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Preface

This volume contains the papers presented at APLAS 2010, the eighth Asian
Symposium on Programming Languages and Systems, held from November 28
to December 1, 2010, in Shanghai, China. The symposium was sponsored by the
Asian Association for Foundation of Software (AAFS) and Shanghai Jiao Tong
University.

APLAS is a premiere forum for the discussion of programming languages,
based in Asia and serving the worldwide research community. The past APLAS
symposia were successfully held in Seoul (2009), Bangalore (2008), Singapore
(2007), Sydney (2006), Tsukuba (2005), Taipei (2004), and Beijing (2003), after
three well-attended workshops held in Shanghai (2002), Daejeon (2001), and
Singapore (2000). Proceedings of the past symposia were published in Springer’s
LNCS volumes 2895, 3302, 3780, 4279, 4807, 5356, and 5904.

APLAS 2010 solicited submissions in two categories, regular research papers
and system and tool presentations. Ninety-five abstracts were submitted, of which
75 (70 regular research papers and 5 system and tool presentations from 21 coun-
tries) were followed by their full versions. Each submission was reviewed by at
least three Program Committee members with the help of external reviewers.
The Program Committee meeting was conducted electronically over a period
of two weeks in July/August 2010. The Program Committee decided to accept
23 regular research papers (33%) and 2 system and tool presentations (40%).
Seven of them were accepted conditionally, with specific requirements of nec-
essary improvements; then the revised papers and the accompanying replies to
the reviewers’ comments were checked (and further shepherded for some papers)
by the Program Committee before they were finally accepted. I would like to
thank all the Program Committee members for their hard work dedicated to
reviews and discussions, and all the external reviewers for their invaluable
contributions.

The volume also contains the full papers and extended abstracts of four
distinguished invited speakers: Gerwin Klein (National ICT Australia), Dale
Miller (INRIA Saclay – Ile-de-France), Mingsheng Ying (Tsinghua University
and University of Technology Sydney), and Chaochen Zhou (Chinese Academy
of Sciences). It also contains a paper for a tutorial delivered by Aquinas Hobor
(National University of Singapore) and Robert Dockins (Princeton University).
I would like to thank all of these speakers for accepting our invitation and con-
tributing papers.

I am grateful to Yuxi Fu, General Chair, for the invaluable support and
guidance that made our symposium in Shanghai possible and enjoyable. I am also
indebted to Xiaoju Dong, Local Arrangement Chair, for her effort in organizing
and publicizing the meeting. I would like to thank Guoqiang Li for serving as the



VI Preface

Poster Chair. EasyChair made the handling of submissions and the production
of the proceedings extremely smooth and efficient. Last but not least, I would
like to thank the members of the AAFS Executive Committee and Zhenjiang
Hu, the Program Chair of the last APLAS, for their advice.

December 2010 Kazunori Ueda
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A Calculus for Hybrid CSP�

Jiang Liu1, Jidong Lv2, Zhao Quan1, Naijun Zhan1, Hengjun Zhao1,
Chaochen Zhou1, and Liang Zou1

1 State Key Lab. of Computer Science, Institute of Software, CAS
2 State Key Lab. of Rail Traffic Control and Safety, Beijing Jiaotong University

Abstract. Hybrid Communicating Sequential Processes (HCSP) is an
extension of CSP allowing continuous dynamics. We are interested in
applying HCSP to model and verify hybrid systems. This paper is to
present a calculus for a subset of HCSP as a part of our efforts in mod-
elling and verifying hybrid systems. The calculus consists of two parts.
To deal with continuous dynamics, the calculus adopts differential invari-
ants. A brief introduction to a complete algorithm for generating poly-
nomial differential invariants is presented, which applies DISCOVERER,
a symbolic computation tool for semi-algebraic systems. The other part
of the calculus is a logic to reason about HCSP process, which involves
communication, parallelism, real-time as well as continuous dynamics.
This logic is named as Hybrid Hoare Logic. Its assertions consist of tra-
ditional pre- and post-conditions, and also Duration Calculus formulas
to record execution history of HCSP process.

Keywords: Chinese Train Control System, Differential Invariant, DIS-
COVERER, Duration Calculus, Hoare Logic, Hybrid CSP, Hybrid Logic.

1 Introduction

We are interested in modelling and verifying hybrid systems, and take the Level
3 of Chinese Train Control System (CTCS-3) [17] as a case study, which is an
informal specification of Chinese high speed train control system that ensures
safety and high throughput of trains. There are many reasons to guarantee the
high throughput. But our case study only focuses on the analysis and verification
of the safety of CTCS-3.

In CTCS-3, there are specifications of 14 scenarios. For example, one of the
14 scenarios specifies that trains are only allowed to move within their current
movement authorities (MAs) which are determined and updated by Radio Block
Center (RBC). Hence, the train controller should restrict the movement of the
train to ensure that it always runs within its MA with a speed in the scope
predefined by the MA. In this scenario, there are continuous dynamics of trains
that are described by differential equations, communications between train and
RBC, real-time aspects of the movement, etc.
� This work is supported in part by the projects NSFC-60721061, NSFC-90718041,

NSFC-60736017, NSFC-60970031, NSFC-60634010 and RCS2008K001.

K. Ueda (Ed.): APLAS 2010, LNCS 6461, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 J. Liu et al.

In order to verify the safety of scenarios, we have to first give a formal model
of the scenarios. CSP is a good candidate for modelling communication and par-
allelism among trains and RBCs. However CSP lacks of mechanisms to describe
continuous dynamics of train. In [4,16], a Hybrid CSP (HCSP) is proposed to
model hybrid systems. HCSP introduces into CSP continuous variables, differ-
ential equations, and interruptions by events including timeout, communicating,
boundary reaching etc. Our experience in using HCSP to model CTCS-3 is quite
satisfactory, and the details will be reported in another paper.

This paper is to present a calculus to verify the safety of HCSP process. The
calculus consists of two parts. One is to reason about differential equations. We
adopt differential invariants [10,12,11,3]. In their papers, the authors respec-
tively demonstrate different sufficient conditions to generate/check a differential
invariant with respect to a given differential equation. These conditions are use-
ful, but too restrictive to generate some of invariants for our verification of
CTCS-3. In [5], we develop an algorithm, which is complete in the sense that, if
the differential equation is given in polynomials and it has a polynomial inequal-
ity (equality) as its invariant, then this algorithm can guarantee the generation
of this polynomial invariant. The generation of polynomial differential invariant
by this algorithm is supported by a symbolic computation tool for semi-algebraic
systems, DISCOVERER [13,14,15]. This paper gives a brief introduction to this
algorithm. Details of the algorithm can be referred to [5].

The other part of the calculus to verify an HCSP process is a logic to deal
with communications, parallelism, differential equations, interruptions, timing,
etc. In the literature, the Differential Algebraic Dynamic Logic [8] can deal with
differential equations through differential invariants. However it does not take
into account communication, parallelism, interruption, etc. In this paper we pro-
pose a logic which can handle all these issues. Its sequential part is similar to
Hoare Logic. For parallel part, since HCSP (like CSP) does not allow memory
sharing, we follow the interleaving model for concurrency except communicat-
ing. Therefore comparison between sequential processes of a parallel system does
not make sense unless synchronization (i.e. communication) happens. Hence, we
separate pre- and post-condition for each sequential subsystem of a parallel sys-
tem, although literally mixing them up is not difficult. A similar idea can be
found in [1]. When communication happens, the logic must consider the tim-
ing issue of two involved parties. So, in addition to pre- and post-condition,
we introduce into Hoare Logic a history formula, which is a Duration Calcu-
lus formula1. It can treat timing issue and record changes of variable values.
The history formula can also help in dealing with interruptions. By interruption
we mean a sudden stopping of a process followed by a transition to another
one. Reasoning about interruption is really difficult. The paper demonstrates
our first attempt to tackle this problem. This logic is based on Hoare Logic,
Duration Calculus and Differential Invariants. Thus, we call it Hybrid Hoare
Logic.

1 In [7], Duration Calculus is also used to prove safety critical property for European
railways.



A Calculus for Hybrid CSP 3

2 Hybrid CSP

Hybrid CSP is a modelling language for hybrid systems [4,16]. HCSP is an exten-
sion of CSP, which introduces into CSP differential equations, time constructs,
interruptions, etc. It can be used for describing continuous, communicating and
real-time behaviour of hybrid systems.

The vocabulary of HCSP includes:

– Var is a countable set of discrete variables.
– Continuous is a countable set of continuous variables, which are interpreted

as continuous functions from time (non-negative reals) to reals. We use VC
to stand for Var ∪Continuous.

– Chan is a countable set of channels. We use ch1, ch2, . . . to range over chan-
nels, and ch? to stand for input, while ch! for output.

Thus, a process of HCSP is defined according to the following grammar:2

P ::= stop | skip | v := e | ch?x | ch!e | 〈F (ṡ, s) = 0 ∧B〉 |
P ;Q | B → P | P �d Q | P � []i∈I(ioi → Qi) | P ∗

S ::= P | P ‖ S

where B is a first order formula over VC, and d > 0. Intuitively, the above
constructs can be understood as follows:

– stop does nothing but keeps idle for ever.
– skip terminates immediately and does nothing.
– v := e is to assign the value of the expression e to v and then terminates.
– ch?x receives a value to x through the channel ch.
– ch!e sends the value of e to the channel ch, and e is an arithmetic expression

of VC.
– 〈F (ṡ, s) = 0 ∧ B〉3 is a continuous statement. It defines an evolution by

a differential equation over s. In fact, s could be a vector of continuous
variables, and F be a group of differential equations. B is a first order formula
of s, which defines a domain of s in the sense that, if the evolution of s is
beyond B, the statement terminates. Otherwise it goes forward.4

– P ;Q behaves like P first and then behaves like Q after P terminates.
– B → P behaves like P if B is true. Otherwise it terminates.
– P �d Q behaves like P if P can terminate within d time units. Otherwise,

after d time units, it will behave like Q. Here we assume that both P and Q
do not contain communications. A wait statement, which postpones process
behaviour for d time units, can be defined as

wait d =̂ stop �d skip

2 This is only a subset of HCSP in [4,16].
3 This notation is from [9], but here it is interpreted a little differently.
4 This is written as 〈F (ṡ, s) = 0〉 → ¬B in [4,16].
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– P � []i∈I(ioi → Qi) behaves like P until a communication in the following
context appears. Then it behaves like Qi immediately after communication
ioi occurs. Here I is a non-empty finite set of indices, and {ioi | i ∈ I} are
input and output statements. We also assume that P does not contain any
communications. Furthermore, the external choice of CSP can be defined as

[]i∈I(ioi → Qi) =̂ stop � []i∈I(ioi → Qi).

– P ∗ means the execution of P can be repeated arbitrarily finitely many times.
– P ‖ Q behaves as if P and Q are executed independently except that all

communications along the common channels between P and Q are to be
synchronized. In order to guarantee P and Q having no shared continuous
nor discrete variables, and neither shared input nor output channels, we give
the following syntactical constraints:

(VC(P ) ∩VC(Q)) = ∅
(InChan(P ) ∩ InChan(Q)) = ∅

(OutChan(P ) ∩OutChan(Q)) = ∅,

where VC(P ) stands for the set of discrete and continuous variables that
indeed appear in P , InChan(P ) (OutChan(P ) for input (output) channels
of P .

Examples

1. Plant Controller: A plant is sensed by a computer periodically (say every
d time units), and receives a control (u) from the computer soon after the
sensing.

((〈F (u, s, ṡ) = 0〉� (cp2c!s→ skip)); cc2p?u)∗ ‖ (wait d; cp2c?x; cc2p!e(x))∗

where 〈F (u, s, ṡ) = 0〉 (i.e. 〈F (u, s, ṡ) = 0 ∧ true〉 describes the behaviour of
the plant. We refer this HCSP process as PLC in the rest of the paper.

2. EmergencyBrake: A train is moving at an acceleration a until the train reaches
an Emergency Brake Intervention speed. Then, it will take an emergency de-
celeration (a = −lb) to return to safe velocity (vs). During its moving, the
train always listens to RBC, if it receives from RBC a message of emergency
brake, it decelerates with −lb until it stops. This only shows what a piece of
HCSP process joining in the models of CTCS-3 scenarios looks like.

(〈(ṡ = v, v̇ = a) ∧ (v < vebi)〉; 〈(ṡ = v, v̇ = −lb) ∧ (v ≥ vs)〉; ...)
�cr2t?x→ (x = EB → 〈(ṡ = v, v̇ = −lb) ∧ (v > 0)〉); ...
‖ wait d; (cr2t!EB → ...[]...)

3 Differential Invariants

Verification of HCSP process consists of two parts: an algorithm to generate or
check differential invariants and a logic to reason about assertions of the process.
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A differential invariant of a differential equation

〈F (s, ṡ) = 0 ∧B〉

for given initial values of s is a first order formula of s, which is satisfied by
the initial values and also by all the values within the area defined by B and
reachable by the trajectory of s defined by the differential equation.

In [10], Platzer and Clarke proposed a sufficient condition to check a differ-
ential invariant. For differential equation and its domain written as

〈(ṡ1 = f1, ..., ṡn = fn) ∧B〉,

e ≤ g is a differential invariant of the above differential equations with given
initial values of s1, ..., sn, if the initial values satisfy e ≤ g, and the first order
Lie derivative of e is less than g’s, i.e.

n∑
i=1

∂e

∂si
fi ≤

n∑
i=1

∂g

∂si
fi

This condition is useful, but quite rough in checking a differential invariant. For
example, v ≤ vebi is a differential invariant of

〈(ṡ = v, v̇ = a) ∧ v < vebi〉.

But it cannot be proved through this sufficient condition unless a ≤ 0.
When fjs are polynomials in si (i = 1, ..., n), and B is a conjunction of

polynomial equations and inequalities, the above differential equation is called
semi-algebraic differential equation. In fact, suppose s(t) is the trajectory of the
above semi-algebraic differential equation starting from a point on the boundary
of e ≤ g, i.e. e = g, then the first non-zero higher order Lie derivative of e(s(t))−
g(s(t)) with respect to t at t = 0 provides full information about the evolution
tendency of s(t) with respect to e ≤ g. If it is less than 0, s(t) will meet e ≤ g
as t increases, i.e. e ≤ g is an invariant; otherwise, e ≤ g will be violated.

Using the above observation, in [5], we proposed a sound and complete method
on generating polynomial differential invariants for the semi-algebraic differen-
tial equations. The basic idea is to suppose a template of differential invariant
p(s1, · · · , sn, u1, · · · , um) ∼ 0 first, where p is a polynomial in continuous vari-
ables s1, · · · , sn and parameters u1, · · · , um, and ∼∈ {≥, >,≤, <,=, �=}; and
then repeatedly compute p’s Lie derivative of different order and derive con-
straints on the parameters according to the signs of the computed derivatives.
The hardest part of our method is how to guarantee the termination of the
above procedure. By applying some fundamental theories in algebraic geome-
try, we show that the above procedure of computing derivatives will never be
endless. Thus, it is proved that the existence of differential invariants of the
predefined template is equivalent to the existence of the solutions of the resulted
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constraints. Furthermore, the solutions of the constraints construct coefficients
of the differential invariant.

Using our method to check the differential invariant of the above example, it
amounts to check the validity of

∀v.
(

(v = vebi ∧ a ≤ 0)⇒ a ≤ 0 ∧
(v = vebi ∧ v < vebi) ⇒ a ≤ 0)

)
,

which is obvious.
In order to generate and solve constraints on the parameters of a template of a

differential invariant, we can apply DISCOVERER [13,14,15], a tool for symbolic
computation of semi-algebraic systems, as well as for quantifier elimination [2].

Compared with the existing work on this topic [10,12,11,3], our method is the
first sound and complete one to generate polynomial differential invariants for
semi-algebraic differential equations. Details are referred to [5].

4 Hybrid Hoare Logic

HCSP adopts message passing communications but rejects memory sharing para-
digm. Comparison between variables of different sequential processes of a parallel
program makes sense only if they are synchronized. We therefore restrict asser-
tions to formulas of VC of each sequential process, although it is not difficult to
literally mix them up.

HCSP employs sequential composition of statements, and we follow the tra-
ditional pre- and post- conditions of Hoare Logic to deal with sequential com-
position. A pre-condition specifies the VC values right before an execution of
a statement, while a post-condition specifies the values immediately after the
execution of the statement if it terminates. We use first order formulas of VC
to express pre- and post- conditions.

However HCSP also includes interruptions by reaching a boundary, by time-
out or by a communication. Hence, we need a record of the history of process
execution, so that we can retreat to the place where the interruption happens.
We take a subset of Duration Calculus (DC) formulas [19,18] to record an exe-
cution history of a process. That is a sequence of DC states over intervals linked
together by the modality (�). It must be very tedious to remember all details of
a history, and we need abstraction to develop a simple logic. Computer compu-
tation and continuous evolution of plant have different time granularity, and we
adopt super dense computation [6] to assume computer computation consuming
zero time. This agrees with the abstraction of DC: a state being present over an
interval means that the state holds almost everywhere in the interval. This ab-
straction has many advantages. But in some cases it may damage the connection
after an interruption. So, through DC events [18], history can still remember the
points where value changes do happen, although it may neglect the particular
values at those points.
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4.1 Subset of DC Formulas

As indicated before, we will use a subset of DC formulas to record execution
history of HCSP process. The formula in this subset is denoted as HF (history
formula) and given as follows.

HF ::= l < T | l = T | l > T |↑X | �S�
| HF�HF | HF ∧ HF | HF ∨ HF

where l stands for interval length, X is a subset of VC, S is a first order formula
of VC, and T ≥ 0.
↑X is an event to mean changes of variables in X taking place at a time point.

The axioms and rules can be copied from the event calculus in [18]. But in order
to maintain this information unaltered during deductions, we only list two of
them as axioms. The others can be used as antecedence when needed. These two
axioms are

↑∅ ⇔ (l = 0)
↑X

� ↑Y ⇔ ↑X∪Y

�S� means S true almost everywhere over an interval. It follows all the theorems
of �S� in [18], such as

�S���S� ⇔ �S�,
�S��(l = 0) ⇔ �S�,
etc.

All proofs for HF are given in DC (plus the above two axioms for ↑X), and will
not be explicitly indicated. For example, we can prove in DC:

false ⇔ (l < 0)
true ⇔ (l = 0) ∨ (l > 0)

Since an interruption may occur at any time during process execution, to locate
it we define prefix closure of HF and denote it as HF<.

(l < T )< =df (l < T )
(l = T )< =df (l ≤ T )
(l > T )< =df true
(↑X)< =df

∨
Y ⊆X

↑Y

�S�< =df (l = 0) ∨ �S�

(HF�
1 HF2)< =df

{
false if HF2 ⇒ false
(HF1)< ∨ HF�

1 (HF2)< otherwise

(HF1 ∧HF2)< =df

{
false if HF1 ∧ HF2 ⇒ false
(HF1)< ∧ (HF2)< otherwise

(HF1 ∨HF2)< =df (HF1)< ∨ (HF2)<

It is obvious that the prefix closure of any formula of the subset still belongs to
it. From the above definition, we can prove

true< ⇔ true
false< ⇔ false
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4.2 Assertions

An assertion of Hybrid Hoare Logic consists of four parts: precondition, process,
postcondition and history, written as

{Pre}P{Post;HF}

where Pre specifies values of VC(P ) before an execution of P , Post specifies
VC(P ) values when it terminates, and HF is a formula of VC(P ) from the
DC subset to describe the execution history of P , which includes differential
invariants of P . In Hoare Logic, a loop invariant joins in postcondition of the
loop, so does in this Hybrid Hoare Logic. HCSP has three kinds of interruptions:
boundary interruption, e.g. 〈F (ṡ, s) = 0∧B〉, timeout interruption, e.g. P �d Q
and communication interruption, e.g. P�[]i∈I(ioi → Qi). For these three kinds of
interruptions, HF has to join in reasoning. In HF, ↑X indicates that the changes
of variables in X may take place at this point, and reasoning about assertions
at this point should not rely on these variables.

For a parallel process, say P1 ‖ ... ‖ Pn, the assertion becomes

{Pre1, ...,Pren}P1 ‖ ... ‖ Pn{Post1, ...,Postn;HF1, ...,HFn}

where Prei,Posti,HFi are (first order or DC) formulas of VC(Pi) (i = 1, ..., n).
Another role of HF is to specify real-time (continuous) property of an HCSP

process, while Pre and Post can only describe its discrete behaviour. HF therefore
bridges up the gap between discrete and continuous behaviour of the process. For
example, we may want the plant controller example (PLC) in Section 2 stable
after T time units, i.e. after T time units the distance between the trajectory of
s and its target starg must be small. This can be specified through the following
assertion.

{s = s0 ∧ u = u0 ∧ Ctrl(u0, s0),Pre2}PLC
{Post1,Post2; (l = T )��| s− starg |≤ ε�,HF2}

where Ctrl(u, s) may express a controllable property, and the other formulas are
not elaborated here.

4.3 Axioms and Rules

We do not list all axioms and rules for all HCSP processes, but explain our idea
how to establish this logic. Say, in this subsection we only use a parallel process
consisting of two sequential ones to demonstrate the logic.

1. Monotonicity

If {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2},
and Pre′i ⇒ Prei,Posti ⇒ Post′i,HFi ⇒ HF′

i(i = 1, 2),
then {Pre′1,Pre′2}P1 ‖ P2{Post′1,Post′2;HF′

1,HF′
2}

where we use first order logic to reason Pre′i ⇒ Prei and Posti ⇒ Post′i, but
use DC (plus the two axioms for ↑X) to reason HFi ⇒ HF′

i. From now on
we will not repeatedly mention this.
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2. Case Analysis

If {Pre1i,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2} (i = 1, 2),
then {Pre11 ∨ Pre12,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2}

Symmetrically,

If {Pre1,Pre2i}P1 ‖ P2{Post1,Post2;HF1,HF2} (i = 1, 2),
then {Pre1,Pre21 ∨ Pre22}P1 ‖ P2{Post1,Post2;HF1,HF2}

3. Parallel vs. Sequential
These two rules show a simple relation between assertions of a parallel pro-
cess and its sequential components that can ease a proof.

If {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2}
then {Prei}Pi{Posti;HFi} (i = 1, 2)

and
If {Prei}Pi{Posti;HFi} (i = 1, 2),
and Pi (i = 1, 2) do not contain communication,
then {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2}

4. Stop
stop does nothing, and never terminates. So, stop will keep any precondition
true for ever. Hence, for any r ≥ 0,

{Pre}stop{Pre; �Pre� ∧ (l > r)}

5. Skip
{Pre}skip{Pre; l = 0},

where by l = 0 we assume that, in comparison with physical device, compu-
tation takes no time (i.e. supper dense computation [6])

6. Assignment
{Pre[e/x]}x := e{Pre, ↑x}

The precondition and postcondition are copied from Hoare Logic. Here we
use ↑x as its history to indicate that, a change of x takes place at this time
point, although the history does not record the values of x before and after
the change.

7. Communication
Since HCSP rejects variable sharing, a communication looks like the output
party (P1; ch!e) assigning to variable x of the input one (P2; ch?x) a value
(e). Besides, in order to synchronize both parties, one may have to wait
for another. During the waiting of Pi, Posti must stay true (i = 1 or 2).



10 J. Liu et al.

Furthermore, when we conclude range of the waiting time, we need to reduce
↑X to (l = 0).

If {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2},
Post1 ⇒ G(e),

and �(
∧

X⊆VC ↑X⇒ (l = 0)) ∧ (((HF�
1 (�Post1�)<) ∧ HF2)∨

(HF1 ∧ (HF�
2 (�Post2�)<))) ⇒ Rg(l)

where Rg(l) is a box constraint (HF formula) of l to define its range
then {Pre1,Pre2}(P1; ch!e) ‖ (P2; ch?x)

{Post1, G(x) ∧ ∃xPost2;HF�
1 (�Post1�)< ∧Rg(l),

(HF�
2 (�Post2�)< ∧Rg(l))� ↑x}

Example
If

{Pre1,Pre2}P1 ‖ P2
{y = 3, x = 1; (�y = 0� ∧ (l = 3))� ↑y, �x = 0� ∧ (l = 5)� ↑x},

we want to deduce through this rule

{Pre1,Pre2}P1; ch!y ‖ P2; ch?x{Post3,Post4;HF3,HF4}.

Since (y = 3)⇒ (3 = 3) and

�
∧

X⊆{x,y}(↑X⇒ (l = 0)) ∧
((�y = 0� ∧ (l = 3))� ↑�

y ((l = 0) ∨ �y = 3�)) ∧ ((�x = 0� ∧ (l = 5))� ↑x)
⇒ (l = 5),

we can conclude that Post3 is y = 3, Post4 is x = 3,
HF3 is

((�y = 0� ∧ (l = 3))� ↑�
y �y = 3�) ∧ (l = 5),

and HF4 is
(l = 5)� ↑�

x ↑x

which is equivalent to
(l = 5)� ↑x

by the axioms of ↑X .
8. Continuous

This is about 〈F (ṡ, s) = 0 ∧ B〉, where s can be a vector and F be a group
of differential equations, such as

〈(ṡ1 = f1, ..., ṡn = fn) ∧B〉.

As indicated in Section 3, in this paper we only deal with semi-algebraic
differential equations and polynomial differential invariants. That is, fjs are
polynomials in si (i = 1, ..., n), B is a conjunction of polynomial equations
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and inequalities of si (i = 1, ..., n), and differential invariants are also re-
stricted to polynomial equations and inequalities.

We have two rules for semi-algebraic differential equations. The first one
is about differential invariant. Given a polynomial differential invariant Inv
of 〈F (ṡ, s) = 0 ∧B〉 with initial values satisfying Init

If Init ⇒ Inv,
then {Init ∧ Pre}〈F (ṡ, s) = 0 ∧B〉{Pre ∧Close(Inv) ∧Close(¬B);

(l = 0) ∨ �Inv ∧ Pre ∧B�}

where Pre does not contain s, Close(G) stands for the closure of G, 5 and
(l = 0) in the history is to record the behaviour when the initial values
satisfy ¬B at very beginning.

The second rule is about explicit time.

If {Pre}〈F (ṡ, s) = 0 ∧B〉{Post;HF}
and {Pre ∧ t = 0}〈(F (ṡ, s) = 0, ṫ = 1) ∧B〉{Rg(t);HF′},
then {Pre}〈F (ṡ, s) = 0 ∧B〉{Post;HF ∧Rg(l)}

where t is a clock to count the time, and Rg(t) is a box constraint as ex-
plained in the rule for communication.

Example
We know from Section 3 that v ≤ vebi is an invariant of

〈(ṡ = v, v̇ = a) ∧ v < vebi〉.

Thus, by the first rule

{(v = v0 ≤ vebi)}〈(ṡ = v, v̇ = a) ∧ v < vebi〉
{(v ≤ vebi) ∧ (v ≥ vebi); (l = 0) ∨ �(v ≤ vebi) ∧ (v < vebi)�}

In addition, we can prove that, if the initial values are v = v0 and t = 0, and
we assume p ≥ a ≥ w, then

((v0 + wt) ≤ v ≤ (v0 + pt)) ∧ (v ≤ vebi)

is an invariant of 〈(ṡ = v, v̇ = a, ṫ = 1) ∧ v < vebi〉. So under the assumption
(p ≥ a ≥ w)

{(v = v0 ≤ vebi) ∧ (t = 0)}〈(ṡ = v, v̇ = a, ṫ = 1) ∧ v < vebi〉
{(v = vebi) ∧ ((v0 + wt) ≤ v ≤ (v0 + pt));
(l = 0) ∨ �(v < vebi) ∧ ((v0 + wt) ≤ v ≤ (v0 + pt))�}

{(v = v0 ≤ vebi) ∧ (t = 0)}〈(ṡ = v, v̇ = a, ṫ = 1) ∧ v < vebi〉
{ vebi−v0

w ≥ t ≥ vebi−v0
p ; true}

Therefore assuming (p ≥ a ≥ w) we can have
{(v = v0 ≤ vebi)}〈(ṡ = v, v̇ = a) ∧ v < vebi〉
{(v = vebi); �(v < vebi)� ∧ (vebi−v0

w ≥ l ≥ vebi−v0
p )}

5 When G is constructed by polynomial inequalities through ∧ and ∨, Close(G) can
be obtained from G by replacing < (and >) with ≤ (and ≥) in G.
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9. Sequential

If {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2},
{Posti}Pi+2{Posti+2;HFi+2} (i = 1, 2),

and both P3 and P4 do not contain communication,
then {Pre1,Pre2}P1;P3 ‖ P2;P4{Post3,Post4;HF�

1 HF3,HF�
2 HF4}.

10. Timeout
We have two rules for P1 �d P2. One is for the case when P1 terminates
before d time units. Another is for the timeout. The first one is

If {Pre}P1{Post;HF}
and (�(

∧
X⊆VC ↑X⇒ (l = 0)) ∧ HF) ⇒ (l < d)

then {Pre}P1 �d P2{Post;HF}
The second one is more complicated. The execution of P1 is interrupted after
d time units, and then P2 starts its execution. Therefore the postcondition
of P1 cannot be used for this transition, and we have to use its history at
time d.

If {Pre1}P1{Post1;HF1},
{Pre2}P2{Post2;HF2},
(�(∧X⊆VC ↑X⇒ (l = 0)) ∧ HF1)⇒ (l ≥ d)

and G ⇒ Pre2

then {Pre1}P1 �d P2{Post2;HF∗�HF2}
where G and HF∗ are constructed as follows. Choose an HF∗ in the form of

n∨
i=1

HF∗
i

�(�Gi ∧ Fi� ∧Rgi(l))� ↑Xi

according to the following two criteria. If no variable of Gi is included in Xi

(i = 1, ..., n), then we let G be
∨n

i=1 Gi.
The first criterion to choose HF∗ is to guarantee that HF∗ does not lose

any ↑X in HF1. That is, we have to prove

HF∗ ⇒ HF<
1 , and

�(
∧

((X 	=Y )∧X,Y ⊆VC) ¬(↑X ∧ ↑Y ))
⇒

∧n
i=1 ¬((HF∗

i
�(�Gi ∧ Fi� ∧Rgi(l))� ↑Yi) ∧ HF<

1 )

for any Yi ⊃ Xi.
The second criterion is about the length of HF∗ and another direction of

the implication between HF1 and HF∗. That is

�(
∧

X⊆VC ↑X⇒ (l = 0)) ∧ HF∗ ⇒ (l = d), and
�(
∧

X⊆VC ↑X⇒ (l = 0)) ∧ HF<
1 ∧ (l = d) ⇒ HF∗

In summary, HF∗ is a part of (HF<
1 ∧ (l = d)) that includes all information

about variable changes at time points until d (inclusive), and G therefore
catches the last states of (HF<

1 ∧ (l = d)), which do not change at time d.
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Examples
(a) wait d (d > 0)

{Pre}wait d{Pre; �Pre� ∧ (l = d)}

where wait d is defined as stop�dskip. Its proof can be given as follows.
Since

{Pre}stop{Pre; �Pre� ∧ (l > d)},
{Pre}skip{Pre; (l = 0)},
(l > d) ⇒ (l ≥ d),
and we can choose HF∗ as (�Pre� ∧ (l = d)), and hence, G as Pre,

we can conclude

{Pre}stop �d skip{Pre; (�Pre� ∧ (l = d))�(l = 0)}.

That is
{Pre}wait d{Pre; �Pre� ∧ (l = d)}.

(b) Let P be
z := 0;wait 3; y := 3;wait 2

and we can prove

{y = 1, z = 2}P{(z = 0) ∧ (y = 3);
↑�

z (�(y = 1) ∧ (z = 0)� ∧ (l = 3))� ↑y
�(�(z = 0) ∧ (y = 3)� ∧ (l = 2))}

and denote the history formula of P as HF(P ). For P �3 Q, P is inter-
rupted after being executed 3 time unit. Let HF∗ be

↑�
z (�(y = 1) ∧ (z = 0)� ∧ (l = 3))� ↑y

We can prove

HF∗ ⇒ HF(P )<,
�
∧

(x 	=y) ¬(↑{x,y} ∧ ↑y)
⇒ ¬((↑�

z (�(y = 1) ∧ (z = 0)� ∧ (l = 3))� ↑{x,y}) ∧ HF(P )<),
�(((↑y ∨ ↑z)⇒ (l = 0)) ∧ HF∗) ⇒ (l = 3), and
�((↑y ∨ ↑z)⇒ (l = 0)) ∧ HF(P )< ∧ (l = 3) ⇒ HF∗.

So, G is (z = 0) (and (y = 1) is not involved), and (z = 0) can therefore
be used as a precondition of Q.

11. Choice
This is about inference rule for (P � []i∈I(ioi → Qi)). It involves communi-
cation interruption which happens randomly, and must be difficult to deal
with. If we assume that from one party of the communication we can derive
a range of the interruption time, then we can use the history to support the
reasoning. Of course we also have to take into account the waiting time of
two parties. But all those ideas have been explained before. Thus we omit
them here.
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12. Repetition
We can pick up rules from the literature for the repetition. Here we only
show a rule which ends off an assertion reasoning.

If {Pre1,Pre2}P1 ‖ P2{Pre1,Pre2;HF1,HF2},
((�

∧
X⊆VC(↑X⇒ (l = 0))) ∧ HFi) ⇒ (Di ∧ (l = T )) (i = 1, 2, T > 0),

and D�
i Di ⇒ Di,

then {Pre1,Pre2}P ∗
1 ‖ P ∗

2 {Pre1,Pre2;D1, D2}

where T is the time consumed by both P1 and P2 that can guarantee the
synchronisation of the starting point of each repetition.

5 Conclusion

This paper sketches part of our on-going efforts in formally modelling and ver-
ifying hybrid systems. We choose a subset of HCSP for modelling, and explain
our idea to develop a calculus for this subset, including an improvement of gen-
erating and checking differential invariants. So far we are not sure whether this
subset is good enough to model interesting hybrid systems, say CTCS-3, and
neither the calculus is powerful enough in verifying its safety. Although this is
a subset of HCSP, it is quite complicated already in terms of verification. In
particular, it includes random interruptions which are hard to handle. Our idea
is to use history of execution which records the continuous evolution of process
as well as the discrete change of its variables. The calculus tries to leave details
as far as we can. Its soundness is not trivial. For this, we need formal semantics
of HCSP. A DC-based denotational semantics for HCSP has been established in
[16]. Recently, we defined an operational semantics for HCSP, and will check the
soundness of the logic against the semantics formally as a future work.
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1 Quantum Loop Programs [22]

Loops are a powerful program construct in classical computation. Some high-
level control features such as loop and recursion are provided in Selinger’s func-
tional quantum programming language QFC [15]. The power of quantum loop
programs is yet to be further exploited. The exploitation of such power requires
a deep understanding of the mechanism of quantum loops. The author and
Yuan Feng examined thoroughly the behaviors of quantum loops in a language-
independent way and found some convenient criteria for deciding termination of
a general quantum loop on a given input in the case of finite-dimensional state
spaces. More precisely, in [22], a general scheme of quantum loop programs was
introduced, the computational process of a quantum loop was described, and
the essential difference between quantum loops and classical loops was analyzed.
In addition, we introduced the notions of termination and almost termination
of a quantum loop. The function computed by a quantum loop was also de-
fined. Quantum walks were considered to show the expressive power of quantum
loops. Then we found a necessary and sufficient condition under which a quan-
tum loop program terminates on a given mixed input state. A similar condition
is given for almost termination. Furthermore, we proved that a quantum loop
is almost terminating if and only if it is uniformly almost terminating, and a
small disturbance either on the unitary transformation in the loop body or on
the measurement in the loop guard can make any quantum loop (almost) termi-
nating, provided that some dimension restriction is satisfied. A representation
of the function computed by a quantum loop was presented in terms of finite
summations of complex matrices.

2 Predicate Transformer Semantics of Quantum
Programs [20], [19]

Since it provides a goal-directed program development strategy and nondeter-
minacy can be accommodated well in it, predicate transformer semantics has a
very wide influence in classical programming methodology. There have been al-
ready two approaches to predicate transformer semantics of quantum programs
in the literature. The first approach was proposed by Sanders and Zuliani [14]
in designing qGCL, a quantum extension of the guarded-command language. In
this approach, quantum computation is reduced to probabilistic computation by
the observation (measurement) procedure. Thus, predicate transformer seman-
tics developed for probabilistic programs can be conveniently used for quantum
programs. The second approach was proposed by D’Hondt and Panangaden [5],
where the notion of a predicate is directly taken from quantum mechanics; that
is, a quantum predicate is defined to be an observable (a Hermitian operator)
with eigenvalues within the unit interval. In this approach, forward operational
semantics of quantum programs is described by super-operators according to
Selinger [15], and a beautiful Stone-type duality between state-transformer (for-
wards) and predicate-transformer (backwards) semantics of quantum programs
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can be established by employing the Kraus representation theorem for super-
operators.

To further develop the second approach, we have to tackle some problems that
would not arise in the realm of classical and probabilistic programming. One of
such problems is the commutativity of quantum weakest preconditions. Various
logical operations of quantum weakest preconditions such as conjunction and
disjunction will be needed in reasoning about complicated quantum programs,
but defining these operations requires commutativity between the involved quan-
tum predicates. However, the author and his collaborators [19] noticed that the
weakest preconditions of two commutative quantum predicates do not necessar-
ily commute. This is an obvious obstacle in the further development of predicate
transformer semantics for quantum programs, and it seems to be very difficult
to overcome in the general setting. The author and his collaborators [20] decided
to focus their attention on a special class of quantum predicates, namely projec-
tion operators. One reason for this decision is conceptual, and it comes from the
following observation: the quantum predicates dealt with in [5] are Hermitian
operators whose eigenvalues are within the unit interval, and in a sense, they
can be envisaged as quantization of probabilistic predicates. On the other hand,
projection operators are Hermitian operators with 0 or 1 as their eigenvalues,
and they should be thought of as quantization of classical (Boolean) predicates.
Physically, the simplest type of measuring instrument is one performing so-called
yes-no measurement. Only a single change may be triggered on such an instru-
ment, and it is often called an effect by physicists. Another reason is technical:
there is a bijective correspondence between the projection operators in a Hilbert
space and the closed subspaces of this space. The set of closed subspaces of a
Hilbert space was recognized by Birkhoff and von Neumann as (the algebraic
counterpart) of the logic of quantum mechanics, and its structure has been thor-
oughly investigated in the development of quantum logic for over 70 years. Thus,
we are able to exploit the power of quantum logic in our research on predicate
transformer semantics of quantum logic.

The author and his collaborators [20] developed a quite complete predicate
transformer semantics of quantum programs by employing some powerful math-
ematical tools developed in Birkhoff-von Neumann quantum logic. In particular,
they proved universal conjunctivity, termination law and Hoare’s induction rule
for quantum programs. The proof of termination law requires an essential appli-
cation of Takeuti’s technique of strong commutator introduced in his studies of
quantum set theory.

3 Floyd-Hoare Logic for Quantum Programs [18]

The fact that human intuition is much better adapted to the classical world than
the quantum world is one of the major reasons that it is difficult to find effi-
cient quantum algorithms. It also implies that programmers will commit much
more faults in designing programs for quantum computers than programming
classical computers. Thus, it is even more critical than in classical computing to
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provide formal methods for reasoning about correctness of quantum programs.
Indeed, several proof systems for verification of quantum programs and quan-
tum communication protocols have been proposed in the recent literature. For
example, Baltag and Smets [2] presented a dynamic logic formalism of informa-
tion flows in quantum systems, which is capable of describing various quantum
operations such as unitary evolutions and quantum measurements, and partic-
ularly entanglements in multi-partite quantum systems. Brunet and Jorrand [3]
introduced a way of applying Birkhoff and von Neumann’s quantum logic to
the study of quantum programs by expanding the usual propositional languages
with new primitives representing unitary transformations and quantum measure-
ments. In [4], Chadha, Mateus and Sernadas proposed a Floyd-Hoare-style proof
system for reasoning about imperative quantum programs using a quantitative
state logic, but only bounded iterations are allowed in their programming lan-
guage. Feng et al. [6] found some useful proof rules for reasoning about quantum
loops, generalizing several effective proof rules for probabilistic loops.

Recently, the author [18] established of a full-fledged Floyd-Hoare logic for de-
terministic quantum programs based on Selinger’s idea [15] of modeling quantum
programs as super-operators and D’Hondt and Panangaden’s notion of quantum
predicate as an Hermitian operator [5]. This logic includes a proof system for
partial correctness and a proof system for total correctness of deterministic quan-
tum programs. In particular, we are able to prove its (relative) completeness by
exploiting the power of weakest preconditions and weakest liberal preconditions
for quantum programs. It is worth mentioning that the proof of the (relative)
completeness requires techniques quite different from those for classical programs
and tools from analytic (continuous) mathematics.
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Abstract. The L4.verified project has produced a formal, machine-
checked Isabelle/HOL proof that the C code of the seL4 OS microker-
nel correctly implements its abstract implementation. This paper briefly
summarises the proof, its main implications and assumptions, reports on
the experience in conducting such a large-scale verification, and finally
lays out a vision how this formally verified kernel may be used for gain-
ing formal, code-level assurance about safety and security properties of
systems on the order of a million lines of code.

1 L4.Verified

In previous work [13], we reported on the result of the L4.verified project: a
machine-checked, formal verification of the seL4 operating system microkernel
from a high-level model in Higher-Order logic down to low-level C code.

To the best of our knowledge, this is the first complete code-level proof of
any general-purpose OS kernel, and in particular the first machine-checked such
proof of full functional correctness.

Early pioneering attempts at formal OS verification like UCLA Secure
Unix [20] or PSOS [9] did not proceed substantially over the specification phase.
In the late 1980s, Bevier’s KIT [2] is the first code-level proof of an OS kernel, al-
beit only a very simple one. There have been a number of formal verifications of
either functional correctness, temporal, or information flow properties of OS ker-
nels, recently for instance the Common Criteria EAL6+ certified INTEGRITY
kernel [18]. None of these, however, truly formally verified the code-level im-
plementation of the kernel. Instead, what is verified is usually a formal model
of the code, which can range from very precise as in the INTEGRITY exam-
ple to design-level or more abstract models. Correspondence between C code as
seen by the compiler and the formal model is established by other means. In
the L4.verified project, this critical missing step is for the first time formal and
machine-checked.

Contemporary OS verification projects include Verisoft, Verisoft XT, and
Verve. The Verisoft project has not yet fully completed all parts of its OS ker-
nel proof, but it has conclusively demonstrated that formal verification of OS
code can be driven down to verified hardware — similarly to the verified CLI
stack [3] from the 1980s, but going up to a verified C0 compiler with support
for inline assembly and up to substantial scale. The Verisoft XT project [7] has
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demonstrated that the technology exists to deal with concurrent C at a scale of
tens of thousands lines of code. The Verve kernel [22] shows that type and mem-
ory safety properties can be established on the assembly level via type systems
and therefore with much lower cost. Verve contains a formally verified runtime
system, in particular a garbage collector that the type system relies on. Even
though it only shows type safety, not functional correctness, the smaller cost of
verification makes the approach attractive for larger code bases if full functional
correctness is not required or too expensive to obtain.

The formal proof for the seL4 kernel establishes a classical functional correct-
ness result: all possible behaviours of the C implementation are already con-
tained in the behaviours of its abstract specification. In the L4.verified project,
this proof was conducted in two stages in the interactive theorem prover Is-
abelle/HOL [17]. The first stage is comparable to other detailed model-level
kernel verifications. It connects an abstract, operational specification with an
executable design specification of the kernel. This design specification is low-
level enough to clearly see a direct one-to-one correspondence to C code for the
large majority of the code. The second step in the proof was to show that the C
code implements this low-level design. The result is one concise overall theorem
in Isabelle/HOL stating that the behaviour of the C code as specified by its
operational semantics is contained in the behaviours of the specification.

Like any proof, this verification has assumptions. For the correctness of a
running seL4 system on real hardware we need to assume correctness of the C
compiler and linker, assembly code, hardware, correct use of low-level TLB and
cache-flushing instructions, and correct boot code. The verification target was
the ARM11 uniprocessor version of seL4. There also exists an (unverified) x86
port of seL4 with optional multi-processor and IOMMU support.

The key benefit of a functional correctness proof is that proofs about the C im-
plementation of the kernel can now be reduced to proofs about the specification
if the property under investigation is preserved by refinement. Additionally, our
proof has a number of implications, some of them desirable direct security prop-
erties. If the assumptions of the verification hold, we have mathematical proof
that, among other properties, the seL4 kernel is free of buffer overflows, NULL
pointer dereferences, memory leaks, and undefined execution. There are other
properties that are not implied, for instance general security without further defi-
nition of what security is or information flow guaranties that would provide strict
secrecy of protected data. A more in-depth description of high-level implications
and limitations has appeared elsewhere [12,11].

2 What Have We Learned?

To be able to successfully complete this verification, we have contributed to the
state of the art in theorem proving and programming languages on a number
of occasions, including tool development [16], memory models [19], and scalable
refinement frameworks [6,21]. These are published and do not need to be repeated
in detail here. Other interesting aspects of the project concern lessons that are
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harder to measure such as proof engineering, teaching theorem proving to new
team members, close collaboration between the kernel and verification teams,
and a prototyping methodology for kernel development.

On a higher level, the main unique aspects of this project were its scale and
level of detail in the proof. Neither would have been achievable without a me-
chanical proof assistant. The proof, about 200,000 lines of Isabelle script, was
too large for any one person in the team to fully keep in their head, and much
too large and technically involved to manually check and have any degree of
confidence in the result. Software verifications like this are only possible with
the help of tools.

The cost of the verification was around 25 person years counting all parts
of the project, including exploratory work and models that were later not used
in the verification. About twelve of these person years pertain to the kernel
verification itself. Most of the rest was spent on developing frameworks, tools,
proof libraries, and the C verification framework, including a precise memory
model [19] and a C to Isabelle/HOL parser [21].

This means, we have demonstrated that proving functional correctness of low-
level C code is possible and feasible at a scale of about 10,000 lines of code, but
the cost is substantial. Clearly, we have to conclude that currently this approach
does not lend itself to casual software development.

The story is different for high-assurance systems. It is currently very expensive
to build truly trustworthy systems and to provide substantial assurance that
they will indeed behave as expected. It is hard to get useful numbers for such
comparisons, but one data point that is close enough, and where some experience
and cost estimates are available, are Common Criteria (CC) security evaluations.
CC on high evaluation levels prescribe the use of formal specifications and proofs
down to the design level. Correspondence of models to code is established by
testing and inspection.

L4.verified spent about $700 per line of code (loc) for the verification if we
take the whole 25 person years, and less than $350/loc if we take the 12 actually
spent on the kernel. We estimate that, with the experience gained and with
the tools and libraries available now, the cost could be further reduced to 10,
maybe 8 person years for a similar code base verified by the same team, i.e. about
$230/loc. Even assuming $350/loc, the verification compares favourably with the
quoted cost for CC EAL6 evaluation at $1000/loc [10]. EAL7 (the highest CC
level) which arguably still provides less assurance than formal code-level proof,
can safely be assumed to be more costly still. The comparison is not entirely fair,
since the Common Criteria mostly address security properties and not functional
correctness, and because the verification aspect is only one of the aspects of the
certification process. On the other hand one can argue that general functional
correctness is at least as hard to prove as a specific security property and that
while verification is not the only aspect, it is the most expensive one. We believe
that formal, code-level verification is cost attractive for the vendor as well as for
the certification authority, while increasing assurance at the same time.
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For the certification authority, risk is reduced. Since the proof is machine-
checked, only the high-level specification and its properties as well as the bottom-
level model need to be scrutinised manually and with care to trust the system.
Validating the high-level properties is the same as in the current evaluation
scheme. The bottom-level model, however, is different. In the current scheme, the
bottom level model is different for each certification and needs to be connected to
code by careful validation, testing and inspection which is expensive to conduct
and hard to check. In our case, the model does not depend on the certification
artefact: it is just the semantics of our subset of C. Once validated, this could
be re-used over many certifications and amortised to gain even higher assurance
than what would otherwise be cost effective.

Our result of feasible but high-cost verification at about 10,000 loc does not
mean that formal verification could not scale further. In fact, microkernels such
as seL4 typically lack two properties that make formal verification scale better:
modularity and strong internal abstractions. We would expect application-level
code and even user-level OS code to be much better targets for scalable, compo-
sitional verification techniques.

However, even with nicely structured code, it appears infeasible at this stage
to formally verify the functional correctness of systems with millions of lines of
code. The field is making progress in scaling automated techniques for reasonably
simple properties to such systems, but complex safety or security properties or
properties that critically rely on functional correctness of at least parts of the
system still appear without our reach.

3 A Secure System with Large Untrusted Components

This section presents a vision of how assurance even of complex safety properties
could nevertheless be feasibly be achieved within (or close to) the current state
of the art in code-level formal proof.

The key idea is the original microkernel idea that is also explored in the
MILS (multiple independent levels of security and safety) space [4]: using sys-
tem architectures that ensure security by construction, relying on basic kernel
mechanisms to separate trusted from untrusted code. Security in these systems
is not an additional feature or requirement, but fundamentally determines the
core architecture of how the system is laid out, designed, and implemented.

This application space was one of the targets in the design of the seL4 kernel.
Exploiting the verified properties of seL4, we should be able to architect systems
such that the trusted computing base for the desired property is small and
amenable to formal verification, and that the untrusted code base of the system
provably cannot affect overall security.

The basic process for building a system in this vision could be summarised as
follows:

1. Architect the system on a high level such that the trusted computing base
is as small as possible for the security property of interest.
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2. Map the architecture to a low-level design that preserves the security prop-
erty and that is directly implementable on the underlying kernel.

3. Formalise the system, preferably on the architecture level.
4. Analyse, preferably formally prove, that it enforces the security property.

This analysis formally identifies the trusted computing base.
5. Implement the system, with focus for high assurance on the trusted

components.
6. Prove that the behaviour of the trusted components assumed in the security

analysis is the behaviour that was implemented.

The key property of the underlying kernel that can make the security analysis
feasible is the ability to reduce the overall security of the system to the security
mechanisms of the kernel and the behaviour of the trusted components only.
Untrusted components will be assumed to do anything in their power to subvert
the system. They are constrained only by the kernel and they can be as big and
complex as they need to be. Components that need further constraints on their
behaviour in the security analysis need to be trusted to follow these constraints.
They form the trusted components of the system. Ideally these components are
small, simple, and few.

In the following subsections I demonstrate how such an analysis works on an
example system, briefly summarise initial progress we have made in modelling,
designing, formally analysing, and implementing the system, and summarise the
steps that are left to gain high assurance of overall system security. A more
detailed account is available elsewhere [1].

The case study system is a secure access controller (SAC) with the sole purpose
of connecting one front-end terminal to either of two back-end networks one at a
time. The back-end networks A and B are assumed to be of different classification
levels (e.g. top secret and secret), potentially hostile and collaborating. The
property the SAC should enforce is that no information may flow through it
between A and B.

3.1 Architecture

Figure 1 shows the high-level architecture of the system. The boxes stand for
software components, the arrows for memory or communication channel access.
The main components of the SAC are the SAC Controller (SAC-C), the Router
(R), and the Router Manager (RM). The Router Manager is the only trusted
user-level component in the system. The system is implemented on top of seL4
and started up by a user-level booter component. The SAC Controller is an
embedded Linux instance with a web-server interface to the front-end control
network where a user may request to be connected to network A or B. After
authenticating and interpreting such requests, the SAC Controller passes them
on as simple messages to the Router Manager. The Router Manager receives such
switching messages. If, for example, the SAC is currently connected to A, there
will be a Router instance running with access to only the front-end data network
card and the network card for A. Router instances are again embedded Linuxes



26 G. Klein

Fig. 1. SAC Architecture

with a suitable implementation of TCP/IP, routing etc. If the user requests a
switch to network B, the Router Manager will tear down the current A-connected
Linux instance, flush all network cards, create a new Router Linux and give it
access to network B and the front end only.

The claim is that this architecture enforces the information flow property.
Each Router instance is only ever connected to one back-end network and all
storage it may have had access to is wiped when switching. The Linux instances
are large, untrusted components in the order of a million lines of code each. The
trusted Router Manager is small, about 2,000 lines of C.

For this architecture to work, there is an important non-functional require-
ment on the Linux instances: we must be able to tear down and boot Linux in
acceptable time (less than 1-2 seconds). The requirement is not security-critical,
so it does not need to be part of the analysis, but it determines if the system is
practical. Our implementation achieves this.

So far, we have found an architecture of the system that we think enforces the
security property. The next sections explore design/implementation and analysis.

3.2 Design and Implementation

The main task of the low-level design is to take the high-level architecture and
map it to seL4 kernel concepts. The seL4 kernel supports a number of objects
for threads, virtual memory, communication endpoints, etc. Sets of these map to
components in the architecture. Access to these objects is controlled by capabili-
ties: pointers with associated access rights. For a thread to invoke any operation
on an object, it must first present a valid capability with sufficient rights to that
object.
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Fig. 2. Low-Level Design

Figure 2 shows a simplified diagram of the SAC low-level design as it is im-
plemented on seL4. The boxes in the picture stand for seL4 kernel objects, the
arrows for seL4 capabilities. The main message of this diagram is that it is sig-
nificantly more complex than the architecture-level picture we started out with.
For the system to run on an x86 system with IOMMU (which is necessary to
achieve untrusted device access), a large number of details have to be taken care
of. Access to hardware resources has to be carefully divided, large software com-
ponents will be implemented by sets of seL4 kernel objects with further internal
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access control structure, communications channels and shared access need to be
mapped to seL4 capabilities, and so forth.

The traditional way to implement a picture such as the one in Figure 2 is by
writing C code that contains the right sequence of seL4 kernel calls to create
the required objects, to configure them with the right initial parameters, and
to connect them with the right seL4 capabilities with the correct access rights.
The resulting code is tedious to write, full of specific constants, and not easy to
get right. Yet, this code is crucial: it provides the known-good initial capability
state of the system that the security analysis is later reduced to.

To simplify and aid this task, we have developed the small formal domain-
specific language capDL [15] (capability distribution language) that can be used
to concisely describe capability and kernel object distributions such as Figure 2.
A binary representation of this description is the input for a user-level library in
the initial root task of the system and can be used to fully automatically set up
the initial set of objects and capabilities. Since capDL has a formal semantics
in Isabelle/HOL, the same description can be used as the basis of the security
analysis. It can also be used to debug, inspect and visualise the capability state
of a running system.

For further assurance, we plan to formally verify the user-level library that
translates the static capDL description into a sequence of seL4 system calls. Its
main correctness theorem will be that after the sequence of calls has executed,
the global capability distribution is the one specified in the original description.
This will result in a system with a known, fully controlled capability distribution,
formally verified at the C code level.

For system architectures that do not rely on known behaviour of trusted
components, such as a classic, static separation kernel setup or guest OS virtual-
isation with complete separation, this will already provide a very strong security
argument.

The tool above will automatically instantiate the low-level structure and
access-control design into implementation-level C code. What is missing is pro-
viding the behaviour of each of the components in the system. Currently, com-
ponents are implemented in C, and capDL is rich enough to provide a map-
ping between threads and the respective code segments that implement their
behaviour. If the behaviour of any of these components needs to be trusted, this
code needs to be verified — either formally, or otherwise to the required level of
assurance. There is no reason component behaviour has to be described in C —
higher-level languages such as Java or Haskell are being ported to seL4 and may
well be better suited for providing assurance.

4 Security Analysis

Next to the conceptual security architecture of the SAC, we have at this stage
of the exposition a low-level design mapping the architecture to the underlying
platform (seL4), and an implementation in C. The implementation is running
and the system seems to perform as expected. This section now explores how we
can gain confidence that the SAC enforces its security property.
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Fig. 3. SAC Abstraction

The capDL specification corresponding to Figure 2 is too detailed for this
analysis. Instead, we would like to conduct the analysis on a more abstract level,
closer to the architecture picture that we initially used to describe the SAC.

In previous work, we have investigated different high-level access control mod-
els of seL4 that abstract from the specifics of the kernel and reduce the system
state to a graph where kernel objects are the nodes and capabilities are the
edges, labelled with access rights [8,5]. We can draw a simple formal relationship
between capDL specifications and such models, abstracting from seL4 capabil-
ities into general access rights. We can further abstract by grouping multiple
kernel objects together and computing the capability edges between these sets
of objects as the union of the access rights between the elements of the sets.
With suitable grouping of objects, this process results in Figure 3 for the SAC.
The figure shows the initial system state after boot, the objects in parentheses
(R) and (R-mem) are areas of memory which will later be turned into the main
Router thread and its memory frames using the create operation, an abstraction
of the seL4 system call that will create the underlying objects.

This picture now describes an abstract version of the design. We have cur-
rently not formally proved the connection between this model and the capDL
specification, neither have we formally proved that the grouping of components
is a correct abstraction, but it is reasonably clear that both are possible in
principle.

For a formal security analysis, we first need to express the behaviour of RM
in some way. In this case, we have chosen a small machine-like language with
conditionals, jumps, and seL4 kernel calls as primitive operations. For all other
components, we specify that at each system step, they may nondeterministically
attempt any operation — it is the job of the kernel configured to the capability
distribution in Figure 3 to prevent unwanted accesses.
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To express the final information flow property, we choose a label-based security
approach in this example and give each component an additional bit of state:
it is set if the component potentially has had access to data from NIC A. It is
easy to determine which effect each system operation has on this state bit. The
property is then simple: in no execution of the system can this bit ever be set
for NIC B.

Given the behaviour of the trusted component, the initial capability distri-
bution, and the behaviour of the kernel, we can formally define the possible
behaviours of the overall system and formally verify that the above property is
true. This verification took a 3-4 weeks in Isabelle/HOL and less than a week to
conduct in SPIN, although we had to further abstract and simplify the model
to make it work in SPIN.

A more detailed description of this analysis has appeared elsewhere [1].

5 What Is Missing?

With the analysis described so far, we do not yet have a high-assurance system.
This section explores what would be needed to achieve one.

The main missing piece is to show that the behaviour we have described in
a toy machine language for the security analysis is actually implemented by the
2,000 lines of C code of the Router Manager component. Most of these 2,000
lines are not security critical. They deal with setting up Linux instances, provid-
ing them with enough information and memory, keeping track of memory used
etc. Getting them wrong will make the system unusable, because Linux will fail
to boot, but it will not make it break the security property. The main critical
parts are the possible sequence of seL4 kernel calls that the Router Manager gen-
erates to provide the Linux Router instance with the necessary capabilities to
access network cards and memory. Classic refinement as we have used it to prove
correctness of seL4 could be used to show correctness of the Router Manager.

Even with this done, there are a number of issues left that I have glossed over
in the description so far. Some of these are:

– The SAC uses the unverified x86/IOMMU version of seL4, not the verified
ARM version. Our kernel correctness proof would need to be ported first.

– We need to formally show that the security property is preserved by the
existing refinement.

– We need to formally connect capDL and access control models. This includes
extending the refinement chain of seL4 upwards to the levels of capDL and
access control model.

– We need to formally prove that the grouping of components is a correct,
security preserving abstraction.

– We need to formally prove that the user-level root task sets up the initial
capability distribution correctly and according to the capDL specification of
the system.

– We need to formally prove that the information flow abstraction used in the
analysis is a faithful representation of what happens in the system. This is
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essentially an information flow analysis of the kernel: if we formalise in the
analysis that a Read operation only transports data from A to B, we need
to show that the kernel respects this and that there are no other channels in
the system by which additional information may travel. The results of our
correctness proof can potentially be used for this, but it goes beyond the
properties we have proved so far.

6 Conclusion

We have demonstrated that formal code verification at a scale of about 10,000
lines of code is possible and feasible. We have argued that, for high-assurance
systems, it is also cost-effective. There are no real barriers to conducting verifi-
cations like this routinely.

The bad news is that while these techniques may optimistically scale in the
next few years up to 100,000s lines of code for nicely structured, appropriate
code bases, realistic systems beyond that size still seem out of reach for the near
future. Modern embedded systems frequently comprise millions of lines of code.
None of these large systems are high-assurance systems yet, but a clear trend
towards larger and more complex systems is observable even in this space, and
some of these large systems, e.g. automobile code, should become high-assurance
systems, because current practices are unsatisfactory [14].

Even though we may not be able to prove full functional correctness of such
systems in the near future, our thesis is that it is nevertheless possible to provide
formal, code-level proof of specific safety and security properties of systems in the
millions of lines of code. We plan to achieve this by exploiting formally verified
microkernel isolation properties, suitable security architectures, and code-level
formal proofs for the small trusted computing base of such systems.
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Abstract. We describe an approach to using one logic to reason about
specifications written in a second logic. One level of logic, called the
“reasoning logic”, is used to state theorems about computational specifi-
cations. This logic is classical or intuitionistic and should contain strong
proof principles such as induction and co-induction. The second level
of logic, called the “specification logic”, is used to specify computa-
tion. While computation can be specified using a number of formal
techniques—e.g., Petri nets, process calculus, and state machines—we
shall illustrate the merits and challenges of using logic programming-like
specifications of computation.

1 Introduction

When choosing a formalism to use to specify computation (say, structured opera-
tional semantics, Petri nets, finite state machines, abstract machines, λ-calculus,
or π-calculus), one needs that specification framework to be not only expressive
but also amenable to various kinds of reasoning techniques. Typical kinds of
reasoning techniques are algebraic, inductive, co-inductive, and category theo-
retical.

Logic, in the form of logic programming, has often been used to specify compu-
tation. For example, Horn clauses are a natural setting for formalizing structured
operational semantics specifications and finite state machines; hereditary Harrop
formulas are a natural choice for specifying typing judgments given their support
for hypothetical and generic reasoning; and linear logic is a natural choice for the
specification of stateful and concurrent computations. (See [27] for an overview
of how operational semantics have been specified using the logic programming
paradigm.) The fact that logic generally has a rich and deep meta-theory (sound-
ness and completeness theorems, cut-elimination theorems, etc) should provide
logic with powerful means to help in reasoning about computational specifica-
tions.

The activities of specifying computation and reasoning about those specifica-
tions are, of course, closely related activities. If we choose logic to formulate both
of these activities, then it seems we must also choose between using one logic for
both activities and using two different logics, one for each activity. While both
approaches are possible, we shall focus on the challenges and merits of treating
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these two logics as different. In particular, we shall assume that our “reasoning
logic” formalizes some basic mathematical inferences, including inductive and
co-inductive reasoning. On the other hand, we shall assume that our “specifi-
cation logic” is more limited and designed to describe the evolution (unfolding)
of computations. Speaking roughly, the reasoning logic will be a formalization
of a part of mathematical reasoning while the specification logic will be a logic
programming language.

This paper is a summary of some existing papers (particularly [16]) and is
structured as follows. Section 2 presents a specific reasoning language G and
Section 3 presents a specific specification logic hH2. Section 4 describes how
hH2 is encoded in G. Section 5 describes a few implemented systems that have
been used to help explore and validate the intended uses of hH2 and G. Section 6
presents an overview of the various key ingredients of these two logics as well as
suggesting other possibilities for them. Finally, Section 7 describes some related
work.

2 The Reasoning Logic

Our reasoning logic, which we call G (following [14]) is a higher-order logic similar
to Church’s Simple Theory of Types [9] (axioms 1 - 6) but with the following
differences.

Intuitionistic vs classical logic. Our reasoning logic is based on intuitionistic
logic instead of Church’s choice of classical logic. While defaulting to a construc-
tive approach to proving theorems about computation is certainly sensible, this
choice is not essential and the sequent calculus proof system used to describe
the intuitionistic reasoning logic can easily be modified to capture the classical
variant. The choice between intuitionistic and classical logic can have, however,
surprising consequences that are not immediately related to the familiar dis-
tinction between constructive and non-constructive logic. In particular, Tiu &
Miller [44] have shown that, for a certain declarative treatment of binding in the
π-calculus, provability of the bisimulation formula yields “open” bisimulation
when the reasoning logic is intuitionistic and late (“closed”) bisimulation if that
logic is classical.

Variables of higher-order type. Following Church, we used the type o to denote
formulas: thus, a variable of type τ1 → · · · → τn → o (for some n ≥ 0) is
a variable at “predicate type.” In what follows, we shall not use such higher-
order variables within formulas. We shall use variables of higher-order type that
are not predicate types: in particular, we shall quantify over variables of type
τ1 → · · · → τn → τ0 (for some n ≥ 0) where τ0, . . . , τn are all primitive types.
Removing restrictions on predicate quantification should be possible but, for the
kind of project we intend here, it seems to be an unnecessary complication.

Generic quantification. We include in G the ∇-quantifier [30] and the associated
notion of nominal abstraction [14] so that the “generic” reasoning associated with
eigenvariables in the specification logic can be modeled directly and declaratively
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in G. While ∇ is a genuine departure from Church’s original logic, it is a weak
addition to the logic and is only relevant to the treatment of bindings in syntax
(it enriches the possibilities of binder mobility [26]). If one is not treating bindings
in syntax expressions of the specification logic, this quantifier plays no role.

Induction and co-induction. A reasoning logic must certainly be powerful enough
to support induction and co-induction. The logic G allows for the direct specifi-
cation of recursive predicate definitions and to interpret them either as a least
and or greatest fixed point in the sense of [2,5,22,31]. The rules for induction and
co-induction use higher-order predicate schema variables in their premises in or-
der to range over possible pre- and post-fixed points. For example, the recursive
definitions (written like logic programming clauses)

nat z
μ
= � member B (B :: L)

μ
= �

nat (s N)
μ
= nat N member B (C :: L)

μ
= member B L

are admitted to G as the following fixed point expressions:

nat = μ(λpλx.(x = 0) ∨ (∃y.(s y) = x ∧ p y))
member = μ(λmλxλl.(∃k. l = (x :: k)) ∨ (∃k∃y. l = (y :: k) ∧m x k))

In order to support induction and co-induction, the closed world assumption
must be made: that is, we need to know the complete specification of a predicate
in order to state the induction and co-induction rule for that predicate. Thus,
the reasoning logic will assume the closed world assumption. On the other hand,
computing with λ-tree syntax [25] uses the higher-order judgments of GENERIC
and AUGMENT. Since these two judgments only make sense assuming the open
world assumption, the specification logic will make that assumption. The next
two sections contain a description of the specification logic and its encoding in
the reasoning logic.

3 The Specification Logic

For our purposes here, we shall use the intuitionistic theory of hereditary Harrop
formulas [28] restricted to second order as the specification logic. In particular,
formulas in hH2 are of two kinds. The goal formulas are given by:

G = � | A | G ∧G | A ⊃ G | ∀τx.G,

where A denotes atomic formulas and τ ranges over types that do not themselves
contain the type o of formulas. The definite clauses are formulas of the form
∀x1 . . .∀xn.(G1 ⊃ · · · ⊃ Gm ⊃ A), where n,m ≥ 0 and where quantification is,
again, over variables whose types do not contain o. This restricted set of formulas
is “second-order” in that to the left of an implication in a definite formula one
finds goal formulas and to the left of an implication in a goal formula, one finds
only atomic formulas.
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Σ : Δ 	 
 TRUE
Σ : Δ 	 G1 Σ : Δ 	 G2

Σ : Δ 	 G1 ∧G2
AND

Σ : Δ,A 	 G
Σ : Δ 	 A ⊃ G

AUGMENT
Σ ∪ {c :τ} : Δ 	 G[c/x]

Σ : Δ 	 ∀τx.G
GENERIC

Σ : Δ 	 G1[t̄/x̄] · · · Σ : Δ 	 Gn[t̄/x̄]
Σ : Δ 	 A BACKCHAIN

where ∀x̄.(G1 ⊃ . . . ⊃ Gn ⊃ A′) ∈ Δ and A′[t̄/x̄] λ-conv A

Fig. 1. Derivation rules for the hH2 logic

Provability in hH2 is formalized by a sequent calculus proof system in which
sequents are of the form Σ : Δ � G, where Δ is a list of definite clauses, G
is a goal formula, and Σ is a set of eigenvariables. The inference rules for hH2

are presented in Figure 1: these rules are shown in [28] to be complete for the
intuitionistic theory of hH2. The GENERIC rule introduces an eigenvariable
(reading rules from conclusion to premise) and has the usual freshness side-
condition: c is not in Σ. In the BACKCHAIN rule, for each term ti in the list t̄,
we require that Σ � ti : τi holds, where τi is the type of the quantified variable
xi. An important property to note about these rules is that if we use them to
search for a proof of the sequent Σ : Δ � G, then all the intermediate sequents
that we will encounter will have the form Σ′ : Δ,L � G′ for some Σ′ with
Σ ⊆ Σ′, some goal formula G′, and some set of atomic formulas L. Thus the
initial context Δ is global: changes occur only in the set of atoms on the left and
the goal formula on the right. In presenting sequents, we will elide the signature
when it is inessential to the discussion.

The logic hH2 is a subset of the logic programming language λProlog [32] and
is given an effective implementation by Teyjus implementation of λProlog [33].
This logic has also been used to formally specify a wide range of operational
semantic specifications and static (typing) judgments [15,27,23].

An example: a typing judgment. We briefly illustrate the ease with which type
assignment for the simply typed λ-calculus can be encoded in hH2. There are
two classes of objects in this domain: types and terms. Types are built from a
single base type called i and the arrow constructor for forming function types.
Terms can be variables x, applications (m n) where m and n are terms, and
typed abstractions (λx : a.r) where r is a term and a is the type of x. The
standard rules for assigning types to terms are given as the following inference
rules.

x : a ∈ Γ
Γ � x : a

Γ � m : (a→ b) Γ � n : a
Γ � m n : b

Γ, x : a � r : b
Γ � (λx :a.r) : (a→ b) x not in Γ

Object-level simple types and untyped λ-terms can be encoded in a simply typed
(meta-level) λ-calculus as follows. We assume the types ty and tm for representing
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object-level simple types and untyped λ-terms. The simple types are built from
the two constructors i : ty and arr : ty → ty → ty and terms are built using the
two constructors app : tm → tm → tm and lam : ty → (tm → tm) → tm. Note
that the bound variables in an object-level abstraction are encoded by an explicit,
specification logic abstraction: for example, the object-level term (λf : i→ i.(λx :
i.(f x))) will be represented by the specification logic term lam (arr i i) (λf.
lam i (λx.app f x)). Given this encoding of the untyped λ-calculus and simple
types, the standard inference rules for the typing judgment can be specified by the
following theory describing the binary predicate of.

∀m,n, a, b.(of m (arr a b) ⊃ of n a ⊃ of (app m n) b)
∀r, a, b.(∀x.(of x a ⊃ of (r x) b) ⊃ of (lam a r) (arr a b))

This specification in hH2 does not maintain an explicit context for typing
assumptions but uses hypothetical judgments instead. Also, the explicit side-
condition in the rule for typing abstractions is not needed since it is captured
by the freshness side-condition of the GENERIC rule in hH2.

4 Encoding Provability of the Specification Logic

The definitional clauses in Figure 2 encode hH2 provability in G; this encoding is
based on ideas taken from [23]. Formulas in hH2 are represented in this setting
by terms of type form and we reuse the symbols ∧, ∨, ⊃, �, and ∀ for constants
involving this type in G; we assume that the context will make clear which reading
of these symbols is meant. The constructor 〈·〉 is used to inject atomic formulas in
hH2 into the type form in G. As we have seen earlier, provability in hH2 is about
deriving sequents of the form Δ,L � G, where Δ is a fixed list of definite clauses
and L is a varying list of atomic formulas. Our encoding uses the G predicate
prog to represent the definite clauses in Δ. In particular, the definite clause
∀x̄.[G1 ⊃ · · · ⊃ Gn ⊃ A] is encoded as the clause ∀x̄.prog A (G1∧· · ·∧Gn)

μ
= �

and a set of such hH2 definite clauses is encoded as a set of prog clauses. (The
descriptions of prog above and of seq in Figure 2 use the symbol

μ
= to indicate

that these names are to be associated with fixed point definitions.) Sequents
in hH2 are represented in G by formulas of the form seqN L G where L is a
list encoding the atomic formulas in L and where G encodes the goal formula.
The provability of such sequents in hH2, given by the rules in Figure 1, leads
to the clauses that define seq in Figure 2. The argument N that is written as a
subscript in the expression seqN L G encodes an upper bound on the height of
the corresponding hH2 derivation and is used to formalize proofs by induction
on the height of proofs. This argument has type nt for which there are two
constructors: z of type nt and s of type nt → nt. Similarly, the type of the
non-empty list constructor :: is atm→ lst → lst, where atm denotes the type of
atomic formulas and lst denotes the type of a list of atomic formulas.

Notice the following points about this specification of provability. First, the
∇-quantifier is used in the reasoning logic to capture the “generic” reasoning
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seq(s N) L 
 μ
= 


seq(s N) L (B ∧ C)
μ
= seqN L B ∧ seqN L C

seq(s N) L (A ⊃ B)
μ
= seqN (A :: L) B

seq(s N) L (∀B) μ= ∇x.seqN L (B x)
seq(s N) L 〈A〉 μ

= member A L

seq(s N) L 〈A〉 μ
= ∃b.prog A b ∧ seqN L b

Fig. 2. Encoding provability of hH2 in G

involved with using eigenvariables in specifying the provability of the specifica-
tion logic universal quantifier. Second, the seq predicate contains an explicit list
of atomic formulas and this is augmented by an atomic assumption whenever
the proof of an implication is attempted. Third, the last clause for seq speci-
fies backchaining over a given hH2 definite clauses stored as prog clauses. The
matching of atomic judgments to heads of clauses is handled by the treatment of
definitions in the logic G; thus the last rule for seq simply performs this match-
ing and makes a recursive call on the corresponding clause body. Finally, the
natural number (subscript) argument to seq is used to measure the height of
specification logic proofs.

Since we have encoded derivability in hH2, we can prove general properties
about it in G. For example, the following theorem in G states that the judgment
seqn 
 g is not affected by permuting, contracting, or weakening the context 
.

∀n, 
1, 
2, g.(seqn 
1 g) ∧ (∀e.member e 
1 ⊃ member e 
2) ⊃ (seqn 
2 g)

Using this theorem with the encoding of typing judgments for the simply typed
λ-calculus, for example, we immediately obtain that permuting, contracting, or
weakening the typing context of a typing judgment does not invalidate that
judgment.

Two additional G theorems are called the instantiation and cut properties.
To state these properties, we use the following definition to abstract away from
proof sizes.

seq 
 g
μ
= ∃n.nat n ∧ seqn 
 g.

The instantiation property states that if a sequent judgment is proved generically
(using∇) then, in fact, it holds universally (that is, for all substitution instances).
The exact property is

∀
, g.(∇x. seq (
 x) (g x)) ⊃ (∀t. seq (
 t) (g t)).

The cut property allows us to remove hypothetical judgments using a proof of
such judgments. This property is stated as the G theorem

∀
, a, g.(seq 
 〈a〉) ∧ (seq (a :: 
) g) ⊃ seq 
 g,

To demonstrate the usefulness of the instantiation and cut properties, note that
using them together with our encoding of typing for the simply typed λ-calculus
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leads to an easy proof of the type substitution property, i.e., if Γ, x : a � m : b
and Γ � n : a then Γ � m[x := n] : b.

5 Various Implemented Systems

Various systems and prototypes have been built to test and exploit the concepts
of λ-tree syntax, higher-order judgments, and two-level logic. We overview these
systems here.

5.1 Teyjus

Nadathur and his students and colleagues have developed the Teyjus compiler
and run-time system [33] for λProlog. Although Teyjus is designed to compile and
execute a rich subset of higher-order intuitionistic logic, it provides an effective
environment for developing and animating the more restricted logic of hH2.

5.2 Bedwyr

Baelde et. al. have implemented the Bedwyr model checker [4] which automates
deduction for a subset of G. The core logic engine in Bedwyr implements a se-
quent calculus prover that unfolds fixed points on both sides of sequents. As a
result, it is able to perform standard model checking operations such as reacha-
bility, simulation, and winning strategies. Since unfolding is the only rule used
with fixed points, such unfoldings must terminate in order to guarantee termi-
nation of the model checker. Bedwyr also provides the ∇-quantifier so model
checking problems can directly express problems involving bindings. A particu-
larly successful application of Bedwyr is on determining (open) simulation for
the finite π-calculus [43,44].

5.3 Abella

Gacek has built the Abella interactive theorem prover [12] for proving theorems
in G. The two level logic approach is built into Abella and the cut and instan-
tiation properties of Section 4 are available as reasoning steps (tactics). Abella
accepts hH2 specifications written as λProlog programs. Reasoning level pred-
icates can then be defined inductively or co-inductively: these can also refer to
provability of hH2 specifications. Examples of theorems proved in Abella: pre-
congruence of open bisimulation for the finite π-calculus; POPLmark challenge
problems 1a and 2a; the Church-Rosser property and standardization theorems
for the λ-calculus; and a number of properties related to the specification of
the static and dynamic semantics of programming languages (type preservation,
progress, and determinacy).

5.4 Tac

Baelde et. al. [7] have built an automated theorem prover for a fragment of G.
This prototype prover was developed to test various theorem prover designs that
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are motivated by the theory of focused proofs for fixed points [6]. This prover
is able to automatically prove a number of simple theorems about relational
specifications. Currently, Tac does not have convenient support for treating two-
level logic although there is no particular problem with having such support
added.

6 Various Aspects of Logic

There have been a number of papers and a number of logics that have been
proposed during the past several years that shaped our understanding of the
two-level logic approach to specifying and reasoning about computation. In this
section, I briefly overview the key ingredients to that understanding.

6.1 Abstract Syntax as λ-Tree Syntax

The λProlog programming language [32] was the first programming language to
support what was later called “higher-order abstract syntax” [35]. This later term
referred to the encoding practice of using “meta-level” binding in a program-
ming language to encode the “object-level” bindings in syntactic objects. Un-
fortunately, the meta-level bindings available in functional programming (which
build functions) and logic programming (which build syntactic expressions with
bindings) are quite different. Since using the term “higher-order abstract syn-
tax” to refer to both styles of encoding is confusing, the term λ-tree syntax was
introduced in [25] to denote the treatment of syntax using weak equality (such
as α, β, and η on simply typed λ-terms). A key ingredient to the manipulation
of λ-tree syntax involves the unification of λ-terms [19,24].

6.2 Fixed Points

Schroeder-Heister [39,40] and Girard [17] independently proposed a proof-the-
oretic approach to the closed-world assumption. The key development was the
shift from viewing a logic program as a theory that provided some of the meaning
of undefined predicates to viewing logic programs as recursive definitions that
completely describe predicates. In this later case, it is easy to view predicates then
as only convenient names for fixed point expressions. The proof theoretic treat-
ment of such fixed points involves the first-order unification of eigenvariables. It
was straightforward to extend that unification to also involve the unification of
simply typed λ-terms and, as a result, this treatment of fixed points could be
extended to the treatment of λ-tree syntax [21,22].

6.3 ∇-Quantification

The ∇-quantifier was introduced by Miller & Tiu [29,30] in order to help com-
plete the picture of fixed point reasoning with λ-tree syntax. To provide a quick
motivation for this new quantifier, consider the usual inference rule for proving
the equality of two λ-abstracted terms.

(ζ) if M = N then λx.M = λx.N
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In a formalized meta-theory, the quantification of x in the premise equation
must be resolved and the universal quantification of x is a natural candidate.
This choice leads to accepting the equivalence

(∀x.M = N) ≡ (λx.M = λx.N).

This equivalence is, however, problematic when negation is involved. For ex-
ample, since there is no (capture-avoiding) substitution for the variable w that
makes the two (simply typed) term λx.w and λx.x equal (modulo λ-conversion),
one would expect that our reasoning logic is strong enough to prove ∀w.¬(λx.x =
λx.w). Using the equivalence above, however, this is equivalent to ∀w.¬∀x.x = w.
Unfortunately, this formula should not be provable since it is true if the domain
of quantification is a singleton. The ∇-quantifier is designed to be the proper
quantifier to match the λ-binder: in fact, the formula ∀w.¬∇x.x = w has a sim-
ple proof in the proof systems for ∇. (As this example suggests, it is probably
challenging to find a model-theory semantics for ∇.)

Two variants of ∇ appear in the literature and they differ on whether or not
they accept the following exchange and strengthening equivalences:

∇x∇y.Bxy ≡ ∇y∇x.Bxy ∇xτ .B ≡ B (x not free in B)

While the first equivalence is often admissible, accepting the second rule is signif-
icant since it forces the domain of quantification for x (the type τ) to be infinite:
that is, the formula

∃τx1 . . . ∃τxn.

⎡⎣ ∧
1≤i,j≤n,i	=j

xi �= xj

⎤⎦
is provable for any n ≥ 1. The minimal generic quantification of Baelde [3] rejects
these as proof principle in part because there are times when a specification
logic might need to allow possibly empty types: accepting these principles in the
reasoning logic would force types using ∇-quantification to have infinite extent.
On the other hand, the nominal generic quantification of Gacek et. al. [13,14]
accepts these two additional equivalences.

6.4 Induction and Co-induction

The earlier work on fixed points only allowed for the unfolding of fixed points: as
a result, it was not possible to reason specifically about the least or the greatest
fixed point. In the series of PhD thesis, McDowell [21], Tiu [42], Baelde [2], and
Gacek [13] developed numerous enrichments to our understanding of induction
and co-induction: the last three of these theses have also been concerned with
the interaction of the ∇-quantifier and fixed point reasoning.

6.5 Two-Level Logic

The force behind developing a two-level logic approach to reasoning about logic
specifications is the necessity to treat both induction (and co-induction) and
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higher-order judgments (AUGMENT and GENERIC in Figure 1). These latter
judgments only make sense when the “open world assumption” is in force: that
is, atoms are undefined and we can always add more clauses describing their
meaning. On the other hand, induction and co-induction only makes sense when
the “close world assumption” is in force: that is, we can only induct when we
have completely defined a predicate. It seems that we are at an impasse: in or-
der to reason about logic specifications employing higher-order judgments, we
need to have a logic that does not have higher-order judgments. To get around
this impasse, McDowell & Miller [21,22] proposed using two logics: the reason-
ing logic assumes the closed world assumption and contains the principles for
induction and co-induction while the specification logic assumes the open-world
assumption and allows for higher-order judgments. The interface between these
two logics has two parts. First, the term structures (including those treating
binding) are shared between the two logics, and, second, provability of the spec-
ification logic is encoded as a predicate in the reasoning logic (as in Figure 2).

There are, of course, choices in the selection of not only the specification logic
but also the proof system used to encode that logic. For example, extending
hH2 to allow the linear logic implication −◦ was considered in [21,22]: the linear
specification logic allowed for natural specifications of the operational semantics
of a number of imperative programming features. There are also choices in how
one describes specification logic provability: while two different proof systems
should describe the same notion of provability, the form of that definition plays
a large role in theorems involving provability. For example, the proof system
in Figure 1 describes the uniform proofs of [28], which, in the terminology of
focused proofs systems for intuitionistic logic [20], arises from assigning the neg-
ative polarity to all atomic formulas. The resulting “goal-directed” (“top-down”)
proofs mimic the head-normal form of typed λ-terms. Thus, induction over the
seq judgment corresponds closely to induction over head-normal form. It is also
possible to consider a proof system for seq in which all atoms are assigned a
positive polarity. The resulting proofs would be “bottom-up”: such proofs would
naturally encode terms that contains explicit sharing. There may be domains
where an induction principle over such bottom-up proofs would be more natural
and revealing than for top-down proofs.

7 Related Work

This paper provides an overview of a multi-year effort to develop a logic and its
proof theory that treats binding and fixed point together. It is common, however,
that these two aspects of logic have been treated separately, as we describe below.

Many systems for reasoning about computations start with established in-
ductive logic theorem provers such as Coq [10,8] and Isabelle/HOL [34], and
then use those systems to build approaches to binding and substitution. Three
such notable approaches are the locally nameless representation [1], the Nominal
package for Isabelle/HOL [45], and Hybrid [11].

On the other hand, there are a variety of systems for specifying computations
which take binding as a primitive notion and then attempt to define separately
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notions of induction. Many of these systems start with the LF logical framework
[18], a dependently typed λ-calculus with a direct treatment of variable binding.
While the LF type system can directly treat λ-tree syntax, it does not include a
notion of induction. Twelf [36] is able to establish that various recursively defined
relations on LF-typed terms are, in fact, determinate (i.e., functional) and/or
total. These conclusions can be used in concert with the dependently typed λ-
terms to conclude a wide range of properties of the original LF specification.
Similar functional approaches have been developed starting with M+

2 [41], a
simple meta-logic for reasoning over LF representations where proof terms are
represented as recursive functions. More recent work includes the Delphin [38]
and Beluga [37] functional languages which can be used in the same spirit asM+

2 .
In all of these approaches, however, side-conditions for termination and coverage
are required and algorithms have been devised to check for such properties.
Since termination and coverage are in general undecidable, such algorithms are
necessarily incomplete.

Acknowledgments. I thank Andrew Gacek and Alwen Tiu for their comments on
this paper.
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8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer, Heidelberg (2004)

9. Church, A.: A formulation of the simple theory of types. J. of Symbolic Logic 5,
56–68 (1940)

10. Coquand, T., Paulin, C.: Inductively defined types. In: Martin-Löf, P., Mints, G.
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Abstract. We propose a flexible method for verifying the security of ML pro-
grams that use cryptography and recursive data structures. Our main applica-
tions are X.509 certificate chains, secure logs for multi-party games, and XML
digital signatures. These applications are beyond the reach of automated cryp-
tographic verifiers such as ProVerif, since they require some form of induction.
They can be verified using refinement types (that is, types with embedded logical
formulas, tracking security events). However, this entails replicating higher-order
library functions and annotating each instance with its own logical pre- and post-
conditions. Instead, we equip higher-order functions with precise, yet reusable
types that can refer to the pre- and post-conditions of their functional arguments,
using generic logical predicates. We implement our method by extending the F7
typechecker with automated support for these predicates. We evaluate our ap-
proach experimentally by verifying a series of security libraries and protocols.

1 Security Verification by Typing

We intend to verify the security of programs that implement protocols and applications
(rather than their abstract models). Operating at the level of source code ensures that
both design and implementation flaws will be caught, and also facilitates the adoption
of verification tools by programmers. In this work, we rely on F7 [3, 6], an SMT-based
typechecker developed for the modular verification of security protocols and their cryp-
tographic operations written in ML.

Suppose that Bob hosts a web application and Alice is one of his clients. Alice sends
a request to Bob, who must authenticate Alice’s request before delivering a response.
Bob programs in ML, so he can use the F7 typechecker to validate that his code enforces
his security policy. Depending on the control- and data-flow of the protocol between
Alice and Bob, typechecking essentially checks that the program obeys the logical pre-
and post-conditions specified in the interfaces of the protocol and the cryptographic
and communications libraries. The programmer provides a few protocol-specific type
annotations (for instance when accepting a message or allocating a key). The rest of the
verification is automated.

In practice, protocol implementations involve various data structures, and thus the
need for type annotations extends to various library functions that manipulate this data.
Although F7 supports polymorphism à la ML, it is difficult to give these library func-
tions precise, yet polymorphic refinement types. In particular, recursive data processing
involves higher-order functions, and the programmer must often provide a refinement
type each time he uses these functions. Pragmatically, this involves replicating the code
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for these functions (and some of the functions they call); annotating each replica with
its ad hoc type; and letting F7 typecheck the replica for each particular usage.

Suppose that the message format used by Alice and Bob is under development and
changes often. Each change trickles down the protocol data flow, demanding many
changes to logical annotations, and possibly further code replication. This hinders code
modularity. Can we write less code and annotations, and focus on the security properties
of our program? In this work we show how using automatic predicates for pre- and post-
conditions allows us to write more flexible and reusable types.

Example. F7 is based on a typed call-by-value lambda calculus, called RCF, described
in more detail in Section 2. Expressions are written in a subset of F#, a dialect of ML.
Types are F# types refined with first-order formulas on ML values. For instance, the
refinement type v : int {v > 5} is the type of integers greater than 5. More precisely, this
type can be given to any expression such that, whenever it returns, its value is greater
than 5. RCF defines judgements for assigning types to expressions and for checking
whether one type is a subtype of another. For instance, v : int {v > 5} is a subtype of int.
Functions can also be given precise refinement types. For instance, the dependent func-
tion type v:int →w:int {w>v}, a subtype of int → int, represents functions that, when
called with an integer v, may return only an integer greater than v.

Consider the type α option, which is part of the standard ML library. Its instance int
option is the type of optional integers: its values range over None and Some n, where

n is an integer. Using option types, we can, for example, program protocols that have
optional fields in their messages. To manipulate a message field of type int option, it is
convenient to use the higher-order library function map:

val map: (int → int) → int option → int option
let map f x = match x with
| None →None
| Some(v) → let w = f v in Some(w)

This function can be applied to any function whose type is a subtype of int → int, of the
form x:int → y:int{C(x,y)} for some formula C that can refer to both x and y. Suppose
that we compute a value using map over a function f with type v : int →w : int {w>v}:

let y = map f (Some(0))

We would like to give y a type that records the post-condition of f :

val y:int option{∃w. y = Some(w) ∧w > 0}
What type must map have in order for y to have this type? Within RCF, the most precise
type we can give is

val map: f:(int → int) → x:(int option) → y:(int option)
{ (x = None ∧ y = None) ∨ (∃v,w. x = Some(v) ∧ y = Some(w))}

This type accounts for the various cases (None vs Some) of the argument, but not for the
post-condition of f . In RCF, terms in formulas range over ML values, such as Some(w),
but not expressions, such as f x, since their evaluation may cause and depend on side-
effects. Thus, the only way to check that y has its desired type is to copy the definition
of the map function just for f and to annotate and typecheck it again:
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val map copy: f:(v:int →w:int {w>v}) → x:(int option) → y:(int option)
{ (x = None ∧ y = None) ∨ (∃v,w. x = Some(v) ∧ y = Some(w) ∧w > v)}

Our main idea is to let the F7 typechecker automatically inject and check annotations for
pre- and post-conditions. This yields precise, generic types for higher-order functions,
thereby preventing the need for manual code duplication and annotation. To this end, we
introduce predicates Pre and Post within the types of higher-order functions to refer to
the pre- and post-conditions of their functional arguments. For instance, the formula Post
(f,v,w) can refer to the post-condition of a function parameter f applied to v returningw,
and we can give map the type:

val map: f:(int → int) → x:int option → y:int option
{(x = None ∧ y = None) ∨ (∃v,w. x = Some(v) ∧ y = Some(w) ∧Post(f,v,w))}
Whenever map is called (say within the definition of y above), the actual post-condition
of f is statically known (w>v) and can be used instead of Post(f,v,w). Hence, y can be
given its desired type without loss of modularity.

More generally, we show how to use Pre and Post predicates to give precise reusable
types to a library of recursive higher-order functions for list processing, and use the
library to verify protocol implementations using lists. Verifying such implementations
is beyond the reach of typical security verification tools, since their proof requires some
form of induction. For example, FS2PV [4] compiles F# into the applied pi calculus, for
analysis with ProVerif [8], a state-of-the-art domain-specific prover. Although FS2PV

and ProVerif are able to prove complex XML-based cryptographic protocol code, they
do so by bounding lists to a constant length and then inlining and re-verifying the list
processing code at each call site.

Contributions. We present extensions of the RCF type system and the F7 typechecker
to automatically support pre- and post-condition predicates. We study three different
semantics for these predicates and we illustrate their use. We design precise and mod-
ular APIs for lists and for several cryptographic protocol implementations using lists,
such as X.509 certificates, XML digital signatures, and auditable multi-party protocols.

Contents. Section 2 recalls the syntax, semantics and main results for F7. Section 3
explains our extension of F7 for pre- and post-conditions, presenting different design
choices. Section 4 illustrates the use of pre- and post-conditions to verify a basic au-
thentication protocol. Section 5 illustrates their use to give reusable types to a library for
lists. Section 6 describes and evaluates larger verification case studies of cryptographic
protocol implementations. Section 7 discusses related work.

This work is part of a long-term effort to develop a refinement type-based security
verification framework for F# code. We extend the type system, implementation, and
cryptographic libraries developed in earlier work [3, 6]. Additional details, including
source code and the full version of this paper, are available online [7].

2 Refinement Types for ML (Review)

We review the syntax and semantics of our core calculus, RCF, and its implementa-
tion in the F7 typechecker; we refer to Bengtson et al. [3] for a detailed description.
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RCF consists of the standard Fixpoint Calculus [18] augmented with local names and
message-passing concurrency (as in the pi calculus) and with refinement types. (Our
syntax slightly deviates from Bengtson et al.; the main difference is that we have recur-
sive functions, as in F7, instead of a fold constructor; we also use explicit type annota-
tions, and demand that all function values be annotated.)

The source programs described in this paper are written in an extended ML-like
syntax treated as syntactic sugar for core RCF values and expressions. Values M in-
clude unit, pairs, constructed terms, and (possibly recursive) functions. Expressions e
are in A-normal form: they include values, function application, pattern matching, let-
bindings for sequential composition, fork for parallel composition, and message passing
over channels. The concurrency and message passing constructs do not appear in source
programs; they are used to symbolically model run-time processes (e.g. principals run-
ning a cryptographic protocol and their adversary) and network-based communications.

For specification purposes, RCF includes constructs for assuming and asserting first-
order logic formulas. Formally, as an RCF expression executes, it maintains an abstract
log of formulas that have been assumed so far. The expression assume C adds a formula
C to the log, and the expression assert C succeeds if C can be logically derived from
the log. We use assumes and asserts to specify correctness and security properties—
concretely, these two primitives and all formulas are erased after verification. We say
that an expression is safe when all of its asserts succeed in every run.

To statically verify the safety of RCF expressions, we equip it with a refinement type
system. Type environments E keep track of the log of assumed formulas, and type-
checking ensures that every asserted formula logically holds in the current environment.
Pretypes P are ML-like types extended with dependent functions, written x :T1 → T2,
and dependent pairs. A refinement type T , of the form x :P{C}, is the type of expres-
sions that return values M of pretype P such that the formula C[M/x] can be derived
from the log of assumed formulas. Hence, a function type can be fully written out as
x : (x : P{C)} → y : P ′{C′}, where its argument has pretype P and must satisfy
the precondition C, and its return value has pretype P ′ and is guaranteed to satisfy the
postcondition C′. We usually omit the second binder x for brevity, and write function
types as x :P{C} → y :P ′{C′}.

The type system has the following judgments.

E � � environment E is well-formed
E � C formula C holds in environment E
E � T <: T ′ T is a subtype of T ′ in environment E
E � e : T expression e has type T in environment E

An environment is well-formed if all the variables in it are well-scoped. A formula
holds in an environment if it can be deduced from the formulas in the environment. A
refinement type x :P{C} is a subtype of x :P ′{C′} in environmentE when P is a sub-
type of P ′ in E and E � C ⇒ C′. The rest of the subtyping rules are straightforward.

To illustrate expression typing, we recall four typing rules, those for assumes and
asserts, and those for functions and applications:

E 	 � fv(C) ⊆ dom(E)

E 	 assume C : :unit{C}
E 	 C

E 	 assert C : :unit{C}
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T = x :T1 → T2 E, f : T, x : T1 	 e : T2

E 	 rec f : T.(fun x→ e) : T

E 	 M : x :T1 → T2 E 	 N : T1

E 	 (M N) : T2{N/x}

An expression assume C returns a value with postcondition C, while assert C requires C
to hold in the environment. A recursive function annotated with T of the form x :T1 →
T2 can be given type T if its body has type T2 in an environment extended for f and x.
An application M N has type T2{N/x} if M has the function type type x : T1 → T2
and N has a type which is a subtype of T1.

Type safety. We rely on the main result of Bengtson et al. [3]: if a program is well-
typed, then it is safe. Moreover, if a program is well-typed in an empty environment,
then it is robustly safe, that is, it is safe when composed with any expression that has
no asserts. Robust safety is useful for protocol security: it states that the properties of
the program hold even when composed with an arbitrary active adversary that is given
access to the public interface of the program.

F7 implementation. Our prototype typechecker, F7, is an implementation of the RCF
type system that supports a significant subset of F#. In particular, it supports programs
that contain type- and value- parametered types, records, polymorphism, mutual recur-
sion, match expressions and mutable references, but it does not, for example, support
classes or objects. The typechecker takes two kinds of input files

– F# implementation files (e.g. file.fs) that mention only F# types; and
– F7 interfaces (e.g. file.fs7) with logical assumptions and RCF type annotations.

The typechecker then verifies whether an implementation is well-typed against its in-
terface. To verify the validity of logical formulas (judgment E � C), the typechecker
can call out to any first-order logic theorem prover. We currently use a leading SMT
solver, Z3 to discharge our proof obligations. First-order logic validity is undecidable,
so Z3 may fail to prove or disprove some formulas. In these cases, we require additional
assumptions (with semi-automated proofs) to verify the program.

3 Refinements for Pre- and Post-Conditions

Classically, for a given function application, a pair of formulas (C1, C2) is a valid pair
of pre- and post-conditions when, if C1 holds just before calling the function, then
C2 holds just after the function completes. Hoare [16] originally proposed them for
arbitrary programs. More recently, for example, Spec# [2] and Code Contracts [12] let
function definitions be annotated with contracts (formulas) expressing intended pre- and
post-conditions, which may be checked statically or dynamically. F7 naturally supports
pre- and post-conditions for functions as refinements of their argument and return types.
For instance, if an F7 function has type x1 :P1{C1} → x2 :P2{C2}, then asserting C1
before the function call and C2 after the function returns is always safe.

In this section we show how to explicitly refer to pre- and post-conditions of func-
tions using generic predicates indexed by function value. There are at least three ways to
define the semantics of these predicates. When considering a program with verification
annotations, the pre- and post-condition of a function can refer either to the formulas
declared with that function, or to the formulas available at the call site, or to events
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tracking run-time calls and returns. For each semantics, we introduce a pair of generic
predicates, informally explain their use, and then give (1) a formal code transformation;
and (2) a patch to the F7 typing rules to implement and validate this semantics.

Event-based semantics. Pre- and post-conditions can be seen as events marking the
beginning and the end of a function execution. We systematically record them by as-
suming facts for two predicates Call and Return: the fact Call(M ,N ) means that M is a
function that has been applied to the argument N ; Return(M ,N ,O) means that M is a
function that has been applied to N and has returned the value O. Formally, this yields
a concrete, extensional, finite model, for each partial run of a whole program.

We can use Call and Return to reason about run-time events, instead of introducing
ad hoc predicates for that purpose. For instance, if a function send parameterized by m
assumes a “begin event” Send(m) before signing a message with payload m, we can
remove this assume and use instead the generic event Call(send,m) in security speci-
fications. Similarly, suppose that keys are represented as bitstrings, but that the keys
in use should be generated only by a designated algorithm genKey. We can assign to
keys the refinement type k : bytes { Return(genKey,(),k) }. This pattern frequently applies
to cryptographic materials such as nonces, initialization vectors, and tags.

To preserve consistency of the assumed formulas, we rely on a standard notion of
positive and negative positions in types and formulas. In the program before the trans-
formation, we forbid positive occurrences of Call and Return in assumed formulas.

Code transformation. We specify the event-based semantics by translating every syn-
tactic function and every function application

[[ rec f: T. fun x → e]]E
�= rec f: T. fun x → assume Call(f,x);[[e]]E

[[ M N]]E
�= let r =[[M ]]E [[N ]]E in assume Return(M,N,r); r

(where r is fresh in M ,T , and N ) and letting [[]]E be a homomorphism for all other
expressions. Thus, we bracket each call with events before and after the call.

Modifying the typechecker. We achieve the same effect as the transformation by directly
injecting formulas when typechecking functions and applications. We modify two typ-
ing rules, given below, and let RCFE be the resulting type system.

T = x :T1 → T2

E, f : T, x : T1, Call(f, x) 	 e : T2

E 	 (rec f : T.fun x→ e) : T

E 	M : x :T1 → r :P{C} E 	 N : T1

T2 = r :P{C ∧Return(M,x, r)}
E 	 (M N) : T2{N/x}

Results. We check that our transformation does not affect the operational behaviour,
safety, and well-typedness of programs that do not use Call and Return, and that the code
transformation and the modified typing rules yield the same typing judgements. Let e be
a closed program. Let e ⇓M denote evaluation of the expression e (e −→∗ νã.e′ � M
where e′ consists of assumptions and auxiliary threads).

Lemma 1. Suppose that Call and Return do not occur in e.

– Evaluation: for any value M , e ⇓M if and only if [[e]]E ⇓ [[M ]]E ;
– Safety: e is safe if and only if [[e]]E is safe; and
– Typing: e is well-typed in RCF if and only if [[e]]E is well-typed in RCF.

Lemma 2. [[e]]E is well-typed in RCF if and only if e is well-typed in RCFE .
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Macro-expansion semantics. Pre- and post-conditions may also be seen as pure syn-
tactic sugar, abbreviations that refer to concrete formulas in the types of functions in
scope (similar to the pre and post projections of Régis-Gianas and Pottier [19]). It is
useful to refer to the pre- or post-condition of a known and fully annotated function to
avoid copying a formula which is big or likely to change during the verification process.

To denote such macro-definitions, we introduce generic predicates #Pre and #Post.
They may occur anywhere in the program or its interface, provided that their first argu-
ment is a variable name that has a declared function type in their scope. Before type-
checking, we replace each of their occurrences with a concrete formula read off the
environment without breaking well-formedness.

Implementation. If E(f) = x1 : P1{C1} → x2 : P2{C2}, then we replace #Pre(f,M )
with C1[M/x1], and #Post(f,M,N ) with C2[M/x1, N/x2]. If the lookup fails, or the
returned type is not a function type, preprocessing fails—the macro-definition is ill-
formed.

Subtyping-based semantics. As opposed to the type annotations of function defini-
tions, the declared types of function arguments in higher-order functions are in general
only supertypes of the argument types actually used at their call sites, themselves su-
pertypes of the functional types verified at the function definitions. Thus, as we type
the higher-order function, the actual refinements for its argument are unknown, and we
cannot just rely on macro-expansion. We refer to these refinements using predicates Pre
and Post.

– We use them parametrically when typing higher-order functions, as if each function
argument f had a type of the form x1 : P1{Pre(f, x1)} → x2 : P2{Post(f, x1, x2)}.

– We define their logical model as follows: for each closed function value, of the form

M = rec f : x1 :P ◦
1 {C◦

1} → x2 :P ◦
2 {C◦

2}.fun x1 → e

• Pre(M,M1) if and only if C◦
1 [M1/x1] and

• Post(M,M1,M2) if and only if C◦
1 [M1/x1]⇒ C◦

2 [M1/x1,M2/x2].
– When applying a function parameter f of type T = x1:P1{C1} → x2:P2{C2} at the

call site, for any runtime instance M of f of the form above, we have ∀x1. C1 ⇒C◦
1

and ∀x1,x2. C1 ∧C◦
2 ⇒C2 by type safety and subtyping. Accordingly, for relating

C1 and C2 to the (unknown) parametric pre- and post-conditions of f during type-
checking, we automatically assume the formula

φf :T = ∀x1. C1 ⇒Pre(f,x1) ∧∀x1,x2. (C1 ∧Post(f,x1,x2)) ⇒C2

Relation to the event-based semantics. Within the body of a higher-order function with
function argument f , whenever f is applied to a value N , the event Call(f,N ) records
this application, and typing requires that the predicate Pre(f,N ) holds. At runtime, for
each instance M of f , the actual pre-condition of M holds (by typing) and implies the
formal precondition of f (by assumption) so we have ∀f,x. Call(f,x)⇒Pre(f,x).

Similarly, when f returns, we have Return(f, N,O), and its formal post-condition
Post(f,N,O) implies the actual post-condition for any instance M of f (by assumption)
so we have ∀f,x,y. Return(f,x,y)⇒Post(f,x,y). We thus assume both of these formulas for
typechecking.
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Code transformation. To support Pre and Post, we rely on events, so we first apply the
event-based code transformation, then we transform every binding whose expression
has a function type annotation and apply [[]]S homomorphically to other expressions. In
particular, we transform every function let binding (since they are always annotated) and
every syntactic function definition, ensuring that all functional arguments are annotated
in higher-order functions. Let T abbreviate x1:P1{C1} →x2:P2{C2}.

[[ let f = e : (f : T ) {Cf}) in e’ ]]S
�= let f = [[e]]S in assume φf :T ; [[e′]]S

[[ rec f: T . fun x→ e ]]S
�= rec f: T. fun x → [[let x = (x : T1) in e]]S

Modifying the typechecker. We modify F7 to support Pre and Post by modifying inser-
tions of variables entries with function types into the typing environment. Hence, E
extended with f : T is now written E ⊕ f : T , and defined by pattern matching on T .
If T is a function type, it is of the form f:(x1:P1{C1} → x2:P2{C2}){Cf} and we let

E ⊕ f : T �= E, f : T, φf :x1:P1{C1}→x2:P2{C2}

Otherwise E ⊕ f : T is just E, f : T . We call the modified type system RCFS . To
maintain logical consistency, we forbid positive occurrences of Pre and Post in assumed
formulas.

Results. We obtain a variant of Lemma 1 for the subtyping semantics: we have a similar
Evaluation property. The proof of Safety involves showing the logical consistency of the
injected assumptions. We also prove two flavours of Correctness: we have a variant of
Lemma 2 that relates typing with RCFS and the specification [[]]S. Besides, we show
a simple pattern such that Pre and Post can be eliminated by replicating the code of a
higher-order functions at each call site and annotating each replica with an ad hoc type.

Lemma 3 (Inlining). Let e0 = let h = H in e be a well-typed expression in RCFS such
that H is a function with type T = g:(x:T1→T2) →T3, h only occurs in applicative
position and Pre and Post occur only in T3 and always have g as first argument.

Let e1 be e0 after replacing each subexpression of the form (h f) : T ′ in e with
(Hf f) :T ′, where Hf is H after replacing each Pre(g,M) and Post(g,M,N) with #Pre(f,M)
and #Post(f,M,N), respectively. Then e1 is also well-typed in RCFS .

Functions with multiple arguments. Our definitions above assume curried functions.
For convenience, we have also implemented typechecking support for functions with
multiple arguments, recorded as a list in our predicates. For example, the function call
M a b assumes the event Call(M,[a;b]).

4 Example: A MAC-Based Authentication Protocol

We first recast a simple client-server authentication protocol, to recall protocol verifica-
tion using F7, and to illustrate our event-based semantics.

a −→ b : m | (mac kab m)

(The symbol | represents an invertible concatenation of bytestrings.) When a principal a
wants to send a message m to principal b, it also sends a MAC over m computed with a
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key kab known only to a and b. This MAC protects message integrity and authenticates
both sender and intended receiver.

This simple protocol can be implemented in ML as follows, for example:

let mkKey a b = hmac keygen()
let client a b k m =

let c = Net.connect p in
let h = hmac k m in
let w = concat m h in
Net.send c w

let server a b k =
let c = Net.listen p in
let w = Net.recv c in
let (m,h) = iconcat w in
hmac verify k m h;
m

The function mkKey generates a fresh MAC key for use with messages sent from a to b.
(Messages in the reverse direction rely on a separate key.) The function client uses a key
k to protect a message m that a wishes to send to b over the public network. The function
server receives a message over this network and uses a key to verify its MAC.

This protocol code runs in a hostile environment where an attacker may use the
public interfaces of the protocol and the libraries to interfere with the protocol. The
attacker may call the networking functions send, recv on any TCP connection to intercept
and interject messages of his choice. He may construct and verify MACs by calling
hmac and hmac verify with keys that he already knows. He may also start any number of
copies of the client and server and get them to communicate with each other.

The authentication goal for the protocol is that, if the server function returns m when
called with a, b, and a key k generated by the mkKey function, then the client function was
called with a, b, and m. In particular, an adversary who does not know a key generated
for a and b cannot fool b into accepting a message that was not sent by a.

We express this security goal within the refinement types for these functions:

val mkKey: a:str → b:str → k:key
val client:

a:str → b:str →
k:key{Return(mkKey,[a;b],k)} →
m:bytespub → unit

val server:
a:str → b:str →
k:key{Return(mkKey,[a;b],k)} →
m:bytespub{Call(client,[a;b;k;m])}

To verify that the code actually meets these types, we rely on the unforgeability of
MACs, expressed as types for the cryptographic library [6]. In particular, the function
hmac has a precondition MACSays(k,m), representing the conditions under which the key
k may be used to MAC m. Every protocol that uses MACs must specify MACSays for the
keys that it uses. The function hmac verify has a post-condition that it returns a value m
only if either MACSays(k,m) or if the key k is public, that is, known to the attacker.

For the keys in our authentication protocol, we use MACSays to specify that a key k
generated for a and b using mkKey will only be used to MAC a message m after client
has been called with a, b, k, and m:

assume ∀a,b,k. Return(mkKey,[a;b],k) ⇒ (MACSays(k,m) ⇔Call(client,[a;b;k;m]))

We then verify that this assumption is adequate to typecheck our protocol code against
the cryptographic and networking library, and thus, by the type safety theorem of RCF,
that it is secure against any attacker in our model.
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Comparison with other methods. Many symbolic verification tools can handle the sim-
ple protocol above. Tools such as ProVerif [8] can even automatically infer the logical
assumption on MACSays, thus requiring almost no annotations. In comparison to earlier
work on F7, our type specification above uses the events Call and Return. In their ab-
sence, the programmer would have to define his own predicates corresponding to these
events and enforce their relationship to the function calls by assuming them within pro-
tocol code. Here, these events are declared and managed automatically.

5 Example: A Reusable Typed Interface for Lists

Lists are perhaps the most commonly-used data structures in functional programs. The
F# List library provides efficient implementations of recursive list processing functions;
for generality, these functions are typically higher-order and polymorphic. Our goal is to
give this library a reusable refinement typed interface, using our Pre and Post predicates
and their subtyping-based semantics. The full interface is available online [7].

We detail our approach on the function List.fold, the general iterator on lists (also
called fold left). Its ML type is (α→β→α )→α→β list →α . It takes as argument a
function f, an initial accumulator a, a list l and traverses the list l, applying f to the
current accumulator and the next value in the list to obtain the next accumulator; when
it reaches the end of the list, it returns the accumulator. For example, fold (+) 0 [1;2;3;4]
computes the sum of the elements in the list.

First attempt: Using Recursive Predicates. Let us define two predicates PreFold and
PostFold to represent the pre- and post-condition of fold. By inspecting the code for fold
(on the left below) we can define these predicates as shown:

let rec
fold f acc l =
match l with
| [] → acc

| hd :: tl →
let acc’ = f acc hd in

fold f acc’ tl

assume ∀f,acc,l.
PreFold(f,acc,l)
⇔
(l=[]
∨
(∃hd,tl. l=hd::tl ∧
Pre(f,[acc;hd]) ∧
(∀acc’. Post(f,[acc;hd],acc’)

⇒PreFold(f,acc’,tl))))

assume ∀f,acc,l,r.
PostFold(f,acc,l,r)
⇔

((l=[] ∧ r=acc)
∨
(∃hd,tl. l=hd::tl ∧

(∃acc’. Post(f,[acc;hd],acc’)
∧PostFold(f,acc’,tl,r))))

The definition for PreFold can be read as follows. If the list is empty, there is no pre-
condition. Otherwise, the pre-condition of the argument f must hold for the head of
the list and the current accumulator, and if f terminates and returns a new accumulator,
PreFold must hold for the tail of the list and this new accumulator. PostFold is defined
similarly. The resulting type for fold

val fold: f:(α→β→α )→ acc:α→ l:β list{PreFold(f,acc,l)}→ r:α {PostFold(f,acc,l,r)}
is precise and easy to typecheck against the code of fold, yet difficult to use at call sites.
Indeed, even for a function with no pre-condition (∀x. Pre(f,x)), proving PreFold(f,acc,l)
requires the use of induction, which is generally beyond the reach of the SMT solver
Z3 that underlies F7. Can we use a non-recursive predicate to specify fold?
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Second attempt: Using Invariants. In our second approach, we adopt the style of Régis-
Gianas and Pottier [19] for specifying higher-order iterators, such as fold. We introduce
a generic predicate Inv that is used to define logical invariants for functions that may be
used as an argument to fold. The formula Inv(f,aux,acc,l) is an invariant that holds when
the function f is being applied to a list of elements: l is the remainder of the list, acc is
the intermediate result of the computation, and aux contains function-specific auxiliary
information about the initial arguments to the fold.

As an example, consider the function fmem that can be used with fold to search for an
element in a list; its code, refinement type, and invariant are as follows:

let fmem v
acc
n
=

if v = n
then true
else acc

val fmem: v:α →
acc:bool →
n:α a →
found:bool{
(v = n
∧ found = true)

∨ (found = acc)}

(∀v,f. Post(fmem,v,f) ⇒
(∀iv,acc,l. Inv(f,iv,acc,l) ⇔
(∃x,linit. iv=(x,linit) ∧ x = v
∧ (∀y. Mem(y,l) ⇒Mem(y,linit))
∧ (( Mem(x,linit)

∧ acc=true)
∨ acc = false ))))

The function fmem takes an element v to search for, an accumulator acc and an integer
n, and returns true if either v = n or acc is true. The invariant for the function obtained
by the partial application fmem v is defined on the right; its auxiliary argument aux is a
pair consisting of the searched element v and the initial list linit. Its auxiliary argument
is a pair consisting of the integer v to search for, and the initial list linit. The invariant
says that the remaining list l contains a subset of the elements in linit, and that the
accumulator is true only if v is a member of linit.

The next step, following Régis-Gianas and Pottier, is to prove that the invariant is
hereditary, namely that the invariant of each function f is at least as strong as its pre-
condition, and that the invariant is preserved by function application. We define a pred-
icate Hereditary that captures this notion and use it to give a type to fold as shown below;
note that to use this style we need to add an additional argument aux to fold.

let rec fold v f acc l =
match l with
| [] → acc
| hd :: tl →

let acc’ = f acc hd in
fold v f acc’ tl

assume (∀f. Hereditary(f)
⇔

( ∀v,acc,h,t. Inv(f,v,acc,hd::tl) ⇒
(Pre(f,[acc;hd])
∧ (∀r. Post(f,[acc;hd],r) ⇒ Inv(f,v,r,tl)))))

val fold: v: γ→ f:(α → β→α ) {Hereditary(f)} → acc:α → xs:β list {Inv(f,v,acc,xs)}
→ r:α { (xs = [] ∧ r=acc) ∨ Inv(f,v,r,[]) }

The type of List.fold requires that (1) the invariant of the iterated function is hereditary;
and that (2) the invariant holds for the initial accumulator. The post-condition states that
the invariant holds for the final accumulator.

For example, to check that the application fold (v,l) (fmem v) false l can be given the
type b:bool {b = true ⇒Mem(v,l)} we must prove that ∀v,f. Post(fmem,v,f)⇒Hereditary(f),
and that the invariant of fmem v holds for the initial values (false,l). For a simple function
like fmem this can be proved automatically, but for more complex functions Hereditary
may have to be proved by hand. The rest of the typechecking is fully automatic.
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6 Case Studies: Cryptographic Protocol Implementations

We can use our new types for lists to verify more realistic cryptographic applications.
We present three case studies of programs previously verified using F7 and how our
extensions help reduce the number of annotations required for typechecking.

XML digital signatures. The XML digital signature standard specifies cryptographic
mechanisms to provide integrity, message authentication, and signer authentication for
arbitrary XML data [11]. These mechanisms are used within web services security pro-
tocols to protect messages, and processing each message involves tree and list process-
ing. For example, consider a single-message protocol, where the principal a uses an
XML signature to protect n ≥ 1 XML elements m1, . . . , mn located at URIs #1, . . . , #n
within the message, using the MAC key kab. The main security goal for this protocol is
that the list [m1; · · · ;mn] be authenticated; the protocol is often used as a component
within a larger protocol that enforces more abstract security properties. The protocol
with a slightly simplified message format can be written as follows:

a −→ b : 〈Message〉
m1 m2 . . . mn

〈Signature〉
〈SignatureInfo〉
〈Reference〉base64 (sha1m1)) 〈/Reference〉
· · ·
〈Reference〉base64 (sha1mn)) 〈/Reference〉
〈/SignatureInfo〉
〈SignatureValue〉
base64 (mac kab (〈SignatureInfo〉 · · · (as above) · · · 〈/SignatureInfo〉))
〈/SignatureValue〉
〈/Signature〉

〈/Message〉

In previous work, Bhargavan et al. [6] used F7 to program and verify a library for
manipulating such XML signatures. Now we can use List.map to improve this library
and ease its verification. Consider the following excerpt of the library interface and
implementation.
val mkRef: m:item → r:item{Ref(m,r)}

val xml sign: a:str → b:str →
k:key{Return(mkXmlKey,[a;b],k)} →
ml:item list → dsig:item

val xml verify: a:str → b:str →
k:key{Return(mkXmlKey,[a;b],k)} →
ml:item list → dsig:item →
unit{Call(xml sign,[a;b;k;ml])}

let xml sign a b k ml =
let rl = map mkRef ml in
let si = Xn(signatureInfo,[],rl) in
let h = hmac k (ditem2bytes si) in
Xn(signature,[],[si;Xn(sigValue,[],[txt h])])

assume ∀a,b,k. Return(mkKey,[a;b],k) ⇒
(∀si. MACSays(k,si) ⇔

(∃ml. Call(xml sign,[a;b;k;ml]) ∧
SigInfo(si,ml)))

The type item represents XML elements; its constructor Xn(q,al,il) corresponds to an
XML element of the form <q al>il</q>, where q is a qualified name, such as
Signature, al is a list of XML attributes, and il is a list of XML items.
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The function mkRef generates a sha1 cryptographic hash of its argument and returns
it within a <Reference> element. The function xml sign generates an XML signature
over a list of XML elements; it uses map over mkRef to generate a list of references,
encapsulates them within a <SignatureInfo> element, and MACs it with the given
key k. The function xml verify parses and verifies XML signature. Its post-condition
guarantees that the signature must have been generated using xml sign by a valid client
(as part of an authenticated message).

The use of List.map avoids the need to inline the recursive code for map in the code
for xml sign and xml verify. In our previous verification of the full library, there were
four instances where we needed to inline list-processing functions and define new type
annotations for each instance. These are no longer necessary, reducing the annotation
burden significantly.

X.509 certification paths. The X.509 recommendation [17] defines a standard format
and processing procedure for public-key certificates. Each certificate contains at least a
principal name, a public-key belonging to that principal, an issuer, and a signature of
the certificate using the private key of the issuer.

On receiving a certificate, the recipient first checks that the issuer is a trusted cer-
tification authority and then verifies the signature on the certificate before accepting
that the given principal has the given public key. To account for situations where the
certification authority may not be known to the recipient, the certificate may itself con-
tain a certification path: an ordered sequence of public-key certificates that begins with
a certificate issued by a trusted certification authority and ends with a certificate for
the desired principal. The X.509 sub-protocol for verifying certification paths can be
written as follows:

a −→ b : Certificate(a1 | pka1 | rsa sign skCA (a1 | pka1))
Certificate(a2 | pka2 | rsa sign ska1 (a2 | pka2))
· · ·
Certificate(a | pka | rsa sign skan−1 (a | pka))

We write and verify a new library for manipulating X.509 certificates. The code for
certificate verification uses List.fold to iterate through a certification path:

val verify:
x:cert{Certificate(x)} → b:bytes →
r:cert {Certifies(x,r) ∧Certificate(r)}

val verify all:
x:cert{Certificate(x)} → l: bytes list →
r:cert {Certifies(x,r)}

let verify all ca path =
fold ca verify ca path

assume ∀ca,x,h,l.
Inv(verify,ca,x,l) ⇔

(Certificate(x) ∧Certifies(ca,x))

The predicate Certifies(x,y) specifies that there is some sequence of certificates starting
with x and ending with y, x=x0, x1, . . . , xn=y, such that the principal mentioned in each
xi has issued the certificate xi+1; hence if every principal mentioned in this sequence is
honest, then we can trust that the public-key in the final certificate y indeed belongs to
the principal mentioned in y. The function verify all takes as argument a certificate ca for
a trusted certification authority and it accepts only those certification paths that begin
with certificates issued with ca’s public-key. To typecheck verify all we define the fold



60 K. Bhargavan, C. Fournet, and N. Guts

invariant for verify as the property that the accumulator x always has a valid certificate
(Certificate(x)) and a valid certification path from ca to x (Certifies(ca,x)).

The use of List.fold in verify all is the natural way of writing this code in ML. We
could copy the code for List.fold and redo the work of annotating and typechecking it
for this protocol, but reusing the types and formulas in List is more modular, and we
believe, the right way of developing proofs for such cryptographic applications.

Compact types for audit. F7 has also been used to verify security properties beyond
authentication. Guts et al. [15] show how to use refinement types to specify and ver-
ify auditability in protocol implementations. Informally, a program collecting cryp-
tographic evidence has an auditable property if this property can be checked by the
program (immediately) and by a third-party judge (a posteriori) using the evidence.

For example, consider the authentication protocol in Section 4. We may require that
the server be able to convince a judge that a valid client sent him a given message. The
server may consider presenting the message and its MAC as evidence for this property.
However, such evidence does not suffice to convince the judge: since the MAC is based
on a shared key known to both parties, the judge cannot decide whether the client or the
server created the MAC. Hence, this property is not auditable in this program.

To achieve auditability, the parties can use public-key signatures instead of MACs: a
client signs the message using its private key so that the server—or any third party who
has access to the public key—can check the signature to authenticate the message.

To verify that the new program is indeed auditable, we first define a judge func-
tion that checks the evidence for an instance of the audited property. All verification
functions used by the judge must be total, terminating and deterministic, and may use
additional, trusted data (such as public keys) only as agreed on beforehand by all proto-
col participants. Then, the audited program is annotated with audit requests where the
property is expected to be auditable: that is, if the judge was called at this program point
with the same arguments as evidence, it would concur.

In the example of Section 4, suppose we add an audit request for client authentication
in the code of the server function, using the verified signature as evidence. The judge
function for this property would be:

let judge a b k m s = rsa verify k m s

The judge simply calls the signature verification function rsa verify, which never throws
exceptions and returns true if and only if the message has been signed using the pub-
lic key. (The full interface for public-key signature functions is available online [7].)
Hence, the type of the judge is:

val judge: a:str → b:str →
k:key{∃sk. Return(mkKey,[a;b],(k,sk))} →m:bytes → s:bytes →
t:bool { t=true ⇔ (∃sk. Return(mkKey,[a;b],(k,sk)) ∧ IsSignature(s,sk,m))}

To formally check the auditability of this protocol, first we need to show that the judge
is correct: whenever it returns true, the audited property holds:

∀a,b,k,k,m,s. #Post(judge,[a;b;k;m;s]) ⇒ (∃sk. PubPrivKeyPair(k,sk) ∧Call(client,[a;b;k;m]))

Then, to check that at every audit request the judge would have returned true, we set
the precondition of the audit primitive to #Post of the judge:
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val audit: a:str → b:str → k:key{∃sk. Return(mkKey,[a;b],(k,sk))} →m:bytes →
s:bytes {#Post(judge,[a;b;k;m;s])} → unit

The use of the macro-expansion predicate #Post here is a convenient way of making this
type dependent on the type of judge, hence avoiding the the need to rewrite it when
the protocol or the judge change. Note that we cannot use the Return event or the Post
predicate here (instead of #Post) because both rely on a function having been called;
here the call to audit must be typable without actually calling the judge function.

An auditable multi-party protocol. We have also applied the three semantics for pre-
and postconditions to verify an auditable multi-party protocol implementation for on-
line games between n players and a server [15]. In this protocol, the participants make
minimal trust assumptions on the other players and the server, and shield themselves
from various attacks.

Since the number of the players is a run-time parameter of the protocol, the partic-
ipants have to manipulate lists of cryptographic evidence. For instance, the function
List.forall is used for three different series of checks, so in the original F7 implementa-
tion the function code had to be replicated and equipped with different ad hoc types.
Using the subtyping-based semantics, the same library function List.forall is used at all
call sites, which makes the code more compact and more readable.

7 Related Work

Pre- and post-condition checking is supported by many program verification tools [e.g.
2, 13, 22]. Our approach is most closely related to that of Régis-Gianas and Pottier [19],
who show how to use Hoare-style annotations to check programs written in a call-by-
value language with recursive higher-order functions and polymorphic types. However,
their system only uses declared types (#Pre,#Post), and disregards subtyping and events.

Symbolic methods for verifying the security of protocol implementations utilize a va-
riety of techniques, such as static analysis [14], model-checking [9], and cryptographic
theorem-proving [4]. The RCF type system is the first to use refinement types for veri-
fying protocol implementations [3]. Its implementation in the F7 typechecker has been
successfully used to verify complex cryptographic applications [1, 5, 6]. F7 requires
programmer intervention in the form of type annotations, whereas some of the other
verification tools are fully automated. However, these other tools generally do not apply
to programs with recursive data structures. Besides, whole-program analysis techniques
seldom scales as well as modular ones, such as typechecking.

Fine [21, 10] is another extension of F# with refinement types. It also supports affine
types and proof-carrying bytecode verification. Its type system has a notion of predicate
polymorphism that captures some of the benefits of our pre- and post-condition predi-
cates. To use them, the programmer declares predicate parameters for higher-order types
and functions, and explicitly instantiates these predicates at each call site. In contrast,
our approach is able to verify legacy programs written purely in F# by automatically
injecting pre- and post-condition predicates.

By relying on standard verification techniques, we hope to benefit from their recent
progress. For example, Liquid Types [20] have been proposed as a technique for infer-
ring refinement types for ML programs. The types inferred by Liquid Types are quite
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adequate for verifying simple safety properties of a program, but not for the security
types in this paper. As future work, we plan to adapt such inference techniques to re-
duce F7 annotations even further.
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Abstract. Starting from reduction semantics for several styles of corou-
tines from the literature, we apply Danvy’s method to obtain equivalent
functional implementations (definitional interpreters) for them. By ap-
plying existing type systems for programs with continuations, we obtain
sound type systems for coroutines through the translation. The resulting
type systems are similar to earlier hand-crafted ones. As a side product,
we obtain implementations for these styles of coroutines in OCaml.

1 Introduction

Coroutines are an old programming construct, dating back to the 1960s [5]. They
have been neglected for a while, but are currently enjoying a renaissance (e.g.
in Lua [12]), sometimes in the limited form of generators (Python [20], C# [17])
and sometimes under different names (e.g., fibers in .NET).

Type systems for coroutines have not been considered in the past. Coroutines
without parameters and return values (Simula, Modula 2 [21]), coroutine opera-
tions whose effects are tied to the static structure of the program (ACL, [16]), or
coroutines lexically limited to the body of one function (C#), could be integrated
into said languages without special support in the type system.

In an earlier paper [1], we developed the first type system for a simply-typed
λ-calculus with coroutines. This development was done in an ad-hoc style for
a feature-rich calculus and resulted in a type and effect system with a simple
notion of subeffecting to capture the control effects of coroutine operations.

In this paper, we follow a different course and rigorously derive a type system
for a simple core calculus. The derivation starts with a reduction semantics from
the literature [11]. To this reduction semantics, we apply Danvy’s method [6]
to obtain a denotational semantics after several semantics-preserving transfor-
mation steps. Then we further transform the semantics to a denotational imple-
mentation (a combinator implementation) using methods developed by one of
the authors [19]. This combinator implementation of the coroutine operations is
directly and practically usable. It is available for OCaml on the web.

The denotational implementation also provides good grounds for constructing
a type system that is aware of coroutines. As the combinators contains control
operators, we apply a type system for (the control operators) shift and reset [7,2]
to them and abstract from the types to obtain the desired system. This approach

K. Ueda (Ed.): APLAS 2010, LNCS 6461, pp. 63–79, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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allows us to construct a variety of type systems. We provide a type soundness
proof for one of them by specifying a typed translation to cps augmented with a
reader monad. This translation is not ad-hoc either, because we fork it off from
an intermediate transformation result of Danvy’s method.

In summary, the contributions of this paper are:

– Systematically derived implementation of coroutine library for OCaml.
– Systematically derived monomorphic type system for coroutines.
– Type soundness proof via a typed translation to a standard monomorphic

lambda calculus with references.

Major intermediate steps of the transformation are available on the web along
with the OCaml implementation.1

Overview. Sec. 2 recalls an operational semantics for coroutines from the litera-
ture. Sec. 3 applies Danvy’s method to the operationals semantics. Sec. 4 applies
Thiemann’s method to the resulting interpreter to obtain a denotational imple-
mentation. Sec. 5 performs the derivation of the type system and Sec. 6 considers
type soundness.

2 Reduction Semantics for Coroutines

In their paper “Revisiting Coroutines” (henceforth abbreviated RC), Moura and
Ierusalimschy [11] define a core calculus that can be extended to cover various
styles and features of coroutines. They consider two styles of coroutines, sym-
metric and asymmetric. In the symmetric setting, a coroutine passes control by
explicitly invoking another coroutine. In the asymmetric setting, there are two
ways of passing control. Either a coroutine can explicitly invoke another corou-
tine, in which case it establishes a parent-child relationship to the next coroutine,
or it can pass control to the implicit parent coroutine. In each case, the coroutine
that passes control suspends itself. As a final variation, not considered in RC, a
coroutine implementation may support both styles of control passing [1, 14].

The base calculus is a call-by-value lambda calculus with assignment, loca-
tions, equality, and a conditional. Evaluation proceeds from right to left. Fig. 1
defines its syntax and its reduction rules. The latter work on a configuration
that consists of an expression e, a store θ ∈ (Var ∪ Loc) → Value that maps
variables and locations to values, and a location l ∈ Loc. Here, Var is a set of
variables and Loc is a set of store locations. The base calculus does not use the
third location component, but the symmetric coroutine operations do.

The calculus models beta reduction in Scheme style by renaming the bound
variable to a fresh variable z and assigning the substituted value to that vari-
able. These fresh variables serve as locations and facilitate a straightforward
implementation of the assignment operation.
1 http://proglang.informatik.uni-freiburg.de/projects/coroutines/

http://proglang.informatik.uni-freiburg.de/projects/coroutines/
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Expressions e ::= l | x | λx.e | e e | x := e | if e then e else e | e = e | nil
Values v ::= l | λx.e | nil
Ev. contexts C ::= � | e C | C v | x := C | if C then e else e | e = C | C = v

(C[x], θ, l0) ⇒ (C[θ(x)], θ, l0)
(C[(λx.e) v], θ, l0) ⇒ (C[e[z/x]], θ[z �→ v], l0) where z is fresh
(C[x := v], θ, l0) ⇒ (C[v], θ[x �→ v], l0)
(C[if nil then e2 else e3], θ, l0) ⇒ (C[e3], θ, l0)
(C[if v then e2 else e3], θ, l0) ⇒ (C[e2], θ, l0) if v �= nil
(C[l = l], θ, l0) ⇒ (C[l], θ, l0)
(C[l1 = l2], θ, l0) ⇒ (C[nil], θ, l0) if l1 �= l2

Fig. 1. Syntax and reductions of the base calculus

2.1 Symmetric Coroutines

The symmetric coroutine calculus extends the base calculus with operations to
create a coroutine and to transfer control to a coroutine. Moreover, there is an
operation to obtain the identity of the currently running coroutine.

Fig. 2 defines the extended syntax as well as the additional evaluation contexts
and reduction rules. For simplicity, it differs from the calculus in RC in that it
does not have the notion of a main coroutine, to which execution falls back if a
coroutine just terminates without passing on control. The equivalence proof of
symmetric and asymmetric coroutines in RC relies on this feature.

This calculus (as well as the following ones) models coroutines exclusively as
storable values in the sense of the EOPL book [13]. Thus, an expression never
denotes a coroutine directly, but only via a store location.

The definition of the transfer operation implements the convention that an
active coroutine is not represented in the store. Creating a coroutine obtains
an unused store location and assigns it a procedure. Transferring control to a
coroutine sets its location to nil and suspending the coroutine overwrites it with a
new procedure (the continuation that arises as the context of the transfer). The
second reduction rule for transfer implements the special case that a coroutine
transfers control to itself.

Expressions e ::= · · · | create e | transfer e e | current
Ev. contexts C ::= · · · | create C | transfer e C | transfer C v

(C[create v], θ, l0) ⇒ (C[l], θ[l �→ v], l0) where l /∈ dom(θ)
(C[transfer l v], θ, l0) ⇒ (θ(l) v, θ[l �→ nil, l0 �→ λx.C[x]], l) where l �= l0
(C[transfer l0 v], θ, l0) ⇒ (C[v], θ, l0)
(C[current], θ, l0) ⇒ (C[l0], θ, l0)

Fig. 2. Syntax and reductions of the calculus with symmetric coroutines
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2.2 Asymmetric Coroutines

The asymmetric calculus is slightly more complicated. To the base calculus, it
adds operations to create a coroutine, to resume another coroutine (establishing
the parent-child relationship mentioned at the beginning), and to yield to the
parent coroutine.

