
Lecture Notes in Computer Science 6286
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Frank S. de Boer Marcello M. Bonsangue
Stefan Hallerstede Michael Leuschel (Eds.)

Formal Methods
for Components
and Objects

8th International Symposium, FMCO 2009
Eindhoven, The Netherlands, November 4-6, 2009
Revised Selected Papers

13

Volume Editors

Frank S. de Boer
Centre for Mathematics and Computer Science, CWI
Amsterdam, The Netherlands
E-mail: F.S.de.Boer@cwi.nl

Marcello M. Bonsangue
Leiden University
Leiden Institute of Advanced Computer Science
Leiden, The Netherlands
E-mail: marcello@liacs.nl

Stefan Hallerstede
Heinrich-Heine University of Dusseldorf
Department of Computer Science
Dusseldorf, Germany
E-mail: halstefa@cs.uni-duesseldorf.de

Michael Leuschel
Heinrich-Heine University of Dusseldorf
Department of Computer Science
Dusseldorf, Germany
E-mail: leuschel@cs.uni-duesseldorf.de

Library of Congress Control Number: 2010938608

CR Subject Classification (1998): D.2.4, D.2, D.3, F.3, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-17070-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-17070-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Large and complex software systems provide infrastructure in all industries to-
day. In order to construct such large systems in a systematic manner, the focus in
development methodologies has switched in the last two decades from functional
issues to structural issues: both data and functions are encapsulated into soft-
ware units that are integrated into large systems by means of various techniques
supporting reusability and modifiability. This encapsulation principle is essen-
tial to both the object-oriented and the more recent component-based software
engineering paradigms.
Formal methods have been applied successfully to the verification of medium-

sized programs in protocol and hardware design. However, their application to
the development of large systems requires more emphasis on specification, mod-
eling and validation techniques supporting the concepts of reusability and mod-
ifiability, and their implementation in new extensions of existing programming
languages like Java.
The 8th Symposium on Formal Methods for Components and Objects was

held in Eindhoven, The Netherlands, November 4–6, 2009. It was realized as
a concertation meeting of European projects focusing on formal methods for
components and objects. This volume contains 17 revised papers submitted after
the symposium by the speakers of each of the following European IST projects
involved in the organization of the program:

– IST-FP6 project BIONETS on biologically inspired services evolution for
the pervasive age. The contact person for work relating to FMCO is Ludovic
Henrio (INRIA Sophia-Antipolis, France).
– The IST-FP7 project COMPAS on compliance-driven models, languages,
and architectures for services. The contact person is Schahram Dustdar
(Technical University of Vienna, Austria)
– The IST-FP6 project CREDO on modeling and analysis of evolutionary
structures for distributed services. The contact person is Frank de Boer
(CWI, The Netherlands).
– The IST-FP7 project DEPLOY on industrial deployment of advanced system
engineering methods for high productivity and dependability. The contact
person is Alexander Romanovsky (Newcastle University, UK).
– The IST-FP7 project HATS on highly adaptable and trustworthy software
using formal methods. The contact person is Reiner Hähnle (Chalmers Uni-
versity of Technology, Sweden).
– The IST-FP7 project INESS on integrated European railway signaling sys-
tem. The contact person for work relating to FMCO is Jim Woodcock (Uni-
versity of York, UK).
– The IST-FP7 project MOGENTES on model-based generation of tests for
dependable embedded systems. The contact person for work relating to
FMCO is Bernhard Aichernig (TU Graz, Austria).

VI Preface

– The IST-FP6 project PROTEST on property based testing. The contact
person is John Derrick (University of Sheffield, UK).
– The IST-FP7 project QUASIMODO on quantitative system properties in
model-driven design of embedded systems. The contact person is Kim G.
Larsen (Aalborg University, Denmark).

We have also invited members of the working group on Formal Methods and
Service-Oriented Architecture (FM-SOA) to participate.
The proceedings of the previous editions of FMCO have been published as

volumes 2852, 3188, 3657, 4111, 4709, 5382, and 5751 of Springer’s Lecture Notes
in Computer Science. We believe that these proceedings provide a unique com-
bination of ideas on software engineering and formal methods which reflect the
expanding body of knowledge on modern software systems.
Finally, we thank all authors for the high quality of their contributions, and

the reviewers for their help in improving the papers for this volume.

June 2010 Frank de Boer
Marcello Bonsangue
Stefan Hallerstede
Michael Leuschel

Organization

FMCO 2009 was part of the Formal Methods Week at Eindhoven, The Nether-
lands. Within the Formal Methods Week, the FMCO symposium was co-located
with a host of conferences and workshops:

The Symposium on Communicating Process Architectures (CPA)
The International Workshop on Formal Aspects of Component Software
(FACS)
The Workshop on Formal Aspects of Security and Trust (FAST)
The International Symposium on Formal Methods (FM)
The International Workshop on Formal Methods for Industrial Critical
Systems (FMICS)
The International Workshop on Parallel and Distributed Methods in verifi-
Cation (PDMC)
The 2009 Refine Workshop
The 21st IFIP International Conference on Testing of Communicating
Systems (TESTCOM)
The 9th International Workshop on Formal Approaches to Testing of
Software (FATES)
The Dutch Testing Day
The Second International FME Conference on Teaching Formal Methods
(TFM)

The FMCO symposia are organized in the context of the project Mobi-J, a
project founded by a bilateral research program of The Dutch Organization
for Scientific Research (NWO) and the Central Public Funding Organization for
Academic Research in Germany (DFG). The partners of the Mobi-J projects are:
the Centrum voor Wiskunde en Informatica, the Leiden Institute of Advanced
Computer Science, and the Christian-Albrechts-Universität Kiel.
This project aims at the development of a programming environment which

supports component-based design and the verification of Java programs anno-
tated with assertions. The overall approach is based on an extension of the Java
language with a notion of “component” that provides for the encapsulation of
its internal processing of data and composition in a network by means of mobile
asynchronous channels.

Sponsoring Institutions

The Dutch Organization for Scientific Research (NWO)

Table of Contents

The BIONETS Project

A Framework for Reasoning on Component Composition 1
Ludovic Henrio, Florian Kammüller, and Muhammad Uzair Khan

The COMPAS Project

Verification of Context-Dependent Channel-Based Service Models 21
Natallia Kokash, Christian Krause, and Erik P. de Vink

The CREDO Project

The Credo Methodology (Extended Version) . 41
Immo Grabe, Mohammad Mahdi Jaghoori, Joachim Klein,
Sascha Klüppelholz, Andries Stam, Christel Baier,
Tobias Blechmann, Bernhard K. Aichernig, Frank de Boer,
Andreas Griesmayer, Einar Broch Johnsen, Marcel Kyas,
Wolfgang Leister, Rudolf Schlatte, Martin Steffen, Simon Tschirner,
Liang Xuedong, and Wang Yi

The DEPLOY Project

Guided Formal Development: Patterns for Modelling and Refinement . . . 70
Alexei Iliasov, Elena Troubitsyna, Linas Laibinis, and
Alexander Romanovsky

Applying Event-B Atomicity Decomposition to a Multi Media
Protocol . 89

Asieh Salehi Fathabadi and Michael Butler

The FM-SOA Working Group

Abstract Certification of Global Non-interference in Rewriting Logic 105
Mauricio Alba-Castro, Maŕıa Alpuente, and Santiago Escobar

The HATS Project

Interleaving Symbolic Execution and Partial Evaluation 125
Richard Bubel, Reiner Hähnle, and Ran Ji

X Table of Contents

The INESS Project

The Use of Model Transformation in the INESS Project 147
Osmar M. dos Santos, Jim Woodcock, Richard F. Paige, and
Steve King

Suitability of mCRL2 for Concurrent-System Design: A 2 × 2 Switch
Case Study . 166

Frank P.M. Stappers, Michel A. Reniers, and Jan Friso Groote

The MOGENTES Project

Mapping UML to Labeled Transition Systems for Test-Case Generation:
A Translation via Object-Oriented Action Systems 186

Willibald Krenn, Rupert Schlick, and Bernhard K. Aichernig

Mutation-Based Test Case Generation for Simulink Models 208
Angelo Brillout, Nannan He, Michele Mazzucchi, Daniel Kroening,
Mitra Purandare, Philipp Rümmer, and Georg Weissenbacher

Model-Based Mutation Testing of Hybrid Systems . 228
Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, and
Willibald Krenn

The PROTEST Project

Property-Based Testing – The ProTest Project . 250
John Derrick, Neil Walkinshaw, Thomas Arts,
Clara Benac Earle, Francesco Cesarini, Lars-Ake Fredlund,
Victor Gulias, John Hughes, and Simon Thompson

Incrementally Discovering Testable Specifications from Program
Executions . 272

Neil Walkinshaw and John Derrick

The QUASIMODO Project

Methodologies for Specification of Real-Time Systems Using Timed
I/O Automata . 290

Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and
Andrzej W ↪asowski

The How and Why of Interactive Markov Chains . 311
Holger Hermanns and Joost-Pieter Katoen

Author Index . 339

A Framework for Reasoning on Component
Composition

Ludovic Henrio1, Florian Kammüller2, and Muhammad Uzair Khan1

1 INRIA – CNRS – I3S – Université de Nice Sophia-Antipolis
{mkhan,lhenrio}@sophia.inria.fr

2 Institut für Softwaretechnik und Theoretische Informatik – TU-Berlin
flokam@cs.tu-berlin.de

Abstract. The main characteristics of component models is their strict
structure enabling better code reuse. Correctness of component compo-
sition is well understood formally but existing works do not allow for
mechanised reasoning on composition and component reconfigurations,
whereas a mechanical support would improve the confidence in the ex-
isting results. This article presents the formalisation in Isabelle/HOL of
a component model, focusing on the structure and on basic lemmas to
handle component structure. Our objective in this paper is to present
the basic constructs, and the corresponding lemmas allowing the proof
of properties related to structure of component models and the handling
of structure at runtime. We illustrate the expressiveness of our approach
by presenting component semantics, and properties on reconfiguration
primitives.

Keywords: Components, mechanised proofs, futures, reconfiguration.

1 Introduction

Component models focus on program structure and improve re-usability of pro-
grams. In component models, application dependencies are clearly identified by
defining interfaces (or ports) and connecting them together. The structure of
components can also be used at runtime to discover services or modify compo-
nent structure, which allows for dynamic adaptation; these dynamic aspects are
even more important in a distributed setting. Since a complete system restart
is often too costly, a reconfiguration at runtime is mandatory. Dynamic replace-
ment of a component is a sensitive operation. Reconfiguration procedures often
entail state transfer, and require conditions on the communication status. A
suitable component model needs a detailed representation of component orga-
nization together with precise communication flows to enable reasoning about
reconfiguration. That is why we present here a formal model of components
comprising both concepts.

This paper provides support for proving properties on component models in a
theorem prover. Our objective is to provide an expressive platform with a wide
range of tools to help the design of component models, the creation of adapta-
tion procedures, and the proof of generic properties on the component model.

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 1–20, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 L. Henrio, F. Kammüller, and M.U. Khan

Indeed most existing frameworks focus on the correctness or the adaptation of
applications; we focus on generic properties.

In this context, introduction of mechanised proofs will increase confidence in
the properties of the component model and its adaptation procedures. We start
from a formalisation close to the component model specification and implemen-
tation; then we use a framework allowing us to express properties in a simple
and natural way. This way, we can convince the framework programmer and the
application programmer of the safety of communication patterns, optimisations,
and reconfiguration procedures.

We write our mechanised formalisation in Isabelle/HOL but we are convinced
that our approach can be adapted to other theorem provers. The generic meta-
logic of Isabelle/HOL constitutes a deductive frame for reasoning in an object
logic. Isabelle/HOL also provides a set of generic constructors, like datatypes,
records, and inductive definitions supporting natural definitions while automat-
ically deriving proof support for these definitions. Isabelle has automated proof
strategies: a simplifier and classical reasoner, implementing powerful proof tech-
niques. Isabelle, with the proof support tool Proofgeneral, provides an easy-
to-use theorem prover environment. For a precise description of Isabelle/HOL
specific syntax or predefined constructors, please refer to the tutorial [20].

We present here a framework that mechanically formalizes a distributed hi-
erarchical component model and its basic properties. We show that this frame-
work is expressive enough to allow both the expression of component semantics
and the manipulation of the component structure. Benefiting from our experi-
ences with different possible formalisations, and from the proof of several compo-
nent properties, we can now clearly justify the design choices we took and their
impact1. The technical contributions of this paper are the following:

– formal description in Isabelle of component structure, mapping component
concepts to Isabelle constructs,

– definition of a set of basic lemmas easing the proof of component-related
properties,

– additional constructs and proofs to ensure well-formedness of component
structures,

– proposal for a definition of component state, and runtime semantics for com-
ponents communicating by asynchronous request-replies,

– application to the design and first proofs about component reconfiguration.

The remainder of the paper is organised as follows. Section 2 gives an overview
of the context of this paper: it positions this paper relatively to related works
and previous works on the formalisation of the GCM component model, which
is also described in Section 2.2. Section 3 presents the formalisation of the com-
ponent model in Isabelle/HOL highlighting design decisions and their impact on
the basic proof infrastructure. We then summarize a semantics for distributed
components with its properties, and present a few reconfiguration primitives in
Section 4.1. Section 5 concludes and presents future directions.
1 The GCM specification framework is available at
www.inria.fr/oasis/Ludovic.Henrio/misc

www.inria.fr/oasis/Ludovic.Henrio/misc

A Framework for Reasoning on Component Composition 3

2 Background

Component modelling is a vast domain of active research, comprising very ap-
plied semi-formal approaches to formal methods. In this section, we first give an
overview of the domain, starting from well-known approaches, summarizing some
community activities, and focusing on the most relevant related works. Then we
present the GCM component model and existing formalisation of GCM. Finally
we position this paper relatively to the other approaches presented here.

2.1 Related Work

Some well-known component models like CCA [11] are not hierarchical – their
intent is the efficient building, connecting and running of components but they
neglect structural aspects. We rather focus on hierarchical component models
like Fractal[6], GCM[4], or SCA[5].

Recent years have shown several opportunities for the use of formal methods
for the modelling and verification of component-based applications as shown in
several successful conferences like FMCO, FOCLASA, or FACS.

For example, in [8, 9] the authors investigate the use of formal methods to
specify interface adaptation and generation of interface adaptors, based on be-
havioural specification of interfaces to be connected. Also, in [10, 3] the authors
focus on the verification of the behaviour of component-based application. They
provide tools to specify the behaviour of a component application, and check that
this application behaves correctly. Their model is applied to the GCM component
model too but they prove properties of specific applications whereas we formalise
the component model itself. In [18], the authors present a comprehensive formal-
isation of the Fractal component model using the Alloy specification language.
Additionally, the consistency of resulting models can be verified through the au-
tomated Alloy Analyzer. These contributions are close to our domain but focus
on the use of formal methods to facilitate the development and ensure safety of
component applications, while our aim is to provide support for the design of
component models and their runtime support.

SCA (Service Component Architecture) [5] is a component model adapted
to Service Oriented Architectures. It enables modelling service composition and
creation of service components. FraSCAti [21] is an implementation of the SCA
model built upon Fractal making this implementation close to GCM. It pro-
vides dynamic reconfiguration of SCA component assemblies, a binding factory,
a transaction service, and a deployment engine of autonomous SCA architecture.
Due to the similarity between FraSCAti and GCM, our approach provides a good
formalisation of FraSCAti implementation. There are various approaches on ap-
plying formal and semi-formal methods to Service Oriented Architectures (SOA)
and in particular SCA. For example, in the EU project SENSORIA [1] dedicated
to SOA, they propose Architectural Design Rewriting to formalize development
and reconfiguration of software architectures using term-rewriting [7].

Creol [15, 16] is a programming and modelling language for distributed sys-
tems. Active objects in Creol have asynchronous communication by method calls

4 L. Henrio, F. Kammüller, and M.U. Khan

and futures. Creol also offers components; the paper [12] presents a framework
for component description and test. A simple specification language over commu-
nication labels is used to enable the expression of the behaviour of a component
as a set of traces at the interfaces. Creol’s component model does not support
hierarchical structure of components. In [2], the authors present a formalisation
of the interface behaviour of Creol components. Creol’s operational semantics
uses the rewriting logic based system Maude [19] as a logical support tool. The
operational semantics of Creol is expressed in Maude by reduction rules in a
structural operational semantics style enabling testing of model specifications.
However, this kind of logical embedding does not support structural reasoning.

2.2 Component Model Overview

Our intent is to build a mechanised model of the GCM component model [4], but
giving it a runtime semantics so that we can reason on the execution of compo-
nent application and their evolution. Thus we start by describing the concepts
of the GCM which are useful for understanding this paper. We will try in this
paper to distinguish clearly structural concepts that are proper to any hierar-
chical component model and a runtime semantics that relies on asynchronous
requests and replies. Structurally, the model incorporates hierarchical compo-
nents that communicate through well defined interfaces connected by bindings.
Communication is based on a request-reply model, where requests are queued at
the target component while the invoker receives a future. The basic component
model has been presented in [13] and is summarized below.

Component Structure. Our GCM-like component model allows hierarchical
composition of components. This composition allows us to implement a coarse-
grained component by composition of several fine-grained components. We use
the term composite component to refer to a component containing one or more
subcomponents. On the other hand, primitive components do not contain other
components, and are leaf-level components implementing business functionality.
A component, primitive or composite, can be viewed as a container comprising
two parts. A central content part that provides the functional characteristics
of the component and a membrane providing the non-functional operations.
Similarly, interfaces can be functional or non-functional. In this work and in the
following description, we focus only on the functional content and interfaces.

The only way to access a component is via its interfaces. Client interfaces
allow the component to invoke operations on other components. On the other
hand, Server interfaces receive invocations. A binding connects a client interface
to the server interface that will receive the messages sent by the client.

For composite components, an interface exposed to a subcomponent is referred
to as an internal interface. Similarly, an interface exposed to other components
is an external interface. All the external interfaces of a component must have
distinct names. For composites, each external functional interface has a corre-
sponding internal one. The implicit semantics is that a call received on a server

A Framework for Reasoning on Component Composition 5

primitive
component

Composite component

primitive
component

N

N'

Itf

Itf'

[N.itf,N ′.itf ′] ∈ bindings

External
Interface(Membrane)

(Content)

Internal
Interface

Fig. 1. component composition

Request queue

Results

In
co

m
in

g
R

eq
ue

st
s

Execution Thread
(serving requests) O

ut
 g

oi
ng

R

eq
ue

st
s

Server
Interface

Client
Interface

Fig. 2. component structure

external (resp. internal) interface will be transmitted – unchanged – to the cor-
responding internal (resp. external) client interface.

The GCM model allows for a client interface to be bound to multiple-server
interfaces. For the moment, in our model, we restrict the binding cardinality
such that bindings connect a client to a single server. Note that several bindings
can anyway reach the same server interface.

Figure 1, shows the structure of a composite component. The composite com-
ponent contains two primitive subcomponents N and N ′. The binding (N.itf,
N ′.itf ′) connects the client interface itf of subcomponent N to the server inter-
face itf ′ of subcomponent N ′.

Communication Model. Our GCM-like components use a simple communi-
cation model relying on asynchronous request and replies, as presented in [13].
Communication via requests is the only means of interaction between compo-
nents. We avoid shared objects or component references, and use a pass-by-copy
semantics for request parameters. A component receives the requests on its ex-
ternal server interface. The received requests are then enqueued in the request
queue, which holds the messages until they can be treated.

Our communication model is asynchronous in the sense that the requests are
not necessarily treated immediately upon arrival. Requests are only enqueued
at the target component, then the component invoking the request can con-
tinue its execution without waiting for the result. Enqueuing a request is done
synchronously but the receiver is always ready to receive a request. To ensure
transparent handling of asynchronous requests with results, we utilise futures.
Futures are created automatically upon request invocation and represent the re-
quest result, while the treatment of the request is not finished. Once the result of
the computation is available, the future is replaced by the result value. Futures
are first class objects: they can be transferred as part of requests or results.

Figure 2 gives the internal structure of a component. Incoming requests are
enqueued in the request queue. The requests are dequeued by the execution
threads, when computed; the results are placed in the results list.

6 L. Henrio, F. Kammüller, and M.U. Khan

Component Behaviour. In our model, the primitive components represent
the business logic and can have any internal behaviour. Primitive components
treat all the requests they receive, choosing a processing order and the way
to treat them. On the other hand, the behaviour of a composite component is
more restricted: it is strictly defined by its constituent subcomponents and the
way they are composed. A composite component serves its requests in a FIFO
manner, delegating them to other components bound to it. A delegated request
is delivered unchanged to the target component. Once the service of a request
is finished, the produced result is stored in the computed results for future use.
It can then be transmitted to other components, as determined by the reply
strategy [17, 14].

2.3 Positioning

This paper provides formalisation of hierarchical components and their structure.
At our level of abstraction, this structure is shared by several component levels
like Fractal, GCM, and SCA. However most implementations of SCA (except
FraSCAti) do not instantiate the component structure at runtime. By contrast,
to allow component introspection and reconfiguration at runtime, we consider a
specification where structural information is still available at runtime. This en-
ables adaptive and autonomic component behaviours. Indeed, component adap-
tation in those models can be expressed by reconfiguration of the component
structure. For example, reconfiguration allows replacement of an existing com-
ponent by a new one, which is impossible or very difficult to handle in a model
where component structure disappears at runtime.

Most existing works on formal methods for components focus on the support
for application development whereas we focus on the support for the design and
implementation of component models themselves. To our knowledge, this work
is the only one to support the design of component models in a theorem prover.
It allows proving very generic and varying properties ranging from structural
aspects to component semantics and component adaptation.

A formalisation of our communication model along with the component se-
mantics appear in [13]. An extended version of the formal semantics is presented
in [14], providing formalisation of one particular reply strategy. Other possible
strategies are discussed in [17]. Compared to our previous works, this paper relies
on the experience gained in specification and proof and demonstrated in [13, 14]
to design a framework for supporting mechanised proofs for distributed compo-
nents. In particular this paper focuses on the handling of component structure,
on a basic set of lemmas providing valuable tooling for further proof, and the
illustration of the presented framework to prove a few properties dealing with
component semantics and reconfiguration.

3 Formalisation of Component Model in Isabelle/HOL

Our component model is a subset of the GCM component model, but with a pre-
cisely defined structure and semantics. It incorporates hierarchical components

A Framework for Reasoning on Component Composition 7

that communicate via asynchronous requests and replies. We start with formalis-
ing the structure of our components. Based on the structure defined, we present
some of the various infrastructure operations that allow us to manipulate the com-
ponents for proving properties. Then we formalise additional constructs to define
component’s state and request handling, and correctness of a component assem-
bly. Finally we provide a set of very useful lemmas dealing with component struc-
ture and component correctness.

3.1 Component Structure

As we have seen in Section 2.2, a component in our model can either be a
composite or primitive. A composite component comprises one or more subcom-
ponents. On the other hand, a primitive component is a leaf-level component
encapsulating the business logic.

datatype Component = Primitive Name Interfaces PrimState

| Composite Name Interfaces (Component list) (Binding set) CompState

The above Isabelle/HOL datatype definition for Components has two construc-
tors Primitive and Composite. We present below the various elements that
make up the structure of our components.

Name: Each component has a unique name. We use this name as the compo-
nent identifier/reference.

Interfaces: Each component has a number of public interfaces. All commu-
nication between components is via public interfaces. An interface can be either
client or server and by construction a component cannot have two interfaces
with the same name.

Subcomponents: Composite components have a list of subcomponents, given
by the Component list parameter. Primitive components do not have subcom-
ponents.

Bindings: In composite components, a binding allows an interface of one
component to be plugged to an interface of a second component. (N1.i1,
N2.i2)∈bindings if the interface i1 of component N1 is plugged to the in-
terface i2 of N2 where N1 or N2 can either be component names or This if the
plugged interface belongs to the composite component that defines the binding.

State: All components, primitive or composite have an associated state.
Component state is discussed in more detail in Section 3.3.

Design decisions. In the Isabelle/HOL formalisation we chose to include the
name of the component into the component itself. Like for interfaces, a first
intuitive approach could be rather to define subcomponents as mappings from
names to components. There are, however, major advantages to our approach.
When we reason about a component we always have its name, which makes
the expression of several semantic rules and lemmas more natural. The main
advantage of maps is the implicit elegant encoding of the uniqueness of Name(s).
As mentioned before, Name(s)are used as component references. Unfortunately,
this advantage of maps is quite low in a multi-layered component model because

8 L. Henrio, F. Kammüller, and M.U. Khan

a map can only serve one level. As we want component names to be unique
globally, a condition on name uniqueness is necessary.

Subcomponents are defined as lists rather than finite sets because lists come
with a convenient inductive reasoning easing proofs involving component struc-
ture. Of course it is easy to define an equivalence relation to identify components
modulo reordering. On the contrary the bindings of a component are defined as
a set because no inductive reasoning is necessary on bindings, and sets fit better
to the representation of this construct.

Having a formalisation of component structure alone, although useful, is not
sufficient. An adequate infrastructure needs to be developed to help in reasoning
on the component model. The next section describes some of the infrastructure
operations that allow us to manipulate components inside component hierarchies.

3.2 Efficient Specification of Component Manipulation

This section provides various operations that allow us to effectively manipulate
components. These include operation for accessing component fields, mecha-
nisms for traversing component hierarchies, and means for replacing and up-
dating components inside the hierarchical structure. All these operations are
primitive recursive functions enabling an encoding in Isabelle/HOL using the
primrec feature. Using this feature has great advantages for the automation of
the interactive reasoning process. Automated proof procedures of Isabelle/HOL,
like the simplifier, are automatically adapted to the new equations such that
simple cases can be solved automatically. Moreover, the definitions themselves
can use pattern matching leading to readable definitions.

Field access. We define a number of operations for accessing various fields. These
include the function getName that returns the Name of the component.

primrec getName:: Component ⇒ Name where
getName (Primitive N itf s) = N |

getName (Composite N itf sub b s) = N

Similarly, we define getItfs , getQueue, and getComputedResults for getting
interfaces, request queues and replies. Requests and replies are part of the com-
ponent state described in Section 3.3.

Accessing component hierarchy. In order to support hierarchical components,
we need a number of mechanisms to access components inside hierarchies. These
range from simply finding a suitable component inside a component list to up-
dating the relevant component with another component. The most useful of
these operations are detailed below.
cpList: returns a list of all subcomponents of a component recursively. It uses
the predefined Isabelle/HOL list operators # for constructing lists and @ for
appending two lists. Note that the following primitive recursive function is mu-
tually recursive and needs an auxiliary operation dealing with component lists.

A Framework for Reasoning on Component Composition 9

primrec cpList:: Component ⇒ Component list and
cpListlist:: Component list ⇒ Component list

where
cpList (Primitive N itfs s) = [(Primitive N itfs s)] |

cpList (Composite N itfs subCp bindings s) =

(Composite N itfs subCp bindings s)#(cpListlist subCp) |

cpListlist [] = [] |

cpListlist (C#CL) = (cpList C)@ cpListlist CL

CpSet: gives a set representation of the cpList of a component. This allows us
to write properties in a much more intuitive way, for example, quantifying over
sub-components is easily written as ∀ C’∈ CpSet(C). Note however that a few
proofs require to stick to the CpList notation; indeed when switching to cpSet
construct, one cannot reason on the coexistence of two identical components.

constdefs :: Component ⇒ Component set

cpSet C == set (cpList C)

getCp: allows for retrieving a given component from a component list based on
the component Name. The constructors Some and None represent the so-called
option datatype enabling specifications of partial functions. Here, a component
with the given name might not be defined in the list – this is nicely and efficiently
modelled by a case distinction over the option type. Note the definition of ^ as
an infix operator synonymous for getCp. This so-called pretty printing syntax
of Isabelle supports natural notation of the form CL^N= Some C’.

primrec getCp:: Component list ⇒ Name ⇒ Component option where
getCp [] N’ = None |

getCp (C#CL) N’ = if (getName C=N’) then Some C else (CL^N’)

changeCp CL C: written CL<-C replaces the component in the list CL that has
the same name as C by C; it does nothing if there is no component with the given
name.

primrec changeCp::Component list⇒ Component⇒ Component list where
changeCp [] C = [] |

changeCp (C#CL) C’ = if getName C=getName C’ then C’#CL else C#(CL<-C’)

removeSubCp C N: removes the subcomponent of C with name N but does
nothing if there is no subcomponent with this name. Note, here the use of a
case switch supporting again pattern matching in Isabelle/HOL definitions.

primrec removeSubCp:: Component ⇒ Name ⇒ Component where
removeSubCp (Primitive N itf s) N’ = (Primitive N itf s) |

removeSubCp (Composite N itf sub b s) N’ = (case sub^N’ of
None => (Composite N itf sub b s) |

Some C => Composite N itf (remove1 C sub) b s)

Similar operations are needed for dealing with requests and results. This includes
operations for building lists of all referenced requests inside a component (and

10 L. Henrio, F. Kammüller, and M.U. Khan

its subcomponents), finding a result for a given future inside a component hier-
archy, etc. In all we provide almost 30 functions and predicates to help express
structured component specifications efficiently.

Design decisions. It is crucial for the reasoning process whether one chooses
lists or sets to represent various parts of the specified component structure. As
we have seen above the basic infrastructure we have built up to handle our
hierarchical components is mainly based on lists. Consequently, we can define
operations over components and their constituents by primitive recursion and
thereby decisively improve automated support. However, sets come with a more
natural notation. Often set theoretic properties can be simply decided by boolean
reasoning that poses no problems for logical decision procedures integrated in
Isabelle/HOL, and Isabelle/HOL comes with numerous lemmas for reasoning
on sets. On the other side, inductive reasoning on finite sets is less convenient
than on lists. In places where we want to combine the merits of both worlds, the
CpSet function provides a convenient translation.

3.3 Component State

Our component model shall not only allow structural reasoning on hierarchical
components but also reasoning about dynamic component state. While the pre-
ceding sections provided a good formalisation valid for any hierarchical compo-
nent model, we now define component state in order to support communication
by request and replies. Those constructs are used to define our component se-
mantics, as shown in Section 4.1. Let us first focus on the high level definition of
states which provide the constructs relating the component structure with the
dynamic semantics2. We show below the two types of component states (for com-
posite and primitive components) used in the definition of Component presented
in Section 3.1.
record CompState = record PrimState =

Cqueue:: Request list Pqueue:: Request list

CcomputedResults:: Result list PcomputedResults:: Result list

PintState:: intState

behaviour:: Behaviours

Each state contains a queue of pending requests, and a list of results computed by
this component. Additionally, primitive components have an internal state and
a behaviour for encoding the business logic, see below. We use the Isabelle/HOL
record type constructor here; it automatically defines field projection as func-
tions, e.g. for a Compstate s, (Cqueue s) accesses its request queue. Note that
uniqueness of fields identifier required us to add a ’C’ or ’P’ prefix to fields of
component states to distinguish them.

The definition of the component state relies on the definitions of requests
(characterized by a future identifier, a parameter, and a target interface), and
results (characterized by the future identifier and its value).
2 The real definition of component states contains additional fields; only the fields of

interest for this paper are shown here.

A Framework for Reasoning on Component Composition 11

record Request = record Result =

id::Fid fid::Fid

parameter:: Value fValue:: Value

invokedItf:: Name

An interesting construct is the representation of component behaviour. Each
primitive component has an internal state. A behaviour specifies how a primitive
component passes from an internal state to another. It is defined as a labeled
transition system between internal states of a component:

typedef Behaviours={ beh::(intState × Action × intState) set.

(∀ s s’. ((s,Tau,s’)∈ beh −→ (set (PRqRefs s’)⊆set (PRqRefs s))

∧ PcurrentReqs s’ = PcurrentReqs s)) ∧
. . . }

The type Behaviours is defined as a set of triples (internal state, action, internal
state). In our case actions are: internal transition (Tau, shown here), request
service, request emission, result reception, and end of service which associates a
result to a request. More than the precise definition of our actions, it is interesting
to focus on the way behaviour can be defined and further refined by constraints.
Additional rules are specified to restrain the possible behaviours, preventing
incorrect transitions to occur; for example, we forbid replying to a non-existing
request. In the piece of code above we require conditions on the internal state
before and after an internal transition: the set of referenced futures can only be
smaller after an internal transition, and the set of currently served requests is
unchanged. More complex conditions are imposed for other actions.

Design decisions. Isabelle/HOL extensible records are the natural choice for
representing states, requests, and results. They are better suited than simple
products because they support qualified names implicitly. We did, however, not
use the additional extension property of records which is similar to inheritance
known from object-orientation. It could have been used to factor out the shared
parts of primitive and composite components but this is not worthwhile – prop-
erties specific to the shared parts are few. Hence, there is practically no overhead
caused by duplicating basic lemmas. The use of lists for requests and results is
important for the efficient specification and proof of structural properties (see
the design decisions in the previous section). The definition of behaviours in
the internal state of primitive components uses an Isabelle/HOL type definition.
This way, we can encapsulate the predicate defining the set of all well-formed
behaviours into a new HOL type. These constraints are thereby implicitly car-
ried over and can be re-invoked by using the internal isomorphism with the set
Behaviours.

3.4 Correct Component

We presented the structure of our components in Section 2.2, while the various
constructs designed to manipulate hierarchical components appear in Section 3.2.

12 L. Henrio, F. Kammüller, and M.U. Khan

However, we only reason on a subset of all possible components that can be
constructed according to the described component structure. We refer to this
subset of components as correct components. Correct components are not only
well-formed, but they adhere to some additional constraints. The various well-
formedness rules along with the correctness constraints are presented in the
following.

We start with specifying the structure of a well-formed component. A com-
posite component is considered as correctly structured if it passes the criteria
specified by the function CorrectComponentStructure given below.

primrec CorrectComponentStructure :: Component ⇒ bool where
CorrectComponentStructure (Composite N itfs sub b s) =

((∀ b∈ bindings.(GetQualified(src b) (Composite N itfs sub b s =

Some � kind=Client,cardinality=Single�)
∧ (GetQualified(dest b)(Composite N itfs sub b s) =

Some� kind=Server,cardinality=Single�))
∧ NoDuplicateSrc b

∧ distinct (map getName sub)

∧ (∀ Q∈ set (Cqueue s). (invokedItf Q)∈ dom itfs

∧ kind (the (itfs (invokedItf Q))) = Server)

A composite component has a correct structure if: each binding only connects
an existing client interface to another existing server interface; each client in-
terface is connected only once; all subcomponents have distinct names; and all
requests in the request queue of the composite refer to existing server interfaces.
A primitive component has a correct structure if it follows the last requirement
plus a couple of constraints relating its behaviour with its interfaces.

constdefs CorrectComponent :: Component ⇒ bool

CorrectComponent c == CorrectComponentStructure c ∧ distinct(RqIdList c)

∧ (ReferencedRqs c) ⊆ (set(RqIdList c))

∧ distinct (map getName (cpList c))

∧ (∀ f∈ set (RqIdList c). snd f ∈ set(map getName(cpList c)))

A correct component is a correctly structured component that also has uniquely
defined request identifiers (RqIdList c gives all requests computed by c and
its subcomponents), and all future referenced by the components should cor-
respond to an existing request. Finally, names of all components in the com-
position should be unique. This differs from the well-formedness requirement
which only requires the names of all direct subcomponents to be unique. The
requirement of checking correct future referencing throughout the composition
hierarchy is stronger than what is needed for most proofs, and can at times be
relaxed resulting in a weaker correctness requirement CorrectComponentWeak.
CorrectComponentWeakList gives similar constraints but for a list of compo-
nents. Using CorrectComponentWeak eases proofs involving component
hierarchy because if a component verifies CorrectComponentWeak then all its
subcomponents also verify it.

A Framework for Reasoning on Component Composition 13

constdefs CorrectComponentWeak:: Component ⇒ bool

CorrectComponentWeak c == CorrectComponentStructure c

∧ distinct (RqIdList c) ∧ distinct (map getName(cpList c))

constdefs CorrectComponentWeakList:: Component list ⇒ bool

CorrectComponentWeakList CL == (CorrectComponentStructureList CL)

∧ distinct (RqIdListList CL)∧ distinct (map getName (cpListlist CL))

3.5 Basic Properties on Component Structure and Manipulation

In this section, we present a few properties that we proved. They deal with
the constructs presented in Section 3.2, and are unrelated to our definition of
states presented in the last section. Those lemmas are the basic building blocks
on which most of our proofs rely. On the set of more than 80 lemmas dealing
with cpSets and cpLists, we focus on the most useful and significant ones. In
particular, we choose to show rather lemmas dealing with the cpSet construct
because it is a higher-level one and thus reasoning on sets of components is
often preferable, when possible. Note however that most of the proofs dealing
with distinctness of component names will rather use cpLists.

