying assumption of rational players.

Second, insofar as we base our analysis of data retrieved from Alexa and
BugMeNot, we are limited by our resources in fully ascertaining their accu-
racy. All popularity ranks are based on Web usage behaviour from a sample of
users who are not representative of the entire online population. We nonethe-
less deem the rankings reliable. Further, the BugMeNot database suffers from
quality problems inherent to a crowd-sourced endeavour. Although we did not
systematically probe the accuracy of the BugMeNot repository, we have tried to
reduce recording errors by a full manual inspection of suspicious cases.
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6 Observed Market Inefficiency and Pathways for
Regulation

The ubiquity of password schemes on the Web contrasts with the variety of
security flaws found in implementations across industries and Web site popular-
ity levels. Failure to provide adequate password security cannot be attributed
to technical problems alone; mis-aligned incentives on the market explain why
some groups of Web sites score significantly better on password security.

In the early 1960s, the former US security advisor McGeorge Bundy noted:
“if we guard our toothbrushes and diamonds with equal zeal, we will lose fewer
toothbrushes and more diamonds”. In 2010, the Windows Live help pages echo:
“Access to your financials and email account is a critical thing; therefore your
passwords for these accounts should be un-guessable, even by a computer. If
it is to post a response on a gamer forum, perhaps it doesn’t need to be so
complex.” [3]

We have presented empirical evidence that password-equipped Web sites fall
in two broad categories: on the one hand, there are those sites which have a self-
interest to invest in security, on the other hand, some sites only use passwords as
a trigger to collect personal information from their users for secondary purposes.
Password carelessness is significantly more prevalent amongst the latter and
encompasses phenomena such as sending out passwords in cleartext, allowing
unlimited password guessing, lack of secure data transmission, and failure to
fight sharing of credentials.

The observed lack in technical safeguards can be explained by a lack of busi-
ness interest to invest in password security. At content sites, passwords do not
serve a genuine authentication purpose but rather vest information profile cre-
ation with credibility. The resulting dichotomy in the market corresponds to
the prediction of a game-theoretical model where a security-indifferent and a
security-sensitive Web site operators make password deployment choices. Their
differing motivations lead to differing optimal choices as to what combination
of weak and strong passwords should be accepted, bearing in mind the required
implementation efforts as well as increased levels of protection.

The password game exhibits a unique Nash equilibrium where security-indif-
ferent Web sites will accept any password regardless of its security but security-
sensitive Web sites allow strong passwords only. This outcome can also be ob-
served empirically on the Web. It is not socially optimal, since the overlap in
permissible passwords creates room for password reuse. Overuse of consumers’
mental ability to remember passwords is similar to the tragedy of the commons
and makes consumers use the same passwords across sites, which differ in secu-
rity practices. Careless handling of strong passwords at a security-indifferent site
dissipate a negative externality on security-sensitive Web sites, where leaked or
fraudulently acquired credentials can be reused by an attacker. As a result, the
market allocation of password strength is inefficient.
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Due to the negative externalities from password reuse, Web sites for which
security is critical find themselves exposed to threats created by not accounted
for by security-indifferent sites. This calls for regulation. Effectively controlling
password deployments and their strength by a global, supra-national Internet
authority remains unrealistic. Certification could become mandatory for new
deployments, which are then watermarked so that any alterations break the cer-
tificate. Obviously, exactly those Web sites currently exhibiting weak password
practices would have little incentive to participate.

Password deployment needs to be priced to internalise the externalities on
other password implementers and consumers. Pricing need not be direct, al-
though a pay-per-stored-password is the most direct solution and could be re-
alised through charged-for database storage as a service (similar to the emailing
facility offered by Amazon Web services for instance). Requiring yearly, printed
data statements sent to users would involve costs that reduce the incentive to col-
lect passwords without genuine authentication purposes [8]. These approaches
could be complemented and supported by targeted legislation. A purely legal
approach may increase the costs of leaking passwords by making the weaker-
security Web site liable for account breaches at higher-security Web sites. Reg-
ulation could further reduce the ability for Web sites to monetise personal in-
formation collected via password schemes and thus make their deployment less
attractive. Security-sensitive sites could also be given the opportunity to sue
security-indifferent Web sites for unfair competition, creating a dynamic similar
to the one that made German Web sites observe the requirement of an imprint
with contact details. Abiding by a password scheme would not preclude content
Web sites to tailor their services on a per-account basis; federated identities such
as OpenID provide a viable and mutually beneficial alternative [13]. Insofar as
password collection is merely a trigger to ask users for personal details, program-
matic access to people repositories such as Facebook Connect makes this anchor
redundant and may reduce the proliferation of password collection.

On the technical side, password kits could lower the costs for password-
implementers to secure their systems. For security-indifferent Web sites, it should
be cheaper to use an out-of-the-box password solution with known, weak secu-
rity than implementing its own, arbitrarily secure system. Security-sensitive Web
sites would have an incentive to sponsor the development and provision of such
support tools, as demonstrated in Section 4. They would also have the bene-
ficial side-effect of unifying the password experience for consumers and could
potentially be branded. Open questions as to how such a password kit should
look precisely and what password standards should be incorporated are impor-
tant research challenges. Our limited consensus of what parameters constitute an
appropriate password scheme calls for further, large-scale experimental research.
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Abstract. Authorised users (insiders) are behind the majority of secu-
rity incidents with high financial impacts. Because authorisation is the
process of controlling users’ access to resources, improving authorisation
techniques may mitigate the insider threat. Current approaches to au-
thorisation suffer from the assumption that users will (can) not depart
from the expected behaviour implicit in the authorisation policy. In re-
ality however, users can and do depart from the canonical behaviour.
This paper argues that the conflict of interest between insiders and au-
thorisation mechanisms is analogous to the subset of problems formally
studied in the field of game theory. It proposes a game theoretic autho-
risation model that can ensure users’ potential misuse of a resource is
explicitly considered while making an authorisation decision. The result-
ing authorisation model is dynamic in the sense that its access decisions
vary according to the changes in explicit factors that influence the cost
of misuse for both the authorisation mechanism and the insider.

1 Introduction

The three well known cornerstones of information security are confidentiality,
integrity and availability. Each of these properties is defined by reference to an
exogenous notion of authorised. For instance, confidentiality (integrity) is pre-
served if and only if a resource is read (modified) by an authorised user. There-
fore, the complexity of preserving information security is directly dependant on
authorisation, which is the process of mediating every requested access to re-
sources maintained by the system and determining whether the request should
be authorised or denied.

Authorisation proves to be a complex task in practice. It is based on a pre-
diction of the users who may require access to resources to perform a job, while
the correctness of this prediction appears to be inherently dependant on the
future behaviour of the user. Despite this, all existing authorisation approaches
inherently attempt to predict both the system’s future needs (i.e., to determine
who needs access) and the future user behaviour (i.e., in terms of the satisfac-
tion of the need). To make the problem tractable, so far these two concepts
have been conflated into a single construct. For example, in Multilevel Security
(MLS) users are assigned clearances, or in Role Based Access Control (RBAC)
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to roles. Inherent in both of these assignments is the concept of ‘need’ and to
some extent ‘user’s behaviour’ (i.e., if users were assumed to misuse their access,
they wouldn’t be assigned to the role or been given the clearance). Authorisation
decisions within these approaches are based on a security policy, that constitutes
a set of rules binding access rights to users on the basis of need and assumed
unlikelihood of misuse. The main shortcoming of the current policy-based ap-
proaches is their use of static criteria to determine a dynamic phenomena: future
needs and future users’ behaviour1.

The adverse implication of this is significant as is discussed below under two
streams of criticism, one arguing for more flexible authorisation models, another
for an optimal access rights assignment. First, there is evidence suggesting that
static policy may not be effective in today’s dynamic environment [12,14]. As a
result, a user’s legitimate access request to perform a job that is beneficial for
the organisation will be rejected. To address some of the rigidity of such autho-
risation models, risk-based approaches have been proposed [12,4,14], where an
unauthorised user may be given access to resources when the risk of doing so is
estimated to be below a predefined threshold. Second, there are industry surveys
suggesting that a significant portion of security incidents are due to authorised
users (insiders) [6]. There are several proposals to detect and prevent insider mis-
use by inferring user’s intention through behavioural indicators captured using
intrusion detection or computer forensic techniques [15,13,3].

Our research is motivated by the gap between these two perspectives: one
identifies the need for more flexible authorisation models to facilitate resource
sharing in dynamic environments. The other suggests, even with the current
pessimistic rights assignment, misuse remains commonplace. At the heart of
both lies the uncertainty about future behaviour of users. Such uncertainty is
traditionally buried under an informal tradeoff analysis a priori to constructing
an authorisation policy. Our goal is to make this tradeoff a dynamic decision
based on explicit factors. To this end, we believe authorisation is in nature close
to the principal-agent problem in the field of economics [7]. The theory has
been extended to discuss the issues of delegation, especially the incentives of
employers (principals) and employees (agents) to invest effort into finding the
most profitable ways of using employer’s resources if incentives are not, or are
only partially aligned [1], a problem very similar to that of authorisation, where
not to authorise a legitimate request implies that the employer has to spend
additional effort to carry out the job. The implication of this perspective is
profound for authorisation. It suggests that users are to be considered as self-
interested; they attempt to increase their objective function without caring about
the objectives of the authorisation system. Therefore, it is no longer sensible to
assume users’ behaviour based purely on constructs such as role, clearance or
trustworthiness. For instance, a high clearance user may be more likely to misuse
an access right when he is confident that it can go undetected. Whilst, a low

1 In authorisation literature, user’s compliance with policy is external to the authori-
sation model - assumption has been the existence of policy enforcement mechanisms.
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clearance user may be less likely to misuse the same access right when she is
certain about being detected and the punishment that follows.

To formally reason about potential user behaviour while making authorisation
decisions we utilise techniques from game theory [5] which provide a mathemat-
ical foundation for reasoning about conflicts of interest between rational self-
interested individuals. The principal contribution of this paper is the proposal
of a formal game theoretic authorisation model. In this paper we deliberately in-
troduce strong assumptions to emphasize the effectiveness of this novel approach.
We introduce four types of users that an authorisation system may be interact-
ing with, namely, benevolent, malicious, selfish and inadvertent. The type of a
user defines their objective function. Further, we show that given a selfish user,
under some strong assumptions, the authorisation decision is reduced to solving
an inequality, representing the user’s tradeoff about the misuse of a resource.

The rest of the paper is organized as follows. Section 2 discusses the related
work, focusing on those employing game theoretic techniques in information se-
curity. Section 3 introduces the authorisation problem and narrows the scope of
our work. Section 4 presents a game theoretic authorisation model and briefly
discusses the implications of Nash equilibrium for such model. Section 6 enu-
merates the simplifying assumptions made in this paper and outlines possible
directions for future work. Finally, Section 7 provides the concluding remarks.

2 Related Work

The marriage between economics and information security has attracted con-
siderable attention recently. Game theory provides a mathematical framework
for studying the behaviour of rational agents in a multi-player decision problem
where players with different objectives can compete and interact with each other
on the same system to increase their objective function. The use of game theory
in modelling the interaction between users within a system has appeared in sev-
eral areas of information security research, though not explicitly in addressing
the authorisation problem.

Liu et al., in [10] suggest that the concept of incentives can be employed to ex-
press attackers’ intentions, while the concept of utilities may be used to integrate
incentives and costs in such a way that the system as well as attackers’ objectives
can be practically modelled. They introduce a conceptual model for determin-
ing attacker intent, objectives and strategies rather than using a specific type
of game for modelling attacks; further they introduce conditions under which
a specific type of game model will be feasible and desirable. Alpcan and Basar
in [2] have also investigated a security game as a two player, non-cooperative,
non-zero-sum game. Their work is related to ours as the game is assumed to be
a complete information game and the player’s optimal strategy depends only on
the payoff function of the opponent. Lye et al., [16] has shown how the network
security problem can be modelled as a general-sum stochastic game between
attacker and the administrator. They also showed how to compute Nash equi-
libria, however, their approach is specific to network security applications and
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they assume the benefit of attackers arises from harming the network, hence only
dealing with malicious users. In [11] the authors introduce some of the problems
in performing tradeoff analysis in network security. They formulate both static
and dynamic Bayesian games to demonstrate the suitability of game theory for
the development of various control algorithms in intrusion detection. Further,
they discuss the existence of Nash equilibria for these games. However, like [16],
they only deal with potentially malicious users, who may only have a positive
payoff through attacking the system.

In [9], Liu et al. introduce stochastic game theoretic model for the analysis of
the behaviour of malicious insiders. They suggest such a game to be a zero-sum
game, where the loss of the employer is the gain of the insider. However, the
zero-sum assumption is restrictive as most security games are non-zero sum [11].
Further, their model only deals with malicious insiders. It ignores the circum-
stances where an insider may also benefit from not attacking, which is the case
for selfish insiders as will be discussed in this paper.

In another work, Liu et al., [8] propose a risk-based approach to deal with inad-
vertent insiders, those users who do not deliberately intend to harm the system.
They propose assigning a risk budget to tasks and rewarding those employees
who perform their tasks while consuming less than the allocated budget. The re-
ward value is equal to the remaining risk tokens for the task. On the other hand,
those employees who consume all their risk budget before completing their job
are punished. In this way, the risk is communicated to the inadvertent insiders
and the cost of risky actions is shifted from the organisation to them. However,
the proposed approach is not abstract and falls short of a formal model. Fur-
ther, they assume the punishment of the users is a certainty, when in reality
punishment is a function of the ability to both detect an attack and administer
punishment, neither of which is certain. They also assume the benefit to the
user from misusing a resource is less than the punishment cost which implies the
punishment is assumed to always be an effective deterrent.

The focus of our work is specifically on authorisation, where the users are not
necessarily adversaries. This makes our problem distinct from the above works,
because users’ benefit is not always driven from attacking, as the organisation
may reward actions that advance its objectives. Further, sometimes the expected
cost of denying access exceeds the expected cost of authorising the access. This
is contrary to the underlying belief behind existing authorisation approaches
where the cost of denying access is not accounted for within the model. To the
best of our knowledge, all the existing approaches to authorisation make implicit
assumptions about how users will behave rather than explicitly reasoning about
the users’ use/misuse of resources.

3 Authorisation Problem

Let I, A, R, P respectively denote a set of all Individuals, Actions, Resources and
Purposes in a system. We say U = I × A × R × P is a set of all the possible
uses - all the actions that can be performed by individuals on resources for any
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purpose. Given this, the authorisation problem revolves around the design of an
authorisation function that determines a subset of uses, A+ = {(i, a, r, p)} ⊆ U,
referred to as the authorised space.

The aim of the authorisation function is to reduce the probability of an attack,
that is defined as a user’s action on a resource for a purpose other than for which
the user was authorised. Formally, a usage (i, a, r, p′) is an attack by user i if
∀a, r, p ∈ U, ∃(i, a, r, p) ∈ A+∧�(i, a, r, p′) ∈ A+. By definition our authorisation
problem is focusing on the scenarios where resources provided to users may
be used for purposes other than those intended by the authorisation system.
For instance, Alice using her access permission to copy sensitive records for the
purpose of financial benefit (by selling them) is considered as an attack.

An attack inherently suggests an unwelcome usage by the user regardless of
the potential damage they may incur to the system. From this, we define a user
threat (threat for short) as a probability ρ ∈ [0, 1] of attack by a user. This
expresses the unpredictability of the users’ actual purpose of using the resource.

3.1 Insider Types

One of the major complexities involved in dealing with users’ attacks is the fact
that such attacks may be intentional as well as accidental. The former may occur
for reasons such as revenge, financial gain, policy workarounds, and the latter
may be an honest mistake or due to a user’s lack of knowledge about the risk of
their actions for the organisation [13]. Even though knowledge about intentions
provides an important criteria for detecting and preventing attacks, teasing out
intentions is a challenging task as there are no uniquely identifying indicators
associated with attack actions [10]. Despite this, there are already several tools
and approaches for detecting attacks as well as predicting them based on be-
havioural patterns and sequences of actions executed by a user. Although such
tools are still in their infancy, the empirical results show several signs of improve-
ment. For instance, Bishop et al., in [3] introduced an architecture for a tool that
attempts to identify certain behavioural changes that may be alarming. Others
[15] have suggested the use of Intrusion Detection Systems (IDS) to identify the
deviations from “normal” usage patterns by users.

