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Abstract. Partial evaluation is a program specialization technique that
allows to optimize programs for which partial input is known. We show
that partial evaluation can be used with advantage to speed up as well
symbolic execution of programs. Interestingly, the input required for par-
tial evaluation comes from symbolic execution itself which makes it nat-
ural to interleave partial evaluation and symbolic execution steps in a
software verification setup.

1 Introduction

Symbolic execution [1] and partial evaluation [2] both are generalizations of stan-
dard interpretation of programs, however, they generalize in different ways: while
symbolic execution permits interpretation of a program with symbolic (i.e., un-
specified) initial values, the aim of partial evaluation is to transform a program
with partially specified input values into a (hopefully, more efficient) program
that has only the unspecified arguments as input. For fully specified input argu-
ments the result of both mechanisms is standard program interpretation.

In this paper we show that both technologies not only are compatible with
each other, but that there is considerable potential for synergies. Specifically, we
integrate a simple partial evaluator for a Java-like language into the logic-based
symbolic execution engine of the software verification tool KeY [3]. This allows
to interleave symbolic execution and partial evaluation steps within a uniform
(logic-based) framework in a sound way. Intermittent partial evaluation during
symbolic execution has the effect that the remaining program that is yet to be
executed is continuously simplified relative to the current path conditions and
the current symbolic state in each symbolic execution trace.

This paper is organized as follows: in the next section we introduce a small
object-oriented programming language which is used for the formal definitions
(the actual system is implemented for nearly full-fledged sequential Java); we
also provide background on symbolic execution and partial evaluation. Sect. 3
defines the program logic and deduction system that we use as a framework for
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the integration. In Sect. 4 we introduce a version of a program specialization
operator that is suitable for logic-based verification and we extend the symbolic
execution calculus with sound rules that permit intermittent partial evaluation.
In Sect. 5 we show the context in which the resulting calculus is applied, and
in Sect. 6 we evaluate the integrated system using formal verification tasks for
a number of Java programs. This is followed by a discussion of related work
(Sect. 7). We stress that the particular combination of symbolic execution and
partial evaluation explored in the present paper is by far not the only possible
one. We sketch further possibilities in the final section on future work.

2 Background

2.1 A Simple Programming Language

The object-oriented programming language PL described in this section is basi-
cally a simplified Java variant and closely related to the language defined in [4].
We briefly sketch the differences to Java:

Unsupported Features. Multi-threading, graphics, dynamic class loading, generic
types or floating point datatypes are not supported by PL nor by the actual
implementation in the KeY tool. Formal specification and verification of these
features is a topic of ongoing research, therefore, left out completely.

Restricted Features. For ease of presentation PL imposes some additional re-
strictions compared to Java. The KeY tool and the prototype implementation
of our ideas evaluated in Sect. 6 do not impose these restrictions, but model and
respect the Java semantics faithfully. The following restrictions apply to PL:

Inheritance and Polymorphism. For the sake of a simple semantics for dynamic
dispatch of method invocations PL abstains from Java-like interfaces and method
overloading. Likewise, with exception of the Null type, the type hierarchy induced
by user-defined class types has a tree structure with class Object as root.
Prohibiting method overloading allows to identify a method within a class unam-
biguously by its name and number of parameters. We allow polymorphism (i.e.
methods can be overwritten in subclasses) but require that their signature must
be exactly the same, otherwise it is a compile-time error.

Visibility. All classes, methods and fields are publicly visible. This restriction con-
tributes also to a simpler dynamic dispatch semantics.

No Exceptions. PL has no support for exceptions. Instead of runtime exceptions like
NullPointerExceptions the program will simply not terminate in these cases.

No class/object Initialization. In Java the first active usage of a type or creation
of a new instance triggers complex initialization. PL supports only instance cre-
ation, but does not initialize fields upon creation. In particular, PL does not sup-
port static or instance initializers. Constructors are also missing in PL, a new
instance is simply created by the expression new T ().

Primitive Types. Only boolean and int are available. To keep the semantics of
standard arithmetic operators simple, int is an unlimited datatype representing
the whole numbers Z rather than a finite datatype with overflow.
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A PL program p is a non-empty set of class declarations with at least one class
of name Object. The class hierarchy is a tree with class Object as root. A class
Cl := (cname, scnameopt, f ld,mtd) consists of (i) a classname cname unique in
p, (ii) the name of its superclass scname (only omitted for cname = Object),
and (iii) a list of field fld and method mtd declarations.

The syntax for class declaration is the same as in Java. The only lacking
features are constructors and static/instance initialization blocks. PL knows
also the special reference type Null which is a singleton with null as the only
element. It may be used in place of any reference type and is the only type that
is a subtype of all class types.

To keep examples short we agree on the following convention: if not explicitly
stated otherwise, any given sequence of statements is seen as if it would be the
body of a static, void method declared in a class Default with no fields declared.

The syntax of the executable fragment needed for the purpose of this paper
as follows:

Statements
stmnt ::= stmnt stmnt | lvarDecl | locExp’=’exp’;’ | cond | loop
loop ::= while ’(’exp’)’ ’{’stmnt’}’
lvarDecl ::=Type IDENT ( ’=’ exp)opt’;’
cond ::= if ’(’exp’)’ ’{’stmnt’}’ else ’{’stmnt’}’
Expressions
exp ::= (exp.)optmthdCall | opExp | locExp
mthdCall ::= mthdName’(’expopt(’,’exp)∗’)’
opExp ::= f (expopt(,exp)∗) | Z | TRUE | FALSE | null
f ::= ! | - | < | <= | >= | > | == | & | | | * | / | % | + | -
Locations
locExp ::= IDENT | exp.IDENT

Dynamic dispatch works in PL as follows: we need to determine the implemen-
tation of a method on encountering a method invocation such as o.m(a). To do
so, first look up the dynamic type T of the object referenced by o. Then scan all
classes between T and the static type of o for an implementation of a method
named m and the correct number of parameters. The first match is taken.