We start by an easy lemma quite heavily used and very easy to prove. It states
that C is always in cpSet(C) (it is proved by cases on C).

lemma cpSetFirst: C ∈ cpSet C

The set of components inside a composite one can be decomposed as follows. It
can be separated into the composite itself plus all the components in the cpSet
of each sub-component.

lemma cpSetcomposite:

cpSet (Composite N itfs sub b s)={Composite N itfs sub b s}

∪ {C.∃ C’∈set sub. C∈ cpSet C’}

This lemma is proved by an induction on lists of subcomponents. Conversely, we
can prove that, if a component is in the cpSet of a subcomponent of a composite,
it is in the cpSet of the composite. We also present a more general variant of
this lemma stating that if C’’ is inside C’ and C’ is inside C then C’’ is inside C.

lemma cpSetcomposite_rev:

� C∈ set sub; C’∈ cpSet C � =⇒ C’∈ cpSet (Composite N itfs sub b s)

lemma cpSetcpSet: �C’’∈ cpSet C’;C’∈cpSet C� =⇒ C’’∈ cpSet C

Although those two lemmas are very easy to prove (by induction on the compo-
nent structure), they are massively used in the other proofs.

Another theorem almost automatically proved by Isabelle, but exceedingly
useful is the following one. It gives another formulation of the getCp construct.

lemma getCp_inlist: CL^N=Some C =⇒ C∈ set CL ∧ getName C=N

14 L. Henrio, F. Kammüller, and M.U. Khan

It is used to relate hypotheses in which a component name occurs and the com-
ponent name, or the component structure. The reverse direction holds only if
the component names inside CL are distinct as shown by the next lemma.

lemma getCpIdistinct:

� distinct (map getName CL); getName C=N; C∈ set CL� =⇒ CL^N=Some C

As the tools provided for the distinct construct in the Isabelle/HOL framework
are a little weaker than for manipulating sets and lists, this proof is slightly
longer and less automatic but still quite simple. Finally, the next lemma relates
the changeCp primitive with the getCp one for the case that the name of the
accessed component and the name of the changed one are different.

lemma upd_getCpunchanged: N
= getName C’=⇒(CL <- C’)^N = CL^N

Impact of design choices. As a consequence of the mapping between component
structure and Isabelle’s structural support, it has been relatively easy to prove
properties of component structure by automatic steps plus induction on the
component structure. Consequently, the basic proofs on component sets and
lists were relatively easy to handle: approximately 700 lines of code for the 80
lemmas dealing with component sets, component lists, and request identifiers,
including the getCp, getRecSubCp, and changeSubCp primitives. By contrast,
the proofs dealing with the semantics or correctness are generally much longer
(several hundreds of lines per proof). However, the structural lemmas presented
above are heavily used in the other proofs and strongly facilitate them.

3.6 Properties on Component Correctness

Based on the infrastructure for structural reasoning on the composition structure
of components, we can now prove properties on the correctness of component
structure presented in Section 3.4. The properties logically relate the degree of
correctness of the structure. We present some of these lemmas here.

The lemma CorrectCompWeak establishes the relationship between
CorrectComponent and CorrectComponentWeak.

lemma CorrectCompWeak: CorrectComponent C =⇒ CorrectComponentWeak C

CorrectComponentListComp establishes the correctness of the list of subcompo-
nents given that the parent composite component is correct. Similarly, a member
of a weakly correct component list is also weakly correct.

lemma CorrectComponentListComp:

CorrectComponentWeak (Composite N itfs subCp bindings s)

=⇒ CorrectComponentWeakList subCp

lemma CorrectComponentListComp_rev:

�CorrectComponentWeakList CL; C∈ set CL� =⇒ CorrectComponentWeak C

A Framework for Reasoning on Component Composition 15

As a consequence, and as mentioned in Section 3.4, weak correctness entails
weak correctness of subcomponents. Those lemmas imply that, when proving
properties by induction, relying on weak correctness is very convenient as weak
correctness can be used as the hypothesis of the recurrence hypothesis.

lemma SubComponent_CorrectComponentWeak:

�C’∈cpSet C; CorrectComponentWeak C� =⇒ CorrectComponentWeak C’

The following property expresses a condition entailed in CorrectComponentWeak.
C^^N returns the first subcomponent of C having the name N. If C is a weakly cor-
rect component, then there is a single component with that name, and thus the
following hold:

lemma getRecSubCp_getName:

�CorrectComponentWeak C; C’∈ cpSet C� =⇒ C^^(getName C’) = Some C’

The proof of this property depends on properties on distinct names, and on the
lemmas shown in this section and the preceding one.

Impact of design choices. The proofs in Isabelle/HOL are, for the most part of
the correctness lemmas, almost automatic: unfolding the definitions, the proofs
are mostly solved by applying the automatic tactic auto. Yet, these lemmas are
important because they precisely relate different correctness conditions and con-
sequently clarify subsequent proofs. They also entail properties of composition-
ality, i.e. what are the properties of a composite with respect to its constituents.

Other properties, like getRecSubCp getname are harder to prove. Their proofs
rely strongly on the provided infrastructure for structured components presented
earlier in this section. Feasibility and readability of the proofs at the correctness
level depends decisively on this clearly structured support with lemmas. Often
the amount of automated proof work can be increased by adding our basic
lemmas to the simplification sets of Isabelle/HOL.

4 Components at Runtime

4.1 Semantics

The formal semantics of our component model is given by a number of reduction
relations defined by a set of inductive rules. These reduction relations along with
the formal semantics of our component model appear in [13]; they were infor-
mally summarized in Section 2.2. This section illustrates the usefulness of the
presented framework to specify and prove properties on the semantics by focus-
ing on one reduction rule and one property. A smoothly working infrastructure of
well-designed structural definitions and accompanying lemmas are prerequisite
for mechanically proving properties over a structured component semantics.

We define a reduction relation S � C →R C′,RL stating that in the com-
ponent system S, a given component C reduces to a component C′. The list
RL is used for specification of reply strategy that is not detailed here. We show
below one specific communication rule CommChild, illustrated in Figure 3, and
encoding the delegation of requests to a contained subcomponent.

16 L. Henrio, F. Kammüller, and M.U. Khan

[f',v,itf']

fresh f'

N'

f'=f

[f, v, itf]

itf
itf'

[f ′, v, itf ′]

Results

FRL

N0

[f ′ �→ N0]

N' registers for all futures in v

[This.itf,N’.itf’] ∈ bindings

Fig. 3. CommChild rule

CommChild:
� Cqueue s= R#Q; � src=This(invkItf R), dest=N’.i2 �∈ bindings;

f’/∈set (RqIdList S) ; subCp^N’ = Some C’� =⇒
S� Composite N itf sub b s→R Composite N itf

(sub<-(C’←�id=f’, parameter=(parameter R),invokedItf=i2�)) b

(s�Cqueue:=Q,CcomputedResults:=CcomputedResults s @

[�fid=id R,fValue=(0,[f’])�]�),
(f,N)#(map (λ id.(id,N’)) (snd(parameter R)))

The rule expresses request delegation between a composite component N and one
of its subcomponents N ′. The request R (shown as its constituents [f, v, itf] in
Figure 3) that has been sent to the parent N is dequeued from its request queue.
A new future f ′ is created and added to the result list (CcomputedResults) of
the parent as the result for this request R. A new request (shown as its con-
stituents [f ′, v, itf ′]) is enqueued in the subcomponent N ′. In the Isabelle code
snippet, we use the shortcut notation ← for the enqueue operation. The target
subcomponent is determined using the bindings: if This.itf is bound to N ′.itf ′

then the request is sent to the interface itf ′ of the subcomponent N ′, where itf
is the external interface of N by which the request had arrived before. Note the
use of the getCp primitive: subCp^N’=Some C’ ensures that subcomponent of
name N’ exists and is C’. Also the changeCp primitive (<-) is quite useful here
to update the subcomponent by enqueueing a new request to it.

Let us conclude this section by showing a property we proved in our framework
that deals with component semantics. The following lemma shows that the set
of names of components inside a component is unchanged by reduction.

lemma red_names_eq: �S�c1→R c2, RL; CorrectComponentWeak c1�
=⇒ getName ‘ (cpSet c2) = getName ‘(cpSet c1)

The proof is approximately 60 lines long, it is done by analysis on the reduction
rule. It relies on a few lemmas relating names with reduction rules, and on most
of the lemmas presented in Section 3. A crucial auxiliary lemma is the following
one that is purely structural and unrelated with our semantics.

A Framework for Reasoning on Component Composition 17

lemma upd_names_eq:

�CL^(getName c2)= Some c1; getName‘(cpSet c2)=getName‘(cpSet c1)�
=⇒ getName‘(cpListset CL) = getName‘(cpListset (CL<-c2))

4.2 Reconfiguration

Reconfiguration represents all the transformations of the component structure
or content that can be handled at runtime. We consider here mainly structural
reconfiguration, which includes changes of the bindings, and of the content of a
component. For example replacement of a primitive component by a new one is
a form of reconfiguration that allows evolution of the business code.

In Fractal or GCM, configuration primitives are bind/unbind to manipulate
bindings, add/remove to change the set of subcomponent of a composite com-
ponent; also it is possible to start/stop a component.

Our framework enables reasoning on reconfiguration primitives and behaviour
of a reconfigured component system. We illustrate below a few encodings of re-
configuration primitives and some theorems that can be proved in Isabelle/HOL
thanks to our framework.

We illustrate reconfiguration capacities of our approach by defining two re-
configuration primitives and proving two related lemmas. But beforehand, we
define the notion of complete component.

Completeness. Similarly to [6], we say that a composite component is complete if
all interfaces of its sub-components and all its internal interfaces are bound. This
can be easily defined in Isabelle by the following primitive recursive predicate.

primrec Complete::Component⇒ bool where
Complete (Primitive N itf s) = True |

Complete (Composite N itf sub bindings s) =

(∀ C∈set sub. allExternalItfsBound C bindings) ∧
(allInternalItfsBound (Composite N itf sub bindings s) bindings) ∧
(CompleteList sub)

Here, allInternalItfsBound C b checks that all external interfaces of C are
bound by bindings b, and allExternalItfsBound C b that all internal inter-
faces of C are bound by bindings b. Finally, similar to cpListlist in Section
3.2, CompleteList recursively checks that all subcomponents are complete.

As there is no notion of optional interface in our model, this definition is really
straightforward. For a complete component, any request emitted by a component
will arrive at a destination component.

Unbind primitive. The unbind primitive removes one of the bindings defined by
a composite component.

primrec unbind:: Component⇒Binding⇒Component where
unbind (Primitive N itf s) b = (Primitive N itf s) |

unbind (Composite N itf sub bindings s) b =

(Composite N itf sub (bindings-{b}) s)

18 L. Henrio, F. Kammüller, and M.U. Khan

Of course, un-binding does not maintain completeness, and this can be proved
in our framework.

lemma unbinding_incomplete:

�b∈bindings; CorrectComponentStructure (Composite N itf sub bindings s)�
=⇒ ¬ Complete (unbind (Composite N itf sub bindings s) b)

This lemma is proved in only 35 lines of simple Isabelle/HOL code, thanks to
the properties presented in Section 3.5. The proof can be sketched as follows.
CorrectComponentStructure imposes that in bindings src b is connected only
once, thus, in bindings-{b}, src b is not connected anymore. Now, src b can
be either This N if b connects an internal client interface to a sub-component,
or of the form CN.N if it connects a sub-component to another interface. In the
first case, the new component does not ensure allInternalItfsBound anymore,
and in the second case, it is allExternalItfsBound that is not true for the
component with name CN; note that CorrectComponentStructure ensures the
existence of such a component.

Component replacement. Let us now introduce a reconfiguration primitive that
would automatically maintain completeness.

primrec Replace:: Component⇒Name⇒Component⇒Component where
Replace (Primitive N itf s) N1 C = (Primitive N itf s) |

Replace (Composite N itf sub binds s) N1 C = addSubCp (removeSubCp

(Composite N itf sub ((λb.RenameBinding b N1 (getName C))‘binds) s) N1) C

This primitive maintains completeness of a correct component as expressed in
the following lemma:

lemma replace_complete:

�sub^(getName C’)=None; sub^N’=Some oldC; getItfs oldC=getItfs C’;

Complete C’; Complete (Composite N itf sub bindings s);

CorrectComponentStructure C’;

CorrectComponentStructure (Composite N itf sub bindings s)�
=⇒ Complete (Replace (Composite N itf sub bindings s) N’ C’)

This lemma requires that all involved original components are correct and com-
plete, that the replaced component is in the composition, but not the replace-
ment one, and that those two components have the same interfaces. A similar
lemma proving CorrectComponentStructure for the result of the replacement
operation is also proved.

Of course, the replace primitive can be expressed by lower level reconfiguration
operations, i.e. an unbind, remove, add, bind sequence. A lemma equivalent to
the preceding one could also be proved. Such a lemma would be more general
but a little more complex to express because it would need to relate the set of
unbound bindings, the set of re-bound ones, and the component involved in the
add-remove operations.

A Framework for Reasoning on Component Composition 19

5 Conclusion

This paper presented the logical machinery of a mechanized framework for reason-
ing about structured component systems; especially targeting distributed compo-
nents. We have first illustrated and motivated the specification of components and
the provided proof infrastructure. Furthermore, we have shown this machinery in
action by showing how reconfiguration of components can be formally specified,
and how properties over component structure and reconfiguration can be han-
dled. This paper also illustrated our approach by showing the specification of a
semantics for components, and associated proofs. Overall, the developed frame-
work consists of more than 4000 lines, including almost 300 lemmas and theorems,
approximately 500 lines for defining the component model and its semantics, and
1800 lines focusing on properties specific to future registration which were not pre-
sented here. As usual with mechanised proofs, the main difficulty is the choice of
the right structures providing the suitable level of abstraction. Some proofs are
lengthy and technical but no major difficulty was encountered.

In contrast to existing works, our approach focuses on increasing confidence in
global properties of component models. For this, we provide a framework and ap-
ply it to prove generally valid results. The established infrastructure of structured
components with asynchronous communication provides an elegant abstraction
from implementation detail while fully preserving the communication structure
and defining a precise semantics. One limiting factor of our framework is that a
precise semantics for components had to be chosen to allow mechanised proofs.
Overall we have developed a reliable basis for the mechanical proofs of proper-
ties of hierarchical component models, and we have shown its adequacy to deal
with first proofs entailing reconfiguration, or component semantics. We addi-
tionally provide subsequent support for distributed components communicating
by asynchronous requests with futures.

A promising follow up project would be to analyse information flows based on
this model, or properties entailing component synchronisation at reconfiguration
time. More generally we expect to prove properties on reconfiguration that will
entail reasoning simultaneously on component execution and on evolution of
component structure. This would show the correctness of complex adaptation
procedures that can be applied in autonomous component systems.

References

[1] Sensoria – software engineering for service-oriented overlay computers (2005)
[2] Ábrahám, E., Grabe, I., Grüner, A., Steffen, M.: Behavioral interface description

of an object-oriented language with futures and promises. Journal of Logic and
Algebraic Programming 78(1-2), 491–518 (2008)

[3] Barros, T., Ameur-Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Behavioural
models for distributed fractal components. Annales des Télécommunications
64(1-2), 25–43 (2009)

[4] Baude, F., Caromel, D., Dalmasso, C., Danelutto, M., Getov, V., Henrio, L., Pérez,
C.: GCM: A Grid Extension to Fractal for Autonomous Distributed Components.
Annals of Telecommunications (2008) (accepted for publication)

20 L. Henrio, F. Kammüller, and M.U. Khan

[5] Beisiegel, M., Blohm, H., Booz, D., Edwards, M., Hurley, O.: SCA service compo-
nent architecture, assembly model specification. Technical report (March 2007),
www.osoa.org/display/Main/Service+Component+Architecture+

Specifications

[6] Bruneton, E., Coupaye, T., Stefani, J.B.: The Fractal Component Model. Techni-
cal report, ObjectWeb Consortium (February 2004),
http://fractal.objectweb.org/specification/index.html

[7] Bruni, R., et al.: Service oriented architectural design. In: Barthe, G., Fournet, C.
(eds.) TGC 2007 LNCS, vol. 4912, pp. 186–203. Springer, Heidelberg (2008)

[8] Cámara, J., Salaün, G., Canal, C., Ouederni, M.: Interactive Specification and
Verification of Behavioural Adaptation Contracts. In: Ninth International Confer-
ence on Quality Software, pp. 65–75 (August 2009)

[9] Canal, C., Poizat, P., Salaün, G.: Synchronizing behavioural mismatch in soft-
ware composition. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,
vol. 4037, pp. 63–77. Springer, Heidelberg (2006)

[10] Cansado, A., Madelaine, E.: Specification and verification for grid Component-
Based applications: From models to tools. In: Formal Methods for Components
and Objects, pp. 180–203 (2009)

[11] CCA-Forum. The Common Component Architecture (CCA) Forum home page
(2005), http://www.cca-forum.org/

[12] Grabe, I., Steffen, M., Torjusen, A.B.: Executable interface specifications for test-
ing asynchronous creol components. Technical Report Research Report No. 375,
University Of Oslo (July 2008)

[13] Henrio, L., Kammüller, F., Rivera, M.: An asynchronous distributed component
model and its semantics. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, Springer, Heidelberg (2009) (to appear)

[14] Henrio, L., Khan, M.U.: Asynchronous components with futures: Semantics and
proofs in isabelle/hol. In: Proceedings of the Seventh International Workshop,
FESCA 2010. ENTCS (2010) (to appear)

[15] Broch Johnsen, E., Owe, O.: An asynchronous communication model for dis-
tributed concurrent objects. In: Proceedings of the Software Engineering and For-
mal Methods, SEFM 2004, Washington, DC, USA, pp. 188–197. IEEE Computer
Society Press, Los Alamitos (2004)

[16] Broch Johnsen, E., Owe, O., Yu, I.C.: Creol: a type-safe object-oriented model for
distributed concurrent systems. Theor. Comput. Sci. 365(1), 23–66 (2006)

[17] Khan, M.U., Henrio, L.: First class futures: a study of update strategies. Research
Report RR-7113, INRIA (2009)

[18] Merle, P.B., Stefani, J.B.: A formal specification of the Fractal component model
in Alloy. Research Report RR-6721, INRIA (2008)

[19] Meseguer, J.: Conditional reqriting logic as a unified model of concurrency. Journal
of Theoretical Computer Science 96, 73–155 (1992)

[20] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for
Higher-Order Logic. In: Isabelle/HOL. LNCS, vol. 2283, Springer, Heidelberg
(2002)

[21] OW2.Consortium. FraSCAti, Open SCA middleware platform (2009),
https://wiki.objectweb.org/frascati/Wiki.jsp?page=FraSCAti

http://fractal.objectweb.org/specification/index.html
http://www.cca-forum.org/
https://wiki.objectweb.org/frascati/Wiki.jsp?page=FraSCAti

Verification of Context-Dependent
Channel-Based Service Models

Natallia Kokash1,�,��, Christian Krause1,� � �, and Erik P. de Vink2

1 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Natallia.Kokash@cwi.nl

2 Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, The Netherlands

Abstract. The paradigms of service-oriented computing and model-
driven development are becoming of increasing importance in the field
of software engineering. According to these paradigms, new systems are
composed with added value from existing stand-alone services to sup-
port business processes across organizations. Services comprising a sys-
tem but originating from various sources need to be coordinated. The
Reo coordination language is a state-of-the-art tool supported approach
to channel-based coordination. Reo introduces various types of channels
which can be composed to build complex connectors to represent various
behavioral protocols. This makes Reo suitable for the modeling of service-
based business processes. In previous work we presented a framework for
model checking data-aware Reo connectors using the mCRL2 toolset. In
this paper, we extend this result with a proof of correctness, evaluation
of optimization techniques, and support for context-sensitive analysis.

1 Introduction

Service-oriented computing is a paradigm that is changing the way modern soft-
ware is designed and developed. Services are autonomous, loosely coupled soft-
ware components with publicly available interfaces that can be invoked by a
client or composed by a third party to achieve a more complex goal. An impor-
tant difference of service-oriented architectures compared to other architectural
solutions is that the owner of a service-based system has very limited control
over the services involved, as generally they run remotely by external companies
which may not even know about each other. Conceptually this is similar to the
idea of exogenous coordination which advocates the separation of computation
(in this case, provided by services) and coordination [1].

One way to coordinate external services is to use a network of communica-
tion channels. Reo is an expressive channel-based coordination language with
computer aided support. Reo introduces various types of channels which can be
composed into complex connectors (also called circuits) to implement interaction

� Corresponding author.
�� Supported by IST COMPAS FP7-ICT-2007-1 project, contract number 215175.

� � � Supported by NWO GLANCE project WoMaLaPaDiA and SYANCO.

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 21–40, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

22 N. Kokash, C. Krause, and E.P. de Vink

protocols. Along with the graphical notation and intuitive meaning of channel
behavior, several formal semantic models for Reo have been proposed [2,3]. This
makes it possible to analyze the connector behavior automatically using simula-
tion and model checking techniques as well as to generate executable code from
graphical models. However, these semantic models, in particular constraint au-
tomata [2] and coloring semantics [3], require the development of special software
tools to deal with them. For example, Reo animation and simulation engines [4]
are developed as Eclipse plug-ins at CWI in Amsterdam to animate and simulate
the execution of Reo circuits based on coloring semantics, and Vereofy [5] is a
model checking tool developed by the University of Dresden to check properties
of constraint automata.

Since the tailored development of reliable verification tools is a substantial
effort requiring man power over an extensive time span to mature, we chose an
alternative approach. In our recent work [6], we presented a framework for spec-
ifying behavior of Reo in mCRL2, a specification language based on the process
algebra ACP, including time and data [7]. Specifications in this language can be
analyzed by an extensive set of model checking and simulation tools available in
the mCRL2 toolset. The mCRL2 model checker has proven its suitability for analyz-
ing large scale industrial systems. Moreover, a specification can be converted into
a labelled transition system (LTS) in various formats and subsequently be used
as input for external model checking tools, e.g., CADP [8]. The mCRL2 specifica-
tion language provides means to deal with algebraic data types and user-defined
functions. These features are essential for enabling data-aware analysis of Reo
circuits which may accept as input structured data elements from web services
and may transform them (e.g., merge, duplicate, reorder) using filter and trans-
former channels.

We developed a conversion tool that generates mCRL2 specifications from Reo
graphical models. These specifications are generated fully automatically and do
not require any manual refinement. The mapping from Reo to mCRL2 is performed
according to the constraint automata semantics of Reo. In this paper, we estab-
lish the correctness of this mapping by proving the bisimilarity of the generated
mCRL2 specification and constraint automata semantics for a given Reo circuit.
Secondly, we propose a method of step-wise mCRL2 specification generation, that
incorporates the structural information of a Reo circuit. Experimental results in-
dicate reduced execution times for linearization of the specification, a necessary
step when exploiting the mCRL2 toolkit. Finally, we incorporate coloring informa-
tion in our Reo to mCRL2 encoding. Coloring semantics have been introduced ini-
tially to provide an animated execution of Reo circuits. In contrast to constraint
automata in their basic form, coloring semantics is able to express the behavior
of context-dependent Reo channels, i.e., channels whose behavior depends on the
states of other channels or components. A basic example of such channels is a syn-
chronous lossy channel that loses data only if it cannot simultaneously dispense
it. We present an extension of our conversion tool that maps Reo channels into
mCRL2 processes that explicitly propagate the information about their states to
other parts of the circuit by means of typed actions.

Verification of Context-Dependent Channel-Based Service Models 23

The rest of this paper is organized as follows. In Section 2, we summarize
the basics of Reo. In Section 3, we review the mCRL2 specification language and
its toolset. In Section 4, we briefly describe the translation of Reo to mCRL2. In
Section 5, we formally prove the correctness of this translation. In Section 6, we
discuss the coloring semantics for Reo, a more expressive semantic model that
is able to deal with context dependency, and translate context-aware Reo to
the process algebra mCRL2. In Section 7, we describe an updated conversion tool
implemented as part of the Eclipse Coordination Tools (ECT) and evaluate its
performance with and without optimization techniques based on the structural
information about Reo circuits. In Section 8, we discuss related work. Finally,
in Section 9, we give concluding remarks and outline future work.

2 The Reo Coordination Language

Reo is a channel-based coordination language wherein components or services
are coordinated exogenously (from outside) by so-called connectors [9]. These
connectors have a graph-like structure where the edges are user-defined commu-
nication channels and the nodes implement a standard routing policy.

Channels in Reo are entities that have exactly two ends (also referred to
as ports), which can be either source or sink ends. Source ends accept data
into, and sink ends dispense data out of their channel. Reo allows channels to
have two source or two sink ends. Although channels can be defined by users in
Reo, a set of basic channels suffices to implement rather complex coordination
protocols. One of the most basic channels in Reo is the so-called Sync channel,
which is a directed channel that accepts a data item through its source end if it
can instantly dispense it through its sink end. The LossySync channel behaves
similarly except that it always accepts data items through its source end. The
data item is transferred if it can be dispensed through the sink end, and lost
otherwise. The SyncDrain has two source ends and accepts data through them
simultaneously. All accepted data items are lost. The AsyncDrain channel accepts
data items through any of its two source ends, but never from both of them
synchronously. The FIFO is an asynchronous channel with a buffer of size one.
The basic set of Reo channels also includes channels that have data dependent
behavior or perform data manipulation. For instance, the Filter channel loses
the data item at its source end if the item does not match a certain pattern,
which is defined in terms of a data constraint for a particular instance of this
channel. Similarly one can also associate a data constraint to the SyncDrain. The
channel blocks if the data constraint cannot be evaluated to true. Furthermore,
data manipulation can be implemented using the Transform channel. It applies
a user-defined function to the data item at its source end and yields the result
at its sink end.

Channels can be joint together using nodes. A node can be of one out of
three types: source, sink or mixed, depending on whether all coinciding channel
ends are source ends, sink ends or a combination of both. Source and sink nodes
together form the boundary of a connector, allowing interaction with its envi-
ronment. Source nodes act as synchronous replicators, sink nodes as mergers.

24 N. Kokash, C. Krause, and E.P. de Vink

Table 1. Graphical notation and semantics for channels and nodes

Channel name Graphical notation Constraint automaton

Sync A B {A,B} dA = dB

LossySync A B {A,B} dA = dB{A}
SyncDrain A B {A,B}
AsyncDrain A B {A}{B}

FIFO A B

{A} dA = 0

{B} dB = 0

{A} dA = 1

{B} dB = 1

Filter A B {A,B} expr(dA) ∧ dA = dB{A} ¬expr(dA)
Transform A B {A,B} dB = f(dA)

Merger C
A

B
{A,C} dA = dC {B,C} dB = dC

Replicator A
B

C
{A,B,C} dA = dB = dC

Mixed nodes combine both behaviors by atomically consuming a data item from
one sink end at the time and replicating it to all source ends.

Semantics of Reo can be given in terms of constraint automata [2]. The transi-
tions in constraint automata are labeled with sets of synchronously firing ports,
as well as with data constraints on these ports, if desired. Table 1 depicts the
graphical notation and the constraint automata semantics for the basic chan-
nels and of the Merger and Replicator primitives, which can be used to construct
nodes. For example, the constraint automaton for the lossy sync either has flow
on ports A and B involving the same data value (right self-loop) or has flow on
port A only, without further conditions (left self-loop). Note that the constraint
automaton shown for the FIFO is with respect to the data domain Data = {0, 1}.
Formally, constraint automata are defined as follows.

Definition 1. A constraint automaton A = (S,N ,→, s0) consists of a set of
states S, a set of port names N , a transition relation → ⊆ S × 2N × DC × S,
where DC is the set of data constraints over a finite data domain Data, and an
initial state s0 ∈ S.

For a comprehensive discussion of the constraint automata semantics of Reo we
refer to [2]. The intuitive idea of constraint automata is that if the data constraint
is satisfied, the corresponding transition can fire and data flow is observed at
the given ports. We write s

N→ t, without constraint, for a transition indicating
that while going from the state s to the state t, flow is observed at the ports in
the set N .

Verification of Context-Dependent Channel-Based Service Models 25

3 The mCRL2 Specification Language

We provide a brief overview of the mCRL2 specification language and toolset. For
more details we refer to [7] and to the mCRL2 website1.

The basic notion in mCRL2 is the action. Actions represent atomic events
and can be parametrized with data. Actions in mCRL2 can be synchronized. In
this case, we speak of multiactions which are constructed from other actions or
multiactions using the so-called synchronization operator |, like the multiaction
a|b of simultaneous doing the actions a and b. The special action τ (tau) is used
to refer to an internal unobservable action. Processes are defined by process
expressions, which are compositions of actions and multiactions using a number
of operators. The basic operators include

– deadlock or inaction δ, which does not display any behavior;
– alternative composition, written as p+q, which represents a non-deterministic

choice between the processes p and q;
– sequential composition, written p · q, which means that q is executed after p,

assuming that p terminates;
– the conditional operator or if-then-else construct, written as c → p�q, where

c is a data expression that evaluates to true or false;
– summation Σd:D p where p is a process expression in which the data vari-

able d may occur, used to quantify over a data domain D;
– the at operator a@t, which indicates that the multiaction a happens at the

time t;
– parallel composition or merge p ‖ q, which interleaves and synchronizes the

multiactions of p with those of q, where synchronization is governed by an
implicit communication function;

– the restriction operator ∇V (p), where V specifies which actions from p are
allowed to occur, and, complementary, the encapsulation ∂H(p), where H is
a set of action names that are not allowed to occur;

– the renaming operator ρR(p), where R is a set of renamings of the form a→b,
meaning that every occurrence of action a in p is replaced by the action b;

– the communication operator ΓC(p), where C is a set of communications of
the form a0|...|an �→ c, which means that every group of actions a0|...|an

within a multiaction is replaced by c.

The mCRL2 language provides a number of built-in data types such as boolean,
natural and positive numbers, integers and real numbers. All standard arithmetic
operations for them are predefined. Custom data type definition mechanisms in
mCRL2 allow users to declare new sorts, constructors and functions. A structured
type in mCRL2 can be declared by a construct of the form

sortS = struct c1(p1
1:S

1
1 , . . . , pk1

1 :Sk1
1)?r1 | . . . | cn(p1

n:S1
n, . . . , pkn

n :Skn
n)?rn;

This construct defines the type S together with constructors ci : S1
i × . . .×Ski

i →
S, projections pj

i : S → Sj
i , and recognizers ri : S → Bool . Various examples of

1 http://mcrl2.org/mcrl2/wiki/index.php

http://mcrl2.org/mcrl2/wiki/index.php

26 N. Kokash, C. Krause, and E.P. de Vink

custom type definitions can be found in the language reference section of the
mCRL2 web site.

The mCRL2 toolset provides tools that allow users to verify software models
specified in the mCRL2 language. The toolset includes a tool for converting mCRL2
specifications into a compact symbolic representation of the corresponding LTS
to speed up subsequent manipulations, yielding so-called linear process specifica-
tions (LPS), a tool for generating explicit LTSs from LPSs, tools for optimizing
and visualizing these LTSs, and many other useful facilities. A detailed overview
is provided at the mCRL2 web site.

For model checking, system properties are specified as formulae in a variant
of the modal μ-calculus extended with regular expressions, data and time. In
combination with an LPS such a formula is transformed into a parametrized
boolean equation system (PBES) and can be solved with the appropriate tools
from the toolset. Analysis at the level of LTSs is also possible by means of equiv-
alence checking (e.g., strong and branching bisimulation or trace equivalence).
In particular, the presence or absence of deadlocks/livelocks or of certain actions
can be checked straightforwardly.

4 Translating Reo to mCRL2

In this section, we recall the rules for mapping Reo primitives (channels and
nodes) to mCRL2 processes and briefly explain how to derive composite specifi-
cations for arbitrarily complex Reo connectors (cf. [6]).

Our mapping of the basic channels reflects the constraint automata semantics
of Reo. The mCRL2 process corresponding to a channel, is based on two atomic
actions modeling data flow on its respective ends. Analogously, we introduce a
process for every node and actions for all channel ends meeting at the node.
One important aspect of our encoding is that data constraints are translated
faithfully. For this the actions corresponding to channel and node ends are ex-
tended with data parameters. In the context of a given connector, we assume
a global datatype, which we model as the custom sort Data in mCRL2. In fact,
most channels in Reo are agnostic to the actual type of data items they carry.
Given such a global type, we can use the summation operator in mCRL2 to define
data dependencies imposed by channels. The encodings for the primitives used
in this paper are depicted in Table 2. Note that for the FIFO we need to define
an additional datatype

sortDataFIFO = struct empty?isEmpty | full(e:Data)?isFull ;

The encoding of the FIFO channel includes a parameter of this datatype which
allows us to specify whether the buffer of the channel is empty or full, and if it
is full, what value is stored in it.

As in the constraint automata approach, we construct nodes compositionally
out of the Merger and the Replicator primitives. A process for a node that be-
haves like an exclusive router can be defined analogously. However, in practical
situations a third type of node comes in handy, which we refer to as Join here.

Verification of Context-Dependent Channel-Based Service Models 27

Table 2. mCRL2 encoding for channels and nodes

Sync = Σd:Data A(d)|B(d) · Sync

LossySync = Σd:Data (A(d)|B(d) + A(d)) · LossySync

SyncDrain = Σd1,d2:Data A(d1)|B(d2) · SyncDrain

AsyncDrain = Σd:Data (A(d) + B(d)) · AsyncDrain

FIFO(f : DataFIFO) = Σd:Data

(isEmpty(f)→ A(d) · FIFO(full(d)) � B(e(f)) · FIFO(empty))
Filter = Σd:Data (expr(d)→ A(d)|B(d) �A(d)) · Filter

Transform = Σd:Data A(d)|B(f(d)) · Transform

Merger = Σd:Data (A(d)|C(d) + B(d)|C(d)) ·Merger

Replicator = Σd:Data A(d)|B(d)|C(d) · Replicator

Such a Join synchronizes all coinciding source ends and atomically forms a tuple
of the data items received at these ends and transfers it to the sink end. We
define a binary join as

Join = Σd1,d2:Data A(d1)|B(d2)|C(tuple(d1, d2)) · Join;

For handling data structures formed after passing through the Join node, we need
to extend our global datatype with a notion of tuples. Since mCRL2 supports
standard algebraic datatypes, this is not a problem. Throughout the rest of
the paper, we assume that the global datatype is generated by n user-defined
datatypes, which we refer to as D1, . . . ,Dn. In concrete cases, they are inferred
from the coordinated components or services. If a circuit contains one or more
Join nodes, we define the global datatype as

sortData = struct D1(e1 : D1) | ... | Dn(en : Dn) | tuple(p1 : Data, p2 : Data);

This definition allows us to instantiate elements of any basic type as well as
binary tuples, thus forming tree-like structures. Note, this datatype is suitable
for circuits with Join nodes that have two incoming ends only. In the general
case, for every Join node with k incoming ends a tuplek(p1 : Data, ..., pk : Data)
must be added to the definition.

After generating process definitions for all channels and nodes, we need to
compose them into one joint process which models the whole connector. This is
done using the following three steps:

1. Forming of the parallel composition of all channel and node processes.
2. Synchronizing of actions for coinciding channel and node ends.
3. Hiding of internal actions (optional).

The tentative last step is achieved by renaming into τ , an operation not intro-
duced above. Step 2 in fact involves an application of two mCRL2 operators: com-
munication and blocking. To elucidate the composition process, we now consider
a simple example. Consider the LossyFIFO connector composed of two channels
and a replication node:

28 N. Kokash, C. Krause, and E.P. de Vink

A X1 X2Y2 Y1 B

Following the systematic translation scheme, sorts X1 and Y1 are internal ports
of the channels that are connected together. Although, these channel ends can be
connected directly, for genericity we assume that they both connect to a node.
Since the mCRL2 specification language does not allow the use of the same action
name in several groups of communicating actions within a single communication
operator, we introduce two ports X2 and Y2 to connect channel ends to the
node. To keep the example small, we assume that the channel ends A and B
form the boundary of the connector without connecting to nodes. Thus, the
three constituents of the LossyFIFO circuit are translated to the following mCRL2
processes:

LossySync = Σd:Data (A(d)|X1(d) + A(d)) · LossySync;
Node = Σd:Data X2(d)|Y2(d) · Node;

FIFO(f : DataFIFO) = Σd:Data

isEmpty(f)→ Y1(d) · FIFO(full(d)) � B(e(f)) · FIFO(empty) ;

For obtaining the mCRL2 process for the LossyFIFO connector, we first form the
parallel composition of the three processes above, force actions corresponding to
the connected channel and node ends communicate, and finally hide the actions
X and Y that represent the data flow at the internal node/channel ports by
renaming them to τ . In the mCRL2 syntax, cf. Section 3, this reads

Connector = ρN→N\{X,Y }(
∂{X1,X2,Y1,Y2}(

Γ{X1|X2→X,Y1|Y2→Y }(
LossySync ‖ Node ‖ FIFO)));

However, this direct approach does not exploit the information about the circuit
structure, and, as we show later, the further processing of the obtained specifi-
cation is very inefficient. Therefore, we build up the process for a Reo connector
in a stepwise fashion, i.e.,

Connector1 = ρN→N\{Y }(∂{Y1,Y2}(Γ{Y1|Y2→Y }(Node ‖ FIFO)));
Connector = ρN→N\{X}(∂{X1,X2}(Γ{X1|X2→X}(LossySync ‖ Connector1)));

In this version, we first compose the node and the FIFO, synchronize and hide
their connected ends, and then continue with the rest of the circuit. This helps us
to keep the intermediate state spaces relatively small. Note that we can use the
topology of the connector to determine an order of the processes that significantly
decreases the run-time of the linearization algorithm. A comparison of the actual
run-times of the two approaches is discussed in Section 7.

