A Certified Implementation of ML with Structural
Polymorphism

Jacques Garrigue

Graduate School of Mathematical Sciences,
Nagoya University, Chikusa-ku, Nagoya 464-8602
garrigue@math.nagoya-u.ac. jp

Abstract. The type system of Objective Caml has many unique features, which
make ensuring the correctness of its implementation difficult. One of these fea-
tures is structurally polymorphic types, such as polymorphic object and variant
types, which have the extra specificity of allowing recursion. We implemented in
Coq a certified interpreter for Core ML extended with structural polymorphism
and recursion. Along with type soundness of evaluation, soundness and princi-
pality of type inference are also proved.

1 Introduction

While many results have already been obtained in the mechanization of metatheory for
ML [[13U6USITTUT9]] and pure type systems [3U1], Objective Caml [12] has unique fea-
tures which are not covered by existing works. For instance, polymorphic object and
variant types require some form of structural polymorphism [8]], combined with recur-
sive types, and both of them do not map directly to usual type systems. Among the many
other features, let us just cite the relaxed valued restriction [9], which accommodates
side-effects in a smoother way, first class polymorphism [10] as used in polymorphic
methods, labeled arguments [7], structural and nominal subtyping (the latter obtained
through private abbreviations). There is plenty to do, and we are interested not only
in type safety, but also in the correctness of type inference, as it gets more and more
involved with each added feature.

Since it seems difficult to ensure the correctness of the current implementation, it
would be nice to have a fully certified reference implementation at least for a subset
of the language, so that one could check how it is supposed to work. As a first step,
we certified type inference and evaluation for Core ML extended with local constraints,
a form of structural polymorphism which allows inference of recursive types, such as
polymorphic variants or objects. The formal proofs cover soundness of evaluation, both
through rewriting rules and using a stack-based abstract machine, and soundness and
completeness of the type inference algorithm.

While we based our developments on the “Engineering metatheory” methodology [[1]],
our interest is in working on a concrete type system, with advanced typing features, like
in the mechanized metatheory of Standard ML [11]]. We are not so much concerned
about giving a full specification of the operational semantics, as in [15]].

K. Ueda (Ed.): APLAS 2010, LNCS 6461, pp. 360 2010.
(© Springer-Verlag Berlin Heidelberg 2010

A Certified Implementation of ML with Structural Polymorphism 361

The contribution of this paper is two-fold. First, the proofs presented here are origi-
nal, and in particular it is to our knowledge the first proof of correctness of type inference
for a type system containing recursive types, and even of type soundness for a system
combining recursive types and a form of structural subsumption. Second, we have used
extensively the techniques proposed in [[1] to handle binding, and it is interesting to see
how they fare in a system containing recursion, or when working on properties other
than soundness. On the one hand we have been agreeably surprised by the compatibility
of these techniques with explicit renaming (as necessary for type inference), but on the
other hand one can easily get entangled in the plethora of quantifiers.

The Coq proof scripts and the extracted code can be found at:
http://www.math.nagoya-u.ac.jp/ garrigue/papers/#certint1009

Having them at hand while reading this paper should clarify many points. In particular,
due to the size of some definitions, we could only include part of them in this paper,
and we refer the reader to the proof scripts for all the missing details.

2 Structural Polymorphism

Structural polymorphism, embodied by polymorphic variants and objects, enriches ty-
pes with both a form of width subsumption, and mutual recursive types. A type system
for structural polymorphism was introduced in [8]]. To help understand what we are
working with, we repeat here the basic definitions, but please refer to the above paper
for details.

Terms are the usual ones: variables, constants, functions, application and let-binding.
We intend to provide all other constructs through constants and d-rules.

erx=x|c|Axe|ee|letx=cine

Types are less usual.

Ti=0|T— D type
k:=e|(CA{lh—1,...,0,— 1,}) kind

K=o :Kk,...,05 5 K, kinding environment
o:=VaKpt polytype

A type is either a type variable or a function type. This may seem not expressive enough,
but in this system type variables need not be abstract, as a kinding environment asso-
ciates them with their respective kinds. When they are associated with a concrete kind,
they actually denote structural types, like records or variants. Such types are described
by a pair (C,R) of a local constraint C and a mappinéﬂ R from labels to types. On the
other hand e just denotes an (abstract) type variable. As you can see, type variables
may appear inside kinds, and since kinding environments are allowed to be recursive,

UIn order to make type inference principal, this “mapping” is not always a function (i.e. the
same / may, under some conditions, be related to several 7’s), but this should not matter at the
level of detail of this paper.

362 J. Garrigue

VARIABLE CONSTANT

K,Kot6:K dom(8)CB Kot 6:K Tconst(c) =Kot
K;T,x:VBKo>Thx:6(7) KiT'kc:0(1)

ABSTRACTION APPLICATION

Kilx:the: 7 KiTkFe;:t—17 KI'Fey: 7
KiI'tAxe:t1— 1 KiTkejep: 7

LET GENERALIZE

Kil'tbej:o KiTLx:okep:t KiTke:1 B=FW(T1)\FW()
KiT'kletx=ejiney: 7 K|g\p:TFe:VBK[p>T

Fig. 1. Typing rules (original)