2.2 Symbolic Execution

Symbolic execution is an idea from the 1960s [1], but it has only recently been
realized efficiently for industrially relevant programming languages. Symbolic
execution is a central, very versatile program analysis technique that is used for
formal program verification [3,5,6], extended static checking and verification [7],
debugging [8], and automatic test case generation [9,10].

In the last decade a number of efficient symbolic execution engines for real
heap-based programming and intermediate languages were created including
KeY (for Java, C, Creol, see [3]), KIV (for Java, see [11]), Bogor/Kiasan (for
BIR, see [12]), Pex (for MSIL, see [9]), and VeriFast (for C, Java, see [13]).
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In symbolic execution one permits either uninitialized program locations or,
more generally, program locations that are initialized with symbolic expressions.
The following PL program orders the values of x and y: after its execution x
contains the maximum of x0, y0 and y their minimum.

int x = x0; int y = y0; int z = max(x,y);
if (x < z) {y = x; x = z;}

We use location-value pairs to represent states in symbolic execution. The ex-
pression {l1 := t1 || · · · || ln := tn} denotes a symbolic state in which each
program location of the form li has the expression ti as its symbolic value.

After symbolic execution of the first three statements of the program above
we obtain the symbolic state U = {x := x0 || y := y0 || z := max(x0, y0)}.
Symbolic execution of the conditional splits the execution into two branches,
because the value x0 < max(x0, y0) of the guard expression is symbolic and
cannot be reduced. The (negated) value of the guard becomes a path condi-
tion relative to which symbolic execution continues. Under the path condition
P1 ≡ x0 < max(x0, y0) the body of the conditional is executed which results in
the final symbolic state U ′ = {x := max(x0, y0) || y := x0 || z := max(x0, y0)}.
From P1 and properties of max one can infer max(x0, y0)

.= y0 which simplifies
U ′ to {x := y0 || y := x0 || z := y0}. The other branch terminates immediately in
state U under path condition P2 ≡ x0 ≥ max(x0, y0) (≡ x0

.= max(x0, y0)).
It is obvious already from this small example that simplification of inter-

mediate states wrt first-order theories is essential for efficiency and to obtain
intuitive results. Modern symbolic execution engines use SMT solvers [9,13] and
also powerful built-in theorem provers [3,11] for this purpose.

The example suggests that a single state during symbolic execution of a
program p consists of the following three components:

1. A program pointer to the next executable statement of the remaining state-
ments in p that have to be executed.

2. A path condition P relative to which the remaining statements are executed.
3. A symbolic state U relative to which the remaining statements are executed.

Symbolic execution of a program is then arranged as a symbolic execution tree
whose nodes are triples consisting of program pointer, path condition, and sym-
bolic state.

In general it is not possible to symbolically execute a program fully, because
unbounded loops give rise to infinitely many branches with differing symbolic
path conditions. Loop invariants or induction are required to turn symbolic exe-
cution into a complete method for computing strongest post-states of programs.

2.3 Partial Evaluation

The ideas behind partial evaluation go back in time even further than those be-
hind symbolic execution: Kleene’s well-known smn theorem from 1943 states that
for each computable function f(x,y) where x = x1, . . . , xm, y = y1, . . . , yn there
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is an m+1-ary primitive recursive function smn such that φsm
n (f,x) = λy.f(x,y).

Partial evaluation can be characterized as the research programme to prove
Kleene’s theorem under the following conditions:

1. φsm
n (f,x) is supposed to run more efficiently than f .

2. f is a program from a non-trivial programming language, not merely a re-
cursive function.

3. The construction of φsm
n (f,x) is efficient, i.e., its runtime should be compara-

ble to compilation of f -programs.

In contrast to symbolic execution the result of a partial evaluator is not the
value of output variables, but another program. The known input (named x
above) is also called static input while the general part y is called dynamic
input. The partial evaluator or program specializer is often named mix. Fig. 1
gives a schematic overview of partial evaluation.

partial
evaluator mix

static input x

specialized pro-
gram px

specialized
program px

output
dynamic
input y

target
program p

Fig. 1. Partial evaluation schema [2]

The first efforts in partial evaluation date from the mid 1960s and were targeted
towards Lisp. Due to the rise in popularity of functional and logic programming
languages the 1980s saw a large amount of research in partial evaluation of such
languages. A seminal text on partial evaluation is the book by Jones et al. [2].

There has been relatively little research on partial evaluation of Java. The
paper [14] summarizes the state-of-art until 2002 and discusses the Java special-
izer JSpec which worked by cross-translation to C as an intermediate language.
JSpec seems to be no longer maintained. We found only one other (commercial)
Java partial evaluator called JPE1, but its capabilities and underlying theory
is not documented.

The application context of partial evaluation is rather different from that of
symbolic execution: in practice, partial evaluation is not only employed to boost
the efficiency of individual programs, but often used in meta-applications such
as parser/compiler generation.

We illustrate the main principles of partial evaluation by a small control circuit
PL program depicted in Fig. 2 on the left. The program approximates the value
of variable y to a given threshold with accuracy eps by repeatedly increasing
or decreasing it as appropriate.
1 http://www.gradsoft.ua/products/jpe_eng.html

http://www.gradsoft.ua/products/jpe_eng.html


130 R. Bubel, R. Hähnle, and R. Ji

y = 80;

threshold = 100;

if (y > threshold) {

decrease = true;

} else {

decrease = false;

}

while (|y-threshold| > eps) {

if (decrease) {

y-1;

} else {

y+1;

}

}

y=80

threshold=100

y>threshold ?

decrease=true decrease=false

|y-threshold| > eps ?

decrease ?

y=y-1 y=y+1

•
•

Fig. 2. A simple control circuit PL program and its control flow graph

We can imagine to walk a partial evaluator through the control flow graph
(for the example on the right of Fig. 2) while maintaining a table of concrete
(i.e., constant) values for the program locations. In the example, that table is
empty at first. After processing the two initial assignments it contains U = {y :=
80 || threshold := 100} (using the update notation of Section 2.2).