5 Correctness of the Translation

In this section, we prove the correctness of the mapping of Reo to mCRL2 dis-
cussed above. For simplicity we only consider connectors with disjoint sets of

Verification of Context-Dependent Channel-Based Service Models 29

port names. Note that this does not affect the generality of our approach as
we can always make these sets disjoint by applying an appropriate renaming of
ports.

For each state s of a given constraint automaton A, we define the mCRL2
process proc(A, s) over the action set P(N) as

proc(A, s) =
∑

s
N→ t

N · proc(A, t), (1)

where N =
∏

x∈N x represents the multiaction composed from all ports in the
set. Thus, for example,

∏
x∈{A,B,C} x = A|B|C. In this view, it comes natural

to have for the synchronization N1|N2 of actions N1 and N2 the union of the
underlying port names N1 ∪N2. If the action N1 claims flow at the ports of the
set N1 and the action N2 does so for the ports of the set N2, supposedly there
is flow at the ports of the set N1 ∪ N2.

As an example, consider the synchronous FIFO F which behaves similarly
to the usual FIFO except that it also can dispense a data item from its buffer
and simultaneously accept a new one. Its semantics is given by the constraint
automaton and the corresponding mCRL2 processes below.

q1 q2

{A}

{B}

{A, B} proc(F , q1) = A · proc(F , q2);
proc(F , q2) = B · proc(F , q1) + A|B · proc(F , q2);

In essence, as discussed in Section 4, the translation recursively decomposes a
Reo connector into two subconnectors and puts the mCRL2 processes obtained for
these subconnectors in parallel, yielding the process for the main connector. To
prove the correctness of this approach formally, we introduce two operations, a
synchronous product �	γ for constraint automata and a synchronized merge ‖γ

for mCRL2 processes. Thus, given a constraint automaton A for which we have
A = A1 �	γ A2, we translate the constraint automata A1 and A2, say into the
mCRL2 processes P1 and P2, and obtain P1 ‖γ P2 as the translation of A.

Definition 2. Let A1 = (S1,N1,→1, s
1
0), A2 = (S2,N2,→2, s

2
0) be two con-

straint automata with disjoint sets of port names N1 and N2, respectively. A port
synchronization function γ : N → N1 × N2 is defined as γ(n) = (γ1(n), γ2(n))
through the pair of injective functions γ1 : N → N1 and γ2 : N → N2 that map
port names from a new set N into port names from the sets N1 and N2.

Intuitively, γ(n) = (x, y) represents a renaming of x ∈ N1 and y ∈ N2 to
the same common element n ∈ N . In the context of the port synchronization
function γ, we write N ′

1 for N1\γ1[N] and N ′
2 for N2\γ2[N]. If, for subsets

N1 ⊆ N1, N2 ⊆ N2, it holds that γ−1
1 [N1] = γ−1

2 [N2] we write

N1 |γ N2 = (N1 ∩ N ′
1) ∪ γ−1

1 [N1] ∪ (N2 ∩ N ′
2) . (2)

From Equation (2) we see that N1 |γ N2 is the union N1 ∪ N2 but with the
parts of N1 and N2 that are identified via γ1 and γ2 replaced by the shared

30 N. Kokash, C. Krause, and E.P. de Vink

names γ−1
1 [N1] = γ−1

2 [N2]. Also, for a constraint g, we write γ(g) for the for-
mula obtained by replacing port names in γ1[N] ⊆ N1 and γ2[N] ⊆ N2 by the
corresponding name in N .

Definition 3. For two constraint automata A1 and A2 with port synchroniza-
tion function γ, the constraint automaton A1 �	γ A2, called the γ-synchronous
product of A1 and A2, is given by A1 �	γ A2 = (S1 × S2,N ′,→, 〈s1

0, s
2
0〉) where

N ′ = N1 |γN2 and the transition relation → is determined by the following rules:

s1
N1,g1−−−−→1t1 N1 ⊆ N ′

1

〈s1, s2〉
N1,g1−−−−→ 〈t1, s2〉

s2
N2,g2−−−−→1t2 N2 ⊆ N ′

2

〈s1, s2〉
N2,g2−−−−→ 〈s1, t2〉

(3)

and
s1

N1,g1−−−−→1t1 s2
N2,g2−−−−→1t2 γ−1

1 (N1) = γ−1
2 (N2)

〈s1, s2〉
N1|γN2,γ(g1∧g2)−−−−−−−−−−−→ 〈t1, t2〉

(4)

In the above setting, for a port n ∈ N , the idea is that the ports n1 = γ1(n) ∈ N1
and n2 = γ2(n) ∈ N2 synchronize. Thus, either n1 and n2 have both flow or n1
and n2 have both no flow, expressed as n having flow or no flow, respectively. The
resulting automaton, the so-called synchronized product automaton A1 �	γ A2,
follows the flow of A1 and A2, based on the first two rules for the transition
relation, but requires the flow on its ports in N to be agreed upon by A1 and A2.

A parallel composition P1 ‖ P2 in mCRL2, being based on the process alge-
bra ACP [10], has its transitions derived from the steps of its left component P1,
its right component P2, or their synchronization:

P1 ‖ P2 = P1‖ P2 + P2‖ P1 + P1|P2

Here, ‖ denotes the left merge, an auxiliary operator in mCRL2. Given two pro-
cesses p and q, the left merge, written p‖ q, requires p to execute an action first
and thereafter continues as the parallel composition of the remainder of p and q.

In the context of the synchronization product A1 �	γ A2 of constraint au-
tomata two aspects are important. Firstly, the port synchronization function γ
decides which ports synchronize, hence which sets of port names are non-trivially
combined. For example, (a · Q) | (b · Q′) yields c · (Q ‖ Q′) if γ(a, b) = c. If not
stated otherwise, the communication operator is assumed to yield the inaction δ.
Secondly, ports that are to be synchronized, i.e. γ1[N] ⊆ N1 and γ2[N] ⊆ N2,
have their names erased from the alphabet. Thus, for the first issue, we define
the attributes of the mCRL2 communication operator for a parallel composition as
determined by a port synchronization for the synchronized product of two con-
straint automata. For the second issue, we will apply a specific blocking operator
determined by the port synchronization.

Definition 4. Given a port synchronization function γ with mappings γ1 : N →
N1, γ2 : N → N2, the mCRL2 process P1 ‖γ P2, called the γ-synchronized merge
of P1 and P2, is defined as follows:

P1 ‖γ P2 = ∂B(ΓC(P1 ‖ P2))

Verification of Context-Dependent Channel-Based Service Models 31

where B = γ1[N] ∪ γ2[N] is the set of blocked actions and C = { γ1(n)|γ2(n) �→
n | n ∈ N } is the set of communications.

We are now in a position to formulate a soundness result for our translation with
respect to the parallel composition combined with appropriate synchronization,
steps 1 and 2 of our translation. Lemma 1 states that the mCRL2 process asso-
ciated to a synchronized product of two constraint automata is the same as the
synchronized merge of the mCRL2 processes corresponding to the two individual
constraint automata. For brevity we restrict to the case of a binary product.
However, the result straightforwardly generalizes to an arbitrary number of con-
stituents. Here, equality is modulo strong bisimulation [11], notation ↔ . It is
noted that from a logical point of view, branching bisimilar processes, hence
also strongly bisimilar processes, can be used interchangeably within the mCRL2
toolset.

Lemma 1. Let A1 = (S1,N1,→1, s
1
0) and A2 = (S2,N2,→2, s

2
0) be two con-

straint automata with disjoint sets of port names and let γ be a port synchro-
nization for A1 and A2. Then it holds that

proc(A1, s1) ‖γ proc(A2, s2) ↔ proc(A1 �	γ A2, 〈s1, s2〉) .

Proof. We verify, by checking the usual transfer conditions, that the relation

R = { (proc(A1, s1) ‖γ proc(A2, s2), proc(A1 �	γ A2, 〈s1, s2〉)) |
s1 ∈ A1, s2 ∈ A2 }

is a strong bisimulation relation. For brevity we write proci(si) for proc(Ai, si),
i = 1, 2, and proc(s1, s2) for proc(A1 �	γ A2, 〈s1, s2〉).

Suppose proc1(s1) ‖γ proc2(s2)
N→ P . From the semantics of ‖γ we obtain

(i) ∃P1: proc1(s1)
N→ P1, N ⊆ N ′

1, and P = P1 ‖γ proc2(s2),
(ii) ∃P2: proc2(s2)

N→ P2, N ⊆ N ′
2, and P = proc1(s1) ‖γ P2, or,

(iii) ∃P1, P2, N1, N2: proc1(s1)
N1→1 P1, proc2(s2)

N2→2 P2, N = N1 |γ N2
and P = P1 ‖γ P2.

By the definition of proc1(s1) and proc2(s2) we then have

(i) ∃g, t1: s1
N,g→ 1 t1, N ⊆ N ′

1, and P = proc1(t1) ‖γ proc2(s2),

(ii) ∃g, t2: s2
N,g→ 2 t2, N ⊆ N ′

2, and P = proc1(s1) ‖γ proc2(t2), or,

(iii) ∃g1, g2, t1, t2, N1, N2: s1
N1,g1→ 1 t1, s2

N2,g2→ 2 t2, N = N1 |γ N2
and P = proc1(t1) ‖γ proc2(t2).

Therefore, 〈s1, s2〉
N,g→ 〈t1, s2〉 in A1�	γA2, thus proc(s1, s2)

N→ proc(t1, s2), while
proc1(t1)‖γ proc2(s2) R proc(t1, s2) regarding (i). A symmetrical remark applies

regarding (ii). Finally, 〈s1, s2〉
N,g→ 〈t1, t2〉 with g = γ(g1 ∧ g2), proc(s1, s2)

N→
proc(t1, t2), while proc1(t1) ‖γ proc2(t2) R proc(t1, t2) regarding (iii).

32 N. Kokash, C. Krause, and E.P. de Vink

Now suppose proc(s1, s2)
N→ P . By definition of A1 �	γ A2, either

(i) N ⊆ N ′
1 and ∃g, t1: 〈s1, s2〉

N,g→ 〈t1, s2〉 based on s1
N,g→ 1 t1, and P =

proc(t1, s2),
(ii) N ⊆ N ′

2 and ∃g, t2: 〈s1, s2〉
N,g→ 〈s1, t2〉 based on s2

N,g→ 2 t2, and P =
proc(s1, t2), or,

(iii) N � N1, N � N2 and ∃g, g1, g2, t1, t2, N1, N2: g = γ(g1 ∧ g2), 〈s1, s2〉
N,g→

〈t1, t2〉 based on s1
N1,g1→ 1 t1 and s2

N2,g2→ 2 t2 with N = N1 |γ N2 and
P = proc(t1, t2).

Then, we have proc1(s1) ‖γ proc2(s2)
N→ proc1(t1) ‖γ proc2(s2) and proc1(t1) ‖γ

proc2(s2) R proc(t1, s2) in case of (i), a symmetrical observation in case of (ii),
and proc1(s1) ‖γ proc2(s2)

N→ proc1(t1) ‖γ proc2(t2) and proc1(t1) ‖γ proc2(t2)
R proc(t1, t2) in case of (iii).

Conclusion, R is a strong bisimulation relation and, for all s1 ∈ A1, s2 ∈ A2,
it holds that proc(A1, s1) ‖γ proc(A2, s2) ↔ proc(A1 �	γ A2, 〈s1, s2〉). ��
Note that the above result, in the present setting of a parallel construct involving
a port synchronization function, shows strong bisimilarity, whereas the original
result of [2] claims, for general composition, language equivalence with respect
to timed data streams.

Next, we turn to the final step of the translation, the optional hiding of internal
flow corresponding to port names of mixed nodes. In the constraint automaton
representation this amounts to restricting the observable flow, in mCRL2 it can
be captured by a proper renaming function.
Definition 5. Let A = (S,N ,→, s0) be a constraint automaton and C ⊆ N a
subset of ports. The C-restricted constraint automaton A\C is given by A\C =
(S,N \C,→C , s0) where →C is given by

s
N,g−−→C t iff ∃f ∃M ⊆ N : s

M,f−−−→ t ∧ g = ∃C.f ∧ N = M\C

Here, the constraint ∃C.f expresses existential quantification of the port names
in C for the constraint f , cf. [2]. We have that the C-restricted automaton
A\C has the same transitions as the automaton A, but it hides the port names
from C as these are considered to be internal for the underlying Reo connector.
Therefore, the corresponding renaming for mCRL2 processes needs to delete from
each set of port names those in C. We have the following correctness result.
Lemma 2. Let A = (S,N ,→, s0) be a constraint automaton and C ⊆ N a
subset of ports. Then it holds that

proc(A\C, s) ↔ ρC(proc(A, s))

where ρC : N → N is the renaming N �→ N\C for N ⊆ N .

Proof. It can be checked, similar as for Lemma 1, that the relation

R = { (proc(A\C, s), ρC(proc(A, s))) | s ∈ A }

is a strong bisimulation relation by verifying the transfer properties. ��

Verification of Context-Dependent Channel-Based Service Models 33

The hiding operator as introduced in [2] differs from the hiding operator pre-
sented here. In [2], in a context of language equivalence for timed data streams,
an arbitrary number of transitions with flow exclusively over hidden ports are
combined within a single observable transition. In our set-up, a computation
of the C-restricted automaton corresponds transition-by-transition to a com-
putation of the unrestricted automaton. Note that the minimization of the C-
restricted automaton by aggregating several transitions into a weak one can be
done afterward, as branching bisimulation remains preserved.

6 Coloring Semantics

The constraint automata semantics used in the previous section has a major
drawback: it cannot model context-dependency. For example, the LossySync
channel is not correctly represented as its constraint automaton can pass or
lose data non-deterministically, whereas according to its informal semantics the
passing of data has priority over losing. To cope with this problem, different
semantical models have been introduced. One of them is the so-called coloring
semantics. The basic idea in this model is to associate flow and no-flow colors
to channel ends. Clarke et al. showed in [3] that one flow color and two no-
flow colors are sufficient to model context-dependency such as required by the
LossySync. The names and graphical representations of these colors are shown
in Figure 1(a).

Name Symbol

flow

no-flow-give-reason

no-flow-require-reason

(a) Colors

Sync LossySync Merger

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(4)

(1) (2)

(3) (4)

(b) Colorings for some Reo channels and nodes

Fig. 1. Colors and examples of coloring semantics for Reo channels and nodes

Valid behaviors of channels are then expressed as colorings of their respective
ends. Figure 1(b) depicts the colorings of the Sync, LossySync and Merger prim-
itives. Note that the colors are always read from the perspective of the adjacent
nodes. For instance, in coloring (2) of the Sync the sink node gives a reason for
no flow, whereas the source node requires a reason. This models the behavior
where data is available at the source end but the receiver at the sink end is not
ready to accept data. Similarly, in coloring (3) there is no flow, because there
is no data available at the source end. Finally, coloring (4) models the situation
where no data is available and the receiver is also not ready to accept any data2.
2 This behavior is implied by the so-called flip-rule in [3].

34 N. Kokash, C. Krause, and E.P. de Vink

The LossySync differs from the Sync channel only in one coloring, i.e. col-
oring (2) where the sink node is not ready to accept data, but there is data
available at the source end. In this situation the LossySync permits flow at the
source end and loses the data item. Otherwise, no-flow behaviors are possible
only when no data is available at the source end.

Nodes are encoded in the same way as channels in the coloring semantics. As
usual, we build nodes out of mergers and replicators. Figure 1 depicts the valid
colorings of the Merger primitive. An interesting fact here is that intuitively the
colorings allow a propagation of no-flow reasons through the connector. Note
also that it is sufficient to allow no-flow reasons from both sides in channels
only, which leads to a smaller number of coloring in the nodes.

To deal with context-dependency in our encoding in mCRL2 we incorporate
the coloring model. We encode the different colors as simple data parameters of
actions. We therefore introduce a new datatype

sortColored = struct flow (data : Data) | noflowG | noflowR

where Data is the global datatype as introduced in the constraint automata
encoding presented in the previous section. The idea is that we explicitly model
no-flow actions and wrap actual data items into flow actions. We use here
noflowG and noflowR as abbreviations for respectively no-flow-give-reason and
no-flow-require-reason. With this setup, the encoding of the primitives is straight-
forward. For instance, the Sync channel is defined as

Sync =
(
Σd:Data A(flow (d)) | B(flow (d)) + (1)
A(noflowR) | B(noflowG) + (2)
A(noflowG) | B(noflowR) + (3)

A(noflowG) | B(noflowG)
)
· Sync; (4)

where each line corresponds to a coloring in Figure 1(b). In the same way, the
LossySync can be specified as

LossySync =
(
Σd:Data A(flow (d)) | B(flow (d)) + (1)
A(flow) | B(noflowG) + (2)
A(noflowG) | B(noflowR) + (3)

A(noflowG) | B(noflowG)
)
· LossySync; (4)

and finally, the Merger can be encoded as

Merger =
(
Σd:Data A(flow (d)) | B(noflowG) | C(flow (d)) + (1)
Σd:Data A(noflowG) | B(flow (d)) | C(flow (d)) + (2)
A(noflowR) | B(noflowR) | C(noflowG) + (3)

A(noflowG) | B(noflowG) | C(noflowR)
)
· Merger; (4)

The other channels are encoded analogously.

Verification of Context-Dependent Channel-Based Service Models 35

The LossyFIFO connector is a classical example where context-dependency is
required (cf. [3]). Fig. 2 depicts the corresponding labeled transition systems for
the basic constraint automata encoding (a), as well as the encoding based on the
coloring semantics (b). For simplicity, we use the singleton set Data = {x} as
data domain. The crucial point here is that in the initial state 0, the constraint
automata version can lose data (loop A(x)), which is an unintended behavior.
However, in the coloring encoding, there is no such behavior.

0 1

A(x)
A(x)

A(x)

B(x)
A(x) | B(x)

(a) CA encoding

0 1

A(noflowG) | B(noflowR)
A(noflowG) | B(noflowG)

A(flow(x)) | B(noflowG)
A(flow(x)) | B(noflowR)

A(flow(x)) | B(noflowG)
A(noflowG) | B(noflowG)

A(noflowG) | B(flow(x))
A(flow(x)) | B(flow(x))

(b) Coloring encoding

Fig. 2. Labeled transition systems for the LossyFIFO connector

Using the coloring model we can properly represent context-dependency in
mCRL2. In contrast to [3], our encoding also reflects the state of the connectors
and can further include data-dependency at the same time. Note also that even
though the coloring encoding includes extra transitions for no-flow actions, the
number of states is equal to the constraint automata version.

7 Implementation

We implemented the conversion from Reo to mCRL2 discussed above as an exten-
sion to the Eclipse Coordination Tools (ECT), see [4]. ECT is a framework for
modeling, verification and execution of component-based and service-oriented
systems. It consists of a set of integrated tools for the Eclipse platform3. The
framework provides functionality for converting high-level modeling languages,
such as UML, BPMN and BPEL to Reo, for editing and animation of Reo mod-
els, generation of automata-based semantical models from Reo, modeling and
verification of QoS properties and tight integrations with external model check-
ing tools such as Vereofy [5] or PRISM [12].

From our conversion tool, an mCRL2 specification can be obtained automat-
ically from any Reo circuit simply by selecting it in the graphical Reo editor.
A screenshot of the tool is shown in Figure 3. The code generation can be cus-
tomized using various options. For instance, enabling the option with components
will allow to incorporate process definitions for the components attached at the
boundary of a connector. The option with data enables the data-aware encod-
ing. If not enabled, data parameters and constraints are omitted. Furthermore,
3 http://www.eclipse.org

http://www.eclipse.org

36 N. Kokash, C. Krause, and E.P. de Vink

Fig. 3. Reo model of an auction process and its mCRL2 specification

the option with colors can be used to add support for context-dependency as de-
scribed in Section 6. Moreover, data types of components or services coordinated
by Reo, as well as data constraints for data dependent channels such as the Filter
or Transform channel can be defined using the same interface. Note that they are
saved as annotations in the Reo model and are automatically merged in when
generating the final mCRL2 specification. This way we can ensure that the mCRL2
code can be regenerated at any point without manual changes if desired.

The tool further includes an integration with mCRL2’s model checking and
state space visualization tools. In particular, we use the mcrl22lps tool for gen-
erating linear process specifications from mCRL2 code, lps2lts and ltsconvert
for generating and minimizing labeled transitions systems, lps2pbes for model
checking formulas specified in modal μ-calculus, and finally ltsgraph for visual-
izing state spaces. Related verification tools, such as CADP4 can be integrated
in a similar fashion since they share the same format for LTSs. The integration
with CADP is not implemented as yet.

In our encoding of Reo in mCRL2 we translate every primitive (channel, node or
component) to a separate process, which are then run in parallel. Every primitive
end corresponds to an action in this setting. Therefore, the derived specifications
usually consist of a rather large number of processes and an even larger number
of actions. However, the interaction between all these processes is rather local,
e.g. a channel communicates only with its source and target nodes.

Our experiments show that the direct approach of naively running all processes
in parallel and then performing the communication, synchronization and option-
ally the hiding operator leads to a state space explosion during the linearization.
To overcome this problem, we add processes one by one and immediately apply the
aforementioned mCRL2 operators. We use the topology information of the

4 http://www.inrialpes.fr/vasy/cadp

http://www.inrialpes.fr/vasy/cadp

Verification of Context-Dependent Channel-Based Service Models 37

Fig. 4. Counter circuit

 0

 5

 10

 15

 20

 5 10 15 20 25 30Li
ne

ar
iz

at
io

n
tim

e
(s

ec
on

ds
)

Counter size (number of FIFOs)

depth-first
breadth-first

none

Fig. 5. Benchmarks for different encodings of the Counter circuit

connector to determine what processes communicate directly with each other.
This leads to a much faster linearization process. In particular, we found out that
a traversal over the connector graph is well-suited for this problem. In our exper-
iments, the depth-first traversal showed the best results.

As an example we tested the so-called Counter circuit shown in Figure 4.
This circuit consists of an exclusive router with n outputs, each connected to
another FIFO, which in turn are synchronized using a SyncDrain at their sink
ends. Here we are interested only in two actions: data arriving at the source
end of the exclusive router and the synchronized firing of the SyncDrains. The
resulting transition system consists of n states and n transitions. Benchmarks5

of the different optimizations are depicted in Figure 5. The linearization using
depth-first traversal took less than 5 seconds for the counter with 30 FIFOs. The
breadth-first approach was still able to handle 10 FIFOs in 20 seconds. However,
without any optimizations mCRL2 needed more than 20 minutes to process the
counter with just 3 FIFOs.

8 Related Work

In this section, we compare our framework to other tools for analyzing Reo
connectors. For an overview of related work with respect to the application of
our tool to business process and web service composition analysis refer to [6].
5 Benchmarks were taken on a standard machine with 4 cores and 8GB of memory,

running Linux 2.6.27 and the development version of mCRL2 (revision 7467).

38 N. Kokash, C. Krause, and E.P. de Vink

The tool most closely related to the plug-in presented in this paper is Vere-
ofy [5], a model checking tool developed at the University of Dresden for the
analysis of Reo connectors. Vereofy uses two input languages, the Reo Scripting
Language (RSL), and a guarded command language called Constraint Automata
Reactive Module Language (CARML) which are textual versions of Reo and
constraint automata, respectively. Scripts in these languages are automatically
generated from graphical Reo models and are used for the verification of circuit
properties expressed in LTL and CTL-like logics. The main advantage of the tool
comparing to our work is that it can generate clear counterexamples and show
them as paths on the initial Reo circuit, while the counterexamples in mCRL2
may be huge and not very useful. However, in contrast to our approach, Vereofy
does not support context-dependent and transformer channels, provides a for-
mat for specifying filter conditions that is less expressive than ours, and does not
allow join nodes in the circuits. Moreover, it expects the user to define a global
data domain eligible to all connectors and components in the model instead of
generating it automatically, and cannot handle recursive type definitions which
we need to deal with join nodes, for example.

Khosravi et al. [13] establishes a mapping of Reo to Alloy, a lightweight mod-
eling language based on first-order relational logic. To check the correctness of
a circuit, the desired properties are expressed in terms of assertions which are
closely related to LTL and checked by the Alloy Analyzer. The approach deals
with context dependency in Reo by defining special relations that enforce max-
imal progress in circuit execution. However, the actual values of data passed
through the channels are not considered in this work. Moreover, the authors ad-
mit to have considerable problems with performance. Bonsangue and Izadi [14]
defined semantics of context-dependent Reo connectors in terms of Büchi au-
tomata and generalized standard automata based model checking algorithms to
enable verification of LTL formulas for Reo connectors. However, this work is
purely theoretical and is not supported by any existing software tool.

Kemper [15] presented a SAT-based approach for bounded model checking of
timed constraint automata (TCA), see [16]. In this work, the behavior of TCA
is represented as formula in propositional logic with linear arithmetic which can
be analyzed by various SAT solvers. Since TCA provide operational semantics
for timed Reo, this approach can be used for model checking timed properties
of Reo connectors. However, at the moment there is no tool for generating TCA
from graphical Reo circuits. The development of such a plug-in for data-aware
Reo will require tools for analyzing data constraints and functions used in filter
and transformer channels. In our work, we map each channel to a process in the
process algebra mCRL2 separately, and exploit the functionality provided by the
mCRL2 toolset to obtain a semantic model of the whole circuit in terms of LTS
where transitions are labeled with names parametrized with data observed in
these ports. Moreover, our approach can handle data manipulation using trans-
former channels with associated non-linear functions. Since the mCRL2 toolset
supports time analysis, the extension of our conversion tool with the ability to
deal with timer channels is straightforward and belongs to our future work.

Verification of Context-Dependent Channel-Based Service Models 39

9 Conclusions

In this paper, we presented an extended approach for mapping Reo connectors
to the process algebra mCRL2. More specifically, we proved the correctness of the
mapping, extended the conversion tool with the ability to deal with context-
sensitive Reo, and evaluated the tool performance in the presence of optimiza-
tion techniques. Together with other tools from ECT, our plug-in provides a
user-friendly environment for graphical modeling of component/service-based
systems and business processes. On the one hand, this releases developers from
the need to encode the behavior of their systems in the specification language
mCRL2 directly. On the other hand, the mCRL2 toolset supports full-featured model
checking for Reo.

Future work includes the application of our approach to larger examples to
assess its practicality and scalability. Also, we plan to extend our approach by
incorporating timer channels [16] according to their semantics in terms of TCA.
This will enable the analysis of timed properties for channel-based service mod-
els. Another direction of our research is an extension of Reo semantics with
various actions observable on channel ports. In particular, this will allow us to
model data flow within synchronous regions of a connector and, given time de-
lays for each channel, estimate total delays of the circuits. Finally, as mentioned
before, we will integrate CADP support to our tools.

Acknowledgment. We are indebted to the reviewers for their detailed feedback
and constructive comment.

References

1. Arbab, F.: The IWIM model for coordination of concurrent activities. In: Hankin,
C., Ciancarini, P. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 34–56.
Springer, Heidelberg (1996)

2. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Science of Computer Programming 61, 75–113 (2006)

3. Clarke, D., Costa, D., Arbab, F.: Connector coloring I: Synchronization and context
dependency. Science of Computer Programming 66(3), 205–225 (2007)

4. Arbab, F., Koehler, C., Maraikar, Z., Moon, Y., Proenca, J.: Modeling, testing
and executing Reo connectors with the Eclipse Coordination Tools. In: Tool demo
session at FACS 2008 (2008)

5. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A uniform framework for
modeling and verifying components and connectors. In: Field, J., Vasconcelos, V.T.
(eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 268–287. Springer, Heidelberg
(2009)

6. Kokash, N., Krause, C., de Vink, E.: Data-aware design and verification of service
composition with Reo and mCRL2. In: Shin, S.Y., et al. (eds.) Proc. SAC 2010,
pp. 2406–2413. ACM, New York (2010)

7. Groote, J., Mathijssen, A., Reniers, M., Usenko, Y., van Weerdenburg, M.: The
formal specification language mCRL2. In: Brinksma, E., Harel, D., Mader, A.,
Stevens, P., Wieringa, R. (eds.) Methods for Modelling Software Systems. IBFI,
Schloss Dagstuhl (2007)

40 N. Kokash, C. Krause, and E.P. de Vink

8. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A toolbox for the
construction and analysis of distributed processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

9. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14, 329–366 (2004)

10. Baeten, J., Basten, T., Reniers, M.: Process Algebra: Equational Theories of
Communicating Processes in Cambridge Tracts in Theoretical Computer Science,
vol. 50. CUP, Cambridge (2010)

11. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

12. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model
Checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

13. Khosravi, R., Sirjani, M., Asoudeh, N., Sahebi, S., Iravanchi, H.: Modeling and
analysis of Reo connectors using Alloy. In: Lea, D., Zavattaro, G. (eds.) COORDI-
NATION 2008. LNCS, vol. 5052, pp. 169–183. Springer, Heidelberg (2008)

14. Bonsangue, M., Izadi, M.: Automata based model checking for Reo connectors.
In: Arbab, F., Sirjani, M. (eds.) Fundamentals of Software Engineering. LNCS,
vol. 5961, pp. 260–275. Springer, Heidelberg (2010)

15. Kemper, S.: SAT-based verification for timed component connectors. Electronic
Notes in Theoretical Computer Science (ENTCS) 255, 103–118 (2009)

16. Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and temporal logical spec-
ifications for timed component connectors. Software and Systems Modeling 6(1),
59–82 (2007)

The Credo Methodology�

(Extended Version)

Immo Grabe1, Mohammad Mahdi Jaghoori1, Joachim Klein3,
Sascha Klüppelholz3, Andries Stam6, Christel Baier3, Tobias Blechmann3,

Bernhard K. Aichernig5, Frank de Boer1, Andreas Griesmayer5,
Einar Broch Johnsen2, Marcel Kyas9, Wolfgang Leister8, Rudolf Schlatte2,

Martin Steffen2, Simon Tschirner4, Liang Xuedong7, and Wang Yi4

1 CWI, Amsterdam, The Netherlands
2 University of Oslo, Norway

3 Technische Universität Dresden, Germany
4 University of Uppsala, Sweden

5 UNU - IIST, Macau, China
6 Almende, The Netherlands

7 RRHF, Oslo, Norway
8 NR, Oslo, Norway

9 Freie Universität Berlin, Germany

Abstract. This paper is an extended version of the Credo Methodol-
ogy [16]. Credo offers tools and techniques to model and analyze highly
reconfigurable distributed systems. In a previous version we presented
an integrated methodology to use the Credo tool suite. Following a com-
positional, component–based approach to model and analyze distributed
systems, we presented a separation of the system into components and
the network. A high–level, abstract representation of the dataflow level
on the network was given in terms of behavioral interface automata and
a detailed model of the components in terms of Creol models. Here we
extend the methodology with a detailed model of the network connect-
ing these components. The Vereofy tool set is used to model and analyze
the dataflow of the network in detail. The behavioral automata connect
the detailed model of the network and the detailed model of the compo-
nents. We apply the extended methodology to our running example, a
peer-to-peer file-sharing system.

1 Introduction

Current software development methodologies follow a component-based approach
in modeling distributed systems. A major shortcoming of the existing methods
is the lack of an integrated formalism to model highly reconfigurable distributed
systems at different phases of design, i.e., systems that can be reconfigured in
� This work has been funded by the European IST-33826 STREP project CREDO

on Modeling and Analysis of Evolutionary Structures for Distributed Services.
(http://credo.cwi.nl)

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 41–69, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://credo.cwi.nl

42 I. Grabe et al.

Fig. 1. Overview of modeling levels and analysis in Credo

terms of a change to the network structure or an update to the components.
Moreover, the high complexity of such systems requires tool-supported analysis
techniques.

The Credo methodology allows modeling on two different levels of abstraction
(cf. Fig. 1). At the abstract level, i.e., the dataflow level, constraint automata [7]
are used to represent the interface behavior of components and Reo [3], an ex-
ecutable dataflow language for high-level description of dynamic reconfigurable
networks, is used to describe the glue code to connect the components. The mod-
eling languages CARML (constraint automata reactive module language) and
RSL (Reo scripting language) [6] are used for a hierarchical specification of the
network and components in a compositional manner. At the concrete level, the
concurrent object-oriented modeling language Creol [22] is used to provide an
executable model of the implementation for the individual components. At this
level, Credo offers a timed-automata framework for real-time modeling of concur-
rent objects. Fig. 1 illustrates the relation between the modeling languages and
their relation to existing programming languages and different kinds of analysis
the Credo tool suite provides on the chosen levels of abstraction.

In a previous version of this paper [16] we integrated the Credo tools and
techniques into the software development life-cycle and illustrated how and
when to use them during the design and analysis phases. The tools and meth-
ods presented covered a high–level model of the network and a detailed model
of the components. In this paper, we extend the methodology introduced in
[16] with tools and methods to model and analyze the dataflow of the network
in detail. The high–level model of the network in terms of behavioral inter-
face automata connects the detailed network model and the detailed component
model; behavioral interfaces are also central to the schedulability analysis of real-
time object-oriented description of a detailed component model. The connection

The Credo Methodology 43

Fig. 2. End user perspective of the Credo Tools

between the high–level network model and the detailed component model was
checked by conformance testing. In a similar approach conformance between the
high–level network model and the detailed network model is established.

At the dataflow-level, which is the most abstract characterization of a sys-
tem, behavioral interfaces (cf. Fig. 2) are used to describe components and the
dataflow between components of a composite system. These interfaces abstract
from the details of the (object-oriented) implementation of components. Instead
they describe the components and the connections they use to communicate and
interact with each other. Credo provides as an Eclipse plug-in an integrated tool-
suite, ECT (Eclipse Coordination Tools) [13], including a plug-in for the model
checker Vereofy [6,5]. Vereofy uses CARML and RSL as input languages and
provides model checking of branching-time properties via a CTL-like logic with
regular expressions to specify the observable dataflow as well as alternating-time
and linear time versions thereof and bisimulation checking. The logics allow to
reason about the coordination principles and the dataflow in the network as well
as about the internal states of the components and behavioral interfaces.

The functional behavior of the objects within a component is modeled in
Creol. Furthermore, we use the timed automata of Uppaal [25,8] to create real-
time models of objects and their behavioral interfaces. The Credo tool suite offers
an automated technique for schedulability analysis of individual objects [21,20].
Given a specification of a scheduling policy (e.g., earliest deadline first) for an
object, we use Uppaal to analyze the object with respect to its behavioral
interface in order to ensure that tasks are accomplished within their specified
deadlines.

44 I. Grabe et al.

Conformance between a model of a component implementation and its behav-
ioral interface specification is checked by the Credo tools [17]. Moreover, given
an implementation of a component in a programming language like C, Credo
also provides a technique to check conformance between the implementation
and the Creol model [18,1]. Both techniques are based on testing. The abstract
behavioral interface model is used to generate test cases to steer the execution.

To illustrate the Credo methodology we will give a running example. Through-
out the paper we model and analyze a file-sharing system with hybrid peer-to-
peer architecture (like in Napster), where a central server keeps track of the data
in every peer node.

In Section 2, we develop the structural and behavioral interfaces of the com-
ponents (peer nodes of the P2P system) and the network (the network manager
managing the dynamic connections between peer nodes); and prove some ex-
ample properties of different kinds. In Section 3, we give a detailed model of
the network using the Vereofy tool suite and analyze it by means of simulation
and model checking. In Section 4, we give executable object-oriented models
for the components and analyze them by means of simulation and testing for
conformance both with respect to the behavioral interfaces and a Creol im-
plementation. We demonstrate schedulability analysis by analyzing the central
server of the peer-to-peer example. Section 5 concludes the paper.