Here we assume such a tool exists as a function Γ{Θ} ∈ [0, 1] that provides a
probability of user’s type, given a type space Θ = {benevolent , selfish,malicious ,-
inadvertent}. For example, ΓΘ = {0, 0.5, 0.5, 0} suggests that that a given user
might be either selfish or malicious with the probability of 1/2. A user’s type
embodies their private information that is relevant to both the user and the
authorisation mechanism - each user type specifies what the user considers a
utility, hence their intention:

Malicious: those who consider the loss (increased cost) of the organisation as
their gain. They would like to incur as much cost to the organisation as possi-
ble. Most of the existing works deal with detecting and preventing malicious
insiders [9].



Towards a Game Theoretic Authorisation Model 213

Selfish: those whose aim is to maximise their own (financial) payoff. Their aim
is not to incur cost to the organisation, even though this may happen as a
result of their selfish choices. Hence, this type will respond to appropriate
incentives (e.g., financial).

Benevolent: those who consider the loss of the organisation their loss (their
utility function is the organisation’s utility function), hence they do not
attack.

Inadvertent: those with incomplete or incorrect information about the outcome
of their actions. They are not misusing the resources (attack) to harm the
organisation or doing so to increase their financial gain, but they may be
careless or negligent or uninformed [8].

While our ultimate goal is to design a general authorisation model that can
make an optimum authorisation decision (i.e., to reduce threat) under uncer-
tainty about user’s type, here for simplicity we will assume that for a given
user the sum of her/his type probabilities is 1 and that users are only selfish
(ΓΘ = {0, 1, 0, 0}). This focuses our attention on how to design an authorisation
mechanism that explicitly takes into account (selfish) user’s potential misuses of
their access rights before making authorisation decisions.

4 Game Theoretic Authorisation Mechanism

In this section we formulate an authorisation mechanism as a game between a
selfish employee (i) and the benevolent employer (j) who is the sole authority
in making authorisation decisions. The game starts with a request from the
employee for access to a resource. Along with the request, the employee indicates
the outcome of such action for the employer, denoted as proposal (p)2. Given this
request, the employer shall decide whether to authorise or deny the access to the
resource3. On the other hand, the strategy space of the employee consists of
either attack or not attack.

Such a binary description of employees’ alternatives simplifies our model, how-
ever, it is no longer possible to differentiate attacks based on their consequences.
For instance, given a sensitive record and a disgruntled employee with two alter-
native attack actions, i.e., destroy or sell the record to competitors, there may
be a great difference between the two attacks from the employer’s perspective,
particularly if a backup of the record exists (i.e., selling it may incur a great
financial loss while destroying it may merely interrupt a service).

The authorisation game centres around a resource valuable to both players.
An employee may use the resource to either make a personal profit (i.e., attack)
or perform a job that actions the proposal (p) for the employer. The employer,

2 We deliberately reuse p that represented a purpose in Section 3 to draw the connec-
tion between the notion of proposal and purpose.

3 The employer is actually the representation of our authorisation function, that given
an access request (i, a, r, p) ∈ U decides whether (i, a, r, p) ∈ A+ (authorise) or
(i, a, r, p) /∈ A+ (deny) the request.
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hence, is concerned about the expected cost of the attack, which causes the re-
source to transition from a secure state to a compromised state. Such a transition
is associated with a specific monetary cost for the employer, denoted by Cr

j . De-
pending on the resource the cost of being compromised changes. In reality there
may be several compromised states including loss of confidentiality, integrity,
availability, privacy or reputation. Further, as we have mentioned, there may
be several attacks based on the employee’s action space and each may incur a
specific cost depending on the causal relationship between an attack action and
resource transition to a costly state. However, since attack generalises any sin-
gle/sequence of undesirable employee actions, we assume an employee’s attack
incurs a cost (Cr

j ) to the employer.
The employer is also susceptible to opportunity cost: the benefit forgone by

denying a request. The quantification of opportunity is determined by the pro-
posal (p) made by the employee to access the resource. Through such a formu-
lation, distinct from the existing authorisation approaches, denying an access
request as well as authorising it may incur a cost for the authorisation system.

Now we turn to the employee’s cost factors. An employee may incur cost
through fines, denoted by Cf

i (i.e., given they attack). However, usually a fine is
not certain - it is only applicable if the employer can detect the attack, which is
a function of the accuracy of detection techniques and the ability to enforce the
fine. For now the ability to detect and enforce the fine is combined and referred
to as the probability of being fined, denoted by ψ ∈ [0, 1], which is assumed to be
common knowledge. For example, when an employee is out-sourced from another
country there may be less chance of enforcement of the fine in comparison to a
circumstance when the employee is local4. In addition, in order to attack, the em-
ployee is assumed to incur a preparation cost, denoted by Ct

i . This cost abstracts
the effort the employee must expend in order to acquire access to the resource to
use it for personal benefit. For instance, if the resource is commercially valuable,
finding a buyer requires time and effort. In other cases, the employee may need
to prove to the employer that the proposal amount is attainable by him and this
could require training courses and faking trustworthiness.

Sometimes the employee is given a personal benefit for the opportunity they
realise. This is represented as a rate of return, ε ∈ [0, 1] on the proposed op-
portunity, p. We regard the predictions of the employee in terms of the actual
achievement of p to be always correct if the access is granted. On the other hand,
the actual personal profit for the employee from an attack is a portion α ∈ [0, 1],
of the cost of resource (Cr

j ), if the access is given. Note that this may not always
be the case as sometimes a very costly resource for the employer has a very low
value for a selfish employee or vice versa.

Given the above game setting, the game tree of employer and employee in an
authorisation game is shown in Figure 4. The authorisation problem is, given
complete information of both players about the payoffs, when should the em-
ployer authorise the access?

4 For now we are not interested in the size of this fine in proportion to the loss (cost)
of the employer.



Towards a Game Theoretic Authorisation Model 215

denyauthorise

j

notattack

p, ε.p

attack

ψCf
i − (1 − ψ)Cr

j ,

(1 − ψ)α.Cr
j − Ct

i − ψ.Cf
i

notattack

0, 0

attack

0,−Ct
i

i

Fig. 1. Players Payoffs

4.1 Nash Equilibrium and Its Implications

A solution to a non-cooperative game predicts certain strategy profiles as out-
comes of the game. Defining or interpreting a solution revolves around how
players reason and behave or are believed to reason and behave. This inevitably
leads to the need for players to attempt to understand and predict how the other
player will behave. In a game of complete information, where the strategies and
payoffs are common knowledge, this is then reduced to players choosing their
best responses to the potential strategy of others. The well known concept of
Nash equilibrium [5] provides an exit from a cycle of speculations as to what
strategies the players should use, and provides an appropriate solution for the
game. In the context of the proposed authorisation game, Nash equilibrium can
be defined as a set of actions from the employee and the employer such that
none of them has any incentive to deviate from their chosen action.

Assuming that the employer always takes the pure strategy deny, then the
employee’s best response is not attack. However, this is not an equilibrium as
the pure strategy of not attack by the employee motivates the rational employer
to change his strategy to authorise whenever p > 0. By switching to authorise,
the employee is then inclined to attack when

ε.p < (1 − ψ)α.Cr
j − ψ.Cf

i − Ct
i . (1)

Conversely, this can be reduced to the following: if the employer authorises
then the employee does not attack if and only if

ε.p ≥ (1 − ψ)α.Cr
j − ψ.Cf

i − Ct
i . (2)

The above finding is interesting and rather counter intuitive in the context of
authorisation. It suggests that in making an authorisation decision the authori-
sation mechanism may only need to focus on the employee’s payoff instead of its
own. This is contrary to the existing approaches to authorisation, where there
exists a policy, assumed to incorporate access rules which result from a trade-
off analysis between some implicit contextual factors, for all current and future
requests. Here instead, the decision factors are explicit and abstract enough to
adapt to the required application. For example, the value of ψ can depend on the



216 F. Salim et al.

existing monitoring techniques, audit, accuracy of forensic techniques, physical
security employed, etc.

On the other hand, the application of such an authorisation model can in-
troduce a prescriptive system rather than simply providing authorise/deny re-
sponses. Through such an interpretation, given an authorisation request, a game
theoretic authorisation model may also attempt to meet the above inequality,
if not already met, through taking either or a combination of deterrence or ap-
peasement policies. The former is to increase the cost of attacking for the user,
so that the above inequality is met. This may be achieved through either in-
creasing any or combination of ψ, Ct

i , Cf
i , or reducing α. On the other hand the

appeasement policy attempts to increase the benefit for not attacking, by align-
ing users’ utility function with the organisation through increasing ε. A thorough
investigation of how such policies can be implemented is left for future work.

5 Case Based Analysis of Authorisation Mechanism

In this section we will introduce two authorisation cases and compare a decision
made under a traditional authorisation model (e.g., RBAC) to the potential
decision from a game theoretic authorisation mechanism.

5.1 Case 1: Less Valuable Resource

Consider a hypothetical organisation with a role-based access control framework
in place and an employee who requests to use a resource (e.g., printer), to which
she does not currently have access. An RBAC model simply denies the request
without considering the payoffs to the employee from misusing the printer or the
payoffs to the organisation when the access is authorise/denied. Let us describe
how a game theoretic authorisation model analyses the potential responses, given
the following inputs5:

α = 1 private benefit ratio of a resource value
Cr

j = 1 the cost of printing a document for organisation
ε = 0 interest given to employee

Cf
i = 1 punishment cost if resource misused
ψ = 1 detection rate (e.g., through print logs)

Ct
i = 0 cost of preparation for using printer for personal purposes
p = 1 value of opportunity proposed (e.g., time saved)

Given the above setting the payoff for both the employee and the employer
would be as shown in Figure 2. It can be seen that for the employee the rational
choice regardless of the employer’s action is not attack, and for the employer,
authorising the request weakly dominates denying it, hence the pair (authorise,
not attack) is the equilibrium state. This case exemplifies the authorisation dy-
namics for resources with a small intrinsic value, where misuses could also be
easily detected.
5 Note that the above representation of costs and punishment are ordinal numbers

rather than cardinal. Hence, they show the relationship between the factors rather
than their actual quantity.
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Employer

Employee
attack notattack

authorise 1,−1 1, 0
deny 0, 0 0, 0

Fig. 2. Less valuable resource and high chance of punishment

5.2 Case 2: Highly Valuable Resource

Consider a scenario where an employee of a financial firm makes stock forecasts
based on some highly valuable information resources. Due to the importance of
these resources, each employee only has access to a segment of the information.
However, let us assume, an employee observes a good opportunity to invest in a
stock, but needs some more information, which he does not have access to. Again,
traditional access control models simply deny such access on the basis of their
predefined policy. Let us first analyse the circumstance under the following inputs.

α = 1 ratio of return from selling the resource
Cr

j = 10 the cost of selling the document to competitors
ε = 0 employee’s interest for achieving opportunity

Cf
i = 10 the cost of punishment
ψ = .25 attack detection rate

Ct
i = 1 low attack preparation is needed
p = 3 value of opportunity proposed

Again, given the above setting the payoff for both the employee and the em-
ployer would be as shown in Figure 3.

Employer

Employee
attack notattack

authorise −5, 4 3, 0
deny 0,−1 0, 0

Fig. 3. Valuable resource and low chance of punishment

Given the above payoffs there is no equilibrium in pure strategies. This is be-
cause, if the employer chooses to authorise, the employee will rationally choose
to attack in which case the employer switches to deny. However, when the em-
ployer chooses the pure strategy deny, then the response of the employee is not
attack. Although there is no equilibrium in pure strategies, in this authorisation
problem an equilibrium in mixed strategies exists: both employer and employee
randomise between their pure strategies. The employer will correctly predict the
employee’s probabilities of possible actions, and vice versa. These probabilities
make both players indifferent in choosing between their pure strategies option,
thus randomizing is rational for both of them. For example, in Figure 3, if we
denote by β the probability of the employer to authorise and by ρ the proba-
bility of the employee to attack, we get a mixed equilibrium for the game when
β = 1/5, ρ = 3/86. Given this, to prevent an attack, the authorisation mechanism
authorises a request only if it believes ρ < 3/8.
6 For details on mixed strategy equilibrium refer to the Chapter 1 of Fludenberg and

Tirole’s book [5].
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In this case, the key factors behind the employee’s decision to attack are
the ability to monetize the valuable resource, as well as the small probability
of punishment (ψ = 0.25), for instance because the employee is leaving the
organisation. However, given the same scenario, this decision can swiftly change
by the change in the probability of enforcing the punishment (Cf

i ). For example,
now assume that ψ = .75, to say the chance that the employer can enforce the
punishment is high. Everything else being equal, we get the payoffs in Figure 4.

Employer

Employee
attack notattack

authorise 5,−6 3, 0
deny 0,−1 0, 0

Fig. 4. Valuable resource and high chance of punishment

Hence, the rational action for the authorisation system in this circumstance
is to authorise the access, even though the resource is sensitive and its misuse is
costly. This is because the payoff of the employee reveals that attacking is not
the rational choice, as the pair (3,0) is the equilibrium.

6 Future Work

In this paper we have made several simplifying assumptions to flag the potential
manner of employment and benefits of game theoretic techniques in design-
ing new authorisation mechanisms. So, our immediate efforts to improve the
proposed abstract model focus on relaxing some of our assumptions: First, em-
ployer’s complete information about user’s type. In reality, the predication of a
type involves uncertainty in the form of a probability distribution over types. Sec-
ond, users alternative actions were modelled as binary, e.g., attack or not-attack.
However, in reality a user may have several different attack alternatives which
vary in likelihood as well as consequence. Finally, a more realistic authorisation
mechanism may need to be modelled as a dynamic game rather than a one-shot
static game. In dynamic games, players observe other players’ behaviours and
modify their strategies accordingly.

7 Conclusion

This paper discusses the authorisation problem and proposes a new paradigm
of thinking for designing dynamic authorisation models. It suggests that the
problem of authorisation is at it’s core analogous to the principal and agent
problem studied in the field of game theory. Based on this premise, it proposes the
preliminary components and a basic but novel authorisation model that makes
access decisions based on explicit reasoning about users available actions and the
likelihood and consequences of choosing such actions, both for the authoriser and
the user. Finally, it provides some extreme authorisation cases to illustrate the
advantages of such a new authorisation model in comparison to the existing
well-known authorisation models such as RBAC.
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Abstract. We introduce a new type of search game that involves a
group of immobile hiders rather than a single hider. We provide the
mathematical framework for the game and we show that the game is
useful to understand under what conditions attackers disperse or unite.
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We introduce a new type of search game that involves multiple hiders. It models
situations in which a collection of valuable objects are targeted by a malevolent
attacker. These valuables could be a number of installations in a factory or a
number of servers in a network. They are guarded by a security system, but due
to a malfunction the security system is out of operation during a certain time
window. Once the security system is up and running again, it is known that the
security has been breached by a very well informed attacker, who knew about
the duration of the time window beforehand. The attacker can decide to attack
more than one target. For instance, the attacker could be infiltrating a computer
network and he can place copies of a worm on several servers. He could also direct
the attack against a single object. The main problem that we want to address
in this paper is the following dilemma: under what conditions does the attacker
choose multiple targets instead of a single target? If the attack is directed at mul-
tiple targets, then we say that the attacker ‘disperses’ and otherwise he unites.
This is a problem that has been studied before, using methods from game theory
and reliability theory [4]. We study it by introducing a new type of search game.

One other example that we had in mind when we developed the search game,
was a terrorist attack. The September 11 attack and the transatlantic bomb
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plot were examples of dispersive operations. The terrorist organization activates
several cells at the same time. The authorities get to know about this and have
to uncover all the cells in time. This is comparable to the situation that Scotland
Yard was in, when it received intelligence from Pakistan on August 9, 2006, that
a transatlantic attack by terrorist cells was imminent [12]. Several games have
been proposed to explain the modern style of terrorist operations and the search
game in this paper also contributes to that literature [8]. Our game is very much
in the style of search games that have been proposed in [11].