VARIABLE CONSTANT

KF7T: k" KE7T: k% Tconst(c) =k>1)
K;F,x:l’(brlFx:Tf K;F}—c:‘cf

ABSTRACTION APPLICATION

Vx¢L KTox:tke': 7 KiTke;:t1— 17 KI'Fey:t
KiI'kAe:1— 17 KI'tejer: 7

LET GENERALIZE)
Ki'Fej:0o Vx¢L KiT'x:okey:1 Va¢L K,a:k*Tke: 1%
K;I'tletejiney: T KI'ke:k>7T

Fig. 2. Typing rules using cofinite quantification

we can use them to define recursive types (where the recursion must necessarily go
through kinds.) Since type variables only make sense in presence of a kinding environ-
ment, polytypes have to include a kinding environment for the variables they quantify;
i.e.,in Vo.Kr> 7, K is such that dom(K) = {&}, and the variables of & may appear both
inside the kinds of K and in 7. A good way to understand these definitions is to see
types as directed graphs, where variables are just labels for nodes.

This type system is actually a framework, where the concrete definition of local con-
straints, and how they interact with types, is kept abstract. One can then apply this
framework to an appropriate constraint domain to implement various flavours of poly-
morphic variants and records. A constraint domain € is a set of constraints combined
with an entailment relation |= on these constraints, and a predicate unique(C,!) telling
whether / may map to several types, satisfying some properties. By extension we also
use the notation k¥’ |= K for kinds, i.e. (C',R') = (C,R) iff C' =CandRCR'.

Kinding environments are used in two places: in polytypes where they associate
kinds to quantified type variables, and in typing judgments, which are of the form K;I" -
e : T, where the variables kinded in K may appear in both I" and 7. The typing rules are
given in Fig.[[l K+ 0 : K/ means that the substitution 6 (defined as usual) preserves
kinds between K and K’ (it is admissible between K and K’). Formally, if o has a
concrete kind in K (@ :: k € K, k #), then 68(at) = o is a variable, and it has a
more concrete kind in K’ (o’ :: ¥’ € K’ and ¥’ = 6(x)). The main difference with Core
ML is that GENERALIZE has to split the kinding environment into a generalized part,
which contains the kinds associated to generalized type variables (denoted by K|z), and
a non-generalized part for the rest (denoted by K|K\ g)- When determining which type

A Certified Implementation of ML with Structural Polymorphism 363

R-DELTA R-APPj
R-ABS e = Delta.reduce ¢ [vi;...;vy] e — ¢}
(Aep) v — e} CV] ...V —e e1ep—el e
R-LET R-LET) . R-APP;
let vy inep — € €l *tel . e —é)

let ey iney — lete] ine; v ey — vy €}

Fig. 3. Reduction rules

variables can be generalized, we must be careful that for any type variable accessible
from T, the type variables appearing in its kind (inside K) are also accessible. For this
reason FV takes K as parameter; if o :: k € K, then FVx (o) = {o} UFVk (k).

It may be difficult to understand this type system in abstract form. Concrete con-
straint domains and constants are given in Fig. [6] and [/l and an example appears in
Section[7 of this paper.

3 Type Soundness

The first step of our mechanical proof, using Coq [[17]], was to prove type soundness for
the system described in the previous section, starting from Aydemir and others’ proof
for Core ML included in [[1]], which uses locally nameless cofinite quantification. This
proof uses de Bruijn indices for local quantification inside terms and polytypes, and
quantifies over an abstract avoidance set for avoiding name conflicts.

Fig. 2l contains the typing rules adapted to locally nameless cofinite quantification,
and the reduction rules are in Fig.[3l They both use locally nameless terms and types.

ex=n|x|c|Ae|ee|leteine term
Ti=n|lalTn—n type
K:=e|(C,{li—1,....[, — 7,}) kind
o =KD>T polytype

T and K represent sequences of types and kinds. When we write &, we also assume
that all type variables inside the sequence are distinct. Polytypes are now written K> 7,
where the length of K is the number of generalized type variables, represented as de
Bruijn indices 1...n inside types@. ‘L'lf is 7} where de Bruijn indices were substituted
with types of T, accessed by their position. Similarly K substitute all the indices inside
the sequence k. ¢* only substitutes x for the index 1. K+ 7 :: k is true when either
Kk=e,0rT=0,0: k' € Kand ¥’ = k. Kt 7 :: K enforces this for every member of 7
and x at identical positions, which is just equivalent to our condition K - 0 : K’ for the
preservation of kinds.

Vx ¢ L and V& ¢ L are cofinite quantifications, with scope the hypotheses on the
right of the quantifier. Each L appearing in a derivation is existentially quantified (i.e.
one chooses a concrete L when building the derivation), but has to be finite, to allow an
infinite number of variables outside of L. At first, the rules may look very different from

2 The implementation has indices starting from 0, but we will start from 1 in this explanation.

364 J. Garrigue

Module Type Cstrlntf.
Parameter cstr attr : Set.
Parameter valid : cstr — Prop.

Parameter unique : cstr — attr — bool.

Parameter L : cstr — cstr — cstr.
Parameter |=: cstr — cstr — Prop.

Module Type Cstlntf.
Parameter const : Set.
Parameter arity : const — nat.