2 High-Level Dataflow Model

We use the exogenous coordination language Reo [3] for the high-level dataflow
modeling. Reo is a channel-based formalism that supports compositional design
of the network that yields the glue-code for a given set of components. In Reo,
a system consists of a set of components connected by a network. The network
exogenously controls the dataflow between the components and may be dynami-
cally reconfigured to alter the connections between the components. At this level
of abstraction, only a facade of each component is visible. A facade consists of
port and event declarations, and its abstract behavior is specified using an au-
tomata model called constraint automata [7]. Constraint automata are variants
of labeled transition systems where the transitions are labeled by sets of read
and write operations on I/O-ports of components and dataflow locations of the

sReq cReq

N1
sAns cAns

sReq cReq

N2
sAns cAns

sReq cReq

N3
sAns cAns

Fig. 3. Peer nodes in the P2P system

The Credo Methodology 45

network, possibly together with data constraints for the written or read data
values. Besides describing the interface behavior of the components, constraint
automata also serve as a formal semantics for Reo [7]. In this section, we do not
go into the details of how to compose Reo channels. Instead, we use constraint
automata as a model for the network behavior directly.

Components use ports to communicate with each other via the network. Fig. 3
shows a system of components (as rectangles), their ports (as small triangles),
and the network (as a cloud). Ports can be either input or output ports (implied
by the direction of the triangles). By exogenous coordination, we mean that a
component has no direct control on how its ports are connected. A component
can only indirectly influence its connections by raising events. Events include re-
quests/announcements of services, time-outs, or acknowledgments. These events
can trigger reconfigurations of the context-aware network. A network manager
handles the events and reconfigures the network connections according to the
events. At this moment we consider the network manager to be a part of the
network and we model the peer nodes independent of a concrete implementation
of the network manager.

In this section, we model the peer nodes of the P2P system as components.
Each peer node has two sides, a client side and a server side. Each side has
a pair of request and answer ports. As a client, a peer node writes a request
(a ‘key’ identifying the requested data) to its cReq–port and expects the re-
sult on its cAns–port. As a server, a peer node reads a request from its sReq–
port and writes the result to its sAns–port. For two peer nodes to communicate,
the network manager has to connect the corresponding ports of the client and
the server, i.e., the cReq–port of the client with the sReq–port of the server and
the cAns–port of the client with sAns–port of the server.

2.1 Structural Interface Description

To describe the facade of a component, we declare its ports and the events the
component may raise. Below, we define two facades, ClientSide and ServerSide. The
facade Peer inherits the ports and events declared in these two and adds another
event that is needed when the two sides are combined.

1 facade Cl i en tS id e begin
2 port cReq : outport
3 port cAns : i npo r t
4 sync event openCS<req : outport , ans : inport >(in k : Data ; out f : Bool)
5 sync event closeCS<req : outport , ans : inport >()
6 end

1 facade ServerS ide begin

2 port sReq : i npo r t
3 port sAns : outport
4 sync event openSS<req : inport , ans : outport >()
5 sync event c loseSS<req : inport , ans : outport >()
6 r e g i s t e r <>(in keyList : L i s t [Data]) // async event

7 end

46 I. Grabe et al.

1 facade Peer inherits Cl ientS ide , ServerS ide begin

2 update<>(in keyList : L i s t [Data]) // async event

3 end

The network manager does not keep a centralized account of all port bindings;
these are locally stored at each component. A component cannot directly change
its port bindings. Before using ports, the component must request a connection
by raising an open session event. An event for closing the session implies that
the ports are ready to be disconnected. When requesting to open a session or
reporting the end of a session the ports used in that session are send as param-
eters. In addition to the ports, events can have extra parameters, e.g., the ‘open
client session’ event (written as openCS) provides the key to the data it is looking
for as additional information to steer the connection process. Based on the data
key the network manager can set up a connection to a server that holds the
requested data.

Events are by default asynchronous. However, when expecting return values
(e.g., opening or closing a session), we declare events to be synchronous (using
the keyword sync event). All events raised by the components are handled by the
network. This is reflected in the structural interface description of the network.

Network. We give the structural interface description of a particular network
manager called Broker. The keyword networkmanager is used to identify such
interfaces (and distinguish them from those characterizing component facades).
The Credo methodology distinguishes between the concept of a network manager
and the network itself because a network in general consists of a network manager
and additional coordination artifacts like channels, as described later in this
section.

The description of the Broker declares the event handlers that it provides. For
each event handler, it specifies the facade (representing a component) from which
the handled event originated using the keyword with.

1 networkmanager Broker begin
2 with ServerS ide
3 r e g i s t e r <>(in keyList : L i s t [Data])
4 sync event openSS<in req : inport , ans : outport >()
5 sync event c loseSS<in req : inport , ans : outport >()
6 with Cl i en tS id e
7 sync event openCS<in req : outport , ans : inport >(in k : Data ; out f : Bool)
8 sync event closeCS<in req : outport , ans : inport >()
9 with Peer

10 update<>(in keyList : L i s t [Data])
11 end

2.2 Behavioral Interface Description

The behavioral description for a component facade specifies the order of raising
events and the port operations. This is modeled using constraint automata [4].
In these automata, we denote port operations by port names. The corresponding

The Credo Methodology 47

�� �register � �openSS �

��

�closeSS

sAns
��
sReq

�� �openCS �

��

�closeCS

cAns
��
cReq

(a) ServerSide (b) ClientSide

�� �register � �cAns

update

��

(c) Peer

Fig. 4. Behavioral interfaces for facades

action (read or write) is understood from the port type (given in the structural
facade description).

Fig. 4 shows the behavioral specification for the facades in our example. As
mentioned earlier, the port actions are enclosed by opening and closing session
events in Fig. 4(a) and Fig. 4(b). A server registers its data with the network
manager at initialization. We opt for a simple scenario, i.e., each server or client
handles only one request at a time. We also assume at this level of abstraction,
that openCS is always successful, i.e., every data item searched for is available.

The Peer facade inherits the behavior specified for ClientSide and ServerSide fa-
cades. The Peer facade introduces some additional behavior, i.e., an update to the
data stored at the broker. The Peer automaton (see Fig. 4(c)) synchronizes with
the ServerSide automaton (see Fig. 4(a)) to ensure that an update only takes place
after the data is registered. Moreover, the data at the broker is updated after
receiving new information (on the ClientSide). This is modeled by synchronization
on the read operations on the cAns–port.

The behavior of the sub-type has to be a refinement of the behavior of its
super-type [28]. This is achieved by computing the product of the automata
describing the inherited behavior (ServerSide and ClientSide) and the automaton
synchronizing them (Peer). In this product [4] transitions with different action
names are interleaved while those with common action names are synchronized.

Network. The Broker in a peer-to-peer system connects the ports and handles
the events of the components. We show how to model the synchronization of a
system consisting of a fixed number of components, say n, for some n > 0. The
observable actions of the i–th component (i ∈ {1, . . . , n}), i.e., the communica-
tions on its ports and its events, are denoted by openCSi, openSSi, closeCSi,
closeSSi, cReqi, sReqi, cAnsi, and sAnsi. Synchronization of actions is modeled
in the following automata by a transition labeled with the participating actions.

For clarity, we start with different automata for the synchronization of ports
and events. Synchronization between the ports of a pair of components i and j
is described by the following automaton.

48 I. Grabe et al.

�cReqi, sReqj

�
��

�
�� cAnsi, sAnsj

For each pair of components i and j, the following automaton synchronizes the
events openCSi and openSSj to establish a connection between components
i and j and the events closeCSi and closeSSj to release the connection again.
These two consecutive synchronizations together thus model one session between
the client of component i and the server of component j.

�� �openCSi, openSSj

closeCSi, closeSSj

��

Combining the automata above models the port connections in a session (shown
below). As stated before communication between components is only possible
after requesting a session to be opened. After the components have finished their
communication the session is closed. The interleaving product of these combined
automata for all pairs of components results in an automaton describing the
behavioral interface of the Broker.

�� �openCSi, openSSj

closeCSi, closeSSj

��

� �
�

� ��

cReqi, sReqj

cAnsi, sAnsj

Notice that interleaving allows for components to be involved in more than one
session at a time. The synchronized product of the network manager automa-
ton with the component automata (from the previous subsection) describes the
overall behavior of the system. The product restricts the network manager and
the components to exclusive sessions, i.e. a component is involved in at most one
session at a time.

Channels. We further refine the network model by introducing channels (which
are primitive connectors) [3,19]. In general, a channel provides two (channel)-
ends. We distinguish between input-ends (to which a component can write) and
output-ends (from which a component can read). We also describe the syn-
chronization between the two channel-ends by an automaton. For example, the
automaton below models a 1-place buffer. It provides an input-end in and an
output-end out. In state e the buffer is empty and in state f it is full (for sim-
plicity, we abstract from the data transferred and stored).

�� �in

out

��

We model the data-transfer from server j to client i, i.e., the connection between
the answer ports, by replacing the synchronization of cAnsi and sAnsj by the
following synchronization with the above 1-place buffer.

�sAnsj , in
�
��

�
�� cAnsi, out

The Credo Methodology 49

sReq cReq

N1
sAns cAns

sReq cReq

N2
sAns cAns

sReq cReq

N3
sAns cAns

Fig. 5. Using Reo channels for modeling the network

The overall behavior of the system is described by the synchronized product
of the Broker, the component automata, and the channel automata. The network
itself consists of the Broker and the channels. Fig. 5 shows a configuration in
which two buffer channels are used as the network connecting the components.
The dashed arrows in this figure show port bindings, i.e., the channel-end to
which a port is bound. The bold arrows represent the channels.

3 Dataflow Model

In this section we give a detailed model of the dataflow of our peer–to–peer
example. We use the Vereofy [10,6,11] (see Fig. 6) tool suite for modeling and
analyzing the detailed dataflow model. The Vereofy tool suite supports model
checking and equivalence checking of components, connectors, and the composite
system. Constraint automata serve as a generic operational semantics, which is
used for the service interfaces of the components, the network that provides the
glue code, and the composite system.

Reo scripting language
(RSL)

Constraint Automata
Reactive Module

Language (CARML)

LIBRARIES
(pre- and user defined)

Model Checker
(LTL, BTSL, ASL)

graphical representation
of the constraint automaton

graphical representation
of the network

YES/ NO + witness/couterexample
(graphical and textual representation)

Bisimulation Checker

Symbolic CA
Representation

YES/ NO

Fig. 6. The Vereofy tool suite

50 I. Grabe et al.

We use the specification languages Reo Scripting Language (RSL) for Reo
and the Constraint Automata Reactive Module Language (CARML) to spec-
ify service interfaces of the components. While the scripting language RSL is
used to specify exogenous or endogenous coordination mechanisms, the guarded
command language CARML is used to specify behavioral component interfaces
and component connectors. Both languages rely on the same semantic automata
model. This hybrid approach allows nesting of the two specification languages,
supports compositional design, modular verification and reusability of compo-
nents and component connectors. Vereofy includes symbolic model checking tools
for linear-time, branching-time and alternating-time temporal logics [24,23,5]
with special operators to reason about the events and dataflow at I/O-ports of
components and internal nodes of the connecting network. Furthermore Vereofy
includes a bisimulation checker [9] for components, component connectors, and
the composite system.

In the following we show how to model the network manager establishing
connections in our running peer-to-peer example. We use CARML to provide
textual specifications of the facades of server and client side and RSL to specify
the network manager. Finally we explain how the model checking engine of
Vereofy is used to validate the composite system. The full source code for the
P2P model is available on the web:

http://www.vereofy.de/download/examples/vereofy_p2p_example.zip

3.1 Modeling in Vereofy

The facades from Section 2 serve as a starting point to model the server and client
side. Facades define the interface ports together with the possible events. In this
section we follow an exogenous modeling approach where the communication
and coordination of the peers is handled completely outside the components by
the connecting network. Thus, there are no complex events inside the component
specifications, i.e., the CARML code for the server and client side. Instead, events
are handled by the network manager using synchronous message passing via I/O-
ports. The specification of I/O-ports in CARML differs only syntactically from
the facade definition presented earlier.

The Server side and client side facades in Vereofy. The automata from
Section 2 for the server side and client side facades are directly translated into
CARML modules. A CARML specification consists of a (possibly empty) list of
parameter (e.g. the number of I/O-ports), the interface declaration where source
ports (for the input-ends) and sink ports (for the output-ends) of a component
and its local variables are defined followed by the transition definitions speci-
fying the behavioral interface. The evaluations of the local variables represent
automata states. The transition definitions have the form

state guard−[I/O guard]→state assignments;

where the state guard represents a boolean expression on the current evaluation
of the variables, I/O guard is a boolean expression on the dataflow observed

http://www.vereofy.de/download/examples/vereofy_p2p_example.zip

The Credo Methodology 51

at the interface ports, and state assignments describe the effect on the local
variables. An I/O-guard specifies the list of active ports as well as restrictions
to the data observed at the active ports. E.g., the I/O-guard “{A} & #A == k”
states that port A is the only port active during the transition and the observable
data value at A is equal to k.

To reduce the complexity of our model for demonstration purposes we (1)
abstract from the update events, (2) assume that all peers have all data, and
(3) the network manager establishes a connection to serveri if datai is requested.
Furthermore, we use a global data domain

Data = {0, 1, 2, 3,

key0, key1, key2,

data0, data1, data2,

openSignal, closeSignal, registerSignal ,

undefined}

for the requests, the data and all signals. The numbers 0, 1, 2, 3 ∈ Data are used as
signals triggering a reconfiguration in the network topology. Please note, that for
each message type a distinct input or output port has been introduced according
to the facades definition from Section 2.1. An alternative way of modeling uses

1 MODULE ClientSide{

2 // interface declaration (specification of I/O-ports):

3 in: openCS;

4 in: closeCS;

5 out: myReq;

6 in: myAns;

8 // local variables:

9 var: enum{idle,open,waiting,done} status:=idle;

10 var: Data tans := undefined;

12 // transition definitions :

13 status==idle -[{openCS} & #openCS==openSignal]->

14 status:=open;

16 status==open -[{myReq} & #myReq==key0]-> status:=waiting;

17 status==open -[{myReq} & #myReq==key1]-> status:=waiting;

18 status==open -[{myReq} & #myReq==key2]-> status:=waiting;

20 status==waiting -[{myAns}]-> status:=done & tans:=#myAns;

22 status==done -[{closeCS} & #closeCS== closeSignal]->

23 status:=idle & tans:=undefined;

24 }

Fig. 7. CARML module for client facade of a peer

52 I. Grabe et al.

less (or even single) input and output ports and structured data types, such as
disjoint unions. For the usage of structured data types we refer to the Vereofy
user manual [11]. Fig. 7 depicts the CARML code for the client facade of a peer.

The interface of the client side facade has three input ports (openCS, closeCS,
and myAns) and one output port (myReq). The variable status stores the current
state of the peer (initially idle), while the variable trans stores an element from
the global data domain Data when the peer receives one (initially undefined). The
server side facade of the peer is modeled analogously.

The network manager. We model the network manager in the scripting
language RSL which is inspired by the exogenous, channel-based coordination
language Reo [3]. Both Reo and RSL yield elegant declarative frameworks for the
specification of circuits, i.e., for the compositional construction of (dynamically
changing) component connectors by creating channels and gluing their channels
ends, the I/O-ports of components, or sub-connectors together. RSL’s core lan-
guage features are (1) instantiation of modules and sub-circuits (via the RSL
command new); (2) gluing instances together (explicitly via the RSL command
join, or implicitly by reusing port names); (3) forming a new prototype for en-
tities for a higher modeling level (via the arrays source and sink); (4) defining
networks with dynamically changing topologies (via the RSL keyword TOPO); (5)
and scripting features such as variables, loops, and conditional branching.

registrationTable

Client
myReq

Server
register

EXROUTER

Server
exReq

Server
exAns

Client
myAns

Server
openSS

Server
closeSS

NetworkManager

release
buffer

request
buffer

P2PConnection

A

B
C

R

I J

RI[0]

RI[1]

RI[2]

RO[0]

RO[1]

RO[2]

AI[0]

AI[1]

AI[2]

AO[0]

AO[1]

AO[2]

Fig. 8. The network manager

The Credo Methodology 53

1 #include "builtin"

2 #include "registrationtable.carml"

3 #include "p2pconnection.rsl"

5 CIRCUIT NetworkManager{

6 // create registration table

7 Table = new registrationTable(source[0],source[1],source[2],

8 source[3],source[4],source[5],R;

9 I,J,

10 sink[0],sink[1],sink[2],

11 sink[6],sink[7],sink[8]);

13 // node A merges the requests

14 for (i=0;i<3;i=i+1){

15 Sync[i] = new SYNC(source[i+3];A);

16 }

18 // the requests are beeing buffered in the FIFO1

19 request_buffer = new FIFO1(A;B);

21 // the buffered request later goes via an exclusive router

22 // into the connections matrix (P2PConnection)

23 new EXROUTER<3>(B;RI[0],RI[1],RI[2]);

25 // create P2PConnection to direct requests and answers

26 Connections = new P2PConnection(I,J,RI[0],RI[1],RI[2],

27 AI[0],AI[1],AI[2];

28 RO[0],RO[1],RO[2],

29 AO[0],AO[1],AO[2]);

31 // the answers are merged into a single node C

32 for(i=0;i<3;i=i+1){

33 Sync[i+3] = new SYNC(AI[i];C);

34 }

36 // and buffered in the release_buffer for

37 // the later release (in the registration table)

38 release_buffer = new FIFO1(C;R);

40 // rest of the interface declaration

41 source[6] = AI[0]; source[7] = AI[1]; source[8] = AI[2];

42 sink[3] = RO[0]; sink[4] = RO[1]; sink[5] = RO[2];

43 sink[9] = AO[0]; sink[10] = AO[1]; sink[11] = AO[2];

44 }

Fig. 9. RSL script composing a network manager

54 I. Grabe et al.

An overview on the structure of the network manager is shown in Fig. 8. The
network manager consists of several distinct entities, some of them are modeled
in CARML while others are specified using RSL. The RSL code composing
these entities to form the network manager is presented in Fig. 9. The RSL main
program, which is not shown here, composes the peers and the network manager
the same way.

The basic idea behind the model of the network manager is that registrationTable

– specified in CARML – keeps track of the server registrations, notices requests
from clients and generates indices i, j ∈ {0, 1, 2} serving as reconfiguration signals
for the dynamically changing P2PConnection – specified in RSL. When peer i sends
the key for the �-th data package (key�) indicating the request for data�, then the
registrationTable is aware which of the registered servers has the requested data. If
peer j is the one whose server side has already registered and has the requested
data, the registrationTable opens a server session by sending the signal openSignal via
the I/O-port openSSj . Moreover it sends the indices i and j via the internal ports
I and J to the P2PConnection. The P2PConnection then establishes a bidirectional
connection between peer i and peer j first for the requests and then for the
answers. The requests are kept in the request buffer and delivered to exactly one
of the ports RI[0], RI[1] or RI[2] of the P2PConnection using an exclusive router
component (EXROUTER). After the connection has been established the request
is routed through the P2PConnection from RI[i] to RO[j], i.e, to exReq of peer j.
When the request is answered by the server side the data is delivered through
the P2PConnection from AI[j] to AO[i], i.e, from port exAns of peer j to port myAns

of peer i. A copy of the data package is kept in the release buffer . In the next
step the copy is forwarded to the registrationTable generating new reconfiguration
signals on the internal I/O-ports I and J disconnecting the peers. Moreover, it
sends the signal closeSignal via the I/O-port closeSSj to close the server session.
The network manager is now back in its initial configuration, ready for a new
request-answer-cycle.

The synchronous channels (Sync), the buffers (FIFO1), and the exclusive router
(EXROUTER) are part of Vereofy ’s built-in library. The predefined channels and
component connectors from the library can be instantiated like any other com-
ponent. The composition of channels and components is done implicitly dur-
ing the instantiation by reusing port names in the new statements. If a port
name is used more than once the corresponding ports are joined. E.g. we write
new FIFO1(A; B); new FIFO1(B; C) instead of new FIFO(A; B1); new FIFO1(B2; C);
B = join(B1, B2). If the name of a port is source[i] (or sink[j]) the port will be
the i-th source port (j-th sink port, respectively) of the interface of the network
manager. I.e., the network manager provides the interface shown in Table 1.

Dynamically changing network topologies. We now focus on the dynami-
cally changing part of the network, i.e., the P2PConnection. As described above the
registrationTable triggers a reconfiguration of the network topology. A P2PConnection

manages a bidirectional communication between peeri and peerj on the basis of
the incoming signals at the I/O-ports I and J. These signals are simultaneously

The Credo Methodology 55

Table 1. Interface of a network manager

I/O-ports port type usage data values

register i input register servers sides registerSignal

openSSi output opening a server session openSignal

myReqi input handling client requests key0, key1, key2

exReqi output forwarding requests key0, key1, key2

exAnsi input accepting answers from servers data0, data1, data2

myAnsi output forwarding answers data0, data1, data2

closeSSi output closing a server session closeSignal

P2PConnection

PeerLink

c3to1 c1to3

PeerLink

c1to3 c3to1

Link for
Client

myReq

Link for
Server
exReq

Link for
Server
exAns

Link for
Client
myAns

Reconf_Port I Reconf_Port J

Fig. 10. P2PConnection

forwarded into two sub-circuits – one peerLink for the requests and another peerLink

for the answers (see Fig. 10).
Both peerLinks consist of sub-circuits called c3to1 and c1to3. We select c3to1 as

a showcase for circuits with more than one (static) topology. A dynamic circuit
needs a static interface, which must not be changed within the topology descrip-
tions. The RSL code for c3to1 consisting of the interface declaration followed by
the definition of four possible topologies is shown in Fig. 11. The RSL keyword
NODE is used to create a new I/O-port. In the RSL code of the c3to1 in Fig. 11
four nodes are created – three nodes for the input ports and one for the output
port constituting the interface of the circuit.

In the first three topologies (topology 0, 1, 2) exactly one of the source ports is
connected to the sink via a synchronous channel. In the last topology (topology 3)
there are no connections between the sources and the sink port.

The circuit dynamically switches to topology i ∈ [0..3] when receiving a recon-
figuration signal i. As shown in Fig. 12 the initial topology can be selected on
the instantiation of the sub-circuit providing the initial topo option as shown

56 I. Grabe et al.

1 CIRCUIT c3to1{

2 outport = NODE;

3 sink[0] = outport;

5 for (i=0;i<3;i=i+1){

6 inport[i] = NODE;

7 source[i] = inport[i];

8 }

10 TOPO(0) = {

11 new SYNC(inport[0];outport);

12 }

14 TOPO(1) = {

15 new SYNC(inport[1];outport);

16 }

18 TOPO(2) = {

19 new SYNC(inport[2];outport);

20 }

22 TOPO(3) = {

23 // unconnected

24 }

25 }

1 CIRCUIT c1to3{

2 inport = NODE;

3 source[0] = inport;

5 for (i=0;i<3;i=i+1){

6 outport[i] = NODE;

7 sink[i] = outport[i];

8 }

10 TOPO(0) = {

11 new SYNC(inport;outport[0]);

12 }

14 TOPO(1) = {

15 new SYNC(inport;outport[1]);

16 }

18 TOPO(2) = {

19 new SYNC(inport;outport[2]);

20 }

22 TOPO(3) = {

23 // unconnected

24 }

25 }

Fig. 11. RSL script for a building block in the P2PConnection

for the peerLink. From the RSL code one can also see how the reconfiguration
port becomes an additional interface port of the sub-circuits c3to1 and c1to3 and
how it can be accessed. The P2PConnection is composed out of two peerLinks, one
for the requests and one for the answers.

3.2 Analysis of the Model

Vereofy provides model checking for branching time properties via the CTL-like
logic BTSL[24] and the alternating-time logic ASL[23], for linear time properties
via LTLIO[5], as well as bisimulation checking [9]. The three logics allow reasoning
about the coordination principles and the dataflow in the network, i.e., between
components, as well as the internal states of the components and component
interfaces. BTSL (Branching Time Stream Logic) is a CTL-like logic with path
quantifiers and formulas built by standard temporal operators, extended by spe-
cial modalities to specify regular properties for data stream prefixes. LTLIO is
likewise an extended version of LTL adapted to the constraint automata setting,
where the atomic propositions are either state predicates or I/O-guards. ASL
(Alternating Stream Logic) extends BTSL by means to allow reasoning about
compatibility and the existence (and absence) of strategies for (alliances of) com-
ponents. In this section we illustrate the type of properties expressible in BTSL,

The Credo Methodology 57

1 #include "c3to1.rsl"

2 #include "c1to3.rsl"

4 CIRCUIT peerLink{

5 // instantiation with port names including the reconf. ports:

6 first = new c3to1(A[0],A[1],A[2],

7 here_is_reconf_port_first; C) with initial_topo=3;

9 second = new c1to3(C, here_is_reconf_port_second;

10 B[0],B[1],B[2]) with initial_topo=3;

12 /*

13 defining the interface using

14 two differnt ways in accessing

15 the reconf_port of dynamic sub-circuits

16 */

17 source[0] = first.RECONF_PORT;

18 source[1] = here_is_reconf_port_second;

20 // defining the rest of the interface

21 for (i=0;i<3;i=i+1){

22 source[i+2] = A[i];

23 sink[i] = B[i];

24 }

25 }

Fig. 12. RSL script composing a peer link

ASL and LTLIO by providing some examples that can be checked with the help
of Vereofy . For this, we make use of the following notations inside the formulas:

– {A, B} indicates that ports A and B are active and no other port is.
– #A refers to the data item observed at port A.
– step indicates an arbitrary step with or without observable dataflow.
– the operators ; (concatenation), ∗ (star), and + (plus) correspond to the

standard operators for regular languages.

1. Deadlock freedom, in the sense that on all paths there is always a next step,
can be formalized by means of the following CTL formula.

AG[EX[true]]

2. With BTSL we can formalize a condition stating the existence of a path
with specific regular form. A sequence of actions is specified by a regular ex-
pression, where the atoms are constraints on a single step of the observable
dataflow. This can e.g. be instrumented to check the conformance between
the behavioral interfaces and the RSL model. The following formula states
the existence of a path, where the first server registers, the second client
opens a session and sends a request for the data with key0, the data is trans-
ferred, and the connections closed. The formula also requires that the path
leads to a state where both the request and the release buffer are empty.

58 I. Grabe et al.

E<"{register[0]} & #register[0]==registerSignal";"step"*;
"{openCS[1]} & #openCS[1]==openSignal";
"{request[1],openSS[0]} & #request[1]==key0
& #openSS[0]==openSignal";"#sendRequest[0]==key0";

"{theAnswerIn[0],theAnswerOut[1]}
& #theAnswerIn[0]==#theAnswerOut[1]
& #theAnswerOut[1]==data0";

"{closeSS[0],closeCS[1]} & #closeSS[0]==closeSignal
& #closeCS[1]==closeSignal">

"Manager.request_buffer.state==EMPTY
& Manager.release_buffer.state==EMPTY"

3. We now provide a BTSL formula for the requirement stating that for all
possible executions whenever the dataflow satisfies the dataflow specification
(i.e., it is part of the language defined by the regular expression) then both
buffers will be empty at the end of the execution.

A["{register[0]} & #register[0]==registerSignal";("step"*;
"{openCS[1]} & #openCS[1]==openSignal";
"{request[1],openSS[0]} & #request[1]==key0
& #openSS[0]==openSignal";"#sendRequest[0]==key0";

"{theAnswerIn[0],theAnswerOut[1]}
& #theAnswerIn[0]==#theAnswerOut[1]
& #theAnswerOut[1]==data0";

"{closeSS[0],closeCS[1]} & #closeSS[0]==closeSignal
& #closeCS[1]==closeSignal")+]"

Manager.request_buffer.state==EMPTY
& Manager.release_buffer.state==EMPTY"

4. The next property given in terms of an LTLIO formula asserts that whenever
a server session has been closed in the next step the release buffer of the
network manager will be empty.

G (("#closeSS[0]==closeSignal"
| "#closeSS[1]==closeSignal"
| "#closeSS[2]==closeSignal") ->

X "Manager.release_buffer.state==EMPTY")

5. The following LTLIO formula represents a fairness condition and ensures that
enabled requests can not be ignored forever. Stated differently, if the request
of a client is enabled at infinitely many positions along a path, then the
request fires at infinitely many locations.

G F "enabled sendRequest[1]" -> G F "sendRequest[1]"

6. The ASL formula given below states that whether there is a strategy that con-
trols, i.e. constraints, the possible dataflow at the three ports (theAnswerOut[0],
theAnswerOut[1], and theAnswerOut[2]), such that for all remaining paths the re-
lease buffer of the network manager stays globally empty.

The Credo Methodology 59

E{theAnswerOut[0], theAnswerOut[1], theAnswerOut[2]}
G["Manager.release_buffer.state==EMPTY"]

All properties that have been presented in this section have successfully been
validated for our model of the peer-to-peer network for which the full source code
is available on the web [30]. Besides model checking for temporal logics, Vereofy
supports checking bisimilarity of two automata, e.g., that two implementations
of the network manager are bisimilar.

4 Object-Oriented Model of the Components

In this section, we model the components in Creol, an executable modeling lan-
guage. To model the components, we provide interfaces for the intra-component
communication and a Creol implementation of the components. Together with
a Creol implementation of the network manager, we get an executable model
of the whole system. Since Creol models are executable we use the terms Creol
model and Creol implementation interchangeably.

We use intra-component interfaces together with the behavioral interfaces of
Section 2.2 to derive test specifications to check for conformance between the
behavioral models and the Creol implementation. We also use this specification
to simulate the environment of a component while developing the component.

Given a C implementation of the system, we use the behavioral interfaces of
Section 2.2 to derive test scenarios for checking conformance between the Creol
model and an implementation in an actual programming language. Dynamic
symbolic execution on the Creol implementation is used to compute test inputs
for the scenarios for an improved coverage of the model [18].

Finally, we model the real-time aspects of the system using timed automata. In
the real-time model, we add scheduling policies to the objects. Here, we check for
schedulability, i.e., whether the tasks can be accomplished within their deadlines.

4.1 Modeling in Creol

Creol is an executable modeling language suited for distributed systems. Types
are separated from classes, instead (behavioral) interfaces are used to type ob-
jects. Objects are concurrent, i.e., conceptually, each object encapsulates its own
processor. Creol objects can have active behavior, i.e., during object creation a
designated run method is invoked.

Creol allows for flexible object interaction based on asynchronous method
calls, explicit synchronization points, and underspecified (i.e., nondeterminis-
tic) local scheduling of the processes within an object. Creol supports software
evolution by means of runtime class updates [31]. This allows for runtime re-
configuration of the components. To facilitate the exogenous coordination of
the components we have extended Creol with facades and an event system (cf.
Section 2.1).

The modeling language is supported by an Eclipse modeling and analysis
environment which includes a compiler and type-checker, a simulation platform

60 I. Grabe et al.

based on Maude [12], which allows both closed world and open world simulation
as well as guided simulation, and a graphic display of the simulations.

In the rest of this section, we specify the interfaces of a local data store for a
peer syntactically. Then, we implement parts of a peer as an example.

Each peer consists of a client object, a server object and a data-store object.
The Client interface provides the user with a search operation. The data-store pro-
vides the client object with an add operation to introduce new data and the server
object with a find operation to retrieve data. We model these two perspectives
on the data-store by two interfaces StoreClientPerspective and StoreServerPerspective.

The interfaces are structured in terms of inheritance and cointerface require-
ments. The cointerface of a method (denoted by the with keyword) is a static
restriction on the objects that may call the method. In the model, the cointerface
reflects the intended user of an interface. In Creol, object references are always
typed by interfaces. The caller of a method is available via the implicit variable
caller. Specifying a concrete cointerface allows for callbacks. Finally, method
parameters are separated into input and output parameters, using in and out

keywords, respectively.

1 interface Sto r eC l i en tPe r sp e c t i v e begin
2 with Cl i en t
3 op add (in key : Data , i n f o : Data)
4 end

6 interface S to r eS e rve rPe r sp e c t i v e begin
7 with Server
8 op f i nd (in key : Data ; out i n f o : Data)
9 end

11 interface Store
12 inherits Sto r eC l i en tPe r sp e c t i v e , S to r eS e rve rPe r sp e c t i v e
13 begin end

The interfaces cover the intra-component communication while the facades cover
the inter-component communication (cf. Section 2.1). To implement a Creol
class, we can use only the ports and events specified in the facades. Note that
the use of ports is restricted to reading from an inport or writing to an outport.
Since the inter-component communication is coordinated exogenously by the
network, the components are not allowed to alter the port bindings; instead,
they have to raise an event to request a reconfiguration of the communication
network structure.

Next, we provide implementation models for the interfaces in terms of Creol
classes. The client offers a search method to the user. To perform a search, the
client makes a request to the broker. The event openCS<req, ans>(key; found) pro-
vides the ports req and ans to be reconfigured, plus the parameters key and found.
If the data identified by key is available, the broker connects the given ports to a
server holding the data and reports via found the success of the search. Otherwise,
the ports are left unchanged and the failure is reported via found. If successful the

The Credo Methodology 61

client expects its ports to be connected properly and communicates the data via
its ports.

For simplicity, a client only operates one search at a time. Nevertheless, the
user can issue multiple concurrent search requests. The requests are buffered and
served in an arbitrary order (due to the nondeterministic scheduling policy) one
at a time.

1 class ClientImp (s t o r e : S t o r eC l i en tPe r spe c t i v e , req : outport , ans : i npo r t)
2 inside Peer implements Cl i en t begin

4 with User op search (in key : Data out r e s u l t : Data) ==
5 var found : Boolean ;
6 raise event openCS<req , ans>(key ; found) ;
7 i f (found) then
8 req . wr i te (key ;) ;
9 ans . take (; r e s u l t) ;

10 ! s t o r e . add (key , r e s u l t)
11 end ;
12 raise event closeCS<req , ans >()
13 end

To obtain the result of the search, the client uses a synchronous call to the ans

port. The update regarding the new data is sent to the data-store asynchronously
! store .add(key, result). Using asynchronous communication the client can already
continue execution while the data-store is busy processing the changes. The client
is a passive object, i.e., it does not specify a run method.

The server object is active in the sense that it starts its operation upon cre-
ation. The active behavior is specified in the run method. This involves read-
ing data requests from the req port and delivering the results on the ans port.
To repeat the process, the run method issues an asynchronous self call before
termination.

1 class ServerImp (s t o r e : S to r eSe rve rPer spec t i ve , req : inport , ans : outport)
2 inside Peer implements Server
3 begin

4 op run ==
5 var key , r e s u l t : Data ;
6 raise event openSS<req , ans >() ;
7 req . take (; key) ;
8 s t o r e . f i nd (key ; r e s u l t) ;
9 ans . wr i te (r e s u l t ;) ;

10 raise event c loseSS<req , ans >() ;
11 ! run ()
12 end

By raising the event openSS<req,ans>(), a server announces its availability to the
broker. This synchronous event returns whenever a request is made for some
data on this server. Having provided the ports along the event, the server ob-
ject expects to be connected to the requesting client, and reads the key to the

62 I. Grabe et al.

requested data from its req port. The server looks up the data corresponding to
the key in the data-store using the find operation. The result is sent back on the
ans port. The event closeSS announces the accomplishment of the transaction.
Finally, the server prepares for a new session by calling the run method again.

4.2 Analysis of the Model

Creol programs and models can be executed using the rewriting logic of Maude
[12]. Maude offers different modes of rewriting and additional capabilities for
validation, e.g., a search command and the means for model checking. Credo
offers techniques to analyze parts of the system in isolation; on the lowest level,
to analyze the behavior of a single (active) object in isolation.

Credo offers techniques to analyze, in a black-box manner, the behavior of a
component modeled in Creol, by interaction via message passing. This allows for
the description and analysis of systems in a divide-and-conquer manner. Thus
the developer has the choice of developing the system bottom-up or top-down.

Although Creol allows modeling systems on a high level, the complete model
might still be too large to be analyzed or validated as a whole. By building upon
the analysis of the individual components, compositional reasoning still allows
us to validate the system.

Conformance Testing of the Model. In the context of the Creol concurrency
model, especially the asynchrony poses a challenge for validation and testing.
Following the black-box methodology, an abstract component specification is
given in terms of its interaction with the environment. However, in a particular
execution, the actual order of outputs issued from the component may not be
preserved, due to the asynchronous nature of communication. To solve this prob-
lem, the conformance of the output to the specification is checked only up-to a
notion of observability [17].

The existing Creol interpreter is combined with an interpreter for the abstract
behavior specification language to obtain a specification-driven interpreter for
testing and validation [17]. It allows for run-time assertion checking of the Creol-
models, namely for compliance with the abstract specification.