Expressions e ::= · · · | create e | resume e e | yield e | l : e
Ev. contexts C ::= · · · | create C | resume e C | resume C v | yield C
Ev. contexts II D ::= � | C[l : D]

(D[C[create v]], θ, l0) ⇒ (D[C[l]], θ[l �→ v], l0) where l /∈ dom(θ)
(D[C[resume l v]], θ, l0) ⇒ (D[C[l0 : θ(l) v]], θ[l �→ nil], l) where l �= l0
(D[C[resume l0 v]], θ, l0) ⇒ (D[C[v]], θ, l0)
(D[C[l : C0[yield v]]], θ, l0) ⇒ (D[C[v]], θ[l0 �→ λx.C0[x]], l)
(D[C[l : v]], θ, l0) ⇒ (D[C[v]], θ, l)

Fig. 3. Syntax and reductions of the calculus with asymmetric coroutines

Fig. 3 shows the extended syntax, evaluation contexts, and reductions. Devi-
ating from the presentation in RC, the configuration keeps the current coroutine
l0 in the third component and the evaluation context has been split in an in-
ner evaluation context C and an outer evaluation context D. The D contexts
structure the evaluation contexts in pieces between the newly introduced labeled
expressions l : . . .. The latter denote return points for the yield operation and
they keep and restore the identity l of the parent coroutine if a coroutine termi-
nates without yielding. The reductions imported from the base calculus are all
lifted to work in context D[C[. . . ]] instead of just plain C[. . . ].

In this calculus, a coroutine may terminate sensibly. If it finishes with a value,
it implicitly yields to its parent or, at the top-level, it concludes the computation.
There is again a special case for a coroutine to resume to itself.

2.3 Dahl-Hoare Style Coroutines

Dahl-Hoare style coroutines combine the features of the symmetric and the asym-
metric calculus as suggested by Haynes and coworkers [14]. Fig. 4 extends the
syntax and semantics of the asymmetric calculus with the straightforward adap-
tation of the transfer rules to nested evaluation contexts of the form D[C[. . . ]].
It is noteworthy that transfer still captures only the innermost C-continuation.

Expressions e ::= · · · | transfer e e
Ev. contexts C ::= · · · | transfer e C | transfer C v

(D[C[transfer l v]], θ, l0) ⇒ (D[θ(l) v], θ[l �→ nil, l0 �→ λx.C[x]], l) if l �= l0
(D[C[transfer l0 v]], θ, l0) ⇒ (D[C[v]], θ, l0)

Fig. 4. Extension of the asymmetric calculus with Dahl-Hoare style coroutines
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3 From Reduction Semantics to Denotational
Implementation

In a series of papers, Danvy developed a systematic method to interconvert
different styles of semantic artifacts while preserving their meaning. Here, we are
interested in the route from reduction semantics to a definitional interpreter as
spelt out in Danvy’s invited presentation at ICFP 2008 [6]. We follow that route
exactly for the three reduction semantics from Sec. 2 to obtain three equivalent
definitional interpreters.

In each case, the sequence of semantic artifacts starts with an ML program
that implements the respective reduction semantics. The first step converts the
reduction semantics to a small-step abstract machine by applying refocusing [10].
The result is fused with an iteration function to obtain a tail-recursive evaluation
function. Inlining the reduction function and then applying transition compres-
sion (function unrolling on known arguments and simplification) results in a
tail-recursive interpreter that still manipulates a syntactic representation of the
evaluation context. The next step is to refunctionalize this evaluation context to
a continuation resulting in an interpreter with continuations [9]. The interpreter
can be converted to direct style and subjected to closure unconversion to obtain
a “natural looking” interpreter that represents values no longer syntactically.

As the intermediate steps are amply demonstrated in the work of Danvy and
coworkers (e.g., [6]), we refrain from going through them in detail.2 However, it
is important that each transformation step establishes a semantic equivalence in
the sense that an expression evaluates to a value if and only if the transformed
expression evaluates to a suitably related value. We only comment on special
steps that need to be taken for the calculi with the asymmetric coroutine oper-
ators and show the essential parts of the final results, in particular omitting the
standard lambda calculus parts.

3.1 Symmetric Coroutines

The direct-style version of the interpreter in Fig. 5 is equivalent to the reduc-
tion semantics in Fig. 2 because it has been constructed from the latter using a
sequence of semantics-preserving transformations. As a final step, we have trans-
formed the store and the currently executed coroutine into two global variables,
after observing that they are passed in a single-threaded way.

Most of the code should be self-explanatory. The operations shift and
push prompt (and new prompt) are from Kiselyov’s implementation [15] of the
control operators shift and reset [8] that arise from the transformation to direct
style. The code avoids separate code for the case where a coroutine transfers con-
trol to itself by choosing the right ordering for the reads and writes of the store.

As a fine point, Kiselyov’s implementation is typed, but it does not allow
the answer type variation of the Danvy/Filinski type system for delimited con-
tinuations (see Sec. 5). However, this variation is not needed as long as the
2 The curious reader may consult
http://proglang.informatik.uni-freiburg.de/projects/coroutines/

http://proglang.informatik.uni-freiburg.de/projects/coroutines/
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(* universal value type *)

type value =

| VLoc of location

| VFun of (value -> value)

| VNil

let pp : value prompt =

new_prompt ()

let rec evaldu_expr e =

match e with

| ...

| Create e ->

let v = evaldu_expr e in

let newl = fresh_loc () in

upd_loc newl v;

VLoc newl

| Transfer (e1, e2) ->

let v2 = evaldu_expr e2 in

let VLoc l1 = evaldu_expr e1 in

let l = !cur_coroutine in

shift pp (fun ec ->

upd_loc l (VFun ec);

let VFun cor = lkup_loc l1 in

upd_loc l1 VNil;

cur_coroutine := l1;

push_prompt pp (fun () ->

cor v2))

| Current ->

let l = !cur_coroutine in

VLoc l

Fig. 5. Definitional interpreter with sym-
metric coroutines (excerpt)

type value = (* as before *)

let pp : value prompt =

new_prompt ()

let rec evaldg_expr e =

match e with

| ...

| Create e -> (* as before *)

| Resume (e1, e2) ->

let v2 = evaldg_expr e2 in

let VLoc l1 = evaldg_expr e1 in

let VFun cor = lkup_loc l1 in

upd_loc l1 VNil;

let lc = !cur_coroutine in

let v =

push_prompt pp

(fun () ->

cur_coroutine := l1;

cor v2)

in cur_coroutine := lc;

v

| Yield e ->

let v = evaldg_expr e in

let lc = !cur_coroutine in

shift pp (fun ec ->

upd_loc lc (VFun ec);

v)

Fig. 6. Definitional interpreter with
asymmetric coroutines (excerpt)

implementation encodes all data in the universal value type (see Fig. 5): all
argument, return, and answer types are fixed to value!

Close scrutiny of the code reveals that push prompt is only called when the
evaluation context is empty (which is in fact quite obvious when studying the
intermediate results of the transformation). Thus, push prompt need only be
placed once at the top-level and shift could be replaced by call/cc because
it would be an error if the call to cor v2 ever returned. Applying this trans-
formation yields in principle the implementation of coroutines given by Haynes,
Friedman, and Wand [14]. Their implementation looks more complicated at first
glance because they represent a coroutine by a function and because they ab-
stract the coroutine body over the transfer function. But disentangling their
implementation of create and transfer leads to the code in Fig. 5 with call/cc
in place of shift.
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3.2 Asymmetric Coroutines

The calculus with asymmetric coroutines requires some extra transformation
steps. These extra steps are caused by the second level of evaluation contexts
named D in Fig. 3. After the initial transformation steps, the intermediate result
is a tail-recursive interpreter with two arguments that hold evaluation contexts,
corresponding to the D[C[. . . ]] in the reduction semantics. Both of them are then
refunctionalized, giving rise to an interpreter with two levels of continuations,
and then transformed to direct style two times to obtain the code in Fig. 6. As
before, the direct-style transformation introduces the control operators shift
and reset.

The interpreter reuses the same type of values. It merges the two cases for re-
sume by choosing the correct ordering for the reads and writes to the store. The
shift operation in yield abstracts the context up to the prompt set in the parent
coroutine’s resume instruction. The variable lc in the code for resume imple-
ments the labeled expression lc, · · · : and the assignment current coroutine
:= lc implements its reduction.

3.3 Dahl-Hoare Style Coroutines

To obtain a definitional interpreter with Dahl-Hoare style coroutines, it is suffi-
cient to merge the code from Fig. 5 and Fig. 6. Thanks to the shared configura-
tion, the code fits together without change.

3.4 Correctness

The chain of transformations according to Danvy’s recipe preserves the seman-
tics in the following sense. The proof is by appeal to the correctness of each
transformation step.

Proposition 1. Let e be a closed expression and ∗⇒ be the reflexive transi-
tive closure of ⇒. It holds that (e, θ0, l0)

∗⇒ (v, θ, l) if and only if eval expr
e with store �θ0� and !current coroutine = l0 evaluates to �v� with store
�θ� and !current coroutine = l with �·� defined by �l� = VLoc l, �λx.e� =
VFun (fun x -> eval expr e), and �nil� = VNil.

4 Implementation

In earlier work, we exhibited and proved correct a systematic transformation
from an interpreter to a denotational implementation [19]. A denotational im-
plementation specifies the semantics of each single language construct in terms
of a combinator. Although the referenced work is posed in the area of program
generation, the underlying technique is more generally applicable. In particular,
it is applicable to the definitional interpreters constructed in Sec. 3.

As we already have closure un-converted interpreters, it remains to trans-
form binders to a higher-order abstract syntax representation and to extract
the combinators. Fig. 7 shows the combinators extracted from Fig. 5 and Fig. 6.
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(*

definitions used

returns fresh location in store

fresh_loc : () -> int =

updates a location with a value

upd_loc : int -> value -> ()

looks up a location in store

lkup_loc : int -> value

location of current coroutine

cur_coroutine : int ref

*)

let create v =

let newl = fresh_loc () in

upd_loc newl v;

VLoc newl

let resume (VLoc l1, v2) =

let VFun cor = lkup_loc l1 in

upd_loc l1 VNil;

let lc = !cur_coroutine in

let v =

push_prompt pp

(fun () ->

cur_coroutine := l1;

cor v2)

in cur_coroutine := lc;

v

let yield v =

let lc = !cur_coroutine in

shift pp (fun ec ->

upd_loc lc (VFun ec);

v)

let transfer (VLoc l1, v2) =

shift pp (fun ec ->

let lc = !cur_coroutine in

let VFun cor = lkup_loc l1 in

upd_loc l1 VNil;

upd_loc lc (VFun ec);

cur_coroutine := l1;

push_prompt pp

(fun () -> cor v2))

Fig. 7. Combinators extracted from the definitional interpreters

Fortunately, the bytecode implementation of OCaml also performs right-to-left
evaluation of function arguments so that it matches the theory perfectly.

Thefinal transformation step in our previouswork [19] is tag removal, which gets
rid of the value type as also advertised by Carette and coworkers [4]. While this
step is not essential for deriving a type system, we apply it to obtain a type-safe im-
plementation of coroutines for OCaml. The extended version of the paper contains
the code.3 Space does not permit further discussion of the implementation.

5 Deriving a Type System

The development in Sec. 3 and Sec. 4 shows that coroutines are tightly connected
to composable continuations by exhibiting a formally derived implementation of
the former with the latter. The results of the RC paper also strongly support
this point of view.

To obtain a type system for coroutines, we therefore choose the following strat-
egy. We regard the coroutine operations as abbreviations for the combinators in
Fig. 7. As these combinators contain the control operators shift and reset, we

3 http://proglang.informatik.uni-freiburg.de/projects/coroutines/

http://proglang.informatik.uni-freiburg.de/projects/coroutines/
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employ a type system that supports shift and reset to obtain adequate typings
for them. Such a system has been proposed by Danvy and Filinski [7] and later
extended with polymorphism by Asai and Kameyama [2]. We use that system to
informally derive a type system for coroutines and postpone a formal treatment
to Sec. 6.

The Danvy/Filinski type system proves judgments of the form Γ ;α � e : τ ;β
where the type environment Γ , the expression e, and the resulting type τ are as
in a standard type system (e.g., the system of simple types). Here, α and β are
answer types and the implicit continuation is a representation of the change of
answer type. More precisely, evaluation of the expression e modifies the answer
type from α to β. The formal explanation is that the type of e∗ is (τ∗ → α∗) →
β∗, where ∗ indicates application of the call-by-value CPS transformation to a
term or a type. The function type in this system also includes the modification of
the answer type of the implicit continuation in its body. We write σ/α→ τ/β for
a function from σ to τ that modifies the answer type from α to β. For reference,
the extended version of the paper contains the typing rules of the monomorphic
system in a variant adapted to the right-to-left evaluation order of our calculus.

5.1 Global Variables and the Reader Monad

Another important observation concerns the global variable that contains the cur-
rent coroutine. Inspection of the interpreter (Fig. 5 and Fig. 6) reveals that the
location of the current coroutine does not change while the body of a fixed corou-
tine executes. For example, the code for resume sets the current coroutine to the
resumed routine and restores the current coroutine to its previous value when the
resumed coroutine terminates or yields. The transfer operation overwrites the
current coroutine to the called coroutine without remembering the past one.

This observation shows that the current coroutine is essentially stored in a
reader monad. Thus, it need not be threaded through the computation, but just
passed downwards. Resuming or transferring to another coroutine starts in a
freshly initialized reader monad.

A similar observation applies to the global coroutine store θ. Each location of
this store either contains a function/continuation or the value nil. The value nil
indicates that the coroutine is either active or suspended by a resume operation.
With this convention, the semantics enforces that there is only one instance of a
coroutine at any time: it is a run-time error to resume or transfer to a coroutine
which is currently nil.

Analyzing the interpreter shows that the set of coroutine locations that are set
to nil does not change while the body of a fixed coroutine executes, as long as the
transfer operation is not used.4 The code for resume overwrites the location of
4 With transfer we could build code that performs the following control transfers.

Let l1, l2, and l3 be coroutine locations. At the top-level, first resume to l1, which
in turn resumes l2. Then transfer to l3, which yields (to l1), which in turn transfers
to l2.

When l2 is first active, l1 and l2 are both nil. The second time round, only l2 is
nil.
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the resumed coroutine with nil and the corresponding yield operation overwrites
this location with a captured continuation.

Thus, the information which coroutine must not be invoked (because its lo-
cation is nil) could be stored in a reader monad, but not the actual function or
continuation which has to be threaded through the computation.

In the case of (pure) symmetric coroutines, this information does not matter.
There is always exactly one active coroutine, the location of which is set to
nil. According to the semantics, a program can transfer safely to any coroutine
without crashing.

5.2 Symmetric Coroutines

If we apply the Danvy/Filinski type system to the transfer operator in Fig. 7
and use the standard ML typings for assignment, dereference, and sequencing
(extended with threading the answer-type change according to the evaluation
order: right-to-left for assignment and left-to-right for sequencing), type-checking
the code for transfer in Fig. 7 yields the following results.

– The type of a coroutine is a reference to a function type.
– The function type of a coroutine always has the form τ/α→ α/α.
– Assuming that current coroutine has type ref(τ1/α1 → α1/α1), the type

of transfer is ref(τ0/α0 → α0/α0)× τ0/α1 → τ1/β1.
– Neither the return type of the coroutine type nor its answer types matter

because a symmetric coroutine never returns.

σ, τ, α, β ::= · · · | σ α−→ τ | cor(β)

Γ � e : σ σ−→ τ &α

Γ � create e : cor(σ) &α

Γ � e1 : cor(β) &α Γ � e2 : β&α

Γ � transfer e1 e2 : α&α

Γ � current : cor(α) &α
Γ, x : σ � e : τ &β

Γ � λx.e : σ
β−→ τ &α

Γ � e1 : σ α−→ τ &α Γ � e2 : σ&α

Γ � e1 e2 : τ &α

Fig. 8. Types and relevant typing rules for symmetric coroutines

These findings motivate the abbreviation cor(τ) = ref(∀α.τ/α→ α/α) for the
type of a coroutine that accepts a value of type τ . In addition, the type system
needs to keep track of the type of the current coroutine, which happens to be
stored in a reader monad (Sec. 5.1). This observation leads to an indexed monadic
typing judgment of the form Γ � e : τ &α where the effect α indicates that the
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current coroutine has type cor(α) and function types of the corresponding form
σ

α−→ τ where α is the expected type of the current coroutine at the call site
of the function. Fig. 8 contains the type syntax and the relevant typing rules.
These rules are obtained by abstracting the above patterns from the typings of
the combinators.

5.3 Asymmetric Coroutines

Again, applying the Danvy/Filinski type system to the resume and yield op-
erators in Fig. 7, we obtain the following results.

– The type of a coroutine is a reference to a function type.
– The function type of a coroutine always has the form τ/α→ α/α.
– resume has type ref(σ/τ → τ/τ) × σ/α→ τ0/β.
– Assuming that the current coroutine has type ref(σ/τ → τ/τ), the type of

yield is τ0/γ → σ/τ0.
– If the coroutine also returns normally, then τ0 = τ , in which case the types

work out to

• resume : ref(σ/τ → τ/τ)× σ/α→ τ/β and
• yield : τ/γ → σ/τ (assuming the coroutine was resumed by the above

resume).

A suitable coroutine type for this constellation is cor(σ, τ) = ref(σ/τ → τ/τ) and
the corresponding type system is again a monadic system that keeps track of the
type of the current coroutine stored in the reader monad. The typing judgment
correspondingly reads Γ � e : τ &α � β where the effect α � β specifies
that the current coroutine has type cor(α, β). The function type has the form

σ
α�β−→ τ where the current coroutine at the point of the function call is expected

to be cor(α, β). Fig. 9 shows the relevant parts of the syntax of types and of the
typing rules. The translation in Sec. 6 sheds more light on the relation between
the typing of the combinators and the typing rules of the source language.

5.4 Dahl-Hoare Style Coroutines

The Dahl-Hoare style only adds the transfer operation to the API for asym-
metric coroutines. Thus, it remains to find a typing rule for transfer to go along
with the system in Sec. 5.3. The rule is similar to the typing of the resume op-
eration, but —as it replaces the current coroutine— its return/yield type must
be equal to the return type of the current coroutine.

Γ � e1 : cor(β, δ)&α � δ Γ � e2 : β &α � δ

Γ � transfer e1 e2 : α&α � δ
(1)
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σ, τ, α, β, γ, δ ::= · · · | σ α�β−→ τ | cor(α, β)

Γ � e : β β�γ−→ γ&α � δ

Γ � create e : cor(β, γ)&α � δ
Γ � current : cor(α, δ)&α � δ

Γ � e1 : cor(β, γ) &α � δ Γ � e2 : β&α � δ

Γ � resume e1 e2 : γ&α � δ

Γ � e : δ&α � δ

Γ � yield e : α&α � δ

Γ, x : σ � e : τ &β � γ

Γ � λx.e : σ
β�γ−→ τ &α � δ

Γ � e1 : σ α�δ−→ τ &α � δ Γ � e2 : σ&α � δ

Γ � e1 e2 : τ &α � δ

Fig. 9. Types and relevant typing rules for asymmetric coroutines

5.5 Keeping Track of Nil

Up to this point, the type systems do not prevent resuming or transferring to
a pending coroutine that waits for a yield and has its location set to nil. As
mentioned in Sec. 5.1, this information could be split from the coroutine store
and passed in a reader monad. Reflecting that reader monad in the type system
requires a number of changes.

1. There must be a static approximation of the location where the coroutine is
stored. We solve that by attaching a source label to each create expression
using that label.

2. There must be an approximation of the set of locations of pending coroutines.
A set of labels is sufficient.

3. The typing judgment must keep track of the additional indexing of the reader
monad.

4. The function type and the coroutine type must be extended to accommodate
the additional indexing information.

Fig. 10 contains a first draft of a type system that tracks this extra information.
The typing judgment extends to Γ ;L, l � e : σ&α � δ where L is the set
of pending labels and l ∈ L is the label of the currently active coroutine. The
function type and the coroutine type carry the same information L, l as indexes.
Thus, a coroutine of type corl

L(β, γ) is stored in location l and, while active, the

coroutines in L are pending. A function of type σ
L,l,α�δ−→ τ can only be called

while in coroutine l with pending set L.
The create operation transforms a function into a coroutine while preserving

its indexes. The resume operation checks with l /∈ L′ that the resumed coroutine
is neither active nor in the pending set and demands a suitable pending set
L = L′∪{l′} for the resumed coroutine. The transfer operation checks similarly
that the target coroutine is not in the pending set, but transferring to oneself is
permitted. The remaining rules are straightforward.
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σ, τ, α, β, γ, δ ::= · · · | σ L,l,α�β−→ τ | corl
L(α, β)

Γ ;L′, l′ � e : β
L,l,β�γ−→ γ&α � δ

Γ ;L′, l′ � createl e : corl
L(β, γ) &α � δ

Γ ;L, l � current : corl
L(α, δ) &α � δ

Γ ;L′, l′ � e1 : corl
L(β, γ) &α � δ

Γ ;L′, l′ � e2 : β&α � δ l /∈ L′ L = L′ ∪ {l′}
Γ ;L′, l′ � resumel e1 e2 : γ&α � δ

Γ ;L, l � e : δ&α � δ

Γ ;L, l � yield e : α&α � δ

Γ ;L, l′ � e1 : corl
L(β, δ) &α � δ Γ ;L, l′ � e2 : β&α � δ l /∈ L \ {l′}
Γ ;L, l′ � transferl e1 e2 : α&α � δ

Γ, x : σ;L, l � e : τ & β � γ

Γ ;L′, l′ � λx.e : σ
L,l,β�γ−→ τ &α � δ

Γ ;L, l � e1 : σ
L,l,α�δ−→ τ &α � δ Γ ;L, l � e2 : σ&α � δ

Γ ;L, l � e1 e2 : τ &α � δ

Fig. 10. Type system for asymmetric coroutines with nil tracking

This type system has been constructed systematically from the operational
semantics, but it turns out to be quite conservative. First, it disallows a coroutine
to resume to itself, which is fine by the operational semantics. However, this
restriction is needed to obtain a sound type system.

Suppose we changed the resume rule to allow self-resumption. In this case,
the constraints in the rule would change to l /∈ L′ \ {l′} and L = L′ \ {l′} ∪ {l}.
In a program that creates more than one coroutine instance with the same label
l, resuming the first of these coroutines and then resuming to coroutine with a
different label blocks later resumes to another l-coroutine, which is annoying,
but still sound. However, because a coroutine is allowed to resume to itself,
the modified type system lets a first instance with label l directly resume to
another instance with label l. This instance, in turn could try to resume to the
first instance, which is not stopped by the type system but which results in a
run-time error. Hence, the system that allows self-resumption would be unsound.

This complication is caused by the procedure-call-like semantics of resume.
It is not an issue for the transfer operation because it replaces the currently
running coroutine.

Second, the type system requires subtyping to avoid being overly rigid. With-
out subtyping, each resume operation can only invoke one kind of coroutine,
namely the one indexed with the correct l and L. The amendment is to allow
multiple create operations labeled with the same label and to introduce subtyp-
ing with respect to the L index. Fig. 11 contains suitable subtyping rules for the
function type and for the coroutine type. When moving to the supertype, both
rules admit decreasing the index: a function or coroutine can always be used in a
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L ⊇ L′ l /∈ L′

corl
L(α, β) ≤ corl

L′(α, β)

σ′ ≤ σ τ ≤ τ ′ L ⊇ L′ l /∈ L′

σ
L,l,α�β−→ τ ≤ σ′ L′,l,α�β−→ τ ′

Fig. 11. Subtyping

less restrictive context. The function type is contravariant in the argument and
covariant in the result, as usual. The argument and result types of the coroutine
need to remain invariant for technical reasons (stored in a reference).

6 Type Soundness

In this section, we consider type soundness of the system in Sec. 5.3 and Sec. 5.4
(Fig. 9 and Equation (1)). That is, we want to show that if a closed expression e
is typed then it either performs infinitely many evaluation steps or its evaluation
terminates with a value after finitely many steps. However, we wish to avoid the
standard technique of proving progress and preservation.

To this end, we propose the following strategy. Danvy and collaborators [6]
have proved that each of the transformation steps T (cps transformation, de-
functionalization, refocusing, transition compression as well as their inverses)
preserve semantic equivalence, in the sense that e evaluates to a value if and
only if T �e� evaluates to a suitably related value. This statement (for the com-
position of these transformations) is the essence of Proposition 1.

In particular, this statement also holds for the interpreter shown in Fig. 12,
which is forked off an intermediate product of the transformation chain from
Sec. 3. In the case of asymmetric coroutines, an intermediate product after re-
functionalization was an interpreter with two levels of continuations. According
to the observation in Sec. 5.1, we transformed the use of the state monad for the
current coroutine in this interpreter into a use of the reader monad. Subsequently,
we removed the outer layer of continuations by direct style transformation and
moved the interpretation of the lambda from the cases for resume and trans-
fer into the case for create.5 The consequence of the last transformation step
is that a coroutine location always contains a continuation, before it could also
contain a standard (CPS) function.

With this preparation, we consider the interpreter Fig. 12 in as a translation
from the source language to CPS plus reader monad in a lambda calculus with
references and read off the accompanying translation on types. As a consequence
of Proposition 1, this translation is semantics preserving.

For the purposes of proving type soundness, we switch perspective and regard
this translation as actually defining the semantics of the original calculus. If we
can now prove that the translation preserves typing and there is a type soundness
proof for the target type system, then we argue as follows: We define that closed
expression e diverges iff its translation e∗ diverges, similarly e evaluates to a
value iff its translation e∗ does. Thus, in combination, we obtain type soundness
5 These steps are documented in the material on the Web.
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(Γ � e : τ &α � β)∗ = Γ ∗ � e∗ : ref(α∗ → β∗) → (τ∗ → β∗) → β∗

(x1 : σ1, . . . , xn : σn)∗ = x1 : σ∗
1 , . . . , xn : σ∗

n

(cor(α/β))∗ = ref(α∗ → β∗)

(σ α�β−→ τ )∗ = σ∗ → ref(α∗ → β∗) → (τ∗ → β∗) → β∗

l∗ = λc.λk.k l

x∗ = λc.λk.k x

(λx.e)∗ = λc.λk.k (λx.e∗)

(e1 e2)∗ = λc.λk.e∗2 c (λv2.e∗1 c (λv1.v1 v2 c k))

(create e1)∗ = λc.λk.e∗1 c(λv1.let l = fresh in update l (λv2.v1 v2 l (λz.z)); k l)

(resume e1 e2)∗ = λc.λk.e∗2 c (λv2.e∗1 c (λv1.let v = lookup v1 ink (v v2)))

(yield e1)∗ = λc.λk.e∗1 c(λv1.update c k; v1)

(transfer e1 e2)∗ = λc.λk.e∗2 c (λv2.e∗1 c (λv1.let v = lookup v1 inupdate c k; v v2))

Fig. 12. Translation

“if e is typed, then either e diverges or evaluates to a value” just because type
soundness for the target means “if e∗ is typed, then either e∗ diverges or it
evaluates to a value”.

There is one final observation to be made for the establishing translation
soundness. For the typing to go through, the type of a computation must be
polymorphic over the final answer type of the continuation.

Lemma 1. Suppose that Γ � e : τ &α � β in the system of Fig. 9 with the
transfer rule. Then Γ ∗ � e∗ : ref(α∗ � β∗) → (τ∗ → β∗)→ β∗ in a simple type
system for call-by-value lambda calculus with references (e.g., [18, Chapter 13]).

The type soundness of the nil-tracking type system in Fig. 10 and Fig. 11 can be
shown using a similar translation, but a more expressive type system with set
types is needed for the target language. However, space does not permit us to
elaborate this translation.

7 Related Work

Language design aspects of coroutines have been explored in the 1970s and
1980s. Coroutines have found entry in some current programming languages
(Python [20], Lua [12], C# [17]), but their formal semantics has been neglected.

The exception is the RC paper [11], which rigorously defines small step oper-
ational semantics for several styles of coroutines and proves various expressivity
results among them and with respect to continuations and subcontinuations.
One might also view the Scheme implementation of Haynes and coworkers [14]
a formal specification of coroutines.

However, apart from our own work [1], we are not aware of any exploration of
type systems tailored to coroutines. The other paper considers a richer calculus
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inspired by the needs of practical programming and develops its type system in
an ad-hoc way. For example, the resume operation takes two continuations to
distinguish between a yield and a normal return of the invoked coroutine. On
the other hand, the system developed in the present paper reveals that the effect
in the previous system [1] keeps track of the type of the current continuation
which is stored in a reader monad. This insight would not have been possible
without the systematic transformation approach.

Blazevic [3] produced a monad-based implementation of symmetric coroutines
with session types in Haskell. Our work is based on an eager language, offers
asymmetric coroutines, and is derived from a specification.

8 Conclusion

Using the systematic transformation approach advocated by Danvy, we have
transformed a small-step reduction semantics for various styles of coroutines to
a working, type-safe OCaml implementation. We have further derived a type
system for a calculus with coroutines by applying a type system that is aware
of control operators to the result of the transformation. Another outcome of the
transformation is the translation which is used in constructing a type soundness
proof for the type system.

We found that the systematic approach enabled additional insights. An ex-
ample is the discovery of the use of the reader monad, which leads to the con-
struction of the nil-tracking type system. Also the type soundness proof is vastly
simplified with the translation that is also derived from an intermediate trans-
formation step. Last but not least, the transformation gave rise to a practically
useful, type-safe library implementation.

Acknowledgments. Thanks to the anonymous reviewers for their extensive
comments and the ensuing discussion, which served to improve the paper
considerably.
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Abstract. We propose a new type system for functional logic pro-
gramming which is more liberal than the classical Damas-Milner usually
adopted, but it is also restrictive enough to ensure type soundness. Start-
ing from Damas-Milner typing of expressions we propose a new notion
of well-typed program that adds support for type-indexed functions, ex-
istential types, opaque higher-order patterns and generic functions—as
shown by an extensive collection of examples that illustrate the possibil-
ities of our proposal. In the negative side, the types of functions must be
declared, and therefore types are checked but not inferred. Another con-
sequence is that parametricity is lost, although the impact of this flaw is
limited as “free theorems” were already compromised in functional logic
programming because of non-determinism.

Keywords: Type systems, functional logic programming, generic func-
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1 Introduction

Functional logic programming. Functional logic languages [9] like TOY [19]
or Curry [10] have a strong resemblance to lazy functional languages like Haskell
[13]. A remarkable difference is that functional logic programs (FLP) can be
non-confluent, giving raise to so-called non-deterministic functions, for which
a call-time choice semantics [6] is adopted. The following program is a simple
example, using natural numbers given by the constructors z and s—we follow
syntactic conventions of some functional logic languages where function and
constructor names are lowercased, and variables are uppercased—and assuming
a natural definition for add : { f X → X, f X→ s X, double X→ add X X }. Here,
f is non-deterministic (f z evaluates both to z and s z ) and, according to call-
time choice, double (f z) evaluates to z and s (s z) but not to s z. Operationally,
call-time choice means that all copies of a non-deterministic subexpression (f z
in the example) created during reduction share the same value.

In the HO-CRWL1 approach to FLP [7], followed by the TOY system, pro-
grams can use HO-patterns (essentially, partial applications of symbols to other
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patterns) in left hand sides of function definitions. This corresponds to an in-
tensional view of functions, i.e., different descriptions of the same ‘extensional’
function can be distinguished by the semantics. This is not an exoticism: it is
known [18] that extensionality is not a valid principle within the combination
of HO, non-determinism and call-time choice. It is also known that HO-patterns
cause some bad interferences with types: [8] and [17] considered that problem,
and this paper improves on those results.

All those aspects of FLP play a role in the paper, and Sect. 3 uses a for-
mal setting according to that. However, most of the paper can be read from a
functional programming perspective leaving aside the specificities of FLP.

Types, FLP and genericity. FLP languages are typed languages adopting
classical Damas-Milner types [5]. However, their treatment of types is very
simple, far away from the impressive set of possibilities offered by functional
languages like Haskell: type and constructor classes, existential types, GADTs,
generic programming, arbitrary-rank polymorphism . . . Some exceptions to this
fact are some preliminary proposals for type classes in FLP [23,20], where in
particular a technical treatment of the type system is absent.

By the term generic programming we refer generically to any situation in
which a program piece serves for a family of types instead of a single concrete
type. Parametric polymorphism as provided by Damas-Milner system is proba-
bly the main contribution to genericity in the functional programming setting.
However, in a sense it is ‘too generic’ and leaves out many functions which are
generic by nature, like equality. Type classes [26] were invented to deal with
those situations. Some further developments of the idea of generic programming
[11] are based on type classes, while others [12] have preferred to use simpler
extensions of Damas-Milner system, such as GADTs [3,25]. We propose a mod-
ification of Damas-Milner type system that accepts natural definitions of intrin-
sically generic functions like equality. The following example illustrates the main
points of our approach.

An introductory example. Consider a program that manipulates Peano nat-
ural numbers, booleans and polymorphic lists. Programming a function size to
compute the number of constructor occurrences in its argument is an easy task
in a type-free language with functional syntax:
size true → s z size false → s z
size z → s z size (s X) → s (size X)
size nil → s z size (cons X Xs) → s (add (size X) (size Xs))

However, as far as bool, nat and [α] are different types, this program would
be rejected as ill-typed in a language using Damas-Milner system, since we ob-
tain contradictory types for different rules of size. This is a typical case where
one wants some support for genericity. Type classes certainly solve the prob-
lem if you define a class Sizeable and declare bool, nat and [α] as instances of
it. GADT-based solutions would add an explicit representation of types to the
encoding of size converting it into a so-called type-indexed function [12]. This
kind of encoding is also supported by our system (see the show function in
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Ex. 1 and eq in Fig 4-b later), but the interesting point is that our approach
allows also a simpler solution: the program above becomes well-typed in our
system simply by declaring size to have the type ∀α.α → nat, of which each
rule of size gives a more concrete instance. A detailed discussion of the advan-
tages and disadvantages of such liberal declarations appears in Sect. 6 (see also
Sect. 4).

The proposed well-typedness criterion requires only a quite simple additional
check over usual type inference for expressions, but here ‘simple’ does not mean
‘naive’. Imposing the type of each function rule to be an instance of the declared
type is a too weak requirement, leading easily to type unsafety. As an example,
consider the rule f X → not X with the assumptions f : ∀α.α → bool, not :
bool→ bool. The type of the rule is bool → bool, which is an instance of the type
declared for f . However, that rule does not preserve the type: the expression
f z is well-typed according to f ’s declared type, but reduces to the ill-typed
expression not z. Our notion of well-typedness, roughly explained, requires also
that right-hand sides of rules do not restrict the types of variables more than
left-hand sides, a condition that is violated in the rule for f above. Def. 1 in
Sect. 3.3 states that point with precision, and allows us to prove type soundness
for our system.

Contributions. We give now a list of the main contributions of our work, pre-
senting the structure of the paper at the same time:

• After some preliminaries, in Sect. 3 we present a novel notion of well-typed
program for FLP that induces a simple and direct way of programming type-
indexed and generic functions. The approach supports also existential types,
opaque HO-patterns and GADT-like encodings, not available in current FLP
systems.
• Sect. 4 is devoted to the properties of our type system. We prove that well-
typed programs enjoy type preservation, an essential property for a type system;
then by introducing failure rules to the formal operational calculus, we also are
able to ensure the progress property of well-typed expressions. Based on those
results we state type soundness. Complete proofs can be found in [16].
• In Sect. 5 we give a significant collection of examples showing the interest
of the proposal. These examples cover type-indexed functions, existential types,
opaque higher-order patterns and generic functions. None of them is supported
by existing FLP systems.
• Our well-typedness criterion goes far beyond the solutions given in previous
works [8,17] to type-unsoundness problems of the use of HO-patterns in func-
tion definitions. We can type equality, solving known problems of opaque decom-
position [8] (Sect. 5.1) and, most remarkably, we can type the apply function
appearing in the HO-to-FO translation used in standard FLP implementations
(Sect. 5.2).
• Finally we discuss in Sect. 6 the strengths and weaknesses of our proposal, and
we end up with some conclusions in Sect. 7.
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2 Preliminaries

We assume a signature Σ = CS ∪FS , where CS and FS are two disjoint sets of
data constructor and function symbols resp., all of them with associated arity.
We write CSn (resp. FSn) for the set of constructor (function) symbols of arity
n, and if a symbol h is in CSn or FSn we write ar(h) = n. We consider a special
constructor fail ∈ CS 0 to represent pattern matching failure in programs as it
is proposed for GADTs [3,24]. We also assume a denumerable set DV of data
variables X . Fig. 1 shows the syntax of patterns ∈ Pat—our notion of values—
and expressions ∈ Exp. We split the set of patterns in two: first order patterns
FOPat ! fot ::= X | c fot1 . . . fotn where ar(c) = n, and higher order patterns
HOPat = Pat � FOPat, i.e., patterns containing some partial application of a
symbol of the signature. Expressions c e1 . . . en are called junk if n > ar(c) and
c �= fail , and expressions f e1 . . . en are called active if n ≥ ar(f). The set of
free variables of an expression—fv(e)—is defined in the usual way. Notice that
since our let expressions do not support recursive definitions the binding of the
variable only affect e2: fv(let X = e1 in e2) = fv(e1) ∪ (fv(e2) � {X}). We
say that an expression e is ground if fv(e) = ∅. A one-hole context is defined
as C ::= [] | C e | e C | let X = C in e | let X = e in C. A data substitution
θ is a finite mapping from data variables to patterns: [Xn/tn]. Substitution
application over data variables and expressions is defined in the usual way. The
empty substitution is written as id. A program rule r is defined as f tn → e where
the set of patterns tn is linear (there is not repetition of variables), ar(f) = n
and fv(e) ⊆

⋃n
i=1 var(ti). Therefore, extra variables are not considered in this

paper. The constructor fail is not supposed to occur in the rules, although it
does not produce any technical problem. A program P is a set of program rules:
{r1, . . . , rn}(n ≥ 0).

For the types we assume a denumerable set T V of type variables α and a
countable alphabet T C =

⋃
n∈N

T Cn of type constructors C. As before, if C ∈
T Cn then we write ar(C) = n. Fig. 1 shows the syntax of simple types and type-
schemes. The set of free type variables (ftv) of a simple type τ is var(τ), and
for type-schemes ftv(∀αn.τ) = ftv(τ) � {αn}. We say a type-scheme σ is closed
if ftv(σ) = ∅. A set of assumptions A is {sn : σn}, where si ∈ CS ∪ FS ∪ DV .
We require set of assumptions to be coherent wrt. CS , i.e., A(fail ) = ∀α.α and
for every c in CSn � {fail}, A(c) = ∀α.τ1 → . . . → τn → (C τ ′1 . . . τ ′m) for some
type constructor C with ar(C) = m. Therefore the assumptions for constructors
must correspond to their arity and, as in [3,24], the constructor fail can have any
type. The union of sets of assumptions is denoted by ⊕: A⊕A′ contains all the
assumptions in A′ and the assumptions in A over symbols not appearing in A′.
For sets of assumptions ftv({sn : σn}) =

⋃n
i=1 ftv(σi). Notice that type-schemes

for data constructors may be existential, i.e., they can be of the form ∀αn.τ → τ ′

where (
⋃

τi∈τ ftv(τi)) � ftv(τ ′) �= ∅. If (s : σ) ∈ A we write A(s) = σ. A type
substitution π is a finite mapping from type variables to simple types [αn/τn].
Application of type substitutions to simple types is defined in the natural way
and for type-schemes consists in applying the substitution only to their free
variables. This notion is extended to set of assumptions in the obvious way. We
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Data variables X, Y, Z, . . .
Type variables α, β, γ, . . .
Data constructors c
Type constructors C
Function symbols f

Expressions e ::= X | c | f | e e
| let X = e in e

Symbol s ::= X | c | f
Non variable symbol h ::= c | f

Data substitution θ ::= [Xn/tn]

Patterns t ::= X
| c t1 . . . tn if n ≤ ar(c)
| f t1 . . . tn if n < ar(f)

Simple Types τ ::= α
| C τ1 . . . τn if ar(C) = n
| τ → τ

Type Schemes σ ::= ∀αn.τ
Assumptions A ::= {s1 : σ1, . . . , sn : σn}
Program rule r ::= f t → e (t linear)
Program P ::= {r1, . . . , rn}
Type substitution π ::= [αn/τn]

Fig. 1. Syntax of expressions and programs

say σ is an instance of σ′ if σ = σ′π for some π. A simple type τ ′ is a generic
instance of σ = ∀αn.τ , written σ " τ ′, if τ ′ = τ [αn/τn] for some τn. Finally, τ ′

is a variant of σ = ∀αn.τ , written σ "var τ ′, if τ ′ = τ [αn/βn] and βn are fresh
type variables.

3 Formal Setup

3.1 Semantics

The operational semantics of our programs is based on let -rewriting [18], a high
level notion of reduction step devised to express call-time choice. For this paper,
we have extended let -rewriting with two rules for managing failure of pattern
matching (Fig. 2), playing a role similar to the rules for pattern matching failures
in GADTs [3,24]. We write →lf for the extended relation and P � e →lf e′

(P � e �lf e′ resp.) to express one step (zero or more steps resp.) of →lf using

(Fapp) f t1θ . . . tnθ →lf rθ, if (f t1 . . . tn → r) ∈ P
(Ffail) f t1 . . . tn →lf fail, if n = ar(f) and �(f t′1 . . . t′n → r) ∈ P such that

f t′1 . . . t
′
n and f t1 . . . tn unify

(FailP) fail e →lf fail

(LetIn) e1 e2 →lf let X = e2 in e1 X, if e2 is junk, active, variable application
or let rooted, for X fresh.

(Bind) let X = t in e →lf e[X/t]

(Elim) let X = e1 in e2 →lf e2, if X �∈ fv(e2)
(Flat) let X = (let Y = e1 in e2) in e3 →lf let Y = e1 in (let X = e2 in e3) ,

if Y �∈ fv(e3)
(LetAp) (let X = e1 in e2) e3 →lf let X = e1 in e2 e3, if X �∈ fv(e3)
(Contx) C[e] →lf C[e′], if C �= [ ], e→lf e′ using any of the previous rules

Fig. 2. Higher Order let-rewriting relation with pattern matching failure →lf
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the program P . By nfP(e) we denote the set of normal forms reachable from e,
i.e., nfP(e) = {e′ | P � e �lf e′and e′ is not →lf -reducible}.

The new rule (Ffail) generates a failure when no program rule can be used
to reduce a function application. Notice the use of unification instead of simple
pattern matching to check that the variables of the expression will not be able
to match the patterns in the rule. This allows us to perform this failure test
locally without having to consider the possible bindings for the free variables
in the expression caused by the surrounding context. Otherwise, these should
be checked in an additional condition for (Contx). Consider for instance the
program P1 = {true ∧X → X, false ∧X → false} and the expression let Y =
true in (Y ∧ true). The application Y ∧ true unifies with the function rule left-
hand side true ∧ X , so no failure is generated. If we use pattern matching as
condition, a failure is incorrectly generated since neither true∧X nor false∧X
match with Y ∧ true.

Finally, rule (FailP) is used to propagate the pattern matching failure when
fail is applied to another expression.

Notice that with the new rules (Ffail) and (FailP) there are still some ex-
pressions whose evaluation can get stuck, as happens with junk expressions like
true z. As we will see in Sect. 4, this can only happen to ill-typed expressions.
We will further discuss there the issues of fail -ended and stuck reductions.

3.2 Type Derivation and Inference for Expressions

Both derivation and inference rules are based on those presented in [17]. Our
type derivation rules for expressions (Fig. 3-a) correspond to the well-known
variation of Damas-Milner’s [5] type system with syntax-directed rules, so there
is nothing essentially new here—the novelty will come from the notion of well-
typed program. Gen(τ,A) is the closure or generalization of τ wrt. A, which
generalizes all the type variables of τ that do not appear free in A. Formally:
Gen(τ,A) = ∀αn.τ where {αn} = ftv(τ) � ftv(A). We say that e is well-typed
under A, written wtA(e), if there exists some τ such that A � e : τ ; otherwise it
is ill-typed.

[ID] A � s : τ
if A(s) � τ

[APP]
A � e1 : τ1 → τ

A � e2 : τ1

A � e1 e2 : τ

[LET]
A � e1 : τX

A ⊕ {X : Gen(τX ,A)} � e2 : τ

A � let X = e1 in e2 : τ

[iID] A � s : τ |id if A(s) �var τ

[iAPP]
A � e1 : τ1|π1

Aπ1 � e2 : τ2|π2

A � e1 e2 : απ|π1π2π

if α fresh ∧
π = mgu(τ1π2, τ2 → α)

[iLET]
A � e1 : τX |πX

AπX ⊕ {X : Gen(τX ,AπX )} � e2 : τ |π
A � let X = e1 in e2 : τ |πXπ

a) Type derivation rules b) Type inference rules

Fig. 3. Type system
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The type inference algorithm � (Fig. 3-b) follows the same ideas as the al-
gorithm W [5]. We have given the type inference a relational style to show the
similarities with the typing rules. Nevertheless, the inference rules represent an
algorithm that fails if no rule can be applied. This algorithm accepts a set of
assumptions A and an expression e, and returns a simple type τ and a type
substitution π. Intuitively, τ is the “most general” type which can be given to
e, and π is the “most general” substitution we have to apply to A for deriving
any type for e.

3.3 Well-Typed Programs

The next definition—the most important in the paper—establishes the condi-
tions that a program must fulfil to be well-typed in our proposal:

Definition 1 (Well-typed program wrt. A). The program rule f t1 . . . tm →
e is well-typed wrt. a set of assumptions A, written wtA(f t1 . . . tm → e), iff:

i) A⊕ {Xn : αn} � f t1 . . . tm : τL|πL

ii) A⊕ {Xn : βn} � e : τR|πR

iii) ∃π.(τL, αnπL) = (τR, βnπR)π
iv) AπL = A, AπR = A, Aπ = A

where {Xn} = var(f t1 . . . tm) and {αn}, {βn} are fresh type variables. A pro-
gram P is well-typed wrt. A, written wtA(P), iff all its rules are well-typed.

The first two points check that both right and left hand sides of the rule can have
a valid type assigning some types for the variables. Furthermore, it obtains the
most general types for those variables in both sides. The third point is the most
important. It checks that the obtained most general types for the right-hand side
and the variables appearing in it are more general than the ones for the left-hand
side. This fact guarantees the type preservation property (i.e., the expression
resulting after a reduction step has the same type as the original one) when
applying a program rule. Moreover, this point ensures a correct management of
both skolem constructors [14] and opaque variables [17], either introduced by the
presence of existentially quantified constructors or higher order patterns. Finally,
the last point guarantees that the set of assumptions is not modified by neither
the type inference nor the matching substitution. In practice, this point holds
trivially if type assumptions for program functions are closed, as it is usual.

The previous definition presents some similarities with the notion of typeable
rewrite rule for Curryfied Term Rewriting Systems in [2]. In that paper the key
condition is that the principal type for the left-hand side allows to derive the
same type for the right-hand side. Besides, [2] considers intersection types and
it does not provide an effective procedure to check well-typedness.
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Example 1 (Well and ill-typed rules and expressions). Let us consider the fol-
lowing assumptions and program:

A ≡ { z : nat, s : nat→ nat, true : bool, false : bool, cons : ∀α.α→ [α] → [α],
nil : ∀α.[α], rnat : repr nat, id : ∀α.α→ α, snd : ∀α, β.α→ β → β,
unpack : ∀α, β.(α→ α) → β, eq : ∀α.α→ α→ bool, showNat : nat→ [char],
show : ∀α.repr α→ α→ [char], f : ∀α.bool → α, flist : ∀α.[α] → α }
P ≡ { id X → X, snd X Y → Y, unpack (snd X)→ X, eq (s X) z → false,
show rnat X → showNat X, f true→ z, f true→ false,
f list (cons z nil)→ s z, f list (cons true nil)→ false }

The rules for the functions id and snd are well-typed. The function unpack is
taken from [8] as a typical example of the type problems that HO-patterns can
produce. According to Def. 1 the rule of unpack is not well-typed since the
tuple (τL, αnπL) inferred for the left-hand side is (γ, δ), which is not matched
by the tuple (η, η) inferred as (τR, βnπR) for the right-hand side. This shows
the problem of existential type variables that “escape” from the scope. If that
rule was well-typed then type preservation could not be granted anymore—e.g.
consider the step unpack (snd true) →lf true, where the type nat can be assigned
to unpack (snd true) but true can only have type bool. The rule for eq is well-
typed because the tuple inferred for the right-hand side, (bool, γ), matches the
one inferred for the left-hand side, (bool, nat). In the rule for show the inference
obtains ([char], nat) for both sides of the rule, so it is well-typed.

The functions f and flist show that our type system cannot be forced to
accept an arbitrary function definition by generalizing its type assumption. For
instance, the first rule for f is not well-typed since the type nat inferred for the
right-hand side does not match γ, the type inferred for the left-hand side. The
second rule for f is also ill-typed for a similar reason. If these rules were well-
typed, type preservation would not hold: consider the step f true→lf z; f true
can have any type, in particular bool, but z can only have type nat. Concerning
flist, its type assumption cannot be made more general for its first argument:
it can be seen that there is no τ such that the rules for flist remain well-typed
under the assumption flist : ∀α.α→ τ .

With the previous assumptions, expressions like id z true or snd z z true
that lead to junk are ill-typed, since the symbols id and snd are applied to more
expressions than the arity of their types. Notice also that although our type
system accepts more expressions that may produce pattern matching failures
than classical Damas-Milner, it still rejects some expressions presenting those
situations. Examples of this are flist z and eq z true, which are ill-typed since
the type of the function prevents the existence of program rules that can be used
to rewrite these expressions: flist can only have rules treating lists as argument
and eq can only have rules handling both arguments of the same type.

Def. 1 is based on the notion of type inference of expressions to stress the fact
that it can be implemented easily. For each program rule, conditions i) and ii)
use the algorithm of type inference for expressions, iii) is just matching, and



88 F. López-Fraguas, E. Martin-Martin, and J. Rodŕıguez-Hortalá

iv) holds trivially in practice, as we have noticed before. A more declarative
alternative to Def. 1 based on type derivations can be found in [16].

We encourage the reader to play with the implementation, made available as
a web interface at http://gpd.sip.ucm.es/LiberalTyping

In [17] we extended Damas-Milner types with some extra control over HO-
patterns, leading to another definition of well-typed programs (we write wtold

A (P)
for that). All valid programs in [17] are still valid:

Theorem 1. If wtold
A (P) then wtA(P).

To further appreciate the usefulness of the new notion with respect the old one,
notice that all the examples in Sect. 5 are rejected as ill-typed by [17].

4 Properties of the Type System

We will follow two alternative approaches for proving type soundness of our
system. First, we prove the theorems of progress and type preservation similar
to those that play the main role in the type soundness proof for GADTs [3,24].
After that, we follow a syntactic approach similar to [28].

Theorem 2 (Progress). If wtA(P), wtA(e) and e is ground, then either e is
a pattern or ∃e′. P � e→lf e′.

The type preservation result states that in well-typed programs reduction does
not change types.

Theorem 3 (Type Preservation). If wtA(P), A � e : τ and P � e →lf e′,
then A � e′ : τ .

In order to follow a syntactic approach similar to [28] we need to define some
properties about expressions:

Definition 2. An expression e is stuck wrt. a program P if it is a normal form
but not a pattern, and is faulty if it contains a junk subexpression.

Faulty is a pure syntactic property that tries to overapproximate stuck. Not all
faulty expressions are stuck. For example, snd (z z) true→lf true. However all
faulty expressions are ill-typed:

Lemma 1 (Faulty Expressions are ill-typed). If e is faulty then there is no
A such that wtA(e).

The next theorem states that all finished reductions of well-typed ground expres-
sions do not get stuck but end up in patterns of the same type as the original
expression.

Theorem 4 (Syntactic Soundness). If wtA(P), e is ground and A � e : τ
then: for all e′ ∈ nfP(e), e′ is a pattern and A � e′ : τ .

http://gpd.sip.ucm.es/LiberalTyping
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The following complementary result states that the evaluation of well-typed
expressions does not pass through any faulty expression.

Theorem 5. If wtA(P), wtA(e) and e is ground, then there is no e′ such that
P � e �lf e′ and e′ is faulty.

We discuss now the strength of our results.

• Progress and type preservation: In [22] Milner considered ‘a value
‘wrong’, which corresponds to the detection of a failure at run-time’ to reach
his famous lemma ‘well-typed programs don’t go wrong’. For this to be true in
languages with patterns, like Haskell or ours, not all run-time failures should be
seen as wrong, as happens with definitions like head (cons x xs)→ x, where there
is no rule for (head nil). Otherwise, progress does not hold and some well-typed
expressions become stuck. A solution is considering a ‘well-typed completion’
of the program, adding a rule like head nil → error where error is a value
accepting any type. With it, (head nil) reduces to error and is not wrong, but
(head true), which is ill-typed, is wrong and its reduction gets stuck. In our
setting, completing definitions would be more complex because of HO-patterns
that could lead to an infinite number of ‘missing’ cases. Our failure rules in Sect.
2 try to play a similar role. We prefer the word fail instead of error because, in
contrast to FP systems where an attempt to evaluate (head nil) results in a run-
time error, in FLP systems rather than an error this is a silent failure in a possible
space of non-deterministic computations managed by backtracking. Admittedly,
in our system the difference between ‘wrong’ and ‘fail’ is weaker from the point
of view of reduction. Certainly, junk expressions are stuck but, for instance,
(head nil) and (head true) both reduce to fail, instead of the ill-typed (head
true) getting stuck. Since fail accepts all types, this might seem a point where
ill-typedness comes in hiddenly and then magically disappear by the effect of
reduction to fail. This cannot happen, however, because type preservation holds
step-by-step, and then no reduction e→∗ fail starting with a well-typed e can
pass through the ill-typed (head true) as intermediate (sub)-expression.
• Liberality: In our system the risk of accepting as well-typed some ex-

pressions that one might prefer to reject at compile time is higher than in more
restrictive languages. Consider the function size of Sect. 1. For any well-typed
e, size e is also well-typed, even if e’s type is not considered in the definition
of size; for instance, size (true,false) is a well-typed expression reducing to fail.
This is consistent with the liberality of our system, since the definition of size
could perfectly have included a rule for computing sizes of pairs. Hence, for
our system, this is a pattern matching failure similar to the case of (head nil).
This can be appreciated as a weakness, and is further discussed in Sect. 6 in
connection to type classes and GADT’s.
• Syntactic soundness and faulty expressions: Th. 4 and 5 are easy

consequences of progress and type preservation. Th. 5 is indeed a weaker safety
criterion, because our faulty expressions only capture the presence of junk, which
by no means is the only source of ill-typedness. For instance, the expressions
(head true) or (eq true z) are ill-typed but not faulty. Th. 5 says nothing about
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them; it is type preservation who ensures that those expressions will not occur
in any reduction starting in a well-typed expression. Still, Th. 5 contains no
trivial information. Although checking the presence of junk is trivial (counting
arguments suffices for it), the fact that a given expression will not become faulty
during reduction is a typically undecidable property approximated by our type
system. For example, consider g with type ∀α, β.(α→ β) → α→ β, defined as g
H X → H X. The expression (g true false) is not faulty but reduces to the faulty
(true false). Our type system avoids that because the non-faulty expression (g
true false) is detected as ill-typed.

5 Examples

In this section we present some examples showing the flexibility achieved by
our type system. They are written in two parts: a set of assumptions A over
constructors and functions and a set of program rules P . In the examples we
consider the following initial set of assumptions:

Abasic ≡ {true, false : bool, z : nat, s : nat→ nat, cons : ∀α.α→ [α] → [α],
nil : ∀α.[α], pair : ∀α, β.α→ β → pair α β, key : ∀α.α→ (α→ nat)→ key,
∧,∨ : bool→ bool → bool, snd : ∀α, β.α→ β → β, }

5.1 Type-Indexed Functions

Type-indexed functions (in the sense appeared in [12]) are functions that have
a particular definition for each type in a certain family. The function size of
Sect. 1 is an example of such a function. A similar example is given in Fig. 4-a,
containing the code for an equality function which only operates with booleans,
natural numbers and pairs.

A ≡ Abasic ⊕ {eq : ∀α.α → α → bool}
P ≡ { eq true true → true,

eq true false → false,
eq false true → false,
eq false false → true,

eq z z → true,
eq z (s X) → false,
eq (s X) z → false,
eq (s X) (s Y ) → eq X Y,

eq (pair X1 Y1) (pair X2 Y2) →
(eq X1 X2) ∧ (eq Y1 Y2) }

A ≡ Abasic⊕
{ eq : ∀α.repr α → α → α → bool,
rbool : repr bool, rnat : repr nat,
rpair : ∀α, β.repr α → repr β →

repr (pair α β) }
P ≡ { eq rbool true true → true,

eq rbool true false → false,
eq rbool false true → false,
eq rbool false false → true,

eq rnat z z → true,
eq rnat z (s X) → false,
eq rnat (s X) z → false,
eq rnat (s X) (s Y ) → eq rnat X Y,

eq (rpair Ra Rb) (pair X1 Y1) (pair X2 Y2) →
(eq Ra X1 X2) ∧ (eq Rb Y1 Y2) }

a) Original program b) Equality using GADTs

Fig. 4. Type-indexed equality
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An interesting point is that we do not need a type representation as an extra
argument of this function as we would need in a system using GADTs [3,12]. In
these systems the pattern matching on the GADT induces a type refinement,
allowing the rule to have a more specific type than the type of the function.
In our case this flexibility resides in the notion of well-typed rule. Then a type
representation is not necessary because the arguments of each rule of eq already
force the type of the left-hand side and its variables to be more specific (or
the same) than the inferred type for the right-hand side. The absence of type
representations provides simplicity to rules and programs, since extra arguments
imply that all functions using eq direct or indirectly must be extended to accept
and pass these type representations. In contrast, our rules for eq (extended to
cover all constructed types) are the standard rules defining strict equality that
one can find in FLP papers (see e.g. [9]), but that cannot be written directly
in existing systems like TOY or Curry, because they are ill-typed according to
Damas-Milner types.

We stress also the fact that the program of Fig. 4-a would be rejected by
systems supporting GADTs [3,25], while the encoding of equality using GADTs
as type representations in Fig. 4-b is also accepted by our type system.

Another interesting point is that we can handle equality in a quite fine way,
much more flexible than in TOY or Curry, where equality is a built-in that pro-
ceeds structurally as in Fig. 4-a. With our proposed type system programmers
can define structural equality as in Fig. 4-a for some types, choose another be-
havior for others, and omitting the rules for the cases they do not want to handle.
Moreover, the type system protects against unsafe definitions, as we explain now:
it is known [8] that in the presence of HO-patterns2 structural equality can lead
to the problem of opaque decomposition. For example, consider the expression
eq (snd z) (snd true). It is well-typed, but after a decomposition step using the
structural equality we obtain eq z true, which is ill-typed. Different solutions
have been proposed [8], but all of them need fully type-annotated expressions
at run time, which penalizes efficiency. With the proposed type system that
overloading at run time is not necessary since this problem of opaque decom-
position is handled statically at compile time: we simply cannot write equality
rules leading to opaque decomposition, because they are rejected by the type
system. This happens with the rule eq (snd X) (snd Y ) → eq X Y , which will
produce the previous problematic step. It is rejected because the inferred type
for the right-hand side and its variables X and Y is (bool, γ, γ), which is more
specific than the inferred in the left-hand side (bool, α, β).

5.2 Existential Types, Opacity and HO Patterns

Existential types [14] appear when type variables in the type of a constructor
do not occur in the final type. For example the constructor key : ∀α.α→ (α→
nat) → key has an existential type, since α does not appear in the final type
key. In functional logic languages, however, HO-patterns can introduce the same
2 This situation also appears with first order patterns containing data constructors

with existential types.
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opacity as constructors with existential type. A prototypical example is snd X :
we know that X has some type, but we cannot know anything about it from the
type β → β of the expression. In [17] a type system managing the opacity of
HO-patterns is proposed. The program below shows how the system presented
here generalizes [17], accepting functions that were rejected there (e.g. idSnd)
and also supporting constructors with existential type (e.g. getKey):

A ≡ Abasic ⊕ { getKey : key → nat, idSnd : ∀α, β.(α→ α) → (β → β) }
P ≡ { getKey (key X F ) → F X, idSnd (snd X)→ snd X }

Another remarkable example is given by the well-known translation of higher-
order programs to first-order programs often used as a stage of the compilation
of functional logic programs (see e.g. [18,1]). In short, this translation introduces
a new function symbol @ (‘apply’), adds calls to @ in some points in the program
and appropriate rules for evaluating it. This latter aspect is interesting here, since
the rules are not Damas-Milner typeable. The following program contains the
@-rules (written in infix notation) for a concrete example with the constructors
z, s, nil, cons and the functions length, append and snd with the usual types.

A ≡ Abasic ⊕ { length : ∀α.[α] → nat, append : ∀α.[α] → [α]→ [α],
add : nat→ nat→ nat,@ : ∀α, β.(α→ β)→ α→ β }

P ≡ { s @ X → s X, cons @ X → cons X, (cons X) @ Y → cons X Y,
append @ X → append X, (append X) @ Y → append X Y,
snd@X → snd X, (snd X)@Y → snd X Y, length@X → length X }

These rules use HO-patterns, which is a cause of rejection in most systems. Even
if HO patterns were allowed, the rules for @ would be rejected by a Damas-Milner
type system, no matter if extended to support existential types or GADTs.
However using Def. 3.1 they are all well-typed, provided we declare @ to have
the type @ : ∀α, β.(α → β) → α → β. Because of all this, the @-introduction
stage of the FLP compilation process can be considered as a source to source
transformation, instead of a hard-wired step.

5.3 Generic Functions

According to a strict view of genericity, the functions size and eq in Sect. 1 and
5.1 resp. are not truly generic. We have a definition for each type, instead of one
‘canonical’ definition to be used by each concrete type. However we can achieve
this by introducing a ‘universal’ data type over which we define the function (we
develop the idea for size), and then use it for concrete types via a conversion
function.

This can be done by using GADTs to represent uniformly the applicative
structure of expressions (for instance, the spines of [12]), by defining size over
that uniform representations, and then applying it to concrete types via con-
version functions. Again, we can also offer a similar but simpler alternative.
A uniform representation of constructed data can be achieved with a data type
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data univ = c nat [univ] where the first argument of c is for numbering construc-
tors, and the second one is the list of arguments of a constructor application.
A universal size can be defined as usize (c Xs) → s (sum (map usize Xs))
using some functions of Haskell’s prelude. Now, a generic size can be defined as
size → usize · toU , where toU is a conversion function with declared type toU
: ∀α.α→ univ

toU true → c z [] toU false → c (s z) []
toU z → c (s2 z) [] toU (s X) → c (s3 z) [toU X]
toU [] → c (s4 z) [] toU (X:Xs) → c (s5 z) [toU X,toU Xs]

(si abbreviates iterated s’s). This toU function uses the specific features of our
system. It is interesting also to remark that in our system the truly generic rule
size → usize · toU can coexist with the type-indexed rules for size of Sect. 1.
This might be useful in practice: one can give specific, more efficient definitions
for some concrete types, and a generic default case via toU conversion for other
types3.

Admittedly, the type univ has less representation power than the spines of
[12], which could be a better option in more complex situations. Nevertheless,
notice that the GADT-based encoding of spines is also valid in our system.

6 Discussion

We further discuss here some positive and negative aspects of our type system.

Simplicity. Our well-typedness condition, which adds only one simple check for
each program rule to standard Damas-Milner inference, is much easier to inte-
grate in existing FLP systems than, for instance, type classes (see [20] for some
known problems for the latter).

Liberality (continued from Sect. 4). we recall the example of size, where
our system accepts as well-typed (size e) for any well-typed e. Type classes im-
pose more control: size e is only accepted if e has a type in the class Sizeable.
There is a burden here: you need a class for each generic function, or at least for
each range of types for which a generic function exists; therefore, the number
of class instance declarations for a given type can be very high. GADTs are in
the middle way. At a first sight, it seems that the types to which size can be
applied are perfectly controlled because only representable types are permitted.
The problem, as with classes, comes when considering other functions that are
generic but for other ranges of types. Now, there are two options: either you
enlarge the family of representable functions, facing up again the possibility of
applying size to unwanted arguments, or you introduce a new family of repre-
sentation types, which is a programming overhead, somehow against genericity.

3 For this to be really practical in FLP systems, where there is not a ‘first-fit’ policy
for pattern matching in case of overlapping rules, a specific syntactic construction
for ‘default rule’ would be needed.
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Need of type declarations. In contrast to Damas & Milner system, where
principal types exist and can be inferred, our definition of well-typed program
(Def. 1) assumes an explicit type declaration for each function. This happens also
with other well-known type features, like polymorphic recursion, arbitrary-rank
polymorphism or GADTs [3,25]. Moreover, programmers usually declare the
types of functions as a way of documenting programs. Notice also that type in-
ference for functions would be a difficult task since functions, unlike expressions,
do not have principal types. Consider for instance the rule not true → false.
All the possible types for the not function are ∀α.α → α, ∀α.α → bool and
bool→ bool but none of them is most general.

Loss of parametricity. In [27] one of the most remarkable applications of type
systems was developed. The main idea there is to derive “free theorems” about
the equivalence of functional expressions by just using the types of some of its
constituent functions. These equivalences express different distribution proper-
ties, based on Reynold’s abstraction theorem there recasted as “the parametric-
ity theorem”, which basically exploits the fact that a function cannot inspect
the values of argument subexpressions with a polymorphic variable as type.
Parametricity was originally developed for the polymorphic λ-calculus, so free
theorems have to be weakened with additional conditions in order to accomodate
them to practical languages like Haskell, as their original formulations are false
in the presence of unbounded recursion, partial functions or impure features like
seq [27,13].

With our type system parametricity is lost, because functions are allowed
to inspect any argument subexpression, as seen in the size function from page
81. This has a limited impact in the FLP setting, since it is known that non-
determinism and narrowing—not treated in the present work but standard in
FLP systems—not only breaks free theorems but also equational rules for con-
crete functions that hold for Haskell, like (filter p) ◦ (map h) ≡ (map h) ◦
(filter (p ◦ h)) [4].

7 Conclusions

Starting from a simple type system, essentially Damas-Milners’s one, we have
proposed a new notion of well-typed functional logic program that exhibits in-
teresting properties: simplicity; enough expressivity to achieve existential types
or GADT-like encodings, and to open new possibilities to genericity; good for-
mal properties (type soundness, protection against unsafe use of HO patterns).
Regarding the practical interest of our work, we stress the fact that no existing
FLP system supports any of the examples in Sect. 5, in particular the exam-
ples of the equality—where known problems of opaque decomposition [8] can be
addressed—and apply functions, which play important roles in the FLP setting.
Moreover, our work greatly improves our previous results [17] about safe uses
of HO patterns. However, considering also the weaknesses discussed in Sect. 6
suggests that a good option in practice could be a partial adoption of our system,
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not attempting to replace standard type inference, type classes or GADTs, but
rather complementing them.

We find suggestive to think of the following future scenario for our system
TOY: a typical program will use standard type inference except for some concrete
definitions where it is annotated that our new liberal system is adopted instead.
In addition, adding type classes to the languages is highly desirable; then the
programmer can choose the feature—ordinary types, classes, GADTs or our more
direct generic functions—that best fits his needs of genericity and/or control
in each specific situation. We have some preliminary work [21] exploring the
use of our type-indexed functions to implement type classes in FLP, with some
advantages over the classical dictionary-based technology.

Apart from the implementation work, to realize that vision will require fur-
ther developments of our present work:

• A precise specification of how to mix different typing conditions in the same
program and how to translate type classes into our generic functions.
• Despite of the lack of principal types, some work on type inference can be
done, in the spirit of [25].
• Combining our genericity with the existence of modules could require adopting
open types and functions [15].
• Narrowing, which poses specific problems to types, should be also considered.

Acknowledgments. We thank Philip Wadler and the rest of reviewers for their
stimulating criticisms and comments.
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Abstract. The Java virtual machine executes stack-based bytecode. The inten-
sive use of an operand stack has been identified as a major obstacle for static
analysis and it is now common for static analysis tools to manipulate a stack-
less intermediate representation (IR) of bytecode programs. This paper provides
such a bytecode transformation, describes its semantic correctness and evaluates
its performance. We provide the semantic foundations for proving that an ini-
tial program and its IR behave similarly, in particular with respect to object cre-
ation and throwing of exceptions. The correctness of this transformation is proved
with respect to a relation on execution traces taking into account that the object
allocation order is not preserved by the transformation.

1 Introduction

Several optimization and analysis tools for Java bytecode work on an intermediate rep-
resentation (IR) of the bytecode that makes analyses simpler [3,14]. Using such trans-
formations may simplify the work of the analyser but the overall correctness of the
analysis now becomes dependent on the semantics-preserving properties of the trans-
formation. Semantic correctness is particularly crucial when an analysis forms part of
the security defense line, as is the case with Java’s bytecode verifier (BCV). Surpris-
ingly, the semantic foundations of these bytecode transformations have received little
attention. The contribution of this paper is to propose a transformation which at the
same time is efficient (in terms of transformation time and produced code) and has a
formal correctness proof. The long-term goal motivating this work is to provide a trans-
formation that can be used to integrate other static analyses into an “extended byte-
code verifier” akin to the stack map-based lightweight bytecode verifier proposed by
Rose [11]. For this to work, the transformation must be efficient so a requirement to our
transformation algorithm is that it must work in one pass over the bytecode.

This paper provides a semantically sound, provably correct transformation of byte-
code into an intermediate representation (IR). We address in this work three key lan-
guage features that make a provably correct transformation challenging.

Operand Stack. The Java virtual machine (JVM) is stack-based and the intensive use
of the operand stack may make it difficult to adapt standard static analysis techniques
that have been first designed for more standard (variable-based) 3-address codes. As
noticed by Logozzo and Fähndrich [8], a naive translation from a stack-based code to
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3-address code may result in an explosion of temporary variables, which in turn may
dramatically affect the precision of non-relational static analyses (such as intervals) and
render some of the more costly analyses (such as polyhedral analysis) infeasible. The
current transformation keeps the number of extra temporary variables at a reasonable
level without using auxiliary iterated analyses such as copy propagation.

Splitted Object Creation. The object creation scheme of the JVM is another feature
which is difficult to track because it is done in two distinct steps: (i) raw object alloca-
tion and (ii) constructor call. References to uninitialized objects are frequently pushed
and duplicated on the operand stack, which makes it difficult for an analysis to recover
this sequence of actions. The BCV not only enforces type safety of bytecode programs
but also a complex object initialization property: an object cannot be used before an ad-
equate constructor has been called on it. The BCV verifies this by tracking aliases of
uninitialized objects in the operand stack, but this valuable alias information is lost for
subsequent static analyses. The present transformation rebuilds the initialization chain of
an object with the instruction x := new C(arg1, arg2, ...). This specific feature puts new
constraints on the formalization because object allocation order is no longer preserved.

Exception Throwing Order. A last difficulty for such a bytecode transformation is the
wealth of dynamic checks used to ensure intrinsic properties of the Java execution
model, such as absence of null-pointer dereferencings, out-of-bounds array accesses,
etc. The consequence is that many instructions may raise different kinds of exception
and any sound transformation must take care to preserve the exception throwing order.

Illustrating Example. Figure 1 presents an example program illustrating these issues.
For more readability, we will also refer to Figure 1(a) that gives the corresponding Java
source code. Its corresponding bytecode version (Figure 1(c)) shows the JVM object ini-
tialization scheme: an expression new A() is compiled to the sequence of lines [5; 6; 7].
A new object of class A is first allocated in the heap and its address is pushed on top of
the operand stack. The address is then duplicated on the stack by the instruction dup and
the non-virtual method A() is called, consuming the top of the stack. The copy is left on

B f(int x, int y) {
return(new B(x/y, new A()));
}

(a) source function

B f(x, y);
0 : t1 := new A();
1 : t2 := new B(x/y, t1);
2 : vreturn t2;

(b) BIR function (not semantics-
preserving)

B f(x, y);
0 : new B
1 : dup
2 : load y
3 : load x
4 : div
5 : new A
6 : dup
7 : constructor A
8 : constructor B
9 : vreturn

(c) BC function

B f(x, y);
0 : mayinit B;
1 : nop;
2 : nop;
3 : nop;
4 : notzero y;
5 : mayinit A;
6 : nop;
7 : t1 := new A();
8 : t2 := new B(x/y, t1);
9 : vreturn t2;

(d) BIR function (semantics
preserving)

Fig. 1. Example of source code, bytecode and two possible transformations
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the top of the stack and represents from now on an initialized object. This initialization
by side-effect is particularly challenging for the BCV [6] which has to keep track of the
alias between uninitialized references on the stack. Using a similar approach, we are able
to fold the two instructions of object allocation and constructor call into a single IR in-
struction. Figure 1(b) shows a first attempt of such a fusion. However, in this example,
side-effect free expressions are generated in a naive way which changes the semantics in
several ways. First, the program does not respect the allocation order. This is unavoidable
if we want to keep side-effect free expressions and still re-build object constructions. The
allocation order may have a functional impact because of the static initializer A.〈clinit〉
that may be called when reaching an instructionnew A. In Figure 1(b) this order is not pre-
served since A.〈clinit〉may be called before B.〈clinit〉while the bytecode program
follows an inverse order. In Figure 1(d) this problem is solved using a specific instruc-
tion mayinit A that makes explicit the potential call to a static initializer. The second
major semantic problem of the program in Figure 1(b) is that it does not respect the ex-
ception throwing order of the bytecode version. In Figure 1(b) the call to A() may appear
before the DivByZero exception may be raised when evaluating x/y. The program in
Figure 1(d) solves this problem using a specific instruction notzero y that explicitly
checks if y is non-zero and raises a DivByZero exception if this is not the case.

The algorithm presented in Section 3 and proved correct in Section 4 takes care
of these pitfalls. The input (BC) and IR (BIR) languages are presented in Section 2.
The transformation demands that input programs pass the BCV and use uninitialized
objects in a slightly restricted way (see Section 3). Our algorithm uses the technique
of symbolic execution of the input code, which allows dealing simultaneously with
the aforesaid challenges, while the main alternative techniques, briefly overviewed in
Section 5, proceed in at least two distinct phases on the code: naive code is first gen-
erated, it is then optimized in a second phase, using traditional compiler optimization
techniques. We believe the symbolic execution scheme gives rise to a rather elegant cor-
rectness proof, compared to the one we would obtain by combining correctness proofs
of separate phases. This transformation has been implemented for the full Java byte-
code language (meeting the same requirements), as part of the Sawja1 static analysis
framework. Its experimental evaluation [5] of this transformation shows it competes
well with other state-of-the-art bytecode transformation tools.

2 Source and Target Languages

Our source language BC is an untyped stack-based Java-like bytecode language with
object construction, exceptions and virtual calls. In the formalization part of this work,
the main missing feature is multi-threading. Other missing features, e.g. 64 bits values,
static elements (static fields and static methods) or method overloading would make
the current formalization heavier but do not introduce any new difficulties. The set
of bytecodes we consider is given in Figure 2. They are familiar Java bytecodes and
will not be explained. In order for the transformation to succeed, additional structural
constraints on the bytecode must be satisfied. They are described in the dedicated para-
graph Relative BCV-Completeness (Section 3).

1 http://sawja.inria.fr/

http://sawja.inria.fr/
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C ::= class names :
C | . . .
F ::= field names :
f | . . .

M ::= method names :
m | . . .

varBC ::= BC variables :
x | x1 | x2 | . . . this

instrBC ::= BC instructions :
nop | push c | pop | dup | add | div
| load varBC | store varBC

| new C | constructor C
| getfield f | putfield f
| invokevirtual C.m
| if pc | goto pc
| vreturn | return

tvar ::= temporary variables:
t | t1 | t2 | . . .

varBIR ::= BIR variables :
varBC | tvar

expr ::= side-effect free expressions:
c | null | varBIR

| expr+expr | expr/expr | expr.f
instrBIR ::= BIR instructions :

nop | mayinit C
| notnull expr | notzero expr
| varBIR:=expr | expr.f :=expr
| varBIR:= new C(expr, . . . , expr)
| expr.super (C, expr, . . . , expr)
| varBIR:=expr.m(C, expr, . . . , expr)
| expr.m(C, expr, . . . , expr)
| if expr pc | goto pc
| vreturn expr | return

Fig. 2. Instructions of BC and BIR

The BIR target language (Figure 2) provides expressions and instructions for vari-
able and field assignments. BIR distinguishes two kinds of variables: local variables in
varBC are identifiers already used at the BC level, while tvar is a set of fresh identi-
fiers introduced in BIR. Like BC, BIR is unstructured. What BIR brings here is that
conditional jumps now depend on structured expressions.

Object Creation and Initialization. The Java bytecode object creation scheme, as ex-
plained in Section 1, forces static analyses to deal with alias information between unini-
tialized references. But this precise work is already done by the BCV when checking for
object initialization. Folding constructor calls into x := new C(e1, . . . en) in BIR avoids
this redundant task in later static analyses.

Another ambiguous feature of bytecode is that constructor C corresponds to either
a constructor or a super-constructor call according to the initialization status of the
receiver object. This kind of information is rather costly for static analyses if they need
to distinguish both situations. BIR removes this ambiguity by providing a distinct super
constructor call instruction (e.super(C′, e1,. . . ,en), where C′ is the super class of C).

Explicit Checks and Class Initialization. The side-effect free expressions requirement
sometimes forces the transformation to revert the expression evaluation order, and thus
of the exception throwing order. The solution provided by BIR is to use assertions: in-
structions notzero e and notnull e respectively check if the expression e evaluates to
zero or null and raise an exception if the check fails.2 By the same token, we obtain that

2 In our formalization, heaps are infinite. Dealing with finite heaps would require preserving
OutOfMemory exceptions. BIR would need to be extended with an instruction checkheap C,
generated when transforming the BC instruction new C and checking if the heap available
space is sufficient to allocate a C object.
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the BIR expression evaluation is error-free. As illustrated by the example in the Intro-
duction (Figure 1), folded constructors and side-effect free expressions cause the object
allocation order to be modified. Still, preserving the class initialization order must be
taken care of, as static class initializers C.〈clinit〉 impact the program semantics. The
BIR extra instruction mayinit C solves this problem by calling C.〈clinit〉 whenever
it is required.

2.1 Semantic Domains of BC and BIR

Our goal is to express in the correctness of the BC2BIR transformation not only the
input/output preservation. We want to be as precise as possible, i.e. all what is preserved
by BC2BIR should be clearly stated in the theorem. BC and BIR semantics are designed
to this end. Semantic domains are given in Figure 3.

One of the subtleties of BC2BIR is that, although the object allocation order is modi-
fied, it takes care of preserving a strong relation between objects allocated in the heap, as
soon as their initialization has begun. Thus, we attach to objects, seen as functions from
fields F to Value, an initialization tag ∈ InitTag. This was first introduced by Freund and
Mitchell in [6], but we adapt it to our purpose. Following the Java convention, an object
allocated at point pc by new C is uninitialized (tagged˜Cpc) as long as no constructor has
been called on it; an object is tagged C either if its initialization is ongoing (all along
the constructor call chain) or completed when the Object constructor is called. Note
that, unlike [6], InitTag does not track intermediate initialization status, but this can be
recovered from the observational trace semantics (Section 2.2).

A normal execution state consists of a heap, the current method, the next instruction
to execute, and the local memory of the method (local variables and operand stack for
BC, only local variables, but with more variable names for BIR). We do not model the
usual call stack in execution states, but rely on a so-called mostly-small-step semantics
(see Section 2.2). In the correctness theorem (Section 4), one BC step is matched by
a sequence of BIR steps. The way we define BIR program points avoids awkwardness
in this matching by tracking BIR instructions with a pair (pc, �) ∈ N × instr∗. A return
state is made of a heap and a returned value.

We also want the semantic preservation to deal with execution errors. We do not
model exception catching in this work but it will not bring much difficulty thanks to
the way we define error states. These include the method program point of the faulty

Value = | (Num n), n ∈ Z
| (Ref r), r ∈ Ref
| Null

Value = Value ∪ {Void}

InitTag = ˜CN ∪ C
Object = (F→ Value)InitTag

Heap = Ref ↪→ Object
Error = { ΩNP, ΩDZ}

Stack = Value∗ EnvBC = varBC ↪→ Value
StateBC = (Heap ×M × N × EnvBC × Stack)

∪
(

Heap × Value
)

∪ (Error ×M × N × EnvBC × Heap)

EnvBIR = varBIR ↪→ Value
StateBIR =

(

Heap ×M × (N × instr∗BIR) × EnvBIR
)

∪
(

Heap × Value
)

∪ (Error ×M × N × EnvBIR × Heap)

Fig. 3. BC and BIR semantic domains
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instrAtP(m, pc) = new C
(Ref r) = newObject(C, h)

h′ = h[r 
→ (λ f .init( f ))t] t = ˜Cpc

〈h,m, pc, l, s〉 mayinit(C)−−−−−−−→0 〈h′,m, pc+1, l, (Ref r)::s〉
instrAtP(m, pc) = constructor C

V = v1 :: · · · :: vn h(r) = o
˜Cj

h′ = h[r 
→ oC]

〈h′, InitLState(C.init, (Ref r) :: V)〉 Λ⇒n 〈h′′ ,Void〉
〈h,m, pc, l,V::(Ref r)::s〉 [r←C.init(V)].Λh−−−−−−−−−−−−→n+1 〈h′′ ,m, pc+1, l, s〉

Fig. 4. BC semantic rules for object allocation and initialization (excerpt)

instruction and the current context (heap and environment), and also keep track of the
kind of error: division by zero (ΩDZ) and null pointer dereferencing (ΩNP). BC programs
passing the BCV only get stuck in an error or return state of the main method.

2.2 Observational Semantics of BC and BIR

We achieve a fine-grained preservation criterion by using a mostly small-step opera-
tional semantics. Indeed, a correctness criterion only stating the preservation of returned
values would not bring much information to static analyses dealing with intermediate
program points. We push further this approach by labelling transitions with observable
events, keeping track of all the program behavior aspects that are preserved by the trans-
formation (even local variable assignments). Observable events are defined as Evt, the
union of the following sets (v, v1, . . . , vn ∈ Value, r ∈ Ref ):

EvtS ::= x← v (local assignment)

EvtR ::= return(v) (method return)
| return(Void)

EvtH ::= r. f ← v (field assignment)
| mayinit(C) (class initializer)
| r.C.m(v1, . . . , vn) (method call)
| r ← C.init(v1, . . . , vn) (constructor)
| r.C.init(v1, . . . , vn) (super constructor)

Actions irrelevant to the correctness of the transformation are silent transitions la-
belled with τ. These include expression evaluation steps, as expressions are side-effect
and error free. Note that, due to the modification of the object allocation order , the
memory effect of the BC instruction new C is kept silent. This is harmless thanks to the
strong restrictions imposed by the BCV on the use of uninitialized references [6].

hd(�) = x:=new C (e1, . . . , en)
h, l � ei ⇓ vi (Ref r) = newObject(C, h) h′ = h[r 
→ (λ f .init( f ))C]

V = v1 :: · · · :: vn 〈h′, InitLState(C.init, (Ref r) :: V)〉 Λ⇒n 〈h′′,Void〉
〈h,m, (pc, �), l〉 [r←C.init(V)].Λh .[x←(Ref r)]−−−−−−−−−−−−−−−−−−−−→n+1 〈h′′, (m, next(pc, �), l[x 
→ (Ref r)]〉

Fig. 5. BIR semantic rule for object allocation and initialization (excerpt)
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Program execution generates traces of events, which permit expressing sequences of
events. We illustrate how event traces are managed intra and inter-procedurally with
object allocation and initialization (Figures 4 for BC rules and Figure 5 for BIR rules).

In rule for new C, newObject(C, h) returns the reference (Ref r) freshly allocated in h.
All object fields are set to their default values (zero for integers and Null for references)
by the function init and the object tag is set to˜Cpc, leading to the new heap h′. No “object
allocation” event is observed. However, the class initialization order will be preserved3:
observing mayinit(C) in the BC and BIR execution traces (when respectively executing
new C and mayinit C) helps us proving this property. When executing constructor C
on an object tagged with˜Cj (pointed to by (Ref r)), the method C.init4 is entirely exe-
cuted (in a mostly-small step style) starting from a heap h′ where the object tag has been
updated to C. The starting local memory InitLState(C.init, args) consists of an empty
stack, and local registers (this for (Ref r) and others registers for arguments). The ex-
ecution trace of C.init restricted to events in EvtH, denoted by Λh is then exported to
the caller (as it contains events related to the heap, which is shared by methods) and
appended to the event r ← C.init(V). We write

·⇒ for the transitive closure of the
small-step relation

·−→.
In Section 4, we will rely on an inductive reasoning to prove the semantics preser-

vation of the transformation. Therefore, we index transitions with a natural number
counting the maximal execution call depth: it is zero whenever no method is called, and
incremented each time a method is called.

3 Transformation Algorithm

In this section we describe the BC2BIR algorithm (given in Figure 7) for converting
BC code into BIR code. A central feature of our algorithm is the use of a symbolic
stack to decompile stack-oriented code into three-address code. In the following we
explain how the symbolic stack is used in decompiling BC instructions and how it is
managed at control flow join points. Another distinguishing feature of the algorithm is
the merging of instructions for object allocation and initialization into one compound
BIR instruction which is also performed quite elegantly thanks to the symbolic stack.

The core of the algorithm is the function BC2BIRinstr that maps a BC instruction into
a list of BIR instructions and at the same time symbolically executes BC code using an
abstract stack of symbolic expressions:

BC2BIRinstr : N × instrBC × AbstrStack →
(

instr∗BIR × AbstrStack
)

∪ Fail
AbstrStack = SymbExpr∗ SymbExpr = expr ∪ {URCpc | C ∈ C, pc ∈ N}

Expressions in expr are BC decompiled expressions and URCpc is a placeholder for
a reference to an uninitialized object, allocated at point pc by the intruction new C.
BC2BIRinstr is given in Figure 6, where tipc denote fresh temporary variables introduced
at point pc. A paragraph at the end of this section describes the failure cases.

3 In order to lighten the formalization, mayinit C behaves in the present work as nop but raises
a specific mayinit(C) event.

4 C.init is the JVM conventional name for the C constructors.
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Inputs Outputs
Instr Stack Instrs Stack
nop as [nop] as
pop e::as [nop] as
push c as [nop] c::as
dup e::as [nop] e::e::as
load x as [nop] x::as

Inputs Outputs
Instr Stack Instrs Stack
if pc′ e::as [if e pc′] as
goto pc′ as [goto pc′] as
return as [return] as
vreturn e::as [return e] as

Inputs Outputs
Instr Stack Instrs Stack
add e1::e2::as [nop] e1 + e2::as
div e1::e2::as [notzero e2] e1/e2::as
new C as [mayinit C] URCpc::as
getfield f e::as [notnull e] e.f::as

Inputs Outputs Cond
Instr Stack Instrs Stack
store x e::as [x := e] as x � asa

[t0pc:= x; x := e] as[t0pc/x] x ∈ asa

putfield f e′::e::as [notnull e; Fsave(pc, f, as); e.f := e′] as[tipc/ei]
ab

invokevirtualC.m e′1 . . . e
′
n::e::as [notnull e; Hsave(pc, as); t0pc := e.m(e′1 . . . e

′
n)] t0pc::as[tjpc/ej] value return ac

[notnull e; Hsave(pc, as); e.m(e′1 . . . e
′
n)] as[tjpc/ej] Void returnac

constructor C e′1 . . . e
′
n::e0::as [Hsave(pc, as); t0pc := new C(e′1 . . . e

′
n)] as[tjpc/ej] e0 = URC

pc′
c

[notnull e0; Hsave(pc, as); e0.super(C,e′1 . . . e
′
n)] as[tjpc/ej] otherwise a c

Fig. 6. BC2BIRinstr – Transformation of a BC instruction at pc

a where for all C and pc’, e � URCpc′
b where ei, i = 1 . . . n are all the elements of as such that f ∈ ei
c where ej, j = 1 . . .m are all the elements of as that read a field

We now explain the main cases of BC2BIRinstr. For instruction load x , the sym-
bolic expression x is pushed on the abstract stack as and the BIR instruction nop is
generated. We generate nop to make the step-matching easier in the proof of the theo-
rem. Transformations of return and jump instructions are straightforward. Before going
into more technicality, we give a simple example of symbolic execution. Successively
symbolically executing load x and load y will lead to the abstract stack y::x::ε. If add
were the next instruction to transform, the abstract stack would become (x + y)::ε.

Transforming instructions store , putfield and invokevirtual follows the
same principle. However, for semantics preservation issues, we must take care of their
memory effect. Their execution might modify the value of local variables or object fields
appearing in the expressions of the abstract stack, whose value would be erroneously
modified by side effect. We tackle this subtlety by storing in temporary variables (of the
form tipc) each stack element whose value might be modified. In the case of store x, it
is enough only remembering the old value of x. In the case of putfield f, all expres-
sions in as accessing an f field are remembered: Fsave(pc, f, e1::e2::. . .::en) generates
an assignment tipc := ei for all ei that reads at least once the field f. Finally, in the
case of invokevirtual, we store the value of each expression accessing the heap,
which could be modified by the callee execution: Hsave(pc, e1::e2::. . .::en) generates an
assignment tipc := ei for all ei that reads a field.

Object creation and initialization require special attention as this is done by sep-
arate (and possibly distant) instructions. Symbolically executing new C at point pc
pushes URCpc (representing the freshly allocated reference) on the stack and generates
mayinit C for class initialization whenever it is required. Instruction constructor C
will be transformed differently whether it corresponds to a constructor or a super con-
structor call. Both cases are distinguished thanks to the symbolic expression on which
it is called. We generate a BIR folded constructor call at point pc if the symbolic
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1 function BC2BIR(P, m) =
2 ASin[m, 0] := nil
3 for (pc = 0,pc ≤ length(m), pc + +) do
4 // Compute the entry abstract stack

5 if (pc ∈ jmpTgtPm) then
6 if (not CUR (pc)) then fail end
7 ASin[m, pc] := newStackJmp(pc,ASin[m, pc])
8 end
9

10 // Decompile instruction
11 (ASout[m, pc], code) := BC2BIRinstr(pc, instrAtP(m, pc), ASin[m, pc])
12 IR[m,pc] := TAssign(succ(pc) ∩ jmpTgtPm, ASout[m, pc])++code
13
14 // Fail on a non-empty stack backward jump
15 if (ASout[m, pc] � nil ∧ ∃pc′ ∈ succ(pc).pc > pc′) then fail end
16
17 // Pass on the output abstract stack

18 if (pc + 1 ∈ succ(pc) ∧ pc + 1 � jmpTgtPm) then ASin[m, pc + 1] := ASout[m, pc] end
19 end

Fig. 7. BC2BIR – BC method transformation. length(m) is the size of the code of method m,
succ(pc) the set of successors of pc in m, stackSize(pc) the stack size at point pc and jmpTgtPm the
set of jump targets in m.

expression is URCpc′ (and a super constructor call otherwise). URCpc are used to keep
track of alias information between uninitialized references, when substituting them for
the local variable receiving the new object. This mechanism is similar to what is used
by the BCV to check for object initialization.

Transforming the whole code of a BC method is done by BC2BIR which (i) com-
putes the entry abstract stack used by BC2BIRinstr to transform the instruction, (ii) per-
forms the BIR generation and (iii) passes on the output abstract stack to the successor
points. BC2BIR is given in Figure 7. It computes three arrays: IR[m] is the BIR ver-
sion of the method m, ASin[m] and ASout[m] respectively contain the input and output
symbolic stacks used by BC2BIRinstr.

Most of the time, the control flow is linear (from pc to only pc + 1). In this case,
we only perform the BC2BIRinstr generation (Lines 11 and 12) and the abstract stack
resulting from BC2BIRinstr is transmitted as it is (Line 18). The case of control flow
joins must be handled more carefully. In a program passing the BCV, we know that at
every join point, the size of the stack is the same regardless of the predecessor point.
Still, the content of the abstract stack might change (when e.g. the two branches of
a conditional compute two different expressions). But stack elements are expressions
used in the generated instructions and hence must not depend on the control flow path.
We illustrate this point with the example of Figure 8. This function returns 1 or -1,
depending on whether the argument x is zero or not. We focus on program point 5,
whose predecessors are points 3 and 4. The abstract stack after executing the instruction
goto 5 is -1 (point 3 in Figure 8(c)), while it becomes 1 after program point 4. At point
5, depending on the control flow path, the abstract stack is thus not unique.

The idea is here to store, before reaching a join point, every stack element in a tempo-
rary variable and to use, at the join point, a normalized stack made of all these variables.
A naming convention ensures that (i) identifiers are independent of the control flow and
(ii) each variable denote the same stack element: we use the identifier Tipc to store the ith
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int f(int x) {return (x == 0) ? 1 : -1; }
(a) source function

int f(x);
0 : load x
1 : if 4
2 : push -1
3 : goto 5
4 : push 1
5 : vreturn

(b) BC function

0 : []
1 : [x]
2 : []
3 : [-1]
4 : []
5 : [T15]

(c) Symbolic stack

int f(x);
0 : nop;
1 : if x 4;
2 : nop;
3 : T15 := -1; goto 5;
4 : nop; T15 := 1;
5 : vreturn T15;

(d) BIR function

Fig. 8. Example of bytecode transformation – jumps on non-empty stacks

element of the stack for a join point at pc. All Tipc are initialized when transforming a
BC instruction preceeding a join point. In Figure 8(d), at points 3 and 4, we respectively
store -1 and 1 in T15, the top element of the entry stack at point 5.

In the algorithm, this is done at Line 12: we prepend to the code generated by
BC2BIRinstr the assignments of all abstract stack elements to the Ti

jp
, for all join points

jp successor of pc. These assignments are generated by TAssign(S, as), where S is a
set of program points. The restriction Line 15 ensures these assignments are conflict-
free by making the transformation fail on non-empty stack backjumps. The function
newStackJmp(jp, as) (Line 7) computes the normalized stack at join point jp. It returns
a stack of Tijp except that URCpc are preserved. We need here the following constraint
CUR (jp) on ASout, that we check before computing the entry abstract stack (Line 6):
∀i. (∃pc′ ∈ predm(jp). ASout[m, pc′]i = URCpc0

)⇒ (∀pc′ ∈ predm(jp). ASout[m, pc′]i = URCpc0
)

.
It means that before a join point jp, if the stack contains any URCpc at position i, then it
is the case for all predecessors of jp ∈ jmpTgtPm.

Relative BCV-Completeness. Every case undescribed in Figures 6 and 7 yields Fail.
Most of them are ruled out by the BCV (e.g. stack height mismatch, or uninitialised ref-
erence field assignment) but few cases remain. First, this version of the algorithm fails
on non-empty stack backjumps, but they are addressed in [5]. Finally, the present trans-
formation puts restrictions on the manipulation of uninitialised locations in the operand
stack and the local variables. Transforming store x requires that the top expression e is
not URCpc because no valid BIR instruction would match, as constructors are folded. For
the same reason, we fail to transform bytecode that does not satisfy CUR : this constraint
allows us not to store URCpc stack elements. Unfortunately these patterns are not ruled
out by the JVM specification and we may reject programs that pass the BCV. However
this is not a limitation in practice because such patterns are not used by standard com-
pilers. Our transformation tool has been tested on the 609209 methods of the Eclipse
distribution without encountering such cases [5].

4 Correctness

The BC2BIR algorithm satisfies a precise semantics preservation property that we for-
malize in this section: the BIR program BC2BIR(P) simulates the initial BC program
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P and both have similar execution traces. This similarity cannot be a simple equality,
because some variables have been introduced by the transformation and the object allo-
cation order is modified by BC2BIR— both heaps do not keep equal along both program
executions. We define in Section 4.1 what semantic relations make us able to precisely
relate BC and BIR executions. Section 4.2 formally states the semantic preservation
of BC2BIR. For space reason, we only provide a proof sketch. The complete proof is
given in the accompanying report [5]. We lighten the notations from now and until the
end of this section by writing a BC program P, its BIR version P′ = BC2BIR(P).

4.1 Semantic Relations

Heap Isomorphism. The transformation does not preserve the object allocation order.
However, the two heaps stay isomorphic: there exists a partial bijection between them.
For example, in P (Figure 1(c)), the B object is allocated before the A object is passed as
an argument to the B constructor. In P′ (Figure 1(d)), constructors are folded and object
creation is not an expression, the A object must thus be created (and initialized) before
passing t1 (containing its reference) as an argument to the B constructor.

Heaps are not equal along the execution of the two programs: after program point 5
in P, the heap contains two objects that are not yet in the heap of P′. However, after
program points 7, each use in P′ of the A object is synchronized with a use in P of the
reference pointing to the A object (both objects are initialized, so both references can
be used). The same reasoning can be applied just after points 8 about the B objects. A
bijection thus exists between references of both heaps. It relates references to allocated
objects as soon as their initialization has begun. Along the executions of BC and BIR
programs, it is extended accordingly on each constructor call starting the initialization
of a new object. In Figure 1, given an initial partial bijection on the heaps domains, it is
first extended at points 7 and then again at points 8.

Semantic Relations. This heap isomorphism has to be taken into account when re-
lating semantic domains and program executions. Thus, the semantic relations over
values, heaps, environments, configurations and observable events (see Table 1) are
parametrized by a bijection β defined on the heap domains.

When relating values, the interesting case is for references. Only references related
by β are in the relation. The semantic relation on heaps is as follows. First, objects
related by β are exactly those existing in both heaps and on which a constructor has been
called. Secondly, the related objects must have the same initialization status (hence the
same class) and their fields must have related values. Here we write tagh(r) for the tag
t such that h(r) = ot. A BIR environment is related to a BC environment if and only
if both local variables have related values. Temporary variables are, as expected, not
taken into account. Execution states are related through their heaps and environments,
the stack is not considered here. Program points are not related to a simple one-to-
one relation: the whole block generated from a given BC instruction must be executed
before falling back into the relation. Hence, a BC state is matched at the beginning of
the BIR block of the same program point: the function instrAtP′(m, pc) gives the BIR
program point (pc, �) with � the complete instruction list at pc. We only relate error
states of the same kind of error. Finally, two observable events are related if they are
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Table 1. Semantic relations

Relation Definition

v1
v∼β v2

v1, v2 ∈ Value Null v∼β Null

n ∈ Z
(Num n) v∼β (Num n)

β(r1) = r2

(Ref r1) v∼β (Ref r2)

h1
h∼β h2

h1, h2 ∈ Heap

– dom(β) = {r ∈ dom(h1) | ∀C, pc, tagh1
(r) � ˜Cpc}

– rng(β) = dom(h2)
– ∀r ∈ dom(h1), let ot = h1(r) and o′t′ = h2(β(r)) then

(i) t = t′ (ii) ∀ f , ot( f ) v∼β o′t ( f )

l1
e∼β l2

(l1, l2) ∈ EnvBC × EnvBIR
dom(l1) = varBC ∩ dom(l2) and ∀x ∈ dom(l1), l1(x) v∼β l2(x)

c1
c∼β c2

(c1, c2) ∈ StateBC × StateBIR

h h∼β ht l e∼β lt

〈h,m, pc, l, s〉 c∼β 〈ht,m, (pc, instrAtP′ (m, pc)), lt〉
h h∼β ht rv v∼β rv′

〈h, rv〉 c∼β 〈ht, rv′〉
h h∼β ht l e∼β lt

〈Ωk,m, pc, h, l〉 c∼β 〈Ωk,m, pc, ht, lt〉

λ1
!∼β λ2

with λ1, λ2 ∈ Evt

τ
!∼β τ mayinit(C) !∼β mayinit(C)

β(r1) = r2 v1
v∼β v2

r1. f ← v1
!∼β r2. f ← v2

x ∈ varBC v1
v∼β v2

x← v1
!∼β x← v2

β(r1) = r2 ∀i = 1 . . . n, vi
v∼β v′i

r1 ← C.init(v1, . . . , vn) !∼β r2 ← C.init(v′1, . . . , v′n)
β(r1) = r2 ∀i = 1 . . . n, vi

v∼β v′i
r1.C.init(v1, . . . , vn) !∼β r2.C.init(v′1, . . . , v′n)

of the same kind, and the values they involve are related. To relate execution traces, we

pointwise extend !∼β. We now assume that IR, ASin and ASout are the code and abstract
stack arrays computed by BC2BIR, and so until the end of the section.

4.2 Soundness Result

The previously defined observational semantics and semantic relations allows achieving
a very fine-grained correctness criterion for the transformation BC2BIR. It says that P′
simulates the initial program P: starting from two related initial configurations, if the
execution of P terminates in a given (normal or error) state, then P′ terminates in a
related state, and both execution traces are related, when forgetting temporary variables
assignments in the BIR trace (we write Λproj for such a projection of Λ). More formally:

Theorem 1 (Semantic preservation)
Let m ∈ M be a method of P (and P′) and n ∈ N. Let c = 〈h,m, 0, l, ε〉 ∈ StateBC and
ct = 〈h,m, (0, instrAtP′ (m, 0)), l〉 ∈ StateBIR. Then two properties hold:

Normal return. If c
Λ⇒n 〈h′, v〉 then there exist unique ht′, v′, Λ′ and β such that ct

Λ′⇒n

〈ht′, v′〉 with 〈h′, v〉 c∼β 〈ht′, v′〉 and Λ !∼β Λ′proj.
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Error. If c
Λ⇒n 〈Ωk,m, pc′, l′, h′〉 then there exist unique ht′, lt′, Λ′ and β s.t ct

Λ′⇒n

〈Ωk,m, pc′, lt′, ht′〉 with 〈Ωk,m, pc′, l′, h′〉 c∼β 〈Ωk,m, pc′, lt′, ht′〉 and Λ !∼β Λ′proj.

Executions that get stuck do not need to be considered, since corresponding programs
would not pass the BCV. Theorem 1 only partially deals with infinite computations: we
e.g. do not show the preservation of executions when they diverge inside a method call.
All reachable states (intra and inter-procedurally) could be matched giving small-step
operational semantics to both languages. This would require parametrizing events by
the method from which they arise, and extending the relation on configurations to all
frames in the call stack.

We now provide a proof sketch of the theorem, giving an insight on the technical
arguments used in the complete proof, which is given in [5]. We prove this theorem
using a strong induction on the call depth n. The inductive reasoning is made possible
by considering not only computations from initial states to (normal and error) return
states, but also intermediate computation states. The crucial point is that BC interme-
diate states require dealing with the stack, to which BIR expressions must be related.
Semantically, this is captured by a correctness criterion on the abstract stack used by
the transformation. It intuitively means that expressions are correctly decompiled:

Definition 1 (Stack correctness: ≈h,ht,lt,β). Given h, ht ∈ Heap such that h h∼β ht and
lt ∈ EnvBIR, an abstract stack as ∈ AbstrStack is said to be correct with regards to a
run-time stack s ∈ Stack if and only if s ≈h,ht,lt,β as:

ε ≈h,ht,lt,β ε

ht, lt � e ⇓ v′ v v∼β v′ s ≈h,ht,lt,β as

v::s ≈h,ht,lt,β e::as

tagh(r) = ˜Cpc s ≈h,ht,lt,β as
∀(Ref r′) ∈ s, tagh(r′) = ˜Cpc ⇒ r = r′

(Ref r)::s ≈h,ht,lt,β URCpc::as

where ht, lt � e ⇓ v′ means that expression e evaluates to v′ in ht and lt.

The last definition rule says that the symbol URCpc correctly approximates a reference r

of tag˜Cpc. The alias information tracked by URCpc is made consistent if we additionally
demand that all references appearing in the stack with the same status tag are equal to r
(second condition of this last rule). This strong property is enforced by the restrictions
imposed by the BCV on uninitialized references in the operand stack.

We are now able to state the general proposition on intermediate execution states.
In order to clarify the induction hypothesis, we parametrize the proposition by the call
depth and the name of the executed method:

Proposition 1 (P(n,m) – BC2BIR n call-depth preservation)
Let m ∈ M be a method of P (and P′) and n ∈ N. Let β be a partial bijection on Ref . Let
c = 〈h,m, pc, l, s〉 ∈ StateBC and ct = 〈ht,m, (pc, instrAtP′(m, pc)), lt〉 ∈ StateBIR such

that c c∼β ct and s ≈h,ht,lt,β ASin[m, pc]. Then, for all c′ ∈ StateBC, whenever c
Λ⇒n c′,

there exist unique ct′ and Λ′ and a unique β′ extending β such that ct
Λ′⇒n ct′ with

c′ c∼β′ ct′ and Λ !∼β′ Λ′proj.

In the base case P(0,m), we reason by induction on the number of BC steps.

A step 〈h,m, pc, l, s〉 Λ−→0 〈h′,m, pc′, l′, s′〉 is matched by: 〈ht,m, (pc, IR[m, pc]), lt〉 Λ1⇒0
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〈ht,m, (pc, code), lt0〉
Λ2⇒0 〈ht′,m, (pc′, instrAtP′ (m, pc′)), lt′〉 where the intermediate state

〈ht,m, (pc, code), lt0〉 is obtained by executing the potential additional assignments
prepended to the instructions code generated by BC2BIRinstr . We obtain the second
part of the matching computation thanks to a correctness lemma about BC2BIRinstr

(proved in [5]):

Lemma 1 (BC2BIRinstr 0 call-depth one-step preservation)

Suppose 〈h,m, pc, l, s〉 Λ−→0 〈h′,m, pc′, l′, s′〉. Let ht, lt, as, β be such that h h∼β ht, l e∼β lt,
s ≈h,ht,lt,β as and BC2BIRinstr(pc, instrAtP(m, pc), as) = (code, as′). There exist unique

ht′, lt′ and Λ′ such that 〈ht,m, (pc, code), lt〉 Λ
′
⇒0 〈ht′,m, (pc′, instrsAtP′ (m, pc′)), lt′〉

with h′ h∼β ht′, l′ e∼β lt′, Λ !∼β Λ′pro j and s′ ≈h′ ,ht′,lt′,β as′.

It is similar to P(n,m), but only deals with one-step BC transitions and does not require
extending the bijection (instructions at a zero call depth do not initialize any object).
Moreover, considering an arbitrary correct entry abstract stack allows us applying the
lemma with more modularity.

Lemma 1 cannot be directly applied for proving the
Λ2⇒0 step, because the entry ab-

stract stack ASin[m, pc] is sometimes normalized and because of the additional assign-
ments prepended to code. For the hypotheses of Lemma 1 to be satisfied, we thus have
to show that s ≈h,ht,lt0,β ASin[m, pc]. Two cases are distinguished. If pc � jmpTgtPm,
the stack is not normalized, but additional assignments could break the stack correct-
ness. However, as we forbid backwards jumps on non-empty stacks, all Tj

pcj
(where

pcj ∈ succ(pc)) assigned by TAssign cannot be used in the stack. Now, if pc ∈ jmpTgtPm,
then the stack is normalized. Assignments generated by TAssign do not alterate the stack
correctness: if pcj is a join point successing pc, Tk

pcj
is assigned, but all the Tk

′
pc that

appear in the normalized stack are distinct from Tk
pcj

(pc<pcj if the stack at pcj is
non-empty). Hence s ≈h,ht,lt0,β ASin[m, pc].

Applying Lemma 1 gives us that h′ h∼β ht′, l′ e∼β lt′ and Λ !∼β Λ2 pro j. Furthermore,Λ1

is only made of temporary variable assignment events, hence Λ1 pro j is empty, and Λ !∼β
(

Λ1.Λ2
)

pro j. Because of prepended assignments, we have to show that the transmitted
abstract stack ASin[m, pc′] satisfies s′ ≈h′,ht′,lt′ ,β ASin[m, pc′]. There are two cases. If pc′
is not a join point, then the transmitted abstract stack is simply ASout[m, pc], resulting
from BC2BIRinstr. We therefore use the conclusion of Lemma 1. Now, if pc′ ∈ jmpTgtPm,
the output abstract stack is newStackJmp(pc′, ASin[m, pc′]). All of the Tjpc′ have been
assigned, but we must show that they have not been modified by executing the BIR
instructions code. As defined in Figure 6, the only assigned temporary variables are
of the form tkpc′ . Our naming convention ensures ∀k. Tjpc′ � tkpc′ . Thus, s′ ≈h′ ,ht′,lt′ ,β
ASin[m, pc′], which concludes the proof of P(0,m).

Concerning the induction case P(n + 1,m), the idea is to isolate one of the method
calls, and to split the computation into three parts. Indeed, we know that there exist
n1, n2 and n3 such that a transition c ⇒n+1 c′ can be decomposed into c ⇒n1 c1 →n2

c2 ⇒n3 c′, with n2 � 0 and n + 1 = n1 + n2 + n3. The first and third parts are easily
treated applying the induction hypothesis. The method call c1 →n2 c2 is handled in
a way similar to the base case. We prove an instruction-wise correctness intermediate
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lemma, under the induction hypothesis ∀m′ P(n,m′). The induction hypothesis is also
applied on the execution of the callee, whose call depth is strictly lower.

5 Related Work

Many Java bytecode optimization and analysis tools work on an IR of bytecode that
make its analysis much simpler. Soot [14] is a Java bytecode optimization framework
providing three IR: Baf, Jimple and Grimp. Optimizing Java bytecode consists in suc-
cessively translating bytecode into Baf, Jimple, and Grimp, and then back to bytecode,
while performing diverse optimizations on each IR. Baf is a fully typed, stack-based
language. Jimple is a typed stackless 3-address code. Grimp is a stackless code with
tree expressions, obtained by collapsing 3-address Jimple instructions. The stack elimi-
nation is performed in two steps, when generating Jimple code from Baf code (see [15]
for details). First, naive 3-address code is produced (one variable is associated to each
element position of the stack). Then, numerous redundancies of variables are elimi-
nated using a simple aggregation of single def-use pairs. Variables representing stack
locations lead to type conflicts when their type is infered, so that they must be desam-
biguated using additional variables. Our transformation, relying on a symbolic execu-
tion, avoids this problem by only merging variables of distinct scopes. Auxiliary analy-
ses (e.g. copy propagation) could further reduce the number of variables, but BC2BIR
generates very few superfluous variables in practice [5].

The transformation technique used in BC2BIR is similar to what Whaley [16] uses
for the high level IR of the Jalapeño Optimizing Compiler [3] (now part of the Jikes
virtual machine [10]). The language provides explicit check operators for common run-
time exceptions (null check, bound check. . . ), so that they can be easily moved or
eliminated by optimizations. We use a similar technique to enforce the preservation
of the exception throwing order. We additionally use the mayinit instruction to en-
sure the preservation of the class initialization order, that could otherwise be broken
because of folded constructors and side-effect free expressions. Our work pushes the
technique further, generating tree expressions in conditional branchings and folding
constructors. Unlike all works cited above, our transformation does not require iterat-
ing on the method code. Still, the number of generated variables keeps small in practice
(see [5]). All these previous works have been mainly concerned with the construction
of effective and powerful tools but, as far as we know, no attention has been paid to the
formal semantic properties that are ensured by these transformations.

The use of a symbolic evaluation of the operand stack to recover some tree expres-
sions in a bytecode program has been employed in several contexts of Java Bytecode
analysis. The technique was already used in one of the first Sun Just-In-Time compil-
ers [4] for direct translation of bytecode to machine instructions. Xi and Xia propose
a dependent type system for array bound check elimination [18]. They use symbolic
expressions to type operand stacks with singleton types in order to recover relations
between lengths of arrays and index expressions. Besson et al. [2], and independently
Wildmoser et al. [17], propose an extended interval analysis using symbolic decompi-
lation that verifies that programs are free of out-of-bound array accesses. Besson et al.
give an example that shows how the precision of the standard interval analysis is en-
hanced by including syntactic expressions in the abstract domain. Barthe et al. [1] also
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use a symbolic manipulation for the relational analysis of a simple bytecode language
and prove it is as precise as a similar analysis at source level.

Among the numerous works on program transformation correctness proofs, the clos-
est are those dealing with formal verification of the Java compiler algorithms (from
Java source to Java bytecode) [12,13,7]. The present work studies a different transfor-
mation from bytecode to a higher intermediate level and handle difficulties (symbolic
operand stack, non preservation of allocation order) that were not present in these pre-
vious works.

6 Conclusions and Future Work

This paper provides a semantically sound, provably correct transformation of bytecode
into an IR that (i) removes the use of the operand stack and rebuilds tree expressions,
(ii) makes more explicit the throwing of exception and takes care of preserving their
order, (iii) rebuilds the initialization chain of an object with a dedicated instruction
x := new C(arg1, arg2, ...). In the accompanying technical report [5] we demonstrate
on several examples of safety properties how some BIR static analysis verdicts can be
translated back to the initial BC program. It would be interesting to study whether the
translation of analysis results could be simplified by expressing BC2BIR in the form of
annotations, as proposed by Matsuno and Ohori in [9] for the Static Single Assignment
form. By the nature of the transformation, and because of the differences between BC
and BIR, expressing BC2BIR in this setting would require several adaptations. The
transformation is designed to work in one pass in order to make it useful in a scenario
of “lightweight bytecode analysis” applied to analyses other than type checking. It has
been implemented in a tool accepting full Java bytecode. Our benchmarks show the
expected efficiency is obtained in practice.

Several other extensions are possible. First we would like to extend this work into a
multi-threading context. This is a challenging task, especially for the formalization part
that must deal with the complex Java Memory Model. Second, it would be interesting
to study if the transformation scheme would fit a more multi-language support such as
CIL, the output format of several compilers (VB.NET, C#. . . ). On one hand, this would
require to adapt the formalization to the low-level memory operations available in this
language. On the other hand, we could lift the constraints on the use of uninitialized
objects by MSIL input programs, since constructor calls are folded in CIL. Finally,
we believe the current transformation would be a valuable layer on top of Bicolano, a
formal JVM semantics formalized in Coq and developed during the European MOBIUS
project. The Coq extraction mechanism would allow extracting certified and efficient
Caml code from the Coq formalization of the algorithm.

Acknowledgments. We thank the anonymous reviewers for their thorough comments.
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JNI Light: An Operational Model for the
Core JNI

Gang Tan
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Abstract. Through foreign function interfaces (FFIs), software compo-
nents in different programming languages interact with each other in
the same address space. Recent years have witnessed a number of sys-
tems that analyze FFIs for safety and reliability. However, lack of formal
specifications of FFIs hampers progress in this endeavor. We present a
formal operational model, JNI Light (JNIL), for a subset of a widely used
FFI—the Java Native Interface (JNI). JNIL focuses on the core issues
when a high-level garbage-collected language interacts with a low-level
language. It proposes abstractions for handling a shared heap, cross-
language method calls, cross-language exception handling, and garbage
collection. JNIL can directly serve as a formal basis for JNI tools and
systems. The abstractions in JNIL are also useful when modeling other
FFIs, such as the Python/C interface and the OCaml/C interface.

1 Motivation

Most modern programming languages support foreign function interfaces (FFIs)
for interoperating with program modules developed in other programming lan-
guages. Recent years have witnessed a string of systems that analyze and improve
FFIs for safety and reliability [1, 2, 3, 4, 5, 6, 7, 8]. However, lack of formal se-
mantics of FFIs hampers progress in this domain. The available specifications
of FFIs are in prose. Relying on prose specifications has at least two unpleasant
consequences. First, prose specifications are often ambiguous and sometimes in-
complete. The situation is especially acute for an FFI, whose two sides involve
different programming models and language features. For instance, Lee et al.
reported that Sun’s HotSpot and IBM’s J9 behave differently for four out of ten
JNI test cases [8, Table 1]. In such situations, the best an FFI user can do is
to perform experiments on particular implementations and make an educated
guess. This may cause inconsistencies and unsoundness. Second, without for-
mal semantics, tools and analyzers cannot provide rigorous claims about their
strength. As a result, previous systems that target FFIs have to argue their
hypotheses and claims informally. This leaves their strength in doubt.

While there have been many efforts in formalizing the semantics of program-
ming languages, almost all have ignored the FFI aspect. The work by Matthews
and Findler [9] formalizes the interoperation between two high-level functional
languages, one typed and the other untyped. While this formalism represents sig-
nificant progress in modeling language interoperation, it does not apply to FFIs.

K. Ueda (Ed.): APLAS 2010, LNCS 6461, pp. 114–130, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Most FFIs are about the interaction in the shared memory between a high-level
language and a low-level language (assembly languages, C, and C++).

This paper presents the first formal operational model, named JNI Light
(JNIL), for a subset of a shared-memory foreign function interface—the JNI
interface. The major challenge for the modeling effort is to have the right ab-
stractions to accommodate differences between the programming models of Java
and native code, without unduly complicating the model. This is challenging
because Java is a high-level OO language with a managed runtime and provides
automatic garbage collection and exception handling. Native code, on the other
hand, operates at a much lower level. It manually manages the heap and has
no built-in exception-handling mechanism. JNIL proposes a set of abstractions
to handle these differences. The abstractions make the JNIL model concise and
largely straightforward.

We proceed as follows. We highlight key issues and abstractions in JNIL in
Sec. 2. The formal semantics of JNIL is presented in Sec. 3. We discuss possible
applications of the JNIL model in Sec. 4. Two extensions and future work are
discussed in Sec. 5. We present related work in Sec. 6 and conclude in Sec. 7.
Due to space limitations, we will concentrate on language-interoperation issues
and leave out some technical details; we refer readers to a technical report [10].

2 Informal Discussion of JNIL

In this section, we informally discuss major challenges of modeling the JNI and
highlight JNIL’s solutions; formal treatment is left to Sec. 3. We also present
examples that help understand the key aspects.

Background. The JNI [11] is Java’s mechanism for interfacing with native code.
A native method is declared in a Java class by adding the native modifier.
For example, the following Item class contains a native twice method. Once
declared, native methods are invoked in Java exactly the same as how Java
methods are invoked. In the example, the fourTimes Java method invokes the
twice method.

class Item {
private int quantity = 17;
private native void twice();
public void fourTimes () {twice(); twice();}
static {System.loadLibrary(‘‘Item’’);}

}

A native method is implemented in a low-level language such as C, C++, or an
assembly language. Native code can use all the features provided by the native
language. In addition, native code can interact with Java through a set of JNI
interface functions (called JNI functions hereafter). For instance, the implemen-
tation of twice can invoke GetField to get the value of the quantity field, and
SetField to set the field to double the old value. Through JNI functions, na-
tive methods can inspect, modify, and create Java objects, invoke Java methods,
catch and throw Java exceptions, and so on.
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Two sides of JNIL. A model of the JNI needs both a Java-side language
and a native-side language. The Java-side language of JNIL is a subset of the
Java Virtual Machine Language (bytecode [12]). The native-side language is a
RISC-style assembly language augmented with a set of JNI functions (such as
GetField/SetField). We choose to model an assembly language because native
methods in C or C++ are compiled before loaded and linked into the JVM.
Furthermore, there is less modeling overhead for an assembly language, allowing
JNIL to concentrate on the interaction between Java and native code.

Many bytecode and JNI functions in JNIL work with field IDs and method
IDs. For example, “GetField fd” gets the value of the field represented by fd . A
field ID identifies a field by specifying three elements: a class name that the field
belongs to, a field name, and its type. For example, the ID for the quantity
field is 〈“Item”, “quantity”, Int〉. A method ID has similar information as a field
ID. A method ID may identify either a Java method (implemented in bytecode)
or a native method (implemented in native code).

Heap model. In the JNI, Java and native code reside in the same address space
to avoid costly context switches. Consequently, JNIL needs to model a shared
heap. However, modeling the shared heap poses some challenge because Java
and native code’s views of the heap are at different levels.

Being a high-level language, Java takes a high-level view: a heap is mathe-
matically a map from labels to objects. The use of abstract labels hides many
complexities of memory management. If a heap is rearranged and labels are re-
named, the new heap is considered to be equivalent to the old one as long as the
“graph” of the heap is preserved. Furthermore, in the high-level view, objects
are storable values. There is no need to consider how objects are represented
in memory. Previous Java models [13, 14, 15, 16] adopt the high-level view. By
contrast, native code takes a low level view: a heap is mathematically a map
from addresses to primitive values. An object is represented in memory as a
sequence of primitive values according to an object-layout strategy. Native code
can perform address arithmetic, for example, to access elements of a Java array.

JNIL adopts an unusual block model : (1) a heap is a map from labels to blocks;
(2) a block is a map from addresses (natural numbers) to primitive values. A
block may hold the representation of a Java object, or may be a memory region
allocated and owned by native code.

Heap ::= Label ⇀
〈
blk : Block , own : Owner

〉
Block ::= N ⇀ Value

A reference value, written as 
[i], identifies a location in block 
 with offset i.
There are two major benefits of the block heap model. First, using abstract

labels instead of addresses in the heap preserves the major benefit of the high-
level heap model. It simplifies the specification of GC. In particular, there is
no need to worry about whether GC moves objects because the resulting heap
after moving is equivalent to the previous heap.1 The second benefit of the block
1 We can think that there is a flatten function that maps a heap in the block model

to a flat heap. A flat heap is just a map from addresses to values. Then a moving
GC will only change the flatten function.
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model is that it also accommodates the low-level view of native code. Values
stored in blocks are primitive values. Address arithmetic is allowed within one
block. Suppose a block with label 
 holds the representation of a Java integer
array, then Java may pass to native code a reference 
[i] that identifies where
array elements are stored. Adding an offset n to 
[i] results in a new reference

[i + n], which native code can use to access the nth element of the array.

Object representation and ownership. Since JNIL’s heap holds only primitive
values, it is necessary to represent Java objects in the heap. JNIL is parametrized
by a representation function, Rep : Object → Block , for the desire of not commit-
ting to any particular object-representation strategy. The representation function
maps a Java object to a block. For instance, one representation can represent
Java class instances and arrays in the following way:
Rep(〈〈fd 1 = v1, . . . , fdn = vn〉〉φ) = {0 #→ TypeRep(φ), 1 #→ v1, . . . , n #→ vn}
Rep(�v0, . . . , vn−1�τ [n]) = {0 #→ TypeRep(τ), 1 #→ n, 2 #→ v0, . . . , n + 1 #→ vn−1}

In the above, 〈〈fd1 = v1, . . . , fdn = vn〉〉φ is a Java instance of class φ with fields
fd1 to fdn; �v0, . . . , vn−1�τ [n] is a Java array of size n with element type τ ;
TypeRep(−) is a function for representing types as primitive values.

Each block in the heap has an owner: ω ∈ {J,N}. A heap H is conceptually
divided into a subheap owned by Java (J), written as H |J, and a subheap owned
by native code (N), written as H |N. The reason for adding ownership is twofold.
First, it helps specify Java’s GC, which recollects locations only in the Java
heap. Second, ownership information could be used to define a safety policy.
For instance, if the policy is that native code should not access the Java heap,
then the semantics of native load/store instructions could have the ownership
checking built-in.

Cross-language method calls. Java and native code may engage in so-called
“ping-pong” behavior. For instance, a Java method with ID md1 may invoke
a native method with ID md2, which in turn calls back another Java method
with ID md3. It is possible that md3 invokes a second native method and there-
fore the control bounces back and forth between the Java and native sides.

To model cross-language method calls, we introduce in JNIL a multi-language
method-call stack whose frames are either Java frames or native frames:

F ∈ Frame ::= 〈md , pc, s , a〉J | 〈md , pc, s , vx, L〉N
A Java frame holds information for a Java-method execution, and a native frame
for a native-method execution. Both kinds of frames include a method ID (md),
a program counter (pc), and an operand stack (s). The operand stack is used for
storing intermediate results and maybe also for passing arguments and results of
function calls. A Java frame also includes a local variable map (a), which holds
values of local variables. A native frame also includes an exception reference (vx)
and a root set (L); we will discuss their uses shortly.

For the example we discussed beforehand, the shape of the method-call stack
when the control is in md3 is presented as follows (only method IDs are shown).

〈md3, . . .〉J · 〈md2, . . .〉N · 〈md1, . . .〉J · ε (1)
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The top of the stack is on the left. We treat a stack as a list of frames and use
“F ·S” for the concatenation of frame F and stack S and ε for the empty stack.

Cross-language exception handling. The JVM has a built-in mechanism for ex-
ception handling. We define Java exceptions to be those that are pending in
a Java method. For a Java exception, the JVM checks if there is an enclosing
try/catch statement that matches the exception type in the method. If not, it
pops the method off the method-call stack and checks the next method.

An exception may also be pending on the native side; we call such exceptions
JNI exceptions. For example, if the Java method md3 in stack configuration (1)
throws an exception that is not handled by md3, then it is a JNI exception
pending in native method md2. Native code itself may also throw exceptions
by calling JNI functions such as throw. Furthermore, many JNI functions throw
exceptions to indicate failures.

In contrast to how an exception is handled in a Java method, a JNI exception
does not immediately disrupt the native method execution. The exception is
recorded in the JVM, but the native method will keep executing. After the native
method finishes execution and returns to a Java method, the exception becomes
pending in the Java method and then the JVM mechanism for exceptions starts
to take over.

Given this difference, the question is how to model the operational semantics
when an exception becomes pending in a method-call stack that contains mixed
Java and native frames. JNIL handles this issue by having different modes for
indicating the presence of Java and JNI exceptions. A Java exception is indicated
by a special exception frame 〈
〉X at the top of the method-call stack, where 

is a reference to a Throwable object. A JNI exception is recorded in a native
frame 〈md , pc, s , vx, L〉N: the value vx is null when no exception is pending and
is 
 with a pending JNI exception with label 
. JNIL’s abstract machine pro-
ceeds differently for the two modes. Briefly, JNIL unwinds the stack for a Java
exception and continues the execution of a native method for a JNI exception;
we will discuss the details in the next section.

Registration of references. Java’s GC is aware of only those references on the
Java side. When native code retains references to Java objects, it has to register
those references so that the GC will not collect the underlying objects. JNIL
records the set of Java references available to a native method in a root set L. A
root set is associated with a native frame so that its references are automatically
“freed” when the native method finishes its execution. This semantics effectively
models the so-called local references in the JNI.2

2 The JNI also provides global and weak-global references. Global references are valid
across multiple invocations of native methods and multiple threads. Weak global
references are similar to global references except that the underlying objects can be
garbage collected. These references are straightforward to model. Global references
can be modeled as a global set of labels. Weak-global references have no impact
on GC, although a JNI function for testing the validity of references needs to be
exposed to native code. We omit their modeling in JNIL for brevity.
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3 Formal Semantics of JNIL

We next present the core calculus of JNIL. A few simplifications are made to
the model. First, arrays are not included. Second, it assumes a calling convention
where arguments and results are passed on the operand stack when Java invokes
native methods. Our technical report discusses how to generalize the model to
add arrays and to parametrize over calling conventions. The bytecode language
is also simplified. Following Featherweight Java [17], we avoid the object initial-
ization problem by having a single instruction for creating and initializing an
object. There is also no modeling of interfaces, subroutine calls and returns, and
various other Java features. They are orthogonal to the multilingual issues we
are concerned with in FFIs. A notable missing feature in JNIL is concurrency.
Based on a model of concurrent bytecode (e.g., [18]), it should be straightfor-
ward to formulate an interleaving semantics for multithreaded, mixed bytecode
and native code.

Notation conventions. We write e for a list (or sequence) of elements e. The
empty list is ε, and e · s is the concatenation of e with list s. Appending two lists
is written as s1 • s2. We write [e1, . . . , en] for a finite list.

Given a function f , we write f [x #→ v] for an updated function that agrees
with f except that x is mapped to v. We write f [x #→ v] for a function after a
sequence of updates from x to v. We write “X Option” for an option domain of
X (think of ML’s option types). We write None for the none value, and $x% for
some x. We use � for an arbitrary value.

3.1 JNIL Programs

A JNIL program is modeled as an environment that records information for
classes and methods (Fig. 1). A program P includes maps from class names
and method IDs to their respective definitions. In particular, P (φ).super is the
superclass of class φ, or None; P (φ).fields is the list of fields declared in φ.
We write Fields(P, φ) for the list of all fields of φ, including the ones of its
superclasses. Java method and native method information are separated into two
maps: PJM for Java methods and PNM for native methods. We write JavaMD(P )

P = PJC ∪ PJM ∪ PNM

PJC : ClassName ⇀
〈
super : ClassName Option, fields : FID List

〉
PJM : MID ⇀

〈
code : JInstr List , handlers : Handler List ,
stype :CodeAddr⇀Type List , vtype :CodeAddr⇀JVarID → Type

〉
PNM : MID ⇀ 〈code : NInstr List〉

fd ∈ FID ::= 〈φ, α, τ 〉 md ∈ MID ::= 〈φ,α, [τ1, . . . , τn] → τr〉
τ ∈ Type ::= Int | Cls φ | Top η ∈ Handler ::= 〈nb, ne, nt, φ〉

φ ∈ ClassName = String α ∈ String n ∈ CodeAddr = N d ∈ JVarID = N

Fig. 1. JNIL programs
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I ∈ JInstr ::= arith | cond n | push v | pop | localload d | localstore d | goto n
| getfield fd | putfield fd | new φ | invokevirtual md | returnval | throw

arith ∈ JArith ::= add | sub | mul | . . . cond ∈ JCond ::= ifeq | ifne | ifgt | . . .

ι ∈ NInstr ::= jfun | aop rd, rs, op | bop rs, rt, op | Mov rd, op | Jmp op
| Ld rd, rs[rt] | St rd[rt], rs | Alloc rd, n | Free rs[n]
| SLd rd, sp[n] | SSt sp[n], rs | SAlloc n | SFree n | Ret

jfun ∈ JNIFun ::= GetField fd | SetField fd | NewObject φ | CallMethod md
| IsInstanceOf τ | JNIThrow | ExnClear | ExnOccurred

aop ∈ NArith ::= Add | Sub | Mul | . . . bop ∈ NCond ::= Beq | Bneq | Bgt | . . .
op ∈ Operand ::= r | n r ∈ Register ::= r1 | r2 | . . . | r32

Fig. 2. Bytecode and native instruction sets

for the set of Java method IDs in P , and NativeMD(P ) for the set of native
method IDs. PJM(md) contains a list of Java instructions (the code field), a
list of exception handlers, and also type information (stype and vtype). The
type information is used when type checking Java methods and is irrelevant for
operational semantics. PNM(md) simply contains a list of native instructions.
We abbreviate P (md).code[pc] to P (md)@pc, the instruction at pc in md .

Java types include Int type, class type (Cls φ), and Top type. The predicate
IsRefType(τ) holds when τ is a class type (or an array type when we consider
arrays). Two special class names, object and throwable, are assumed. We write
Object and Throwable for “Cls object” and “Cls throwable”, respectively. An
exception handler, 〈nb, ne, nt, φ〉, catches exceptions of class φ by transferring
the control to address nt, if the program counter is in the range [nb, ne − 1].

Fig. 2 presents the syntax of the bytecode and native instruction sets. The
bytecode instruction set is modeled after the instruction set in the JVM specifica-
tion [12]; we refer readers to the specification for a detailed discussion. The native
instruction set includes instructions for manipulating the heap (load, store, al-
location, and deallocation), a set of instructions for manipulating the operand
stack (those instructions whose operators begin with S), a Ret instruction for
returning, and a set of JNI functions. We use r for a register and op for an
operand, which is either a register or a constant. Finally, we note that instruc-
tions for pushing to and popping from the operand stack can be synthesized:
“Push op” is “SAlloc 1; SSt sp[0], op” and “Pop r” is “SLd r, sp[0]; SFree 1”.

Fig. 2 also includes a set of common JNI functions. Note that GetField,
SetField, and CallMethod take field and method IDs as arguments. The JNI
interface actually uses a two-step process to access a field (or call a method):
first convert a string that represents the field (or method) to a field (or method)
ID; the resulting ID is then used in operations such as GetField. JNIL omits
the first step to avoid the need to axiomatize the conversion from strings to IDs.

Both the bytecode and the native instruction sets include arithmetic and
binary comparison instructions. Their semantics is straightforward.
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3.2 Runtime States

A runtime state is a triple (S;H ;R), where S is a method-call stack, H a shared
heap, and R a register file. Its format is shown in Fig. 3. We have discussed the
format of the method-call stack and the heap in the previous section. Recall that
the heap holds only primitive values; objects are mapped to primitive values and
stored in blocks. A value is either an integer n, a null value, or a reference value

[i]. We abbreviate 
[0] to 
.

JNIL’s operational semantics is modeled as a transition relation:
P � (S;H ;R) #−→ (S′;H ′;R′). Fig. 3 also presents evaluation rules at the top
level. A state steps forward because of a Java step, a native step, or a GC step.