(* types for abstract constraints and labels *)

* validity of a constraint *
Y
(* uniqueness of a label *)
(* least upper bound *)
(* entailment between constraints *)
(* some properties of these definitions *)

(* constants *)
(* their arity *)

Fig. 4. Interfaces for constraints and constants

those in Fig. [Il but they coincide if we instantiate L appropriately. For instance, if we
use dom(T") for L in Vx ¢ L, this just amounts to ensuring that x is not already bound.
Inside GENERALIZE, we could use dom(K) UFVg (') for L to ensure that the newly in-
troduced variables are locally fresh. This may not be intuitive, but this is actually a very
clever way to encode naming constraints implicitly. Moreover, when we build a new
typing derivation from an old one, we can avoid renaming variables by just enlarging
the avoidance sets.

Starting from an existing proof was a tremendous help, but many new definitions
were needed to accommodate kinds, and some existing ones had to be modified. For in-
stance, in order to accommodate the mutually recursive nature of kinding environments,
we need simultaneous type substitutions, rather than the iterated ones of the original
proof. The freshness of individual variables (or sequences of variables: & ¢ L) becomes
insufficient, and we need to handle disjointness conditions on sets (L1 N Ly = 0). As
a result, the handling of freshness, which was almost fully automatized in the proof
of Core ML, required an important amount of work with kinds, even after developing
some tactics for disjointness.

We also added a formalism for constants and 8-rules, which are needed to give an
operational semantics to structural types. Overall, the result was a doubling of the size
of the proof, from 1000 lines to more than 2000, but the changes were mostly straight-
forward. This does not include the extra metatheory lemmas and set inclusion tactics
that we use for all proofs.

The formalism of local constraints was defined as a framework, able to handle var-
ious flavours of variant and object types, just by changing the constraint part of the
system. This was formalized through the use of functors. The signature for constraints
and constants is in Fig.[d] and an outline of the module structure of the soundness proof
(including the statements proved) is in Fig.[5l We omit here the definitions of terms,
types, typing derivations, and reduction, as they just implement the locally nameless
definitions we described above. A value is either a A-abstraction, or a constant applied
to a list of values of length less than its arity.

This approach worked well, but there are some drawbacks. One is that since some
definitions depend on parameters of the framework, and some of the proofs required by
the framework depend on those definitions, we need nested functors, and the instantia-
tion of the framework with a constraint domain looks like a “dialogue”: we repeatedly

A Certified Implementation of ML with Structural Polymorphism 365

Module MkDefs (Cstr : Cstrintf) (Const : Cstintf).

Inductive typ : Set := ... (* our types *)
Inductive type : typ — Prop := ... (* well-formed types *)
Inductive trm : Set := ... (* our terms *)

Module Type Deltalntf.
Parameter type : Const.const — sch. (* types of constants *)
Parameter reduce : Vcel, (list for n value (1+ Const.arity ¢) el) — trm. (* 6-rules *)
(* 3 more properties *)

Module MkJudge (Delta : Deltalntf).

Inductive | : kenv — env — trm — typ — Prop := ... (* the typing judgment *)
Inductive — : trm — trm — Prop := ... (* the reduction relation *)
Inductive value : trm — Prop :=... (* values *)

Module Type SndHyplntf.
Parameter delta typed :Vcel vi KT 1,
(K;T'+const app cel : T) — (K;T'+ Delta.reduce c el vl : 7).
Module MkSound (SH : SndHyplntf).
Theorem preservation : VKT ee' 7,(K;THe:7) —» (e — ¢') — (KsTH e : 7).
Theorem progress : VKe 7, (K;0 - e: T) — (value eV 3e' ;e — ¢').

Fig. 5. Module structure

alternate domain-specific definitions, and applications of framework functors to those
definitions, each new definition using the result of the previous functor application. The
problem appears not so much with constraints themselves, but rather with constants and
d-rules. In order to obtain the definitions for typing judgments, one has to provide im-
plementations for constraints and constants, extract the definition of types and terms,
and use them to provide constant types and J-rules. We enforce the completeness of
d-rules by requiring a function reduce which will be applied to a list of values of length
(1 + Const.arity ¢); through well-typedness they will be only used if Const.arity c is
smaller than the arity of type c. Type soundness itself is another functor, that requires
some lemmas whose proofs may use infrastructure lemmas on type judgments, and re-
turns proofs of preservation and progress. The real structure is even more complex,
because the proofs span several files, and each file must mimick this structure. The
same problem is known to occur in programs using heavily ML functors, so this is not
specific to Coq. But the level of stratification of definitions we see in this proof rarely
occurs in programs.

This instantiation has been done for a constraint domain containing both polymor-
phic variants and records, and a fixpoint operator. We show the constraint domain in
Fig.[6} we write () for None, which denotes here the set of all possible labels. Constants
and &-rules are in Fig. [J] using the nameful syntax for types. You can see the duality
between variants and records, at least for tag and get.

Both in the framework and domain proofs, cofinite quantification demonstrated its
power, as no renaming of type or term variables was needed at all. It helped also in
an indirect way: in the original rule for GENERALIZE, one has to close the set of free

366 J. Garrigue

Module Cstr.
Definition attr := nat.
Inductive ksort : Set := Ksum | Kprod | Kbot.
Record cstr : Set := C {sort : ksort;low : list nat; high : option(list nat)}.
Definition valid ¢ :=sort ¢ # Kbot A (high ¢ = () Vlow ¢ C high ¢).
Definition s1 < sy :=s; = Kbot Vs = s5.
Definition ¢| E¢p :=
sort sp < sort 57 Alow ¢ C low ¢1 A (high ¢; = () Vhigh ¢; C high ¢;).