We derive a specification for an object directly from the structural interfaces
and the behavioral interfaces. The specification of the implementation of the
ServerSide is derived from the facade depicted in Section 2.1 and the behavioral
interface depicted in Section 2.2. The facade determines the direction of a com-
munication, i.e., whether it is incoming or outgoing communication. For the spec-
ification the direction is inverted - the specification ‘interacts’ with the object to
analyze it. The order of the events is determined by the behavioral interface.

The specification language features, among others, choice (between communi-
cation in the same direction, i.e., incoming only or outgoing only) and recursion.
As an example, we give the specification of a server:

ϕS = 〈event register(keyList)〉? . rec X . 〈event openSS()〉? .
〈port s.sReq(key)〉! . 〈port s.sAns(data)〉? .
〈event closeSS()〉? . X

The Credo Methodology 63

To test our executable model ServerImpl for conformance with respect to the behav-
ioral interface description, we translate the specification to Creol and in the next
step to Maude. The specification in Maude is executed together with the model.
With the data-store at hand, we specify via the method parameters that the data
delivered along the sAns port of the server is actually the data identified by the key.
This needs to be done on the level of the Maude code.

The object is executed together with the specification in a special version of
the Maude interpreter customized for the testing purpose. The programmer can
track down the reason for a problem according to the Maude execution. This can
be either a mistake in the executable model or a flaw in the behavioral model,
i.e., the specification. The interpreter reports an error if unexpected behavior is
observed, i.e., an unspecified communication from the object to the specification,
or a deadlock occurs.

Simulation. The conformance testing introduced in the previous section is al-
ready a simulation of a part of the system, i.e., the object under test. We use a
modified version of the above testing interpreter to eliminate the error reporting.
Notice that the Maude interpreter of Creol is a set of rewrite rules which reduces
the modification of the interpreter in this case to the deletion of the rules dealing
with the error reporting.

Furthermore, we use the facades and behavioral interfaces of section 2 to derive
a Creol skeleton of the network. By filling in the details of the network manager,
we get a Creol model of the network. The model of the network and the models of
the components together form a model of the entire system, which can be executed
in Maude.

We use Maude to steer the execution of the model on different levels. We use
the different built-in rewriting strategies to simulate different executions of the
system. We use Maude’s search command to search for a specific execution lead-
ing to a designated program state. And we use Maude’s meta-level to control an
execution by controlling the application of the rewrite rules.

To supplement the above simulation strategies, we use Maude’s model-checking
facilities. In general, the simulation is non-deterministic, which means, that only
part of the specified behavior is covered. Therefore erroneous behavior might be
missed. Maude’s search facility allows us to explore the search space systemati-
cally. A general limitation of model checkers is the state space explosion, which
makes larger systems unmanageable, when it comes to model checking. By ana-
lyzing parts of the system in isolation we reduce the state space explosion. Fur-
thermore, Creol as a modeling language allows us to represent the system in a
high-level, abstract manner, and concentrate on the crucial design-choices, which
furthermore increases the chances of being able to model-check such a model. Since
Maude is based on rewriting, dealing with the asynchronous nature of communi-
cation is natural: the asynchronicity is represented by trace–equivalence, which
is directly represented as equivalence in the Maude rewriting system. This allows
the execution engine to more efficiently represent the state space (by working on
the normal forms instead of exploring all re-orderings one by one).

64 I. Grabe et al.

Conformance Testing of the Implementation. The testing process uses for-
mal methods (e.g., automata and simulation of a model’s formal program seman-
tics) to provide the necessary links between behavioral interfaces, Creol models,
and the actual implementation.

Behavioral interfaces provide test scenarios, patterns of interactions between
the components. A test case created according to a test scenario represents a func-
tional description, but does not guarantee a good coverage of the model. To opti-
mize the coverage, dynamic symbolic execution is used to analyze execution paths
through the Creol model to find representative test cases while avoiding redun-
dancies in the test suite [18].

Once a test suite is created, the next step in testing is executing the tests on
the implementation and reaching a test verdict to check the conformance between
model and implementation. Testing a concurrent system involves validation of
both functional and non–functional aspects. Functional aspects are covered by
standard techniques like runtime assertions in the implementation and unit test-
ing. To test the concurrency behavior of an implementation against its model we
use the observation that typically the Creol model and the implementation share a
common structure with regard to high-level structure and control flow. It is there-
fore reasonable to assume that, given equivalent stimuli (input data), they will
behave in an equivalent way with regard to control flow.

We instrument the implementation to record events and use the instrumented
implementation to record traces of observable events. Then we restrict the exe-
cution of the model to these traces. If the model can successfully play back the
trace recorded from the implementation (and the implementation produces the
correct result(s) without assertion failures), then the test case is successful. The
Creol model is used as a test oracle for the execution of the test cases on the actual
implementation [1].

4.3 Schedulability Analysis

In this section, we explain how to model the real-time aspects of the peer-to-peer
system using timed automata and the Uppaal model checker [25]. An object or
component is called schedulable if it can accomplish all its tasks in time, i.e., within
their designated deadlines. We demonstrate the schedulability analysis process
[14,20] on the network manager object in the peer-to-peer model, which is the
most heavily loaded entity in this system.

In the real-time model of an object, we add explicit schedulers to object specifi-
cations. For schedulability analysis, the model of an object consists of three parts:
the behavioral interface, the methods and the scheduler.

Behavioral interface. To analyze an object in isolation, we use the behavioral
interface as an abstract model of the environment. Thus, it triggers the object
methods. Fig. 13 shows the behavioral interface of the network manager
augmented with real-time information. The automata in this figure are derived
from the behavioral interface of Peer (see Section 2.2) by removing the port
operations. To send messages, we use the invoke channel, with the syntax

The Credo Methodology 65

oc_os?
x = 0

reg_upd[Peer]! invoke[confirmSS][Peer][self]?

x > 5
invoke[closeSS][self][Peer]!

deadline = MD, x = 0

x > 5
invoke[openSS][self][Peer]!

deadline = XD

invoke[register][self][Peer]!

deadline = MD

oc_os!
x = 0

open_upd[Peer]!

invoke[confirmCS][Peer][self]?

x > 5
invoke[closeCS][self][Peer]!

deadline = MD, x = 0

x > 5
invoke[openCS][self][Peer]!

deadline = XD open_upd[Peer]?

invoke[update][self][Peer]!

deadline = XD

reg_upd[Peer]?

Fig. 13. The behavioral interface of broker modeled in timed automata

invoke[message][sender][receiver]! . To specify the deadlines associated to a message, we
use the variable deadline.

In Fig. 13, we use the open upd and reg upd channels to synchronize the automata
for Peer with ClientSide and ServerSide, respectively. Additionally, the automata for
ClientSide and ServerSide are synchronized on the oc os channel; this abstractly mod-
els the synchronization on port communication between the components in which
the network manager is not directly involved. This model allows the client side of
any peer to connect to the server side of any peer (abstracting from the details of
matching the peers).

The confirmCS and confirmSS messages model the confirmation sent back from the
network manager to the open session requests by the peers. In the implementa-
tion, this is an implicit reply which is therefore not modeled in the behavioral
interfaces of the peers in Section 2.2. These edges synchronize with the method
implementations (explained next) in order to reduce the nondeterminism in the
model.

Methods. The methods also use the invoke channel for sending messages. Fig. 14
shows the automata implementation of two methods for handling the openCS and
register events. In openCS, and similarly in every method, the keyword caller refers
to the object/component that has called this method. The scheduler should be
able to start each method and be notified when the method finishes, so that it can
start the next method. To this end, method automata start with a synchroniza-
tion on the start channel, and finish with a transition synchronizing on the finish

x <= 1
x == 1

invoke[confirmClient][caller][self]!

start[openCS][self]?
x = 0

finish[self]!
x <= 1 finish[self]!

x >= 1

start[register][self]?
x = 0

Fig. 14. Method automata for handling openCS and register events

66 I. Grabe et al.

channel leading back to the initial location. The implementation of the openCS

method involves sending a message confirmCS back to the sender, while the register
method is modeled merely as a time delay.

Checking Schedulability. When an object is instantiated, an off-the-shelf
scheduler is selected and tailored to the particular needs of the object. For an
object, we get a network of timed automata in Uppaal by instantiating the au-
tomata templates for methods, behavioral interface and the scheduler. There are
two conditions indicating that a system is not schedulable:

1. The scheduler receives a new message when the message queue is already full.
In theory [20], a schedulable object needs a queue length of at most

dmax/bmin�, where dmax is the biggest deadline value used and bmin is the
smallest execution time of all methods.

2. The deadline of at least one message in the queue is missed.

In either of the above cases, the scheduler automaton goes to a location called
Error. This location has no outgoing transitions and therefore causes deadlock.
Therefore, absence of deadlock implies schedulability, as well as correct output
behavior for the object.

Due to the high amount of concurrency in the model, model checking is of lim-
ited use. Nevertheless, we can use the simulation feature of Uppaal [29] to analyze
bigger systems. We measure the worst-case response time for each message, which
identifies a lower bound for the deadline value in a schedulable system.

5 Conclusions

We presented an extended version of the Credo methodology now covering also the
detailed modeling and analysis of the network. The Credo modeling and analysis
techniques addressing highly reconfigurable distributed systems presented cover
a broader spectrum of the software development process. The Vereofy tool set
is added to the picture providing modeling and analysis techniques for detailed
network models.

At a high level of abstraction, the dynamic connections between the components
are modeled using behavioral interface specifications. The detailed model of the
network is given in terms of a Reo model specified in Vereofy . The detailed model
of the components is given in terms of an object–orientedCreolmodel.Bothmodels
are used for analysis of functional as well as non-functional properties, e.g.,
schedulability, deadlock freedom. The conformance between the component and
the network models is established via the behavioral interface specifications. Fur-
thermore we can establish conformance between the Creol model and a given im-
plementation by conformance testing.

The process described in this paper can be integrated in the existing software
development methodologies which support component-based modeling, and thus
enhance them with support for formal modeling and analysis of dynamically re-
configurable distributed systems. In the future, we intend to broaden the scope

The Credo Methodology 67

of the Credo modeling language and its corresponding tool suite in order to sup-
port the full development life-cycle of large-scale, open systems. This involves, on
one hand, integrating models of software architecture into the process; and on the
other hand, working further on deployment concerns such as scheduling.

Case Studies

The Credo methodology has been successfully applied to two industrial case
studies.

ASK System. The Credo methodology has been applied to model and analyze
the ASK system, an industrial software system developed by Almende [2]. The
purpose of the ASK system is to improve communication between people by pro-
viding a mediating communication platform with knowledge about the availabil-
ity, schedules, skills and past experience of users. Typical applications for ASK are
workforce planning, customer service, knowledge sharing, social care and emer-
gency response. Various communication channels can be incorporated. The ASK
system is a learning system, trying to improve the quality of service according to
self–monitoring and feedback mechanisms. An important part of all core compo-
nents of the system are thread pools. They are used to manage the (varying) work-
loads of the system by distribution of individual tasks, creation of new threads to
handle tasks, and destruction of threads in case of low workload to minimize the
idle time. We have modeled and analyzed the different kinds of thread pools in the
ASK system according to the Credo methodology [15].

BSN. The Credo methodology has been applied to model and analyze a biomed-
ical sensor network (BSN). For the BSN case study we modeled and analyzed dif-
ferent routing protocols for a biomedical sensor network. The BSN case study is
focused on the application of the sensor network in a hospital. Patients are moni-
tored via medical sensors which communicate their observations via radio signals
to a sink, representing the entry point to the (wired) hospital communication net-
work. The signals are not broadcasted directly to the sink but via other sensor
nodes, used as hubs. Among functional properties, like emiting an emergency sig-
nal in certain scenarios, non–functional properties, like energy consumption are of
interest. Two different routing protocols have been modeled, analyzed, and com-
pared [26,27].

References

1. Aichernig, B., Griesmayer, A., Schlatte, R., Stam, A.: Modeling and testing multi-
threaded asynchronous systems with Creol. In: Proc. TTSS 2008. ENTCS, vol. 243,
pp. 3–14. Elsevier, Amsterdam (2009)

2. The Almende research company, http://www.almende.com/
3. Arbab, F.: Reo: A channel-based coordination model for component composition.

Mathematical Structures in Computer Science 14, 329–366 (2004)

http://www.almende.com/

68 I. Grabe et al.

4. Arbab, F., Baier, C., Rutten, J.J., Sirjani, M.: Modeling component connectors in
Reo by constraint automata. In: Proc. FOCLASA 2003. ENTCS, vol. 97, pp. 25–46.
Elsevier, Amsterdam (2004)

5. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: Formal Verification for Com-
ponents and Connectors. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 82–101. Springer, Heidelberg (2009)

6. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A Uniform Framework for Mod-
eling and Verifying Components and Connectors. In: Field, J., Vasconcelos, V.T.
(eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 247–267. Springer, Heidelberg
(2009)

7. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling Component Connec-
tors in Reo by Constraint Automata. In: Proceedings of the 2nd International Work-
shop on Foundations of Coordination Languages and Software Architectures. Sci-
ence of Computer Programming, vol. 61, pp. 75–113 (2006)

8. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W., Hen-
driks, M.: Uppaal 4.0. In: QEST, pp. 125–126. IEEE Computer Society, Los Alami-
tos (2006)

9. Blechmann, T., Baier, C.: Checking equivalence for Reo networks. In: Electronic
Notes in Theoretical Computer Science, vol. 215, pp. 209–226 (2008)

10. Blechmann, T., Klein, J., Klüppelholz, S.: Vereofy, http://www.vereofy.de
11. Blechmann, T., Klein, J., Klüppelholz, S.: Vereofy User Manual. TU Dresden

(2008 –2009), http://www.vereofy.de
12. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,

J.F.: Maude: Specification and programming in rewriting logic. Theoretical Com-
puter Science (2001)

13. CWI Coordination Group. Eclipse coordination tools,
http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Tools

14. de Boer, F., Chothia, T., Jaghoori, M.M.: Modular schedulability analysis of con-
current objects in Creol. In: Arbab, F., Sirjani, M. (eds.) Fundamentals of Software
Engineering. LNCS, vol. 5961, pp. 212–227. Springer, Heidelberg (2010)

15. de Boer, F.S., Grabe, I., Jaghoori, M.M., Stam, A., Yi, W.: Modeling and Analysis
of Thread-Pools in an Industrial Communication Platform. In: Breitman, K., Cav-
alcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 367–386. Springer, Heidelberg
(2009)

16. Grabe, I., Jaghoori, M.M., Aichernig, B., Baier, C., Blechmann, T., de Boer, F.,
Griesmayer, A., Johnsen, E.B., Klein, J., Klüppelholz, S., Kyas, M., Leister, W.,
Schlatte, R., Stam, A., Steffen, M., Tschirner, S., Liang, X., Yi, W.: Credo method-
ology. Modeling and analyzing a peer-to-peer system in Credo. In: Johnsen, E.B.,
Stolz, V. (eds.) Proceedings of the 3nd International Workshop on Harnessing The-
ories for Tool Support in Software (TTSS 2009), ICTAC 2009 satellite Workshop.
Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam (2010)

17. Grabe, I., Steffen, M., Torjusen, A.B.: Executable Interface Specifications for Test-
ing Asynchronous Creol Components. In: Arbab, F., Sirjani, M. (eds.) Fundamen-
tals of Software Engineering. LNCS, vol. 5961, pp. 324–339. Springer, Heidelberg
(2010)

18. Griesmayer, A., Aichernig, B.K., Johnsen, E.B., Schlatte, R.: Dynamic symbolic ex-
ecution for testing distributed objects. In: Dubois, C. (ed.) Tests and Proofs. LNCS,
vol. 5668, pp. 105–120. Springer, Heidelberg (2009)

19. Jaghoori, M.M.: Coordinating object oriented components using data-flow net-
works. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO
2007. LNCS, vol. 5382, pp. 280–311. Springer, Heidelberg (2008)

http://www.vereofy.de
http://www.vereofy.de
http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Tools

The Credo Methodology 69

20. Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asyn-
chronous real-time concurrent objects. J. Logic and Alg. Prog. 78(5), 402–416 (2009)

21. Jaghoori, M.M., Longuet, D., de Boer, F.S., Chothia, T.: Schedulability and com-
patibility of real time asynchronous objects. In: Proc. Real Time Systems Sympo-
sium, pp. 70–79. IEEE Computer Society Press, Los Alamitos (2008)

22. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed con-
current objects. Software and Systems Modeling 6(1), 35–58 (2007)

23. Klüppelholz, S., Baier, C.: Alternating-time stream logic for multi-agent systems.
Science of Computer Programming. Corrected Proof (2009) (in Press)

24. Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component
connectors. Science of Computer Programming 74(9), 688–701 (2009)

25. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134–152
(1997)

26. Leister, W., Björk, J., Schlatte, R., Griesmayer, A.: Validation of Creol models for
routing algorithms in wireless sensor networks. Report 1024, Norsk Regnesentral,
Oslo, Norway (2010)

27. Leister, W., Liang, X., Klüppelholz, S., Klein, J., Owe, O., Kazemeyni, F., Bjørk,
J., Østvold, B.M.: Modelling of biomedical sensor networks using the Creol tools.
Report 1022, Norsk Regnesentral, Oslo, Norway (2009)

28. Rumpe, B., Klein, C.: Automata describing object behavior. In: Object-Oriented
Behavioral Specifications, pp. 265–286. Springer, Heidelberg (1996)

29. Tschirner, S., Xuedong, L., Yi, W.: Model-based validation of QoS properties of
biomedical sensor networks. In: Proc. Embedded software (EMSOFT 2008), pp. 69–
78. ACM Press, New York (2008)

30. Vereofy source code of the peer-to-peer example (2010),
http://www.vereofy.de/download/examples/vereofy_p2p_example.zip

31. Yu, I.C., Johnsen, E.B., Owe, O.: Type-safe runtime class upgrades in Creol. In:
Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 202–217.
Springer, Heidelberg (2006)

http://www.vereofy.de/download/examples/vereofy_p2p_example.zip

Patterns for Refinement Automation

Alexei Iliasov1, Elena Troubitsyna2, Linas Laibinis2, and Alexander Romanovsky1

1 Newcastle University, UK
2 Åbo Akademi University, Finland

{alexei.iliasov,alexander.romanovsky}@ncl.ac.uk,
{linas.laibinis,elena.troubitsyna}@abo.fi

Abstract. Formal modelling is indispensable for engineering highly dependable
systems. However, a wider acceptance of formal methods is hindered by their in-
sufficient usability and scalability. In this paper, we aim at assisting developers in
rigorous modelling and design by increasing automation of development steps.
We introduce a notion of refinement patterns – generic representations of typi-
cal correctness-preserving model transformations. Our definition of a refinement
pattern contains a description of syntactic model transformations, as well as the
pattern applicability conditions and proof obligations for verifying correctness
preservation. This work establishes a basis for building a tool that would support
formal system development via pattern reuse and instantiation. We present a pro-
totype of such a tool and some examples of refinement patterns for automated
development in the Event B formalism.

1 Introduction

Over the recent years model-driven development has become a leading paradigm in
software engineering. System development by stepwise refinement is a formal model-
driven development approach that advocates development of systems correct by con-
struction. Development starts from an abstract model, which is gradually transformed
into a specification closely resembling an implementation. Each model transformation
step, called a refinement step, allows a designer to incorporate implementation details
into the model. Correctness of refinement steps is validated by mathematical proofs.

The refinement approach significantly reduces the required testing efforts and, at the
same time, supports a clear traceability of system properties through various abstrac-
tion levels. However, it is still poorly integrated into the existing software engineering
process. Among the main reasons hindering its application are complexity of carrying
proofs, lack of expertise in abstract modelling, and insufficient scalability.

In this paper we propose an approach that aims at facilitating integration of formal
methods into the existing development practice by leveraging automation of refinement
process and increasing reuse of models and proofs. We aim at automating certain model
transformation steps via instantiation and reuse of prefabricated solutions, which we
call refinement patterns. Such patterns generalise certain typical model transformations
reoccurring in a particular development method. They can be thought of as “refinement
rules in large”.

In general, a refinement pattern is a generic model transformer. Essentially it consists
of three parts. The first part is the pattern applicability conditions, i.e., the syntactic and

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 70–88, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Patterns for Refinement Automation 71

semantic conditions that should be fulfilled by the model to be eligible for a refinement
pattern application. The second part contains definition of syntactic manipulations over
the model to be transformed. Finally, the third part consists of the proof obligations
that should be discharged to verify that the performed model transformation is indeed a
refinement step.

Application of refinement patterns is compositional. Hence some large model trans-
formation steps can be represented by a certain combination of refinement patterns, and
therefore can also be seen as refinement patterns per se. A possibility to compose pat-
terns significantly improves scalability of formal modelling. Moreover, reducing execu-
tion of a refinement step to a number of syntactic manipulations over a model provides
a basis for automation. Finally, our approach can potentially support reuse of not only
models but also proofs. Indeed, by proving that an application of a generic pattern pro-
duces a valid refinement of a generic model, we at the same time verify the correctness
of such a transformation for any of its instances. This might significantly reduce or even
avoid proving activity in a concrete development.

The theoretical work on defining refinement patterns presented in this paper estab-
lished a basis for building a prototype tool for automating refinement process in Event
B[13]. The tool has been developed as a plug-in for the RODIN platform [1] – an open
toolset for supporting modelling and refinement in the Event B framework. We be-
lieve that, by creating a large library of refinement patterns and providing automated
tool support for pattern matching and instantiation, we will make formal modelling and
verification more accessible for software engineers and hence facilitate integration of
formal methods into software engineering practice.

2 Towards Refinement Automation

In this paper we focus on automating the formal development process based on model
refinement. We start this section by giving a short overview on the notion of refinement
and the techniques allowing us facilitate the refinement process. Then we proceed by
describing our chosen formal framework – Event B.

2.1 Formal Development by Refinement

System development by refinement is a formal model-driven development process. Re-
finement allows us to ensure that a refined, i.e., more elaborated, model retains all the
essential properties of its abstract counterpart. Since refinement is transitive, the model-
driven refinement-based development process enables development of systems that are
correct-by-construction.

The precise definition of refinement depends on the chosen modelling framework
and hence might have different semantics and degree of rigor. The foundations of formal
reasoning about correctness and stepwise development by refinement were established
by Dijkstra [9] and Hoare [12], and then further developed by Back and von Wright [5]
as well as Morgan [16].

In the refinement calculus framework, a model is represented by a composition of
abstract statements. Formally, we say that the statement S is refined by the statement

72 A. Iliasov et al.

S′, written S � S′, if, whenever S establishes a certain postcondition, so does S′ [9].
Since statement composition is monotonic with respect to the refinement relation, re-
finement of a model statement is also refinement of the whole model. In general, the re-
finement process can be seen as a way to reduce non-determinism of the abstract model,
to replace abstract mathematical data structures by data structures implementable on a
computer, and, hence, gradually introduce implementation decisions.

There have been several attempts to facilitate the refinement process, by generalizing
the typical refinement transformations into a set of refinement rules [5,16]. These rules
can be seen as generic templates (or patterns) that define the general form of the state-
ment to be transformed, the resultant statement, and the proof obligations that should
be discharged to verify refinement for that particular transformation. However, a refine-
ment rule usually describes a small localized transformation of a certain model part.
Obviously, the tools developed to automate application of such refinement rules [8,17]
lack scalability.

On the other hand, such frameworks as Z, VDM, and Event B support the formal
development by model transformation of the entire system. For instance, the RODIN
platform – a tool supporting refinement in Event B – allows us to perform refinement
by introducing many changes at once and to verify by proofs that these changes result in
correct model refinement. Often a refinement step can be seen as a composition of ”stan-
dard” (frequently reoccurring) localized transformations distributed all over the model.
Additional research is needed, though, to answer the question whether we can employ
the transformational approach to fully automate execution of these transformations by
reusing the models and proofs that were constructed previously.

In this paper we propose to tackle this problem via definition and use of refinement
patterns. Our definition of refinement patterns builds on the idea of refinement rules.
In general, a refinement pattern is a model transformer. Unlike design patterns [10], a
refinement pattern is “dynamic” in a sense that the process of pattern application takes
a model as an input and produces a new model as an output. Moreover, both syntactic
and semantic information about models is used to precisely define a refinement pattern.

To formalize and automate the process of pattern application, we define a pattern as
a model transformer consisting of three parts. The first part is the pattern applicability
conditions, i.e., the syntactic and semantic conditions that should be fulfilled by the
model for a refinement pattern to be applicable. The second part contains a definition of
syntactic manipulations on the model to be transformed. Finally, the third part consists
of the proof obligations that should be discharged to verify that the performed model
transformation is indeed a refinement step. It is easy to see that a refinement pattern
manipulates a model on both syntactic and semantic level.

In principle, refinement patterns can be defined for any refinement-based modelling
framework. In this paper we present our proposal for refinement patterns in the Event B
formalism and also describe a prototype tool that implements them. We start by briefly
introducing the Event B language and giving semantic and syntactic views on its models.

2.2 Event B

In this section we introduce our formal framework – the B Method [2]. It is an ap-
proach for the industrial development of highly dependable software. The method has

Patterns for Refinement Automation 73

been successfully used in the development of several complex real-life applications. Re-
cently the B method has been extended by the Event B framework [3], which enables
modelling of event-based (reactive) systems. In fact, this extension has incorporated the
action system formalism [6,4] into the B Method.

Event B uses the Abstract Machine Notation for constructing and verifying models.
An abstract machine encapsulates a state (the variables) of the model and provides
operations on the state. A simple abstract machine has the following general form:

MACHINE AM
VARIABLES v
INVARIANT Inv
INITIALISATION INIT
EVENTS

E1
. . .
EN

The machine is uniquely identified by its name AM. The state variables of the machine,
v, are declared in the VARIABLES clause and initialised in INIT as defined in the
INITIALISATION clause. The variables are strongly typed by constraining predicates
of the machine invariant Inv given in the INVARIANT clause. The invariant is usually
defined as a conjunction of the constraining predicates and the predicates defining the
properties of the system that should be preserved during system execution.

The dynamic behaviour of the system is defined by a set of atomic events specified
in the EVENTS clause. An event is defined as follows:

E = WHEN g THEN S END

where the guard g is conjunction of the predicates over the machine variables v, and
the action S is an assignment to state variables. For simplicity, in this paper we do not
consider Event B events with parameters or local variables.

The occurrence of events represents the observable behaviour of the system. The
guard defines the conditions under which the action can be executed, i.e., when the
event is enabled. The action can be either a deterministic assignment to the variables or
a non-deterministic assignment from a given set or according to a given postcondition.
The semantics of actions is defined as a before-after (BA) predicate as follows:

Action Before-after predicate BAe(x, y, x′)
x := E(x, y) x′ = E(x, y) ∧ y′ = y
x :∈ Set ∃ t. (t ∈ Set ∧ x′ = t) ∧ y′ = y
x :| P (x, y, x′) ∃ t. (P (x, t, y) ∧ x′ = t) ∧ y′ = y

where x and y are disjoint lists (partitions) of state variables, and x′, y′ represent their
values in the after state.

Event B adopts interleaving semantics while treating parallelism. If several events
are enabled then any of them can be chosen for execution non-deterministically. If none
of the events is enabled then the system deadlocks.

To check consistency of Event B machine, we should verify two types of proper-
ties: event feasibility and invariant preservation. Intuitively, event feasibility means that

74 A. Iliasov et al.

execution of an event from any state where both the machine invariant and the event
guard hold is possible, i.e., it can produce at least one state that satisfies the before-after
predicate, i.e.,

Inv(v) ∧ Ge(v) ⇒ ∃ v′. BAe(v, v′)

The invariant preservation property simply states that invariant should be maintained:

Inv(v) ∧ Ge(v) ∧ BAe(v, v′) ⇒ Inv(v′)
The main development methodology of Event B is refinement – the process of trans-
forming an abstract specification while preserving its correctness and gradually intro-
ducing implementation details. Let us assume that the refinement machine AM ′ is a
result of refinement of the abstract machine AM:

MACHINE AM ′

VARIABLES w
INVARIANT Inv′

INITIALISATION INIT′

EVENTS

E1
. . .
EM

In AM ′ we replace the abstract variables of AM (v) with the concrete ones (w). The
invariant of AM ′ – Inv′ – defines now not only the invariant properties of the refined
model, but also the connection between the newly introduced variables (w) and the
abstract variables that they replace (v). For a refinement step to be valid, every possible
execution of the refined machine must correspond (via Inv′) to some execution of the
abstract machine. To demonstrate this, we should establish two facts – feasibility of
refined events and their correctness with respect to the abstract events. To demonstrate
feasibility, we should prove the following:

Inv(v) ∧ Inv′(v, w) ∧ G′
e(w) ⇒ ∃w′. BA′

e(w, w′)

where G′(w) is the guard of the refined event and BA′(w, w′) its before-after predicate.
To demonstrate that each event is a correct refinement of its abstract counterpart, we

should first prove that the guard is strengthened in the refinement:

Inv(v) ∧ Inv′(v, w) ∧ G′
e(w) ⇒ Ge(v)

Finally, we need to demonstrate a correspondence between the abstract and concrete
postconditions:

Inv(v) ∧ Inv′(v, w) ∧ G′
e(w) ∧ BA′

e(w, w′) ⇒ ∃ v′. (BAe(v, v′) ∧ Inv′(v′, w′))

The refined model can also introduce new events. In this case, we have show that these
new events are refinements of implicit empty (skip) events of the abstract model.

While presenting Event B above, we have slightly simplified matters by omitting the
fact that Event B model consists of two separate parts. The static part, called context,
contains the declaration of new types(sets), constants and axioms. The presented, dy-
namic part (machine) contains the variable declarations and events. However, this sim-
plification is of syntactic nature and is insignificant as such. Our approach to refinement
pattern definition that we are presenting next can be easily extended to compensate it.

Patterns for Refinement Automation 75

2.3 Event-B Models as Syntactic Objects

To define refinement patterns, we now consider an Event B model as a syntactic math-
ematical object. For brevity, we omit representations of some model elements here,
though they are supported in our tool implementation [13]. The subset of Event B mod-
els used in this paper can be described by the following data structure:

model :: var : VAR∗

inv : PRED∗

evt : event∗

event :: name : EVENT
param : PARAM∗

guards : PRED∗

actions : action∗

action :: var : VAR
style : STYLE
expr : EXPR

Here VAR, PRED, EXPR, EVENT, PARAM are the carrier sets reserved corre-
spondingly for model variables, predicates, expressions, event names and parameters.
An event is represented by a tuple containing the event name, (a list of) its parameters,
guards, and actions. The reserved event name init denotes the initialisation event.
An action, in its turn, is a tuple containing a variable, an action style and an expression,
where an action style denotes one of the assignment types : i.e., STYLE = {:=, :∈, :|}.

Sub-elements of a model element can be accessed by using the dot operator: act.style
is the style of an action act. Instances of the models, events and actions are constructed
using a special notation 〈a1 | · · · | an〉. The following example shows how an Event B
model is represented in our notation:

MACHINE m0
VARIABLES x
INVARIANT x ∈ Z
INITIALISATION x := 0
EVENTS

count = BEGIN x := x + 1 END

〈 〈x〉 |
〈”x ∈ Z”〉 |

〈 〈init | − | − | 〈x |:=| ”0”〉〉,

〈count | − | − | 〈x |:=| ”x + 1”〉〉〉〉
In the example, x is an element of VAR, init and count are event names from
EVENT, ”x ∈ Z” is a predicate, and ”0”, ”x + 1” are model expressions.

Now we have set a scene for a formal definition of refinement patterns that aim at
automating refinement process in general and Event B in particular.

3 Refinement Patterns

In this section we give formal definitions of transformation rules and refinement pat-
terns. Moreover, we propose a special language allowing us to construct transformation
rules, illustrating it by simple examples.

3.1 Definitions

Definition 1. Let S be a set of all well-formed models defined according to the syntax
of Event B. Then a transformation rule T is a function computing a new model for a
given input model:

T : S × C �→ S

where C contains a set of all possible configurations (i.e., additional parameters) of a
transformation rule.

76 A. Iliasov et al.

Note that T is defined as a partial function, i.e., it produces a new model only for some
acceptable input models s and configurations c, i.e., when (s, c) ∈ dom(T).

Definition 2. A refinement pattern is a transformation rule P : S × C �→ S that
constructs a model refinement for any acceptable input model and configuration:

∀ s, c.(s, c) ∈ dom(P) ⇒ s � P (s, c)

where � denotes a refinement relation.

In this paper we rely on the Event-B proof theory when demonstrating that a transfor-
mation rule is indeed a refinement pattern.

3.2 The Language of Transformations

We propose a special language to construct transformation rules. The proposed lan-
guage contains basic transformation rules as well as the constructs allowing to com-
pose complex rules from simpler ones. For instance, a refinement pattern is usually
composed from several basic transformation rules. These rules themselves might not
be refinement patterns. However, by attaching to them additional proof obligations, we
can verify that their composition becomes a refinement pattern.

The structure of the basic rules reflects the way a transformation rule or a refinement
pattern is applied. First, rule applicability for a given input model and configuration
parameters is checked. The applicability condition to be checked can contain both syn-
tactic and semantic constraints on input models and configurations. Mathematically, for
a transformation rule T , its applicability condition corresponds to dom(T). Then, the
input model s for the given configuration c is syntactically transformed into the output
model calculated as function application T (s, c). Finally, in case of a refinement pattern,
the result T (s, c) should be demonstrated to be a refinement of the input model s, i.e.,
s � T (s, c). The last expression, using the proof theory of Event B, can be simplified
to specific proof obligations on model elements to be verified.

A basic rule has the following general form:

rule name(c)
context Q(c, s)
effect E(c, s)
proof obligation PO1(c, s)
. . .
proof obligation POn(c, s)

Here name and c are correspondingly the rule name and the list of its parameters.
The predicate Q(c, s) defines the rule application context (applicability conditions),
where s is the model being transformed. The effect function E(c, s) computes a new
model from a current model s and parameters c. The proof obligation part contains a
list of theorems to be proved to establish that the rule is a (part of) refinement pattern
and not just a transformation rule. From now on, we write context(r), effect(r) and
proof obligations(r) to refer to the context, effect computation function, and collection
of proof obligations of a rule r.

Patterns for Refinement Automation 77

As an example, let us consider two primitive rules for the Event-B method. The first
transformation adds one or more new variables:

rule newvar(vv)
context vv ∩ s.var = ∅
effect 〈s.var ∪ vv | s.inv | s.evt〉
proof obligation ∀ v ∈ vv · (∃ a · a ∈ s.init.action ∧ v ∈ a.var)

The rule applicability condition requires that the new variables have fresh names for the
input model. The effect function simply adds the new variables to the model structure.
The rule also has a single proof obligation requiring that the variable(s) is assigned in
the initialisation action. Such an action would have to be added by some other basic
rule for the same refinement step.

Another example is the rule for adding new model invariant(s).

rule newinv(ii)
context ii ⊆ PRED ∧ ∀ i ∈ ii · FV (ii) ⊆ s.var
effect 〈s.var | inv ∪ ii | evt〉
proof obligation
∀ e, v, v′ · e ∈ s.evt ∧

Inv(v) ∧ Guardse(v) ∧ BAe(v, v′) ⇒ Inv(v′)
proof obligation ∃ v · lnv(v)

Here FV (x) is set of free variables in x, Inv stands for (
∧

i∈s.inv∪ii i), Guardse is de-
fined as (

∧
g∈e.guards g) and BAe is the before-after predicate. Both proof obligations

are taken directly from the Event-B semantics (i.e., the corresponding proof obligation
rules). The first obligation requires to show that the new invariant is preserved by all
model events, while the second one checks feasibility of such an addition by asking to
prove that the new invariant is not contradictory. This example illustrates how the un-
derlying Event B semantics is used to derive proof obligations for refinement patterns.

The table below lists the basic rules for the chosen subset of Event B. There are
two classes of rules – for adding new elements and for removing existing ones. All
the rules implicitly take an additional argument – the model being transformed. A
double-character parameter name means that a rule accepts a set of elements, e.g.,
newgrd(e, gg) adds all the guards from a given set gg to an event e.

rule newvar(vv) rule delvar(vv)
rule newinv(ii) rule delinv(ii)
rule newevt(ee) rule delevt(ee)
rule newgrd(e, gg) rule delgrd(e, gg)
rule newact(e, aa) rule delact(e, aa)
rule newactexp(e, a, p)

To construct more complex transformations, we introduce a number of composition
operators into our language. They include the sequential, p; q, and parallel, p‖q, com-
position constructs. In addition, there is the conditional rule construct, if c then p end,
as well as a construct allowing us to introduce additional rule parameters –
conf i : Q do p(i) end. Finally, to handle rule repetitions, generalised parallel com-
position is introduced in the form of a loop construct: par c : Q do p(c) end. The
language summary is given in Figure 1.