S ∈ Stack ::= F | 〈�〉X · F
F ∈ Frame ::= 〈md , pc, s, a〉J

| 〈md , pc, s, vx, L〉N
s ∈ OpStack ::= v
a ∈ JVarMap ::= {0 �→ v0, 1 �→ v1, . . .}
L ∈ RootSet ::= {�1, . . . , �n}

H ∈ Heap ::= Label ⇀

〈
blk : Block ,
own : Owner

〉
b ∈ Block ::= N ⇀ Value
v ∈ Value ::= n | null | �[i]
ω ∈ Owner ::= J | N
o ∈ Object ::= 〈〈fd1 = v1, . . . , fdn = vn〉〉φ

R ∈ RegFile ::= {r1 �→ v1, . . . , r32 �→ v32}

P � (S;H ;R) J�−→ (S′;H ′;R′)

P � (S;H ;R) �−→ (S′;H ′;R′)

P � (S;H ;R) N�−→ (S′;H ′;R′)

P � (S;H ;R) �−→ (S′;H ′;R′)

(S;H) GC�−→ (S′;H ′)

P � (S;H ;R) �−→ (S′;H ′;R)

Fig. 3. JNIL runtime states (S;H ;R) and top evaluation rules

3.3 Operational Semantics of Bytecode and Native Instructions

Due to space limitation, we will present rules only for typical instructions; the full
set of rules are in the technical report. Fig. 4 presents the rules for “getfield fd”,

P � (〈md , pc, s, a〉J · S;H ;R) J�−→ (S′;H ′;R),where
if P (md)@pc = and conditions hold, then S′;H ′ =

getfield fd
fd = 〈φ, α, τ 〉 s = � · s1
P,H � � : Cls φ
ReadFd(H, �, fd) = v

〈md , pc + 1, v · s1, a〉J · S;H

P � (〈md , pc, s, vx, L〉N · S;H ;R) N�−→ (S′;H ′;R),where
if P (md)@pc = and conditions hold, then S′;H ′ =

GetField fd
fd = 〈φ, α, τ 〉 s = � · s1
P,H � � : Cls φ
ReadFd(H, �, fd) = v vx = null

〈md , pc + 1, v · s1, null, L′〉N · S;H,
where L′ = L ∪Roots(v)

Fig. 4. Semantics of bytecode and native instructions
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ReadFd(H, �, fd) =

⎧⎨⎩
o(fd) if H(�) = 〈Rep(o), J〉,

and o = 〈〈. . .〉〉φ, and fd ∈ dom(o)
undefined otherwise

Tag(H, �) =
{
φ if H(�) = 〈Rep(〈〈. . .〉〉φ), J〉
undefined otherwise

P � τ1 <: τ2

P � τ <: Top P � Int <: Int P � Cls φ <: Cls φ

P � Cls φ1 <: Cls φ2

P (φ2).super = φ3�
P � Cls φ1 <: Cls φ3

P,H � v : τ P,H � v : τ P � τ <: τ ′

P,H � v : τ ′ P,H � v : Top

P,H � n : Int

Tag(H, �) = φ

P,H � � : Cls φ P,H � null : Cls φ

Fig. 5. Auxiliary definitions

a bytecode instruction, and its counterpart JNI function “GetField fd” (which is
used in native code). The rules use a few auxiliary definitions defined in Fig. 5.
ReadFd(H, 
, fd) reads the value of field fd from block 
 in heap H . Tag(H, 
)
returns the runtime tag of a Java object at 
 in H . Judgment P � τ1 <: τ2
expresses that τ1 is a subtype of τ2. Judgment P,H � v : τ performs runtime
type checking and checks that v has type τ in program P and heap H . Note a
reference 
 is of type “Cls φ” if the tag at 
 is φ (or φ′ and φ′ is a subclass of φ).
The rule itself does not mandate that the values of fields obey the fields’ types.
This requirement is put into a separate judgment for checking well-typed heaps,
as customary in type systems for mutable references.

The semantics of “getfield fd” is deliberately partial. If the object reference
on the operand stack does not have the class type specified in fd , then JNIL’s
abstract machine does not have a next state (that is, “getting stuck”). Similarly,
the machine gets stuck if block 
 in H is not owned by Java, does not hold
an object representation, or field fd is not in the domain of the representation.
The static type system for bytecode ensures that such cases will not happen for
well-typed bytecode programs.

The semantics of “GetField fd” is similar to “getfield fd”, except for a cou-
ple of differences. First, no JNI exceptions should be pending. Recall that in a
native stack frame 〈md , pc, s , vx, L〉N the value vx records a pending JNI excep-
tion. The JNI manual specifies that “calling most JNI functions with a pending
exception may lead to unexpected results”. Consequently, the semantics of most
JNI functions requires vx be null. Second, some JNI functions may give native
code extra references to Java objects. Since these references need to be regis-
tered with Java’s GC, they are recorded in the root set of a native frame. As an
example, the semantics of “GetField fd” adds the value of the field into the root
set L, if that value is a reference value.
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Cross-language method calls. The “invokevirtual md” instruction may invoke
a Java or a native method, depending on what kind of method md repre-
sents. If it invokes a native method, the execution context switches to the na-
tive side. returnval may return to a Java, or a native method. JNI functions
“CallMethod md” and Ret are analogous, except they are called in native code.

Semantics of method-call and return instructions are presented in Fig. 6. If
′′invokevirtual md” invokes a Java method, a new Java frame is constructed and
parameters are copied to the local variable map of the new frame (following the
JVML specification). If it invokes a native method, a native frame is constructed
and arguments are put in its operand stack (recall the calling convention). The
auxiliary function NewFrame constructs either a Java frame or a native frame:

NewFrame(P,md , [v1, . . . , vn]) =

⎧⎪⎪⎨⎪⎪⎩
〈md , 1, ε, a�[0 �→ v1, . . . , n− 1 �→ vn]〉J,

if md ∈ JavaMD(P ),
〈md , 1, vn · . . . · v1 · ε, null,Roots([v1, . . . , vn])〉N,

if md ∈ NativeMD(P )

The semantics of returnval has two cases: returning to a Java method call or
a native method call. Similar to “invokevirtual md”, “CallMethod md” may in-
voke either a Java or a native method. The JNI manual does not make it clear

P � (〈md , pc, s, a〉J · S;H ;R) J�−→ (S′;H ;R), if
P (md)@pc = and cond. hold, then S′ =

invokevirtual
md1

md1 = 〈φ, α, [τ1, . . . , τn] → τr〉
s = vn · . . . · v1 · � · s1
Tag(H, �) = φ′ P � Cls φ′ <: Cls φ
md ′ = 〈φ′, α, [τ1, . . . , τn] → τr〉

NewFrame(P,md ′, [�, v1, . . . , vn])·
〈md , pc, s, a〉J · S

returnval
md = 〈φ,α, [τ1, . . . , τn] → τr〉
S = 〈md ′, pc′, vp · � · s ′, a′〉J · S1

|vp| = n s = vr · s1
〈md ′, pc′ + 1, vr · s ′, a′〉J · S1

returnval
md = 〈φ,α, [τ1, . . . , τn] → τr〉
S = 〈md ′, pc′, vp · v · s ′, vx, L〉N · S1

|vp| = n s = vr · s1
〈md ′, pc′ + 1, vr · s ′, vx, L

′〉N · S1,
where L′ = L ∪Roots(vr)

P � (〈md , pc, s, vx, L〉N · S;H ;R) N�−→ (S′;H ;R), if
P (md)@pc = and conditions hold, then S′ =

CallMethod
md1

md1 = 〈φ, α, [τ1, . . . , τn] → τr〉
s = vn · . . . v1 · � · s1
Tag(H, �) = φ′ P � Cls φ′ <: Cls φ
md ′ = 〈φ′, α, [τ1, . . . , τn] → τr〉
vx = null

NewFrame(P,md ′, [�, v1, . . . , vn])·
〈md , pc, s, vx, L〉N · S

Ret
md = 〈φ,α, [τ1, . . . , τn] → τr〉
S = 〈md ′, pc′, vp · v · s ′, a′〉J · S1

|vp| = n s = vr · s1 vx = null
〈md ′, pc′ + 1, vr · s ′, a′〉J · S1;

Ret
md = 〈φ,α, [τ1, . . . , τn] → τr〉
S = 〈md ′, pc′, vp · v · s ′, v′x, L〉N · S1

|vp| = n s = vr · s1 vx = null

〈md ′, pc′ + 1, vr · s ′, v′x, L〉N · S1,
where L′ = L ∪Roots(vr)

Fig. 6. Semantics of method calls and returns



124 G. Tan

whether a native method is allowed to invoke another native method through
“CallMethod md”. Our experiments confirmed that JVM implementations allow
this behavior. Both rules for Ret are for the case of no pending exceptions; a
different rule for Ret with a pending exception will be presented.

Exception handling. Fig. 7 shows rules that are related to exceptions. The throw
instruction pushes an exception frame onto the method-call stack. Other byte-
code instructions may also generate a Java exception. For instance, “getfield fd”
generates an exception when the object reference on the operand stack is null.
When such cases happen, a Throwable object is allocated and an exception
frame is placed onto the stack. We list these cases in the technical report.

When a Java exception is pending, JNIL unwinds the stack as shown in
the second table of Fig. 7. There are three cases. If the next frame is a Java
frame and there is no matched handler for the exception, the Java frame is
removed. If the Java frame has a matched handler, then the control transfers to
the handler. If the next frame is a native frame, the Java exception is recorded
in the native frame (i.e., conceptually converted into a JNI exception) and the
execution continues as normal from the next instruction in native code.

The last table in Fig. 7 shows how JNI exceptions are generated and han-
dled. A JNI exception thrown by JNIThrow is recorded in the current native

P � (〈md , pc, s, a〉J · S;H ;R) J�−→ (S′;H ′;R),where
if P (md)@pc = and conditions hold, then S′;H ′ =
throw s = � · s1 P,H � � : Throwable 〈�〉X · 〈md , pc, s, a〉J · S;H

P � S;H ;R J�−→ S′;H ;R, if one of the following cases holds
if S = and conditions hold, then S′ =

〈�〉X · 〈md , pc, s, a〉J · S1
Tag(H, �) = φ P (md).handlers = η
CorrectHandler (η, P, pc, φ) = None

〈�〉X · S1

〈�〉X · 〈md , pc, s, a〉J · S1
Tag(H, �) = φ P (md).handlers = η
CorrectHandler (η, P, pc, φ) = nt� 〈md , nt, � · ε, a〉J · S1

〈�〉X · 〈md , pc, s, vx, L〉N ·
S1

〈md , pc + 1, s, �, L〉N·
S1

CorrectHandler (ε, P, pc, φ) = None
CorrectHandler (〈nb, ne, nt, φ

′〉 · η, P, pc, φ) ={ nt� if nb ≤ pc < ne and P � Cls φ <: Cls φ′

CorrectHandler (η, P, pc, φ) otherwise

P � (〈md , pc, s, vx, L〉N · S;H ;R) N�−→ (S′;H ;R),where
if P (md)@pc = and conditions hold, then S′ =

JNIThrow
s = � · s1 P,H � � : Throwable
vx = null

〈md , pc + 1, s1, �, L〉N · S
ExnClear 〈md , pc + 1, s, null, L〉N · S
ExnOccurred v = 0 if vx = null, or 1 if vx = � 〈md , pc + 1, v · s, vx, L〉N · S
Ret vx = � P,H � � : Throwable 〈�〉X · S

Fig. 7. Exception handling in JNIL



JNI Light: An Operational Model for the Core JNI 125

frame. Native code can either clear the exception by ExnClear or return with the
exception pending, in which case an exception frame is pushed onto the stack.

We present an example below showing how the method-call stack unwinds
assuming 1) Java method md1 calls native method md2, which calls Java method
md3; 2) md3 throws an exception; 3) md3 and md2 do not handle the exception,
but md1 handles the exception. Notice how md3 and md2 treat the exception
differently.

〈�〉X · 〈md3, . . .〉J · 〈md2, . . . , null, . . .〉N · 〈md1, . . .〉J · ε //md3 throws an exception
→ 〈�〉X · 〈md2, . . . , null, . . .〉N · 〈md1, . . .〉J · ε //md3 does not handle the exception
→ 〈md2, . . . , �, . . .〉N · 〈md1, . . .〉J · ε //md2 records � and continues execution
→ 〈�〉X · 〈md1, . . .〉J · ε //md2 returns with a pending exception
→ 〈md1, . . .〉J · ε //md1 handles the exception

3.4 GC Step

The GC rule is presented below. A set of blocks can be removed from the heap
if they are part of the Java heap, their labels are disjoint from the roots of the
stack, and they are unreachable from the rest of the Java heap.

L ⊆ dom(H |J) L ∩ Roots(S) = ∅ L ∩ Reachable((H |J) \ L) = ∅

(S;H) GC#−→ (S;H \ L)

Roots(S) is the set of labels contained in method-call stack S and Reachable(H)
is the set of labels in H . Their definitions are in the technical report.

Note that the rule is nondeterministic and L can be as small as the empty set.
It is also abstract and hides the implementation details of GCs. In fact, it accom-
modates all garbage collectors that are based on tracing, reference counting, or
combinations of both; any such garbage collector computes a set of unreachable
locations [19]. Finally, recall that JNIL’s heap model allows the rule to ignore
the moving aspect of garbage collection.

3.5 Type Safety of Bytecode and GC Safety

The JVM always performs bytecode verification before running a bytecode pro-
gram. Therefore, type checking of bytecode can be considered an essential part of
the JNI. The JNIL model also performs type checking of bytecode, which largely
follows a previous JVML model [15]. We highlight its top-level judgments and the
main safety theorems, but leave details and proofs to the technical report [10].

Judgment “� P prog” checks that a program P is well typed. It ensures that
all classes and all methods in its domain are well typed. When checking a Java
method, each bytecode instruction in the method body is type checked with
respect to pre- and post-conditions expressed in types. Note the system does
not perform type inference to infer those conditions, but merely takes types as
input and checks type consistency. Recall a Java method is associated with type
information for the operand stack and local variables (see the fields stype and
vtype in Fig. 1); the type information is input to type checking.
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Judgment “P � (S;H ;R) state” type checks runtime state (S;H ;R). It is well
typed if 1) H |J is a well-typed Java heap, and 2) S is a well-typed stack under
P and the Java heap. Checking well-typed Java heaps requires each heap object
be well typed according to its runtime tag, as customary in such kind of type
systems. Checking well-typed stacks not only requires every frame be well typed,
but also requires the chain of frames be a well-typed call chain—each frame is
the result of a call instruction in the caller method.

Definition 1. (S;H ;R) is a terminal state if 1) either S = 〈md , pc, vr · s , a〉J ·ε
and P (md)@pc = returnval, 2) or S = 〈md , pc, vr · s , null, L〉N · ε and
P (md)@pc = Ret, 3) or S = 〈
〉X · ε.

Theorem 2 (Java Progress). If � P prog, and P � (S1;H1;R1) state, then
either (S1;H1;R1) is a terminal state, or ∃S2, H2, R2. P � S1;H1;R1

J#−→
S2;H2;R2, or S1 = 〈. . .〉N · S′

1.

Theorem 3 (Java Preservation). If � P prog, and P � (S1;H1;R1) state,
and P � S1;H1;R1

J#−→ S2;H2;R2, then P � (S2;H2;R2) state.

Type soundness of bytecode is expressed in the standard form of progress and
preservation theorems. By the progress theorem, a well-typed state will be either
a terminal state, a state that can take a Java step, or a state where native code is
in control. It will never get stuck when bytecode is in control. By the preservation
theorem, a well-typed state steps to another well-typed state when taking Java
steps. It makes no guarantee when a state takes a native step.

A GC step does not affect the type safety of bytecode, as the following theorem
asserts:

Theorem 4 (GC Safety). If � P prog, P � (S;H ;R) state, and (S;H) GC#−→
(S′;H ′), then P � (S′;H ′;R) state.

4 Applications of the JNIL Model

The JNI specification does not mandate any checking of native methods. Native
methods are notoriously unsafe and a rich source of software errors. Recent
studies have reported hundreds of interface bugs in JNI programs [1, 5, 6].

A number of systems have been designed and implemented to improve and
find misuses of the JNI interface. They have overall improved the JNI’s safety
and security. We classify them into three broad categories:

– New interface languages. Jeannie [3] is a language design that allows pro-
grammers to mix Java with C code using quasi-quoting. A Jeannie program
is then compiled into JNI code by the Jeannie compiler. Jeannie helps pro-
grammers reduce errors. For instance, programmers can raise Java exceptions
directly in Jeannie, avoiding the error-prone process of exception handling
in native code.
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– Static checking. Several recent systems employ static analysis to identify
specific classes of errors in JNI code [1, 4, 6, 7]. These bug finders have
found hundreds of errors in real JNI programs.

– Dynamic checking. SafeJNI [2] combines Java with CCured [20] and inserts
dynamic tests that check for safety violations. Going one step further, Jinn [8]
automatically generates dynamic checks based on safety specifications in
terms of finite-state machines.

We argue that it would be valuable to formalize the claims of these systems in
JNIL and thus provide a rigorous foundation for their strength. We envision
JNIL would be useful in the following ways:

– Formal semantics of Jeannie. We discussed Jeannie, a language that mixes
Java with C code and is translated to JNI code. Jeannie does not come with
formal semantics. An interesting way of defining Jeannie’s semantics would
be to map Jeannie programs to JNIL programs.

– Soundness of JNI static checking. JNIL can serve as a basis for proving that
a JNI bug finder does not miss any errors of a certain kind. One way to show
the soundness is to structure the system into two components: inference and
verification. The first part infers annotations (e.g., in the form of types) and
the second part performs verification with annotations as hints. Then the
soundness theorem is to show that programs (with annotations) that pass
the verification do not incur the kind of errors in question.

– Soundness of JNI dynamic checking. JNIL can also serve as a basis for
showing the soundness of systems that insert dynamic checks for safety (e.g.,
SafeJNI [2]). One way to proceed is to have an “instrumented” semantics
of JNIL in which dynamic checks are embedded into its transition rules. If
a dynamic check fails, the system transits to an error state. The soundness
theorem expresses that a state is either a terminal state, an error state, or
a state that can progress. A more ambitious attempt to formalize dynamic
checking is to treat the insertion of dynamic checks as a source-to-source
rewriting system. The safety theorem would then show the resulting program
is safe according to the vanilla semantics of JNIL.

In the above examples, JNIL alone would not be sufficient; we would also need
formal models of other parts (e.g., a model of static checking). But JNIL provides
a common foundation for such formal development to proceed. With additional
constraints on the native code, JNIL makes it possible to prove properties of a
multilingual system.

5 Extensions and Future Work

The technical report presents two extensions of JNIL. The first extends JNIL to
add support for Java arrays. Most of the new rules for arrays are straightforward.
One complication is that the JNI treats primitive arrays (i.e., arrays with prim-
itive types such as Int) differently from object arrays. The GetIntArrayElements
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function returns a pointer to the first element of the array and native code can
then perform address arithmetic with the pointer to access array elements. Since
JNIL’s heap model allows address arithmetic within blocks, direct pointers to
Java arrays are nicely accommodated.

For clarity, JNIL in Sec. 3 passes arguments and results through the operand
stack when Java interfaces with native code. However, in reality the calling
convention varies greatly, depending on compilers and architectures. Therefore,
the second extension of JNIL is about how to parametrize the model over a
calling convention.

One immediate next step is to develop methodology to evaluate our model. We
plan to develop machine-checked semantics of JNIL in Coq. We will make the
model executable so that it is possible to run benchmark programs in the model.
We will also investigate whether a substantial subset of C can be translated to
the native language in JNIL—a way to evaluate its practicality.

6 Related Work

The block heap model in JNIL takes inspiration from Leroy and Blazy’s block
memory model in the CompCert project [21]. They use the block memory model
to specify the semantics of C-like languages and verify correctness of program
transformations. We use the block model to reconcile differences between a high-
level, garbage-collected OO language and a low-level language. The bytecode
language in JNIL bears many similarities to Freund and Mitchell’s JVMLf

model [15]; the native language is similar to Morrisett et al.’s stack-based typed
assembly language [22]. JNIL’s emphasis is on proposing abstractions for mod-
eling language-interoperation issues in FFIs.

Previous work proposed preliminary formalisms that capture certain aspects
of the JNI. Furr and Foster justified JSaffire’s soundness on a formalization of
a subset of the JNI [23]. It models only the native side, and treats Java ob-
jects opaquely. Jinn [8] describes safety constraints of the JNI using finite-state
machines. JNIL models both sides of the interface and proposes abstractions
that address issues including a shared heap, cross-language method calls, excep-
tion handling, and the impact of garbage collection; these issues have not been
addressed by previous efforts.

7 Conclusions

Most real software systems are multilingual. A safe software system depends on
its building blocks and their interoperation. Even if each building block is safe in
some language model with respect to some safety policy, without safe interopera-
tion between languages there would be no safety guarantee on the whole system.
Therefore, modeling and reasoning about language interoperation is critical to
the safety and security of software systems. JNIL is a formal model that covers
the core JNI. Its abstractions elegantly reconcile the differences between a high-
level OO language and a low-level language. It can directly be used to provide a
formal foundation for systems that analyze the JNI. We believe its concepts can
be generalized to model other FFIs.
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Abstract. It is conventional for Java developers to access database en-
gines through standard JDBC API which requires passing SQL queries
in plain Java strings. This is referred to as embedding of SQL queries
into Java. The strings are not checked at compile time, and errors in
the queries (e.g. syntax errors or misspelled names) are usually detected
only by testing. In this paper we describe a tool which statically ana-
lyzes SQL queries embedded into Java programs. It combines a sound
syntactic analyzer with a testing facility which generates small tests to
detect errors in individual queries and runs them on an actual database
engine. The tool is implemented as a plug-in for Eclipse IDE and allows
for interactive use in real-life projects.

1 Introduction

Domain-specific languages (DSLs) are languages tailored for a concrete appli-
cation domain. They offer substantial gains in expressiveness and ease of use
compared with general-purpose languages in their specific domain of applica-
tion. However, in production environments, complex systems are assembled from
diverse software components possibly having different DSLs which should cor-
rectly integrate with a general-purpose host language. Therefore, the efficiency
and robustness of interoperability between the host-language and DSLs is of
great importance.

Probably the most common way of embedding external DSLs (like SQL,
HTML or JavaScript) inside the general purpose host language (e.g. Java, PHP,
Python) is representing DSL constructions as host language strings (we will refer
to such embeddings as string-embedded DSLs). The strings are often assembled
dynamically using string concatenation and other string manipulation methods.
While very flexible, such an embedding can be quite error-prone, as standard
development tools provide no support for string-embedded DSLs.
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As an example of string-embedded DSLs and problems associated with them,
consider the following example Java code fragment with an embedded SQL
statement:

public Statement ageFilter(int minimalAge) throws SQLException {
Connection conn = getConnection();
String sql = "SELECT name FROM people WHERE nmae IS NOT NULL";
if (minimalAge > 0)

sql += "AND (age >= " + minimalAge + ")";
return conn.prepareStatement(sql);

}

The ageFilter method receives an argument minimalAge and produces a query
which filters entries of table people by their age. If the method argument,
minimalAge, is greater than zero, a condition is appended to the query to select
people of this age or older. The argument sql passed to the JDBC API method
prepareStatement is where we start the analysis from.

Although Java code in this method compiles without any errors, it actually
does have two errors in the SQL statement. These errors are underlined in the
listing above. First, if minimalAge happens to be greater than zero, there will
be no space between keywords NULL and AND, which is a syntax error. Second,
there is a typo in the WHERE clause: “nmae” is written instead of “name”, which
is a semantic error. It would be useful if these errors could be discovered without
running the program.

This paper presents a tool that detects both kinds of errors mentioned above
at compile-time by statically analyzing SQL statements embedded in Java pro-
grams. It can perform sound SQL syntax analysis on strings constructed by
different programming constructions like conditional concatenation and method
calls. Syntax analyzer is complemented by testing facility that uses actual
database engine for semantic validation of embedded SQL queries. Both ser-
vices can be run in parallel with program editing. No special code annotations
are required for using any of the functionality mentioned. Test version of the
tool can be downloaded from http://barclay.stacc.ee/edsl.

First we give an overview of the general architecture of the tool and then de-
scribe main components dealing respectively with SQL extraction, syntax check-
ing, semantic validation and user experience. We then report our results on using
the tool with some open source projects. Finally we compare our solution to sim-
ilar tools presented before and outline possible paths for future work.

2 Architecture

The tool is implemented as a set of plug-ins for the Eclipse IDE [4]. It re-uses the
capabilities of Eclipse’s Java Development Tools (JDT) to acquire abstract syn-
tax trees from Java code. Further stages of the analysis are shown in Fig. 1. The
Abstract string collector starts with identifying Java expressions which represent
SQL statements; we refer to such expressions as hotspots. For each hotspot the

http://barclay.stacc.ee/edsl
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Fig. 1. Tool architecture

collector builds an abstract string representation, which is a regular expression
representing a set of all strings the hotspot may be possibly evaluated to.

Error detection is done by the SQL syntax analyzer that parses abstract
strings and detects syntax errors and the testing facility that generates sample
queries from abstract strings and checks them by sending to a database engine.
If the engine does not accept the query (e.g. because of a misspelled field name),
the test fails and an error is reported. Error messages from both syntax analysis
and tests are displayed in the Eclipse Java Editor similar to Java compiler errors.

2.1 Abstract String Collector

Abstract string collector locates hotspots and approximates sets of their possible
values with abstract strings, which are regular expressions conforming to the
following grammar:

s ::= “string” [chars] s+ s s s | s (s)

For the SQL statement in the example above the following abstract string is
constructed:

“SELECT <...> nmae IS NOT NULL”
(
“AND (age >= ” [0-9]+ “)” | “”

)
Hotspot expressions are identified by searching the code for certain API method
calls known to accept SQL statements. The exact methods can be specified by
the user in a project configuration file. Text search (provided by Eclipse) is used
to obtain preliminary list of hotspot locations. Corresponding compilation units
are then parsed (using Eclipse JDT API) and a list of AST nodes corresponding
to hotspot expressions is created.

For each hotspot expression the program slice is computed and then interpro-
cedural path-insensitive constant propagation analysis is used for constructing
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the corresponding abstract string. This process includes tracking values of both
immutable (String) and mutable (StringBuffer and StringBuilder) string
objects.

Conditional appending to a string variable is represented in corresponding
abstract string by choice (a | b) between abstract strings a and b computed in
either of the if statement branches. While and for loops are assumed to execute
0 or more times, therefore appending value x to a string variable in a loop is
represented as (“” |x+) – choice of empty string and repetition of x.

When a method parameter is used in a hotspot expression, the corresponding
abstract string is constructed as a choice of all actual arguments provided for this
parameter at call sites. If a hotspot depends on a result of a (virtual) method,
all implementations of this method are considered and a choice of their results
is constructed. A special case when a modifiable string object1 is passed as
an argument to a method which appends to it, is also supported. The depth of
interprocedural analysis is limited to a fixed number of calls in order to guarantee
termination on recursive programs.

If certain unsupported Java features (e.g. global mutable state) are used in
the program slice, then corresponding hotspot is marked as unsupported. For all
supported hotspots, string collection algorithm is sound i.e. resulting abstract
string represents a set containing all the strings this hotspot expression may
possibly evaluate to. Since the analyzer uses approximation, this set may also
contain strings which cannot actually appear at run time.

2.2 SQL Syntax Checker

Each abstract string is transformed into a nondeterministic finite automaton
over Unicode alphabet. SQL syntax checker performs lexical analysis by trans-
forming an automaton with a finite-state transducer (FST), which yields another
automaton — over the alphabet of SQL tokens. The transducer is automatically
derived from a lexical analyzer generated by JFlex [8]. This process does not
introduce any loss of precision, as regular languages are closed under transfor-
mations by FSTs.

For the example given above, lexical analyzer constructs an automaton that at
the end of the first string literal generates either a keyword NULL or an identifier
NULLAND.

Syntactic analysis is performed using a technique called abstract parsing [7],
which is based on simulating an LR-parser generated by Bison [3] over the au-
tomaton representing the regular expression. We have extended this technique
to GLR parsing [11] to be able to use grammars with LALR(1) conflicts and
even ambiguities common in grammars described in standards and manuals. For
abstract strings with no repetitions (s+) this process gives precise results. If the
string set designated by an abstract string is infinite then syntax checking is
equivalent to checking inclusion of a regular language into a context-free one.
As this is undecidable we use an approximation based on bounding the depth

1 For example, a StringBuilder object.
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of stacks used by LR-parser as described in [9]. This corresponds to approxi-
mating the context-free syntax of SQL by a regular language. The analysis is
sound, meaning that if no errors are reported then all possible values of the
abstract string are guaranteed to comply to SQL syntax requirements. In our
example, this process detects a syntax error because the IS NOT operator cannot
be followed by an identifier NULLAND.

2.3 Testing Facility

Testing facility is provided for semantic validation of abstracts strings against
the target database schema. Each collected abstract string is expanded to a
corresponding set of concrete strings. In the expansion process, each repeti-
tion s+ is narrowed to a finite choice s | (ss). Concrete strings are sent to a
database engine for parsing and semantic checking using standard API call
(java.sql.Connection.prepareStatement). If database reports error for any
of the concrete strings then respective abstract string is reported as erroneous.

For finite abstract strings, if all tests pass, no prepareStatement call will
report an error during program execution, and if some test fails, there is a path
in the program that leads to an error. In other words, the testing procedure is
sound and complete for this case. For abstract strings containing repetition it is
complete. With repetition schemes found in our benchmarks (e.g. generating a
number of question marks in IN clause) it is also sound.

2.4 User Interface

The presented tool is integrated into Eclipse IDE. From the user perspective it
adds one more checking pass to the building process of an Eclipse project. To
enable checking of the string-embedded SQL in a Java project the user turns on
a corresponding project nature, which adds a tool-specific builder to the project.
The analysis results are reported to the user in the same manner as Java compiler
errors are displayed. In addition, each hotspot is marked with an abstract string
info marker that allows the user to see the abstract string represented as a
regular expression in a tool-tip window.

The builder runs in a background thread, so the editor is not blocked during
the checking process. During the first-time check the Builder collects informa-
tion about hotspots and abstract strings and stores it in the persistent cache
database, so that consequent checks run faster since only the information about
updated files and dependencies has to be recomputed. These incremental checks
are performed when a Java file is saved after a modification. In addition to auto-
matic checks, user can manually invoke the checker on one or more files, packages
and projects.

3 Evaluation

The tool was tested using several open source and commercial projects as bench-
marks. Results for open source benchmarks are given in Fig. 2. Tests were per-
formed using Eclipse 3.5 with Sun JRE 1.6 running on 2.8GHz Intel Core 2
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# Hotspots Time (sec) Mem Cached
Benchmark LOC total bugs FA unsupp. total string syntax test MB size time

Plazma 48520 94 4 1 3 6.0 3.8 0.5 1 65 1 0.4
Compiere 319570 1343 12 7 129 138 120 10.4 4.4 445 8 0.5

Fig. 2. Benchmark results

Quadro CPU with 4GB of RAM. Eclipse was run with 512MB limit on heap
space.

In Fig. 2, LOC refers to lines of Java code (excluding blank lines and com-
ments) in the specific projects analyzed. The total number of hotspots is broken
down to number of actual bugs found, number of false alarms (FA) and number
of unsupported hotspots (cases where SQL strings were constructed using cer-
tain Java features not supported by our string collector). Remaining hotspots
contained no SQL errors.

Time measurements under Time and memory usage (Mem) refer to project
analysis started with empty cache. Time was measured separately for string
collection, syntactic analysis and testing on actual database. “Memory usage”
corresponds to the peak amount of heap space used during the analysis minus
the memory occupied by Eclipse at start-up.

Cached/size shows size of full cache file in MB-s. Cached/time refers to average
time (in seconds) spent on re-analysing single file and it’s dependent files using
full cache, in cases when the file has at most 2 dependent files. Reanalyzing a
file with more dependent files takes proportionally more time.

Plazma is a medium-size open source ERP and CRM software. We analyzed
its business logic module (project standart) together with a required project
(framework)2. All bugs were found by the testing facility and were caused by
missing table definitions in schema creation scripts provided with the distri-
bution. False alarm was caused by lack of path-sensitivity in string collection.
Unsupported cases were StringBuffer modifications using trim and a method
with no call sites and thus no abstract values for its parameters.

Our main open-source benchmark was Compiere – one of the best known
ERP and CRM business solutions. Again, we analysed the business logic module
(project base) together with its required projects. This benchmark was challeng-
ing because of the big size of the codebase and complicated constructs used for
generating SQL queries.

The bugs found in Compiere include 10 errors in SQL syntax (e.g. missing
space between SQL tokens), detected by syntactic analyzer and testing facil-
ity and 2 misspelled identifiers detected by testing facility. Unsupported cases
include usage of global mutable state or dynamic memory. We also included
among unsupported hotspots the cases where the string collector detected def-
inite need for path-sensitive analysis. Most false alarms were caused by lack of
path-sensitivity in string collection.
2 The workspace for Plazma benchmark, prepared for the analysis, is available at our

tool’s homepage.
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4 Conclusions and Related Work

In this paper we presented a tool for analyzing SQL statements embedded into
Java strings. It uses abstract lexical analysis and parsing to check for syntactical
errors in SQL statements and a testing facility to generate sample statements
and perform semantic checks on a running database engine. These two tech-
niques complement each other: while the former is a sound analysis, which is
guaranteed to report an error if it is present, the latter is validating against a
real environment and is capable of checking semantical properties and sometimes
eliminating false alarms produced by syntactic analyzer. To our knowledge, no
other tool presents a combination of these two techniques.

Existing tools integrated with development environments, such as IntelliJ
IDEA [5], IBM pureQuery [2] and SeamlessSQL [1] perform very limited control
flow analysis, supporting only basic Java constructs (mainly, string concatena-
tion), whereas our tool performs inter-procedural analysis taking conditionals
and loops into account. Additionally, these tools require explicit annotations for
hotspot expressions, whereas out tool is capable of detecting hotspots from API
calls.

Paper [6] reports on Java String Analyzer (JSA), a tool which performs static
analysis to check syntax in embedded SQL statements as our SQL syntax checker.
Our work differs from this project in several ways. First, JSA is intended for off-
line analysis, whereas our tool is interactive. This is partly enabled by using a
more light-weight algorithm implemented in the abstract string collector, where
JSA uses a multi-step approximation based based on Mohri-Nederhof’s algo-
rithm to obtain a regular representation. Second, for syntax analysis JSA uses
a manually approximated grammar where recursion depth is bound by modify-
ing the rules. Contrary to ours, this approach is not precise even on finite sets,
and does not allow for reuse of existing grammar. Additionally, JSA does not
perform lexical analysis which makes grammar development harder: one has to
take whitespace into account while writing productions, and prevents reuse of
existing grammars.

JDBChecker tool described in [12] uses JSA for syntax analysis and performs
type checking inside SQL expressions. It does not require a database connec-
tion, but is capable of detecting only some types of semantic errors and does not
consider differences between semantical rules of various database engines. In con-
trast, our testing facility performs complete checks against the engine on which
the queries will be actually executed. JDBChecker performs lexical analysis by
manually implemented depth-first search based algorithm, which is less conve-
nient for extension and does not allow to reuse existing lexical specifications, as
our tool does.

Our SQL syntax checker is inspired by abstract parsing techniques proposed
in [7]. The stack-depth bounding abstraction we use is proposed in [9]. The
key differences of our implementation are the following: (a) syntactic analysis
is separated from string collection, which makes it usable in different contexts,
(b) unlike [7] and [9] we use lexical analysis which facilitates grammar devel-
opment and error reporting, (c) we use a GLR-based algorithm which tolerates
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ambiguities in grammars, whereas the mentioned papers are based on conven-
tional LALR(1) parsing, which complicates grammar development and adoption
of specifications given in standards.

Thiemann [10] describes a different approach to analyzing syntax in embedded
strings: it presents a type system for a variation of λ-calculus, where types are
based on grammar nonterminals and type checking utilizes the Earley parsing
algorithm. Compared to ours, this approach is rather far from practical use, for
example, it is unclear if it can be adopted for the full Java language.

As possible direction for the future work we consider making abstract string
collection path-sensitive which should eliminate most of the false alarms the
tool currently produces. We also plan to analyze usage of result sets retrieved
from executed queries to detect misspelled column names and typing errors.
Additionally, we intend to develop a content-assist capability to propose table
and field names inside embedded SQL queries and, probably, get-methods on
result sets. As a matter of improving the overall user experience, we are going to
improve the current caching mechanism to be more fine-grained and thus yield
shorter delays for rechecking, we also plan to improve configuration capabilities
of the tool, especially in the part of configuring it for use with multiple data
sources for the same project.
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Abstract. While the definition of the revised widening for polyhedra
is defined in terms of inequalities, most implementations use the double
description method as a means to an efficient implementation. We show
how standard widening can be implemented in a simple and efficient way
using a normalized H-representation (constraint-only) which has become
popular in recent approximations to polyhedral analysis. We then detail
a novel heuristic for this representation that is tuned to capture linear
transformations of the state space while ensuring quick convergence for
non-linear transformations for which no precise linear invariants exist.

1 Introduction

The lattice of convex polyhedra is a popular abstract domain [7] for inferring
linear relations between variables. Implementations of the full domain [1] and its
many approximations [14,17,21] were used to infer program properties (such as
list sizes [16] and variable ranges) or to analyze models (such as hybrid automata
[12]). The infinite ascending chains in the lattice of polyhedra require that the
inferred states are widened to ensure that the fixpoint computation terminates.
To this end, a widening operator extrapolates the changes between two (or more)
iterates of a fixpoint computation to a state that likely includes all future iter-
ates. Standard widening for polyhedra [10] is defined in terms of the so-called
H-representation of polyhedra (a set of linear constraints), and its straightfor-
ward implementation requires a quadratic number of entailment checks [5]. In
this paper, we introduce normal widening that implements standard widening
using only simple syntactic checks, based on a normalized H-representation. It
avoids the creation of redundant inequalities which, as we show, is inherent in
the original definition [10]. These redundancies are avoided in classic polyhedra
libraries that store a double description of a polyhedron consisting of constraints
(equalities and inequalities) and generators (vertices, rays, and lines). Thus, our
algorithm benefits novel implementations that only use constraints [5,18,19].

Since standard widening is often too imprecise, various heuristics have been
proposed to improve the prediction of the state space growth. Most of these
heuristics rely on the double description of polyhedra which makes them ill-
suited to implementations using H-polyhedra. We therefore seek new heuristics
that only require the H-representation and take advantage of the normal form.
� The work was supported by the DFG Emmy Noether Programme SI 1579/1.

�� NSFC 60725206 and INRIA project “Abstraction” common to CNRS and ENS.

K. Ueda (Ed.): APLAS 2010, LNCS 6461, pp. 139–155, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



140 A. Simon and L. Chen

5

y

x
0
0 51

1

5

P2

P1

P3

i1

j

y

x
0
0 51

1

5

v3

y

x
0
0 51

1

10

P2

P1

P3

v1

v2

v4

r1

r2 P3

P4

P5

P2P1

P'3

i2

i

j2
j1

Fig. 1. Comparing the evolving-points heuristic with our method

To this end, consider the first diagram of Fig. 1 which shows how the “evolving
point” heuristic [1] widens the polyhedron P1 with respect to the next iterate
P2: The vertices v1, v2, v3 in P1 are subtracted from vertices that are new in P2
(here only v4) and the resulting extreme rays r1 = v4 − v2 and r2 = v4 − v1 are
added to P2 thereby defining the resulting polyhedron P3. The second diagram
illustrates our heuristic that rotates inequalities i1 in P1 and i2 in P2 to i∞ which
has the same distant to the evolving vertices v3 and v4. Performing the analog
rotation for j1, j2 to j∞ yields the state P3. This result is indeed an invariant
for loops that contain the statement if (y==5) {x=x+2;y=y-1;}. Extrapolating
with the assumption that transformations are linear means that our heuristic can
widen rapidly when a non-linear transformation is observed. This is illustrated
in the third diagram where the polyhedra Pn show the evaluation of the loop
body x=x+1;y=2*y; with P1 = {〈1, 1〉}. The exact values 〈x, y〉 are indicated by
crosses. The Parma Polyhedra Library [1] delays widening1 until both polyhedra
have the same dimension. Then P3 is widened with some heuristic to give P4
which has to be widened to P5 which is observed to be a fixpoint in the 6th
iteration. In contrast, our heuristic is able to widen P2, yielding P ′

3 = {x ≤
y, x ≥ 1} which is confirmed as a fixpoint in the 4th iteration. Thus, in case of
non-linear transformations, polyhedra are unable to express a precise invariant
(e.g. 2x = y) so that performing two additional iterations is likely to be a waste
of time. In summary, this paper makes the following contributions:

– It presents an implementation of standard widening for H-polyhedra that
requires only syntactic operations rather than expensive entailment checks.

– We present a heuristic that requires only the H-representation and which
tries to guess linear transformations based on the observed changes.

– We show that our heuristic often terminates faster than classic heuristics.

The remainder of the paper is organized as follows. The next section introduces
required notation. Section 3 presents the well-known standard widening and our
1 When given one token; without any tokens, the PPL library discards all inequalities.
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implementation for normalized polyhedra. Section 4 details our novel heuristic
which Sect. 5 evaluates. Section 6 presents related work and concludes.

2 Preliminaries

Let x = 〈x1, . . .xn〉 denote an ordered set of variables, let Ineqn denote the
set of linear inequalities a · x ≤ c where a ∈ Rn and c ∈ R. Moreover, let
e.g. 6x3 ≥ x1 − 5 abbreviate 〈1, 0,−6, 0, . . .0〉 · x ≤ 5. Define Eqn to denote the
set of equalities of the form a ·x = c ∈ Eqn. Given an equality set E ⊆ Eqn, we
use E≤ := {a · x ≤ c,a · x ≥ c | a · x = c ∈ E} to denote the corresponding set
of inequalities. Each inequality a · x ≤ c ∈ Ineqn induces a half-space [[a · x ≤
c]] = {x ∈ Rn | a · x ≤ c}. Each finite set of inequalities I = {ι1, . . . ιm} ⊆ Ineqn

induces a closed, convex polyhedron [[I]] =
⋂m

i=1[[ιi]]. Let Polyn = {[[I]] | I ⊆
Ineqn, |I| ∈ N} denote the set of all (finitely generated) polyhedra. The tuple
〈Polyn,⊆,∩, � 〉 is a lattice with P1 �P2 = cl(hull (P1 ∪ P2)) where cl denotes
topological closure and hull is the convex hull operation on sets of points. This
lattice can serve as abstract domain in a program analysis where a bifurcation
with condition c ∈ Ineqn in the control flow graph is modeled using the meet
operation P ∩ [[c]] and a merge of control flow edges is modeled by the join
P1 �P2 [7]. However, the lattice contains infinite chains P1 ⊂ P2 ⊂ P3 . . . so
that standard Kleene iteration may not converge onto a fixpoint in finite time.
To guarantee convergence, a widening operator ∇ : Polyn × Polyn → Polyn is
required, satisfying the following:

1. ∀x, y ∈ Polyn . x ⊆ x∇y
2. ∀x, y ∈ Polyn . y ⊆ x∇y
3. for all increasing chains x0 ⊆ x1 ⊆ . . ., the increasing chain defined by

y0 = x0 and yi+1 = yi∇xi+1 is ultimately stable.

All operations can be implemented by storing a set of constraints (equalities and
inequalities) for each polyhedron: Suppose that Pi = [[Ii]], i = 1, 2, then P1∩P2 =
[[I1∪I2]] and P1 ⊆ P2 iff for all a·x ≤ c ∈ I2 it holds that c ≥ max(a·x, I1) where
max : Linn × P(Ineqn) → (Q ∪ {∞}) infers the maximum that a · x can take
on in [[I1]]. Note that max(a · x, I) can be inferred using the Simplex algorithm
for linear programming. Internally, this algorithm searches for a positive linear
combination λ ∈ Qk of k ≤ n inequalities {a1 · x ≤ c1, . . .ak · x ≤ ck} ⊆ I such
that λ · (a1 . . .ak) = a and c = λ · (c1 . . . ck) maximizes a · x in [[I]]. We use
〈λ, c〉 = maxExt(a ·x, I) to calculate λ. Linear programming has also been used
to approximate the calculation of P1 �P2 [18,19]. In this context, it is mainly
used to remove redundant inequalities. An inequality ι ∈ I is redundant in I if
[[I \ ι]] ⊆ [[I]]. Throughout this paper, we assume that the representation I of a
polyhedron P = [[I]] contains no redundant inequalities (“I is non-redundant”).

The advent of approximate join operators that are solely based on constraints
[18,19] raises the question how other operations, e.g., the widening, can be im-
plemented in a constraint-only representation. The following section presents a
simple constraint-only based implementation of the standard widening operator
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Fig. 2. Illustrating standard widening

before Sect. 4 addresses the question of additional heuristics that, so far, have
only been implemented using the double description method which is a repre-
sentation that uses both, constraints (equalities and inequalities) and generators
(vertices, rays, and lines).

3 Widening for Polyhedra

The presence of infinite ascending chains requires a widening to accelerate and
guarantee convergence of the fixpoint computation. The original widening op-
erator on polyhedra proposed in [7] was intuitive in that all inequalities that
were new are abandoned. Its improvement, presented in [10], refines this idea by
making this process resilient to different representations of the same state space.
The latter algorithm has specialized implementations based on the double de-
scription method and has become known as the standard widening. We restate
the standard widening based on the constraint-only representation and present
an efficient and simple implementation that does not need generators.

Definition 1 (Standard widening). Given two polyhedra P1 = [[J1]] and P2 =
[[J2]] satisfying P1 ⊆ P2 where J1, J2 ⊆ Ineqn are non-redundant, we define

P1�P2
def= [[C1 ∪ C2]]

where
C1 = { ι1 ∈ J1 | [[J2]] ⊆ [[ι1]] },
C2 = { ι2 ∈ J2 \ J1 | ∃ ι1 ∈ J1, [[(J1 \ ι1) ∪ ι2]] = [[J1]] }.

The first set C1 contains all inequalities of P1 that are not violated by the larger
P2 and corresponds to the original widening. Standard widening adds C2, consist-
ing of inequalities of J2 that can be exchanged with an inequality of J1 without
changing the represented state. This set ensures that the result is independent
of the representation of P1 and P2. In order to illustrate this, consider Fig. 2.
The first two diagrams depict the two inputs to the widening operator. Suppose
that the first polyhedron P1 is represented by I1 = {1 ≤ x, x ≤ 1, 1 ≤ y, y ≤ 1}
whereas P2 is represented by I2 = {1 ≤ x, y ≤ x, x ≤ y, x ≤ 2}. Only C1 = {1 ≤
x, 1 ≤ y} is satisfied by P2, thus the original widening returns the state depicted
in the third diagram. Standard widening adds C2 = {y ≤ x, x ≤ y} since these
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can be exchanged with x ≤ 1, y ≤ 1 ∈ J1 without changing [[J1]]. However, each
of the |J1||J2| entailment checks [5] requires a Simplex query. Thus, we propose
to store a polyhedron in a normal form and show how this can refine the problem
of making widening resilient to the representation of polyhedra.

Listing 1. Inlining equalities into an inequality
procedure inline(E,a · x ≤ c) where E ⊆ Eqn,a · x ≤ c ∈ Ineqn,a ≡ 〈a1, . . . an〉
1: for a= · x = c= ∈ E where a= ≡ 〈a=

1 , . . . a
=
n 〉 do

2: i← min{i | a=
i �= 0} /* find the index of the first non-zero coefficient */

3: if ai = 0 then continue; /* skip loop if inequality does not contain xi */
4: a · x ≤ c← (a=

i a − aia
=) · x ≤ (a=

i c− aic
=)

5: end for
6: return 〈a · x ≤ c〉

3.1 Normalizing the Constraint Representation

Given J ⊆ Ineqn, we construct a canonical representation for P = [[J ]] as follows:

1. We compute the affine space that P lies in by calculating c′ = −max(−a ·
x, J) for each a · x ≤ c ∈ J . If c′ = c then a · x = c holds in P . By
performing Gaussian elimination on these equalities, we obtain an equality
system in reduced row echelon form, which we denote as E.

2. For each ι ∈ J , we apply a function inline(E, ι), presented as Listing 1, that
eliminates those variables in ι that are leading variables in E.

3. Finally, we normalize each inequality such that the leading coefficient is
either 1 or −1 and remove constraints that are redundant. We get a new set
of inequalities, which we denote as I.

The above steps calculate a canonical representation 〈E, I〉 of any P ∈ Polyn,
see e.g. [15]. For the remainder of the paper, we assume that polyhedra are
represented as normalized sets of equalities and inequalities.

3.2 Standard Widening on Normalized Constraints

Given that the input constraints [[Ei, Ii]] = Pi, i = 1, 2 of the widening operator
are normalized, the pre-condition P1 ⊆ P2 implies that [[E1]] ⊆ [[E2]]. Since the
affine space common to E1 and E2 is by definition stable, it suffices to widen
the two systems E≤ ∪ I1 and I2 where E ⊆ Eqn describes the affine space of
P1 without that of P2. For example, if E1 = {x = 0, y = 0} and E2 = {x = y}
then EC = {x = y} is the common affine space and E = {y = 0}. In general,
after normalization and omission of EC , the constraint sets E1, I1, and I2 can
be written as follows:

E1: Iv + AEw = cE

I1 : A1w ≤ c1
I2 : Av

2v + Aw
2 w ≤ c2
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Fig. 3. Non-trivial applications of standard widening. Each letter is written on the
infeasible side of the facet it denotes (i.e. the outside of the polyhedron). Lower case
letters denote the constraints of the first polyhedron, capital letters those of the second.

Here, I denotes the identity matrix and 〈v,w〉 span the variable set x. Re-
stricting the input constraints to the systems above not only improves efficiency
of the widening operator but also allows its implementation to be much sim-
pler than in the definition of standard widening presented in Sect. 3. Before we
show this, we observe that an inequality can be modified by inlining equalities
without changing the polyhedron. The following refers to the inline function in
Listing 1.

Lemma 1. Let ι′ = inline(E, ι) then [[I ∪ {ι} ∪ E≤]] = [[I ∪ {ι′} ∪ E≤]].

Proof. In Listing 1, at line 4, we have a=
i xi+Σk>ia

=
k xk = c=, which is equivalent

to xi = (c= − Σk>ia
=
k xk)/a=

i . Thus a · x ≤ c, that is, aixi + Σk 	=iakxk ≤ c, is
equivalent to ai(c=−Σk>ia

=
k xk)/a=

i +Σk 	=iakxk ≤ c. Hence, a·x ≤ c is equivalent
to (a=

i a− aia
=) · x ≤ (a=

i c− aic
=) w.r.t. the affine space E. ()

We now show how standard widening can be implemented using the normal
representation. To this end, suppose that the two inputs to the widening are
J1 = E≤

1 ∪ I1 and J2 = I2 with I1, E1, I2 in normal form as described above.
First, we calculate C2 (defined in Definition 1) syntactically and call this set

IS
C . The principle is depicted on the left of Fig. 3. Here the second polyhedron
I2 = {A,B,C,D} is widened with respect to I1 = {a, c}, E≤

1 = {b, d}. The
resulting set according to Definition 1 is C1 = ∅ and C2 = {C,D} since [[I1 \
{c} ∪ {C}]] = [[I1]] and [[I1 \ {c} ∪ {D}]] = [[I1]]. The set IS

C ⊆ I2 is defined to be
all ι ∈ I2 such that inline(E, ι) is in I1 or a tautology:

Lemma 2. Given J1 = E≤
1 ∪ I1 and J2 = I2 with E1 in reduced row echelon

form, I1 = {inline(E1, ι) | ι ∈ I1} and I1, I2 normalized, then C2 = IS
C where

IS
C = {ι2 ∈ J2 \ J1 | inline(E1, ι2) ∈ I1 ∨ inline(E1, ι2) ≡ 0 · x ≤ 0}.

Proof. For any ι2 ∈ J2 \ J1 we show that ∃ ι1 ∈ J1, [[(J1 \ ι1) ∪ {ι2}]] = [[J1]]
if and only if inline(E1, ι2) ∈ I1 ∨ inline(E1, ι2) ≡ 0 · x ≤ 0. We specialize
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this property into two separate cases depending on whether ι1 ∈ E≤
1 or

ι1 ∈ I1:

ι1 ∈ E≤
1 : Show that [[I1 ∪ (E≤

1 \ ι1) ∪ {ι2}]] = [[J1]] iff inline(E1, ι2) = 0 · x ≤ 0:
Since ι1 ∈ E≤

1 , we have [[I1 ∪ (E≤
1 \ ι1)∪ {ι2}]] = [[J1]] iff [[(E≤

1 \ ι1)∪ {ι2}]] =
[[E≤

1 ]]. We will show next that [[(E≤
1 \ ι1) ∪ {ι2}]] = [[E≤

1 ]] iff inline(E1, ι2) ≡
0 · x ≤ 0. Given any ι2 with inline(E1, ι2) ≡ 0 · x ≤ 0 then ι2 + λ1e1 +
. . .λkek ≡ 0 · x ≤ 0 for some λ1, . . .λk > 0 where {e1, . . . ek} ∈ E≤

1 but
ēi /∈ {e1, . . . ek} for all i ∈ [1, k] where ēi denotes the inequality in E≤

1
that opposes ei. In other words, ι2 = λ1ē1 + . . .λkēk. On the other hand,
choose i ∈ [1, k] such that ι1 = ēi. Then [[ι1]] = [[λiēi]] = [[ι2 + λ1e1 +
. . .λi−1ei−1 + λi+1ei+1 + . . .λkek]]. It follows that [[(E≤

1 \ ι1) ∪ {ι2}]] =
[[E1]].

ι1 ∈ I1: Show that [[(I1 \ ι1)∪E≤
1 ∪{ι2}]] = [[J1]] iff inline(E1, ι2) = ι1: Again, we

partition x into v,w as described previously. Then let ι2 ≡ avv + aww ≤ c.
Suppose that av = 0 and thus inline(E1, ι2) = ι2. Due to normalization [[ι2]] =
[[ι1]] iff ι2 = ι1 and thus [[(I1\ι1)∪E≤

1 ∪{ι}]] = [[J1]] holds iff ι ≡ ι1. Now suppose
that av �= 0 and that inline(E1, ι) = ι′ where ι′ ≡ a′vv + a′ww ≤ c′. Then
a′v = 0. Using Lemma 1, we obtain the equivalent [[(I1\ι1)∪E≤

1 ∪{ι′}]] = [[J1]]
and, since a′v = 0 this is equivalent to [[(I1 \ ι1) ∪ {ι′}]] = [[I1]] which, due to
normalization, holds iff ι′ ≡ ι1. ()

As far as we know, it is not widely known that the definition of standard widening
generates redundant constraints although it has been shown that these have to
be removed for the correctness of future widening applications [1]. The second
diagram of Fig. 3 presents an example where redundancies are produced. Here,
the set I2 = {A,B,C} is widened with respect to I1 = {a, c}, E≤

1 = {b, d}.
Since C1 = {a, b, c} and C2 = {A,C}, the inequalities a and c are redundant in
C1 ∪ C2. We will now show that the common constraints IC = (I1 ∪ E≤

1 ) ∩ I2
corresponds to C1 without such redundant inequalities, in other words, we show
that [[IC ∪ IS

C ]] = [[C1 ∪ C2]]. We first characterize every inequality ι ∈ C1 \ IC

with respect to IS
C :

Lemma 3. For any ι ∈ C1 \ IC , [[IC ∪ IS
C ]] ⊆ [[ι]].

Proof. By definition of C1 and the fact that [[J1]] ⊆ [[J2]], there exist λj > 0
with ι = λ1ι1 + . . .λnιn where ιj ∈ I2, j = 1, . . .n. Note that IS

C ⊆ J2 \ J1 =
I2 \ (I1 ∪ E≤

1 ) and hence IS
C ∩ IC = ∅. Hence, without loss of generality, let

ι1, . . . ιk ∈ I2 \ IC and ιk+1, . . . ιn ∈ IC . We show that ιi ∈ IS
C for all i ≤ k.

Let ι ≡ a · x ≤ c. Consider ι′i = inline(E1, ιi). Note that ιi is not only entailed
by J1 but also touches J1 and so does ι′i. Hence, if ι′i ≡ 0 · x ≤ c′ for some
c′ ∈ R then c′ = 0 and ι′i ∈ IS

C . Now assume ι′i ≡ a′ · x ≤ c′ with a′ �= 0 but
a′ �= a. Observe that inline(E1, ι) = ι can be defined as a positive linear com-
bination of some inline(E1, ιj), j = 1, . . .n. This positive linear combination in-
volves ι′i and therefore cannot define ι, since J1 entails ι′i which would mean that
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ι ∈ J1 is redundant. Hence a′ = a. Since ιi touches J1, c′ = c and thus ιi ∈ IS
C .

Hence, for all i ≤ k, ιi ∈ IS
C and thus ι is redundant in [[IC ∪ IS

C ]]. ()

Based on Lemma 2 and 3, standard widening can be implemented as follows:

Theorem 1. Let I1, E1 and I2 be in normal form. Then [[C1 ∪ C2]] = [[IC ∪ IS
C ]].

Proof. By Lemma 2, [[C1 ∪ C2]] = [[C1 ∪ IS
C ]]. By Lemma 3, any ι ∈ C1 \ IC is

redundant with some inequalities in IC ∪ IS
C . Thus, with C1 = IC ∪ (C1 \ IC), it

follows that [[C1 ∪ IS
C ]] = [[IC ∪ (C1 \ IC) ∪ IS

C ]] = [[IC ∪ IS
C ]]. ()

The above exercise of expressing standard widening on a normalized
H-representation, which we call “normal widening”, is beneficial not only to sim-
plify an actual implementation: Standard widening still leads to certain impre-
cisions that are illustrated in the next section. The normalized H-representation
forms the basis for heuristics that improve upon standard widening without
requiring the generators of a polyhedron.

4 Improving Precision through Additional Heuristics

The standard widening algorithm is very precise when the state changes in a
way that adds new inequalities. In certain situations, however, the number of
inequalities does not change, but their slopes change in that they rotate via some
vertex of the polyhedron. In these cases standard widening removes the inequal-
ity, which may often cause loss of bounds on the variables in that direction.
One technique is to check which upper and lower bounds of variables are the
same between two iterations and to add these stable bounds back in if widening
makes the polyhedron unbounded. In this section we are concerned with more
sophisticated techniques that anticipate the way inequalities rotate. As far as
we know, our proposal is the first heuristic that does not require the double
description of a polyhedron. Furthermore, in contrast to previous heuristics [1],
we are interested in extrapolating to a space that can possibly be a precise linear
invariant. If this likely invariant turns out to an incorrect guess, we aim to widen
quickly while retaining stable upper and lower bounds on variables.

In order to illustrate a possible precision loss of standard widening, consider
Fig. 4 which shows the polyhedra Pi = [[{x ≥ 1, y ≥ 1, ji}]] that present con-
secutive iterations of a fixpoint computation. Standard widening identifies the
inequalities ji as unstable and thus return P ′ = [[{x ≥ 1, y ≥ 1} as fixpoint.
This example is reasonable since the states are the result of Pi =

⋃
i F

i(P0)
where P0 = [[{x = 1, 1 ≤ y ≤ 3}]] and the transfer function F (P ) = (P ∩ {y =
1})[x/x − 1] where F implements the program fragment if (y==1) x:=x+1.
Given that the crucial statement does not change any values in the area where
y = 3, the loss of the upper bound y ≤ 3 is unexpected and often unaccept-
able. While re-adding stable bounds would fix this particular case, it cannot
help when the state space development is rotated slightly which would be the
case for if (x==y) { x:=x+1; y:=y+1 }. It is tempting to “guess” that ji may
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Fig. 4. Iterates with a single changing facet

evolve until it is anti-parallel to y ≥ 1, however, as the next section will demon-
strate, a reasonable opposing inequality does not always exist nor is it evident
that a loop in a program should lead to opposing inequalities. The next section
therefore considers the more general case of two evolving inequalities.

4.1 Widening in the Presence of Several Changing Inequalities

Defining a heuristic based on rotating inequalities is a tempting approach since
these inequalities rotate because they connect a stable part of the state space
with the evolving part. However, it is difficult to know how to capture rotation
and how far to rotate. A rotation is defined as a multiplication with a matrix
whose determinant is one which is impossible to implement with exact rational
arithmetic. Instead, the difference between coefficients could be tracked which is
demonstrated in Fig. 5. Here, the initial state P0 = [[{y ≥ −2, y ≤ 4, x = 0}]] is
repeatedly transformed by F (P ) = P � ((P∩[[{x+2y = 6}]])[x/(x+4), y/(y+2)])
which implements the program fragment if (x+2y==6) { x:=x-4; y:=y-2; }.
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Fig. 5. An evolving sequence of polyhedra in which several facets change
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Listing 2. Separating inequalities according to stability
procedure split(E1, I1, I2) where E1 ⊆ Eqn, I1 ⊆ Ineqn, I2 ⊆ Ineqn

IC ← (I1 ∪ E≤
1 ) ∩ I2

IΔ
1 ← (I1 ∪E≤

1 ) \ IC

IΔ
2 ← I2 \ IC

IΔ
2,t ← {ι2 ∈ I2 \ (I1 ∪E≤

1 ) | inline(E1, ι2) ∈ I1 ∨ inline(E1, ι2) ≡ 0 · x ≤ 0}
for a · x ≤ c ∈ IΔ

2 do
c′ ← max(a · x, E1 ∪ I1)
if c′ = c then
IΔ
2,t ← IΔ

2,t ∪ {a · x ≤ c}
end if

end for
return 〈IC , I

Δ
1 , I

Δ
2 , I

Δ
2,t〉

The polyhedra P1, . . .P3 can be described by the inequality sets {y ≥ −2, y ≤
4, x ≥ 0, ji, ki}. The inequalities ji and ki are as follows:

j0 ≡ k0 ≡ x ≤ 0
j1 ≡ x + y ≤ 4 k1 ≡ x− 1

2y ≤ 1
j2 ≡ x + 3

2y ≤ 6 k2 ≡ x− 3y ≤ 6
j3 ≡ x + 5

3y ≤
20
3 k3 ≡ −y ≤ 2

j4 ≡ x + 7
4y ≤ 7 k4 ≡ −x− 7y ≤ 14

j∞ ≡ x + 2y ≤ 8 k∞ ≡ −x− 2y ≤ 4

While certain sequences of inequalities have a constant difference between their
fractions of corresponding variables (e.g., the fractions of x and y in j1, j2, j3, j4),
this difference is occasionally disrupted due to normalization (c.f. k3). Further-
more, it is not clear how to infer j∞ and k∞. Thus, rather than anticipating how
inequalities change that connect the evolving to the stable parts of the polyhe-
dron, we try to identify the trajectory of the evolving parts and calculate new
inequalities that do not obstruct this trajectory. To this end, we first partition
the inequalities of the two polyhedra using split in Listing 2 that, unlike the
standard widening, partitions the inequality sets into stable inequalities IC and
unstable inequalities IΔ

i of Pi for i = 1, 2. The set IΔ
2 is furthermore reduced to

those inequalities IΔ
2,t ⊆ IΔ

2 that have changed but which still touch the polyhe-
dron P1. The idea is that inequalities in IΔ

2,t connect the stable with the evolving
part of the polyhedron whereas IΔ

2 \ IΔ
2,t only touch the evolving part and can

thus not be used to reason about how the Pi will change.
Given these sets, the idea of our heuristic is illustrated in Fig. 6 which shows

a modified version of the previous example. Here, IC = {x ≥ 0} is the only
common inequality and IΔ

i = {ji, ki, li}. In particular, IΔ
2,t = {j2, k2} contains

the set of inequalities that we can use to reason about the change in state. We
commence by maximizing j2 in P1. Although we know that j2 touches P1 (that
is, we know that the maximum is the right-hand side of j2), the Simplex solver
returns a set of inequalities whose combination is j2. From the first diagram in
Fig. 6 it can be seen that j2 is a linear combination of x ≥ 0 ∈ IC and j1 ∈ IΔ

1 .
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Fig. 6. Extrapolating the evolving area of the polyhedron using linear programming

Hence, we know (or assume) that j2 has evolved from j1 as both are unstable
and touch the stable part of the state space at (at least) one vertex.

The second diagram shows how we now infer an evolving vertex that lies in
j2. Specifically, we maximize the inequality j1 ≡ a1 · x ≤ c1 in P2 which yields
a new constant c′1 at which the displaced inequality j′1 touches the evolving
vertex. This vertex is shown as white cross in the second diagram. We store
this displacement as δ1 = c′1 − c1. Diagram three now shows how we find a
vertex in P1 from which this vertex originated. In particular, we reduce P1 to
the boundary of j1 by adding a1 ·x = c1 to its inequality set. The resulting space
P1∩[[a1 ·x = c1]] is indicated as thick line in the third diagram. We then minimize
j2 ≡ a2 · x ≤ c2 in this space, yielding the white vertex in the third diagram.
From the inferred minimum c′2, we calculate the displacement δ2 = c2 − c′2. The
inequality (δ2a1 − δ1a2) · x ≤ δ2c1 − δ1c2 is now the sought after inequality j∞
that is rotated around the intersection of j1 and j2 and has a slope that could
connect the two white crosses. A similar calculation can be performed to find
k∞. Based on this general idea, the next section details the general algorithm
that also works for possibly unbounded polyhedra in higher dimensions.

4.2 Implementation

Algorithm 3 implements our heuristic which we call “directed widening”. The
shown function takes the constraint sets describing P1 and P2 after they have
been partitioned by Alg. 2. In terms of general structure, it calculates a set of
rays R and a set of output constraints ID. By default, line 23 will add the rays
R to [[ID]], and this process is detailed in Listing 5 for self-containedness.

The algorithm itself converts the constraint system representing P1 into ma-
trix format (line 3) which is necessary to extract a facet of P1 that an inequality
a2 ·x ≤ c2 ∈ IΔ

2,t has evolved from. In particular, the facet of P1 that a2 ·x ≤ c2
has evolved from might be a linear combination of the unstable inequalities in
IΔ
1 rather than a single inequality. In order to find this linear combination, line 6

runs an extended linear program. The maximum c2 in the result is ignored and
only the vector of multipliers λ1 is kept which obeys λ1A1 = a2. However, λ1



150 A. Simon and L. Chen

Listing 3. Directed widening
procedure widen(IC , I

Δ
1 , I

Δ
2 , I

Δ
2,t) where IC , I

Δ
1 , I

Δ
2 ⊆ Ineqn, I

Δ
2,t ⊆ IΔ

2

1: R← ∅
2: ID ← IC

3: A1x ≤ c1 ← IC ∪ IΔ
1

4: A2x ≤ c2 ← IC ∪ IΔ
2

5: for a2 · x ≤ c2 ∈ IΔ
2,t do

6: 〈λ1, c2〉 ← maxExt(a2 · x, A1x ≤ c1)

7: λΔ
1 ← 〈f1, . . . fm〉 where fi =

{
κi · λ1 if (κiA) · x ≤ (κic) ∈ IΔ

1

0 otherwise
8: a1 · x ≤ c1 ← (λΔ

1 A1) · x ≤ (λΔ
1 · c1)

9: c′2 ← −max(−a2 · x, IC ∪ IΔ
1 ∪ {a1 · x = c1})

10: c′1 ← max(a1 · x, IC ∪ IΔ
2 ∪ {a2 · x = c2})

11: if c′1 <∞∧ c′2 > −∞∧ c′1 > c1 ∧ c2 > c′2 then
12: δ1 ← c′1 − c1
13: δ2 ← c2 − c′2
14: a3 ← δ2a1 − δ1a2

15: c3 ← max(a3 · x, IC ∪ IΔ
2 )

16: ID ← ID ∪ {a3 · x ≤ c3}
17: else
18: r1 ← calcRay(a1,a2) /* Calculate ray with a1 · r = 0 and a2 · r ≤ 0. */
19: r2 ← calcRay(−a2,−a1)
20: R← R ∪ {evolveRay(r1, r2)}
21: end if
22: end for
23: for r ∈ R do
24: ID ← addRay(ID, r)
25: end for
26: return ID

combines inequalities from IΔ
1 and IC whereas we are only interested in a linear

combination of the unstable inequalities IΔ
1 . To this end, line 7 sets all coeffi-

cients of λΔ
1 to zero that correspond to a stable inequality in IC . Here, κi denotes

a vector that contains a one in the ith position and is zero otherwise.
Note that λΔ

1 is non-zero since otherwise λ1 would only combine inequalities
in IC and thus [[IC ]] ⊆ [[a2 · x ≤ c2]]. In this case, since the inequalities IC also
describe P2, the constraint a2 · x ≤ c2 ∈ IΔ

2 would be redundant in IC ∪ IΔ
2

which contradicts our assumption of a non-redundant representation.
The resulting λΔ

1 is now used in line 8 to calculate a virtual inequality a1 ·x ≤
c1 from IΔ

1 which may be linear combination of several inequalities of IΔ
1 . As

explained, we assume that ι2 ≡ a2 · x ≤ c2 has evolved from ι1 ≡ a1 · x ≤ c1.
We now measure the distance that ι2 can be moved inwards on the boundary
of ι1 in line 9. Analogously, we measure how much ι1 can be moved outwards
on the boundary of ι2 in line 10. Note that, in order to ensure that we find a
maximum on ι2 and not on a different facet, also restrict the polyhedron P2 to
the boundary of ι2. As an example for why this is necessary, consider adding an
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Listing 4. Calculating a ray that is normal to v1

procedure calcRay(v1,v2) where v1,v2 ∈ Qn

1: return (v2 · v1)v1 − (v1 · v1)v2

Listing 5. Adding a ray r to an H-polyhedron.
procedure addRay(I, r) where I ⊆ Ineqn, r ∈ Qn

1: I ′ ← {κn+1 · x′ ≤ 0} /* Let x′ be an n+ 1-dimensional vector of variables. */
2: for a · x ≤ c ∈ I do
3: a′ ← 〈a1, . . . an,a · r〉 where 〈a1, . . . an〉 = a
4: I ′ ← I ′ ∪ {a′ · x′ ≤ c}
5: end for
6: return ∃xn+1(I

′) /* ∃x(·) is a function that projects out x */

inequality m2 to the system in Fig 6 whose slope is between j2 and l2. Simply
maximizing j1 in P2 may find the maximum at the intersection of l2 and m2.

If both, ι1 and ι2 can be translated a finite amount within the other inequality,
the two distances δ1 and δ2 are used to calculate the slope of the new inequality
ι∞ ≡ a3 ·x ≤ c3. However, rather than calculating c3, line 15 infers the constant
c3 using a linear program. This is necessary, since ι∞ has a slope that may
cut off some state of the current state space. By maximizing constant of ι∞ in
I2 = IC ∪ IΔ

2 we ensure that it entails the current state.
In case ι1 can be relaxed without ever touching a vertex in P2, then P2 contains

a ray. The task, therefore, is to calculate a ray towards a different direction.
Line 18 calculates a ray that is orthogonal to the normal vector a1 of inequality
ι1 and which lies on the feasible side of inequality ι2. Analogously, line 19 infers
a ray that is orthogonal to ι2 but which lies on the infeasible side of inequality
ι1. Thus, r1 is contained in P1 whereas P2 contains both, r1 and r2. A new ray
is needed that anticipates the evolution of these two rays. This task is delegated
to a heuristic evolveRay which checks in which elements the ray is changing
(modulus scaling) and sets these indices to zero. For each index i that is set to
zero, the corresponding variable xi receives a lower or upper bound. Since this
heuristic has already been presented in [1] we omit it here. The resulting ray
is then added to the constraint set using projection as implemented by addRay
in Fig 5. Projection on constraints can be implemented using Fourier-Motzkin
variable elimination. We now proceed to evaluate our heuristic.

5 Evaluation

Implementing standard widening by our normal widening algorithm of Sect. 3.2
refines the quadratic number of entailment checks of [5] to a few syntactic checks.
Each entailment check requires a different linear program to be run and is thus
rather expensive. Replacing the costly entailment checks with normal widening
reduces the total analysis time from 0.210s to 0.149s in one of our larger tests.
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Table 1. Counting the widening applications and comparing the precision of fixpoints

t

0
1

2

3

4

timed1 cl
DW PPL FP

14 0.03 27 0.09 =
14 0.03 43 0.15 =
= =
26 0.06 63 0.23 =
= =
42 0.11 80 0.29 =
= =
62 0.17 95 0.35 =

timed2 cl
DW PPL FP

19 0.05 27 0.09 �=
19 0.05 43 0.16 �=
�= =
25 0.06 59 0.23 �=
= =
41 0.11 73 0.32 �=
= =
55 0.17 85 0.37 �=

timed2
DW PPL FP

14 0.02 20 0.05 �
14 0.02 26 0.06 �
�= =
19 0.03 29 0.08 =
= =
25 0.04 29 0.08 =
= =
28 0.05 29 0.08 =

initializedRect
DW PPL FP

26 0.07 33 0.11 �
26 0.07 42 0.15 =
= =
34 0.10 51 0.19 =
= =
43 0.12 60 0.23 =
= =
52 0.15 69 0.27 =

t

0
1

2

3

4

multirate cl
DW PPL FP

19 0.04 27 0.08 �
19 0.04 43 0.12 �
�= �=
25 0.05 63 0.19 =
= =
41 0.08 87 0.26 =
= =
61 0.12 115 0.34 =

multirate
DW PPL FP

14 0.02 20 0.04 �
14 0.02 26 0.06 �
�= �=
19 0.03 32 0.07 =
= =
25 0.03 38 0.07 =
= =
31 0.04 44 0.09 =

initializedSingular cl
DW PPL FP

26 0.16 51 0.34 �
26 0.16 83 0.55 �
�= �=
50 0.28 123 0.81 =
= =
82 0.45 171 1.15 =
= =

122 0.65 227 1.50 =

rectangular
DW PPL FP

14 0.07 14 0.07 �
14 0.07 26 1.33 �
�= �=
26 1.30 42 5.50 =
= =
42 5.45 58 10.75 =
= =
58 10.67 73 15.81 =

Since the speed-up is only 40%, we conclude that the analysis time is dominated
by the evaluation of the instructions in the loop body rather than by the widening
algorithm itself. Thus, in order to assess the merit of a widening, it is more
informative to count the number of iterations that are required to find a fixpoint.

To this end, we compared directed widening of Sect. 4 against the BHRZ03
widening [1] of the Parma Polyhedra Library which is implemented based on the
double description method and combines several heuristics. A direct comparison
is hampered by the use of tokens. The idea is that the user assigns a number
of tokens to a widening point which can be used up to perform heuristics that
may not terminate. Once all tokens are used, only heuristics may be applied
that eventually terminate, e.g. standard widening. Choosing the right number
of tokens is often considered “black magic”. Since our directed widening tries to
find linear translations in the loop body, it needs to observe the effect of two
translations, say between P0, P1 and P1, P2, in order to extrapolate the change
between them. Thus, the right number of tokens for our algorithm is always
two. Note that tokens do not directly relate to the number of iterations required
to reach a fixpoint: tokens do not have to be used when applying a heuristic
that eventually terminates. For instance, the number of equalities that hold in
a polyhedron can only decrease, thus, one could perform any non-terminating
extrapolation while the number of equalities decreases without using up tokens.

In order to assess how quickly the widenings enforce termination and how pre-
cise the obtained fixpoint is, we picked eight example systems from the timed/hy-
brid automata literature [11,13], each containing several nested loops. Table 1
shows the number of tokens (column “t”) that the widening was allowed to use
at each loop. For each number of tokens, the double columns directed widening



Simple and Precise Widenings for H-Polyhedra 153

“DW” and BHRZ03 widening “PPL” show the number of calls to the widening
operator required to reach a fixpoint and the total analysis time (measured in
seconds). The running time of the analyses is roughly proportional to the num-
ber of calls to the widening operator which, in turn, corresponds to the number
of times a loop body is evaluated. We thus address after how many iterations
our directed widening obtains a fixpoint that is as precise as that of the PPL.

To this end, we decorated the table with =, �=,*,+ to compare the precision
of the obtained fixpoints. Specifically, the column “FP” contains * if the fixpoint
was better in the directed widening, and + if it was better in the PPL. Fixpoints
can also be equal = or incomparable �=. For comparisons between the fixpoints of
the same algorithm running with different tokens, we use �= to indicate that the
fixpoint changed. As predicted, our directed widening obtains its best fixpoint
with two tokens, which is sufficient to identify linear translations. Interestingly,
both heuristics obtain similar precision given enough tokens. However, the num-
ber of iterations needed to obtain this precision is always lower for our directed
widening, thereby leading to a faster analysis. For instance, in the seventh table
“initializedSingular”, both algorithms obtain their best fixpoint with two tokens.
However, the PPL requires 123 evaluations of loop bodies whereas our directed
widening only requires 50, yielding a considerable speed-up in the overall analy-
sis time. Thus, even if our heuristic cannot infer more precise invariants than the
combined heuristics gathered in the BHRZ03 widening of the Parma Polyhedra
Library, our directed widening performs better by finding the fixpoints faster.

6 Conclusion and Related Work

We have presented a simple implementation of standard widening [10] and a
precise heuristic that finds fixpoints quickly. Moreover, our heuristic operates on
H-polyhedra which, to our knowledge, make it the first heuristic that does not
rely on the double description. This makes our directed widening particularly
interesting to implementations of polyhedra that only use constraints [18,19].

The first widening operator for the polyhedra domain was proposed in [7]
and corresponds to the set C1 as defined in Sect. 3. Halbwachs proposed the
revised widening or standard widening [10] and already provided an efficient
implementation based on the double description of polyhedra. Benoy [2] showed
that the above two widenings coincide when the affine spaces of the two argument
polyhedra are stable. Chen et al. [5] showed that standard widening can be
implemented on constraints only by using linear programming.

A wider field is the area of defining heuristics to improve standard widening.
Besson et al. [3] propose a heuristic based on the generator representation that
terminates since it guarantees a decreasing number of vertices and an increas-
ing number of extreme rays. In the context of the analysis of timed automata,
several heuristics have been proposed [8,12,13]. Bagnara et al. [1] compile sev-
eral heuristics, such as combining constraints, evolving points, evolving rays, etc.
Their heuristics require the generator representation as well as constraints.

Mostly orthogonal to improving the widening operator directly are attempts to
limit the state space after widening. Besides classic narrowing [7], an established
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technique is widening with thresholds [4] which uses a finite set of user-specified
values (thresholds) on individual variables up to which the state space is extrapo-
lated. Similar to the thresholds strategy, Halbwachs et al. [11,13] propose widen-
ing up-to technique to improve the widening by adding additional constraints
from a fixed and finite set of constraints. Chen et al. [6] lift the thresholds
strategy to relational domains in order to guess the slope (i.e. the variable coeffi-
cients) to obtain possibly stable constraints. Simon et al. [20] propose widening
with landmarks which refines widening with thresholds by collecting unsatisfi-
able inequalities (called landmarks) and extrapolating polyhedra to the closest
landmark during widening. Gopan et al. [9] propose lookahead widening, which
improve the precision by a tuple of polyhedra in which the first determines which
branches of a program are enabled while the second polyhedron is widened and
narrowed. The net effect of both methods is that no new branches are enabled
as the result of widening.
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Abstract. We present a framework for defining abstract interpreters for
liveness properties, in particular program termination. The framework
makes use of the theory of metric spaces to define a concrete seman-
tics, relates this semantics with the usual order-theoretic semantics of
abstract interpretation, and identifies a set of conditions for determining
when an abstract interpreter is sound for analysing liveness properties.
Our soundness proof of the framework is based on a novel relationship
between unique fixpoints in metric semantics and post-fixpoints com-
puted by abstract interpreters. We illustrate the power of the framework
by providing an instance that can automatically prove the termination
of programs with general (not necessarily tail) recursion.

1 Introduction

Recently, there has been great interest in the automatic verification of program
termination. Quite a few techniques for automatically verifying termination or
general liveness properties of imperative programs have been proposed [18,2,7,1,
6,4,8,16,5,17], some of which have led to successful tools, such as Terminator [7].

In this paper, we step back from all these technological advances, and re-
examine a theoretical foundation of automatic techniques for verifying termi-
nation or liveness properties of programs. Most of the proposed techniques are
based on abstracting programs (in addition to clever results on well-founded
relations such as [19, 3]), but these abstraction methods are justified by rather
ad-hoc arguments [4]. This is in contrast with the soundness of abstraction for
safety properties, which follows a standard framework of abstract interpreta-
tion [10, 11]. Our aim is to develop a theory that provides a similar systematic
answer for when an abstraction is sound for proving liveness properties. By doing
so, we want to relieve the burden of inventing a new way of proving soundness
from designers of liveness analysis.

Our main result is a new framework for developing sound precise abstract
interpreters for liveness properties of programs with general recursion. Techni-
cally, the key feature of our framework is to use a concrete semantics based on
metric space [13, 20, 14] and to spell out a condition under which this concrete
metric-space semantics can be related to a usual order-theoretic semantics of ab-
stract interpretation. We illustrate the power of the framework by providing an
instance that can automatically prove the termination of recursive procedures.
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Our framework uses a metric-space semantics, because such a semantics jus-
tifies a novel strategy for computing approximate fixpoints during abstract in-
terpretation for liveness. Imagine that we want to develop a sound termination
analysis. Our analysis needs to overapproximate the set of all computation traces
of a given program and to check whether the overapproximation does not include
an infinite trace. In the standard order-theoretic setting, the set of computation
traces of a program is defined in terms of the greatest fixpoint of some function
F [9], but overapproximating the greatest fixpoint of F precisely wrt. termina-
tion is difficult. For instance, a post-fixpoint x of F (i.e., F (x) * x), which is
normally computed by an abstract interpreter for safety, does not overapprox-
imate the greatest fixpoint in general. Hence, fixpoint-computation strategies
from safety analyses cannot be used for termination analysis without changes.
Alternatively, one might consider the following sequence converging to the great-
est fixpoint of F (under the assumption of the continuity of F ):

� + F (�) + F 2(�) + F 3(�) + . . .

and want to compute an overapproximating sequence {xn} such that Fn(�) *
xn for all n, and xm = xm+1 for some m. In this case, a fixpoint-computation
strategy finds this xm, and returns it as a result. The problem here is that
the strategy is very imprecise; it cannot prove termination of most nontrivial
programs (especially those whose time complexity is not constant).

The metric-space semantics of our framework resolves this overapproximation
issue. It defines the set of computation traces of a program in terms of a unique
fixpoint of a function G, and then it guarantees that this unique fixpoint can be
overapproximated by a post-fixpoint of G, as long as the post-fixpoint lives in a
restricted semantic universe, such as the one with the closed sets of traces.1 Thus,
when developing a sound termination analysis in our framework, one can re-use
fixpoint-computation strategies from existing safety analyses (which compute
post-fixpoints), after adjusting the strategies so that computed post-fixpoints
live in the restricted universe.

Using a metric-space semantics has another benefit that our framework can
hide call stacks, which appear in a small-step operational semantics of recur-
sive procedures. Hence, a user of the framework does not need to worry about
abstracting call stacks [15], and can focus on the problem of proving a desired
liveness property.

Related Work. Among the automatic techniques for proving program termi-
nation cited already, we discuss two techniques further [4, 8]. The first is our
previous work [4], where we proved the soundness of a termination analysis,
by directly relating greatest fixpoints in the concrete trace semantics with post-
fixpoints computed by the termination analysis. Our proof relied on the fact that
the language contained only tail recursions so that greatest fixpoints could be
rephrased in terms of least fixpoints and infinite iterations. This rewriting is not
1 A trace set is closed iff all Cauchy sequences in the set have limits in the set. We

will explain it further in the main part of the paper.
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e ::= x | r | e+ e | r× e b ::= e= e | e �= e | e≤ e | e< e | b∧ b | b∨ b | ¬b
c ::= x := e | c; c | if b c c | f() | fix f. c

Fig. 1. Programming Language with General Recursion

applicable if a programming language includes non-tail recursions. In contrast,
the framework of this paper can handle programs with general recursion.

The second technique is a termination analysis for recursive procedures in
[8]. This technique works by replacing each recursive function call by a non-
deterministic choice between entering a procedure body (in the case that the
procedure does not terminate) or the application of a summary of the procedure
(in the case that the procedure does terminate). The instance of our framework
in this paper can be seen as a modified version of this technique where pro-
gram transformations are done on the fly and termination proofs and procedure
summarizations are done at the same time.

Recently Cousot et al. [12] defined bi-inductive domains to account for both
infinite and finite program properties. They combine a domain for finite be-
haviours with another for infinite behaviours, and produce a new domain whose
order is defined using the orders from the two underlying domains. A least fix-
point on this new domain can overapproximate the union of the least fixpoint
in the finite domain and the greatest fixpoint in the infinite domain. However,
the semantic functions may not be monotone with respect to the order of the
new domain, and so cannot be computed by the usual fixpoint iteration. This
limitation means that we once again have to reason about least and greatest
fixpoints, a situation that we avoid in this paper by using metric spaces.

2 Programming Language

Let PName be the set of procedures names, ranged over by f, g, and let Var be
a finite set of program variables x, y that contain rational numbers in Q. We
consider a simple imperative language with parameterless procedures f, g and
rational variables x, y. The grammar of the language is given in Fig. 1, where
we use r to denote a rational constant.

Most commands in our language are standard. The only unusual case is the
definition of recursive procedure fix f. c. It defines a recursive procedure f whose
body is c, and then it immediately calls the defined procedure. Note that while
loops can be expressed in this language using recursion. We write Γ � c for a
finite subset Γ of PName, where Γ includes all the free function names in c.

3 Framework

In this section we describe our framework for developing a sound abstract inter-
preter for liveness properties. Throughout the paper, we will use N for the set
of positive integers.
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3.1 Review on Metric Spaces

We start with a brief review on metric spaces. For further information on metric
semantics, we refer the reader to the standard book and survey on this topic [13,20].

A metric space is a non-empty set X with a function dX : X ×X → [0,∞),
called metric, that satisfies the three conditions below:

1. Identity of indiscernible: ∀x, y ∈ X. dX(x, y) = 0 ⇐⇒ x = y.
2. Symmetry: ∀x, y ∈ X. dX(x, y) = dX(y, x).
3. Triangular inequality: ∀x, y, z ∈ X. dX(x, z) ≤ dX(x, y) + dX(y, z).

Consider a sequence {xn}n∈N in a metric space (X, dX). The sequence {xn}n∈N

is Cauchy iff for all real numbers ε > 0, there exists some N ∈ N such that
∀m,n ≥ N. dX(xm, xn) ≤ ε. The sequence {xn}n∈N converges to x in X iff for
all real numbers ε > 0, there exists an N ∈ N such that ∀m ≥ N. dX(xm, x) ≤ ε.

A metric space X is complete iff every Cauchy sequence converges to some
element in X . In this paper, we will consider only complete metric spaces.

Let (X, dX) and (Y, dY ) be metric spaces and let α be a positive real number.
A function F : X → Y is non-expansive iff for all x, x′ ∈ X , we have that
dY (F (x), F (x′)) ≤ dX(x, x′). It is α-contractive iff dY (F (x), F (x′)) ≤ α ×
dX(x, x′) holds for all x, x′ ∈ X . Intuitively, the non-expansiveness means that
F does not increase the distance between elements, and the contractiveness says
that F actually decreases the distance.

In this paper, we use the well-known Banach’s unique fixpoint theorem:

Theorem 1 (Banach’s Unique Fixpoint Theorem). Let (X, dX) be a met-
ric space. If X is complete and a function F : X → X is α-contractive for some
0 ≤ α < 1, the function F has the unique fixpoint. Furthermore, this unique
fixpoint can be obtained as follows: first pick an arbitrary x1 in X, then con-
struct the sequence {xn}n∈N with xn+1 = F (xn) and finally take the limit of this
sequence.2

We will denote the unique fixpoint of F by ufix(F ).

3.2 Concrete Metric-Space Semantics

Our framework consists of two parts. The first part is a concrete semantics
based on metric spaces. It is parameterized by the data below, which should be
provided by a user of the framework:

1. A pre-ordered complete metric space (D, d,*,�) with the biggest element �.
We require that for all Cauchy sequences {xn}n∈N in D and all x ∈ D,

(∀n ∈ N. xn * x) =⇒ lim
n→∞xn * x. (1)

Elements of D can be understood as semantic counterparts of syntactic com-
mands; our concrete semantics interprets a command c as an element in D.

2 This limit always exists, because the constructed sequence is Cauchy.
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2. Monotone non-expansive functions seq, asgnx,e and ifb for all assignments
x:=e and all boolean conditions b:

seq : D ×D → D, asgnx,e : D, ifb : D ×D → D.

These functions define the meaning of the sequencing, assignment and con-
ditional statements in our language.

3. A function proc : PName → D → D for modelling the execution of proce-
dures. We write procf instead of proc(f), and require that procf (−) be a
monotone 1

2 -contractive function for all f ∈ PName. Intuitively, an input x
to procf (−) denotes all the possible computations by the body of the pro-
cedure f , and procf (x) extends each of these computations with steps taken
immediately before or after running the procedure body during the call of
f .

4. A subset LivProperty of D that is downward closed with respect to *:

x * y ∧ y ∈ LivProperty =⇒ x ∈ LivProperty.

This subset consists of elements in D (which are semantic counterparts of
commands) satisfying a desired liveness property, such as termination.

Note that the semantic domainD here has both pre-order and metric-space struc-
tures and that the semantic operators respect both structures by being monotone
and non-expansive. These two structures are related by the requirement (1) on
* and Cauchy sequences. One important consequence of the relationship is the
lemma below, and it will play a crucial role for the soundness of our framework:

Lemma 1. For all 1
2 -contractive monotone functions F : D → D, a post-fixpoint

of F overapproximates the unique fixpoint of F . That is, if x satisfies F (x) * x,
we have that ufixF * x, where ufixF is the unique fixpoint of F .

Proof. Let x be a post-fixpoint of F . By the Banach fixpoint theorem, we know
that the unique fixpoint ufixF of F exists and is also the limit of the following
Cauchy sequence:

x, F (x), F 2(x), F 3(x), . . .

Since x is a post-fixpoint of F (i.e., F (x) * x) and F is monotone,

x + F (x) + F 2(x) + F 3(x) + F 4(x) . . .

That is, Fn(x) * x for all n. Thus, the limit ufixF of {Fn(x)}n∈N also satisfies
ufix F * x by the requirement (1) of our framework. We have just proved the
lemma. ()

The domain D and the operators above give rise to a metric-space semantics
of programs. Let [[Γ ]] be the domain for procedure environments (i.e., Πf∈ΓD),
pre-ordered pointwise and given the product metric, where the distance between
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[[Γ � c]] : [[Γ ]] → D
[[Γ � f()]]η = η(f) [[Γ � c1; c2]]η = seq([[Γ � c1]]η, [[Γ � c2]]η)

[[Γ �x:=e]]η = asgnx,e [[Γ � if b c1 c2]]η = ifb([[Γ � c1]]η, [[Γ � c2]]η)
[[Γ � fix f.c]]η = ufix F (where F (x) = procf ([[Γ, f � c]]η[f �→ x]))

Fig. 2. Concrete Semantics defined by the Framework

η and η′ in Πf∈ΓD is given by maxf∈Γ d(η(f), η′(f)). The semantics interprets
Γ � c as a non-expansive map from [[Γ ]] to D, and it is given in Fig. 2.

Note that the semantics defines fix f.c as the unique fixpoint of a function
F modelling the meaning of the procedure body c. To ensure the existence of
the fixpoint here, the semantics maintains that all commands denote only non-
expansive functions. Then, it defines the function F in terms of non-expansive
[[Γ, f � c]] and 1/2-contractive procf , and ensures that F is 1/2-contractive.
Hence, by the Banach fixpoint theorem, F has the unique fixpoint.

Lemma 2. For all commands Γ � c, [[Γ � c]] is a well-defined non-expansive
function from [[Γ ]] to D. Furthermore, [[Γ � c]] is monotone.

The use of metric spaces means that in order to design an instance of our generic
framework one now needs to prove certain properties of the concrete semantics.
Firstly, one has to prove that the semantic domain D for the meaning of com-
mands is a complete metric space, in addition to having a pre-order structure.
Secondly, one needs to show that all the semantic operators are non-expansive.

These new proof obligations often make it impossible to re-use an existing
concrete semantics. For instance, a naive trace semantics, such as the one in
[4], uses the powerset of traces as a semantic universe for commands, but this
powerset cannot be used in our framework. This is because it does not form a
complete metric space, when it is given a natural notion of distance function.
In order to use the framework in this paper, one has to modify the powerset of
traces, so that it has a good metric-theoretic structure, as will be done in Sec. 4.

However, these obligations come with a reward—the soundness of an order-
theoretic abstract semantics, which is to be presented next.

3.3 Abstract Semantics

The second part of our framework is the abstract semantics. For a function
f : Xn → X and a subset X0 of X , we say that f can be restricted to X0 if for
all x ∈ Xn

0 , we have that f(x) ∈ X0. Using this terminology, we describe the
parameters of our abstract semantics:

1. A set A with a partition Ap - At = A. The elements of A provide abstract
meanings of commands. We call elements in At total and those in Ap partial.
The set A should come with the additional data below.
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(a) Distinguished elements ⊥ and � in A such that � ∈ At.
(b) An algorithm checktot that answers the membership to At soundly but

not necessarily in a complete way. That is, checktot(A) = true means
that A ∈ At, but checktot(A) �= true does not mean that A �∈ At.

(c) A concretization function γ : At → D, such that γ(�) = �. Note that
the domain of γ is At, not A.

2. Functions seq�, asgn�
x,e and if�

b for all assignments x:=e and booleans b:

seq� : A×A → A, asgn�

x,e : A, if�

b : A×A → A.

These functions give the abstract meaning of the sequencing, assignment and
conditional statements in our language. We require that these functions can be
restricted to At, and that they overapproximate their concrete counterparts:

∀A0, A1 ∈ At. seq(γ(A0), γ(A1)) * γ(seq�(A0, A1))
∧ asgnx,e * γ(asgn�

x,e)
∧ ifb(γ(A0), γ(A1)) * γ(if�

b(A0, A1)).

Note that this soundness condition is only relevant for total elements in At.
3. A function proc� : PName → A → A for modelling the execution of proce-

dures. For all f ∈ PName, we require that proc�

f can be restricted to At, and
that it should overapproximate procf :

∀f ∈ PName. ∀A ∈ At. procf (γ(A)) * γ(proc�

f (A)).

4. A predicate satisfyLiv� on At such that

∀A ∈ At. satisfyLiv�(A) = true =⇒ γ(A) ∈ LivProperty.

Intuitively, satisfyLiv� identifies abstract elements denoting commands
with a desired liveness property.

5. A widening operator � : A × A → A [10]. This operator needs to satisfy
three conditions. Firstly, it can be restricted to a map from At. Secondly, it
overapproximates an upper bound of its right argument: γ(A2) * γ(A1�A2)
for all A1, A2 ∈ At. Finally, it turns any sequences in A into one with a stable
element. That is, for all {An}n∈N in A, the widened sequence {A′

n}n∈N with
A′

1 = A1 and A′
n+1 = An�An+1 contains an index m with A′

m = A′
m+1.

Note that among the abstract elements in A, only total ones inAt have meanings
in the concrete domain D via γ. That is, elements in Ap need not be concretiz-
able in D. The absence of the concretization relationship between Ap and D is
intended, because it allows an analysis designer to use a flexible fixpoint strategy
during abstract interpretation. Concretely, even though an abstract interpreter
aims to compute a value in D (more precisely, {γ(A) | A ∈ At}) at the end of
a fixpoint computation, it can temporarily step outside of D and use elements
in Ap during the computation, as long as its final result is an element in D. We
found this flexibility very useful for achieving high precision in our framework;
in order to have a complete metric-space structure, a concrete domain D often
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[[Γ � c]]� : [[Γ ]]� → A
[[Γ � f()]]�η� = η�(f) [[Γ � c1; c2]]�η� = seq�([[Γ � c1]]�η�, [[Γ � c2]]�η�)

[[Γ � x:=e]]�η� = asgn�
x,e [[Γ � if b c1 c2]]�η� = if�

b([[Γ � c2]]�η�, [[Γ � c2]]�η�)
[[Γ � fix f.c]]�η� = �widenfix F � (where F (A) = proc�

f ([[Γ, f � c]]�η�[f �→ A]))

Fig. 3. Abstract Semantics defined by the Framework

does not include certain semantic elements, such as the empty set, that could
serve as the meaning of intermediate results of a precise fixpoint-computation
strategy of an abstract interpreter.

The parameters given above are enough to induce an abstract semantics of
programs, but to do so, we need to define two operators using the parameters.
The first operator is the ceiling �−�, which replaces partial elements by �:

�A� = if (checktot(A) = true) then A else �.

The second is the widened fixpoint operator widenfix. Given a function F : A →
A, the operator constructs the sequence {An}n∈N with A1 = ⊥ and An+1 =
An�F (An). Then, it returns the first Am with Am = Am+1. The condition on
� ensures that such Am exists.

Let [[Γ ]]� be the abstract domain for procedure environments (i.e., [[Γ ]]� =
Πf∈ΓA). The abstract semantics interprets programs Γ � c as functions from
[[Γ ]]� to A. The defining clauses in the semantics are given in Fig. 3.

The semantics in Fig. 3 are mostly standard, but the abstract semantics
of fix f.c deserves attention. After computing a widened fixpoint, [[Γ � fix f.c]]�

checks whether the fixpoint is a total element. If not, [[Γ � fix f.c]]� approximates
the fixpoint by �, which should be total by the requirement of the framework.
This additional step and the requirements of our framework ensure one impor-
tant property of the semantics:

Lemma 3. For all Γ � c and η� ∈ [[Γ ]]�, if η�(f) ∈ At for every f ∈ Γ , we have
that [[Γ � c]]�η� ∈ At.

Intuitively, the lemma says that [[Γ � c]]� can be restricted to total elements.
Using this lemma, we express the soundness of the abstract semantics:

∀η� ∈ [[Γ ]]�. (∀f ∈ Γ. η�(f) ∈ At) =⇒ [[Γ � c]]γ(η�) * γ([[Γ � c]]�η�). (2)

In γ(η�) above, we use the componentwise extension of γ to procedure environ-
ments. Note that although γ is not defined on partial elements, the soundness
claim above is well-formed, because Lemma 3 ensures that [[Γ � c]]�η� is total.
We prove the soundness in the next theorem:

Theorem 2. The abstract semantics is sound. That is, (2) holds for all Γ � c.

Proof (Sketch). Our proof is by induction on the structure of c. Here we focus
on the most interesting case that c ≡ fix f.c1, where we can see the interaction
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between the metric structure and the pre-order structure of D. Let F : D→D
and G : A→A be functions defined by

F (x) = procf ([[Γ, f � c1]]γ(η�)[f #→ x]), G(A) = proc�

f ([[Γ, f � c1]]�η�[f #→ A]).

We need to prove that

(ufix F ) * γ(�widenfix G�). (3)

If checktot(widenfix G) �= true, then γ(�widenfix G�) = γ(�) = �. Thus, (3)
holds. Suppose that checktot(widenfix G) = true, which implies that widenfix G ∈
At. In this case, it is sufficient to prove that γ(widenfix G) is a post-fixpoint of
F . Because then, the inequality (3) follows from Lemma 1. By the definition of
widenfix, (widenfix G) = (widenfix G)�G(widenfix G). Because of the condition
on �, this implies that

γ(G(widenfix G)) * γ(widenfix G). (4)

The LHS of (4) is greater than or equal to F (γ(widenfix G)) as shown below:

γ(G(widenfix G)) = γ
(
proc�

f [[Γ, f � c1]]�η�[f #→ (widenfix G)]
))

+ procf

(
γ
(
[[Γ, f � c1]]�η�[f #→ (widenfix G)]

))
+ procf

(
[[Γ, f � c1]]γ(η�)[f #→ γ(widenfix G)]

)
= F (γ(widenfix G)).

(5)

The first inequality holds because proc� overapproximates proc. The second fol-
lows from the induction hypothesis and the monotonicity of procf . The inequal-
ities in (4) and (5) imply the desired F (γ(widenfix G)) * γ(widenfix G). ()

3.4 Generic Analysis

Let η�∗ be the unique abstract environment for the empty context Γ = ∅.
Our generic analysis takes a command c with no free procedures, and com-
putes the function: LivAnalysis(c) = satisfyLiv�([[c]]�η�∗). The result is a
boolean value, indicating whether c satisfies a liveness property specified by
LivProperty.

Theorem 3. Let η∗ be the unique concrete environment for the empty context
Γ = ∅. Then, for all commands c with no free procedures, if LivAnalysis(c) =
true, we have that [[c]]η∗ ∈ LivProperty.

4 Instance of the Framework

In this section, we instantiate the framework and define a sound abstract
interpreter for proving the termination of programs with general recursion.
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4.1 Concrete Semantics

Our instance of concrete semantics of the framework interprets commands as
sets of traces satisfying certain healthiness conditions. The notion of traces here
is slightly unusual, because the traces are sequences of tagged states and they
need to meet our well-formedness conditions. In this section, we will explain
the meanings of tagged states and traces, and provide parameters necessary for
instantiating a concrete semantics from the framework.

Tagged States, Pre-traces and Traces. We start with the definition of
traces. A state is a map from program variables to rational numbers, and a
tagged state is a pair of state and tag:

Tag = {none}∪PName×{call , ret}, State = Var → Q, tState = State×Tag.

The tag of a tagged state indicates whether the state is the initial or the final
state of a procedure call, or just a normal one not related to a call. The (f, call)
and (f, ret) tags mean that the state is, respectively, the initial and the final
state of the call f(), and the none tag indicates that the state is a normal state,
i.e., it is neither the initial nor the final state of a procedure call. We use symbol
σ to denote elements in tState, and use s to denote elements in State.

A pre-trace τ is a nonempty finite or infinite sequence of tagged states,
such that τ starts with a none-tagged state and if it is finite, it ends with a
none-tagged state.

nState = State× {none}, preTrace = nState(tState∗)nState ∪ nState(tState∞),

where tState∞ means the set of (countably) infinite sequences of tagged states.
A trace τ is a pre-trace that satisfies well-formedness conditions. To define

these conditions, we consider the sets W ,O of sequences of tagged states that
are the least fixpoints of the below equations:

W = nState∗ ∪ WW ∪
(⋃

f∈PName,s,s1∈State{(s, (f, call ))}W {(s1, (f, ret))}
)
,

O = W ∪ OO ∪
(⋃

f∈PName,s∈State{(s, (f, call))}O
)
.

Intuitively, W describes sequences where every procedure call has a matching
return and calls and returns are well-bracketed. The other set O defines a bigger
set; in each trace in O, some procedure calls might not have matching returns,
but calls and returns should be well-bracketed.

Definition 1. A pre-trace τ is a trace iff τ is finite and belongs to W, or τ
is infinite and all of its finite prefixes are in O. We write Trace for the set of
traces.

For τ ∈ Trace and n ∈ N ∪ {∞}, the projection τ [n] is the n-prefix of τ ; in case
that |τ | < n, τ [n] = τ .3 Using this projection, we define the distance function
on traces as follows:

d(τ, τ ′) = 2−max{n | τ [n]=τ ′[n]} (where we regard 2−∞ = 0).

3 τ [n] does not necessarily belong to Trace or even to preTrace, but this will not cause
problems for our results.
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seq(T, T ′) = {τστ ′ | (τσ∈T ∩ tState+) ∧ (στ ′ ∈T ′) } ∪ (T ∩ tState∞)
asgnx,e = {σσ′ | σ, σ′ ∈ nState ∧ first(σ′) =first(σ)[x �→ [[e]]first(σ)]}

ifb(T0, T1) = {στ | (στ ∈T0 ∧ [[b]](first(σ))= true) ∨ (στ ∈T1 ∧ [[b]](first(σ))= false)}
procf (T ) = {σσ(f,call)τ | στ ∈ (T ∩ tState∞)} ∪ {σσ(f,call)σ(f,ret)σ | σ ∈ T}

∪ {σσ(f,call)τσ
(f,ret)
1 σ1 | στσ1 ∈ (T ∩ tState+)}

Here first(σ) is the first component of the tagged state σ, and σ(f,call) and σ(f,ret)

are, respectively, (first(σ), (f, call)) and (first(σ), (f, ret)). And [[b]] and [[e]] are the stan-
dard interpretation of booleans and expressions as functions from (untagged) states to
{true, false} and Q.

Fig. 4. Semantic Operators for the Instance Concrete Semantics

Lemma 4. (Trace, d) is a complete metric space.

Full Closed Sets of Well-formed Traces. A subset T0 ⊆ Trace of traces is
closed if for all Cauchy sequences of traces in T0, their limits belong to T0 as
well. A trace set T0 ⊆ Trace is full if for every none-tagged state σ ∈ nState,
there is a trace τ ∈ T0 starting with σ.

The semantic domain (D, d) for interpreting commands in our concrete se-
mantics is the set Pfcl(Trace) of full closed sets of traces:

D = Pfcl(Trace), d†(T, T ′) = 2−max{n |T [n]=T ′[n]}.

Here T [n] is the result of taking the prefix of every trace in T (i.e., T = {τ [n] |
τ ∈ T }). The closedness ensures that the d† just defined satisfies the axioms for
being a complete metric space. Also, the condition about being full allows us to
meet the non-expansiveness requirement for seq in our framework.

Our domain D is ordered by the subset relation ⊆. With respect to this ⊆
order, D has the top element, which is the set Trace of all traces.

Lemma 5. (D, d†) is a complete metric space. Furthermore, the requirement (1)
of our framework in Sec. 3 holds for ⊆ and this metric space.

Semantic Operators. So far we have defined the semantic domain for com-
mands, the first required parameter of the framework. The next four param-
eters are operators working on this domain, and we describe them in Fig. 4.
In the figure, the sequencing operator seq concatenates traces from T and T ′,
while treating infinite traces from T specially. And the operator procf duplicates
initial and final states, and tags the duplicated states with information about
procedure call and return.

Lemma 6. All the operators are well-defined, and satisfy the monotonicity and
non-expansiveness or 1

2 -contractiveness requirements of our framework.
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Liveness Property. The only remaining parameter is LivProperty, which
describes a desired liveness property on trace sets. Here we use a property such
that if we restrict our attention to T = [[c]]η of some command c with no free
procedure names, the membership of T to this property implies that T consists
of finite traces only.

We say that a trace τ includes an infinite subsequence of open calls iff there
exists {τnσn}n∈N such that

1. τ = τ1σ1τ2σ2τ3σ3 . . . τnσn . . .,
2. for all i ∈ N, there exists some f ∈ PName such that second(σi) = (f, call),
3. for all i ∈ N, the corresponding return for σi does not appear in τ after σi,

i.e., the return does not occur in the sequence τi+1σi+1τi+2σi+2 . . ..

We specify a desired liveness property of (semantic) commands, using the follow-
ing subset LivProperty of D: T is in LivProperty iff no traces in T include
an infinite subsequence of open calls.

4.2 Abstract Semantics with Linear Ranking Relations

Our abstract semantics uses formulas ϕ for linear constraints. The syntax of
these formulas is given in Fig. 5. Note that a formula ϕ can use three kinds
of variables: normal program variables x; pre-primed ones ‘x for denoting the
value of x before running a program; primed ones x′ that can be existentially
quantified. We assume that the set Var of normal variables and the set ‘Var of
pre-primed variables are finite and that there is an one-to-one correspondence
between Var and ‘Var, which maps x to ‘x.

Let Form be the set of formulas ϕ that do not contain free primed variables.
Each ϕ ∈ Form defines a relation from (untagged) states ‘s with pre-primed
variables (i.e., ‘s ∈ ‘Var → Q) to (untagged) states s with normal variables:

(‘s, s) |= ϕ,

where |= is the standard satisfaction relation from the first-order logic. Let TForm
be a subset of Form consisting of total formulas in the sense below:

TForm = {ϕ ∈ Form | ∀‘s ∈ (‘Var → Q). ∃s ∈ (Var → Q). (‘s, s) |= ϕ}.

The abstract semantics in this section assumes a sound but possibly incom-
plete theorem prover that can answer queries of the two kinds: ϕ � ψ and
� ∀ ‘X. ∃X.ϕ. Here ‘X and X are the sets of free pre-primed variables and

E ::= r | x | ‘x | x′ | E+E | r×E P ::= E=E | E �=E | E <E | E≤E
ϕ ::= P | true | ϕ ∧ ϕ | false | ϕ ∨ ϕ | ∃x′. ϕ

Fig. 5. Syntax for Linear Constraints
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normal variables in ϕ. Note that by asking the query of the second kind, we can
use a prover to check, soundly, whether a formula ϕ belongs to TForm.

Using what we have defined or assumed so far, we define an abstract domain
A and its subset At of total abstract elements as follows:

A = Form× Form×Form, At = TForm×Form× Form, Ap = A−At.

The element (false, false, false) in A serves the role of ⊥, and (true, true, true) the
role of �. The algorithm for soundly checking the totality of abstract elements
is defined using the assumed prover:

checktot(A) = if ( � ∀ ‘X .∃X.A1) then true else unknown

where Ai is the i-th component of A and ‘X and X are the sets of free pre-primed
and free normal variables in A1.

Next, we define the concretization map γ, which will provide the intuitive
meaning of abstract elements in A. To do this, we need to introduce some ad-
ditional notations. Firstly, for a (untagged) state s, we write ‘s for the state ob-
tained from s by renaming normal variables by corresponding pre-primed ones.
Secondly, we write σ ∈ τ to mean that σ is a tagged state appearing in τ , and
iscall(σ) to mean that the tag for σ is a procedure call:

iscall(σ) ⇐⇒ ∃f ∈ PName. (second(σ) = (f, call )).

Finally, for all tagged states σ1, σ2 ∈ τ , we say that σ1 is an open call with
respect to σ2 in τ , denoted open(σ1, σ2, τ), if both σ1 and σ2 are tagged with
procedure calls, σ1 appears strictly before σ2 in τ , but the corresponding return
for σ1 does not appear before σ2. The concretization is defined as follows:

γ(A) = {τ ∈Trace | (τ ∈ tState+ =⇒ (‘first(first(τ)), first(last(τ))) |= A1) ∧
(∀σ ∈ τ. iscall(σ) =⇒ (‘first(first(τ)), first(σ)) |= A2) ∧
(∀σ1, σ2. open(σ1, σ2, τ) =⇒ (‘first(σ1), first(σ2)) |= A3)}.

Here Ai is the i-th component of A. According to this concretization, A1 relates
the initial and final states of a trace τ , and A2 and A3 describe the relationship
between certain intermediate states in τ ; A2 relates the initial state and a call
state in τ , and A3 relates states at two open calls in τ . Tracking the relationship
between intermediate states is crucial for the precision of our analysis. If the
abstract domain included only the first component (as in our previous work [4]),
the concretizations of its elements would contain traces violating LivProperty,
or they would not belong to D.

Lemma 7. For every A ∈ At, the set γ(A) is in D, i.e., it is full and closed.

Abstract Operators. For ϕ, ψ ∈ Form, let ϕ;ψ be their relational composition
defined by

ϕ;ψ ≡ ∃Y ′.(ϕ[Y ′/X ] ∧ ψ[Y ′/‘X ]).
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seq�(A,A′) = ( A1;A′
1, A2 ∨ (A1;A′

2), A3 ∨A′
3 )

asgn�
x,e = ( eqVar−{x} ∧ (e[‘x/x] = x), false, false )

if�

b(A,A
′) = let b1 = preprime(b) and b2 = preprime(neg(b))

in ( (b1 ∧ A1) ∨ (b2 ∧A′
1), (b1 ∧A2) ∨ (b2 ∧A′

2), A3 ∨ A′
3 )

proc�

f (A) = ( A1, eqVar ∨A2, A2 ∨A3 )

Here preprime(b) renames all the variables with the corresponding pre-primed variables,
and neg(b) is the negation of b where ¬ is removed by being pushed all the way down to
atomic predicates using logical equivalences. For instance, neg(x=y∨z<3) is x �=y∧3≤z.

Fig. 6. Semantic Operators for the Instance Abstract Semantics

Here X and ‘X respectively contain normal variables in ϕ and pre-primed vari-
ables in ψ, Y ′ is the set of fresh primed variables, and the cardinalities of these
three sets are the same so that the substitution in ϕ;ψ is well-defined. Also, for
a set X of normal variables, define the formula eqX to be the equality on the
variables in X and the corresponding pre-primed ones: eqX ≡

∧
x∈X(‘x = x).

Using these notations, we present abstract operators in Fig. 6. Note that
the abstract sequencing seq�(A,A′) is not simply the relational composition of
formulas; it also describes relationships between intermediate states of a trace.
For instance, the second component A2 ∨ (A1;A′

2) relates the initial state of a
trace with states at procedure call in the trace. The first disjunct A2 considers
the case that a call state is from the first argument A of the sequencing, and the
second A1;A′

2 is for the other case that a call is from the second argument A′.

Lemma 8. The operators in Fig. 6 meet all the requirements of our framework.

Widening Operator. Our widening operator is parameterized by three ele-
ments. The first is a positive integer k, which bounds the number of outermost
disjuncts in formulas appearing in the results of widening. We will write �k to
make this parameterization explicit. The second is a function lower that over-
approximates a formula ϕ in Form by the conjunction of lower bounds on some
pre-primed variables (i.e., the conjunction of formulas of the form r ≤ ‘x for
some pre-primed variable ‘x and rational number r):

lower(ϕ) = (r1 ≤ ‘x1 ∧ r2 ≤ ‘x2 ∧ . . . rn ≤ ‘xn)

such that ϕ entails lower(ϕ) semantically. The third is the dual of the second
function. It is a function upper that overapproximates a formula ϕ in Form by
the conjunction of formulas of the form ‘x ≤ r.

The widening operator uses three subroutines. The first is toDNF that trans-
forms a formula ϕ ∈ Form to a disjunctive normal form, where all existential
quantifications are placed right before each conjunct. The second is the function
boundk : Form→Form for bounding the number of outermost disjuncts to k:

boundk(ϕ) = if (at most k outermost disjuncts are in ϕ) then ϕ else true

The third is an algorithm RFS that synthesizes a linear ranking function from ϕ.
such as RankFinder in [18]. Semantically, unless RFS returns fail, it computes
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an overapproximation of a disjunction-free formula ϕ ∈ Form, and the overap-
proximation expresses a linear ranking relation, such as 10 < ‘x ∧ x ≤ ‘x−1 for
the ranking function x.

Using these parameters and subroutines, we can now define the widening
operator:

A�k A
′ = let (

∨
j∈Ji

κi
j) = toDNF(A′

i) (i = 1, 2, 3 here and below)
χi

j =
∧
{‘x = x | x ∈ Var and κi

j � ‘x = x}
ξi
j = if

(
RFS(κi

j) = ζi
j for some formula ζi

j

)
then

(
ζi
j ∧ lower(κi

j) ∧ upper(κi
j) ∧ χi

j

)
else

(
lower(κi

j) ∧ upper(κi
j) ∧ χi

j

)
δi = boundk(Ai ∨

∨
j∈Ji

{ξi
j | κi

j �� Ai})
in (δ1, δ2, δ3).

Lemma 9. The operator �k : A×A → A is a widening operator.
Abstract Liveness Predicate. The abstract semantics uses the following
predicate satisfyLiv� on At and checks whether an analysis result implies the
desired liveness property:

satisfyLiv�(A) = let (
∨

i∈I δi) = toDNF(A3)
in

(
if (RFS(δi) �= fail for all i ∈ I) then true else false

)
.

The predicate satisfyLiv� first transforms A3 to a disjunctive normal form.
Then, it checks whether each disjunct δi is well-founded using the function
RFS. Hence, if the predicate returns true, it means that A3 is disjunctively
well-founded. The below lemma is an easy consequence of the disjunctively well-
foundedness of A3, the result of Podelski and Rybalchenko [19] and the definition
of γ.

Lemma 10. For all A ∈ At, if satisfyLiv�(A) = true, we have that γ(A) ∈
LivProperty.

5 Conclusion

In this paper, we have presented a framework for designing a sound abstract
interpreter for liveness properties. The framework incorporates the theory of
metric spaces in the concrete semantics. By doing so, it justifies a new strategy
for approximating fixpoints for an abstract interpreter for liveness, and relieves
the burden of abstracting low-level details from an analysis designer. We hope
that our results help the program analysis community to exploit metric space
semantics and other unexplored areas of the semantics research for developing
effective program analysis algorithms.
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Amortized Resource Analysis with Polymorphic
Recursion and Partial Big-Step Operational Semantics

Jan Hoffmann� and Martin Hofmann
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Abstract. This paper studies the problem of statically determining upper bounds
on the resource consumption of first-order functional programs. A previous work
approached the problem with an automatic type-based amortized analysis for
polynomial resource bounds. The analysis is parametric in the resource and can
be instantiated to heap space, stack space, or clock cycles. Experiments with a
prototype implementation have shown that programs are analyzed efficiently and
that the computed bounds exactly match the measured worst-case resource be-
havior for many functions. This paper describes the inference algorithm that is
used in the implementation of the system. It can deal with resource-polymorphic
recursion which is required in the type derivation of many functions. The com-
putation of the bounds is fully automatic if a maximal degree of the polynomials
is given. The soundness of the inference is proved with respect to a novel opera-
tional semantics for partial evaluations to show that the inferred bounds hold for
terminating as well as non-terminating computations. A corollary is that run-time
bounds also establish the termination of programs.

1 Introduction

The quantitative analysis of algorithms is a classic problem in computer science. For
many applications in software development it is necessary to obtain not only asymptotic
bounds but rather specific upper bounds for concrete implementations. This is especially
the case for the development of embedded and safety-critical systems.

Even for basic programs, manual analysis of the specific (non-asympt.) costs is
tedious and error-prone. The problem gets increasingly complex for high-level pro-
gramming languages, since one needs to be aware of the translation performed by the
compiler. As a result, automatic methods for analyzing the resource behavior of pro-
grams have been the subject of extensive research (see §7).

Our approach to the problem follows a line of research that was initiated by Hofmann
and Jost [1]. It is based on the potential method of amortized analysis that has been
invented by Sleator and Tarjan [2] to simplify the manual reasoning about the costs
of a sequence of operations that manipulate a data structure. [1] showed that a fully
automatic amortized resource analysis can efficiently compute bounds on the heap-
space consumption of many (first-order) functional programs that admit linear resource
bounds. The limitation to linear bounds and accordingly linear constraints was essential
for the efficiency of the analysis. Subsequent research considerably extended the range

� Supported by the DFG Graduiertenkolleg 1480 (PUMA).

K. Ueda (Ed.): APLAS 2010, LNCS 6461, pp. 172–187, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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of type-based amortized analysis, but the restriction to linear bounds remained. Exam-
ples are the extensions of type-based amortized analysis to object-oriented programs
[3,4], to generic resource metrics [5,6], to polymorphic and higher-order programs [7],
and to Java-like bytecode by means of separation logic [8].

Somewhat unexpectedly, we recently discovered a technique [9] that yields an auto-
matic amortized analysis for polynomial bounds while still relying on linear constraint
solving only. The resulting system efficiently computes resource bounds for first-order
functional programs that admit bounds that are sums

∑
pi(ni) of univariate polyno-

mials pi. This includes bounds on the heap-space usage and the number of evaluation
steps for a number of interesting functions such as quick sort, merge sort, insertion sort,
longest common subsequence via dynamic programming, breadth-first traversal of a
tree using a functional queue, and sieve of Eratosthenes.

The system has been implemented for Resource Aware ML (RAML) which is a first-
order fragment of OCAML. It is available online1 and can be run in a web browser
to analyze example programs and user-generated code. Our experiments show that the
computed bounds exactly match the measured worst-case behavior in many cases. For
example we obtain tight evaluation-step bounds for quick sort and insertion sort.

The basic idea of the analysis is to fix a maximal degree k and then to collect lin-
ear constraints on the coefficients of polynomials of this degree. One can iteratively
increase the degree so as to avoid costly computations earlier on. A fine point arises
from the fact that polynomials must be nonnegative and monotone and that in order for
allowing local constraint generation for pattern matches the class of allowed polynomi-
als must be closed under the operation p(n) #→ p(n + 1) − p(n). This naturally leads
to nonnegative linear combinations of binomial coefficients.

A further challenge for the inference of polynomial bounds is the need to deal with
resource-polymorphic recursion (see §2), which is required to type most of the above
example programs. However, it seems to be a hard problem to infer general resource
polymorphic recursion even for the original linear system.

In this paper we present a pragmatic approach to resource-polymorphic recursion
that works well and efficiently in practice. Despite being not complete with respect to
the type rules, it infers types for most functions that admit a type-derivation, including
the above examples. A somewhat artificial function that admits a resource-polymorphic
typing that cannot be inferred by our algorithm is given in the extended version.

The main theorem of the paper (see §5) shows that the resource bounds are sound
with respect to a big-step operational semantics. A dissatisfying feature of classical
big-step semantics is that it does not provide evaluation judgments for non-terminating
evaluations. As a result, the soundness theorems for amortized resource analyses have
in the past been formulated for terminating evaluations only [1,5,7].

A secondary contribution of this paper is the introduction of a novel big-step opera-
tional semantics for partial evaluations which agrees with the usual big-step semantics
on terminating computations. In this way, we retain the advantages of big-step seman-
tics (shorter, less syntactic proofs; better agreement (arguably) with actual behaviour of
computers) while capturing the resource behaviour of non-terminating programs. This
enables the proof of an improved soundness result: if the type analysis has established a

1 See http://raml.tcs.ifi.lmu.de

http://raml.tcs.ifi.lmu.de
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resource bound then the resource consumption of the (possibly non-terminating) evalua-
tion does not exceed the bound. It follows that run-time bounds also ensure termination.

This paper complements a previous paper [9]. The main contributions are as follows.
We introduce a novel operational semantics for partial evaluations that allows a simpli-
fied and improved soundness theorem (in §4). We present algorithmic typing rules used
by the inference algorithm (in §5). An extended soundness proof shows that the inferred
bounds hold for both terminating and non-terminating computations (Thm. 4). We de-
scribe an inference algorithm that efficiently computes resource-polymorphic types for
most functions for which such a type exists (in §6).

An extended version of this paper is available on the first author’s website. It contains
proofs, a case study on sorting algorithms in RAML, and a summary of our experiments
with the inference algorithm.

2 Informal Presentation

Linear Potential. The general idea of type-based amortized analysis for functional
programs has been introduced in [1] as follows. First, inductive data structures are stat-
ically annotated with a positive rational number q to define a non-negative potential
Φ(n) = q ·n as a function of the size n of the data. Second, the potential is shown to be
sufficient to pay for all operations that are performed on this data structure during any
possible evaluation of the program. The initial potential (summed over all input data)
then describes an upper bound on the resource costs. We illustrate the idea by analyzing
the heap-space consumption of the function attach below.

attach (x, l ) = match l with | nil → nil | (y :: ys) → (x,y )::( attach (x,ys ))

It takes an integer and a list of integers and returns a list of pairs of integers in which the
first argument is paired with each element of the list. If we assume that a list element
for a pair of integers has size 3 (two cells for the integers, one for the pointer to the next
element) then the heap-space cost of an evaluation of attach(x,l) is 3|l| memory cells.

In order to infer an upper bound on the heap-space usage of the function we annotate
the type of attach with a priori unknown resource-annotations s, s′, q and p that range
over non-negative rational numbers. The intuitive meaning of the resulting type attach:
(int, Lq(int))−−−→s/s′

Lp(int, int) is as follows: to evaluate attach(x,l) one needs q memory
cells per element in the list l and s additional memory cells. After the evaluation there
are s′ memory cells and p cells per element of the returned list left. We say that the list
l has potential Φ(l, q) = q · |l| and that l’ = attach(x,l) has potential Φ(l′, p) = p · |l′|.

The problem of computing a resource bound then amounts to finding valid instanti-
ations of the resource variables, i.e., a potential that suffices to cover the costs of any
possible evaluation. The validity of an instantiation can be verified statically in a sound
albeit not complete type-based analysis of the program text. A valid resource annota-
tion for attach can be obtained by setting q = 3 and s = s′ = p = 0. The computed
upper bound on the heap-space costs is then 3n where n is length of the input list. An-
other possible instantiation would be q = 6, p = 3, and s = s′ = 0. The resulting
typing of attach could be used for the inner occurrence of attach to type an expression
like attach(x,attach(z,ys)). The associated upper bound on the heap-space costs for the
evaluation of the expression is then 6|ys|.
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The use of linear potential functions relieves one of the burden of having to manipu-
late symbolic expressions during the analysis by a priori fixing their format. This gives
rise to a particularly efficient inference algorithm for the type annotations. It works like
a standard constraint-based type inference in which simple linear constraints are col-
lected as each type rule is applied. The constraints are then solved by linear program-
ming. To see the basic idea, consider the function attach in which expressions of type
list are annotated with variables q, p, r, . . . that range over Q+. The intended meaning
of lq is that l is of type Lq(A) for some type A.

attach (x, lq) = match lq
′

with | nil → nilp | (y :: ysr)→ ((x,y )::( attach (x,ysq))p)p

The syntax-directed inference then computes inequalities like q′ + s ≥ 3 + p + s. It
expresses the fact that the potential q′ of the first list element and the initial potential
s need to cover the costs for the cons operation (3 memory cells), the potential p of a
list element of the result, and the input potential s of the recursive call. To pay the cost
during the recursion we require the annotation of the function arguments and the result
of the recursive call to match their specification (q and p in the case of attach). The
function is then used resource-monomorphically.

Polynomial Potential. Our previous work [9] showed that an automatic amortized
analysis can also be used to derive polynomial resource bounds by extracting linear
inequalities from a program. The main innovation is the use of potential-functions of
the form

∑
i=1,...,k qi

(
n
i

)
with qi ≥ 0. They are attached to inductive data structures via

type annotations of the form �q = (q1, . . . , qk) with qi ∈ Q+. For instance, the typing
l:L(3,2,1)(int), defines the potential Φ(l, (3, 2, 1)) = 3|l|+ 2

(|l|
2

)
+ 1

(|l|
3

)
.

The use of binomial coefficients rather than powers of variables has many advantages
as discussed in [9]. In particular, the identity q1 +

∑
i=1,...,k−1 qi+1

(
n
i

)
+∑

i=1,...,k qi

(
n
i

)
=

∑
i=1,...,k qi

(
n+1

i

)
gives rise to a local typing rule for cons match

which naturally allows the typing of both recursive calls and other calls to subordi-
nate functions in branches of a pattern match. This identity forms the mathematical
basis of the additive shift 	 of a type annotation which is defined by 	(q1, . . . , qk) =
(q1 + q2, . . . , qk−1 + qk, qk). It appears, e.g., in the typing tail:L�q(int)−−−→0/q1 L�(�q)(int)
of the function tail that removes the first element from a list. The idea underlying the
additive shift is that the potential resulting from the contraction xs:L�(�q)(int) of a list
(x::xs):L�q(int) (usually in a pattern match) is used for three purposes: (i) to pay the con-
stant cost after and before the recursive calls (q1), (ii) to fund calls to auxiliary functions
((q2, . . . , qn)), and (iii) to pay for the recursive calls ((q1, . . . , qn)).

To see how the polynomial potential annotations are used to compute polynomial
resource bounds, consider the function pairs that computes the two-element subsets of
a given set (representing sets as tuples or lists).

pairs l = match l with | nil → nil | (x :: xs) → append(attach(x,xs ), pairs xs)

The function append consumes 3 memory cells for every element in the first argument.
Similar to attach we can compute a tight resource bound for append by inferring the
type append: (L(3)(int, int), L(0)(int, int))−−−→0/0 L(0)(int, int).

The evaluation of the expression pairs(l) consumes 6 memory cells per element of
every sub-list (suffix) of l. The inferred type for pairs is L(0,6)(int)−−−→0/0 L(0)(int, int).
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It states that a list l in an expression pairs(l) has the potential Φ(l, (0, 6)) = 0 · |l| +
6 ·

(|l|
2

)
and thus furnishes a tight upper bound on the heap-space usage. To type the

function’s body, the additive shift assigns the type xs:L(0+6,6)(int) to the variable xs
in the pattern match. The potential is shared between the two occurrences of xs in the
following expression by using xs:L(6,0)(int) to pay for append and attach (ii) and using
xs:L(0,6)(int) to pay for the recursive call of pairs (iii); the constant costs (i) are zero.

To compute the bound, we start with an annotation with resource variables as before.

pairs l = match l(q1,q2) with | nil→ nil
| (x :: xs(p1,p2)) → append(attach(x,xs(r1,r2)),pairs xs(s1,s2))

The constraints that our type system computes include q2≥p2 and q1+q2≥p1 (addi-
tive shift); p1=r1+s1 and p2=r2+s2 (sharing between two variables); r1≥6 (pay for
non-recursive function calls); q1=s1, q2=s2 (pay for the recursive call). This system is
solvable by q2 = s2 = p1 = p2 = r1 = 6 and q1 = s1 = r2 = 0.

Polymorphic Recursion. As in the linear case, we require in the constraint system
that the type of the recursive call of pairs matches its specification (qi = si). But other
than in the linear case, such a resource-monomorphic approach results in an unsolv-
able linear program for many non-tail-recursive functions with a super linear resource
behavior. We illustrate this with the function pairs’ that is a modification of pairs in
which we permute the arguments of append and hence replace the expression in the
cons-branch of the pattern match with append(pairs’ xs,attach(x,xs)). The heap-space
usage of pairs’ is 3

(
n
2

)
+ 3

(
n
3

)
since append is called with the intermediate results of

pairs’ in the first argument and thus consumes
∑

2≤i<n

(
i
2

)
=
(
n
3

)
memory cells.

The resource-polymorphic system determines an exact heap-space bound for the
function pairs’ by computing the typing L(0,3,3)(int)−−−→0/0 L(0)(int, int). Similar to the
case of pairs the additive shift assigns the type L(3,6,3)(int) to xs in the cons-branch.
The linear potential xs:L(3,0,0)(int) is passed on to the occurrence of xs in attach. But in
order to pay the costs of append we have to assign a linear potential to the result of the
recursive call and thus use the alternate typing pairs’: L(0,6,3)(int)−−−→0/0 L(3)(int, int).
The need of passing on potential of degree at most k−1 to the output of a function with
a resource consumption of degree k is quite common in typical functions. It is present
in the derivation of time bounds for most non-tail-recursive functions that we consid-
ered, e.g., quick sort and insertion sort. The classic (resource-monomorphic) inference
approach of requiring the type of the recursive call to match its specification fails for
these functions and it was a non-trivial problem to address it with an efficient solution.

Cost-Free Resource Metric. Our pragmatic approach is to introduce a special cost-
free resource metric that assigns zero costs to every evaluation step. A cost-free function
type f: A−−−→a/a′

B then describes how to pass potential from x to f(x) without paying
for resource usage. Any concrete typing for a given resource metric can be superposed
with a cost-free typing to obtain another typing for the given resource metric (cf. so-
lutions of inhomogeneous systems by superposition with homogeneous solutions in
lin. algebra).

We illustrate the idea using pairs’. For A=(int, int), we derive the cost-free types
attach: (int, L(3)(int))−−−→0/0 L(3)(A) and append: (L(3)(A), L(3)(A))−−−→0/0 L(3)(A). The
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type inference for, e.g., attach works as outlined above with the inequality q′ + s ≥
3 + p+ s replaced with q′ + s ≥ p+ s. Similar, we can assign pairs’ the cost-free type
L(0,3)(int)−−−→0/0 L(3)(int, int). The typing xs:L(3,3)(int) that results from the additive
shift is used as xs:L(3,0)(int) in attach and as xs:L(0,3)(int) in the recursive call.

If we now want to infer the type of a function with respect to some cost metric then
we deal with recursive calls by requiring them to match the functions type specifica-
tion and to optionally pass potential to the result via a cost-free type. The cost-free
type is then inferred resource-monomorphically. In the case of the heap-space con-
sumption of pairs’ we would first infer that the recursive call has to be of the form
L(0+q1,3+q2,3)(int)→L(0+p1)(int, int) such that L(q1,q2)(int)→L(p1)(int, int) is a cost-
free type. We then infer like in the linear case that q1 = 0 and q2 = p1 = 3.

This method cannot infer every resource-polymorphic typing with respect to declar-
ative type derivations with polymorphic recursion. This would mean to start with a
(possibly infinite) set of annotated types for each function and to justify each func-
tion type with a type derivation that uses types from the initial set. With respect to this
declarative view, the inference algorithm in this paper can compute every set of types
for a function f that has the form Σ(f) = {T + q · Ti | q ∈ Q+, 1 ≤ i ≤ m} for a
resource-annotated function type T , cost-free function types Ti, and m recursive calls
of f in its function body. Since many resource-polymorphic type derivations feature a
set of function types of this format, our approach leads to an effective inference method.
In the algorithmic type rules (Fig. 3) we directly integrated the above format of Σ(f)
in the rule T:FUNAPP for function applications to enable an efficient inference.

3 Resource Aware ML

RAML (Resource Aware ML) is a first-order functional language with ML-style syntax,
booleans, integers, pairs, lists, recursion and pattern match.

To simplify typing rules in this paper, we define the following expressions of RAML
to be in let normal form. In the implementation we allow unrestricted expressions. One
can use every binary operation binop whose worst-case cost is bounded by a constant.

e ::= () | True | False | n | x | x1 binop x2 | f(x1, . . . , xn) | let x = e1 in e2

| if x then et else ef | (x1, x2) | match x with (x1, x2)→ e

| nil | cons(xh, xt) | match x with
⎪⎪⎪nil → e1

⎪⎪⎪ cons(xh, xt) → e2

In the implementation of RAML we included a destructive pattern match and the ex-
tended version of [9] describes how polynomial potential can be applied to tree-like
data types. The inference algorithm can easily be adopted to handle these extensions.

We define the well-typed expressions of RAML by assigning a simple type, a usual
ML type without resource annotations, to well-typed expressions. Simple types are data
types and first-order types as given by the grammars below.