The paper is organized as follows. In section 1 we describe the game and
provide a mathematical framework. We prove that the game has a near value,
similar to the near value of a classical search game that is usually derived from
the minimax theorem in [2]. In section 2 we study a particular case of this game
in detail. Section 3 connects the game to problems from combinatorial geometry
and gives a lower bound on the game for certain parameter values. Section 4
summarizes results.

1 A Search Game with Multiple Agents

Work on search theory begin during the second World War and for a long time
it has remained in the same form: a single evading target is lost and the problem
is to find it with fixed resources [3],[6]. Recently, new forms of search games
have been developed, in which finding the items requires a group decision [13]
or in which the searcher acquires information about the target over time [9]. In
our paper we propose a new type of search game, that involves the time-flow of
information and the coordinated behavior of a group. Since this is a new game,
we reserve some space to put the game in a proper mathematical framework.

1.1 Idea of the Game

We consider a search game in which a malevolent hider H , places k objects in
n locations. H may place more than one object in one location, but the objects
are immobile. The authorities, who play the role of searcher S, seek to uncover
H ’s objects. The objects are well hidden. If S looks in the right location, then
he does not immediately uncover the object, or objects, but has to spend time.
Even if S knows exactly how many objects are hidden at each location, which
would allow a perfect search, then still it would take him one unit of time to
uncover all the objects. That is why S searches each location for a total time
of at most one unit. If S does that, we call this an exhaustive search. S may
decide to switch the search to another location, once he has found an object,
but he may also decide to search that location further, since there may be more
concealed objects hidden there. If S switches to another location, but returns
to that location later, then the search continues as if S had not left. The total
amount of time that S needs to search a location is one unit.

At the start of the game, S does not have any information on where the objects
are hidden. He only knows the total number of objects k and the total number
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of locations n. As time goes by, however, S acquires information by uncovering
objects. If S uncovers an object that required time t to find at a certain location,
then the remainder of the search would take time 1− t if the search were perfect.

1.2 Mathematical Description

We take some care to formalize the set-up since this is a new type of search
game. We have a two-player win-loose game G = (X, Y, Π) where X and Y are
the strategy spaces of S and H respectively and

Π : X × Y → {0, 1}

is the payoff function. If Π is equal to 1 then we say that S wins and that H
loses. S wins if he uncovers all hidden objects. To describe the hider strategy
space Y we say that J = {1, . . . , n} × [0, 1] is a labeled interval, because an
element (i, x) ∈ J consists of a value x ∈ [0, 1] and a label i that is in between 1
and n. We say that x is the place and that i is the location of the object. In total,
H hides k objects within the union of the labeled intervals and it is convenient
to picture this union as a star with n spokes of unit length. For instance, if n = 2
this star is the interval [−1, 1] and a pure Hider strategy is a subset of k elements
of this interval. We discuss this case in section 1.3 below. One of the things we
find in the analysis of the game is that H prefers to put the objects at discrete
locations. This is illustrated in Figure 3 for k = 2 and n = 3.

H may decide to hide two objects at the same location (i, x) and (i, y) for
x < y. The advantage of this is that the object at x can be used as a decoy. For
every location i we denote the maximum value of an object hidden by H by hi.
The hider strategy space Y consist of sets of k-points:

{(i1, x1), . . . , (ik, xk) : h1 + · · ·+ hn = 1, hi = max{xj : j = i}}

Let τ ≥ 1 be the total time that is available for the search. A pure searcher
strategy is given by continuous function f : [0, τ ] → [0, 1]n for which each com-
ponent fi(t) records the amount of time that S has searched location i up to
time t. Therefore fi is non-decreasing and

∑n
i=1 fi(t) = t. One could picture a

searcher strategy as a subset of the star on n spokes that increases in time and
starts at the centre. This subset is a star with end points at fi(t) in the i-th
spoke.

By time t, S has found all objects (i, x) such that x ≤ fi(t) and from this S
acquires information on the possible position of remaining objects that he may
use to adapt the search. In other words, f depends on the Hider’s pure strategy
ω and to be precise we could write fω instead of f , or as a map ω "→ fω. Let C be
the space of continuous functions f : [0, τ ] → [0, 1]n, then the searcher strategy
space is a subset of the product space CY . Suppose that ω′ is another hider
strategy, then S has to adopt the same strategy against ω′ for as long as the
uncovered objects are the same. To make this precise, if the strategies fω and
fω′ are different and coincide up to time

t0 = max{t : ∀s ≤ t fω(s) = fω′(s)}
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then there exists an object (i, x) that is only contained in one of the two hider
strategies, say ω, such that x ≤ fω(t0). In other words, by time t0 the two strate-
gies fω and fω′ have uncovered different objects and that is why the searches
may diverge. The searcher strategy space X ⊂ CY consists of all sequences (fω)
that satisfy this property. It is a closed subspace under the product topology.
The payoff Π(fω, ω) = 1 if and only if fω,i(τ) ≥ hi where the hi are as defined
above.

A mixed searcher strategy σ is a probability measure on the Borel σ-algebras
of X . A mixed hider strategy γ is a probability measure on the Borel σ-algebras
of Y . The payoff Π(σ, γ) of these mixed strategies is the expected value E[Π ]
under the product probability measure on σ⊗γ. In other words, the payoff is the
probability that S wins (or that H loses), if the searcher picks a random strategy
according to σ and the hider picks a random strategy according to γ. A searcher
strategy σ∗ is optimal if it maximizes the minimal probability of a searcher win
against any hider strategy. Similarly, a hider strategy γ∗ is optimal if it minimizes
the maximal probability of a hider loss against any searcher strategy. The game
has a value V if the maximin searcher win equals the minimax hider loss.

The mathematical framework that is needed to define the game is intricate.
The searcher strategy space is large and standard minimax theorems do not
apply. A priori it is not even clear that the game has a value and that optimal
strategies exist.

1.3 An Example

To clarify the picture, we give an example of the simplest non-trivial case. If
n = 1 then we have a trivial game. There is only one location which S can search
completely since we assume that τ ≥ 1. S always wins. If k = 1 then we have a
standard search game with one immobile hider on a star with n spokes [10]. The
optimal strategies of the players are as follows. S performs an exhaustive search
a random subset of �τ
 of the spokes. H puts an object at (i, 1) for a random i.
The value of this game is �τ
/n.

The simplest non-trivial case is n = k = 2, which we have considered before in
[1] where it forms the starting point for a study of behavioral ecology. We picture
the two labeled intervals as a single interval [−1, 1]. H puts objects at points
p, q ∈ [−1, 1]. If these points are at opposite sides of the origin, then |p− q| = 1.
If they are on the same side, then max{|p|, |q|} = 1. Either way, the interval
that is spanned by p, q and the origin has length 1. A pure searcher strategy is
a subinterval [−x(t), y(t)] that grows in time such that x(t) + y(t) = t. S wins
if and only if all hidden objects are contained in the interval [−x(τ), y(τ)]. For
instance, if H adopts the strategy in Figure 1, then S can only win against one
of the three pure strategies if τ < 3

2 .
If τ ≥ 2 then S always wins. If τ < 2 then H may put both objects at one of

the two ends ±1 equiprobably. Since S can only search one of the two locations
fully, H loses with a probability of no more than 1

2 . On the other hand, if τ ≥ 3
2

then S has a strategy that guarantees a win with a probability of at least 1
2 ,
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Fig. 1. A mixed Hider strategy that consists of three pure strategies: placing the two
objects in the interval [−1, 1] equiprobably at {−1,− 1

2
}, {− 1

2
, 1

2
}, { 1

2
, 1}

which we leave to the reader to check. So the value of the game is 1
2 if τ ≥ 3

2 and
H hides both objects in the same location: the hider does not disperse if τ ≥ 3

2 .
The game gets more interesting if τ < 3

2 . Then H puts the objects either at
{−1,− 1

2} or at {− 1
2 , 1

2} or at { 1
2 , 1} equiprobably. We leave it to the reader to

check that any searcher strategy can win against only one of these three hider
strategies. So H can limit the probability of loss to at most 1

3 . On his turn, S
starts a search in one of the two locations at random. He continues that search
until he finds an object and if he does not, then the search of the location is
exhaustive. If S finds an object, then with probability 1

3 he stops the search
and starts an exhaustive search of the other location. With probability 2

3 he
continues the search. We claim that this guarantees a win for S with probability
of at least 1

3 . To see that, first consider the case that H hides both objects in the
same location. S chooses that location with probability 1

2 and he continues an
exhaustive search with probability 2

3 upon finding the first object. S wins with
probability of at least 1

3 in this case. If H hides the objects in different locations,
at opposite sides of the origin, then S wins if he stops the search upon finding
the first object. Again, S wins with a probability of at least 1

3 . This is the value
of the game if τ ≤ 3

2 .
We say that H disperses if he puts objects in all locations. If τ < 3

2 then H
disperses with probability 1

3 . If τ ≥ 3
2 then H does not disperse.

1.4 Discretization of the Game – Near Value and Near Optimal
Strategies

We discretize the game by limiting the hider’s options to a finite number of
points. H may put the objects only at points (i, x) such that the place x is a
rational number j

N for a fixed natural number N . In other words, H hides the
objects at grid points. Note that in the example above, H puts objects at grid
points for N = 2.

We say that t ∈ [0, τ ] is a time-grid point if it is a rational number t = k
N .

We say that a searcher strategy f is a grid search if all its components fi(t) are
grid points if t in the time-grid.

Lemma 1. Suppose that H is limited to hiding objects at grid points. Then any
searcher strategy f is dominated by a grid search.

Proof. If fi(t) is a grid-point then we say that the strategy f uncovers this grid
point at time t. The strategy uncovers the grid points in a certain order. Suppose
that f uncovers a total of M grid points and let t1 ≤ t2 ≤ · · · ≤ tM the times at
which these points are uncovered. Note that the inequalities are not strict since
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grid points that are at different locations may be uncovered at the same time.
Let i1, i2, . . . , iM be the locations of these grid points and let x1, x2, . . . , xM be
their places.

We define a new search g by induction. The search starts at location i1 until
it uncovers the grid point (i1, fi1(t1)). The search then continues at location i2
until it uncovers (i2, fi2(t2)), etc. If g has uncovered all the grid points that f
uncovered, there may be some time left (though not more than n

N ). The search
then continues lexicographically at location 1 or 2, etc, by exhaustive search.

We claim that g uncovers the grid at least as fast as f . To see this, picture
the search space as a star with n spokes. The minimal amount of time tj that
is needed to uncover the grid points (i1, x1), . . . , (ij , xj) corresponds to the total
length of the minimal connected set M that includes all these points. The end
points of M correspond to the coordinates of g(tj). Now f(tj) corresponds to
the end points of another connected set. This set cannot cover other grid points,
since M contains the points that f uncovers first. Therefore g uncovers the grid
at least as fast as f .

Now f depends on a hider strategy and we should write fω and similarly gω.
We know that by the time

t0 = max{t : ∀s ≤ t fω(s) = fω′(s)}

there exists an object (i, x) that is uncovered by fω and not by fω′ or vice versa.
We should verify that the same applies to gω and gω′ . Until time t0 the strategies
fω and fω′ uncover the same set of grid points S. Hence, gω and gω′ coincide at
least until the time s0 at which both of them have uncovered S. But (i, x) ∈ S
so by time s0 the strategies gω and gω′ have uncovered different objects. In case
t0 = τ then gω = gω′ since both strategies uncover the same grid points and
then continue by the same lexicographic search. ��

Theorem 1. Suppose H is restricted to N grid points. Then the strategy spaces
of both players reduce to finite spaces so the restricted game has a value VN . The
limit V = limj→∞ V2j exists. For each ε > 0, H has a mixed strategy that limits
the probability of a loss to no more than V + ε.

Proof. If H hides at grid points, then he has finitely many strategies. In response,
it is optimal for S to perform a grid search. Now observe that a grid search is
completely determined by the order in which the grid points are uncovered, so
there are finitely many grid searches as well. Therefore VN is well-defined by the
minimax theorem. As the 2N -grid refines the N grid, this increases the hider
strategy space and we see that V2N ≤ VN . The sequence V2k is decreasing and
hence it converges. For each ε > 0 there exists a k such that V2k < V + ε. Let
γ∗

k be an optimal hider strategy for the 2k-grid. Then the payoff of any searcher
strategy against γ∗

k is at most V2k , so H can keep its probability of a loss below
V + ε. ��

The limit V depends on the total search time τ and therefore it would be more
precise to write V(τ). We leave it to the reader to verify that the function V(τ)
is non-decreasing with τ , so it has only countably many points of discontinuity.
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In our definition of the game, a pure hider pure strategy has to satisfy h1+· · ·+
hn = 1 where the hi denote the maximum place on a location. It is equivalent
to allow that h1 + · · ·+hn ≤ 1. In the same vein, we may allow that S to call of
the search at a time ≤ τ . These assumptions turns out to be convenient in the
proof of the following theorem.

Theorem 2. Suppose that τ is a continuity point of V. For each ε > 0, S has
a mixed strategy that guarantees a probability of a win of at least V − ε.

Proof. Choose τ ′ < τ such that V (τ ′) > V(τ) − ε. For sufficiently large N we
find VN (τ ′) > V(τ)−ε. We may assume that n

N +τ ′ < τ . Let ω be any pure hider
strategy. S treats it as if the objects are hidden at N -grid points: let ω′ be the
strategy that moves an object (i, x) ∈ ω to the rounded down grid point (i, j

N )
for j

N ≤ x with maximal j. Note that ω′ is an admissible strategy, since we allow
that the hi sum up to 1 or less. Let fω′ be a pure strategy in the optimal mixed
searcher strategy in the discretized game. In particular, fω′ is a grid search. S
adapts this strategy so it can be used against ω, as follows. S starts by an initial
search at each location for time 1

N . This takes an extra time n
N . After that S

adopts the strategy fω′ and he carries out the search as if the time of the initial
search has not elapsed. If S finds an object at (i, x) then he records it as being
found at x − 1

N , since he ignores the time that evolved in the initial search. S
can do this since n

N + τ ′ < τ . Observe that S wins against ω if fω′ wins against
ω′. Now an optimal mixed searcher strategy in the N -grid game guarantees a
probability of a win of at least VN (τ ′) > V(τ) − ε.

Now that we know that the game is well-defined and has a (near) value, it is
natural to try and compute V , or at least come up with some accurate bounds.
This appears to be difficult. The next section has a full analysis of the case that
k = 2 and n = 3, which turns out to be quite difficult. In the final section of the
paper we give some bounds on V and show that our search game with multiple
hiders is related to non-trivial problems from combinatorial geometry.

2 The Game for 2 Hidden Objects and 3 Locations

We study the game for k = 2 and n = 3 and 1 ≤ τ < 3. If H hides the objects in
two different locations, then we say that the strategy is dispersive. We compute
the value of the game V(τ), which is given by

V(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6 , τ ∈ [1, 3

2 )

1
4 , τ ∈ [32 , 5

3 )

1
3 , τ ∈ [53 , 2)

2
3 , τ ∈ [2, 3)
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and we show that this is the actual value of the game, it is not a near value. The
probability of dispersion decreases as τ increases. The probability of dispersion is
1
2 on the first two intervals. It is zero on the last two intervals. Optimal strategies
for H are grid hiding strategies. The optimal strategies for S turn out to be more
involved: if τ ≥ 2 then S needs to search locations simultaneously.

Fig. 2. Value of the game versus τ if k = 2 and n = 3. H hides objects in the same
location if τ ≥ 5

3
.

We use the following notation. A pure hider strategy that puts the objects
in locations 1 and 2 at places x and y is written as the triple (x, y, 0). The
coordinates of this triple correspond to the locations. A non-dispersive hider
strategy in which objects are hidden at the same location, say one at x and one
at 1 at location 3, is written as (0, 0, {x, 1}) .