78 A. Iliasov et al.

p(c) = basic(c) primitive rule
| p; q sequential composition
| p‖q parallel composition
| if Q(c, s) then p end conditional rule
| conf i : Q(i, c, s) do p(i ∪ c) end parameterised rule
| par i : Q(i, c, s) do p(i ∪ c) end generalised parallel composition

Fig. 1. The language of transformation rules

3.3 Examples

In this section we present a couple of simple examples of refinement patterns con-
structed using the proposed language.

Example 1 (New Variable). A refinement step adding a new variable can be accom-
plished in three steps. First, the new variable is added to the list of model variables.
Second, the typing invariant is added to the model. Finally, an initialisation action is
provided for the variable. The following refinement pattern adds a new variable de-
clared to be a natural number and initalised with zero:

conf v : ¬ (v ∈ s.var) do
newvar({v});
(newinv({”v ∈ N”}, s) ‖ newact(init, {〈v |:=| ”0”〉}))

end

The only pattern parameter (apart from the implicit input s) is some fresh name for the
new model variable.

A pattern application example is given below. The left-hand side model is an input
model and the righ-hand side is the refined version constructed by the pattern. The
example assumes that variable name q is chosen for parameter v.

MACHINE m0
VARIABLES x
INVARIANT x ∈ Z
INITIALISATION x := 0
EVENTS

count = BEGIN x := x + 1 END

MACHINE m1
VARIABLES x, q
INVARIANT x ∈ Z ∧ q ∈ N
INITIALISATION x := 0‖q := 0
EVENTS

count = BEGIN x := x + 1 END

A more general (and also useful) pattern version could accept a typing predicate and an
initialisation action as additional pattern parameters.

Example 2 (Action Split). In Event B, an abstract event may be refined into a choice
between two or more concrete events, each of which must be a refinement of the abstract
event. A simple case of such refinement is implemented by the refinement pattern below.
The pattern creates a copy of an abstract event and adds a new guard and its negation to
the original and new events. The guard expression is supplied as a pattern parameter.

Patterns for Refinement Automation 79

conf e, en : e ∈ s.evt ∧ ¬ (en ∈ s.evt) do
newevt(en, s);
newgrd(en, e.guard) ‖
newact(en, e.action);
conf g : g ∈ PRED ∧ FV (g) ⊆ s.var

do newgrd(e, g) ‖ newgrd(en,¬g) end
end

The pattern configuration requires three parameters. Parameter e refers to the event to
be refined from the input model s, en is some fresh event name, and g is a predicate on
the model variables.

The pattern is applicable to models with at least one event. The result is a model with
an additional event and a constrained guard of the original event. As an input model for
this model we use the model from the previous example.

MACHINE m1
VARIABLES x
INVARIANT x ∈ Z
INITIALISATION x := 0
EVENTS

count = WHEN x mod 2 = 0 THEN x := x + 1 END

inc = WHEN ¬(x mod 2 = 0) THEN x := x + 1 END

Here, the pattern parameters are instantiated as follows: e as count, en as inc, and x as
x mod 2 = 0.

4 Pattern Composition

In the previous section we defined the notion of a basic transformation rule as a combi-
nation of the applicability conditions, transformation (effect) function, and refinement
proof obligations. Moreover, In Figure 1, we also introduced various composition con-
structs for creating complex transformation rules. In this section we will show how
we can inductively define the applicability conditions, effect, and proof obligations for
composed rules.

4.1 Rule Applicability Conditions

For a basic rule, the rule applicability condition is defined in its context clause. For
more complex rules constructed using the proposed language of transformation rules,
rule applicability is derived inductively according to the following definition:

app(basic)(c, s) = context(basic)(c, s)
app(p; q)(c, s) = app(p)(c, s) ∧ app(q)(c, eff(p)(c, s))
app(p‖q)(c, s) = app(p)(c, s) ∧ app(q)(c, s) ∧

inter(scope(p), scope(q)) =
app(if G(c, s) then p end)(c, s) = G(c, s)⇒ app(p)(c, s)
app(conf i : Q(i, c, s) do p(i) end)(c, s) = ∀ i ·Q(i, c, s)⇒ app(p(i))(c, s)
app(par i : Q(i, c, s) do p(i) end)(c, s) = app(conf i : Q(i, c, s) do p(i) end)(c, s) ∧

∀ i, j ·Q(i, c, s) ∧ Q(j, c, s) ∧ i �= j ⇒
inter(scope(p(i)), scope(p(j))) =

80 A. Iliasov et al.

The consistency requirements for the sequential composition, conditional and parame-
terised rules are quite standard. Two rules can be applied in parallel if they are work-
ing on disjoint scopes. For instance, a rule transforming an event (e.g., adding a new
guard) cannot be composed with another rule transforming the same event. A similar
requirement is formulated for the loop rule, since it is realised as generalised parallel
composition.

The rule scopes are calculated by using the predefined function scope, which re-
turns a pair of lists, containing the model elements that the rule updates or depends on.
Intersection of rule scopes is computed as an intersection of the elements updated by
the transformations and the pair-wise intersection of elements updated by one rule and
depended on by another:

inter((r1, w1), (r2, w2)) = (w1 ∩ w2) ∪ (r1 ∩ w2) ∪ (r2 ∩ w1)

4.2 Effect of Pattern Application

Once the rule applicability conditions are met, an output model can be syntactically
constructed in a compositional way. For a basic rule, the effect function is directly ap-
plied to transform an input model. For more complex rules, a new model is constructed
according to an inductive definition of the function eff given below.

eff(basic)(c, s) = effect(basic)(c, s)
eff(p; q)(c, s) = eff(q)(c, eff(p)(c, s))
eff(p‖q)(c, s) = eff(q)(c, eff(p)(c, s)), or

= eff(p)(c, eff(q)(c, s))
eff(if G(c, s) then p end)(c, s) = eff(p)(c, s), if G(c, s)

= s, otherwise
eff(conf i : Q(i, c, s) do p(i) end)(c, s) = eff(p(i))(c, s), if Q(i, c, s)

= s, otherwise
eff(par i : Q(i, c, s) do p(i) end)(c, s) = eff(‖i ∈ Q(i, c, s) · p(i)) (c, s),

if ∃ i, c, s ·Q(i, c, s)
= s, otherwise

As expected, the result of sequential composition of two rules is computed by applying
the second rule to the result of the first rule. For parallel composition, the result is
computed in the same manner but the order of the rules should not affect the overall
result. The resulting model of the loop construct is computed as generalised parallel
composition of an indexed family of transformation rules. The last three cases depend
on some additional application conditions (i.e., G(c, s) or Q(i, c, s)). If these conditions
are not true, rule application leaves the input model unchanged.

The rule application procedure based on the presented definition can be easily auto-
mated. The only interesting detail is in providing input values for the rule parameters.
In our tool implementation for the Event-B method, briefly covered later, the user is
requested to provide the parameter values during rule instantiation, while appropriate
contextual hints and descriptions are provided by the tool.

4.3 Pattern Proof Obligations

To demonstrate that a rule is a refinement pattern, we have to discharge all the proof
obligations of individual basic rules occurring in the rule body. These proof obligations

Patterns for Refinement Automation 81

cannot be discharged without considering the context produced by the neighbour rules.
The following inductive definition shows how the list of proof obligations is built for
a particular refinement pattern. The context information for each proof obligation is
accumulated, while traversing the structure of a pattern, as a set of additional hypotheses
that can be then used in automated proofs.

po(Γ, basic)(c, s) = {Γ |= proof obligations(basic)}
po(Γ, p; q)(c, s) = po(Γ ∪ {s′ = eff(p; q)(c, s)}, p(c, s′)) ∪

po(Γ ∪ {s′ = eff(p; q)(c, s)}, q(c, s′))
po(Γ, p‖q)(c, s) = po(Γ, p) ∪ po(Γ, q)
po(Γ, if G(c, s) then p end)(c, s) = po(Γ ∪ {G(c, s)}, p)
po(Γ, conf i : Q(i, c, s) do p(i) end)(c, s) =

⋃
i ∈ Q(i, c, s) · po(Γ ∪ {Q(i, c, s)}, p(i))

po(Γ, par i : Q(i, c, s) do p(i) end)(c, s) = po(Γ, conf i : Q(i, c, s) do p(i) end)(c, s)

Here Γ is a set of accumulated hypothesis containing pattern parameters c and the initial
model s as free variables. For each basic rule, we formulate a theorem whose right-hand
side is a list of the rule proof obligations and the left-hand side is a set of hypotheses
containing the knowledge about the context in which the rule is applied.

4.4 Assertions

The described procedure for building a list of proof obligations tries to include every
possible fact as a proof obligation hypothesis. This can be a problem for larger patterns
as the size of a list of accumulated hypotheses makes a proof obligation intractable.
To rectify the problem, we allow a modeller to manually add fitting hypotheses, called
assertions, that can be inferred from the context they appear in. An assertion would
be typically simple enough to be discharged automatically by a theorem prover. At the
same time, it can be used to assist in demonstrating the proof obligations of the rule
immediately following the assertion.

An assertion is written as assert(A(c, s)) and is delimited from the neighboring rules
by semicolons. An assertion has no effect on rule instantiation and application. The
following additional cases of the po definition are used to generate additional proof
obligations for assertions as well as insert an asserted knowledge into the set of collected
hypotheses of a refinement pattern.

po(Γ, p; assert(A(c, s)))(c, s) = Γ ∪ {s′ = eff(p)(c, s)} |= A(c, s′)
po(Γ, assert(A(c, s)); p)(c, s) = po(Γ ∪ {A(c, s)}, p)(c, s)

5 Triple Modular Redundancy Pattern

Triple Modular Redundancy (TMR) [15] is a fault-tolerance mechanism in which the
results of executing three identical components are processed by a voting element to
produce a single output that takes the majority view. This mechanism is schematically
shown in Figure 2.

The purpose of the mechanism is to mask a single component failure. In this section
we will demonstrate how to generalize a refinement step introducing the TMR arrange-
ment into a model as a refinement pattern.

82 A. Iliasov et al.

Module

Module

Module

Voter
Input Output

Fig. 2. TMR Arrangement

Before creating our new pattern, we have to decide on its applicability conditions.
First, our input model should have a variable representing the output of the compo-
nent for which TMR will be introduced. Moreover, it should have an event that models
the behaviour of a component by non-deterministically updating this variable. Non-
determinism is used here to model unpredictable (possibly faulty) results produced by
the component. We do not make any assumptions about the variable type. Furthermore,
the event can contain some additional actions on other variables. Finally, our input
model should also contain an event that handles the component failure.

In the refined model, we replace the single abstract component with three similar
components. The outputs of the new components are modelled by fresh variables. The
variable types and initialisation of these variables are simply copied from their abstract
counterpart in the input specification.

The TMR pattern that we define uses a number of configuration parameters, as shown
below. The parameter s identifies a variable modelling the output of a component; u is
an event updating the variable s (in addition to possible update of other variables); zz is
an event handling a failure of the component modelled by u; finally, a is an action from
u updating the variable s.

conf s, u, zz, a :
s ∈ var ∧ u ∈ evt ∧ zz ∈ evt ∧ u �= zz ∧
a ∈ u.actions ∧ a.style �= (:=) ∧ {s} = a.var

do
conf ph, s1, s2, s3, r1, r2, r3 :
{s1, s2, s3, r1, r2, r3, ph} ⊆ (VAR− var) ∧
part({{s1}, {s2}, {s3}, {r1}, {r2}, {r3}, {ph}})

do
variables ; events ; voter ; abort ; invariant

end
end

As a result of pattern application, the new variables ph, si and ri are introduced into the
refined model. The variable ph keeps track of the current phase in the TMR implemen-
tation, i.e., reading from the new components, voting on them, or delivering the final
result; the variables si, i = 1..3, are used to record the outputs produced by the com-
ponents; finally, the flags ri reflect availability of new outputs in the respective output
variables si.

Patterns for Refinement Automation 83

The pattern consists of four major parts: the rules declaring the types and initialisa-
tion of new variables of the refined model; the definition of new events; the refinement
rules for transforming a single abstract event representing the functionality of a sole
component into the voter event; and, finally, the addition of an invariant characterising
the behaviour of a TMR block. The condition using the operator part simply states that
its arguments are disjoint sets.

variables
df=

(newinv(”ph ∈ BOOL”); newini(〈ph |:=| ”FALSE”〉)) ‖
(newinv(”s1 ∈ s.type”);newini(〈s1 | init(s).style | init(s).expr〉))‖
(newinv(”r1 ∈ BOOL”); newini(〈r1 |:=| ”FALSE”〉))
. . .

Each new variable definition should come with a typing invariant and an initialisation
action. These are normally grouped together so that the related proof obligation rules
would work with a smaller context. For the sake of brevity, we omit showing here the
rules defining the types and initialisation for the variables s2, s3 and r2, r3 (the omitted
part is indicated by . . .). The shortcut notation newini(a) used in the pattern descrip-
tion stands for declaration of the initialisation action: newini(a) df= newact(init, a).
The shortcut init(v) refers to an action of the initialisation event assigning to the
variable v.

The refined model specifies the behavior of three components of TMR (we call them
replicated components) as copies of the behaviour of the component specified in the
input model. Since we assumed that a component is represented by a single event, the
replicated components are created by adding three new events into the refined model in
the following way.

The guard of the event modelling behaviour of a replicated component essentially
coincides with the guard of an abstract component. However, it also contains an ex-
tra conjunct ensuring that the event is executed before passing control to the voter.
The event actions essentially copy the corresponding actions of the abstract component
(given as the pattern parameter a). The only difference is that each replicated event
records the result into a separate variable si (for the copy i) instead of the abstract vari-
able s. In addition, a component copy also assigns to ri to indicate the availability of
result in si.

events
df=

conf u1, u2, u3 :
{u1, u2, u3} ⊂ EVENT \ s.evt ∧ part({{u1}, {u2}, {u3}})

do
copy1 ‖ copy2 ‖ copy3

end

The above creates three component copies, each constructed according to the following
rule.

copy1
df=

newevt(〈u1 | − | {”r1 = FALSE”} ∪ u.guards |
〈s1 | a.style | a.expression〉, 〈r1 |:=| ”TRUE”〉, 〈ph |:=| ”FALSE”〉〉

. . .

84 A. Iliasov et al.

The above rule 〈s1 | a.style | a.expression〉 constructs an action from the abstract
action a in such a way that it would have the same effect but update the new variable
s1. Here a.style is one of non-deterministic assignment styles.

The voter event is simply a refined version of the event modelling the abstract
component. Whereas the abstracted version was computing results itself, its refined
counterpart votes on the results of component copies. The voter is enabled once all the
components have produced a result (which is ensured by the first guard in the rule be-
low). The final result is computed according to a simple majority voting protocol. The
event parameter rr is set to the voting outcome in the second guard.

voter
df=

newpar(u, ”rr”);
newgrd(u, ”r1 = TRUE ∧ r2 = TRUE ∧ r3 = TRUE”);
newgrd(u, ”(s1 = s2 ∨ s1 = s3 ∧ rr = s1) ∨ (s2 = s1 ∨ s2 = s3 ∧ rr = s2”);
(delact(u, a); newact(u, 〈s |:=| ”rr”〉);
(newact(u, 〈r1 |:=| ”FALSE”〉) ‖

newact(u, 〈r2 |:=| ”FALSE”〉) ‖
newact(u, 〈r3 |:=| ”FALSE”〉));

newact(u, 〈ph |:=| ”TRUE”〉)
As a result, the abstract action a of the component is replaced by a deterministic assign-
ment (to the same variable s) of the result of the winning component. The flags ri and
ph are reset in preparation for the next iteration.

In case all the component copies disagree, no final result may be computed. This
corresponds to an abort event of the abstract specification. The refined model simply
constraints the guard of the event so it only gets enabled in the situations when the
voting has failed.

abort
df=

newgrd(zz, ”r1 = TRUE ∧ r2 = TRUE ∧ r3 = TRUE”);
newgrd(zz, ”s1 �= s2 ∧ s2 �= s3 ∧ s1 �= s3”);

Finally, a new invariant is added to the refined model to characterise the state of the
refined system after voting is completed. It summarises the cases when the majority
voting on component results succeeds.

invariants
df=

newinv(”ph = TRUE ∧ (s1 = s2 ∨ s2 = s3))⇒ s = s1”);
newinv(”ph = TRUE ∧ s2 = s3)⇒ s = s2”)

Application of the pattern to a fairly simple abstract model (containing only two events
and two variables) saves a user from analysing and discharging 14 proof obligations,
three of which would have to be done manually in an interactive theorem prover. For
larger models or more elaborated patterns, the benefits are even greater.

6 Tool for Refinement Automation

A proof of concept implementation of the pattern tool for the Event B method has been
realised as a plug-in to the RODIN Platform [1]. The plug-in seamlessly integrates with
the RODIN Platform interface so that a user does not have to switch between different
tools and environments while applying patterns in an Event B development. The plug-in

Patterns for Refinement Automation 85

Fig. 3. The Event-B refinement patterns tool architecture

relies on two major RODIN Platform components: the Platform database, which stores
models, proof obligations and proofs constituting a development; and the prover which
is a collection of automated theorem provers supplemented by the interactive prover.

The overall tool architecture is presented in Figure 3. The core of the tool is the pat-
tern instantiation engine. The engine uses an input model, imported from the Platform
database, and a pattern, from the pattern library, to produce a model refinement. The
engine implements only the core pattern language: the sequential and parallel compo-
sition, and forall construct. The method-specific model transformations (in this case,
Event-B model transformations) are imported from the model transformation library.

The process of a pattern instantiation is controlled by the pattern instantiation wiz-
ard. The wizard is an interactive tool which inputs pattern configuration from a user. It
validates user input and provides hints on selecting configuration values. Pattern con-
figuration is constructed in a succession of steps: the values entered at a previous step
influence the restrictions imposed on the values of a current step configuration.

The result of a successful pattern instantiation is a new model and, possibly, a set of
instantiation proof obligations - additional conditions that must be verified every time
when a pattern is applied. The output model is added to a current development as a
refinement of the input model and is saved in the Platform database. The instantiation
proof obligations are saved in an Event B context file. The RODIN platform builder
automatically validates and passes them to the Platform prover.

The tool is equipped with a pattern editor. The current version (0.1.7)[13] uses the
XML notation and an XML editor to construct patterns. The next release is expected to
employ a more user-friendly visual editor. The available refinement patterns are stored
in the local pattern library. Patterns in the library are organised in a catalogue tree,
according to the categories stated in pattern specifications. A user can browse through
the library catalogue using a graphical dialogue. This dialogue is used to select a pattern
for instantiation or editing.

86 A. Iliasov et al.

When constructing a pattern, a user may wish to generate the set of pattern correct-
ness proof obligations. Proof obligations are constructed by the proof obligation gener-
ator component. The component combines a pattern declaration and the definitions of
the used model transformations to generate a complete list of proof obligations, based
on the rules given in Section 4.3. The result is a new context file populated with the-
orems corresponding to the pattern proof obligations. The standard Platform facilities
are used to analyse and discharge the theorems.

We believe it is important to facilitate pattern exchange and thus the tool includes
a component for interfacing with an on-line pattern library. The on-line pattern library
and the model transformation library are the two main extension points of the tool. The
pattern specification language can be extended by adding custom model transformations
to the library of model transformation; addition of a model transformation should not
affect the pattern instantiation engine and the proof obligation generator.

The current version of the tool is freely available from our web site [13]. Several
patterns developed with this tool were applied during formal modelling of the Ambient
Campus case study of the RODIN Project [14].

7 Conclusions

In this paper we proposed a theoretical basis for automation of refinement process. We
introduced the notion of refinement patterns – model transformers that generically rep-
resent typical refinement steps. Refinement patterns allow us to replace a process of
devising a refined model and discharging proof obligations by a process of pattern in-
stantiation. While instantiating refinement patterns, we reuse not only models but also
proofs. All together, this establishes a basis for automation. In this paper we also demon-
strated how to define refinement patterns for the Event B formalism and described a
prototype tool allowing us to automate refinement steps in Event B.

Our work was inspired by several works on automation of refinement process. The
Refinement Calculator tool [8] has been developed to support program development
using the Refinement Calculus theory by R.Back and J. von Wright. [5] The theory was
formalised in the HOL theorem prover, while specific refinement rules were proved as
HOL theorems. The HOL Window Inference library[11] has been used to to facilitate
transformational reasoning. The library allows us to focus on and transform a particular
part of a model, while guaranteeing that the transformation, if applicable, will produce
a valid refinement of the entire model.

A similar framework consisting of refinement rules (called tactics) and the tool
support for their application has been developed by Oliveira, Cavalcanti, and Wood-
cock [17]. The framework (called ArcAngel) provides support for the C.Morgan’s ver-
sion of the Refinement Calculus. The obvious disadvantage of both these frameworks is
that the refinement rules that can be applied usually describe small, localised transfor-
mations. An attempt to perform several transformations on independent parts of the
model at once, would require deriving and discharging additional proof obligations
about the context surrounding transformed parts, that are rather hard to generalise.
However, while implementing our tool, we found the idea of using the transformational
approach for model refinement very useful.

Patterns for Refinement Automation 87

Probably the closest to our tool is the automatic refiner tool created by Siemens/Matra
[7]. The tool automatically produces an implementable model in B0 language (a vari-
ant of implementable B) by applying the predefined rewrite rules. A large library of
such rules has been created specifically to handle the specifications of train systems.
The use of this proprietary tool resulted in significant growth of developer productivity.
Our work aims at creating a similar tool yet publicly available and domain-independent.
The idea of reuse via instantiation of generic Event B models has also been explored
by Silva and Butler [18]. However, they focus on the instantiation of the static part of
the model – the context – while our approach mainly manipulates its dynamic part.
Nevertheless, these two approaches are complementary and can be integrated.

Obviously the idea to use refinement patterns to facilitate the refinement process
was inspired by the famous collection of software design patterns [10]. However in
our approach the patterns are not just descriptions of the best engineering practice but
rather ”active” model transformers that allow a designer to refine the model by reusing
and instantiating the generic prefabricated solutions.

As a future work we are planning to further explore the theoretical aspects of the
proposed language of refinement patterns as well as extend the existing collection of
patterns. Obviously, this work will go hand-in-hand with the tool development. We
believe that by building a sufficiently large library of patterns and providing designers
with automatic tool supporting refinement process, we will facilitate better acceptance
of formal methods in practice.

Acknowledgements

This work is supported by IST FP7 DEPLOY project. We also would like to thank the
anonymous reviewers for their valuable comments.

References

1. RODIN Event-B Platform (2007), http://rodin-b-sharp.sourceforge.net/
2. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,

Cambridge (2005)
3. Abrial, J.-R.: Extending B without Changing it. In: Proceedings of 1st Conference on the B

Method, Nantes, France, pp. 169–191. Springer, Heidelberg (1996)
4. Back, R., Sere, K.: Superposition refinement of reactive systems. Formal Aspects of Com-

puting 8(3), 1–23 (1996)
5. Back, R., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer,

Heidelberg (1998)
6. Back, R.-J., Sere, K.: Stepwise Refinement of Action Systems. In: Proceedings of the In-

ternational Conference on Mathematics of Program Construction, 375th Anniversary of the
Groningen University, London, UK, pp. 115–138. Springer, Heidelberg (1989)

7. Burdy, L., Meynadier, J.-M.: Automatic Refinement. In: Workshop on Applying B in an
industrial context: Tools, Lessons and Techniques - Toulouse, FM 1999 (1999)

8. Butler, M., Grundy, J., Långbacka, T., Rukšenas, R., von Wright, J.: The Refinement Calcu-
lator: Proof Support for Program Refinement. In: Proc. of Formal Methods Pacific (1997)

9. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)

http://rodin-b-sharp.sourceforge.net/

88 A. Iliasov et al.

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley, Reading
(1995) ISBN 0-201-63361-2

11. Grundy, J.: Transformational Hierarchical Reasoning. The Computer Journal 39(4), 291–302
(1996)

12. Hoare, C.A.: An Axiomatic Basis for Computer Programming. Communications of the
ACM 12(10), 576–583 (1969)

13. Iliasov, A.: Finer Plugin (2008), http://finer.iliasov.org
14. Iliasov, A., Romanovsky, A., Arief, B., Laibinis, L., Troubitsyna, E.: On Rigorous Design

and Implementation of Fault Tolerant Ambient Systems. In: Proceedings of the 10th IEEE
International Symposium on Object and Component-Oriented Real-Time Distributed Com-
puting, ISORC 2007, Washington, DC, USA, pp. 141–145. IEEE Computer Society Press,
Los Alamitos (2007)

15. Lyons, R.E., Vanderkulk, W.: The Use of Triple-Modular Redundancy to Improve Computer
Reliability. IBM Journal, 200–209 (April 1962)

16. Morgan, C.: Programming From Specifications. Prentice Hall International (UK) Ltd.,
Englewood Cliffs (1994)

17. Oliveira, M., Cavalcanti, A., Woodcock, J.: Arcangel: a tactic language for refinement.
Formal Asp. Comput. 15(1), 28–47 (2003)

18. Silva, R., Butler, M.: Supporting Reuse of Event-B Developments through Generic Instanti-
ation. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 466–484.
Springer, Heidelberg (2009)

http://finer.iliasov.org

Applying Event-B Atomicity Decomposition to a
Multi Media Protocol

Asieh Salehi Fathabadi and Michael Butler

University of Southampton
asf08r,mjb@ecs.soton.ac.uk

Abstract. Atomicity Decomposition is a technique in the Event-B for-
mal method, which augments Event-B refinement with additional struc-
turing in a diagrammatic notation to support complex refinement in
Event-B. This paper presents an evaluation of Event-B atomicity decom-
position technique in modeling a multi media case study with the dia-
grammatic notation. Firstly the existing technique and the diagrammatic
notation are shown. Secondly an evaluation is performed by developing
a model of a Media Channel System. A Media Channel is established
between two endpoints for transferring multi-media data. Finally some
extensions to the existing diagrammatic notation are proposed and ap-
plied to the multi-media case study.

Keywords: Event-B, Refinement, Atomicity Decomposition, Structured
Event Refinement.

1 Introduction

Event-B [1, 2] is a formal method that uses the concept of refinement [3, 4] in
modeling. Event-B modeling starts with an abstraction of a system and adds
details during refinement levels in order to gain a final model close to the im-
plementation. Moreover mathematical proofs are incorporated into Event-B to
verify the correctness of refinement steps.

The most important benefit of using Event-B is its capability to use abstrac-
tion and refinement. In this approach the modeling process starts with an ab-
straction of the system which speifies the goals of the system. In our case study,
a media channel system, establishing and modifying the established channel are
the main system goals. The abstract level of our Event-B model shows these
goals in a very general way, and then during refinement levels, features of the
protocol are modeled and the goals are achieved in a detailed way. Moreover tool
support is another benefit of using Event-B. The Rodin tool [5] supports proof
obligation generation and automated proof. Through a refinement approach, we
prove that the abstract goals concerning establishment and modification of me-
dia channels are satisfied by the detailed protocol. In the developed Event-B
models of the media channel system reported here, all proofs are generated and
discharged by the Rodin tool.

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 89–104, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

90 A. Salehi Fathabadi and M. Butler

Modeling of large and complex systems can result in large and complex mod-
els and difficult proofs [6]. Refinement techniques can address this complexity.
In Event-B refinement, rather than having a single large model, it is common
to represent a desired outcome as an abstract atomic event and then decompose
that into smaller sub-events in subsequent refinement levels. If the abstraction
gaps between refinement levels are small, it means relatively small details are
added in each refinement level and proof obligations would be relatively easy to
discharge. Most of proof obligations are related to consistency between refine-
ment levels, so with the small gaps these proofs become easier to discharge. This
will be explained more in the next section when we introduce invariants.

Although refinement offers the advantages outlined above, the Event-B
refinement method does not explicitly represent all refinement connections be-
tween abstract and concrete events. Atomicity decomposition diagrams provide
a structuring technique which addresses this through a diagrammatic notation.
The atomicity decomposition technique helps to structure refinement in Event-B.
This technique is introduced in [7]. It is intended to make the standard refine-
ment rules clearer and their application more systematic. In Event-B refinement
there is no clear connection between certain actions of different refinement lev-
els. The diagrammatic notation of atomicity decomposition shows relationships
between refinement levels. In this approach usually a single event shows the goal
in the abstract level, and then it is decomposed to sub-events in refinement.

The contribution of this paper is applying existing Event-B atomicity decom-
position technique to a multi media case study. An evaluation of this technique
in modeling the multi media system is presented. There are several contributions
in this evaluation. First we will see how system goals are modeled in the abstract
level with single events. Then details of the protocol are added gradually dur-
ing refinement levels. For applying these details we will see how the atomicity
decomposition diagrammatic notation will help us to structure refinement in an
explicit way. Finally this development leads to discharge of all proof obligations
using the Rodin tool-set.

In this paper after a short background about Event-B, we will explore how the
diagrammatic notation for atomicity decomposition of [7] can help to structure
refinement in Sect. 3. Then an incremental development of an existing multi-
media protocol using this technique will be presented. In this protocol, a media
channel is a point-to-point and dynamic channel, established for transferring
multi-media data between two endpoints, called initiator and acceptor. In the
previous paper [7] the connection between the requirements of a system and
the decomposition technique was not explicitly discussed. In this paper we will
see how requirements of the system are linked with levels in the atomicity de-
composition diagram. The current atomicity decomposition technique provides
sufficient patterns in development of media channel system in most of refinement
levels. However some extensions to the diagrammatic technique are proposed and
applied to the case study.

Applying Event-B Atomicity Decomposition to a Multi Media Protocol 91

2 Event-B Background

Event-B [1, 2] is a formal method for specifying, modeling and reasoning about
systems. Event-B has evolved from Classical B [8] and Action Systems [9]. Key
features of Event-B are modeling and reasoning. The modeling notation is based
on set theory and predicate logic. Building a model in Event-B typically starts
with a very abstract level, and continues in different levels by use of refine-
ment technique. Event-B use mathematical proof to verify consistency between
refinement levels.

An Event-B model [1, 10] consists of contexts and machines. In other words,
a model is made of several components of these two types. Contexts contain
the static part of a model while a machines contain the dynamic part. There
are various relationships between contexts and machines. A context can be “ex-
tended” by other contexts and “referenced” or “seen” by machines. A Machine
can be “refined” by other machines and refers to contexts as its static part. The
structure is shown in Fig. 1.

�������	�
 �����	�

�

�

�

����

������� �������

�

�

�

�������	�

�������	�
 �����	�

�����	�

����

����

�������

Fig. 1. Event-B Structure

Building a model usually starts with a very abstract model of the system,
and then gradually details are added through several modeling steps in such a
way that leads us towards a suitable implementation; this approach is called
refinement [3, 4]. Thus, instead of building a single model in a flat manner, we
have a sequence of models, where each of them is supposed to be a refinement
of the previous.

From a given model M1, a new model M2 can be built as a refinement of M1.
In this case, model M1 is called an abstraction of M2, and model M2 is said to
be a concrete version of M1. A concrete model is said to refine its abstraction.
Each event of a concrete machine refines an abstract event or refines skip. An
event that refines skip is referred to as a new event since it has no counterpart
in the abstract model.

In the introduction we stated that small gaps between refinement levels re-
sults in simplicity in proof obligations. Most of proof obligations are related
to consistency between refinement levels. Ensuring consistency is done by some

92 A. Salehi Fathabadi and M. Butler

gluing invariants. Invariants constrain variables, and are supposed to be main-
tained whenever variables are changed by an event. A gluing invariant connects
the abstract variables to the concrete ones. In other words, it glues the state
of the concrete model to that of its abstraction. When just small changes are
applied to a new level of refinement, the abstract model and the concrete model
are similar, so invariants which glue the state of these two models would be
simple. Therefore it can be said that small gaps between refinement levels result
in simple gluing invariants, and simple gluing invariants result in simplicity in
proofs related to them.

3 Atomicity Decomposition in Event-B

This section highlights the motivation for the atomicity decomposition technique
and presents the technique introduced in [7] as a background to development of
our case study.

Although the refinement technique in Event-B provides a flexible approach to
modeling, it does not show all the relations between abstract events and concrete
events. In the atomicity decomposition approach of [7], a graphical technique
is proposed which is intended to make the relationships between abstract and
concrete events clearer and easier to manage than simply using the standard
Event-B refinement method. In this technique course-grained atomicity can be
refined to more fine-grained atomicity. Sub-atomic events are treated in two
ways, some refine abstract events and the others are viewed as hidden events in
abstract level which refine skip.

��

��������	�
�����������	��������	��������	����
��	

����	����������
������	��� ��	�����������
����������
�������

��� ��� ���

����	����
��	��
��
�����
�����������
������������������	��������������
���

Fig. 2. Atomicity Decomposition Diagram

The tree structure notation of atomicity decomposition is illustrated in Fig. 2.
In [7] this is called an event refinement diagram. The abstract atomic event, E1
in this case, appears in the root node, which is decomposed to sub-events in the
next refinement level. There is a sequential control from left to right between
sub-events; in other words, the events, E21, E22, E23 in this figure, are read
from left to right and are executed in this order. One important feature in the

Applying Event-B Atomicity Decomposition to a Multi Media Protocol 93

structure is the distinction between solid lines and dashed lines. The sub-event
corresponding to dashed line, E21, E22, are new events which refine skip in the
abstract level. The child node with a solid line, E23, is a main event which
should be proved to refine the abstract one, E1. The hierarchical and sequential
structure is influenced by the structure diagrams of Jackson System Development
(JSD) [13].

In this case, E21, E22 should execute before E23 in order to reach a state that
enables event E23. This is done by some control variables in Event-B model.
An Event-B model of this diagram is illustrated in Figs. 3, 4 and 5. VarE21,
VarE22 and VarE23 are control variables. Event E22 is guarded by VarE21 which
indicates the sequential execution of E21 and E22. Also event E23 is guarded
by VarE22. Event E23 can be executed only when E22 has been executed, and
event E22 can be executed only when E21 has been executed.

The possible execution traces of the model are presented here. The only event
trace in abstract machine, which contains abstract event E1, is

< E1 >

and the execution of E21, E22, and E23 is given by the only trace of the refined
model:

< E21, E22, E23 >

The event refinement diagram is used because it explicitly illustrates our inten-
tion that the effect achieved by E1 at the abstract level is realized at the refined
level by execution of E21 followed by E22 followed by E23. In the standard
Event-B method E21 and E22 are refinements of skip and there is no explicit
connection to E1. Technically, E23 is the only event that refines E1 but the
diagram indicates that we break the atomicity of E1 into events E21, E2 and
E23.

Fig. 3. Event-B Model Part a

Atomicity decomposition has been applied to a distributed file system in [7].
It can be used for many types of system, including sequential, concurrent and
distributed systems. It is important to note that the technique of using refine-
ment of skip is standard in action systems [9] and Event-B [1] and its use can
also be found in Z refinement [11].

94 A. Salehi Fathabadi and M. Butler

Fig. 4. Event-B Model Part b

Fig. 5. Event-B Model Part c

4 An Overview of Media Channel System Requirements
and Multi Media Protocol

Media Channel Properties
All properties described in this section are based on a Spin model in [12]. This
case study has a protocol for establishing, modifying and closing a media channel.
We believe that using the atomicity decomposition technique eases understand-
ing and development of the models.

Each Media Channel has one source, one sink, a codec type and a specific
direction. A Media Channel is point-to-point and dynamic, established for trans-
ferring multi-media data.

A codec is a specific data format by which data is encoded. The codec choice
in the media channel is dynamic; it means that each endpoint of the channel
is allowed to change the codec in the middle of data transfer. Although each
endpoint can interpret more than one codec, the source and sink of a media
channel have to know which codec they are supposed to send or receive with. So
any two endpoints of a media channel should have at least one common codec.

Note that in our Event-B model, we are not modeling just a single media
channel, rather we are modeling a system that manages an arbitrary number

Applying Event-B Atomicity Decomposition to a Multi Media Protocol 95

of channels simultaneously by interleaving events associated with separate
channels.

4.1 Requirements for Establishing a Media Channel

Either end of a channel, sender or receiver, can attempt to open a media channel
by sending an open signal. The other end can respond affirmatively with openAck
(Open Acknowledge) or negatively with close. A media flow can be established
between two media endpoints if and only if both media endpoints agree.

Each open signal carries the medium being requested, and a descriptor. A
descriptor is a record in which an endpoint describes itself as a receiver of media.
A descriptor contains an IP address, port number, and priority-ordered list of
codecs that it can handle. If the endpoint does not wish to receive media, then
the only offered codec is noMedia. Each openAck signal also carries a descriptor,
describing the channel acceptor as a receiver of media.