A ::= unit | bool | int | L(A) | (A,A) F ::= A→ A

A typing context Γ is a partial, finite mapping from variable identifiers to data types. A
signature Σ is a finite, partial mapping of function identifiers to first-order types. The
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typing judgment Γ �Σ e : A states that the expression e has type A under the signature
Σ in the context Γ . The typing rules that define the typing judgment are standard and
identical with the resource-annotated typing rules from §5 if the resource annotations
are omitted. A RAML program consists of a signature Σ and a family (ef , yf )f∈dom(Σ)
of expressions with a variable identifier such that yf :A �Σ ef :B if Σ(f) = A→ B.

4 Operational Semantics

We define a big-step operational semantics that measures the quantitative resource con-
sumption of programs. It is parametric in the resource of interest and can measure every
quantity whose usage in a single evaluation step can be bounded by a constant. The ac-
tual constants for a step on a specific system architecture can be derived by analyzing
the translation of the step in the compiler implementation for that architecture [5].

The semantics is formulated with respect to a stack and a heap: A value v ∈ Val is
either a location l ∈ Loc, a boolean constant b, an integer n, a null value NULL or a
pair of values (v1, v2). A heap is a finite partial mappingH : Loc → Val from locations
to values. A stack is a finite partial mapping V : VID → Val from variable identifiers
to values. Since we also consider resources like memory that can become available
during an evaluation, we have to track the watermark of the resource usage, i.e., the
maximal number of resources units that are simultaneously used during an evaluation.
In order to derive a watermark of a sequence of evaluations from the watermarks of the
sub evaluations one has also to take into account the number of resource units that are
available after each sub evaluation.

The operational evaluation rules in Fig. 1 thus define an evaluation judgment of the
form V ,H � e � v,H′ | (q, q′) expressing the following. If the stack V and the initial
heap H are given then the expression e evaluates to the value v and the new heap H′.
In order to evaluate e one needs at least q ∈ Q+ resource units and after the evaluation
there are at least q′ ∈ Q+ resource units available. The actual resource consumption is
then δ = q − q′. The quantity δ is negative if resources become available.

In contrast to similar versions in earlier works there is at most one pair (q, q′) such
that V ,H � e � v,H′ | (q, q′) for an expression e and fixedH and V . The non-negative
number q is the watermark of simultaneous resources usage during the evaluation.

It is handy to view the pairs (q, q′) in the evaluation judgments as elements of a
monoid2 R = (Q+ ×Q+, ·). The neutral element is (0, 0) which means that resources
are neither used nor restituted. The operation (q, q′) · (p, p′) defines how to account for
an evaluation consisting of evaluations whose resource consumptions are defined by
(q, q′) and (p, p′), respectively. We define

(q, q′) · (p, p′) =
{

(q + p− q′, p′) if q′ ≤ p
(q, p′ + q′ − p) if q′ > p

The intuition is that we need q resource units to perform the first evaluation after which
q′ restituted units remain. The second operation needs then p units. If q′ ≤ p then we
additionally need p− q′ resources to pay for both evaluations and have p′ resources left

2 It is possible to define the evaluation more abstractly with respect to an arbitrary monoid M .
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V,H � () � NULL,H | Kunit E:CONSTU
x1, x2∈dom(V) v=op(V(x1),V(x2))

V,H � x1 op x2 � v,H | Kop E:BINOP

n ∈ Z

V,H � n � n,H | K int E:CONSTI
V(x)=v [yf �→ v],H � ef � v′,H′ | (q, q′)
V,H � f(x) � v′,H′ | Kapp

1 · (q, q′) ·Kapp
2

E:FUNAPP

b ∈ {True, False}
V,H � b � b,H | Kbool

E:CONSTB V(x) = True V,H � et � v,H′ | (q, q′)
V,H � if x then et else ef � v,H′ | KconT

1 ·(q, q′)·KconT
2

E:CONDT

V(x) = False V,H � ef � v,H′ | (q, q′)
V,H � if x then et else ef � v,H′ | KconF

1 · (q, q′) ·KconF
2

E:CONDF

V,H � e1 � v1,H1 | (q, q′) V[x �→ v1],H1 � e2 � v2,H2 | (p, p′)
V,H � let x = e1 in e2 � v2,H2 | K let

1 · (q, q′) ·K let
2 · (p, p′) ·K let

3

E:LET

x1, x2 ∈ dom(V) v = (V(x1),V(x2))

V,H � (x1, x2) � v,H | Kpair E:PAIR V,H � nil � NULL,H | Knil E:NIL

x ∈ dom(V)
V,H � x � V(x),H | Kvar E:VAR

xh, xt∈dom(V) v=(V(xh),V(xt)) l 	∈dom(H)

V,H � cons(xh, xt) � l,H[l �→ v] | Kcons E:CONS

V(x) = (v1, v2) V[x1 �→ v1, x2 �→ v2],H � e � v,H′ | (q, q′)
V,H � match x with (x1, x2) → e � v,H′ | KmatP

1 · (q, q′) ·KmatP
2

E:MATP

V(x) = NULL V,H � e1 � v,H′ | (q, q′)
V,H � match x with

⎪
⎪
⎪nil → e1

⎪
⎪
⎪ cons(xh, xt) → e2 � v,H′ | KmatN

1 · (q, q′) ·KmatN
2

E:MATN

V(x)=l H(l)=(vh, vt) V[xh �→vh, xt �→vt],H � e2 � v,H′ | (q, q′)
V,H � match x with

⎪
⎪
⎪nil → e1

⎪
⎪
⎪ cons(xh, xt) → e2 � v,H′ | KmatC

1 · (q, q′) ·KmatC
2

E:MATC

Fig. 1. Big-step operational semantics

in the end. If q′ > p then q units suffices to perform both evaluations. Additionally, the
q′ − p units that are not needed for the second evaluation are added to the resources
becoming finally available. If resources are never restituted (as with time) then we can
restrict to elements of the form (q, 0) and (q, 0) · (p, 0) is just (q + p, 0).

We identify (positive and negative) rational numbers with elements ofR as follows:
q ≥ 0 denotes (q, 0) and q < 0 denotes (0,−q). This notation avoids case distinc-
tions in the evaluation rules since the constants K that appear in the rules might be
negative.

Partial Evaluations. A shortcoming of classic big-step operational semantics is that
it does not provide judgments for evaluations that diverge. This is problematic if one
intends to prove statements for divergent and convergent computations.

A straightforward remedy is to use a small-step semantics. But in the context of
resource analysis, the use of big-step rules seems to be more favorable. First, big-step
rules can more directly axiomatize the resource behavior of compiled code on specific
machines. Secondly, it allows for shorter and less syntactic proofs.
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V,H � e � | 0
P:ZERO

b ∈ {True, False}
V,H � b � | Kbool P:CONSTB V,H � () � | Kunit P:CONSTU

n ∈ Z

V,H � n � | K int P:CONSTI
x ∈ dom(V)

V,H � x � | Kvar P:VAR
x1, x2 ∈ dom(V)

V,H � (x1, x2) � | Kpair P:PAIR

V(x) = v [yf �→ v],H � ef � | q
V,H � f(x) � | Kapp

1 + q
P:FUNAPP

V,H � e1 � | q
V,H � let x = e1 in e2 � | K let

1+q
P:LET1

V,H � e1 � v1,H1 | (q, q′) V[x �→v1],H1 � e2 � | p K let
1 ·(q, q′)·K let

2 ·(p, 0)=(r, r′)

V,H � let x = e1 in e2 � | r P:LET2

V(x) = True V,H � et � | q
V,H � if x then et else ef � | KconT

1 + q
P:CONDT

x1, x2 ∈ dom(V)
V,H � x1 op x2 � | Kop P:BINOP

V(x) = False V,H � ef � | q
V,H � if x then et else ef � | KconF

1 +q
P:CONDF

xh, xt ∈ dom(V)
V,H � cons(xh, xt) � | Kcons P:CONS

V(x) = (v1, v2) V[x1 �→ v1, x2 �→ v2],H � e � | q
V,H � match x with (x1, x2) → e � | KmatP

1 +q
P:MATP V,H � nil � | Knil P:NIL

V(x) = NULL V,H � e1 � | q
V,H � match x with

⎪⎪⎪nil → e1
⎪⎪⎪ cons(xh, xt) → e2 � | KmatN

1 + q
P:MATN

V(x) = l H(l) = (vh, vt) V[xh �→ vh, xt �→ vt],H � e2 � | q
V,H � match x with

⎪⎪⎪nil → e1
⎪⎪⎪ cons(xh, xt) → e2 � | KmatC

1 + q
P:MATC

Fig. 2. Partial big-step operational semantics

An alternative approach is to use coinductively defined big-step semantics [10,11].
However, coinductive semantics lends itself less well to formulating and proving se-
mantic soundness theorems of the form “if the program is well-typed and the opera-
tional semantics says X then Y holds” (like Thm. 4). For example, in Leroy’s Lemmas
17-22 [11] the coinductive definition appears in the conclusion rather than as a premise.

That is why we use a novel approach to the problem here by defining a big-step
semantics for partial evaluations that directly corresponds to the rules of the big-step
semantics in Fig. 1. It defines a statement of the form V ,H � e � | q for a stack V , a
heapH, q ∈ Q+ and an expression e. The meaning is that there is a partial evaluation of
e with the stack V and the heapH that consumes q resources. Here, q is the watermark
of the resource usage. We do not have to keep track of the restituted resources.

Note that the rule P:ZERO is essential for the partiality of the semantics. It can be ap-
plied at any point to stop the evaluation and thus yields to a non-deterministic evaluation
judgment.

Since there might be negative constants K , the partial evaluation rules in Fig. 2 have
conclusions of the form V ,H � e � | max(q, 0) to ensure non-negative values. We
simply write V ,H � e � | q instead of V ,H � e � | max(q, 0) in each conclusion.

We prove that if an expression converges in a given environment then the resource-
usage watermark of the evaluation is an upper bound for the resource usage of every
partial evaluation of the expression in that environment.
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Theorem 1. If V ,H � e � v,H′ | (q, q′) and V ,H � e � | p then p ≤ q.

A stack V and a heap H are well-formed with respect to a context Γ if, for every
x ∈ dom(Γ ), V(x) is a value matching the type Γ (x) or a location in H that contains
a value matching Γ (x). We then write H 
 V :Γ . Similarly, we write H 
 v:A if v is a
value matching type A inH. A formal definition is given in [7].

Thm. 2 states that, in a well-formed environment, every well-typed expression either
diverges or evaluates to a value of the stated type. To this end we instantiate the resource
constants in the rules to count the number of evaluation steps.

Theorem 2. Let the resource constants be instantiated by Kx = 1, Kx
1 = 1 and Kx

m =
0 for all x and all m > 1. If Γ �Σ e:A and H 
 V :Γ then V ,H � e � v,H′ | (n, 0)
for an n ∈ N or V ,H � e � | m for every m ∈ N.

Cost-Free Metric. The type inference algorithm makes use of the cost-free resource
metric. This is the metric in which all constants K that appear in the rules are instanti-
ated to zero. We will use it in §5 to define a resource-polymorphic recursion where we
use cost-free function types to pass potential from the argument to the result.

With the cost-free resource metric the resource usage of evaluations is always zero:
If V ,H � e � v,H′ | (q, q′) then q = q′ = 0 and if V ,H � e � | q then q = 0.

5 Resource Annotated Types

Resource-annotated types are simple types where lists are annotated with non-negative
vectors �p ∈ Qn. Here we only give a short definition of the potential functions defined
by annotated types. More explanations can be found in [9].

Let �p = (p1, . . . , pk) be an annotation.The additive shift of �p is 	(�p) = (p1+p2, p2+
p3, . . . , pk−1 + pk, pk). LetH be a heap, A be a resource-annotated type and let v be a
value matching type A inH. The potential ΦH(v:A) is then defined as follows.

ΦH(v:A) = 0 if v = NULL or A ∈ {unit, int, bool}
ΦH((v1, v2):(A1, A2)) = ΦH(v1:A1) + ΦH(v2:A2)

ΦH(l:L�p(A′)) = p1 + ΦH(v′:A′) + ΦH(l′: L�(�p)(A′)) if H(l)=(v′, l′)

If l1 is a location that points to a list then we write H(l1) = [v1, . . . , vn] if H(li) =
(vi, li+1) for i = 1, . . . , n and ln+1 = NULL. If l1 = NULL then H(l1) = []. Thm. 3
shows how to express the potential ΦH(v:A) of a value v with respect the heap H and
a matching annotated type A in terms of polynomials in the lengths of the lists that are
reachable from v. A proof can be found in the extended version of [9].

Theorem 3. Let H be a heap and let H(l) = [v1 . . . , vn] be a list of length n. Then
ΦH(l:L�p(A)) =

∑k
i=1 pi

(
n
i

)
+
∑n

i=1 ΦH(vi:A).

As in the case of simple types, a typing context is a finite partial mapping from variable
identifiers to annotated data types. The potential of a context Γ with respect to a heap
H and a stack V is ΦV,H(Γ ) =

∑
x∈dom(Γ ) ΦH(V(x):Γ (x)).
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Resource-annotated first-order types have the formA−−−→q/q′
B for q, q′ ∈ Q+ and an-

notated data types A,B. A resource-annotated signature Σ is a finite, partial mapping
from function identifiers to resource-annotated first-order types.

A resource-annotated typing judgment has the form Σ;Γ k
q
q′ e:A where e is a

RAML expression, k ∈ N+ is the length of the list annotations, q, q′ ∈ Q+ are
non-negative rational numbers, Σ is a resource-annotated signature, Γ is a resource-
annotated context and A is a resource-annotated data type. The intended meaning of
this judgment is that if there are more than q+Φ(Γ ) resource units available then this is
sufficient to evaluate e and there are more than q′ +Φ(v:A) resource units if e evaluates
to the value v.

A RAML program with resource-annotated types of degree k consists of a resource-
annotated signatureΣ and a family (ef , yf)f∈dom(Σ) of expressions with variables iden-

tifiers such that for each ef we have Σ; yf :A k
q

q′ ef :B if Σ(f)=A−−−→q/q′
B.

We write Σ;Γ cf (k) q
q′ e:A to refer to cost-free type judgments where all constants

K in the rules are zero. It is used to define a resource-polymorphic recursion where we
use cost-free function types to pass potential from the argument to the result (see §2).

In the typing rules in Fig. 3 we write e[z/x] to denote the expression e with all
free occurrences of the variable x replaced with the variable z. We assume that a fixed
but arbitrary global resource-annotated signature Σ is given. Furthermore, there is the
implicit constraint q ≥ 0 for every resource annotation q.

The rules are mostly algorithmic versions of the typing rules in [9]. The most impor-
tant difference is the rule T:FUNAPP which enables resource-polymorphic recursion.
It states that one can add any cost-free typing of the function body to the function
type that is given by the signature Σ. The signature Σcf is a fresh signature such that
(ef , yf)f∈Σcf

is a valid RAML program with cost-free types of degree k − 1. It can
differ in every application of the rule. The idea is as follows. To pay for the resource
costs of a function call f(x), the available potential (Φ(x:B) + q) must meet the re-
quirements of the functions’ signature (Φ(x:B′) + p). Additionally available potential
(Φ(x:Bcf) + pcf ) can be passed to a cost-free typing of the function body. The poten-
tial after the function call (Φ(f(x):A) + q′) is then the sum of the potentials that are
assigned by the cost-free typing (Φ(f(x):Acf ) + pcf ) and by the function signature
(Φ(f(x):A′) + p). As a result, f(x) can be used resource-polymorphically with a spe-
cific typing for each recursive call while the resource monomorphic function signature
enables an efficient type inference.

The sharing relation � defines how potential can be shared between multiple oc-
currences of a variable. Intuitively, if � (A | A1, A2) holds then x:A can be used
twice, once with type A1 and once with type A2. We define � (A | A,A) if A ∈
{unit, bool, int}; � (L�p(A) | L�q(A1), L�r(A2)) if � (A | A1, A2) and �p = �q + �r; and� ((A,B) | (A1,B1), (A2, B2)) if � (X | X1, X2) for X=A,B. The sharing relation
is analogously extended to contexts Γ, Γ1, Γ2 with dom(Γ ) = dom(Γ1) = dom(Γ2) in
a per element way.

A data type A is a subtype of a data type B, A <: B, only if A and B are structurally
identical, and if Φ(v:A) ≥ Φ(v:B) holds for every value v. We define C <: C if
C ∈ {unit, bool, int}; (A1, A2) <: (B1, B2) if A1 <: B1 and A2 <: B2; and L�p(A) <:
L�q(B) if A <: B and �p ≥ �q.
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q ≥ q′ +Kvar

Γ, x:A k
q

q′ x : A
T:VAR

q ≥ q′ +Kunit

Γ k
q

q′ ():unit
T:CONSTU

n ∈ Z q ≥ q′ +K int

Γ k
q

q′ n : int
T:CONSTI

b ∈ {True, False} q≥q′+Kbool

Γ k
q

q′ b:bool
T:CONSTB

op ∈ {or, and} q ≥ q′ +Kop

Γ, x1:bool, x2:bool k
q

q′ x1 op x2 : bool
T:BINOPB

q ≥ q′ +Kpair

Γ, x1:A1, x2:A2
k

q

q′ (x1, x2):(A1, A2)
T:PAIR

op ∈ {+,−, ∗, . . .} q≥q′+Kop

Γ, x1:int, x2:int k
q

q′ x1 op x2 : int
T:BINOPI

k = 1 Σ(f) = B−−−→p/p′
A q = p+ c+Kapp

1 q′ = p′ + c−Kapp
2

Γ, x:B k
q

q′ f(x) : A
T:FUNAPP1

Σ(f)=B′−−−→p/p′
A′ �(A |A′, Acf ) �(B |B′, Bcf ) Σcf (f)=Bcf−−−−−−→pcf /p′

cf Acf

q=p+pcf +c+Kapp
1 q′=p′+p′cf +c−Kapp

2 Σcf ; yf :Bcf
cf (k−1 )

pcf

p′
cf
ef :Acf

Γ, x:B k
q

q′ f(x) : A T:FUNAPP

q ≥ p1 +K let
1 p′1 ≥ p2 +K let

2 p′2 ≥ q′ +K let
3 �(Δ | Δ1,Δ2)

Var(Γ1) ∩ Var(Γ2) = ∅ Γ1,Δ1
k

p1

p′
1
e1:B Γ2,Δ2, x:B k

p2

p′
2
e2:A

Γ1, Γ2,Δ k
q

q′ let x = e1 in e2 : A
T:LET

q ≥ pt +KconT
1 q ≥ pf +KconF

1 p′t ≥ q′ +KconT
2

p′f ≥ q′ +KconF
2 Ai <: A for i = 1, 2 Γ k

pt

p′
t
et : A1 Γ k

pf

p′
f
ef : A2

Γ, x:bool k
q

q′ if x then et else ef : A
T:COND

q≥p+KmatP
1 p′≥q′+KmatP

2 Γ, x1:B1, x2:B2
k

p

p′ e:A

Γ, x:(B1, B2) k
q

q′ match x with (x1, x2) → e : A
T:MATP

q ≥ q′ +Knil

Γ k
q

q′ nil:L(A)
T:NIL

�p = (p1, . . . , pk) �r ≥ 	(�p) q ≥ q′ + p1 +Kcons Ai <: A for i = 1, 2

Γ, xh:A1, xt:L�r(A2) k
q

q′ cons(xh, xt):L�p(A)
T:CONS

q+p1≥sc+KmatC
1 q≥sn+KmatN

1 s′c≥q′+KmatC
2 s′n≥q′+KmatN

2 Γ k
sn

s′
n
e1:A1

�p=(p1, . . . , pk) Ai <: A for i=1, 2 Γ, xh:B, xt:L�(�p)(B) k
sc

s′
c
e2:A2

Γ, x:L�p(B) k
q

q′ match x with
⎪⎪⎪nil → e1

⎪⎪⎪ cons(xh, xt) → e2 : A
T:MATL

Fig. 3. Algorithmic type rules

The introduction of the partial evaluation rules enables us to formulate a stronger
soundness theorem than, e.g., in [9]. It states that the bounds derived from an annotated
type statement also hold for non-terminating evaluations. Additionally, the new notation
that we use in the operational semantics allows for a more concise statement.

Theorem 4 (Soundness). LetH 
 V :Γ and Γ k
q
q′ e:A. (1) If V ,H � e � v,H′ |

(p, p′) then p ≤ ΦV,H(Γ ) + q and p− p′ ≤ ΦV,H(Γ ) + q − (ΦH′(v:A) + q′).
(2) If V ,H � e � | p then p ≤ ΦV,H(Γ ) + q.

It follows from Thm. 4 and Thm. 2 that run-time bounds also prove termination.
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Corollary 1. Let the resource constants be instantiated by Kx = 1, Kx
1 = 1 and

Kx
m = 0 for all x and all m > 1. If H 
 V :Γ and Γ k

q
q′ e:A then there is an

n ∈ N, n ≤ ΦV,H(Γ ) + q such that V ,H � e � v,H′ | (n, 0).

Thm. 4 is proved by induction on the derivation of the evaluation statements V ,H �
e � v,H′ | (p, p′) and V ,H � e � | p, respectively. There is one proof for all
possible instantiations of the resource constants. It is technically involved but concep-
tually unsurprising. Compared to earlier works [7,9], further complexity arises from the
matching of the constraints in the type rules with the monoid elements in the semantics.
The proof can be found in the extended version of this paper.

6 The Inference Algorithm

The inference algorithm is mainly defined by the type rules in the previous section.
It works like a standard type inference in which each type is annotated with resource
variables and the corresponding linear constraints are collected as each type rule is
applied. The main innovation in comparison to the classic algorithm [1] is the resource-
polymorphic recursion enabled by the rule T:FUNAPP.

The number of computed constraints grows linearly in the maximal degree k that
has to be provided by the user. There is a trade-off between the quality of the analysis
and the size of the constraint system. The reason is that one sometimes has to analyze
function applications context-sensitively with respect to the call stack. Recall, e.g., the
expression attach(x,attach(y,xs)) from §1 where we used two different types for attach.

In our implementation we collapse the cycles in the call graph and analyze each
function once for every path in the resulting graph. In a nutshell, the algorithm computes
inequalities for annotations of degree k for a strongly connected component (SCC) F
of the call graph as follows.

1. Annotate the signature of each function f ∈ F with fresh resource variables.
2. Use the type rules from §5 to type the corresponding expressions ef . Introduce

fresh resource variables for each type annotation in the derivation and collect the
corresponding inequalities.
(a) For a function application g ∈ F : if k = 1 or in the cost-free case use the

function resource-monomorphically with the signature from (1). Otherwise, go
to (1) and derive a cost-free typing of eg with a fresh signature. Store the arising
inequalities and use the resource variables from the obtained typing together
with the signature from (1) in T:FUNAPP.

(b) For a function application g �∈ F : repeat the algorithm for the SSC of g. Store
the arising inequalities and use the obtained annotated type of g.

The context sensitivity can lead to an exponential blow up of the constraint system if
there is a sequence of function f1, . . . , fn such that fi calls fi+1 several times. But
such sequences are short in most programs. It would not be a substantial limitation in
practice to restrict oneself to programs that feature a collapsed call graph with a fixed
maximal path length to obtain a constraint system that is linear in the program size.

In general, the computed constraint systems are simple and can be quickly solved
by standard LP-solvers. The objective function states that annotations of arguments in
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function signatures have to be minimized and that annotations of high degree are more
expensive then annotations of low degree.

In the extended version one finds a comparison of the computed evaluation-step
bounds with the actual worst-case time behavior for several example programs together
with the run times of the analyses. The inference algorithm works efficiently and infers
resource-polymorphic types for all programs that we manually typed in our system.
However, it is not complete with respect to full resource-polymorphism. This would
mean to start with a (possibly infinite) set of annotated function types for each function
and to justify each type with a derivation that uses first-order types from the initial set.

The extended version of the paper contains a somewhat artificial example that admits
a resource-polymorphic type derivation that cannot be inferred by our algorithm. It
seems to be unlikely that there is a method to infer a typing for such functions with
a method that uses only linear constraints. One could move to quadratic constraints to
address the problem but the efficiency of such an approach is unclear. We plan to also
experiment with SMT solvers to deal which such constraints.

7 Related Work

Most closely related is the previous work on automatic amortized analysis [9,1,3,4,5,7]
(see §1). This paper focuses on polymorphic recursion and is the first that investigates
relations of the inferred bounds to non-terminating computations.

Other resource analyses that can in principle obtain polynomial bounds are
approaches based on recurrences pioneered by Grobauer [12] and Flajolet [13]. In those
systems, an a priori unknown resource bounding function is introduced for each func-
tion in the code; by a straightforward intraprocedural analysis a set of recurrence equa-
tions or inequations for these functions is then derived. A type-based extraction of such
recurrences has been given in [14]. Even for relatively simple programs the resulting
recurrences are quite complicated and difficult to solve with standard methods. In the
COSTA project [15,16] progress has been made with the solution of those recurrences.
In an automatic complexity analysis for higher-order Nuprl terms Benzinger uses Math-
ematica to solve the generated recurrence equations [17]. Still, we find that amortization
yields better results in cases where resource usage of intermediate functions depends on
factors other than input size, e.g., sizes of partitions in quick sort. Also compositions of
functions seem to be better dealt with by amortization.

A successful method to estimate time bounds for C++ procedures with loops and
recursion was recently developed by Gulwani et al. [18,19] in the SPEED project.
They annotate programs with counters and use automatic invariant discovery between
their values using off-the-shelf program analysis tools which are based on abstract
interpretation. A recent innovation for non-recursive programs is the combination of
disjunctive invariant generation via abstract interpretation with proof rules that employ
SMT-solvers [20]. In contrast to our method, these techniques can not fully automati-
cally analyze iterations over data structures. Instead, the user needs to define numerical
“quantitative functions”. A methodological difference is that we infer (using linear pro-
gramming) an abstract potential function which indirectly yields a resource-bounding
function. The potential-based approach may be favorable in the presence of composi-
tions and data scattered over different locations (partitions in quick sort). Moreover, our



186 J. Hoffmann and M. Hofmann

method infers tight bounds for functions like insertion sort that admit a worst-case time
usage of the form

∑
1≤i≤n i. In contrast, [18] indicates that a nested loop on 1 ≤ i ≤ n

and 1 ≤ j ≤ i is over-approximated with the bound n2.
The examples from loc. cit. suggest that the two approaches are complementary in

the sense that the method of Gulwani et al. works well for programs with little or no
recursion but integrate interaction of linear arithmetic with loops. Our method, on the
other hand, does not model the interaction of integer arithmetic with resource usage, but
is particularly good for analyzing recursive programs involving inductive data types.
Moreover, type derivations can be seen as certificates and can be automatically trans-
lated into formalized proofs in program logic [21].

Another related approach is the use of sized types [22,23,24] which provide a general
framework to represent the size of the data in its type. Sized types are a very important
concept and we also employ them indirectly. Our method adds a certain amount of data
dependency and dispenses with the explicit manipulation of symbolic expressions in
favour of numerical potential annotations.

Polynomial resource bounds have also been studied in [25] that addresses the deriva-
tion of polynomial size bounds for functions whose exact growth rate is polynomial.

8 Conclusion and Future Research

We have continued our work on automatic type-base amortized analysis for polynomial
resource bounds. To deal with the challenge of resource-polymorphic recursion we have
introduced a new inference algorithm. It uses a special cost-free resource metric to com-
pute alternate function types for recursive calls. The algorithm has been implemented
and it has been shown by experiments that it efficiently computes types for interesting
examples such as sorting algorithms. To prove the non-trivial soundness of the algorithm
for terminating and non-terminating evaluations we introduced a novel partial big-step
operational semantics. It models non-termination with non-deterministic inductive rules.

Even though there are examples that the inference algorithm cannot handle we find
it to be a good compromise between efficiency and performance. Therefore, our future
research will focus mainly on conceptual extensions of the type system that will em-
ploy the same inference method. Most notably we plan an extension to mixed potential
capable of inferring bounds like n ·m, an extension to recursion on non-inductive data
like integers, and the integration of higher-order and polymorphism.
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Abstract. In this paper we provide an interprocedural algorithm for reconstruct-
ing the control flow of assembly code in presence of indirect jumps, call in-
structions and returns. In case that the underlying assembly code is the output
of a compiler, indirect jumps primarily originate from high-level switch state-
ments. For these, our methods succeed in resolving indirect jumps with high ac-
curacy. We show that by explicitly handling procedure calls, additional precision
is gained at calls to procedures exiting the program as well as through the analy-
sis of side-effects of procedures onto the local state of the caller. Our prototypical
implementation applied to real-world examples shows that this approach yields
reliable and meaningful results with decent efficiency.

Keywords: static analysis, binary analysis, control flow reconstruction, reverse
engineering.

1 Introduction

In contrast to high-level languages as e.g. C at the assembler level the semantics of a
program can be fully specified, i.e. the effect of every assembler instruction is formally
given by the instruction manual of the processor vendor. Consequently, an analysis
of executables can provide more reliable results than a source-code analysis [5]. Full
information about the behaviour of an assembly program is required e.g. for reverse en-
gineering [8], i.e. to obtain an understanding of the structure of an executable, or when
analysing safety-critical real-time applications. For instance, determining tight bounds
for the worst-case execution time of an application [12] or checking safety properties of
micro-controllers [7] for flawless functionality, demand for analysing the compiler out-
put. Sometimes only the executable is available or the compiler may even contain bugs,
s.t. the executable provides the basis for a static analysis. However, in order to perform
analyses on assembly code, the control flow has to be reconstructed first. Resolving the
jump targets for indirect calls and indirect jumps requires an analysis of the values of
registers as well as of memory locations. Many architectures have specific instructions
for both local jumps and procedure calls. However, not all occurrences of call instruc-
tions semantically denote procedure calls in the sense of temporary transfer of control
to a subroutine. For instance consider the call to procedure exit in figure 1, which never
returns control back to the caller. An analysis that assumes that every function returns
can be misled by a call to such a non-returning function, since the immediately follow-
ing program point should not be influenced by such a call. Thus, it is essential to deal
with procedure calls for reconstructing meaningful control flow graphs.

K. Ueda (Ed.): APLAS 2010, LNCS 6461, pp. 188–203, 2010.
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Moreover, switch-statements at the assembler level are often translated to indirect
jumps [9], as e.g. demonstrated by example 1. These jumps are controlled by a jump
table containing relative jump targets for each case statement. In our setting this table
is located in the read-only data segment of the executable and thus its entries are never
changed. The target address of such an indirect jump is computed via the following
instruction sequence: First via a comparison instruction (cf. instruction 0x08) the value
range of the index register is restricted. For example 1 register r0 is restricted to 0 ≤
r0 ≤ 5. Note that the unsigned comparison instruction cmplwi treats its operands as
unsigned integers (cf. [23]), i.e. all the negative numbers are rejected because their
two‘s complement representation is larger than that of any positive number. If the value
of register r0 is not inside these bounds, then the default case is executed, which results
in a call to the exit function (cf. instruction 0x14). Otherwise the instructions starting
at 0x18 will be considered. Here, register r0 serves as an index into the jump table.
Before the indirect jump is performed (cf. instruction 0x30) the address offset read
from the jump table is added to the table base address (cf. instruction 0x2C).

In this paper we present our example programs and our implementation for the Pow-
erPC architecture (PPC) [23] which is still broadly used in embedded systems, as e.g.
automotive industry, aeronautics or robotics. However, our approach can be applied to
arbitrary architectures as well.

int i = read();
switch(i)
{
case 1: i += 11; break;
case 2: i += 22; break;
case 3: f(i); break;
case 4: i += 44; break;
case 5: i += 55; break;

default: exit(1); break;
}

The jump table is given by:

.ro_data
51c60:ff fa e3 d4 //51c60-34
51c64:ff fa e3 dc //51c60-3c
51c68:ff fa e3 e4 //51c60-44
51c6C:ff fa e3 ec //51c60-4c
51c70:ff fa e3 f4 //51c60-54

//i = read();
00: call 0x70
04: mr r0,r3
//switch(i) {
08: cmplwi cr7,r0,5
0C: jle cr7,0x18
10: li r3,1
14: call 0x80<exit>
18: mulli r2,r0,4
1C: lis r9,5
20: addi r10,r9,7264
24: add r9,r2,r10
28: lwz r11,0(r9)
2C: add r11,r11,r10
30: jump r11
//case 1: i += 11; break;
34: addi r0,r0,11
38: jump 0x64<postswitch>
//case 2: i += 22; break;
3C: addi r0,r0,22
40: jump 0x64<postswitch>
...
//<exit>:
80: li r10,99
84: halt

Fig. 1. Switch statement in PPC assembler



190 A. Flexeder et al.

Before elaborating our framework in detail we present related approaches in the area
of control flow reconstruction.

Related Work. Several tools tackle the problem of reconstructing the control flow
from executables. Using a simple linear-sweep disassembler, as e.g. gcc‘s objdump, is
not sufficient for identifying the code sections of an executable [21]. Therefore modern
control flow reconstruction additionally relies on extra information either through code
patterns used by compilers or static program analysis.

The first category of tools using compiler patterns for control flow reconstruction are
e.g. exec2crl by AbsInt [25,24], dcc by Cifuentes et al. [1,10] and IDAPro [2]. exec2crl
is a tool which extracts the control flow from well-formed compiler-generated assembly
code of time-critical embedded systems. There, special coding conventions must be
adhered to which prevent the use of function pointers and dynamic data structures.
Additionally precise knowledge about the compiler and the target architecture is given.
Under these restrictions a complete and sound control flow reconstruction is possible.
The drawback of such a compiler-pattern driven approach is that for every compiler and
change in the code generation schemes the set of patterns has to be adjusted.

Cifuentes et al. [10] propose slicing and substitution of expressions for obtaining
normal forms for indirect jumps and calls. This normal form is matched against their
repository of compiler patterns to recover high-level data flow information from ex-
ecutables. They only use heuristics if local memory is used to compute the address
expression for an indirect jump or call. These heuristics make their tool unsound.

Our experiments with IDAPro [2] lead us to assume that the latest version 5.5 also
uses compiler patterns to resolve those indirect jumps that represent switch statements.

The second category relies on static analyses. These approaches are used by tools
such as e.g. CodeSurfer by Reps et al. [20,5], Jakstab by Kinder and Veith [14,15] and
the work of Myreen [18]. In [15] Kinder and Veith present an analysis framework based
on partial control flow graphs to resolve indirect jumps. They present a generic worklist
algorithm to dynamically extend the control flow of a program. In [15] they claim that
their approach yields “the most precise overapproximation of the control flow graph
w.r.t. the precision of the provided abstract domain.“ However, they rely on an intra-
procedural framework only, inlining newly detected procedures. Recursive procedures
may lead to assembly code which is not manageable by their framework.

CodeSurfer works upon the control flow reconstruction of IDAPro. Reps et al. are
aware of the fact that IDAPro yields an unsafe as well as incomplete control flow graph
in presence of indirect jumps and calls. Thus, they attempt to augment and correct the
information provided by IDAPro [5]. Their practical tool CodeSurfer, however, is not
available to us.

In the context of program proving, Myreen [18] has presented a semantics-based
control flow reconstruction via a translation into tail-recursive functions.

In this paper we present an analysis that safely reconstructs an overapproximation
of the control flow for compiler-generated assembler programs by carefully examining
call and jump instructions. Here, we follow the approach of Kinder and Veith [15]
for dealing with indirect jumps and extend it with a treatment of procedure calls. One
particular problem we deal with are abort and exit functions, which do not return to the
corresponding call site, but terminate the whole program whenever they are called.
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The structure of the paper is as follows: In Section 2 we present the concrete seman-
tics our control flow reconstruction analysis builds on. Then, in Section 3 we describe a
general interprocedural framework to overapproximate the control flow and call graph
of an executable. Additionally we present a concrete instantiation of this framework in
order to resolve common indirect jump instructions. We present experimental results
and discuss several practical issues when analysing real-world code in Section 4. And
finally we conclude.

2 The Concrete Semantics

Here, we present an instrumented concrete semantics w.r.t. which the control flow graph
is defined. Let X = {x1, . . . ,xk} denote the set of registers of the processor. The in-
structions of the program are stored at the set of addresses N ⊆ N. For every executable
we assume that we are given a unique start address start ∈ N where program execu-
tion starts. The mapping I : N → Instr provides the processor instruction for a given
program address from N. Depending on the architecture, the width of an instruction
may vary. For the PPC architecture, however, all instructions have equal width 4. In this
paper, we consider the set Instr of processor instructions consisting of:
• stm: assignment statements xi := e, i.e. the value of expression e is assigned to

register xi ∈ X, memory read instructions xi := M [e], where the content of
the memory location specified by e is assigned to register xi and memory write
instructions M [e1] := e2, where the value of e2 is assigned to the memory location
specified by e1;

• call xi: procedure calls, where the value of register xi denotes the start address of
a procedure;

• jump e xi: jump instructions, which transfer control to the address specified by xi

iff e evaluates to 0;
• return: the return-instruction transfers control back to the caller and
• halt: the program exit instruction which terminates execution of the whole program

and transfers control back to the operating system.
Here, e, e1, e2 denote expressions as provided by the syntax of assembler instructions.

A procedure call call xi transfers control to the callee whose address is given by
the value of xi. We consider every address which is jumped to by a call instruction
as the start address of a procedure. The address of the instruction directly following
the procedure call is saved in a dedicated register, the link register of the processor.
For instance, instruction 0x00 from figure 1 sets the link register to address 0x04.
The instruction return is nothing but an indirect jump to the address currently stored in
the link register. For our control flow reconstruction, we only consider programs where
return-statements transfer control back to the caller. This means that it is up to the callee
to save the content of the link register (if necessary) and to restore it before executing the
return. We leave it for supplementary analyses to verify that the link register is handled
correctly.

For the sake of our analysis, we combine the comparison instruction and the succeed-
ing branch instruction to the guarded jump instruction jump e xi. In concrete machine
architectures, these instructions need not follow each other directly (see Section 4).
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In the concrete semantics, we consider states σ assigning values to registers X and
to memory locations from some address space N′ which is disjoint from N. Let V
denote the set of all possible values. The set of all such states then is given by Σ =
(X ∪N′) → V . Additionally, the instrumented operational semantics maintains a pair
(c, f) where c is the address of the last call and f is the start address of the current
procedure, with c, f ∈ N. Processor instructions from Instr modify the current state
σ ∈ Σ. The semantics of a single processor instruction s on a given program state σ is
defined via the semantic function [[s]] : Σ → Σ. Besides modifying the state, it transfers
control to another instruction (if it is an assignment or a jump), to another procedure (if
it is a call) or to the environment (if it is a halt instruction). The transfer of control is
provided by the partial function nextI : (N × Σ) → N which computes for every
program point u with state σ, the next program point according to the semantics of the
processor instruction I(u):

nextI(u, σ) =

⎧⎪⎨⎪⎩
σ(xi) with [[e]]σ = 0 if I(u) = jump e xi

u + 4 with [[e]]σ �= 0 if I(u) = jump e xi

u + 4 otherwise

Here, the function [[e]]σ evaluates an expression e and returns a value which is inter-
preted as an integer. In case of a jump-instruction the successor node is either the im-
mediately following program point, if condition e does not evaluate to 0, or the value
of the jump target register xi, otherwise. For procedure calls, the successor node is the
immediately following program point (given that the called procedure returns).

Due to the presence of procedures, the small-step operational semantics is based on
the two transition relations �S and �R denoting one step of intra-procedural and inter-
procedural execution, respectively. These relations are defined by:

(u, σ, (c, f)) �S (nextI(u, σ), σ′, (c, f)) if I(u) = call xi ∧ f ′ = σ(xi)∧
(f ′, σ, (u, f ′)) �∗S (r, σ′, (u, f ′)),
I(r) = return

(u, σ, (c, f)) �S (nextI(u, σ), [[I(u)]]σ, (c, f)) if I(u) not a call
(u, σ, (c, f)) �R (f ′, σ, (u, f ′)) if I(u) = call xi ∧ f ′ = σ(xi)
(u, σ, (c, f)) �R (u′, σ′, (c, f)) if (u, σ, (c, f)) �S (u′, σ′, (c, f))

An initial program state is given by (start, σ, (start, start)) for suitable σ ∈ Σ.
Given this operational semantics, an approximation of the control flow of the pro-

gram is a pair (N, next��I ) where N ⊆ N and next��I : N → 2N is a mapping such that
for every initial configuration conf = (start, σ0, (start, start)) the following holds:

• If conf �∗R (u, σ, (c, f)) then u ∈ N ;
• If conf �∗R (u, σ, (c, f)) �S (u′, σ′, (c, f)) then u′ ∈ next��I (u).

Let calls ⊆ N denote the subset of program points u where I(u) is a call instruction.
Then an approximation of the call graph of the program is a pair (F, fun��

I ) where F ⊆
N and fun��

I : calls → 2F is a mapping such that for every initial configuration conf =
(start, σ0, (start, start)), conf �∗R (u, σ, (c, f)) for some I(u) = call xi, implies that
σ(xi) ⊆ fun��

I (u).
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3 Interprocedural Control Flow Reconstruction

Our goal is to construct sufficiently small pairs (N, next��I ) and (F, fun��
I ). For that, we

must determine tight approximations to the values of registers xi occurring in indirect
jump instructions jump e xi and indirect call instructions call xi. In the following, we
abstract from the concrete contents of the main memory and concentrate on the values
of registers only. In order to be as precise as possible with the values of registers, we
directly use the powerset domain 2V ordered by subset inclusion as our abstract do-
main. Thus, an abstract state is described by a mapping σ� from registers to the abstract
domain X → 2V . Only when sets of values grow, we may insert a widening to an en-
closing interval [19]. However, the interval domain also requires a widening operation
[11] to ensure termination of the fixpoint iteration. Typically, loops and recursive func-
tions may lead to infinitely ascending chains. In our analysis framework, we therefore
insert widening operators at back-edges and at procedure entries.

The general framework relies on an arbitrary complete lattice Σ� of abstract states to-
gether with a concretisation γ : Σ� → 2Σ where γ(σ�) returns the set of concrete states
described by σ�. Additionally, we require for every instruction s the corresponding ab-
stract transformer [[s]]� : Σ� → Σ� which safely approximates the concrete semantics
of s, i.e., which satisfies:

[[s]]σ ∈ γ([[s]]�σ�) whenever σ ∈ γ(σ�)

Given the abstract lattice Σ� and the concretisation γ, we define the abstract next func-
tion next�I : N×Σ� → 2N by:

next�I(u, σ
�) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ(σ�(xi)) ∩N with ([[e]]�σ�) = {0} if I(u) = jump e xi

{u + 4} with ([[e]]�σ) �! 0 if I(u) = jump e xi

{u + 4} ∪ γ(σ�(xi)) ∩N otherwise if I(u) = jump e xi

{u + 4} otherwise

Here, the abstract evaluation function [[e]]� takes an expression and returns a set of pos-
sible values of e.

For guarded jump instructions the set of successor program points is specified by the
value of register xi in the current register valuation if condition e is fulfilled, by the
immediately following program point if e is not fulfilled or both sets otherwise. For all
other processor instructions next�I yields the immediately following program point.

Our analysis determines for each possible procedure entry node f a pair μ(f) =
(σ�, C) where σ� ∈ Σ� describes all possible concrete states at return points reachable
from f on the same level (i.e., through �S), and C ⊆ N is the superset of all possible
call sites for f . Additionally, the analysis determines for every program point u a pair
η(u) = (σ�, R) where σ� describes the set of all states attained at u when reaching u
from an initial state, and R ⊆ N×N is a set of pairs (c, f) of call sites c for procedure
entry points f such that the current program point is reachable from f on the same level
(i.e., w.r.t. �S).

Assume that η(u) = (σ�, R). Then we refer to the i-th component of the pair η(u)
via ηi(u). The components of the pair μ(f) will be accessed analogously.
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The values μ(f) and η(u) can be characterised as a solution of the following con-
straint system:

(1) μ(f) + ((c, f) ∈ η2(u)); (η1(u), {c}) if I(u) = return

(2) η(start) + (�, {(start, start)})
(3) η(v) + (f ∈ γ(η1(u)(xi)) ∧ (u ∈ μ2(f))); if I(u) = call xi∧

(H�(η1(u), μ1(f)), η2(u)) v = u + 4
(4) η(f) + (f ∈ γ(η1(u)(xi))); (E�(η1(u)), {(u, f)}) if I(u) = call xi

(5) η(v) + (v ∈ next�I(u, η1(u))); ([[s]]�(η1(u)), η2(u)) if I(u) = s ∈ stm

Here, the operator “;” is defined by:

(x ∈ A);B =

{
B if x ∈ A

⊥ otherwise

Constraint (1) describes the effect of a possibly called procedure f which may reach
a return point. For constraint system η, initially at the start point start no information
about possible variable valuations is known. Additionally we mark the start point as
reachable by managing the relation (start, start), as constraint (2) specifies. Constraint
(3) treats the case of a procedure call call xi. There, on the one hand the set of successor
nodes is specified by the set of possible values of register xi, i.e., the set of entry points
of the callees, and on the other hand, by the immediately following program point —
given that any of the possibly called procedures returns. The value after the procedure
call u + 4 consists of the set of call site - callee - relations valid before the call to
procedure f together with the combination of the data flow value before the procedure
call with the procedure summary μ1(f). This combination is computed by the function
H�. The function E� computes the contribution of the abstract state of the current call
site to the start point f of the callee. Additionally we relate the current call site u to
the entry point of procedure f . This is defined by constraint (4). Constraint (5) treats
all other forms of statements, which have no influence on the call site - callee relations.
The successor node is computed by the abstract next function.

Note that for a procedure f which does not return, μ(f) yields ⊥. Thus, in case of a
call instruction at program point u the directly following program point u + 4 will not
be reached.

A safe approximation of E� and H� independent of the abstraction Σ� is:

E�(σ�) = σ�

H�(σ�
c, σ

�) = σ�

Assume we are given a (not necessarily least) solution (μ, η) of the constraint system.
Then we can extract both an approximate control flow (N, next��I ) and an approximate
call graph (F, fun��

I ) by:

N = {u | η(u) �= (⊥, ∅)}
next��I (u) = next�I(u, η1(u))

F =
⋃
{f | η2(u) = {_, f}}

fun��
I (u) = γ(η1(u))(xi) ∩N if I(u) = call xi
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F captures all possible procedure entry points of both functions that may return to the
caller and functions that do definitely not return.

The following theorem relates the least solution of our constraint system with the
(instrumented) operational semantics of the program as specified through the relations
�S and �R.

Theorem 1. (Correctness) Let (μ, η) denote the least solution of the constraint system.
Then the following holds:

1. Assume that η(u) = (σ�, R) and (start, σ0, (start, start)) �∗R (u, σ, (c, f)). Then
(c, f) ∈ R and σ ∈ γ(σ�).

2. Assume that μ(f) = (σ�, C) and (start, σ0, (start, start)) �∗R (f, σ, (c, f)) �∗S
(u, σu, (c, f)) where I(u) = return. Then c ∈ C and σu ∈ γ(σ�).

The proof of theorem 1 is by induction on the length of the respective execution steps
�S and �R, respectively. As an immediate corollary, we obtain:

Corollary 1. The pairs (N, next��I ) and (F, fun��
I ) are approximations of the control

flow and call graph of the input program. ()

Instead of abstracting the state at a program point u only, we may also abstract the
transformer along the path to program point u. The abstract domainΣ� can be enhanced
by additionally accumulating an abstraction of the state transformer from T correspond-
ing to the current procedure. Thus, we consider the abstract domain Σ� = Σ�×T. Ac-
cordingly we have to adjust the abstract semantic function [[s]]� : Σ� → Σ� to elements
from Σ�:

[[s]]�(σ�, τ) = ([[s]]�σ�, [[s]]�
T
◦� τ)

where ◦� denotes the composition of transformers τ from T and [[s]]�
T

: T denotes the
abstract semantic function on a processor instruction s, i.e. is a state transformer from
T.

This enhancement by abstracting the state transformers enables a more precise defi-
nition of the function H� w.r.t. the domain Σ�.

H�((σ�
1, τ1), (σ

�
2, τ2)) = (ι(τ2, ι(τ1, σ

�
1)), τ2 ◦� τ1)

with ι : T → Σ� → Σ�. ι(τ, σ�) transforms an abstract state σ� by means of the state
transformer τ ∈ T which is interpreted in the context of the abstract domain Σ�.
Additionally the function E� is given by:

E�((σ�, _)) = (σ�, Id�)

with Id� the identity mapping.
One specific instance of this abstraction T records e.g. the set of registers which have

definitely not been modified since procedure entry. For that, we choose Σ� = (X →
2V )× 2X. Then H� can be refined to:

H�((σ�
c, X), (σ�, X ′)) = (σ̃�, X ′ ∩X) where

σ̃�(x) =

{
σ�

c(x) if x ∈ X ′

σ�(x) otherwise
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where for the instantiation of H�, ◦� is the intersection of both register sets. Combining
the effect of a called procedure with the state of the call site results in a register valuation
σ̃� which takes its values from the register valuation before the call for all registers
which are not modified by the called procedure and the values at procedure return for
the remaining ones. Additionally, the set of definitely not modified registers for the
caller after the call is given by the intersection of the respective sets of the caller before
the call and the callee.

The value for the start point of a procedure is given by the register valuation σ� at
the call site for the procedure together with the set of all registers:

E�(σ�, X) = (σ�,X)

In this instance of domain T, Id� is given by the set of all registers.
The constraint system as specified above, is not really tractable. In particular, the set

of program locations is not known beforehand. In order to overcome this obstacle, we
extend the approach of [15] and explore the reachable program locations as they are
encountered during fixpoint computation. Besides indirect jumps, our extension also
handles calls and returns.

In case of a return instruction at program point r, we rely on the fixpoint algo-
rithm for updating the summaries μ(f) of procedure entries f from which r is (intra-
procedurally) reachable, and let it re-consider the call sites of f if the summary μ(f)
has changed. This results in the worklist-based fixpoint algorithm 1.

Fixpoint Algorithm 1

1: W ← {(start, (�, {(start, start)}))};
2: while (W �= ∅) do
3: (u, s) = extract(W );
4: if (s �* η(u)) then
5: η(u)← η(u) ) s;
6: (σ�, R) = η(u);
7: if (I(u) = jump e xi ∧ σ�(xi) = �) then
8: abort();
9: else if (I(u) = call xi ∧ σ�(xi) = �) then

10: W ←W ∪ {(u + 4, (�, R))};
11: else if (I(u) = call xi ∧ σ�(xi) �= �) then
12: W ←W ∪ {(f, (E�(σ�), {(u, f)})) | f ∈ γ(σ�(xi))};
13: else if (I(u) = return) then
14: for all ((_, f) ∈ R) do
15: if ((σ�, {c | (c, f) ∈ R}) �* μ(f)) then
16: μ(f)← μ(f) ) (σ�, {c | (c, f) ∈ R});
17: (σ�

f , Rf ) = μ(f);
18: W ←W ∪ {(c + 4, (H�(η1(c), σ

�
f ), η2(c))) | (c, _) ∈ Rf};

19: else
20: W ←W ∪ {(v, ([[I(u)]]�σ�, R)) | v ∈ next�I(u, σ

�)};
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Initially, we assume that η(u) is (implicitly) initialised with the least possible value
(⊥, ∅) for all possible values of u. Likewise, we assume that μ assigns (⊥, ∅) to all
possible entry points of procedures.

Algorithm 1 maintains a worklist W consisting of all pairs (u, s) of program points
together with a potential update s for the value η(u). The algorithm terminates when
all these updates have been processed. For processing one pair (u, s), the algorithm
first checks whether s is already subsumed by the current value of η(u). If this is
not the case, s is added to η(u), and this change is propagated to all consumers of
the value η(u). Here, a case distinction on the instruction at program point u is
performed.

In case the target addresses of a call-instruction are not known (cf. line 9), we at
least assume that the called function returns and overapproximate the return state with
�. Otherwise, we extend the worklist by pairs, consisting of all the targets f that may
be called and their corresponding states (cf. line 12). In case of a return-instruction in
procedure f we propagate the effect of f to all its call sites (cf. line 18). For all other
kinds of program instructions the worklist is extended by pairs, consisting of all the
successor nodes (computed via the abstract next function) and the corresponding state
update (computed via the abstract semantic evaluation function).

With our current instantiation of Σ� which only keeps track of the values of registers,
we are only able to resolve static procedure calls. A more sophisticated instantiation,
however, which additionally analyses the memory in greater detail, would also allow to
compute a safe approximation of the control flow of a larger class of programs.

An assembly program can be either stripped, i.e. symbol table and debugging infor-
mation is missing, or unstripped. The symbol table contains all the start addresses of the
procedures F provided by the executable. In case we have a symbol table we start our
analysis from all procedure start points. Furthermore, we can make the assumption that
only those procedures may be called, which are listed in the symbol table in case of a
call-instruction whose target addresses are unknown. In case of analysing a stripped exe-
cutable, procedure start addresses are uncovered on the fly. Every executable is provided
with a unique start address, specified in the header of the executable. Typically, the en-
try point of an executable is the start address of the .text section. If the target address
of a call instruction call xi is unknown, we must assume that an unknown procedure is
called, which may call any other procedure in any state. Thus, a safe approximation of
E� and H� is only given by:

E�(σ�) = �
H�(σ�

c, σ
�) = �

The function abort (cf. line 8 of algorithm 1) indicates that the reconstruction of the
control flow graph has failed. For unknown target addresses of jump-instructions (cf.
line 7 of algorithm 1) we abort control flow reconstruction. Section 4 shows that an
instantiation of our framework which tracks both the values of registers and memory
locations is able to resolve all indirect jumps (resolvable by a static analysis) on all our
benchmark programs. We fail in resolving some of the indirect calls since we do not
track code addresses stored in the heap.
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On regular termination, let (μ, η) be the variable valuations computed by algorithm
1, and let F =

⋃
{f | η2(u) = {(_, f)}} and N = {u ∈ N | η(u) �= (⊥, ∅)}. Then

the pair (μ|F , η|N ) is a solution of our constraint system when restricted to procedure
entries from F and program points from N . In particular, this means that the control
flow graph (N, next��I ) and the call graph (F, fun��

I ) constructed from (η, μ) are indeed
approximations of the control flow and the call graph of the program.

Our experiments show that in case of switch-statements which are realised by jump
table look-ups, we have to take memory into account. The jump table can either contain
absolute addresses or address offsets, as e.g. is the case in our example in figure 1. Jump
tables T : N′′ → V are located in the read-only memory N′′ ⊂ N′ of an executable.
Thus, in our instantiation of the framework we handle all those memory read accesses
xi := M [xj ] to the read-only data section only. Then the abstract semantic function on
memory access expressions is defined by:

[[M [xj ]]]�σ� =

{
{T [c] | c ∈ σ�(xi)} if σ�(xi) \N′′ = ∅
V otherwise

In compiler-generated switch statements, typically no procedure calls are involved in
the address computation for the jump target. Nevertheless, our experiments with real-
world applications reveal that procedure calls may occur in-between this address com-
putation, as figure 1 illustrates. The compiler omits a jump to the end of the switch state-
ments, if an exit-procedure is called within the default branch of the switch-statement.
Only a sufficiently precise treatment of procedure calls can avoid the loss of essential
information for resolving the jump instruction at address 0x30 in figure 1.

4 Practical Issues and Experiments

Based on our theoretical approach, we implemented a prototypical control flow recon-
struction tool to explore the quality of the resulting control flow graph and identify the
next challenges by means of real-world programs. Our current implementation tracks
the values of registers and memory locations but completely neglects the heap.

We conducted our experiments on a 2, 2 GHz quad-core machine equipped with
physical memory of 16GB. All our benchmark programs have been compiled with
GCC version 4.4.3 using optimisation levels 0 and 2 without debug information for
the PowerPC architecture. For the moment we only inspect fully statically linked and
stripped executable programs. Hence our benchmark programs contain the whole GNU
C library code. Our prototypical implementation (VoTUM [4]) consists in the following
steps: First GCC‘s objdump is applied to the binaries to extract the assembler instruc-
tions. Then, we parse these assembler instructions and use them as the basis for our
control flow reconstruction. The following two tables present the performance of our
analyser on the benchmark programs.

Within these tables we specify: the binary file size Size; the number of procedure
entries Procs (which is provided by the symbol table of the corresponding unstripped
version of the binary) and in parentheses the number of procedures identified by our
analyser; the number of assembler instructions Instr; the number of indirect jumps



Interprocedural Control Flow Reconstruction 199

bctr and indirect calls bctrl; the number of unresolved indirect jumps ures and in
parentheses the number of statically not resolvable indirect jumps due to runtime link-
age; the number of resolved indirect calls res; ureac denotes the number of unreach-
able indirect jump and call instructions which the analyser did not reach when starting
from the entry point of the stripped binary; the number of static call instructions bl;
the memory consumption M in GB and the time consumption T(s) in seconds of our
analyser.

For our benchmark suite on the one hand we concentrate on applications from em-
bedded systems, as e.g. communication protocols openSSL, lightweight HTTP servers
thttpd and a SCADE generated vehicle control program control from [3]. On the
other hand we took a home-made example program switches with several character-
istics of switches: nested switches, switches in loops, etc. coreutils consists of five
selected programs (ls, basename,vdir,chmod, chgrp) taken from the GNU Coreutils
package of Unix in order to demonstrate the applicability of our approach to ordinary
desktop software and gzip to be comparable to other tools which refer to SPECint.

Some of our benchmark programs use lazy binding of procedure addresses via indi-
rect jumps within the trampoline code to the so-called Procedure Linkage Table (PLT)
[16]. The absolute address of such a dynamically loaded procedure is loaded from a con-
stant memory location in the PLT section and then branched to via a bctr-instruction. If
this location is not yet initialised, the trampoline branches to the runtime linker, which
provides the dynamic address of the corresponding procedure. However, the address of
this runtime linker is not present in the binary – it is only provided after loading the bi-
nary. Thus, no static value for the target of such a bctr instruction can be determined.
Consequently, we list this kind of unresolvable bctr instructions in parentheses within
our benchmark tables.

Table 1. Benchmark suite for programs with optimisation level 0

Program Size Procs Instr bctr ures ureac bctrl res ureac bl M T(s)
openSSL 3.8MB 6708(375) 769511 163 0(4) 129 1352 20 1219 35709 4 203
thttpd 884kB 1197(464) 196493 77 0(5) 42 321 21 189 6092 1.2 67
switches 636kB 825(364) 138178 82 0(4) 42 302 20 184 3680 0.8 45
control 633kB 817(354) 139917 83 0(4) 49 302 16 184 3670 0.8 42
coreutils 3.9MB 5671(2371) 852322 431 0(26) 219 1648 101 1004 24159 1.3 527
gzip 0.7MB 1076(472) 166213 79 0(4) 44 310 20 188 4634 1.1 132

Table 2. Benchmark suite for programs with optimisation level 2

Program Size Procs Instr bctr ures ureac bctrl res ureac bl M T(s)
openSSL 2.9MB 6232(380) 613882 150 0(4) 116 1355 20 1217 34405 3 156
thttpd 852kB 1147(469) 189034 77 0(5) 42 320 17 190 5890 1 60
switches 625kB 826(358) 137833 77 0(4) 41 302 17 184 3673 0.8 44
control 629kB 817(354) 138589 81 0(4) 47 302 20 184 3670 0.8 40
coreutils 3.8MB 5372(2534) 830407 424 0(28) 202 1634 104 959 23504 1.3 459
gzip 0.7MB 1026(384) 162380 83 0(5) 44 309 20 190 4587 1 117
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Summarising, our instantiation of the framework is able to provide tight bounds
for all of the statically resolvable indirect jumps within the benchmark programs. We
fail in resolving some of the indirect call instructions due to the fact that we have
not modelled bit operations in our semantics yet and do not take the heap into
account.

Position-Independent Code. Within position-independent code (PIC) we also exam-
ined switch-constructs. PIC is common in shared libraries [16]. Such code accesses all
constant addresses through the global offset table (GOT), located in the read/write data
section of the program. Consider the following example:

04: call 0x08
08: mflr r30
0C: lwz r0,-24(r30)
10: add r30,r0,r30
....
2C: lwz r0, 24(r1)
30: cmplwi cr7,r0,5
34: bgt cr7,0x70<default>
38: mulli r9,r0,4
3C: lwz r0,-32764(r30)
40: add r9,r9,r0
44: lwz r9,0(r9)
48: add r9,r9,r0
4C: jump r9

After instruction 0x10 register r30 con-
tains the address of the GOT (cf. instruc-
tions 0x04–0x10). Typically, in order to
obtain the address of the GOT, instruction
pointer relative addressing is used. This
is realised via a call instruction to the im-
mediately following location. The effect of
this local jump is that the continuation ad-
dress is saved in the link register. This con-
tinuation address serves as a fixed point in
the code section and via a constant differ-
ence the GOT can be addressed, although
its absolute address is not known until run-
time.

After instruction 0x38 register r9 holds the value of the switch index variable. The
base address of the switch table is computed via a look-up in the GOT, as instruction
0x3C illustrates. Finally, an access into the jump table (in the read-only data section) is
performed at instruction 0x44. Under the assumption that the location with offset 32764
to the GOT (cf. instruction 0x3c) is definitely not overwritten, we can safely infer the
base address of the jump table.

Control Flow Splitting. For our semantics we assumed that the compare- and branch-
instructions are either directly following each other (cf. instructions 0x08,0x0C in
example 1) or the processor instructions in between the compare and the branch-
instructions do not modify the register the compare is based on. This assumption,
however, need not always be satisfied. In order to deal with this case we propose the
technique of control flow splitting, as described in [22].

Function Pointers. At the assembler level, function pointers are realised via indirect
calls.

Consider the following example code motivated by a Linux kernel driver, as for in-
stance linux-2.6.33/drivers/md/md.c, where a bunch of initialisation func-
tions is managed in a global array. Procedure global_init sequentially calls all the
initialisation functions.
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const fptr inits[] =
{init1,init2,init3};

void global_init() {
int j = sizeof(inits);
int i;
for (i=0; i<j; i++)
inits[i]();

}

//for (i=0; i<j; i++)
00: li r0,0
04: stw r0,8(r1)
08: jump 0x30
//inits[i]();
0C: lis r9,10
10: addi r9,r9,6908
14: mulli r0,r0,4
18: add r9,r0,r9
1C: lwz r0,0(r9)
20: call r0
24: lwz r9,8(r1)
28: addi r0,r9,1
2C: stw r0,8(r1)
30: cmpwi cr7,r0,12
34: blt cr7,0x0C

Assuming that the global array inits is located in the read-only memory, our control
flow reconstruction analysis allows to infer the targets for the call-instruction 0x20.
There are common compilers arranging all constant global data in the read-only mem-
ory. However, if this is not the case we either have to enhance our (theoretical) analysis
framework with a memory analysis or rely on a may-analysis of modified memory lo-
cations. Let B denote such a set of possibly modified memory locations. Then, in our
analysis framework we only have to adjust the abstract effect function for memory read
accesses:

[[M [xj ]]]�σ� =

{
{M [c] | c ∈ σ�(xi)} if (σ�(xi) \N′) ∩B = ∅
V otherwise

Our benchmark examples show that the number of indirect call-instructions (column
bctrl in table 1) is significantly smaller than the number of static call-instructions
(column bl in table 2). Our current implementation of the framework neither supports
a precise handling of bit operations nor of the heap memory and thus fails in resolving
some of the indirect calls.

Optimisation Levels. Our instantiation of the framework speaks about register val-
uations, only. Thus, the control flow reconstruction yields precise results as long as
values are kept in registers only. This is the case for assembly code generated by
compilers with a higher optimisation level. However, in case of unoptimised code or
register pressure compilers store values on the stack. In order to analyse unoptimised
assembly code, we extended our implementation of the framework by a stack analysis.
Via the approach of inferring linear relations as presented in [17], we detect local and
global memory locations. Since in such code the values of stack locations are temporar-
ily cached in registers [13], also an analysis of relations between registers and mem-
ory locations is mandatory to precisely track the values of both registers and memory
locations.
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5 Conclusion

We have presented a framework for static analysis to jointly approximate the control
flow and the call graph in presence of indirect jumps and calls. Such an approach is
less restrictive than approaches relying on compiler patterns only. Furthermore, we dis-
cussed the challenges and possible solutions for code generated via different optimi-
sation levels. In order to precisely reconstruct the control flow in presence of indirect
calls, abstract domains are required which capture side-effects of procedures, and pos-
sibly also track code addresses which are stored in the heap [6].

For our prototypical implementation, we have assumed that the code to be analysed
adheres to the coding conventions for calls to and returns from procedures. It remains
for future work to extend these techniques to deal with code which deliberately violates
these conventions. On the one hand, it remains to show that the executable to analyse
adheres to our assumptions, such as e.g. a correct management of the return address. On
the other hand, there are several areas for which code that does not adhere to the calling
conventions offers interesting challenges, as e.g. self-modifying code, self-extracting
executables or hand-made assembly code, as e.g. malicious code or optimised library
code.
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Abstract. We consider the problem of specifying data structures with
complex sharing in a manner that is both declarative and results in
provably correct code. In our approach, abstract data types are speci-
fied using relational algebra and functional dependencies; a novel fuse
operation on relational indexes specifies where the underlying physical
data structure representation has sharing. We permit the user to specify
different concrete shared representations for relations, and show that the
semantics of the relational specification are preserved.

1 Introduction

Consider the data structure used in an operating system kernel to represent the
set of available file systems. There are two kinds of objects: file systems and
files. Each file system has a list of its files, and each file may be in one of two
states, either currently in use or currently unused. Figure 1 sketches the data
structure typically used:1 each file system is the head of a linked list of its files,
and two other linked lists maintain the set of files in use and files not in use.
Thus, every file participates in two lists: the list of files in its file system, and
one of the in-use or not-in-use lists. A characteristic feature of this example is
the sharing: the files participate in multiple data structures. Sharing usually
implies that there are non-trivial high-level invariants to be maintained when
the structure is updated. For example, in Figure 1, if a file is removed from a file
system, it should be removed from the in-use or not-in-use list as well. A second
characteristic is that the structure is highly optimized for a particular expected
usage pattern. In Figure 1, it is easy to enumerate all of the files in a file system,
but without adding a parent pointer to the file objects we have only a very slow
way to discover which file system owns a particular file.

We are interested in the problem of how to support high-level, declarative
specification of complex data structures with sharing while also achieving ef-
ficient and safe low-level implementations. Existing languages provide at most
one or the other. Modern functional languages provide excellent support for
inductive data structures, which are all essentially trees of some flavor. When
multiple such data structures overlap (i.e., when there is more than one induc-
tive structure and they are not separate), functional languages do not provide
any support beyond what is available in conventional object-oriented and pro-
cedural languages. All of these languages require the programmer to build and
1 This example is a simplified version of the file system representation in Linux, where

file systems are called superblocks and files are inodes.

K. Ueda (Ed.): APLAS 2010, LNCS 6461, pp. 204–221, 2010.
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filesystems
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s list

s files

file
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file

f list

f fs list

file in use file unused

Fig. 1. File objects simultaneously participate in multiple circular lists. Different line
types denote different lists.

maintain mutable structures with sharing by using explicit pointers or reference
cells. While the programmer can get exactly the desired representation, there is
no support for maintaining or even describing invariants of the data structure.

Languages built on relations, such as SQL and logic programming languages,
provide much higher-level support. We could encode the example above using
the relation:

file(filesystem : int,fileid : int, inuse : bool)

Here integers suffice as unique identifiers for file systems and files, and a boolean
records whether or not the file is in use. Using standard query facilities we can
conveniently find for a file system fs all of its files file(fs , , ) as well as all of the
files not in use file( , , false). Even better, using functional dependencies we can
specify important high-level invariants, such as that every file is part of exactly
one file system, and every file is either in use or not; i.e., the fileid functionally
determines the filesystem and inuse fields. Thus, there is only one tuple in the
relation per fileid, and when the tuple with a fileid is deleted all trace of that
file is provably removed from the relation. Finally, relations are general; since
pointers are just relationships between objects, any pointer data structure can be
described by a set of relations. Adding relations to general-purpose programming
languages is a well-accepted idea. Missing from existing proposals is the ability
to provide highly specialized implementations of relations, and in particular to
take advantage of the potential for mutable data structures with sharing.

Our vision is a programming language where low-level pointer data structures
are specified using high-level relations. Furthermore, because of the high-level
specification, the language system can produce code that is correct by construc-
tion; even in cases where the implementation has complex sharing and destruc-
tive update, the implementation is guaranteed to be a faithful representation of
the relational specification. In this paper, we take only the first step in realizing
this plan, focusing on the core problem of what it means to represent a given
high-level relation by a low-level representation (possibly with sharing) that is
provably correct. We do not address in this paper the design of a surface syntax
for integrating relational operations into a full programming language (there are
many existing proposals).
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This paper is organized into several parts, each of which highlights a separate
contribution of our work:
– We begin by describing three examples of data structure specification. Our

approach separates the semantic content of a data structure from details of
its implementation, while allowing the programmer to control the low-level
physical representation (Section 2).

– A key contribution is the design of a language for specifying indices, which
are a mapping between a relational specification and concrete data structures
(Section 3). This language allows us to define cross-linking and fusion con-
structs which, although common in practice, express sharing that is difficult
or impossible to express using standard data abstraction techniques.

– We describe adequacy conditions that ensure that the low-level representa-
tion of a relation is capable of implementing its higher-level specification.

– We describe the implementations of the core relation primitives, and we prove
that the low-level implementations are sound with respect to the higher-level
specifications (Section 4 and Section 5).

Due to space limitations we have not included all supporting lemmas or any
proofs in this paper. All lemmas and proofs are in the on-line tech report [10].

2 Relation Representations and Indices

In this section we motivate and describe three different representations for re-
lations, at different levels of abstraction, using three examples: directed graphs,
a process scheduler, and a Minesweeper game. The highest level is the logical
representation of a relation, which is the usual mathematical description of a
finite relation as a set of tuples. The lowest level is the physical representation of
a relation, which represents a relation in a program’s heap using pointer-based
data structures. Bridging the gap we have an intermediate tree decomposition of
a relation, which decomposes the relation into a tree form corresponding to an
index without yet committing to a specific physical representation.

First, we need to fix notation.

Values, Tuples, Relations. For our formal development we assume a universe of
untyped values V, which includes the integers, that is, Z ⊆ V. We write v to
denote one value, v for a sequence of values, and V to denote a set of values.

A tuple t = 〈c1 #→ v1, c2 #→ v2, . . . 〉 is a mapping from a set of columns
{c1, c2, . . . } to values drawn from V. We write t(c) to denote the value of column
c in tuple t, and we write t(c) to denote the sequence of values corresponding to
a sequence of columns. We write s ⊆ t if the tuple t is an extension of tuple s,
that is we have t(c) = s(c) for all c in the domain of s. In an abuse of notation
we sometimes use a sequence of columns c as a set. A relation r is a set of tuples
{x, y, z, . . .} over the same set of column names C.

Relational Algebra. We use the standard notation of relational algebra [6]: union
(∪), intersection (∩), set difference (\), selection σf r, projection πC r, projection
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onto the complement of a set of columns C: πC r, and natural join r1  ! r2; we
also allow tuples in place of relations as arguments to relation operators.

2.1 Logical Representation of Relations

We begin with the problem of representing the edges of a weighted directed
graph (V,E) where E ⊆ V × Z× V . We return to this example throughout the
paper. One popular way to represent sparse graphs is as an adjacency list, which
records the list of successors and predecessors of each vertex v ∈ V . In ML, we
might represent a graph via adjacency lists as the type

type g = (v, (v ∗ int) list) btree ∗ (v, (v ∗ int) list) btree,

assuming v is the type of vertices, and (α, β) btree is a binary tree mapping keys
of type α to values of type β. Here the graph is represented as two collaborating
data structures, namely a binary tree mapping each vertex to a list of its succes-
sors, together with the corresponding edge weights, and a binary tree mapping
each vertex to a list of its predecessors, and the corresponding edge weights.

One problem with our proposed ML representation is that the successor and
predecessor data structures represent the same set of edges; however it is the pro-
grammer’s responsibility to ensure that the two data structure representations
remain consistent. Another problem is that with only tree-like data structures
there is no natural place to put the edge weight—we can place it in either the
successor data structure or the predecessor data structure, increasing the time
complexity of certain queries, or we can duplicate the weight, as we have here,
which increases the space cost and introduces the possibility of inconsistencies.

Instead, we can use a relation. We represent the edges of our directed graph as
a relation g with three columns (src, dst ,weight), in which each tuple represents
the source, destination, and weight of an edge. The graph shown in Figure 5(a)
can be represented as the relation {〈1, 2, 17〉 , 〈1, 3, 42〉}. We call the usual math-
ematical view of a relation as a set of tuples the logical representation.

We extend ML with a new type constructor (α1, . . . , αk) relation which rep-
resents relations of arity k, together with a set of primitive operations to ma-
nipulate relations. Relations are mutable data structures conceptually similar to
(α1 ∗ · · · ∗ αk) list ref, with a very different representation. The primitives with
which the client programmer manipulates relations, shown in Figure 2, are cre-
ating an empty relation, operations to insert and remove tuples from a relation,
and query, which returns the list of tuples matching a tuple pattern, a tuple in

emptyd : unit→ (α1, . . . , αk) relationd

insertd : α1 ∗ · · · ∗ αk → (α1, . . . , αk) relationd → unit

removed : α1 ∗ · · · ∗ αk → (α1, . . . , αk) relationd → unit

queryd : (α1, . . . , αk) relationd → α1 option ∗ · · · ∗ αk option→ (α1 ∗ · · ·αk) list

Fig. 2. Primitive operations on logical relations
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which some fields are missing. We describe a minimal interface to make proofs
easier; a practical implementation should provide a richer set of primitives, such
as an interface along the lines of LINQ [15].

2.2 Indices and Tree Decompositions

The data structure designer describes how to represent a logical relation using
an index, which specifies how to decompose the relation into a collection of
nested map and join operations over unit relations containing individual tuples.
Different decompositions lead to different operations being particularly efficient.
We do not maintain an underlying list of tuples; the only representation of a
relation is that described by an index. Beyond the index definition programmers
can remain oblivious of details of how relations are represented.

Every relation r has an associated index d describing how to decompose the
relation into a tree and how to lay that tree out in memory; Figure 3 shows
the syntax of indices. Given an index d and a relation r we can form a tree
decomposition ρ whose structure is governed by d; Figure 4 defines the syntax of
tree decompositions. There are three kinds of index that we can use to decompose
a relation, each of which has a corresponding kind of tree-decomposition node:

– Joins allow the data-structure designer to specify how to divide the rela-
tion into pieces. These pieces can have different structures, each supporting
different access patterns efficiently. We require that the natural join of the
pieces be equal to the original relation. Formally, a join(d1, d2, L) index rep-
resents a relation as the natural join of two different sub-relations (ρ1, ρ2),
where d1 is an index that describes how to represent ρ1 and d2 is an index
that describes how to represent ρ2. The set L consists of cross-linking and
fusion declarations, which we will describe shortly.

– Maps allow the data-structure designer to specify that certain columns of
the relation can be used to lookup other columns. The map operator allows
the programmer to specify the data structure ψ that should be used for this
mapping, with options including singly- and doubly-linked lists and binary
trees. Formally, a map(ψ, c, d′) index represents a relation as a mapping
{vi #→ ρi}i∈I from a sequence of key columns c to a set of residual relations
ρi, one for each valuation vi of the key columns. We further decompose each
residual relation ρi using an index d′.

d ::= unit(c) | map(ψ, c, d′) | join(d1, d2, L) indices
ψ ::= option | slist | dlist | btree data struct.

l ∈ L ::= (fuse, z1, z2) | (link, z1, z2) cross-links
z ∈ contour ::= {m, l, r}∗ stat. contours

y ∈ dcontour ::= {mv, l, r}∗ dyn. contours

Fig. 3. Syntax of indices
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ρ ::= {} | {v} | {vi #→ ρi}i∈I | (ρ1, ρ2)

Fig. 4. Tree decompositions

– Unit indices are the base case, and represent individual tuples. Formally, a
unit(c) index represents a relation over a sequence of columns c with cardi-
nality either 0 or 1; such a relation can either be the empty set {}, or contain
a single sequence of values {v}.

We assume we are given correct implementations of a set of primitive data struc-
tures such as singly- and doubly-linked lists and trees. Our focus is on assembling
such building blocks into nested and overlapping data structures.

Static Contours. We annotate each term in the index with a unique name called a
static contour. Formally, a static contour z is a path in an index d which identifies
a specific sub-index d′. A static contour z is drawn from the set {m, l, r}∗, where
m means “move to the child index of a map index”, l means “move to the left
sub-index of a join index”, and r means “move to the right sub-index of a join
index”. We write d.z to denote the sub-index of d identified by a contour z.

In our directed graph we want to find the set of successors and find the set of
predecessors of a vertex efficiently. One index that satisfies this constraint is

dg = join·(mapl(btree, [src],maplm(slist, [dst ], unitlmm([weight ]))),
mapr(btree, [dst ],maprm(slist, [src], unitrmm([]))), {(fuse, rmm, lmm)})

The index dg states that we should represent the relation as the natural join of
two sub-indices. The left sub-index is a binary tree mapping each value of the
src column to a distinct singly-linked list, which in turn maps each dst column
value (for the given src) to its corresponding weight . The right sub-index is a
binary tree mapping each value of the dst column to a linked list of src values.

Tree Decompositions. An index determines a useful intermediate representation
of the associated relation, decomposing it into a tree according to the operations
in the index. We call this representation the tree decomposition of a relation. As
an example, Figure 5(b) depicts the tree decomposition ρ of the graph relation
g given index dg. We write ρ mathematically as(·{l

1 �→ {lm12 �→ {lm1m2〈17〉}, 3 �→ {lm1m3〈42〉}}},{r

2 �→ {rm21 �→ {rm2m1〈〉}}, 3 �→ {rm31 �→ {rm3m1〈〉}}}),
(1)

Dynamic Contours. We assign each term of a tree decomposition a unique label,
called a dynamic contour. A dynamic contour y is a path in a tree decomposition
ρ under index d that identifies a specific subtree of ρ. Each dynamic contour in
a tree decomposition corresponds to an instance of a static contour in an index.
In a dynamic contour we annotate the m operator with a sequence of key values
v; a tree decomposition via a map index has one subtree for each sequence of key
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values, and hence when navigating to a subtree we must specify which subtree
we mean. We do not need any extra dynamic information for a join index, so
we leave the l and r operators unannotated. For example, the part of the tree
labeled r corresponds with the sub-index of dg labeled r, and maps dst values
of the relation to a list of tree decompositions corresponding to index rm.

2.3 Physical Representations, Cross-Linking, and Fusion

In Section 2.2 we showed how to represent logical relations as tree decomposi-
tions. Given a relation and an accompanying index, our implementation gener-
ates a physical representation with the structure given by the index. This repre-
sentation is the concrete realization of the tree-decomposed relation in memory.
Each term in the tree-decomposition becomes an object in memory, and we
use the data structures specified in the index to lay out and link those objects
together.

Sharing declarations allow the programmer to specify connections between
objects in different parts of the index. Such sharing declarations come in two fla-
vors: fusion and cross-linking. Fuse declarations indicate that the objects should
be merged, with each structure containing a pointer to the shared object, while
link operations indicate that one structure should contain a pointer to an object
in another structure. Effectively these constructs collapse the tree decomposition
into a directed acyclic graph.

In the graph example, we would like to share the weight of each edge between
the two representations. Observe that given a (src, dst) pair, the weight is the
same whether we traverse the links in the left or the right tree. That is, there
is a functional dependency: any (src, dst) pair determines a unique weight, and
it does not matter whether we visit the src or the dst first. Hence instead of
replicating the weight, we can share it between the two trees, specified here by
the fuse declaration. The declaration says that the data structure we get after
looking up a src and then a dst in the left tree should be fused with the data
structure we get by looking up a dst and then a src in the right tree.

Each join index takes an argument L which is a set of cross-linking declara-
tions (link, z1, z2) and fusion declarations (fuse, z1, z2). A cross-linking declara-
tion (link, z1, z2) states that a pointer should be maintained from each object
with static contour z1 to the corresponding object with static contour z2. Simi-
larly, a fusion declaration (fuse, z1, z2) states that objects with static contour z1
should be placed adjacent to the corresponding object with static contour z2.
By “corresponding” object we mean the object with static contour z2, whose
column values are drawn from the set bound by following static contour z1.

In the graph example, the contour rmm names the data structure we get by
looking in the right component of the join (r) and then navigating down two
map indices (mm), i.e., looking in the right tree and then following first the dst
and then the src links. The contour lmm names the corresponding location in
the left tree. The fuse declaration indicates these two nodes should be merged,
with the weight data structure from the left tree being fused with the empty
data structure from the right tree. Figure 5(b) depicts the index structure after



Data Structure Fusion 211

(a) (b) (c)

1

2

3

17

42

{〈1, 2, 17〉 ,
〈1, 3, 42〉}

17 42

l r

msrc
1 mdst

2 mdst
3

m
d
st

2

m dst3
msrc
1 msrc

1

〈17〉 〈42〉 nil

nil

nil

nil

〈1〉〈3〉

〈2〉

〈2〉

.jl
ef
t.
m

ap

.jright.m
ap

.left

.m
ap

.next

.map

.map

.u
da

ta

.u
d
at

a

.right

.right.left.next
.next

.left

.right

〈1〉 .mdata

〈3〉

.m
da

ta

.mdata
.ne

xt

.mdata

.mdata

.m
da

ta

.mdata

Fig. 5. Representations of a weighted directed graph: (a) An example graph, and its
representation as a relation, (b) A tree decomposition of the relation in (a), with fused
data structures shown as conjoined nodes, and (c) a diagram of the memory state that
represents (b)

fusion. Figure 5(c) graphically depicts the resulting physical memory state that
represents the graph of Figure 5(b). The conjoined nodes in the figure are placed
at a constant field offset from one another on the heap.

2.4 Process Scheduler

As another example, suppose we want to represent the data for a simple operat-
ing system process scheduler (as in [13]). The scheduler maintains a list of live
processes. A live process can be in any one of a number of states, e.g. running or
sleeping. The scheduler also maintains a list of possible process states; for each
state we maintain a tree of processes with that state. We represent the sched-
uler’s data by a relation live(pid , state, uid ,walltime, cputime), and the index

join·
(
mapl

(
btree, [pid ], unitlm([uid ,walltime, cputime])

)
,

mapr
(
dlist, [state],maprm(btree, [pid ], unitrmm([])

)
, {(fuse, rmm, lm)}

)
The index allows us both to efficiently find the information associated with the
pid of a particular process, and to manipulate the set of processes with any given

(TWfEmp) {} |=T unit(c)
(TWfUnit)

|v| = |c|
{v} |=T unit(c)

(TWfMap)
∀i ∈ I. |vi| = |c| ∀i ∈ I. ρi |=T d ∀i ∈ I.αt(ρi, d) �= ∅

{vi #→ ρi}i∈I |=T map(ψ, c, d)

(TWfJoin)

ρ1 |=T d1 αt(ρ1, d1) |= dom d1 ∩ domd2 → domd1 \ dom d2
ρ2 |=T d2 πdom d1∩dom d2 αt(ρ1, d1) = πdom d1∩dom d2 αt(ρ2, d2)

(ρ1, ρ2) |=T join(d1, d2, L)

Fig. 6. Well-formed tree decompositions: ρ |=T d
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state and their associated data. In this case the fuse construct allows us to jump
directly between the pid entry in a per-state binary tree and the data such as
walltime and cputime associated with the process.

2.5 Minesweeper

Another example is motivated by the game of Minesweeper. A Minesweeper
board consists of a 2-dimensional matrix of cells. Each cell may or may not have
a mine; each cell may also be concealed or exposed. Every cell starts off in the
unexposed state; the goal of the game is to expose all of the cells that do not
have mines without exposing a cell containing a mine. Some implementations of
Minesweeper also implement a “peek” cheat code that iterates over the set of
unexposed cells, temporarily displaying them as exposed. We represent a board
by the relation board(x, y, ismined , isexposed), with the index:

join·
(
mapl

(
btree, [x ],maplm(btree, [y], unitlmm([ismined , isexposed ]))

)
,

mapr
(
slist, [isexposed ],maprm(btree, [x, y], unitrmm([])

)
, {(link, rmm, lmm)}

)
In this example, the index specifies a cross-link rather than a fusion. Cross-
linking adds a pointer from one object in a tree decomposition to another object,
providing a “short-cut” from one data structure to another.

3 Abstraction, Well-Formedness, and Adequacy

In this and subsequent sections we give the details of how we can specify data
structures with sharing at a high-level using relations and then faithfully trans-
late those specifications into efficient low-level representations. There are two
main complications. First, not every index can represent every relation; we intro-
duce a notion of adequacy to characterize which relations an index can represent.
Second, our proof strategy requires two steps: first showing that the intermedi-
ate tree decomposition of a relation is correct with respect to the logical relation,
and second showing that the physical representation is correct with respect to
the tree decomposition (Sections 4 and 5).

3.1 Tree Decompositions

Abstraction Function. Finally, we can relate the pieces we have defined so far.
The abstraction function αt(ρ, d) maps a tree decomposition ρ according to some
index d to the corresponding high-level logical relation, showing what relation
the tree decomposition represents:

αt(V, unit(c)) = {〈c #→ v〉 | v ∈ V }

αt({vi #→ ρi}i∈I ,map(ψ, c, d)) =
⋃

i∈I

(
〈c #→ vi〉 × α(ρi, d)

)
αt((ρ1, ρ2), join(d1, d2, L)) = αt(ρ1, d1)  ! αt(ρ2, d2)
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Functional Dependencies. A relation r has a functional dependency (FD) B →
C, if any pair of tuples in r that are equal on the set of columns B are also equal
on columns C. We write Δ to denote a set of functional dependencies; we write
r |= Δ if a relation r has the set of FDs Δ. If a FD A → B is a consequence
of set of FDs Δ we write Δ �fd A→ B; sound and complete inference rules for
functional dependencies are standard [1].

Well-Formed Decompositions. We define a class of well-formed tree decompo-
sitions ρ for an index d with a judgment ρ |=T d shown in Figure 6. The
(TWfEmp) and (TWfUnit) check that a unit node is either the empty set
or a sequence of values of the right length. The (TWfMap) rule checks that
each sequence of key values has the right length, and that there are no key values
that map to empty subtrees. The (TWfJoin) rule ensures the relation actually
has the functional dependency promised by the adequacy judgment, and that
we do not have “dangling” tuples on one side of a join without a matching tuple
on the other side. Note that rule (TWfJoin) does not place any restrictions on
the fusion declaration L; valid fusions are the subject of the physical adequacy
rules of Figure 9. We write dom d for the set of columns that appear in an index.

3.2 Logical Adequacy

Digressing briefly, we observe that we cannot decompose every relation with
every index. In general an index can only represent a class of relations satisfying
particular functional dependencies.

For our running graph example the index dg is not capable of represent-
ing every possible relation of three columns. For example, the relation r′ =
{〈1, 2, 3〉 , 〈1, 2, 4〉} cannot be represented, because dg can only represent a single
weight for each pair of src and dst vertices. However r′ does not correspond
to a well-formed graph; all well-formed graphs satisfy a functional dependency
src, dst → weight , which allows at most one weight for any pair of vertices.

We say that an index d is adequate for a class of relations R if for every relation
r ∈ R there is some tree decomposition ρ such that αt(ρ, d) = r. Figure 7 lists
inference rules for a judgment C;Δ �l d that is a sufficient condition for an
index to be adequate for the class of relations with columns C that satisfy a set
of FDs Δ. The inference rules enforce two properties. Firstly, the (LAUnit) and
(LAMap) rules ensure that every column of a relation must be represented by

(LAUnit)
Δ �fd ∅ → c

c;Δ �l unit(c)
(LAMap)

C2;Δ/c1 �l d

c1 - C2;Δ �l map(ψ, c1, d)

(LAJoin)
Δ �fd C1 → C2 C1 ∪C2;Δ �l d1 C1 ∪ C3;Δ �l d2

C1 -C2 - C3;Δ �l join(d1, d2, L)

where Δ/C =
{
(A \ C)→ (B \ C) | (A→ B) ∈ Δ

}
Fig. 7. Rules for logical adequacy C;Δ �l d
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f ∈ {link(z1,z2), fuse(z1,z2), . . . } field names A = Z× f∗ addresses
μ : A → A ∪ V memory Λ : dcontour → A layout

Fig. 8. Heaps

the index; every column must appear in a unit or map index. Secondly, in order
to split a relation into two parts using a join index, the (LAJoin) rule requires
a functional dependency to prevent anomalies such as spurious tuples.

We have the following lemma:

Lemma 1 (Soundness of Adequacy Judgement). If C;Δ �l d then for
each relation r with columns C such that r |= Δ there is some ρ such that
ρ |=T d and αt(ρ, d) = r.

3.3 Physical Representation

Heaps. Figure 8 defines the syntax for our model of memory. We represent the
heap as function μ from a set of heap locations to a set of heap values. Our
model of a heap location is based on C structs, except that we abstract away
the layout of fields within each heap object. Heap locations are drawn from an
infinite set A, and consist of a pair (n, f) of an integer address identifying a heap
object, together with a string of field offsets. Each integer location notionally has
a infinite number of field slots, although we only ever use a small and bounded
number, which can then be laid out in consecutive memory locations. The con-
tents of each heap cell can either be a value drawn from V or an address drawn
from A; we assume that the two sets are disjoint.

The set of columns that are bound by following a static contour z is given by
the function bound(z, d), defined as

bound(·, d) = ∅ bound(mz,map(ψ, c, d)) = c ∪ bound(z, d)
bound(lz, join(d1, d2, L)) = bound(z, d1) bound(rz, join(d1, d2, L)) = bound(z, d2)

Layouts. We use dynamic contours to name positions in a tree. A layout function
Λ is a mapping from the dynamic contours of a tree to addresses from A. Layout
functions allow us to translate from semantic names for memory locations to a
more machine-level description of the heap; the extra layer of indirection allows
us to ignore details of memory managers and layout policies, and to describe
fusion and cross-linking succinctly. All layouts must be injective; that is, different
tree locations must map to different physical locations. We define operators that
strip and add prefixes to the domain of a layout

Λ/x = {y #→ a | (xy #→ a) ∈ Λ}, and Λ× x = {xy #→ a | (y #→ a) ∈ Λ}.

Data Structures. In our present implementation, a map index can be represented
by an option type (option), a singly-linked list (slist), a doubly-linked list (dlist),
or a binary tree (btree). It is straightforward to extend the set of data structures
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(PAUnit)

Δ;Φ �p unit(c)
(PAMap)

Δ/c1; {x | mx ∈ Φ} �p d

Δ;Φ �p map(ψ, c1, d)

(PAJoin)

∀l ∈ L.Δ;Φ �p d; l Φ′ = Φ ∪ {z | (fuse, z, z′) ∈ L}
Δ; {x | lx ∈ Φ′} �p d1 Δ; {x | rx ∈ Φ′} �p d1

Δ;Φ �p join(d1, d2, L)

(PALink)

bound(rz1m, d) ⊇ bound(lz2, d)
Δ;Φ �p d; (link, rz1m, lz2)

(PAFuse)

rz1m /∈ Φ bound(rz1m, d) = bound(lz2, d)
Δ;Φ �p d; (fuse, rz1m, lz2)

Fig. 9. Rules for physical adequacy Δ;Φ �p d [; l]

by implementing a common data structure interface—we present this partic-
ular selection merely for concreteness. The common interface views each data
structure as a set of key-value pairs, which is a good fit to many, but not all
possible data structures. Each data structure must provide low-level functions:
pemptyψ a which creates a new structure with its root pointer located at address
a, pisemptyψ a which tests emptiness of the structure rooted at a, plookupψ a v
which returns the address a′ of the entry with value v, if any, pscanψ a which
returns the set of all (a′,v) pairs of a value v and its address a′, pinsertψ a v a′

which inserts a new value v into the data structure rooted at address a′, and
premoveψ a v a′ which removes a value v at address a′ from a data structure.
Typical implementations can be found in the tech report [10].

For cross-linking and fusion to be well-defined in an index d, we need d to
be physically adequate. This condition ensures that for cross-linking and fusion
operations between static contours z1 and z2, the mapping from z1 to z2 is a
function for each cross-link declaration and an injective function for each fusion
declaration. Further, as fusions constrain the location of an object in memory,
we require any object is fused at most once for feasibility. We use the judgment
form Δ;Φ �p d and the associated rules in Figure 9 to indicate that index d
is physically adequate for functional dependencies Δ where Φ denotes the set
of static contours that have already been fused. The (PALink) and (PAFuse)
rules ensure a suitable mapping by requiring the set of fields bound by the target
contour of a link be a subset of the set of fields bound by the source contour;
in the case of a fusion we require equality. The rule (PAFuse) ensures that no
contour is fused twice. We assume that all indices are physically adequate.

Abstraction Function. We define a second abstraction function αm(μ, a, d) = ρ,
which given a memory state μ, root address a, and an index d constructs the
corresponding tree decomposition ρ:

αm(μ, a, unit(c)) = if !a.ulen = 0 then {} else {!a.udata}
αm(μ, a,map(ψ, c, d)) = {v #→ αm(μ, a′, d) | (v, a′) ∈ pscanψ a.map}
αm(μ, a, join(d1, d2, L)) = (αm(μ, a.jleft, d1), αm(μ, a.jright, d2))
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4 Queries

Up to this point we have focused on defining how relations are represented as
data structures; now we turn to describing how high-level queries on relations
correspond to low-level sequences of operations traversing those data structures.
Recall that we define a query operation that extracts the set of tuples in a
relation whose fields match a tuple pattern, i.e., query r t = r  ! t, where
dom t ⊆ dom r. We define query plans on the data structure representation, and
establish sufficient conditions for a query plan to be valid, meaning that the query
plan correctly implements a particular query on both the tree decomposition and
physical representations.

One problem we do not address is selecting an efficient query plan from all
possible valid query plans, but we can make a few observations. First, there is
always a trivial valid query plan that uses the entire index; more efficient plans
avoid traversing parts of data structures unneeded for a particular query. Second,
all possible query plans can be enumerated and checked for validity; there are
only so many ways to traverse an index. Finally, we expect that profile-directed
database methods for selecting good query plans can be adapted to our setting;
we leave that as future work.

4.1 Query Plans

A query plan is a tree of query plan operators, which take as input a query
state, a pair (t,y) of a tuple pattern t and a dynamic contour y, and produce
as output a set of tuples. The input tuple t maps previously bound variables to
their values, whereas the dynamic contour represents the position in the index
tree to which the query operator applies. Query plans are defined inductively:

None. The qnone operator determines whether an index is empty or non-empty,
and returns either the empty set {} or the singleton set {〈〉} respectively.

Unit. The qunit operator returns the tuple represented by a unit index, if any.
Scan. The qscan(q′) operator retrieves the list of key values that match t in a

map index and invokes query operator q′ for each sub-tree. Since the qscan
operator iterates over the contents of a map data structure, it typically takes
time linear in the number of entries in the map.

Lookup. The qlookup(q′) operator looks up a particular sequence of key values
in a map(ψ, c, d) index; each of the key columns must be bound in the input
tuple t. Query operator q′ is invoked on the relevant subtree, if any. The
complexity of the qlookup depends on the particular choice of data structure
ψ; in general we expect qlookup to have better time complexity than qscan.

Left/Right Join. The qljoin(q1, q2) operator first executes query q1 in the left
subtree of a join index, then executes query q2 in the right subtree, and
returns the natural join of the two results. The qrjoin(q1, q2) operator is sim-
ilar, but executes the two queries in the opposite order. Both joins produce
identical results, however the computational complexity may differ.

Fuse Join. The qfusejoin(z0, l, q1, q2) operator switches the current index data
structure by following a fuse or cross-link l and executes query q2; it then
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switches back to the original location and executes q1. The result is the
natural join of the two sub-queries. Parameter z0 identifies the join index
that contains l; position y must be an instantiation of the source of l.

For example, suppose in the directed graph example of Section 2.1 we want to find
the set of successors of graph vertex 1, together with their edge weights. Figure 10
depicts one possible, albeit inefficient, query plan q consisting of the operations

q = qrjoin(qnone, qscan(qlookup(qfusejoin(·, (fuse, rmm, lmm), qunit, qunit)))).

Intuitively, to execute this plan we use the right-hand side of the join to iterate
over every possible value for the dst field. For each dst value we check to see
whether there is a src value that matches the query input, and if so we use a fuse
join to jump over to the left-hand side of the join and retrieve the corresponding
weight. (A better query plan would look up the src on the left-hand side of the
join first, and then iterate over the set of corresponding dst nodes and their
weights, but our goal here is to demonstrate the role of the qfusejoin operator.)

To find successors using query plan q, we start with the state (〈src #→ 1〉 , ·).
Since the left branch of the join is qnone, the join reduces to a recursive execution
of the query qscan(· · · ) with input (〈src #→ 1〉 , r). The qscan recursively invokes
qlookup on each of the states (〈src #→ 1, dst #→ 2〉 , rm2) and (〈src #→ 1, dst #→ 3〉 ,

qunitqunit

qnone

qrjoin

qscan

qlookup

qfusejoin

l r

msrc
mdst

mdst msrc

Fig. 10. A possible query
plan for the graph example
of Section 2.1

rm3). The qlookup operator in turn recursively in-
vokes the qfusejoin operator on (〈src #→ 1, dst #→ 2〉 ,
rm2m1) and the state (〈src #→ 1, dst #→ 3〉 , rm3m1).
To execute its second query argument the fuse join
maps each instantiation of contour rmm to the cor-
responding instantiation of contour lmm; we are
guaranteed that exactly one such contour instan-
tiation exists by index adequacy. The fuse join
produces the states (〈src #→ 1, dst #→ 2〉 , lm1m2) and
(〈src #→ 1, dst #→ 3〉 , lm1m3). Finally the invocations
of qunit on each state produces the tuples

{〈src #→ 1, dst #→ 2,weight #→ 17〉 ,
〈src #→ 1, dst #→ 3,weight #→ 17〉}.

We need a criteria for determining whether a partic-
ular query plan does in fact return all of the tuples
that match a pattern. We say a query plan is valid,
written d, z, X �q q, Y if q correctly answers queries
in index d at dynamic instantiations of contour z,
where X is the set of columns bound in the input tuple pattern t and Y is the
set of columns bound in the output tuples (see the technical report [10]).

5 Relational Operations

In this section we describe implementations for the primitive relation operators
for the tree-decomposition and physical representations of a relation, and we
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prove our main result: that these primitive operators are sound with respect to
their higher-level specification. Complete code is given in the tech report [10].

5.1 Operators on the Tree Decomposition

We implement queries over tree decompositions by a function tquery d t ρ, which
finds tuples matching pattern t over tree decompositions ρ under index d. The
core routine is a function tqexec ρ d q t y which, given a tree decomposition ρ,
index d, and a tuple t, executes plan q at the position of the dynamic contour y.

Creation/update are handled by tempty d, which constructs a new empty
relation with index d, tinsert d t ρ, which inserts a tuple t into a tree-decomposed
relation ρ with index d, and tremove d t ρ which removes a tuple t from a tree-
decomposed relation ρ with index d. It is the client’s responsibility to ensure that
functional dependencies are not violated; the implementation contains dynamic
checks that abort if the client fails to comply. These checks can be removed if
there is an external guarantee that the client will never violate the dependencies.

To show that the primitive operations on tree decompositions faithfully imple-
ment the corresponding primitive operations on logical relations, we first show
executing valid queries over tree decompositions soundly implements logical tu-
ple pattern queries. We then prove a soundness result by induction.

Lemma 2 (Tree Decomposition Query Soundness). For all ρ, r, d such
that ρ |=T d and αt(ρ, d) = r, if d, ·, dom t �q q, domd for a tuple pattern t and
query plan q we have tqexec ρ d q t · = query r t.

Theorem 1 (Tree Decomposition Soundness). Suppose a sequence of insert
and remove operators starting from the empty relation produce a relation r. The
corresponding sequence of tinsert and tremove operators given tempty d as input
either produce ρ such that ρ |=T d and αt(ρ, d) = r, or abort with an error.

5.2 Physical Representation Operators

In this section we describe implementations of each of the primitive relation
operations that operate over the physical representation of a relation. We prove
soundness of the physical implementation with respect to the tree decomposition.
For space reasons we omit the code for physical operators but we give a brief
synopsis of each function; for a complete definition see the full paper [10].

We execute physical queries via a query execution function pqexec d q y a y.
Function pqexec is structurally very similar to the query execution function
tqexec over tree decompositions. Instead of a tree decomposition ρ the physical
function accesses the heap, and in place of a dynamic contour y the physical
function represents a position in the data structure by a pair (z, a) of a static
contour z and an address a. The main difference in implementation is that the
qfusejoin case follows a fusion or cross-link simply by performing pointer arith-
metic or a pointer dereference, respectively, rather than traversing the index.

Creation/update are handled by pempty d a (creates an empty relation with
index d rooted at address a), pinsert d t a (inserts tuple t into a relation with
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index d rooted at a), and premove d t a (removes tuple t). The main difference
with corresponding operations on the tree decomposition is in pinsert, which
needs to create fusions and cross-links. To fuse two nodes we simply place the
data of a node being fused in a subfield of the node into which it is fused. To
create a cross-link, we first construct the tree structure and then add pointers
between each pair of linked nodes.

Analogous to the soundness proof for tree decompositions, we prove soundness
by proving a set of commutative diagrams relating physical representations of
relations with their tree decomposition counterparts. We need a well-formedness
invariant for physical states. A memory state μ is well-formed for index d with
layout Λ if there exists an injective function Λ such that the judgment μ;Λ |=p d
holds, defined by the inference rules in [10].

We show that valid queries over physical memory states are sound with respect
to the tree decomposition. We then show soundness by induction.

Lemma 3 (Physical Query Soundness). Suppose we have μ;Λ |=p d and
αm(μ,Λ(·), d) = ρ for some μ,Λ, d. Then for all queries q and tuples t such that
d, ·, dom t �q q, dom d we have pqexec d q t a · = tqexec ρ d q t ·, where pqexec
is executed in memory state μ.

Theorem 2 (Physical Soundness). Let d be an index, and suppose a sequence
of tinsert and tremove operators starting from the ρ = tempty d produce a relation
ρ′. Let μ be the heap produced by pempty d a where a is a location initially present
in the heap. Then the corresponding sequence of pinsert and premove operators
given μ as input either produce a memory state μ′ such that μ′;Λ |=p d for some
Λ and αm(μ, a, d) = ρ′, or abort with an error.

6 Related Work

Relations. Many authors propose adding relations to both general- and special-
purpose programming languages (e.g., [3; 15; 19; 16]). We focus on the orthog-
onal problem of specifying and implementing shared representations for data.
Our approach can benefit from much of this past work; in particular, database
techniques for query planning are likely to prove useful.

Automatic Data Structure Selection. Automatic data structure selection was
studied in SETL [20; 4; 17] and has also been pursued for Java collection im-
plementations [21]. Our index language describes a mapping between abstract
data and its concrete implementations with a similar goal to [7]. We focus on
composing and expressing sharing between data structures which is important in
many practical situations. Our work can be combined with static and dynamic
techniques to infer suitable data structures.

Specifying Shared Representations. Graph types [11] extend tree-structured types
with extra pointers functionally determined by the structure of the tree back-
bone. One way to view our cross-linking and fusion constructs is adding extra
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pointers determined by the semantics of data and not by its structure. Separa-
tion Logic allows elegant specifications of disjoint data structures [18]. Various
extensions of separation logic enable proofs about some types of sharing [2; 8].

Inferring Shared Representations. Some static analysis algorithms infer some
sharing between data structures in low level code [13; 12]. In contrast we allow the
programmer to specify sharing in a concise way and guarantee consistency only
assuming that functional dependencies are maintained. Functional dependencies
or their equivalent are an essential invariant for any shared data structure.

Verification Approaches. The Hob system uses abstract sets of objects to specify
and verify properties that characterize how multiple data structures share ob-
jects [14]. Monotonic typestates enable aliased objects to monotonically change
their typestates in the presence of sharing without violating type safety [9]. Re-
searchers have developed systems to mechanically verify data structures (e.g.,
hash tables) that implement binary relational interfaces [22; 5]. The relation im-
plementation presented here is more general, allowing relations of arbitrary arity
and substantially more sophisticated data structures than previous research.

7 Conclusion

We have presented a system for specifying and operating on data structures at
a high level as relations while implementing those relations as the composition
of low-level pointer data structures. Most unusually we can express, and prove
correct, the use of complex sharing in the low-level representation, allowing us to
express many practical examples beyond the capabilities of previous techniques.
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Abstract. Descriptional composition is a method to fuse two term transforma-
tion algorithms described by attribute couplings (AC, attribute grammars over
terms) into one. In this article, we provide a general categorical framework for
the descriptional composition based on traced symmetric monoidal categories and
the Int construction by Joyal et al. We demonstrate that this framework can han-
dle the descriptional composition of SSUR-ACs, nondeterministic SSUR-ACs,
quasi-SSUR ACs and quasi-SSUR stack ACs.

1 Introduction

Descriptional composition [6,7,8] is a method to fuse two term transformation algo-
rithms described by attribute couplings (ACs; attribute grammars over terms) into one.
The AC yielded by the descriptional composition computes the composition of two ACs
without constructing the intermediate data structure passed between two ACs; hence it
saves time and space in many cases. The descriptional composition was first introduced
as an optimisation method for compilers described by ACs [7]. Around the same time
Bartha introduced a similar composition method for linear attributed tree transforma-
tions [1]. Later, it was realised that ACs can be used to represent functional programs
with accumulating parameters [10], and the descriptional composition inspired various
fusion transformations of such functional programs [19,22].

The descriptional composition was first given for the ACs consisting only of term
constructors [7]. Later, extensions of the ACs have been studied in [18,20,3]. In [3],
Boyland considered an extension of ACs with conditional expressions. In [18], Nakano
introduces stacks to ACs so that complex parsing functions can be expressed. In each
work, the descriptional composition was also considered to these extended ACs. In
general, the descriptional composition is sensitive on the language describing ACs, and
formulating the descriptional composition verifying its correctness tend to be involved
when expressive power of the language increases.

The question we address here is to find a mathematical framework that can uni-
formly treat these extensions of ACs and the descriptional composition of them. In this
paper, we propose such a general categorical framework based on the theory of traced
symmetric monoidal categories (TSMCs) and the Int construction by Joyal et al. The
key observation in the categorical treatment of ACs and the descriptional composition
is that every attribute grammar determines a traced symmetric strict monoidal functor
F : L(Σ)→ Int(C) whereL(Σ) is a free TSMC over a signature Σ, and especially every
AC satisfying syntactic single use condition (SSUR), which is the essential condition for

K. Ueda (Ed.): APLAS 2010, LNCS 6461, pp. 222–238, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the descriptional composition to work, determines a traced symmetric monoidal functor
G : L(Σ)→ Int(L(Δ)). With this functorial presentation, the descriptional composition
becomes the composition of functors, and its associativity can be easily verified. This
story scales up to the TSMCs with extra structures, provided that the Int construction
is also extended to such TSMCs; examples include nondeterministic ACs, quasi-SSUR
ACs (an affine version of SSUR AC), and ACs with stacks [18].

In this paper we do not exclude circular terms and recursive computation as mean-
ingless things. Hence every AG assigns some meaning to a given term.

Conventions and Notations. Signatures are all many-typed and first-order. We reserve
Δ, Σ, Ξ for ranging over signatures. By ρ ∈ Σ and o ∈ Σρ1···ρn→ρ we mean that ρ is a type
of Σ and o is an operator of type ρ1 · · · ρn → ρ, respectively. We declare the signature
for binary trees, cons-lists and natural numbers by

Σtree = ({∗}, L∗,N∗∗→∗), Σlist = ({∗}, []∗, a :: (−)∗→∗), Σnat = ({∗},Z∗,S∗→∗).
For a type σ ∈ Σ and sequence of Σ-types ρ1 · · ·ρn, by TσΣ (ρ1 · · ·ρn) we mean the set
of open Σ-terms that may contain some variables xi of type ρi (1 ≤ i ≤ n). We then
extend this notation by Tσ1 ···σm

Σ (ρ1 · · · ρn) = Tσ1
Σ (ρ1 · · ·ρn) × · · · × Tσm

Σ (ρ1 · · · ρn). By Σ+

we mean that Σ contains a special type #; such signature is called rooted. We assume
that the readers are familiar with the concept of symmetric monoidal categories [17].
We also employ the 2-category theory and the theory of pseudo-monads and pseudo-
distributive laws; see e.g. [21].

2 Classical Attribute Couplings and Descriptional Composition

A classical attribute grammar (AG) for a signature Δ is a tripleA = (I, S , a) where for
each type ρ ∈ Δ, Iρ and S ρ are resp. sets of inherited and synthesised attribute values,
and for each operator o ∈ Δρ1,··· ,ρn→ρ, ao is a function called the attribute calculation
rule1:

ao : S ρ1 × · · · × S ρn × Iρ→ S ρ × Iρ1 × · · · × Iρn. (1)

This function captures the input-output relation of a computation unit that processes
bidirectional information flow (Figure 1, left). Given a Δ-term M, we connect the as-
signed computation units according to the shape of M (Figure 1, right). The function
corresponding to the entire circuit is the meaningA[[M]] assigned to M by the AG A.
Depending on the configuration of the attribute calculation rules, such function may
not exist in general, but if any combination of attribute calculation rules does not yield
cyclic information dependency (such AGs are called non-circular), the functionA[[M]]
uniquely exists for any M. See [14,15] for the detail.

An attribute coupling (AC) from Δ to Σ is a special AG such that the set assigned
to Iρ (resp. S ρ) is a set Tσ1 ,··· ,σn

Σ of tuples of Σ-terms for some σ1, · · · , σn ∈ Σ, and
each attribute calculation rule comprises only of Σ-operators rather than arbitrary func-
tions. Briefly speaking, ACs are AGs constructing Σ-terms. We can extract the essential
information from such AGs and redefine ACs from Δ to Σ as the tuple A = (I, S , a),

1 This form of attribute calculation rule is called Bochmann normal form.
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Fig. 1. Attribute Grammars

where for each type ρ ∈ Δ, Iρ and S ρ are sequences of Σ-types, and for each operator
o ∈ Δρ1,··· ,ρn→ρ, ao is a tuple of (open) Σ-terms:

ao ∈ T S ρ,Iρ1,··· ,Iρn

Σ (S ρ1, · · · , S ρn, Iρ).

We write AC(Δ, Σ) for the set of ACs from Δ to Σ. We assume that ACs (I, S , a) between
the signatures containing the special type # satisfy I# = ε and S # = #. With this con-
vention we can view every non-circular AC A from Δ+ to Σ+ as a term transformation
function TA : T #

Δ+ → T #
Σ+ , defined by TA(M) = A[[M]].

Let A ∈ AC(Δ+, Σ+) and B ∈ AC(Σ+, Ξ+) be non-circular ACs. We seek for an AC
B c©A such that T (B c©A) = TB◦TA. In general such AC may not exist, but whenA
satisfies a condition called syntactic single-use restriction (SSUR), we can build B c©A
by the descriptional composition, which we illustrate below.

Suppose that the attribute calculation rules of A and B look like the left of Figure
2. There, A assigns to a Δ+-operator f a computation unit that constructs Σ+-terms,
which is drawn as a circuit. Similarly, B assigns to a Σ+-operator a a computation unit
b, which is just drawn as a round box. We now replace each wire in the right hand side
of the attribute calculation rule ofA with bidirectional wire, and replace each Σ+-term
constructor with the computation unit assigned by B. The result of this replacement is
drawn on the right of Figure 2, which is a new attribute coupling from Δ+ to Ξ+. This is
the descriptional composition B c©A.

The hidden point in the above process is that the computation unit (circuit) assigned
byA should not contain any branching wires nor terminals. This is because we do not
know how to make branches and terminals bidirectional (Figure 3). This suggests that
each attribute calculation rule assigned byA should use each variable exactly once, and
an AC satisfying this linearity condition is called syntactic single use restriction (SSUR)
AC. We will see its precise definition in Section 2.2, and reformulate it as an AG in a
linear recursive language, which we introduce below.

Fig. 2. The descriptional composition
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? ?

Fig. 3. How to Make Branches and Terminals Bidirectional?

2.1 The Linear Recursive LanguageL(Σ)

We introduce a simply-typed first-order linear language with recursive declarations
called L(Σ). It has only one form of raw-expressions:

λx1, · · · , xn . let y1 = M1, · · · , yl = Ml in z1, · · · , zm,

and they are given a type σ1, · · · , σn → τ1, · · · , τm by the type system in Figure 4,
where U and D are typing contexts defined by

U = Γ1 ∪ · · · ∪ Γn ∪ {z1 : τ1, · · · , zm : τm}
D = {x1 : σ1, · · · , xn : σn, y1 : ρ1, · · · , yl : ρl},

such that xi, y j, zk and variables in Γ1, · · · , Γn are different from each other. The leading
λ of expressions is a formal binder for x1, · · · , xn, rather than the lambda abstraction in
the lambda calculus. Expressions are treated modulo α-equivalence.

Expressions of L(Σ) are identified by the rules in Figure 4, where the sequence of
variable declarations after let is abbreviated as D. The first axiom allows us to permute
D without affecting the meaning of expressions. In the second axiom, D[w/v] denotes
the sequence of variable declarations obtained by replacing v in D with w. This axiom
allows us to forward v to w when v = w is contained in D.

Here are some examples of L(Σtree)-expressions:

�M λx . let y = N(l, x), l = L in y : ∗ → ∗
�M λx, y, z . let w = N(x,w), l = L, v = N(l, z) in y, v : ∗∗∗ → ∗∗. (2)

Note that in (2) the variable w can not be used for output due to the linearity constraint.
This means that when the underlying signature has a binary operator then there is a way
to discard inputs.

ρ ∈ Σ
x : ρ �E x : ρ

o ∈ Σρ1 ···ρn→ρ
x1 : ρ1, · · · , xn : ρn �E o(x1, · · · , xn) : ρ

Γ1 �E M1 : ρ1 · · · Γl �E Ml : ρl U = D
�M λx . let y1 = M1, · · · , yl = Ml in z : σ1, · · · , σn → τ1, · · · , τm

(λx . let D in z) = (λx . let π(D) in z)

(λx . let v = w,D in z) = (λx . let D[w/v] in z[w/v]) (v � w)

Fig. 4. Type System and Axiom for L(Σ)
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2.2 SSUR-ACs as Attribute Grammars in L(Σ)

An AC (I, S , a) ∈ AC(Δ, Σ) satisfies the syntactic single use restriction (SSUR) [6] if
each attribute calculation rule satisfies the following linearity condition. We let l be
the length of the concatenation S ρ, Iρ1, · · · , Iρn, and write τi (1 ≤ i ≤ l) for the i-th
component of this sequence. We prepare sequences Γi (1 ≤ i ≤ l) of Σ-types such
that S ρ1, · · · , S ρn, Iρ is a permutation of the concatenation Γ1, · · · , Γl. We then ask the
attribute calculation rule to be in the following set:

ao ∈ T τ1
Σ (Γ1) × · · · × T τl

Σ (Γl), (3)

and, moreover, in the i-th component of ao, each variable occurs exactly once.
We observe that there is a one-to-one correspondence between such a tuple and a

L(Σ)-expression of type S ρ1, · · · , S ρn, Iρ → S ρ, Iρ1, · · · , Iρn. We exploit this corre-
spondence to redefine the concept of SSUR-AC.

Definition 1. An SSUR-AC from Δ to Σ is a triple (I, S , a) where for each type ρ ∈ Δ, Iρ
and S ρ are sequences of Σ-types, and for each o ∈ Δρ1,··· ,ρn→ρ, ao is an L(Σ)-expression
of type ao : S ρ1, · · · , S ρn, Iρ → S ρ, Iρ1, · · · , Iρn. We write SSUR-AC(Δ, Σ) for the set
of SSUR-ACs from Δ to Σ. When Δ, Σ contains the special type #, we assume that every
SSUR-AC (I, S , a) from Δ to Σ satisfies I# = ε and S # = #.

We note that this correspondence is not surjective, as L(Σ) permits recursively defined
variables that can not be expressed by SSUR-ACs.

3 Categorical Aspect of Attribute Couplings

3.1 L(Σ) as a Traced Symmetric Monoidal Category

We next view L(Σ) as a category. We regard a sequence ρ = ρ1 · · · ρn of types in Σ as
an object, and an equivalence class of expressions of type ρ → σ as a morphism from
ρ to σ. The composition is defined by

(λx . let D in y) ◦ (λz . let D′ in w) = λz . let D[w/x],D′ in y[w/x];

here we assume that every bound variable in the above expression is distinct from each
other. The category L(Σ) has an evident symmetric strict monoidal structure. The unit
object is the empty sequence and the tensor product of two objects is the concatenation
of them. The tensor product of two morphisms is defined by merging two expressions:

(λx . let D in y) ⊗ (λz . let D′ in w) = λx, z . let D,D′ in y,w.

The symmetry morphism is given by λx, y . let ε in y, x.
In addition to this, the following trace operator constructs recursive declarations in

expressions. Let x, y, z,w be sequences of different variables, and ρ,σ, τ be sequences
of types such that |x| = |ρ|, |z| = |σ|, |y| = |w| = |τ|. We define the trace operator trτρ,σ as
follows:

trτρ,σ(λx, y . let D in z,w) = λx . let y = w,D in z.
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A pair of a symmetric monoidal category and a trace operator is called traced sym-
metric monoidal category (see Appendix B). In this article we only consider the traced
symmetric strict monoidal categories, and call them TSMC. 2 The above discussion is
summarised as follows:

Proposition 1. The above data make L(Σ) a TSMC.

We call a symmetric strong monoidal functor between TSMCs traced if it preserves the
trace operator in an evident way (see Appendix B). We write TSMC for the 2-category
of TSMCs, traced symmetric strong monoidal functors and monoidal natural isomor-
phisms. Its 2-subcategory consisting of traced symmetric strict monoidal functors will
be denoted by TSMCs.

From a traced strong monoidal functor (F, φF
ε , φ

F
ρ,σ) ∈ TSMC(L(Σ),C), we can con-

struct a traced strict monoidal functor Str(F) ∈ TSMCs(L(Σ),C) which is naturally
isomorphic to F. The strict functor is constructed as follows:

Str(F)(ρ1 · · · ρn) = Fρ1 ⊗ · · · ⊗ Fρn Str(F)( f : ρ→ σ) = (φF
σ)−1 ◦ F f ◦ φF

ρ .

The assignment F �→ Str(F), which we will call strictification operator, extends to
an equivalence of categories Str : TSMC(L(Σ),C) → TSMCs(L(Σ),C). It satis-
fies the following property: for any F ∈ TSMCs(L(Σ),D),G ∈ TSMC(D,E),H ∈
TSMC(E, F), we have Str(F) = F and Str(H ◦G ◦ F) = Str(H ◦ Str(G ◦ F)).

3.2 Monoidal Attribute Grammar

We generalise the underlying semantic domain of AGs to arbitrary C ∈ TSMC. This
generalisation is done by replacing sets with objects and attribute calculation rules with
C-morphisms.

Definition 2 ([12]). Let C ∈ TSMC. A monoidal attribute grammar (MAG) for Δ in C
is a triple (I, S , a) where for each type ρ ∈ Σ, Iρ and S ρ are C-objects (of domains of
inherited and synthesised attributes), and for each operator o ∈ Δρ1···ρn→ρ, ao is a C-
morphism of type ao : S ρ1⊗ · · ·⊗S ρn⊗ Iρ→ S ρ⊗ Iρ1⊗ · · ·⊗ Iρn.We write MAG(Δ,C)
for the collection of MAGs for Δ in C.

Some instances of MAGs are studied in [12]; in the category ωCPPO of pointed CPOs
and ω-continuous functions, monoidal attribute grammars are equivalent to Chirica and
Martin’s K-systems [4]. The category Rel of sets and relations has traced biproducts
[11], and MAGs in this traced symmetric monoidal category are local dependency
graphs, which are the standard tool to represent dependencies between the attributes
in attribute calculation rules. MAGs over the compact closed structure on Rel are rela-
tional attribute grammars [5]. In addition to this, by comparing Definition 1 and 2, we
conclude that SSUR-ACs are exactly MAGs in L(Σ).

Proposition 2. SSUR-AC(Δ, Σ) =MAG(Δ,L(Σ)).

2 Every traced symmetric monoidal category is equivalent to a traced symmetric strict monoidal
category (coherence theorem).
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3.3 MAGs as Algebras in Int(C)

Below we give two concepts that are equivalent to MAG: one is algebras in the cat-
egories obtained by Joyal, Street and Verity’s Int construction [11], and the other is
traced symmetric strict monoidal functors of type L(Σ)→ Int(C).

Let C ∈ TSMC. The category Int(C) is defined by the following data: an object is a
pair (A+, A−) of C-objects, and homsets are defined by

Int(C)((A+, A−), (B+, B−)) = C(A+ ⊗ B−, B+ ⊗ A−).

In category Int(C) we can naturally model computation over bidirectional information
flow. An object (A+, A−) denotes the type of upward and downward information; in the
context of attribute grammar, they correspond to the type of synthesised and inherited
attributes, respectively. A morphism f : (A+, A−) → (B+, B−) then represents a compu-
tation that processes bidirectional information flow.

We give a symmetric strict monoidal structure to Int(C) by

IInt(C) = (IC, IC), (A+, A−) ⊗Int(C) (B+, B−) = (A+ ⊗C B+, A− ⊗C B−).

The category Int(C) has a compact closed structure [11], which yields the canonical
trace operator with respect to the above symmetric monoidal structure. The mapping
C �→ Int(C) extends to a 2-endofunctor over TSMC, and moreover, to a pseudo-monad
(Int, (N, n), (M,m), τ, λ, ρ) over TSMC; see Appendix B for the detail.

We extend the concept of Σ-algebra from the set-theoretic one to the categorical one.
A Σ-algebra in a monoidal category C is a pair (A, a) where A is a family of C-objects
indexed by Σ-types and a is a family of C-morphisms indexed by Σ-operators, such
that the type of ao is Aρ1 ⊗ · · · ⊗ Aρn → Aρ for each operator o ∈ Σρ1···ρn→ρ. We write
AlgΣ (C) for the collection of Σ-algebras in C. The concept of Σ-algebras has another
presentation: there is a natural bijection between Σ-algebras in C and traced symmetric
strict monoidal functors from L(Σ) to C:

AlgΣ(C) � TSMCs(L(Σ),C) (4)

Let (I, S , a) be a MAG for Δ in C ∈ TSMC. We define Aρ to be the pair (S ρ, Iρ) of
C-objects (note that it is an object in Int(C)). Then for each operator o ∈ Σρ1···ρn→ρ, the
C-morphism ao can be seen as an Int(C)-morphism:

ao ∈ C(S ρ1 ⊗ · · · ⊗ S ρn ⊗ Iρ, S ρ ⊗ Iρ1 ⊗ · · · ⊗ Iρn) = Int(C)(Aρ1 ⊗ · · · ⊗ Aρn, Aρ).

This means that every MAG determines a Δ-algebra (A, a) in Int(C), and the other way
around. We summarise these concepts by the following bijective correspondences:

MAG(Δ,C) � AlgΔ(Int(C)) � TSMCs(L(Δ), Int(C)) (5)

SSUR-AC(Δ, Σ) � TSMCs(L(Δ), Int(L(Σ))). (6)

These three equivalent forms have different advantages. The first form is the actual
data we give when defining AGs. The second form is used to explain the initial alge-
bra semantics of AGs [12]. The third form is suitable for discussing the descriptional
composition. We mainly adopt the functorial representation of AGs and ACs below.



Categorical Descriptional Composition 229

4 Descriptional Composition

We begin with a categorical formulation of the descriptional composition of SSUR-
ACs. Let A ∈ SSUR-AC(Δ, Σ) and B ∈ MAG(Σ,C), regarded as functors. We define
their (categorical) descriptional composition B c©A by

B c©A = Str(B# ◦ A),

where B# = MC ◦ Int(B) is the Kleisli lifting of B by the pseudo-monad Int. We
insert the strictification operator Str (Section 3.1) as B# is not strict monoidal.3 The
SSUR-ACA constructs bidirectional networks of Σ-operators, while B can only accept
single-directional networks of them. The Kleisli lifting extends the domain of B to the
bidirectional network of Σ-operators (see Figure of 5) so that this mismatch is resolved.

Fig. 5. Kleisli Lifting of B

Theorem 1. 1. SSUR-ACs are closed under the descriptional composition.
2. The descriptional composition is associative up to a natural isomorphisms; for

any A ∈ SSUR-AC(Δ, Σ),B ∈ SSUR-AC(Σ, Ξ) and C ∈ MAG(Ξ,C), there is a
natural isomorphism between (C c© B) c©A and C c© (B c©A).

We do not prove this theorem as it is subsumed by Theorem 2. We note that the asso-
ciativity of the descriptional composition holds only up to a natural isomorphism. This
isomorphism has no computational meaning; it just permutes the order of arguments.
This permutation is invisible in the syntactic study of the descriptional composition
because arguments are passed by records rather than tuples.

We extend this formulation of the descriptional composition to a more general set-
ting where TSMCs are equipped with some extra structures, such as nondeterminism,
undefined values, stacks, etc. To capture such extensions, we introduce the concept of
extension of TSMC.

Definition 3. We call the following situation an extension of TSMC.

1. There is a 2-category TSMC′ and its 2-subcategory TSMC′s.
2. There is a 2-functor U : TSMC′ → TSMC that can be restricted to a 2-functor

Us : TSMC′s → TSMCs. Furthermore, Us, as an ordinary functor, has a left
adjoint F. We write (−) : |TSMC(FC,D)| → |TSMC(C,UsD)| for the bijection
between homsets, and (−) for its inverse.

3. There is a pseudo-monad (Int′, (N′, n′), (M′,m′), τ′, λ′, ρ′) over TSMC′ such that
Int′ is a 2-functor, and is a strict lifting of the pseudo-monad Int along U, that is,
U ◦ Int′ = Int ◦ U, U(N′F) = NUF , Uτ′

C
= τUC , etc. We note that the Kleisli lifting

(−)� of Int′ also commutes with U, that is, U((A)�) = (UA)#.

3 This is because the multiplication MC : Int2(C)→ Int(C) is not strict monoidal.
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4. There is an equivalence Str′ : TSMC′(FL(Σ),C) → TSMC′s(FL(Σ),C) such
that Str′(F) = Str(F), and for any functor F ∈ TSMC′s and G,H ∈ TSMC′ of
appropriate type, Str′(F) = F and Str′(H ◦G ◦ F) = Str′(H ◦ Str′(G ◦ F)).

We express such a situation by a tuple E = (F,U, Int′).

Definition 4. Let E = (F,U, Int′) be an extension of TSMC. We define the collection of
E-MAG for Δ in C ∈ TSMC′ and E-AC from Δ to Σ by

E-MAG(Δ,C) = TSMCs(L(Δ), Int(UC)) �MAG(Δ,UC)

E-AC(Δ, Σ) = TSMCs(L(Δ), Int(UFL(Σ))) �MAG(Δ,UFL(Σ)).

LetA ∈ E-AC(Δ, Σ) and B ∈ E-MAG(Σ,C). We define their descriptional composition
B c©A by

B c©A = Str(U((B)�) ◦ A).

We write HC : C → FUsC for the unit of the adjunction F  Us. We assume that any
E-ACA between rooted signatures satisfiesA(#) = (I,H(#)). We define the translation
TA : UFL(Δ+)(I,H#)→ UFL(Σ+)(I,H#) induced byA ∈ E-AC(Δ+, Σ+) as follows:

TA( f ) = unique g such that UA( f ) = NUFL(Σ) (g).

This is well-defined as N is full and faithful [11]. When we do not consider the extension
(F = U = Id), the translation TA is just a mapping of f ∈ L(Δ+)(ε, #) to a morphism
in L(Σ+)(ε, #). Under the identification of terms and morphisms in a free TSMC, TA
represents the term translation induced by the attribute couplingA.

Theorem 2. Let E be an extension of TSMC.

1. E-ACs are closed under descriptional composition.
2. For any A ∈ E-AC(Δ, Σ),B ∈ E-AC(Σ, Ξ) and C ∈ E-MAG(Ξ,C), there is a

natural isomorphism between (C c© B) c©A and C c© (B c©A).
3. For any A ∈ E-AC(Δ+, Σ+),B ∈ E-AC(Σ+, Ξ+) and f ∈ L(Δ+)(ε, #), we have

T (B c©A) ◦ HL(Δ+)( f ) = TB ◦ TA ◦ HL(Δ+)( f ).

The proof is in Appendix A.

Corollary 1. For any composable SSUR-ACsA,B, we have T (B c©A) = TB ◦ TA.

In the subsequent sections, we show that some useful extensions of (SSUR)-ACs can
be captured as attribute couplings in extensions of TSMC. From the above general the-
orem, the associativity of the descriptional composition and the closure property of
extended ACs under the descriptional composition.

4.1 Descriptional Composition for Nondeterministic ACs

We look at an example of an extension of TSMC arising from a symmetric monoidal
monad (T, η, μ, φI, φA,B) over Set. 4 Given such a monad, for a category C, we define a

4 This is equivalent to a commutative monad [16].
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new category T∗(C) by the following data: |T∗(C)| = |C| and T∗(C)(A, B) = T (C(A, B)).
The identity and composition of T∗(C) defined as follows:

1
φI �� T1

T (idCA) �� T∗(C)(A, A)

T∗(C)(B,C) × T∗(C)(A, B)
φC(B,C),C(A,B)�� T (C(B,C) × C(A, B))

T (compC) �� T∗(C)(A,C).

This construction is well-known as change-of-base in enriched category theory. The
mappingC �→ T∗C extends to a 2-monad (T∗, μ∗, η∗) over TSMC and TSMCs. We write
TSMCT∗ for the 2-category of strict T∗-algebras (which are exactly T -algebra enriched
TSMCs), strict T∗-algebra morphisms and T∗-algebra transformations; see [2] for the
detail. We also write TSMCT∗

s for its 2-subcategory such that T∗-algebra morphisms
belong to TSMCs. The Eilenberg-Moore 2-adjunction F  U : TSMCT∗ → TSMC can
be restricted to Fs  Us : TSMCT∗

s → TSMCs. One can easily extend the strictification
operator Str to the one satisfying the condition 4 of Definition 3.

To lift the pseudo-monad Int to the 2-category TSMCT∗ , we (necessarily) give a
pseudo-distributive law [21] of T∗ over Int. In fact, it consists only of identities, as the
components of Int and T∗ commutes with each other, such as Int(T∗(C)) = T∗(Int(C)),
T∗(NC) = NT∗C, Int((μ∗)C) = (μ∗)Int(C), etc. Thus the above data determine an extension
of TSMC.

Example 1. We writeP : Set→ Set for the covariant powerset monad. LetC ∈ TSMC.
A monoidal attribute grammar (I, S , a) for Σ in P∗(C) assigns C-objects Iρ, S ρ to each
type ρ ∈ Σ, and a P∗(C)-morphism

ao ∈ P∗(C)(S ρ1 ⊗ · · · ⊗ S ρn ⊗ Iρ, S ρ ⊗ Iρ1 ⊗ · · · ⊗ Iρn)

to each operator o ∈ Σρ1···ρn→ρ; this means that a P∗-MAG assigns an attribute calcu-
lation rule nondeterministically to each operator in Σ. For instance, we consider the
following P∗-AC from Σnat to Σlist:

I(∗) = ε, S (∗) = ∗,
aZ = {[]}, aS = {(λx . let y = 0 :: x in y), (λx . let y = 1 :: x in y)}.

This AC maps each natural number S(n)(Z) to the set of all binary digit with length n,
represented as morphisms of type ε → ∗ in P∗(L(Σlist)).

4.2 Descriptional Composition for Quasi-SSUR ACs

In [20], Nishimura and Nakano introduced a relaxation of SSUR called quasi-SSUR. It
relaxes the linear use (exactly once) of variables to affine use (at most once), and intro-
duces a constant denoting the undefined value to the language for attribute calculation
rules. We formulate their quasi-SSUR ACs and the descriptional composition of them
in our categorical framework.

First, we introduce the languageA(Σ) that modifies the typing rules of L(Σ) so that
variables can be discarded, and that has an extra constant⊥ρ for each type ρ ∈ Σ. These
features directly correspond to Nishimura and Nakano’s modification of SSUR. The
detail ofA(Σ) is the following:
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1. We replace the typing rule of L(Σ) in Figure 4 as follows:

Γ1 �E M1 : ρ1 · · · Γl �E Ml : ρl U ⊆ D
�M λx . let y1 = M1, · · · , yl = Ml in z : σ1, · · · , σn → τ1, · · · , τm

What is new to L(Σ) is that some defined variables may be unused (U ⊆ D). For
instance, the following is now a valid derivation inA(Σ):

�M λx1 · · · xn . let ε in ε : ρ1 · · · ρn → ε
We write this expression �ρ1···ρn .

2. We add to L(Σ) a constant ⊥ρ : ρ for each type ρ ∈ Σ, corresponding to undef in
[20]. We then extend this to any sequence of Σ-types by

⊥ρ1···ρn = (λε . let x1 = ⊥ρ1 , · · · , xn = ⊥ρn in x1, · · · , xn).