2.1 Total Time τ in
[
1, 3

2

)
H equiprobably chooses one of the following strategies:({

1
2
, 1
}

, 0, 0
)

,

(
1
2
,
1
2
, 0
)

up to a permutation of the coordinates. These are a total of 6 pure strategies,
3 of which are dispersive, and H chooses either one equiprobably. Note that
H hides at grid points and a grid point contains an object with probability
1
2 . We claim that any pure searcher strategy has a probability of a win of no
more than 1

6 . To see this, first note that S optimally performs a grid search by
Lemma 1. Since τ < 3

2 the searcher can only uncover two grid points. If the first
grid point does not contain a hidden object, then S loses since the objects are
placed at different grid points. If S finds a hidden object, which he does with
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probability 1
2 , then the remaining object can be in 3 grid points. S finds the

second object with probability 1
3 .

S adopts the following mixed strategy. He picks a location at random and
searches this until he finds an object. If S finds an object, then with probability 1

2
he switches the search to another location and with probability 1

2 he persists and
continues the search in the same location. Suppose that H chooses a dispersive
pure strategy (x, y, 0). Then S wins if he starts the search in a location that
contains an object (probability 2

3 ) and decides to switch (probability 1
2 ) to the

right location (probability 1
2 ). If H adopts a non-dispersive strategy, then S wins

if he starts in the right location (probability 1
3 ) and persists (probability 1

2 ). In
both cases, S wins with probability 1

6 .

2.2 Total Time τ in
[
3
2
, 5

3

)
H equiprobably chooses one of the following strategies:({

1
3
, 1
}

, 0, 0
)

,

({
2
3
, 1
}

, 0, 0
)

,

(
1
3
,
2
3
, 0
)

up to a permutation of the coordinates. These are a total of 12 pure strategies, 6
of which are dispersive, and H chooses either one equiprobably. Again H hides
at grid points, but the grid has increased from six to nine points, so the analysis
gets a little more involved.

An object is at an end point (place 1) with probability 1
6 and at an interme-

diate grid point with probability 1
4 . A grid search uncovers 4 grid points, since

τ < 5/3. Suppose that S uncovers an object at the first grid point (probability
1
4 ). Then the next object can be in a grid point in either one of the three loca-
tions. S can only search one of these three grid points, so he finds the second
object with probability 1

3 . If S does not uncover an object at the first grid point,
then he can either persist or switch. Suppose that S persists. He only wins if he
finds an object at the next grid point (probability 1

3 ) otherwise he loses. If he
indeed finds an object, then the remaining object can be at three grid points, of
which S can uncover only two. So S wins with probability 2

9 if he persists. If S
switches and finds an object (probability 1

3 ), then the remaining object can be
at three locations, of which S can only uncover one. If S switches and does not
find an object (probability 2

3 ), then he can uncover two more grid points for two
more objects. There are six remaining possibilities for the remaining objects and
S can only uncover one such combination. So S wins with probability 1

9 + 2
18 .

Regardless whether S decides to switch or persist, his probability of success is
2
9 if he is not successful at the first grid point (probability 3

4 ). We conclude that
the probability of a searcher win is limited to 1

12 + 6
36 = 1

4 .
S picks a location at random and searches this until he finds an object. If

S finds an object, then with probability 1
4 he switches the search and with

probability 3
4 he persists. Against a non-dispersive pure strategy ({x, 1}, 0, 0),

S wins if he starts the search in the right location (probability 1
3 ) and persists

(probability 3
4 ). If H adopts a dispersive strategy (x, 1− x, 0) with x ≥ 1

2 , then
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S wins if he starts in the location with the object placed at x (probability 1
3 )

and switches (probability 1
4 ). For in this case, S can searches both remaining

locations up to place 1−x since x+(1−x)+ (1−x) ≤ 3
2 ≤ τ . If S persists, then

he still wins if he continues the search in the location of 1− x after the location
of x has been exhausted. If S starts in the location that contains 1− x then he
wins if he switches to the location that contains x. So S wins with probability
of at least 1

12 + 1
8 + 1

24 = 1
4 .

2.3 Total Time τ in
[
5
3
, 2
)

H hides both objects at one and the same end point ({1, 1} , 0, 0). Obviously,
this limits the probability of a searcher’s win to 1

3 . S picks a location at random
and performs an exhaustive search. If he finds one object at place x and if x ≥ 2

3
then he searches both remaining locations until place 1− x ≤ 1

3 . If x < 2
3 then

S picks one of the two remaining locations and searches it. Obviously, S wins
with probability 1

3 if H hides both objects at the same location. If H disperses
(x, 1−x, 0) for x ≥ 2

3 , then S wins if he starts in the location that contains x. If
H disperses (x, 1−x, 0) for 1

2 ≤ x < 2
3 then S wins if he starts in a location that

contains an object (probability 2
3 ) and then searches the location that contains

the remaining object (probability 1
2 ). No matter what, S wins with probability 1

3 .

2.4 Total Time τ in [2, 3)

Again, H hides both objects at the same end point ({1, 1} , 0, 0). This limits
the probability of a searcher’s win to 2

3 . The hider strategy remains the same,
but the searcher strategy varies: S picks two locations at random and searches
them simultaneously. As soon as S finds an object, he continues the search in
that location and halts the search in the other location. Against a non-dispersive
hider strategy if S finds the first object, then he also finds the second object.
Since S starts out in two locations, he wins with probability 2

3 in this case.
Against a dispersive strategy, S finds one object for sure, but then continuous
the search in a location that contains no further objects. If S finds an object
at place ≥ 1

2 then he knows that the second object must be at the unsearched
location and S uncovers it. If S finds an object at place < 1

2 then S continues on
the halted search in the other location. Against a dispersive strategy (x, 1−x, 0)
with x ≥ 1

2 , S only loses if he starts out in the empty location and the location
that contains 1− x. So S has a guaranteed win of probability 2

3 .
This concludes our analysis of the case that k = 2 and n = 3. H adopts the

strategy of hiding the objects in grid points, as illustrated below. S adopts more
intricate strategies. In particular, he may search different locations simultane-
ously. Our analysis is very specific to the case k = 2 and n = 3 and no clear
pattern emerges. It probably is difficult to devise an algorithm to compute the
game.
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Fig. 3. H hides the objects at a finite number of locations, from left to right: positions
of hidden objects in optimal mixed hider strategies for τ < 3

2
, and 3

2
≤ τ < 5

3
and

τ ≥ 5
3

3 Simple Strategies

We simplify the game in order to find bounds on the value. Suppose S does not
use any information and decides on which locations are searched, and by what
amount, at the start of the game. A pure searcher strategy then corresponds to
a non-negative vector (y1, . . . , yn) such that the sum of the coordinates is equal
to τ . The coordinate yi denotes the proportion of search in location i. If yi = 1
then the location is searched fully. We say that this is a simple strategy. In this
section we consider the game in which S uses simple strategies. Obviously, this
restriction does not help S and the value of this game (probability of a win)
decreases.

If S does not use any information, then H will not use decoys. So H may re-
strict to pure hider strategies that are given by a non-negative vector (x1, . . . , xn)
of coordinate sum equal to 1, such that at most k coordinates are positive. In
particular, the hider strategy space is equal to Δk

n, the k-skeleton of the unit
n-simplex. The searcher strategy space corresponds to subsets Vy of simplex,
given by

Vy = {x ∈ Δk
n :

n∑
i=1

yi = τ, xi ≤ yi for all coordinates i}

If S picks a vector y and H picks a vector x, then S wins if and only if x ∈ Vy .
The game with simple strategies is of the following general type: S may pick a
certain subset of a space X and H may pick a point. S wins if and only if the
subset contains the point. This game has been studied by McEliece and Pos-
ner [7] in the special case that X is a compact metric space and S may pick any
closed ball of a fixed radius r. They show that the value of the game is equal
to the absolute r-entropy, which can be computed from the covering number of
Cartesian powers of X . Computing the covering number in this general setting
is far from trivial [5, p. 1038]. In our case, the sets Vy are not balls of fixed radius
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in any metric on the k-skeleton. There seems to be no existing result that readily
applies to the game with simple strategies.

Theorem 3. If k = 2 and τ ≤ 2 and if S uses simple strategies, then H picks
a point uniformly and S wins with probability τ−1

(n
2)

.

Proof. The 2-skeleton is the complete graph on n vertices (locations). It has(
n
2

)
edges of unit length. A set Vy intersects a subset of these edges in closed

intervals. More specifically, Vy intersects the edge between i and j if and only if
yi + yj ≥ 1. The intersection is a subinterval of length yi + yj − 1. So the total
length of Vy is equal to ∑

i<j

max{yi + yj − 1, 0}.

Let’s say that an edge of the complete graph is heavy if yi + yj > 1. If two edges
are heavy, then they intersect since τ ≤ 2. Suppose that all heavy edges have a
common vertex i0. If yi0 = 1 − ε < 1 then we may add ε to yi0 and subtract ε
from a vertex j that is at the other end of a heavy edge. This can only increase
the total length of Vy . So we may assume that yi0 = 1. Then∑

i<j

max{yi + yj − 1, 0} =
∑
j 
=i0

max{yi0 + yj − 1, 0} =
∑
j 
=i0

yj ,

which is equal to τ − 1.
Now suppose that not all heavy edges have a common vertex. Suppose that

yi+yj > 1 so every heavy edge contains either i or j. By assumption, there exists
a heavy edge that contains i and a heavy edge that contains j. Say yi + yp > 1
and that yj + yq > 1. Then every heavy edge has a vertex in {i, j} and in {i, p}
and in {j, q}. It is not hard to see that it must be equal to either ij or ip or jq.
Then∑
i<j

max{yi + yj − 1, 0} = (yi + yj − 1) + (yi + yp − 1) + (yj + yq − 1) ≤ 2τ − 3

which is bounded by τ − 1. So the total length of Vy is bounded by τ − 1. If
H chooses a point uniformly randomly from the 2-skeleton, then S finds it with
probability ≤ τ−1

(n
2)

. This proves that the probability of a win for S is bounded

by that fraction.
To prove that the probability is in fact equal to the fraction, it suffices to

prove that Vy equals any subarc of Δ2
n of length τ − 1. If the arc is properly

contained in an edge, then it is of the form

{x ∈ Δ2
n : xi ≤ a, xj ≤ 1− a + τ, all other xk = 0}

This arc is equal to Vy if yi = a and yj = τ − a and all other yk = 0. If the arc
contains a vertex i in its interior and is contained in two edges ij and im, then
take yi = 1 and choose the proper yj and ym so that Vy equals that arc. ��



232 S. Alpern et al.

The value of this theorem puts a lower bound on V if τ ≤ 2 and k = 2. In
particular, if n = 3 then the lower bound is τ−1

6 which is quite sharp at the
discontinuity points of the value V(τ) in Figure 2.

Fig. 4. Illustration of searcher and hider strategies if k = n = 3

If k = n = 3 and if τ = 9
5 then there exists a cover by four sets Vy of the

triangle, as depicted in Figure 4. So S has a guaranteed win of probability 1
4 .

There exists a subset of 7 points, consisting of the three vertices and four middle
points, such that any Vy contains at most all middle points, or one vertex and
one middle point. If H picks each vertex with probability 3

13 and each middle
point with probability 1

13 , then the probability that S wins is 4
13 at most. It

follows that the value of the game with simple strategies is between 1
4 and 4

13
in this particular case. A full analysis of the game with simple strategies is a
challenging problem in combinatorial geometry.

4 Conclusion

We have introduced a new type of search game, with a single searcher and a team
of hiders. We proved that the game is well-defined and has a (near) value but we
could only solve the game for small parameter values. Our proof that the game
has a value actually yields an algorithm to compute the game by discretization.
We essentially showed that

VN

(
τ − n

N

)
≤ V(τ) ≤ VN (τ)

and in principle we can compute V(τ) up to arbitrary accuracy by taking a large
enough N . Unfortunately, such an approach is not feasible as the number of grid
searches is finite but very large even for small N . It is a challenging problem to
find a good algorithm. A simplified version of the game, in which S does not
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use feedback from the search, is related to covering problems from combinatorial
geometry that are known to be hard.

Our game has the qualitative feature that the team of hiders tends to disperse
if the searcher’s resources are low. We proved this for small parameter values
only, but we conjecture that this is true for all parameter values. This is a purely
mathematical problem, because of the setup of our game. A more realistic version
would have incomplete information on the resources of the players. This could
be an interesting line of further research.
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Abstract. Even the most well-motivated models of information security have ap-
plication limitations due to the inherent uncertainties involving risk. This paper
exemplifies a formal mechanism for resolving this kind of uncertainty in inter-
dependent security (IDS) scenarios. We focus on a single IDS model involving
a computer network, and adapt the model to capture a notion that players have
only a very rough idea of security threats and underlying structural ramifications.
We formally resolve uncertainty by means of a probability distribution on risk pa-
rameters that is common knowledge to all players. To illustrate how this approach
might yield fruitful applications, we postulate a well-motivated distribution, com-
pute Bayesian Nash equilibria and tipping conditions for the derived model, and
compare these with the analogous conditions for the original IDS model.

1 Introduction

Starting with the Morris Worm in 1988, security attacks on computer systems have
gradually shifted from “point-to-point” attacks, where a single attacker targets a single
defender, e.g., to deny service, to propagation attacks, where the attacker attempts to
compromise a few machines and, similar to an epidemic, uses these compromised ma-
chines (“bots” or “zombies”) to infect additional hosts. The advantage of propagation
attacks is that the miscreants behind them can commandeer reasonably quickly a very
large pool of machines, which can, in turn, be monetized. Among many other activi-
ties, bots have been used to send spam email, host phishing websites [22], or acquire
banking credentials [5].

Traditional security models that pit a defender (or a set of defenders) against an
external attacker may not capture all the intricacies of propagation attacks, as the at-
tacker population may vary over time. In contrast, models of interdependent security
(e.g., [18]), where hosts in the network may (involuntarily or not) act on behalf of the
attacker, appear more suitable to characterize propagation attacks.

Interdependent security models have been used in the context of airline security [14],
and disease propagation [15]. In these contexts, it may be possible to characterize in-
fection rates or measure attack probability based on historical data. In the context of
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information security, on the other hand, we posit that uncertainty on the possibility of
an attack, and ambiguity on the configuration of other networked hosts imposes signif-
icant challenges for the selection of effective security strategies.

For instance, networks in many organizations may be quite large, and are prone to
have poorly known configuration parameters, even by their own administrators [19]. A
firewall that governs the entrance to the network may have thousands of rules, some
of them obsolete, some of them redundant, and thus it may be difficult to explicitly
characterize the probability a given outside attack could actually succeed in penetrating
the corporate network. Network configurations may be relatively complex, and two
machines located close to each other geographically may be far apart in the network
topology. In the end, network administrators may only have very rough estimates of
the various probabilities of external attacks or of attack propagation between interior
nodes [3].

The contribution of this paper is to introduce and exemplify a method for resolving
risk uncertainty by means of a well-motivated probability distribution on risk param-
eters. We introduce the method within the context of a single interdependent security
game that draws its motivation from an organizational LAN in which agents have a sig-
nificant residual impact on the security of their own and their peers’ resources (e.g., such
as in university and many corporate networks). Our examples show that such distribu-
tions can be easily motivated, and that the resulting derived conditions for equilibria and
tipping effects are reasonable, in the sense that they compare similarly to equilibrium
conditions derived in the original IDS model using the distribution’s expected values of
the model’s risk parameters.

The rest of this paper is organized as follows. We review related work in Section 2.
In Section 3, we describe our model, which is directly inspired by the work of Kun-
reuther and Heal [18], and explain how we address risk uncertainty within this model.
We provide formal and numerical analysis of interdependent security games with homo-
geneous and heterogeneous populations, and with or without uncertainty, in Section 4.
We conclude in Section 5.