Whenever a new constant value becomes known, the partial evaluator attempts
to propagate it throughout the current control flow graph (CFG). For the example,
this constant propagation results in the CFG depicted in Fig. 3 on the left. Note
that the occurrences of y that are part of the loop have not been replaced. The
reason is that y might be updated in the loop so that these latter occurrences of y
cannot be considered to be static. Likewise, the value of decrease after the first
conditional is not static either. The check whether the value of a given program
location can be considered to be static with respect to a given node in the CFG is
called binding time analysis (BTA) in partial evaluation.

Partial evaluation of our example proceeds now until the guard of the first
conditional. This guard became a constant expression which can be evaluated
to false. As a consequence, one can perform dead code elimination on the left
branch of the conditional. The result is depicted in Fig. 3 in the middle. Now
the value of decrease is static and can be propagated into the loop (note that
decrease is not changed inside the loop). After further dead code elimination,
the final result of partial evaluation is the CFG on the right of Fig. 3.

Partial evaluators necessarily approximate the target programming language
semantics, because they are supposed to run fast and automatic. In the presence
of such programming language features as exceptions, inheritance with complex
localization rules (as in Java), and aliasing (e.g., references, array entries) BTA
becomes very complex [14].
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y=80

threshold=100

80>100 ?

decrease=true decrease=false

|y-100| > eps ?

decrease ?

y=y-1 y=y+1

•
•

y=80

threshold=100

decrease=false

|y-100| > eps ?

decrease ?

y=y-1 y=y+1

•
•

y=80

threshold=100

decrease=false

|y-100| > eps ?

y=y+1

•
•

Fig. 3. Partial evaluation example

3 Dynamic Logic with Updates

3.1 Program Logic

As program logic for PL we use a sorted first-order dynamic logic instantiated
by a given PL program p. We define formally the family of first-order dynamic
logics DPL used to reason about PL programs. Each concrete instance of this
family is associated to exactly one PL program which is then referred to as the
context program or sometimes the program context of that logic.

Definition 1 (Signature). For any PL program p a DPL signature Σp is de-
fined as a tuple (Types,FSym,PSym,VSym), where Types is a set of sort names
that contains at least {�, boolean, int, Object, Null} ∪ classes(p). Further,
FSym is a set of function symbols, PSym a set of predicate symbols, and VSym a
set of logic variable symbols (we omit the subscript p in Σp whenever it can be
unambiguously derived from the context). Function, predicate, and logic variable
symbols have a fixed sorted signature. Sorts are ordered wrt a sort hierarchy �.
The order � models p’s type hierarchy with maximum element �.

We distinguish between rigid and non-rigid function and predicate symbols.
Intuitively, the semantics of rigid symbols does not depend on the current state of
program execution while non-rigid symbols are state-dependent. (Local) program
variables, arrays, static, and instance fields are modeled as non-rigid function
symbols and together form a separate class of non-rigid symbols called location
symbols. Specifically, local program variables and static fields are modeled as
non-rigid constants, instance fields as unary non-rigid functions, and array access
as a binary non-rigid function. For example, an instance field size of type int
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declared in a class List is modeled as a unary non-rigid function size@List :
List → int. For terms representing field accesses, such as size@List(head),
we use the more readable short form head.size, if no ambiguities arise (and
similar for array accesses). ΠΣ denotes the set of all executable PL programs
(i.e., sequence of statements) with locations over signature Σ.

The inductive definition of terms and formulas is standard, but we introduce
a new syntactic category called update to represent state updates with symbolic
expressions. An elementary update has the general shape l := t with terms l, t
and l being a location term (i.e., a program variable, field or array access). It
has the same semantics as an assignment. Updates can be composed into parallel
updates l1 := t1 || l2 := t2 or quantified updates for T x; φ; l(x) := t(x).

Definition 2 (Terms, Updates and Formulas). Terms t, updates u and
formulas φ are well-sorted first-order expressions of the following kind:

t := x | f(t1, . . . , tn) | if (φ) then (t) else (t) | {u}t
u := l := t | u ||u | for T x; φ; u
φ := q(t1, . . . , tn) | ¬φ | φ ◦ φ (◦ ∈ {∧,∨,→,↔} |

{u}t | Qx;φ (Q ∈ {∃, ∀}) | if (φ) then (φ) else (φ)
[s]φ | 〈s〉φ

s := any element of ΠΣ

The formula [p]φ has the intuitive meaning that if the program p terminates
then in its final state the formula φ must hold (partial correctness). The formula
〈p〉φ means that p terminates and in its final state φ holds (total correctness).

All formulas, terms and updates are evaluated with respect to a DPL-Kripke
structure whose states correspond to program states.

Definition 3 (DPL-Kripke structure). A DPL-Kripke structure is a tuple
K = (D, I,S, ρ) where:

– D is a non-empty domain together with a domain function δ : D → Types
mapping each domain element to its ( run-time) type.
DT = {d ∈ D |δ(d) � T } denotes the projection of D to elements of sort
T or any subsort of T . We ensure DT �= ∅, for all T ∈ Types by setting
DNull = {null}, Dint = ZZ, Dboolean = {true, false}.

– I is an interpretation mapping each rigid function symbol f : T1× . . .×Tn →
S to a total function I(f) : DT1 × . . .×DTn → DS and each rigid predicate
symbol p : T1 × . . .× Tn to a relation I(p) ⊆ DT1 × . . .×DTn .

– S is a set of states. Each state s ∈ S is an interpretation of the non-rigid
function and predicate symbols.