Definition 5. A quasi-SSUR AC from Δ to Σ is a triple (I, S , a) where for each type
ρ ∈ Δ, Iρ and S ρ are sequences of Σ-types, and for each o ∈ Δρ1,··· ,ρn→ρ, ao is an
A(Σ)-expression of type ao : S ρ1, · · · , S ρn, Iρ→ S ρ, Iρ1, · · · , Iρn.

We next introduce the concept of bipointed TSMC. It is a triple (C,�,⊥) where C ∈
TSMC and �,⊥ are C-object indexed families of morphisms�A : A→ I and ⊥A : I→
A such that

�I = idI, �A⊗B = �A ⊗ �B, ⊥I = idI, ⊥A⊗B = �A ⊗ �B. (7)

Discarding variables is modelled by the morphism �. We say that a traced symmetric
strong monoidal functor (F, φI, φA,B) preserves bipoints if it satisfies F(⊥A) ◦ φI = ⊥FA

and φI ◦ �FA = F(�A). We write TSMC• for the 2-category of bipointed TSMCs,
traced symmetric strong monoidal functors preserving bipoints and monoidal natural
isomorphisms. We write TSMC•s for its 2-subcategory consisting of traced symmetric
strict monoidal functors. There is an evident forgetful functor U• : TSMC• → TSMC
that can be restricted to U•s : TSMC•s → TSMCs, and it has an ordinary left adjoint
F• : TSMCs → TSMC•s that freely adds morphisms ⊥A : I → A and �A : A → I,
subject to the equations in (7).

The Int construction can be lifted over TSMC•. For a bipointed TSMC (C,⊥,�),
we define Int(C)-morphisms⊥Int(C)

A and �Int(C)
A by

⊥Int(C)
A = ⊥A+ ⊗ �A− , �Int(C)

A = �A+ ⊗ ⊥A− .

Then we define Int•(C,⊥,�) to be the tuple (Int(C),⊥Int(C),�Int(C)). One can easily
check that this is a bipointed TSMC. The mapping (C,⊥,�) �→ Int•(C,⊥,�) extends
to a 2-functor over TSMC•, and the pseudo-monad structure of Int also makes Int• a
pseudo-monad. Furthermore, it is a strict lifting of Int along U.

Proposition 3. The triple E• = (F•,U•, Int•) forms an extension of TSMCs.

Proposition 4. The tuple (A(Σ),⊥,�) is a bipointed TSMC, and it is equivalent to
F(L(Σ)). Therefore, quasi-SSUR ACs are E•-ACs.
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4.3 Descriptional Composition for Stack AGs

In [18], Nakano introduced an extension of AC called stack AC, where we can use
stacks in attribute calculation rules. He then showed that the stack ACs satisfying cer-
tain linearity condition are closed under the descriptional composition. Inspired by his
extension, below we express his theory of stack ACs in our categorical framework by
setting-up an appropriate extension of TSMC. Our approach differs from Nakano’s
work as follows: 1) the concept of stack ACs given below allow stacks to be stack
elements, and 2) we represent the empty stack by undefined stack ⊥, and combine stack
deconstructors (head, tail) into single operator dec.

We introduce a languageS(Σ) and capture the stack ACs satisfying a linearity condi-
tion as AGs inS(Σ). In this language we can use a stack of type ρ, whose type is denoted
by ρ∞. Stacks are then manipulated by two operators: constructor cons : ρ, ρ∞ → ρ∞
and deconstructor dec : ρ∞ → ρ, ρ∞. The operator cons pushes a given value on a
given stack, while dec separates the top value of a given stack from the rest of it.

We move on to the formal definition of S(Σ). First, we define S(Σ)0 to be the set of
pairs of the form (n, ρ) where n is a natural number and ρ is a Σ-type. We identify a
type ρ ∈ Σ and the pair (0, ρ) ∈ S(Σ)0. We denote a pair (n, ρ) by ρ∞...∞, where n is the
length of ∞’s on the shoulder. Next, we define |S(Σ)| to be the set of finite sequences
of S(Σ)0. Below we use metavariables B and C to denote elements in S(Σ)0 and |S(Σ)|,
respectively. The set of raw terms of S(Σ) is defined by

M ::= λx. let D in x

D ::= x = x | x = o(x) | x = ⊥B | x = consB(x, x) | x, x = decB(x).

The typing rules of S(Σ) extends the one forA(Σ) with cons and dec:

x : B �E x : B �E ⊥B : B
o ∈ Σρ1···ρn→ρ

x1 : ρ1, · · · , xn : ρn �E o(x1, · · · , xn) : ρ

x : B, y : B∞ �E consB(x, y) : B∞ x : B∞ �E decB(x) : B, B∞

Γ1 �E M1 : C1 · · · Γl �E Ml : Cl U ⊆ D
�M λx . let y1 = M1, · · · , yl = Ml in z : C′ → C′′

where U = Γ1 ∪ · · · ∪ Γl ∪ {z : C′′} and D = {x : C′, y1 : C1, · · · , yl : Cl}, and each
variable in Γ1, · · · , Γn, x, y, z is different from the other. The set of axioms for S(Σ)-
expressions extends the one forA(Σ) with the following rules (leading λ is omitted):

(let x, y = decB(z), z = consB(x′, y′),D in v) = (let x = x′, y = y′,D in v)

(let x, y = decB(z), z = ⊥B∞ ,D in v) = (let x = ⊥B, y = ⊥B∞ ,D in v)

(let z = consB(x, y),D in v) = (let D in v (z � FV(D) ∪ v ∪ {y})).

Definition 6. A quasi-SSUR stack AC from Δ to Σ is a triple (I, S , a) where for each type
ρ ∈ Δ, Iρ, S ρ ∈ |S(Σ)|, and for each operator o ∈ Δρ1,··· ,ρn→ρ, ao is an S(Σ)-expression
of type ao : S ρ1, · · · , S ρn, Iρ→ S ρ, Iρ1, · · · , Iρn.
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Example 2. This example is from [18]. We consider a stack AC that converts reverse-
polish notations to ordinary expressions. Let Σp and Σe be signatures defined as follows:

Σp = ({∗}, {p∗→∗n , a∗→∗,m∗→∗, r→∗}) (n ∈ N),

Σe = ({∗}, {num→∗n , add∗,∗→∗,mul∗,∗→∗}) (n ∈ N).

The signature Σp is for the reverse-polish notation of expressions. For instance, a Σp-
expression p3(p2(p5(a(m(r))))) denotes (5+2) ∗3. The stack AC (I, S , a) that constructs
Σe-terms from reverse-polish expressions is the following (type annotations are omitted):

I∗ = (∗)∞,O∗ = ∗
apn = λs1, i . let i1 = cons(numn, i) in s1, i1
aa = λs1, i . let h1, t1 = dec(i), h2, t2 = dec(t1), i1 = cons(add(h1, h2), t2) in s1, i1
am = λs1, i . let h1, t1 = dec(i), h2, t2 = dec(t1), i1 = cons(mul(h1, h2), i2) in s1, i1
ar = λi . let h, t = dec(i) in h.

Definition 7. A TSMC with stack is a tuple (C,⊥,�, (−)∞, cons, dec) where

– (C,⊥,�) is a bipointed TSMC,
– (−)∞ : |C| → |C| is a mapping such that I∞ = I and (A ⊗ B)∞ = A∞ ⊗ B∞,
– consA : A ⊗ A∞ → A∞ and decA : A∞ → A ⊗ A∞ are C-object indexed families of

morphisms such that

decA ◦ consA = idA⊗A∞ , decI = consI = idI,

decA ◦ ⊥A = ⊥A ⊗ ⊥A∞ , �A ◦ consA = �A ⊗ �A∞ ,

consA⊗B = (consA ⊗ consB) ◦ (A ⊗ σB⊗A∞ ⊗ B∞),

decA⊗B = (A ⊗ σA∞⊗B ⊗ B∞) ◦ (decA ⊗ decB).

A stack-preserving functor between TSMCs with stack is a traced symmetric strong
monoidal functor (F, φI, φA,B) such that it preserves bipoints, F(A∞) = (FA)∞ and

F(consA) ◦ φA,A∞ = consFA φA,A∞ ◦ decFA = F(decA).

We define TSMCS to be the 2-category of TSMCs with stack, stack-preserving functors
and monoidal natural isomorphisms. Its 2-subcategory consisting of traced symmetric
strict monoidal functors is denoted by TSMCS

s . We write US : TSMCS → TSMC for
the canonical forgetful functor.

Next, US can be restricted to a 2-functor US
s : TSMCS

s → TSMCs, and when viewed
as an ordinary functor, it has a left adjoint FS : TSMCs → TSMCS

s . This left adjoint
constructs a syntactic TSMC with stacks from a given category. We omit its detail, but
an object of the category FS

C is an element of the countably infinite coproduct of the
monoid (|C|, I,⊗), that is, a sequence (k1,C1) · · · (kn,Cn) such that ki ∈ N, Ci ∈ |C|
(1 ≤ i ≤ n) and ki � k j if i � j. The unit HC and counit EC of the adjunction is defined
by (on objects) HC(C) = (0,C) and HC(k1,C1) · · · (kn,Cn) =

⊗n
i=1 C∞(ki)

i . The category
FSL(C) admits the strictification operator StrS satisfying the condition 4 of Definition
3; on objects it is defined by StrS (F)((k1, ρ1) · · · (kn, ρn)) =

⊗

1≤i≤n,1≤ j≤|ρi|(Fρi j)∞(ki).
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Let (C,⊥,�, (−)∞, cons, dec) ∈ TSMCS , which we just write C. We define the tuple
IntS (C) = (Int(C),⊥Int(C),�Int(C), (−)∞Int(C)

, consInt(C), decInt(C)) by

⊥Int(C)
A = ⊥A+ ⊗ �A− , �Int(C)

A = �A+ ⊗ ⊥A− , A∞
Int(C)
= ((A−)∞, (A+)∞),

consInt(C)
A = consA+ ⊗ decA− , decInt(C)

A = decA+ ⊗ consA− .

We define IntS of 1-cells and 2-cells in TSMCS to be Int of them. In this way IntS

becomes a 2-functor. One can check that we can adopt the structure of the pseudo-
monad Int to make IntS a pseudo-monad over TSMCS . Thus we obtain a pseudo-
monad IntS : TSMCS → TSMCS which is a strict lifting of the pseudo-monad Int
along US .

Proposition 5. The triple ES = (FS ,US , IntS ) forms an extension of TSMC.

Proposition 6. The tuple (S(Σ),⊥,�, (−)∞, cons, dec) is a TSMC with stack, and is
equivalent to FS (L(Σ)). Therefore, quasi-SSUR stack ACs are ES -ACs.

5 Conclusion and Discussion

We presented a categorical framework for capturing various extensions of ACs and
their descriptional composition. By setting up appropriate extensions of TSMCs, the
descriptional composition of non-deterministic ACs, quasi-SSUR ACs and quasi-SSUR
stack ACs are covered by our framework. The framework uniformly guarantees the
associativity of the descriptional composition and the closure property of extended ACs
under the descriptional composition.

We strongly believe that our framework will contribute to extending the fusion trans-
formation of functions with accumulating parameters. In attribute grammar framework,
the fusion problem is reformulated as the descriptional composition of attribute cou-
plings that represent functions with accumulating parameters. Extending this approach
with extra language features is a delicate task (see e.g. [18]), and our categorical frame-
work indicates the direction of the extension of ACs so that the descriptional compo-
sition works. For instance, one may consider introducing the map operator to stack
ACs. In our framework, this is done by promoting the operator (−)∞ in Section 4.3 to a
functor, then form a suitable extension of TSMCs.

We also expect that our framework can provide an alternative account for the existing
fusion methods that use circular let bindings to express fusion results as first-order func-
tional programs [22,19,13]. An interesting connection between these transformations
and the category theory is that, these fusion results, when viewed as morphisms, often
have the same pattern as the composition of morphisms in Int(C); this is also observed
in [13]. Through this similarity, our categorical view of the descriptional composition
will be helpful to understand these fusion methods, and hopefully provide an equational
proof of their correctness.

One possible future work is to implement the descriptional composition based on
our categorical framework. The major task will be to define the data structure repre-
senting TSMCs and implement the Int construction on them. The implementation task
breaks down the descriptional composition into fundamental operations on categories
and functors, each of which will be easily verifiable.
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A Proof of Theorem 2

1) Obvious. 2) First, we introduce an auxiliary binary operator c©′. For functors A ∈
TSMC′s(FL(Δ), Int′FL(Σ)) and B ∈ TSMC′s(FL(Σ), Int′(C)), we define B c©′ A to
be Str′((B)� ◦ A). It is associative up to an isomorphism:

C c©′ (B c©′ A) = Str′((C)� ◦ (B)� ◦ A) � Str′(((C)� ◦ B)� ◦ A) � (C c©′ B) c©′ A.

LetA ∈ TSMCs(L(Δ), IntUFL(Σ)) and B ∈ TSMCs(L(Σ), IntUC). Then we have

B c©A = Str(U((B)�) ◦ A) = Str((B)� ◦ A) = Str′((B)� ◦ A) = (B c©′ A).

The bijection (−) : |TSMC′s(FC,D)| → |TSMCs(C,UD)| extends to an ordinary func-
tor TSMC′s(FC,D) → TSMCs(C,UD), because it is defined as F = UF ◦ HC. There-
fore if F and G are naturally isomorphic, so are F and G. Then we have

C c© (B c©A) = C c©′ (B c©′ A) � (C c©′ B) c©′ A = C c© (B c©A).

3) Note that N(TA(H( f ))) = A( f ). Since N is faithful, it is sufficient to show N ◦
T (B c©A) ◦ H( f ) = N ◦ TB ◦ TA ◦ H( f ).

N(T (B c©A)(H( f ))) = Str((UB)# ◦ A)( f ) = (UB)#(N(TA(H( f ))))

= (UB)(TA(H( f ))) = N(TB(TA(H( f )))).

B Traced Symmetric Monoidal Categories and the Int
Construction

Traced Symmetric Monoidal Category We recall the concept of trace operator [11].
A trace operator on a symmetric strict monoidal category (C, I,⊗, σ) is a mapping
trA

B,C : C(B ⊗ A,C ⊗ A)→ C(B,C) satisfying the following equations.

(Naturality) h ◦ trA
B,C( f ) ◦ g = trA

B′,C′ ((h ⊗ A) ◦ f ◦ (g ⊗ A))
(Dinaturality) trA

B,C((C ⊗ g) ◦ f ) = trA′
B,C( f ◦ (B ⊗ g))

(Vanishing I) trI
A,B( f ) = f

(Vanishing II) trA⊗B
C,D (g) = trA

C,D(trB
C⊗A,D⊗A(g))

(Superposing) trA
B⊗C,B⊗D(B ⊗ f ) = B ⊗ trA

C,D f
(Yanking) trA

A,A(σA,A) = id.

We simplify the superposing axiom in [11] using naturality and dinaturality [9]. A
traced symmetric strict monoidal category (TSMC) is a pair of a symmetric strict
monoidal category and a trace operator on it. We say that a symmetric strong monoidal
functor (F, φI, φA,B) : C→ D between TSMCs C,D is traced if it satisfies F(trC

A,B( f )) =
trFC

FA,FB(φ−1
B,C ◦ F f ◦ φA,C).
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The Int Construction Joyal, Street and Verity showed that the forgetful functor from the
2-category of tortile monoidal categories to that of traced (braided) monoidal categories
has a left biadjoint, which they called Int [11]. This biadjunction can be restricted to
the one between TSMC and the 2-category of strict compact closed categories, strong
monoidal functors and monoidal natural isomorphisms. Like the usual construction of
monads from adjunctions, we obtain a pseudo-monad over TSMC, which we also write
Int. Below we give an explicit definition of this pseudo-monad Int.

Let C ∈ TSMC. We define the TSMC Int(C) by the following data. An object is
a pair (A+, A−) of C-objects. Below, when A is declared as an Int(C)-object, by A+

and A− we mean its first and second component. A morphism from A to B is a C-
morphism f : A+ ⊗ B− → B+ ⊗ A−. The identity is defined by idInt(C)

A = idA+⊗A− , and the
composition of f : A → B and g : B → C is defined by g ◦Int(C) f = trB−

A+⊗C− ,C+⊗A− (h)
where h = (C+ ⊗ σB−,A−) ◦ (g ⊗ A−) ◦ (B+ ⊗ σA−,C− ) ◦ ( f ⊗ C−) ◦ (A+ ⊗ σC− ,B−). The
(strict) tensor product in Int(C) is given by A ⊗Int(C) B = (A+ ⊗ B+, A− ⊗ B−) and
f ⊗Int(C) g = (B+ ⊗ σA−,D+ ⊗C−) ◦ ( f ⊗ g) ◦ (A+ ⊗ σC+ ,B− ⊗ D−). The unit object of this
tensor product is given by (I, I). The symmetry morphism is σInt(C)

A,B = σA+ ,B+ ⊗ σA− ,B− .
We give the trace operator with respect to the above symmetric monoidal structure by
(trInt(C))C

A,B( f ) = trC+⊗C−
A+⊗B−,B+⊗A− ((B

+ ⊗ σC+ ,A− ⊗ C−) ◦ f ◦ (A+ ⊗ σB−,C+ ⊗C−)).
We next give a functor IntC,D : TSMC(C,D) → TSMC(Int(C), Int(D)), which

we simply write by Int. We define Int of a traced symmetric strong monoidal functor
(F, φI, φA,B) : C → D to be the tuple (Int(F), φInt(F)

I , φInt(F)
A,B ) : Int(C) → Int(D) defined

by Int(F)(A) = (FA+, FA−), Int(F)( f ) = φ−1
B+,B− ⊗ F f ⊗ φA+,A− , φ

Int(F)
I = φI ⊗ φ−1

I

and φInt(F)
A,B = φA+,B+ ⊗ φ−1

A−,B− . For a monoidal natural isomorphism α : F → G, we
define Int(α) : Int(F) → Int(G) by Int(α)A = αA+ ⊗ α−1

A− . These data determine a
2-endofunctor Int : TSMC → TSMC.

Let C ∈ TSMC. A calculation shows that the homset Int2(C)(A, B) is identical to
C(A++ ⊗ B−+ ⊗ B+− ⊗ A−−, B++ ⊗ A−+ ⊗ A+− ⊗ B−−); thus we manipulate morphisms
in Int2(C) as C-morphisms. The unit of the pseudo-monad Int is the traced symmetric
strict monoidal functor NC : C → Int(C) defined by NC(A) = (I, A) and NC( f ) = f ,
while the multiplication of Int is the traced symmetric strong monoidal functor MC :
Int2(C)→ Int(C) defined by MC(A) = (A−−⊗A++, A−+⊗A+−) and MC( f ) = r−1

B,A◦ f◦rA,B,
where rA,B is the symmetry morphism σA−− ,A++⊗B−+⊗B+− in C. We also define monoidal
natural isomorphisms nF : Int(F)◦NC → ND◦F and mF : Int2(F)◦MC → MD◦Int(F)
for (F, φI, φA,B) ∈ TSMC(C,D) by (nF)A = idFA ⊗ φI and (mF)A = φ

−1
A−−,A++ ⊗ φA−+,A+− .

These data determine pseudo-natural transformations (N, n) : Id → Int and (M,m) :
Int2 → Int.

Finally, we define modifications λC : MC ◦ Int(NC) → IdInt(C) and ρC : MC ◦
NInt(C) → IdInt(C) to be identities, and τC : MC ◦ Int(MC) → MC ◦ MInt(C) by (τC)A =

(σA−−+ ,A−+−⊗A+−− ⊗ A+++) ⊗ (σ−1
A−−− ,A−++⊗A+−+ ⊗ A++−).

Theorem 3. The tuple (Int, (N, n), (M,m), τ, λ, ρ) forms a pseudo-monad on TSMC.
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Abstract. Bisimulation is one of the fundamental concepts of the the-
ory of coalgebras. However, it is difficult to verify whether a relation is a
bisimulation. Although some categorical bisimulation proof methods for
coalgebras have been proposed, they are not based on specification lan-
guages of coalgebras so that they are difficult to be used in practice. In
this paper, a specification language based on paths of polynomial func-
tors is proposed to specify polynomial coalgebras. Since bisimulation
can be defined by paths, it is easy to transform Sangiorgi’s bisimula-
tion proof methods for labeled transition systems to reasoning rules in
such a path-based specification language for polynomial coalgebras. The
paper defines the notions of progressions and sound functions based on
paths, then introduces the notion of faithful contexts for the language
and presents a bisimulation-up-to context proof technique for polynomial
coalgebras. Several examples are given to illustrate how to make use of
the bisimulation proof methods in the language.

1 Introduction

The theory of coalgebras provides a uniform mathematical foundation for mod-
eling state-based dynamical systems, such as streams, automata, objects and
processes [1]. The state space of such a system is usually considered as a black-
box, and then the properties of the system are specified via its observational
behaviors. As a result, two states of the system are said to be bisimilar rather
than be equal.

The most popular method to verify two states s and t are bisimilar is to find
a bisimulation relation containing the pair (s, t) [2]. However, in many cases,
it is not easy to find such a bisimulation relation. Sangiorgi proposed effective
bisimulation proof methods for labeled transition systems [3]. We use P

a−−→
Q to denote a state transition of a labeled transition system, where P, Q are
processes, and label a is drawn from some alphabet of actions. Two basic notions
in Sangiorgi’s work are progression and sound function. A binary relation R on
processes progresses to a relation S, abbreviated R � S, if (P, Q) ∈ R implies:

(i) whenever P
a−−→ P ′, there is Q′ such that Q

a−−→ Q′ and (P ′, Q′) ∈ S;
(ii) whenever Q

a−−→ Q′, there is P ′ such that P
a−−→ P ′ and (P ′, Q′) ∈ S.
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A function φ on relations is called a sound function if R � φ(R) implies R ⊆∼
for all relations R, where ∼ is the largest bisimulation (i.e. the bisimilarity) on
processes. By using a sound function φ, a bisimulation-up-to φ proof technique
can be used to demonstrate two processes P and Q are bisimilar, that is, to
find a relation R such that (P,Q) ∈ R and R � φ(R). With the help of φ, the
relation R can contain less state pairs, and then it is easier to find such a relation
than to find a bisimulation directly.

The most powerful class of sound functions provided by Sangiorgi is the class
of contextual functions which give the closure of a relation under contexts. For
example, a simple context of a process language is an expression C with a hole
[−]. Actually, the hole can be regarded as a special variable for building the
expression, and C[P ] is the process obtained by filling the hole [−] with P . A
contextual function φC is of the form φC(R) =

⋃
C∈C{(C[P ], C[Q]) | (P,Q) ∈ R},

where C is a set of contexts. When C satisfies certain conditions, for example,
when it is a faithful context set, φC becomes a sound function, and hence yields
a bisimulation-up-to context proof technique which is proved to be a powerful
proof method in practice for process algebras like CCS and pi-calculus [4].

It is natural to consider applying Sangiorgi’s ideas to build bisimulation proof
methods for the theory of coalgebras. In order to apply the bisimulation-up-to
sound function proof techniques to general coalgebras, a notion of progressions
based on the notions in the theory of coalgebras has to be defined. Particularly,
an appropriate specification language for coalgebras is necessary for the power-
ful bisimulation-up-to context proof technique, since the definition of contexts
heavily relies on a certain language. In addition, such a language should be able
to express and reason about bisimulations directly.

However, it seems not easy to give a notion of progressions based on categori-
cal definitions of coalgebra and bisimulations. Moreover, the current specification
languages of coalgebras, such as CCSL [5], languages used in [6,7,8,9], and re-
cent regular expressions for polynomial coalgebras [10,11] do not provide a way to
reasoning about bisimulations, i.e. getting new bisimulations from existing bisim-
ulations logically. In this paper, a notion of progressions based on paths [8,12]
of polynomial functors is presented, and hence the bisimulation-up-to sound
function proof techniques are built for polynomial coalgebras. Furthermore, a
specification language for polynomial coalgebras based on paths is proposed to
express and reason about bisimulations directly. In particular, a notion of faith-
ful contexts in this language is introduced, and hence the bisimulation-up-to
context proof technique can be transformed to a reasoning rule in the inference
system of the language.

The remainder of this paper is organized as follows. Section 2 gives some
basic notions of coalgebras. Section 3 defines the syntax and semantics of a
path-based specification language for polynomial coalgebras. Section 4 investi-
gates the bisimulation-up-to proof techniques, especially the notion of faithful
contexts and the bisimulation-up-to context proof method, and illustrates them
with examples. Section 5 discusses related work. Finally, Section 6 concludes the
paper and discusses future work briefly.
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2 Preliminaries

A functor T : Set→Set on the category of sets is called a polynomial functor, if
it is constructed from the identity functor, constant functors by finitely many
applications of products, coproducts and constant exponents [13]:

T ::= Id | KD | T×T | T + T | TD

Let T : Set→Set be a functor. A T-coalgebra is a pair (A,α), where A is a set, and
α : A→TA is a function. A T-coalgebra is called a polynomial coalgebra when T
is a polynomial functor. A coalgebra homomorphism from one coalgebra (A,α)
to another coalgebra (B, β) is a function f : A→B such that β ◦ f = Tf ◦ α.

If (A,α) and (B, β) are T-coalgebras, then a relation R ⊆ A× B is a bisim-
ulation (relation) from (A,α) to (B, β) if there exists a transition structure
ρ : R→TR on R such that the relation projections π1 : R→A, π2 : R→B are
coalgebra homomorphisms from (R, ρ) to (A,α) and (B, β) respectively.

In this paper, we focus on polynomial coalgebras, because they are simple but
enough to capture many of the interesting examples in computer science. For
example, both automata and classes in object-oriented programming languages
are polynomial coalgebras. In addition, polynomial functors allow us to define
the notion of paths, which is the cornerstone of this paper. The notion of paths of
polynomial functors is first studied by Rößiger in [14,8], and explored by Jacobs
in details [15,12].

A path from one polynomial functor T to another polynomial functor S, de-
noted as p : T � S, is a finite list of symbols π1, π2, κ1, κ2, ev(d), for elements
d ∈ D of sets D occurring as exponent in T . Let T and S be polynomial functors.
The set of paths from T to S is the least set generated by the following clauses:

(1) 〈〉 : T � T, where 〈〉 is the empty list.
(2) πi · p : T1 ×T2 � S for p : Ti � S, where i = 1, 2.
(3) κi · p : T1 + T2 � S for p : Ti � S, where i = 1, 2.
(4) ev(d) · p : TD

1 � S for all d ∈ D and p : T1 � S.
A path p : T � S is a state path if S = Id, and an observation path if S = KD

for some set D. The set of all state paths from T is denoted as SPATH(T), the
set of all observation paths from T is denoted as OPATH(T), and their union is
denoted as OSPATH(T).

A path p : T � S induces a partial function p̂A : TA ⇀ SA for each set A,
defined by induction on the length of p as follows.

(1) 〈̂〉A : TA ⇀ TA is the identity function idTA, so it is totally defined.
(2) (̂πj · p)A = p̂A ◦ πj(j = 1, 2), where πj is the product projection.

(3) ̂(κj · p)A = p̂A ◦ εj(j = 1, 2), where εj is the coproduct extraction [13],
y ∈ Dom(εj) iff y = κj x for some x ∈ Aj , and then εj(y) = x.

(4) ̂(ev(d) · p)A = p̂A ◦ evd, where evd(f) = f(d) for each f ∈ (TA)D.
Because partial functions is frequently involved in our discussions, we use some
conventions to simplify the discussions. Let E be an expression probably con-
taining partial functions, “E ⇓” means that the value of E is well-defined. Let
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E1 and E2 be two expressions, R be a binary relation, “E1 R E2” means that
E1 ⇓ iff E2 ⇓ and (E1, E2) ∈ R when they are both well-defined.

The following proposition given by Goldblatt (c.f. Theorem 5.5 in [13]) shows
that a bisimulation can be characterised as a relation that is “preserved” by the
partial functions induced by state and observation paths.

Proposition 1. Let (X,α) and (Y, β) be two T-coalgebras. Then a relation R ⊆
X×Y is a bisimulation if, and only if, for any x ∈ X and y ∈ Y , x R y implies
(1) for all p ∈ OPATH(T), p̂X(α(x)) = p̂Y (β(y)); and (2) for all p ∈ SPATH(T),
p̂X(α(x)) R p̂Y (β(y)). ()

3 A Path-Based Language for Polynomial Coalgebras

In this section, we present a specification language for specifying polynomial
coalgebras. Like algebraic specification languages, a signature over a polynomial
functor is used to construct terms of the language, and then the terms are used
to form formulas according to an equational approach. A distinctive feature of
the language is that paths are used as function symbols to construct terms.

For a polynomial functor T, we use OT to denote the set of the constant sets
occurring in the observation paths of T, that is, OT = {D | ∃p : T � KD}.
Definition 1. Let T be a polynomial functor. A signature over T is a pair
SgT = (SortT,OpT), where (1) SortT, called types of the signature, satisfies that
(i) State ∈ SortT, i.e. there exists a type State; (ii) for each D ∈ OT, there
exists a type sD ∈ SortT. (2) OpT is a set of function symbols, each with a
signature f : s1, s2, · · · , sn→s, where si(i = 1, · · ·n), s ∈ SortT. The subscript
T is often omitted for convenience. The type State is called the state type, and
all other types are called observation types.

To define terms of the language, we use a family of variables Var = {Vs | s ∈
Sort}. We assume that if s1 �= s2 then Vs1 ∩ Vs2 = ∅.

Definition 2. Let SgT = (SortT,OpT) be a signature, and Var be a family of
variables. The term and its type are inductively defined by the following clauses.

(1) For each variable x ∈ Vs, x is a term with type s.
(2) If M is a term with type State, p : T � KD is an observation path, then

p�(M) is a term with type sD.
(3) If M is a term with type State, p : T � Id is a state path, then p�(M) is

a term with type State.
(4) If f : s1, s2, · · · , sn→s is a function symbol in OpT, M1,M2, · · · ,Mn are

terms with type s1, s2, · · · , sn respectively, then f(M1,M2, · · · ,Mn) is a term
with type s.

The set of all terms over Sg and Var is denoted as Term(Sg,Var). A term M
with the type State is called state term; all other terms are called observation
terms. Given a term M , its type is denoted as type(M), and the set of vari-
ables occurring in M is denoted as fv(M). M [N1/x1, · · · , Nn/xn] denotes the
simultaneous substitution of N1, · · · , Nn for variables x1, · · · , xn in M , where
type(Ni) = type(xi) for i = 1, · · · , n.



Bisimulation Proof Methods for Polynomial Coalgebras 243

Definition 3. A (semantic) model of Term(Sg,Var) is a pair M = (X , I),
where (1) X = (X,α : X→TX) is a T-coalgebra; (2) I is an interpretation
of the signature Sg, i.e. for each type s ∈ Sort, there exists a set �s�M as its
interpretation, and for each function symbol f : s1, · · · , sn→s, there exists a
function �f�M : �s1�M × · · · × �sn�M→�s�M as its interpretation. Moreover, I
satisfies that �State�M = X and �sD�M = D.

Definition 4. Given a model M = (X , I) of Term(Sg,Var), an assignment
σ = {σs | s ∈ Sort} is a family of partial functions σs : Vs ⇀ �s�.
It is worth noting that partial functions are used in assignments. Consequently,
the value of a variable x, i.e. �x�σ , is probably not well-defined under an assign-
ment σ. This will not lead to problems in our language, since the value of a term
is probably not well-defined in general. Instead, as we shall explain later, using
partial functions simplifies the semantics of substitutions.

For a model M = (X , I) and an assignment σ, the value of a term M under
M and σ is written as �M�σ

M (�M� or �M�σ for short). Since paths are used
as function symbols to construct terms and they only induce partial functions,�M� is not always well-defined. The following definition gives when �M� is well-
defined and how to compute �M� (when it is well-defined) inductively.

Definition 5. Let M = (X , I) be a model and σ be an assignment. The value
of a term M under M and σ is defined inductively by the following clauses.

(1) If M is a variable x ∈ Vs, then �x� ⇓ iff x ∈ Dom(σs), and �x� = σs(x).
(2) If M has the form of p�(M1), then �M� ⇓ iff �M1� ⇓ and p̂X(α(�M1�)) ⇓,

and �M� = p̂X(α(�M1�)).
(3) If M has the form of f(M1, · · · ,Mn), then �M� ⇓ iff �M1� ⇓, · · · ,�Mn� ⇓, and �M� = �f�(�M1�, · · · , �Mn�).

To give the semantics of substitutions, we consider the value of a term under dif-
ferent assignments. Let x1, · · · , xn be variables with type s1, · · · , sn respectively,
and E1, · · · , En be expressions such that the value of Ei is in �si� when Ei ⇓ for
i = 1, · · · , n. Given an assignment σ, a new assignment σ[E1/x1, · · · , En/xn] =
{σ′

s | s ∈ Sort} can be defined: for each s ∈ Sort, if there exists i such that
x = xi, then σ′

s(x) = Ei, otherwise σ′
s(x) = σs(x).

Lemma 1. Let σ be an assignment, M be a term, x1, · · · , xn be variables,
and N1, · · · , Nn be terms with type(Ni) = type(xi) for i = 1, · · · , n. Then�M [N1/x1, · · · , Nn/xn]�σ = �M�σ′

, where σ′ = σ[�N1�σ/x1, · · · , �Nn�σ/xn]. ()

We can use σ[�N1�σ/x1, · · · , �Nn�σ/xn] even if �Ni�σ is not well-defined for some
i, since partial functions are allowed in an assignment. Moreover, we always have�M [N1/x1, · · · , Nn/xn]�σ ⇓ iff �M�σ′ ⇓. However, if we define an assignment
as a family of (total) functions, then the condition that �Ni� ⇓ for all i =
1, · · · , n is necessary for using σ[�N1�σ/x1, · · · , �Nn�σ/xn] and obtaining that�M [N1/x1, · · · , Nn/xn]�σ ⇓ iff �M�σ′ ⇓.

Like algebraic specification languages, we use an equational approach to con-
struct formulas for our coalgebraic specification language. However, a major
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difference between our language and algebraic languages is that we specify that
two state terms are bisimilar rather than equal. In addition, because a term
probably has no value under a semantic model, a formula of the form M ⇓ is
used to specify whether the value of M is well-defined.

Therefore, the language has three kinds of basic formulas: (1) M ⇓, called term
definition formula; (2) M1 ≈ M2, called observation equation, where M1 and
M2 are two observation terms; (3) M1 4M2, called state bisimulation formula,
where M1 and M2 are two state terms. Then, the formulas of the language are
constructed from basic formulas by using Boolean operators:

ϕ, ψ ::= M ⇓|M1 ≈M2 |M1 4M2 | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | φ→ ψ | φ↔ ψ

We use fv(ϕ) to denote the set of variables occurring in ϕ, and ϕ[N1/x1, · · · ,
Nn/xn] to denote the simultaneous substitution of N1, · · · , Nn for variables
x1, · · · , xn in ϕ, where type(Ni) = type(xi) for i = 1, · · · , n.

Definition 6. Let M = (X , I) be a model and σ be an assignment. The truth
value of a formula, written �ϕ�σ

M (�ϕ� or �ϕ�σ for short), is defined inductively
by the following clauses.

(1) If ϕ has the form of M ⇓, then �ϕ� = true iff �M� ⇓.
(2) If ϕ has the form of M1 ≈M2, then �ϕ� = true iff �M1� = �M2�.
(3) If ϕ has the form of M1 4M2, then �ϕ� = true iff �M1� ∼ �M2�, where

∼ is the largest bisimulation relation on the coalgebra X .
(4) If ϕ is constructed by Boolean operators, its truth value is calculated in

the standard way.

We write M, σ � ϕ when �ϕ�σ
M = true, and write M � ϕ when M, σ � ϕ for all

σ. By Lemma 1, it is not hard to prove the following lemma.

Lemma 2. Let σ be an assignment, ϕ be a formula, x1, · · · , xn be variables,
and N1, · · · , Nn be terms with type(Ni) = type(xi) for i = 1, · · · , n. Then�ϕ[N1/x1, · · · , Nn/xn]�σ = �ϕ�σ′

, where σ′ = σ[�N1�σ/x1, · · · , �Nn�σ/xn]. ()

We give some examples to illustrate the usage of the language. These examples
will be continued later to show how to validate state bisimulation formulas log-
ically by using bisimulation proof methods in the language. Such a process of
validation is thought of as a process of reasoning about bisimulations.

Example 1. We consider the signature functor of streams on real numbers, i.e.
TX = R×X , which has an observation path π1 : T � KR and a state path π2.

We give a signature Sg = (Sort,Op) over T, defined as Sort = {State, sR} and
Op = {+ : sR, sR→sR, · : sR, sR→sR, [ ] : sR→State,⊕ : State, State→State, × :
State, State→State}. The intended meanings of these operators can refer to the
stream calculus presented by Rutten [16]. For any state term M , we use more
meaningful notation head(M) for π�

1(M), and tail(M) for π�
2(M).

Let x, y be two variables with the type State, and r be a variable with type
sR, the following formulas give the specification of stream operators ⊕(sum) and
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×(convolution product) defined in the stream calculus in [16] (for convenience,
we use the function symbols as infix operators) :

head(x⊕y) ≈ head(x)+head(y) tail(x⊕y) 4 tail(x)⊕tail(y)
head(x×y) ≈ head(x) · head(y) tail(x×y) 4 ([head(x)]×tail(y))⊕(tail(x)×y)

Example 2. We consider the functor TX = A × (1 + X × X), which is the
signature functor of binary tree given in [17]. The functor has two observation
paths p1 = π1 : T � KA and p2 = π2 · κ1 : T � K1, and two state paths
p3 = π2 · κ2 · π1 and p4 = π2 · κ2 · π2.

We give a signature Sg over T, which has types State, sA, s1, and a function
symbol mirror : State→State. In [17], Jacobs gives some semantic models for this
signature. For any state term M , we use more meaningful notation label(M) for
p�
1(M), nochild(M) for p�

2(M), lchild(M) for p�
3(M), and rchild(M) for p�

4(M).
Let x be a variable with the type State, the following formulas specify the

properties of mirror:

label(mirror(x)) ≈ label(x) nochild(mirror(x)) ⇓↔ nochild(x) ⇓
rchild(mirror(x)) ⇓↔ lchild(x) ⇓ rchild(mirror(x)) 4 mirror(lchild(x))
lchild(mirror(x)) ⇓↔ rchild(x) ⇓ lchild(mirror(x)) 4 mirror(rchild(x))

Let Γ be a set of formulas, a formula ϕ is called a semantic consequence of Γ ,
written Γ � ϕ, if, for any modelM,M � Γ impliesM � ϕ, whereM � Γ means
M � ψ for every ψ ∈ Γ . Obviously, the semantic consequence relation here has
the properties as in propositional logic. In addition, certain properties of the
semantic consequence relation can be induced by the fact that equalities and
bisimilarities are equivalent relations. Due to the limit space, here we only give
some properties of the semantic consequence relation induced by the properties
of terms and formulas defined in our specification language.

Lemma 3. Let Γ be a formula set. (1) For any function symbol f and terms
M1, · · · ,Mn, Γ � f(M1, · · · ,Mn) ⇓ iff Γ � M1 ⇓ ∧ · · ·∧Mn ⇓. (2) For any path
p and term M , Γ � p�(M) ⇓ implies Γ � M ⇓. ()
Let σ′ = σ[�N1�σ/x1, · · · , �Nn�σ/xn], by Lemma 2, we can obtain that�ϕ[N1/x1, · · · , Nn/xn]�σ

M = �ϕ�σ′
M for any model M and any assignment σ.

And thus we have the following important result.

Theorem 1. Let Γ be a formula set, ϕ be a formula, x1, · · · , xn be variables,
and N1, · · · , Nn be terms. Then Γ � ϕ implies Γ � ϕ[N1/x1, · · · , Nn/xn]. ()

From the above theorem, we obtain that substitutions preserve term defini-
tion formulas, i.e. Γ � M ⇓ implies Γ � M [N1/x1, · · · , Nn/xn] ⇓. Note that
this holds even when Γ � Ni ⇓ does not hold for some i(1 ≤ i ≤ n). More-
over, by this theorem, if M1,M2 are observation terms then Γ � M1 ≈ M2
implies Γ � M1[N1/x1, · · · , Nn/xn] ≈ M2[N1/x1, · · · , Nn/xn]; and if M1,M2
are state terms then Γ � M1 4 M2 implies Γ � M1[N1/x1, · · · , Nn/xn] 4
M2[N1/x1, · · · , Nn/xn]. In short, substitutions also preserve observation equa-
tions and state bisimulation formulas.
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4 Bisimulation Proofs in the Language

In this section, we present some bisimulation proof methods for polynomial coal-
gebras. First, we define a notion of progression based on the relationship between
bisimulations and paths, as well as a notion of sound function based on this pro-
gression. Then, we discuss how to use these notions to form reasoning rules on
bisimulation proofs from a semantic prospective for the specification language
presented in Section 3. Finally, we define a notion of faithful context and give a
sound function based on faithful contexts to form a bisimulation-up-to context
proof method for the langauge.

Definition 7. Let (X,α) and (Y, β) be two T-coalgebras. A relation R ⊆ X×Y
is called a quasi-bisimulation, if, for all x ∈ X and y ∈ Y , (x, y) ∈ R implies
(1) for all p ∈ OSPATH(T), p̂X(α(x)) ⇓ iff p̂Y (β(y)) ⇓; and (2) for all p ∈
OPATH(T), p̂X(α(x)) = p̂Y (β(y)).

Definition 8. Let R be a quasi-bisimulation between two T-coalgebras (X,α)
and (Y, β), and S ⊆ X×Y is an ordinary relation. We say R progresses to S,

written R
α,β

==⇒ S (R ==⇒ S for short), if, for all (x, y) ∈ R and all state paths

p ∈ SPATH(T), p̂X(α(x)) ⇓ and p̂Y (β(y)) ⇓ imply (p̂X(α(x)), p̂X (β(y))) ∈ S.

By Proposition 1, a quasi-bisimulation R is a bisimulation iff R ==⇒ R. Intu-

itively, for a quasi-bisimulation R, (s, t) ∈ R implies that s and t have the same
observational outputs and the same possible state transitions. In addition to the
notion of quasi-bisimulations, the notion of progressions describes which relation
a state pair in a quasi-bisimulation reaches after one possible state transition.

Definition 9. Let (X,α) and (Y, β) be two T-coalgebras. A function φ :
P(X × Y )→P(X × Y ) is called a sound function, if (1) φ preserves quasi-
bisimulations, that is, if R is a quasi-bisimulation, so is φ(R); and (2) φ preserves
progressions, that is, for any quasi-bisimulation R and any ordinary relation S,
if R⊆S and R ==⇒ S, then φ(R)⊆φ(S) and φ(R) ==⇒ φ(S).

Theorem 2. Let (X,α) and (Y, β) be two T-coalgebras, φ be a sound function,
and R ⊆ X × Y be a quasi-bisimulation. Then, R ==⇒ φ(R) implies R ⊆∼,

where ∼ is the largest bisimulation between (X,α) and (Y, β).

Proof. (c.f. Theorem 2.11 in [3]) We inductively define a sequence of relations
(Ri)i∈N: R0 = R, Ri+1 = Ri ∪ φ(Ri) for all i ≥ 1. Since φ preserves quasi-
bisimulation, Ri is a quasi-bisimulation for all i ∈ N. Then, it is easy to show
that

⋃
i∈N

Ri is a bisimulation. ()

Actually, the condition (2) in the above definition of sound functions is the same
as the property of respectful functions in [3]. Here we require a sound function
satisfies one more condition, i.e. preserving quasi-bisimulations, which is critical
for showing that Rn is a quasi-bisimulation in the above proof.
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As in [3], the identity function and the constant-to-∼, mapping every relation
to ∼, are two primitive sound functions, and sound functions are closure under
constructors including composition, union and chaining. Using these primitive
sound functions and constructors, the function φB(R) =∼ ◦R◦ ∼ is a sound
function. As a corollary, we obtain the following bisimulation proof method,
which is called bisimulation-up-to bisimilarity in process algebras:

Corollary 1. Let (X,α) be a T-coalgebra. A relation R on X is contained in
the bisimilarity ∼ on X, if it satisfies that, for all x, y ∈ X, (x, y) ∈ R im-
plies (1) for all path p ∈ OSPATH(T), p̂X(α(x)) ⇓ iff p̂X(α(y)) ⇓; (2) for all
observation path p ∈ OPATH(T), p̂X(α(x)) = p̂X(β(x)); and (3) for all state path
p ∈ SPATH(T), if p̂X(α(x)) ⇓ and p̂X(α(y)) ⇓, then there exist x′, y′ ∈ X such
that x′ ∼ p̂X(α(x)), y′ ∼ p̂X(α(y)) and (x′, y′) ∈ R. ()
Since paths are used to construct terms in the specification language defined by
us in Section 3, the above proof method can be transformed to a reasoning rule
for bisimulation proofs in the language as follows.

Theorem 3. Let M1 and M2 be two state terms, x1, · · ·xn be variables, and Γ
be a formula set. Then Γ � M1 4 M2 if (1) Γ � M1 ⇓↔ M2 ⇓; (2) for all
p ∈ OPATH(T), Γ � p�(M1) ≈ p�(M2) ; and (3) for all p ∈ SPATH(T), there exist
terms N1, N2, · · · , Nn such that

Γ � (p�(M1) 4M1[N1/x1, · · ·Nn/xn])

Γ � (p�(M2) 4M2[N1/x1, · · ·Nn/xn])

Proof. (Sketch) Let M be a model, (X,α) be the coalgebra of M. Assume that
M � Γ , we define a relation R ⊆ X ×X:

R = {(�M1�σ, �M2�σ) | σ is an assignment such that �M1�σ ⇓ and �M2�σ ⇓}

Then M�M1 4M2 follows from R ⊆∼, which can be shown by Corollary 1. ()
Although the above theorem just gives how to validate a state bisimulation
formula from the perspective of semantic consequence relations, it is not difficult
to form a corresponding rule in the inference system of the language for reasoning
about bisimulations. The details of the formal rules and the inference system of
the language will be considered when we implement the language in the future.
For the sake of simplicity, in this paper, we give the bisimulation proof methods in
the form of semantic consequence relations, and use some examples to illustrate
how to make use of these methods in our language.

Example 3. Considering the signature Sg given in Example 1, let x, y be state
variables, r, r1, r2, r′1, r

′
2, r3 be variables with type sR, and

Γ = {x ⇓, r1 ≈ r′1 ∧ r2 ≈ r′2 → r1 + r2 ≈ r′1 + r′2, r1 + r2 ≈ r2 + r1,

r1 ≈ r′1 ∧ r2 ≈ r′2 → r1 · r2 ≈ r′1 · r′2, r1 · (r2+r3) ≈ (r1 · r2)+(r1 · r3),
head(x⊕y) ≈ head(x)+head(y), tail(x⊕y) 4 tail(x)⊕tail(y),
head(x×y) ≈ head(x) · head(y),
tail(x×y) 4 ([head(x)]×tail(y))⊕(tail(x)×y)}
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Let M1 = x ⊕ y and M2 = y ⊕ x. It is easy to obtain that Γ � M1 ⇓↔ M2 ⇓
from Γ � x ⇓, and Γ � head(M1) ≈ head(M2) from Γ � r1 + r2 ≈ r2 + r1. Then,
by Theorem 3, Γ � M1 4M2 follows from that

Γ �tail(M1) 4M1[tail(x)/x, tail(y)/y]
Γ �tail(M2) 4M2[tail(x)/x, tail(y)/y]

However, we cannot show that Γ � x × (y ⊕ z) 4 (x × y) ⊕ (x × z) by using
Theorem 3. Hence, we need more powerful bisimulation proof methods.

We consider sound functions based on contexts of the language. A term M is
called a (state) context , if it is a state term and all variables occurring in it
are state variables. Let M and M ′ be two state contexts, a variable mapping
from M ′ to M is a function of the form ρ : fv(M ′)→fv(M)× (1 + SPATH(T)).

Now, we give our core definition, i.e. the definition of faithful contexts.

Definition 10. Let Γ be a set of formulas, C be a set of state contexts. C is
called a faithful context set with respect to Γ , if every state context M in
C satisfies the following three conditions (assume that fv(M) = {x1, · · · , xn}):

(1) it is well-defined, that is, Γ � ϕwd → ψwd for all paths p ∈ OSPATH(T)
and all state terms N1, · · · , Nn, where ϕwd and ψwd are defined as follows:

ϕwd
def= M [N1/x1, · · · , Nn/xn] ⇓

ψwd
def= p�(M [N1/x1, · · · , Nn/xn]) ⇓ ↔ (p�(N1) ⇓ ∧ · · · ∧ p�(Nn) ⇓)

(2) it preserves observations, that is, Γ � ϕpo → ψpo for all observation
paths p ∈ OPATH(T) and all state terms N1, · · · , Nn, L1, · · · , Ln, where ϕpo and
ψpo are defined as follows:

ϕpo
def= p�(N1) ≈ p�(L1) ∧ · · · ∧ p�(Nn) ≈ p�(Ln)

ψpo
def= p�(M [N1/x1, · · · , Nn/xn]) ≈ p�(M [L1/x1, · · · , Nn/xn])

(3) it has faithful progressions, that is, for all state paths p ∈ SPATH(T),
there exist a state context Mp in C and a variable mapping ρp : fv(Mp)→
fv(M)× (1 + SPATH(T)) such that (assume that fv(Mp) = {y1, · · · , ym})

Γ � p�(M [N1/x1, · · · , Nn/xn]) 4 Mp[L1/y1, L2/y2, · · · , Lm/ym]

for all state terms N1, · · · , Nn, where Lj(j = 1, · · · ,m) is defined as follows: if

ρp(yj) = (xi, κ∗), then Lj
def= Ni, and if ρp(yj) = (xi, κp

′), then Lj
def= p′�(Ni).

A state context M is called a faithful context with respect to Γ , if there
exists a faithful context set C with respect to Γ such that M ∈ C.

The above definition looks complicated, however, the names of the three condi-
tions indicate the key ideas of the definition. We use some simple examples to
illustrate the intended meaning of the definition.
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Example 4. Continue to Example 3. It is easy to show that x ⊕ y is a faithful
context with respect to Γ . However, x× y is not a faithful context with respect
to Γ , since [head(x)] is not an observation or state transition induced by path.

Example 5. Considering the signature Sg given in Example 2, let x, y be state
variables, and

Γ = { nochild(x) ⇓↔ ¬(lchild(x) ⇓), lchild(x) ⇓↔ rchild(x) ⇓,
label(x) ⇓↔ x ⇓, label(mirror(x)) ≈ label(x),
nochild(x) ≈ nochild(y), nochild(mirror(x)) ⇓↔ nochild(x) ⇓,
rchild(mirror(x)) ⇓↔ lchild(x) ⇓, lchild(mirror(x)) ⇓↔ rchild(x) ⇓,
rchild(mirror(x)) 4 mirror(lchild(x)),
lchild(mirror(x)) 4 mirror(rchild(x)) }

We show that M = mirror(x) is a faithful context with respect to Γ .
First, from that substitutions preserve term definition formulas, it is easy

to show that Γ � label(M) ⇓↔M ⇓, Γ � nochild(M) ⇓↔nochild(x) ⇓,
Γ � lchild(M) ⇓↔lchild(x) ⇓ and Γ � rchild(M) ⇓↔rchild(x) ⇓. Therefore,
mirror(x) is well-defined.

Second, from that substitutions preserve observation equations, it is not hard
to show that Γ � (label(x) ≈ label(y))→ (label(mirror(x)) ≈ label(mirror(y)))
and Γ � nochild(mirror(x)) ≈ nochild(mirror(y)). Therefore, mirror(x) also
preserves observations.

Finally, the following imply that mirror(x) has faithful progressions.

Γ � lchild(M) 4M [rchild(x)/x] Γ � rchild(M) 4M [lchild(x)/x]

Theorem 4. Faithful contexts preserve bisimulations. Let Γ be a formula
set, M be a faithful context with respect to Γ with fv(M) = {x1, · · · , xn}. For
all state terms N1, · · · , Nn, L1, · · · , Ln, if Γ � Ni 4 Li for all i = 1, · · · , n, and
Γ � M [N1/x1, · · · , Nn/xn] ⇓↔M [L1/x1, · · · , Ln/xn] ⇓, then

Γ � M [N1/x1, · · · , Nn/xn] 4M [L1/x1, · · · , Ln/xn]

Proof. (Sketch) Let C be the set of all faithful contexts with respect to Γ . For
any model M, let (X,α) be the coalgebra of M. If M � Γ , we define a relation
R ⊆ X ×X as follows.

R =
⋃

T∈C
{ (�T [P1/y1, · · · , Pn/yn]�σ, �T [Q1/y1, · · · , Qn/yn]�σ) |

σ is an assignment, fv(T ) = {y1, y2, · · · , yn},
Pi, Qi are state terms and �Pi�σ ∼ �Qi�σ for all i = 1, · · · , n,
�T [P1/y1, · · · , Pn/yn]�σ ⇓, and �T [Q1/y1, · · · , Qn/yn]�σ ⇓ }

Using Corollary 1, we can prove that R ⊆∼. Then, it is not hard to show that
Γ � M [N1/x1, · · · , Nn/xn] 4M [L1/x1, · · · , Ln/xn]. ()



250 X.-c. Zhou et al.

Example 6. Continue to Example 5, we show Γ�mirror(mirror(x)) 4 x. By Γ �
lchild(mirror(x))4mirror(rchild(x)), we get Γ � lchild(mirror(mirror(x)))
4 mirror(rchild(mirror(x))). Since mirror(x) is a faithful context respect to
Γ and Γ � rchild(mirror(x)) 4 mirror(lchild(x)), by Theorem 4, we obtain

Γ � mirror(rchild(mirror(x))) 4 mirror(mirror(lchild(x)))

And hence, let M1 = mirror(mirror(x)) and M2 = x, we obtain

Γ � lchild(M1) 4M1[lchild(x)/x] Γ � lchild(M2) 4M2[lchild(x)/x]

Similarly, we obtain that Γ � rchild(M1) 4 M1[rchild(x)/x] and Γ �
rchild(M2) 4 M2[rchild(x)/x]. Thus, by Theorem 3, Γ � M1 4 M2, since it
is not hard to show that Γ � M1 ⇓↔ M2 ⇓, Γ � label(M1) ≈ label(M2), and
Γ � nochild(M1) ≈ nochild(M2).

Now, we present the following theorem as the main result of the paper, which
gives how to define sound functions based on faithful contexts.

Theorem 5. Let Γ be a formula set, C be a faithful context set with respect to
Γ , M be a model with M � Γ , and (X,α) be the coalgebra in M. A function
φC : P(X ×X)→P(X ×X) is defined as follows. For R ⊆ X ×X,

φC(R) = {(t, s) | t, s ∈ X, ∃M ∈ C with fv(M) = {x1, x2, · · · , xn}, an
assignment σ, and state terms P1, · · · , Pn, Q1, · · · , Qn, such that
t ∼ �M [P1/x1, · · · , Pn/xn]�σ, s ∼ �M [Q1/x1, · · · , Qn/xn]�σ,

where �M [P1/x1, · · · , Pn/xn]�σ ⇓, �M [Q1/x1, · · · , Qn/xn]�σ ⇓,
and, for all i = 1, · · · , n, Pi = Qi or (�Pi�σ, �Qi�σ) ∈ R }

Then φC is a sound function.

Proof. (Sketch) (1) Let R be a quasi-bisimulation on X. For any state pair
(s, t) ∈ φC(R), there exist a faithful context M ∈ C with fv(M) = {x1, · · · , xn},
an assignment σ, and state terms P1, · · · , Pn, Q1, · · · , Qn, such that

(i) �M [P1/x1, · · · , Pn/xn]�σ ⇓ and �M [Q1/x1, · · · , Qn/xn]�σ ⇓, in addition,
these imply �Pi�σ ⇓ and �Qi�σ ⇓ for all i = 1, · · · , n;

(ii) either Pi = Qi or (�Pi�σ, �Qi�σ) ∈ R for all i = 1, · · · , n;
(iii) t ∼ �M [P1/x1, · · · , Pn/xn]�σ and s ∼ �M [Q1/x1, · · · , Qn/xn]�σ.

For showing that φC(R) is a quasi-bisimulation, we note that

p̂X(α(t)) ⇓ ⇐⇒ p̂X(α(�M [P1/x1, · · · , Pn/xn]�σ)) ⇓ (iii) and Proposition 1

⇐⇒ �p�(M [P1/x1, · · · , Pn/xn])�σ ⇓ (i) and Definition 5

⇐⇒ �p�(Pi)�σ ⇓ for all i = 1, · · · , n M is well-defined

and p̂X(α(t)) = �p�(M [P1/x1, · · · , Pn/xn])�σ when p ∈ OPATH(T). Similarly,
p̂X(α(s)) ⇓ iff �p�(Qi)�σ ⇓, and p̂X(α(s)) = �p�(M [Q1/x1, · · · , Qn/xn])�σ when
p ∈ OPATH(T). Then, p̂X(α(t)) ⇓ iff p̂X(α(s)) ⇓, and when p is an observation
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path, p̂X(α(t)) = p̂X(α(s)), since Pi = Qi or (�Pi�σ, �Qi�σ) ∈ R, R is a quasi-
bisimulation and M preserves observations.

(2) Let S be a relation with R ⊆ S and R ==⇒ S. Obviously, φC(R) ⊆ φC(S).

From the above condition (iii), p̂X(α(t)) ∼ �p�(M [P1/x1, · · · , Pn/xn])�σ and
p̂X(α(s)) ∼ �p�(M [Q1/x1, · · · , Qn/xn])�σ when p̂X(α(t)) ⇓ and p̂X(α(s)) ⇓. On
the other hand, because M is a faithful context with respect to Γ , there exist
Mp ∈ C with fv(Mp) = {y1, · · · , ym} and a variable mapping ρ, such that

Γ � p�(M [P1/x1, · · · , Pn/xn]) 4 Mp[N1/y1, N2/y2, · · · , Nm/ym]

Γ � p�(M [Q1/x1, · · · , Qn/xn]) 4 Mp[L1/y1, L2/y2, · · · , Lm/ym]

where, for j = 1, · · · ,m, if ρp(yj) = (xi, κ∗), then Nj
def= Pi and Lj

def= Qi,

and if ρp(yj) = (xi, κp
′), then Nj

def= p′�(Pi) and Lj
def= p′�(Qi). In all

cases of the definition of ρ, it is not hard to show that either Nj = Lj or
(�Nj�σ, �Lj�σ) ∈ S since either Pi = Qi or (�Pi�σ , �Qi�σ) ∈ R and R ==⇒ S.

Thus, (p̂X(α(t)), p̂X(α(s))) ∈ φC(S). These show that φC(R) ==⇒ φC(S). ()

By Theorem 5, we obtain the following theorem, which can be regarded as the
bisimulation-up-to context proof method for polynomial coalgebras.

Theorem 6. Let M1 and M2 be two state terms, x1, · · ·xn be variables in
fv(M1) ∩ fv(M2), and Γ be a formula set. Then Γ � M1 4M2 if

(1) Γ � M1 ⇓↔M2 ⇓;
(2) for all p ∈ OPATH(T), Γ � p�(M1) ≈ p�(M2) ; and
(3) for all p ∈ SPATH(T), there exist a faithful context Mp with respect to Γ

with fv(Mp) = {y1, · · · , ym}, and state terms N1, · · · , Nm, L1, · · · , Lm such that
Γ � Mp[N1/y1, · · · , Nm/ym] ⇓↔Mp[L1/y1, · · · , Lm/ym] ⇓ and

Γ �p�(M1) 4Mp[N1/y1, · · · , Nm/ym]

Γ �p�(M2) 4Mp[L1/y1, · · · , Lm/ym]

where, for j = 1, · · · ,m, either Nj = Lj, or there exist terms Qj1 , · · · , Qjn such
that Nj = M1[Qj1/x1, · · · , Qjn/xn] and Lj = M2[Qj1/x1, · · · , Qjn/xn].

Proof. (Sketch) Let M be a model, (X,α) be the coalgebra of M. Assume that
M � Γ , we define a relation R ⊆ X ×X:

R = { (�M1�σ, �M2�σ) | σ is an assignment, �M1�σ ⇓, and �M2�σ ⇓ }

It is not hard to show that R is a quasi-bisimulation and R ==⇒ φC(R), where φC
is defined as in Theorem 5. And then, M � M1 4M2 follows from R ⊆∼. ()

Example 7. Continue to Example 4, we use Theorem 6 to show that Γ � x ⊕
(y×z) 4 (x×y)⊕(x×z). Let M1 = (x×y)⊕(x×z) and M2 = x×(y⊕z). From
Γ � r1 · (r2 +r3) ≈ (r1 ·r2)+(r1 ·r3), we obtain Γ � head(M1) ≈ head(M2). And
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from Γ � tail(x× y) 4 ([head(x)] × tail(y))⊕ (tail(x) × y) and Γ � (x ⊕ y) 4
(y ⊕ x), it is not hard to show that

Γ �tail(M1) 4 (x⊕ y)[N1/x,N2/y] Γ �tail(M2) 4 (x⊕ y)[L1/x, L2/y]

where N1 = M1[[head(x)]/x, tail(y)/y, tail(z)/z], N2 = M1[tail(x)/x, y/y, z/z],
L1 = M2[[head(x)]/x, tail(y)/y, tail(z)/z], L2 = M2[tail(x)/x, y/y, z/z]. There-
fore, by Theorem 6, Γ � x⊕ (y × z) 4 (x× y)⊕ (x× z) as required.

Generally, it is not hard to prove that x1 ⊕ x2 ⊕ · · · ⊕ xn is a faithful context
with respect to Γ , and then the bisimulation-up-to proof method in Rutten’s
stream calculus (c.f. Theorem 4.2 in [16]) is an instance of Theorem 6.

5 Related Work

The coalgebraic specification language presented in this paper can be thought
of as a simple version of CCSL [5]. A major difference between our language
and CCSL stands in the use of paths of polynomial functors. Names of class
methods are used to construct terms in CCSL for specifying classes in object-
oriented programming. From Example 1 and 2, one may note that paths can
give more detailed observations and state transitions than class methods. Most
importantly, the relationship between paths and bisimulations enable us to ex-
press and reason about bisimulations through using state bisimulation formulas
in our language. There exist other equational approaches (e.g. [6,9]), as well as
modal logic approaches (e.g. [18,7,8,19,20]), to specify coalgebras. However, none
of them provide a way to express and reason about bisimulations directly.

Recently, Bonsangue, Rutten and Silva generalize Kleene’s regular expressions
to a specification language for polynomial coalgebras, and present a sound and
complete (with respect to bisimulation) axiomatization for the equational system
of this language [10,11]. Actually, an expression in this language indicates how to
construct an element of final coalgebra, and all expressions (modulo equivalence
defined in the equational system) form a subcoalgebra of final coalgebra. Com-
pared with this language, a distinctive feature of our language is that functional
operators can be used to construct terms. And then the bisimulation proof meth-
ods are used to reason about the relationship between bisimulations and those
operators. It would be interesting to investigate the precise connection between
our language and this language, and see whether the bisimulation proof methods
could also be formulated in terms of the regular expressions.

Instead of investigating bisimulation proof methods in coalgebraic specifica-
tion languages, there exist a few categorical descriptions of bisimulation proof
principles for coalgebras in the literature. Lenisa presented a notion of F-
bisimulation “up-to T” [21]; and Bartels generalized Lenisa’s idea by introducing
a notion of λ-bisimulations [22]. Luo Lingyun introduced a notion of consistent
functions [23], which is close to the notion of sound functions in [3]. Actually, Luo
defined a notion of progressions by using relation lifting Rel(T)(−) [24] of functor
T: a relation R progresses to S iff, (x, y) ∈ R implies (α(x), β(y)) ∈ Rel(T)(S),
where (X,α) and (Y, β) are T-coalgebras. And then, the notion of consistent
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functions in [23] is essentially the same as the notion of sound functions. So, Luo
applied the Sangiorgi’s ideas from labeled transition systems to the coalgebras
of the functors whose relation lifting has certain properties (e.g. Proposition 2.2
in [23]). However, he could not give a bisimulation-up-to context proof method,
since his study is not based on a specification language.

Our work can be seen as an extension of Luo’s work for polynomial coalge-
bras. The notion of sound functions in this paper is essentially equivalent to
the notion of consistent functions for polynomial coalgebras, but we can provide
more powerful sound functions based on faithful contexts to further facilitate
the bisimulation proofs for polynomial coalgebras since our work is based on a
coalgebraic specification language. Compared with the work presented by Lenisa
[21] and Bartels [22], the bisimulation proof methods based on sound functions
are more practicable than λ-bisimulations, because the notion of λ-bisimulations
is too abstract, and one should make an effort to verify properties of involved
structures to form a distributive law.

6 Conclusions

In this paper, a term calculus based on paths of polynomial coalgebras is pre-
sented for building formulas to specify polynomial coalgebras. The fact that
bisimulations can be defined by paths enables the specification language to ex-
press bisimulations explicitly and to reason about them by using certain bisimu-
lation proof methods as reasoning rules. Sangiorgi’s bisimulation proof methods
for labeled transition systems are transformed to reasoning rules in the form of
semantic consequence relations for the language.

The major contribution of this paper is twofold: (i) We use paths of poly-
nomial functors to define an equational coalgebraic specification language. As
to our knowledge, this is a novel approach to specify properties of polynomial
coalgebras. (ii) We provide the first study on bisimulation proof methods in coal-
gebraic specification languages for the theory of coalgebras. We give path-based
definitions of progressions and sound functions, and introduce the notion of
faithful contexts for our proposed coalgebraic specification language. And then,
we are able to apply Sangiorgi’s bisimulation-up-to proof methods, including
bisimulation-up-to context proof methods, to this language.

The work presented in this paper is a fundamental study of the path-based
specification language for polynomial coalgebras. We shall study the language
further in the future, for example, to investigate the connections with other lan-
guages, to explore the congruence formats for polynomial coalgebras, such as
GSOS-like formats for polynomial coalgebras, and to look at under what condi-
tions for the specification of function symbols a semantic model of the specifica-
tion can form a λ-bialgebra. Of course, we shall use the language to specify more
practical examples of polynomial coalgebras, especially classes in object-oriented
programs. Moreover, in order to automate the bisimulation proofs, we shall im-
plement tools for translating the rules induced by the bisimulation proof methods
presented in this paper to theorem proving assistant systems (e.g. PVS).
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Abstract. XQuery is a DBPL for querying XML databases. The semantics of
XQuery is context sensitive and requires preservation of document order. In this
paper, we propose, as far as we are aware, the first XQuery fusion that can deal
with both the document order and the context of XQuery expressions. More
specifically, we carefully design a context representation of XQuery expressions
based on the Dewey order encoding, develop a context-preserving XQuery fusion
for ordered trees by static emulation of the XML store, and prove that our fusion
is correct. Our XQuery fusion has been implemented, and all the examples in this
paper have passed the system.

1 Introduction

Fusion [22,2,5] is a well-known technique for improving efficiency by removing unnec-
essary intermediate data from the computation. Although it has been applied to optimize
query languages such as SQL [3] and object query languages [5], it remains a challenge
to implement fusion for XQuery optimization. This is because XQuery has more com-
plicated semantics [12]; it is context sensitive and requires preservation of document
order. One may consider, for example, the following naive fusion transformation1 (as
studied in [4]).

〈e〉E1, . . . , En〈/e〉/c #→ σc(E1), . . . , σc(En) 2 (F)

This transformation works correctly only if the order of the XML document and the
context can be ignored. However, order is an important issue in XML documents [6,1],
and various index structure for ordered trees have been developed for XML documents
[21,15,25]. When we view an XML document as an ordered tree, an existing fusion
transformation like (F) by naive elimination of element constructors does not work cor-
rectly because the context, which is a navigation of newly constructed trees, is missing
during the transformation.

1 Analogous to relational algebra operators, σc is used as a selection, which extracts data with
their element name being c.

2 We use “narrow” angle brackets for XML tags. For example, we use 〈e〉 instead of <e>.

K. Ueda (Ed.): APLAS 2010, LNCS 6461, pp. 255–270, 2010.
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<na>
  <lhs>
    <item><a/></item>
    <item><b/></item>
  </lhs>
  <rhs>
    <item><c/></item>
    <item><d/></item>
  </rhs>
</na>

<sa>
  <lhs>
    <item><c/></item>
    <item><d/></item>
  </lhs>
  <rhs>
    <item><a/></item>
    <item><b/></item>
  </rhs>
</sa>

<sa>
    (<lhs>/na/rhs/item</lhs>,
     <rhs>/na/lhs/item</rhs>)
</sa>

Fig. 1. Source XML:S (left). XQuery expression: em (middle) and the serialized result: T (right).

Consider the simple case illustrated in Figure 1, where the query em (the middle) is
applied to the source S (the left), and the target T (the right) is obtained as the serialized
result. Let us apply the following query e1 to the serialized T ,

e1 : let $v := (/sa/rhs, /sa/lhs) return $v/item.

Since the semantics of “axis access” by using “/” in XQuery (and XPath) requires sort-
ing without duplicates in the document order, the correct result is the following se-
quence of “item” elements:

〈item〉〈c/〉〈/item〉, 〈item〉〈d/〉〈/item〉, 〈item〉〈a/〉〈/item〉, 〈item〉〈b/〉〈/item〉.

However, for the composite query e1 ◦ em, by unfolding the expression em, we can get

let $t := 〈sa〉{(〈lhs〉/na/rhs/item〈/lhs〉, 〈rhs〉/na/lhs/item〈/rhs〉)}〈/sa〉
return let $v := ($t/rhs, $t/lhs) return $v/item.

Now if we perform the calculation according to the context-insensitive fusion rule (F):

e1 ◦ em

→ {(variable expansion for $t); (F)}
let $v := (〈rhs〉/na/lhs/item〈/rhs〉, 〈lhs〉/na/rhs/item〈/lhs〉)
return $v/item

→ {(variable expansion for $v); (F)}
(/na/lhs/item, /na/rhs/item)

then evaluating the transformed query (/na/lhs/item, /na/rhs/item) on S gives

〈item〉〈a/〉〈/item〉, 〈item〉〈b/〉〈/item〉, 〈item〉〈c/〉〈/item〉, 〈item〉〈d/〉〈/item〉

whose order of “item” elements is different from the expected result. Furthermore, if
we consider the query e2 on T :

e2 : let $v := /sa/rhs/item return $v/..

then although the expected result of e2 to T is the “rhs” element, the result of the
transformed query from e2 ◦ em via similar steps above is the “lhs” element. In both
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examples, the problem is caused by not having the context, which is a tree navigation
over the newly constructed XML fragment using 〈sa〉...〈/sa〉 in em.

The problem of the existing fusion transformation lies in that the naive elimina-
tion of element constructors during the transformation does not preserve the (compu-
tation) context because element constructors construct ordered trees. This implies that
eliminating element constructors in XQuery expressions and preserving the context of
the expressions are conflicting requirements. The purpose of our work is to propose a
new fusion mechanism to meet these two requirements. To this end, we should find a
way to manage the context of the original expressions in developing a correct fusion
transformation.

While we will show the concrete solution to both examples at the end of this paper,
we shall give an intuitive idea of our solution to the first example here. For two step
expressions /na/rhs/item and /na/lhs/item in em which constructs the ordered tree
T , there is a fact that the items of the sequence generated by /na/rhs/item always
precede ones generated by /na/lhs/item in the ordered tree T for an arbitrary XML
store. By adding this information to these two step expressions, for given e1 ◦ em, we
can formulate the correct XQuery expression (/na/rhs/item, /na/lhs/item) from this
information. We call this information, context.

We propose a novel context-preserving XQuery fusion for when an XML document
is modeled as an ordered tree. Our basic idea is to lift dynamic operations on XML store
to the static level of expression. Our main contributions can be summarized as follows.

– To keep track of context, we carefully design the context representation of XQuery
expressions to reflect the properties of element constructions. This enable us to stat-
ically emulate newly created XML fragments — created by element constructors
— in the XML store.

– We develop a context-preserving fusion for XQuery by partial evaluation and prove
the correctness of our fusion. Our fusion introduces an annotated XQuery, which
is an XQuery expression with the context as an annotation, to preserve the context
of the input expressions even when the element constructors are eliminated during
our fusion transformation.

The paper proceeds as follows. Section 2 reviews the XQuery semantics and introduces
value equivalent expressions to show our fusion concisely. In Section 3, we carefully
design the context of XQuery expressions by extending Dewey code and its order to
suite the semantics of XQuery expressions. Section 4 presents the algorithm of context-
preserving fusion using the extended Dewey code and its order. We discuss related work
in Section 5 and conclude the paper in Section 6.

2 XQuery Semantics

To show our XQuery fusion concisely and that it is semantics-preserving, we briefly
review the semantics of the core part of XQuery that is based on [12]. Our target XQuery
expressions, a subset of XQuery, are as follows.

e ::= $v | (e, e, ..., e) | () | e/α::τ | for $v in e return e
| let $v := e return e | 〈t〉e〈/t〉
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A query expression can be a variable $v, a sequence expression (e1, . . . , en) where
each subexpression ei is not a sequence expression, an empty sequence (), a location
step expression e/α::τ where α is an axis which can be child, self, parent (..), and τ is a
name test which can be a tag name t or ∗ (an arbitrary tag), a “for”-expression, a “let”-
expression, or an element construction expression 〈t〉e〈/t〉. Since we focus on newly
constructed trees that consist of XML nodes, to simplify the presentation, a constant c
is represented by “empty-element tags” like 〈c /〉. Although constants themselves are
not nodes, they become a (text) node when they occur in an element constructor. For
example, a constant “abc” is not a node i.e., this constant does not populate any ordered
trees. On the other hand, consider 〈a〉“abc”〈/a〉; in this expression, the constant “abc” is
a text node because the constant occurs in the element construction of 〈a〉(...)〈/a〉, i.e.,
this constant is a child node of the element node of a. We could define the semantics
of constants with such behavior, but this would make our presentation unnecessarily
complex.

2.1 Sequence: Data Model in XQuery

The data model of XQuery is sequences [23]. A sequence is an ordered collection of
zero or more items. One important characteristic of the data model is that sequences
are flat in the sense that a sequence never contains other sequences; if sequences are
combined, the result is always a flattened sequence. In addition, there is no distinction
between an item and a singleton sequence containing that item, i.e., we often write [a]
as a or vice versa.

We denote the empty sequence as [], non-empty sequences for example as [a,b,c],
and the concatenation of two sequences s1 and s2 as s1 ++s2. We use ∈ for sequence
containment in addition to set containment and [d|d ∈ D ∧ φ(d)] for a sequence of d
obtained by selecting them from D, all items that satisfy φ(d).

2.2 Dewey Order Encoding and XML Store

An XML document is modeled as an ordered tree. Document order in an XML docu-
ment is a total order defined over the nodes in a tree, and this order is determined by
a preorder traversal of the tree. This order plays an important role in the semantics of
XQuery, especially in node creation and axis accesses. An XQuery expression is evalu-
ated against an XML store which contains XML fragments with their document order.
This store contains fragments that are created as intermediate results, in addition to the
initial XML documents [12].

Dewey order encoding of XML nodes is a lossless representation of a position in
the document order [15,21]. In Dewey order, each node is represented by a path from
a root using ‘.’ : (1) a root node is encoded by r ∈ R, where R is a countably infinite
set of special codes; (2) say that a node a is the n-th child of a node b; then the Dewey
code of a, did(a), is did(b).n. The fact that the relative order of nodes in distinct trees
is implementation-dependent leads to nondeterminism in XQuery. Therefore, if two
Dewey codes begin with different codes, it implies that the two nodes are in different
ordered trees. By using Dewey order encoding, one can easily compute axis relations.
For example, ancestor(d1, d2) holds when d1 has the form d2.n1.n2. · · · .nk.
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Let T be a set of symbols for element names, and D be a countably infinite set of
Dewey codes on which a strict partial order < and the equality = is defined.

Definition 1 (Simple XML Store). A simple XML store is a pair St = (D, ν), where
(a) D is a finite subset of D and (b) ν is a partial function ν : D #→ T that maps a
Dewey code to its element name.

For instance, the store of the source S in Figure 1 is defined as St0 = (D0, ν0),
where D0 = {s, s.1, s.1.1, s.1.1.1, s.1.2, s.1.2.1, s.2, s.2.1, s.2.1.1, s.2.2, s.2.2.1} and
ν0(s) = na, ν0(s.1) = lhs, ν0(s.2) = rhs, ν0(s.1.1) = ν0(s.1.2) = ν0(s.2.1) =
ν0(s.2.2) = item, ν0(s.1.1.1) = a, ν0(s.1.2.1) = b, ν0(s.2.1.1) = c, ν0(s.2.2.1) =
d. In what follows, we will refer to a simple XML store as an XML store. We de-
note the disjoint union of two stores St1 and St2 as St1 ∪ St2 (combining D and ν
independently).

Definition 2 (Value Equivalence, ≡(St1,St2)). Given two stores St1, St2, and two
nodes, d1 in St1 and d2 in St2, d1 and d2 are said to be value equal, denoted as
d1 ≡(St1,St2) d2, if d1 and d2 refer to two isomorphic trees, i.e., there is a one-to-one
function h : D1 #→ D2 with D1 = {d|d ∈ DSt1 ∧ ancestor-or-self(d, d1)}
and D2 = {d|d ∈ DSt2 ∧ ancestor-or-self(d, d2)}, such that for each d and
d′ ∈ D1, it holds that (1) h(d) ∈ D2, (2) ν(d) = ν(h(d)), and (3) d < d′ iff
h(d) < h(d′). This definition can be extended to the value equivalence over two se-
quences, straightforwardly.

2.3 Formal Semantics

The formal semantics of XQuery established by W3C is defined over XQuery Core,
which is a subset of XQuery [24]. While XQuery Core does not have a location step
expression, the reason why our target has is that (1) evaluating path expressions is more
efficient than “for”-expressions [8,19], although theoretically, it can be translated into
“for”-expressions; and (2) previous work on XQuery dealt with location steps [14,10,9].

Figure 2 shows the semantics of our target XQuery using a set of inference rules.
In these rules, a judgment of the form St ;En � e ⇒ (St ′, s) indicates that the eval-
uation of expression e against the store St and environment En (mapping variables to
values) results in a (new) store St ′ and value s. The semantics of sequence expressions,
“let”-expressions and variables are straightforward. The semantics of a “for”-expression
(for $v in e1 return e2) is the concatenation of the results of e2 evaluated N times
for each item in the result of e1 but with v in the environment bound to the item in ques-
tion in the result of e1, where N is the length of the sequence of the result of e1. The
semantics of the element constructor (〈t〉e〈/t〉) and location step (e/α :: τ ) are worth
futher attention because they are evaluated using the document order. The semantics of
〈t〉e〈/t〉 is as follows. A new store St2 that contains a new root node having t as its
name and having contents is created. The contents are the value-equivalent sequence
to the result of e. St2 is added to the input store, and the newly created root node is
returned. The semantics of e/α :: τ is as follows. First, e is evaluated. Then, for each
node di in its result, construct a sequence si such that for each content d′i in si, d′i is
contained in St0, and α-relation holds for di and d′i, and the element name of d′i is
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St ;En � () ⇒ (St , [])
St ;En � e1 ⇒ (St1, s1) · · · StN−1;En � eN ⇒ (StN , sN )

St ; En � (e1, . . . , eN ) ⇒ (StN , s1 ++ . . .++sN)

St ;En � e1 ⇒ (St0, [d1, · · · , dN ])
St0;En + {$v �→ d1} � e2 ⇒ (St1, s1)

· · ·
StN−1;En + {$v �→ dN} � e2 ⇒ (StN , sN)

St ;En � for $v in e1 return e2 ⇒ (StN , s1 ++ · · ·++sN)

St ; En � e1 ⇒ (St1, s1)
St1;En + {$v �→ s1} � e2 ⇒ (St2, s2)

St ,En � let $v := e1 return e2 ⇒ (St2, s2)
St ;En � $v ⇒ (St ,En($v))

St ;En � e⇒ (St1, s1) a fresh r ∈ R
d ∈ DSt2 ⇒ d begins with r νSt2(r) = t

ddoSt2 [d
′|d′ ∈ DSt2 ∧ child(d′, r)] = s2 s1 ≡(St1,St2) s2

St ; En � 〈t〉e〈/t〉 ⇒ (St ∪ St2, [r])

St ;En � e⇒ (St0, [d1, · · · , dN ])
[d′1|d′1 ∈ DSt0 ∧ α(d′1, d1) ∧ νSt0(d

′
1) = τ ] = s1

· · ·
[d′N |d′N ∈ DSt0 ∧ α(d′N , dN ) ∧ νSt0(d′N) = τ ] = sm

St ;En � e/α :: τ ⇒ (St0,ddoSt0(s1 ++ · · ·++sm))

Fig. 2. Semantics of XQuery using the simple XML store

τ . The results of these sequences are concatenated. Finally, this sequence is sorted in
the document order and duplicates are removed from it because an axis access by “/”
requires sorting and duplicate elimination in the document order. This sorting without
duplicates is performed by using the function ddo (distinct-doc-order).

Value equivalent expressions are introduced in order to prove the correctness of our
fusion later.

Definition 3 (Value Equivalent Expressions). Given a store St , an environment En ,
and two XQuery expressions e1 and e2, e1 and e2 are said to be value equivalent, if
the following conditions hold; St ;En � e1 ⇒ (St1, s1), St ;En � e2 ⇒ (St2, s2) and
s1 ≡(St1,St2) s2.

3 Emulating XML Stores with Extended Dewey Codes

The problem of the existing fusion transformation is that the naive elimination of el-
ement constructors during the transformation does not preserve the context. To give a
correct fusion transformation, we should be able to emulate (keep track of) the con-
text information (i.e., XML store) during the static transformation when an element is
constructed. Our idea is to lift dynamic operations on XML store to the static level of
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expression, and it is based on the observation that Dewey order encoding of the result
of the evaluation of an expression corresponds well to the structure of the expression.

3.1 XML Store Emulation on Expression

First, we show an important property for element constructors in terms of Dewey code:
The Dewey order encoding of the result of an evaluation of an expression corresponds
to the structure of the expression. This enables us to associate the static transformation
world with the dynamic evaluation world by using Dewey code.

Given an element construction 〈t〉e〈/t〉, we denote its relation with its result by
〈t〉e〈/t〉 ∼ r if there exist St ,En,St ′ such that St ;En � 〈t〉e〈/t〉 ⇒ (St ′, r).

Property 1 (Dewey code correspondence in element construction). For an element con-
struction, 〈t〉e〈/t〉, the following properties hold.

(i) 〈t〉e〈/t〉 ∼ r, where r ∈ R and r is not in the input store.
(ii) 〈t〉e〈/t〉 ∼ r and e ∼ [r1, · · · , rn] imply ri = r.i.
(iii) For 〈t〉(e1, e2)〈/t〉, (e1, e2) ∼ [r1, r2] and d1 ∈ r1 and d2 ∈ r2 imply d1 < d2.
(iv) 〈t1〉e1〈/t1〉 ∼ r1 and 〈t2〉e2〈/t2〉 ∼ r2 imply r1 �= r2, where r1, r2 ∈ R.

The above correspondence property hints that we should associate each expression
with a Dewey code, so that these codes can be used to keep track of context in-
formation during the fusion transformation. For instance, for the element construc-
tion 〈t〉($v/c, $v/a)〈/t〉, we may give the following Dewey order encoding to the
expression:

(〈t〉($v/c)r.1, ($v/a)r.2〈/t〉)r

where ed denotes that d is the Dewey order encoding of the expression e (we will define
this formally in Section 4.)

One difficulty, however, remains in associating Dewey codes to expressions to keep
the context information: how do we deal with the “for” (“let”) expressions in XQuery?
We have to extend Dewey code for this purpose.

3.2 Extended Dewey Code

To be able to associate XQuery expressions with suitable context information, we pro-
pose an extended Dewey code (xD), defined by

d̂ ::= n x̂ | ε | [d̂ , d̂ , . . . , d̂ ]
x̂ ::= ε | ”.” d̂ | ”#” d̂

where n ∈ (R ∪ I) with R being a set of special codes3 and I being a set of integers.
It has a hierarchical structure, the same as in XQuery expressions, because xD is an
annotation for an XQuery expression. Here, the underlined parts are our extension, and
ε is used for a termination, so, every xD ends with ε. Intuitively, the form of xD is

3 The special code is used to exploit Property 1 (i).
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<a>
  ($u/c, $u/d)
</a>

a

c c... d d...

[[$u/c]] [[$u/d]]

<a>
  $u/c
</a>

a

c c...

[[$u/c]]

<a>
  for $u in e 
  return ($u/c, $u/d)
</a>

c c... d d... c c... d d......

a
where [[e]] = [v1,...,vN] 

[[v1/c]] [[v1/d]] [[vN/c]] [[vN/d]] 

(a) (b) (c)

Fig. 3. A simple example for the document order in element creations

as follows. ε is annotated to an expression, which does not occur inside an element
constructor. A sequence construction has the form of sequence4 is used. The delimiter
“.”, which plays the same role as in the original Dewey codes, is used to represent
parent-child relationships.

The delimiter “#”, which is our extension, represents the association of a “return”
clause with a “for” or “let” expression and is used to resolve sortings with duplicate
elimination for multiple “for” or “let” expressions that are derived from identical “for”
or “let” expressions. Figure 3 (c) shows how an element is constructed with the “for”
expression (Q1).

Q1: 〈a〉 for $u in e return ($u/c, $u/d)〈/a〉

To show the idea behind the design of our delimiter “#”, let us consider the fusion
transformation for the expression ((Q1)/d,(Q1)/c)/ self :: ∗. For the expressions
(Q1)/d and (Q1)/c, we can get the value equivalent expressions (Q2) and (Q3),
respectively, from the XQuery semantics.

Q2: for $u in e return $u/d

Q3: for $u in e return $u/c

Now consider the following expression (Q4).

Q4: (((Q2)), ((Q3)))/ self :: ∗

As described in the previous section, since axis access by “/” requires sorting and du-
plicate elimination in document order, the correct transformation of (Q4) should result
in (Q5), in which two “for” expressions (Q2) and (Q3) are merged.

4 This sequence is the same as the data model of XQuery. So, it is flattened, and singleton and
its element cannot be distinguished.
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Q5: for $u in e return ($u/c, $u/d)

Here, we can capture the order of the two expressions in the “return” expressions by
using “#”. Thus, by encoding (Q1) into

(〈a〉(for $u in e return ($v/c, $v/d))r.1#[1,2]〈/a〉)r

and encoding (Q2) and (Q3) into

(for $u in e return $v/d)r.1#2 and (for $u in e return $v/c)r.1#1

we can apply the transformation to (Q5) (See Section 4), thanks to sorting on subse-
quences produced by the “for” expressions.

Returning to our extend Dewey codes, we can introduce the context position of sort-
ing and duplicate elimination over d̂ in a similar way to the original Dewey code (See
[13] for details). Therefore, we can use the functions dc sort and remove dup for sorting
and duplicate elimination, respectively. The difference from the sorting of the original
Dewey code is in merging two extended codes sharing the same prefix until they reach
#. For instance, sorting [r.1#2, r.1#1] results in [r.1#[1, 2]].

4 XQuery Fusion

This section describes our algorithm for automatic fusion of XQuery expressions so
that unnecessary element constructions can be correctly eliminated. Basically, we will
focus on fusing the following subexpression,

e/α::τ

so that unnecessary element constructions in the query expression in e are eliminated
under the context of “selection” by α::τ .

We add annotations of the extended Dewey codes to the XQuery expression
(Figure 4). We sometimes omit the annotation if it is clear from the context. To sim-
plify our presentation, we will assume that there is a global environment for storing all
annotated expressions during our fusion transformation, and a function

getExpGlobal(r)

that can be used to extract the expression whose code is r from the global environment.

ed̂ ::= $v d̂ | (ed̂ , ed̂ , ..., ed̂)d̂ | (ed̂/α::τ )d̂ | (for $v in ed̂ return ed̂)d̂

| (let $v := ed̂ return ed̂)d̂ | (〈t〉ed̂〈/t〉)d̂

Fig. 4. Annotated XQuery
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peval () Θ = ()[]

peval $v Θ =
{
Θ($v) if $v is letvar
$v otherwise

(PEVR)

peval (e1, ..., eN ) Θ = let e′i = peval ei Θ
di = extract dc(e′i)

in flatten ((e′1, ..., e′N )[d1,..,dN ])

(PESEQ)

peval (e/ child :: τ ) Θ = Fc (peval e Θ) τ (PECSTP)

peval (e/ self :: τ ) Θ = Fs (peval e Θ) τ (PESSTP)

peval (e/parent :: τ ) Θ = Fp (peval e Θ) τ (PEPSTP)

peval (let $v := e1 return e2) Θ = let e′1 = peval e1 Θ
e′2 = peval e2 (Θ ∪ {$v �→ (e′1, let)})

in e′2 (PELET)

peval (for $v in e1 return e2) Θ = let e′1 = peval e1 Θ
e′2 = peval e2 (Θ ∪ {$v �→ (e′1, for)})
d = extract dc e′2

in (for $v in e′1 return e′2)#d (PEFOR)

peval (〈t〉e〈/t〉) Θ = let e′ = peval e Θ
a fresh r ∈ R

in dc assign 〈t〉e′〈/t〉 r

(PEEC)

Fig. 5. Fusion by partial evaluation

4.1 Fusion Transformation

Figure 5 summarizes our fusion transformation on XQuery expressions. Fusion is de-
fined by a partial evaluation function peval:

peval :: e→ Θ → ed̂

which accepts an XQuery expression and an environment Θ (mapping variables bound
by “let” or “for” to expressions):

Θ :: Var → (ed̂ , let | for)

and produces a more efficient XQuery expression in which subexpressions are anno-
tated by the extended Dewey codes. As will be seen later, the annotation is used to keep
track of information of the order and the context among expressions, and it plays an
important role in our fusion transformation. When the fusion transformation is finished,
we can ignore all the annotations and get a normal XQuery expression as the final result.

The definition of peval in Figure 5 is straightforward. For a variable, if it is
bounded by the outside “let”, we retrieve its corresponding expression from the en-
vironment; otherwise, it must be a variable bound by the outside “for”, and we leave
it as is. For a sequence expression, we partially evaluate each element expression and
group them into a new sequence annotated with Dewey codes from the results of
each element expression. Note that we use flatten to remove nested sequences (e.g.,
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dc assign () r = ()[]

dc assign $v r = $vr

dc assign (e/c) r = (e/c)r (DCSTP)

dc assign (e1, . . . , en) r = let r0 = r
e′i = dc assign ei ri−1

ri = succ(extract dc e′i)
in (e1, . . . , en)[r1,...,rn]

(DCPSEQ)

dc assign (<t>e</t>) r = let e′ = dc assign ei r.1
in <t>e′</t>r

(DCPEC)

dc assign (for $v in e0 return e) r = let e′ = dc assign e 1
bs = extract dc e′

in (for $v in e0 return e′)r#bs

(DCPFOR)

Fig. 6. Dewey code propagation

flatten((er1
11, e

r2
12)

[r1,r2], er3
3 )[[r1,r2],r3] = (er1

11, e
r2
12, e

r3
3 )[r1,r2,r3]), and extract dc to get

annotated Dewey code from an expression (i.e., extract dc ed = d). For a location
step expression e/α::τ , we perform fusion transformation to eliminate unnecessary
element constructions in e after partially evaluating e. We will discuss the definitions
of the three important fusion functions Fc, Fs, and Fp, later. For a “let” expression,
we first partially evaluate the expression e1, and then partially evaluate e2 with an
updated environment and return it as the result. We do similarly for a “for” expression
except that we finally produce a new “for” expression by gluing partially evaluated
results together. For an element construction, after partially evaluating its content
expression e into e′, we create a new Dewey code for annotating this element and
propagate this Dewey code information to all subexpressions in e′ (with the function
dc assign) so that we can access (recover) this element constructor when processing
the subexpressions of e′. It is this trick that helps to solve the problem of e2 ◦ em in the
Introduction.

Dewey Code Propagation. Propagating the Dewey code of an element construction
to its subexpressions plays an important role in constructing our fusion rules, described
later, for correct fusion transformation.

Figure 6 defines a function dc assign e− r:

dc assign :: ed̂ → d̂ → ed̂

which is to propagate the Dewey code r into an annotated expression e by assigning
proper new Dewey codes to e and its subexpressions. In what follows, we will explain
some of the important equations in this definition. Note that we write e− to denote that
the Dewey code of e is “don’t care”.

The equation (DCPSEQ) horizontally numbers sequence expressions. The function
succ is used to enforce numberings using a strictly greater value relative to previously
processed expressions (e.g., succ r.1 = r.2). (DCPEC) introduces a vertical structure
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Fc :: ed̂ → τ → ed̂

Fc e
d τ =

{
remove dup (e′1, ..., e′N) if dc sort succeeds
(ed/ child :: τ )ε otherwise

where (e′1, ..., e
′
N ) = dc sort(filter(equal to τ )(get children ed)) (CFUSION)

Fs :: ed̂ → τ → ed̂

Fs e
d τ =

{
remove dup (e′1, ..., e′N) if dc sort succeeds
(ed/ self :: τ )ε otherwise

where (e′1, ..., e
′
N) = dc sort(filter(equal to τ )(get self ed)) (SFUSION)

Fp :: ed̂ → τ → ed̂

Fp e
d τ =

{
remove dup (e′1, ..., e′N) if dc sort succeeds
(ed/parent :: τ )ε otherwise

where (e′1, ..., e
′
N) = dc sort(filter(equal to τ )(get parent ed)) (PFUSION)

get children :: ed̂ → ed̂

get children $v = ($v/ child :: ∗)ε get children ()[] = ()[]

get children (e1, ..., eN ) = flatten ((e′1, ..., e
′
N)[d1,..,dN ])

where e′i = get children ei di = extract dc(e′i) (GCSEQ)

get children (e/ child :: en) = (e/ child :: en/ child :: ∗)ε

get children (〈en〉ed〈/en〉) = ed (GCEC)

get children (for $v in e return (e1, ..., eN))r#[b1,...,bN ]

=

⎛⎜⎜⎝
for $v in e return (e11, e12, . . . , e1n1 ,

e21, e22, . . . , e2n2 ,
· · ·
eN1, eN2, . . . , eNnn)

⎞⎟⎟⎠
r′

where (ei1, . . . , eini) = get children ei rij = extract dc e′ij
r′ = r#[b1.r11, . . . , b1.r1n1 ,

b2.r21, . . . , b2.r2n2 ,
...
bN .rN1, . . . , bN .rNnn ]

(GCFOR)

get self, get parent :: ed̂ → ed̂

get self er = er get parent er.n = getExpGlobal(r)

Fig. 7. Fusion rules for three kinds of axis
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to the numbering by initiating dc assign for the subexpression e by adding “.1” to
its second parameter. The equations that needs additional attention are (DCSTP) and
(DCPFOR). In (DCSTP), it may seem unusual for dc assign not to recurse subexpres-
sion e. However, considering that the path expression itself does not introduce an addi-
tional parent-child relationship and that dc assign always handles expressions already
partially evaluated expressions, there is no additional chance to simplify the path ex-
pression further by using the Dewey code allocated to the subexpression. In particular,
the characteristic equation (DCPFOR), which introduces # structure to the Dewey code,
numbers the expression e at the return clause. Note that the second parameter of the
recursive call for e is reset to 1. bs that reflects the horizontal structure produced by
the return clause is combined with the # sign to produce r#bs as the top level code
allocated to the “for” expression.

Lemma 1. From the definition of dc assign, given an XQuery expression e, the ex-
tended Dewey code assigned by dc assign e− r satisfies Property 1.

Fusion Rules. Our fusion transformation on e/α::τ is based on the three fusion rules
(functions) Fc, Fs and Fp in Figure 7 that respectively correspond to three axis types.
The basic procedure is as follows:

1. Extract (get) subexpressions according to the axis α;
2. Select those that produce nodes whose name is equal to the tag name τ by using a

filter;
3. Sort the remaining subexpressions according to their Dewey codes;
4. If the above sort step succeeds, remove the duplicated subexpressions and return its

sequence as the result; otherwise, end fusion.

More concretely, let us consider the definition of Fc. We use get children e to get a
sequence of subexpressions that contribute to producing children of the XML document
that can be obtained by evaluating e, and use the filter(equal to τ) function to keep
those that are equal to τ , where filter p xs = [x | x← xs , p x]. The resulting sequence
expression is sorted according to their Dewey codes by dc sort. This sorting may fail
since not all of the Dewey codes are comparable. If the sorting succeeds, we return a
sequence expression by removing all duplicated element subexpressions; otherwise, we
end fusion by returning the original expression e/ child :: τ .

Our fusion transformation always terminates and is correct, as summarized by the
following theorem.

Theorem 1 (Correctness of Fusion). For an XQuery expression e, if peval e {} =
e′d

′
then e and e′ are value equivalent expressions.

Proof. (sketch): It is sufficient to show the correctness for location step expressions.
For other expressions, it is straightforward to show the correctness by using structural
induction on the expressions. For location step expressions, the correctness is implied
by Lemma 1 and a property of the sorting without duplicates on xD (See [13] for
details) together with the semantics of the location step expressions.
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Simple Example. For e1 ◦ em described in the introduction, our fusion function peval
works as follows.

peval e1 ◦ em {}
� {(PECSTP); (PELET); (PEEC)}

let $t := 〈sa〉{( 〈lhs〉/na/rhs/item
r.1.1〈/lhs〉r.1,

〈rhs〉/na/lhs/itemr.2.1〈/rhs〉r.2)[r.1,r.2]}〈/sa〉r
return let $v := ($t/rhs, $t/lhs) return $v/item

� {(PELET); (PESEQ); (PECSTP); (PECSTP)}
let $v := ( 〈rhs〉/na/lhs/item

r.2.1〈/rhs〉r.2,
〈lhs〉/na/rhs/item

r.1.1〈/lhs〉r.1)[r.2,r.1]

return $v/item
� {(PECSTP)}

remove dup (dc sort (/na/lhs/item
r.2.1

, /na/rhs/item
r.1.1))

→
(/na/rhs/item

r.1.1
, /na/lhs/item

r.2.1)

For e2 ◦em, which is also from the introduction, peval performs the correct transforma-
tion.

peval e2 ◦ em {}
� {(PELET); (PESEQ); (PECSTP); (PECSTP)}

let $t := 〈sa〉{( 〈lhs〉/na/rhs/item
r.1.1〈/lhs〉r.1,

〈rhs〉/na/lhs/itemr.2.1〈/rhs〉r.2)[r.1,r.2]}〈/sa〉r
return let $v := $t/rhs/item return $v/..

� {(PELET); (PECSTP); (PEPSTP); (PEVR)}
/na/lhs/item

r.2.1
/..

� {(PFUSION)}
〈rhs〉/na/lhs/itemr.2.1〈/rhs〉r.2

5 Related Work

There are many studies on rewriting XQueries into other XQueries [11,18,14,20]. The
study most related to ours in the sense of eliminating redundant expressions is [11].
The authors of [11] proposed a rewriting optimization that replaces expressions which
return empty sequences with () by using an emptiness detection based on static analysis.
In contrast, our rewriting eliminates redundant element constructors as well.

Koch [14] and Page et al. [18] introduced some classes for composite XQuery and
proposed XQuery-to-XQuery transformations over the classes of XQuery they defined.
Their target queries don’t contain newly constructed nodes. In the real world, how-
ever, practical expressions such as schema mapping always return newly constructed
elements.

Tatarinov et al. proposed an efficient query reformulation in data integration sys-
tems, in which XML and XQuery are used for the data model and schema mapping,
respectively [20]. In this system, the composition of the element construction is typical
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because the schema mapping that maps one element to an other element involves el-
ement construction. They treat the actual reformulation algorithm as a black box. Our
work attempts to open the box and exploit some of its properties.

Fusion has been extensively studied in the functional programming (FP) commu-
nity [22,2,7,17]. Referentially transparent FP languages allow naive fusion rules (F),
as we saw in the Introduction, if the element constructor behaves like the constructors
in FP. However, since the element constructor introduces a new node identity in each
evaluation, thereby breaking the referential transparency, it is not directly applicable. It
would be interesting to promote the identity as a first class object by using the technique
described in [16], but our focus here is to perform XQuery-to-XQuery transformations,
and the node identity is not a first class object in XQuery.

6 Conclusion

We proposed a new rewriting technique for XQuery fusion to eliminate unnecessary
element constructions in the expressions while preserving the document order. The
prominent feature of our framework is its static emulation of the XML store and as-
signment of extended Dewey codes to the expressions. The result is easy construction
of correct fusion transformations.

We implemented a prototype system in Objective Caml. It consists of about 4600
lines of code. Currently it works stand-alone by reading XQuery expressions from stan-
dard input and produces rewritten XQueries to standard outputs. The system is available
at http://www.biglab.org/fusion.

We believe that our approach can be generalized straightforwardly to handle the other
axes including “transitive” axes like ancestor.

Acknowledgments. We would like to thank the anonymous reviewers for their exten-
sive and extremely helpful comments. Part of this work was supported by Grant-in-Aid
for Scientific Research No. 22300012, No. 20500043, and No. 20700035.
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Abstract. Automatic garbage collection is currently adopted by many
object-oriented programming systems. Among the many variants, a mark-
compact garbage collector offers high space efficiency and cheap object
allocation, but suffers from poor virtual memory interactions. It needs
to linearly scan through the entire available heap, triggering many page
faults which may lead to excessively long collection time. We propose
building an object reference index while tracing the heap, which in the
following stages can be used to directly locate the live objects. As the
dead objects are not touched, the collection time becomes dependent only
on the size of the live data set. We have implemented a prototype in Jikes
RVM, which shows promising results with the SPECjvm98 benchmarks.

Keywords: Index, Virtual Memory, Compacting Garbage Collection.

1 Introduction

In order to avoid the errors of manual memory management, the idea of a garbage
collector to automatically reclaim dead objects was introduced [1]. But to pre-
cisely determine which objects will no longer be used by the program is undecid-
able. A somewhat conservative approach was therefore adopted which identified
reachable objects by tracing the heap from the program roots [1], and many
improvements followed, including some that took advantage of the presence or
work around the limits of virtual memory.

Theoretically there is an unlimited address space in a virtual memory system.
However, as the working set of a program increases its span in the virtual space,
live objects mingle with dead objects and pages gradually become sparsely oc-
cupied (by live objects). Ultimately something must be done, otherwise many
of the pages will be pushed to secondary storage which leads to frequent swaps
[19]. Traditionally a free-list is used to mitigate the problem, unfortunately it
would create memory fragments. So garbage collectors that move live objects
together in space were devised and became popular.

There are two major kinds of moving garbage collectors: semi-space (also
known as copying collector) and mark-compact. The former [14] is faster, but
it needs to reserve half of available space for copying live objects. The latter [2]
does not need to reserve any space, but takes much more time to do a collection.
There are two reasons for the longer collection time:

K. Ueda (Ed.): APLAS 2010, LNCS 6461, pp. 271–286, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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– Compaction needs multiple passes over the objects, while copying takes only
one pass.

– Some phases1 of compaction will walk the entire available heap, including
garbage objects, but semi-space collectors only need to touch2 the live objects
and hence their collection work is proportional only to the amount of live
data [7].

Much research has been conducted to reduce the number of passes required by
compaction, such as [3], but to the best of our knowledge nearly no attention has
been paid to the second issue. Regarding this issue, we note that, as indicated in
[17], unreachable objects tend to cluster together. In our experiments, the size of
some clusters even exceeded that of a page. In the presence of virtual memory,
such pages with only garbage are never or rarely visited and therefore should
be evicted out of the main storage. To touch them will trigger many page faults
hence prolong the operation time.

In this paper we propose an improvement to compacting collectors, called
an index-compact garbage collector. It builds an address (index) table during
marking. This index table contains all the references to the live objects in the
available heap in address order. After all the live objects have been visited, this
index is sorted by the values of the references to make it address ordered. In
the following phases of garbage collection, the index is used to efficiently locate
live objects for pointer adjustment and object compaction. Because the index is
sorted, the corresponding movements of objects will not cause them to overlap
and data will not be lost. During these phases, the garbage objects are never
touched, which substantially reduces the working set of the garbage collector.
We have implemented a prototype based on this idea on JikesRVM [12] and the
experiment clearly showed that the collection time depends only on the size of
live objects for the benchmarks tested.

The improvement does not come without a cost—we need at least extra space
for the index and extra time to sort it. In the following, we expound on the
overhead incurred by our algorithm and suggest several possible methods to
mitigate its side effects. Considering that almost all the enterprise garbage col-
lected systems are generational[9], we also give a separate discussion on how
to build generations using our algorithm. Compared with copying, compaction
saves resources but requires multiple phases to complete its work, so it will be
interesting if we can somehow combine the two to achieve a balance between
space and time.

Our contributions can be summarized as follows.

– We put forward the case that reducing page faults should be one of the main
tasks of garbage collectors in a virtual memory based system.

– We propose the index-compact garbage collector which can avoid touching
the garbage while compacting the working heap. The result is reduced page
swaps, and the collection time can be made proportional only to the amount

1 If a process needs to visit the heap from the start again, we call that a phase.
2 An object is touched if any bytes in this object is visited.
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of live objects. This mechanism can be even more effective if the collector is
generational because of the higher infant mortality of young spaces.

– We have implemented a preliminary version of our collector in JikesRVM.
The experiment behaved as expected and showed a collection time that is
correlated with the size of live objects.

– We also suggest several techniques, such as cluster indexing and page remap-
ping, that can further extend the proposed idea and improve the performance
of the proposed collector. A fine-grain blending of copying and compacting
collectors is discussed, which can achieve a balance between time and space
costs.

The remainder of this paper is organized as follows. Sec. 2 provides a comparison
between copying and compacting garbage collectors and gives the motivation
for constructing an index for compacting collectors. Sec. 3 presents the basic
design and implementation of our collector. Sec. 4 describes the experimental
environment and reports the experimental results. Sec. 5 gives a discussion of
the overheads and extensions of our algorithm. Related works are overviewed in
Sec. 6. We summarize our contributions and point out possible future work in
Sec. 7.

2 Comparison and Motivation

Semi-space collectors reserve half of the available heap and copy every reach-
able object to that space. Because the reserved space contains no object at the
beginning of collection, there is no need to consider whether different objects
may overlap or not. The active object tree is traced on the fly and every reached
object is copied to the reserved half heap. After the collection, the live objects
align in the new space by breadth-first order regardless of the addresses they
are originally stored at. The situation of mark-compact collectors is different:
live objects must be compacted in address order, or different objects may be
moved to the same place and data will be damaged. We illustrate this situation
in Fig. 1.

In this figure, garbage objects are colored white, and live objects grey. Assume
at the moment the root points at object C which is now marked and needs to be
relocated. If this is a copying collector, this object will be immediately copied to
the new space, and its header will store a forward pointer so that the following
pointers to this object can be updated. But in a compacting garbage collector,
no extra space is reserved, and so this object must be moved to the start of the

Fig. 1. The Traced Heap
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heap. If we do so, however, C will land right on the live object A, damaging
its content. Therefore, a compacting garbage collector must first linearly scan
through the whole available heap for live objects and mark them. Then beginning
from the start of the heap, the collector walks through the objects (including
the dead ones), and when encountering a live one, say A, it relocates the object
to the start of the heap; and similarly for the following marked objects, which
are, B, C and D.

Touching garbage objects can be detrimental, since they mainly reside on
secondary storage, and this might trigger a page fault. It also unnecessarily
enlarges the program’s working set, pollutes the cache memory with the garbage,
and leads to mass misses as a result. In view of this undesirable situation, we
need a mechanism to keep track of live objects in address order after tracing the
entire heap. In this paper we propose such a mechanism which employs an index
table to store every live object reference.

3 Index-Compact Garbage Collector

3.1 Design

Traditionally a compacting garbage collector reclaims memory in four phases:

1. Compute the root set of the running program and push them into a FIFO
queue. To start the tracing, pop an object reference out of the queue and
completely scan it for pointers. The objects referred to by any pointers are
marked and pushed into the queue. This operation continues until the queue
becomes empty, at which time all the reachable objects have been marked
as alive.

2. Scan linearly through the available heap where objects are allocated and
calculate the forward addresses for the marked objects by adding up their
sizes to the heap’s start address.

3. Trace the active program tree again and update the pointers to the forward
addresses.

4. Walk sequentially through the heap and move the marked objects to their
forward addresses.

It can be seen that at least phases 2 and 4 need to touch (specifically to check
the mark bit of) the garbage objects because there is no auxiliary information
on how to locate just the live objects. If we can create and maintain a global
data structure to store this information, we can skip over the garbage objects
completely.

Fig. 2 shows an address index table where each entry points at the start
address of an active object. In phases 2, 3 and 4, this index can be used to
directly locate the live objects. With this index in place, a compacting garbage
collector works as follows:
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Fig. 2. The Index-Compact Garbage Collector

1. Compute the root set, and push all the object references into the index
and iteratively trace them. Note that this time the object references are
not popped out of the index. After completion, the index is sorted by the
reference address values of the items.

2. Calculate the forward addresses using this index. Touching of garbage is
therefore avoided.

3. Update the pointers of objects referred to by items in the index to their
forward addresses.

4. Pop every item in the index and move the object pointed by it to the forward
address.

The above descriptions shows that the index stores only the references to the
reached objects, thus the garbage will never be touched. Consequently the num-
ber of page faults will be reduced. In this paper, we present a simple algorithm
for our idea for the sake of understanding, and leave any enhancements which
we will discuss in the following paragraphs to future implementations.

3.2 Implementation

Where to store the index is an issue. Since the index stores all the pointers to
live objects, so it must be efficient. We cannot use the Java classes to implement
a linked list for this purpose, because that will bring in extra object headers. In
Java [30] this overhead comprises two words, which is too costly and will triple
the overall size of the index.

We notice that every compacting garbage collector has some auxiliary data
structure, such as the trace queue, which must be stored somewhere in the heap.
The size of these data is largely unpredictable, and thus in real-life platforms
the address space allocated for them is extremely large in order to cope with any
unexpected cases. Because they are meta data there is no header to consume
extra spaces. We therefore store the index in such an area.

Since this area has other usages with different data intersecting with each
other, some data structure must be put in place to differentiate them. In this
paper, we partition this area into 4KB blocks (whose size is identical to the page
adopted by most current computer systems) and store two pointers (next and
pre) at the end of each block allocated for the index. Inside each block the object
references are stored in array style. Once a block is exhausted, we allocate a new
block, and set up the next and pre pointers of the two blocks. This is depicted
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Fig. 3. The Structure of Overall Index

in Fig. 3. So for every block only two pointers are maintained, corresponding to
a space overhead of less than 0.1%.

The index also eliminates the need of building a tracing queue and marking.
When a garbage collection is triggered due to memory exhaustion, the root set
is scanned and their object references are pushed into the index. We create an
iterator to point to its first item. Then one by one, every item is checked for
pointers. The reference of every object reached is added to the end of the index.
After the object is entirely scanned, the iterator moves on to the next object and
this process repeats until it meets the end of the index. We use an MSD radix
exchange algorithm to sort this index, which is relatively quick and requires no
extra space. This is also the reason why the index blocks are doubly linked,
because this kind of algorithm needs to search from both top and bottom.

4 Methodology

Based on where to store the forward address, there are three types of com-
pacting garbage collectors: Lisp-2 [6], break table [8], and threading [18]. Our
algorithm can be applied to all of them, but we only select Lisp-2 to work on
for illustration’s sake. Similar improvements can be achieved for threading com-
pactors by avoiding touching the garbage, and better optimizations are possible
for table-based compaction as the break table can be completely removed.

4.1 Experimental Setup

The computer which runs our experiments has a 2 GHz Intel Core 2 Duo CPU
and 2 GB main memory. Every core has an independent 8-way associative 32
KB L1 cache and shares a 4 MB L2 cache. We use Ubuntu 8.04 operating system
[29] with kernel version 2.6.24-24.

Our collector is implemented on MMTk [11] of the Jikes RVM [12]. MMTk
partitions the address heap of the RVM into the several spaces: metadata, immor-
tal, large object and small object space. We modify the current mark-compact
collector and create the index in the metadata space. The iterator is placed in
the immortal space, since it will always be needed during the entire program
execution. Literally the large object space stores objects that are larger than
32KB, and normal allocations and collections happen in the small object space.

All the applications in SPECjvm98 are tested in our experiments except mpe-
gaudio which rarely allocates any new objects and triggers almost no collection.
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We calculate the average size consumed by the index at every collection and
subtract it from the working heap space. In this way, the sizes of memory used
by both the mark and the index compactor are approximately the same. In the
experiment we found that the index seldom exceeds 1 MB (See Fig. 1, and so
the initial average size is set to this number.

The only assumption for our collector to work well is what makes a garbage
collector run efficiently: the heap residency of an application, which is the ratio
between the size of live objects and the heap size, must be low enough so that
there is room for new allocations. We did not include other benchmarks, but it
can be expected that if the heap residency is not too high then they will also
present good performance. Average object size being too small may also affect
the collector’s efficiency, for it will result in an overly large index table. We figure
that the minimum size of Java objects is 8 bytes (to store the header), and in
fact, many previous experiments have suggested that the average size of Java
object ranges from 20 bytes to 60 bytes, which will work fine for our algorithm.

4.2 Results

We firstly profiled MMTk to obtain the dynamic object characteristics of the
SPECjvm98 benchmarks, which are summarized in Tab. 1. The table shows that
the average object size is small, which is bad news for us because this means the
number of objects would be large and correspondingly so would be the size of
the index. For this particular situation, we offer several optimizations in Sec. 5.

Table 1. Object Characteristics for SPECjvm98 Benchmarks

Benchmark Average Object Average Cluster Average Index
Size (bytes) Number Size (bytes)

compress 513 252 348720
db 26 1070 377265
jack 37 912 443048
javac 31 23263 1516896
jess 34 1204 503380
mtrt 24 780 973696

Attention must be paid to the second column of the table, which represents
a very common phenomenon of memory usage: objects are created en masse,
and they also tend to die together. Although the third column suggests that the
size of the index sometimes grows beyond 1 MB, the number of object clusters3

remains moderate. This motivates us to propose in the discussion section the
cluster-wise idea, as opposed to the simple address-wise way of building the
index. Yet by employing our simple, address-wise indexing algorithm, the results
are still encouraging.

3 An object cluster is a continuous heap block with only live objects.
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We implement the index compactor (ic) and compare its performance with
that of a Lisp-2 mark compactor (mc), as reported in the following figures. Fig. 44

shows the overall benchmark execution times for both compactors. In the figure,
two benchmarks, jess and jack, clearly demonstrate the superiority of ic, while
for three other benchmarks, db, javac and mtrt, ic only wins after the heap grows
beyond a certain size. This is reasonable, since the advantage of our compactor
comes from not touching the garbage objects. The live object (survival) rate of
the former two benchmarks is as low as 30% even for a 20MB heap; this rate
would not come down for the latter three benchmarks until the heap grows to
a certain extent. We tuned the heap size for these benchmarks, and found that
the turning point is approximately at 40%. That is, for ic to outperform mc
the heap residency should be less than this turning point rate. Furthermore,
it is also the turning point where the execution time drops dramatically, since
garbage collectors require enough space to work well.

This characteristic makes our algorithm perfect for applying to the young
space of a generational collector, where this rate is well below 10%. Because of
the same reason, the performance of the benchmark compress degrades with ic.
After allocating about 4MB of normal objects in the small object space (where
our algorithm is used), the program only creates large objects in the large object
space. It can be seen from Tab. 1 that its average object size is very large as
compared to that of the other benchmarks. To make the situation worse, the
4MB small objects are never disposed of until the end of the program execution,
which pushes the live object rate to be close to 100% at every collection. In
a nutshell, for compress, an index is redundant, because all the objects are
alive. The degradation in performance as compared to mc is due to the extra
computation time to build and sort the index.

Fig. 5 compares the collection times of the two compactors. It portrays a
similar picture to Fig. 4, and shows a difference that increases monotonically
as the heap grows. This is within our expectation that the performance of our
algorithm improves as the heap residency reduces. Because of the similarity
between ic and mc, there is virtually no difference in mutation time for both
collectors. Combining the temporal performance of the above two figures, it can
be perceived that the size of index table matters a lot. javac and mtrt generate
the biggest indexes. As a result, the performance of ic will not outstrip mc until
the heap approaches 40MB. To reduce the size of index table, we propose several
methods in the discussion section.

As we have stressed, ic does not touch the garbage objects at all, which
contributes to the interesting characteristic of ic as presented in Fig. 6. In the
figure, we can easily spot that the average collection time of ic is insensitive to
the heap size, whereas this time increases as the heap grows for mc. It is worth
pointing out that as the heap grows the number of collections decreases, and
this is why the total collection number keeps falling while the average collection
time remains roughly unchanged.

4 The size of the heap is normalized by 20MB. That is, 1 denotes 20MB, 2 denotes
40MB, etc.
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Fig. 4. Total Execution Time for Mark- and Index-Compact Collectors
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Fig. 5. Total Collection Time for Mark- and Index-Compact Collectors
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5 Discussions

5.1 Improvement Techniques

The above experiments show that after introducing an index table to guide the
compactors, the collection time can be made dependent only on the size of live
objects, instead of the size of heap which is the case for traditional compactors.
For most of the time the two compactor versions operate in a similar fashion.
Our algorithm requires some extra time to sort the index. Therefore, it must be
due to avoiding touching garbage that the pages faults triggered by our collectors
are reduce. As a result, the overall collection time is reduced.

Compared with traditional mark-compact, our compactor needs extra space
to store the index and extra time to sort the index. In [28] it is revealed that most
of the objects created in typical programs tend to be very small (See Tab. 1) and
the number of objects tends to be large. For the SPECjvm98 benchmarks, the
average object size ranges mainly from 24 to 37 bytes, whereas an index entry
takes up four bytes (in order to represent an address in a 32-bit machine). It
means that the size of the index can grow to be as large as one eighth of the
total size of live objects, and occasionally it can be larger than 1MB.

As the size of the index grows, so does the space needed to store and the
time spent to sort it. In Sec. 4, we mention that live objects are likely to cluster
together. The number of clusters can be considerably smaller than that of live
objects. Tab. 1 shows that this number falls well below 1000 for most of the
benchmarks. This gives us a good opportunity to adopt another way of building
the index. Fig. 7 shows a cluster-wise index, where every entry contains two
pointers, pointing to the start and the end of a cluster respectively. Note that
this time each index entry must be stored as a node of a linked list. We cannot
construct an array for the index any more, because the tracing may not be
address ordered. For instance, if the first and third cluster in Fig. 7 are traversed
before the second, then an array structure is not adequate for handling this case.

Having a cluster-wise index eases the pressure on space, but it may increase
the computation time. In order to make sure that every first reference address
of the block index is ordered, the index must be built as a linked list and every
insertion requires a search for the desired insertion point. If the objects do not
cluster as much, such as the case of javac, this process will introduce considerable
overhead. Furthermore, because the insertion happens for every live object, it

Fig. 7. The Cluster-wise Index Table
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will be better to build a hash for this index to accelerate searching. Because of
space limitation and that the purpose of this paper is to introduce the basic
indexing idea, we skip further details on and results for the cluster-wise variant.

In the experiments we spotted that the residency of a considerable portion of
the pages was nearly full. The extreme example is compress whose pages in the
small object space are virtually all filled with live objects. For these pages, there
is no need for compaction. Instead, we can remap the virtual addresses of these
full pages so that they become continuous and update those pointers pointing
to them. This would substantially decrease the size of the index and avoid the
cost of moving full pages. For compress, in particular, compaction can be totally
avoided in the small object space, which should help our collector to outstrip
other normal compactors even when the heap becomes densely populated.

5.2 Generational Variant

Because most of the state-of-the-art collectors are generational, we suggest here
how our algorithm can be applied to these collectors. As said before, the object
mortality rate in the young space is much lower than that of the whole heap.
It can be observed that most of the time, the survival rate is well below 10%.
Since 40% is the observed turning point, it can be expected that our algorithm
will perform excellently there. For older spaces, a free-list collector is probably
enough, since it will not be touched as often. To fight against memory fragments,
a compactor can be triggered from time to time to tidy up the room for these
older spaces.

Copying-based collectors are most desirable for young space, because of their
time efficiency. However, the low survival rate there makes it space inefficient,
as it still needs to conserve half the available heap for copying live objects.
Our collector can give a hand at this juncture to achieve a space-time balance
for garbage collection, using an algorithm as described in [10]. This algorithm
would manually set the portion of reserved space to be 30% of the working
space, and fall back to a mark-compactor if this prediction turns out wrong
during actual collection. This fallback compactor can now be replaced by our
index-compact collector to avoid touching the garbage. Most of the objects in the
to-be-compacted area would have already been copied to the reserved space, and
what remains is a sparsely populated space for which our compactor will work
better than an ordinary mark compactor. We will report our implementation of
these ideas in a future paper.

6 Related Works

Since our algorithm is concerned with compaction and virtual memory, we briefly
introduce several existing works that fall into these domains. For details on their
implementation, please refer to [7].
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6.1 Compact Collectors

Implementations of compacting garbage collectors can be classified into three
classes: Lisp-2 [6], table-based [8] and threading [18][4]. In [20], a comparison
between different compacting algorithms is given, and the authors argue that
Lisp-2 is the most time efficient collector. Yet since all of these compactors need
four phases and two heap passes to complete, none of them are good enough to
be used widely in real-life systems.

Because compactors would move objects, they are frequently employed as
an auxiliary method to curb memory fragmentation for non-moving collectors
[22][21]. To take advantage of compactors’ space efficiency over copying collec-
tors, [16] designs a hot-swapping mechanism based on memory residency, and [10]
resorts to compaction in case when its copying reserve prediction falls through.
Note that in [10], the fallback compactor needs to touch the entire heap even af-
ter most of garbage have been collected by the preceding copying collector. Our
algorithm should be a much better choice at this point than traditional com-
pactors, as we have explained in the previous section. There are also research
efforts on how to cut down on the phases required for compaction. For example,
[3] combines marking and compaction into a two-step algorithm with one phase.
But in any case, all of them need to touch the garbage objects.

6.2 VM-Aware Design

To design a VM-aware collector, some researchers have focused directly on re-
ducing the overall consumed memory, for example, via object reuse [23]. Al-
though there are works on how to reap the merits of virtual memory system
[26][25][27], these proposed mechanisms are mostly ignored by current garbage
collectors, as pointed out in [24] where the authors propose to build barriers
between secondary storage and the main memory in order to avoid collection
paging. We should also mention [5] which describes a concurrent, incremental
and parallel algorithm designed for compactors. This collector uses two equal
virtual address spaces to perform a copying-like compaction without touching
the garbage. Their implementation is based on a markbit vector, whereas our
algorithm uses an object reference index which is more portable and extensible
to other usage scenarios, as has been explained in Sec. 5.

7 Conclusion

The slow collection time of compactors is a well known headache. They need
to traverse the heap multiple times; while touching the garbage objects they
trigger lots of page swaps. Many researchers have presented different techniques
to reduce the number of phases in compaction, but little has been done on the
problem of page swapping.

In this paper, we argue that virtual memory performance is one of the most
important factors in the performance of garbage collection, and every garbage
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collector should endeavor to minimize page faults. We then designed an index-
ing algorithm that can avoid touching the garbage objects for compactors. We
have implemented a preliminary basic version of the algorithm and its collec-
tor in Jikes RVM. The results confirmed our point about page swapping during
garbage collection, and showed improved overall performance over traditional
mark compactors. To furthermore enhance our collector’s performance, we have
sketched out several related advanced methods, including an application of our
algorithm in a generational collector.

Further work can be done to make this compactor more suitable for real use,
such as to optimize the sorting algorithm, to make the compaction parallel, to
reduce the phases by storing the relocation pointers in the index, etc. In real
life, our algorithm may not be suitable for certain programs, for example Lisp
programs whose objects are typically even smaller than those of Java. It will be
an interesting exploration to see if we can dynamically decide whether to use an
index or fall back to a traditional compactor.
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Abstract. Live heap space analyses have so far been concerned with
the standard sequential programming model. However, that model is
not very well suited for embedded real-time systems, where fragments
of code execute concurrently and in orders determined by periodic and
sporadic events. Schedulability analysis has shown that the programming
model of real-time systems is not fundamentally in conflict with static
predictability, but in contrast to accumulative properties like time, live
heap space usage exhibits a very state-dependent behavior that renders
direct application of schedulability analysis techniques unsuitable.

In this paper we propose an analysis of live heap space upper bounds
for real-time systems based on an accurate prediction of task execution
orders. The key component of our analysis is the construction of a non-
deterministic finite state machine capturing all task executions that are
legal under given timing assumptions. By adding heap usage information
inferred for each sequential task, our analysis finds an upper bound on
the inter-task heap demands as the solution to an integer linear program-
ming problem. Values so obtained are suitable inputs to other analyses
depending on the size of a system’s persistent state, such as running time
prediction for a concurrent tracing garbage collector.

1 Introduction

Recent years have seen a respectable development in techniques for analysis of
live heap space usage of programs [3,14,9,18]. The common goal of this line
of research is to obtain an a priori upper bound on the size of heap memory
reachable from various points in a program, expressed as a function of its input
data. To this end, a standard sequential programming model has been assumed,
where a program reads all its input initially, computes internally without further
interaction, and eventually terminates with a deterministic result.

Unfortunately, very few embedded real-time systems – for which static pre-
dictability and failure-free operation are of particular concern – fit such a tradi-
tional programming model. Instead of terminating with a result, an embedded
system typically maintains an ongoing interaction with its environment, execut-
ing fragments of code at predefined intervals or in response to sporadic events.
Moreover, code fragments are often allowed to execute in parallel or under arbi-
trary interleaving, which introduces another source of non-determinism in such
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systems. It is clear that both these deviations from purely sequential execution
adds significant complexity to the problem of predicting heap space usage.

The substantial body of results in real-time scheduling theory has however
demonstrated that sporadic events and concurrent execution are not fundamen-
tally at odds with static predictability. What is required is just some carefully
chosen restrictions on how tasks (i.e., code fragments) may interact with each
other, and what time-patterns external events may exhibit [16]. In this paper
we present a technique for lifting live heap space analysis to a real-time pro-
gramming model of a similar vein, sufficiently restricted to make static analysis
feasible, but still expressive enough to fit a large class of real-world systems.

However, unlike schedulability analysis – which is only concerned with the
number of CPU cycles a task needs to be allocated before its deadline expires
– a prediction of heap space usage cannot ignore the order in which deadline-
avoiding tasks actually execute at run-time. For an example, consider a task A
that allocates heap memory and a task B that frees up any previous allocations.
To the combined heap demand of these tasks, it makes a fundamental difference
whether an A is always followed by a B or if two A can sometimes occur in a row,
even if this distinction might be irrelevant for the purpose of meeting deadlines.
For the same reason, heap space analysis cannot ignore the actual interleaving
of tasks that are allowed to run concurrently, unless the effect each task has on
live memory can be considered atomic.

The main contribution of this paper is a technique for calculating upper
bounds on live heap memory of real-time systems, that is safe even in the pres-
ence of state- and order-dependent tasks driven by external sporadic events. Our
strategy for doing so consists of the following key ideas:

1. We impose a modest restriction on the tasks we consider: every root of live
memory must be protected by some locking mechanism, and all the locks a
task requires must be held throughout its whole execution (Section 2). This
is arguably a stronger restriction than necessary to guarantee atomicity, but
it is appealingly simple and ”obviously” correct for our purpose. We further
elaborate on the realism of our task model at the end of Section 2.

2. We assume a uniform event model where each task is characterized by a
minimum and (possibly infinite) maximum distance in time between the
events that may trigger it. This allows us to employ techniques from timed
automata [5] to construct a non-deterministic finite state machine (FSM)
for every given task set, which adequately models all possible task execu-
tion orderings that are possible according to the given timing assumptions
(Section 3).

3. We apply a standard variant of abstract interpretation to each task for in-
ferring size relations [11], which capture how each individual task affects an
abstract notion of size for every persistent state variable (Section 5). The
input to this step is a variant of the rule-based representation (RBR) in-
troduced in [2] for describing sequential imperative code that may involve
iterative or recursive computations (Section 4).
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4. We combine the results from the FSM construction and the size relation
analysis in order to obtain an integer linear programming problem, whose
solution includes a provably safe upper bound on the total live heap size
observable between all possible task executions (Section 6). A set of examples
illustrating how the implemented analysis algorithm behaves in practice are
also given in Section 7.

Our interest in this paper is to bound the size of the heap-allocated state a system
needs to preserve between its event-triggered activations, to serve as input to
other analyses that crucially depend on this value, like worst-case execution time
estimation for an idle time garbage collector, for example. The related problem of
finding a size-bound on the total memory that must be set aside for a system’s
heap is not directly addressed, but we will return to the question of how our
analysis fits this larger picture in Section 9.

2 Real-Time System Model

Here we define the model of execution we will work with in the rest of the paper.
Our model connects fairly well to task models used in the real-time scheduling
literature [16], while drawing its concrete inspiration from the execution princi-
ples underlying the real-time programming language Timber [17].

We consider a real-time system to consist of a finite set τ = {t1, . . . , tm} of
tasks, and a finite set σ = {s1, . . . , sn} of shared state variables. Each task is
supposed to be triggered by a recurring event whose origin we know nothing
about, but for which we can make timing assumptions. To this end we assume
that each task ti ∈ τ is characterized by a minimum and a maximum inter-arrival
time between activation events (Pmin

i , Pmax
i ∈ N). Furthermore, we assume that

there is a deadline (Di ∈ N) associated with each task, and that every task is
scheduled correctly (that is, every task will execute to completion within Di

time units after each triggering event). A task set is well-formed if the following
is true:

Definition 1. A task set τ is well-formed iff ∀ti ∈ τ . 0 < Pmin
i ≤ Pmax

i and
0 ≤ Di ≤ Pmin

i .

In other words, aperiodic tasks are excluded from our model (i.e., tasks for
which Pmin

i = 0), motivated by the unbounded load such tasks can place on the
processor as well as on the heap. For technical reasons we also exclude tasks for
which the permissible execution window of one instance is allowed to overlap
with the next one (i.e., where Di > Pmin

i ).
Periodic tasks are captured in this model by letting Pmin

i = Pmax
i , and fully

sporadic tasks by Pmax
i = ∞. Note that the model allows a continuum of be-

haviors between these extremes, even though the typical cases will be found at
either end of the scale.
Shared State. Each shared state variable sj is assumed to be protected by some
mutual exclusion mechanism, and we furthermore require every task that either
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reads or writes to sj to maintain exclusive access to sj throughout its whole
execution. This way every pair of tasks with any state variables in common
will be forced to execute in some sequential order rather than in a potentially
interleaved fashion. Tasks which do not share any state variables are allowed
to execute under arbitrary interleaving, but the effect such tasks have on the
global state is consequently independent of the interleaving pattern, and thus
equivalent to their sequential execution in some arbitrary order.

Furthermore, we make our analysis independent of the actual processing power
of the chosen execution platform by assuming that tasks may run arbitrarily
fast1; that is, task execution can be associated with a point in time rather than
a time interval. What we achieve under these hypotheses is that we may approx-
imate the concurrent execution of a real-time system by a set of sequential task
orderings, strictly governed by the underlying inter-arrival time assumptions and
deadline requirements, and notably independent of any task execution times and
scheduling policies. In Section 3 we will show how to concretely represent this
set of task orderings in the form of a non-deterministic finite state machine.

Keeping all accessed state variables locked for the duration of full task execu-
tions is of course detrimental to the concurrent schedulability of a system, and
thus not a very realistic model of concrete real-time software. However, we argue
that for the purpose of the specific analysis of this paper, our simplistic model
is an accurate description of a much more general class of concurrent systems
that actually do occur in practice. Indeed, the Timber language that we target
in our analysis implementation uses a run-time model that closely follows the
principles of Baker’s Stack Resource Policy [6]: state variables are partitioned
into logical units called resources (or objects), each resource uses a common lock
for its set of variables, and tasks (or methods) are required to lock and unlock
resources in a stack-like fashion according to a total resource order (a resource
may only be acquired if it is of less rank than those already held).

The only restriction this paper effectively adds to the SRP model is that we
prohibit non-nested sequential resource access: new resources may not be locked
once a previously held resource has been released. Under this assumption we
are able to describe all relevant state update sequences of a system in terms of
its possible task orderings, which is a key to the tractability of our technique
and from an analysis point of view equivalent to locking all resources at once.
In our experience, this additional restriction is not very burdening in practice;
in the Timber language it simply corresponds to limiting the use of synchronous
inter-object method calls to at most one per metod. Nevertheless, we do consider
lifting the nesting requirement as an important topic for future work, and one
approach we have been pondering is to automatically split tasks not conforming
to the restriction into smaller parts until they do. This approach does however
require that the FSM construction algorithm can be modified to take the implied
sequential order of such sub-tasks into account.
Task Bodies. The sole purpose of a task is to modify the contents of the system
state variables σ = {s1, . . . , sn}. For the purpose of this paper, external ports

1 Or arbitrarily slow, provided that all deadlines are still met.
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and other observable state containers such as operating system services also
count as state variables. Apart from these global state variables, we require that
variables and data structures are immutable and thus never change their values
once they are assigned. To better capture the freedom from arbitrary side-effects
during task runs, we make threading of the system state through each task ti
explicit by representing it as a procedure ti(x, y) that maps an input state vector
x to an output state vector y. The intention is then that the global scheduling
mechanism of a system uses the output state vector to destructively update the
system state, which we henceforth never need to make explicit. The exact format
of each task body is further explained in Section 4.
Worked Example. Throughout the paper we will work with the following
example through the steps of our analysis. Suppose we have two tasks, a and b,
sharing two lists x1 and x2 in the following manner:

– a extends x1 with one element, leaving x2 as is.
– b sets x2 := x1 and x1 := [] (empty list), i.e. x2 becomes the list that x1 was,

and x1 becomes empty.
– Initially, x1 and x2 are both empty.