2 Related Work

2.1 Interdependent Security

In their 2003 study, Kunreuther and Heal formalize the concept of interdependent secu-
rity with their primary example stemming from the airline industry [14,18]. In this case,
the individual airlines are concerned about a major single attack that may originate at
some point in the network, but could be propagated to another airline in the system. Air-
lines can defend themselves against direct attacks, however, they are powerless against
dangerous loads received from other aviation entities. In follow-up work, they also con-
sider a game in which players can protect themselves effectively against direct and
indirect attacks through some protection measure (e.g., vaccination), however the bene-
fit of the security investment diminishes with its popularity in the population [15]. This
research has motivated follow-up contributions in algorithmic computation of equilibria
with real-world data [17], and human-subjects experimentation in the laboratory [16].
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In this paper, we refer to a complementary computer security model commented
upon by Kunreuther and Heal [18]. In this scenario, a single compromised network
resource can adversely impact other connected entities multiple times. We study this
game more formally by deriving game-theoretic equilibrium solutions for different in-
formation conditions and network-wide behaviors (e.g., tipping point phenomena).

Concurrently to the research on interdependent security, Varian started a formal dis-
cussion on the role of security as a public good [25]. In our work, we expanded on
his work by developing a security games framework including additional games and
investment strategies (i.e., self-insurance) [9]. We also considered the impact of player
heterogeneity [10], and the influence of strategically acting attackers on the security
outcome [7].

An alternative optimization approach is pursued by Miura-Ko et al. who derive Nash
equilibrium conditions for simultaneous move games in which the heterogeneous in-
teractions of players can be represented with a set of piece-wise linear conditions [21].
They further enrich their basic model to develop three studies on password security,
identity theft, and routing path verification. The authors verify the robustness of their
approach to perturbations in the data, however, do not formally consider the role of
uncertainty.

2.2 Uncertainty and Security

In the context of the value of security information, research has been mostly concerned
with incentives for sharing and disclosure. Several models investigate under which
conditions organizations are willing to contribute to an information pool about secu-
rity breaches and investments when competitive effects may result from this coopera-
tion [8]. Empirical papers explore the impact of mandated disclosures [4] or publication
of software vulnerabilities [24] on the financial market value of corporations.

Another contribution to the security field is the preservation of location privacy in
mobile networks [6]. A different approach is followed by Alpcan and Başar who present
an application of game theory and stochastic-dynamic optimization to attack scenarios
in the sensor network context [2].

In our prior work, we studied the impact of uncertainty in three different games
[11,13]. We also developed a set of metrics to study the value of better information [12].

A more extended review of theoretical and empirical work is presented by Acquisti
and Grossklags in which they discuss the moderating role of risk, uncertainty and am-
biguity in the areas of privacy and security [1].

3 Model

3.1 Interdependent Network Security

We focus our attention on interdependent security games that directly model network
security. For the basic setup, suppose that each of n players is responsible for operating
her personal computer, and that players’ computers are connected to each other through
a given internal network, e.g., a corporate LAN. Each computer is also connected to an
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external network, e.g., the Internet. The external connection poses certain risks (e.g.,
infection with viruses), and if a user’s resources are compromised then she will suffer a
total loss, normalized to 1. In addition, some of these viruses have the ability to propa-
gate through the internal network to compromise all the other players’ computers. If a
player’s computer is compromised in this way, she also faces a total loss of 1.

Each player has a choice of investing in security mechanisms with a cost c to elim-
inate the risk of being infected by an external virus. For consistency with normalizing
losses, we assume c ≤ 1. We also assume that there is no effective way to protect from
the risk of an internal contamination as the result of another player passing along a
virus through the internal network. This modeling choice reflects a relatively common
situation in corporate networks where security policies are set to have computers al-
most blindly trust contents coming from inside the corporate network (which facilitates
automated patching, and software updates for instance), while contents coming from
outside of the network are thoroughly inspected.

In the full heterogeneous version of the game, pii is the probability that player i be-
comes infected with a virus, and pij is the probability that player i causes player j to
become contaminated due to virus transmission. Since a computer must be infected be-
fore contaminating another computer, we may assume that pij ≤ pii for every i and j.
For simplicity of analysis we assume any two events involving virus contamination are
independent, and similarly for any two events involving virus infection. We also con-
sider a more specialized homogeneous version of the game in which the value of pkl

depends only on whether k = l. So that p is the probability that a given computer be-
comes infected with a virus, and q is the probability that a given computer contaminates
another given computer in the system.

The utility of each player in this game depends not only on her choice to protect,
but also on the choices of other players. If there are k players in the network who are
not protecting, then player i’s choice can be framed as follows. If she protects, then she
pays a cost c, eliminating the risk of a direct virus infection, but she still faces the risk
of internal contamination from k different players. If she fails to protect, then she does
not pay c, but she faces both the risk of an internal contamination from one of the k
players, as well as the risk of an external infection. The utility function for player i is
derived directly from these considerations.

For the homogeneous version of the game, the expected utility of player i is given
by the equation:

Ui =

{
−c + (1 − q)k if player i protects

(1 − p)(1− q)k if player i does not protect
(1)

where k is the number of players other than i who choose not to protect.
In the heterogeneous version of the game, the expected utility for player i is given

by:

Ui =

{
−c +

∏
j 
=i:ej=0(1− pji) if player i protects

(1− pii)
∏

j 
=i:ej=0(1− pji) if player i does not protect
(2)

where ej in a binary indicator variable telling us whether player j chooses to protect.
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3.2 Uncertainty

In the usual treatment of interdependent security (IDS) games such as the one above,
the risk parameters (i.e. the pij ) are known. We are interested in the case in which the
risks of virus infection and contamination are unknown. Such uncertainty is especially
well-motivated in the IDS computer network game since computer users in general do
not know or understand well the potential risks posed by various types of viruses.

For our model with uncertainty, we assume that players do not know the risks, but
they believe and agree upon some probability distribution over risk parameters. In other
words, there is a probability distribution D that describes players beliefs about the rel-
evant risks. True to rational Bayesian form, everyone believes that the relevant risk
parameters are drawn from the same distribution D.

In the homogeneous case, D is a distribution on [0, 1]× [0, 1], representing the play-
ers’ mutually-held beliefs about the parameters p and q. In the heterogeneous case,
D is a distribution on [0, 1]n×n, representing players’ mutually-held beliefs about the
parameters pij .

4 Analysis

4.1 Overview

Our analysis focuses on determining equilibrium conditions. We start with the homo-
geneous version and then proceed to the heterogeneous version. In each case, we begin
by looking at the game with full information and computing conditions under which
various Nash equilibria exist and how they can be tipped or disrupted. We extend these
results to the realm of uncertainty by positing a general distribution D and rewriting the
equilibria conditions using expected values of aggregate risk parameters conditioned
on D. We follow by providing and motivating a parametrized example distribution Dε

and using this distribution to compute various equilibrium conditions explicitly. In the
homogeneous version, we analyze these conditions numerically and graphically, and
compare the results to the original IDS game in which risk parameters are known.

4.2 Homogeneous Case: A Monoculture of Potential Failure Modes

Nash Equilibrium. We begin with the homogeneous case. Let’s first assume that p
and q are known. This game has two possible strong Nash equilibria, one in which
all players protect, and one in which no player protects. Considering a simple cost-
benefit analysis, the “everyone-protects” equilibrium is achievable if and only if the
cost of protection is less than the cost of an external infection (i.e. c < p). Similarly,
the “everyone-defects” equilibrium is achievable if and only if the cost of protection
is greater than the likelihood that a player is infected, but not compromised, assuming
that all of the other players are failing to protect (i.e. c > p(1 − q)n−1). In the mid-
dle area p(1 − q)n−1 < c < p, both equilibria are possible, the protection equilibrium
is Pareto optimal, and both equilibria are subject to the possibility of tipping phenomena
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in which forcing a certain number of players to switch strategies will effect the opposite
equilibrium.

Tipping Phenomenon. To understand this game’s tipping phenomenon when there are
n players, it suffices to understand the game’s defection equilibrium conditions when
there are k players and k < n.

If players are in an “everyone defects” equilibrium, then to tip the equilibrium to
one in which everyone protects, it is necessary (and sufficient) to force protection upon
enough players so that universal defection among the remaining players is no longer an
equilibrium strategy. The number of forced protections required to accomplish this is
the least integer k such that c < p(1 − q)n−1−k. In words, k is the least integer such
that universal defection fails to be an equilibrium strategy in a game with only n − k
players.

Similarly, if players are in an “everyone protects” equilibrium, then the number of
defections required to tip the equilibrium toward universal defection is the least integer
k such that c > p(1 − q)k. In this case k is the least integer such that, in a game with
k + 1 players, universal defection is an equilibrium strategy.

In any case, the boundary conditions that describe the tipping phenomenon are the
same conditions that describe defection equilibria in games with fewer players.

Uncertainty. When dealing with a joint probability distribution over the parameters
p, q, the above reasoning applies with the exception that players compute an expected
value for p and p(1 − q)n−1 using the distribution D. Thus “everyone protects” is an
equilibrium if and only if c < ED[p] and “everyone defects” is an equilibrium if and
only if c > ED[p(1 − q)n−1]. The tipping phenomenon have an analogous translation
involving these expected values.

Example distribution Dε. To exemplify the scenario, we propose a class of distribu-
tions Dε, parametrized by a number ε ∈ [0, 1]. To motivate this distribution, we suppose
that there is a fixed number ε ∈ [0, 1] such that players believe the risk of external infec-
tion, p, is no more than ε. Dε then assigns a probability to the pair p, q ∈ (0, 1)× (0, 1)
according to the following two-step procedure. First draw p from the uniform distribu-
tion on (0, ε). Then draw q from the uniform distribution on (0, p). Since the only thing
players really know for certain about the risks are that 0 ≤ q ≤ p ≤ 1, the parametrized
distribution Dε represents an effort to reflect the notion that “infection is somewhat un-
likely, (‘somewhat’ being explicitly quantified by the parameter ε), and contamination
as a result of infection is even less likely, and aside from that we do not have a very
good idea what the risk is.”

Bayesian Nash equilibrium for Dε. To determine the Bayesian Nash equilibrium
conditions for the parametrized game with uncertainty, we must compute the expected
values EDε [p] and EDε [p(1 − q)n−1] explicitly. The expected value of p under Dε is
ε
2 , because p is drawn from the uniform distribution on (0, ε). The expected value of
p(1− q)n−1 under Dε can be computed by evaluating the expression:
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1
ε

∫ ε

0

(
1
p

∫ p

0

p(1− q)n−1dq

)
dp (3)

where the inner integral is to be evaluated assuming that p is constant relative to q. The
expression evaluates to

1
n

(
1− 1− (1 − ε)n+1

ε(n + 1)

)
. (4)

When ε = 1 this expression simplifies to 1
n+1 . In practical terms, the parameter se-

lection ε = 1 describes a situation in which players have so little knowledge of the risk
factors, that they may as well believe the parameters are uniformly distributed across
all possible options. Under such conditions and with many players, the protection costs
must be very small to counteract defection incentives. On the other hand, from a so-
cial planner’s point of view the situation may be manageable, as the total cost (cost per
player × number of players) necessary to properly incentivize network protection is
bounded by a constant independent of the network size.

Graphical analysis. Figure 1 plots the boundary conditions for Bayesian Nash equilib-
rium as a function of ε, for a range of N . For comparison, Figure 2 plots the boundary
conditions for Nash equilibria in the full information case when p = ε

2 and q = ε
4 .

Figure 3 exemplifies the equilibrium tipping phenomenon in a 7-player game.
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Fig. 1. Bayesian Nash equilibrium boundaries for the homogeneous game with N players.
If (c, ε) is below the solid line then “everyone protects” is a Bayesian Nash Equilibrium. If (c, ε)
is above the dashed line, then “everyone defects” is a Bayesian Nash equilibrium. In the middle
area, there are competing equilibria, and tipping points.

0.2 0.4 0.6 0.8 1.0
e

0.1

0.2

0.3

0.4

0.5
c

N=2

0.2 0.4 0.6 0.8 1.0
e

0.1

0.2

0.3

0.4

0.5
c

N=7

0.2 0.4 0.6 0.8 1.0
e

0.1

0.2

0.3

0.4

0.5
c

N = 20

Fig. 2. Nash equilibrium boundaries for the homogeneous case with p and q common knowl-
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Fig. 3. Tipping point boundaries for the homogeneous game with 7 players. In this example,
the risk threshold value is ε = 0.9 and the protection cost is c = 0.25. In the model incorporating
uncertainty, it takes 2 defections to tip a protection equilibrium into a defection equilibrium, while
in the model in which risk parameters are known, it takes 3 defections to tip the equilibrium from
protection to defection. In the other direction from universal defection to universal protection,
tipping the equilibrium requires 5 forced protections in the case of the uncertainty model and 4
forced protections in the case of knowledge assumptions.

4.3 Heterogeneous Case: Unknown and Diverse Configuration Problems

Nash Equilibrium. For the heterogeneous case, we begin by assuming the pij are
known. Here, once again, the strategy “everyone protects” is a Nash equilibrium if and
only if c < pii. The strategy “everyone defects” is a Nash equilibrium if and only if
c > pii

∏
j 
=i(1− pji). In the middle area pii

∏
j 
=i(1− pji) < c < pii, both equilibria

are possible, the protection equilibrium is Pareto optimal, and the situation is subject to
the tipping phenomenon.

Tipping Phenomenon. The tipping phenomenon in the heterogeneous case is com-
pletely analogous to the homogeneous case. Tipping conditions for an n-player game
are determined by considering the defection equilibrium conditions for games with
fewer players.

Uncertainty. In the presence of uncertainty with beliefs about risk parameters gov-
erned by a general distribution D, the same analysis as above holds with ED[pii] and
ED[pii

∏
i
=j pji] replacing pii and pii

∏
j 
=i(1 − pji), respectively.

Example distribution Dε. To exemplify the heterogeneous scenario, we propose a
class of distributions Dε, analogous to the homogeneous case, again parametrized by
a number ε ∈ [0, 1]. As before, players believe the risk of external infection, pii, is no
more than ε. Dε then assigns a probability to the matrix pij ∈ (0, 1)n×n according
to the following procedure. First draw each pii independently from the uniform distri-
bution on (0, ε). Then draw each pij independently from the uniform distribution on
(0, pii), so that 0 ≤ pij ≤ pii ≤ 1 for every i �= j.
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Bayesian Nash equilibrium for Dε. To determine the Bayesian Nash equilibrium
conditions for the parametrized game with uncertainty in the heterogeneous case, we
must compute the expected values EDε [pii] and EDε [pii(1−pji)n−1] explicitly. Unlike
the homogeneous case, these expected values are trivial to compute because all the
variables in relevant expressions are independent (or conditionally independent, e.g. for
i �= j, pij

pii
is independent of pii). The expected value of pii is ε

2 , and the expected value
of pii(1− pji)n−1 is ε

2 (1− ε
4 )n−1.

We omit the graphical analysis for the heterogeneous case both due to space con-
straints and because there is no simple way to compare results with the original model
due to differences in the number of free parameters.

Another example distribution, Dε,i. One final example to consider is one in which
players mutually acknowledge that some computers are more likely to be infected than
others. We can exemplify this scenario by using a distribution Dε,i that discriminates
among risk parameters for different players. Dε,i assigns a probability to the matrix
pij ∈ (0, 1)n×n according to the following procedure. First draw each pii indepen-
dently from the uniform distribution on (0, εi). Then draw each pij from the uniform
distribution on (0, pii). The distribution Dε,i reflects the same uncertain sentiment re-
garding risk as Dε, yet it also accommodates a notion – certainly realized in practice –
that some assets bear higher risk level than others.

Under the distribution Dε,i, the computations involved in determining each player’s
strategic response to the behavior of others are analogous to those computations un-
der the distribution Dε. Again the individual variables in the relevant expressions are
drawn independently so that linearity of expectation can be applied. For example, when
all other players are failing to protect, player i will also fail to protect if and only if
c > εi

2

∏
j 
=i(1−

εj

4 ). Unfortunately, determining all possible Bayesian Nash equilibria
requires addressing a number of caveats, because players have different incentives due
to the homogeneity in their beliefs about their respective risks. We defer a thorough
analysis of this scenario to future work.