– ρ : Π × S × S is a state transition relation relating two states s, t by a
program p iff p started in state s terminates in the final state t. Any set of
final states ρ(p)(s) is either a singleton set or empty as PL is deterministic.

As usual in first-order logic, to define evaluation of terms and formulas in addi-
tion to a structure we need the notion of a variable assignment. This is a function
β : VSym → D assigning to logical variables a value in D. The evaluation func-
tion valK,s,β is then defined as usual and summarized in Fig. 4. Due to space
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valK,s,β(f(t1, . . . , tn)) = I(f)(valK,s,β(t1), . . . , valK,s,β(t1))
valK,s,β(q(t1, . . . , tn)) = tt iff (valK,s,β(t1), . . . , valK,s,β(t1)) ∈ I(q)

valK,s,β(φ ∧ ψ) =

{
tt, if valK,s,β(φ) = tt and valK,s,β(φ) = tt
ff, otherwise.

. . .

valK,s,β([s](φ)) =

{
valK,s′,β(φ), if ∃ s ∈ S such that ρ(p)(s, s′)
tt, otherwise

Fig. 4. Definition (excerpt) of evaluation function val

reasons we do not give a formal semantics of updates and refer to [3] for details
on updates. Instead we explain the meaning intuitively along some examples:

– Elementary updates i := j have exactly the same meaning as assignments:
in a DPL-Kripke structure K and state s, an update application {i := j} ξ
on a term/formula ξ yields the same value as if evaluating ξ in K, s′ where
s′ is identical to s except at i which is evaluated to valK,s,β(j) in s′.

– Parallel updates u1 ||u2 are evaluated simultaneously and do not interfere
with each other. Content swapping of two program variables can thus be
expressed by i := j || j := i.

– Quantified updates for T x; φ; u allow to update arbitrarily many locations
simultaneously. The update “for int i; i ≥ 0 ∧ i < a.length; a[i] := 0”, for
example, assigns all array components the value 0.

– In case of parallel and quantified updates conflicts may arise when the same
location is assigned different values as in i := 0 || i := 1. Conflict resolution
for parallel updates utilizes a last-wins semantics where the previous update
is equivalent to i := 1. Conflict resolution for quantified updates requires
a well-founded order on T and the update with the smallest value for the
quantified variable wins [3].

To summarize, updates are similar to explicit substitutions and allow to express
state changes concisely at the syntactic level.

Definition 4 (Satisfiability and Validity). A DPL-formula φ is

– satisfiable iff there exists a DPL-Kripke structure K = (D, I,S, ρ), a state
s ∈ S and a variable assignment β such that valD,I,s,β(φ) = tt (or in short:
K, s, β |= φ);

– valid in a DPL-Kripke structure K (we also say that K is a model for φ and
write K |= φ) iff for all states s ∈ S and variable assignments β we have
K, s, β |= φ;

– logically valid iff all DPL-Kripke structures K are models for φ.

We introduce two notions which we will need later on. For technical reasons we
must have the possibility to extend a logic’s signature.

Definition 5 (Signature Extension). Let Σ,Σ′ denote two signatures. Σ′ is
called a signature extension of Σ if there is an embedding σ(Σ) ⊂ Σ′ that is
unique up to isomorphism and enjoys the following properties:
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– σ(TypesΣ) = TypesΣ′

– σ(FSymΣ) ⊆ FSymΣ′ where for any arity countably infinite additional func-
tion symbols exist (analogously for predicates and logic variables)

– σ(ΠΣ) ⊆ ΠΣ′

An important property of signature extensions is the following:

Lemma 1. Let Σ′ ⊇ Σ denote a signature extension in the sense of Def. 5.
If a DPL-formula φ over Σ has a counter example, i.e., a DPL-Kripke structure
KΣ, s ∈ SΣ with K, s �|= φ then σ(K, s) �|= φ . In words, signature extensions are
counter example preserving.

Finally, we define the notion of an anonymizing update. The motivation behind
anonymizing updates is to erase knowledge about the values of the fields included
in the set mod of locations that can be modified by a program. This is achieved
by assigning fresh constant or function symbols to those locations. For example,
the anonymizing update for the modifier set modΣ = {i, j} is i := ci || j := cj
where ci, cj are constants freshly introduced in the extended signature Σ′.

Definition 6 (Anonymizing Update). Let mod denote a set of terms built
from location symbols in Σ. An anonymizing update for mod is an update Vmod
over an extended signature Σ′ assigning each location l(t1, . . . , tn) ∈ mod a term
f ′
l (t1, . . . , tn) where f ′

l ∈ Σ′\Σ.

3.2 Sequent Calculus

The calculus for reasoning in DPL is a sequent calculus. A sequent is an expres-
sion of the form Γ =⇒ Δ with Γ,Δ being sets of DPL-formulas. We call Γ the
antecedent and Δ the succedent of the sequent. A sequent has the same meaning
as the formula ∧

φ∈Γ
φ→

∨
ψ∈Δ

ψ .

Sequent rules have the general form

name
s1 · · · sn

s

where s, s1, . . . , sn are sequents. The sequents above the line are the rule’s
premises while sequent s is called the rule’s conclusion. A sequent without any
premises is an axiom.

A sequent proof is a tree whose nodes are labelled with sequents and with a
sequent whose validity is to be proven at its root. This proof tree is constructed
by applying sequent rules r to leaf nodes n whose sequent matches the conclusion
r. The premises of r are then added as children of n. A branch of a proof tree is
closed iff it contains an application of an axiom. A proof tree is closed iff all its
branches are closed.
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As usual, sequent rules are written in schematic form using schema variables
(pattern variables with matching restrictions):

andLeft
Γ, φ, ψ =⇒ Δ

Γ, φ ∧ ψ =⇒ Δ
close

∗
Γ, φ =⇒ φ,Δ

Here, φ, ψ (Γ, Δ) are schema variables that can be instantiated with any formula
(set of formulas). The sequent rule andLeft is applicable at any leaf sequent that
contains a disjunctively connected formula in its antecedent.