Fig. 6. Constraint domain for polymorphic variants and records

tpe(tag) = a ((Ksum, {1},0), {1 — B})pB — o

type(matchy, ;) = o ((Ksum,0,{l1,....0.}),{li = ai,..., 1, — o4, })
> (01— B) o (0 — B) — 0t — B

type(record;, ;) = o ({(Kprod,0,{l1,....1,}),{li = o1,....0n — o, })
DO — ... =0 — O

type(get;) = oz ((Kprod, {1}, (). {{— B})ro—

type(recf) =((a—p)—(a—=p))— (a—pP)

match;, _; fi ... fu (tagli e) — fie
get;, (record;, y, e1 ... en) — ¢
recf fe — f (recf f) e

Fig. 7. Types and §-rules for constants

variables of a type with the free variables of their kinds; but the cofinite quantification
takes care of that implicitly, without any extra definitions.

While cofinite quantification may seem perfect, there is a pitfall in this perfection
itself. One forgets that some proof transformations intrinsically require variable renam-
ing. Concretely, to make typing more modular, I added a rule that discards irrelevant
kinds from the kinding environment. Fig. [§| shows both the normal and cofinite forms.
Again one can see the elegance of the cofinite version, where there is no need to specify
which kinds are irrelevant: just the ones whose names have no impact on typability.
Proofs went on smoothly, until I realized that I needed the following inversion lemma,
relating derivations using KIND GC, and those without it.

VKTet, (K;TFgee: 1) — 3K, (K,K;Tke:1)

Namely, by putting back the kinds we discarded, we shall be able to obtain a derivation
that does not rely on KiND GC. This is very intuitive, but since this requires making
KIND GC commute with GENERALIZE, we end up commuting quantifiers. And this is
just impossible without a true renaming lemma. I got stuck there for a while, unable
to see what was going wronﬁ. Even more confusing, the same problem occurs when
we try to make KIND GC commute with ABSTRACTION, whereas intuitively the choice
of names for term variables is independent of the choice of names for type variables.

3 Thanks to Arthur Charguéraud for opening my eyes.

A Certified Implementation of ML with Structural Polymorphism 367

KIND GC Co-FINITE KIND GC
K,K;Tke:t FV(T,7)Ndom(K') =0 VagL Ka:k*Thke:1
KI'te:t KiI'te:t

Fig. 8. Kind discarding

Finally this lemma required about 1000 lines to prove it, including renaming lemmas
for both term and type variables.

Lemma typing rename : VKTxyo I e,
K;T,x:0,"te:7—yé¢ dom(,T")U{x} UFV(e) - K;T',y:0,T" I [y/x]e : .
Lemma typing rename typ: VKT k1a @' e,
o ¢ FV(T)UFV(k>7)UdomKUFV(K)) — &' ¢ domKuU{a} —
K,a:k%The:1% K& k% The:t®.
The renaming lemmas were harder to prove than expected (100 lines each). Contrary to
what was suggested in [[1], we found it rather difficult to prove these lemmas starting
from the substitution lemmas of the soundness proof; while renaming for types used
this approach, renaming for terms was proved by a direct induction, and they ended
up being of the same length. On the other hand, one could argue that the direct proof
was easy precisely thanks to cofinite quantification, which eschews the need for extra
machinery.

Once the essence of the problem (i.e. commutation of quantifiers) becomes clear, one
can see a much simpler solution: in most situations, it is actually sufficient to have KIND
GC occur only just above ABSTRACTION and GENERALIZE, and the canonicalization
lemma is just 100 lines, as it doesn’t change the quantifier structure of the proof. This
also raises the issue of how to handle several variants of a type system in the same
proof. Here this was done by parameterizing the predicate - with the canonicity of the
derivation, and whether KIND GC is allowed at this point. This gives 4 cases for the
availability of KIND GC: allowed nowhere, allowed everywhere, or inside a canonical
derivation where it is allowed or not at the current point. Functions gc ok, gc raise and
gc lower, which are used by the definitions themselves, allow to manipulate this state
transparently.

4 Type Inference

The main goal of using local constraints was to keep the simplicity of unification-based
type inference. Of course, unification has to be extended in order to handle kinding, but
the algorithms for unification and type inference stay reasonably simple.

4.1 Unification

Unification has been a target of formal verification for a long time, with formal proofs
as early as 1985 [16]]. Here we just wrote down the algorithm in Coq, and proved

368 J. Garrigue

[@]T = 7y such that & =7 Definition typinf(K,T',let e in e3,7,0,L) :=
and FV(t,)Nna =0 let o = fresh(L) in
[a](k>T) = ([a]k>[a]T) match typinf(K,T,eq, o, 0,LU{a}) with
[(K',0',L') =

Definition generalize(K,I',L,) := let Ky = 60'(K') and T'; = 0'(T) in
let A=FVg(T) and B=FVg(7) in let L; = 6’(dom(K)) and 7; = 0'(ex) in
let K' = K|k in let (K4,0) = generalize(K,[(,Ly,7) in
let & :: &k =K/|g in let x = fresh(dom(T") UFV(e;) UFV(ey)) in
let @ =B\ (AU®&) in typinf(Ka, (T,x: 0),€3,7,6', L")
let ¥ =map (A .e) &' in [)=
(Kla KL, [0 (RR 7). end.