5 Discussion and Conclusions

Interdependent models of information security in corporate networks seem especially
well-motivated, but it is difficult to utilize the sharpness of these models due to uncer-
tainty regarding real world risk factors. Our approach has been to make these models
smoother, by incorporating players’ uncertainty about various risk parameters.

Our objective has been to develop a mechanism for dealing with risk uncertainty in
a security context. We focused on a single IDS model involving a computer network,
and we adapted the model to capture a notion that players have only a very rough idea
of security threats and underlying structural ramifications. We formally resolved this
uncertainty by means of a probability distribution on risk parameters, one that was com-
mon knowledge to all players. We postulated a reasonable such distribution, computed
Bayesian Nash equilibria and tipping conditions for the resulting model, and compared
those to the same conditions for the original model.

Crucially from a practical standpoint, we incorporated this new probabilistic ma-
chinery while actually assuming less – indeed our adapted model using the example
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distribution Dε reduced the number of free parameters. Nonetheless, we found that the
adapted model maintains characteristic equilibrium properties and asymptotic behav-
iors when information assumptions are relaxed. There are still only the two extreme
equilibria. There is still a range of cost and risk distribution parameters for which the
equilibrium can be tipped the other way by encouraging some players to switch strate-
gies. Even the boundary conditions for equilibrium conditions and tipping effects are
similar to those obtained from the original model, and we would expect such similarities
to extend to other well-motivated probability distributions in other contexts.

There were some mild differences compared to the full knowledge model using the
distribution’s expected values of model parameters. In our homogeneous model incor-
porating uncertainty, a generally low contamination risk facilitated the possibility of
slightly more defections, while a generally moderate to high contamination risk facili-
tated fewer defections. An application of this phenomenon is that when risks are small,
it may be better from a social planner’s standpoint to communicate such risks by using
expected values of parameters, while if risks are large it may be better to present them
in a manner that incorporates uncertainty using a distribution.

As a general rule, when we apply a security model to a real world situation, we
expect that some real world data will be substituted for the parameters in the model.
Unfortunately this is oftentimes difficult or impossible to do, especially for risk param-
eters. Without knowing the risks, we are left with the problem of how to use the model
for anything at all. Our approach addresses this situation in a reasonable way for a very
simple model. The approach itself is quite general and we expect to find additional
applications in future work.
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Abstract. Attack–defense trees are used to describe security weaknesses
of a system and possible countermeasures. In this paper, the connection
between attack–defense trees and game theory is made explicit. We show
that attack–defense trees and binary zero-sum two-player extensive form
games have equivalent expressive power when considering satisfiability,
in the sense that they can be converted into each other while preserving
their outcome and their internal structure.

1 Introduction

Attack trees [1], as popularized by Bruce Schneier at the end of the 1990s, form
an informal but powerful method to describe possible security weaknesses of a
system. An attack tree basically consists of a description of an attacker’s goal and
its refinement into sub-goals. In case of a conjunctive refinement, all sub-goals
have to be satisfied to satisfy the overall goal, while for a disjunctive refinement
satisfying any of the sub-goals is sufficient to satisfy the overall goal. The non-
refined nodes (i.e., the leaves of the tree) are basic attack actions from which
complex attacks are composed.

Due to their intuitive nature, attack trees prove to be very useful in under-
standing a system’s weaknesses in an informal and interdisciplinary context. The
development of an attack tree for a specific system may start by building a small
tree that is obviously incomplete and describes the attacks at a high level of ab-
straction, while allowing to refine these attacks and to add new attacks later
as to make a more complete description. Over the last few years, attack trees
have developed into an even more versatile tool. This is due to two develop-
ments. The first development consists of the formalization of the attack trees
method [2] which provides an attack tree with a precise meaning. As a conse-
quence, formal analysis techniques were designed [3,4] and computer tools were
made commercially available [5,6].
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The second development comes from the insight that a more complete descrip-
tion can be achieved by modeling the activities of a system’s defender in addition
to those of the attacker. Consequently, one can analyze which set of defenses is
optimal from the perspective of, for instance, cost effectiveness. Several notions
of protection trees or defense nodes have already been proposed in the litera-
ture [7,8]. They mostly consist of adding one layer of defenses to the attack tree,
thus ignoring the fact that in a dynamic system new attacks are mounted against
these defenses and that, consequently, yet more defenses are brought into place.
Such an alternating nature of attacks and defenses is captured in the notion of
attack–defense trees [9]. In this recently developed extension of attack trees, the
iterative structure of attacks and defenses can be visualized and evolutionary
aspects can be modeled.

These two developments, the formalization of attack trees and the introduc-
tion of defenses, imply that an attack–defense tree can be formally considered
as a description of a game. The purpose of this paper is to make the connection
between attack–defense trees and game theory explicit. We expect that the link
between the relatively new field of attack modeling and the well-developed field
of game theory can be exploited by making game theoretic analysis methods
available to the attack modeling community. As a first step, we study the rela-
tion between attack–defense trees and games in terms of expressiveness. Rather
than studying the graphical attack–defense tree language, we consider an alge-
braic representation of such trees, called attack–defense terms (ADTerms) [9],
which allows for easier formal manipulation.

The main contribution of this paper is to show that ADTerms with a satis-
fiability attribute are equivalent to two-player binary zero-sum extensive form
games. Whenever we talk about games, we refer to a game in this class. We
show equivalence by defining two mappings: one from games to ADTerms and
one from ADTerms to games. Then, we interpret a strategy in the game as a
basic assignment for the corresponding ADTerm and vice versa. Such a basic
assignment expresses which attacks and defenses are in place. Equivalence then
roughly means that for every winning strategy, there exists a basic assignment
that yields a satisfiable term, and vice versa. Although the two formalisms have
much in common, their equivalence is not immediate. Two notions in the domain
of ADTerms have no direct correspondence in the world of games: conjunctive
nodes and refinements. The mapping from ADTerms into games will have to
solve this in a semantically correct way.

This paper is structured as follows. We introduce attack–defense terms and
two-player binary zero-sum extensive form games in Section 2. In Section 3 we
define a mapping from games to attack–defense terms and prove that a player
can win the game if and only if he is successful in the corresponding ADTerm.
A reverse mapping is defined in Section 4.

Proofs of theorems are not included due to space restrictions, and can be
found in a technical report [10].
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2 Preliminaries

2.1 Attack–Defense Trees

A limitation of attack trees is that they cannot capture the interaction between
attacks carried out on a system and defenses put in place to fend off the attacks.
To mitigate this problem and in order to be able to analyze an attack–defense
scenario, attack–defense trees are introduced in [9]. Attack–defense trees may
have two types of nodes: attack nodes and defense nodes, representing actions
of two opposing players. The attacker and defender are modeled in a purely
symmetric way. To avoid differentiating between attack–defense scenarios with
an attack node as a root and a defense node as a root, the notions of propo-
nent (denoted by p) and opponent (denoted by o) are introduced. The root of
an attack–defense tree represents the main goal of the proponent. To be more
precise, when the root is an attack node, the proponent is an attacker and the
opponent is a defender, and vice versa.

To formalize attack–defense trees we use attack–defense terms. Given a set S,
we write S∗ for the set of all strings over S and ε for the empty string.

Definition 1. Attack–defense terms (ADTerms) are typed ground terms over a
signature Σ = (S, F ), where
– S = {p, o} is a set of types (we denote −p = o and −o = p),
– F = {(∨p

k)k∈N, (∧p
k)k∈N, (∨o

k)k∈N, (∧o
k)k∈N, cp, co} ∪ Bp ∪ Bo is a set of func-

tions equipped with a mapping type : F → S∗ × S, which expresses the type
of each function as follows. For k ∈ N,

type(∨p
k) = (pk, p) type(∨o

k) = (ok, o)

type(∧p
k) = (pk, p) type(∧o

k) = (ok, o)
type(cp) = (po, p) type(co) = (op, o)
type(b) = (ε, p), for b ∈ Bp type(b) = (ε, o), for b ∈ Bo.

The elements of Bp and Bo are typed constants, which represent basic actions
of the proponent and the opponent, respectively. The functions ∨p

k,∧p
k,∨o

k,∧o
k

represent disjunctive (∨) and conjunctive (∧) refinement operators of arity k,
for a proponent (p) and an opponent (o), respectively. Whenever it is clear from
the context, we omit the subscript k. The binary function cs (‘counter’), where
s ∈ S, connects a term of the type s with a countermeasure. By TΣ we denote the
set of all ADTerms. We partition TΣ into T p

Σ (the set of terms of the proponent’s
type) and T o

Σ (the set of terms of the opponent’s type). To denote the type of a
term, we define a function τ : TΣ → S by τ(t) = s if t ∈ T s

Σ.

Example 1. The ADTerm t = cp(∧p(E, F ),∨o(G)) ∈ T p
Σ is graphically displayed

in Fig. 1 (left). For this ADTerm, we have τ(t) = p. Subterms E and F are ba-
sic actions of the proponent’s type, and G is a basic action of the opponent’s type.



248 B. Kordy et al.

Fig. 1. An example of an ADTerm (left) and a two-player binary zero-sum extensive
form game (right)

Assuming the proponent is the attacker, this means that the system can be
attacked by combining the basic attack actions E and F . However the defender
has the option to defend if he implements the basic defense action G.

In order to check whether an attack–defense scenario is feasible, we introduce
the notion of satisfiability of an ADTerm by defining a satisfiability attribute
sat. First, for player s ∈ {p, o} we define a basic assignment for s as a function
βs : Bs → {true, false}. We gather the basic assignments for both players in a ba-
sic assignment profile β = (βp, βo). Second, the function sat : TΣ → {true, false}
is used in order to calculate the satisfiability value of an ADTerm. It is defined
recursively as follows

sat(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βs(ts), if t = ts ∈ Bs,
∨(sat(t1), . . . , sat(tk)), if t = ∨s(t1, . . . , tk),
∧(sat(t1), . . . , sat(tk)), if t = ∧s(t1, . . . , tk),
sat(t1) ∧ ¬ sat(t2), if t = cs(t1, t2).

For instance, consider the term t from Example 1 and the basic assignment
profile β = (βp, βo), where βp(E) = true, βp(F ) = true, βo(G) = false. We get
sat(t) = true. Assuming the proponent is the attacker, this means that the basic
defense action G is absent and the system is attacked by combining the basic
attack actions E and F .

The next definition formalizes the notion of a satisfiable ADTerm for a player.

Definition 2. For every player s, strategy βs and strategy profile β, we define
the sets of ADTerms Sats

β, Sats
βs , Sats ⊆ TΣ in the following way. Let t ∈ TΣ.

– t ∈ Sats
β if either τ(t) = s and sat(t) = true, or τ(t) = −s and sat(t) = false.

In this case we say that s is successful in t under β.
– t ∈ Sats

βs if t ∈ Sats
(βp,βo) for every basic assignment β−s. In this case we

say that s is successful in t under βs.
– t ∈ Sats if there exists a basic assignment βs for player s such that t ∈ Sats

βs.
In this case we say that t is satisfiable for s.
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Theorem 1. For every ADTerm t, we have that every basic assignment profile
β partitions TΣ into Satpβ and Satoβ.

Proof. This follows immediately from the first item in Definition 2.

2.2 Two-Player Binary Zero-Sum Extensive Form Games

We consider two-player binary zero-sum extensive form games, in which a pro-
ponent p and an opponent o play against each other. In those games, we allow
only for the outcomes (1, 0) and (0, 1), where (1, 0) means that the proponent
succeeds in his goal (breaking the system if he is the attacker, keeping the system
secure if he is the defender), and (0, 1) means that the opponent succeeds. Note
that the proponent is not necessarily the player who plays first in the game.
Finally, we restrict ourselves to extensive form games, i.e., games in tree format.
Our presentation of games differs from the usual one, because we present games
as terms. This eases the transformation of games into ADTerms. We formalize
games in the next definition, where L stands for a leaf and NL for a non-leaf of
the term.

Definition 3. Let S = {p, o} denote the set of players and Out = {(1, 0), (0, 1)}
the set of possible outcomes. A two-player binary zero-sum extensive form game
is a term t ::= ψp | ψo, where

ψp ::= NLp(ψo, . . . , ψo) | Lp(1, 0) | Lp(0, 1)
ψo ::= NLo(ψp, . . . , ψp) | Lo(1, 0) | Lo(0, 1).

We denote the set of all two-player binary zero-sum extensive form games by
G. We define the first player of a game ψs as the function τ : G → S such that
τ(ψs) = s.

Example 2. An example of a two-player binary zero-sum extensive form game is
the expression NLp(NLo(Lp(0, 1), Lp(1, 0)), Lo(0, 1)). This game is displayed in
Fig. 1 (right). When displaying extensive form games, we use dashed edges for
choices made by the proponent, and solid edges for those made by the opponent.
In this game, first the proponent can pick from two options; if he chooses the
first option, the opponent can choose between outcomes (0, 1) and (1, 0). If the
proponent chooses the second option, the game will end with outcome (0, 1).

Definition 4. A function σs is a strategy for a game g ∈ G for player s ∈ S if
it assigns to every non-leaf of player s in g NLs(ψ−s

1 , . . . , ψ−s
n ) a term ψ−s

k for
some k ∈ {1, . . . , n}.

A strategy profile for a game g ∈ G is a pair σ = (σp, σo), where σp is a
strategy of g for p, and σo a strategy of g for o.



250 B. Kordy et al.

If g = NLs(ψ−s
1 , . . . , ψ−s

n ) and σ = (σp, σo), sometimes we abuse notation and
write σ(g) = ψ−s

k where ψ−s
k = σs(g).

Now we define the outcome of a game in three steps.

Definition 5. We say that (0, 1) ≤p (1, 0) and (1, 0) ≤o (0, 1), so that (Out,≤p)
and (Out,≤o) are totally ordered sets. Let (rp, ro) be an element of Out, and
ψ−s

1 , . . . , ψ−s
n be games with player −s as the first player.

1. The outcome out(σp,σo) : G → Out of a game g under strategy profile σ =
(σp, σo) is defined by:

out(σp,σo)(Ls(rp, ro)) = (rp, ro)

out(σp,σo)(NLs(ψ−s
1 , . . . , ψ−s

n )) = out(σp,σo)(σs(NLs(ψ−s
1 , . . . , ψ−s

n )))

2. The outcome outσs : G → Out of a game g under strategy σs is defined by:

outσs(Ls(rp, ro)) = (rp, ro)
outσs(NLs(ψ−s

1 , . . . , ψ−s
n )) = outσs(σs(NLs(ψ−s

1 , . . . , ψ−s
n )))

outσs(NL−s(ψ−s
1 , . . . , ψ−s

n )) = max
1≤i≤n

≤−s{outσs(ψ−s
i )}

3. The outcome out: G → Out of a game g is defined by:

out(Ls(rp, ro)) = (rp, ro)
out(NLs(ψ−s

1 , . . . , ψ−s
n )) = max

1≤i≤n
≤s{outσs(ψ−s

i )}

out(NL−s(ψ−s
1 , . . . , ψ−s

n )) = max
1≤i≤n

≤−s{outσs(ψ−s
i )}

Here out(σp,σo) denotes the outcome of the game when p and o play according
to strategy σp and σo, respectively. Furthermore outσs denotes the outcome
if player s plays strategy σs, and player −s tries to achieve the best possible
outcome for himself. Finally, out denotes the outcome of the game if both players
try to maximize their own outcome.

3 From Games to ADTerms

In this section, we show how to transform binary zero-sum two-player extensive
form games into ADTerms. We define a function that transforms games into
ADTerms, and a function that transforms a strategy for a game into a basic
assignment for the corresponding ADTerm. First we show that the player who
wins the game is also the player for whom the corresponding ADTerm is satis-
fiable, if both players play the basic assignment corresponding to their strategy
in the game. Then we show that if a player has a strategy in a game which
guarantees him to win, he is successful in the corresponding ADTerm under the
corresponding basic assignment. For this purpose, we first define a function [·]AD

that maps games into ADTerms.
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Fig. 2. Transformation of a game in extensive form into an ADTerm by function [·]AD

Definition 6. Let vs, us, and us
1, . . . , u

s
n, for s ∈ S, represent fresh basic actions

from Bs. The function [·]AD : G → TΣ is defined in the following way.