A selector is a response to a descriptor. A selector is a record in which an
endpoint describes itself as a sender of media. It contains the identification of
the descriptor it is responding to, the IP address of the sender, and the port
number of the sender. If the selecting endpoint does not wish to send media,
then the selector contains noMedia; otherwise, it contains a single codec selected
from the list in the descriptor. The only legal response to a descriptor noMedia
is a selector noMedia.

After sending an open signal by the initiator side of the channel, and sending
an openAck signal by the other side, called the acceptor, both endpoints have
to respond to descriptors carried by the open and openAck signal, by sending a
select signal carrying a selector. As said before, it is a rule of the protocol that
a selector should be sent in order to respond to receiving a descriptor. A media
channel is established by the endpoint, initiator or acceptor, which receives a real
codec in a select signal. Fig. 6 illustrate a life cycle of a media channel starting
with establishing the channel.

4.2 Requirements for Modifying an Established Media Channel

Modifying an established media channel may involve changing the codec and
changing the port of each endpoint. At any time after sending the first selector
in response to a descriptor, an endpoint can choose a new codec from the list in
the descriptor, send it as a selector in a select signal, and begin to send media
in the new codec. In Fig. 6, select(sel’2) shows this possibility.

At any time after sending or receiving oAck, an endpoint can send a new
descriptor for itself in a describe signal. The endpoint that receives the new
descriptor must begin to act according to the new descriptor. This might mean
sending to a new address or choosing a new codec. In any case, the receiver of the
descriptor must respond with a new selector in a select signal, if only to show
that it has received the descriptor. In Fig. 6, describe(desc3) and select(sel3)
illustrate this interaction. Finally at any time after sending or receiving oAck,
an endpoint can send a new port and describe itself by a new port.

96 A. Salehi Fathabadi and M. Butler

�������� ��������

��������	
�������

���������

����������� �����������

� � �� �

��������	

������������

����	��������

�����������

����

������

����

�����

Fig. 6. Protocol of Media Channel System

4.3 Requirements for Closing an Established Media Channel

Either endpoint can close the media channel at any time by sending close, which
must be acknowledged by the other end with a closeAck (close Acknowledge).
Figure 6 illustrates the case that the acceptor side closes a channel.

5 Linking Requirements and Atomicity Decomposition

5.1 Abstract Specification

The abstract events are illustrated in an informal diagram that aids understand-
ing, Fig. 7. It is not a formal decomposition diagram. These events happened
sequentially from left to right. The circle containing “*”, shows that multiple
execution, zero or more, of the related event, modify in this case, is possible. So
first a media channel is established by execution of establishMediaChannel event,
then it can be modified zero or more times by execution of the modify event and
then closed.

Applying Event-B Atomicity Decomposition to a Multi Media Protocol 97

Media Channel System

*

modify closeestablishMediaChannel

Fig. 7. Initial Model of Media Channel System

As described before, this ordering is ensured by event guards in the Event-B
model. The abstract model contains a variable called mediaChannel contain-
ing established media channels, and a function codec which maps each estab-
lished channel to its chosen the codec. The first event, establishMediaChannel,
is guarded by

ch /∈ mediaChannel
So if a channel has not been added to mediaChannel set, it means it has not been
established then by execution of this event it would be added to mediaChannel:

mediaChannel = mediaChannel ∪ {ch}
Events, modify and close can be executed for a channel if it was established, it
is done by this guard:

ch ∈ mediaChannel
In modify event the codec of a channel can be changed and in close event, the
channel is removed from mediaChannel.

5.2 Refinement 1: Breaking the Atomicity of Establish Media
Channel

In the abstract model, we saw that a media channel is established in a single
atomic step. However first phase of Fig. 6 has shown that establishing a media
channel is not atomic. Instead, an open request should be sent by the initiator
endpoint and should be responded to by an openAck signal from the acceptor
side.

Following the protocol steps of Fig. 6, breaking the atomicity of establishing a
media channel is outlined diagrammatically in Fig. 8. Two cases are possible. The
initiator can send an open signal containing a list of codecs in a descriptor and
define itself as a receiver, in this case the acceptor sends an open acknowledge
signal without any codec and then selects a codec from received list in select
signal. In this case the direction is from acceptor to initiator.

In the other case open signal does not contain a list of codecs and instead
the acceptor sends a list of codecs in open acknowledge signal and defines itself
as the receiver and the initiator selects a specific codec in select signal. The
direction in this case is from initiator to acceptor. In both cases after receiving

98 A. Salehi Fathabadi and M. Butler

openWithRealCodecs

establishMediaChannel

openAckWithoutCodecs selectAndEstablishbyAcceptor

openWithoutCodecs

establishMediaChannel

openAckWithRealCodecs selectAndEstablishbyInitiator

Fig. 8. Breaking the Atomicity of Establish a Media Channel

a select signal carrying a real codec, selected from the priority list of codecs of
the received descriptor, the media channel can be established.

Similar to the abstract model, this sequencing the Event-B model is done by
some control variables. In the first case, by execution of openWithRealCodecs,
a channel is added to a specific set variable, openWithCodecsSet and the next
event openAckWithoutCodecs can be executed only for a channel which is in
openWithCodecsSet. The other events are encoded in a similar way.

5.3 Refinement 2: Breaking the Atomicity of Modify Media
Channel

Up to this level, modify was considered as an atomic event that simply changes
the codec of an established media channel. In this refinement we break the atom-
icity of the modify event. There are different ways of modifying the properties of
an established channel. The modify event is decomposed to sub-events in three
diagrams, presented in Fig. 9. This decomposition fulfills the modification re-
quirements which was shown in second phase of Fig. 6.

First, in Case A, after establishing a media channel the endpoint which plays
the role of the media sender can select a new codec from the list of acceptable
codecs of the receiver, which has been received at the time of establishing the
media channel.

In Case B, the receiver side of an established media channel, can send a new
list of codecs in a describe signal. As described in Sect. 4, the other endpoint,
has to respond to a descriptor by choosing a codec from the new list and send
it via a selector.

It is shown that each endpoint, either initiator or acceptor, can describe itself
with a new port by sending a describe signal carrying the new port property. It
is represented as Case C.

Applying Event-B Atomicity Decomposition to a Multi Media Protocol 99

modifyBySelector

modify

modifyCodecByDescriptor respondBySelectortoCodec

modify������

���� �

������

respondBySelectortoPortmodifyPortByDescriptor

modify ������

Fig. 9. Breaking the Atomicity of Modify a Media Channel

5.4 Refinement 3: Breaking the Atomicity of Close Media Channel

This is a simple refinement in which the atomicity of close is broken into two
events (see Fig. 10). CloseRequest can be sent by each side of the channel, the
sender of receiver. This figure satisfies the closing requirements shown in the last
phase of Fig. 6.

close

closeRequest closeAckcloseRequest closeAck

Fig. 10. Breaking the Atomicity of Close Media Channel

In Event-B model, by execution of closeRequest event, the channel is added
to a set called closeReqSet, and then closeAck event is guarded by checking the
set membership of (ch ∈ closeReqSet).

5.5 Assessment

The refinement and atomicity decomposition technique for Event-B of [7] pro-
vides a manageable incremental development of media channel system. The over-
all behaviour of a media channel is modeled abstractly as three atomic events,
establish, modify and close. Then each event has been decomposed to sub-events
during refinement levels and details have been added to the model gradually.
The event decomposition is presented by atomicity decomposition diagrams. The
atomicity decomposition technique helps to present the relationships between an
abstract atomic event and concrete sub-events in a hierarchical and sequential
structure and it is specified by some guarded events in Event-B model.

100 A. Salehi Fathabadi and M. Butler

Up to the fourth level of refinement of the media channel system, the basic
sequential atomicity decomposition of the diagrammatic notation was sufficient
for decomposing events and adding details to the model. However in the fourth
level we identified some extensions to the notation that were convenient for
representing further aspects of the atomicity decomposition. These are covered
in the next section.

6 Extending the Diagrammatic Notation

6.1 Case Splitting Pattern

We found it convenient to introduce a diagrammatic notation to represent case
splitting in a refinement. With the case splitting notation, an event is split to
several sub-events is a way that execution of the abstract event is realized by
execution of any of the refined events. It is presented by a circle containing
an “or”, as can be seen in Fig. 11. Jackson’s JSD diagrams also includes case
splitting [13].

modifyBySelector

modify

��

modifyCodecByInitiator modifyCodecByAcceptor

��

Fig. 11. Case Splitting, Level 4 of Refinement

In our model the case splitting is achieved by adding only one guard to each
refined event which constrains the direction of the media channel. If the direction
is from initiator to acceptor, ItoA, only the Initiator can modify the codec,
because it has received the list of codecs belonging to acceptor, so can choose a
new codec whenever it wants; and if the direction is from acceptor to initiator,
AtoI, the one which has received the list of codecs is acceptor, so in this case it
may modify the codec.

6.2 Weak Sequencing and Guard Lines

Consider the diagram in Fig. 12(a) where abstract event X is sequentially split
into events M1 and M2 and where M1 and M2 are respectively further refined
into sequential sub-events. Clearly, in abstract level M2 occurs after M1, and
in the next level ReceiveM1 occurs after SendM1 and ReceiveM2 occurs after
SendM2. Since ReceiveM1 refines M1 and ReceiveM2 refines M2, and M2 occurs
after M1, clearly ReceiveM2 occurs after ReceiveM1, i.e., the ordering constraint

Applying Event-B Atomicity Decomposition to a Multi Media Protocol 101

�

���� ����

����	
������������	
��������

(a)

� �

��

� �

��

� �

��

��

��

��

�������	
� �������	
�

(b)

Fig. 12. Weak Sequencing interpretation Versus Strong Sequencing interpretation

between M1 and M2 is inherited by ReceiveM1 and ReceiveM2 via the solid
refinement lines in Fig. 12(a).

An important question is whether there is an ordering constraint between
ReceiveM1 and SendM2. Two interpretations are possible. First it is possible for
SendM2 to occur before or after ReceiveM1. This is represented by an example
of the message sequencing in Scenario 2 in Fig. 12(b) where the sequencing
between these two events does not matter. We refer to this lack of sequencing
as weak sequencing. In this sample it assumed that the channel is a fifo channel,
message M1 is sent before sending message M2 and also message M1 is received
before receiving message M2, but there is not any sequencing order between
receiving M1 and sending M2. Strong sequencing, on the other hand, would be
represented by the message sequencing sample in Scenario 1 in Fig. 12(b), where
it is important that SendM2 would executed only after ReceiveM1.

While not being explicit about this, [7] implicitly assumes that there is no
ordering constraint between ReceiveM1 and SendM2. This means that Butler
in [7] implicitly accepts weak sequencing. Jackson’s JSD diagrams allow multi-
ple levels of decomposition but since they are intended to represent sequential
processes, they implicitly assume strong sequencing [13].

If we accept weak sequencing as the default interpretation (which is useful for
many distributed systems), then we need additional notation to indicate further
sequencing. For our purposes we found the use of explicit guard lines to be
convenient. A guard line is an explicit line from one event to another, indicating
that the target event must occur after the source event. An example is shown in
Fig. 13. In this figure, according to our default there is weak sequencing between
events, as a result SendM2 can be occur after or before ReceiveM1. In the case

102 A. Salehi Fathabadi and M. Butler

�

���� ����

����	
������������	
��������

Fig. 13. Weak Sequencing Diagram with guard line

that according to requirements we would want to force them to be executed in a
specific ordering, we insert a guard line between them. The inserted guard line
means ReceiveM1 should be executed before SendM2.

6.3 Weak Sequencing in the Media Channel Model

In our model of the media channel system the weak sequencing interpretation
is used in further decomposition of the close event. As shown in Fig. 6, receive-
CloseRequest should execute before sendCloseAck. This constraint is illustrated
by a guard line in Fig. 14. It means that for sending the close acknowledge signal,
a close request should be received before.

This guard line influences the Event-B model by adding a new guard to the
sendCloseAck event requiring prior execution of the receiveCloseRequest event.

close

closeRequest closeAck

receiveCloseAcksendCloseAckreceiveCloseRequestsendCloseRequest

Fig. 14. Weak Sequencing Diagram in Decomposing Close Event

7 Conclusion and Directions for Future Work

An explicit representation of the sequencing of sub-events and refinement re-
lationships, called atomicity decomposition has been used and assessed. The
hierarchical diagrams introduce control structure in an incremental modeling of
a case study. In abstraction media channel requirements are considered as three
phases, establish, modify and close. In this paper we have shown that how each
phase refine to detailed refinement using the benefits of atomicity decomposition
technique in structuring requirements.

Applying Event-B Atomicity Decomposition to a Multi Media Protocol 103

Building models of large and complex systems is not an easy task; the main
reason is that it can result in very complex models and difficult proofs. Apply-
ing this technique to the multi media system partly shows that the technique
can help overcome some of the complexity problems. Based on our experience
in this case study, we believe that atomicity decomposition can be scaled to
complex systems. The atomicity decomposition technique makes the standard
refinement more systematic and visual. Sequential relations between levels of
refinement during incremental modeling of a system are structured in atomicity
decomposition diagrams.

It is interesting to compare our approach to the media channel system with
the approach taken by Zave and Cheung [12]. Zave and Chueng present Promela
models of the behaviour of each end of the protocol (sender and initiator re-
spectively) and use the Spin model checker to verify that these models satisfy
certain safety and liveness properties. In our approach with Event-B, we start
with a more global view of the intension of the protocol and then use atomic-
ity decomposition to arrive at models that have similar levels of detail to the
Promela models since they include sending and receiving of messages by agents.

Sequential decomposition [7] appears to be a common pattern, but we illus-
trated two other patterns: the case splitting pattern and the guard line. Also we
believe that the graphical technique provides representing ways of other reusable
patterns. By modeling a wider range of systems on the future we anticipate the
discovery of more patterns. Providing a structured refinement guideline can be
considered as a future direction.

Atomicity decomposition provides a clear view of refinement steps, and can
help in constructing models. At this stage building Event-B models correspond-
ing to atomicity decomposition diagrams is done by hand, with some control
variables and guarded events. An automatic model builder from atomicity de-
composition diagrams will be developed in the future.

Acknowledgement

Partly supported by the EU research project ICT 214158 DEPLOY (Industrial
deployment of system engineering methods providing high dependability and
productivity) www.deploy-project.eu.

References

[1] Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

[2] Butler, M.: Incremental Design of Distributed Systems with Event-B. In: Mark-
toberdorf Summer School 2008 Lecture Notes. IoS (November 2008)

[3] de Willem Roever, P., Engelhardt, K.: Data Refinement: Model-oriented Proof
Theories and their Comparison Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 46. Cambridge University Press, Cambridge (1998)

[4] Rezazadeh, A., Butler, M., Evans, N.: Redevelopment of an Industrial Case Study
Using Event-B and Rodin. In: BCS-FACS Christmas 2007 Meeting - Formal
Method. In: Industry (2007)

104 A. Salehi Fathabadi and M. Butler

[5] Abrial, J.-R., Butler, M., Hallerstede, S.: Rodin: An Open Toolset for Modelling
and Reasoning in Event-B. International Journal on Software Tools for Technology
Transfer, STTT (2010)

[6] Abrial, J.-R.: Refinement, Decomposition and Instantiation of Discrete Models.
In: Abstract State Machines, pp. 17–40 (2005)

[7] Butler, M.: Decomposition Structures for Event-B. In: Leuschel, M., Wehrheim,
H. (eds.) IFM 2009. LNCS, vol. 5423, Springer, Heidelberg (2009)

[8] Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge University
Press, New York (1996)

[9] Back, R.-J., Kurki-Suonio, R.: Distributed cooperation with action systems. ACM
Trans. Program. Lang. Syst. 10(4), 513–554 (1988)

[10] Hallerstede, S.: Justifications for the Event-B Modelling Notation. In: Julliand, J.,
Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 49–63. Springer, Heidelberg
(2006)

[11] Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-
Hall, Englewood Cliffs (1996)

[12] Zave, P., Cheung, E.: Compositional Control of IP Media. IEEE Trans. Software
Eng. 35(1), 46–66 (2009)

[13] Jackson, M.A.: System Development. Prentice-Hall, Englewood Cliffs (1983)

Abstract Certification of Global
Non-interference in Rewriting Logic�

Mauricio Alba-Castro1,2, Maŕıa Alpuente1, and Santiago Escobar1

1 ELP-DSIC, U. Politécnica de Valencia, Spain
{alpuente,sescobar}@dsic.upv.es

2 U. Autónoma de Manizales, Colombia
malba@autonoma.edu.co

Abstract. Non–interference is a semantic program property that as-
signs confidentiality levels to data objects and prevents illicit information
flows from occurring from high to low security levels. In this paper, we
present a novel security model for global non–interference which approx-
imates non–interference as a safety property. We also propose a certifica-
tion technique for global non-interference of complete Java classes based
on rewriting logic, a very general logical and semantic framework that is
efficiently implemented in the high-level programming language Maude.
Starting from an existing Java semantics specification written in Maude,
we develop an extended, information–flow Java semantics that allows us
to correctly observe global non-interference policies. In order to achieve
a finite state transition system, we develop an abstract Java semantics
that we use for secure and effective non-interference Java analysis. The
analysis produces certificates that are independently checkable and are
small enough to be used in practice.

1 Introduction

Confidentiality is a property by which information that is related to an entity or
party is not made available or disclosed to unauthorized individuals, entities, or
processes. A non-interference policy [11] is a confidentiality policy that allows
programs to manipulate and modify confidential data as long as the observable
data generated by those programs do not improperly reveal information about
the confidential data, i.e., confidential data does not interfere with publicly ob-
servable data. Thus, ensuring that a program adheres to a non-interference policy
means analyzing how information flows within the program. The mechanism for
transfering information through a computing system is called a channel. Variable
updating, parameter passing, value return, file reading and writing, and network
communication are channels. Channels that use a mechanism that is not designed
for information communication are called covert channels [20]. There are covert
channels such as the control structure of a program, termination, timing, ex-
ceptions, and resource exhaustion channels. The information flow that occurs
� This work has been partially supported by the EU (FEDER) and the Spanish

MEC/MICINN under grant TIN 2007-68093-C02-02.

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 105–124, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

106 M. Alba-Castro, M. Alpuente, and S. Escobar

through channels is called explicit flow [11] because it does not depend on the
specific information that flows. The information flow that occurs through the
control structure of a program (conditionals, loops, breaks, and exceptions) is
called an implicit flow [11] because it depends on the value of the condition that
guards the control structure. In this paper, we are interested in both explicit and
implicit flows for non-interference analysis of deterministic Java programs. How-
ever, we do not consider covert channels such as termination, timing, exceptions,
and resource exhaustion channels.

In [1,2], we proposed an abstract methodology for certifying safety properties
of Java source code. It is based on Rewriting logic (RWL) and is implemented
in Maude [8], which is a high-performance language that implements RWL. In
[1], we considered integer arithmetic properties that we analyzed as a safety
property, whereas in [2] we dealt with (local) non–interference of Java methods.
Non-interference is usually defined as a hyperproperty [7], i.e., a property de-
fined on a set of sets of traces, and cannot be established by simply checking
a (safety) property on a set of runs (essentially, no single run of a system can
violate non-interference). However, we are able to analyze non-interference by
observing a stronger property which can be checked as a safety1 property using
an instrumented flow-sensitive semantics.

The methodology of [1,2] is as follows. Consider a Java program together with
a specification of the Java semantics. The Java program is a concrete expression
(i.e., term) that represents the initial state of the Java interpreter running the
considered Java program. The Java semantics is a specification in Maude. Given
a safety property (i.e., a system property that is defined in terms of certain
events that do not happen), the unreachability of the system states that denote
the events that should never occur allows us to infer the desired safety property.
Unreachability analysis is performed by using the standard Maude (breadth–
first) search command, which explores the entire state space of the program
from an initial system state. In the case where the unreachability test succeeds,
the corresponding rewriting proofs that demonstrate that those states cannot
be reached are delivered as the expected outcome certificate. We achieve a finite
search space by using abstraction [9]. This methodology is an instance of Proof–
carrying code (PCC), a mechanism originated by Necula [19] for ensuring the
secure behavior of programs.

This article provides a comprehensive and full-fledged formulation of the ab-
stract non–interference certification methodology of [2]. In that work, we focused
on the methodology as well as the PCC and rewriting-based particulars of our
approach with a specific emphasis on practicality and good performance. This
paper, however, formalizes more foundational semantic security aspects, namely:
(i) the characterization of non-interference as a safety property on extended
Java computations; (ii) the conditions required by Java programs in order to
ensure the correctness of our methodology; (iii) the observational capabilities
of an attacker; and (iv) the soundness of our abstract non-interference analysis

1 There are other approaches for proving non–interference as a safety property, which
use self-composition [10,5] or flow-sensitive security types [16].

Abstract Certification of Global Non-interference in Rewriting Logic 107

technique. In our previous work [2], we analyzed (local) non–interference of Java
functional methods (i.e. methods that return values). However, in this paper,
we are able to analyze entire Java programs, and thus, we consider global non-
interference.

This paper is organized as follows. In Section 2, we recall the notion of non–
intereference and describe a mechanism to specify non-interference policies in
JML. In Section 3, we recall the specification of the Java semantics in rewriting
logic. In Section 4, we extend this semantics to handle confidential information
and formulate a non–interference certification methodology that is based on the
unreachability of undesired states in the extended semantics. In Section 5, we
develop an approximation of the extended Java semantics that produces a finite
search space for any input Java program. By using this abstract semantics (which
we implement as a source-to-source transformation of the extended semantics in
Maude) we formulate our non-interference analysis and prove its soundness. We
include some experiments in Section 6. A thorough discussion of related work is
presented in Section 7. Finally, Section 8 presents our conclusions.

2 Non–interference

A non-interference policy establishes a confidentiality level for each source pro-
gram variable of primitive datatypes. It guarantees that actual values of variables
with a higher confidentiality level do not influence the output of a variable with
a lower confidentiality level during program execution [11,15,20,23]. It is implic-
itly assumed that constants that appear in a program always have the lowest
confidentiality level (i.e., the considered program is authorized to access secret
data, but it does not contain secret data in its code).

A non-interference policy can be represented by a partially ordered set
〈Labels,≤〉 and a labeling function Labeling : V ar → Labels, where Labels
is the finite set of confidentiality levels, ≤ is a partial order between confiden-
tiality levels, and V ar is the set of source program variables [22,4,16]. There are
usually two confidentiality levels: Labels = {Low, High}. These represent pub-
lic non-secret data (low confidentiality) and secret data (high confidentiality),
respectively. 〈Labels,≤〉 forms a lattice where Low is the greatest lower bound
or bottom element (⊥), High is the least upper bound or top element (�), and
Low < High. The join operator (�) is defined as Low � Low = Low; otherwise,
X�Y = High. Enforcing non-interference means that the values of High-labeled
source variables cannot flow to Low-labeled source variables, whereas the values
of Low-labeled source variables can flow to High-labeled source variables. The
attacker model for global non–interference that we formalize below assumes that
the attacker is passive and can only see the Low-labeled source variables of the
Java program at the initial and final states and not at the intermediate states.
Our methodology can certify programs that have temporal breaches and are still
non-interferent.

In order to express confidentiality policies, we use the Java modeling language
JML [17], which is a property specification language for Java modules. The text

108 M. Alba-Castro, M. Alpuente, and S. Escobar

of a JML annotation can either be in one line after the //@ marker, or in many
lines enclosed between the markers /*@ and @*/. They are ignored by traditional
compilers. The initial confidentiality level of a variable in a Java program is writ-
ten with the word setLabel as a JML annotation (e.g. setLabel(var, High)).
The confidentiality label of program variables is Low if nothing is specified (i.e.,
program variables are public by default). These JML annotations, together with
the default assumption, define the labeling function of the non–interference
policy.

Example 1. Consider the following Java program borrowed from [10] that models
a bank account and the initial state given by the execution of the function main:

public class Account { int balance; //@ setLabel(balance, High);

public boolean extraService;

public Account() { balance = 0; extraService = false; }

public void writeBalance(int amount) { balance = amount;

if (balance>=10000) extraService=true; else extraService=false; }

private int readBalance() {return balance;}

public boolean readExtra() {return extraService;}

}

class System { static Account a = new Account();

public static void main(String[] args) {

int initbalance; //@ setLabel(initbalance, High);

initbalance = Integer.parseInt(args[0]);

a.writeBalance(initbalance); System.out.println(readExtra()); }}

This non-interference policy specifies that the object field balance of the global
object a and the initialization parameter initbalance (i.e., args[0]) hold secret
data. This program is insecure w.r.t. this policy since an observer with low
access rights can obtain partial information about the variable balance via an
observation of the non–secret variable extraService.

We assume a fixed Java program PJava. V ars(PJava) denotes the set of static
source variables that may be initialized by the main function call. We denote
the set of Low program variables as Low(PJava) = {var ∈ V ars(PJava) |
Labeling(var) = Low}. A program state St is a set of value assignments to
program variables. Given var ∈ V ars(PJava) and a state St, St[var] denotes the
value of variable var in St. We model a Java program PJava as a state transi-
tion system between pairs 〈P, St〉, where P is the current, still-to-be-executed
part of the Java program PJava and St represents the current program state.
〈PJava, St0〉 denotes the initial configuration of standard program execution and
〈�, St〉 denotes a final configuration, where � stands for the empty program.
Note that we assume that every Java program properly terminates for each set
of input data (i.e., we do not consider non-terminating programs, deadlocks, or
runtime errors). We also assume deterministic Java programs, without threads
or exceptions. �→Java is the transition relation that describes any possible one-
step transition between any two Java program states. An execution (or trace) of
PJava is a sequence 〈PJava, St0〉 �→Java · · · 〈Pi, Sti〉 �→Java · · · �→Java 〈�, Stn〉,
which is simply denoted by 〈PJava, St0〉 �→∗

Java 〈�, Sn〉 if the intermediate states
are irrelevant. We can also abbreviate 〈�, Sn〉 by 〈Sn〉.

Abstract Certification of Global Non-interference in Rewriting Logic 109

We define program non–interference by using an equivalence =Low relation-
ship between states [20,22,4]. Roughly speaking, non-interference establishes that
any two terminating runs of a program that start from indistinguishable initial
states produce indistinguishable final states.

Definition 1 (State equality [20]). Given a Java program PJava, two states
St1 and St2 for PJava are indistinguishable at the confidentiality level Low, writ-
ten St1 =Low St2, if for all var ∈ Low(PJava), St1[var] = St2[var].

What the attacker can see from a final state is determined by a relation≈Low. Two
executions of a program PJava are related by ≈Low if they are indistinguishable
to the attacker [20]. The notion of non–interference is therefore parametric on
≈Low. A program is non–interferent if, whenever different initial program states
are indistinguishable at level Low, this implies that the corresponding final states
are also indistinguishable at level Low.

Definition 2 (Non–interference [20]). A Java program PJava is
non–interferent if for every pair of different program initial states St1 and St2,
and for their corresponding final program states St′1, St′2 such that
〈PJava, St1〉 �→∗

Java 〈St′1〉 and 〈PJava, St2〉 �→∗
Java 〈St′2〉, we have that St1 =Low

St2 implies St′1 ≈Low St′2.

In this paper, we follow the standard approach in the literature that considers
St ≈Low St′ iff St =Low St′. Then, the non–interference condition of Definition
2 is understood as the lack of any strong dependence [20] of Low-labeled variables
on any of the High-labeled variables.

3 The Rewriting Logic Semantics of Java

In the following, we briefly recall the rewriting logic semantics of Java that was
originally given in [12]. We refer the reader to [18] for further technical details
on rewriting logic semantics.

In [12], a sufficiently large subset of full Java 1.4 language is specified in
Maude, including inheritance, polymorphism, object references, multithreading,
and dynamic object allocation. However, Java native methods and many of the
available Java built–in libraries are not supported. The specification of Java op-
erational semantics is a rewrite theory: a triple RJava = (ΣJava, EJava, RJava)
where ΣJava is an order–sorted signature; EJava = ΔJava � BJava is a set of
ΣJava–equational axioms where BJava are algebraic axioms such as associativity,
commutativity and unity, and ΔJava is a set of terminating and confluent (mod-
ulo BJava) equations. Finally, RJava is a set of ΣJava–rewrite rules that are not
required to be confluent nor terminating.

Intuitively, the sorts and function symbols in ΣJava describe the static struc-
ture of the Java program state space as an algebraic data type; the equa-
tions in ΔJava describe the operational semantics of its deterministic features;
and the rules in RJava describe its concurrent features. Following the rewrit-
ing logic framework we denote by u →r

Java v the fact that the concrete terms

110 M. Alba-Castro, M. Alpuente, and S. Escobar

eq k((E > E’) -> K) = k((E, E’) -> > -> K) . ---Evaluate arguments

eq k((int(I), int(I’)) -> > -> K) = k(bool(I > I’) -> K) . ---Resolve

Fig. 1. Continuation-based equations for the Java greater-than operator on integers

--- Evaluates boolean expression keeping the then and else statements

eq k((if E S else S’) -> K) = k(E -> (if(S, S’) -> K)) .

eq k(bool(true) -> (if(S, S’) -> K)) = k(S -> K) .

eq k(bool(false) -> (if(S, S’) -> K)) = k(S’ -> K) .

Fig. 2. Continuation-based equations for if-then-else statement

u, v (which denote Java program states) are rewritten (at the top position, see
[12]) by using r, which is either a rule in RJava or an equation in ΔJava (both
of which are applied modulo BJava). We simply write u →Java v when the ap-
plied rule or equation is irrelevant. We denote by →∗

Java the extension of →Java
to multiple rewrite steps (i.e., u →∗

Java v if there exist u1, . . . , uk such that
u →Java u1 →Java u2 · · ·uk →Java v).

The rewrite theory RJava is defined on terms of a concrete sort State, with
the main state attributes (represented by means of constructor symbols of the
algebraic type State) such as fstack for handling function calls, lstack for han-
dling loops, env for assignments of variables to memory locations, and store for
assignments of memory locations to their actual values. They define an algebraic
structure that is parametric w.r.t. a generic sort Value that defines all the possible
values returned by Java functions or stored in the memory. For instance, the int
and bool constructor symbols describe Java integer and boolean values and are
defined in Maude as “op int : Int → Value .” and “op bool : Bool → Value .”,
where Int and Bool are the internal built–in Maude sorts that define integer
and boolean data types. Intuitively, equations in ΔJava and rules in RJava are
used to specify the changes to the program state (i.e., the changes to the mem-
ory, input/output, etc). Since we consider only deterministic Java programs, our
specification of the Java semantics in rewriting logic contains only equations
and no rules. The reader can find a RWL specification of the semantics of a
programming language with threads in [18,1,2].

The semantics of Java is defined in a continuation-based style [18] and specified
in Maude itself. Continuations maintain the control context, which explicitly
specifies the next steps to be performed. The sequence of actions that still need
to be executed are stacked. We use letters K, K′ to denote continuation variables,
letters E, E′ to denote expressions to be evaluated, and Val, Val′ to denote values
(i.e., the result of evaluating an expression). Once the expression e on the top of
a continuation (e -> k) is evaluated, its result will be passed on to the remaining
continuation k. For instance, in Figure 1, the Java greater-than operation on Java
integers is specified by using continuations, where k is the constructor symbol
used to denote a continuation, -> is the constructor symbol used to concatenate
continuations, bool is the constructor symbol used to denote a Java boolean
data, and int is the constructor symbol used to denote a Java integer number.

Abstract Certification of Global Non-interference in Rewriting Logic 111

--- Stack loop and transform while expression into while continuation

eq k((while E S) -> K) lstack(Lstack)

= k(while(E,S) -> popLStack -> K) lstack(while(E,S) -> K, Lstack) .

--- A while continuation is transformed into an if-then-else

eq k(while(E,S) -> K) = k(E -> if(S while (E , S),{}) -> K) .

--- Add semantics for popLStack

eq k(popLStack -> K) lstack(LItem,Lstack) = k(K) lstack(Lstack) .

Fig. 3. Continuation-based equations for while statement

--- The state is restored from the loop stack

eq k(break -> K) lstack(while(E,S) -> K’, Lstack) = k(K’) lstack(Lstack).

Fig. 4. Continuation-based equations for while break statement

The if-then-else statement is shown in Figure 2. The semantics of while state-
ments (loops) is specified in Figure 3, where the term while E S denotes the Java
iteration statement, the term while(E, S) denotes both the while continuation
and the while statement that is expressed in terms of the if(S, S′) continuation,
and lstack denotes a stack of loops currently being executed, which is needed
for a proper control of the Java break statement. Figure 4 shows the semantic
specification of the break statement, that simply pops the stack of loops. This
is important, since it can also abruptly change the information flow. Method
calls are not shown in this paper; their semantics is simply defined by eager
evaluation of all arguments of the method (whose values are stored in new mem-
ory locations) and by creating a new local environment that contains location
assignments for formal method parameters and local variables. Due to space
limitations we do not discuss heap manipulation here. We refer the reader to
[18] for further details.

The following example illustrates the mechanization of the Java semantics.

Example 2. Consider again the Java program of Example 1 and two program
executions, respectively fed with 5000 and 10000 for the initialization parameter
initbalance. Note that the corresponding initial states are indistinguishable at
the Low confidentiality level (e.g. the only Low-labeled variable, extraService,
is set to false in both of them). The Maude command search provides built–in
breadth-first search. We ask for the final Java program state of each execution
trace (actually, in order to visualize the results, we show the output of println
Java instructions). The Maude terms EX1-MAUDE and EX2-MAUDE stand for the
Java program with the corresponding initial call (for input value 5000 and 10000,
respectively), which are compiled into a Maude expression by using a suitable
Java wrapper2:
search in PGM-SEMANTICS :

java((preprocess(EX1-MAUDE) noType . ’main < new string [i(0)] > noVal))

=>! JO:Output .

Solution 1 JO:Output --> pl(bool(false))

No more solutions.

2 See http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_Semantics_of_Java

http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_Semantics_of_Java

112 M. Alba-Castro, M. Alpuente, and S. Escobar

search in PGM-SEMANTICS :

java((preprocess(EX2-MAUDE) noType . ’main < new string [i(0)] > noVal))

=>! JO:Output .

Solution 1 JO:Output --> pl(bool(true))

No more solutions.

If the attacker observes these two final states, she will appreciate the two different
values for the variable extraService.

4 Proving Non–interference by Using an Extended
Instrumented Semantics

Non–interference is usually understood to be a security property and is therefore
defined as a hyperproperty [7] (i.e., a property defined on a set of sets of traces).
For instance, in Example 2, the verification process for non–interference should
check the (possibly infinite) set of (possibly infinite) sets of final states issued
from the (possibly infinite) sets of indistinguishable initial configurations. Note
that checking the final states issued from EX1-MAUDE and EX2-MAUDE is just one
of the combinations to be analyzed. In contrast, the verification process for a
safety property should simply check the traces issuing from the (possibly infinite)
set of initial configurations, which is simpler.

In this paper, we prove non-interference as a safety property by instrumenting
the Java semantics in order to dynamically keep track of the change of the confi-
dentiality labels of program variables. Intuitively, the semantic instrumentation
is defined as follows:

1. Attach a confidentiality label to each memory location; this allows us to
observe their confidentiality level at the final execution state.

2. Attach a confidentiality label to the evaluation of program expressions; this
allows us to know whether the evaluation of an expression involves high
confidentiality data.

3. Associate a confidentiality label to the evaluation of program statements,
particularly those involving conditional expressions or guards; this allows us
to determine whether the control flow at a given execution point depends
on the actual value of high confidential variables. However, this label is not
attached to each program statement. Rather it is kept as an extra attribute
of a state in the extended Java semantics. This corresponds to the notion of
a context label being updated after each evaluation step in [11,23,16], which
is introduced in the following example.

Example 3. Consider the following Java3 program TestClass that is borrowed
from [23]. We endow it with the attached non-interference policy:

public class Testclass {static int low=0, high; //@ setLabel(high, High);

public static void main(String[] args) {

high = Integer.parseInt(args[0]); while (high > 0) {high--;low++;} }}

3 We omit the semantics of some Java operators such as ++, ++ , and += , since they
can be defined in terms of addition (+) and assignment (=), as usual [18].

Abstract Certification of Global Non-interference in Rewriting Logic 113

Here there is an an illicit and implicit information flow from the High-labeled
source variable high to the Low-labeled source variable low. For instance, when
the variable high contains the value 0 or 1, the variable low is assigned the value
0 and 1, respectively. This implicit flow would be detected using the context
label, which is set to High after evaluating the expression high>0, and which
forces variable low to be set to High independently of the confidentiality level
of the expression low++.

In contrast to [2] where local non-interference was studied, here we consider
global non-interference (i.e., we are able to ensure a non-interference policy at
the final state of the whole Java program execution, which contains several meth-
ods, classes, and function calls). This important improvement in the verification
power (which has been hardly explored in the related literature) requires the fol-
lowing two modifications to the non-interference analysis of [2]. These changes
avoid the difficult (or costly) process of tracing the current confidentiality label
of a memory location back to the point where this location was created.