For the purpose of the example, let a and b have the following timing
characteristics:

task Pmin Pmax D
a 10 ∞ 10
b 10 20 10

Our underlying analysis question is: what is the maximum sum of the sizes of
x1 and x2 that ever may occur?

3 FSM Representation

As a core technical idea of our approach we choose to express the behaviour of
a given task set as a Timed Automaton, itself constructed as the parallel com-
position of timed automata representing every individual task. The observable
transitions of this automaton are the execution points of the tasks, i.e., the mo-
mentary points in time where we consider a task to perform its mutation of the
system state. We then apply standard techniques for obtaining a finite untimed
representation of the timed automaton, representing all possible task execution
orders of the system in a compact form.

3.1 Real-Time Systems as Timed Automata

We follow a notation similar to Bengtsson and Yi [7] for representing the legal
orders of execution for a real-time task set. A timed automaton is defined by a
tuple A = 〈L, l0, A, C, I, E〉, where L is a set of locations, l0 an initial location,
A a set of labels (including the silent label ε), C a set of clock variables, I a
mapping from locations to clock variable constraints, and E a set of transitions
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(characterized by a label, a transition guard, and a set of clock variables to reset
as a side-effect).

For a well-formed task set τ , let each task ti ∈ τ be represented by a timed
automaton Ai = 〈Li, l0i, Ai, Ci, Ii, Ei〉 defined as follows:

Li = {idle, released}
l0i = idle
Ai = {ti, ε}
Ci = {ci}
Ii = {(idle, ci ≤ Pmax

i ), (released, ci ≤ Di)}
Ei = {(idle, ci ≥ Pmin

i , ε, {ci}, released), (released, true, ti, ∅, idle)}

Fig. 1 shows the the definition above in a graphical notation.

idle released

ci ≤ Pmax
i

ci ≥ Pmin
i

ci ≤ Di

ci := 0

ti

Fig. 1. Timed automaton Ai capturing the execution
points of task ti

The transitions of Ai cap-
ture the execution points of
ti: either the silent arrival
of a triggering event for ti,
or the observable execution
of ti. Location idle denotes
the state when the task is
neither executing nor pend-
ing. Clock variable ci in-
creases in synchrony with
real time and is reset when-
ever an event transition is
taken, thus the invariant
(ci ≤ Pmax

i ) ensures that
the time between two triggering events for ti never exceeds Pmax

i . Moreover,
the guard (ci ≥ Pmin

i ) on the event transition forces the inter-arrival time to be
at least Pmin

i . The invariant in the released location guarantees that execution
must take place within the deadline (ci ≤ Di). Because of the well-formedness
assumption we know that Di ≤ Pmin

i , which means that we can capture the
timing constraint of the deadline with the same clock used for inter-arrival times
(i.e., whenever the execution transition is taken, we know that ci ≤ Di ≤ Pmin

i ).
The timed automaton of the whole task set τ is then constructed by parallel

compositionAτ = ‖ti∈τAi. The resulting automaton is entirely straightforward,
with locations and invariants being conjunctions of the individual automata
counterparts (see [4] for further details on parallel automata composition).

3.2 Untimed Automata

Our goal is to construct a compact FSM that accurately captures all legal orders
of task executions. In reachability analysis for timed automata, such faithful
constructions of FSMs are usually referred to as untimed automata.

The operational semantics of timed automata is described as a transition
system of which states are pairs 〈l, u〉 where l is a location in the original timed
automaton and u is a clock valuation mapping clock variables to real values [5].
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Fig. 2. Minimal FSM representation of the execution
orders of the worked example

State space and transitions
are defined based on the lo-
cations and transitions in
the timed automaton, com-
bined with the condition
that u satisfies the implied
clock constraints from in-
variants, guards, and resets.
The state space of this tran-
sition system can efficiently
(and finitely) be quotiented
by configurations 〈l, Dϕ〉,
called zones, where Dϕ is a
convex set of clock valua-

tions (called clock zone) defined by the clock constraint ϕ. The transitions of
the zone graph is defined as follows.

〈l, Dϕ〉 −→ 〈l, [Dϕ
⇑ ∩DI(l)]〉

〈l, Dϕ〉 α−→ 〈l′, [δ(Dϕ ∩Dψ) ∩DI(l′)]〉 if (l, ψ, α, δ, l′) ∈ E

The operations on clock zones in the definition are: delay (Dϕ
⇑) which computes

the strongest post condition of ϕ (i.e., the clock zone containing all valuations
after an arbitrary delay); reset (δ(Dϕ)) which computes the new clock zone
to capture the resets of δ; and normalization ([Dϕ]) which widens the clock
zone based on the maximum constants used in clock constraints of the timed
automaton.

The zone graph accurately accepts all legal sequences of untimed labels as of
the original timed automaton, while faithfully keeping track of both locations
and clock valuations. However, our analysis only requires a faithful representa-
tion of the untimed language accepted by the zone graph (i.e., reachability of
particular locations and clock valuations are irrelevant), we may apply standard
FSM transformation techniques (such as determinization and minimization) to
possibly improve the automaton. The raw zone graph of our worked example
contains 31 zones and 59 transitions of which 34 are ε-transitions (delays and
events). After determinization and minimization we get a FSM of 6 states and
11 transitions. The minimized FSM is shown in Fig. 2.

However, as we will see in Section 7, it is not necessary an improvement of
performance of our analysis to make these quite costly transformations.

4 Rule-Based Representation

Following [1,2] we express the actual code a task executes in a rule-based rep-
resentation, or RBR for short. Our RBR is essentially a slight simplification of
the format used in [2]. We assume four distinct name-spaces: ordinary variables
ranged over by x and y, procedure names ranged over by p and q, as well as
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constructor names and field names (ranged over by c and f , respectively). The
syntax of our rule-based language is given in Fig. 3.

Variables can take atomic values (we limit ourselves to integers), or compound
values (lists, trees, etc.), in which case the variable is a reference to a constructed
and possibly heap-allocated object. A program consists of a set of procedures, of
which some are designated as tasks. A procedure with a head p(x, y) has input
(x) and output (y) parameters, and is defined by one or more rules. Each rule
is guarded by a boolean applicability condition g, which may be either the un-
conditional constant true, a simple arithmetic comparison, or the special form
type(x, c), which tests whether x is a reference to a constructed c object. The
guard is followed by the procedure body, which might contain a variable assign-
ment, an object creation instruction (with a vector of field initializations within
braces), an assignment with field selection, or a (possibly recursive) procedure
call. Since we do not support mutation of any other data than the system state
vector, we make it an implicit condition that all variables in a procedure body
are assigned only once.

P ::= R1, . . . , Rn

R ::= p(x, y) ← g, b1, . . . , bn
g ::= true | e op e | type(x, c)
b ::= x := e | x := new c {f := e} | x := y.f | q(x, y)
e ::= x | n | e− e | e+ e | e ∗ e | e/e
op ::= > | < | ≥ | ≤ | = | �=

Fig. 3. Syntax of rule-based representation

With the rule-based representation, the code of the tasks of our worked exam-
ple looks as shown in Fig. 4 (assuming value is some suitable integer element). We
use constructors cons and nil for building lists, where new nil {} denotes a “null
pointer” (i.e., a zero-arity constructed value requiring no additional heap space).

a(〈x1, x2〉, 〈x′
1, x

′
2〉) ← x′

1 := new cons {head := value, tail := x1}, x′
2 := x2

b(〈x1, x2〉, 〈x′
1, x

′
2〉) ← x′

2 := x1, x
′
1 := new nil {}

Fig. 4. The worked example in the rule-based representation

In addition to rules defining tasks, we always include a predefined procedure
init with just a single vector of output parameters carrying the initial values for
a system’s state variables. For the worked example we have:

init(〈x1, x2〉) ← x1 := new nil {}, x2 := new nil {}

From [2] we also adopt an operational semantics for our rule-based programs,
as depicted in Fig. 5. A value v is either an integer constant or a tagged heap
reference rc, where c is a constructor name. A heap h maps references to objects
o, which in turn are mappings from field names to values. Execution steps are
described as transitions S � S′, where S is a configuration A : h containing
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a stack A of activation records (of the form 〈p, bs, ρ〉, where p is a procedure
name, bs a sequence of instructions, and ρ an environment mapping variables
to values), and a heap. We write ρ(x) for the value referred to by x in ρ, and
ρ[x #→ v] for the mapping identical to ρ except that x maps to v. Both notations
extend to vectors of variables and values, and also apply to mappings o and h
in a similar manner.

Rule (1) deals with evaluating expressions and storing the resulting value in
the environment. We assume that function eval(e, ρ) evaluates exp in the context
of ρ. Rule (2) shows extension of the heap with a new tagged object reference rc,
mapped to an object associating each field with its evaluated value. Field access
is shown in rule (3). Rules (4) and (5) illustrate calling and returning from
a procedure, respectively. The notation p[y, y′] stands for a saved association
between the formal and actual output parameters of p.

b ≡ x := e v = eval(e, ρ)
〈p, (b, bs), ρ〉 · A : h � 〈p, bs, ρ[x �→ v]〉 ·A : h

(1)

b ≡ x := new c {f := e} v = eval(e, ρ) rc �∈ dom(h)
〈p, (b, bs), ρ〉 · A : h � 〈p, bs, ρ[x �→ rc]〉 · A : h[rc �→ [f �→ v] ]

(2)

b ≡ x := y.f h(ρ(x)) = o

〈p, (b, bs), ρ〉 · A : h � 〈p, bs, ρ[x �→ o(f)]〉 ·A : h
(3)

b ≡ q(x, y) q(x′, y′) ← g, bs′ is a rule ρ′(x′) = ρ(x) eval(g, ρ′) = true

〈p, (b, bs), ρ〉 · A : h � 〈q, bs′, ρ′〉 · 〈p[y, y′], bs, ρ〉 ·A : h
(4)

〈q, ε, ρ〉 · 〈p[y, y′], bs), ρ′〉 ·A : h � 〈p, bs, ρ′[y �→ ρ(y′)]〉 ·A : h
(5)

Fig. 5. Operational semantics of rule-based programs

Note that since we model state variables as explicit input and output param-
eters, we can avoid mutation of the heap altogether in the formal semantics.

Executions can be seen as traces S0 � S1 � · · · � Sm. Let ∗
� denote a

transitive closure of �. Complete execution of a single task ti corresponds to
the trace (called complete trace) 〈⊥, ti(σ, σ), ρ〉 : h

∗
� 〈⊥, ε, ρ′〉 : h′, where ⊥

stands for the ”scheduler” procedure, σ contains the names of the global state
variables, and ρ and ρ′ hold the state variable values before and after executing
ti, respectively.

5 Inferring Size Relations

The notion of size of a heap allocated object can vary depending on what exact
purpose our analysis will serve. Let sizeX (o) denote size of a heap-allocated
object o, where the size is determined by the cost model X and may denote M
(memory size occupied by o), R (number of reference fields in o), and O (number
of objects in o – i.e., 1).
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The above notation also extends over sequences of objects: sizeX (o) =
[sizeX (o1), . . . , sizeX (on)]. Inferring size relations, similarly to e.g. [8,1,2] is per-
formed in two steps. The first one is abstract compilation of rules into linear
constraints capturing relations between sizes of program variables. In the second
step the fixpoint of the linear constraints system is computed in a bottom-up
fashion. We apply the approach and implementation of [8], which originally was
designed to compute size relations in logic programs. Since we represent the
tasks as rules rather than logic programs, we do compile our rules to constraint
logic programs (CLP), but we use a different abstract compilation scheme, as
described in the following section.

Abstract Compilation of Rules. In the abstractly compiled version of a
program we keep the original variable names, possibly with scripts or overlines,
and use boldface to denote their sizes, with respect to a given cost model X .
For example, x denotes size of x. We shall extend the notation to expressions,
writing e for a size of an expression e in which every variable x has been replaced
by x. A size of an integer number is its value [11]. Size of a compound structure
c {...} is a sum of sizes of its elements, plus a size kXc of a single node, suitable
for a cost model X . Abstract compilation proceeds over rules in the program as
depicted in Fig. 6.

AbsP [[R1, . . . , Rn]] = AbsR[[R1]], . . . ,AbsR[[Rn]]
AbsR[[p(x, y)←g, b1, . . . , bn]] = p(x,y)←x ≥ 0,y ≥ 0,Absg[[g]],Absb[[b1]], . . . ,Absb[[bn]]

Absg[[true]] = true
Absg[[e1 op e2]] = if e1 and e2 are linear then e1 op e2 else true

Absg[[type(x, c)]] = true

Absb[[x := e]] = if e is linear then x = e else true
Absb[[x := new c {fi := ei}]] = x ≤ kXc +

∑
i norm(c, fi, ei)

Absb[[x := y.f ]] = x < y
Absb[[q(x, y)]] = q(x,y)

norm(c, f, e) = if the type of field f of a c is integer then 0 else e

Fig. 6. Abstract compilation to CLP

Note that for compiling an object creation instruction (x := new c {...}) does
not result in an equality, but rather in an inequality. This is the effect of possible
sharing between fields of c {...} which we do not try to detect.

Given a rule-based program P , its compiled version AbsP [[P ]] is a CLP pro-
gram over real numbers (CLP(�)). We refer, for instance, to [13] for further
reading on CLP. Let us assume the model-theoretic (or algebraic) semantics2

2 This is an arbitrary choice made for an illustrative purpose only. All kinds of se-
mantics of CLP coincide is some well-defined sense, so choosing any other semantics
would be equally valid.
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of CLP(�), where semantics of programs is given by means of models over �
(�-models), and standard interpretation of arithmetic functions (see e.g. [12] for
details). The following lemma shows the soundness of the abstract compilation.
It is shown that relation between sizes of input and output parameters of a given
procedure is correctly captured by the resulting CLP program.

Lemma 1. Given a program P and procedure p, assume the trace
〈q, (p(x, y), bs), ρ〉 : h

∗
� 〈q, bs, ρ′〉 : h′. The atomic formula p(k, l) where

k = sizeX (h(ρ(x))) and l = sizeX (h(ρ′(y))) belongs to the least �- model of
AbsP [[P ]].

Proof: By induction over depth of recursion in P .

Assume that kMcons = 3 and kMnull = 0. The abstractly compiled worked example
is shown in Fig. 7

init(〈x1,x2〉) ← x1 ≥ 0,x2 ≥ 0,x1 ≤ 0,x2 ≤ 0
a(〈x1,x2〉, 〈x′

1,x
′
2〉) ← x1 ≥ 0,x2 ≥ 0,x′

1 ≥ 0,x′
2 ≥ 0,x′

1 ≤ x1 + 3,x′
2 = x2

b(〈x1,x2〉, 〈x′
1,x

′
2〉) ← x1 ≥ 0,x2 ≥ 0,x′

1 ≥ 0,x′
2 ≥ 0,x′

2 = x1,x
′
1 ≤ 0

Fig. 7. The worked example after abstract compilation

In general, right hand sides of abstractly compiled rules might contain recur-
sive calls. In this case a bottom-up fixpoint algorithm is applied to infer, for
each procedure p, a set linear constraints φp (or φp[x,y] if we want to make
the involved variables explicit). See [8] for the details of the fixpoint iteration
algorithm. Theorem 1 states soundness of size relation inference.

Theorem 1. Given a trace 〈⊥, ti(σ, σ), ρ〉 : h
∗
� 〈⊥, ε, ρ′〉 : h′, the vec-

tor pair sizeX (h(ρ(σ))), sizeX (h′(ρ′(σ))) satisfies φti ; that is, the formula
φti [sizeX (h(ρ(σ))), sizeX (h′(ρ′(σ)))] is true.

Proof: By Lemma 1 and the soundness of size relation analysis of [8].

Example. Let us illustrate the behaviour of the size relation analyzer by means
of the following list concatenation procedure:

app(〈x, y〉, 〈z〉) ← x = null(), z := y
app(〈x, y〉, 〈z〉) ← x �= null(), x′ := x.tail, app(〈x′, y〉, z′),

z := new cons(x.head, z′)

Abstract compilation of the above two rules, with respect to the cost model O,
results in

app(〈x,y〉, 〈z〉) ← x ≥ 0,y ≥ 0, z ≥ 0,y = z
app(〈x,y〉, 〈z〉) ← x ≥ 0,y ≥ 0, z ≥ 0,x′ ≥ 0, z′ ≥ 0,x′ ≤ x− 1,

app(〈x′,y〉, z′), z ≤ z′ + 1
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Observe that z := new cons(x.head, z′) has been compiled to z ≤ z′ + 1 rather
than z = z′ + 1, due to possible sharing. Computing bottom-up fixpoint over
convex polyhedra domain, as described in [8], gives the final size relations:

app(〈x,y〉, 〈z〉) ← x ≥ 0,y ≥ 0, z ≥ 0, z ≤ x + y

6 Upper Bounds

The crucial observation is that the value we are looking for is the upper bound
of live memory size occupied by state variables after any possible completion
of any task executed in the concurrent environment, that is in every possible
schedule. The size value is not accumulated over recursive calls that might take
place while executing the tasks. Therefore, for our purpose we do not need cost
relations in the form of [1,2], but rather than that we work directly with the size
relations introduced in the previous section. Based on the FSM representation
of task execution orders and size relations for each task, we set up a system
of linear constraints which is essentially an ILP (integer linear programming)
problem that can be solved by any standard solver. The ILP problem, whose
construction is shown below, captures the upper bounds of live memory usage.

Assume there are n state (shared) variables s1, . . . , sn. In previous steps, for
every task m(x, y) we infer size relations φm which in the matrix form can be
written as

Y ≤ Am X + Cm, X ≥ 0 (6)

where X = [x1, . . . ,xn], Y = [y1, . . . ,yn], n is a number of states variables. For
an initialization method init (which has no input parameters) the constraints
take form:

X0 ≤ Cinit, X0 ≥ 0 (7)

Thus the vector Cinit describes sizes of initial values of the state variables. The
size relation matrices with respect to cost modelM for the worked example look
like the following:

Aa =
[

1 0
0 1

]
Ca =

[
3
0

]
Ab =

[
0 0
1 0

]
Cb =

[
0
0

]
In order to find an upper bound of X’s, for every state i in the FSM we assign
a vector of sizes of the state variables, written X̂i. For a transition i

m→ j we set
up a set of constraints

X̂j ≥ Am X̂i + Cm (8)

and for the initialization
X̂0 ≥ Cinit (9)

For the ε-transitions we have Aε = In (the n× n unit matrix) and Cε = 0.
We require the size relation matrices (A’s) to only contain non-negative co-

efficients. If, for some task, a size relation matrix with negative coefficients is
inferred (this might occur if, for instance, the task definition is incomplete), we
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simply replace those coefficients by 0’s. For our purpose, which is finding upper
bounds, increasing coefficients in A is a relaxation and always a safe step to
do. The reason for this requirement is that X̂i and X̂j represent upper bounds,
which means that the inferred constraints for X̂j must be safe for any sizes
between 0 and X̂i.

Let i0
m0→ i1

m1→ i2
m2→ · · · be a run of the state machine. With every step k

we assign variables Xk denoting sizes of state variables in k, in according to (6)
and (7).

Lemma 2. Consider a run of the state machine and its k-th step. Let ik de-
note the state in step k. For any solution of (8) + (9), any k we have X̂ik

≥ Xk.

Proof: Inductive over k.

Base case: Trivially holds by combining (7) and (9).
Inductive step: By inductive assumption we know that X̂ik−1 ≥ Xk−1, and

by the fact that Amk−1 contains only non-negative values we conclude that
Amk−1 X̂ik−1 +Cmk−1 ≥ Amk−1 Xk−1 +Cmk−1 By combining the above with
(6) and (8) we can observe that X̂ik

≥ Xk, which concludes the proof.

Lemma 2 suggests the way to compute upper bounds of state variable sizes.
In addition to (9) and (8) we add X̂ ≥ H · X̂l for every state l; where H =
[h1, . . . ,hn] and hi = 1 if si is heap allocated, hi = 0 otherwise. Let the cost
function c = X̂ and c∗ denote its minimum value. The following theorem states
soundness of the analysis.

Theorem 2. Let T be a set of all complete traces, over all feasible (possibly
infinite) schedules. The following holds:

max{
∑

sizeX (h′(ρ′(y))) | 〈⊥, p(x, y), ρ〉 : h ∗
� 〈⊥, ε, ρ′〉 : h′ ∈ T } ≤ c∗

Proof: Follows directly from Theorem 1 and construction of (8) and (9), and
Lemma 2.

The constraints (wrt cost model M) for our worked example are shown below.
The minimum solution to its corresponding cost function is c∗ = 30.

x11 ≥ x10 + 3 x21 ≥ x20 x22 ≥ x10 x13 ≥ x11 + 3
x23 ≥ x21 x24 ≥ x11 x14 ≥ x12 + 3 x24 ≥ x22

x22 ≥ x12 x15 ≥ x13 + 3 x25 ≥ x23 x20 ≥ x13

x10 ≥ x14 + 3 x20 ≥ x24 x22 ≥ x14 x21 ≥ x15

x10 ≥ 0 x11 ≥ 0 x12 ≥ 0 x13 ≥ 0
x14 ≥ 0 x15 ≥ 0 x20 ≥ 0 x21 ≥ 0
x22 ≥ 0 x23 ≥ 0 x24 ≥ 0 x25 ≥ 0
X̂ ≥ x10 + x20 X̂ ≥ x11 + x21 X̂ ≥ x12 + x22

X̂ ≥ x13 + x23 X̂ ≥ x14 + x24 X̂ ≥ x15 + x25
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7 Examples

Our analysis relies on constructing an integer linear programming problem,
whose solution includes a provably safe upper-bound on the live heap size ob-
servable between all possible task executions. Solving such problems can be done
by standard solvers. However, the complexity of solving such problems depends
on both the number of unknowns and the number of constraints. In our case,
the number of unknowns is determined by the number of states in the FSM.
Similarly, the number of constraints is dependent on the number of transitions
in the FSM. Both these multiplied by the number of shared state variables.

#states #states
Task set Pmin Pmax D zone graph FSM

τ1 {17,19,23} {∞,∞,∞} {17,19,23} 1255 1
τ2 {10,300} {20,350} {10,300} 200 699
τ3 {10,20,30,40,50} {10,20,30,40,50} {10,20,30,40,50} 10368 3393
τ4 {17,23,29} {17,23,29} {17,23,29} 12968 6343

Fig. 8. Zone graph and minimal FSM sizes of four different example task sets

It is well-known that the number of zones is exponential to the number of
clocks present in the timed automaton [10]. I.e., in our case, we have an expo-
nential growth of zones w.r.t. number of tasks. In Figure 8, the zone graph and
minimal FSM sizes for four different example task sets are shown. Observe that,
for τ2, the number of states is less in the zone graph than in the determinized and
minimized FSM. However, as τ1 shows, the minimized FSM can be as small as
1 state (the order between fully sporadic tasks is in fact completely arbitrary),
even though the original zone graph contains many more states. Appendix A
contains an extended example of our analysis. The required times by our proto-
type implementation for constructing the zone graphs of the task sets in Figure 8
and Appendix A are neglectable (< 1 s). Solving the ILP problem of the example
in Appendix A took about 25 seconds, using lp_solve version 5.5.2.0. 3

8 Related Work

To the best of our knowledge, there is no existing work on predicting global
live heap space for real-time systems similar to those we describe in Section 2.
Nonetheless, a substantial body of work has been presented for analyzing live
heap space bounds for standard sequential programs. In this section we briefly
describe some of the more recent contributions in this line of research.

As already mentioned, for each task we borrow from [2,3], the rule-based rep-
resentation of programs along with semantics, which we could however simplify
due to special treatment of state variables and lack of mutation. We also adopt
from their work the step of inferring size relations. Jost et al. [14] presents a

3 Platform: 3.06GHz Intel Core 2 Duo, 4 GB RAM, Mac OS X 10.6.4.
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generic type-based resource analysis for inferring linear bounds on resource con-
sumption for higher-order polymorphic programs. The corresponding type infer-
ence is based on a standard linear programming solver. Chin et al. [9] presents a
memory resource analysis for low-level assembly programs. They infer both net
usage and a high watermark bound for each computation unit based on explicit
allocation and deallocation of heap space. Unnikrishnan et al. [18] presents a live
heap space analysis based on program transformation and symbolic evaluation.
The transformed program mimics the memory behavior and essentially keeps
the same computational complexity as of the original program.

9 Conclusion and Further Work

We have proposed a technique for computing upper bounds on live heap mem-
ory of real-time systems, that is safe even in the presence of state- and order-
dependent tasks driven by external sporadic events.

Our key contribution is based on the derivation of an accurate prediction
of task execution orders according to timing assumptions of each task (inter-
arrival times and deadlines). This is done by representing the task set as a
timed automaton and apply standard techniques used in reachability analysis
to construct an FSM representation of task execution orders. We infer linear
input/output size relations for each task on the persistent state of the system,
which is then combined with the execution order FSM to obtain an integer linear
programming problem, whose solution includes a provably safe upper bound on
the total live heap size observable between all possible task executions.

Heap Space Usage and Schedulability. In real-time systems where tasks
share heap data (as we describe in Section 2) it is in general impossible to
manage heap memory manually. If such systems are to be memory managed by
a concurrent garbage collector, the key question is how it affects schedulability.
In fact, the problem is twofold; (1) will all tasks meet their deadlines, and (2)
how much heap memory will be needed? These two interests are obviously in
conflict since running the garbage collector will reduce the memory needs while
it may cause tasks to miss their deadlines. On the other hand, avoiding to run
the collector might keep tasks meeting deadlines but at the same time cause the
system to exhaust memory resources.

A tracing garbage collector recycles the dead (non-reachable) part of the heap
and the running time of such collectors is directly dependent on the amount of
live (reachable) memory. Thus, finding bounds on the global live heap space of
such systems are crucial for both determining schedulability of the task set as
well as predicting the total heap space usage.

In [15], Kero and Aittamaa presents a schedulability analysis, called garbage col-
lection demand analysis, for a concurrent copying garbage collector in a reactive
real-time system. Their garbage collector is restricted to run only during idle time,
which enables them to rely on regular schedulability analysis of the task set to en-
sure (1). The analysis determines an upper bound on the start to finish time of the
garbage collector as well as the amount of memory consumed during that time.
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Further Work. One key observation is that the execution order FSM accepts
traces of task executions that are legal according to the timing assumptions of
each task. In our case, we have left those timing assumptions as open as possi-
ble, containing only inter-arrival times and deadlines. Generally, the schedulabil-
ity requirement leaves the choice of order in which released tasks are executed
open as long as all individual deadlines are met. In reality, schedulability is typ-
ically reached by a myopic scheduling policy (e.g., EDF, RM, etc.), which has a
fully deterministic outcome. Thus, from any zone in the zone graph, if assuming a
particular scheduling policy, one can reduce the number of labelled transitions to
a maximum of one. Apart from tighter bounds, preliminary experimental results
show significant improvements in FSM sizes (down to 25 % of the original size).
Along the same line, the zone graph accepts traces where the release of a task and
its execution point occurs at the very same instant. Adding a safe lower bound
on execution time for each task will reduce the time windows in which task ex-
ecution points may occur, ultimately reducing the number of possible execution
orders. Although standard solvers of ILP problems are quite efficient nowadays,
the complexity of finding the optimal solution is still exponential. However, sub-
optimal solutions to our ILP problems are still safe bounds (although less precise),
which opens up the possibility to use heuristics to reduce complexity.
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Appendix A – Extended Example

task Pmin Pmax D

sample1 10 15 5
sample2 20 20 5
lphigh 100 100 10
acquire 1000 1000 1000

#states #arcs
zone graph: 6100 14072
minimal FSM: 3510 8428

sample1(〈gval , gbuf , buf 1, buf 2〉, 〈gval ′, gbuf ′, buf ′
1, buf

′
2〉) ←

gval ′ := gval , gbuf ′ := gbuf , buf ′
2 := buf 2, val1 := buf 1.head,

buf ′
1 := new cons {head := (sensor1 + 99 ∗ val1)/100, tail := buf 1}.

sample2(〈gval , gbuf , buf 1, buf 2〉, 〈gval ′, gbuf ′, buf ′
1, buf

′
2〉) ←

gval ′ := gval , gbuf ′ := gbuf , buf ′
1 := buf 1, val2 := buf 2.head,

buf ′
2 := new cons {head := (sensor2 + 99 ∗ val2)/100, tail := buf 2}.

lphigh(〈gval , gbuf , buf 1, buf 2〉, 〈gval ′, gbuf ′, buf ′
1, buf

′
2〉) ←

gval ′ := gval , mean(〈buf 1〉, 〈m1〉), mean(〈buf 2〉, 〈m2〉), buf ′
1 := new nil {},

buf ′
2 := new nil {}, gbuf ′ := new cons {head := (m1 +m2)/2, tail := gbuf }.

acquire(〈gval , gbuf , buf 1, buf 2〉, 〈gval ′, gbuf ′, buf ′
1, buf

′
2〉) ←

mean(〈gbuf 〉, 〈gval ′′〉), gval ′ := (gval + gval ′′)/2, gbuf ′ := new nil {},
buf ′

1 := buf 1, buf ′
2 := buf 2.

init(〈gval , gbuf , buf 1, buf 2〉) ←
gval := 0, gbuf := new nil {}, buf 1 := new nil {}, buf 2 := new nil {}.

For cost model M (kMcons = 3 and kMnull = 0) we get the following matrices:

Asample1 Asample2 Alphigh Aacquire Csample1 Csample2 Clphigh Cacquire⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

0
0
3
0

⎤⎥⎥⎦
⎡⎢⎢⎣

0
0
0
3

⎤⎥⎥⎦
⎡⎢⎢⎣

0
3
0
0

⎤⎥⎥⎦
⎡⎢⎢⎣

0
0
0
0

⎤⎥⎥⎦
The minimum solution to c is c∗ = 111.

http://timber-lang.org
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Abstract. This paper describes the main features of VeriFast, a sound
and modular program verifier for C and Java. VeriFast takes as input a
number of source files annotated with method contracts written in sep-
aration logic, inductive data type and fixpoint definitions, lemma func-
tions and proof steps. The verifier checks that (1) the program does not
perform illegal operations such as dividing by zero or illegal memory ac-
cesses and (2) that the assumptions described in method contracts hold
in each execution.

Although VeriFast supports specifying and verifying deep data struc-
ture properties, it provides an interactive verification experience as veri-
fication times are consistently low and errors can be diagnosed using its
symbolic debugger. VeriFast and a large number of example programs
are available online at: http://www.cs.kuleuven.be/~bartj/verifast

1 Introduction

To tame the problems caused by aliasing when reasoning about imperative pro-
grams, O’Hearn, Reynolds and Yang [1,2] proposed a variant of Hoare logic [3]
called separation logic. Separation logic extends Hoare logic with new assertions
to describe the structure of the heap. These additional assertions allow for local
reasoning through the frame rule:

{P} C {Q}
{P ∗ R} C {Q ∗ R}

Informally, the frame rule states that to reason about the behavior of a command
C, it is safe to ignore memory locations not accessed by C (here R).

To automate the ideas behind separation logic, Berdine et al. [4] proposed
an efficient verification algorithm based on symbolic execution and implemented
this algorithm for a small, imperative language in Smallfoot. Variants of this
algorithm were soon implemented in static analyzers (e.g. Space Invader [5]) and
in automatic (e.g. jStar [6]) and interactive program verifiers (e.g. Ynot [7]).

This paper describes the main features of VeriFast, a program verifier that
brings the ideas of Berdine et al. to (subsets of) C and Java. Contrary to Small-
foot, we focus more on fast verification, expressive power, and the ability to
diagnose errors easily than on automation. In the remainder of this paper, we
� Bart Jacobs is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO).
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explain the core specification concepts by showing how one can specify and ver-
ify full functional correctness of a C implementation of a stack (Section 2), and
discuss our experience with our implementation (Section 3).

2 Building Blocks

In this section, we introduce the building blocks of the VeriFast approach:
method contracts written in separation logic, inductive data types, fixpoint func-
tions and lemma functions. We do so by specifying a C implementation of a stack.

struct node { int value; struct node ∗ next ; };

struct node ∗ create node(int v , struct node ∗ nxt)
requires emp;

ensures result→value �→ v ∗ result→next �→ nxt ∗ malloc block node(result);
{

struct node ∗ n := malloc(sizeof(struct node));
if(n = 0) abort();
n→value := v; n→next := nxt ;
return n;

}

Fig. 1. The function create node and its method contract

2.1 Method Contracts

In VeriFast, developers can specify the behavior of a C function via a method
contract consisting of two assertions, a precondition and a postcondition. Both
assertions must be written in a form of separation logic. As an example, con-
sider the program of Figure 1. The function create node creates a new node,
initializes its fields, and returns a pointer to the caller. As create node can be
called at all times, its precondition (keyword requires) imposes no restriction
on callers. Its postcondition (keyword ensures) guarantees that the fields value
and next of the returned pointer are valid memory locations that respectively
hold the values v and nxt. In addition, the conjunct malloc block node(result)
guarantees that the return value is a pointer returned by malloc, that can be
passed to free1 to deallocate sizeof(struct node) bytes of memory. Note that
all aforementioned conjuncts of the postcondition are separated by a separating
conjunction (denoted by ∗), indicating that modification of one conjunct will not
affect the others.

In Figure 1 and the remainder of this paper, annotations are marked by a gray
background. In our implementation annotations must be placed inside special
comments that are ignored by the C compiler, but recognized by VeriFast.
1 In C, only pointers returned by malloc should be passed to free.
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2.2 Inductive Data Types

To allow developers to specify rich properties, VeriFast supports inductive data
types. For example, the first line of Figure 2 defines the well-known inductive
data type list : a list is either empty, nil , or the concatenation of a head element
and a tail. Note that the definition is generic in the type of the list elements (here
t). As we will soon show, inductively defined lists can be used in specifications.

inductive list<t> = nil | cons(t, list<t>);

predicate lseg(struct node ∗ f , struct node ∗ t ; list<int> vs) =

f = t ?

vs = nil :
f �= 0 ∗ f→value �→?v ∗ f→next �→?n ∗ malloc block node(f)∗

lseg(n, t, ?vs0 ) ∗ vs = cons(v, vs0 );

struct stack { struct node ∗ head ; };

predicate stack (struct stack ∗ s; list<int> vs) =

s→head �→?h ∗malloc block stack (s) ∗ lseg(h, 0, vs);

struct stack ∗ create stack ()
requires emp;

ensures stack (result ,nil);
{

struct stack ∗ s :=
malloc(sizeof(struct stack ));

if(s = 0)abort();
s→head := 0;
return s;

}

void push(struct stack ∗ s, int x)
requires stack(s, ?vs);

ensures stack (s, cons(x, vs));
{
s→head := create node(x, s→head);

}

Fig. 2. A small program illustrating inductive data types and predicates

To describe recursive data structures and to allow for information hiding,
VeriFast supports separation logic predicates. A predicate is a named assertion.
For example, Figure 2 defines the predicates lseg and stack . The former predicate
denotes a chain of valid nodes starting at f and ending in t containing exactly
the values in the mathematical list vs . More specifically, if f equals t, then vs
is the empty list; otherwise, f is a node with some value v (the question mark
preceding v indicates that f→value can have an arbitrary value, which is called
v in the remainder of the assertion), there exists a sequence of node objects at
f ’s next pointer with values vs0 and vs is the concatenation of v and vs0 . The
latter predicate states that s is a valid stack that holds the values vs .
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The aforementioned predicates are used in Figure 2 to specify the behavior of
create stack and push in an implementation-independent manner. More specif-
ically, create stack can be called at all times, and guarantees that the returned
pointer refers to a valid, but empty stack. The precondition of push requires
that s is a pointer to a valid stack containing an arbitrary sequence of values
called vs . push’s postcondition ensures that s still is a valid stack with the value
x added at the top.

Both lseg and stack are precise predicates. This means that their input pa-
rameters uniquely determine (1) the structure of the heap described by those
predicates and (2) the values of the output parameters. In VeriFast, input pa-
rameters are separated from output parameters by a semicolon. For example, f
and t are input parameters of lseg, while vs is an output parameter. VeriFast
automatically tries to fold and unfold precise predicate instances whenever nec-
essary. For instance, the predicate instance stack(s, vs) is opened automatically
inside push such that s→head can be read. As shown in Figure 5, developers
can insert explicit fold (close) and unfold (open) proofs steps in the form of
ghost commands for non-precise predicates or when the automatic folding and
unfolding does not suffice.

2.3 Fixpoint Functions

In addition to inductive data types, VeriFast also supports fixpoint functions.
Just like predicates and inductive data types, fixpoint functions can only be
mentioned in specifications, not in the C code itself. Figure 3 contains 3 fixpoint
functions, that respectively compute the head, tail and length of an inductively
defined list. Note that the aforementioned fixpoints functions are generic in the
element type of the list.

fixpoint t head<t>(list<t> l) {
switch(l) {

case nil : return default<t>;

case cons(hd , tl) : return hd ;

}
}

fixpoint list<t> tail<t>(list<t> l) {
switch(l) {

case nil : return default<t>;

case cons(hd , tl) : return tl ;

}
}

fixpoint int length<t>(list<t> l) {
switch(l) {

case nil : return 0; case cons(hd , tl) : return 1 + length(tl);

}
}

Fig. 3. The fixpoint functions head , tail and length
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The body of a fixpoint function must be a switch statement over one of the
fixpoint’s inductive arguments. To ensure soundness of the encoding of fixpoints,
VeriFast checks that fixpoints terminate. In particular, VeriFast enforces that
whenever a fixpoint g is called in the body of a fixpoint f that either g appears
before f in the program text or that the call decreases the size of an inductive
argument. For example, the call length(tl) in the body of length itself is allowed
because tl is a component of l (and hence smaller than l).

As shown in Figure 4, pop’s function contract uses fixpoint functions: given a
non-empty stack with values vs , pop removes the top of the stack (i.e. the head of
vs) and returns this value to the caller. The function dispose deallocates a stack
and its constituent nodes. To dispose the nodes, dispose walks over the list of
nodes in a loop and deallocates them one by one. To reason about loops, VeriFast
requires developers to provide loop invariants (keyword invariant). Developers
may provide an optional loop variant, an integer-valued expression that decreases
in each iteration but never becomes negative, to enforce termination. In the
example, the length of the sequence of nodes that is not deallocated yet is the
loop variant.

int pop(struct stack ∗ s)
requires stack (s, vs) ∗ vs �= nil ;

ensures stack (s, tail(vs))∗
result = head(vs);

{
int r := s→head→value;
struct node ∗ n := s→head ;
s→head := n→next ;
free(n);
return r;

}

void dispose(struct stack ∗ s)
requires stack (s, ?vs);
ensures emp;

{
struct node ∗ n := s→head ;
while(n �= 0)

invariant lseg(n, 0, ?vs0 );

decreases length(vs0);
{

struct node ∗ tmp := n→next ;
free(n); n := tmp;

}
free(s);

}
Fig. 4. The functions pop and dispose

2.4 Lemma Functions

Lemma functions allow developers to prove properties of their inductive data
types, fixpoints and predicates, and allow them to use these properties when
reasoning about programs. A lemma is a function without side-effects marked
lemma. The contract of a lemma function corresponds to the property itself,
its body to the proof and a lemma function call corresponds to an application
of the property. VeriFast has two types of lemma functions, pure and spatial
lemmas.
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fixpoint list<t> append<t>(list<t> a, list<t> b) {
switch(a) {

case nil : return b; case cons(hd , tl) : return cons(hd , append(tl , b));

}
}

lemma void append assoc<t>(list<t> a, list<t> b, list<t> c)

requires true; ensures append(append(a, b), c) = append(a, append(b, c));

{ switch(a) { case nil : ; case cons(hd , tl) : append assoc(tl , b, c); } }

lemma void lseg add(struct node ∗ a)
requires lseg(a, ?b, ?vs1 ) ∗ b→next �→?n ∗ b→ value �→?v∗

malloc block node(b) ∗ lseg(n, 0, ?vs2 );

ensures lseg(a, n, append(vs1 , cons(v,nil))) ∗ lseg(n, 0, vs2 );

{
if(a = b){ open lseg(a, b, vs1 ); } else { lseg add(a→next); }
open lseg(n, 0, vs2 ); close lseg(n, 0, vs2 ); // get info from predicate body

}

int size(struct stack ∗ s)
requires stack(s, ?vs); ensures stack(s, vs) ∗ result = length(vs);

{
int c := 0; struct node ∗ n := s→head ; struct node ∗ head := n;
while(n �= 0)

invariant lseg(head , n, ?vs1 ) ∗ lseg(n, 0, ?vs2 )∗
c = length(vs1 ) ∗ vs = append(vs1 , vs2 );

decreases length(vs2 );
{
c++; n := n→next ;
lseg add(head); append assoc(vs1 , cons(head(vs2 ),nil), tail(vs2 ));

}
return c;

}

Fig. 5. The correctness of the C function size is established using the lemma functions
lseg add and append assoc
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A pure lemma is a function whose contract only contains pure assertions, and
whose body proves that the precondition implies the postcondition. append assoc
shown in Figure 5 is a pure lemma that proves by induction on a’s size that
the fixpoint append is associative2. More specifically, the case nil of the switch
statement corresponds to the base case, while the case cons corresponds to the
inductive step. Note that switches over inductive data types do not require break
statements.

As opposed to pure lemmas, contracts of spatial lemmas can mention spatial
assertions such as predicates and points-to assertions. A spatial lemma with
precondition P and postcondition Q states that the program state described by
P is equivalent to the state described by Q. A spatial lemma call does not modify
the underlying values in the heap, but changes the symbolic representation of
the program state. lseg add shown in Figure 5 is an example of a spatial lemma
that shows that a list segment from a to b can be extended provided b itself is
a valid node. The body of the C function size, which computes the number of
elements in a stack s, calls lseg add and append assoc to prove that the loop
invariant is preserved by the loop’s body.

3 Implementation and Experience

The VeriFast program verifier, a large number of examples, and additional
documentation is available online at: http://www.cs.kuleuven.be/~bartj/
verifast. VeriFast has been used for teaching several courses on program ver-
ification at K.U.Leuven (Belgium) and ETH Zurich (Switserland). The docu-
mentation includes a tutorial, which describes the supported subset of C via a
number of examples and covers many features of VeriFast not discussed here
such as fractional permissions, higher-order predicates, overflow checking, func-
tion pointers, predicate families and concurrency.

VeriFast has been used in a number of case studies as shown in the table
below. These case studies do not consist of large code bases, but rather focus
on proving correctness of challenging specification and verification patterns (e.g.
composite).

program total # lines # annotation lines time taken (seconds)
chat server 242 114 0.08

linked list and iterator 332 194 0.09
composite 345 263 0.09

JavaCard applet 340 95 0.51
GameServer 383 148 0.23

To make it easier for developers to diagnose verification errors, VeriFast has an
IDE that supports symbolic debugging. That is, when verification fails, one can
inspect the symbolic states encountered during symbolic execution on the path
to the failure. A screenshot of the IDE is shown in Figure 6.
2 Our pure prover, Z3 [8], does not perform induction and therefore cannot derive

associativity of append solely based on its definition.

http://www.cs.kuleuven.be/~bartj/verifast
http://www.cs.kuleuven.be/~bartj/verifast
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Fig. 6. A screenshot of the VeriFast IDE. Developers can use the symbolic debugger in
the IDE to diagnose verification errors and inspect the symbolic state at each program
point. The box on the bottom left of the screen shows the symbolic states encountered
on the current path. The components of the selected state are shown in the boxes
on the bottom center (path condition), bottom right (symbolic heap), and top right
(symbolic store).
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Verification of Tree-Processing Programs via
Higher-Order Model Checking

Hiroshi Unno, Naoshi Tabuchi, and Naoki Kobayashi
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Abstract. We propose a new method to verify that a higher-order, tree-
processing functional program conforms to an input/output specification.
Our method reduces the verification problem to multiple verification
problems for higher-order multi-tree transducers, which are then trans-
formed into higher-order recursion schemes and model-checked. Unlike
previous methods, our new method can deal with arbitrary higher-order
functional programs manipulating algebraic data structures, as long as
certain invariants on intermediate data structures are provided by a pro-
grammer. We have proved the soundness of the method and implemented
a prototype verifier.

1 Introduction

The model checking of higher-order recursion schemes [20], or higher-order model
checking for short, has been extensively studied recently. Ong [20] has shown the
decidability of higher-order model checking. Kobayashi [13,12] then developed a
practical model checking algorithm and applied it to program verification. The
present work is an extension of that line of work, trying to apply higher-order
model checking to verification of a wider range of higher-order programs.

From a programming language point of view, recursion schemes are terms
of the simply-typed λ-calculus with recursion and tree constructors (but not
destructors). One can also encode finite data domains (such as booleans) by
using Church encoding. Based on this observation, Kobayashi [13] applied model
checking to resource usage verification of simply-typed functional programs with
recursion, booleans, and resource primitives. The limitation of this approach
was that programs manipulating infinite data domains such as lists and trees
could not be handled. To relax this limitation, in our previous work [15], we
have introduced higher-order multi-parameter tree transducers (HMTTs) as an
extension of recursion schemes with tree destructors. HMTTs are a kind of tree
transducers that take (possibly infinite) input trees, which can be destructed,
and outputs a (possibly infinite) tree. However, there still remains a gap between
HMTTs and ordinary functional programs that use recursive data structures
since HMTTs do not support intermediate data structures: an HMTT cannot
destruct trees constructed by the HMTT itself.

In this paper, we propose a verification method for an extension of HMTTs
called EHMTTs. In essence, EHMTTs are higher-order, simply-typed functional

K. Ueda (Ed.): APLAS 2010, LNCS 6461, pp. 312–327, 2010.
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Fig. 1. Overall Structure of EHMTT Verification Method

programs with recursion and tree primitives. Unlike our previous HMTTs [15],
there is no fundamental restriction on tree constructors/destructors, except that
special annotations (called coercion) are required for destructing trees con-
structed in a program. Our method can check whether the output trees gen-
erated by a given EHMTT conform to a given output specification whenever
the input trees conform to given input specifications. We can apply our method
to verification of ordinary functional programs that manipulate algebraic data
structures by encoding them as trees and adding annotations to the programs.

The overall structure of our method is shown in Figure 1. A given EHMTT
verification problem is reduced to multiple HMTT verification problems, which
are then solved by an HMTT verification method presented in our previous
work [15]. The HMTT verification method further reduces the HMTT verifi-
cation problems to model checking problems of recursion schemes, which are
finally solved by Kobayashi’s higher-order model checker TRecS [12]. In this
paper, we have formalized the reduction from an EHMTT verification problem
to HMTT verification problems, and proved the soundness of the reduction.
Our verification method is not complete, however, since the verification problem
is undecidable in general. We have implemented a prototype verifier and veri-
fied functional programs that manipulate XML and user-defined recursive data
structures.

The rest of the paper is organized as follows. Section 2 presents some prelim-
inary definitions and notations. In Section 3, we introduce EHMTTs. Section 4
formalizes our verification method for EHMTTs. Section 5 reports on the ex-
perimental results. We compare our method with related work in Section 6, and
conclude the paper with some remarks on future work in Section 7.

2 Preliminaries

We write dom(f) for the domain of a map f , and f{x �→ v} for the map f ′ such
that dom(f ′) = dom(f)∪ {x}, f ′(x) = v and f ′(y) = f(y) for y ∈ dom(f) \ {x}.
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We write X∗ for the set of sequences of elements of X . We write ε for the
empty sequence, and v1 · · · vn for the sequence consisting of v1, . . . , vn. We write
s1 · s2 for the concatenation of sequences s1 and s2. A sequence v1 · · · vn is often
abbreviated to ṽ.

A ranked alphabet Σ is a map from a finite set of symbols to non-negative
integers. For each symbol a ∈ dom(Σ), Σ(a) denotes the arity of a. We write
AΣ to denote the largest arity of the symbols in dom(Σ). A Σ-labeled ranked
tree T is a map from a subset of {1, · · · , AΣ}∗ to dom(Σ) such that:

– dom(T ) is prefix-closed, i.e. if π · i ∈ dom(T ), then π ∈ dom(T ); and
– if T (π) = a, then {i | π · i ∈ dom(T )} = {1, . . . , Σ(a)}.

3 Extended HMTTs

In this section, we introduce extended HMTTs (EHMTTs). From a programming
language point of view, an EHMTT is a simply-typed, call-by-name, higher-
order functional program that takes possibly infinite trees as input and outputs
a possibly infinite tree. The main differences from ordinary functional programs
is that trees are classified into input and output trees. Input trees can only
be destructed, and output trees can only be constructed in a program, as in
other tree transducers. Special annotations (coerceL(·) introduced below) are
however provided to convert output trees to input trees, so that, unlike ordinary
tree transducers, trees constructed in a program can be destructed again in the
same program. Thus, the class of EHMTTs is actually Turing complete.

We fix below a ranked alphabet Σ. We call elements of dom(Σ) terminal
symbols, and use the meta-variable a for them.

Definition 1 (EHMTT). An EHMTT P is a pair (D, S) where D is a set
of function definitions of the form {F1 x̃1 = t1, . . . , Fn x̃n = tn}, and S is a
function name. Here, t ranges over the set of terms, given by:

t ::= a | x | F | t1 t2 | case t of {ai ỹi ⇒ ti}n
i=1 | coerceL(t) | genL

Here, L denotes a set of trees. An EHMTT (D, S) is well-sorted under K if
S : i → · · · → i → o ∈ K and � D : K is derivable by using the sort assignment
rules in Figure 2. An HMTT is an EHMTT that does not contain coerceL(t).

In the figure, the sorts i and o describe input and output trees respectively. The
sort κ1 → κ2 denotes functions that take a tree or tree function of sort κ1 and
return a tree or tree function of sort κ2. κ̃ → o and x̃ : κ̃ are shorthand forms
of κ1 → · · · → κk → o and x1 : κ1, . . . , xk : κk respectively. We consider only
well-sorted EHMTTs below.

The term case t of {ai ỹi ⇒ ti}n
i=1 is reduced to [ũi/ỹi]ti if t evaluates to

ai ũi. If t does not match any pattern, the term evaluates to a special terminal
symbol fail.1 The term coerceL(t) asserts that the tree generated by t belongs
1 Thus, verification of the absence of pattern match errors can be encoded as a problem

of checking that the tree generated by EHMTT does not contain fail, which is an
instance of EHMTT verification problems considered below.
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Syntax of Sorts:

κ ::= i | o | κ1 → κ2

Sort Assignment Rules:

K � F : K(F ) (T-Fun)

K � a : o → · · · → o︸ ︷︷ ︸
Σ(a)

→ o
(T-Con)

K, x : κ � x : κ (T-Var)

K � t1 : κ1 → κ2

K � t2 : κ1

K � t1 t2 : κ2

(T-App)

K � t : i K, ỹi : ĩ � ti : o
(for all i = 1, . . . , N)

K � case t of {ai ỹi ⇒ ti}n
i=1 : o

(T-Case)

K � genL : i (T-Gen)

K � t : o

K � coerceL(t) : i
(T-Coerce)

K = {F1 : κ̃1 → o, . . . , Fn : κ̃1 → o}
K, x̃i : κ̃i � ti : o (for each i)

� {F1 x̃1 = t1, . . . , Fn x̃n = tn} : K (T-Def)

Operational Semantics

t (extended terms) ::= · · · | a | o2i(t) | assertL(t)

E (evaluation contexts) ::= [ ] | a t1 · · · tj−1 E tj+1 · · · tΣ(a)

| case E of {ai ỹi ⇒ ti}n
i=1 | o2i(E) | assertL(E)

F x̃ = t ∈ D
E[F t̃] −→P E[[t̃/x̃]t]

(E-App)

E[case ai t̃ of {ai ỹi ⇒ ti}n
i=1] −→P E[[t̃/ỹi]ti] (E-Case)

a �∈ {a1, . . . , an}
E[case a t̃ of {ai ỹi ⇒ ti}n

i=1] −→P E[fail]
(E-Case-Fail)

a L1 · · ·Ln ⊆ L

E[genL] −→P E[a genL1 . . .genLn ]
(E-Gen)

E[coerceL(t)] −→P assertL(t) (E-Coerce-Assert)

E[coerceL(t)] −→P E[o2i(t)] (E-Coerce-Input)

E[o2i(ai t̃)] −→P E[ai o2i(t̃)] (E-Input)

t⊥ �∈ L⊥

assertL(t) −→P Error
(E-Assert-Error)

Fig. 2. Sort Assignment Rules and Call-by-Name Operational Semantics
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to a set L of trees, and converts the tree to an input tree. genL generates an
element of L non-deterministically.

Example 1. Consider the EHMTT Prev = (D,Reverse), where D consists of:

Reverse x = case x of e⇒ e

| a x′ ⇒ Append (coerceb
∗a∗e(Reverse x′)) (a e)

| b x′ ⇒ Append (coerceb
∗e(Reverse x′)) (b e).

Append x y = case x of e⇒ y
| a x′ ⇒ a (Append x′ y)
| b x′ ⇒ b (Append x′ y).

Prev takes a tree of the form am(bn(e)) as input, and outputs a tree bn(am(e)).
The coercions coerceb

∗a∗e(·) and coerceb
∗e(·) assert that their arguments be-

long to {bm(an(e)) | m, n ≥ 0} and {bm(e) | m ≥ 0} respectively, and con-
vert them to input trees. Note that Reverse and Append have sorts i → o and
i → o → o respectively, so that Reverse x′ returns an output tree. �
Figure 2 shows the formal semantics of the language. In the semantics, the set
of terms are extended as follows. An underlined symbol a denotes an input tree
constructor (which, by the restriction of EHMTT, occurs only at run-time, not
in source programs). o2i(t) and assertL(t) are used to define the semantics of
coerceL(t): the former converts an output tree to an input tree, and the latter
asserts that the tree generated by t belong to L. In the rule E-Assert-Error,
t⊥ is a finite (Σ ∪ {⊥ �→ 0})-labeled ranked tree, defined by:

t⊥ =
{

a t⊥1 · · · t⊥n (if t = a t1 · · · tn)
⊥ (otherwise)

L⊥ is the set {T | T � T ′ ∈ L}, where T � T ′ means that T is obtained from
T ′ by replacing some nodes of T ′ with ⊥.

Remark 1. Note that EHMTT is call-by-name. This is because our verification
method is based on the model checking of higher-oder recursion schemes, whose
semantics is call-by-name. To deal with call-by-value programs, it suffices to
apply CPS transformation before applying our verification method. The reasons
why we allow infinite trees as inputs and outputs for EHMTTs are as follows.
First, we would like to verify programs that manipulate not only finite but also
infinite data structures (such as streams). Secondly, we would like to model a
program that contains non-deterministic branches (which is typically obtained
by abstracting branching information of a user program) as an EHMTT that
generates a single tree describing all the possible outputs of the program. In
that case, even if a program manipulates only finite data structures, the output
of the EHMTT can be an infinite tree.

The goal of our verification is to check that a given EHMTT conforms to a given
specification on input and output. As EHMTTs manipulate infinite trees, we use
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top-down tree automata called trivial automata (which are Büchi tree automata
with a trivial acceptance condition) as specifications (as well as for annotations
L in coerceL(·) and genL).

Definition 2 (trivial automaton). A trivial automaton M is a quadruple
(Σ, Q, Δ, q0), where:

– Σ is a ranked alphabet.
– Q is a finite set of states.
– Δ is a finite subset of Q × dom(Σ) × Q∗ called a transition relation such

that if (q, a, q̃) ∈ Δ, then the length of the sequence q̃ is Σ(a).
– q0 is a state called an initial state.

A Σ-labeled ranked tree T is accepted by M if there is a Q-labeled tree R such
that:

– dom(T ) = dom(R).
– For any π ∈ dom(R), (R(π), T (π), R(π · 1) · · ·R(π ·Σ(T (π)))) ∈ Δ.
– R(ε) = q0.

We write L(M) for the set of Σ-labeled ranked trees accepted by M.

When restricted to finite trees, the class of languages recognized by trivial au-
tomata is equivalent to the class of regular tree languages.

Example 2. Recall Example 1. A trivial automaton for accepting b∗a∗e is defined
by (Σ, {q0, q1}, Δ, q0), where:

Σ = {a �→ 1, b �→ 1, e �→ 0}
Δ = {(q0, b, q0), (q0, a, q1), (q0, e, ε), (q1, a, q1), (q1, e, ε)} �

We now formalize our verification problem:

Definition 3. Given an EHMTT P = (D, S) and trivial automata M1, . . . ,Mk,
M = (Σ, Q, Δ, q0), we write |= (P ,M1, . . . ,Mk,M) if for all T1 ∈ L(M1), . . . ,
Tk ∈ L(Mk),

1. S T1 · · ·Tk −→∗
P t implies t⊥ ∈ L(M⊥), and

2. S T1 · · ·Tk �−→∗
P Error.

Here, M⊥ is the trivial automaton (Σ ∪{⊥ �→ 0}, Q, Δ∪{(q,⊥, ε) | q ∈ Q}, q0).
An EHMTT verification problem (P ,M1, . . . ,Mk,M) is the problem to check
that |= (P ,M1, . . . ,Mk,M).

The first condition of an EHMTT verification problem says that given input trees
that conform to the input specification, the EHMTT generates a valid tree.2 The
second condition means that the EHMTT in fact never causes a coercion error.
2 Because of the presence of ⊥, only safety properties are guaranteed; there is no

guarantee that the EHMTT eventually generates a tree that belongs to L(M).
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In [15], we have presented a (sound but incomplete) method for the restricted
case (which we call HMTT verification problems) where P is an HMTT (i.e., for
the case where P does not contain coerceL(·)). In the next section, we reduce
an EHMTT verification problem to HMTT verification problems.

4 Verification Method for EHMTTs

We now present a method for reducing an EHMTT verification problem to
HMTT verification problems (which can then be solved by the previous method
[15]). The idea is to reduce each of the two conditions in Definition 3 to HMTT
verification problems.

Let (P ,M1, . . . ,Mk,M) be a given EHMTT verification problem, and sup-
pose that P contains m occurrences of coercions: coerceL1(·), . . . , coerceLm(·).
We construct HMTTs PA,PB1, . . . ,PBm such that:

– PA approximates the output of P , by assuming that coercions never fail.
– PBi approximates all the possible arguments of coerceLi(·).

Then, the verification problem (P ,M1, . . . ,Mk,M) can be reduced to m + 1
HMTT verification problems: (PA,M1, . . . ,Mk,M), (PB1,M1, . . . ,Mk,B(L1)),
. . . , (PBm ,M1, . . . ,Mk,B(Lm)) (where B(L) is an automaton for accepting trees
representing subsets of L; see Section 4.2 below). Sections 4.1 and 4.2 below show
the constructions of PA and PBi respectively.

4.1 Construction of PA

Let PA be the HMTT obtained by just replacing every occurrence of coerceLi(·)
in P with genLi . Then, PA approximates the output of P , assuming that no
coercion error occurs.

Theorem 1. Let P=(D, S) be an EHMTT such that |= (PA,M1, . . . ,Mk,M)
holds. For any T1 ∈ L(M1), . . . , Tk ∈ L(Mk), if S T1 · · ·Tk �−→∗

P Error and
S T1 · · ·Tk −→∗

P t, then t⊥ ∈ L(M⊥).

A proof is given in the full version of this paper [23].

Example 3. Recall Prev in Example 1. PArev is (D,ReverseA) where D is given
by:

ReverseA xA = case xA of e⇒ e

| a x′A ⇒ AppendA genb
∗a∗e (a e)

| b x′A ⇒ AppendA genb
∗e (b e)

AppendA xA yA = case xA of e⇒ yA

| a x′A ⇒ a (AppendA x′A yA)
| b x′A ⇒ b (AppendA x′A yA)
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4.2 Construction of PBi

The construction of PBi is more involved, for the following reasons.

1. Given an input, P may invoke coerceLi(·) more than once. For example,
given b(b(e)) as input, Prev in Example 1 invoke coerceb

∗e(·) twice, with
different parameters e and b(e). Thus, PBi should approximate the set of
trees that are passed to coerceLi(·).

2. How a function invokes coerceLi(·) may depend on its arguments. For exam-
ple, consider a higher-order function F defined by F g x = g(x). Obviously,
how coerceLi(·) is invoked during evaluation of F t1 t2 depends on t1 and
t2.

To address the first issue, we represent a (possibly infinite) set of trees by a
single (possibly infinite) tree. We use special terminal symbols br and emp, which
represent the set union and an empty set respectively. For example, the set
{e, b(e)} is represented by br e (b(e)). PBi outputs such a tree representation
of (an over-approximation of) the set of trees passed to coerceLi(·).

To address the second issue, we duplicate each parameter x of a function
into xA and xB. The parameter xA is used to compute (an approximation of)
the original value of x, while the parameter xB computes (an approximation
of) the set of trees passed to coerceLi(·) during evaluation of x. For example,
F g x = g(x) is transformed to: FB gA gB xA xB = gB xA xB. Here, FB

computes an approximation of the set of trees passed to coerceLi(·) by calling
gB with duplicated parameters xA and xB.

We give below more concrete examples to explain the construction of PBi.

Example 4. Recall Prev in Example 1. For the first coercion coerceL1(Reverse x′)
(where L1 = b∗a∗e), we construct the following HMTT PB1rev:

ReverseB xA xB =
br xB (case xA of e⇒ emp

| a x′A ⇒ AppendB genb
∗a∗e (br (ReverseA x′A)

(ReverseB x′A emp))
(a e) emp

| b x′A ⇒ AppendB genb
∗e (ReverseB x′A emp)

(b e) emp)
AppendB xA xB yA yB =

br xB (case xA of e⇒ yB

| a x′A ⇒ AppendB x′A emp yA yB

| b x′A ⇒ AppendB x′A emp yA yB)

As mentioned above, the parameters of Reverse and Append have been dupli-
cated. When Reverse t is called in Prev, there are two cases where coerceL1(·)
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may be called: the case where t contains coerceL1(·) and it is called when t is
evaluated by the case statement (note that our language is call-by-name); and
the case where coerceL1(·) is called in a case branch. In the body of the defini-
tion of ReverseB, the part xB approximates the set of trees passed to coerceL1(·)
in the former case, and the part case xA of · · · approximates the set of trees
for the latter case.

In the clause for a(x′A), AppendB is used to compute an approximation of
the set of trees passed to coerceL1(·). The first and third parameters approx-
imate the values of the original parameters of Append. The second parameter
(br (ReverseA x′A) (ReverseB x′A emp)) approximates the set of trees passed to
coerceL1(·) during the computation of coerceL1(Reverse x′). Here, there are
two cases where coercion can occur: (i) the value of Reverse x′ is computed and
passed to coerceL1(·) and (ii) coerceL1(·) is invoked during the computation of
Reverse x′. The parts (ReverseA x′A) and (ReverseB x′A emp) cover the former
and the latter cases respectively. In the latter, the second parameter of (ReverseB

is an empty set, as the trees passed to coerceL1(·) during the computation of
x′ are already covered by xB. �

The reduction works similarly for EHMTTs with higher-order functions.

Example 5. Let us consider a higher-order version of the list reverse program:

Reverse x = Reverseh Append x

Reverseh f x = case x of e⇒ e

| a x′ ⇒ f (coerceb
∗a∗e(Reverseh f x′)) (a e)

| b x′ ⇒ f (coerceb
∗e(Reverseh f x′)) (b e)

We get the following HMTT for the first coercion coerceb
∗a∗e(Reverseh f x′):

ReverseB xA xB = ReversehB AppendA AppendB xA xB

ReversehB fA fB xA xB =
br xB (case xA of e⇒ emp

| a x′A ⇒ fB genb
∗a∗e (br (ReversehA fA x′A)

(ReversehB fA fB x′A emp))
(a e) emp

| b x′A ⇒ fB genb
∗e (ReversehB fA fB x′A emp)

(b e) emp)

Here, AppendA is the one obtained in Example 3. Note that ReversehB requires
an additional argument fB, which generates all the trees passed to the coercion
by f . �
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Formally, given an EHMTT P = (D, S), PBi is (Bi(D), S) where:

Bi(D) = {S x1 · · ·xk = SBi x1 emp · · ·xk emp}∪
{aBi xA

1 xBi
1 · · ·xA

Σ(a) xBi

Σ(a) = br xBi
1 · · ·xBi

Σ(a) | a ∈ dom(Σ)}∪
{FA xA

1 · · ·xA
n = A(t) | F x1 · · ·xn = t ∈ D}∪

{FBi xA
1 xBi

1 · · ·xA
n xBi

n = Bi(t) | F x1 · · ·xn = t ∈ D}

Bi(a) = aBi Bi(x) = xBi Bi(F ) = FBi

Bi(t1 t2) = Bi(t1) A(t2) Bi(t2)
Bi(case t of {aj ỹj ⇒ tj}n

j=1) =
br Bi(t) (case A(t) of {aj ỹA

j ⇒ [ẽmp/ỹBi

j ]Bi(tj)}n
j=1)

Bi(genL) = emp

Bi(coerceLj (t)) =
{
br A(t) Bi(t) (if i = j)
Bi(t) (otherwise)

Here, A(t) is the term obtained by replacing every coercion coerceL(·), variable
x, and function name F in t with genL, xA, and FA respectively. br t1 · · · tn
stands for br t1 (br t2 (br · · · (br tn−1 tn))) if n ≥ 2, t1 if n = 1, and emp if
n = 0. For each terminal a ∈ dom(Σ), we obtain the new function aBi that
generates all the trees passed to the i-th coercion by the actual arguments of a.

Given a trivial automatonM(Li) = (Σ, Q, Δ, q0) for accepting Li, the output
specification for PBi is the trivial automaton B(Li) = (Σ′, Q, Δ′, q0), where:

Σ′ = Σ ∪ {br �→ 2, emp �→ 0}
Δ′ = Δ ∪ {(q, br, q · q), (q, emp, ε) | q ∈ Q}

The following theorem states the correctness of the construction of PBi . See the
full version of this paper for the proof [23].

Theorem 2. Let P = (D, S) be an EHMTT and suppose that the coercions in P
are coerceL1(·), . . . , coerceLm(·). If |= (PBi ,M1, . . . ,Mk,B(Li)) holds for each
i ∈ {1, . . . , m}, for any T1 ∈ L(M1), . . . , Tk ∈ L(Mk), S T1 · · ·Tk �−→∗

P Error.

Our reduction from EHMTT to HMTT verification problems is incomplete, how-
ever, i.e. there is a case that an EHMTT satisfies a given specification, but the
generated HMTTs do not satisfy the required properties. There are two main
reasons for this.

– Coercion annotations may not be good enough. For example, if coercions are
annotated with the empty language ∅, the derived HMTTs obviously do not
satisfy the property. Actually, there may be no good way to annotate coer-
cions. For example, consider the EHMTT S x = Zip (coerceL(Unzip x)),
where Unzip takes an input sn z that encodes a natural number n and re-
turns an output tree pair (sn z) (sn z), and Zip takes an input tree of the
form pair (sn1 z) (sn2 z) and outputs fail if and only if n1 �= n2. To verify
that S x never outputs fail for any x ∈ {sn z | n ≥ 0}, we need the coercion
annotation L = {pair (sn z) (sn z) | n ≥ 0}, which cannot be expressed by
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a trivial automaton or a regular language. As another example, consider the
following variant of a reverse function:

Reverse x = case x of e⇒ e
| cons z x′ ⇒ Append (coerceL(Reverse x′)) (cons z e)

Append x y = · · ·

Here, we have used a list-like representation of sequences of a, b. In this case,
the appropriate annotation depends on the value of z (L should be b∗a∗e if z
is a while b∗e if z is b), which cannot be expressed in our language. One way
to avoid this problem is to duplicate a part of the code so that appropriate
annotations can be inserted.

– The output specification B(Li) for PBi is too restrictive. When the automa-
ton for accepting Li is non-deterministic, B(Li) does not accept all the tree
representations of subsets of Li. This problem can easily be remedied, how-
ever, by using a more elaborate construction of B(Li), hence not a funda-
mental limitation.

Our overall method is also incomplete because of the incompleteness of the
HMTT verification method [15] (unsurprisingly, as the HMTT verification prob-
lem is undecidable in general).

5 Experiments

We have implemented the reduction method from an EHMTT verification prob-
lem to HMTT verification problems presented in Section 4. For solving the
HMTT verification problems, we adopted an HMTT verification method in [15]
and Kobayashi’s higher-order model checker TRecS [12].

Table 1 shows the results of preliminary experiments. The column “O” shows
the order of each EHMTT which is the largest order of the sorts of the functions.
The order of a sort is defined by:

order (i) = order (o) = 0 order (κ1 → κ2) = max(order (κ1) + 1, order(κ2))

The column “C” shows the number of coercions in each EHMTT. The columns
“R” and “S” are the number of rules and the size of each EHMTT respectively.
The size of an EHMTT is measured by the number of symbols occurring in the
right-hand side of the rewriting rules. “SumR” and “SumS” respectively are the
sum of the numbers of the rules and the sum of the sizes of all HMTTs de-
rived from each EHMTT. “QI” and “QO” respectively show the numbers of the
states of trivial automata for the input and output specifications. The column
“TRed” shows the elapsed time, in milliseconds, of reduction from an EHMTT
verification problem to HMTT verification problems. The column “Y/N” indi-
cates whether each EHMTT was proved correct (Y) or rejected (N). The column
“TMC” shows the total running time of the higher-order model checker TRecS
to solve all the HMTT verification problems derived from each EHMTT.
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Table 1. Experimental Results

Programs O C R S SumR SumS QI QO TRed Y/N TMC

Reverse 1 2 3 32 23 222 4 2 1 Y 4
Isort 1 1 4 29 16 115 3 2 1 Y 3
Msort 2 4 8 131 88 1,731 3 2 2 Y 224
HomRep-Rev 4 1 12 90 43 362 6 2 1 Y 31
Split 2 1 6 126 33 572 23 9 3 Y 132
Bib2Html 2 1 13 493 126 2,303 59 50 52 Y 52
XMarkQ1 2 1 12 454 118 2,136 99 23 29 Y 168
XMarkQ2 1 2 9 461 207 3,797 99 4 77 Y 92
Gapid-Html 3 1 17 374 75 1,642 16 7 2 Y 112
JWIG-guess 2 1 6 465 98 2,331 64 50 588 Y 50
JWIG-cal 1 2 12 475 222 4,045 60 50 72 Y 73
MinCaml-K 2 8 19 605 563 16,117 5 3 5 Y 647
Split’ 2 1 6 126 33 572 23 9 3 N 27
JWIG-guess’ 2 1 6 465 98 2,331 64 50 586 N 49
JWIG-cal’ 1 2 12 475 222 4,045 60 50 2 N 55

The program Reverse is the same as the one presented in the paper. Isort
performs insertion sort on the lists encoded as linear trees over Σ = {a �→
1, b �→ 1, e �→ 0}. Msort performs merge sort instead of insertion sort on the
same linear trees. HomRep-Rev takes a word homomorphism h over linear trees
(a + b)∗e, a number n and a word w ∈ (a + b)∗e, and produces the reverse of
the image hn(w). We let h = {a �→ bb, b �→ a} and verified that if n is an even
number and w ∈ a∗b∗e, then the reversed image is in b∗a∗e. The program Split
presented in Figure 3 is taken from sample programs of CDuce [2], a higher-order
XML-oriented functional language. Split takes a list of persons, and splits it
into two lists of men and women. Bib2Html also simulates a CDuce program
that transforms a list of bibliography into an XHTML. XMarkQ1 and XMarkQ2
taken from Q1 and Q2 of XMark benchmark suite [21] simulate simple XQuery
queries. The program Gapid-Html is a composition of Tozawa’s high-level tree
transducers [22]. It takes a document of the following DTD:

type Doc = doc[Preface, (Div|P|Note)*]
type Preface = preface[Header, P*]
type Header = header[A*]
type P = p[A*]
type Div = div[(Div|P|Note|A)*]
type Note = note[(P|A)*]
type A = a[A*]

and another tree as inputs. It checks whether the children of each node of the
document are empty, and if so, replaces the empty children with a “hole”. The
program then inserts the given tree into the holes. The program finally trans-
forms the result to an XHTML. The programs JWIG-guess and JWIG-cal are
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taken from sample programs of JWIG (http://www.brics.dk/JWIG/), a
programming language for interactive Web services. A main feature of JWIG
is document templates. For example, the following document template repre-
sents an HTML document with a hole named x:

<html>
<head><title> ... </title></head>
<body><[x]></body>

</html>

We can instantiate the template by substituting another document or template
for x. In EHMTTs, the template can be encoded as the following rule for a
function T with an argument x:

T x → html (head (title (text leaf leaf) leaf) (body x leaf)) leaf

The program JWIG-guess is a number guessing game. The program JWIG-cal is
a web-based calendar service. MinCaml-K simulates the K-normalization routine
of the MinCaml compiler (http://min-caml.sourceforge.net/index-e.html).
Finally, Split’, JWIG-guess’ and JWIG-cal’ are respectively the same as Split,
JWIG-guess and JWIG-cal except that they involve wrong coercions which lead
to an Error to see that programs with wrong coercions are rejected. These
programs (except for Reverse, Isort, Msort and HomRep-Rev) are manually
translated from original source codes to EHMTTs.

All the valid programs have been proved correct by our verification method de-
spite its incompleteness, while wrong programs are correctly rejected. The num-
ber of coercions (thus the number of annotations required by our method) is much
smaller than the number of rules (functions) in all cases. Though these numbers de-
pend on the particular encoding, this result witnesses that our verification method
usually requires fewer annotations than existing verification methods [9,2,4], which
require type annotations for every functiondefinition. Further comparisonwith the
existing methods on this point is given in Section 6.

All the programs were proved correct within 1 second. From this, we can
expect that our method can verify non-trivial programs reasonably fast despite
the high time complexity (n-EXPTIME complete, where n is the order) of higher-
order model checking.

6 Related Work

As shown in Section 1, our verification method is based on recent advances on
higher-order model checking [11,1,20,14]. Ong [20] has proven the decidability of
the model checking problem for recursion schemes, and Kobayashi has developed
and implemented a type-based model checking algorithm [14].

As we have shown in Section 5, our EHMTT verification method can be ap-
plied to verification of functional programs that manipulate various data struc-
tures such as strings, lists, trees, XML, and user-defined recursive data structures

http://www.brics.dk/JWIG/
http://min-caml.sourceforge.net/index-e.html
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Split x = case x of person g n c =>

case c of children cs => case g of gender gend =>

Let gend n (coerce qPair (MakePair cs nil nil))

Let gend n x = case gend of

m => Make man (Copy n) x

| f => Make woman (Copy n) x

MakePair ps ms fs = case ps of nil => pair ms fs

| cons p sib => case p of person g n c => case g of gender gend =>

case gend of

m => MakePair sib (cons (person (gender m) (Copy n) (Copy c)) ms) fs

|f => MakePair sib ms (cons (person (gender f) (Copy n) (Copy c)) fs)

Make tag name sdpair = case sdpair of pair s d =>

tag name (sons (RevMap Split s nil))

(daughters (RevMap Split d nil))

RevMap f l ac =

case l of nil => ac | cons x xs => RevMap f xs (cons (f x) ac)

Fig. 3. Split

by encoding them as trees and adding coercion annotations to the programs. We
compare our method with existing verification methods below.

Refinement types [7,4] can be used for verification of functional programs
that manipulate user-defined recursive data structures. The original refinement
type system [7] uses a näıve least fixed-point algorithm to infer the most precise
refinement types of functions, and does not seem to scale for higher-order func-
tions. Another refinement type system proposed by Davies [4] requires users to
write type annotations for each function. For example, for Prev in Example 1,
Reverse and Append need to be annotated with the following intersection types:

Reverse : (a∗b∗e→ b∗a∗e) ∧ (b∗e→ b∗e)
Append : (b∗a∗e→ a∗e→ b∗a∗e) ∧ (b∗e→ b∗e→ b∗e)

In contrast, our method requires only the annotations coerceb
∗a∗e(Reverse x′)

and coerceb
∗e(Reverse x′) in the definition of Reverse. As in this case, we

expect that coercion annotations required in our approach tends to be simpler
than refinement type declarations. Because of the limitation of our approach
discussed at the end of Section 4, however, it may be useful to combine both
approaches.

Several research groups have proposed typed XML processing languages [9,2].
Their type systems can be used for verification of XML processing programs. As
in the Davies’s refinement type system, these type systems require type annota-
tions for each function for type checking. Thus, our method can be used as an
alternative for a verification purpose. Meanwhile their type systems support ad-
vanced programming features such as parametric polymorphism [8] and regular
expression pattern matching [10]. Extensions of our method with these features
are left for future work. While the type checking of the XML processing lan-
guages are incomplete, extensive work has been done on complete type checking
of various tree transducers [18,17]. They are not Turing-complete, however, and
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thus less expressive than our EHMTTs. As shown in [16], ordinary macro and
high-level tree transducers [5,6] are subsumed by linear HMTTs, for which our
EHMTT verification method is sound and complete.

String analysis [3,19] can verify programs that manipulate strings by approx-
imating a string-processing program as a regular or a context-free grammar. In
contrast, our method is more precise since we can naturally model programs as
EHMTTs, which are strictly more expressive than context-free grammars.

Our approach of reducing EHMTT verification to simpler verification prob-
lems based on coercion annotations is a reminiscent of program verification tech-
niques for imperative languages based on verification condition generation from
loop invariants: coercion annotations are invariants, and generated HMTT ver-
ification problems can be considered verification conditions. The main differ-
ences are that our target is a higher-order functional language and that not all
recursions (or loops) need to be annotated with invariants.

7 Conclusion

We have proposed a verification method for tree-processing programs based on
reduction to higher-order model checking, and shown its effectiveness through ex-
periments. We plan to investigate techniques for inferring coercion annotations,
which would enable fully automatic verification of tree-processing programs. If
the derived HMTTs are ordinary macro or high-level tree transducers [5,6], an-
notations can indeed be inferred by the inverse inference technique. For general
EHMTTs, we plan to apply techniques of machine learning. Addressing the
limitations discussed at the end of Section 4 is also left for future work.
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technique for finding quantified loop invariants. Our technique can find
arbitrary first-order invariants (modulo a fixed set of atomic propositions
and an underlying SMT solver) in the form of the given template and
exploits the flexibility in invariants by a simple randomized mechanism.
The proposed technique is able to find quantified invariants for loops from
the Linux source, as well as for the benchmark code used in the previous
works. Our contribution is a simpler technique than the previous works
yet with a reasonable derivation power.

1 Introduction

Recently, algorithmic learning has been successfully applied to invariant gen-
eration. The new approach formalizes the invariant generation problem as an
instance of algorithmic learning: to generate an invariant is to learn a concept
from a teacher. Using a learning algorithm as a black box, one only needs to
design a mechanical teacher that guides the learning algorithm to invariants.
The learning-based framework not only simplifies the invariant generation algo-
rithms, the new approach can also automatically generate invariants for realistic
C loops at a reasonable cost [15].

Figure 1 shows the new framework proposed in [15]. In the figure, the CDNF
algorithm is used to drive the search of quantifier-free invariants. The CDNF
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Fig. 1. The learning-based framework

representation of an unknown target formula by asking a teacher two types of
queries. A membership query asks if a valuation to Boolean variables satisfies the
unknown target; an equivalence query asks if a candidate formula is equivalent to
the target. With predicate abstraction, the new approach formulates an unknown
quantifier-free invariant as the unknown target Boolean formula. One only needs
to automate the query resolution process to infer an invariant.

If an invariant was known, a mechanical teacher to resove queries can be im-
plemented straightforwardly. In the context of invariant generation, no invariant
is known. However, a simple randomized automatic teacher is proposed in [15].
With the help of SMT solvers, user-provided annotations, and coin tossing, one
can resolve both types of queries by a simple reduction to the satisfiability prob-
lem of quantifier-free formulae. An ingenious feature of this design is its random
walk. Due to the lack of information, some queries cannot be resolved decisively.
In this case, the teacher simply gives a random answer. The learning algorithm
will then look for invariants consistent with both decisive and random answers
from the teacher. Since there are sufficiently many invariants for an annotated
loop in practice, almost certainly the learning algorithm can find one.

The work [15] has, however, one obvious limitation; it can only generate
quantifier-free invariants. Yet loops iterating over arrays often require invari-
ants quantified over indices. It will be very useful to extend the new approach
to quantified invariants. However, a näıve extension would not work. First of all,
it is not clear how to associate an arbitrarily quantified formula with a quanti-
fied Boolean formula. There is no counterpart (a Boolean formula) for quantified
variables in, say, ∀i.i > 10. Second, there is no exact learning algorithm for quan-
tified Boolean formulae to the best of our knowledge. Even if an abstraction for
quantified formulae was available, we could not adopt the same learning-based
framework. Third, computability issues must be addressed because the satisfia-
bility problem for arbitrarily quantified formulae is undecidable. Developing an
effective invariant generation algorithm for quantified invariants is therefore an
interesting challenge to the learning-based framework.

This article is about our findings in generating quantified invariants with
algorithmic learning:
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– We show that a simple combination of algorithmic learning, decision proce-
dures, predicate abstraction, and templates can automatically infer quanti-
fied loop invariants. The technique is as powerful as the previous approaches
[9,20] yet is much simpler.

– The technique needs a very simple template such as “∀k.[]” or “∀k.∃i.[].”
Our algorithm can generate any quantified invariants expressible by a fixed
set of atomic propositions in the form of the given template. Moreover, the
correctness of generated invariants is verified by an SMT solver.

– The technique works in realistic settings: The proposed technique can find
quantified invariants for some Linux library, kernel, and device driver sources,
as well as for the benchmark code used in the previous work [20].

– The technique’s future improvement is free. Since our algorithm uses the two
key technologies (exact learning algorithm and decision procedures) as black
boxes, future advances of these technologies will straightforwardly benefit
our approach.

1.1 Motivating Example

In order to illustrate how our algorithm works, we briefly describe the learning
process for the max example from [20].

{m = 0 ∧ i = 0}
while i < n do if a[m] < a[i] then m = i fi; i = i + 1 end
{∀k.k < n ⇒ a[k] ≤ a[m]}

The max example examines a[0] through a[n− 1] and finds the index of the max-
imal element in the array. This simple loop is annotated with the precondition
m = 0 ∧ i = 0 and the postcondition ∀k.0 ≤ k < n ⇒ a[k] ≤ a[m].

Template and Atomic Propositions A template and atomic propositions are pro-
vided manually by user. We provide the template ∀k.[]. The postcondition is
universally quantified with k and gives a hint to the form of an invariant. By
extracting from the annotated loop and adding the last two atomic propositions
from the user’s guidance, we use the following set of atomic propositions:

{i < n, m = 0, i = 0, a[m] < a[i], a[k] ≤ a[m], k < n, k < i}.

Query Resolution In this example, 20 membership queries and 6 equivalence
queries are made by the learning algorithm on average. For simplicity, let us
find an invariant that is weaker than the precondition but stronger than the
postcondition. We describe how the teacher resolves some of these queries.

– Equivalence Query: The learning algorithm starts with an equivalence query
EQ(T), namely whether ∀k.T can be an invariant. The teacher answers NO
since ∀k.T is weaker than the postcondition. Additionally, by employing an
SMT solver, the teacher returns a counterexample {m = 0, k = 1, n =
2, i = 2, a[0] = 0, a[1] = 1}, under which ∀k.T evaluates to true, whereas
the postcondition evaluates to false.
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– Membership Query: After a few equivalence queries, a membership query
asks whether

∧
{i ≥ n, m = 0, i = 0, k ≥ n, a[k] ≤ a[m], a[m] ≥ a[i]} is a

part of an invariant. The teacher replies YES since the query is included in
the precondition and therefore should also be included in an invariant.

– Membership Query: The membership query MEM (
∧
{i < n, m = 0, i �=

0, k < n, a[k] > a[m], k < i, a[m] ≥ a[i]}) is not resolvable because the
template is not well-formed (Definition 1) by the given membership query.
In this case, the teacher gives a random answer (YES or NO). Interestingly,
each answer leads to a different invariant for this query. If the answer is YES ,
we find an invariant ∀k.(i < n∧k ≥ i)∨(a[k] ≤ a[m])∨(k ≥ n); if the answer
is NO , we find another invariant ∀k.(i < n ∧ k ≥ i) ∨ (a[k] ≤ a[m]) ∨ (k ≥
n ∧ k ≥ i). This shows how our approach exploits a multitude of invariants
for the annotated loop.

1.2 Organization

We organize this paper as follows. After preliminaries in Section 2, we present
problems and solutions in Section 3. Our abstraction is briefly described in Sec-
tion 4. The details of our technique are described in Section 5. We report experi-
ments in Section 6, discuss related work in Section 7, then conclude in Section 8.

2 Preliminaries

The abstract syntax of our simple imperative language is given below:

Stmt
�
= nop | Stmt; Stmt | x := Exp | b := Prop | a[Exp] := Exp |

a[Exp] := nondet | x := nondet | b := nondet |
if Prop then Stmt else Stmt | { Pred } while Prop do Stmt { Pred }

Exp
�
= n | x | a[Exp] | Exp + Exp | Exp− Exp

Prop
�
= F | b | ¬Prop | Prop ∧ Prop | Exp < Exp | Exp = Exp

Pred
�
= Prop | ∀x.Pred | ∃x.Pred | Pred ∧ Pred | ¬Pred

The language has two basic types: Booleans and natural numbers. A term in Exp
is a natural number; a term in Prop is a quantifier-free formula and of Boolean
type; a term in Pred is a first-order formula. The keyword nondet is used for
unknown values from user’s input or complex structures (e.g, pointer operations,
function calls, etc.). In an annotated loop {δ} while κ do S {ε}, κ ∈ Prop is
its guard, and δ, ε ∈ Pred are its precondition and postcondition respectively.
Quantifier-free formulae of the forms b, π0 < π1, and π0 = π1 are called atomic
propositions. If A is a set of atomic propositions, then PropA and PredA denote
the set of quantifier-free and first-order formulae generated from A, respectively.

A template t[] ∈ τ is a finite sequence of quantifiers followed by a hole to be
filled with a quantifier-free formula in PropA.

τ
�
= [] | ∀I.τ | ∃I.τ.
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Let θ ∈ PropA be a quantifier-free formula. We write t[θ] to denote the first-order
formula obtained by replacing the hole in t[] with θ. Observe that any first-order
formula can be transformed into the prenex normal form; it can be expressed in
the form of a proper template.

A precondition Pre(ρ, S) for ρ ∈ Pred with respect to a statement S is a
first-order formula that guarantees ρ after the execution of the statement S.
Let {δ} while κ do S {ε} be an annotated loop and t[] ∈ τ be a template. The
invariant generation problem with template t[] is to compute a first-order formula
t[θ] such that (1) δ ⇒ t[θ]; (2) ¬κ ∧ t[θ] ⇒ ε; and (3) κ ∧ t[θ] ⇒ Pre(t[θ], S).
Observe that the condition (2) is equivalent to t[θ] ⇒ ε∨κ. We have δ ⇒ t[θ] and
t[θ] ⇒ ε∨κ for any invariant t[θ]. δ and ε∨κ are subsequently called the strongest
under-approximation and weakest over-approximation to invariants respectively.

A valuation ν is an assignment of natural numbers to integer variables and
truth values to Boolean variables. If A is a set of atomic propositions and Var(A)
is the set of variables occurred in A, ValVar(A) denotes the set of valuations for
Var(A). A valuation ν is a model of a first-order formula ρ (written ν |= ρ) if
ρ evaluates to T under ν. Let B be a set of Boolean variables. We write BoolB
for the class of Boolean formulae over Boolean variables B. A Boolean valuation
μ is an assignment of truth values to Boolean variables. The set of Boolean
valuations for B is denoted by ValB. A Boolean valuation μ is a Boolean model
of the Boolean formula β (written μ |= β) if β evaluates to T under μ.

Given a first-order formula ρ, a satisfiability modulo theories (SMT) solver
[6,16] returns a model of ν if it exists. In general, SMT solver is incomplete over
quantified formulae and may return a potential model (written SMT (ρ) !→ ν). It
returns UNSAT (written SMT (ρ) → UNSAT) if the solver proves the formula
unsatisfiable. Note that an SMT solver can only err when it returns a (potential)
model. If UNSAT is returned, the input formula is certainly unsatisfiable.

CDNF Learning Algorithm [3]. The CDNF (Conjunctive Disjunctive Nor-
mal Form) algorithm is an exact algorithm that computes a representation for
any target λ ∈ BoolB by asking a teacher queries. The teacher is required to
resolve two types of queries:

– Membership query MEM (μ) where μ ∈ ValB. If the valuation μ is a Boolean
model of the target Boolean formula λ, the teacher answers YES . Otherwise,
the teacher answers NO ;

– Equivalence query EQ(β) where β ∈ BoolB. If the target Boolean formula λ
is equivalent to β, the teacher answers YES . Otherwise, the teacher gives a
counterexample. A counterexample is a valuation μ ∈ ValB such that β and
λ evaluate to different truth values under μ.

For a Boolean formula λ ∈ BoolB , define |λ|CNF and |λ|DNF to be the sizes of
minimal Boolean formulae equivalent to λ in conjunctive and disjunctive normal
forms respectively. The CDNF algorithm infers any target Boolean formula λ ∈
BoolB with a polynomial number of queries in |λ|CNF , |λ|DNF , and |B| [3].
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3 Problems and Solutions

Given an annotated loop and a template, we apply algorithmic learning to find
an invariant in the form of the given template. We follow the framework proposed
in [15] and deploy the CDNF algorithm to drive the search of invariants. Since the
learning algorithm assumes a teacher to answer queries, it remains to mechanize
the query resolution process (Figure 1). Let t[] be the given template and t[θ] an
invariant. We will devise a teacher to guide the CDNF algorithm to infer t[θ].

To achieve this goal, we need to address two problems. First, the CDNF
algorithm is a learning algorithm for Boolean formulae, not quantifier-free nor
quantified formulae. Second, the CDNF algorithm assumes a teacher who knows
the target t[θ] in its learning model. However, an invariant of the given annotated
loop is yet to be computed and hence unknown to us. We need to devise a teacher
without assuming any particular invariant t[θ].

For the first problem, we adopt predicate abstraction to associate Boolean
formulae with quantified formulae. Recall that the formula θ in the invariant
t[θ] is quantifier-free. Let α be an abstraction function from quantifier-free to
Boolean formulae. Then λ = α(θ) is a Boolean formula and serves as the target
function to be inferred by the CDNF algorithm.

For the second problem, we need to design algorithms to resolve queries about
the Boolean formula λ without knowing t[θ]. This is achieved by exploiting the
information derived from annotations and by making a few random guesses. Re-
call that any invariant must be weaker than the strongest under-approximation
and stronger than the weakest over-approximation. Using an SMT solver, queries
can be resolved by comparing with these invariant approximations. For queries
unresolvable through approximations, we simply give random answers.

Following a similar framework to [15], we are able to infer quantified invariants
of a given template for annotated loops. Our solution to the quantified invariant
generation problem for annotated loops is in fact very general. It only requires
users to provide a sequence of quantifiers and a fixed set of atomic proposi-
tions. With a number of coin tossing, our technique can infer arbitrary quanti-
fied invariants representable by the user inputs. This suggests that the algorith-
mic learning approach to invariant generation has great potential in invariant
generation problems.

4 Predicate Abstraction with a Template

We begin with the association between Boolean formulae and first-order formulae
in the form of a given template. Let A be a set of atomic propositions and
B(A)

�
= {bp : p ∈ A} the set of corresponding Boolean variables. Figure 2 shows

the abstraction used in our algorithm. The left box represents the class PredA of
first-order formulae generated from A. The middle box corresponds to the class
PropA of quantifier-free formulae generated from A. Since we are looking for
quantified invariants in the form of the template t[], PropA is in fact the essence
of generated quantified invariants. The right box contains the class BoolB(A) of
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Fig. 2. The domains PredA, PropA, and BoolB(A)

Boolean formulae over the Boolean variables B(A). The CDNF algorithm infers
a target Boolean formula by posing queries in this domain.

The pair (γ, α) gives the correspondence between the domains BoolB(A) and
PropA. Let us call a Boolean formula β ∈ BoolB(A) a canonical monomial if it is
a conjunction of literals, where each variable appears exactly once. Define

γ : BoolB(A) → PropA α : PropA → BoolB(A)

γ(β) = β[bp �→ p]
α(θ) =

∨
{β ∈ BoolB(A) : β is a canonical monomial and θ ∧ γ(β) is satisfiable}.

Concretization function γ(β) ∈ PropA simply replaces Boolean variables in B(A)
by corresponding atomic propositions in A. On the other hand, α(θ) ∈ BoolB(A)
is the abstraction for any quantifier-free formula θ ∈ PropA.

A Boolean valuation μ ∈ ValB(A) is associated with a quantifier-free for-
mula γ∗(μ) and a first-order formula t[γ∗(μ)]. A valuation ν ∈ Var(A) moreover
induces a natural Boolean valuation α∗(ν) ∈ ValB(A).

γ∗(μ) =
∧

p∈A

{p : μ(bp) = T} ∧
∧

p∈A

{¬p : μ(bp) = F}

α∗(ν)(bp) = ν |= p

The following lemmas characterize relations among these functions:

Lemma 1 ([15]). Let A be a set of atomic propositions, θ ∈ PropA, β ∈
BoolB(A), and ν a valuation for Var(A). Then

1. ν |= θ if and only if α∗(ν) |= α(θ); and
2. ν |= γ(β) if and only if α∗(ν) |= β.

Lemma 2 ([15]). Let A be a set of atomic propositions, θ ∈ PropA, and μ a
Boolean valuation for B(A). Then γ∗(μ) ⇒ θ if and only if μ |= α(θ).

5 Learning Quantified Invariants

We present our query resolution algorithms, followed by the invariant generation
algorithm. The query resolution algorithms exploit the information derived from
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Algorithm 1. Resolving Equivalence Queries
/* ι : an under-approximation; ι : an over-approximation */

/* t[]: the given template */

Input: β ∈ BoolB(A)

Output: YES , or a counterexample ν s.t. α∗(ν) |= β ⊕ λ
ρ := t[γ(β)];1

if SMT (ι ∧ ¬ρ) → UNSAT and SMT (ρ ∧ ¬ι) → UNSAT and2

SMT (κ ∧ ρ ∧ ¬Pre(ρ, S)) → UNSAT then return YES ;3

if SMT (ι ∧ ¬ρ) !→ ν then return α∗(ν);4

if SMT (ρ ∧ ¬ι) !→ ν then return α∗(ν);5

if SMT (ρ ∧ ¬ι) !→ ν0 or SMT (ι ∧ ¬ρ) !→ ν1 then6

return α∗(ν0) or α∗(ν1) randomly ;7

the given annotated loop {δ} while κ do S {ε}. Let ι, ι ∈ Pred. We say ι is an
under-approximation to invariants if δ ⇒ ι and ι ⇒ ι for some invariant ι of the
annotated loop. Similarly, ι is an over-approximation to invariants if ι ⇒ ε ∨ κ
and ι ⇒ ι for some invariant ι. The strongest under-approximation δ is an under-
approximation; the weakest over-approximation ε ∨ κ is an over-approximation.
Better invariant approximations can be obtained by other techniques; they can
be used in our query resolution algorithms.

5.1 Equivalence Queries

An equivalence query EQ(β) with β ∈ BoolB(A) asks if β is equivalent to the
unknown target λ. Algorithm 1 gives our equivalence resolution algorithm. It first
checks if ρ = t[γ(β)] is indeed an invariant for the annotated loop by verifying
ι ⇒ ρ, ρ ⇒ ι, and κ ∧ ρ ⇒ Pre(ρ, S) with an SMT solver (line 2 and 3). If so,
the CDNF algorithm has generated an invariant and our teacher acknowledges

ιρ

ν

ρ

ν

ι ι

ι

ρ

ν0 ν1

(a) (b) (c)

Fig. 3. Counterexamples in equivalence query resolution (c.f. Algorithm 1): (a) a coun-
terexample inside the under-approximation ι but outside the candidate ρ (line 4); (b)
a counterexample inside the candidate ρ but outside the over-approximation ι (line 5);
(c) a random counterexample ν0 (or ν1) inside the candidate ρ (or over-approximation
ι) but out of the under-approximation ι (or candidate ρ), respectively (line 6 and 7).
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Algorithm 2. Resolving Membership Queries
/* ι : an under-approximation; ι : an over-approximation */

/* t[]: the given template */

Input: a valuation μ for B(A)
Output: YES or NO
if SMT (γ∗(μ)) → UNSAT then return NO ;1

ρ := t[γ∗(μ)];2

if SMT (ρ ∧ ¬ι) !→ ν then return NO;3

if SMT (ρ ∧ ¬ι) → UNSAT and isWellFormed(t[], γ∗(μ)) then return YES ;4

return YES or NO randomly5

that the target has been found. If the candidate ρ is not an invariant, we need
to provide a counterexample. Figure 3 describes the process of counterexample
discovery. The algorithm first tries to generate a counterexample inside of under-
approximation (a), or outside of over-approximation (b). If it fails to find such
counterexamples, the algorithm tries to return a valuation distinguishing ρ from
invariant approximations as a random answer (c).

Recall that SMT solvers may err when a potential model is returned (line
4 – 6). If it returns an incorrect model, our equivalence resolution algorithm will
give an incorrect answer to the learning algorithm. Incorrect answers effectively
guide the CDNF algorithm to different quantified invariants. Note also that
random answers do not yield incorrect results because the equivalence query
resolution algorithm uses an SMT solver to verify that the found first-order
formula is indeed an invariant.

5.2 Membership Queries

In a membership query MEM (μ), our membership query resolution algorithm
(Algorithm 2) should answer whether μ |= λ. Note that any relation between
atomic propositions A is lost in the abstract domain BoolB(A). A valuation
may not correspond to a consistent quantifier-free formula (for example, bx=0 =
bx>0 = T). If the valuation μ ∈ ValB(A) corresponds to an inconsistent quantifier-
free formula (that is, γ∗(μ) is unsatisfiable), we simply answer NO to the mem-
bership query (line 1). Otherwise, we compare ρ = t[γ∗(μ)] with invariant ap-
proximations. Figure 4 shows the scenarios when queries can be answered by
comparing ρ with invariant approximations. In case 4(a), ρ ⇒ ι does not hold
and we would like to show μ �|= λ. This requires the following lemma:

Lemma 3. Let t[] ∈ τ be a template. For any θ1, θ2 ∈ PropA, θ1 ⇒ θ2 implies
t[θ1] ⇒ t[θ2].1

By Lemma 3 and t[γ∗(μ)] �⇒ ι (line 3), we have γ∗(μ) �⇒ γ(λ). Hence μ �|= λ
(Lemma 2).

For case 4(b), we have ρ ⇒ ι and would like to show μ |= λ. However, the
implication t[θ1] ⇒ t[θ2] carries little information about the relation between θ1

1 Complete proofs are in [5].
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Fig. 4. Resolving a membership query with invariant approximations (c.f. Algorithm 2):
(a) the guess ρ is not included in the over-approximation ι (line 3); (b) the guess ρ is
included in the under-approximation ι (line 4)

and θ2. Consider t[] ≡ ∀i.[], θ1 ≡ i < 10, and θ2 ≡ i < 1. We have ∀i.i < 10 ⇒
∀i.i < 1 but i < 10 �⇒ i < 1. In order to infer more information from ρ ⇒ ι, we
introduce a subclass of templates.

Definition 1. Let θ ∈ PropA be a quantifier-free formula over A. A well-formed
template t[] with respect to θ is defined as follows.

– [] is well-formed with respect to θ;
– ∀I.t′[] is well-formed with respect to θ if t′[] is well-formed with respect to θ

and t′[θ] ⇒ ∀I.t′[θ];
– ∃I.t′[] is well-formed with respect to θ if t′[] is well-formed with respect to θ

and ¬t′[θ].

Using an SMT solver, it is straightforward to check if a template t[] is well-formed
with respect to a quantifier-free formula θ by a simple recursion. For instance,
when the template is ∀I.t′[], it suffices to check SMT (t′[θ]∧∃I.¬t′[θ]) → UNSAT
and t′[] is well-formed with respect to θ. More importantly, well-formed templates
allow us to infer the relation between hole-filling quantifier-free formulae.

Lemma 4. Let A be a set of atomic propositions, θ1 ∈ PropA, and t[] ∈ τ a well-
formed template with respect to θ1. For any θ2 ∈ PropA, t[θ1] ⇒ t[θ2] implies
θ1 ⇒ θ2.

By Lemma 4 and 2, we have μ |= λ from ρ ⇒ ι (line 4) and the well-formedness
of t[] with respect to γ∗(μ). As in the case of the equivalence query resolution
algorithm, incorrect models from SMT solvers (line 3) simply guide the CDNF
algorithm to other quantified invariants. Note that Algorithm 2 also gives a
random answer if a membership query cannot be resolved through invariant ap-
proximations. The correctness of generated invariants is ensured by SMT solvers
in the equivalence query resolution algorithm (Algorithm 1).

5.3 Main Loop

Algorithm 3 shows our invariant generation algorithm. It invokes the CDNF al-
gorithm in the main loop. Whenever a query is made, our algorithm uses one of
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the query resolution algorithms (Algorithm 1 or 2) to give an answer. In both
query resolution algorithms, we use the strongest under-approximation δ and
the weakest over-approximation κ ∨ ε to resolve queries from the learning algo-
rithm. Observe that the equivalence and membership query resolution algorithms
give random answers independently. They may send inconsistent answers to the
CDNF algorithm. When inconsistencies arise, the main loop forces the learning
algorithm to restart (line 6). If the CDNF algorithm infers a Boolean formula
λ ∈ BoolB(A), the first-order formula t[γ(λ)] is an invariant for the annotated
loop in the form of the template t[].

Algorithm 3. Main Loop
Input: {δ} while κ do S {ε} : an annotated loop; t[] : a template
Output: an invariant in the form of t[]
ι := δ;1

ι := κ ∨ ε;2

repeat3

try4

λ := call CDNF with query resolution algorithms (Algorithm 1 and 2)5

when inconsistent → continue6

until λ is defined ;7

return t[γ(λ)];8

In contrast to traditional deterministic algorithms, our algorithm gives ran-
dom answers in both query resolution algorithms. Due to the undecidability of
first-order theories in SMT solvers, verifying quantified invariants and compar-
ing invariant approximations are not solvable in general. If we committed to a
particular solution deterministically, we would be forced to address computabil-
ity issues. Random answers simply divert the learning algorithm to search for
other quantified invariants and try the limit of SMT solvers. They could not be
effective if there were very few solutions. Our thesis is that there are sufficiently
many invariants for any given annotated loop in practice. As long as our ran-
dom answers are consistent with one verifiable invariant, the CDNF algorithm
is guaranteed to generate an invariant for us.

Similar to other invariant generation techniques based on predicate abstrac-
tion, our algorithm is not guaranteed to generate invariants. If no invariant can
be expressed by the template with a given set of atomic propositions, our al-
gorithm will not terminate. Moreover, if no invariant in the form of the given
template can be verified by SMT solvers, our algorithm does not terminate ei-
ther. On the other hand, if there is one verifiable invariant in the form of the
given template, there is a sequence of random answers that leads to the verifiable
invariant. If sufficiently many verifiable invariants are expressible in the form of
the template, random answers almost surely guide the learning algorithm to one
of them. Since our algorithmic learning approach with random answers does not
commit to any particular invariant, it can be more flexible and hence effective
than traditional deterministic techniques in practice.
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Table 1. Experimental Results.
AP : # of atomic propositions, MEM : # of membership queries, EQ : # of equivalence
queries, MEMR : fraction of randomly resolved membership queries to MEM , EQR

fraction of randomly resolved equivalence queries to EQ , ITER : # of the CDNF
algorithm invocations, and σTime : standard deviation of the running time.

case Template AP MEM EQ MEMR EQR ITER Time (s) σTime(s)
max ∀k.[] 7 5,968 1,742 65% 26% 269 5.71 7.01

selection sort ∀k1.∃k2.[] 6 9,630 5,832 100% 4% 1,672 9.59 11.03
devres ∀k.[] 7 2,084 1,214 91% 21% 310 0.92 0.66
rm pkey ∀k.[] 8 2,204 919 67% 20% 107 2.52 1.62

tracepoint1 ∃k.[] 4 246 195 61% 25% 31 0.26 0.15
tracepoint2 ∀k1.∃k2.[] 7 33,963 13,063 69% 5% 2,088 157.55 230.40

6 Experiments

We have implemented a prototype2 in OCaml. In our implementation, we use
Yices as the SMT solver to resolve queries (Algorithm 1 and 2). Table 1 shows
experimental results. We took two cases from the ten benchmarks in [20] with the
same annotation (max and selection sort). We also chose four for statements
from Linux 2.6.28. We translated them into our language and annotated pre-
and post-conditions manually. Sets of atomic proposition are manually chosen
from the program texts. Benchmark devres is from library, tracepoint1 and
tracepoint2 are from kernel, and rm pkey is from InfiniBand device driver. The
data are the average of 500 runs and collected on a 2.66GHz Intel Core2 Quad
CPU with 8GB memory running Linux 2.6.28.

devres from Linux Library. Figure 5(c) shows an annotated loop extracted
from a Linux library.3 In the postcondition, we assert that ret implies tbl [i] = 0,
and every element in the array tbl [] is not equal to addr otherwise. Using the set
of atomic propositions {tbl [k] = addr , i < n, i = n, k < i, tbl [i] = 0, ret} and
the simple template ∀k.[], our algorithm finds following quantified invariants in
different runs:

∀k.(k < i ⇒ tbl [k] �= addr ) ∧ (ret ⇒ tbl [i] = 0) and ∀k.(k < i) ⇒ tbl[k] �= addr.

Observe that our algorithm is able to infer an arbitrary quantifier-free formula
(over a fixed set of atomic propositions) to fill the hole in the given template. A
simple template such as ∀k.[] suffices to serve as a hint in our approach.

selection sort from [20]. Consider the selection sort algorithm in Figure 5(b).
Let ′a[] denote the content of the array a[] before the algorithm is executed. The
postcondition states that the contents of array a[] come from its old contents.
In this test case, we apply our invariant generation algorithm to compute an
2 Available at http://ropas.snu.ac.kr/aplas10/qinv-learn-released.tar.gz
3 The source code can be found in function devres of lib/devres.c in Linux 2.6.28.

http://ropas.snu.ac.kr/aplas10/qinv-learn-released.tar.gz
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(a) rm pkey

{ i = 0 ∧ key 	= 0 ∧ ¬ret ∧ ¬break}
1 while(i < n ∧ ¬break) do
2 if(pkeys[i] = key) then
3 pkeyrefs[i]:=pkeyrefs[i] − 1;
4 if(pkeyrefs[i] = 0) then
5 pkeys[i]:=0; ret:=true;
6 break:=true;
7 else i:=i + 1;
8 done
{(¬ret ∧ ¬break) ⇒ (∀k.k < n ⇒ pkeys[k ] 	= key)

∧(¬ret ∧ break) ⇒ (pkeys[i] = key ∧ pkeyrefs[i] 	= 0)
∧ ret ⇒ (pkeyrefs[i] = 0 ∧ pkeys[i] = 0) }

(c) devres

{ i = 0 ∧ ¬ret }
1 while i < n ∧ ¬ret do
2 if tbl[i] = addr then
3 tbl[i]:=0; ret:=true
4 else
5 i:=i + 1
6 end
{(¬ret ⇒ ∀k. k < n ⇒ tbl [k] 	= addr)

∧(ret ⇒ tbl[i] = 0) }

(b) selection sort

{ i = 0 }
1 while i < n − 1 do
2 min:=i;
3 j :=i + 1;
4 while j < n do
5 if a[j] < a[min] then
6 min:=j;
7 j:=j + 1;
8 done
9 if i	=min then

10 tmp:=a[i];
11 a[i]:=a[min];
12 a[min]:=tmp;
13 i:=i + 1;
14 done

{(i ≥ n − 1)
∧ (∀k1.k1 < n ⇒

(∃k2.k2 < n ∧ a[k1] = ′a[k2]))}

Fig. 5. Benchmark Examples: (a) rm pkey from Linux InfiniBand driver, (b)
selection sort from [20], and (c) devres from Linux library

invariant to establish the postcondition of the outer loop. For computing the
invariant of the outer loop, we make use of the inner loop’s specification.

We use the following set of atomic propositions: {k1 ≥ 0, k1 < i, k1 = i,
k2 < n, k2 = n, a[k1] = ′a[k2], i < n − 1, i = min}. Using the template
∀k1.∃k2.[], our algorithm infers following invariants in different runs:

∀k1.(∃k2.[(k2 < n ∧ a[k1] = ′a[k2]) ∨ k1 ≥ i]); and
∀k1.(∃k2.[(k1 ≥ i ∨min = i ∨ k2 < n) ∧ (k1 ≥ i ∨ (min �= i ∧ a[k1] =′ a[k2]))]).

Note that all membership queries are resolved randomly due to the alternation of
quantifiers in array theory. Still a simple random walk suffices to find invariants
in this example. Moreover, templates allow us to infer not only universally quan-
tified invariants but also first-order invariants with alternating quantifications.
Inferring arbitrary quantifier-free formulae over a fixed set of atomic propositions
again greatly simplifies the form of templates used in this example.

rm pkey from Linux InfiniBand Driver. Figure 5(a) is a while statement
extracted from Linux InfiniBand driver.4 The conjuncts in the postcondition
represent (1) if the loop terminates without break, all elements of pkeys are
not equal to key (line 2); (2) if the loop terminates with break but ret is false,
then pkeys[i] is equal to key (line 2) but pkeyrefs [i] is not equal to zero (line
4); (3) if ret is true after the loop, then both pkeyrefs [i ] (line 4) and pkeys [i ]
(line 5) are equal to zero. From the postcondition, we guess that an invariant
4 The source code can be found in function rm pkey of drivers/infiniband/hw/

ipath/ipath mad.c in Linux 2.6.28.
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can be universally quantified with k. Using the simple template ∀k.[] and the set
of atomic propositions {ret , break , i < n, k < i , pkeys [i ] = 0, pkeys [i ] = key ,
pkeyrefs [i ] = 0, pkeyrefs [k] = key}, our algorithm finds following quantified
invariants in different runs:

(∀k.(k < i) ⇒ pkeys [k ] �= key) ∧ (ret ⇒ pkeyrefs [i ] = 0 ∧ pkeys [i ] = 0)
∧ (¬ret ∧ break ⇒ pkeys [i ] = key ∧ pkeyrefs [i ] �= 0); and

(∀k.(¬ret ∨ ¬break ∨ (pkeyrefs [i] = 0 ∧ pkeys [i] = 0)) ∧ (pkeys [k] �= key ∨ k ≥ i)
∧(¬ret ∨ (pkeyrefs [i] = 0 ∧ pkeys [i] = 0 ∧ i < n ∧ break))

∧ (¬break ∨ pkeyrefs [i] �= 0 ∨ ret) ∧ (¬break ∨ pkeys [i] = key ∨ ret)).

In spite of undecidability of first-order theories in Yices and random answers,
each of the 3000 (= 6 × 500) runs in our experiments infers an invariant suc-
cessfully. Moreover, several quantified invariants are found in each case among
500 runs. This suggests that invariants are abundant. Note that the templates in
the test cases selection sort and tracepoint2 have alternating quantification.
Satisfiability of alternating quantified formulae is in general undecidable. That
is why both cases have substantially more restarts than the others. Interestingly,
our algorithm is able to generate a verifiable invariant in each run. Our simple
randomized mechanism proves to be effective even for most difficult cases.

7 Related Work

Comparing with the work [15] of generating quantifier-free invariants, we develop
the following technical extensions. First, we integrate potential counterexamples
in resolving equivalence query algorithm (line 6 - 7 in Algorithm 1, and line 3
in Algorithm 2) instead of restarting. Due to the undecidability of satisfiabil-
ity of quantified formulae, SMT solvers often give potential counterexamples.
We exploit potential counterexamples to enhance our algorithm. Second, a new
condition (Definition 1) to answer positively in resolving membership queries
is proposed. Without this condition, we can answer negatively to membership
queries.

In contrast to previous template-based approaches [20,9], our template is more
general as it allows arbitrary hole-filling quantifier-free formulae. The templates
in [20] can only be filled with formulae over conjunctions of predicates from a
given set. Any disjunction must be explicitly specified as part of a template.
In [9], the authors consider invariants of the form E∧

∧n
j=1 ∀Uj(Fj ⇒ ej), where

E, Fj and ej must be quantifier free finite conjuctions of atomic facts.
Existing technologies can strengthen our framework. Firstly, its completeness

can be increased by more powerful decision procedures [6,8,21] and theorem
provers [18,1,19]. Moreover, our approach can be improved by using more ac-
curate approximations from existing invariant generation techniques. The tool
InvGen collects reached states satisfying the program invariants, and also com-
putes a collection of invariants for efficient invariant generation [11]. They can
be used as under- and over-approximations, respectively.

Regarding the generation of unquantified invariants, a constraint analysis ap-
proach is proposed in [10]. Invariants in the combined theory of linear arithmetic
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and uninterpreted functions are synthesized in [2], while InvGen [11] presents an
efficient approach for linear arithmetic invariants. For quantified loop invariants,
Skolemization is used for generating universally quantified invariants [7]. In [18],
a paramodulation-based saturation prover is extended to generate universally
quantified invariants by interpolation.

With respect to the analysis of properties of array contents, Halbwachs et
al. [12] handle programs which manipulate arrays by sequential traversal, incre-
menting (or decrementing) their index at each iteration, and which access arrays
by simple expressions of the loop index. A loop property generation method for
loops iterating over multi-dimensional arrays is introduced in [13]. For inferring
range predicates, Jhala and McMillan [14] described a framework that uses infea-
sible counterexample paths. As a deficiency, the prover may find proofs refuting
short paths, but which do not generalize to longer paths. Due to this problem,
this approach [14] fails to prove that an implementation of insertion sort correctly
sorts an array.

8 Conclusions

By combining algorithmic learning, decision procedures, predicate abstraction,
and templates, we present a technique for generating quantified invariants. The
new technique searches for invariants in the given template form guided by query
resolution algorithms. We exploit the flexibility of algorithmic learning by deploy-
ing a randomized query resolution algorithm. When there are sufficiently many
invariants, random answers will not prevent algorithmic learning from inferring
verifiable invariants. Our experiments show that our learning-based approach is
able to infer non-trivial quantified invariants with this näıve randomized resolu-
tion for some loops extracted from Linux drivers.

Under- and over-approximations are presently derived from annotations pro-
vided by users. They can in fact be obtained by other techniques such as static
analysis. For deciding the set of atomic propositions, it will be interesting whether
existing techniques [4,17] are applicable. The integration of various refinement
techniques for predicate abstraction will certainly be an important future work.
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Abstract. This paper presents a novel syntactic logical relation for a polymor-
phic linear λ-calculus that treats all types as linear and introduces the constructor !
to account for intuitionistic terms, and System F◦—an extension of System F that
uses kinds to distinguish linear from intuitionistic types. We define a logical rela-
tion for open values under both open linear and intuitionistic contexts, then extend
it for open terms with evaluation and open relation substitutions. Relations that
instantiate type quantifiers are for open terms and types. We demonstrate the ap-
plicability of this logical relation through its soundness with respect to contextual
equivalence, along with free theorems for linearity that are difficult to achieve by
closed logical relations. When interpreting types on only closed terms, the model
defaults to a closed logical relation that is both sound and complete with respect
to contextual equivalence and is sufficient to reason about isomorphisms of type
encodings. All of our results have been mechanically verified in Coq.

1 Introduction

In the polymorphic lambda calculus, System F [13], relational parametricity [18] is the
essence of type abstraction. It asserts that a parametrically polymorphic function must
use the same algorithm to compute its result, independently of the instantiated types.

Relational parametricity can be used to derive equivalences involving functional pro-
grams by observing solely the types of those programs, with no knowledge of the func-
tions’ actual definitions. Wadler [23] refers to these equivalences as the “free theorems”
associated with particular types. For instance, we can conclude that there is no closed
inhabitant of type ∀α.α in a pure setting. If there were such a term, it must yield a value
of any type at which it is instantiated, but there is no uniform algorithm to compute a
value at any type. Therefore, ∀α.α is an empty type. Given a closed polymorphic func-
tion B with type ∀α.α → α → α, for any type τ , B [τ ] evaluates to a function F of type
τ → τ → τ . Since B is polymorphic, F cannot depend on its arguments. Given any
closed values V1:τ , V2:τ , F must return one of the arguments directly or yield a term
equivalent to one of the arguments. Therefore we can conclude that B must behave like
one of Λα. λx:α. λy:α. x or Λα. λx:α. λy:α. y.

Linearity and Parametricity. Bierman et al. [6] used ��-closed [17] logical relations
for the parametricity principle of the programming language Lily—a dual intuitionistic
linear lambda calculus [4] with polymorphic types and recursion. They proved isomor-
phisms of type encodings via relational parametricity properties. In the language with-
out recursion, their model defaults to the standard logical relations (that interpret types

K. Ueda (Ed.): APLAS 2010, LNCS 6461, pp. 344–359, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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with pairs of closed terms), while the free theorems obtained by the standard techniques
do not tell the whole story because linearity changes the set of possible well-typed pro-
grams. Consider a linear variant of the Boolean type used above: ∀α.α � α � α.
Here, � is a linear function type. The following standard parametricity holds:

Theorem 1 (Parametricity). If Γ ; Δ � M :τ , then Γ ; Δ � M��
logM ∈ τ .

Here,��
log denotes a standard logical relation. As in the case for ordinary System F, this

parametricity theorem implies that any closed term M with type ∀α.α � α � α must
behave like either Λα.λa1:α.λa2:α.a1 or Λα.λa1:α.λa2:α.a2. However, the linear vari-
ables a1 and a2 must be used exactly once in the body of M . Therefore, neither of these
expressions is well-typed. More generally, the free theorem of this type should say that
this is an empty type—there are no terms that inhabit it! On the other hand, the similar
type ∀α.!α �!α �!α, in which ! constructs an intuitionistic term, is still isomorphic to
the Booleans. Moreover, analogous examples can be constructed in System F◦ [16]—a
variant of polymorphic linear lambda calculus that uses the kinds, instead of ! type con-
structor, to distinguish linear from intuitionistic types. These observations suggest that
there might be a stronger linear parametricity that distinguishes these cases.

The key idea of this paper is that linearity properties can be properly taken into ac-
count by using open logical relations. There is a large body of work on logical relations
that interprets types as relations R, which are sets of pairs of closed terms with closed
types under empty contexts. Linear type systems, however, restrict the use of variables
of linear types in a non-empty context. Intuitively, if logical relations interpret types by
relations for open terms under non-empty linear contexts, the free theorem associated
with the above type should show that it is void.

Suppose we apply M to open values V1 and V2 with type τ where V1 and V2 are
logically related to themselves under disjoint linear contexts respectively. By the free
theorem we have M [τ ] V1 V2 −→∗ V1 or M [τ ] V1 V2 −→∗ V2. But neither of the
above evaluations is valid, because the set of free linear variables in a well-formed
expression should be preserved under reduction; in other words, the evaluation should
not consume the set of free linear variables from either V1 or V2. With this stronger
logical relation, we can conclude that there is no such closed M of type ∀α.α � α �
α. However, closed terms with type ∀α.!α �!α �!α still behave like polymorphic
boolean functions because the system ensures that intuitionistic values V1 and V2 cannot
capture linear variables. Section 4.1 formally proves these results, and explains that
the standard logical relations cannot distinguish them. Although Tait [21], Girard [13],
Crary [10] and Hasegawa [14] developed logical relations for open terms, their works
do not support both polymorphism and linearity. We discuss related work in Section 3.

The specific contributions of this paper include:

1. Section 2 gives the type system and operational semantics for PDILL that combines
a term calculus for Plotkin’s dual intuitionistic linear logic [4] with impredicative
polymorphism. We then discuss related work, provide a novel syntactic logical re-
lation that interprets types with pairs of open terms for PDILL in Section 3, and
show that every well-typed expression is related to itself in the interpretation of its
type by this logical relation. This logical relation is sound with respect to contextual
equivalence, and therefore suitable for reasoning about program equivalence. When
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interpreting types on only closed terms, it defaults to a standard logical relation that
is both sound and complete with respect to contextual equivalence.

2. In Section 4 we give several applications of this logical relational model: free
theorems for linearity that are difficult to achieve by standard logical relations,
properties of contextual equivalence, and isomorphisms of type encodings.

3. The results for PDILL also carry over to System F◦ [16]. All of our results
(including PDILL, System F◦ and System F) are available at http://www.cis.
upenn.edu/~jianzhou/parametricity4linf, and are mechanically
verified in Coq [9] and OTT [20]. We do not only view this formalization as sup-
porting material, but also as an extensive formalization for polymorphic (linear)
languages in Coq [3]. Section 5 briefly discusses the mechanical proofs and future
work.

2 A Brief Introduction to PDILL

In programming languages, linear type systems check the ability to duplicate and to
discard a resource. There are many variants on linear type systems to distinguish linear
from intuitionistic variables [24]. PDILL combines a term calculus for Plotkin’s dual
intuitionistic linear logic [4] with impredicative polymorphism. Figure 1, 2 and 3 give
the syntax, typing rules and evaluation relations for PDILL. Our typing rules take an
intuitionistic context Γ — an ordered list of both type and intuitionistic term variables,
and a linear context Δ that binds only linear term variables. Intuitionistic variables x
that may be duplicated and discarded, and linear variables a that must be used exactly
once are syntactically different. We encode intuitionistic lambda abstractions λx :τ1.M2
as λa:!τ1.let !x = a inM2 with type !τ1 � τ2.

Typing rules can drop unused variables (weakening) or use a variable more than once
(contraction) from an intuitionistic context Γ , but must use variables exactly once from
a linear context Δ. Linear usage of Δ holds because T_IVAR allows only an empty
Δ, and T_LVAR takes a linear context that consists of only the variable typechecked.
Rules T_LVAR and T_IVAR permit weakening and contraction by allowing an arbi-
trary Γ at the leaves of typing derivations, while rule T_APP duplicates Γ but splits Δ.
T_APP splits Δ using the operation �, which allows type variables and intuitionistic
expression variables to propagate to both sides of an application while restricting linear
variables. We treat all types as linear, and use the ! constructor to account for terms
that can be discarded or duplicated. A ! value cannot capture linear variables, and is
used lazily. We have two distinct forms of pairs: (M1,M2) is a muplicative pair where

Terms M : : = x | a | λa:τ.M | M M ′ | Λα.M | M [τ ] | !M | let !x = M inM ′

| 〈M ,M ′〉 | M .1 | M .2 | (M ,M ′) | let (a, a ′) = M inM ′

ValuesV, U : : =λa:τ.M | Λα.M | !M | 〈M ,M ′〉 | (V, V ′)
Types τ, σ : : =α | τ � τ ′ | ∀α.τ | !τ | τ&τ ′ | τ ⊗ τ ′

Intuitionistic contextsΓ, G : : = · | Γ, x :τ | Γ, α Linear contextsΔ, D : : = · | Δ, a:τ

Fig. 1. Syntax for PDILL

http://www.cis.upenn.edu/~jianzhou/parametricity4linf
http://www.cis.upenn.edu/~jianzhou/parametricity4linf
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� Γ Γ � Δ

� ·

� Γ Γ � τ
x �∈ dom(Γ )
� Γ, x :τ

� Γ
α �∈ dom(Γ )

� Γ, α
� Γ
Γ � ·

Γ � Δ Γ � τ
a �∈ dom(Δ)
Γ � Δ, a:τ

Γ � τ
� Γ α ∈ Γ

Γ � α
Γ � τ1 Γ � τ2
Γ � τ1 � τ2

Γ, α � τ
Γ � ∀α.τ

Γ � τ
Γ �!τ

Γ � τ Γ � τ ′
Γ � τ&τ ′

Γ � τ Γ � τ ′
Γ � τ ⊗ τ ′

Γ � Δ1 � Δ2 = Δ

� Γ
Γ � · � · = ·

Γ � τ Γ � Δ1 � Δ2 = Δ
a /∈ Γ,Δ
Γ � Δ1, a:τ � Δ2 = Δ, a:τ

Γ � τ Γ � Δ1 � Δ2 = Δ
a /∈ Γ,Δ
Γ � Δ1 � Δ2, a:τ = Δ, a:τ

Γ ;Δ � M :τ

Γ � (a:τ )
Γ ; a:τ � a:τ

T_LVAR
� Γ x :τ ∈ Γ
Γ ; · � x :τ

T_IVAR

Γ � τ1 Γ ;Δ, a:τ1 � M2:τ2
Γ ;Δ � λa:τ1.M2:τ1 � τ2

T_ABS

Γ ;Δ1 � M1:τ11 � τ12
Γ ;Δ2 � M2:τ11
Γ � Δ1 � Δ2 = Δ3

Γ ;Δ3 � M1 M2:τ12
T_APP

Γ, α;Δ � M1:τ
Γ ;Δ � Λα.M1:∀α.τ T_TABS

Γ ;Δ � M1:∀α.τ Γ � τ1
Γ ;Δ � M1[τ1]:τ{τ1/α} T_TAPP

Γ ; · � M :τ
Γ ; · �!M :!τ

T_BANG

Γ ;Δ1 � M1:!τ1 Γ, x :τ1;Δ2 � M2:τ2
Γ � Δ1 � Δ2 = Δ3

Γ ;Δ3 � let !x = M1 inM2:τ2
T_LET

Γ ;Δ � M1:τ1
Γ ;Δ � M2:τ2

Γ ;Δ � 〈M1,M2〉:τ1&τ2 T_APAIR
Γ ;Δ � M :τ1&τ2
Γ ;Δ � M .i :τi

T_PROJI

Γ ;Δ1 � M1:τ1
Γ ;Δ2 � M2:τ2
Γ � Δ1 � Δ2 = Δ3

Γ ;Δ3 � (M1,M2):τ1 ⊗ τ2
T_PPAIR

Γ ;Δ1 � M1:τ1 ⊗ τ2
Γ ;Δ2, a1:τ1, a2:τ2 � M2:τ
Γ � Δ1 � Δ2 = Δ3

Γ ;Δ3 � let (a1, a2) = M1 inM2:τ
T_PLET

Fig. 2. Kinding and typing rules for PDILL
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both components are used eagerly (eliminated via pattern matching using let), and the
free linear variables of M1 and M2 are disjoint; 〈M1,M2〉 is an additive pair where only
one component is used lazily (projected), and the free linear variables of M1 and M2 are
identical. Lemma 1 states that linear contexts Δ contain exactly the free linear variables
in a well-typed expression:

Lemma 1. If Γ ; Δ � M :τ , then the set of free linear variables in M is dom(Δ).

By the preservation lemma and Lemma 1, we also have that the set of free linear vari-
ables in a well-typed term is preserved under reduction:

Lemma 2. If Γ ; Δ � M :τ , and M −→∗ M ′, then M and M ′ contain the same free
linear variables.

Evaluation ContextsE : : = � | EM | V E | E[τ ] | E.1 | E.2 | (E,M ) | (V,E)
| let (a, a ′) = E inM | let !x = E inM

M −→ M ′

M −→ M ′

E[M ] −→ E[M ′] (Λα.M )[τ ] −→ M {τ/α} let !x =!M1 inM2 −→ M2{M1/x}

(λa:τ.M )V ′ −→ M {V ′/a} let (a1, a2) = (V1, V2) inM −→ M {V1/a1}{V2/a2}

Fig. 3. Evaluation relations for PDILL

3 Parametricity for PDILL

This section presents the main contribution of this paper, namely a syntactic logical
relation for PDILL. Proof by logical relations is a fundamental technique for proving
properties of programming languages. This technique was first developed by Tait [21]
to prove that the simply typed λ-calculus is strongly normalizing, and was adopted by
Girard [13] to prove normalization for System Fω.

Although their logical relations were for open terms via open substitutions, there
are a large number of related works on logical relations that interpret types as rela-
tions for closed terms. Its basic idea is to first define an equivalence relation for closed
values inductively on type structures. The case of arrow types is a typical case where
two closed functions are logically related at the type τ1 → τ2 if they evaluate to val-
ues that are logically related at τ2 with closed arguments that are logically related
at τ1. Logical relations are extended to closed terms with evaluation, and then ex-
tended to open terms via closing substitutions. The fundamental theorem proves that any
well-typed term, under those closing substitutions, is related to itself by the relation in-
duced logically by its type. To build logical relations for recursive functions and quan-
tified types, Pitts [17] developed logical relations based on the notion of ��-closed
relations. Bierman et al. [6] also used ��-closed relations for the parametricity prin-
ciple of the programming language Lily—a polymorphic intuitionistic/linear lambda
calculus. Ahmed [1] proposed step-indexed logical relations for recursive and stateful
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types. Ahmed et al. [2], Birkedal et al. [8] extended step-indexed logical relations with
possible “worlds” based on Kripke logical relations for increasingly realistic languages.

Crary [10] developed the technique of Kripke logical relations for open terms un-
der open contexts to show the completeness of an equivalence algorithm for terms in
a simply typed λ-calculus. To ensure that a relation holds by adding variables to the
current context, the logical relation is required to be monotone with respect to contexts
analogous to “worlds” in Kripke models. Hasegawa [14] developed a notion of Kripke
logical predicates for two fragments of intuitionistic linear logic (MILL and DILL) in
terms of their category-theoretic models. However these logical relations do not support
both polymorphism and linearity.

Our logical relation first interprets types as relations for pairs of open values, then
extends to logical relations for open terms with evaluation and open relation substitu-
tions. Open relation substitutions map term variables to related open values, and type
variables to relations for open terms. The fundamental theorem shows that a well-typed
term, under open substitutions and evaluation, is related to itself in the interpretation
of its type. Lemma 1 and 2 also prove that the set of the free linear variables in a
well-typed term is equal to its linear context, and preserved under reduction. Section 4
illustrates how these properties and logical relations eliminate possible inhabitants for
a type.

3.1 Definitions

Figure 4 gives a logical relation for PDILL. In the following sections, we shaded the
difference in definitions, lemmas and proofs between our open logical relation and a
closed one. Without shaded parts, the formalism defaults to the setting of a closed log-
ical relation. We abbreviate Γ ; Δ � M :τ ∧ Γ ; Δ � M ′:τ to Γ ; Δ � M ,M ′:τ , and
· ; · � J to � J . A type relation substitution, θ, maps type variables to relations R
for pairs of open terms with type τ and τ ′. We use θl and θr to denote relation type
substitutions. γ and δ are intuitionistic and linear open value relation substitutions re-
spectively. We also use γl , γr , δl , and δr to denote relation value substitutions.

Type Substitution Contexts θ : : = · | θ, α�→(R, τ, τ ′)
Intuitionistic Substitution Contexts γ : : = · | γ, x �→(V, V ′)
Linear Substitution Contexts δ : : = · | δ, a �→(V, V ′)

To simplify the definition of substitutions, we require that the domains of substitutions
are disjoint from the free variables of types and values in the ranges of substitutions.
Thus types and values in substitutions do not reuse any variable in their domains. We
use Γ and Δ to typecheck the domains of substitutions, and G and D to denote contexts
that typecheck types, relations, and terms in the ranges of θ, γ and δ. Our definitions
force the variables of G and D to be disjoint from the variables of Γ and Δ. This sim-
plification has been chosen since all parametricity reasoning in our experience involves
only disjoint variables. We consider the definition of substitutions on types and values
that can reuse variables in domains of substitutions in future work.

Two open PDILL values are related at type τ under a relation substitution θ, written
G; D � V ∼ V ′ ∈ τ :θ and defined inductively on type structures. An intuitionistic
context G and a linear context D contain the free type and term variables in the values
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G;D � V ∼ V ′ ∈ τ :θ Related open values

G;D � V ∼ V ′ ∈ α:θ � OVR_VAR
α�→(R, τ, τ ′) ∈ θ ∧ (V, V ′) ∈ R

G;D � λa:τ1.M ∼ λa:τ1.M ′ ∈ τ1 � τ2:θ � OVR_ARR
∀(G;DDD1 � V :θl(τ1) ∧ G;DDD1 � V ′:θr (τ1)∧
G;DDD1 � V ∼ V ′ ∈ τ1:θ ∧ G � D,DDD1).