To handle formulas containing programs within our sequent calculus we aim
to model symbolic execution (see Sect. 2.2). Recall that a node in a symbolic
execution tree contains a program pointer to the next active statement, path
condition, and a symbolic state relative to which symbolic execution is executed.
Accordingly, nearly all sequent rules for programs work on a first active statement
s and a current update U in the following general form of a conclusion:

Γ =⇒ {U}[π s; ω]φ,Δ

In addition, π stands for an inactive prefix containing labels, opening braces or
method-frames (see below) and ω for the remaining program. Path conditions
are represented by suitable formulas and accumulate in the antecedent Γ .

Symbolic execution in our DPL-calculus can be roughly organized into two
phases. The first is the rewriting phase where the first active statement is re-
placed with an equivalent series of simpler statements. A typical rule is

evalIfGuard
Γ =⇒ {U}[π boolean b = nse; if (b) {s1} else {s2} ω]φ,Δ

Γ =⇒ {U}[π if (nse) {s1} else {s2} ω]φ,Δ

where nse is a schema variable matching any non-simple PL-expression (basi-
cally, an expression that is neither a literal nor a program variable). As these
kind of rules are pure rewrite rules that can be applied in any possible syntactic
context (antecedent, succedent, box, diamond) we use the short form ξ � ξ′ to
express that a term/program ξ is replaced with an equivalent term/program ξ′:

if (nse) {s1} else {s2} � boolean b = nse; if (b) {s1} else {s2}

After the first active statement has been reduced to an elementary statement it
is translated into a first-order representation of its semantics with the help of
rules belonging to the second phase. For instance, if the first active statement
is a conditional whose guard is a simple expression (a program variable or a
boolean literal) then the rule

ifElseSplit

Γ, {U}(b .= TRUE) =⇒ {U}[π {s1} ω]φ,Δ
Γ, {U}(b .= FALSE) =⇒ {U}[π {s2} ω]φ,Δ
Γ =⇒ {U}[π if (b) {s1} else {s2} ω]φ,Δ

splits the current proof branch into two branches, one for the case when the
guard evaluates to true, and the other covering the else case. Further important
representatives of the rules in this phase are assignment rules like
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writeAttribute
Γ, {U} ¬(o .= null) =⇒ {U}{o.a := se}[π ω]φ,Δ

Γ =⇒ {U}[π o.a = se; ω]φ,Δ

where o is a schema variable matching program variables, a matches fields and se
matches simple expressions without side-effects that can be directly translated
into a logic term. Fig. 5 shows a small excerpt of a sequent proof illustrating
symbolic execution. Finally, we discuss how dynamic dispatch of a method is

...
...

Γ, {U} (b
.
= TRUE) =⇒ {U} [s1]φ,Δ Γ, {U} (b

.
= FALSE) =⇒ {U} [s2]φ,Δ

Γ =⇒ {U} [if (b) then s1 else s2;]φ,Δ

Γ =⇒ [boolean b = (i>=0); if (b) then s1 else s2;]φ,Δ

Γ =⇒ [if (i>=0) then s1 else s2;]φ,Δ

where U is the update b := if (i ≥ 0) then (TRUE) else (FALSE)

Fig. 5. Excerpt of a proof demonstrating symbolic execution

realized in the calculus. The rule for method invocation translates a dynamic
dispatch into a cascade of concrete method calls:

methodInvocation

Γ, {U} ¬(o .= null) =⇒ {U}[π
if (o instanceof Tn) res=o.m(se)@Tn;
else if (o instanceof Tn−1) res=o.m(se)@Tn−1;
. . .
else res=o.m(se)@T1;
ω]φ,Δ
Γ =⇒ {U} [π res = o.m(se); ω]φ,Δ

– o, res are schema variables for program variables.
– res=o.m(se)@T are so called method-body statements. A method-body state-

ment is a place holder for an actual method body namely exactly the method
body of method m with the specified number of parameters as implemented
in class T .

– T1, . . . , Tn are all the subtypes of the static type of the program variable
against which o is matched and that contain an actual implementation of
the method m. As the most specific implementation has to be taken, the list
T1, . . . , Tn fulfills the condition that for all 0 < i < j ≤ n : Ti �� Tj .

4 Interleaving Symbolic Execution and Partial Evaluation

4.1 General Idea

Recall from Section 2.2 that a symbolic execution tree unwinds a program’s
control flow graph (CFG). As a consequence, identical code is (symbolically) ex-
ecuted in many branches, however, under differing path conditions and symbolic
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states. Merging back different nodes is usually not possible without approxima-
tion or abstraction [15,16].

The hope with employing partial evaluation is that it is possible to factor
out common parts of computations in different branches by evaluating them
partially before symbolic execution takes place. The näıve approach, however, to
first evaluate partially and then perform symbolic execution fails miserably. The
reason is that for partial evaluation to work well the input space dimension of
a program must be significantly reducible by identifying certain input variables
to have static values.

Typical usage scenarios for symbolic execution like program verification are
not of this kind. For example, in the program of Fig. 2 in Sect. 2.3 it is unrealistic
to classify the value of y as static. If we redo the example without the initial
assignment y=80 then partial evaluation can only perform one trivial constant
propagation. The fact that input values for variables are not required to be static
can even be considered to be one of the main advantages of symbolic execution
and is the source of its generality: it is possible to cover all finite execution paths
simultaneously and one can start execution at any given source code position
without the need for initialization code.

The central observation that makes partial evaluation work in this context
is that during symbolic execution static values are accumulated continuously as
path conditions added to the current symbolic execution path. This suggests to
perform partial evaluation interleaved with symbolic execution.