Fig. 9. Type inference algorithm

both partial-correctness and completeness. A rule-based version of the algorithm can
be found in [8]]. The following statements were proved:

Definition unifies 0 [:=V111,In (11,1) [— 0(11) = 0(12).
Theorem unify types: VAIK 6, unify hl K 6 = (K',0’) — unifies 6’ [.
Theorem unify kinds: VhIKO,

unify 11 K 6 = (K’,0’) — dom(6)Ndom(K) =0 —

KF6':0'(K') Adom(6’)Nndom(K') = 0.
Theorem unify mgu : VhiKyK®0,

unify 11 Kg id = (K,0) — unifies 8’ = Ko 60" :K' — 6’ JOAKF6:K'.
Theorem unify complete : VKO Ky A,

unifies 8 I — Ko F 6 : K — size pairs id Ko ! <h — unify h 1 Kg id # ().

The first argument to unify is the number of type variables, which is used to enforce
termination. Then come a list of type pairs to unify and the original kinding environ-
ment. Last is a starting substitution, so that the algorithm is tail-recursive. To keep the
statement clear, well-formedness conditions are omitted here. The proof is rather long,
as kinds need particular treatment, but there was no major stumbling block. The proof
basically follows the algorithms, but there are two useful tricks. One concerns substitu-
tions. Rather than using the relation “8 is more general than 8”° (360, 6’ = 0, 0 0), we
used the more direct “0’ extends 6” (Ver, 60'(6(ct)) = 6'()). In the above theorem it
is noted 6’ J 6. When 6 is idempotent, the two definitions are equivalent, but the latter
can be used directly through rewriting. The other idea was to define a special induc-
tion lemma for successful unification, which uses symmetries to reduce the number of
cases to check. Unification being done on first-order terms, the types we are unifying
shall contain no de Bruijn indices, but only global variables. Since we started with a
representation allowing both kinds of variables, there was no need to change it.

4.2 Inference

The next step is type inference itself. Again, correctness has been proved before for Core
ML [13l6l19], but to our knowledge never for a system containing equi-recursive types.

A Certified Implementation of ML with Structural Polymorphism 369

Theorem soundness: VKTeTOLK' 6L, Theorem principality : VKT'e70K; 0, L,
typinf(K,T,e,7,0,L) = (K, 0’ L) — K0T Fe:0(1) K F0:K—
dom(6) Ndom(K) =0 — 6 36, — dom(6;)Ndom(K;)=0—
FV(Q,K,F,’L')CL—> dom(e)UFV(Q],K],F,’L')CL—>
0'(K);6' () Fe:6'(1) A IK'6'L,

KF6:0'(K)A0' 26 A typinf(Ky,T,e,7,0;,L) = (K',0", L) A
FV(6',K',T)ULC L A 36” K'-00" :KANOB" 26" A
dom(6’)Ndom(K’) = 0. dom(0”) C L'\ L.

Fig. 10. Properties of type inference

Proving both soundness and principality was rather painful. This time one problem was
the complexity of the algorithm itself, in particular the behaviour of type generalization.
The usual behaviour for ML is just to find the variables that are not free in the typing
environment and generalize them, but with a kinding environment several extra steps
are required. First, the free variables should be closed transitively using the kinding
environment. Then, the kinding environment also should be split into generalizable and
non-generalizable parts. Last, some generalizable parts of the kinding environment need
to be duplicated, as they might be used independently in some other parts of the typing
derivation. The definitions for generalize and the let case of typinf are shown in Fig.
[@]T stands for the generalization of T with respect to &, obtained by replacing the
occurrences of variables of & in 7 by their indices.

Due to the large number of side-conditions required, the statements for the inductive
versions of soundness of principality become very long. In Fig. [I0] we show slightly
simplified versions, omitting well-formedness properties. These statements can be
proved directly by induction. From those, we can derive the following corollaries for a
simplified version of typinf, taking only a term and a closed environment as arguments.

Corollary soundness’ : VKT et, FV(I') =0 — typinf' Te = (K,7) = K;['Fe: 1.

Corollary principality’ : VKTet, FV(T) =0 - K;T'Fe: 7 —
K, 3T, typinf' Te= (K',T')A30,K'F 0 :KAT=0(T).

As usual, the proof of principality requires the following lemma, which states that if a
term e has a type 7 under an environment I', then we can give it the same type under a
more general environment I'y.

Lemma typing moregen : VKI'T e, K;TFe: T KFI{ <T' =K1 Fe:1.

KF T <T means that the polytypes of I" are instances of those in I'j. Due to the
presence of kinds, the definition of the instantiation order gets a bit complicated.

K& o1 < ko1 Va,dom(K) N =0 — 37, K, & :: k&b 73 &F AT = 1%,
It may be easier to consider the version without de Bruijn indices.
K F Vo K51 < Von. Koo % 36, dom(0) € oy AK,K; F0:K Ko AO(T)) = To.