G;D,DDD1 � (λa:τ1.M )V # (λa:τ1.M ′)V ′ ∈ τ2:θ
G;D � Λα.M ∼ Λα.M ′ ∈ ∀α.τ :θ � OVR_ALL

∀(R ∈ τ2 ↔ τ ′2 % G).
G;D � (Λα.M )[τ2] # (Λα.M ′)[τ ′2] ∈ τ :(θ, α�→(R, τ2, τ ′2))

G;D �!M ∼!M ′ ∈!τ :θ � OVR_BANG
G;D � M # M ′ ∈ τ :θ

G;D � 〈M1,M2〉 ∼ 〈M ′
1,M

′
2〉 ∈ τ1&τ2:θ � OVR_WITH

G;D � M1 # M ′
1 ∈ τ1:θ ∧ G;D � M2 # M ′

2 ∈ τ2:θ
G;D � (V1, V2) ∼ (V ′

1 , V
′
2) ∈ τ1 ⊗ τ2:θ � OVR_TENSOR

∃D1D2, G;D1 � V1 ∼ V ′
1 ∈ τ1:θ ∧ G;D2 � V2 ∼ V ′

2 ∈ τ2:θ
∧G � D1 � D2 = D

G;D � M # M ′ ∈ τ :θ Related open terms

G;D � M :θl(τ ) G;D � M ′:θr (τ ) M −→∗ V M ′ −→∗ V ′ G;D � V ∼ V ′ ∈ τ :θ
G;D � M # M ′ ∈ τ :θ

Γ ;Δ � θ|γ; δ:G;D Open relation substitutions

� G
·; · � ·|·; ·:G; ·

Γ ;Δ � θ|γ; δ:G;D1 Γ � τ G � D1,DDD2

G;DDD2 � V ∼ V ′ ∈ τ :θ a /∈ Γ,Δ,G, (D1,DDD2)
Γ ;Δ, a:τ � θ|γ; δ,a �→(V, V ′):G;D1,DDD2

Γ ;Δ � θ|γ; δ:G;D Γ � τ
G; · � V ∼ V ′ ∈ τ :θ x /∈ Γ,Δ,G,D
Γ, x :τ ;Δ � θ|γ, x �→(V, V ′); δ:G;D

Γ ;Δ � θ|γ; δ:G;D
R ∈ τ ↔ τ ′ % G α /∈ Γ,Δ,G,D
Γ, α;Δ � θ, α�→(R, τ, τ ′)|γ; δ:G;D

Γ ;Δ � θ|γ; δ1 � δ2 = δ:G;D1 � D2 = D Disjoint linear relation substitutions

Γ ; · � θ|γ; ·:G; ·
Γ ; · � θ|γ; · � · = ·:G; · � · = ·

Γ ;Δ � θ|γ; δ1 � δ2 = δ:G;D1 � D2 = D3

Γ � τ G;D′ � V ∼ V ′ ∈ τ :θ a /∈ Γ,Δ,G, (D3,D
′)

Γ ;Δ, a:τ � θ|γ; (δ1, a �→(V, V ′)) � δ2 = (δ, a �→(V, V ′)):G;D1,D
′ �D2 = D3,D

′

Γ ;Δ � θ|γ; δ1 � δ2 = δ:G;D1 � D2 = D3

Γ � τ G;D′ � V ∼ V ′ ∈ τ :θ a /∈ Γ,Δ,G, (D3,D
′)

Γ ;Δ, a:τ � θ|γ; δ1 � (δ2, a �→(V, V ′)) = (δ, a �→(V, V ′)):G;D1 �D2,D
′ = D3,D

′

Fig. 4. Related open values and terms for PDILL
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V and V ′. Type variables in indexed types τ are disjoint from the domains of G and D.
θ maps variables in τ to relations with types under contexts G and D.

A relation for each type variable α is defined by looking up relations in substitu-
tion contexts θ. Two functions are related if and only if they map related inputs to
related outputs. When testing equivalence on two open function values under a linear
context D, OVR_ARR applies the two functions to arbitrary open related values un-
der a linear context DDD1, which is disjoint from D, and tests if they can normalize to
two related values under a merged linear context D,DDD1. A standard logical relation
does not necessarily require related closed arguments to be well-typed in the arrow type
case. However, the logical relation for PDILL allows only well-typed related open ar-
guments at OVR_ARR because the invariant that reduction preserves the set of free
linear variables is satisfied for only typechecked terms. PDILL ensures that a ! value
cannot capture linear variables in its closure; thus we conclude that DDD1 = · if τ1 is a !
type, since the arguments are well-typed.

The idea of the parametricity of polymorphism is that even when passed completely
different type arguments, logically related type abstractions must behave uniformly, so
they may not use different algorithms for different arguments by analyzing the type
argument. To formalize the independence of type arguments, Reynolds’ approach is to
interpret a type quantifier as an (almost) arbitrary relation that relates two type argu-
ments at which the type quantifier can be instantiated, although a relational interpre-
tation needs to satisfy certain admissibility conditions [17]. Relational interpretations
for type variables are stored in type relation substitutions θ that parameterize logical
relations. At rule OVR_ALL, two type abstractions are related if and only if two type
inputs, which are related by any well-formed relation, generate related outputs with
type substitutions extended by that new relation for type variable α. R ∈ τ2 ↔ τ ′

2 � G
defines a well-formed binary relation on open terms with types τ2 and τ ′

2 respectively.
τ2 and τ ′

2 are under an intuitionistic context G.
In PDILL, the behavior of logically related type abstractions cannot depend on which

linear contexts the arguments with polymorphic types will take, either. Suppose we have
related values of type ∀α.α � α under contexts G and D with an empty relation type
substitution. Rule OVR_ALL maps α to R ∈ τ2 ↔ τ ′

2 � G. At rule OVR_ARR, we
must choose a pair of related values G; D1 � V ∼ V ′ ∈ α:(α�→(R, τ2, τ

′
2)) under an

arbitrary fresh linear context D1. Rule OVR_VAR requires that (V, V ′) ∈ R. If R is
a relation that only takes the linear context D, we cannot choose the above V and V ′

for an arbitrary D1. Therefore, R ∈ τ ↔ τ ′ � G does not specify which linear context
D to use. For any pair of terms related by R, it only requires that there exists a linear
context that can typecheck them:

G � τ ∧ G � τ ′ ∧∀((M ,M ′) ∈ R). ∃D, G; D � M :τ ∧ G; D � M ′:τ ′

Two values !M and !M ′ are logically related by type !τ if and only if the two sus-
pended terms M and M ′ are related by type τ . Under a linear context D, two values
are logically related by an additive product τ1&τ2 if and only if their components are
logically related under D respectively; two values are logically related by a muplica-
tive product τ1 ⊗ τ2 if and only if D can be split into disjoint D1 and D2, and their
components are related under D1 and D2 respectively.
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G; D � M � M ′ ∈ τ :θ extends logical relations on open values to well-typed open
terms with evaluation.The well-formedness of open terms ensures that terms use linear
expressions exactly once, and preserves the invariant that reduction does not consume
free linear variables. A relation substitution θ also maps free variables in τ that are
disjoint to the domains of G and D to relations with types under the context G.

Γ ; Δ � θ|γ; δ:G; D formalizes open relation substitutions. Relation substitutions
θ, γ, and δ map type and term variables in Γ and term variables in Δ respectively
to open types and values with free variables in G and D. The domains of Γ and Δ
and the domains of G and D are disjoint. Related open values indexed by ! types must
typecheck under an empty linear context and do not introduce free linear variables in D,
not changing D. Adding relations with related types to relation substitutions does not
change D either. However, related open values indexed by linear types can contain free
linear variables, introducing new linear variables in D. When extending the existing
linear context Δ with a variable a of type τ , we must add a pair of related values under
a linear context DDD2 that is disjoint from D1, extending D1 to D1,DDD2. The intuitionistic
context G satisfies weakening and contraction properties.

Since linear variables in Δ must be used exactly once, the corresponding linear re-
lation substitutions should satisfy a similar property. That is, a substitution on a linear
variable must occur exactly once. Lemma 3 formalizes this idea, stating that, in a judg-
ment Γ ; Δ � θ|γ; δ:G; D, because only related values in δ can contain variables in D,
given that Δ can be split into Δ1 and Δ2, we can split the linear relation substitution δ
into two linear relation substitutions δ1 and δ2 under D1 and D2 respectively, where D
must be split into D1 and D2. Figure 4 also defines the operation � on δ.

Lemma 3 (Split Linear Relation Substitutions). If Γ � Δ1 � Δ2 = Δ, and Γ ; Δ �
θ|γ; δ:G; D, then ∃δ1, δ2 , D1, D2 . Γ ; Δ � θ|γ; δ1 �δ2 = δ:G; D1 � D2 = D, Γ ; Δ1 �
θ|γ; δ1:G; D1, and Γ ; Δ2 � θ|γ; δ2:G; D2.

Γ ; Δ � M�logM ′ ∈ τ defines that two well-typed terms with the same type are
logically equivalent if they are related under all open relation substitutions. Γ ; Δ �
M��

logM
′ ∈ τ defines closed logical equivalence:

Γ ; Δ � M�logM ′ ∈ τ � Γ ; Δ � M :τ ∧ Γ ; Δ � M ′:τ ∧
∀(Γ ; Δ � θ|γ; δ:G; D). G; D � θl(γl (δl (M ))) � θr (γr (δr (M ′))) ∈ τ :θ

Γ ; Δ � M��
logM

′ ∈ τ � Γ ; Δ � M :τ ∧ Γ ; Δ � M ′:τ ∧
∀(Γ ; Δ � θ|γ; δ). θl(γl (δl (M ))) � θr (γr (δr (M ′))) ∈ τ :θ

3.2 Fundamental Theorem

Theorem 2 shows parametricity, which states that, independent of open relation substi-
tutions for terms, types and relations under contexts Γ and Δ, a well-typed term, via
open substitutions, is related to itself under the same contexts Γ and Δ.

As usual, the proof of parametricity depends on a compositionality lemma (Lemma 4)
for logical relations. Note that R contains a family of logical relations under different
D′’s, but not only the linear context D that σ takes.

Lemma 4 (Compositionality). G; D � V ∼ V ′ ∈ σ:(θ, α�→(R, θl(τ), θr (τ))) iff
G; D � V ∼ V ′ ∈ σ{τ/α}:θ where R ∈ θl(τ) ↔ θr (τ) � G is a relation such that
(U, U ′) ∈ R iff ∃D′, G; D′ � U ∼ U ′ ∈ τ :θ.
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Theorem 2 (Parametricity). If Γ ; Δ � M :τ , then Γ ; Δ � M�logM ∈ τ .

Proof. By induction on the typing derivation, case T_APP relies on Lemma 3, and case
T_TAPP uses Lemma 4.

If the logical relation interprets types by relations for only closed terms, Theorem 2
degrades to Theorem 1. Thus Theorem 2 is a more general result than Theorem 1.

3.3 Soundness and Completeness

This section proves that the logical equivalence Γ ; Δ � M��
logM ∈ τ , which inter-

prets types on closed terms, is sound and complete with respect to contextual equiva-
lence. We use these results to show the properties of contextual equivalence in Section 4.
We also prove that the logical equivalence Γ ; Δ � M�logM ∈ τ , which interprets
types on open relations, is sound with respect to contextual equivalence. Here we state
interesting aspects of the proofs. Further details are available online in our Coq scripts.

The definition of contextual equivalence [17] is based on identifying a type of an-
swers that are observable outcomes of closed programs. To achieve this, we enrich the
system with a base type, Bool, containing two constants, true and false, that serve as
possible answers for a complete computation that is a closed expression of type Bool.
Two values are logically related with type Bool iff they are both true or both false.

Kleene equivalence M�kleeneM ′ is defined for complete computations M and M ′

by requiring that M −→∗ true ∧M ′ −→∗ true or M −→∗ false ∧M ′ −→∗ false.
To define contextual equivalence, we define contexts C as expressions with a single

hole �. Bierman [5] and Crole [11] showed how to define a program context in a linear
setting without polymorphic types. We extend their definitions with polymorphic types.

Typing judgments for contexts have the form Γ ′; Δ′ � C:(Γ ; Δ � τ) � τ ′, where
Γ ; Δ � τ indicates the type of the hole. Most typing judgments for contexts are similar
to the typing rules listed in Figure 5 and 6 at [25]. Plugging an expected expression into
a well-formed context produces a well-typed term with type τ ′ under Γ ′ and Δ′.

Two well-formed expressions of the same type are contextually equivalent if, given
any well-formed context C that is a complete computation when an expected expres-
sion is plugged into, C[M ] and C[M ′] are Kleene equivalent:

Γ ; Δ � M�ctxM ′ ∈ τ � Γ ; Δ � M :τ ∧ Γ ; Δ � M ′:τ ∧
∀(·; · � C:(Γ ; Δ � τ) � Bool).C[M ]�kleeneC[M ′]

We first prove that logical equivalence is congruent with respect to contexts:

Lemma 5 (Logical Equivalence is Congruent). If Γ ; Δ � M�logM ′ ∈ τ , and
Γ ′; Δ′ � C:(Γ ; Δ � τ) � τ ′, then Γ ′; Δ′ � C[M ]�logC[M ′] ∈ τ ′.

Theorem 3 (Soundness). If Γ ; Δ � M�logM ′ ∈ τ , then Γ ; Δ � M�ctxM ′ ∈ τ .

Proof. By Lemma 5, and that true and false are not related.

When interpreting relations for only closed terms:

Theorem 4. If Γ ; Δ � M��
logM

′ ∈ τ , then Γ ; Δ � M�ctxM ′ ∈ τ .
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A typical approach [17] [1] to proving that a logical relation is complete with respect to
contextual equivalence is via the notion of CIU-equivalence, introduced by Mason and
Talcott [15]. Let evaluation contexts E be a subset of contexts C, and consist of only
holes for closed terms. Two well-formed closed terms M and M ′ are CIU-equivalent if,
given any context E, E[M ] and E[M ′] are complete computations, and Kleene equiva-
lent. Given any closing substitution Γ ; Δ � s|g; d where s maps type variables in Γ to
closed types, g and d map intuitionistic and linear term variables typed in Γ and Δ to
closed values respectively, we extend it to open terms as follows:

Γ ; Δ � M�ciuM ′ ∈ τ � Γ ; Δ � M :τ ∧ Γ ; Δ � M ′:τ ∧
∀(Γ ; Δ � s|g; d ∧ ·; · � E:(·; · � s(τ)) � Bool).

E[s(g(d(M )))]�kleeneE[s(g(d(M ′)))]

Given a term M with closing substitutions s, g and d, we can construct a context C
such that when M is placed into the hole, C[M ] evaluates to the same value that
s(g(d(M ))) can reduce to. We can use the context (· · · (· · · (· · · (Λα1 · · ·αn.λx1 :
τ1 · · ·xm : τm.λa1 : τ ′

1 · · · al : τ ′
l .�) · · · [σi] · · · ) · · ·Vi · · · ) · · ·V ′

i · · · ) where s maps
αi to closed type σi, g maps intuitionistic variables xi with type τi to closed terms Vi,
and d maps linear variables ai with type τ ′

i to closed terms V ′
i . Therefore, we have:

Lemma 6 (�ctx ⊆ �ciu). If Γ ; Δ � M�ctxM ′ ∈ τ , then Γ ; Δ � M�ciuM ′ ∈ τ .

To ensure that our closed logical relations are complete, we will restrict attention to a
certain class of admissible binary relations R that respect CIU-equivalence [1]:

Definition 1 (Admissibility). R ∈ τ2 ↔ τ ′
2 is admissible iff it satisfies that if

(M1,M2) ∈ R, ·; · � M1�ciuM ′
1 ∈ τ2, ·; · � M2�ciuM ′

2 ∈ τ ′
2, then (M ′

1,M
′
2) ∈ R.

Thus we prove that closed logical relations respect CIU-equivalence:

Lemma 7 (Equivalence-Respecting). If Γ ; Δ � M1��
logM2 ∈ τ ,

Γ ; Δ � M1�ciuM ′
1 ∈ τ , and Γ ; Δ � M2�ciuM ′

2 ∈ τ , then Γ ; Δ � M ′
1��

logM
′
2 ∈ τ .

By Theorem 1, Lemmas 6 and Lemma 7, we have:

Theorem 5 (Completeness). If Γ ; Δ � M�ctxM ′ ∈ τ , then Γ ; Δ � M��
logM

′ ∈ τ .

We have thus proved that the relations ��
log, �ctx and �ciu coincide with each other. It

remains an open question as to whether �log is complete.

4 Examples

In this section we present applications of our method. Our reasoning about equiva-
lence and definitions of relations in this section depends on properties of contextual
equivalence that include reflexivity, symmetry, transitivity, βη-reduction, and congru-
ence (see Figure 7 at [25]). Most of these properties are straightforward, following from
the definition of contextual equivalence and Theorems 3, 4 and 5. With closed logical
relation ��

log, we proved that τ is isomorphic to ∀α.(τ � α) � α, ∀α.(τ1 � (τ2 �
α)) � α encodes τ1 ⊗ τ2, and other type encodings in [23] [7] [16]. This section
is focused on novel applications that open logical relations can prove. We abbreviate
Γ ; Δ � M�ctxM ′ ∈ τ ∧Γ ; Δ � M ′�ctxM ′′ ∈ τ to Γ ; Δ � M�ctxM ′�ctxM ′′ ∈ τ .
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4.1 Polymorphic Boolean

A closed term M with type ∀α.α � α � α does not exist, while a closed term with
type ∀α.!α �!α �!α must behave like a polymorphic boolean function.

Given ·; · � M :∀α.α � α � α, Theorem 2 gives:
∀(R ∈ τ ↔ τ ′ � ·). ∀(·; D1 � V1:τ ∧ ·; D1 � V ′

1 :τ ′ ∧ (V1, V
′
1) ∈ R).

∀(·; D2 � V2:τ ∧ ·; D2 � V ′
2 :τ ′ ∧ (V2, V

′
2) ∈ R).

M [τ ] V1 V2 −→∗ V ∧ M [τ ′] V ′
1 V ′

2 −→∗ V ′ ∧ (V, V ′) ∈ R

Here D1 and D2 are disjoint. Consider ·; D1 � V1:τ and ·; D2 � V2:τ ; let R be a
relation {(M ,M ′) | ·; D1 � M�ctxM ′�ctxV1 ∈ τ ∨ ·; D2 � M�ctxM ′�ctxV2 ∈ τ}.
By the free theorem and properties of �ctx, ·; D1 � (M [τ ] V1 V2)�ctxV1 ∈ τ ∨ ·; D2 �
(M [τ ] V1 V2)�ctxV2 ∈ τ . By regularity of �ctx, we have
(1) ·; D1 � M [τ ] V1 V2:τ ∨ ·; D2 � M [τ ] V1 V2:τ

However, by typing rules we can also derive
(2) ·; D1, D2 � M [τ ] V1 V2:τ

By Lemma 1 on (1) and (2), dom(D1) = dom(D1, D2) ∨ dom(D2) = dom(D1, D2).
In this case, D1 and D2 can be non-empty and must be disjoint from each other; this
contradicts the above constraint. Thus we conclude that the type ∀α.α � α � α is
empty. The closed logical relation cannot show this contradiction because it requires
that D1 and D2 must be empty. Similarly, we can prove that the types ∀α.α � α �
(α&α) and ∀α.α � (α⊗ α) do not have any closed inhabitant.

If a closed term M is of type ∀α.!α �!α �!α, its free theorem is:

∀(R ∈ τ ↔ τ ′ � ·).
∀(·; · � M1:τ ∧ ·; · � M ′

1:τ
′ ∧ M1 −→∗ V1 ∧ M ′

1 −→∗ V ′
1 ∧ (V1, V

′
1) ∈ R).

∀(·; · � M2:τ ∧ ·; · � M ′
2:τ

′ ∧ M2 −→∗ V2 ∧ M ′
2 −→∗ V ′

2 ∧ (V2, V
′
2) ∈ R).

M [τ ] !M1 !M2 −→∗!N ∧ M [τ ′] !M ′
1 !M ′

2 −→∗!N ′ ∧
N −→∗ V ∧ N ′ −→∗ V ′ ∧ (V, V ′) ∈ R

which only allows us to reason about closed terms, because ! values do not capture
any free linear variables. Given any ·; · �!M1, !M2:!τ , by strong normalization (that
is proved by Theorem 1) there exist values V1 and V2 such that M1 −→∗ V1 and
M2 −→∗ V2. Let R be a relation {(M ,M ′) | ·; · � M�ctxM ′�ctxV1 ∈ τ ∨ ·; · �
M�ctxM ′�ctxV2 ∈ τ}. The free theorem shows that ·; · � (M [τ ] !M1 !M2)�ctx!M1 ∈
!τ or ·; · � (M [τ ] !M1 !M2)�ctx!M2 ∈!τ , namely that M behaves like a polymorphic
boolean function. We can also derive possible inhabitants of types ∀α.!α �!α �
(!α&!α) and ∀α.!α � (!α⊗!α).

4.2 Multiplicative Selection

This section derives closed inhabitants of the type ∀α.α � α � (α ⊗ α). By
Theorem 2, this type gives:

∀(R ∈ τ ↔ τ ′ � ·). ∀(·; D1 � V1 :τ ∧ ·; D1 � V ′
1 :τ ′ ∧ (V1, V

′
1) ∈ R).

∀(·; D2 � V2 :τ ∧ ·; D2 � V ′
2 :τ ′ ∧ (V2, V

′
2) ∈ R).

M [τ ] V1 V2 −→∗ (V3, V4) ∧ M [τ ′] V ′
1 V ′

2 −→∗ (V ′
3 , V ′

4)
∧ (V3, V

′
3) ∈ R ∧ (V4, V

′
4) ∈ R
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Here D1 and D2 are disjoint. Consider ·; D1 � V1 : τ and ·; D2 � V2 : τ ; let R be a
relation {(M ,M ′) | ·; D1 � M�ctxM ′�ctxV1 ∈ τ ∨ ·; D2 � M�ctxM ′�ctxV2 ∈ τ}.
By the free theorem, M [τ ] V1 V2 −→∗ (V3, V4) ∧ (V3, V3) ∈ R ∧ (V4, V4) ∈ R. By
the definition of R, ·; D1 � V3�ctxV1 ∈ τ ∨ ·; D2 � V3�ctxV2 ∈ τ and ·; D1 �
V4�ctxV1 ∈ τ ∨ ·; D2 � V4�ctxV2 ∈ τ . By regularity of �ctx,
(1) ·; D1 � V3 :τ ∨ ·; D2 � V3 :τ and ·; D1 � V4 :τ ∨ ·; D2 � V4 :τ

By typing rules we also have,
(2) ·; D1, D2 � (V3, V4) :τ ⊗ τ

By Lemma 1 on (1) and (2),

·; D1 � V3�ctxV1 ∈ τ ∧ ·; D2 � V4�ctxV2 ∈ τ and dom(D1, D2) = dom(D1, D2) or
·; D2 � V3�ctxV2 ∈ τ ∧ ·; D1 � V4�ctxV1 ∈ τ and dom(D2, D1) = dom(D1, D2) or
·; D1 � V3�ctxV1 ∈ τ ∧ ·; D1 � V4�ctxV1 ∈ τ and dom(D1, D1) = dom(D1, D2) or
·; D2 � V3�ctxV2 ∈ τ ∧ ·; D2 � V4�ctxV2 ∈ τ and dom(D2, D2) = dom(D1, D2).

Because D1 and D2 can be non-empty in our case, M can only behave like one of
Λα.λa1 :α.λa2 :α.(a1, a2), and Λα.λa1 :α.λa2 :α.(a2, a1). If M is of type ∀α.!α �
!α � (!α⊗!α), D1 and D2 must be empty. Therefore M can be equivalent to one of
Λα.λx1 : !α.λx2 : !α.(x1, x2), Λα.λx1 : !α.λx2 : !α.(x2, x1), Λα.λx1 : !α.λx2 : !α.(x1, x1),
and Λα.λx1 : !α.λx2 : !α.(x2, x2).

4.3 Natural Numbers

This section proves properties of type ∀α.(α � α) � α � α and ∀α.!(α � α) �
α � α. Given a closed term N of type ∀α.(α � α) � α � α. By Theorem 2, this
type gives:

∀(R ∈ τ ↔ τ ′ � ·). ∀(·; Dz � Z :τ ∧ ·; Dz � Z ′ :τ ′ ∧ (Z, Z ′) ∈ R).
∀(·; Ds � S :τ � τ ∧ ·; Ds � S′ :τ ′ � τ ′ ∧ ·; Ds � S ∼ S′ ∈ α � α :θ).

N [τ ] S Z −→∗ V ∧ N [τ ′] S′ Z ′ −→∗ V ′ ∧ (V, V ′) ∈ R

Here Ds and Dz are disjoint, and θ = α�→(R, τ, τ ′). Consider ·; Ds � S : τ � τ and
·; Dz � Z :τ ; let R be a relation {(N ,N ′) |∃n. ·; Dsn, Dz � N�ctxN ′�ctxS

n Z ∈ τ }.
Here S0 = Id, Sn+1 = λa : τ.(rn(S)) (Sn a), ·; ri(Ds) � ri(S) : τ � τ and Dsn =
r1(Ds), · · · , rn(Ds), where ri is a well-formed renaming that is a finite function from
free linear variables to free linear variables. A renaming is well-formed if it is identical,
or it is bijective from the domain of Ds to a range that is disjoint from Ds. We have
(Z, Z) ∈ R because n can be 0. Suppose (V, V ′) ∈ R, we have that there exists an n
such that ·; Dsn, Dz � V�ctxV

′�ctxS
n Z ∈ τ where (Dsn, Dz) and Ds are disjoint.

Let rn+1 to be identical, we have ·; Ds, Dsn, Dz � S V�ctxS V ′�ctxS (Sn Z) ∈ τ for
n + 1, namely (S V, S V ′) ∈ R. Therefore, we proved that ·; Ds � S ∼ S′ ∈ α � α :
α�→(R, τ, τ). By the free theorem, N [τ ] S Z −→∗ V and ·; Dsn, Dz � V�ctxS

n Z ∈
τ for some n . By regularity, we have dom(Ds, Dz) = dom(Dsn, Dz).

Because Ds can be non-empty, N can only behave like Λα.λS : α � α.λZ :
α.(S Z). If N is of type ∀α.!(α � α) � α � α , the free theorem proves that
N encodes natural numbers (it is equivalent to Λα.λx : !(α � α).λZ : α.let !S =
x inSn Z) because Ds must be empty. We can also prove that the closed inhabitants of
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∀α.(α � α) � (α � α) � α � α must behave like Λα.λF1 : α � α.λF2 : α �
α.λa :α.(F1 (F2 a)) or Λα.λF1 :α � α.λF2 :α � α.λa :α.(F2 (F1 a)).

5 Discussion

Other formulations of linearity. All of these results presented here also carry through
to System F◦ [16]—an extension of System F that uses kinds to distinguish linear from
intuitionistic types. The online technical appendix [25] gives all formation rules. As
expected, values with intuitionistic kind do not capture any linear variables. Open log-
ical relations can easily adapt the definitions from PDILL. At the case of arrow types,
when the well-formed open input values are with type of intuitionistic kind, they must
be under empty linear contexts. We proved similar applications presented in Section 4.

Formalization. There have been several formalizations of logical relations in proof
assistants. Schürmann and Sarnat illustrated how to use logical relation arguments in
Twelf by assertion logic [19]. Donnelly and Xi proved strong normalization for System
F using high-order abstract syntax in ATS/LF [12].Vytiniotis and Weirich formalized
System F in Isabelle/HOL using the locally nameless representation [22].

We formalized all results (including PDILL, System F◦ [16] and System F) in Coq.
The development uses the Coq metatheory libraries [3] that combined locally nameless
representation of de Bruijn indices for the bound variables and cofinite quantification
of free variable names in inductive definitions of relations. The whole development
for PDILL represents approximately 75,000 lines (350,000 words) of Coq (excluding
comments). The formalism comprises of 6% of the calculus of PDILL that is extended
from the proofs of type soundness for System F<: [3], 10% of closed logical relations,
17% of open logical relations, 43% of properties for contextual equivalence and appli-
cations, and 24% of supporting definitions and lemmas for logical relations and contex-
tual equivalence. Definitions account for 5% of the source, and infrastructure overhead
accounts for 24% of the source. The size of the formalism for System F◦ is similar.

The logical relations are recursively defined by Program Fixpoint on the size of types
(typ_size) indicated by the keyword measure:

Program Fixpoint G; D � V ∼ V ′ ∈ τ :θ {measure typ_size τ} : Prop :=
match τ with
· · ·
| τ1 � τ2 =>∃L,∀D1V1V

′
1 , (L�D1 ∧ G; D1 � V1:θl(τ1) ∧ G; D1 � V ′

1 :θr (τ1)∧
G; D1 � V1 ∼ V ′

1 ∈ τ1:θ ∧ G � D,D1) ⇒
G; D,D1 � V V1 � V ′ V ′

1 ∈ τ2:θ
end.

At the case of arrow types, to ensure that the domains of substitutions are disjoint from
the free variables of types and values in the ranges of substitutions, we first choose an
L that includes all the existing free variables in the domains of substitutions, and then
pick a fresh linear context D1 that is disjoint from the L.

Aydemir et al. [3] gave the case that renaming is necessary for proofs. The proof
of Theorem 2 is by induction on the typing derivation. At T_APP, we have two in-
duction hypotheses: G; D1 � V ∼ V ′ ∈ τ1 � τ2:θ and G; D2 � V1 ∼ V ′

1 ∈ τ1:θ
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where G � D1 � D2 = D. To conclude G; D � V V1 � V ′ V ′
1 ∈ τ2:θ, we need

to apply the first hypothesis to the second one. However, we cannot show that D2
is disjoint from the existential L in the first hypothesis. The proof goes like this: we
first pick a fresh linear context D′

2 that is disjoint from L and other existing free vari-
ables, constructing a bijective renaming r from D2 to D′

2; by renaming lemmas we
have G; D′

2 � r(V1) ∼ r(V ′
1 ) ∈ τ1:θ; then induction hypotheses give that G; D′ �

V (r(V1)) � V ′ (r(V ′
1 )) ∈ τ2:θ where G � D1 � D′

2 = D′; finally renaming lemmas
conclude G; D � V V1 � V ′ V ′

1 ∈ τ2:θ. In the intuitionistic setting, renaming lemmas
may be derived from properties such as substitution and weakening, while in the linear
setting that disallows weakening, renaming lemmas for each judgment that accounts
for 5% of the source must be proved directly. In future work we would like to allow
substitutions on types and values that can reuse variables in domains of substitutions.
That would remove the L from the formalization of the logical relations, and simplify
the proof, because we do not need renaming lemmas to apply induction hypotheses.

The proof of Lemma 4 requires that the relation such that (U, U ′) ∈ R iff ∃D,
G; D � U ∼ U ′ ∈ τ :θ has the weakening property on θ. Suppose we extend θ to
(θ, α�→(R, τ2, τ

′
2)). Here α is free to existing variables. However, we do not know

which D the relation takes before picking a free α that can be captured by D because
R is defined for arbitrary linear contexts. α is a type variable, and the domain of D
consists of only term variables. If type and term variables are in different name spaces,
we can always pick an α that is free for D. The metatheory [3] does not support name
spaces separation. We define axioms that assume separate name spaces between type
and term variables. Adding this feature to metatheory libraries is our future work.

An important feature of contexts formalism is that holes are place-holders into which
open terms may be placed, whose free variables may be captured. This capture feature
is defined by close that turns free variable into de Bruijn indices, and lift that explicitly
selects correct de Bruijn indices for bound variables. The infrastructure lemmas for
close and lift account for 14% of the source.

Effects. As usual for parametricity properties, our results would need to be modified in
the presence of effects. We expect we can adopt the TT-closed relations [6] in PDILL
to support fixpoints. That paper defines TT-closed relations on closed terms with closed
testing functions, to avoid explicit treatment of holes in contexts. However, to test open
terms, we need testing contexts with holes that capture variables from those open terms.
We also hope to apply open logical relations to other substructural type systems [24].
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Abstract. The type system of Objective Caml has many unique features, which
make ensuring the correctness of its implementation difficult. One of these fea-
tures is structurally polymorphic types, such as polymorphic object and variant
types, which have the extra specificity of allowing recursion. We implemented in
Coq a certified interpreter for Core ML extended with structural polymorphism
and recursion. Along with type soundness of evaluation, soundness and princi-
pality of type inference are also proved.

1 Introduction

While many results have already been obtained in the mechanization of metatheory for
ML [13,6,5,11,19] and pure type systems [3,1], Objective Caml [12] has unique fea-
tures which are not covered by existing works. For instance, polymorphic object and
variant types require some form of structural polymorphism [8], combined with recur-
sive types, and both of them do not map directly to usual type systems. Among the many
other features, let us just cite the relaxed valued restriction [9], which accommodates
side-effects in a smoother way, first class polymorphism [10] as used in polymorphic
methods, labeled arguments [7], structural and nominal subtyping (the latter obtained
through private abbreviations). There is plenty to do, and we are interested not only
in type safety, but also in the correctness of type inference, as it gets more and more
involved with each added feature.

Since it seems difficult to ensure the correctness of the current implementation, it
would be nice to have a fully certified reference implementation at least for a subset
of the language, so that one could check how it is supposed to work. As a first step,
we certified type inference and evaluation for Core ML extended with local constraints,
a form of structural polymorphism which allows inference of recursive types, such as
polymorphic variants or objects. The formal proofs cover soundness of evaluation, both
through rewriting rules and using a stack-based abstract machine, and soundness and
completeness of the type inference algorithm.

While we based our developments on the “Engineering metatheory” methodology [1],
our interest is in working on a concrete type system, with advanced typing features, like
in the mechanized metatheory of Standard ML [11]. We are not so much concerned
about giving a full specification of the operational semantics, as in [15].

K. Ueda (Ed.): APLAS 2010, LNCS 6461, pp. 360–375, 2010.
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The contribution of this paper is two-fold. First, the proofs presented here are origi-
nal, and in particular it is to our knowledge the first proof of correctness of type inference
for a type system containing recursive types, and even of type soundness for a system
combining recursive types and a form of structural subsumption. Second, we have used
extensively the techniques proposed in [1] to handle binding, and it is interesting to see
how they fare in a system containing recursion, or when working on properties other
than soundness. On the one hand we have been agreeably surprised by the compatibility
of these techniques with explicit renaming (as necessary for type inference), but on the
other hand one can easily get entangled in the plethora of quantifiers.

The Coq proof scripts and the extracted code can be found at:

http://www.math.nagoya-u.ac.jp/~garrigue/papers/#certint1009

Having them at hand while reading this paper should clarify many points. In particular,
due to the size of some definitions, we could only include part of them in this paper,
and we refer the reader to the proof scripts for all the missing details.

2 Structural Polymorphism

Structural polymorphism, embodied by polymorphic variants and objects, enriches ty-
pes with both a form of width subsumption, and mutual recursive types. A type system
for structural polymorphism was introduced in [8]. To help understand what we are
working with, we repeat here the basic definitions, but please refer to the above paper
for details.

Terms are the usual ones: variables, constants, functions, application and let-binding.
We intend to provide all other constructs through constants and δ -rules.

e ::= x | c | λ x.e | e e | let x = e in e

Types are less usual.

τ ::= α | τ1 → τ2 type
κ ::= • | (C,{l1 �→ τ1, . . . , ln �→ τn}) kind
K ::= α1 :: κ1, . . . ,αn :: κn kinding environment
σ ::= ∀ᾱ.K� τ polytype

A type is either a type variable or a function type. This may seem not expressive enough,
but in this system type variables need not be abstract, as a kinding environment asso-
ciates them with their respective kinds. When they are associated with a concrete kind,
they actually denote structural types, like records or variants. Such types are described
by a pair (C,R) of a local constraint C and a mapping1 R from labels to types. On the
other hand • just denotes an (abstract) type variable. As you can see, type variables
may appear inside kinds, and since kinding environments are allowed to be recursive,

1 In order to make type inference principal, this “mapping” is not always a function (i.e. the
same l may, under some conditions, be related to several τ’s), but this should not matter at the
level of detail of this paper.
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VARIABLE
K,K0 � θ : K dom(θ )⊂ B
K;Γ,x : ∀B.K0 �τ � x : θ (τ)
ABSTRACTION
K;Γ,x : τ � e : τ ′

K;Γ � λx.e : τ → τ ′

LET
K;Γ � e1 : σ K;Γ,x : σ � e2 : τ
K;Γ � let x = e1 in e2 : τ

CONSTANT
K0 � θ : K Tconst(c) = K0 �τ
K;Γ � c : θ (τ)
APPLICATION
K;Γ � e1 : τ → τ ′ K;Γ � e2 : τ
K;Γ � e1 e2 : τ ′

GENERALIZE
K;Γ � e : τ B = FVK(τ)\FVK(Γ)
K|K\B;Γ � e : ∀B.K|B �τ

Fig. 1. Typing rules (original)

VARIABLE
K � τ̄ :: κ̄ τ̄

K;Γ,x : κ̄ �τ1 � x : ττ̄
1

ABSTRACTION
∀x /∈ L K;Γ,x : τ � ex : τ ′

K;Γ � λe : τ → τ ′

LET
K;Γ � e1 : σ ∀x /∈ L K;Γ,x : σ � ex

2 : τ
K;Γ � let e1 in e2 : τ

CONSTANT
K � τ̄ :: κ̄ τ̄ Tconst(c) = κ̄ �τ1

K;Γ � c : ττ̄
1

APPLICATION
K;Γ � e1 : τ → τ ′ K;Γ � e2 : τ
K;Γ � e1 e2 : τ ′

GENERALIZE
∀ᾱ /∈ L K, ᾱ :: κ̄ ᾱ ;Γ � e : τᾱ

K;Γ � e : κ̄ �τ

Fig. 2. Typing rules using cofinite quantification

we can use them to define recursive types (where the recursion must necessarily go
through kinds.) Since type variables only make sense in presence of a kinding environ-
ment, polytypes have to include a kinding environment for the variables they quantify;
i.e., in ∀ᾱ.K�τ , K is such that dom(K) = {ᾱ}, and the variables of ᾱ may appear both
inside the kinds of K and in τ . A good way to understand these definitions is to see
types as directed graphs, where variables are just labels for nodes.

This type system is actually a framework, where the concrete definition of local con-
straints, and how they interact with types, is kept abstract. One can then apply this
framework to an appropriate constraint domain to implement various flavours of poly-
morphic variants and records. A constraint domain C is a set of constraints combined
with an entailment relation |= on these constraints, and a predicate unique(C, l) telling
whether l may map to several types, satisfying some properties. By extension we also
use the notation κ ′ |= κ for kinds, i.e. (C′,R′) |= (C,R) iff C′ |= C and R⊂ R′.

Kinding environments are used in two places: in polytypes where they associate
kinds to quantified type variables, and in typing judgments, which are of the form K;Γ�
e : τ , where the variables kinded in K may appear in both Γ and τ . The typing rules are
given in Fig. 1. K � θ : K′ means that the substitution θ (defined as usual) preserves
kinds between K and K′ (it is admissible between K and K′). Formally, if α has a
concrete kind in K (α :: κ ∈ K, κ �= •), then θ (α) = α ′ is a variable, and it has a
more concrete kind in K′ (α ′ :: κ ′ ∈K′ and κ ′ |= θ (κ)). The main difference with Core
ML is that GENERALIZE has to split the kinding environment into a generalized part,
which contains the kinds associated to generalized type variables (denoted by K|B), and
a non-generalized part for the rest (denoted by K|K\B). When determining which type
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R-ABS

(λe1) v2 −→ ev2
1

R-LET

let v1 in e2 −→ ev1
2

R-DELTA
e = Delta.reduce c [v1; . . . ;vn]
c v1 . . . vn −→ e
R-LET1
e1 −→ e′1
let e1 in e2 −→ let e′1 in e2

R-APP1
e1 −→ e′1
e1 e2 −→ e′1 e2

R-APP2
e2 −→ e′2
v1 e2 −→ v1 e′2

Fig. 3. Reduction rules

variables can be generalized, we must be careful that for any type variable accessible
from Γ, the type variables appearing in its kind (inside K) are also accessible. For this
reason FV takes K as parameter; if α :: κ ∈ K, then FVK(α) = {α}∪FVK(κ).

It may be difficult to understand this type system in abstract form. Concrete con-
straint domains and constants are given in Fig. 6 and 7, and an example appears in
Section 7 of this paper.

3 Type Soundness

The first step of our mechanical proof, using Coq [17], was to prove type soundness for
the system described in the previous section, starting from Aydemir and others’ proof
for Core ML included in [1], which uses locally nameless cofinite quantification. This
proof uses de Bruijn indices for local quantification inside terms and polytypes, and
quantifies over an abstract avoidance set for avoiding name conflicts.

Fig. 2 contains the typing rules adapted to locally nameless cofinite quantification,
and the reduction rules are in Fig. 3. They both use locally nameless terms and types.

e ::= n | x | c | λ e | e e | let e in e term
τ ::= n | α | τ1 → τ2 type
κ ::= • | (C,{l1 �→ τ1, . . . , ln �→ τn}) kind
σ ::= κ̄ � τ polytype

τ̄ and κ̄ represent sequences of types and kinds. When we write ᾱ , we also assume
that all type variables inside the sequence are distinct. Polytypes are now written κ̄ � τ ,
where the length of κ̄ is the number of generalized type variables, represented as de
Bruijn indices 1 . . .n inside types2. ττ̄

1 is τ1 where de Bruijn indices were substituted
with types of τ̄ , accessed by their position. Similarly κ̄ τ̄ substitute all the indices inside
the sequence κ̄ . ex only substitutes x for the index 1. K � τ :: κ is true when either
κ = •, or τ = α , α :: κ ′ ∈K and κ ′ |= κ . K � τ̄ :: κ̄ enforces this for every member of τ̄
and κ̄ at identical positions, which is just equivalent to our condition K � θ : K′ for the
preservation of kinds.
∀x /∈ L and ∀ᾱ /∈ L are cofinite quantifications, with scope the hypotheses on the

right of the quantifier. Each L appearing in a derivation is existentially quantified (i.e.
one chooses a concrete L when building the derivation), but has to be finite, to allow an
infinite number of variables outside of L. At first, the rules may look very different from

2 The implementation has indices starting from 0, but we will start from 1 in this explanation.
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Module Type CstrIntf.
Parameter cstr attr : Set. (* types for abstract constraints and labels *)
Parameter valid : cstr → Prop. (* validity of a constraint *)
Parameter unique : cstr→ attr→ bool. (* uniqueness of a label *)
Parameter � : cstr→ cstr→ cstr. (* least upper bound *)
Parameter |= : cstr→ cstr→ Prop. (* entailment between constraints *)
. . . (* some properties of these definitions *)

Module Type CstIntf.
Parameter const : Set. (* constants *)
Parameter arity : const→ nat. (* their arity *)

Fig. 4. Interfaces for constraints and constants

those in Fig. 1, but they coincide if we instantiate L appropriately. For instance, if we
use dom(Γ) for L in ∀x /∈ L, this just amounts to ensuring that x is not already bound.
Inside GENERALIZE, we could use dom(K)∪FVK(Γ) for L to ensure that the newly in-
troduced variables are locally fresh. This may not be intuitive, but this is actually a very
clever way to encode naming constraints implicitly. Moreover, when we build a new
typing derivation from an old one, we can avoid renaming variables by just enlarging
the avoidance sets.

Starting from an existing proof was a tremendous help, but many new definitions
were needed to accommodate kinds, and some existing ones had to be modified. For in-
stance, in order to accommodate the mutually recursive nature of kinding environments,
we need simultaneous type substitutions, rather than the iterated ones of the original
proof. The freshness of individual variables (or sequences of variables: ᾱ /∈ L) becomes
insufficient, and we need to handle disjointness conditions on sets (L1 ∩ L2 = /0). As
a result, the handling of freshness, which was almost fully automatized in the proof
of Core ML, required an important amount of work with kinds, even after developing
some tactics for disjointness.

We also added a formalism for constants and δ -rules, which are needed to give an
operational semantics to structural types. Overall, the result was a doubling of the size
of the proof, from 1000 lines to more than 2000, but the changes were mostly straight-
forward. This does not include the extra metatheory lemmas and set inclusion tactics
that we use for all proofs.

The formalism of local constraints was defined as a framework, able to handle var-
ious flavours of variant and object types, just by changing the constraint part of the
system. This was formalized through the use of functors. The signature for constraints
and constants is in Fig. 4, and an outline of the module structure of the soundness proof
(including the statements proved) is in Fig. 5. We omit here the definitions of terms,
types, typing derivations, and reduction, as they just implement the locally nameless
definitions we described above. A value is either a λ -abstraction, or a constant applied
to a list of values of length less than its arity.

This approach worked well, but there are some drawbacks. One is that since some
definitions depend on parameters of the framework, and some of the proofs required by
the framework depend on those definitions, we need nested functors, and the instantia-
tion of the framework with a constraint domain looks like a “dialogue”: we repeatedly
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Module MkDefs (Cstr : CstrIntf) (Const : CstIntf).
Inductive typ : Set := . . . (* our types *)
Inductive type : typ→ Prop := . . . (* well-formed types *)
Inductive trm : Set := . . . (* our terms *)
. . .

Module Type DeltaIntf.
Parameter type : Const.const→ sch. (* types of constants *)
Parameter reduce : ∀cel,(list for n value (1+Const.arity c) el)→ trm. (* δ -rules *)
. . . (* 3 more properties *)

Module MkJudge (Delta : DeltaIntf).
Inductive � : kenv→ env→ trm→ typ→ Prop := . . . (* the typing judgment *)
Inductive −→ : trm→ trm→ Prop := . . . (* the reduction relation *)
Inductive value : trm→ Prop := . . . (* values *)
. . .

Module Type SndHypIntf.
Parameter delta typed : ∀c el vl K Γ τ,

(K;Γ � const app c el : τ)→ (K;Γ � Delta.reduce c el vl : τ).

Module MkSound (SH : SndHypIntf).
Theorem preservation : ∀KΓee′ τ,(K;Γ � e : τ)→ (e−→ e′)→ (K;Γ � e′ : τ).
Theorem progress : ∀Keτ,(K; /0 � e : τ)→ (value e∨∃e′,e−→ e′).

Fig. 5. Module structure

alternate domain-specific definitions, and applications of framework functors to those
definitions, each new definition using the result of the previous functor application. The
problem appears not so much with constraints themselves, but rather with constants and
δ -rules. In order to obtain the definitions for typing judgments, one has to provide im-
plementations for constraints and constants, extract the definition of types and terms,
and use them to provide constant types and δ -rules. We enforce the completeness of
δ -rules by requiring a function reduce which will be applied to a list of values of length
(1 +Const.arity c); through well-typedness they will be only used if Const.arity c is
smaller than the arity of type c. Type soundness itself is another functor, that requires
some lemmas whose proofs may use infrastructure lemmas on type judgments, and re-
turns proofs of preservation and progress. The real structure is even more complex,
because the proofs span several files, and each file must mimick this structure. The
same problem is known to occur in programs using heavily ML functors, so this is not
specific to Coq. But the level of stratification of definitions we see in this proof rarely
occurs in programs.

This instantiation has been done for a constraint domain containing both polymor-
phic variants and records, and a fixpoint operator. We show the constraint domain in
Fig. 6; we write 〈〉 for None, which denotes here the set of all possible labels. Constants
and δ -rules are in Fig. 7, using the nameful syntax for types. You can see the duality
between variants and records, at least for tag and get.

Both in the framework and domain proofs, cofinite quantification demonstrated its
power, as no renaming of type or term variables was needed at all. It helped also in
an indirect way: in the original rule for GENERALIZE, one has to close the set of free
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Module Cstr.
Definition attr := nat.
Inductive ksort : Set := Ksum | Kprod | Kbot.
Record cstr : Set := C {sort : ksort; low : list nat;high : option(list nat)}.
Definition valid c := sort c �= Kbot∧ (high c = 〈〉∨ low c⊂ high c).
Definition s1 ≤ s2 := s1 = Kbot∨ s1 = s2.
Definition c1 |= c2 :=

sort s2 ≤ sort s1∧ low c2 ⊂ low c1∧ (high c2 = 〈〉∨high c1 ⊂ high c2).
. . .

Fig. 6. Constraint domain for polymorphic variants and records

type(tagl) = α :: (〈Ksum,{l},〈〉〉,{l �→ β})�β → α
type(matchl1...ln ) = α :: (〈Ksum, /0,{l1, ..., ln}〉,{l1 �→ α1, . . . , ln �→ αn})

� (α1 → β )→ . . .→ (αn → β )→ α → β
type(recordl1...ln ) = α :: (〈Kprod, /0,{l1, ..., ln}〉,{l1 �→ α1, . . . , ln �→ αn})

� α1 → . . .→ αn → α
type(getl) = α :: (〈Kprod,{l},〈〉〉,{l �→ β})�α → β
type(recf) = ((α → β )→ (α → β ))→ (α → β )

matchl1...ln f1 . . . fn (tagli e) −→ fi e
getli (recordl1...ln e1 . . . en) −→ ei

recf f e −→ f (recf f ) e

Fig. 7. Types and δ -rules for constants

variables of a type with the free variables of their kinds; but the cofinite quantification
takes care of that implicitly, without any extra definitions.

While cofinite quantification may seem perfect, there is a pitfall in this perfection
itself. One forgets that some proof transformations intrinsically require variable renam-
ing. Concretely, to make typing more modular, I added a rule that discards irrelevant
kinds from the kinding environment. Fig. 8 shows both the normal and cofinite forms.
Again one can see the elegance of the cofinite version, where there is no need to specify
which kinds are irrelevant: just the ones whose names have no impact on typability.
Proofs went on smoothly, until I realized that I needed the following inversion lemma,
relating derivations using KIND GC, and those without it.

∀KΓeτ, (K;Γ �GC e : τ)→∃K′, (K,K′;Γ � e : τ)

Namely, by putting back the kinds we discarded, we shall be able to obtain a derivation
that does not rely on KIND GC. This is very intuitive, but since this requires making
KIND GC commute with GENERALIZE, we end up commuting quantifiers. And this is
just impossible without a true renaming lemma. I got stuck there for a while, unable
to see what was going wrong3. Even more confusing, the same problem occurs when
we try to make KIND GC commute with ABSTRACTION, whereas intuitively the choice
of names for term variables is independent of the choice of names for type variables.

3 Thanks to Arthur Charguéraud for opening my eyes.
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KIND GC
K,K′;Γ � e : τ FVK(Γ,τ)∩dom(K′) = /0
K;Γ � e : τ

CO-FINITE KIND GC
∀ᾱ �∈ L K, ᾱ :: κ̄ ᾱ ;Γ � e : τ
K;Γ � e : τ

Fig. 8. Kind discarding

Finally this lemma required about 1000 lines to prove it, including renaming lemmas
for both term and type variables.

Lemma typing rename : ∀KΓxyσ Γ′ eτ,
K;Γ,x:σ ,Γ′ � e : τ → y /∈ dom(Γ,Γ′)∪{x}∪FV(e)→ K;Γ,y:σ ,Γ′ � [y/x]e : τ.

Lemma typing rename typ : ∀KΓκ̄ τ ᾱ ᾱ ′ e,
ᾱ /∈ FV(Γ)∪FV(κ̄ �τ)∪domK∪FV(K))→ ᾱ ′ /∈ domK∪{ᾱ}→
K, ᾱ :: κ̄ ᾱ ;Γ � e : τᾱ → K, ᾱ ′ :: κ̄ ᾱ ′

;Γ � e : τᾱ ′
.

The renaming lemmas were harder to prove than expected (100 lines each). Contrary to
what was suggested in [1], we found it rather difficult to prove these lemmas starting
from the substitution lemmas of the soundness proof; while renaming for types used
this approach, renaming for terms was proved by a direct induction, and they ended
up being of the same length. On the other hand, one could argue that the direct proof
was easy precisely thanks to cofinite quantification, which eschews the need for extra
machinery.

Once the essence of the problem (i.e. commutation of quantifiers) becomes clear, one
can see a much simpler solution: in most situations, it is actually sufficient to have KIND

GC occur only just above ABSTRACTION and GENERALIZE, and the canonicalization
lemma is just 100 lines, as it doesn’t change the quantifier structure of the proof. This
also raises the issue of how to handle several variants of a type system in the same
proof. Here this was done by parameterizing the predicate � with the canonicity of the
derivation, and whether KIND GC is allowed at this point. This gives 4 cases for the
availability of KIND GC: allowed nowhere, allowed everywhere, or inside a canonical
derivation where it is allowed or not at the current point. Functions gc ok, gc raise and
gc lower, which are used by the definitions themselves, allow to manipulate this state
transparently.

4 Type Inference

The main goal of using local constraints was to keep the simplicity of unification-based
type inference. Of course, unification has to be extended in order to handle kinding, but
the algorithms for unification and type inference stay reasonably simple.

4.1 Unification

Unification has been a target of formal verification for a long time, with formal proofs
as early as 1985 [16]. Here we just wrote down the algorithm in Coq, and proved
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[ᾱ]τ = τ∗ such that τᾱ
∗ = τ

and FV(τ∗)∩ ᾱ = /0
[ᾱ](κ̄ �τ) = ([ᾱ]κ̄ � [ᾱ ]τ)

Definition generalize(K,Γ,L,τ) :=
let A = FVK(Γ) and B = FVK(τ) in
let K′ = K|K\A in

let ᾱ :: κ̄ = K′|B in
let ᾱ ′ = B\ (A∪ ᾱ) in
let κ̄ ′ = map (λ .•) ᾱ ′ in
〈(K|A,K′|L), [ᾱᾱ ′](κ̄κ̄ ′ �τ)〉.

Definition typinf(K,Γ, let e1 in e2,τ,θ ,L) :=
let α = fresh(L) in
match typinf(K,Γ,e1,α,θ ,L∪{α}) with
| 〈K′,θ ′,L′〉 ⇒
let K1 = θ ′(K′) and Γ1 = θ ′(Γ) in
let L1 = θ ′(dom(K)) and τ1 = θ ′(α) in
let 〈KA,σ〉= generalize(K1,Γ1,L1,τ1) in
let x = fresh(dom(Γ)∪FV(e1)∪FV(e2)) in
typinf(KA,(Γ,x : σ),ex

2,τ,θ ′,L′)
| 〈〉 ⇒ 〈〉
end.

Fig. 9. Type inference algorithm

both partial-correctness and completeness. A rule-based version of the algorithm can
be found in [8]. The following statements were proved:

Definition unifies θ l := ∀τ1τ2, In (τ1,τ2) l → θ (τ1) = θ (τ2).

Theorem unify types : ∀hl Kθ , unify h l K θ = 〈K′,θ ′〉 → unifies θ ′ l.

Theorem unify kinds : ∀hl Kθ ,
unify h l K θ = 〈K′,θ ′〉 → dom(θ )∩dom(K) = /0→
K � θ ′ : θ ′(K′)∧dom(θ ′)∩dom(K′) = /0.

Theorem unify mgu : ∀hl K0 Kθ ,
unify h l K0 id = 〈K,θ 〉 → unifies θ ′ l → K0 � θ ′ : K′ → θ ′ ! θ ∧K � θ : K′.

Theorem unify complete : ∀Kθ K0 l h,
unifies θ l → K0 � θ : K→ size pairs id K0 l < h→ unify h l K0 id �= 〈〉.

The first argument to unify is the number of type variables, which is used to enforce
termination. Then come a list of type pairs to unify and the original kinding environ-
ment. Last is a starting substitution, so that the algorithm is tail-recursive. To keep the
statement clear, well-formedness conditions are omitted here. The proof is rather long,
as kinds need particular treatment, but there was no major stumbling block. The proof
basically follows the algorithms, but there are two useful tricks. One concerns substitu-
tions. Rather than using the relation “θ is more general than θ ′” (∃θ1, θ ′ = θ1 ◦θ ), we
used the more direct “θ ′ extends θ” (∀α, θ ′(θ (α)) = θ ′(α)). In the above theorem it
is noted θ ′ ! θ . When θ is idempotent, the two definitions are equivalent, but the latter
can be used directly through rewriting. The other idea was to define a special induc-
tion lemma for successful unification, which uses symmetries to reduce the number of
cases to check. Unification being done on first-order terms, the types we are unifying
shall contain no de Bruijn indices, but only global variables. Since we started with a
representation allowing both kinds of variables, there was no need to change it.

4.2 Inference

The next step is type inference itself. Again, correctness has been proved before for Core
ML [13,6,19], but to our knowledge never for a system containing equi-recursive types.
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Theorem soundness : ∀KΓeτ θ L K′θ ′L′,
typinf(K,Γ,e,τ,θ ,L) = 〈K′,θ ′,L′〉 →
dom(θ )∩dom(K) = /0→
FV(θ ,K,Γ,τ)⊂ L →
θ ′(K′);θ ′(Γ) � e : θ ′(τ) ∧
K � θ ′ : θ ′(K′)∧θ ′ ! θ ∧
FV(θ ′,K′,Γ)∪L ⊂ L′ ∧
dom(θ ′)∩dom(K′) = /0.

Theorem principality : ∀KΓeτ θ K1 θ1 L,
K;θ (Γ) � e : θ (τ)→ K1 � θ : K→
θ ! θ1 → dom(θ1)∩dom(K1) = /0→
dom(θ )∪FV(θ1,K1,Γ,τ)⊂ L→
∃K′θ ′L′,
typinf(K1,Γ,e,τ,θ1,L) = 〈K′,θ ′,L′〉 ∧
∃θ ′′, K′ � θθ ′′ : K∧θθ ′′ ! θ ′ ∧

dom(θ ′′)⊂ L′ \L.

Fig. 10. Properties of type inference

Proving both soundness and principality was rather painful. This time one problem was
the complexity of the algorithm itself, in particular the behaviour of type generalization.
The usual behaviour for ML is just to find the variables that are not free in the typing
environment and generalize them, but with a kinding environment several extra steps
are required. First, the free variables should be closed transitively using the kinding
environment. Then, the kinding environment also should be split into generalizable and
non-generalizable parts. Last, some generalizable parts of the kinding environment need
to be duplicated, as they might be used independently in some other parts of the typing
derivation. The definitions for generalize and the let case of typinf are shown in Fig. 9.
[ᾱ]τ stands for the generalization of τ with respect to ᾱ , obtained by replacing the
occurrences of variables of ᾱ in τ by their indices.

Due to the large number of side-conditions required, the statements for the inductive
versions of soundness of principality become very long. In Fig. 10 we show slightly
simplified versions, omitting well-formedness properties. These statements can be
proved directly by induction. From those, we can derive the following corollaries for a
simplified version of typinf, taking only a term and a closed environment as arguments.

Corollary soundness’ : ∀KΓeτ, FV(Γ) = /0→ typinf’ Γ e = 〈K,τ〉 → K;Γ � e : τ.

Corollary principality’ : ∀KΓeτ, FV(Γ) = /0→ K;Γ � e : τ →
∃K′,∃T ′, typinf’ Γ e = 〈K′,T ′〉∧∃θ , K′ � θ : K∧ τ = θ (τ ′).

As usual, the proof of principality requires the following lemma, which states that if a
term e has a type τ under an environment Γ, then we can give it the same type under a
more general environment Γ1.

Lemma typing moregen : ∀KΓΓ1 eτ, K;Γ � e : τ → K � Γ1 ≤ Γ→ K;Γ1 � e : τ.

K � Γ1 ≤ Γ means that the polytypes of Γ are instances of those in Γ1. Due to the
presence of kinds, the definition of the instantiation order gets a bit complicated.

K � κ̄1 �τ1 ≤ κ̄ �τ def= ∀ᾱ,dom(K)∩ ᾱ = /0→∃τ̄, K, ᾱ :: κ̄ ᾱ � τ̄ :: κ̄ τ̄
1 ∧ ττ̄

1 = τᾱ .

It may be easier to consider the version without de Bruijn indices.

K � ∀ᾱ1.K1 �τ1 ≤ ∀ᾱ2.K2 �τ2
def= ∃θ , dom(θ )⊂ ᾱ1 ∧K,K1 � θ : K,K2∧θ (τ1) = τ2.

Another difficulty is that, since we are building a derivation, cofinite quantification ap-
pears as a requirement rather than a given, and we need renaming for both terms and
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Inductive clos : Set :=
| clos abs : trm→ list clos→ clos
| clos const : Const.const→ list clos→ clos.

Fixpoint clos2trm(c : clos) : trm :=
match c with
| clos abs e l ⇒ trm inst (λe) (map clos2trm l)
| clos const c l ⇒ const app c (map clos2trm l)
end.

Record frame : Set := Frame {frm benv : list clos; frm app : list clos; frm trm : trm}.
Inductive eval res : Set :=
| Result : nat→ clos→ eval res
| Inter : list frame→ eval res.

Fixpoint eval (h : nat) (benv : list clos) (app : list clos) (e : trm) (stack : list frame)
{struct h} : eval res := . . .

Theorem eval sound : ∀hKeτ,
(K;Γ � e : τ)→ (K;Γ � res2trm (eval h nil nil t nil) : τ).

Theorem eval complete : ∀Kee′ τ,

(K;Γ � e : τ)→ (e ∗−→ e′)→ value e′ →
∃h,∃cl, eval h nil nil t nil = Result 0 cl∧ e′ = clos2trm cl.

Fig. 11. Definitions and theorems for stack-based evaluation

types in many places. This is true both for soundness and principality, since in the latter
the type variables of the inferred derivation and of the provided derivation are different.
As a result, while we could finally avoid using the renaming lemmas for type soundness,
they were ultimately needed for type inference.

5 Interpreter

Type soundness ensures that evaluation according to a set of source code rewriting
rules cannot go wrong. However, programming languages do not evaluate a program by
rewriting it, but rather interpreting it with a virtual machine. We defined a stack-based
abstract machine, and proved that at every step the state of the abstract machine could be
converted back to a term whose typability was a direct consequence of the typability of
the reduced program. This ensures that evaluation cannot go wrong, and the final result,
if reached, shall be either a constant or a function closure. Once the relation between
program and state was properly specified, the proof was mostly straightforward.

The basic definitions and the statements for soundness and completeness are in
Fig. 11. We omit here the concrete definition of eval for lack of space. A closure is either
a function body paired with its environment, or a partially applied constant. clos2trm
converts back a closure to an equivalent term, trm inst intantiating all de Bruijn indices
at once with a list of terms, and const app building the curried application of c to a list
of terms. Since evaluation may not terminate, eval takes as argument the number h of re-
duction steps to compute. The remaining arguments are the environment benv, accessed
through de Bruijn indices, the application stack app which contains the arguments to
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the term being evaluated, the term e itself, which provides an efficient representation of
code thanks to de Bruijn indices, and the control stack stack. Here the nameless repre-
sentation of terms was handy, as it maps naturally to a stack machine. The result of eval
is either a closure, with the number of evaluation steps remaining, or the current state
of the machine.

We also proved completeness with respect to the rewriting rules, i.e. if the rewriting
based evaluation reaches a normal form, then evaluation by the abstract machine ter-
minates with the same normal form. This required building a bisimulation between the
two evaluations, and was trickier than expected. Namely we need to prove the following
lemma:

Definition inst t benv := trm inst t (map clos2trm benv).

Lemma complete rec : ∀argsargs′ fl fl′ ee′ benvbenv′ τ,
args≡ args′ → fl ≡ fl′ → (inst e benv−→ inst e′ benv′)→
K;Γ � stack2trm (app2trm (inst e benv) args) fl : τ →
∃h,∃h′, eval h benv args e fl ≡ eval h′ benv′ args′ e′ fl′.

where ≡ denotes the equality of closures after substitution by their environment, i.e.
clos abs e benv ≡ clos abs e′ benv′ iff inst (λ e) benv = inst (λ e′) benv′. Proving this
by case analysis on e and e′ ended up being very time consuming. The proofs being
rather repetitive, they may profit from better lemmas.

6 Dependent Types

As we pointed in section 4, the statements of many lemmas and theorems include lots
of well-formedness properties, which are expected to be true of any value of a given
type. For instance, substitutions should be idempotent, environments should not bind
the same variable twice, de Bruijn indices should not escape, kinds should be valid,
etc. . . A natural impulse is to use dependent types to encode these properties. Yet proofs
from [1] only use dependent types for the generation of fresh variables. The reason is
simple enough: as soon as a value is defined as a dependent sum, using rewriting on
it becomes much more cumbersome. I attempted using it for the well-formedness of
polytypes, but had to abandon the idea because there were too many things to prove
upfront. On the other hand, using dependent types to make sure that kinds are valid and
coherent was not so hard, and helped to streamline the proofs. This is probably due to
the abstract nature of constraint domains, which limits interactions between kinds and
other features. The definition of kinds becomes:

Definition coherent kc kr := ∀x (τ τ ′ : typ),
Cstr.unique kc x = true→ In (x,τ) kr → In (x,τ ′) kr → τ = τ ′.

Record ckind : Set := Kind{
kind cstr : Cstr.cstr;kind valid : Cstr.valid kind cstr;
kind rel : list (Cstr.attr× typ);kind coherent : coherent kind cstr kind rel}.

We still need to apply substitutions to kinds, but this is not a problem as substitutions
do not change the constraint, and preserve the coherence. We just need the following
function.
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Definition ckind map spec : ∀( f : typ→ typ)(k : ckind),
{k′ : ckind | kind cstr k = kind cstr k′ ∧kind rel k′ = map snd f (kind rel k)}.

We also sometimes have to prove the equality of two kinds obtained independently.
This requires the following lemma, which can be proved using proof irrelevance4.

Lemma ckind pi : ∀k k′ : ckind,
kind cstr k = kind cstr k′ → kind rel k = kind rel k′ → k = k′.

Another application of dependent types is ensuring termination for the unification and
type inference algorithms. In Coq all functions must be complete. Originally, this was
ensured by adding a step counter, and proving separately that one can choose a number
of steps sufficient to obtain a result. This is the style used in section 4.1. This approach is
simple, but this extra parameter stays in the extracted code. In a first version of the proof,
the parameter was so big that the unification algorithm would just take forever trying
to compute the number of steps it needed. I later came up with a smaller value, but it
would be better to have it disappear completely. This is supported in Coq through well-
founded recursion. In practice this works by moving the extra parameter to the universe
of proofs (Prop), so that it will disappear during extraction. The Function command au-
tomates this, but there is a pitfall: while it generates dependent types, it doesn’t support
them in its input. The termination argument for unification being rather complex, this
limitation proved problematic. Attempts with Program Fixpoint didn’t succeed either.
Finally I built the dependently typed function by hand. While this requires a rather in-
tensive use of dependent types, the basic principle is straightforward, and it makes the
proof of completeness simpler. As a result the overall size of the proof for unification
didn’t change. However, since the type inference algorithm calls unification, it had to be
modified too, and its size grew by about 10%. An advantage of building our functions
by hand is that we control exactly the term produced; since rewriting on dependently
typed terms is particularly fragile, this full control proves useful.

7 Program Extraction

Both the type checker and interpreter can be extracted to Objective Caml code. This
lets us build a fully certified5 implementation for a fragment of Objective Caml’s type
system. Note that there is no parser or read-eval-print loop yet, making it just a one-
shot interpreter for programs written directly in abstract syntax. Moreover, since Coq
requires all programs to terminate, one has to indicate the number of steps to be evalu-
ated explicitly. Well-founded recursion cannot be used here, as our language is Turing-
complete. (Actually, Objective Caml allows one to define cyclic constants, so that we
can build a value representing infinity, and remove the need for an explicit number of
steps. However, this is going around the soundness of Coq.)

Here is an example of program written in abstract syntax (with a few abbreviations),
and its inferred type (using lots of pretty printing).

4 Since both validity and coherence are decidable, proof irrelevance could be avoided here by
slightly changing definitions.

5 The validity of our certification relies on the correctness of Coq and Objective Caml, which
are rather strong assumptions.
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# let rev_append =
recf (abs (abs (abs
(matches [0;1]
[abs (bvar 1);
abs (apps (bvar 3) [sub 1 (bvar 0); cons (sub 0 (bvar 0)) (bvar 1)]);
bvar 1])))) ;;

val rev_append : trm = ...
# typinf2 Nil rev_append;;
- : (var * kind) list * typ =
([(10, <Ksum, {}, {0; 1}, {0 => tv 15; 1 => tv 34}>);
(29, <Ksum, {1}, any, {1 => tv 26}>);
(34, <Kprod, {1; 0}, any, {0 => tv 30; 1 => tv 10}>);
(30, any);
(26, <Kprod, {}, {0; 1}, {0 => tv 30; 1 => tv 29}>);
(15, any)],
tv 10 @> tv 29 @> tv 29)

Here recf is an extra constant which implements the fixpoint operator. Our encoding
of lists uses 0 and 1 as labels for both variants and records, but we could have used
any other natural numbers: their meaning is not positional, but associative. Since de
Bruijn indices can be rather confusing, here is a version translated to a syntax closer to
Objective Caml, with meaningful variable names and labels.

let rec rev_append l1 l2 =
match l1 with
| ‘Nil _ -> l2
| ‘Cons c ->
rev_append c.tl (‘Cons {hd=c.hd; tl=l2})

val rev_append :
([< ‘Nil of ’15 | ‘Cons of {hd:’30; tl:’10; ..}] as ’10) ->
([> ‘Cons of {hd:’30; tl:’29}] as ’29) -> ’29

8 Related Works

The mechanization of type safety proofs for programming languages has been exten-
sively studied. Existing works include Core ML using Coq [5], Java using Isabelle/HOL
[14], and more recently full specification of OCaml light using HOL-4 [15] and Stan-
dard ML using Twelf [11,4]. The main difference in our system is the presence of struc-
tural polymorphism and recursion. In particular, among the above works, only [11]
handles inclusion problems for iso-recursive types (in a simpler setting than ours, since
when checking signature subtyping no structural polymorphism is allowed). It is also
the work closest to our goal of handling advanced type features (it already handles fully
Standard ML). OCaml-light rather focuses on subtle points in the dynamic semantics
of the language. Typed Scheme [18] has a type system remarkably similar to ours, and
part of the soundness proof was mechanized in Isabelle/HOL, but the mechanized part
does not contain recursive types.

Concerning unification and type inference, we have already mentioned the works
of Paulson in LCF [16], Dubois and Ménissier-Morain in Coq [6], and Naraschewski
and Nipkow in Isabelle [13], and the more recent Isabelle/Nominal proof by Urban
and Nipkow [19]. The main difference is the introduction of structural polymorphism,
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Table 1. Components of the proof

File Lines Contents
Lib ∗ 1706 Auxiliary lemmas and tactics from [1]
Metatheory 1376 Metatheory lemmas and tactics from [1]
Metatheory SP 1304 Additional lemmas and tactics
Definitions 458 Definition of the type system
Infrastructure 1152 Common lemmas
Soundness 633 Soundness proof
Rename 985 Renaming and inversion lemmas
Eval 2935 Stack-based evaluation
Unify 1832 Unification
Inference 3159 Type inference
Domain 1085 Constraint domain specific proofs
Unify wf 1827 Unification using dependent measure
Inference wf 3443 Inference using dependent measure

which results in much extended statements to handle admissible substitutions. Even in
the absence of structural polymorphism, just handling equi-recursive types makes type
inference more complex, and we are aware of no proof of principality including them.
It might be interesting to compare these different proofs of W in more detail, as the first
two use de Bruijn indices [6,13], the latter nominal datatypes [19], and ours cofinite
quantification. However, as Urban and Nipkow already observed, while there are clear
differences between the different approaches, in the case of type inference lots of low-
level handling of type variables has to be done, and as a result clever encodings do not
seem to be that helpful.

More generally, all the litterature concerning the PoplMark challenge [2] can be
seen as relevant here, at least for the type soundness part. In particular, one could argue
that structural polymorphism being related to structural subtyping, challenges 1B and
2B (transitivity of subtyping with records, and type safety with records and pattern
matching) should be relevant. However, in the case of structural polymorphism, the
presence of recursive types requires the use of a graph structure to represent types,
which does not seem to be necessary for those challenges, where trees are sufficient.
We believe that this changes the complexity of the proof.

9 Conclusion

We have reached our first goal, providing a fully certified type checker and interpreter.
We show the size and contents of the various components of the proof in table 1. While
this is a good start, it currently handles only a very small subset of Objective Caml. The
next goal is of course to add new features. A natural next target would be the addition
of side-effects, with the relaxed value restriction. Note that since the value restriction
relies on subtyping, it would be natural to also add type constructors, with variance
annotations, at this point. Considering the difficulties we have met up to now, we do not
expect it to be an easy task.



A Certified Implementation of ML with Structural Polymorphism 375

Acknowledgments. I wish to thank the anonymous reviewers for their detailed and
helpful comments.

References
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Abstract. We consider programming language aspects of algorithms that operate
on data too large to fit into memory. In previous work we have introduced IntML,
a functional programming language with primitives that support the implemen-
tation of such algorithms. We have shown that IntML can express all LOGSPACE

functions but have left open the question how easy it is in practice to program
typical LOGSPACE algorithms in IntML. In this paper we develop algorithms for
IntML type inference. We show that with type inference one can handle programs
that could not be reasonably manipulated by hand. We do so by implementing in
IntML a typical LOGSPACE algorithm, a test for acyclicity of undirected graphs.
Thus we show that with type inference IntML can express typical algorithmic
patterns of LOGSPACE easily and in a natural way.

The study of algorithms operating on data too large to fit into memory has a long tradi-
tion in complexity theory; it comprises in particular the complexity classes LOGSPACE

and NLOGSPACE of algorithms with logarithmic space usage. By comparison, questions
about the programming language aspects of these classes have received little study.
What is a good way of programming LOGSPACE algorithms in, say, a functional lan-
guage? How should one represent values that do not fit in memory and that can only
be accessed piece by piece from some external store, such as the input and output of a
LOGSPACE function?

To approach such questions, we have recently introduced the functional program-
ming language IntML with support for working with externally stored data [6]. As a
first test of the expressive power of IntML, we have shown that each LOGSPACE-function
can be expressed in IntML. However, since this result is obtained by encoding Turing
Machines, it is not very informative about whether or not it is possible to program
such functions easily and in a natural way. In this paper we ask how easy it is to ex-
press well-known algorithms with logarithmic space usage in IntML. We take a typical
LOGSPACE-algorithm, Cook & McKenzie’s test for acyclicity in undirected graphs [5],
and show that it can be programmed in IntML in a natural way.

The main contribution of this paper is the development of type inference algorithms
for IntML, which make programming such typical LOGSPACE-algorithms in IntML prac-
tical. Type inference is particularly important, as the IntML type system allows one to

� The author is partially supported by PRIN project “CONCERTO” and FIRB grant
RBIN04M8S8, “Intern. Inst. for Applicable Math.”

�� Part of this work was carried out while the author was supported by the Institute of Advanced
Studies at the University of Bologna.

K. Ueda (Ed.): APLAS 2010, LNCS 6461, pp. 376–391, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Type Inference for Sublinear Space Functional Programming 377

read off bounds on the space-usage of programs directly from a typing derivation, which
means that writing out all type information fully will soon become unmanageable. In
this paper we show that much of this information can be reconstructed automatically
using a type inference algorithm. While type inference has been shown to be possible
for languages capturing PTIME [2,4], in the context of languages for sublinear space the
possibility of type inference has not been investigated.

1 Programming with Bidirectional Data Flow

The definition of IntML can be summarised as follows: start with a standard functional
programming language and extend it with primitives for writing programs with bidirec-
tional data flow. Bidirectional data flow is an important property of computation with
external data that may not fit into memory. An input that is too large to be stored can-
not be read all at once; it can only be queried piece-by-piece during the course of the
computation. Thus, information flows not just from the input to a program but in the
form of queries also in the opposite direction. We believe that providing a good account
for this kind of bidirectional data flow should be a central goal in the construction of
programming languages for computation with external data.

The construction of IntML starts with a very simple language having just polynomial
types α, 1, A + A and A × A. It has the usual terms for these types and also a loop
construct for possibly nonterminating iteration. More details are not needed for now (but
they appear below). Richer languages are possible, but this one is suitable for capturing
LOGSPACE. We consider this language as a model of computation with unidirectional
data flow. A term c:A � f : B represents a function from values of type A to values of
type B, which can be computed by substituting an input for c and subsequent reduction.

Suppose now that there is some externally stored data that we can query piece-by-
piece. Its interface is given by a pair of types (X−, X+). The type X− consists of the
queries that may be sent to the datum and the type X+ encodes possible answers. For
example, to represent binary words that can be queried character-by-character, one may
take X− to be a type that can represent the position of characters in the word and one
may take X+ to be a type that can encode the characters themselves. We may take X+

to be 1 + 1 and it is reasonable to use a binary encoding for the character positions,
i.e. take X− = (1 + 1)× · · · × (1 + 1) (k times). With this interface we can represent
words of length up to 2k, so we can note here already that the size of the values of
type X− and X+ is logarithmic in the length of the words that can be represented.

A program with bidirectional data flow can now be considered as a message passing
node with a number of input and output wires, e.g. Fig. 1. Each wire has a direction and
is labelled with a pair of types X = (X−, X+). The intention is that values of type X+

can flow as messages in the direction of the wire, and values of type X− can flow in
the opposite direction, see Fig. 2. Message passing nodes are stateless and may react to
messages arriving (one at a time) at one of the wires connected to them. When a message
arrives, the node uses it as input in order to compute an output message that it may then
pass along one of the wires connected to it. We emphasise that wires are bidirectional
and that messages can be passed in both directions on all wires. The direction of the
wire merely determines which type of message can be passed in each direction. It would
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Fig. 3. A circuit

make no difference if we reversed an edge labelled with Z = (Z−, Z+) and changed
the label to Z∗ = (Z+, Z−).

Several such message passing nodes can be combined easily, simply by connecting
matching wires to form message passing circuits. For example, in the example circuit in
Fig. 3, a value of type U− may be passed to h against the direction of the output wire.
With this input, the node h may then perhaps decide to pass a value of type V + along
the wire to g or to return a value of type X− to the environment. It may also decide not
to do anything, in which case the whole computation will be blocked. Also, message
passing inside the network may go on indefinitely in an infinite loop.

We have found that this way of modelling bidirectional computation by message
passing nodes is useful for constructing programs that access externally stored data by
means of message passing. This model accounts for sublinear space computation, as the
accessed data may be much larger than the messages used to access it.

For the definition of IntML it is important to notice that the message passing cir-
cuits can be implemented in the simple functional language that we started with. The
node f shown in Fig. 1 can be implemented by a term that takes as input a value of
type Z− + (X+ + Y +) and that gives as output a value of type Z+ + (X− + Y −).
If a message z of type Z− arrives at the node, we give inl(z) as an input to this term
and evaluate the result. If the result is inr(inl(x)), say, then we pass on x along the
edge labelled with X . It is not hard to see, even with minimal assumptions about
the language, that if all the nodes in a circuit can be implemented thus, then so can
the whole circuit. For instance, the circuit in Fig. 3 can be implemented by a term
c : U− + X+ + Y + + Z+ � u : U+ + X− + Y − + Z− that takes as input a mes-
sage that may arrive at one of the ports of the circuit and that returns the message that
will come out of the circuit. Thus, we may think of the circuits as a tool for writing
programs with bidirectional data flow in the simple programming language. However,
writing such programs for circuits can be quite awkward. Try, for example, to write out
a program (in OCaml or Haskell, say) for the circuit in Fig. 3 from given programs
for g, h and k.

IntML provides programming language primitives for a more convenient construction
and manipulation of such circuits. These primitives are not just a textual representation
of circuits; they take the form of well-established programming language constructs
like pairs and functions. The new primitives are a conservative extension of the original
language; they can only be used to program circuits that could have been programmed
directly as well.
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Σ, c:A � c : A Σ � minA : A
Σ � f : A

Σ � succA(f) : A
Σ � f : A Σ � g : A
Σ � eqA(f, g) : 1 + 1

Σ � ∗ : 1
Σ � f : A Σ � g : B

Σ � 〈f, g〉 : A×B

Σ � f : A×B

Σ � fst(f) : A
Σ � f : A×B

Σ � snd(g) : B

Σ � f : A
Σ � inl(f) : A+B

Σ � f : A+B Σ, c:A � g : C Σ, d:B � h : C
Σ � case f of inl(c) ⇒ g | inr(d) ⇒ h : C

Σ � f : B
Σ � inr(f) : A+B

Σ, c:A � f : A+B Σ � g : A
Σ � loop(c. f)(g) : B

Σ | − � t : [A]
Σ � unbox(t) : A

Fig. 4. Working Class Typing Rules

2 IntML

IntML has two classes of terms and types, one corresponding to the functional program-
ming language that we start with and one for working with circuits over this language.
We call the former the working class and the latter the upper class. This terminology
reflects that all computation will be done by working class terms. Upper class terms
merely represent message passing circuits; the actual message passing will be done by
the working class terms implementing the circuits.

For completeness we include a definition of the working class calculus. Its types are

A ::= α | 1 | A + A | A×A

and the typing rules are given in Fig. 4. This language is a fairly standard call-by-
value language. For convenience we include constants minA, succA and eqA for any
type, including types with variables. These constants provide a total ordering on any
type generically. For example, min1+1 is inl(∗) and its successor is inr(∗). The constant
loop is a simple way of including iteration in the language. The intended operational
semantics is loop(c.f)(v) −→ case f [v/c] of inl(d) ⇒ loop(c.f)(d) | inr(d) ⇒ d.

The upper class part of IntML is a calculus of circuits over working class terms.
Upper class terms denote circuits and the types denote the labels of the wires going in
and coming out of such circuits.

The upper class types in IntML are formed by the following grammar

X ::= β | [A] | X ⊗X | A ·X � X

in which A ranges over working class types. The type [A] is intended to denote a wire
with [A]− = 1 and [A]+ = A. It represents an interface of a thunk: we may send
the unique element of 1 as a signal to start some computation, whose result of type A
we expect to arrive from the same wire. A thunk node [f ], as shown below, can be
implemented by a working class term c:1 � f : A. The type X ⊗ Y represents a bundle
of a wire of type X and a wire of type Y . Such a bundle can be implemented as a single
wire with (X ⊗ Y )− = X− + Y − and (X ⊗ Y )+ = X+ + Y +. It is straightforward
to implement message passing nodes for the packing and unpacking of such bundles:
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⊗I

X ⊗ Y

YX

⊗E

X ⊗ Y

YX

[f ]

[A]

The type A ·X � Y , in which A is a working class type, represents a function space.
One should read A·X as an A-fold copy of X , one copy for each value of type A. Thus,
the type A · X � Y denotes functions from X to Y , in which the argument can be
used A-many times. We use a type A instead of natural numbers or polynomials, since
we usually want to use working class values to address the particular copies of X and it
would be awkward to have to encode and decode them as numbers in the language. We
call A the index type of the function.

In terms of circuit wires, the type A ·X � Y is implemented by (A ·X � Y )− =
A×X++Y − and (A·X � Y )+ = A×X−+Y +. This definition captures functions in
a way familiar from game semantics, see e.g. [1]. When one asks a function for its result
(sends a query in Y −), it may come back with an answer (a message in Y +) or with a
request for its argument (a message in X−). The argument circuit may send its answer
(of type X+) along the same channel as the original question. The A-fold replication
of the argument is implemented by adding to the message a component A × − that
indicates the copy that we are communicating with.

The terms of the upper class calculus represent circuits. The typing sequents have
the form

Σ | x1 : A1·X1, . . . , xn : An·Xn � t : Y ,

where Σ is a working class context. In this sequent each upper class variable xi is
assigned an upper class type Xi and appears with a multiplicity given by an index
type Ai, which is a working class type. The term t in this sequent represents a circuit
with one outgoing wire labelled Y and with n incoming wires labelled with A1 · X1,
. . . , An ·Xn, where Ai ·Xi = (Ai ×X−

i , Ai ×X+
i ). This circuit is implemented by a

working class program that may refer to the variables from Σ.
The upper class calculus appears in Fig. 5. In these rules we write A · Γ for the

context obtained by replacing each declaration x : B·X in Γ with x : (A×B)·X .
The upper class terms represent a number of constructions on circuits. For example,

the term 〈s, t〉 in rule (⊗I) corresponds to taking the two circuits for s and t and joining
their output wires with the node ⊗I shown above.

Note that all rules are additive in the context Σ, so that in particular the variables
from this context can be used more than once. That this is very useful can be seen in
the examples in Sect. 3, where working-class variables are often used more than once.
The only upper class rule that modifies the context Σ is ([ ]E). Informally the let-term
in this rule first requests the output from the circuit for s. Upon receipt of this value (of
type A), it then binds c to this value and requests the value of circuit t.

The structural rule (STRUCT) has a side condition A 	 B, which informally states
that any value of type A can be encoded as a value of type B. The rule is sound when-
ever A is a retract of B, which means that there are working class terms c:A � f : B
and d:B � g : A such that for any closed value v:A, the term g[f [v/c]/d] reduces to v.
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(VAR)
Σ | Γ, x : 1·X � x : X

Σ | Γ, x :A·X � s : Y
(STRUCT) A 	 B

Σ | Γ, x :B·X � s : Y

Σ | Γ � s : Y
(WEAK)

Σ | Γ, x :A·X � s : Y
Σ | Γ, x :A·X, y :B·Y, Δ � s : Z

(EXCH)
Σ | Γ, y :B·Y, x :A·X, Δ � s : Z

Σ | Γ � s : X Σ | Δ � t : Y
(⊗I)

Σ | Γ, Δ � 〈s, t〉 : X ⊗ Y

Σ | Γ � s : X ⊗ Y Σ | Δ, x :A·X, y :A·Y � t : Z
(⊗E)

Σ | Δ, A · Γ � let s be 〈x, y〉 in t : Z

Σ | Γ, x :A·X � s : Y
(�I)

Σ | Γ � λx. s : A ·X � Y

Σ | Γ � s : A ·X � Y Σ | Δ � t : X
(�E)

Σ | Γ, A ·Δ � s t : Y

Σ | Γ � s : X Σ | Δ, x :A·X, y :B·X � t : Y
(CONTR)

Σ | Δ, (A+B) · Γ � copy s as x, y in t : Y

Σ � f : A+B Σ, c:A | Γ � s : X Σ, d:B | Γ � t : X
(CASE)

Σ | Γ � case f of inl(c) ⇒ s | inr(d) ⇒ t : X

Σ � f : A
([ ]I)

Σ | − � [f ] : [A]
Σ | Γ � s : [A] Σ, c:A | Δ � t : [B]

([ ]E)
Σ | Γ, A ·Δ � let s be [c] in t : [B]

Σ, c:X− � f : X+

(HACK)
X 	 Y,
X and Y contain no upper class type variablesΣ | − � hackX(c.f) : Y

Fig. 5. Upper Class Typing Rules

Here we choose for 	 the following syntactic approximation of retraction. Let struc-
tural congruence∼= be the smallest congruence on working class types that satisfies:

A× 1 ∼= A 1×A ∼= A (U)

A× (B + C) ∼= A×B + A× C (B + C)×A ∼= B ×A + C ×A (D)

Let≤ be the the least reflexive, transitive relation that satisfies A ≤ A+B, B ≤ A+B,
A ≤ A × B and B ≤ A × B, and that is compatible with all type operations, in the
sense that A ≤ B implies C[A/α] ≤ C[B/α] for all C. We then define

A 	 B ⇐⇒ ∃C. A ≤ C ∼= B .

We remark that A 	 B is also equivalent to ∃C, D. A ∼= C ≤ D ∼= B and moreover
that 	 is transitive. It can also be shown that A 	 B and B 	 A imply A ∼= B.

We include the rule (STRUCT) to make index types more flexible. The unit laws (U)
allow us to give the composition λx. f (g x) of two upper class functions f : 1 ·X � Y
and g : 1 · Y � Z the type 1 ·X � Z . Otherwise this term could only be given type
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(1× 1) ·X � Z. Distributivity (D) is useful to type the terms s (copy x as x1, x2 in t)
and copy x as x1, x2 in (s t) in the same context. Without distributivity we only have:

Σ | Γ, x : (A× (C + D))·X � s (copy x as x1, x2 in t) : Z

Σ | Γ, x : (A× C + A×D)·X � copy x as x1, x2 in (s t) : Z

Finally, the inequalities ≤ are often useful in conjunction with rule (⊗E). The right
premise of (⊗E) demands that the index types of x and y are the same and the inequal-
ities can be used to satisfy that demand.

The upper class rules are completed by the rule (HACK). With this rule a programmer
can implement message passing nodes directly by providing a working class term. This
rule can be used to define constants of complex types that would otherwise not be
definable. We like to think of (HACK) as an analogue of inline assembly in C.

An important use of (HACK) is for the definition of an iteration combinator [6]:

loop : α · (γ · [α] � [α + β]) � [α] � [β]

Informally, the first argument of loop is the step function and the second argument is the
initial value. The return value of the step function is either the final result (of type β) or
the value for the next application of the step function: loop s t = [w] if s t = [inr(w)]
and loop s t = loop s [w] if s t = [inl(w)]. To make loops easier to read, we use
return(w) and continue(w) as abbreviations for inr(w) and inl(w) respectively.

We formulate the rule (HACK) so that the type of hackX(c.f) is closed under struc-
tural manipulation analogous to rule (STRUCT). We may extend structural congruence
to upper class types by defining 	 to be the least reflexive relation satisfying:

(X 	 Z) ∧ (Y 	 U) =⇒ (X ⊗ Y ) 	 (Z ⊗ U)
(B 	 A) ∧ (Z 	 X) ∧ (Y 	 U) =⇒ (A ·X � Y ) 	 (B · Z � U)

Without terms of the form hackX(c.f), the type system has the property that Σ | Γ �
t : X and X 	 Y implies Σ | Γ � t : Y . A derivation of Σ | Γ � t : X can be turned
into one of Σ | Γ � t : Y by inserting applications of rule (STRUCT). To maintain this
typing property in the presence of hack-terms, we allow hackX(c.f) to have any type Y
with X 	 Y .

For details about the translation of upper class terms to circuits we refer to [6]. For
the practical use of the upper class language, it is not important to know the tech-
nical details of the translation. The upper class terms may be understood in terms
of a simple operational semantics with reductions such as (λx. s) t −→ s[t/x] and
(let [v] be [c] t) −→ t[v/c] and the translation to circuits is a sound (and space effi-
cient!) implementation of this operational semantics [6].

Nevertheless, we should outline how the translation to circuits can be used to obtain
space bounds for IntML programs. An upper class IntML-term is compiled to a circuit
in which each wire is annotated with a pair of working class types. The working class
types that thus appear in the compiled circuits can be read-off from a typing derivation
of the term. Now, in the evaluation of a circuit, at any time one needs to store only the
message that is just being passed along some edge together with its position. Hence,
the space needed to evaluate a circuit depends only on the size of the circuit and the
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maximum size of a message that can be passed along one of its edges. The size of the
circuit is constant and a bound on the size of messages can be found simply by looking
at the types that are written on the various wires. Due to the simplicity of the working
class calculus, it is quite easy to give bounds on the size of values of given working
class types. In this way, we obtain useful bounds on the space usage of IntML programs
simply by looking at the types that appear in the circuits of upper class programs.

3 Application: Graph Algorithms

To illustrate that algorithms with external data can be expressed quite naturally in IntML

and to show how interesting space bounds can be read off from a typing derivation,
we present an implementation of a classic LOGSPACE graph algorithm in IntML. We
implement the test of acyclicity in undirected graphs due to Cook & McKenzie [5]. Of
course, IntML is LOGSPACE-complete [6], so we already know that a program for this
problem can be written in IntML, just as in any other LOGSPACE-complete language.
The particular implementation in this section shows that the known algorithm can be
programmed in IntML in a fairly natural way, which does not follow from LOGSPACE-
completeness. The example also provides good motivation for studying type inference.

In the implementation of graph algorithms we use a higher-order representation of
graphs, where a graph is given by two predicates on a carrier type. The first predicate
is unary and tells which elements of the carrier represent graph nodes; the second pred-
icate is binary and encodes the edge predicate. In IntML such a pair of predicates can
be represented by the upper class type below. Therein, α is the carrier and β and γ are
parameters (which we will usually elide) and the type 2 = 1 + 1 represents booleans.

Graphβ,γ(α) = (β · [α] � [2])⊗ (γ · [α× α] � [2])

Since in IntML each working class type comes with a total ordering, we do not need to
choose up front a type for α and can just use the total ordering on this type variable α.

Leaving α to be a type variable is important also in order to handle input graphs of
arbitrary size. Suppose we have a program of polymorphic type A · Graph(α) � [2]
and we have a (large, externally stored) graph of size n that we would like to give as
input to that program. The graph may be given in any reasonable encoding, e.g. by a
textual encoding of adjacency list on a tape as for Turing Machines. To evaluate the
program with this graph as input we choose for α a type N large enough to encode all
the nodes of the graph. The interface between the program and the graph is then given
in terms of the messages that are being passed along the edge with label (A[N/α]) ·
Graph(N). To start the evaluation of the program, we send it the request for its result
value of type [2]. Now, the program may reply with a request to the graph of type
((A[N/α]) · Graph(N))−. In this event we interpret the request on the particular input
graph, pack up the answer as a value of type ((A[N/α]) · Graph(N))+ and pass it back
to the program. We continue thus until the program returns its final answer of type [2].

The choice of graph representation is not only quite natural, it also allows us to obtain
logarithmic space bounds easily [6]. If for α we choose the type 2 × · · · × 2 (k times),
then Graph(α) can represent graphs with up to 2k nodes. On the other hand, the values
of type Graph(α)− and Graph(α)+ have size O(k), as is easily seen directly.
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The algorithm of Cook & McKenzie for checking acyclicity of undirected graphs can
be explained using the notion of a right-hand walk. A right-hand walk is like a walk in
a labyrinth where one always keeps his right hand on the wall. One imagines the graph
edges to be corridors and the nodes to be junctions. The edges connected to each node
are ordered as if the node were a junction of the arriving corridors. Cook & McKenzie’s
observation then is that an undirected graph is acyclic if and only if any right-hand walk
will return to its starting point by traversing the edge over which it has left this point
in the opposite direction. This observation leads to a LOGSPACE algorithm, since this
property can be checked by following right-hand walks, and for this one needs to keep
in memory just a few graph nodes.

To present an implementation of this algorithm in IntML, we introduce a few nota-
tional abbreviations. First, when programming in IntML it is usually not necessary to
think about the index types. We will therefore hide them and write just X → Y instead
of A ·X � Y , with the understanding that A is still there, it is just not shown.

For accessing the node and edge predicates of a given graph we use functions node =
λgraph. let graph be 〈n, e〉 in n and egde = λgraph. let graph be 〈n, e〉 in e. We also
write src and dst as abbreviations for fst and snd when they are used on pairs in α × α
that represent edges.

We use 2 as a type of boolean values and define true = inl(∗) and false = inr(∗).
Upper class case distinction if : [2] → X → X → X can for arbitrary X be defined by
λb. λx. λy. let b be [c] in case c of inl(t) ⇒ x | inr(f) ⇒ y. We also use a similarly
defined function and : [2] → [2] → [2].

With these definitions, we can implement an algorithm for checking acyclicity. In
order to implement right-hand walks, we first need a function

nextEdgeα : Graph(α) → [α× α] → [α× α]

that takes an edge 〈s, d〉 and returns the next edge 〈s, e〉 emanating from the same
source. It does so by repeatedly applying succα to the second component of the pair,
wrapping around to minα if the maximum element is reached, until an edge is found.
Recall that all working class types come with a total ordering.

We can then write a function checkpathα, which follows a right-hand-rule walk start-
ing from some given edge and checks if this walk returns to its origin by walking the
given edge in the opposite direction.

checkpathα : Graph(α) → [α× α] → [2] =
λgraph. λinputedge. copy graph as graph1, graph2 in

let inputedge be [e] in

if (edge graph1 [e])
(loop (λw. let w be [p] in

if [eqα(dst p, src e)]
[return(eqα(src p, dst e))]
(let nextEdgeα graph2 [〈dst p, src p〉]

be [d] in [continue(d)])) [e])
[true]
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Now, writing a function checkcycleα for testing acyclicity of undirected graphs it a
simple matter of applying checkpathα to all edges in the graph and combining the results
using and. We can do this by using a combinator foldβ , which is such that foldβ f y
computes f xn (. . . (f x1 (f x0 y))), where x0 = minβ and xi+1 = succβ(xi) and xn

is the maximum element of β, i.e. the element with xn = succβ(xn). The combinator
foldβ is not hard to define, see [6].

checkcycleα : Graph(α) → [2] =
λgraph. copy graph as graph1, graph2 in

foldα×α (λvertexpair. λacyclic.

let vertexpair be [e] in

and acyclic

(if (edge graph1 [e])
(checkpathα graph2 [e])
[true]))

[true]

Above we have hidden the index types in the type of checkcycleα. Fully spelt out,
this function may be given the type

A ·
(
(β · [α] � [2])⊗ (γ · [α× α] � [2])

)
� [2],

where A is the working class type (α × α × 2 × (α × α × 2) × (α × α × 2) + α ×
α× 2× (α× α× 2)× (α × α× (2× (2 × ((α× α + α× α× (2× (α × α× (α×
α × (2 × (α × α × (α × α × (α × α))))))))))))). The program may therefore use
A-many copies of the input graph, one for each value of type A. The type variables β
and γ indicate that the program does not impose constraints on how often the node- and
edge-predicates may use their argument. However, without loss of generality β and γ
could be instantiated to 1, since by the rule ([−]-E) there is no need to use arguments
of thunk-type more than once.

The index type A may look complicated, but we did not have to consider it when
writing the function above. It was computed by a type inference algorithm only after
the program was already written.

The type A tells us something about the space usage of the program. Whenever the
program sends a request to the graph, such as whether a pair of type α × α is an edge,
it encodes its internal state as a value of type A, so that it can resume work when an
answer arrives. Examining A, we see that storing one of its elements needs about as
much space to store 20 elements of type α, which here represent graph nodes.

By considering all the edges in the circuit for checkcycleα in this way, we can read off
from the circuit how many graph nodes this function needs to store and thus obtain an
upper bound on its space usage. In this example, our prototype implementation obtains
a space bound of 20x + 1460, where x is an upper bound on the size of the values in α.
In other words, the program needs to store 20 nodes and it needs some constant space
of size 1460. Here, we use the standard size of values, e.g. |〈f, g〉| = 1 + |f | + |g|
and |inl(f)| = 1 + |f |. For a given input graph with n nodes, we can take α to be
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2 × · · · × 2 ($log n% times), so that simply by looking at the types of the circuits we
obtain a logarithmic space bound for the overall program.

4 Type Inference

The graph algorithm example shows that it is not hard to understand which type an
upper class term has, so long as we hide the index types. We have found that the types
are not generally a hindrance when writing upper class programs. However, the example
also shows that the index types quickly become too complicated to be handled by hand.
The practicability of IntML depends on useful type inference algorithms. In this section
we analyse the problem of type inference and develop the simple algorithm that we
have used to infer the types of the above example.

Type inference is essential to making IntML programming practical: IntML programs
have minimal type annotations, but once they have been typed, space bounds for their
evaluation can be read off from the types, as explained above for graph algorithms.
Thus, type inference amounts to inference of space bounds and we cannot expect a
programmer to calculate such bounds by hand.

4.1 Constraint-Based Type Inference

As is standard, see e.g. [9], we separate the type inference algorithms into two parts:
finding a set of constraints that needs to be solved in order for a term to be typed and
solving the constraint set.

Definition 1. A constraint is either an equality X = Y between upper class types or
an equality A = B, a structural inequality A 	 B or a congruence A ∼= B between
working class types.

Although A ∼= B can be expressed by {A 	 B, B 	 A}, we include ∼=-constraints for
technical convenience.

For a type substitution σ, i.e. a finite mapping from upper class type variables to
upper class types and working class type variables to working class types, and a set
of constraints C, we write σ |= C if applying σ to all the types in C makes all the
constraints therein true (in the evident sense). We say that σ is a solution of C.

We define two partial type inference functions T (Σ, f) and T (Σ | Γ, t). The first
returns a pair (A, C) of a working-class type and a set of constraints, and the second
returns a pair (X, C) of an upper class type and a set of constraints. These functions
compute principal types in the following sense:

Proposition 1 (Soundness)

1. If T (Σ, f) = (A, C) and σ |= C then Σσ � fσ : Aσ.
2. If T (Σ | Γ, t) = (X, C) and σ |= C then Σσ | Γσ � tσ : Xσ.

Proposition 2 (Completeness)

1. If Σσ � fσ : Aσ then there exist B and C with T (Σ, f) = (B, C) such that σ can
be extended to a type substitution ρ satisfying Aσ = Bρ and ρ |= C.
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Γ contains x :A·X
T (Σ | Γ, x) = (X, {1 	 A})

T (Σ | (Γ, x :α·β), s) = (X,C) α, β fresh

T (Σ | Γ, λx. s) = (α · β � X,C)

T (Σ | Γ |s, s) = (Y1, C1)

Γ |t = (x1 :A1·X1, . . . , xn :An·Xn)

T (Σ | (x1 :α1·X1, . . . , xn :αn·Xn), t) = (Y2, C2)

�α, β, γ, δ fresh

FV (s) ∩ FV (t) = ∅
C = C1 ∪ C2

T (Σ | Γ, s t) = (β,C ∪ {Y1 = δ · γ � β, Y2 = γ} ∪ {δ × αi 	 Ai | 1 ≤ i ≤ n}))

Γ |s = (x1 :A1·X1, . . . , xn :An·Xn)

T (Σ | (x1 :α1·X1, . . . , xn :αn·Xn), s) = (Y1, C1)

T (Σ | (Γ |t, x : δ·γ, x :β·γ), t) = (Y2, C2)

�α, β, γ, δ fresh

FV (s) ∩ FV (t) = ∅
C = C1 ∪ C2

T (Σ | Γ, copy s as x, y in t) = (Y2, C ∪ {Y1 = γ} ∪ {(δ + β) × αi 	 Ai | 1 ≤ i ≤ n})

T (Σ, f) = (A,C)
T (Σ | Γ, [f ]) = ([A], C)

T (Σ | Γ |s, s) = (Y1, C1)

Γ |t = (x1 :A1·X1, . . . , xn :An·Xn)

T ((Σ, c:β) | (x1 :α1·X1, . . . , xn :αn·Xn), t) = (Y2, C2)

�α, β fresh

FV (s) ∩ FV (t) = ∅
C = C1 ∪ C2

T (Σ | Γ, let s be [c] in t) = (Y2, C ∪ {Y1 = [β]} ∪ {β × αi 	 Ai | 1 ≤ i ≤ n})

Fig. 6. Upper Class Type Inference Rules (selection)

2. If Σσ | Γσ � tσ : Xσ then there exist Y and C with T (Σ | Γ, t) = (Y, C) such
that σ can be extended to a type substitution ρ satisfying Xσ = Y ρ and ρ |= C.

In Fig. 6 we give a selection of typical rules for T (Σ | Γ, t). These rules formalise a
definition of T (Σ | Γ, t) by structural recursion over t. In the rules we write Γ |s for
the subcontext of Γ , in which only the free (term)-variables that appear freely in s are
being declared. It is easy to see that (up to the choice of fresh names) these rules define
a partial function, which is easy to compute. We omit standard rules for T (Σ, f).

Propositions 1 and 2 can then be proved in a standard way by induction on the deriva-
tions of T (Σ, f) = (A, C) and T (Σ | Γ, t) = (X, C) respectively.

4.2 Solving Constraints

Having reduced type inference to constraint solving, it remains to study how constraint
sets can be solved.

Reducing Constraints to E-Unification. First we note that because equality up to
congruence A ∼= B is a constraint, constraint solving must be at least as hard as E-
unification, the problem of unification up to some given equational theory. E-unification
is a well-studied problem and there are results for a wide range of equational theories,
see [3,8] for an overview.
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Constraint solving can be reduced to E-unification. Equality constraints can be re-
moved up front by standard unification, leaving us with constraints of the form A ∼= B
and A 	 B. To eliminate the latter, we recall that A 	 B is equivalent to ∃C, D. A ∼=
C ≤ D ∼= B. This suggests a simple nondeterministic algorithm for reducing con-
straint solving to E-unification. For any structural constraint A 	 B, we guess type C
and D with C ≤ D and replace the A 	 B by A ∼= C and D ∼= B. Now we can use
E-unification to solve the remaining constraints.

The efficiency of this approach depends on the maximum size that needs to be taken
into account for C and D as well as the efficiency of an E-unification procedure. Con-
straints like C ≤ D can be verified easily, e.g. using dynamic programming.

For IntML-type inference, we need to solve E-unification problems for the theory
of the unit laws (U) and the distributivity laws (D), recall their definition in Sec. 2.
Unfortunately, to the best of our knowledge, the problem of E-unification for this theory
is still open. Moreover, even if we could find an algorithm for this problem, it would
most likely be unpractical for IntML type inference. At the very least it would be NP-
hard [10], although it might be much worse.

That constraint solving is hard does not immediately imply the same for IntML type
inference. One could hope that in type inference only certain kinds of constraint sets
can arise, which are easier to solve. However, this is not the case:

Proposition 3. Solving the constraint sets that arise in IntML type inference is at least
as hard as equational unification for (U)+(D).

Avoiding Distributivity. One choice in the definition of IntML that makes type check-
ing hard is the inclusion of distributivity laws in rule (STRUCT), since in conjunction
with the unit laws this appears to make equational unification hard. This leads us to re-
considering the definition of structural congruence. Our motivation for introducing the
distributivity laws was to be able to commute copy with other operators without having
to change index types in the context, as explained in Sec. 2.

With a reasonable restriction to the IntML type system, we can obtain a similar prop-
erty without the distributivity laws. We may weaken the contraction rule as follows:

Σ | Γ � s : X Σ | Δ, x : A·X, y : A·X � t : Y
(CONTR2)

Σ | Δ, (2 ×A) · Γ � copy s as x, y in t : Y

This rule is derivable with the distributivity and unit laws, but (CONTR) is not derivable
from (CONTR2). With (CONTR2) the two problematic copy-terms can be typed as:

Σ | Γ, x : A× (2×B)·X � s (copy x as x1, x2 in t) : Y

Σ | Γ, x : 2× (A×B)·X � copy x as x1, x2 in (s t) : Y

Therefore, with the weaker version of contraction, we may use the associativity (A) and
commutativity (C) laws for × to achieve the same effect as with the distributivity laws
for the general contraction rule. The working class type system remains unchanged.

Since E-unification up to the theory (A)+(C)+(U) is known to be NP-complete [8],
we obtain the following hardness result.
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Proposition 4. Type inference for the variant of IntML obtained by replacing (CONTR)
with (CONTR2) and by letting ∼= be defined by (A)+(C)+(U) is NP-hard.

We do not know if type inference for this variant of IntML is also in NP; it is unclear
how to reduce 	-constraints to ∼=-constraints in general.

We side-step the difficulty of reducing 	 to ∼= by noticing that the relation 	 is
larger than it needs to be in order to obtain the properties discussed in Sec. 2, which
were the original reasons for introducing 	 into the type system. In the IntML-variant
with (CONTR2), it would suffice to be able to treat index types of the form A1×· · ·×An

as if they were multisets {A1, . . . , An}. The relation 	 does more than that.
For any working class type A define the multiset M(A) represented by it inductively

as follows: M(1) = ∅, M(α) = {α}, M(A + B) = {A + B} and M(A × B) =
M(A) ∪M(B).

We define 	M such that A 	M B holds if and only if M(A) is a sub-multiset
of M(B) in the sense that there exists a multiset E with M(B) = M(A)∪E. Syntactic
congruence is then defined by A ∼=M B if and only if M(A) = M(B).

With this definition of 	M and ∼=M , the variant of IntML with 	M instead of 	
is not only well-behaved, its type inference constraints can also easily be reduced to
E-unification up to (A)+(C)+(U). First, any constraint A 	M B may equivalently be
replaced by A×α ∼=M B for some fresh variable α. Then, solving A ∼=M B amounts to
unifying A and B up to (A)+(C)+(U), where each type of the form C +D is considered
a constant. Thus, type inference is equally hard as unification of terms over (×, 1) up
to (A)+(C)+(U) and infinitely many constants, an NP-complete problem [3]:

Proposition 5. Type inference for the variant of IntML obtained by replacing (CONTR)
with (CONTR2) and by using 	M in rule (STRUCT) is NP-complete.

Quick and Simple Constraint Solving. For use in practice, an NP-complete algorithm
for type inference may still be too complex, with regard to running time and to imple-
mentation effort. Here we present a quick and simple algorithm for type inference that
we have found to be practically useful (it handles all the applications we know), even
though it does not handle the full the type system or find most general types.

For this algorithm we take the congruence∼= to be syntactic equality, i.e. we consider
ordinary unification instead of E-unification. In this case the relations≤ and 	 coincide,
so we will write A ≤ B for A 	 B in the rest of this section.

The restriction to syntactic equality alone is not enough to make type inference easy.
We must also restrict the context Γ in the type inference problem T (Σ | Γ, t). We
will consider here contexts that do not impose any constraints on index types. Such a
restriction not only reflects the typical use of type inference in practice, where one does
not have information about index types and would like to have them inferred. It also
makes type inference significantly easier. If we do not impose such a restriction then
type inference remains NP-hard, even when ∼= is syntactic equality.

Proposition 6. Even if we let the congruence relation ∼= be syntactic equality, it is NP-
hard to decide if a constraint set returned by the type inference function has a solution.

We now identify a class of type inference problems T (Σ | Γ, t) that are useful in
practice and that can be solved easily. We obtain this class by restricting Γ to be an



390 U. Dal Lago and U. Schöpp

unconstrained context, which does not impose restrictions on index types, and by re-
stricting t to contain only instances of hackX(c.f) where the index types in positive
positions in X are all type variables.

We next formulate the restrictions precisely. To allow for a compact formulation
of freshness assumptions, we choose a partition of the set of type variables into two
(arbitrary) disjoint infinite subsets Var and IdxVar .

A positively (resp. negatively) unconstrained type is an upper class type in which all
index types in positive (resp. negative) position are variables from IdxVar , and vari-
ables from IdxVar may only appear as index types. Formally, the positively and nega-
tively unconstrained types are defined by the grammar below, in which A ranges over
working class types with variables in Var , α ranges over Var and β over IdxVar .

positively unconstrained: P ::= α | [A] | P ⊗ P | A ·N � P

negatively unconstrained: N ::= α | [A] | N ⊗N | β · P � N

An unconstrained type is a type that is both positively and negatively unconstrained,
i.e. in which all index types are variables from IdxVar .

A unconstrained context is a context of the form x1 : α1·X1, . . . , xn : αn·Xn, where
all αi are variables from IdxVar and all Xi are unconstrained types.

We can now formulate conditions that make type inference easy.

Proposition 7. Let∼= be syntactic equality. Let Σ be a working class context containing
only type variables from Var , let Γ be an unconstrained context, and let t be a term that
may contain hackX(c.f) as a subterm only if X is a positively unconstrained type. For
such Σ, Γ and t we can compute in polynomial time either a type X and a substitution σ
with Σσ | Γσ � tσ : Xσ; or reject if no such X and σ exist.

We believe that this proposition captures a practically useful class of type inference
problems. It contains all the practical examples we know, including the graph algorithm
example from the previous section. Restricting to unconstrained contexts seems reason-
able, since the index types capture information about the space usage of programs but
are not important for understanding the meaning of programs. One would like to not
worry about the index types and leave it to the type inference to fill them in.

For the proof of Prop. 7 we may use the following simple algorithm:

1. Compute T (Σ | Γ, t), which gives a pair (X, C).
2. Compute the most general unifier σ of all equations in C (ignoring the inequations)

and set I = {Aσ ≤ Bσ | (A ≤ B) ∈ C}. Reject if the equations are not unifiable.
3. While possible, choose from I two inequalities A ≤ C and B ≤ C with the same

upper bound C and replace them with A + B ≤ C.
4. Compute the most general unifier τ of the set {A = B | (A ≤ B) ∈ I}.
5. Return X and σ; τ as the final result.

We cannot hope for this algorithm to compute most general solutions, simply because
the constraint set C may be infinitary. This means that in general there does not exist
a finite set S of substitutions that solves a given constraint set C in the sense that any
solution of C is an instance of one of the substitutions in S.
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Proposition 8. If we let the congruence relation ∼= be syntactic equality, then the con-
straint solving problem is infinitary.

Although the simple algorithm above does not in general find most general types, prac-
tical experiments indicate that it finds useful typings. In our experience with a prototype
implementation, the fact that the algorithm does not compute most general types means
that the index types are a little larger than they need to be. The effect of this is an in-
creased space usage of IntML-programs, since the index types appear in the types of
messages that are being stored during the computation. In examples like those from
Sec. 3, the space usage nevertheless quite reasonable.

5 Conclusion

The usefulness of a type system for a programming language depends on how well it
strikes a balances between the benefits gained by types and the overhead of dealing with
types when writing programs. Here we have shown that the overhead of the IntML type
system can be reduced substantially by means of type inference. With its index types,
the IntML type system is precise enough to guarantee space bounds on IntML-programs,
and so it is not a surprise that full type inference turns out to be quite hard. Nevertheless,
we were able to identify a class of type inference instances that can be solved quickly
and easily and that still appears to be useful in practice. To substantiate this claim, we
have expressed a typical LOGSPACE-graph algorithm in IntML. With type inference it
could be programmed with surprisingly little overhead due to the type system.
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Abstract. We study liveness and safety in the context of CCS extended
with communicating transactions, a construct we recently proposed to
model automatic error recovery in distributed systems. We show that
fair-testing and may-testing capture the right notions of liveness and
safety in this setting, and argue that must-testing imposes too strong
a requirement in the presence of transactions. We develop a sound and
complete theory of fair-testing in terms of CCS-like tree failures and show
that, compared to CCS, communicating transactions provide increased
distinguishing power to the observer. We also show that weak bisimilarity
is a sound, though incomplete, proof technique for both may- and fair-
testing. To the best of our knowledge this is the first semantic treatment
of liveness in the presence of transactions. We exhibit the usefulness of
our theory by proving illuminating liveness laws and simple but non-
trivial examples.

1 Introduction

The correctness of distributed systems can to a large extent be specified in terms
of its safety and liveness properties. In the presence of some form of built-in fault
tolerance, such as support for transactions, the verification of safety properties
is simplified but the verification of liveness properties becomes more subtle.

In previous work [22] we defined the novel language construct of communicat-
ing transactions, which drops the isolation requirement of classical transactions
and models automatic error recovery of distributed communicating systems. We
gave a high-level semantics of communicating transactions in a calculus called
TransCCS, an extension of CCS, and developed a compositional theory for this
calculus based on may-testing preorder.

May-testing can be used to reason about safety [14]. The intuition of safety
is that “nothing bad will happen” [18]. A safety property can be formulated as
a safety test T � which detects and reports the bad behaviour on a channel �.
We say that a process P passes a safety test if (P | T �) cannot report on �.
An implementation I then preserves the safety properties of a specification S if
I passes all the safety tests of S (i.e. S 
∼may

I).
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Let us briefly consider in a value-passing version of TransCCS a simple dis-
tributed communication system Sys that implements the specification

Specrec,del = rec(x).del 〈x〉.�

The implementation uses restarting communicating transactions. A restarting
transaction is written as μX. �P �k X� and executes its default P until P com-
mits the transaction by executing a co k or the runtime non-deterministically
aborts the transaction. P can communicate with the environment of the trans-
action, but these effects are rolled back automatically in the case of an abort.

Sysrec,del = νq.νs.
(
Srcrec,s,q | Trgdel,s,q | s〈0〉

)
Srcrec,s,q = μX �s(x).if x = 0 then rec(y).(q〈y〉 | s〈1〉 | co k) else� �k X�
Trgdel,s,q = μX

�
s(x).if x = 1 then q(y).(del 〈y〉 | s〈0〉 | co l) else� �l X

�
The system uses a one-place queue, with Src storing the value received on rec
as an output on q, if the current size of the queue, stored in s, is 0; Trg conveys
the value from q to del , if the queue is not empty. Both Src and Trg rely on an
abort to undo the input on s if their condition is not satisfied.

As discussed, Sys is a safe implementation of Spec if Spec 
∼may
Sys . This

would guarantee that an observer testing for a violation of the safety property
that the received and delivered values match,

T � = rec〈v〉.del (x).if x = v then � else�

can not report � with Sys because it can not report this with Spec.
The intuition of liveness is that “something good will eventually happen”. As

for safety properties, a liveness property can be formulated as a liveness test T ω

which detects and reports the good behaviour on a channel ω. For example,

T ω = ω + rec〈v〉.del (x).ω

tests for the property that if an input is received on rec we eventually get an
output on del (ω appears twice in the test because the implication can be satisfied
in two ways). The definition of passing a liveness test however is delicate.

One possibility, corresponding to must-testing [11], is to require that every
computation of (Sys | T ω) reports success. A restarting transaction can however
be aborted by the runtime system infinitely often, even though at every point
in the computation the transaction can follow a path to a commit. Under such,
admittedly pathological, schedules no restarting transaction can guarantee live-
ness: in (Sys | T ω), after the value is received on rec, infinite aborts of Trg will
prevent the value from being delivered on del , and the test will not succeed along
this schedule. Indeed, under this scheme there would be no difference between
Sys and the process μX.τ.X , as neither can guarantee any liveness properties.

A more useful definition assumes a notion of fairness, and considers only
schedules where every transaction that gets a chance to commit infinitely often
will eventually do so [8]. We say that a process P passes a liveness test T ω if
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(P | T ω) should report success on ω: (P | T ω) will eventually ring under a fair
scheduler. This definition of passing a liveness test leads to fair-testing [21].

With that definition we can show that Sys is a live implementation of Spec:
Sys passes all the liveness tests of Spec (i.e. Spec �∼fair

Sys). This is a non-trivial
property of Sys which implies, among others, that relying on the abort of the
transactions to restore the output on s when the conditions of Src and Trg are
not satisfied does not introduce any deadlocks.

We make the following contributions in this paper:

1. We study liveness and safety in a concurrent language with communicat-
ing transactions and show that these notions are captured respectively by
fair-testing and may-testing. To the best of our knowledge this is the first
semantic treatment of liveness in the presence of transactions.

2. We give a characterization of liveness preservation in TransCCS in terms of
so-called clean tree failures. This builds on previous results about clean traces
(traces that contain only actions that will be committed), as well as newly
proved properties of communicating transactions and the identification of
characteristic TransCCS liveness tests.

3. We show that transactions add observational power to the observer with
respect to liveness preservation and explain this through examples.

4. We define a variation on weak bisimilarity over clean traces and show that
this is a sound but incomplete proof technique for safety and liveness.

5. We exhibit the usefulness of our theory by illuminating laws and examples.

2 Syntax and Reduction Semantics of TransCCS

The syntax and the reduction semantics of TransCCS are shown in Fig. 2; as
usual a ranges over a set of actions Act on which is defined a bijective function
( · ) : Act → Act , used to formalize communication, and μ ranges over Actτ , the
set Act augmented with a new action τ , used to represent internal activity. We
use the standard abbreviations for CCS terms.

TransCCS extends CCS with the constructs �P �k Q� which denotes a trans-
action, and co k which commits transaction k. The transaction runs its default
P , which replaces the transaction in the case of a commit. The alternative Q re-
places the transaction in the case of a non-deterministic abort. The occurrences
of k in P are bound by the transaction; after a commit any remaining free co k
behave as the nil process. Fig. 1 shows some simple examples of transactions.
We will refer to these examples throughout the paper.

Sab = μX. �a.b.co k �k X�
I1 = �a.b.co k �k �� I3 = μX. �a.b.co k + err �k X�
I2 = μX. �a.b.� �k X� I4 = μX. �a.b.co k | err �k X�

Fig. 1. Example Transactions
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Syntax

P,Q ::=
∑
μi.Pi prefix | �P �k Q� transaction (k bound in P )

| (P | Q) parallel | co k commit
| νa.P hiding | μX.P recursion

Reduction Rules (→) is the least relation that satisfies
R-Comm

ai = aj∑
i∈I

ai.Pi |
∑
j∈J

aj .Qj → Pi | Qj

R-Emb
k /∈ R

�P �k Q� | R→ �P | R �k Q | R�

R-Tau
μi = τ∑

i∈I

μi.Pi → Pi

R-Co

�P | co k �k Q� → P

R-Ab

�P �k Q� → Q

R-Rec

μX.P → P [X := μX.P ]

R-Str
P ≡ P ′ → Q′ ≡ Q

P → Q

and is closed under the contexts C ::= [] | (C | Q) | �C �k Q� | νa.C.
Structural equivalence (≡) contains the usual rules for parallel and hiding.

Fig. 2. Language Definition

A transaction can communicate with a process R in its environment by em-
bedding R in its default and alternative (R-Emb). This simple but important
operation allows the default of the transaction to interact with R.

Example 1. Consider transaction Sab in parallel with the test T ω
ab = a.b.ω. After

an embedding step, the transaction can communicate with the process; both will
be restored to their original state in the case of an abort. The possible traces
are summarized in the following graph.

Sab | a.b.ω
R-Rec

�� �a.b.co k �k Sab� | a.b.ω
R-Emb��R-Ab

��

�
a.b.co k | a.b.ω �k Sab | a.b.ω

�
R-Comm��

R-Ab

��

�
b.co k | b.ω �k Sab | a.b.ω

�
R-Comm��

R-Ab

�
co k | ω �k Sab | a.b.ω

� R-Co ��R-Ab ω &'

3 Liveness

We now formalize liveness as described in the introduction. A process P (typi-
cally the parallel composition of a test and a process-under-test) can output on
a channel ω, written P⇓ω if it can reach a top-level ω after some internal steps:
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Definition 1. P⇓ω iff there exist P ′ such that P →∗ ω | P ′.

We are interested only in top-level occurrences of ω, because an output that is
still inside a transaction may still be undone.

A process P passes a liveness test T ω if it cannot reach a state from which
the test cannot detect the good behaviour.

Definition 2 (Passing Liveness Tests). A process P passes a liveness test
T ω, written P shd T ω, when ∀R. if P | T ω →∗ R then R ⇓ω.

Example 2. Transaction Sab passes the liveness test T ω
ab = a.b.ω even though it

may keep aborting. Sab would not pass this test with the stronger definition of
liveness (must-testing [11]), which would not ignore this pathological schedule.

The reduction graph of Sab | T ω
ab was shown in Ex. 1. Although there are

infinite aborting paths, at no point does the system reach a state in which
communication on a and b has become impossible. This is not true for I1:

I1 | Tω
ab

R-Ab �� � | Tω
ab �⇓ω

Transaction I2 also fails the liveness test since the transaction never commits
and the output on ω by the test therefore never becomes top-level. '�
Given a specification S, an implementation I preserves the liveness properties
of S if every successful liveness test of S is also a successful liveness test of I.
This naturally leads us to the standard definition of fair-testing [21] which here
we call liveness preservation.

Definition 3 (Liveness Preservation). I preserves the liveness properties of
S, written S �∼live

I, when for all liveness tests T ω, if S shd T ω then I shd T ω.
We write S �live I if S �∼live

I and I �∼live
S.

Example 3. We saw in Ex. 2 that Sab passes the test T ω
ab and that neither I1 nor

I2 does. It follows immediately that Sab ��∼live
I1 and Sab ��∼live

I2. '�
Example 4. We will formally prove Sab

�∼live
I3 after we develop our theory of

liveness. Here we note only that I3 shd T ω
ab, which is easy to see from the reduction

graph of I3 | T ω
ab (which is almost identical to the graph shown in Ex. 1). '�

Example 5 (Transactional Liveness Tests). Another interesting case are the pro-
cesses P = a.(b.c + b.d) and Q = a.b.c + a.b.d. In TransCCS (unlike in CCS) we
have that P ��∼live

Q. To see that consider the transactional liveness test

T ω = ω + a.
(
μX. �b.c.(ω | co k) �k X�)

We can see that P passes this test by the reduction graph of P | T ω
(a,bd):(

a.(b.c+ b.d)
)
|
(
ω + a.

(
μX. �b.c.(ω | co k) �k X�

))
R-Comm��

(b.c+ b.d) | μX. �b.c.(ω | co k) �k X�
R-Rec

�� (b.c+ b.d) | �b.c.(ω | co k) �k T
ω�

R-Ab

��

�b.c.(ω | co k) | (b.c+ b.d) �k T
ω | (b.c+ b.d)���

R-Emb

R-Comm2��

R-Ab

		

�ω | co k �k T
ω | (b.c+ b.d)� R-Co ��R-Ab ω
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The restarting transaction makes it possible to restore the choice b.c+ b.d if the
wrong branch of P communicates on b. However, Q does not pass this test:

(a.b.c+ a.b.d) | ω + a.
(
μX. �b.c.(ω | co k) �k X�

)
R-Comm−−−−→ b.d | μX. �b.c.(ω | co k) �k X� �⇓ω &'

Proposition 1. If co k /∈ R then

�P + R �k Q� �live �P �k Q� μX. �P + R �k X� �live μX. �P �k X�
�P �k Q� 
∼live

τ.P + τ.Q μX. �P | co k �k X� �live P

In TransCCS, unlike CCS, the point of internal choice is important with respect
to liveness preservation.

Proposition 2 (Choice). τ.a.P + τ.a.Q �∼live
a.P + a.Q �live a.(τ.P + τ.Q).

To see that τ.a.P +τ.a.Q �
∼live
a.P +a.Q consider the processes R1 = τ.a.c+τ.a.d

and R2 = a.c + a.d and the liveness test T ω = μX. �a.c.(ω | co k �k X�). R2
passes this test but R1 does not (cf. Ex. 5).

Proposition 3 (Compositionality Laws). If P �∼live
P ′ and Q �∼live

Q′ then:

a.P �∼live
a.P ′ P | Q �∼live

P ′ | Q′ a.P + b.Q �∼live
a.P ′ + b.Q′

These laws can be proven using our characterization of liveness preservation in
Sect. 6. As in CCS [21], however, recursive contexts do not preserve (�∼live

), as
illustrated in the next example.

Example 6 (Fault tolerance). Consider the processes P = a + τ and Q = �. P
can be thought of as a process with a fault: it may do an a action or it may get
stuck. Any liveness test that P passes can therefore not rely on the a action,
and hence we have P �∼live

Q. However, consider the context

C = νa.μX. �a.(b | co k) | [ ] �k X�
This context adds fault tolerance: if P faults in C[P ], the transaction can abort
and try again, so that C[P ] will pass the liveness test T ω

b = b.ω. However, Q
never does the a action, so the addition of fault tolerance makes no difference;
in particular, C[Q] does not pass T ω

b . Hence, C[P ] ��∼live
C[Q]. '�

4 Safety

As discussion in the introduction, a safety test T � is a process that tests and
reports “bad” behaviour on a channel �; a process P passes the test if P | T �

cannot output on �:

Definition 4 (Passing Safety Tests). A process P passes a safety test T �,
written P cannotT �, when P | T � �⇓�.
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Given a specification S, an implementation I preserves the liveness properties
of S if every successful safety test of S is also a successful safety test of I. This
leads us to the definition of safety preservation, which amounts to the inverse of
the standard definition of may-testing [11].

Definition 5 (Safety Preservation). I preserves the safety properties of S,
and we write S �∼safe

I, if for every safety test T � if S cannotT � then I cannot
T �.

Example 7. Consider the safety test T �
ab = err .� | a.b. Transaction I3 passes

this test, because there is no possibility of reaching a top-level output on �:

I3 | err.� | a.b �a.b.co k + err �k I3� | err .� | a.b
R-Emb

��
R-Ab



 ��
R-Rec

�
(a.b.co k + err) | err .� | a.b �k I3 | T�

ab

�
R-Comm �������

R-Comm2�������R-Ab

		

�
� | a.b �k I3 | T�

ab

�
R-Ab �co k | err .� �k I3 | T�

ab�
R-Comm��

R-Ab err .�

At no point do we have a top-level output on �, so that I3 passes this test. In
fact, we have that Sab

�∼safe
I3 (we prove this formally in Ex. 12). I4 however is

not a safe implementation of Sab because it does not pass this test:

I4 | a.b.err .� R-Rec−−−→ R-Emb−−−→ �
(a.b.co k | err) | a.b.err .� �k I4 | T�

ab

�
R-Comm3−−−−−→ �co k | � �k I4 | T�

ab� R-Co−−→ � &'

As we will prove by Thm. 3 in Sect. 6, liveness preservation implies safety preser-
vation. Thus, to show that an implementation I preserves both the liveness and
safety properties of a specification S, it suffices to show that S �∼live

I.

5 Clean Traces and Safety

We give an overview of the definitions and results we reuse from previous work
[22,23]. These involve the definition of a Labelled Transition System (LTS) that
describes the traces of processes, the definition of clean traces over this LTS, and
a rephrasing of results about may-testing in terms of safety.

5.1 Labelled Transition System

The LTS (Fig(s). 3 and 4) is defined over an extension called TransCCS◦, ranged
over by P ,Q. Transactions in TransCCS◦ are distributed as a primary transac-
tion, denoted by �P �k Q�, and zero or more secondary transactions, denoted by�P �k Q�◦ which correspond to embedded processes. This simulates embedding
in the reduction semantics while keeping processes separate, supporting compo-
sitional reasoning. Internal actions in the LTS correspond to reduction steps up
to this distribution of transactions; this is made precise in [22].
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L-Act∑
μi.Pi

μi−→ Pi

L-Par

P k̃(μ)−−−→ P ′

P | Q k̃(μ)−−−→ P ′ | Q

L-Trans

P l̃(μ)−−→ P ′

�P �k Q� k(l̃(μ))−−−−→ �P ′ �k Q�

L-Rec

μX.P τ−→ P [X := μX. 〈P〉]

L-Hide
P μ−→ P ′ a /∈ μ
νa.P μ−→ νa.P ′

L-Comm

P k̃(a)−−−→ P ′ Q k̃(a)−−−→ Q′

P | Q k̃(τ)−−−→ P ′ | Q′

(eliding L-Trans for secondary transactions)

Fig. 3. LTS: Standard Actions

As an example, consider the trace starting with I3 | a.b.ω:
μX. �a.b.co k + err.� �k X� | a.b.ω

τ−→ emb k−−−→ �a.b.co k + err.� �k I3� | �a.b.ω �k a.b.ω
�◦

k(τ)−−−→ k(τ)−−−→ �b.co k �k I3� | �b.ω �k a.b.ω
�◦ co k−−→ ω

Notice how (after unfolding the transaction once) the test is embedded and be-
comes a secondary transaction

�
a.b.ω �k a.b.ω

�◦
. Actions in the LTS are marked

with the transactions that execute them (rule L-Trans); a primary and sec-
ondary k-transaction can communicate and therefore the action k(a) of the pri-
mary k-transaction is matched by the action k(a) of the secondary k-transaction
(L-Comm), resulting in a k(τ) action.

Consider also the trace starting with I3 | T �
ab (cf. Ex. 7):

μX. �a.b.co k + err.� �k X� | err .� | a.b

τ−→ emb k−−−→ �a.b.co k + err.� �k I3� | �err .� | a.b �k err .� | a.b
�◦

k(τ)−−−→ �� �k I3� | �� | a.b �k err .� | a.b
�◦

At this point, the transaction can only abort:

ab k−−→ μX. �a.b.co k + err.� �k X� | err .� | a.b

As in the reduction semantics, no trace of I3 | T �
ab leads to a top-level �.

5.2 Clean Traces

There is an essential difference between the two traces of the previous section:

I3 | T ω
ab

τ,emb k,k(τ),k(τ),co k−−−−−−−−−−−−−−→ ω I3 | T �
err

τ,emb k,k(τ),ab k−−−−−−−−−−→ I3 | T �
err

In the first, every action performed inside a transaction is eventually committed;
in the second trace, however, the embedding step into the k transaction and the
internal step within the k transaction are subsequently aborted and undone.
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B-CoPri
P ≡ P ′ | co k

�P �k Q� co k−−→ P ′
B-CoSec

�P �k Q�◦ co k−−→ P
B-Ab

�P �k Q� ab k−−→ Q

B-Emb

P emb k−−−→ �P �k 〈P〉�◦
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μX.P
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β−→
∑
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co k
β−→ co k

B-Hide

P β−→ P ′

νa.P β−→ νa.P ′

(eliding B-Ab and B-Trans for secondary transactions)

Fig. 4. LTS: Broadcast actions

P k̃(μ)−−−→ P ′′ t−→Δ P ′ k̃ ⊆ Δ

P μ,t−−→Δ P ′ C-Act
P ab k−−→ P ′′ t−→Δ P ′ k /∈ Δ

P t−→Δ P ′ C-Ab

P emb k−−−→ P ′′ t−→Δ P ′ k ∈ Δ
P t−→Δ P ′ C-Emb

P co Δ−−−→ P ′

P ε−→Δ P ′ C-Co

Fig. 5. Clean Traces

Clean traces are CCS traces that correspond to raw traces in the LTS where
all transactions performing actions are eventually committed at the end of the
trace. Formally, clean traces are specified by the relation P t−→Δ P ′, given in
Fig. 5. The parameter Δ is used to record which transactions will commit, and
hence which actions are allowed inside the trace.

Example 8. The clean trace I3 | T ω
ab

τ,τ,τ−−−→{k} ω corresponds to the first trace

above. In isolation, I3 has the clean traces I3
ε−→∅ I3 and I3

ab−→{k} �, but not
the singleton trace a: we need k ∈ Δ to do the a action inside the transaction,
but we cannot derive I3

a−→{k} since the transaction cannot yet commit having
done only the a action. Clean traces are hence not prefix closed. '�

Usually, we care only that there is some Δ for which P t−→Δ P ′ can be derived,
which motivates the following definition:

Definition 6. We write P t−→CL iff t is a clean trace of P, that is ∃Δ,P ′ such
that P t−→Δ P ′. We write P t=⇒CL to denote that t is a weak clean trace of P.