To be specific, we reconsider the example shown in Fig. 2, but we remove the
first statement assigning the static value 80 to y. As observed above, no notewor-
thy simplification of the program’s CFG can be achieved by partial evaluation
any longer. The structure of the CFG after partial evaluation remains exactly

threshold=100

y>threshold ?

decrease=true decrease=false

|y-threshold|>eps ? |y-threshold|>eps ?

decrease ? decrease ?

y=y-1 y=y+1 y=y-1 y=y+1

|y-threshold|>eps? |y-threshold|>eps?

decrease? decrease?

y=y-1 y=y+1 y=y-1 y=y+1

|y-threshold|>eps? |y-threshold|>eps?

decrease? decrease?

y=y-1 y=y+1 y=y-1 y=y+1

Fig. 6. Symbolic execution tree of the control circuit program
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the same and only the occurrences of variable threshold are replaced by the
constant value 100. If we perform symbolic execution on this program, then the
resulting execution tree spanned by two executions of the loop is shown in Fig. 6.
The first conditional divides the execution tree in two subtrees. The left subtree
deals with the case that the value of y is too high and needs to be decreased.
The right subtree with the complementary case.

threshold=100

y>100?

decrease=true decrease=false

|y-100|>eps? |y-100|>eps?

y=y-1 y=y+1

|y-100|>eps?

y=y-1

|y-100|>eps?

y=y+1

mix mix

mix

Fig. 7. Symbolic execution with
interleaved partial evaluation

All subsequent branches result from either
the loop condition (omitted in Fig. 6) or the
conditional expression inside the loop body
testing the value of decrease. As decrease
is not modified within the loop, some of
these branches are infeasible. For example the
branch below the boxed occurrence of y=y+1
(filled in red) is infeasible, because the value of
decrease is true in that branch. Symbolic ex-
ecution will not continue on these branches (at
least for simple cases like that), but abandon
them as infeasible by proving that the path
condition is contradictory. Since the value of
decrease is only tested inside the loop, how-
ever, the loop must still be first unwound and
the proof that the current path condition is
contradictory must be repeated. Partial eval-
uation can replace this potentially expensive
proof search by computation which is drastically cheaper.

In the example, specializing the remaining program in each of the two subtrees
after the first assignment to decrease eliminates the inner-loop conditional, see
Fig. 7 (the partial evaluation steps are labelled with mix). Hence, interleaving
symbolic execution and partial evaluation promises to achieve a significant speed-
up by removing redundancy from subsequent symbolic execution.

4.2 The Program Specialization Operator

We define a program specialization operator suitable for interleaving with sym-
bolic execution in DPL. A soundness condition ensures that the operator can
be safely integrated into the sequent calculus. This approach avoids to formalize
the partial evaluator in DPL which would be tedious and inefficient.

Definition 7 (Program Specialization Operator). Let Σ be a signature
and Σ′ an extension of Σ as in Def. 5 containing countably infinite additional
program variables and function symbols for any type and arity. Let σ be the
embedding of Σ in Σ′ (σ(Σ) ⊆ Σ′). The program specialization operator

↓Σ′⊇Σ: ProgramElement× UpdatesΣ′ × ForΣ′ → ProgramElement

takes as arguments a PL-statement (-expression), an update and a DPL-formula
and maps these to a PL-statement (-expression), where all arguments and the
result are over Σ′.
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The intention behind the above definition is that p ↓Σ′⊇Σ (U , ϕ) denotes a
“simpler” but semantically equivalent version of p under the assumption that
both are executed in a state coinciding with U and satisfying ϕ. The signa-
ture extension allows the specialization operator to introduce new temporary
variables or function symbols.

A program specialization operator is sound iff for all DPL-formulas ψ ∈ ForΣ ,
DPL-Kripke structures KΣ′ , and states s ∈ SΣ′

KΣ′ , s |= 〈(p) ↓Σ′⊇Σ (U , ϕ)〉ψ ⇒ KΣ′ , s |= U(ϕ→ 〈p〉ψ) .

In words, the specialized program p ↓Σ′⊇Σ (U , ϕ) must be able to reach at least
the same post-states as the original program p when started in a state coinciding
with U in which (path condition) ϕ holds.

Interleaving partial evaluation and symbolic execution is achieved by intro-
duction rules for the specialization operator. The simplest possibility is:

introPE
Γ =⇒ {U} [(p) ↓ (U , true)]φ,Δ

Γ =⇒ {U} [p]φ,Δ

4.3 Specific Specialization Actions

We instantiate the generic program specialization operator of Def. 7 with some
possible actions. In each case we derive soundness conditions.

Specialization Operator Propagation. The specialization operator needs to be
propagated along the program as most of the different specialization operations
work locally on single statements or expressions. During propagation of the op-
erator, its knowledge base, the pair (U , φ), needs to be updated by additional
knowledge learned from executed statements or by erasing invalid knowledge
about variables altered by the previous statement. Propagation of the specializa-
tion operator as well as updating the knowledge base is realized by the following
rewrite rule

(p;q) ↓ (U , φ) � p ↓ (U , φ); q ↓ (U ′, φ′)

This rule is unsound for arbitrarily chosen U ′, φ′. Soundness is ensured under a
number of restrictions:

1. Let mod denote the set of all program locations possibly changed by p. Then
we require that the DPL-formula “{U} respectStrongModifies(p,mod)” is
valid where the predicate respectStrongModifies abbreviates a formula that
is valid iff p changes at most locations included in mod. “Strong” means that
mod must contain even locations whose values are only changed temporarily.
Such a formula is expressible in DPL, see [17] for details.

2. Let Vmod be the anonymizing update formod (Def. 6). By fixing U ′ := UVmod
we ensure that the program state reached by executing p is covered by at least
one interpretation and variable assignment over the extended signature2.