Another difficulty is that, since we are building a derivation, cofinite quantification ap-
pears as a requirement rather than a given, and we need renaming for both terms and

370 J. Garrigue

Inductive clos : Set :=
| clos abs :trm — list clos — clos
| clos const : Const.const — list clos — clos.
Fixpoint clos2trm(c : clos) : trm :=
match ¢ with
| clos absel = trm inst (Ae) (map clos2trm [)
| clos const ¢ I = const app ¢ (map clos2trm [)
end.
Record frame : Set := Frame {frm benv : list clos;frm app : list clos;frm trm : trm}.
Inductive eval res : Set :=
| Result : nat — clos — eval res
| Inter :list frame — eval res.
Fixpoint eval (h: nat) (benv : list clos) (app : list clos) (e : trm) (stack : list frame)
{struct h} :eval res:=...
Theorem eval sound : VhKer,
(KsTke: 1) — (K;T'kres2trm (eval A nil nil ¢ nil) : 7).
Theorem eval complete : VKee' 7,
(K;Tke: 1) — (e =€) — value ¢ —
3h,3cl, eval h nil nil ¢ nil = Result 0 ¢l Ae’ = clos2trm cl.

Fig. 11. Definitions and theorems for stack-based evaluation

types in many places. This is true both for soundness and principality, since in the latter
the type variables of the inferred derivation and of the provided derivation are different.
As aresult, while we could finally avoid using the renaming lemmas for type soundness,
they were ultimately needed for type inference.

S5 Interpreter

Type soundness ensures that evaluation according to a set of source code rewriting
rules cannot go wrong. However, programming languages do not evaluate a program by
rewriting it, but rather interpreting it with a virtual machine. We defined a stack-based
abstract machine, and proved that at every step the state of the abstract machine could be
converted back to a term whose typability was a direct consequence of the typability of
the reduced program. This ensures that evaluation cannot go wrong, and the final result,
if reached, shall be either a constant or a function closure. Once the relation between
program and state was properly specified, the proof was mostly straightforward.

The basic definitions and the statements for soundness and completeness are in
Fig.[TTl We omit here the concrete definition of eval for lack of space. A closure is either
a function body paired with its environment, or a partially applied constant. clos2trm
converts back a closure to an equivalent term, trm inst intantiating all de Bruijn indices
at once with a list of terms, and const app building the curried application of ¢ to a list
of terms. Since evaluation may not terminate, eval takes as argument the number 4 of re-
duction steps to compute. The remaining arguments are the environment benv, accessed
through de Bruijn indices, the application stack app which contains the arguments to

A Certified Implementation of ML with Structural Polymorphism 371

the term being evaluated, the term e itself, which provides an efficient representation of
code thanks to de Bruijn indices, and the control stack stack. Here the nameless repre-
sentation of terms was handy, as it maps naturally to a stack machine. The result of eval
is either a closure, with the number of evaluation steps remaining, or the current state
of the machine.

We also proved completeness with respect to the rewriting rules, i.e. if the rewriting
based evaluation reaches a normal form, then evaluation by the abstract machine ter-
minates with the same normal form. This required building a bisimulation between the
two evaluations, and was trickier than expected. Namely we need to prove the following
lemma:

Definition inst ¢ benv := trm inst ¢ (map clos2trm benv).
Lemma complete rec : Vargsargs' fifl ee’ benvben' T,
args = args’ — fl=fl' — (inst e benv — inst ¢’ benv') —
K;T' stack2trm (app2trm (inst e benv) args) fl : T —
3h, 3K, eval h benv args e fl=eval I’ benv' args’' ¢’ fl'.
where = denotes the equality of closures after substitution by their environment, i.e.
clos abs e benv = clos abs ¢’ benV' iff inst (Le) benv = inst (Ae') benV'. Proving this
by case analysis on e and ¢’ ended up being very time consuming. The proofs being
rather repetitive, they may profit from better lemmas.

6 Dependent Types

As we pointed in sectiond] the statements of many lemmas and theorems include lots
of well-formedness properties, which are expected to be true of any value of a given
type. For instance, substitutions should be idempotent, environments should not bind
the same variable twice, de Bruijn indices should not escape, kinds should be valid,
etc. .. A natural impulse is to use dependent types to encode these properties. Yet proofs
from [[1] only use dependent types for the generation of fresh variables. The reason is
simple enough: as soon as a value is defined as a dependent sum, using rewriting on
it becomes much more cumbersome. I attempted using it for the well-formedness of
polytypes, but had to abandon the idea because there were too many things to prove
upfront. On the other hand, using dependent types to make sure that kinds are valid and
coherent was not so hard, and helped to streamline the proofs. This is probably due to
the abstract nature of constraint domains, which limits interactions between kinds and
other features. The definition of kinds becomes:

Definition coherent kc kr:=Vx (77’ : typ),
Cstr.unique kc x =true — In (x,7) kr — In (x,7") kr - 1=17".
Record ckind : Set := Kind{
kind cstr : Cstr.cstr; kind valid : Cstr.valid kind cstr;
kind rel : list (Cstr.attr x typ); kind coherent : coherent kind cstr kind rel}.

We still need to apply substitutions to kinds, but this is not a problem as substitutions
do not change the constraint, and preserve the coherence. We just need the following
function.

372 J. Garrigue

Definition ckind map spec: V(f : typ — typ)(k : ckind),
{K': ckind | kind cstr k = kind cstr k' Akind rel ¥ =map snd f (kind rel k)}.

We also sometimes have to prove the equality of two kinds obtained independently.
This requires the following lemma, which can be proved using proof irrelevancdd.

Lemma ckind pi: Vkk : ckind,
kind cstr k = kind cstr k¥’ — kind rel k = kind rel ¥’ — k=K.