5.3 Characterization of Safety as Clean Trace Inclusion

Safety preservation is characterized by clean trace inclusion [22].
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Definition 7 (Language). The language of a process P is the set of weak clean
traces it can do:

L(P) def= {t | P t=⇒CL}

Theorem 1 (Safety preservation). P �∼safe
Q iff L(P ) ⊇ L(Q).

6 Characterization of Liveness as Clean Tree Failures

We now proceed with the main technical result of this paper: a sound and com-
plete characterization of liveness preservation in terms of clean tree failures. In
this section we present the model, give a number of examples, and state the main
results. The proof of soundness and completeness is summarized in Sect. 8.

The intuition of our model is that P has a clean tree failure (t,Ref ) iff P can
do a clean trace to P ′ and P ′ cannot do any of the clean traces in the set Ref .

Definition 8 (Tree failures). Tree failures are defined as

F(P) def= {(t,Ref ) | ∃P ′. P t=⇒CL P ′ and L(P ′) ∩ Ref = ∅}

Theorem 2 (Liveness Preservation). P �∼live
Q iff F(P ) ⊇ F(Q).

Example 9. Consider the transactions Sab and I3 from Fig. 1. The only clean
traces either of these processes can do is the empty trace ε and the trace ab;
moreover, for either process, the only clean trace that they cannot refuse after
the empty trace is the trace ab, and both can refuse all clean traces after the
trace ab. Hence, the set of failures for both processes is

{(ε,Ref ) | ab /∈ Ref } ∪ {(ab,Ref ) | any Ref }

so that by Thm. 2 we have Sab �live I3. '�

Our model is simpler than the model of liveness preservation in CCS [21]. This is
due to the existence of transactional tests that do not allow processes to deadlock
while they communicate with these tests, as shown in Ex. 5.

As in CCS, liveness preservation implies safety preservation.

Theorem 3 (Liveness implies safety). If P �∼live
Q then P �∼safe

Q.

Proof. By Thm. 1 it suffices to prove that if t is a clean trace of Q then it is a
clean trace of P . Let t be a clean trace of Q; then (t, ∅) ∈ F(Q) and by Thm. 2,
(t, ∅) ∈ F(P ). Thus t is a clean trace of P . '�

7 Canonical Tests

We identify a class of canonical liveness tests that encode sufficient power to
distinguish any processes P and Q for which P � �∼live

Q. We use these tests in
the definition of a restricted form of liveness preservation, which we will show
by Prop. 8 in the following section implies inverse failure inclusion. This result
is crucial to show completeness of our characterization, but also implies that
restricted liveness coincides with standard liveness.
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Definition 9 (T ω
Ref ). If Ref is a set of clean traces, we define the liveness test

T ω
Ref

def= μX.
�∑

t∈Ref τ.t.(co k | ω) �k X
�

Definition 10 (T ω
(t,Ref )). If t is a clean trace and Ref a set of clean traces, we

define the liveness test T ω
(t,Ref ) by induction on t:

T ω
(ε,Ref )

def= T ω
Ref T ω

(at,Ref )
def= ω + a.T ω

(t,Ref )

These tests are interesting because (as we will show in Sect. 8) a process P passes
the liveness test T ω

(t,Ref ) exactly if (t,Ref ) is not a failure of P . Note that P fails
the liveness test T ω

(t,Ref ) only if it can do a clean trace t and then refuse to do
all the traces of Ref .

Example 10. The liveness test T ω we considered in Ex. 5 is exactly the test
T ω

(a,{bc}). We saw that P = a.(b.c + b.d) passes this test, but Q = a.b.c + a.b.d

does not. Hence, (a, {bc}) is a failure of Q but not of P . '�

Definition 11 (Restricted Liveness Preservation (�̂∼live
))

P �̂∼live
Q

def= ∀t,Ref . if P shd T ω
(t,Ref ) then Q shd T ω

(t,Ref )

Theorem 4. (�∼live
) = (�̂∼live

).

Proof. Follows by Prop. 6 (soundness) and Prop. 8 in the following section. '�

8 Soundness and Completeness

We now outline the proof that the characterization of the fair-testing preorder
in terms of clean tree failures is sound and complete. This proof makes use of
the ability to zip and unzip clean traces, proved in [22,23], which means that
processes can communicate independently of their transaction structure.

Proposition 4 (Clean unzipping). If P | Q ε=⇒CL R then there exist t, P ′,

and Q′ such that P
t=⇒CL P ′ and Q

t=⇒CL Q′ and R is equal up to merging of
distributed transactions with P ′ | Q′.

Proposition 5 (Clean zipping). If P
t=⇒CL P ′ and Q

t=⇒CL Q′ then there ex-
ists an R such that P | Q ε=⇒CL R and R is equal up to merging of distributed
transactions with P ′ | Q′.

The following theorem is key in the proof of soundness and completeness, and
states that we can construct clean traces from raw traces:

Theorem 5 (Clean trace construction). If P ε=⇒R then there exists R′ such
that P ε=⇒CL R′ and
1. If R↓ω then R′↓ω (success is preserved)
2. If R�⇓ω then R′ �⇓ω (failure is preserved)

This theorem strengthens an earlier result [22], where we proved (1) but not (2);
the proof is however significantly different. Intuitively, the construction of the



Liveness of Communicating Transactions 403

clean trace postpones all commits to the end of the trace and aborts all actions
that are never committed in the raw trace.

Definition 12. Lω(P) def= {t | P t=⇒CL, ω /∈ t}

The proof of soundness is based on the construction of a clean trace from a raw
trace, and zipping and unzipping of clean traces.

Proposition 6 (Soundness). If F(P ) ⊇ F(Q) then P �∼live
Q.

Proof. Assume F(P ) ⊇ F(Q). We prove the contrapositive of P �∼live
Q: suppose

¬(Q shd T ) for some test T ; we have to show that ¬(P shdT ).
Since ¬(Q shd T ), there exists an R such that Q | T

ε=⇒ R�⇓ω. Hence by
Thm. 5, there exists R′ such that Q | T ε=⇒CL R′ �⇓ω. By Prop. 4, there exist

t,Q′, T ′ such that Q
t=⇒CL Q′ and T

t=⇒CL T ′, where R′ is equal to Q′ | T ′

up to distribution of transactions. Define Ref = {t′ | T ′ t′=⇒CL T ′′ | ω}. Then
L(Q′)∩Ref must be empty, because otherwise R′⇓ω by zipping the clean traces.
Hence (t,Ref ) ∈ F(Q) and therefore (t,Ref ) ∈ F(P). It follows that exists P ′

such that P
t=⇒CL P ′ and L(P ′)∩Ref = ∅. By Prop. 5, P | T t′=⇒CL P ′ | T ′ where

P ′ | T ′ �⇓ω since L(P ′) ∩Ref = ∅. Therefore ¬(P shdT ). '�

The proof of completeness makes essential use of the canonical tests (Sect. 7).

Lemma 1. Lω(TRef ) = Ref

Proof. By definition of Lω() and TRef . Note that Lω(TRef ) is not the prefix
closure of Ref because we used a transactional TRef . '�

Lemma 2. L(P) ∩ Ref = ∅ iff (P | TRef )�⇓ω.

Proof. (Only if) By contradiction: Assume (P | TRef )⇓ω, i.e. P | TRef
ε=⇒ R↓ω.

Then by Thm. 5 there exists R′ such that P | TRef
ε=⇒CL R′↓ω. We can therefore

apply Prop. 4 to get a clean trace t ∈ L(P) and t ∈ Lω(TRef ). Hence by Lem. 1
we must have t ∈ Ref , contradicting the assumption that L(P) ∩ Ref = ∅.

(If) By contradiction: Assume there exists t ∈ L(P)∩Ref . Then we can apply
Prop. 5 to get P | TRef

ε=⇒CL P ′↓ω contradicting (P | TRef )�⇓ω. '�

Lemma 3. Lω(T(t,Ref )) = {t1 | ∃t2. t = t1t2} ∪ {tt′ | t′ ∈ Lω(TRef )}

Proof. By definition of Lω() and T(t,Ref ). '�

A process fails a canonical liveness test iff it has the corresponding tree failure.

Proposition 7 (Tests and Failures). (t,Ref ) ∈ F(P ) iff ¬(P shd T(t,Ref )).

Proof. (Only if) Let (t,Ref ) ∈ F(P ), i.e. ∃P ′. P
t=⇒CL P ′ and L(P ′) ∩ Ref = ∅.

Clearly T(t,Ref )
t=⇒CL TRef so that, by Prop. 5, P | T(t,Ref )

ε=⇒CL R equal up to
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merging of transactions to P ′ | TRef . It follows from Lem. 2 that success is not
reachable from this state.

(If) Since ¬(P shd T(t,Ref )) it follows that ∃R. P | T(t,Ref )
ε=⇒ R�⇓ω. Then by

Thm. 5, ∃R′. P | T(t,Ref )
ε=⇒CL R′ �⇓ω. By Prop. 4, there exist t′,P ′, T ′ such that

P
t′=⇒CL P ′ and T(t,Ref )

t′=⇒CL T ′, and P ′ | T ′ �⇓ω. Thus, t′ ∈ L(P ) and by Lem. 3

t
′ ∈ Lω(T(t,Ref )) = {t1 | ∃t2. t = t1 t2} ∪ {t t2 | t2 ∈ Lω(TRef )}

We take cases on t
′ ∈ Lω(T(t,Ref )):

1. t
′ = tt2 for some t2 ∈ Lω(TRef ). Not possible, because then T ′ = ω↓ω.

2. t
′ = t1 for some t1t2 = t with t2 non-empty; again, not possible because then
T ′ = ω + T ′′↓ω.

3. t
′ = t. Then T ′ = TRef and by Lem. 2 L(P ′) ∩ Ref = ∅. Hence (t,Ref ) ∈
F(P). '�

Restricted liveness preservation implies inverse failure inclusion.

Proposition 8. If P �̂∼live
Q then F(P ) ⊇ F(Q).

Proof. Let (t,Ref ) ∈ F(Q). By Prop. 7 we have ¬(Q shd T(t,Ref )), therefore
¬(P shd T(t,Ref )) since P �∼live

Q, and finally (t,Ref ) ∈ F(P ) by Prop. 7. '�

Corollary 1 (Completeness). If P �∼live
Q then F(P ) ⊇ F(Q).

Proof. By the definitions of (�∼live
) and (�̂∼live

) and Prop. 8. '�

9 Weak Clean-Trace Bisimilarity

In this section we present a convenient coinductive proof technique for liveness
preservation, which is based on weak bisimilarity over clean traces. We show that
this technique is sound but not complete with respect to liveness preservation,
and use it to prove liveness and safety preservation.

Definition 13 (Weak Clean-Trace Bisimulation). Θ is a weak clean-trace
bisimulation if whenever (P ,Q) ∈ Θ the following two conditions are satisfied.

1. ∀t,P ′. P t=⇒CL P ′ we have ∃Q′ such that Q t=⇒CL Q′ and (P ′,Q′) ∈ Θ,
2. ∀t,Q′. Q t=⇒CL Q′ we have ∃P ′ such that P t=⇒CL P ′ and (P ′,Q′) ∈ Θ.

Weak clean-trace bisimilarity, denoted by ≈, is the largest weak clean-trace
bisimulation.

Weak clean-trace bisimilarity is sound with respect to both liveness and safety.

Theorem 6 (Soundness of (≈)). If P ≈ Q then P �live Q and P �safe Q.

Proof. Since ≈ is commutative, it suffices to prove that P �∼live
Q and hence by

Thm. 2 thatF(P) ⊇ F(Q). Let (t, S) ∈ F(Q), i.e.P t=⇒CL P ′ where L(P ′)∩S = ∅.
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Since P ≈ Q, ∃Q′ such that Q t=⇒CL Q′ where P ′ ≈ Q′. It remains to show that
L(Q′)∩S = ∅. We proceed by contradiction. Suppose that ∃t′ ∈ L(Q′)∩S. Then

∃Q′′ such that Q′ t′=⇒CL Q′′. But then since P ′ ≈ Q′, ∃P ′′ such that P ′ t′=⇒CL P ′′,
contradicting the assumption that L(P ′) ∩ S = ∅. '�
The following example shows that weak clean-trace bisimilarity is not complete
with respect to liveness and safety.

Example 11. Consider the processes P = a.(τ.b + τ.c) and Q = a.b + a.c. The
two processes are not bisimilar: P can do a clean trace P

a=⇒CL (τ.b + τ.c) and
Q can only follow it by Q

a=⇒CL b or Q
a=⇒CL c. Neither b nor c are bisimilar to

(τ.b + τ.c). It is not difficult to show, however, that P �live Q (and thus, by
Thm. 3, P �may Q) by observing that any tree failure (t, S) ∈ F(P ) is a tree
failure of Q and vice versa. '�
The next result simplifies reasoning about weak clean-trace bisimilarity by al-
lowing us to consider a single unfolding of recursive transactions.

Proposition 9. If �P �k �� ≈ �Q �k �� then μX. �P �k X� ≈ μX. �Q �k X�.
Proof. By enumeration of the clean traces of the restarting transactions, which
start with a number of aborts and continue with a clean trace of the non-
restarting transactions. '�
We use weak clean-trace bisimilarity to give simple coinductive proofs of liveness
and safety preservation for the examples of the introduction and Fig. 1.

Example 12. Recall once more transactions Sab and I3 (Fig. 1). We prove that
Sab �live I3 and Sab �may I3 by showing Sab ≈ I3. By Prop. 9 it suffices to show�a.b.co k �k �� ≈ �a.b.co k + err.� �k ��, which can be easily proved by showing
that the relation containing the two transactions and (�, �) is a bisimulation. '�
Example 13. We now turn our attention to the example of the introduction.
We show that the implementation Sys preserves both the liveness and safety
properties of the specification Spec. In fact, we prove the stronger results that
Spec �live Sys and Spec �safe Sys by showing that Spec ≈ Sys . Consider the rela-
tion Θ = {(Spec,Sys)}∪

{(
rec〈v〉, νq.νs.

(
Trgdel,s,q | q〈v〉 | s〈1〉

))
|∃v

}
∪{(�, �)}.

It is easy to verify that Θ is a weak clean-trace bisimulation. '�

10 Related Work

The study of safety and liveness in concurrent languages goes back thirty years
[18,19], but although there are many studies of (isolated) transactions in con-
current languages [1,2,3,4,5,6,9,12,15,17] none of them study liveness.

There is much less research on communicating transactions. We are aware
of only three other studies: Committed π [7], RCCS [10], and Transactors [13],
none of which discuss safety or liveness properties of transactions.

Most closely related is the Committed π calculus where, like in TransCCS,
transactions must be combined before they can communicate. However, they are
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merged rather than embedded: �P1 � Q1� | �P2 � Q2� → �P1 | P2 � Q1 | Q2�.
This leads to pessimistic rollback behaviour: when transactions communicate
and a failure happens, all transactions must be rolled back to their initial state.
Moreover, Committed π includes an explicit abort construct, which makes un-
committed actions observable [22]. For example, the transaction �a.� � �� can
be distinguished from � by �a.ab � ω�.

Reversible CCS extends CCS with reversible actions which can be rolled back
and irreversible actions which act as a commit. The most important difference
with TransCCS is that in RCCS a commit by a single transaction will cause the
commit of all transactions it has communicated with. For example, the RCCS
transaction �a.� �k �� can be distinguished from � by �a.(co l | ω) �l ��.

Finally, Transactors is an extension of the actors model with communicating
transactions. It is a much lower level language than TransCCS with a more
complicated semantics, but it is similar in intent: for instance, �a.� �k �� seems
indistinguishable from �, although in the absence of a behavioural theory for the
language this is difficult to show.

We studied liveness properties of communicating transactions under an as-
sumption of fairness, which must be guaranteed by potential implementations of
the language. There is some work that investigates the fairness guarantees that
can be offered by implementations of isolated transactions [16,20]; an extension
of those studies to communicating transactions would be worthwhile.

11 Conclusions

We studied liveness and safety in TransCCS; to the extent of our knowledge,
this is the first semantic study of liveness in the presence of transactions. We
showed that fair-testing and may-testing capture the right notions of liveness
and safety and gave numerous examples to build useful intuitions. We devel-
oped a sound and complete characterization of liveness preservation in terms of
clean tree failures, extending our earlier work on clean traces. This characteriza-
tion is simpler than the characterization of liveness preservation in CCS, made
possible by the additional distinguishing power added by transactions. We also
gave a coinductive proof technique for liveness preservation based on weak clean
trace bisimulation, which we proved to be sound but incomplete. We used the
characterization and the bisimulation in example proofs of liveness preservation.

Further study of weak bisimulation and other proof techniques is future work.
For instance, it is unclear at present whether bisimilarity preserves all contexts
and what its characterization is. We also plan to extend TransCCS to the π-
calculus. Finally, we intend to investigate the usefulness of the construct of com-
municating transactions in a more realistic programming language.
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Abstract. Semantic preorders between processes are usually applied in
practice to model approximation or implementation relationships. For
interactive models these preorders depend crucially on the observational
behaviours of processes as well as on the observing power of environ-
ments. The paper aims at a model independent observational theory of
the semantic preorders for interactive models. Depending on whether
environments change dynamically or not, two classes of model inde-
pendent preorders are formalized. These formalizations are intensively
studied in the framework of CCS. Operational characterizations of these
preorders are investigated, and the relationships between them are re-
vealed. Several new preorders for CCS are proposed along the way. Be-
havioural properties are discussed in a model independent manner as far
as possible.

1 Introduction

Observational theory is an old and fruitful area of fundamental research in pro-
cess calculi, which studies behavioural equivalences and preorders between pro-
cesses. The starting point is to give clear criteria when one process is a correct
implementation or an approximation of the other. It is realized from the very
beginning [5,15] that equivalences or preorders for processes ought to be ‘obser-
vational’ since it is the effect that processes place on environments that really
matter. However, one of the insights that has been gained in the past three
decades is that there does not really exist the canonical notion of ‘observable
behaviour’. Depending on different formalizations of observability, many differ-
ent notions of behavioural equivalences or preorders come out. The readers may
consult Van Glabbeek [17,18] for an overview.

A preorder and its inverse can be combined into an equivalence. Apart from
this, preorders on processes have significance of there own. In practice, to build a
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system, we have a specification, say P , which is described as a process in a certain
language. Then, this specification is usually implemented as a process, say Q,
in the same language. A question one may raise is whether the implementation
Q is favourable for the specification P . On such occasions, symmetry is less
important. The answer is to find a proper preorder and checking whether P is
less than Q.

Historically, there are two families of preorders which turn out to be very
successful under two different presumptions on the observation power of envi-
ronments. They are the testing preorders and the bisimulation equivalences.

In the philosophy of testing theory developed by De Nicola and Hennessy [11],
the behaviours of processes are investigated by a series of tests. The preorder
between two processes is formulated in terms of their capability to respond to
a test. The proposed implementation Q will be considered less than the given
specification P whenever Q has all the concerned capabilities that P has. Ac-
cording to two different meanings of ‘capability’, may-testing and must-testing
preorders are defined respectively. The presumption in the testing approach is
the ‘static’ environments, which means that a test is performed by a single tester
in an exclusive manner. Under this presumption, the only thing to concern is the
results of tests — success or failure. It does not matter what a process will turn
into after a test. Consequently, testing approach will not cope with dynamically
changed environments.

In ‘dynamic’ environments, a process could be subject to interference a po-
tentially unbounded number of observers in an interleaving manner. ‘Dynamic’
here means that the testers can be dynamically changed during a single test.
This scenario usually happens in distributed systems. In this situation, the ap-
propriate process preorders are bisimilarities [13,5,6,19], for the ‘bisimulation
property’ not only cares about testing results, but imposes additional restraints
to intermediate states as well. These additional restraints can be conceived as
the additional requirements whenever testers are changed. According to the phi-
losophy of bisimilarity, environments also have the power to exchange the roles
of processes for comparison. Such a strong assumption on the power of environ-
ments is sometimes considered a shortcoming of the bisimulation approach by
some researchers.

This paper is devoted to create a unified observational theory for interactive
models, highlighting approximation or implementation relationships, concen-
trated on two preassumptions about observing power of environments
mentioned above. Before further exploration, two beneficial questions ought to
be answered at first, from which some important notions are introduced which
will be crucial to the characterizations of preorders throughout this article.

The first question is the reasons behind the great success of the testing and the
bisimulation approaches. In the opinion of the author, there are two important
reasons. The first reason is that the preorders defined in these two approaches
support the way of comparing processes in a modular fashion. Intuitively, when-
ever Q is an approximation of P and they are treated as certain component
of an environment C[ ], a desired property is C[Q] being an approximation of
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C[P ]. This property is called extensionality. It turns out that testing preorders
and bisimilarities are all extensional preorders. The second reason, which is more
important, is that these preorders can be characterized without depending on the
features of special models such as the existence of labeled transition semantics.
Preorders with this property are called having model-independent characteriza-
tions. To clarify the precise meaning of ‘model-independent’ here, we have the
following basic requirements on every interaction models. Firstly, every models
are supposed to support computations and observations. The formers are formal-
ized via reductions or τ -transitions, while the latters are made only by interac-
tions, which are conducted via interfaces formalized as names. Secondly, in order
to support observation, the composition | and localization (a)( ) operations are
indispensable. Composition operation enables observations while localization op-
eration disables observations. Model-independent characterization is motivated
to give a profound understanding of observational preorders. With this crucial
property, some preorders can be immediately generalized to other interactive
models such as name-passing calculi (like π-calculus [7,8]), value-passing calculi
(like value-passing CCS [6]), and process-passing (or higher order) calculi (like
CHOCS [16], HOπ-calculus [14]).

Behavioural preorders reflect approximating or implementing relations, there-
fore some ‘capabilities’ need to be preserved by preorders. Depending on different
meanings of approximation or implementation, different notions of ‘capabilities’
should be concerned, which ultimately lead to different preorders. In this paper,
the definitions of preorders are based on preservations of ‘capabilities’, which
leads to the second question: how will ‘capabilities’ be chosen? We will take
the very simple answer: all involved capabilities must be composed from the
following four basic ones.

1. ♦-capability: possibly interacting with environment;
2. -capability: possibly not interacting with environment;
3. �-capability: impossibly interacting with environment;
4. �-capability: inevitably interacting with environment.

These four basic capabilities will prove powerful enough to produce the most sig-
nificant preorders. In fact, ♦-capability and �-capability are the simplified and
model-independent versions for may-testing and must-testing, while �-capability
and -capability are the negations. These four capabilities can be composed ar-
bitrarily to obtain totally 24=16 combinations. Following the idea of testing
approach, every combination of capabilities will lead to a preorder (not nec-
essarily different). Following the idea of bisimulation approach, however, all
these combinations appear redundant, since the bisimulation property covers all
four basic capabilities. However, there is another well-known preorder in litera-
tures which lies between bisimilarity and may-testing preorder named similarity,
which merely preserves ♦-capability. One can expect the existence of some other
simulation-like preorders which preserve more capabilities above.

In the present paper, a number of preorders will be formalized. These pre-
orders are defined and studied in a model-independent manner at first. Then
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the corresponding operational counterparts of all these preorders are investi-
gated in the framework of CCS [5,6]. The preorders for static environments
turn out to be variants of testing preorders. Amongst them, failure preorder
is redefined so as to cater for the model-independent counterpart, which have
more favourable properties. For dynamic environments, it becomes more inter-
esting that the traditional similarity can not be obtained, instead several new
simulation-like preorders are discovered during the exploration of operational
counterparts, especially t-conserving similarity and f-conserving similarity. The
separation results for all these preorders are established for CCS. Moreover, be-
havioural properties such as stuttering-property, X-property, and computation
property are redefined and studied for preorders. Unlike the case for equiva-
lences, stuttering-property and X-property for preorders stress different aspects
of process behaviours and they are not able to derive each other.

The rest of the paper is organized as follows. Section 2 lays down the pre-
requisites of CCS and basic notions for model-independent characterization.
Section 3 expounds model-independent characterization of preorders with their
behavioural properties and the operational definitions for CCS under the as-
sumption of static environments. Section 4 works in the same framework under
the assumption of dynamic environments. Section 5 is the conclusion.

2 Basic Definitions and Notations

2.1 CCS

We begin with the syntax and semantics of CCS. To describe the interactions
between systems, we need names. The set of the names N is ranged over by
a, b, c, d, e. The set of the names and the conames L = N ∪N is ranged over by
l and satisfies the identity a = a. The set of finite string of names and conames,
L∗, is ranged over by u, v, w, s, t, r, and satisfies the identity u · v = u · v. To
define the operational semantics, we need action labels. The set of the action
labels A = L ∪ {τ} is ranged by λ. To introduce infinite behaviours of systems,
we introduce the set C of constant processes which is ranged over by A, B, C.

The set P of CCS processes, ranged over by P, Q, R, M, N , is generated in-
ductively by the following grammar.

P ::= 0 | λ.P | P |P ′ | (a)P | P + P ′ | recCn{Ci
def= Pi}i∈I

We have left out the relabeling operation for two reasons. One interest in CCS is
that it is the core language such that the results obtained in CCS can be easily
transferred to other interactive models, such as π-calculus. For that purpose the
relabeling operation is not necessary. In additional, adding relabeling operator
would not make CCS more expressive if infinite behaviours of processes are
specified by constant definition, see [3] for more on expressiveness of CCS. The
binary choice P +P ′ will be used in its guarded form, meaning that both P and
P ′ are in prefix form. The guardedness guarantees the finite branching property.
A name a in localization form (a)P is local. A name is global if it is not local.
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Prefix
λ.E

λ−→ E
Localization

E
λ−→ E′ a does not appear in λ

(a)E λ−→ (a)E′

Choice
E

λ−→ E′

E + F
λ−→ E′

Composition
E

λ−→ E′

E |F λ−→ E′ |F
E

l−→ E′ F
l−→ F ′

E |F τ−→ E′ |F ′

Constant
Pn{(recCj{Ci

def= Pi}i∈I)/Cj}j∈I
λ−→ P ′

recCn{Ci
def= Pi}i∈I

λ−→ P ′

Fig. 1. The Semantics for CCS

The notation gn( ) (ln( )) stands for a function that returns the set of global
names (local names). In the form of constant definition recCn{Ci

def= Pi}i∈I ,
every constant process in Pi are required to be Cj for some j ∈ I.

The standard semantics of CCS is given by the labeled transition system
(P ,A,−→). The relation −→ ⊆ P ×A×P is the transition relation. The mem-
bership (P, λ, P ′) ∈ −→ is always indicated by P

λ−→ P ′. The relation −→ is
generated inductively by the rules defined in Fig. 1.

The weak transition =⇒ ⊆ P × A × P is defined as usual: P
λ=⇒ P ′ if

P
τ−→

∗ λ−→ τ−→
∗
P ′. In the following, both −→ and =⇒ are lifted as a subset of

P × A∗ × P . P
ε=⇒ P ′, namely P

τ−→
∗
P ′, is usually abbreviated as P =⇒ P ′.

The mapping ·̂ : A∗ → L∗ is defined by l̂ = l, τ̂ = ε, and û · v = û · v̂. We write
P

u=⇒ if P
u=⇒ P ′ for some P ′, and write P ⇓ if P

l=⇒ for some l.

2.2 Basic Notions for Model-Independent Characterization

In Section 1, it is suggested that a process preorder need to be extensional.

Definition 1 (extensionality). A binary relation R is extensional if both the
following two statements are valid:

– If MRN and PRQ then (M |P )R(N |Q);
– If PRQ then (a)PR(a)Q.

The first statement tells us that, if M is an approximation of N and P is an
approximation of Q, then the result of M observing P should be an approxima-
tion of the result of N observing Q. The second property confirms that, if P is
an approximation of Q, then the approximation relationship is preserved when
observation through some ports are prohibited.

Extensionality defined in Definition 1 is to some extent close to a notion called
pre-congruence in some literatures. We use extensionality to emphasize on the
aspects of observation or interaction, while pre-congruence stress the algebraic
aspects. The former is model-independent while the latter is model-dependent.
By the way, bisimilarity is extensional yet not a pre-congruence for CCS.
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Extensionality suggests that, approximation relationship will be preserved
when the related processes are put into a certain environment.

Definition 2 (environment). An environment C[ ] is either [ ], or (c)C′[ ],
or P |C′[ ], or C′[ ] |P , where c ∈ N , P ∈ P and C′[ ] is an environment.

Lemma 1. If R is reflexive and extensional, then C[P ]RC[Q] for every envi-
ronment C[ ] whenever PRQ.

As is discussed in Section 1, a process preorder may preserve several capabilities.
Four basic capabilities are formalized as follows.

Definition 3 (capabilities). Let P be a process.

1. P has ♦-capability if P ⇓.
2. P has -capability if for some P ′, P =⇒ P ′ and P ′ �⇓.
3. P has �-capability if P does not have ♦-capability.
4. P has �-capability if P does not have -capability.

The preservation of capabilities is defined automatically.

Definition 4 (capability-preservation). Let M ⊆ {♦, , �, �} be a set of
basic capabilities. A binary relation R is M -preserving if for every • ∈ M , Q
has •-capability whenever PRQ and P has •-capability.
R is M -equipollent if whenever PRQ, Q has •-capability if and only if P has

•-capability for every • ∈ M .

In views of Definition 3, � (or �) is called duality of ♦ (or ), and vice versa.
Let M ⊆ {♦, , �, �}. The duality of M , denoted MD, is the set of members
whose dualities are in M .

Some simple inferences following Definition 3 and Definition 4 are listed as
the following lemma.

Lemma 2. Let R be a binary relation. M ⊆ {♦, , �, �}.
1. R is M -preserving if and only if R−1 is MD-preserving.
2. R is M -equipollent (or equivalently MD-equipollent) if and only if R is both

M -preserving and MD-preserving.

3 Orders for Static Environments

3.1 Model-Independent Definition of Orders

When environment is static, the model-independent preorders are defined merely
via the properties of extensionality and some forms of capability-preservation.

Definition 5 (capability-preserving preorders). Let M ⊆ {♦, , �, �}.
The M -preserving preorder �M is the largest relation that is reflexive, exten-
sional and M -preserving.

The M -equipollent preorder is the largest relation that is reflexive, extensional
and M -equipollent, which equals to �M∪MD .

The M -preserving equality, =M , is defined as �M ∩ �−1
M .
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Definition 5 may look cumbersome at first glance. Firstly, one can check that
‘largest’ always makes sense. In additional, from Lemma 3, �M is reflexive
and transitive. The transitivity is ensured by the fact that the property of M -
preserving is preserved under relational composition. Secondly, under static envi-
ronments, only the preorders �M need to focus on. Both M -equipollent preorders
and M -preserving equalities are redundant, which is ensured by Lemma 4. These
two notions are introduced here for the reason that they are necessary under dy-
namic environments. Thirdly, a direct inference from Definition 5 is �M⊆�M ′

whenever M ′ ⊆ M . Lemma 4 even confirms stronger results.

Lemma 3. Let M ⊆ {♦, , �, �}. If {Ri}i∈I is a family of reflexive, exten-
sional, and M -preserving relations, then (

⋃
i∈I Ri)∗ is also a reflexive, exten-

sional, and M -preserving relation.

Lemma 4. Let M, M1, M2 ⊆ {♦, , �, �}.
1. �MD coincides with �−1

M .
2. �M1∪M2 coincides with �M1 ∩ �M2 .
3. �M∪MD coincides with =M .

When all the subsets of {♦, , �, �} are exhausted, a complete lattice containing
at most 16 preorders are produced. Lemma 4 confirms that there is no need to
explore each of them one by one. For every nonempty M , �M can be obtained
by taking a few steps of conjunction or inversion from �♦ and ��. In view of
this, as well as the trivial fact that �∅= P2, we shall concentrate on �♦ and ��
in the following of this section.

3.2 Behavioural Properties

This part aims to study the behavioural properties of �M . The stuttering prop-
erty, X-property, and computation property for process equivalences are widely
known. The X-property is initially described by De Nicola, Montanari and Vaan-
drager in [12]. The stuttering property can be found in [19]. These fundamental
properties are generalized for process preorders in the following definition.

Definition 6 (stuttering property, X-property and computation prop-
erty). Let � be a binary relation on P. Let = be � ∩ �−1.

1. � has stuttering property if the followings hold: (1) whenever Q0
τ−→ Q1

τ−→
· · · τ−→ Qn, P � Q0 and P � Qn, then P � Qi for every 0 ≤ i ≤ n. (2)
whenever P0

τ−→ P1
τ−→ · · · τ−→ Pm, P0 � Q, Pm � Q, then Pj � Q for

every 0 ≤ j ≤ m.
2. � has X-property if P =⇒�−1 Q and Q =⇒�−1 P imply P = Q.

� has inverted X-property if P =⇒� Q and Q =⇒� P imply P = Q.
3. � has computation property if the following holds: whenever P0

τ−→ P1
τ−→

· · · τ−→ Pm and P0 � Pm, then P0 = P1 = · · · = Pm.
� has inverted computation property if the following holds: whenever P0

τ−→
P1

τ−→ · · · τ−→ Pm and Pm � P0, then P0 = P1 = · · · = Pm.
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Stuttering property for preorder is motivated from the following intuition. If both
Q0 and Qn have the capabilities of P , and Q0 can evolve to Qn by finite steps of
computation, then all the intermediate states between Q0 and Qn are deemed to
have such capabilities. On the other hand, if Q has the capabilities of both P0 and
Pm, and P0 can evolve to Pm by a finite number of steps of computation, then
Q also has the capabilities of all the intermediate states between P0 and Pm.
Stuttering property is quite natural that every eligible observational preorder
should satisfy it.

Computation property for preorder is motivated from the following intuition.
During the computation from P0 to Pm, Pm may lose some capabilities of P0.
If, however, Pm indeed has all the concerned capabilities that P0 has, then all
the intermediate states are deemed to be equal. Computation property has the
inverted version because it is possible that, during the computation from P0 to
Pm, Pm may acquire some new capabilities. If this happens, and P0 has all the
concerned capabilities that Pm has, then all the intermediate states are equal.
In line with the above, computation property (or its inverted version) does not
hold automatically for every preorder. Whether computation property holds or
not for a given preorder will depend on the capabilities being concerned. Finally,
X-property is a generalized version of computation property.

When considering equivalences only, computation property is a special case
of stuttering property. For preorders, however, stuttering property and compu-
tation property focus on different aspects. They do not imply each other.

Lemma 5. Let M1, M2 ⊆ {♦, , �, �}.

1. If stuttering property holds for �M1 and �M2 , then it also holds for �M1∪M2

and �MD
1

.
2. If X-property (or computation property) holds for �M1 and �M2 , then it also

holds for �M1∪M2 . If X-property (or computation property) holds for �M1 ,
then it also holds for =M1 . X-property (or computation property) holds for
�M1 if and only if inverted X-property (or inverted computation property)
holds for �MD

1
.

Lemma 5 confirms that behaviour properties of �M may be derived from those
of �♦ and ��, which is established in Proposition 1.

Proposition 1. Stuttering property, X-property, and computation property hold
for �♦ and ��.

Corollary 1. �M has stuttering property for every M ⊆ {♦, , �, �}.

3.3 Operational Counterparts of Orders

This part aims to discover the operational counterparts of �♦ and �� for CCS.
As a result, �♦ happens to be trace preorder while �� turns out to be an
improved variant of failure preorder which we call potential failure preorder.
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Definition 7 (trace preorder). The trace set of P , denoted TR(P ), is the
set {u ∈ L∗ |P u=⇒}. We say P 	Tr Q, if Q

u=⇒ whenever P
u=⇒. 	Tr is called

the trace preorder. That is, P 	Tr Q if and only if TR(P ) ⊆ TR(Q). The trace
equivalence, ≈Tr, is defined as 	Tr ∩ 	−1

Tr .

To obtain the first main result that 	Tr coincides with �♦, we need two-side
inclusions. 	Tr⊆�♦ is ensured by checking 	Tr reflexive, extensional, and ♦-
preserving. The reversed inclusion is proved by making use of observing power
of CCS.

Lemma 6. 	Tr is reflexive, extensional, and ♦-preserving.

Theorem 1. For CCS, �♦=	Tr. Therefore, ��=	−1
Tr and =♦=≈Tr.

Proof. By Lemma 6 and Definition 5, 	Tr⊆�♦ holds. To prove �♦⊆	Tr, suppose
that P �♦ Q, and let u = l1l2 . . . ln ∈ TR(P ). We will show u ∈ TR(Q). Con-
struct environment C[ ] = (ã)( | l1.l2. . . . .ln.d), in which ã indicates all names
in gn(P ) ∪ gn(Q) and d �∈ gn(P ) ∪ gn(Q) is a fresh name. By extensionality
of �♦ and Lemma 1, C[P ] �♦ C[Q]. Since P

l1l2...ln=⇒ , C[P ] d=⇒, which means
C[P ] ⇓. By ♦-preserving, C[Q] ⇓, which can only be caused by Q

u=⇒. Therefore,
u ∈ TR(Q).

The second main result is that �� coincides with a refined version of failure
preorder. To give the operational definition precisely, some additional notations
are introduced in advance. Let V ⊆ L∗. The prefix closure of V , denoted ↓V ,
is the set {w ∈ L∗ |wv ∈ V for some v}. The first label of V , denoted First(V ),
is {l ∈ L | lv ∈ V for some v}. Let v ∈ ↓V , the remainder of V after v, denoted
v−1V , is the set{w ∈ L∗ | vw ∈ V }.

Definition 8 (potential failure preorder). Let u ∈ L∗ and V ⊆ L∗. (u, V )
is called a potential failure pair of P , if there exists w ∈ ↓V and P

uw=⇒ P ′ for
some P ′ such that P ′ � v=⇒ for every v ∈ w−1V . In potential failure pair (u, V ),
u is called the trace part, while V is called the refusal part.

The set of all potential failure pairs of P is denoted by FL(P ). P 	Fl Q if
and only if FL(P ) ⊆ FL(Q). P ≈Fl Q if and only if FL(P ) = FL(Q). 	Fl is
called potential failure preorder. ≈Fl is called potential failure equivalence.

Intuitively, the meaning of potential failure pair (u, V ) of P can be understood
in the following way. At first P reaches a state P ′′ by performing u. After that,
an execution of P ′′ is considered successful if P ′′ performs a trace in V . What
the refusal part V affirms is the existence of a trap state P ′, such that P ′′ may
go into the trap state by performing w, a prefix of some trace in V , and this
starting of P ′′ has no way to be extended to any successful executions.

For more understanding about potential failures, some special cases are stud-
ied in the following. In the case V = ∅, (u, ∅) ∈ FL(P ) if and only if u ∈ TR(P ).
In the case ε ∈ V , (u, V ) �∈ FL(P ) for every P . In the case V ⊆ L, the traditional
failure pairs and failure preorders are obtained.
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It needs to be pointed out that the traditional failure preorder is not exten-
sional, and another version of failure equivalence defined in Sect. 9.4 of [6] does
not satisfy the property TR(P ) = {u | (u, ∅) ∈ FL(P )}. These two versions, as
well as the one in Definition 8, coincide for finite processes. For infinite pro-
cesses, however, only potential failure preorder enjoys both the properties. It is
worth noting that for CCS, potential failure preorder coincides with fair testing
equivalence [10] or should testing equivalence [2].

An important property of potential failure pairs is stated in the next lemma.

Lemma 7. If (uw, V ) ∈ FL(P ), then (u, wV ) ∈ FL(P ).

We are now in a position to establish the second main result which confirms 	Fl
coincident with ��. To show 	Fl⊆��, it is enough to check 	Fl being reflexive,
extensional, and -preserving. The reversed inclusion is also proved by taking
advantage of the observing power of CCS.

Lemma 8. 	Fl is reflexive, extensional, and -preserving.

The only difficulty in proving Lemma 8 is the extensionality. It really can be
shown indirectly by proving 	Fl coincident with should-testing preorder in [2],
whose extensionality is easier to show. However, a direct proof is more desirable.
In view of the requirements of additional technical lemmas, the proof is not given
here. Readers may consult the extended version [4].

Theorem 2. For CCS, ��=	Fl. Therefore, ��=	−1
Fl and =�=≈Fl.

Proof. By Lemma 8 and Definition 5, 	Fl⊆�� holds. To prove ��⊆	Fl, suppose
that P �� Q, and let (u, V ) ∈ FL(P ). We will show (u, V ) ∈ FL(Q). Let d be
a name not in gn(P ) ∪ gn(Q). Define processes Ru,V,d recursively as follows:

Ru,V,d =

⎧⎨⎩
d + Ru,V −{ε},d if u = ε, ε ∈ V∑

l∈First(V ) l.Rε,l−1V,d if u = ε, ε �∈ V

d + l.Ru′,V,d if u = lu′

Construct environment C[ ] = (ã)( |Ru,V,d), ã indicating all names in gn(P ) ∪
gn(Q)∪gn(Ru,V,d)−{d}. By extensionality of �� and Lemma 1, C[P ] �� C[Q].
Since (u, V ) ∈ FL(P ), we have P

u=⇒ P ′ w1=⇒ P ′′ for some w1, P
′, P ′′ such that

P ′′ � v=⇒ for every v ∈ w−1
1 V . Now, C[P ] ≡ (ã)(P |Ru,V,d) =⇒ (ã)(P ′ |Rε,V,d) =⇒

(ã)(P ′′ |Rε,w−1
1 V,d). According to the definition of Ru,V,d, P ′′ v=⇒ if and only if

(ã)(P ′′ |Rε,w−1
1 V,d) ⇓. Since already P ′′ � v=⇒, we have (ã)(P ′′ |Rε,w−1

1 V,d) �⇓. In
summary, C[P ] =⇒�⇓. Now, by -preserving of ��, C[Q] =⇒�⇓. To make this
happen, there must be some Q′, Q′′ and w2 such that C[Q] ≡ (ã)(P |Ru,V,d) =⇒
(ã)(Q′ |Rε,V,d) =⇒ (ã)(Q′′ |Rε,w−1

2 V,d) �⇓. This computation can only be caused

by Q
u=⇒ Q′ w2=⇒ Q′′ with Q′′ � v=⇒ for every v ∈ w−1

2 V , which means (u, V ) ∈
FL(Q).

By Theorem 1, Theorem 2, and Lemma 4, every preorder defined model inde-
pendently in Defintion 5 has its operational counterpart for CCS. By the fact
that 	Fl⊆	Tr, we have the following.
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Fig. 2. Model-independent Order Spectrum for CCS: Static Environment

Lemma 9. For CCS, ��⊆�♦.
By Lemma 9 and Lemma 4, all the preorders defined in Definition 5 have been
studied in the framework of CCS. They are summarized in the diagram of Fig. 2.

Proposition 2. All the inclusions in Fig. 2 are strict for CCS.

Proof. Only consider a few inclusions in the left half. To show ����♦ and
�����♦�, notice a + τ �♦� a but a + τ ��� a. To show ������, notice τ ��
τ+τ.abut τ ���� τ+τ.a. To show�������, noticea ��� a+τ buta ���� a+τ .

Finally, we point out that for CCS, X-property and computation property do
not hold for some preorders in Fig 2.

Proposition 3. For CCS, X-property and computation property hold for all the
preorders in Fig. 2 except for ��, ��, and ��♦.
Proof. The positive results are all inferences of Lemma 5 and Proposition 1. As
to the negative results, we select to prove the computation property not holding
for ��♦. Let P0 ≡ τ.a + τ

τ−→ a ≡ P1. We haveP0 ��♦ P1 but P0 ���� P1.

4 Orders for Dynamic Environments

In distributed systems, the environment tends to change dynamically. In these
situations, additional stronger constraints other than extensionality and some
forms of capability-preservation will be imposed on preorders. The constraints
concerned in this paper are simulation property and weak simulation property.
For the lack of space, only major definitions and results are stated here. The
readers may consult [4] for details.

Definition 9 (simulation). A binary relation R is a simulation if it validates
the following simulation property: Whenever PRQ and P

τ−→ P ′, then one of
the following statements is valid:

– Q =⇒ Q′ for some Q′ such that PRQ′ and P ′RQ′.
– Q =⇒ Q′′ τ−→ Q′ for some Q′′, Q′ such that PRQ′′ and P ′RQ′.
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A binary relation R is a weak simulation if it validates the following weak sim-
ulation property: Whenever PRQ and P

τ−→ P ′, then:

– Q =⇒ Q′ for some Q′ such that P ′RQ′.

A binary relation R is a (weak) bisimulation if both R and R−1 are (weak)
simulations. R has (weak) bisimulation property if both R and R−1 has (weak)
simulation property.

By means of extensionality, simulation, and some forms of capability-preser-
vation, a set of preorders can be defined model-independently.

Definition 10 (capability preserving simulation preorders). Let M ⊆
{♦, , �, �}. The M -preserving (weak) simulation preorder �s

M (�ws
M ) is the

largest (weak) simulation that is reflexive, extensional and M -preserving.
The M -equipollent (weak) simulation preorder is the largest (weak) simula-

tion that is reflexive, extensional and M -equipollent, which equals to �s
M∪MD

(�ws
M∪MD).
The M -preserving (weak) simulation equality, =s

M (=ws
M ), is defined as �s

M

∩�s
M

−1 ( �ws
M ∩�ws

M
−1).

We point out that all the relations defined in Definition 10 are indeed preorders.
Unlike the situation of static environments, there is no counterpart of Lemma 4
now. What we exactly know is �s

M⊆�s
M ′ (�ws

M⊆�ws
M ′) whenever M ′ ⊆ M , and

�s
M⊆�ws

M⊆�M . It would be cumbersome to study every �s
M (�ws

M ) separately.
Fortunately, this terrible situation can be greatly improved by the following
results.

Lemma 10. �s
♦=�ws

♦ =�♦. �s
�=�ws

� =��.

Lemma 11. �s
� (�ws

� ) is -preserving. Consequently, �s
�⊆�s

� (�ws
� ⊆�ws

� ).

Lemma 12. For CCS, �s
�=�s

♦� (�ws
� =�ws

♦�), �s
�=�s

♦�� (�ws
� =�ws

♦��), and
�s
�=�s

♦��� (�ws
� =�ws

♦���). Consequently, for CCS, �s
♦⊆�s

�⊆�s
�⊆�s

� (�ws
♦ ⊆

�ws
� ⊆�ws

� ⊆�ws
� ).

Lemma 10 and Lemma 12 tell us that only �s
� (�ws

� ) and �s
� (�ws

� ) require
further exploration.

The operational definitions for �s
� (�ws

� ) and �s
� (�ws

� ) are explored below.

Definition 11 (external simulation). A binary relation R over P is an ex-
ternal simulation if whenever PRQ and P

λ−→ P ′, then one of the following
statements is valid:

– λ = τ and Q =⇒ Q′ for some Q′ such that PRQ′ and P ′RQ′.
– Q =⇒ Q′′ λ−→ Q′ for some Q′′, Q′ such that PRQ′′ and P ′RQ′.
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A binary relation R over P is an external weak simulation if whenever PRQ

and P
λ−→ P ′, then

– Q
λ̂=⇒ Q′ for some Q′ such that P ′RQ′.

Definition 12 (t-conserving similarity). A binary relation R over P is a
t-conserving external (weak) simulation if R is an external (weak) simulation,
and moreover TR(P ) = TR(Q) whenever PRQ.

The t-conserving (weak) similarity, 	s
T= (	ws

T=), is the largest t-conserving
external (weak) simulation. The t-conserving external (weak) simulation equiv-
alence, ≈s

T= (≈ws
T=), is defined as 	s

T= ∩	s
T=

−1 (	ws
T= ∩	ws

T=
−1).

The first main result in this section is that 	s
T= (	ws

T=) coincides with �s
� (�ws

� ).

Theorem 3. For CCS, �s
�=	s

T= (�ws
� =	ws

T=), hence =s
�=≈s

T= (=ws
� =≈ws

T=).

Definition 13 (f-conserving similarity). A binary relation R over P is a
f-conserving external (weak) simulation if R is an external (weak) simulation,
and moreover FL(P ) = FL(Q) whenever PRQ.

The f-conserving (weak) similarity, 	s
F= (	ws

F=), is the largest f-conserving
external (weak) simulation. The f-conserving external (weak) simulation equiv-
alence, ≈s

F= (≈ws
F=), is defined as 	s

F= ∩	s
F=

−1 (	ws
F= ∩	ws

F=
−1).

The second main result in this section is that 	s
F= (	ws

F=) coincides with �s
�

(�ws
� ).

Theorem 4. For CCS, �s
�=	s

F= (�ws
� =	ws

F=), hence =s
�=≈s

F= (=ws
� =≈ws

F=).

By Theorem 3, Theorem 4, Lemma 10, and Lemma 12, every preorder defined
model independently in Defintion 10 has its operational counterpart for CCS.

For behaviour properties about preorders discussed in this section, we have
the following.

Proposition 4. For CCS, stuttering property, X-property and computation
property hold for �s

M (�ws
M ) whenever M ⊆ {♦, , �, �}.

By the way, when (weak) simulation property is further strengthened to (weak)
bisimulation property. We can define (weak) bisimulation equality =bis (=wbis)
to be the largest (weak) bisimulation that is reflexive, extensional and M -
equipollent. (Weak) Bisimulation equality is an equivalence relation, and it has
nothing to do with M provided that M �= ∅. For CCS, =bis (=wbis) coincides
with branching bisimilarity (weak bisimilarity).

The classification of all preorders in this paper for CCS is summarized in the
diagram of Fig. 3.

Proposition 5. All the inclusions in Fig. 3 are strict for CCS.
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=bis
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Fig. 3. Model-independent Order Spectrum for CCS

5 Conclusion

The most significant achievement of this paper is the establishment of a general
setting to characterize process preorders model-independently.

Two prototypes of model-independent characterization are testing equiva-
lences [11], presented by R.De Nicola and M.Hennessy, and barbed bisimilarity,
presented by R.Milner and D.Sangiorgi [9]. For CCS, testing equivalences co-
incide with trace equivalence and failure equivalence (in Sect. 9.4 of [6]), while
barbed bisimilarity coincide with weak bisimilarity for CCS. These two kinds of
equivalences have been generalized to π-calculus by Boreale and De Nicola [1]
and Sangiorgi [14]. For years, these two kinds of equivalences only act as two
special ways for defining equivalences observationally. Based on the setting de-
veloped in this paper, all these equivalences and preorders are defined uniformly.
Moreover, some interrelationships between them are revealed, and some other
useful preorders are discovered.

Further studies on model-independent characterization may stretch in the
following four directions.
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The first direction is to give model-independent characterizations for more pre-
orders. Preorders in linear-time branching-time spectrum [17] were presented at
one time as semantic preorders for LTS. These preorders behave well for reactive
systems without internal moves, and they are generalized to processes with in-
ternal moves in several different manners by Glabbeek [18]. It seems that some
of these preorders are not adequate for interactive models. The crux is that some
robust properties for reactive systems, such as stability and convergence, become
vulnerable for interactive systems. The composition of two stable or convergent
processes could be unstable or divergent. For this reason, imposing additional con-
ditions to the states which have these vulnerable properties would be not very
helpful. The equivalences which depend on these properties include ready equiva-
lence, ready trace equivalence, ready simulation equivalence, and stable bisimilarity.
These kinds of equivalences seem unlikely to have model-independent generaliza-
tion in the sense of this paper. However, properties such as unstability and diver-
gence are still robust. Accordingly, imposing additional conditions to unstable or
divergent states are permitted. When restraints such as codivergence or divergence
preserving are added as auxiliary conditions, a set of useful preorders will emerge.
The current picture in Fig. 3 will be expanded accordingly.

The second direction is to re-depict Fig. 3 for some subcalculi of CCS. In [3],
the expressiveness of different fragments of CCS are studied. The definition of
CCS in this paper is the most general one, which has the strongest observational
behaviour as well as the strongest observing power. The observing power is
required in showing a preorder defined model-independently contained in the one
defined operationally, while observational behaviour is required in showing the
other direction. Since the subcalculi may weaken both observational behaviour
and observing power simultaneously, the results depicted in Fig. 3 will vary
according to the model being concerned. For example, in the proof of Theorem 2,
guarded choice are used. If the concerned model did not support guarded choice,
Theorem 2 and the inclusion �♦⊆�� would no longer hold. When this happened,
the substitute of Definition 8 should be found. The proof of Theorem 2 also makes
use of constant definition. An interesting question is whether Theorem 2 holds
if constant definition are replaced with μ-operator, or replication operator.

The third direction is to investigate these preorders in the framework of more
general interactive models. Such models include different variations of π-calculus,
value passing CCS, and CHOCS, HOπ-calculus. It is controversial which pre-
orders or equivalences are best for these kinds of models. By taking the general
setting introduced in this paper, preorders and equivalences can be explored ac-
cordingly. Then, operation definitions for them need to study carefully. Works
in this direction will shed light on different observational behaviour, different
observing power, and different expressiveness for different models.

The fourth direction is to create proof systems for the preorders in the paper.
For finite processes, the objective is to establish a uniform setting of proof sys-
tems for all reasonable preorders. In addition, the author conjectures that both
�s
� and �s

� can not be finitely axiomatized. For finite state processes, finding a
proof system for =� is actually a long standing open problem.
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Abstract. The paper is devoted to an analysis of the concurrent fea-
tures of asynchronous systems. A preliminary step is represented by the
introduction of a non-interleaving extension of barbed equivalence. This
notion is then exploited in order to prove that concurrency cannot be ob-
served through asynchronous interactions, i.e., that the interleaving and
concurrent versions of a suitable asynchronous weak equivalence actually
coincide. The theory is validated on two case studies, related to nominal
calculi (π-calculus) and visual specification formalisms (Petri nets).

1 Introduction

Since the introduction of process calculi, one of the richest sources of founda-
tional investigations stemmed from the analysis of behavioural equivalences. The
rationale is that in any formalism, specifications which are syntactically differ-
ent may intuitively denote the same system, and it is then pivotal to be able to
equate different specifications at the right level of abstraction.

By now classical, one of the most influential synthesis on the issue is of-
fered by the taxonomy proposed in the so-called linear time/branching time
spectrum [20]. Since then, a major dichotomy among equivalences was estab-
lished between interleaving and truly concurrent semantics, according to the
possibility of capturing the parallel composition of two systems by means of a
non-deterministic selection. Concretely, adopting a ccs-like syntax, the system
represented by the specification a | b either coincides with (interleaving) or differs
from (truly concurrent) the system represented by a.b + b.a.

Behavioural equivalences for process calculi often rely on labelled transitions :
each evolution step of a system is tagged by some information aimed at capturing
the possible interactions of the system with the environment. Nowadays, though,
the tendency is to adopt operational semantics based on unlabelled transitions.
This is due to the intricacies of the intended behaviour of a system, especially
in the presence of topological or transactional features (see, e.g., foundational
calculi such as Mobile Ambients [14] or Join [18]).
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This paradigmatic shift stimulated the adoption of barbed congruence [33],
a behavioural equivalence based on a family of predicates over the states of a
system, called barbs, intended to capture the ability of a system of performing
an interaction with the environment. For instance, in the calculus of Mobile
Ambients [14], barb n verifies the occurrence of an ambient named n at top
level [30]; in ccs [31], a process satisfies barb a if it may input on channel a [33].

Assuming that systems interact with a form of synchronous communication,
barbs can be explained by a scenario where a system is just a black box with
several buttons, one for each possible interaction with the environment. An ob-
server can push a button only if the system is able to perform the corresponding
interaction. In this scenario, barbs check if buttons can be pushed. Similarly,
an asynchronous system is a black box equipped with several bags (unordered
buffers) that are used to exchange messages with the environment. At any time
the observer can insert a message in a bag or remove one, whenever present. In
this case, barbs check the presence of messages inside bags. Moreover, in order
to properly capture the scenario outlined above, for an observer internal steps
should not be visible: we thus focus on weak equivalences.

So far, barbed congruences included no concurrent feature, abstractly char-
acterized as the possibility of performing simultaneously more than one single
interaction. However, in the synchronous scenario, systems a.b + b.a and a | b
could be distinguished by an observer able to push two buttons at the same
time, since only a | b allows for the simultaneous pressing of buttons a and b.

The situations is less clearly-cut for asynchronous systems. Indeed, one of the
assumptions of this communication style is that message sending is non-blocking:
a system may send a message with no agreement with the receiver, and then
continue its execution. Hence, an observer interacting with a system by message
exchanges cannot know if or when a message has been received and thus message
reception is deemed unobservable. And since message sending is non-blocking,
a system which may emit a sequence of messages can also hold them, proceed
with internal computation and make them available at once at a later time. So,
the simultaneous observation of many sendings seems to add no discriminating
power to the observer. Concretely, systems a.b + b.a and a | b should be equated
in an asynchronous setting, even if observing concurrent barbs.

Moving from this intuition, we propose a formal framework where the slogan
concurrency can’t be observed, asynchronously is formalised. We work in a setting
where we only assume the availability of an operator for parallel composition,
used for defining the notions of concurrent barb and concurrent barbed congru-
ence: a system exhibits a concurrent barb a1 ⊗ a2 if it is decomposable into two
components exhibiting barbs a1 and a2, respectively. We then identify a set of
axioms which are intended to capture essential features of asynchronous systems
in a barbed setting, showing that for any formalism satisfying them barbed con-
gruence and its concurrent variant coincide. The appropriateness of the axioms is
checked by proving that they are satisfied by concrete asynchronous formalisms,
like the asynchronous π-calculus [25,9] and open Petri nets [27], as well as by
the (output-buffered) asynchronous systems as characterised in [38].
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Synopsis. Section 2 introduces our framework: the notion of concurrent barb,
the corresponding behavioural equivalence and Theorem 1, stating the unob-
servability of concurrency through asynchronous interactions. Sections 3 and 4
show how our theory captures asynchronous π-calculus and open Petri nets,
respectively. In the latter case the new concurrent equivalence is shown to co-
incide with standard step semantics. Section 5 proves that systems deemed as
(output-buffered) asynchronous in [38] fall into our theory. Section 6 draws some
conclusions, discusses related works and outlines directions for further research.

2 A Theory of Concurrent Barbs and Asynchrony

This section introduces a notion of equivalence based on concurrent barbs. It is
then argued that, for a reasonable notion of asynchronous system, the possibility
of observing concurrent barbs does not add any discriminating power.

2.1 Transition Systems and Barbs

Let P be a set of systems (ranged over by p, q . . . ) and →⊆ P ×P a transition
relation: we write p → q for 〈p, q〉 ∈→, and we denote by →∗ the reflexive and
transitive closure of →.

A barb is a predicate over the set P representing a minimal observation on
any system. The set of barbs, ranged over by a, b, x, y . . . , is denoted B and we
write p↓a if the system p satisfies the barb a. For each barb a ∈ B, we say that
p weakly satisfy a, written p⇓a, if p →∗ p′ and p′↓a. Moreover, we write p�↓a if
p′↓a holds ∀p′ such that p →∗ p′. The weak version p�⇓a is defined analogously.

We finally assume to have a commutative and associative parallel composition
operator on systems | : P × P → P , satisfying the axioms below

(P1)
p → p′

p|q → p′|q (P2)
p↓a

p|r↓a

In other terms, the parallel operator must preserve the barbs and the transition
relation: the requirement concerning its associativity and commutativity would
not be essential for our theory, but it simplifies the presentation.

With these ingredients we can define a behavioural equivalence which equates
two systems if these cannot be distinguished by an observer that can add com-
ponents in parallel and observe the barbs which are exposed. In the paper we
focus only on weak equivalences, hence the qualification “weak” is omitted.

Definition 1 (saturated barbed bisimilarity). A symmetric relation R ⊆
P × P is a saturated barbed bisimulation if whenever pRq then ∀r ∈ P

– ∀a ∈ B, if p|r⇓a then q|r⇓a

– if p|r →∗ p′ then q|r →∗ q′ and p′Rq′

We say that p and q are saturated barbed bisimilar (written p ∼ q) if there exists
a saturated barbed bisimulation relating them.
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synchronous asynchronous

p ::= m, p1 | p2,0

m ::= τ.p, a.p, ā.p,m1 +m2

p ::= m,p1 | p2,0, ā

m ::= τ.p, a.p,m1 +m2

(syn) a.p+m | ā.q + n→ p | q (asyn) a.p+m | ā→ p

(tau) τ.p +m→ p (par) p→ q
p | r → q | r

p | q ≡ q | p p | (q | r) ≡ (p | q) | r p | 0 ≡ p
m+ n ≡ n+m m+ (n+ o) ≡ (m+ n) + o

Fig. 1. The syntax and the reduction semantics of sccs and accs

Note that ∼ is, by definition, a congruence with respect to the parallel com-
position operator1. It differs from barbed congruence [33] since in the latter the
observer is allowed to add a parallel component only at the beginning of the com-
putation and not at any step. Hence, in general, barbed congruence is coarser
than saturated barbed bisimilarity, although in many cases the two definitions
coincide (as e.g. in the asynchronous π-calculus [19]).

As a running example for illustrating our theory we use a finite fragment of
ccs [31] and its asynchronous counterpart, with the reduction semantics in [32],
but our considerations would trivially extend to the full calculus. A set of names
N is fixed (ranged over by a, b . . . ) with τ �∈ N . The syntax of synchronous
ccs (sccs) processes is defined by the grammar on the left of Figure 1, while
asynchronous ccs (accs) processes are defined by the grammar on the right. In
both cases processes are considered up to structural congruence≡. The transition
relation → for sccs is defined by rules syn, tau, and par. For accs, rule syn is
replaced by asyn: the occurrence of an unguarded ā indicates a message that is
available on some communication media named a. The message disappears after
its reception. Note that output prefixes ā.p are absent in accs.

The definition of the “right” notion of barb is not a trivial task. For sccs
both input and output barbs are considered (see e.g. [33]). Intuitively, a pro-
cess has an input (output) barb on a if it is ready to perform an input (out-
put) on a. Formally, if α = a or α = ā, then p↓α when p ≡ α.p1 + m | p2
for processes p1, p2, m. Following [1], for accs only output barbs are consid-
ered, defined by p↓ā when p ≡ ā | p1 for a process p1. The idea is that,
since message sending is non-blocking, an external observer can just send
messages without knowing if they will be received or not. Hence inputs are
deemed unobservable.

Several works (e.g. [36,26,7]) have proposed abstract criteria for defining
“good” barbs independently from the formalism at hand. Here, inspired by [36],
we propose to formalise the intuition that barbs should capture the possibility
of exhibiting an observable behaviour by introducing a notion of test.

1 Requiring ∼ to be closed under all unary contexts, instead of just −|r (see [26,30]),
would not substantially change our theory, yet make its presentation more complex.
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Definition 2 (barbs witnessed by a test). A test is a family t of systems
indexed by barbs, i.e., t = {tx | x ∈ B}. Given a barb a ∈ B and a system p ∈ P,
an element tx ∈ t is called a concrete test for a on p if whenever p →∗ p′

p′↓a iff p′|tx → p′′ and p′′�↓x.

A barb a is witnessed by a test t if for all systems p, q ∈ P there exists a barb
x ∈ B such that tx ∈ t is a concrete test for a on both p and q.

Intuitively, a concrete test for a barb a on a process p is a process tx capable of
exposing a barb x, which is instead never observable in the evolution of p. Process
tx releases a (permanent) barb x only after interacting with a process exposing
barb a. Since x can never be generated by p, observing x in the evolution of
p′ | tx, where p′ is a reduct of p, witnesses that p′ has exposed the barb a.

Note that the notion of witness is defined by considering pairs of processes:
this is motivated by the fact that tests witnessing a barb will be used when
comparing processes in the bisimulation game.

Hereafter, we assume that any barb is always witnessed by some test.

(B) For any a ∈ B there exists a test witnessing a. We denote ta a chosen
test that witnesses barb a.

The assumption above holds for any calculus endowed with reduction semantics
and barbs that we are aware of (see e.g. [32,1,14,18]). For instance, in accs
each output barb ā is witnessed by the test tā = {a.x̄ | x ∈ N}. Indeed, for
all processes p, q, a concrete test for ā on p and q can be tāx = a.x̄, for x ∈ N
a name that syntactically occurs neither in p nor in q. Note that input barbs
cannot be witnessed by any test in accs, since there are no output prefixes. In
sccs, instead, for the presence of both input and output prefixes, an input barb
a is witnessed by the test {ā.x̄ | x ∈ N}.

Axiom (B) is pivotal in Section 2.3: the chosen witness for a barb is needed in
the formulation of our axiom of asynchrony (AA), which abstractly characterizes
a basic feature of asynchronous systems with reduction semantics and barbs.

2.2 Concurrent Barbs and Non-interleaving Semantics

Most semantics for interactive systems are interleaving, meaning that parallelism
is reduced to non-determinism, or, in terms of processes, a.b + b.a ∼ a|b. Here
we propose a non-interleaving semantics based on barbs. For this, we first need
a concurrent transitions relation on systems �⊆ P × P , for which we assume

(C) → ⊆ � ⊆ →∗

and thus �∗=→∗. The assumption is quite natural: it just means that (1) each
non-concurrent transition is also a concurrent one and (2) each concurrent tran-
sition p � q is simulated by a sequence of non-concurrent ones p → . . . → q.

For both sccs and accs the relation � can be defined by the rules in Figure 2.
Alternative definitions could be given, in order e.g. to avoid several concurrent
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p→ p′

p � p′
p � p′ q � q′

p | q � p′ | q′

Fig. 2. Parametric rules for a concurrent transition relation

communications on the same channel. This is irrelevant here as our theory ab-
stracts from the actual definition of � and only relies on property (C) above.

As a second ingredient, we introduce concurrent barbs. For a set X , let X⊗

denote the free commutative monoid over X , whose elements are called multisets.

Definition 3 (concurrent barbs). The set of concurrent barbs CB is the free
monoid B⊗, ranged over by A, B, X, Y . . .We write p↓c

A to mean that p satisfies
the concurrent barb ↓c

A. The satisfaction relation is defined by the rules

p↓a

p↓c
a

p↓c
A and q↓c

B

p|q↓c
A⊗B

Weak concurrent barbs are defined as p⇓c
A if p �∗ p′ and p′↓c

A.

A more abstract theory could be defined relying on general, non necessarily free
monoids of barbs. We defer this proposal to the full version of the paper.

Definition 4 (concurrent saturated barbed bisimilarity). We define con-
current saturated barbed bisimilarity, denoted by ∼c, by replacing → with � and
⇓a with ⇓c

A in Definition 1.

Note that for general, possibly synchronous languages, the concurrent equiva-
lence can distinguish processes that are identical in the interleaving semantics.
For example, in sccs a.b+b.a �∼c a | b since a.b+b.a does not satisfy ⇓c

a⊗b, while
a|b does. Instead, if we consider accs, where only output barbs are available, it
is easy to see that the two processes are equivalent with respect to ∼c.

2.3 Concurrency Can’t Be Observed, Asynchronously

This section focus on the observability of concurrency through asynchronous in-
teractions, arguing that ∼c=∼ in formalisms with asynchronous communication.

As a first step we require that assumption (B) actually holds for concurrent
barbs, a property denoted as (CB). Formally, the witness property is defined as
in Definition 2 by replacing B with CB, → with � and ↓a with ↓c

A.
A further assumption is now needed, relating concrete tests for concurrent

barbs and reduction sequences. Since it is intended to capture an essential feature
of asynchronous communication, it is referred to as the Axiom of Asynchrony

(AA) Let A be a concurrent barb, p a system, tAX a concrete test for A on
p with X =

⊗n
i=1 xi. If p|tAX →∗ p1↓x1 →∗ . . . →∗ pn↓xn then p⇓c

A.
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p ::= ab, p1|p2, (νa)p, !m, m m ::= 0, α.p, m1 +m2 α ::= a(b), τ

p|q ≡ q|p (p|q)|r ≡ p|(q|r) p|0 ≡ p
m+ n ≡ n+m (m+ n) + o ≡ m+ (n+ o) m+0 ≡ m
(νa)(νb)p ≡ (νb)(νa)p (νa)(p|q) ≡ p|(νa)q if a /∈ fn(p) (νa)0 ≡ 0
(νa)p ≡ (νb)(p{b/a}) if b /∈ fn(p) a(b).p ≡ a(c).(p{c/b}) if c /∈ fn(p) !p ≡ p|!p

ab|(a(c).p+m) → p{b/c} τ.p+m→ p
p→ q

(νa)p→ (νa)q
p→ q

p|r → q|r
Fig. 3. Syntax, structural congruence and reduction relation of the asynchronous π

Informally, the axiom can be explained as follows. We can think that A is a
multiset of output messages. The fact that tAX is a concrete test for A on p and
that p|tAX →∗ p1↓x1 →∗ . . . →∗ pn↓xn means that p can emit the messages in
A one after the other. Then the intuition is that, if the system is asynchronous
and thus sending is non-blocking, the messages can be also kept internally and
made all available concurrently at the end.

As for our running examples, axiom (AA) holds in accs, but not in sccs.
In fact, take the sccs process p = ā.b̄. A concrete test for the concurrent barb
A = ā ⊗ b̄ could be tAX = a.x̄1 | b.x̄2 with X = x̄1 ⊗ x̄2. Yet, p|tAX → b̄ | x̄1 |
b.x̄2 → x̄1 | x̄2 but p � ⇓c

A.
Relying on the assumptions made so far, we can prove the desired theorem.

Theorem 1 (concurrency can’t be observed, asynchronously). For any
formalism satisfying axioms (P1), (P2), (CB), (C), and (AA), concurrent satu-
rated barbed bisimilarity and saturated barbed bisimilarity coincide, i.e., ∼=∼c.

3 Asynchronous π-Calculus

This section shows that the asynchronous π-calculus fits in the theory of Sec-
tion 2, and thus saturated barbed congruence (which coincides with barbed
congruence [1]) and its concurrent version coincide.

Asynchronous π-calculus has been introduced in [25] as a model of distributed
systems interacting via asynchronous message passing. Its syntax is shown in
Figure 3: we assume an infinite set N of names, ranged over by a, b . . . , with
τ �∈ N , and we let p, q . . . range over the set Pπ of processes. Free names of
a process p (denoted by fn(p)) are defined as usual. Processes are taken up
to a structural congruence, axiomatised in Figure 3 and denoted by ≡. The
reduction relation, denoted by →, describes process evolution: it is the least
relation →⊆ Pπ × Pπ closed under ≡ and inductively generated by the axioms
and rules in Figure 3.

As for accs (Section 2), barbs account only for outputs. So, for an output a,
p↓a if p ≡ (νa1) . . . (νak)(ab|q) and ∀i, a �= ai [1]. Concurrent barbs are multisets
of outputs, and they check the presence of several parallel outputs.

A non-interleaving semantics for the calculus is obtained by introducing a con-
current transition relation �, as defined in Figure 2. Multiple synchronizations
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over the same channel are thus allowed, as in the semantics proposed in [12,34].
Different approaches are conceivable, see e.g. [28], yet they could still be accom-
modated in our theory.

Now, let ∼π denote saturated barbed bisimilarity for the asynchronous π-
calculus and let ∼c

π denote the concurrent one. It is worth remarking that ∼π

coincides with the standard semantics for the calculus, namely, asynchronous
bisimilarity [1], as shown in [19]. Then we have the following result.

Corollary 1 (concurrency can’t be observed in asynchr. π). ∼π=∼c
π.

This follows from Theorem 1. Indeed, axioms (P1), (P2), and (C) clearly hold.
Concerning (CB), a test witnessing the concurrent barb A =

⊗n
i=1 ai is tA =

{tAC | C =
⊗n

i=1 ci ∧ tAC = a1(b1).c1d| . . . |an(bn).cnd ∧ ∀i.bi �= ci}: for processes
p, q, we obtain a concrete test tAC for A on p and q by taking a C containing only
names syntactically occurring neither in p nor q. With the above definition, it is
easy to prove that also the Axiom of Asynchrony (AA) holds.

4 Open Petri Nets

Open Petri nets [27,37,3] are a reactive extension of ordinary P/T nets, equipped
with a distinguished set of open places that represent the interfaces through
which the environment interacts with a net. This kind of interactions is inherently
asynchronous (see e.g. [2]) and thus it represents an ideal testbed.

This section shows that indeed the interleaving and concurrent equivalences
defined in the literature (see e.g. [3]) are instances of ∼ and ∼c, respectively.
Then, since all the axioms of our theory are satisfied, these equivalences coincide.

Definition 5 (open nets). An open net is a tuple N̂ = (S, T, •(.), (.)•, O) for
S a set of places, T a set of transitions, •(.), (.)• : T → S⊗ functions mapping
each transition to its pre- and post-set, and O ⊆ S a set of open places. A
marked (open) net is a pair N = 〈N̂ , m〉 for N̂ an open net and m ∈ S⊗ a
marking.

a b

x

N | Nb,xNb,x

b

x

a b

x

N

Fig. 4. Marked open nets and their parallel composition
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Examples of marked nets can be found in Figure 4. As usual, circles represent
places and rectangles transitions. Arrows from places to transitions represent
function •(.), arrows from transitions to places represent (.)•. An open net is
enclosed in a box and open places are on the border of such a box.

We assume a fixed infinite set S of place names. The set of interactions (ranged
over by i) is IS = {s+, s− | s ∈ S}. The set of labels (ranged over by l) consists
in {0} + IS . The firing (interleaving) semantics of open nets is expressed by
the rules on the top of Figure 5, where we write •t and t• instead of •(t) and
(t)•. The rule (tr) is the standard rule of P/T nets (seen as multiset rewriting)
modelling internal transitions, which are labelled with 0 for subsequent use. The
other two rules model interactions with the environment: at any moment a token
can be inserted in (rule (in)) or removed from (rule (out)) an open place.

Weak transitions are defined as usual, i.e., 0⇒ denotes the reflexive and transi-
tive closure of 0−→ and i⇒ denotes 0⇒ i−→ 0⇒. We write N

i⇒ N ′ when N = 〈N̂ , m〉,
N ′ = 〈N̂ , m′〉 and m

i⇒ m′.

Definition 6 (firing bisimilarity). A symmetric relation R over marked nets
is a firing bisimulation if whenever N1RN2, if N1

l⇒ N ′
1 then N2

l⇒ N ′
2 and

N ′
1RN ′

2. We say that N1 and N2 are firing bisimilar (written N1 ≈ N2) if there
exists a firing bisimulation R such that N1RN2.

In order to ease the intuition, nets can be thought of as black boxes, where only
the interfaces are visible. Two nets are bisimilar if they cannot be distinguished
by an observer that may only insert and remove tokens in open places.

Steps of open nets (�) are defined in Figure 5, bottom. Step labels (ranged
over by c, c1, c2 . . . ) are multisets of interactions IN . By rule (cfir), each firing
is also a step and, in particular, the label 0 is interpreted as the empty multiset.
Rule (cstep) allows to construct concurrent steps. Weak transitions are defined
as usual: 0�→ denotes the reflexive and transitive closure of 0� and c�→ denotes
0�→ c� 0�→. Step bisimilarity (≈c) is defined by replacing ⇒ with �→ in Definition 6.

We now show that ≈ and ≈c are instances of ∼ and ∼c, respectively. The
parallel composition N1|N2 of open nets N1, N2 is obtained by gluing them on
their open places. More precisely, N1|N2 is the marked net obtained by taking
the disjoint union of the nets, merging open places with the same name and
summing the markings. An example of composition is shown in Figure 4.

(tr) m = •t⊗m′ t ∈ T
m

0−→ t• ⊗m′ (in) s ∈ O
m

s+−→ m⊗ s
(out) m = m′ ⊗ s s ∈ O

m
s−−→ m′

(cfir) m
�−→ m′

m
�� m′ (cstep) m = m1 ⊗m2 m1

c1� m′
1 m2

c2� m′
2

m
c1⊗c2� m′

1 ⊗m′
2

Fig. 5. Firing and step semantics for open nets
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Transitions 0−→ of marked nets correspond to transitions → in the theory of
Section 2, and 0� corresponds to �. Barbs check the presence of tokens in open
places. Formally, if we write m ⊆ n for m, n ∈ S⊗ whenever m = n⊗n′ for some
n′ ∈ S⊗, the marked net N = 〈N̂ , m〉 satisfies the barb b, denoted N↓b, if b ∈ O
(i.e., b is an open place of N̂) and b ⊆ m. Concurrent barbs check the presence
of multisets of tokens: for m′ ∈ S⊗, N↓c

m′ if m′ ∈ O⊗ and m′ ⊆ m.
With these definitions it is possible to prove that firing (step) bisimilarity

coincides with (concurrent) saturated barbed bisimilarity.

Proposition 1. Let N1, N2 be two marked nets. Then N1 ≈ N2 iff N1 ∼ N2
and N1 ≈c N2 iff N1 ∼c N2.

In order to apply Theorem 1, we finally need to prove that all the axioms are
satisfied. This is immediate for (P1), (P2), and (C). Instead, concerning (CB), a
test witnessing a barb b ∈ S is given by tb = {tbx | x ∈ S}, where tbx = Nb,x is
the net in Figure 4, middle. For a concurrent barb B = b1⊗ · · ·⊗ bn ∈ S⊗ a test
is given by tB = {tBX | X =

⊗n
i=1 xi ∧ tBX = tb1x1

| . . . |tbn
xn
}. With this definition of

test, also the Axiom of Asynchrony (AA) can be easily shown to hold. Hence, as
a corollary of Theorem 1 we get the following result.

Corollary 2 (concurrency can’t be observed in open nets). ≈=≈c.

5 On Selinger’s Axiomatization

An axiomatization of different classes of systems with asynchronous communi-
cation has been proposed in [38]. Roughly speaking, a system is said to be asyn-
chronous if its observable behaviour is not changed by filtering its input and/or
output through a suitable communication medium, which can store messages
and release them later on. Different choices of the medium (queues, unordered
buffers) are shown to lead to different notions of asynchrony, and suitable sets
of axioms are then identified which are shown to precisely capture the various
classes of asynchronous systems.

In order to further check the appropriateness of our framework, here we prove
that the class of systems characterised as asynchronous in [38] satisfy the require-
ments in Section 2. More precisey, we focus on so-called out-buffered asynchrony
with feedback [38, Section 3.2], where output is asynchronous, the order of mes-
sages is not preserved and the output of a process can be an input for the process
itself (feedback). The corresponding axioms [38, Table 3] are listed in Figure 6.
They are given for labelled transition systems, with labels in a, out a and τ
denoting input, output and internal transitions, respectively.

In order to bring the correspondence to a formal level, we must overcome two
problems. Firstly, the theory in [38] is developed for a labelled semantics, while
we are concerned with barbed reduction semantics, and secondly, the theory
in [38] does not consider concurrent transitions, which are pivotal in our setting.

The first issue is solved by taking as reductions p → p′ the τ -transitions
p

τ−→ p′ and by defining (output) barbs p↓a if p
out a−−→.
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p out a �� p′

α

��
⇒

p out a ��

α

��

p′

α

��
q p′′

out a �� q

p out a ��

α

��

p′

⇒

p out a ��

α

��

p′

α

��
p′′ p′′

out a �� q

p out a ��

out a

��

p′

⇒ p′=p′′

p′′

output-commutativity where α �= out a and α �= τ output-determinacy
(FB1) output-confluence (FB2) (FB3)

p out a �� p′

in a

��
⇒

p out a ��

τ

���
��

��
��

� p′

in a

��
q q

p out a ��

τ

��
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⇒

p out a ��

τ

��

p′

τ

��
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p out a ��

τ

��

p′

in a��		
		

		
	

p′′ p′′
out a �� q p′′

feedback (FB4) output-tau (FB5)

Fig. 6. Axioms for out-buffered agents with feedback

As a parallel operator for out-buffered agents with feedback, we use the par-
allel composition with interaction defined in [38, Section 3.1] and given by2

p
α−→ p′

p|q α−→ p′|q
q

α−→ q′

p|q α−→ p|q′
p|q out a−−→ τ−→

∗in a−→ r

p|q τ−→ r

As far as concurrent barbs are concerned, we define p↓c
A, where A =

⊗n
i=1 ai

whenever p
out a1−−→ . . .

out an−−−→. This is motivated by the fact that, by axiom (FB1),
this implies that the same outputs can be performed by p in any order (in
particular p

ai−→ for any i ∈ {1, . . . , n}). In words, although the labelled transition
system does not provide any information on concurrency, we assume that outputs
which can be observed in any order are generated concurrently.

Moreover, A(p) denotes the acceptance set of p defined as A(p) = {a | ∃p′ :
p −→∗ p′ and p′↓a}, and we stick to systems p such that the set A(p) is finite.3

With the above definitions, it is easy to see that axiom (B) holds.

Lemma 1. A barb a is witnessed by test ta = {tax | tax
in a−→ out x−−→}. In particular,

for p, q, if x �∈ A(p) ∪ A(q), the system tax is a concrete test for a on p and q.

Concurrent reductions can now be defined as in Figure 2. With this definition
it is not difficult to see that assumptions (P1), (P2), (C) hold, and that (CB) is
an immediate consequence of (B). In fact the test witnessing a concurrent barb
A =

⊗n
i=1 ai can be tA = {tAX | X =

⊗n
i=1 xi ∧ tai

xi
∈ tai ∧ tAX = ta1

x1
| . . . |tan

xn
}.

With this set up we can finally prove that also the Axiom of Asynchrony (AA)
holds for any out-buffered system p with feedback.
2 Actually, this operator is associative and commutative only up-to isomorphism of

the underlying transition space of the system, which is implicitly assumed here.
3 This requirement is far from restrictive. For instance, it holds in the π-calculus since

for all processes p, q such that p −→∗ q we have fn(q) ⊆ fn(p).
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Lemma 2. Let A =
⊗n

i=1 ai be a concurrent barb, let p be a system satisfying
the axioms in Figure 6, and let tAX be a concrete test for A on p with X =⊗n

i=1 xi. If p|tAX →∗ p1↓x1 →∗ . . . →∗ pn↓xn then p⇓c
A.

6 Conclusions, Related and Future Works

Building on the notion of concurrent barbs, we introduced a non interleaving
observational congruence for systems, and we proved that our slogan holds in a
rather general fashion: whenever the observer is only able to check the possible
interactions of a system with the environment, and the system can interact only
through an unordered buffer (corresponding to the out-buffered systems with
feedback of [38]), then concurrency cannot be observed, i.e., concurrent barbs
add no observational power.

As case studies, we considered open Petri nets and the asynchronous π-
calculus, showing that they fall in our framework. In particular, for nets we
recovered the ordinary firing and step semantics (as defined in [3]); while for
the π-calculus the well-known asynchronous bisimilarity [1]. Our result holds for
other interesting formalisms as well, such as the Join calculus [18]. Indeed, the
latter is an instance of [38] and thus, see Section 5, our theory applies.

The non-interleaving equivalence we introduced intuitively corresponds to
step semantics. This has been shown for the concrete case of open Petri nets,
even if it seems hard to raise the correspondence at an abstract level. Some idea
could come from the observation that steps naturally arise from the theory of
reactive systems [29] when replacing → with �. Since p

a−→ q means that −|ā is
the smallest context c[−] such that c[p] → q, analogously the step p

a⊗b−→ q would
mean that −|ā|b̄ is the smallest c[−] such that c[p] � q. As a side remark, note
that one of the compelling arguments against step semantics (i.e., that it is not
preserved by action refinement [21]) is weakened in the paradigm of reduction
systems and barbed equivalences, since actions (labels) disappear.

As far as ST-equivalences [23] are concerned, it seems conceivable to develop
an ST-operational semantics in an asynchronous setting, making production and
consumption of messages (tokens) not instantaneous (see, e.g., [22] for a net
model where token consumption is non-instantaneous and [13] for a similar study
on Linda-like languages) and we conjecture that unobservability of concurrency
would hold true also in this setting.

Close to our spirit are also equivalences with localities [10], that distinguish
(interleaving equivalent) processes by observing the locations where interactions
occur. We chose of not adopting this kind of equivalence for two main reasons:
(1) localities are usually structured as trees, but this does not make much sense
either in a calculus featuring joins (e.g. [18]) or in a graphical formalism such
as open Petri nets; (2) equivalence with localities have never been defined for
reduction semantics and, more importantly, for asynchronous formalisms.

It can be shown that equivalences with localities are incomparable with
ours. Still we conjecture that our slogan “concurrency can’t be observed, asyn-
chronously” still holds for equivalences with localities. Indeed, since in the
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asynchronous case inputs are not observable, also their locations should not
be observable. Therefore, only the locations of outputs could be observed, but
these are all independent (since outputs have no continuations). A formal study
of equivalences with localities for asynchronous systems is left as future work.

Our proposal is quite far from other non-interleaving semantics, such as those
proposed in e.g. [16,17,21]: these consider causal properties of the systems, either
by direct inspection of the state structure or by suitably enriching the labels of
the transition steps, thus being of a more extensional nature. For these semantics,
the fact that the internals of the systems are directly inspected, clearly implies
that the unobservability of concurrency will not hold.

It would be interesting to investigate the possibility of extending our results to
other classes of languages. This could include asynchronous calculi with bounded
capacity channels, where a bounded number of messages can be transmitted si-
multaneously along the same channel. We would also like to study notions of
asynchrony based on buffers which are not just unordered bags, but ordered
structures like queues (see e.g. [5,6,38,4]). A preliminary investigation on the
calculi πQ and πS in [4] (where buffers are, respectively, queues and stacks)
seems to suggest that our results on the unobservability of concurrency should
extend also to “ordered asynchrony”. Intuitively, a key difference would be that
in these calculi concurrent barbs should be sets of barbs instead of multisets,
since these ordered buffers should not allow concurrent operations. Finally, an-
other appealing case study could concern Linda-like languages, where the pres-
ence of test-and-check operators might allow an observer to verify not only the
presence but also the absence of messages. In the same class would then end up
also nets with inhibitor arcs.

The different distinguishing power of concurrent equivalences in the syn-
chronous and asynchronous case could also be inspiring for the development of
additional separation results between the two paradigms, along the style of [35].
In more general terms, integrating our framework with the one proposed in [24]
seems to represent a promising direction for future investigations.

So far, few papers (such as e.g. [8,15,11]) tackled the study of the concurrency
features of asynchronous systems. And to the best of our knowledge our result,
albeit quite intuitive, has never been shown on any specific formalism, let alone
for a general framework as in our paper. Indeed, besides the catchy slogan,
we do believe that our work unearthed some inherent features of asynchronous
systems that should hopefully shed some further light on the issue. That is, it
should represent a further step towards a complete characterisation of the still
fuzzy synchronous/asynchronous dichotomy.

Acknowledgments. The authors would like to thank Catuscia Palamidessi for
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Abstract. We extract techniques developed in the Concurrent C minor project
to build a framework for constructing logics that contain approximation and/or
separation. Approximation occurs when the naı̈ve semantic definitions contain
a contravariant circularity (e.g., invariants of first-class locks), while separation
occurs when one wishes to track resource accounting. We show how these two
features can be mixed together in a modular way. Our work is machine checked
in Coq and available as part of the Mechanized Semantic Library.

1 Introduction

The Concurrent C minor (CCM) project has been developing mechanized semantic
models for concurrency, higher-order stores, separation, and program logics [HAZ08].
To Xavier Leroy’s C minor language, which is a large industrial-strength C-like lan-
guage (e.g., complex local control flow and a sophisticated memory model) [Ler06],
we have added first-class locks and threads to make Concurrent C minor. As a result of
the scale and goals of our project we have been forced to redesign our semantic models
in increasingly sophisticated and modular ways [DAH08, DHA09, HDA10].

Our focus here is an intimately related issue: the modular construction of a logic
on top of our basic semantic models in a mechanization-friendly way. We are partic-
ularly interested in integrating two very useful features of our logic: approximation
and separation. Approximation, in the sense that we use the term, is commonly associ-
ated with “step-indexing,” [Ahm04, DAB09, HDA10] a useful technique for reasoning
about certain kinds of recursion involving mutable state. In the CCM project we use
step-indexing to model the invariants of first-class locks and threads, but it also occurs
in, e.g., ML references. Separation is an orthogonal feature which helps reasoning about
an addressable memory, such as pointer aliasing. In the CCM project we are particularly
interested in using separation to reason about concurrency.

We are able to smoothly integrate the features of approximation and separation by
carefully building a framework where both can coexist peacefully. We model the as-
sertion language of the program logic semantically via a Kripke semantics. That is,
formulae of the assertion language are identified with metalogic propositions over a
set of worlds, which are some abstraction of the program states. This is a common ap-
proach when mechanizing program logics, [Nip02] even among researchers who choose
to model the judgments of the program logic syntactically.

When defining a program logic, the choice of which worlds to use in the assertion
semantics depends strongly on the problem domain, i.e., the particular language being
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modeled. The worlds contain most or all of the data in a program state in addition to
certain metadata. Much previous work has focused on constructing complicated worlds
for expressive languages and using the derived logic to prove some theorem of interest
(often a soundness result) [HDA10, Ahm04, DHA09, COY07]. However, the important
step of building the logic on top of the worlds is often given short shrift. A reader is
left with the general impression that once the underlying model is in place, building the
logic on top is straightforward. Unfortunately, this is not always the case.

Here we fill in the missing piece by explaining how to build sophisticated logics
on top of clean axiomatizations. We construct a general framework for defining asser-
tion languages containing approximation and separation—that is, a logic for worlds
that contain approximation and substructure. Throughout this paper we largely abstract
away from the details of any particular language, and thus we hold the choice of worlds
abstract as well. Instead, we will focus on axiomatizing what features worlds must have
in order to support approximation and separation, and showing how one can then build
a powerful assertion logic containing both these features.

We combine approximation with separation by using a “stacked” approach in which
we first axiomatize how our worlds become more approximate in §2, and show how
to satisfy our axioms for settings wherein our worlds have meaningful approximation.
If the domain of interest does not have any interesting approximation behavior (e.g., a
basic type system or separation logic), then we give methods for adding trivial approx-
imation behavior so that the rest of our framework will still work. After defining the
basic operators of our logic in §2.4, we define a multimodal layer on top in §3 to build
smooth and modular logical framework for reasoning in the presence of approximation.
In §4 we explain how to model and use the equirecursive operator μ.

Once we have specified how approximation should be handled, we specify the sub-
structural properties of our worlds by forming a separation algebra in §5 as in
[DHA09, COY07]. If our worlds have no interesting separation structure, this step can
be omitted, or we can alternately provide a dummy implementation.

Our primary interest is in settings that combine both approximation and separation.
In §6 we characterize the relationship between these properties and prove that the stan-
dard connectives of separation logic mix well with our logic of approximation. In §7,
we show how one can use indirection theory to satisfy all of our approximation and
separation axioms simultaneously in a nontrivial context.

Implementation. Our constructions and proofs are machine-checked in Coq, and made
freely available as part of the Mechanized Semantic Library. Our mechanization con-
tains a certain amount of “black magic Coqery” (e.g., typeclasses, implicit coercions) to
ensure that it slides together smoothly and works cleanly from the perspective of using
the logic. From time to time we will mention a few design choices that enable simpler
mechanical definitions/proofs, but readers particularly interested in this aspect of the
result should consult the mechanization. Our results are available at:

http://msl.cs.princeton.edu/

Numbering convention. In this presentation we present three classes of equations: def-
initions, numbered with roman numerals; Coq-verified theorems, which we enumerate
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with arabic numerals; and axioms in a given interface, enumerated with letters. Many
models can satisfy a given interface; one must prove the axioms from its construction.

2 A Logic of Approximation

Here we present the framework of our Gödel-Löb logic of approximation. The formu-
lae of the logic will be identified with predicates on worlds that are hereditary with
respect to an approximation relation. This simple base will allow us to build a powerful
intuitionistic logic into which we can later fit the modal and substructural features.

2.1 Hereditary Scaffolding

We assume the existence of a set of worlds W, whose precise construction depends on
the domain of interest; see [HDA10, §2] for seven examples drawn from various pro-
gram logics. Given a function P from worlds W to truth values T (e.g., T ≡ Prop
in Coq) and a relation R between worlds, we say that P is hereditary over R when,
if P holds on some world w, then it also holds on all worlds reachable from w
through R:

hereditary(P, R) ≡ ∀w, w′. P (w) → (wRw′) → P (w′) (i)

We assume that our worlds come with two operations for axiomatizing approximation:
“level” |w| : W → N and “approximate” w � w′ : W ⇀ W. The intuition is that
|w| = n quantifies the “amount of information” in the world w, and approximating
w into w′ erases (i.e., approximates) some information in w to make it “fit” into level
n− 1. The level of a world |w| counts the number of times the world can pass through
the � operation (emphasis: � is partial). A predicate P ∈ P is a function from worlds
to truth values T that is hereditary over the approximation relation:

P ≡
{
P ∈ W → T

∣∣ hereditary(P, �)
}

(ii)

In Coq, we define this type as a dependent pair and use implicit coercions that allow us
to use the pair as a function when desired. We introduce the notation w |= P when we
wish to emphasize that we are thinking of P as an assertion rather than a function:

w |= P ≡ P (w) (iii)

We say P entails Q, written P � Q, when the truth of P forces the truth of Q:

P � Q ≡ ∀w. (w |= P ) → (w |= Q) (iv)

We write �∗ and �+ for the reflexive and irreflexive transitive closure of the approxi-
mate relation, respectively. We say that two worlds w and w′ are fashionable�, written
w ∼ w′, if they contain the same amount of information, i.e., if |w| = |w′|.

� The name “fashionable” is a play on words from when we used a time-based analogy for levels.
A predicate P which holds fashionably is true on every world “now,” but maybe not tomorrow.
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Connection to intuitionistic logic. Our framework has much in common with Kripke
models of intuitionistic logic in that predicates are hereditary over a relation between
worlds. We develop this connection further in, e.g., our model for implication in §2.4.

2.2 Axiomatization of Approximation

What kinds of properties do we require the approximation operations � and | · | to
have? In fact, our categorization for approximation is quite simple:��

Level of bottom: (�w′. w � w′) → |w| = 0 (a)

Level of approximation: (w � w′) → |w| = |w′|+ 1 (b)

Weak unapproximation: (∃w. |w| = |w′|+ 1) → ∃w. w � w′ (c)

If the world w cannot be further approximated, the level of w must be 0 (a). If the world
w is approximated to w′ then the level of w must be 1 larger than the level of w′ (b). Fi-
nally, we sometimes wish to “unapproximate”—that is, given some world w′, we would
like to find a world w such that w � w′; an unapproximation to a given w′ only exists if
there is some world containing more information than w′. This unapproximation axiom
allows us to obtain stronger equations relating to the approximation relation (see §3).

Three of the most important consequences of axioms (a)–(c) are the following:

Can’t approximate: |w| = 0 → (�w′. w � w′) (1)

Can approximate: (|w| > 0) → ∃w′. w � w′ (2)

Well founded:
(
∀w. (∀w′. (w�w′) → w′ |=P ) → w |=P

)
→ ∀w. w |=P (3)

That is, worlds of level 0 cannot be approximated further; but any world of level greater
than 0 can be approximated. Moreover, the approximate relation is well-founded and
thus allows proofs by induction over the action of approximation.

2.3 Models

A model is a triple (W, �, | · |) of a set of worlds, an approximate operation, and a level
operation such that axioms (a)–(c) hold. We present a simple model to give intuition
and then a series of generators that build complex models from simpler components.
We conclude with a nontrivial model generated by indirection theory.

Naturals. A very simple model is the naturals, (N, �N, | · |N), i.e., W ≡ N. It is simple
to define the approximation operations in this setting as follows: n �N n′ ≡ n = n′+1
and |n|N ≡ n. Axioms (a)–(c) follow directly from these definitions.
�� To avoid clutter in our presentation, when we write an interface axiom we omit universal

quantifications for variables scoped over the entire equation; e.g., axiom (c) is actually:

∀w′.
(
(∃w. |w| = |w′| + 1) → ∃w. w � w′)
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Generators. Showing that a particular model satisfies a collection of axioms is not
always easy. A generator for a collection of axioms such as (a)–(c) is a method for con-
structing models for those axioms in a modular way by combining previous models in
well-behaved ways. This is a particularly valuable technique in mechanized frameworks
wherein small changes to the definitions can require significant amount of repair work.
We use generators over a variety of axiom sets to allow rapid construction of models.
From time to time we discover we are in some new setting and in that case our first task
is to define a new generator so that if we encounter that setting again we can apply our
new generator immediately. Our generators for the approximation axioms are:

– Trivial. Given a set of worlds W, we can define the trivial model (W, �0, | · |0) by
setting and |w|0 ≡ 0 and making the �0 function undefined everywhere. We stated
axiom (c) delicately to enable the trivial model, since we want neither approxima-
tion nor unapproximation. All predicates are automatically hereditary.

– Semiproduct. Given a model (W, �, | · |) and some other set S, we can define the
semiproduct model (W×S, �W×S , | · |W×S) by defining approximate and level as:

(w, s) �W×S (w′, s′) ≡ (s = s′) ∧ (w � w′) and |(w, s)|W×S ≡ |w|.

– Bijection. Given a model (W, �, |·|), some other set S, and a bijection f : W → S,
we can define the bijection model (S, �f , | · |f ) by setting

s �f s′ ≡ f−1(s) � f−1(s′) and |s|f ≡ |f−1(s)|.

Although we only define a few generators here, we have found that they are sufficient
for a large number of settings. One typically splits worlds into parts with trivial and
nontrivial approximation behavior and combines the two using the semiproduct con-
structor, perhaps defining a bijection to a form more convenient for the remainder of
one’s proof. The trivial model is useful in most cases when the set of worlds does
not have interesting approximation behavior; the exception is when one wishes to use
the recursion operator μ defined in §4 since μ requires nontrivial approximation. In
this case, semiproduct is useful in conjunction with the above model for the naturals
(N, �N, | · |N) to add non-trivial approximation behavior to a set of worlds W.

Indirection theory. The flagship non-trivial model for our approximation axioms is
given by indirection theory [HDA10]. Indirection theory produces approximate solu-
tions to a class of recursive domain equations defined by the pseudoequation:

K ≈ F ((K ×O) → T)

Here F is a covariant functor (a type function together with an operation fmap satisfying
the functor laws), O is some “other” noncircular data, and K is the object one wishes
to model. A cardinality argument shows that this pseudoequation has no solutions in set
theory. Indirection theory approximates a solution by constructing a type K (called the
knot) and a model (K, �K , | · |K) that satisfies axioms (a)–(c). Our current construction
of K is similar to the one given in [HDA10, §8] but we have enhanced it so that all
predicates contained in a knot are hereditary [ADH10, knot hered.v]. We use the
product constructor to build the related model (K ×O, �K×O, | · |K×O) and define P

as the set of hereditary functions over �K×O as in definition (ii).



444 A. Hobor, R. Dockins, and A.W. Appel

Indirection theory also constructs two functions, squash : N×F (P) → K and
unsquash : K → N× F (P) whose behavior is given by the following set of
equivalences:

squash(unsquash(k)) = k
unsquash(squash(n, �)) = (n, fmap approxn �)

That is, squash ◦ unsquash is the identity function, and unsquash ◦ squash is a kind of
approximation function. The fmap function transforms � : F (P) by locating all of the
predicates P inside � and replacing them with approxn(P ), defined as:

approxn(P ) ∈ P ≡ λw.

{
P (w) |w|K×O < n

⊥ |w|K×O ≥ n

The relationship between squash-unsquash and (K, �K , | · |K) is given by:

|k| = (unsquash(k)).1
k � k′ ↔ let (n, �) = unsquash(k) in (n > 1) ∧ k′ = squash(n− 1, �)

The level of k is equal to the first projection of k’s unsquashing and approximation is
equivalent to unsquashing and then resquashing to the next lower level. Axioms (a)–(b)
follow directly; for (c), unsquash and then resquash to the next higher level.

We have used indirection theory to reason about first-class locks in a concurrent
program [Hob08]; mutable references in the polymorphic λ-calculus; and program ter-
mination in a setting with function pointers and semantic assert statements [DH10].

2.4 Hereditary Base Logic

Truth constant: w |= � ≡ � (v)

Falsehood constant: w |= ⊥ ≡ ⊥ (vi)

Conjunction: w |= P ∧Q ≡ (w |= P ) ∧ (w |= Q) (vii)

Disjunction: w |= P ∨Q ≡ (w |= P ) ∨ (w |= Q) (viii)

Impredicative universal: w |= ∀x : τ. P (x) ≡ ∀x : τ. w |= P (x) (ix)

Impredicative existential: w |= ∃x : τ. P (x) ≡ ∃x : τ. w |= P (x) (x)

Implication: w |= P ⇒ Q ≡ ∀w′. (w �∗ w′) →
(w′ |= P ) → (w′ |= Q) (xi)

Negation: ¬P ≡ P ⇒ ⊥ (xii)

Given a model of approximation, we can now give semantic definitions for the opera-
tors of our base intuitionistic logic, which includes the usual propositional connectives
as well as powerful higher-order quantification. Except for implication, each defini-
tion consists of a direct lifting of the underlying metalogic operator and can be proved
hereditary easily from the assumption that the subformulae are hereditary. In contrast,
implication requires that the hereditary assumption be baked in. The resulting model is
exactly a Kripke model of intuitionistic logic and the standard intuitionistic proof theory
(introduction and elimination rules) can be proved as lemmas from these definitions.
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It is worth noting that the τ occurring above in the definitions of universal and exis-
tential quantification is allowed to range over all the types of the metalogic, including
the type predicate itself; this makes the quantifiers impredicative. In contrast, a predica-
tive quantifier would only be allowed to quantify over objects that are smaller according
to some stratification, which turns out to be a significant technical restriction. Modeling
certain programming language features, such as function closures, requires the stronger
impredicative style of quantification that we provide.

3 The Very Model of a Modern Multimodal Logic

Appel et al. [AMRV07] showed how to reason about the action of approximation using
modal logic; we go further using the multimodal approach outlined in [DAH08]. A
modality M ∈M is a binary relation that commutes with the approximation relation �:

M ≡
{
M ∈ W →W → T

∣∣∣
∀w w′′.

(
∃w′.(w � w′) ∧ (w′Mw′′)

)
↔

(
∃w′.(wMw′) ∧ (w′ � w′′)

)}
(xiii)

This condition on modalities is used to guarantee that the modal operators below are
hereditary. Most “reasonable” relations one would like to define are modalities. We have
seen four approximation relations: approximate � and its reflexive �∗ and irreflexive
�+ transitive closures, and the same-level relation fashionably∼; all are modalities:

{�, �∗, �+,∼} ⊂ M (4)

The point of characterizing modalities is that we can then define modal operators pa-
rameterized by various modalities.

Necessarily: w |= �M P ≡ ∀w′. (wMw′) → (w′ |= P ) (xiv)

Hypothetically: w |= ♦M P ≡ ∃w′. (w′Mw) ∧ (w′ |= P ) (xv)

Note we use the standard definition of the universal modality �M , but our definition of
the existential modality ♦M is backwards from what one might expect; indeed, we use
the “proof-theoretic” dual discussed by Restall [Res00] as opposed to the more familiar
boolean dual. We work with this proof-theoretic dual because it is immediately defin-
able given the commutativity restrictions from definition (xiii) (whereas the boolean
dual requires a different condition).

One of the major advantages of identifying and using modal operators is that there
are a variety of useful rules and equations that apply to all modal operators. A few of
these are listed below.

MP � Q ↔ P � �MQ (5)

�M (P ⇒ Q) � �M P ⇒ �MQ (6)

�M (P ∧Q) = �M P ∧�M Q (7)

♦M (P ∨Q) = ♦M P ∨ ♦M Q (8)

�M

(
∀x : τ. P (x)

)
= ∀x : τ. �M P (x) (9)

♦M

(
∃x : τ. P (x)

)
= ∃x : τ. ♦M P (x) (10)
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Lemma (5) gives the characteristic relationship between the � modality and its associ-
ated dual ♦ modality. Readers familiar with modal logics will recognize (6) as axiom
K, which is characteristic the “normal” modal logics.

Given the data we have about worlds and approximation at this point, we can define
two important modal operators which capture some of the important aspects of the
approximation model.

Approximately: � P ≡ ��+P (xvi)

Fashionably: © P ≡ �∼ P (xvii)

The approximation modality � is especially important because it mediates the action of
approximation. It interacts in a significant way with both the key Gödel-Löb induction
rule (below) and with the recursion operator described in §4. The fashionability modal-
ity also interacts in a strong way with recursion. Because of the special relationship �
has with all the formulae of the logic, � enjoys some additional properties.

� (�M P ) = �M (� P ) (11)

� (P ⇒ Q) = � P ⇒ � Q (12)

� (P ∨Q) = � P ∨ � Q (13)

Q ∧ � P � P → Q � P (14)

Lemma (11) shows that � commutes with every � modality; this is a consequence of
the validity condition for modal operators. Lemma (12) shows that � enjoys a stronger
form of (6). Lemma (14), called the Löb rule, is especially notable because it embodies
a kind of induction principle. It says that we can prove that Q entails P if we can
show the (apparently) weaker statement that Q∧�P entails P ; here �P is the induction
hypothesis. The Löb rule follows from (3).

Note that (12) is a strengthened version of (6) with an equality rather than an en-
tailment. We prefer equalities (when they can be achieved) to entailments because they
allow us to use substitution tactics in mechanized proofs, (e.g.,rewrite in Coq) which
is significantly more convenient than introducing a cut.

4 Recursion

In addition to its other benefits, the approximation structure baked into our logic gives us
a powerful way to define recursive predicates. Suppose we have a predicate function F :
predicate → predicate; then we can construct the recursive predicate μF : predicate
satisfying the usual fixpoint equation μF = F (μF ) provided that F is contractive.
Before we can formally define contractiveness we need a few additional definitions.

Recall from above the “fashionably” modality © P ≡ �∼ P . The underlying rela-
tion w ∼ w′ holds iff |w| = |w′|, so © P holds when P holds in all worlds of the same
level. Using ©, we define a stronger form of implication called “subtyping.”

P ⊆ Q ≡ © (P ⇒ Q) (xviii)
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Subtyping is quite a bit stronger than regular implication because the only information
it can “see” is the level of the current world. However, it is somewhat weaker than
unconditional entailment. That is, if w |= P ⊆ Q it might not be the case that P � Q.

We say that P and Q are equivalent and write P ∼= Q iff P ⊆ Q and Q ⊆ P . The
intuition is that w |= P ∼= Q holds if P and Q are indistinguishable on worlds of level
w and smaller. Any world that separates P from Q must have a level greater than |w|.

We say that F is contractive iff:

∀P, Q. � (P ∼= Q) � F (P ) ∼= F (Q) (xix)

What does this mean? Every time you iterate the predicate function F , it “consumes”
one level of approximation before using its argument. Usually, this means that the defi-
nition of F contains a � operator guarding the occurrence of its argument.

What all this means is that we can define μ as a finite number of iterations of F :

w |= μF ≡ w |= F |w|(⊥) (xx)

Here Fn means F iterated n times. The key point is that as long as F is contractive
then we can prove the defining fixpoint theorem for μ:

μF = F (μF ) (15)

Note that in the end we get a strong fixpoint theorem such that μF is simply equal to
its one-step unfolding, which makes this a form of equirecursion. In contrast, systems
with isorecursion typically require some computational step to allow the folding and
unfolding of recursive definitions. Equirecursion is more convenient for our purposes
because it allows us to use the rewriting facilities of the proof assistant, and also because
it helps to decouple the semantics of the assertion logic from the (typically operational)
semantics of the language. Furthermore, using the Löb induction rule and the fact that
F is contractive, we can easily show that μF is the unique fixpoint of F [Ric10, §5].

5 Separation Algebras

Separation algebras are mathematical structures used to model separation logic. They
provide the notion of disjoint merging that is central to the meaning of the operators
of separation logic. We use a variant called a disjoint multi-unit separation algebra
(hereafter just “DSA”) [DHA09]. Briefly, a DSA is a set S and an associated three-
place partial join relation ⊕, written x⊕ y = z, such that the join relation satisfies:

Functional: (x⊕ y = z1) → (x⊕ y = z2) → z1 = z2 (d)

Commutative: x⊕ y = y ⊕ x (e)

Associative: x⊕ (y ⊕ z) = (x⊕ y)⊕ z (f)

Cancellative: (x1 ⊕ y = z) → (x2 ⊕ y = z) → x1 = x2 (g)

Units: ∀x. ∃ux. x⊕ ux = x (h)

Disjointness: (x⊕ x = y) → x = y (i)



448 A. Hobor, R. Dockins, and A.W. Appel

These axioms define a structure that is like a commutative monoid in many ways, except
that⊕ is allowed to be a partial operation. The partiality is important, because it encodes
disjointness. If x⊕ y = z, then x and y are disjoint, by definition.

Hidden in these axioms is the idea of an identity. We say x is an identity if whenever
x ⊕ y = z, then y = z. One fundamental property of identities is that x an identity if
and only if x ⊕ x = x. The units axiom (h) asserts the existence of (possibly many)
identities. It is a consequence of the axioms that each element must have a unique
identity associated with it.

In the following section we shall see how to use a separation algebra to build a sep-
aration logic. For the remainder of this section, we will briefly touch on some example
DSAs and constructions for building more complicated ones.

5.1 Models

A model of a separation algebra is a set of worlds W together with a join relation ⊕
satisfying axioms (d)–(i). We give two trivial examples, followed by a series of simple
generators, and conclude with some nontrivial generators and examples.

Examples and generators. The DSA axioms are well-behaved in the sense that they are
easily propagated across a variety of useful constructions. In our work we have used the
following, all of which are already implemented in Coq to enable rapid development:

– Discrete. Given a set S, define the discrete DSA (S,⊕=) by defining

s1 ⊕= s2 = s3 ≡ s1 = s2 = s3

Every element joins only with itself and is an identity. Axioms (d)–(i) follow.
– Option. Given a set S, define the option DSA (S?,⊕?) by setting S? ≡ None +

Some(s) and the join relation ⊕? as the least relation satisfying (where s? ∈ S?):

None ⊕? s? = s?
s? ⊕? None = s?

The ⊕? relation includes None⊕? None = None. Axioms (d)–(i) follow easily.
– Products. If we are given two DSAs (A,⊕A) and (B,⊕B), we can define the prod-

uct DSA (A×B,⊕A×B) componentwise by setting:

(a1, b1) ⊕A×B (a2, b2) = (a3, b3) ≡ (a1 ⊕A a2 = a3) ∧ (b1 ⊕B b2 = b3)

Axioms (d)–(i) follow directly from the same axioms on A and B.
– Functions. Given a set A and a DSA (B,⊕B), we can define the function DSA

(A → B,⊕A→B) by lifting the DSA on B pointwise as follows:

f ⊕A→B g = h ≡ ∀a.
(
f(a) ⊕B g(a) = h(a)

)
Axioms (d)–(i) follow directly from the axioms on B.

– Bijection. Given a DSA (A,⊕A), a set B, and a bijection f : A → B, we can
define the bijection DSA (B,⊕f ) by setting

b1 ⊕f b2 = b3 ≡ f−1(b1) ⊕A f−1(b2) = f−1(b3)

Axioms (d)–(i) follow because f is a bijection and the axioms hold on A.
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The previous generators are simple but very useful. For example, if A is a set of ad-
dresses and V a set of values, then the archetypical example of partial program heaps
is given by the DSA (A → (V?),⊕A→(V?)), using the function and option generators.
We have a large number of other generators in our toolkit: void, unit, discrete, disjoint
sums, lists, subset, lift, Π-types, Σ-types, finite partial maps, and lattices; a number
of these are described in some detail in [DHA09]. Here we explain another generator,
similar in some ways to the bijection DSA covered above but more general:

– Section–retraction. Suppose we have a DSA (B,⊕B). A function h : B → B is a
join homomorphism when:

b1 ⊕B b2 = b3 → h(b1) ⊕ h(b2) = h(b3) (xxi)

That is, joining is preserved by h. Now suppose we have a set A and a section–
retraction pair: two functions f : A → B and g : B → A such that g ◦ f is the
identity function on A; note that in any section–retraction pair f is automatically
injective while g is automatically surjective. Suppose further that f ◦ g : B → B is
a join homomorphism. Define the section–retraction DSA (A,⊕〈f,g〉) by setting:

a1 ⊕〈f,g〉 a2 = a3 ≡ f(a1) ⊕B f(a2) = f(a3)

In other words, we take the separation structure induced on the preimage of f .
Axioms (d), (g), and (i) follow directly from the injectivity of f and the underlying
axioms on ⊕B . Axiom (e) is even simpler and is direct from the commutativity of
⊕B . The associativity (f) and units (h) axioms are tougher; both require that g ◦ f
is the identity, f ◦ g is a join homomorphism, and the underlying axioms on ⊕B .

The significance of the section–retraction generator is that it will be just what is
needed to handle the unsquash–squash pair constructed by indirection theory.

6 Mixing Separation and Approximation

Once we have defined the separation structure on a set of worlds, we are nearly ready
to define the operators of separation logic. However, to interface with the approxima-
tion features of the logic, we need some additional axioms which ensure that separation
and approximation can play well together in the same sandbox (see figure 1). These
four axioms have the flavor of commuting diagrams; we require that the approximation
relation and separation “slide around” each other cleanly. (There are a total of six pos-
sible cases, but two are subsumed by commutativity). These axioms let us prove the
heredity of the operators of separation logic and to show certain useful results about the
commutativity of approximation operators with separation operators.

Now we can give the definitions of the standard operators of separation logic.

Empty: w |= emp ≡ identity w (xxii)

Separation: w |= P ∗Q ≡ ∃w1, w2. (w1 ⊕ w2 = w) ∧
(w1 |= P ) ∧ (w2 |= Q) (xxiii)

Seplication: w1 |= P −∗Q ≡ ∀w′
1, w2, w. (w1 �∗ w′

1) → (w′
1 ⊕ w2 = w)

→ (w2 |= P ) → (w |= Q) (xxiv)
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(w1 ⊕w2 = w3) → (w1 � w′
1) →

∃w′
2, w

′
3. (w′

1 ⊕ w′
2 = w′

3) ∧ (w2 � w′
2) ∧ (w3 � w′

3)

w1 w2 = w3Ã Ã Ã
w’1 w’2 = w’3

Ã Ã Ã

1 2 3

(j)

(w1 ⊕w2 = w3) → (w3 � w′
3) →

∃w′
1, w

′
2. (w′

1 ⊕ w′
2 = w′

3) ∧ (w1 � w′
1) ∧ (w2 � w′

2)

w1 w2 = w3Ã Ã Ã

w’1 w’2 = w’3
Ã Ã Ã

1 2 3

(k)

(w′
1 ⊕w′

2 = w′
3) → (w1 � w′

1) →
∃w1, w2. (w1 ⊕ w2 = w3) ∧ (w2 � w′

2) ∧ (w3 � w′
3)

w1 w2 = w3Ã Ã Ã

w’1 w’2 = w’3

Ã Ã Ã

1 2 3

(l)

(w′
1 ⊕w′

2 = w′
3) → (w3 � w′

3) →
∃w1, w2. (w1 ⊕ w2 = w3) ∧ (w1 � w′

1) ∧ (w2 � w′
2)

w1 w2 = w3Ã Ã Ã

w’1 w’2 = w’3

Ã Ã Ã

1 2 3

(m)

Fig. 1. Axioms for Mixing Separation and Approximation

The assertion emp and the separating conjunction ∗ can be shown hereditary by using
axioms (j) and (k) . Notice that the definition of seplication explicitly quantifies over all
more approximate worlds, just as does the definition of implication, making it immedi-
ately hereditary from the definition. Just as with implication, the semantics takes on an
intuitionistic flavor, but in general works exactly as expected.

With these definitions stated, we can easily prove the standard inference rules of
separation logic and various equalities among formulae. Note equations (20) and (21);
these elegant equations are the result of our insistence that approximation and separation
interact smoothly. Their proofs make essential use of axioms (l) and (m).

Commutativity: P ∗Q = Q ∗ P (16)

Associativity: (P ∗Q) ∗R = P ∗ (Q ∗R) (17)

Identity: emp ∗ P = P (18)

Seplication adjoint: (P ∗Q) � R = P � (Q−∗R) (19)

Approx sepconjunction: �(P ∗Q) = (�P ∗ �Q) (20)

Approx seplication: �(P −∗Q) = (�P −∗ � Q) (21)

Split sepconjunction: (P � Q) → (R � S) → (P ∗R) � (Q ∗ S) (22)

Cut seplication: (P � Q−∗R) → (S � Q) → (P ∗ S) � R (23)

In addition to the standard operators of separation logic, we can define three sub-
structural modalities. First, we say that w1 is a substate of w2, written w1 � w2, when

w1 � w2 ≡ ∃w′. w1 ⊕ w′ = w2 (xxv)
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Informally, w1 is a smaller state than w2 because you can add w′ to w1 to get w2; it
corresponds to the substate relation with respect to the separation structure. Second, we
say that w1 and w2 are orthogonal, written w1�w2, when

w1�w2 ≡ ∃w′. w1 ⊕ w2 = w′ (xxvi)

Two states are orthogonal when they are compatible in the sense that they can join
together. Finally, w1 and w2 are substructurally comparable, written w1⊕∼w2, when

w1⊕∼w2 ≡ ∃w. (w1�w) ∧ (w2�w) (xxvii)

Two worlds are substructurally comparable when there exists some world (typically an
identity) that is orthogonal to both of them. We can consider the elements of a DSA as
being divided into equivalence classes where there is one class for each unit, and every
element with the same unit is in the class. Then ⊕∼ ranges over all the elements in the
same equivalence class.

All of these substructural relations are valid modalities according to the definition
from §3. The validity proofs are direct consequence of axioms from Figure 1.

{�, �, ⊕∼} � M (24)

A further consequence is that our substructural modalities are all fashionable:

(w1 � w2) ∨ (w1�w2) ∨ (w1⊕∼w2) → w1 ∼ w2 (25)

We often find it convenient to express substructural ideas using modalities like these.
For example, consider the diamond form of the substate relation; ♦�P holds exactly
when some substate of the current state satisfies P . In other words, adding ♦� makes a
predicate invariant under state expansion.1 A little manipulation shows that:

♦�P = P ∗ �. (26)

7 Separation Logics over Knots

An important use case (indeed, our motivating use case) for combining approximation
with separation are the “knots” of indirection theory. We can quite easily demonstrate
that knots satisfy the approximation axioms using the interface provided by indirec-
tion theory. However, to define a separation structure on knots, we need to define an
appropriate join relation and prove the DSA axioms. The knots provided to clients are
opaque, which means the client cannot examine the details of the construction. How-
ever, the client has provided the critical functor F describing the internal structure of
unsquashed knots. We require the client to define a separation structure over F which
we then use to induce a separation structure over knots.

We proceed in stages. First we must make the set N × F (P) into a DSA. We will
require that the client of indirection theory demonstrate that F is a functor on DSAs,

1 Such predicates were called intuitionistic in Reynolds’ work on separation logic [Rey02].
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x′ ⊕ f(y) = f(z) →
∃x, y0. x⊕ y0 = z ∧ f(x) = x′ ∧ f(y0) = f(y)

x y0 = z
f f f

x’ f(y) = f(z)

f f f (n)

f(x) ⊕ f(y) = z′ →
∃y0, z. x⊕ y0 = z ∧ f(y0) = f(y) ∧ f(z) = z′

x y0 = z
f f f

f(x) f(y) = z’

f f f (o)

Fig. 2. Left and right unmappings

i.e., whenever X is a DSA, then F (X) is also a DSA. Furthermore, we require that
whenever f : X → Y is a join homomorphism, then fmap f : F (X) → F (Y )
must also be a join homomorphism. Now we use our generators to construct the DSA
(N × F (P),⊕(N=)×(F (P=))): that is, we pair up a discrete DSA on N with the DSA
generated by applying F to the discrete DSA on P.

We will use the section–retraction generator to induce a DSA for the set A ≡ K
from the above DSA for B ≡ N × F (P). Indirection theory gives us the section–
retraction pair (unsquash, squash). It is easy to show that unsquash ◦ squash is a join
homomorphism on B, completing the construction of the DSA for K .

We have two of the ingredients needed for a logic over knots with both separation
and approximation. We have the approximation structure and we have a DSA. However,
in order to complete the picture we need to prove the distributive axioms from §6.

The two “forward” axioms (j) and (k) follow easily from the assumption that F is
a functor on DSAs. The “backward” axioms (l) and (m), however, are more involved.
Proving these axioms appears to require additional technical restrictions on the func-
tor F , having to do with “unmapping.” The precise statement of these technical re-
quirements is given in Figure 2 and is rather involved. However, proving that particular
functors F have this property is usually easy.

Suppose one has a function f : A → B where A and B are DSAs. We say that f
has left unmappings when it satisfies axiom (14) and right unmappings when it satisfies
(15). We say a functor F preserves unmappings if, whenever f is a join homomorphism
with left (right) unmappings, then fmap f has left (right) unmappings.

The existence of unmappings means that f has a weak kind of invertability property,
and the preservation of unmappings means that when such a weakly invertable function
is applied with fmap, the resulting function is itself weakly invertable.

As with approximation and DSAs, we can show that many standard constructions
(when considered as functors) have the property of preserving unmappings. For exam-
ple, products, disjoint sums, functions and lists all preserve unmappings.

If F preserves unmappings, then we can prove the “unapproximation” axioms (12)
and (13) for knots. The key is to note that the approx function has left and right un-
mappings, and then lift the unmappings through the functor F using (14) and (15). The
unmappings of fmap f then provide the required witnesses for axioms (12) and (13).

We now have all the pieces necessary to build a separation logic with approximation
over the knots of indirection theory. In the final accounting, the client must provide, in
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addition to the data necessary for indirection theory itself, a proof that F is a functor
on DSAs, and an easy technical proof about the preservation of unmappings. From this
basic data, a rich logic of separation and approximation is automatically built.

8 Conclusion

We have presented a method for constructing powerful assertion logics using a Kripke
semantics over a set of worlds. We have given axiomatic interfaces that worlds must
satisfy in order to support higher-order stores in the step-indexing style, and to support
substrucural features in the style of separation logic. These two features interact in non-
trivial ways, and we have further shown how to get an elegant and well-behaved logic
by requiring the approximation and separation relations to commute with one another.
Finally, we have shown throughout the paper how to construct models of these ax-
iomatic interfaces that support a variety of interesting programming language domains.
The proofs and constructions that appear in this paper have been mechanized in Coq
and are freely available as part of the Mechanized Semantic Library [ADH10].
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Schöpp, Ulrich 376
Seidl, Helmut 188
Shu, Zhong-mei 239
Simon, Axel 139
Smans, Jan 304

Tabuchi, Naoshi 312
Tan, Gang 114
Thiemann, Peter 63
Tong, Liangliang 271



456 Author Index

Unno, Hiroshi 312

Vene, Varmo 131

Wang, Bow-Yaw 328

Yang, Hongseok 156
Yi, Kwangkeun 328
Ying, Mingsheng 17

Zdancewic, Steve 344
Zhan, Naijun 1
Zhang, Qi 344
Zhao, Hengjun 1
Zhao, Jianzhou 344
Zhou, Chaochen 1
Zhou, Xiao-cong 239
Zou, Liang 1


	Title
	Preface
	Organization
	Table of Contents
	Invited Talks
	A Calculus for Hybrid CSP
	Introduction
	Hybrid CSP
	Differential Invariants
	Hybrid Hoare Logic
	Subset of DC Formulas
	Assertions
	Axioms and Rules

	Conclusion
	References

	Foundations of Quantum Programming (Extended Abstract)
	Quantum Loop Programs YF10
	Predicate Transformer Semantics of Quantum Programs YDFJ09, YCFD07
	Floyd-Hoare Logic for Quantum Programs Y09
	References

	From a Verified Kernel towards Verified Systems
	L4.Verified
	What Have We Learned?
	A Secure System with Large Untrusted Components
	Architecture
	Design and Implementation

	Security Analysis
	What Is Missing?
	Conclusion
	References

	Reasoning about Computations Using Two-Levels of Logic
	Introduction
	The Reasoning Logic
	The Specification Logic
	Encoding Provability of the Specification Logic
	Various Implemented Systems
	Teyjus
	Bedwyr
	Abella
	Tac

	Various Aspects of Logic
	Abstract Syntax as -Tree Syntax
	Fixed Points
	$\Delta$-Quantification
	Induction and Co-induction
	Two-Level Logic

	Related Work
	References


	Session 1
	Typechecking Higher-Order Security Libraries
	Security Verification by Typing
	Refinement Types for ML (Review)
	Refinements for Pre- and Post-Conditions
	Example: A MAC-Based Authentication Protocol
	Example: A Reusable Typed Interface for Lists
	Case Studies: Cryptographic Protocol Implementations
	Related Work
	References

	Towards Deriving Type Systems and Implementations for Coroutines
	Introduction
	Reduction Semantics for Coroutines
	Symmetric Coroutines
	Asymmetric Coroutines
	Dahl-Hoare Style Coroutines

	From Reduction Semantics to Denotational Implementation
	Symmetric Coroutines
	Asymmetric Coroutines
	Dahl-Hoare Style Coroutines
	Correctness

	Implementation
	Deriving a Type System
	Global Variables and the Reader Monad
	Symmetric Coroutines
	Asymmetric Coroutines
	Dahl-Hoare Style Coroutines
	Keeping Track of Nil

	Type Soundness
	Related Work
	Conclusion
	References

	Liberal Typing for Functional Logic Programs
	Introduction
	Preliminaries
	Formal Setup
	Semantics
	Type Derivation and Inference for Expressions
	Well-Typed Programs

	Properties of the Type System
	Examples
	Type-Indexed Functions
	Existential Types, Opacity and HO Patterns
	Generic Functions

	Discussion
	Conclusions
	References


	Session 2
	A Provably Correct Stackless Intermediate Representation for Java Bytecode
	Introduction
	Source and Target Languages
	Semantic Domains of BC and BIR
	Observational Semantics of BC and BIR

	Transformation Algorithm
	Correctness
	Semantic Relations
	Soundness Result

	Related Work
	Conclusions and Future Work
	References

	JNI Light: An Operational Model for the Core JNI
	Motivation
	Informal Discussion of JNIL
	Formal Semantics of JNIL
	JNIL Programs
	Runtime States
	Operational Semantics of Bytecode and Native Instructions
	GC Step
	Type Safety of Bytecode and GC Safety

	Applications of the JNIL Model
	Extensions and Future Work
	Related Work
	Conclusions
	References

	An Interactive Tool for Analyzing Embedded SQL Queries
	Introduction
	Architecture
	Abstract String Collector
	SQL Syntax Checker
	Testing Facility
	User Interface

	Evaluation
	Conclusions and Related Work
	References


	Session 3
	Simple and Precise Widenings for H-Polyhedra
	Introduction
	Preliminaries
	Widening for Polyhedra
	Normalizing the Constraint Representation
	Standard Widening on Normalized Constraints

	Improving Precision through Additional Heuristics 
	Widening in the Presence of Several Changing Inequalities
	Implementation

	Evaluation
	Conclusion and Related Work
	References

	Metric Spaces and Termination Analyses
	Introduction
	Programming Language
	Framework
	Review on Metric Spaces
	Concrete Metric-Space Semantics
	Abstract Semantics
	Generic Analysis

	Instance of the Framework
	Concrete Semantics
	Abstract Semantics with Linear Ranking Relations

	Conclusion
	References


	Session 4
	Amortized Resource Analysis with Polymorphic Recursion and Partial Big-Step Operational Semantics
	Introduction
	Informal Presentation
	Resource Aware ML
	Operational Semantics
	Resource Annotated Types
	The Inference Algorithm
	Related Work
	Conclusion and Future Research
	References

	Interprocedural Control Flow Reconstruction
	Introduction
	The Concrete Semantics
	Interprocedural Control Flow Reconstruction
	Practical Issues and Experiments
	Conclusion
	References

	Data Structure Fusion
	Introduction
	Relation Representations and Indices
	Logical Representation of Relations
	Indices and Tree Decompositions
	Physical Representations, Cross-Linking, and Fusion
	Process Scheduler
	Minesweeper

	Abstraction, Well-Formedness, and Adequacy
	Tree Decompositions
	Logical Adequacy
	Physical Representation

	Queries
	Query Plans

	Relational Operations
	Operators on the Tree Decomposition
	Physical Representation Operators

	Related Work
	Conclusion
	References


	Session 5
	Categorical Descriptional Composition
	Introduction
	Classical Attribute Couplings and Descriptional Composition
	The Linear Recursive Language $l$($\Sigma$)
	SSUR-ACs as Attribute Grammars in $l$($\Sigma$)

	Categorical Aspect of Attribute Couplings
	$l$($\Sigma$) as a Traced Symmetric Monoidal Category
	Monoidal Attribute Grammar
	MAGs as Algebras in Int($C$)

	Descriptional Composition
	Descriptional Composition for Nondeterministic ACs
	Descriptional Composition for Quasi-SSUR ACs
	Descriptional Composition for Stack AGs

	Conclusion and Discussion
	References

	Bisimulation Proof Methods in a Path-Based Specification Language for Polynomial Coalgebras
	Introduction
	Preliminaries
	A Path-Based Language for Polynomial Coalgebras
	Bisimulation Proofs in the Language
	Related Work
	Conclusions
	References

	Context-Preserving XQuery Fusion
	Introduction
	XQuery Semantics
	Sequence: Data Model in XQuery
	Dewey Order Encoding and XML Store
	Formal Semantics

	Emulating XML Stores with Extended Dewey Codes
	XML Store Emulation on Expression
	Extended Dewey Code

	XQuery Fusion
	Fusion Transformation

	Related Work
	Conclusion
	References


	Session 6
	Index-Compact Garbage Collection
	Introduction
	Comparison and Motivation
	Index-Compact Garbage Collector
	Design
	Implementation

	Methodology
	Experimental Setup
	Results

	Discussions
	Improvement Techniques
	Generational Variant

	Related Works
	Compact Collectors
	VM-Aware Design

	Conclusion
	References

	Live Heap Space Bounds for Real-Time Systems
	Introduction
	Real-Time System Model
	FSM Representation
	Real-Time Systems as Timed Automata
	Untimed Automata

	Rule-Based Representation
	Inferring Size Relations
	Upper Bounds
	Examples
	Related Work
	Conclusion and Further Work
	References


	Session 7
	A Quick Tour of the VeriFast Program Verifier
	Introduction
	Building Blocks
	Method Contracts
	Inductive Data Types
	Fixpoint Functions
	Lemma Functions

	Implementation and Experience
	References

	Verification of Tree-Processing Programs via Higher-Order Model Checking
	Introduction
	Preliminaries
	Extended HMTTs
	Verification Method for EHMTTs
	Construction of PA
	Construction of PBi

	Experiments
	Related Work
	Conclusion
	References

	Automatically Inferring Quantified Loop Invariants by Algorithmic Learning from Simple Templates
	Introduction
	Motivating Example
	Organization

	Preliminaries
	Problems and Solutions
	Predicate Abstraction with a Template
	Learning Quantified Invariants
	Equivalence Queries
	Membership Queries
	Main Loop

	Experiments
	Related Work
	Conclusions
	References


	Session 8
	Relational Parametricity for a Polymorphic Linear Lambda Calculus
	Introduction
	A Brief Introduction to PDILL
	Parametricity for PDILL 
	Definitions
	Fundamental Theorem
	Soundness and Completeness

	Examples
	Polymorphic Boolean
	Multiplicative Selection
	Natural Numbers

	Discussion
	References

	A Certified Implementation of ML with Structural Polymorphism
	Introduction
	Structural Polymorphism
	Type Soundness
	Type Inference
	Unification
	Inference

	Interpreter
	Dependent Types
	Program Extraction
	Related Works
	Conclusion
	References

	Type Inference for Sublinear Space Functional Programming
	Programming with Bidirectional Data Flow
	IntML
	Application: Graph Algorithms
	Type Inference
	Constraint-Based Type Inference
	Solving Constraints

	Conclusion
	References


	Session 9
	Liveness of Communicating Transactions (Extended Abstract)
	Introduction
	Syntax and Reduction Semantics of TransCCS
	Liveness
	Safety
	Clean Traces and Safety
	Labelled Transition System
	Clean Traces
	Characterization of Safety as Clean Trace Inclusion

	Characterization of Liveness as Clean Tree Failures
	Canonical Tests
	Soundness and Completeness
	Weak Clean-Trace Bisimilarity
	Related Work
	Conclusions
	References

	Model Independent Order Relations for Processes
	Introduction
	Basic Definitions and Notations
	CCS
	Basic Notions for Model-Independent Characterization

	Orders for Static Environments
	Model-Independent Definition of Orders
	Behavioural Properties
	Operational Counterparts of Orders

	Orders for Dynamic Environments
	Conclusion
	References

	Concurrency Can’t Be Observed, Asynchronously
	Introduction
	A Theory of Concurrent Barbs and Asynchrony
	Transition Systems and Barbs
	Concurrent Barbs and Non-interleaving Semantics
	Concurrency Can't Be Observed, Asynchronously

	Asynchronous $\pi$-Calculus
	Open Petri Nets
	On Selinger's Axiomatization
	Conclusions, Related and Future Works
	References


	Tutorial
	A Logical Mix of Approximation and Separation
	Introduction
	A Logic of Approximation
	Hereditary Scaffolding
	Axiomatization of Approximation
	Models
	Hereditary Base Logic

	The Very Model of a Modern Multimodal Logic
	Recursion
	Separation Algebras
	Models

	Mixing Separation and Approximation
	Separation Logics over Knots
	Conclusion
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