2 It is sufficient to let U ′ be any update more general than UVmod.
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3. φ′ must be chosen in such a way that if KΣ |= {U}〈p〉φ then there exists also
an extended DPL-Kripke structure KΣ′ over an extended signature Σ′ such
that KΣ′ |= {U ′}φ′. This ensures that the post condition of p is correctly
represented by φ′. One possible heuristic to obtain φ′ consists of symbolic
execution of p and applying the resulting update to φ. This yields a formula
φ′′ from which we obtain a candidate for φ′ by “anonymizing” all occurrences
of locations in it that occur in mod.

The first two soundness conditions can be expressed in DPL, the third one only
in absence of quantified updates. In the latter case, the necessary proofs could be
added as additional nodes that spawn side proofs. A more efficient (and generally
necessary) approach is to show once and for all that the oracle used to determine
mod and φ′ is correct wrt the conditions.

Constant propagation and constant expression evaluation. Constant propagation
is one of the most basic operations in partial evaluation and often a prerequisite
for more complex rewrite operations. Constant propagation entails that if the
value of a variable v is known to have a constant value c within a certain program
region (typically, until the variable is potentially reassigned) then usages of v can
be replaced by c. The rewrite rule

(v)↓(U , ϕ) � c

models the replacement operation. To ensure soundness the rather obvious con-
dition U(ϕ → v

.= c) has to be proved where c is a rigid constant. The above
rule can be easily modified to include constant expression evaluation.

Dead-Code Elimination. Constant propagation and constant expression evalu-
ation result often in specializations where the guard of a conditional (or loop)
becomes constant. In this case, unreachable code in the current state and path
condition can be easily located and pruned. A typical example for a specialization
operation eliminating an infeasible symbolic execution branch is the rule

(if (b) {p} else {q}) ↓ (U , φ) � p ↓ (U , φ)

which eliminates the else branch of a conditional if the guard can be proved
true. The soundness condition of the rule is straightforward and self-explaining:
U(φ→ b

.= TRUE).

Safe Field Access. Partial evaluation can be used to mark expressions as safe
that contain field accesses or casts that may otherwise cause non-termination.
We use the notation @(e) to mark an expression e as safe, for example, if we can
ensure that o �= null, then we can derive the annotation @(o.a) for any field a
in the type of o. The advantage of safe annotations is that symbolic execution
can assume that safe expressions terminate normally and needs not to spawn
side proofs that ensure it. The rewrite rule for safe field accesses is

o.a ↓ (U , φ) � @(o.a) ↓ (U , φ) .

Its soundness condition is U(φ→ ¬(o .= null)).
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Type Inference. For deep type hierarchies dynamic dispatch of method invo-
cations may cause serious performance issues in symbolic execution, because a
long cascade of method calls is created by the method invocation rule (Sect. 3.2,
p. 136). To reduce the number of implementation candidates we use information
from preceding symbolic execution to narrow the static type of the callee as far
as possible and to (safely) cast the reference to that type. The method invocation
rule can then determine the implementation candidates more precisely:

res = o.m(a1, . . . , an); ↓ (U , φ) �
res = @((C)o ↓ (U , φ)).m(a1 ↓ (U , φ), . . . , an ↓ (U , φ));

The accompanying soundness condition U(φ→ ∃ C x; (o .= x)) ensures that the
type of o is compatible with C in any state specified by U , φ.

5 Application

As an application of interleaving symbolic execution and partial evaluation, con-
sider the verification of a GUI library. It includes standard visual elements such
as Window, Icon, Menu and Pointer. An element has different implementations
for different platforms or operating systems. Consider the following program
snippet involving dynamic method dispatch:

framework.ui.Button button = radiobuttonX11;
button.paint();

The element Button is implemented in one way for Max OS X, while it is im-
plemented in a different way for the X Window System. The method paint()
is defined in Button which is extended by CheckBox, Component, and Dialog.
Altogether, paint() is implemented in 16 different classes including ButtonX11,
ButtonMPC, RadioButtonX11, MenuItemX11, etc. The complete type hierarchy
is shown in Fig. 8. In the code above button is assigned an object with type
RadioButtonX11 which implements paint(). As a consequence, it should always
terminate and the DPL-formula 〈gui〉true should be provable where gui abbre-
viates the code above.

First, we employ symbolic execution alone to do the proof. During this process,
button.paint() is unfolded into 16 different cases by the method invocation rule
(Sect. 3.2, p. 136), each corresponding to a possible implementation of button

Button

CheckBox Component

DialogButtonX11 ButtonAqua ButtonMFC

RadioButtonX11 MenuItemX11 ... ... ... ... ... ... ... ... ... ... ...

Fig. 8. Type hierarchy for the GUI example
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in one of the subclasses of Button. The proof is constructed automatically in
KeY with 161 nodes and 10 branches in the proof tree.

In a second experiment, we interleave symbolic execution and partial evalu-
ation to prove the same claim. The partial evaluator propagates with the help
of the Type Inference rule in the previous section the information that the run-
time type of button is RadioButtonX11 and the only possible implementation of
button.paint() is RadioButtonX11.paint(). All other possible implementations
are pruned. Only 24 nodes and 2 branches occur in the proof tree when running
KeY integrated with a partial evaluator.

6 Evaluation

We implemented a simple partial evaluator for Java and interleaved it with
symbolic execution in the KeY system as described above. We formally verified
a number of Java programs with KeY with and without partial evaluation.