Another application of dependent types is ensuring termination for the unification and
type inference algorithms. In Coq all functions must be complete. Originally, this was
ensured by adding a step counter, and proving separately that one can choose a number
of steps sufficient to obtain a result. This is the style used in section[4.1] This approach is
simple, but this extra parameter stays in the extracted code. In a first version of the proof,
the parameter was so big that the unification algorithm would just take forever trying
to compute the number of steps it needed. I later came up with a smaller value, but it
would be better to have it disappear completely. This is supported in Coq through well-
founded recursion. In practice this works by moving the extra parameter to the universe
of proofs (Prop), so that it will disappear during extraction. The Function command au-
tomates this, but there is a pitfall: while it generates dependent types, it doesn’t support
them in its input. The termination argument for unification being rather complex, this
limitation proved problematic. Attempts with Program Fixpoint didn’t succeed either.
Finally I built the dependently typed function by hand. While this requires a rather in-
tensive use of dependent types, the basic principle is straightforward, and it makes the
proof of completeness simpler. As a result the overall size of the proof for unification
didn’t change. However, since the type inference algorithm calls unification, it had to be
modified too, and its size grew by about 10%. An advantage of building our functions
by hand is that we control exactly the term produced; since rewriting on dependently
typed terms is particularly fragile, this full control proves useful.

7 Program Extraction

Both the type checker and interpreter can be extracted to Objective Caml code. This
lets us build a fully certifiedd implementation for a fragment of Objective Caml’s type
system. Note that there is no parser or read-eval-print loop yet, making it just a one-
shot interpreter for programs written directly in abstract syntax. Moreover, since Coq
requires all programs to terminate, one has to indicate the number of steps to be evalu-
ated explicitly. Well-founded recursion cannot be used here, as our language is Turing-
complete. (Actually, Objective Caml allows one to define cyclic constants, so that we
can build a value representing infinity, and remove the need for an explicit number of
steps. However, this is going around the soundness of Coq.)

Here is an example of program written in abstract syntax (with a few abbreviations),
and its inferred type (using lots of pretty printing).

4 Since both validity and coherence are decidable, proof irrelevance could be avoided here by
slightly changing definitions.

5 The validity of our certification relies on the correctness of Coq and Objective Caml, which
are rather strong assumptions.

A Certified Implementation of ML with Structural Polymorphism 373

let rev_append =
recf (abs (abs (abs
(matches [0;1]
[abs (bvar 1);
abs (apps (bvar 3) [sub 1 (bvar 0); cons (sub O (bvar 0)) (bvar 1)]);
bvar 11)))) ;;
val rev_append : trm = ...
typinf2 Nil rev_append;;
- : (var * kind) list * typ =
([(10, <Ksum, {}, {0; 1}, {0 => tv 15; 1 => tu 34}>);
(29, <Ksum, {1}, any, {1 => tv 26}>);
(34, <Kprod, {1; 0}, any, {0 => tv 30; 1 => tv 10}>);
(30, any);
(26, <Kprod, {}, {0; 1}, {0 => tv 30; => tv 29}>);
(15, any)],
tv 10 @> tv 29 @> tv 29)

Here recf is an extra constant which implements the fixpoint operator. Our encoding
of lists uses 0 and 1 as labels for both variants and records, but we could have used
any other natural numbers: their meaning is not positional, but associative. Since de
Bruijn indices can be rather confusing, here is a version translated to a syntax closer to
Objective Caml, with meaningful variable names and labels.

let rec rev_append 11 12 =
match 11 with
[‘Nil _ -> 12
| ‘Cons ¢ —>
rev_append c.tl (‘Cons {hd=c.hd; t1=12})
val rev_append :
([< ‘Nil of °15 | ‘Coms of {hd:°30; t1:°10; ..}] as ’10) ->
([> “Cons of {hd:’30; t1:°29}] as ’29) -> ’29

8 Related Works

The mechanization of type safety proofs for programming languages has been exten-
sively studied. Existing works include Core ML using Coq [5], Java using Isabelle/HOL
[[14], and more recently full specification of OCaml light using HOL-4 [[15] and Stan-
dard ML using Twelf [[11/4]. The main difference in our system is the presence of struc-
tural polymorphism and recursion. In particular, among the above works, only [11]
handles inclusion problems for iso-recursive types (in a simpler setting than ours, since
when checking signature subtyping no structural polymorphism is allowed). It is also
the work closest to our goal of handling advanced type features (it already handles fully
Standard ML). OCaml-light rather focuses on subtle points in the dynamic semantics
of the language. Typed Scheme [[18] has a type system remarkably similar to ours, and
part of the soundness proof was mechanized in Isabelle/HOL, but the mechanized part
does not contain recursive types.