Lp(1, 0) "→ vp (1a)
Lo(1, 0) "→ co(uo, vp) (1b)
Lp(0, 1) "→ cp(up, vo) (1c)
Lo(0, 1) "→ vo (1d)

NLp(ψ1, . . . , ψn) "→ ∨p(cp(up
1 , [ψ1]AD), . . . , cp(up

n, [ψn]AD)) (1e)
NLo(ψ1, . . . , ψn) "→ ∨o(co(uo

1, [ψ1]AD), . . . , co(uo
n, [ψn]AD)). (1f)

The rules for player p are visualized in Fig. 2 (the rules for player o are symmet-
ric). The rules specify that a winning leaf for a player in the game is transformed
into a satisfiable ADTerm for this player, i.e., an ADTerm consisting of only a
leaf belonging to this player (Rule (1a)–(1d)), and that non-leaves in the game
are transformed into disjunctive ADTerms of the same player (Rule (1e)–(1f)).
These disjunctions have children of the form cs(up

k, [ψk]AD) for some k. The in-
tended meaning here is that player s selects up

k exactly when his strategy selects
ψk in the game. An example of a transformation of a game into an ADTerm is
depicted in Fig. 3.

The resulting ADTerm is thus conjunction-free. Note that because terms in
games alternate between p and o, this procedure results in valid ADTerms (i.e.,
in terms of the form cs(us1 , vs2), s1 = s and s2 = −s, and disjunctive terms for
player s have children for player s as well).

Now we define how to transform a strategy profile for a game into a basic
assignment profile for an ADTerm. First we define a transformation �·�AD from
a strategy σs (s ∈ {p, o}) for game g into a basic assignment βs = �σs�AD for
ADTerm [g]AD. Intuitively, if a player’s strategy for the game selects a certain
branch, the basic assignment for the ADTerm assigns true to the node uk in
the corresponding branch, and false to the nodes uk in the other branches.
Furthermore, ADTerms resulting from leaves in the game are always selected.



252 B. Kordy et al.

Fig. 3. The result of the transformation of the ADTerm from Fig. 1 into a game (left),
and the game from Fig. 1 into an ADTerm (right)

Definition 7. Let s be a player, g be a game and σs be a strategy of player
s for g. The function βs = �σs�AD is defined as follows. For all ADTerms
cs(us, v−s) and vs resulting from the first four cases in Definition 6, we set
βs(us) = βs(vs) = true. For ADTerms obtained from game g by one of the last
two cases in Definition 6, if σs(g) = ψk, we set βs(us

k) = true and βs(us
i ) = false

for 1 ≤ i ≤ n, i �= k.
The strategy profile (βp, βo) can be transformed into a basic assignment profile

by �(βp, βo)�AD = (�βp�AD, �βo�AD).

The next theorem states that a player is the winner in a game under a certain
strategy profile if and only if he is successful in the corresponding ADTerm under
the basic assignment profile corresponding to the strategy profile.

Theorem 2. Let g be a game and σ a strategy profile for g. Then outσ(g) =
(1, 0) if and only if [g]AD ∈ Satp�σ�AD

.

The following theorem states that a strategy in a game guarantees player s to
win if and only if s is successful in the corresponding ADTerm under the corre-
sponding basic assignment. Surprisingly, this is not a consequence of Theorem 2:
there might be a basic assignment βs for the ADTerm, for which there exists
no strategy σs such that βs = �σs�AD (i.e, the function �·�AD is not surjective).
Therefore it is not immediately clear that if a player has a strategy σs that wins
from the other player independent of his strategy, a player with a basic assign-
ment �σs�AD wins from the other player independent of his basic assignment.



Attack–Defense Trees 253

Theorem 3. Let g be a game and σp be a strategy for p on g. Then outσp(g) =
(1, 0) if and only if [g]AD ∈ Satp�σp�AD

.

From this theorem, we immediately get the following corollary.

Corollary 1. Whenever g is a game, out(g) = (1, 0) if and only if [g]AD ∈ Satp.

4 From ADTerms to Games

We proceed with the transformation in the other direction. We define two trans-
formations, namely from ADTerms into games, and from basic assignment pro-
files into strategy profiles. Then we show that if a player has a basic assignment
for an ADTerm with which he is successful, the corresponding strategy in the
corresponding game guarantees him to win.

Definition 8. We define a function [·]G from ADTerms to games as follows:

vp "→ NLo(NLp(Lo(0, 1), Lo(1, 0))) (2a)
vo "→ NLp(NLo(Lp(1, 0), Lp(0, 1))) (2b)

∨p(ψ1, . . . , ψn) "→ NLo(NLp([ψ1]G, . . . , [ψn]G)) (2c)
∨o(ψ1, . . . , ψn) "→ NLp(NLo([ψ1]G, . . . , [ψn]G)) (2d)
∧p(ψ1, . . . , ψn) "→ NLo(NLp([ψ1]G), . . . , NLp([ψn]G)) (2e)
∧o(ψ1, . . . , ψn) "→ NLp(NLo([ψ1]G), . . . , NLo([ψn]G)) (2f)

cp(ψ1, ψ2) "→ NLo(NLp([ψ1]G), [ψ2]G) (2g)
co(ψ1, ψ2) "→ NLp(NLo([ψ1]G), [ψ2]G) (2h)

A graphical representation of the rules for player p is displayed in Fig. 4 (the
rules for player o are symmetric). It can easily be checked that this construction
guarantees valid games (in which p-moves and o-moves alternate). According
to these rules, we transform leaves for player s into two options for player s, a
losing and a winning one (Rules (2a) and (2b)). These choices correspond to not
choosing and choosing the leaf in the ADTerm, respectively. Disjunctive terms
for player s are transformed into choices for player s in the game (Rules (2c)
and (2d)). There is no direct way of representing conjunctions in games. We can
still handle conjunctive terms though, by transforming them into choices for the
other player (Rules (2e) and (2f)). This reflects the fact that a player can succeed
in all his options exactly when there is no way for the other player to pick an
option which allows him to succeed. Finally, countermeasures against player s
are transformed into a choice for player −s (Rules (2g) and (2h)). Here, the first
option corresponds to player −s not choosing the countermeasure, so that it is
up to player s whether he succeeds or not, while the second option corresponds
to player −s choosing the countermeasure. The transformation of a game into
an ADTerm is illustrated in Fig. 3.

We proceed by defining a transformation �·�G from a basic assignment for an
ADTerm into a strategy for the corresponding game. We only give the definition
for s = p; the definition for s = o is symmetric.
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Fig. 4. Transformation of an ADTerm into a game by means of function [·]G

Definition 9. Function �·�G is a transformation from a basic assignment βp

for ADTerm t into a strategy σp = �βp�G for the game [t]G. If a (sub)term from
[t]G is obtained by rule (2n) in Definition 8, then σp of that (sub)term is defined
by rule (3n) in this definition.

σp(NLp(Lo(0, 1), Lo(1, 0))) = Lo(1, 0) if βs(v) = true. (3a)
= Lo(0, 1) otherwise.

σp(NLp([ψ1]G, . . . , [ψn]G)) = [ψk]G (3c)
where k is the smallest number such that ψk ∈ Satpβp .

= [ψ1]G
if there exists no such number.

σp(NLp(NLo([ψ1]G), . . . , NLo([ψn]G))) = NLo([ψk]G) (3f)
where k is the smallest number such that ψk ∈ Satpβp .

= NLo([ψ1]G)
if there exists no such number.

σp(NLp(NLo([ψ1]G), [ψ2]G)) = NLo([ψ1]G) if ψ2 �∈ Satpβp . (3h)
= [ψ2]G otherwise.

For Rules (3b), (3d), (3e) and (3g), σp is trivially defined as there is only one
refinement.

Note that some of the rules, namely Rules (3c), (3f) and (3h), are non-local in
the sense that we need to evaluate all subterms of the ADTerm before we can
decide what to play in the game.

Theorem 4. Let t be an ADTerm and βp a basic assignment for t. Then t ∈
Satpβp if and only if out�βp�G([t]G) = (1, 0).

Now we obtain immediately the following corollary by definition of out and Satp.

Corollary 2. Whenever t is an ADTerm, t ∈ Satp if and only if out([t]G) =
(1, 0).
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5 Conclusion

We showed that attack–defense terms and binary zero-sum two-player extensive
form games have equivalent expressive power when considering satisfiability, in
the sense that they can be converted into each other while preserving their out-
come. Moreover, the transformations preserved internal structure, in the sense
that there exists injections between subterms in the game and subterms in the
ADTerm such that if a player wins in the subterm of the game, the corresponding
subterm in the ADTerm is satisfiable for this player, and vice versa. Therefore
attack–defense trees with a satisfiability attribute and binary zero-sum two-
player extensive form games can be seen as two different representations of the
same concept. Both representations have their advantages. On the one hand,
attack–defense trees are more intuitive, because conjunctions and refinements
can be explicitly modeled. On the other hand, the game theory representation
profits from the well-studied theoretical properties of games.

We saw that two notions in the domain of ADTerms had no direct correspon-
dence to notions in the world of games: conjunctive nodes and refinements. The
first problem has been solved by transforming conjunctive nodes for one player
to disjunctive nodes for the other player. This also shows that, when considering
the satisfiability attribute, the class of conjunction-free ADTerms has equal ex-
pressive power to the full class of ADTerms (note that the transformation from
ADTerms into games and vice versa are not each other’s inverse, i.e., [[t]AD]G �= t
and [[t]G]AD �= t). The second problem has been solved by adding extra dummy
moves with only one option for the other player in between refining and refined
nodes.

In the future, we plan to consider attack–defense trees accompanied with more
sophisticated attributes, such that a larger class of games can be converted. An
example of these are non-zero-sum games, where (1, 1) can be interpreted as an
outcome where both the attacker and the defender profit (for example, if the
attacker buys his goal from the defender), and (0, 0) as an outcome where both
parties are damaged (when the attacker fails in his goal, but his efforts damage
the defender in some way). Also the binary requirement can be lifted, so that
the outcome of a player represents for instance the cost or gain of his actions.
Furthermore, it would be interesting to look for a correspondence of incomplete
and imperfect information in attack–defense trees.

Acknowledgments. The authors would like to thank Leon van der Torre and
Wojciech Jamroga for valuable discussions on the topic of this paper.
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Abstract. Recently there has been significant interest in applications of game-
theoretic analysis to analyze security resource allocation decisions. Two examples
of deployed systems based on this line of research are the ARMOR system in use
at the Los Angeles International Airport [20], and the IRIS system used by the
Federal Air Marshals Service [25]. Game analysis always begins by developing
a model of the domain, often based on inputs from domain experts or historical
data. These models inevitably contain significant uncertainty—especially in se-
curity domains where intelligence about adversary capabilities and preferences is
very difficult to gather. In this work we focus on developing new models and algo-
rithms that capture this uncertainty using continuous payoff distributions. These
models are richer and more powerful than previous approaches that are limited to
small finite Bayesian game models. We present the first algorithms for approxi-
mating equilibrium solutions in these games, and study these algorithms empiri-
cally. Our results show dramatic improvements over existing techniques, even in
cases where there is very limited uncertainty about an adversaries’ payoffs.

Keywords: Bayesian Stackelberg games, security games, approximate algo-
rithms, sampling techniques.

1 Introduction

Game theory offers a powerful framework for modeling security decisions, both for
protecting critical infrastructure [22,6] and computer networks [3,16,18]. In two recent
real-world applications game theory is used to make security resource allocation de-
cisions at the Los Angeles International Airport (LAX) [20] and for the Federal Air
Marshals Service (FAMS) [25]. The game models at the heart of these systems capture
the capabilities of both the police and the adversaries, as well as information about the
potential consequences of different outcomes. An important consideration in these do-
mains is that the security policy should be unpredictable, which comes naturally from
the game analysis assuming a rational and adaptive adversary.
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Specifying an accurate game model to represent the domain is a crucial first step
in any application of game theory. These models are typically based on input from
domain experts, including the ones developed for the LAX and FAMS applications.
Even though the models are based on the best available information they are inher-
ently uncertain. In security games in particular it is very problematic to provide precise
and accurate information about the preferences and capabilities of possible attackers.
Our goal in this work is to develop new models and algorithms that explicitly reason
about this uncertainty in the context of security games. Most game-theoretic models
and solution algorithms make strong assumptions about perfect information and com-
mon knowledge. Bayesian games [11] are commonly used to represent uncertainty in
games, but unfortunately the available algorithms for solving Bayesian games are lim-
ited. The best available algorithm for Bayesian security games is DOBSS [19] which
applies to games with a finite number of attacker types. Unfortunately, this method does
not scale well with the number of types and in practice can only solve relatively small
games with few types.

We define a model for Bayesian Stackelberg Security Games with continuous payoff
distributions for the attacker, leading to a infinite Bayesian game. For example, in this
model we can represent the uncertainty that security forces have about the attacker’s
payoffs using normal distributions, or uniform distributions over an interval. Solving
these game to find equilibrium solutions presents significant challenges; even for the
finite case the problem is NP-hard [9], no exact method is known for the infinite case.
We explore methods for approximating equilibrium solutions for these problems, and
test these approaches experimentally. Specifically, we describe two different methods
for computing the defender’s optimal strategy. The first applies DOBSS to a find opti-
mal solutions for games with a finite number of sample attacker types. The second uses
replicator dynamics to approximate an optimal strategy using the Monte-Carlo sam-
pling for approximating the attacker response. In this shortened version of the paper we
present only an abbreviated summary of the main results; in a longer version we will
present a full detailed experimental evaluation.

2 Related Work

Recent interest in applying game theory to security decision includes fielded appli-
cations at the Los Angeles International Airport [20] and the Federal Air Marshals
Service [25], work on patrolling strategies for robots and unmanned vehicles [10,2,5],
policy recommendations for protecting critical infrastructure [22,6], and applications in
computer networks [3,16,18]. Bayesian games [11] are the dominant paradigm for mod-
eling uncertainty in game theory, and there are many examples of specific games that
have been solved analytically, including many types of auctions [14]. Unfortunately,
algorithms for finding equilibria of Bayesian games are quite limited, and no general
algorithms exist for infinite Bayesian games. Recent research efforts have focused pri-
marily on developing approximation techniques [21,4,8]. Monte-Carlo sampling ap-
proaches similar to those we consider in our work have been applied to some kinds of
auctions [7]. In addition, the literature on stochastic choice [15,17] studies problems
that are simplified versions of the choices that attackers face in our model. Finally,
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the literature on robust optimization has also inspired distribution-free alternatives to
Bayes-Nash equilibrium [1].

3 Bayesian Security Games

We define a new class of Bayesian Security Games, extending the model in Kiekintveld
et. al. [12] to include uncertainty about the attacker’s payoffs. The key difference be-
tween our model and existing approaches (such as in Paruchuri et. al [19]) is that we
allow the defender to have a continuous distribution over the possible payoffs of the
attacker. Previous models have restricted this uncertainty to a small, finite number of
possible attacker types, limiting the kinds of uncertainty that can be modeled.

A security game has two players, a defender, Θ, and an attacker, Ψ , a set of targets
T = {t1, . . . , tn} that the defender wants to protect (the attacker wants to attack) and a
set of resources R = {r1, . . . , rm} (e.g., police officers) that the defender may deploy
to protect the targets. Resources are identical in that any resource can be deployed to
protect any target, and any resource provides equivalent protection. A defender’s pure
strategy, denoted σΘ , is a subset of targets from T with size less than or equal to m
An attacker’s pure strategy, σΨ , is exactly one target from T . ΣΘ denotes the set of all
defender’s pure strategies and ΣΨ is the set of all attacker’s pure strategies.