Table 1 shows the experimental results for a number of small Java programs
which can be found in the KeY distribution. The column “Program” shows
the name of the program we prove, the column “Strategy” shows the strat-
egy we choose to perform the proof where “SE” means symbolic execution and
“SE+PE” means interleaving symbolic execution and partial evaluation; the
column “#Nodes” shows the total number of nodes in the proof; the column
“#Branches” shows the total number of branches in the proof. The results show
that interleaving symbolic execution with partial evaluation significantly speeds
up the proof for complexEval, constantPropagation,dynamicDispatch, safe-
Access, and safeTypeCast which can all be considered to be amenable for
partial evaluation. Table 2 shows the experimental results of verifying a larger
and more realistic Java e-banking application used in [3, Ch. 10]. The column
“Proof Obligation” shows which property we prove; the remaining columns are
as in Table 1. The results show that symbolic execution interleaved with partial
evaluation can speed up verification proofs even for larger applications. As is

Table 1. Symbolic execution and partial evaluation for small Java programs

Program Strategy #Nodes #Branches

SE 261 15
complexEval

SE+PE 158 3

SE 65 1
constantPropagation

SE+PE 56 1

SE 161 10
dynamicDispatch

SE+PE 24 2

SE 113 4
methodCall

SE+PE 108 3

SE 28 4
safeAccess

SE+PE 24 3

SE 73 5
safeTypeCast

SE+PE 45 3
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Table 2. Symbolic execution and partial evaluation for an e-banking application

Proof Obligation Strategy #Nodes #Branches

SE 949 20
ATM.insertCard (EnsuresPost)

SE+PE 805 13

SE 2648 89
ATM.insertCard (PreservesInv)

SE+PE 2501 79

SE 661 7
ATM.enterPIN (EnsuresPost)

SE+PE 654 8

SE 1524 45
ATM.enterPIN (PreservesInv)

SE+PE 1501 44

SE 260 2
ATM.confiscateCard (EnsuresPost)

SE+PE 255 2

SE 739 19
ATM.confiscateCard (PreservesInv)

SE+PE 695 19

SE 1337 35
ATM.accountBalance (EnsuresPost)

SE+PE 1271 29

SE 2233 57
ATM.accountBalance (PreservesInv)

SE+PE 2223 59

SE 16174 136
Account.checkAndWithdraw (EnsuresPost)

SE+PE 17023 135

SE 14076 89
Account.checkAndWithdraw (PreservesInv)

SE+PE 10478 78

to be expected, depending on the structure of the program the benefit varies.
It is noteworthy that none of the programs and proof obligations used in the
present section have been changed in order to make them more amenable to
partial evaluation. In no case we have to pay a significant performance penalty
which seems to indicate that partial evaluation is a generally useful technology
for symbolic execution and should generally be applied.

The case study in Sect. 5 suggests that it could pay off to take partial evalua-
tion into account when designing programs, specifications, and proof obligations.

7 Related Work

Partial evaluation as a technique has been applied in a variety of areas includ-
ing program optimization, compiler generation and meta-compilation. Partial
evaluation has been applied successfully in logic programming [18] as well as
for imperative and object-oriented languages like C [19] and Java [14]. A good
overview including many references is given in [2]. As far as we know, the present
paper is the first application of partial evaluation in formal verification.

Our approach is also related to supercompilation [20]. Supercompilation goes
beyond partial evaluation by being able not only to specialize but also to gen-
eralize a program to achieve a functionally equivalent but better performing
program even in the absence of static input.
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Partial evaluation is used in [21] to generate test cases and test case genera-
tors for given target programs. Instead of using a dedicated symbolic execution
engine, they use partial evaluation to obtain an executable version of the imple-
mentation under test in the language CLP. CLP programs can then be executed
on symbolic values returning a set of constraints on those input values. Par-
tial evaluation is used as an approximation and replacement for a fully precise
symbolic execution engine while we are interested in using partial evaluation to
speed up symbolic execution in a dedicated symbolic execution engine.

There is a close relationship between the rule for specialization operator prop-
agation (SOP) in Sect. 4.3 and what is known as binding time analysis (BTA)
in partial evaluation. Partial evaluation techniques roughly categorize program
variables into those which are known to have a constant value independent from
any input and those whose value may vary. BTA in partial evaluation determines
to which of these categories a variable belongs to. The precision of the analysis
has a significant impact on the power of partial evaluation as too early binding
prevents certain optimizations. The modifier set mod in the SOP rule influences
directly the precision of the BTA performed by our specialization operator. If
the oracle determining mod is too conservative (imprecise) too much knowledge
of the current state U will be lost and cannot be utilized in later specializations.

8 Conclusions and Future Work

In this paper we concentrated on deductive program verification as the main
application scenario, however, as pointed out in Sect. 2.2, symbolic execution has
other important usages, such as automatic test case generation [10,9]. It would
be interesting to investigate whether partial evaluation can lead to a reduction
of redundant test cases.

We showed that a fairly näıve partial evaluator can be used to boost perfor-
mance of a symbolic execution engine. In Sect. 7 we pointed out that symbolic
execution in connection with assignable-clauses amounts to a relatively precise
binding time analysis (BTA). As BTA becomes rather tricky for complex lan-
guages such as Java, it would be interesting to use symbolic execution and our
simple partial evaluator to bootstrap a sophisticated partial evaluator for Java.
It could also be interesting to use symbolic execution in addition to partial eval-
uation to improve precision, for example, in the test case generation approach
of [21] discussed in the previous section.

The example in Sect. 5 shows that interleaving partial evaluation and symbolic
execution has potential for speed-up especially for programs that are written
generically. This is the case for two software development paradigms that gained
much popularity in recent times: model-driven development (MDD) and soft-
ware product line (SWPL) engineering. In both cases, development takes place
as much as possible on a generic level: in MDD programs are modelled in abstract
notations (the Platform Independent Model) and code generation is used to de-
rive Platform-Specific Models and actual code; in SWPL one separates Domain
Engineering which includes feature modeling and library development from Ap-
plication Engineering where code is derived via instantiation and composition.
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In either case the executable code has been derived from generic artefacts and,
therefore, verification is likely to benefit from the ability to partially evaluate
specific information. We are currently experimenting with an SWPL scenario
where we plan to use interleaved partial evaluation and symbolic execution.
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