Concerning unification and type inference, we have already mentioned the works
of Paulson in LCF [16], Dubois and Ménissier-Morain in Coq [6], and Naraschewski
and Nipkow in Isabelle [13], and the more recent Isabelle/Nominal proof by Urban
and Nipkow [19]. The main difference is the introduction of structural polymorphism,

374 J. Garrigue

Table 1. Components of the proof

File Lines Contents

Lib * 1706 Auxiliary lemmas and tactics from [1]]
Metatheory 1376 Metatheory lemmas and tactics from [1]]
Metatheory SP 1304 Additional lemmas and tactics
Definitions 458 Definition of the type system
Infrastructure 1152 Common lemmas

Soundness 633 Soundness proof

Rename 985 Renaming and inversion lemmas
Eval 2935 Stack-based evaluation

Unify 1832 Unification

Inference 3159 Type inference

Domain 1085 Constraint domain specific proofs
Unify wf 1827 Unification using dependent measure

Inference wf 3443 Inference using dependent measure

which results in much extended statements to handle admissible substitutions. Even in
the absence of structural polymorphism, just handling equi-recursive types makes type
inference more complex, and we are aware of no proof of principality including them.
It might be interesting to compare these different proofs of W in more detail, as the first
two use de Bruijn indices [6/13]], the latter nominal datatypes [19], and ours cofinite
quantification. However, as Urban and Nipkow already observed, while there are clear
differences between the different approaches, in the case of type inference lots of low-
level handling of type variables has to be done, and as a result clever encodings do not
seem to be that helpful.

More generally, all the litterature concerning the PoplMark challenge [2] can be
seen as relevant here, at least for the type soundness part. In particular, one could argue
that structural polymorphism being related to structural subtyping, challenges 1B and
2B (transitivity of subtyping with records, and type safety with records and pattern
matching) should be relevant. However, in the case of structural polymorphism, the
presence of recursive types requires the use of a graph structure to represent types,
which does not seem to be necessary for those challenges, where trees are sufficient.
We believe that this changes the complexity of the proof.

9 Conclusion

We have reached our first goal, providing a fully certified type checker and interpreter.
We show the size and contents of the various components of the proof in table[Il While
this is a good start, it currently handles only a very small subset of Objective Caml. The
next goal is of course to add new features. A natural next target would be the addition
of side-effects, with the relaxed value restriction. Note that since the value restriction
relies on subtyping, it would be natural to also add type constructors, with variance
annotations, at this point. Considering the difficulties we have met up to now, we do not
expect it to be an easy task.

A Certified Implementation of ML with Structural Polymorphism 375

Acknowledgments. I wish to thank the anonymous reviewers for their detailed and
helpful comments.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering formal
metatheory. In: Proc. ACM Symposium on Principles of Programming Languages, pp. 3—15
(2008)

. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P., Vytiniotis,

D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory for the masses: The
PoplMark challenge. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp.
50-65. Springer, Heidelberg (2005)

. Barras, B.: Auto-validation d’un systeme de preuves avec familles inductives. These de doc-

torat, Université Paris 7 (November 1999)

. Crary, K., Harper, B.: Mechanized definition of Standard ML alpha release. Twelf proof

scripts (August 2009)

. Dubois, C.: Proving ML type soundness within Coq. In: Aagaard, M.D., Harrison, J. (eds.)

TPHOLSs 2000. LNCS, vol. 1869, pp. 126—144. Springer, Heidelberg (2000)

. Dubois, C., Ménissier-Morain, V.: Certification of a type inference tool for ML: Damas-

Milner within Coq. Journal of Automated Reasoning 23(3), 319-346 (1999)

. Furuse, J.P., Garrigue, J.: A label-selective lambda-calculus with optional arguments and

its compilation method. RIMS Preprint 1041, Research Institute for Mathematical Sciences,
Kyoto University (October 1995)

. Garrigue, J.: Simple type inference for structural polymorphism. In: The Ninth International

Workshop on Foundations of Object-Oriented Languages, Portland, Oregon (2002)

. Garrigue, J.: Relaxing the value restriction. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS

2004. LNCS, vol. 2998, Springer, Heidelberg (2004)

Garrigue, J., Rémy, D.: Extending ML with semi-explicit higher order polymorphism. Infor-
mation and Computation 155, 134-171 (1999)

Lee, D.K., Crary, K., Harper, R.: Towards a mechanized metatheory of standard ML. In:
Proc. ACM Symposium on Principles of Programming Languages, pp. 173-184 (January
2007)

Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml system
release 3.11, Documentation and user’s manual. Projet Gallium, INRIA (November 2008)
Naraschewski, W., Nipkow, T.: Type inference verified: Algorithm W in Isabelle/HOL. Jour-
nal of Automated Reasoning 23, 299-318 (1999)

Oheimb, D.v., Nipkow, T.: Machine-checking the Java specification: Proving type-safety. In:
Alves-Foss, J. (ed.) Formal Syntax and Semantics of Java. LNCS, vol. 1523, pp. 119-156.
Springer, Heidelberg (1999)

Owens, S.: A sound semantics for OCaml light. In: Drossopoulou, S. (ed.) ESOP 2008.
LNCS, vol. 4960, pp. 1-15. Springer, Heidelberg (2008)

Paulson, L.: Verifying the unification algorithm in LCF. Science of Computer Program-
ming 5, 143-169 (1985)

The Coq Team. The Coq Proof Assistant, Version 8.2. INRIA (2009)

Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed scheme. In:
Proc. ACM Symposium on Principles of Programming Languages (2008)

Urban, C., Nipkow, T.: Nominal verification of algorithm W. In: Huet, G., Lévy, J.-J., Plotkin,
G. (eds.) From Semantics to Computer Science. Essays in Honour of Gilles Kahn, pp. 363—
382. Cambridge University Press, Cambridge (2009)

	A Certified Implementation of ML with Structural Polymorphism
	Introduction
	Structural Polymorphism
	Type Soundness
	Type Inference
	Unification
	Inference

	Interpreter
	Dependent Types
	Program Extraction
	Related Works
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