We model the game as a Stackelberg game [23] which unfolds as follows: (1) the
defender commits to a mixed strategy δΘ that is a probability distribution over the pure
strategies from ΣΘ , (2) nature chooses a random attacker type ω ∈ Ω with probability
Pb(ω), (3) the attacker observes the defender’s mixed strategy δΘ, and (4) the attacker
responds to δΘ with a best-response strategy from ΣΨ that provides the attacker (of
type ω) with the highest expected payoff given δΘ.

The payoffs for the defender depend on which target is attacked and whether the
target is protected (covered) or not. Specifically, for an attack on target t, the defender
receives a payoff Uu

Θ(t) if the target is uncovered, and U c
Θ(t) if the target is covered. The

payoffs for an attacker of type ω ∈ Ω is Uu
Ψ (t, ω) for an attack on an uncovered target,

and U c
Ψ (t, ω) for an attack on a covered target.We assume that both the defender and

the attacker know the above payoff structure exactly. However, the defender is uncertain
about the attacker’s type, and can only estimate the expected payoffs for the attacker. We
choose not to model uncertainty that the attacker may have over the defender’s payoffs
because the attacker already observes the defender’s strategy perfectly.

3.1 Bayesian Stackelberg Equilibrium

A Bayesian Stackelberg Equilibrium (BSE) for a security game consists of a strategy
profile where every attacker type is playing a best-response to the defender strategy,
and the defender is playing a best-response to the distribution of actions chosen by the
attacker types. We first define the equilibrium condition for the attacker and then the
equilibrium condition for the defender. We conveniently represent the defender’s mixed
strategy δΘ by the compact coverage vector C = (ct)t∈T that gives the probabilities
ct that each target t ∈ T is covered by at least one resource. Note that

∑
t∈T ct ≤ m
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because there are m resources at the defender’s disposal. In equilibrium each attacker
type ω must best respond to the coverage C with a pure strategy σ∗

Ψ (C, ω) given by:

σ∗
Ψ (C, ω) = argmax

t∈T
(ct · U c

Ψ (t, ω) + (1− ct) · Uu
Ψ (t, ω)) (1)

To define the equilibrium condition for the defender we first define the attacker re-
sponse function A(C) = (at(C))t∈T that returns the probabilities at(C) that each
target t ∈ T will be attacked, given the distribution of attacker types and a coverage
vector C. Specifically:

at(C) =
∫

ω∈Ω

Pb(ω)1t(σ∗
Ψ (C, ω))dω (2)

where 1t(σ∗
Ψ (C, ω)) is the indicator function that returns 0 if t = σ∗

Ψ (C, ω) and 0
otherwise. Given the attacker response function A(·) and a set of all possible defender
coverage vectors C, the equilibrium condition for the defender is to execute its best-
response mixed strategy δ∗Θ ≡ C∗ given by:

δ∗Θ = argmax
C

∑
t∈T

at(C)(ct · U c
Θ(t) + (1− ct) · Uu

Θ(t)). (3)

When the set of attacker types is infinite, calculating the attacker response function
from Equation (2) is impractical. For this case we instead replace each payoff in the
original model with a continuous distribution over possible payoffs. Formally, for each
target t ∈ T we replace values U c

Ψ (t, ω), U c
Ψ (t, ω) over all ω ∈ Ω with two continuous

probability density functions:

f c
Ψ (t, r) =

∫
ω∈Ω

Pb(ω)U c
Ψ (t, ω)dω (4)

fu
Ψ (t, r) =

∫
ω∈Ω

Pb(ω)Uu
Ψ (t, ω)dω (5)

that represent the defender’s beliefs about the attacker payoffs. For example, the de-
fender expects with probability f c

Ψ (t, r) that the attacker receives payoff r for attacking
target t when it is covered. This provides a convenient and general way for domain ex-
perts to express uncertainty about payoffs in the game model, whether due to their own
beliefs or based on uncertain evidence from intelligence reports.

4 Solution Methods

To solve the model described in the previous section we need to find a Bayesian Stack-
elberg equilibrium, describing an optimal coverage strategy for the defender and the
optimal response for every attacker type. If the space of possible attacker types is finite,
an optimal defender strategy can be found using DOBSS [19]. Unfortunately, there are
no known methods for finding exact equilibrium solutions for infinite Bayesian Stackel-
berg games, and DOBSS only scales to small numbers of types. Here we focus on meth-
ods for approximating solutions for infinite Bayesian Stackelberg games. The problem
can be broken down into two parts:
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1. Computing or estimating the attacker response function (Equation 2)
2. Optimizing over the space of defender strategies, given the attacker response

function

Similarly to the previous work [13] we compute the attacker response function us-
ing Monte-Carlo sampling from the space of possible attacker types. In addition, we
consider both optimal and approximate methods for optimizing the defender’s strategy
given the attacker response calculations. We now briefly describe these two methods for
solving infinite Bayesian Stackelberg security games.

4.1 Sampled Bayesian ERASER

The first method we describe combines Monte-Carlo sampling from the space of at-
tacker types with an exact optimization over the space of defender strategies. This
approach is based on the DOBSS solver [19] for finite Bayesian Stackelberg games.
However, we also incorporate several improvements from the ERASER solver [12] that
offer faster solutions for the restricted class of security games. The resulting method can
be encoded as a mixed-integer linear program (MIP), which we call Bayesian ERASER
(not presented here due to space constraints).

To use Bayesian ERASER to approximate a solution for an infinite game we can
draw a finite number of sample attacker types from the type distribution, assuming
that each occurs with equal probability. The payoffs for each type are determined by
drawing from the payoff distributions specified in Equations 4 and 5. This results in a
constrained, finite version of the infinite game that can be solved using the Bayesian
ERASER MIP. We refer to this method as Sampled Bayesian ERASER (SBE) and
use SBE-x to denote this methods with x sample attacker types. Armantier et al. [4]
develop an approach for approximated general infinite Bayesian games that relies on
solving constrained versions of the original game. Given certain technical conditions,
a sequence of equilibria of constrained games will converge to the equilibrium of the
original game. Here, increasing the number of sample types corresponds to such a se-
quence of constrained games, so in the limit as the number of samples goes to infinity
the equilibrium of SBE-∞ will converge to the true Bayes-Nash equilibrium.

4.2 Sampled Replicator Dynamics

The second approach we consider uses a local search method (replicator dynamics)
to approximate the defender’s optimal strategy, given the attacker response function.
Given that we are already using sampling techniques to estimate the attacker response,
it makes a great deal of sense to explore approximation methods for the defender opti-
mization as well. This allows us to trade off whether additional computational resources
should be devoted to improving the attacker response estimate, or improving the de-
fender strategy. In our experimental results we show that this is key to scaling to large
problem instances.

We implemented an approximation algorithm based on replicator dynamics [24],
which we call Sampled Replicator Dynamics (SRD). Since this method is a form of
local search, all we require is a black-box method to estimate the attacker response
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function, such as Monte-Carlo sampling. As above, we use SRD-x to denote the Monte-
Carlo version of SRD with x sample attacker types. SRD proceeds in a sequence of
iterations. At each step the current coverage strategy Cn = (cn

t )t∈T is used to estimate
the attacker response function, which in turn is used to estimate the expected payoffs
for both players. A new coverage strategy Cn+1 = (cn+1

t )t∈T is computed according
to the replicator equation:

cn+1
t ∝ cn

t · (Et(C) − Umin
Θ ), (6)

where Umin
Θ represents the minimum possible payoff for the defender, and Et(C) is the

expected payoff the defender gets for covering target t with probability 1 and all other
targets with probability 0, given the estimated attacker response to Cn. The search
runs for a fixed number of iterations, and returns the coverage vector with the highest
expected payoff. We introduce a learning rate parameter α that interpolates between Cn

and Cn+1, with Cn+1 receiving weight α in the next population and Cn having weight
1 − α. Finally, we introduce random restarts to avoid becoming stuck in local optima.
After initial experiments, we settled on a learning rate of α = 0.8 and random restarts
every 15 iterations, which generally yielded good results (though the solution quality
was not highly sensitive to these settings).

5 Evaluation

We omit the majority of our evaluation due to space constraints, but present one re-
sult demonstrating the importance of modeling uncertainty rather than using a perfect-
information approximation. We generate 500 random game instances with 5 targets
and 1 defender resource. The defender’s payoffs for a covered target are drawn from
U [0, 100], and the uncovered payoffs from U [−100, 0]. The attacker’s payoffs are rep-
resented by Gaussian distributions, with mean values drawn from U [−100, 0] for cov-
ered targets and U [0, 100] for uncovered targets; we vary the standard deviation. A
sample attacker type is defined by drawing one value from each of these distributions
(two values for each target).

The baseline algorithm uses a single point to estimate each payoff, rather than a
distribution. This is motivated by the standard methodology for eliciting game models
from domain experts, where no information about the uncertainty of the parameters
is included in the model. We model this with a perfect-information model where the
attacker has only one type, corresponding to the mean value for each payoff distribution.
This can be solved exactly using the SBE algorithm with a single attacker type, which
we refer to as ”SBE-Mean.”

Figure 1 presents results for the solution quality for SBE-Mean, SBE, and SRD. We
vary payoff uncertainty along the x-axis, measured by the standard deviation of the
Gaussian distributions for the attacker payoffs (in the same units as the payoffs). We
run each algorithm to generate a coverage strategy for the defender, and evaluate this
coverage strategy against the true distribution of attacker types. Since we do not have
a closed-from solution to compute this exactly, we rely on a very close approximation
generated by sampling 10000 attacker types to evaluate the payoffs for each algorithm.
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The expected payoffs are shown on the vertical axis. We run SBE with up to 7 sample
types and SRD with up to 1000 due to large differences in the computational scalability
of the algorithms. With only 7 types, SBE takes roughly 2 seconds to run, while SRD
runs in less than half a second with 1000 types and 5000 search iterations.

Fig. 1. Expected payoffs for SBE-Mean, SBE, and SRD with varying numbers of sample attacker
types

In Figure 1 we see that the solution quality for both SBE and SRD is dramatically
higher than the SBE-Mean baseline when there is payoff uncertainty, even if the un-
certainty is relatively small. SBE and SRD show improvements over the baseline even
with very small numbers of sample attacker types, with diminishing returns as the num-
ber of types increases. This is a strong indication that the perfect-information approach
is not a good approximation for security games with uncertainty about the attacker’s
payoffs. SBE and SRD represent the first steps towards more robust methods that give
high-quality solutions even when there is payoff uncertainty.

6 Conclusion

Stackelberg games are increasingly important in the analysis of a broad range of security
domains, including deployed applications. The existing method to model uncertainty in
these games are restricted to simple games with small, finite numbers of attacker types.
We develop a class of infinite Bayesian Stackelberg security games in which attacker
payoffs are provided as distributions, rather than point estimates of the payoffs. These
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games are able to more accurately capture the real payoff uncertainties in security do-
mains, but present new computational challenges. We develop methods for approximat-
ing equilibrium solutions for these games using sampling and local search techniques.
The SBE method exploits existing techniques for finite Bayesian Stackelberg games to
solve constrained version of the infinite games. The SRD method combines replicator
dynamics for searching the space of defender strategies with Monte-Carlo sampling
techniques to estimate the attacker response function.

Our first important finding is that the baseline method that ignores uncertainty yields
very poor results. Modeling payoff uncertainty is critical in security games. Both SBE
and SRD give solutions with dramatically higher quality than the mean-approximation
benchmark, even with just a few sample attacker types. The second major finding is that
approximating the defender strategy enables scaling to much larger games and improves
overall solution quality by enabling better approximations of the attacker response func-
tion. SRB is able to scale to very large problems (hundreds of targets) while using many
more sample types than SBE. These results have immediate implications for the use of
game theory in security domains, and open an exciting new research area in developing
better approximation methods for Bayesian security games.

Acknowledgments. This research was supported by the United States Department of
Homeland Security through the Center for Risk and Economic Analysis of Terrorism
Events (CREATE) under grant number 2007- ST-061-000001. However, any opinions,
conclusions or recommendations in this document are those of the authors and do not
necessarily reflect views of the Department of Homeland Security. Janusz Marecki was
supported in part by the DARPA GALE project, Contract No. HR0011-08-C-0110.

References

1. Aghassi, M., Bertsimas, D.: Robust game theory. Mathematical Programming: Series A and
B 107(1), 231–273 (2006)

2. Agmon, N., Kraus, S., Kaminka, G.A., Sadov, V.: Adversarial uncertainty in multi-robot
patrol. In: IJCAI (2009)

3. Alpcan, T., Basar, T.: A game theoretic approach to decision and analysis in network intrusion
detection. In: Proc. of the 42nd IEEE Conference on Decision and Control, pp. 2595–2600
(2003)

4. Armantier, O., Florens, J.P., Richard, J.F.: Approximation of Bayesian Bash equilibrium.
Journal of Applied Econometrics 23(7), 965–981 (2008)

5. Basiloco, N., Gatti, N., Amigoni, F.: Leader-follower strategies for robotic patrolling in en-
vironments with arbitrary topologies. In: AAMAS (2009)

6. Bier, V.M.: Choosing what to protect. Risk Analysis 27(3), 607–620 (2007)
7. Cai, G., Wurman, P.R.: Monte Carlo approximation in incomplete information, sequential

auction games. Decision Support Systems 39(2), 153–168 (2005)
8. Ceppi, S., Gatti, N., Basilico, N.: Computing Bayes-Nash equilibria through support enu-

meration methods in Bayesian two-player strategic-form games. In: Proceedings of the
ACM/IEEE International Conference on Intelligent Agent Technology (IAT), Milan, Italy,
pp. 541–548 (September 15-18, 2009)

9. Conitzer, V., Sandholm, T.: Computing the optimal strategy to commit to. In: ACM EC, pp.
82–90 (2006)



Security Games 265

10. Gatti, N.: Game theoretical insights in strategic patrolling: Model and algorithm in normal-
form. In: ECAI, pp. 403–407 (2008)

11. Harsanyi, J.C.: Games with incomplete information played by Bayesian players (parts i–iii).
Management Science 14 (1967-1968)

12. Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordóñez, F., Tambe, M.: Computing optimal ran-
domized resource allocations for massive security games. In: AAMAS (2009)

13. Kiekintveld, C., Marecki, J., Tambe, M.: Robust Bayesian methods for Stackelberg security
games. In: Proceedings of the Ninth International Joint Conference on Autonomous Agents
and Multi-agent systems (2010)

14. Krishna, V.: Auction Theory. Academic Press, London (2002)
15. Luce, R.D., Raiffa, H.: Games and Decisions. John Wiley and Sons, New York (1957); Dover

republication (1989)
16. wei Lye, K., Wing, J.M.: Game strategies in network security. International Journal of Infor-

mation Security 4(1-2), 71–86 (2005)
17. McFadden, D.: Quantal choice analysis: A survey. Annals of Economic and Social Measure-

ment 5(4), 363–390 (1976)
18. Nguyen, K.C., Basar, T.A.T.: Security games with incomplete information. In: Proc. of IEEE

Intl. Conf. on Communications, ICC 2009 (2009)
19. Paruchuri, P., Pearce, J.P., Marecki, J., Tambe, M., Ordonez, F., Kraus, S.: Playing games

with security: An efficient exact algorithm for Bayesian Stackelberg games. In: AAMAS,
pp. 895–902 (2008)

20. Pita, J., Jain, M., Western, C., Portway, C., Tambe, M., Ordonez, F., Kraus, S., Paruchuri, P.:
Depoloyed ARMOR protection: The application of a game-theoretic model for security at
the Los Angeles International Airport. In: AAMAS (Industry Track) (2008)

21. Reeves, D.M., Wellman, M.P.: Computing best-response strategies in infinite games of in-
complete information. In: UAI (2004)

22. Sandler, T., Daniel, G., Arce, M.: Terrorism and game theory. Simulation and Gaming 34(3),
319–337 (2003)

23. von Stackelberg, H.: Marktform und Gleichgewicht. Springer, Vienna (1934)
24. Taylor, P., Jonker, L.: Evolutionary stable strategies and game dynamics. Mathematical Bio-

sciences 16, 76–83 (1978)
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