1. We introduce an additional confidentiality label (Low � High), which al-
low us to represent not only the current confidentiality label of a memory
location but also to keep track, at a global level, of hazardous transitions
from an initial confidentiality label Low to High. Similarly, we introduce the
confidentiality label (High � Low), in order to avoid false positives where a
High–labeled variable is updated with the value of a Low–labeled expression
and then updated again with the value of a High–labeled expression.

2. In [2], we used the context label only when updating the value of a variable
in memory, as in [23,16,14], and when returning values as in [14]. In this
paper, we use the context label during expression evaluation, as in [4].

We describe the information-flow extended version of the rewriting logic seman-
tics of Java by the rewrite theory RJavaE = (ΣJavaE , EJavaE , RJavaE), EJavaE =
ΔJavaE � BJavaE and its corresponding →JavaE rewriting relation. In the new
semantics, program data not only consist of standard concrete values but each
value is decorated with its corresponding confidentiality label. Formally, we con-
sider the label change LabelChange = {Low � High, High � Low} so that the
domain of program variables in the extended semantics is V alue × (Labels ∪
LabelChange). We write <Value,LValue> for a pair consisting of a concrete
value and its corresponding confidentiality label in Labels∪ LabelChange.

Thanks to the modularity of the rewriting logic approach to formalizing pro-
gram semantics [12], our changes to the semantics of Section 3 are incremental
and minimal. The assignment computes the new confidentiality label in terms
of the previous label at the memory location, namely NewVal = LVal’ >>> LVal.
The new operator ≫ is defined in Figure 5.

The context label can only change due to a conditional control flow state-
ments. According to [11,4,23,16], the evaluation of its boolean guards returns
a confidentiality level that is associated to the resulting true or false value
and, possibly, a modified context label. The extended semantic equations for
the if-then-else of Figure 2 need some slight revision, which is motivated by the
following example.

114 M. Alba-Castro, M. Alpuente, and S. Escobar

Previously Stored Label ≫ New Label = New Stored Label
L ≫ L = L

Low ≫ High = Low� High

High ≫ Low = High� Low

L1 � L2 ≫ L1 = L1

L1 � L2 ≫ L2 = L1 � L2

Fig. 5. Updating memory locations

Example 4. Consider the following Java method, where the value computed for
the variable low does not actually depend on the value of the high confidentiality
variable high (which only affects the temporal variable aux). This program does
fulfill the non-interference policy at the final state, which can be proved by using
our non-interference verification methodology.

class Testclass { static int low=0, high; //@ setLabel(high, High);

public static void main(String[] args) {

high = Integer.parseInt(args[0]);

int aux=0; if (high > 2) aux = 1; else aux = 0; low = 0; } }

In order to avoid false positives during the evaluation of conditional statements,
we dynamically restore the previous context label after its execution. The ex-
tended semantics equations for the if-then-else are shown in Figure 6, where a
new continuation symbol restoreLEnv is used to restore the previous confiden-
tiality label. However, restoring the previous context label has to be carefully
considered in the presence of break or continue statements within a loop, since
they can abruptly change the information flow as shown in the following example.

Example 5. Consider a variation of Example 3 where the while loop has a bogus
guard together with a break statement to exit the loop:

public class Testclass {static int low=0, high; //@ setLabel(high, High);

public static void main(String[] args) {high = Integer.parseInt(args[0]);

int aux=0; while (true) {high--; low++; if (high == 0) break;} } }

As in Example 3, when the while loop ends, the variable low has the initial value
of the variable high. Whenever high �= 0, the break statement is not executed.
In this case, the conditional guard uses High-labeled data, and the conditional
statement should not restore the previous context label. In other words, the
critical component here is not the break statement but rather the else branch
that does not contain the break.

In order to solve this problem, we check in Figure 6 whether either of the two
branches of a conditional statement contains a break or continue statement
and no other conditional statement or while loop in between. If there is such a
statement, restoreLEnv is not used. This case was not considered in [23] or in
[2], which only considered break statements within High guarded while loops.

Method invocation propagates the context label without changes as proposed
in [23] and, thus, is not shown here. Since while statements were expressed in
terms of if-then-else statements, they need a slight extension to introduce the

Abstract Certification of Global Non-interference in Rewriting Logic 115

--- Evaluates boolean expression keeping the then and else statements

ceq k((if E S else S’) -> K) lenv(CL)

= k(E -> (if(S, S’) -> restoreLEnv(CL) -> K)) lenv(CL)

if not break-or-continue(S) and not break-or-continue(S’) .

ceq k((if E S else S’) -> K) lenv(CL) = k(E -> (if(S, S’) -> K)) lenv(CL)

if break-or-continue(S) or break-or-continue(S’) .

eq k(<bool(true),LVal> -> (if(S, S’) -> K)) lenv(CL)

= k(S -> K) lenv(CL join LVal) .

eq k(<bool(false),LVal> -> (if(S, S’) -> K)) lenv(CL)

= k(S’ -> K) lenv(CL join LVal) .

--- New equation to restore previous context label

eq k(restoreLEnv(CL) -> K) lenv(CL’) = k(K) lenv(CL) .

Fig. 6. Extended equations for the if-then-else

--- Stack loop and transform while expression into while continuation

eq k((while E S) -> K) lstack(Lstack) lenv(CL)

= k(while(E,S) -> restoreLEnv(CL) -> popLStack -> K)

lstack(while(E,S) -> K, Lstack) lenv(CL) .

Fig. 7. Extended equations for while statement

restorelEnv continuation (shown in Figure 7). The semantic specification of
the break statement stays the same as shown in Figure 4: the context label
lenv(CL) is not modified and the restoreLEnv expression introduced by the
while statement is removed.

4.1 Proving Non-interfence as a Safety Property

Now, we are ready to formulate a novel characterization of non-interference that
allows us to check it as a property that is verified for each possible execution
trace instead of being verified for each set of indistinguishable execution traces.

Definition 3 (Strong Non-Interference). A Java program PJava is strongly
non–interferent for a given labeling function if for every extended initial state StE1
and for its corresponding final program state StE2 given by 〈PJava, StE1 〉 �→∗

JavaE

〈StE2 〉, we have that for all var ∈ Low(PJava), StE2 [var] = 〈V al, Low〉 for a value
V al.

Since in our model, a public variable can only have the label Low or the label
Low � High, this means that in the extended execution of a program that
is not strongly non-interferent, the label of at least one program variable is
Low � High. Given an initial state St and a given labeling function, we denote
the corresponding extended state by StE .

Lemma 1. Consider a Java program PJava and two initial states St1 and St2
such that St1 =Low St2. Consider the two corresponding final program states St′1
and St′2 given by 〈PJava, St1〉 �→∗

Java 〈St′1〉 and 〈PJava, St2〉 �→∗
Java 〈St′2〉. If

there exists var ∈ Low(PJava) such that St′1[var] �= St′2[var], then

116 M. Alba-Castro, M. Alpuente, and S. Escobar

〈PJava, StE1 〉 �→∗
JavaE 〈StE〉 and StE [var] = 〈V al, Low � High〉 for a value

V al.

From Lemma 1 we derive that strong non-interference implies non-interference,
as given by the following result.

Theorem 1 (Strong Non-Interference Soundness). Given a Java program
PJava, if PJava is strongly non–interferent (Definition 3), then PJava is non–
interferent (Definition 2).

The following example illustrates the mechanization of our verification
methodology.

Example 6. Consider again the Java program of Example 1. Now, we compute
the final state in the extended Java program execution for EX1-MAUDE (for sim-
plicity we show only the value of variable extraBalance).
search in PGM-SEMANTICS-EXTENDED :

java((preprocess(EX1-MAUDE) noType . ’main < new string [i(0)] > noVal))

=>! M:Store .

Solution 1 M:Store --> store([l(6),<bool(false),Low >> High>] ...)

No more solutions.

The execution for EX2-MAUDE will also contain the label Low � High for variable
extraBalance.

In other words, we transform non-interference into a stronger property which
can be effectively checked in the extended semantics. Obviously, we are not able
to certify the security of all the programs that are secure, as shown in Example 7.

Example 7. Consider the following Java program borrowed from [23].

class Testclass { static int low=0, high; //@ setLabel(high, High);

public static void main(String[] args) {high = Integer.parseInt(args[0]);

low = high; low = low - high;} }

Apparently, there is an explicit flow from variable high to variable low through
the two assignment statements. However for any execution, when program ends,
the value of variable low is always 0 so that the variable low does not depend
on the variable high. According to Definition 2, the program is non–interferent.
However, we give a false positive by using our notion of strong non-interference
since the assignment “low = high” assigns to the variable low a high confiden-
tiality label Low � High and the last statement “low = low− high” does not
revert the label back to low.

The program of Example 7 cannot be verified by traditional type inference
approaches [22,26,4] either, since they fail to verify (type check) any program
with temporary breaches, e.g. Examples 4 and 7 above, whereas Example 4 is
effectively verified by using our methodology.

5 Approximating Non–interference by Using an Abstract
Semantics

The extended, instrumented Java semantics defined so far allows us to develop
a technique for proving non–interference. However, this technique is still not

Abstract Certification of Global Non-interference in Rewriting Logic 117

feasible in general because there are too many possible initial states to consider
for the safety property to be checked. In the following, we develop an abstract,
rewriting logic Java semantics that allows us to statically analyze global non–
interference. Similar to [2], the purpose of the abstract semantics is to correctly
approximate the extended computations in a finite way. Given the extended
Java semantics, where there are concrete labeled values, we simply get rid of
the values in the abstract semantics, and use their confidentiality labels as the
abstract values instead.

In the following, we develop an abstract version of the extended rewriting
logic semantics of Java developed in Section 4, which we describe by the rewrite
theory RJava# = (ΣJava# , EJava# , RJava#), EJava# = ΔJava# � BJava# and its
corresponding →Java# rewriting relation. As in Section 4, our approach for the
abstract Java semantics consists of modifying the original theory RJavaE (taking
advantage of its modularity) by abstracting the domain to Labels∪LabelChange
and introducing approximate versions of the Java constructions and operators
tailored to this domain.

An abstract interpretation (or abstraction) [9] of the program semantics is
given by an upper closure operator α : ℘(State) → ℘(State), which is mono-
tonic (for all SSt1, SSt2 ∈ ℘(State), SSt1 ⊆ SSt2 implies α(SSt1) ⊆ α(SSt2)),
idempotent (for all SSt ∈ ℘(State), α(SSt) ⊆ α(α(SSt))), and extensive (for
all SSt ∈ ℘(State), SSt ⊆ α(SSt)). In our framework, each Java program
state St ∈ State is abstracted by its closure α({St}). Our abstraction function
α : ℘(StateE) → ℘(StateE) is a simple homomorphic extension to sets of states
of the function 2nd : Value×(Labels∪LabelChange) → (Labels∪LabelChange),
meaning that we disregard the actual values of data.

In the abstract Java semantics, several alternative computation steps of→JavaE

are mimicked by a single abstract computation step of →Java# , reflecting the fact
that several distinct behaviors are compressed into a single abstract state (i.e.
set of states). The instrumentalization of the Java semantics for dealing with a
set of states instead of one single state implicitly means too many modifications.
Therefore, we adopt a different approach. When several →JavaE rewrite steps are
mimicked by a single abstract rewriting state leading to an abstract Java state,
and those rewrite steps apply different rules or equations, we use concurrency
at the Maude level. Despite the fact that our extended Java semantics contains
only equations and no rules, the abstract Java semantics does contain rules in
RJava# to reflect the different possible evolutions of the system.

The abstract semantics is mainly a straightforward extension of the extended
semantics. The only difference is that any set of equations that was confluent
and terminating in the extended semantics but might become non confluent
or non terminating in the abstract semantics is transformed into rules. As a
representative example, the abstract rules associated to two of the equations of
the extended semantics of the if-then-else statement are shown in Figure 8.

Now, we are ready to formalize the abstract rewriting relation →Java# , which
intuitively develops the idea of applying only one rule or equation from the
concrete Java semantics to an abstract Java state while exploring the different

118 M. Alba-Castro, M. Alpuente, and S. Escobar

rl k(LVal -> (if(S,S’) -> K)) lenv(CL) => k(S -> K) lenv(CL join LVal).

rl k(LVal -> (if(S,S’) -> K)) lenv(CL) => k(S’ -> K) lenv(CL join LVal).

Fig. 8. Abstract rules for the if-then-else

alternatives in a non-deterministic way. By abuse, we denote the abstraction of a
rule α({l}) → α({r}) by α({l} → {r}). PJava denotes the sort of Java programs
PJava (i.e. PJava ∈ PJava).

Definition 4 (Abstract rewriting). We define abstract rewriting →Java#⊆
(PJava × ℘(StateE))×(PJava × ℘(StateE)) by 〈PJava1 , SSt1〉 →Java# 〈PJava2 , SSt2〉
if ∃u ∈ SSt1, ∃v ∈ SSt2 s.t. 〈PJava1 , u〉 →JavaE 〈PJava2 , v〉.

We denote by →∗
Java# the extension of →Java# to multiple rewrite steps.

Lemma 2. If 〈PJava, StE1 〉 →∗
JavaE 〈StE2 〉, then there exists SSt3 ∈ ℘(StateE)

s.t. 〈PJava, α({StE1 })〉 →∗
Java# 〈SSt3〉 and StE2 ∈ SSt3.

A program is non–interferent for a given labeling function if the abstract values
(the confidentiality labels) of the Low variables in the final state of an abstract
program execution do not have the label Low � High.

Theorem 2 (Abstract Non-Interference Soundness). Given a Java pro-
gram PJava, PJava is non–interferent (Definition 2) if for all SSt1 ∈ ℘(StateE)
s.t. 〈PJava, SSt1〉 �→∗

Java# 〈SSt2〉, for all St ∈ SSt2, and for all variables
var ∈ Low(PJava), St[var] = 〈V al, Low〉 for a value V al.

The following example illustrates the mechanization of the Java non-interference
analysis.

Example 8. Consider again the Java program of Example 1. By virtue of the
abstraction, we consider just one abstract initial state that safely approximates
any extended initial state and compute the corresponding abstract final states.
search in PGM-SEMANTICS-ABSTRACT :

java((preprocess(EX1-MAUDE) noType . ’main < new string [i(0)] > noVal))

=>! M:Store .

Solution 1 M:Store --> store([l(6),Low >> High] ...)

No more solutions.

Due to the transformation of some equations into rules in the abstract semantics,
there may be several execution paths but all lead to the same abstract final state.

6 Experiments

Our methodology generates a safety certificate which essentially consists of the
set of (abstract) rewriting proofs that implicitly describe the program states
which can (and cannot) be reached from a given (abstract) initial state, as il-
lustrated in Example 8. Since these proofs correspond to the execution of the

Abstract Certification of Global Non-interference in Rewriting Logic 119

Table 1. Code measures, certificate sizes, and generation times

Code Examples → 1 2 3 4 5
Experiment Measures ↓

Code size in LOC 27 31 48 80 117
Code size in bytes 869 924 1981 3305 3504

Code cyclomatic complexity 1 1 4 16 192
Full Cert. size (Kb) 1134 1251 4223 10619 24176

Red. Rules Cert. size (Kb) 6.1 6.3 21.1 47.1 21.3
Red. Labels Cert. size (Kb) 1.8 1.8 2.6 3.7 5.2
Full Cert. Gen. Time (ms) 10408 23574 29482 45709 84331

Red. Rules Cert. Gen. Time (ms) 7057 7030 7527 8215 9547
Red. Labels Cert. Gen. Time (ms) 7030 6700 7190 8198 9537

abstract Java semantics specification, which is made available to the code con-
sumer, the certificate can be unexpensively checked on the consumer side by
any standard rewrite engine by means of a rewriting process that can be very
simplified. Actually, it suffices to check that each abstract rewriting step in the
certificate is valid and that no rewriting chain has been disregarded, which essen-
tially amounts to using the matching infrastructure available within the rewriting
engine. Note that, according to the different treatment of rules and equations
in Maude, where only transitions caused by rules create new states in the space
state, an extremely reduced certificate can be delivered by just recording the
rewrite steps given with the rules, while the rewritings using the equations are
omitted.

The abstract certification methodology described here has been implemented
in Maude4. The prototype system offers a rewriting-based program certifica-
tion service, which is able to analyze global confidentiality program properties
related to non–interference. Our certification tool can generate three types of cer-
tificates: (i) the full certificates consist of complete rewriting sequences including
all rewrite steps; (ii) the reduced rules certificates only contain the rewrite steps
that use rules; and (iii) the reduced labels certificates only record the labels of
the used rules.

In Table 1, we analyze three key points for the practicality of our approach:
the size and complexity of the program code, the size of the three types of
certificates, and the certificate generation times. The running times are given
in milliseconds and were averaged over a sufficient number of iterations. We
considered three code measures, the code size in LOC (lines of source code), the
code size in bytes, and the cyclomatic complexity, which counts the execution
paths of a program. The experiments were performed on a laptop with a Pentium
M 1.40 GHz processor and 0.5 Gb RAM.

Program 1 consists mainly of a simple non–interferent code example borrowed
from [23]. The program has been structured into two classes. The first class has
one secret variable and one public variable, a constructor method, two get meth-
ods, and a method that contains the non–interferent piece of code of [23]. The
second class is the main class with four method invocations. Similarly, program 2

4 The tool is provided with a Web interface written in Java and is publicly available
at http://www.dsic.upv.es/users/elp/toolsMaude/GlobalNI.hml

http://www.dsic.upv.es/users/elp/toolsMaude/GlobalNI.hml

120 M. Alba-Castro, M. Alpuente, and S. Escobar

is a simple non–interferent example borrowed from [16]. It is structured into two
classes. Program 3 includes three simple methods in two classes: one of which is
an interferent method borrowed from [23]. The main method has a sequence of
method invocations such that the last invocation calls a non–interferent method,
and thus the entire program is non–interferent. Program 4 includes six simple
methods, the three methods included in program 3 and three other interferent
methods also borrowed from [23], including a method with a while loop and a
method that calls another method. In this case, the last invoked method as well
as the whole example program are non-interferent. Similarly, program 5 includes
nine simple methods, the six examples included in program 4 plus three other
interferent methods: two interferent variations of the loop example of program
5 and an interferent method with a return statement within a conditional state-
ment. The source code of our benchmarks is provided within the distribution
package.

The experiments are very encouraging since they show that the reduction in
size of the certificate is very significant in all cases, with the quotient “Red. Rules
Cert. Size/Full Cert. Size” ranging from 0.54% in program 2 to 0.09% in program
5. Note that the biggest reduction occurs for the largest program. When the time
employed to generate the full and reduced rules certificates are compared, the
reduced certificate generation time vs the full certificate generation time range
from 11, 32% to 67.80%. The reduction for the biggest example (program 5) was
the largest one (11, 32%). Note that the generation time for the reduced labels
certificate were not significantly lower than the reduced rules certificate. These
results show that the technique scales up better when reduced certificates are
considered.

7 Related Work

Goguen and Meseguer [15] formalized non–interference of deterministic and ter-
minating systems as a system hyperproperty [7], i.e., a security property that
is defined for pairs of system output traces that are indistinguisable for an ob-
server. In [13], Foccardi and Gorrieri defined a stronger, security–based notion of
non–interference that considers pairs of system input/output traces. In contrast
to [13], our safety-based notion of strong non–interference only considers secret
outputs, similarly to [15].

Barthe et. al [5] develop a methodology to prove non–interference of determin-
istic terminating programs in an imperative language with loops, conditionals,
and mutable data structures (i.e. objects). Their methodology relyies on us-
ing Hoare logic and separation logic, and handles non–interference as a safety
property by using program self–composition with variable renaming (i.e., they
compose a program with a copy of itself without sharing memory positions).
Their method can verify non–interference of secure programs with temporary
breaches such as “low = high; low = 2”, whereas imprecise conservative type
systems [22,26,4] cannot. Also, their method can deal with Examples 4 and 7,
whereas we cannot ensure security for the last example. This proposal is complete

Abstract Certification of Global Non-interference in Rewriting Logic 121

and sound, but the criterion is undecidable, and for the best of our knowledge
no approximation has yet been implemented. Existing Java verification tools
that use standard JML [17] as a property specification language do not support
non–interference certification (see [2] for a further discussion). A flow-sensitive
and termination-insensitive analysis for object-oriented programs based on Hoare
logic is proposed in Amtoft et. al [3]. This analysis considers pointer aliasing that
can leak confidential information. The non–interference property is specified by
using independence assertions that are written in JML. In order to compute
postconditions, the analysis uses an algorithm that is sound and complete given
some assumptions, but it does not generate a program security proof.

Although non–interference has not been considered in current PCC implemen-
tations, there are some proposals that are based on type systems (see [2] for some
key references). However, none of these use JML to express non–interference poli-
cies and none of them have yet been implemented. In [16], Hunt and Sands pro-
pose a flow sensitive, dynamic type system that has not yet been implemented. It
tracks syntactical dependences between program variables in a simple imperative
language without objects or function calls [16]. Moreover, we have shown that
our analysis can achieve more precision than traditional, type-based approaches,
thanks to the combination of static analysis and dynamic labeling. Wasserrab et.
al present in [24] the first machine-checked correctness proof for information-flow
control that is based on program dependence graphs using static intraprocedu-
ral slicing. The proof is formalized in Isabelle/HOL. The analysis applies to
deterministic terminating programs and is flow-sensitive, object-sensitive and
context-sensitive. The machine-checked proof was instantiated for a simple im-
perative language with loops and for a subset of Jinja (a definition of Java byte-
code), which must be manually annotated with security labels. This work does
not consider method calls, classes, or objects. Bavera and Bonelli [6] present a
flow-sensitive type system for verifying non–interference of bytecode, where class
fields may have different confidentality labels for different instance objects. This
methodology does not consider method calls and it does not generate checkable
proofs. Moreover, as is usually the case in type-based analysis, once the object
fields and the variable labels are determined, they remain fixed throughout the
analysis. A proposal that deals with dynamic information-flow policies is [21].
This technique is based on runtime tracking of indirect dependencies between
program points. While our confidentiality label tracking is also dynamic, our
approach is based on static analysis rather than runtime monitoring, similarly
to [16,23].

Some proposals also exist for non–interference verification that are based on
abstract interpretation (see [26,25] and [2] for further references). However, these
proposals do not generate a certificate as an outcome of the verification process,
and they do not use JML to express non–interference policies. The idea of first
enriching the original semantics of the language by pairing each data value to its
security level, and then approximating it by only considering the security level
was also proposed in [4,26]. By using classes and class hierachies as abstract
domains, Zanardini adopts a different perspective of abstract non–interference

122 M. Alba-Castro, M. Alpuente, and S. Escobar

for classes in [25], where the abstract value of a concrete object is its class. Two
objects (values) are indistinguishable at an abstraction level (class) if the objects
belong to the given class or if the given class is a superclass of object classes.
An algorithm for checking abstract non–interference of Java classes is proposed
that relies on class–based dependencies.

In previous work [2], we dealt with (local) non–interference of function meth-
ods regarding explicit inputs by parameter passing and explicit outputs by value
returning. The local non–interference policies considered there were required to
explicitly establish the confidentiality labels for all method parameters and vari-
ables. In this work, however, we consider global non–interference of complete
Java classes and we do not need to explicitly state the confidentiality level for
all program variables. In [2], we worked directly with an implementation level
definition of non–interference; in this work, we provide a general and language-
independent characterization as well as a formal and rigorous relation between
the approximate properties and the security model. As in [11,4,20,23,16], we take
into account implicit information flows by considering the context confidentiality
label in expression evaluation (the context label is joined with the confidential-
ity label of the expression) and also by modifying the context label during the
evaluation of guards of conditionals and while loops. Our global policies are very
flexible since the security levels of object variables, local variables, and method
parameters may change temporarily as in [16,23,4,14,5].

8 Conclusion

In this paper, we formalize a framework for automatically certifying global non–
interference of Java programs. Our methodology relies on an (abstract) extended
semantics for Java written in rewriting logic that can be model–checked in Maude
by using Maude’s breadth-first search space exploration. In the extended seman-
tics, non-interference becomes a safety property, and we formally demonstrate
that the safety property in the extended semantics entails the semantic, non-
interference security property in the standard Java semantics. In this work, we
provide a general and abstract definition as well as a rigorous link between
the approximate properties and the security model that we consider, whereas
in our previous work [2], we worked directly with a program-level definition of
non–interference. The proposed framework fully accounts for explicit as well as
implicit flows, and allows not only the inference of rewriting logic safety proofs
but also the checking of existing ones, thus providing support for proof-carrying
code. Actually, the steps that the abstract semantics takes are recorded in order
to construct a certificate ensuring that the program satisfies the desired prop-
erty. By turning a potentially infinite labelled state space of a Java program
into a finite abstract space, the abstract semantics not only makes the approach
feasible, but also greatly reduces the size of the certificates that must be checked
on the consumer’s end.

The Java operational semantics in rewriting logic that we have used is modular
and has 2635 lines of code in 4 files [12]. We have modified less than 20 of the

Abstract Certification of Global Non-interference in Rewriting Logic 123

1527 lines of code in the main file of the original Java semantics. The abstract
operational Java semantics was developed as a source–to–source transformation
in rewriting logic and consists of 650 lines of extra code. This is equivalent to
saying that, in our current system, the trusted computing base (TCB)5 is less
than a fourth of the size of the original Java semantics (at least one order of
magnitude smaller than the standard rewriting infrastructure, and even much
smaller than other PCC systems).

Since our approach is based on a rewriting logic semantics specification of
the full Java 1.4 language [18], the methodology developed in this work can be
easily extended to cope with exceptions, heaps, and multithreading since they
are considered in the Java rewriting logic semantics.

References

1. Alba-Castro, M., Alpuente, M., Escobar, S.: Automatic certification of Java source
code in rewriting logic. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916,
pp. 200–217. Springer, Heidelberg (2008)

2. Alba-Castro, M., Alpuente, M., Escobar, S.: Automated certification of non-
interference in rewriting logic. In: Cofer, D., Fantechi, A. (eds.) FMICS 2008.
LNCS, vol. 5596, pp. 182–198. Springer, Heidelberg (2009)

3. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-
oriented programs. In: Conference record of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2006, pp. 91–102
(2006)

4. Barbuti, R., Bernardeschi, C., Francesco, N.D.: Abstract interpretation of opera-
tional semantics for secure information flow. Information Processing Letters 83(22),
101–108 (2002)

5. Barthe, G., D’Argenio, P., Rezk, T.: Secure information flow by self-composition.
In: Proceedings of the 17th IEEE workshop on Computer Security Foundations,
CSFW 2004, pp. 100–114 (2004)

6. Bavera, F., Bonelli, E.: Type-based information flow analysis for bytecode lan-
guages with variable object field policies. In: SAC 2008, pp. 347–351 (2008)

7. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: Proc. IEEE Computer Se-
curity Foundations Symposium, CSF 2008 (2008)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS,
vol. 4350. Springer, Heidelberg (2007)

9. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:
Proc. of Sixth ACM Symp. on Principles of Programming Languages, pp. 269–282
(1979)

10. Darvas, A., Hahnle, R., Sands, D.: A theorem proving approach to analysis of secure
information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol. 3450,
pp. 193–209. Springer, Heidelberg (2005)

11. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Commun. ACM 20(7), 504–513 (1977)

5 The TCB is the part of the code that is used to check if other code can be safely
run, and it is assumed to be trusted.

124 M. Alba-Castro, M. Alpuente, and S. Escobar

12. Farzan, A., Chen, F., Meseguer, J., Rosu, G.: JavaRL: The rewriting logic semantics
of Java (2007),
http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_Semantics_of_Java

13. Focardi, R., Gorrieri, R., Focardi, R., Gorrieri, R.: A classification of security prop-
erties for process algebras. Journal of Computer Security 3, 5–33 (1994)

14. Francesco, N.D., Martin, L.: Instruction-level security typing by abstract interpre-
tation. International Journal of Information Security 6(2-3), 85–106 (2007)

15. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Research in Security and Privacy, pp. 11–20 (1982)

16. Hunt, S., Sands, D.: On flow-sensitive security types. In: Conference record of
the 33rd ACM SIGPLAN-SIGACT Symposium on Principles Of Programming
Languages, POPL 2006, pp. 79–90 (2006)

17. Leavens, G., Baker, A., Ruby, C.: Preliminary design of JML: A behavioral interface
specification language for Java. ACM SIGSOFT Software Engineering Notes 31(3),
1–38 (2006)

18. Meseguer, J., Rosu, G.: The rewriting logic semantics project. Theoretical Com-
puter Science 373(3), 213–237 (2007)

19. Necula, G.C.: Proof carrying code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT Annual Symposium on Principles of Programming Languages POPL
1997, Paris, France, pp. 106–119 (1997)

20. Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE Journal
on Selected Areas in Communications 21(1), 5–19 (2003)

21. Shroff, P., Smith, S., Thober, M.: Dynamic dependency monitoring to secure infor-
mation flow. In: CSF 2007: Proceedings of the 20th IEEE Computer Security Foun-
dations Symposium, pp. 203–217. IEEE Computer Society, Los Alamitos (2007)

22. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis.
Computer Security 4(4), 167–187 (1996)

23. Warnier, M.: Language Based Security for Java and JML. PhD thesis, Radboud
University Nijmegen (2005)

24. Wasserrab, D., Lohner, D., Snelting, G.: On pdg-based noninterference and its
modular proof. In: Proceedings of the ACM SIGPLAN Fourth Workshop on Pro-
gramming Languages and Analysis for Security (PLAS 2009), pp. 31–44 (2009)

25. Zanardini, D.: Analysing non–interference with respect to classes. In: Proc. 10th
italian Conference on Theoretical Computer Science (ICTCS 2007), pp. 57–69
(2007)

26. Zanotti, M.: Security typings by abstract interpretation. In: Hermenegildo, M.V.,
Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 375–2002. Springer, Heidelberg
(2002)

http://fsl.cs.uiuc.edu/index.php/Rewriting_Logic_Semantics_of_Java

Interleaving Symbolic Execution and
Partial Evaluation�

Richard Bubel, Reiner Hähnle, and Ran Ji

Department of Computer Science and Engineering
Chalmers University, 41296 Gothenburg, Sweden

{bubel,reiner,ran.ji}@chalmers.se

Abstract. Partial evaluation is a program specialization technique that
allows to optimize programs for which partial input is known. We show
that partial evaluation can be used with advantage to speed up as well
symbolic execution of programs. Interestingly, the input required for par-
tial evaluation comes from symbolic execution itself which makes it nat-
ural to interleave partial evaluation and symbolic execution steps in a
software verification setup.

1 Introduction

Symbolic execution [1] and partial evaluation [2] both are generalizations of stan-
dard interpretation of programs, however, they generalize in different ways: while
symbolic execution permits interpretation of a program with symbolic (i.e., un-
specified) initial values, the aim of partial evaluation is to transform a program
with partially specified input values into a (hopefully, more efficient) program
that has only the unspecified arguments as input. For fully specified input argu-
ments the result of both mechanisms is standard program interpretation.

In this paper we show that both technologies not only are compatible with
each other, but that there is considerable potential for synergies. Specifically, we
integrate a simple partial evaluator for a Java-like language into the logic-based
symbolic execution engine of the software verification tool KeY [3]. This allows
to interleave symbolic execution and partial evaluation steps within a uniform
(logic-based) framework in a sound way. Intermittent partial evaluation during
symbolic execution has the effect that the remaining program that is yet to be
executed is continuously simplified relative to the current path conditions and
the current symbolic state in each symbolic execution trace.

This paper is organized as follows: in the next section we introduce a small
object-oriented programming language which is used for the formal definitions
(the actual system is implemented for nearly full-fledged sequential Java); we
also provide background on symbolic execution and partial evaluation. Sect. 3
defines the program logic and deduction system that we use as a framework for
� This work has been partially supported by the EU project FP7-ICT-2007-3 HATS

Highly Adaptable and Trustworthy Software using Formal Methods and the EU
COST Action IC0701 Formal Verification of Object-Oriented Software.

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 125–146, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

126 R. Bubel, R. Hähnle, and R. Ji

the integration. In Sect. 4 we introduce a version of a program specialization
operator that is suitable for logic-based verification and we extend the symbolic
execution calculus with sound rules that permit intermittent partial evaluation.
In Sect. 5 we show the context in which the resulting calculus is applied, and
in Sect. 6 we evaluate the integrated system using formal verification tasks for
a number of Java programs. This is followed by a discussion of related work
(Sect. 7). We stress that the particular combination of symbolic execution and
partial evaluation explored in the present paper is by far not the only possible
one. We sketch further possibilities in the final section on future work.

2 Background

2.1 A Simple Programming Language

The object-oriented programming language PL described in this section is basi-
cally a simplified Java variant and closely related to the language defined in [4].
We briefly sketch the differences to Java:

Unsupported Features. Multi-threading, graphics, dynamic class loading, generic
types or floating point datatypes are not supported by PL nor by the actual
implementation in the KeY tool. Formal specification and verification of these
features is a topic of ongoing research, therefore, left out completely.

Restricted Features. For ease of presentation PL imposes some additional re-
strictions compared to Java. The KeY tool and the prototype implementation
of our ideas evaluated in Sect. 6 do not impose these restrictions, but model and
respect the Java semantics faithfully. The following restrictions apply to PL:

Inheritance and Polymorphism. For the sake of a simple semantics for dynamic
dispatch of method invocations PL abstains from Java-like interfaces and method
overloading. Likewise, with exception of the Null type, the type hierarchy induced
by user-defined class types has a tree structure with class Object as root.
Prohibiting method overloading allows to identify a method within a class unam-
biguously by its name and number of parameters. We allow polymorphism (i.e.
methods can be overwritten in subclasses) but require that their signature must
be exactly the same, otherwise it is a compile-time error.

Visibility. All classes, methods and fields are publicly visible. This restriction con-
tributes also to a simpler dynamic dispatch semantics.

No Exceptions. PL has no support for exceptions. Instead of runtime exceptions like
NullPointerExceptions the program will simply not terminate in these cases.

No class/object Initialization. In Java the first active usage of a type or creation
of a new instance triggers complex initialization. PL supports only instance cre-
ation, but does not initialize fields upon creation. In particular, PL does not sup-
port static or instance initializers. Constructors are also missing in PL, a new
instance is simply created by the expression new T ().

Primitive Types. Only boolean and int are available. To keep the semantics of
standard arithmetic operators simple, int is an unlimited datatype representing
the whole numbers Z rather than a finite datatype with overflow.

Interleaving Symbolic Execution and Partial Evaluation 127

A PL program p is a non-empty set of class declarations with at least one class
of name Object. The class hierarchy is a tree with class Object as root. A class
Cl := (cname, scnameopt, f ld, mtd) consists of (i) a classname cname unique in
p, (ii) the name of its superclass scname (only omitted for cname = Object),
and (iii) a list of field fld and method mtd declarations.

The syntax for class declaration is the same as in Java. The only lacking
features are constructors and static/instance initialization blocks. PL knows
also the special reference type Null which is a singleton with null as the only
element. It may be used in place of any reference type and is the only type that
is a subtype of all class types.

To keep examples short we agree on the following convention: if not explicitly
stated otherwise, any given sequence of statements is seen as if it would be the
body of a static, void method declared in a class Default with no fields declared.

The syntax of the executable fragment needed for the purpose of this paper
as follows:

Statements
stmnt ::= stmnt stmnt | lvarDecl | locExp’=’exp’;’ | cond | loop
loop ::= while ’(’exp’)’ ’{’stmnt’}’
lvarDecl ::=Type IDENT (’=’ exp)opt’;’
cond ::= if ’(’exp’)’ ’{’stmnt’}’ else ’{’stmnt’}’
Expressions
exp ::= (exp.)optmthdCall | opExp | locExp
mthdCall ::= mthdName’(’expopt(’,’exp)∗’)’
opExp ::= f (expopt(,exp)∗) | Z | TRUE | FALSE | null
f ::= ! | - | < | <= | >= | > | == | & | | | * | / | % | + | -
Locations
locExp ::= IDENT | exp.IDENT

Dynamic dispatch works in PL as follows: we need to determine the implemen-
tation of a method on encountering a method invocation such as o.m(a). To do
so, first look up the dynamic type T of the object referenced by o. Then scan all
classes between T and the static type of o for an implementation of a method
named m and the correct number of parameters. The first match is taken.

2.2 Symbolic Execution

Symbolic execution is an idea from the 1960s [1], but it has only recently been
realized efficiently for industrially relevant programming languages. Symbolic
execution is a central, very versatile program analysis technique that is used for
formal program verification [3,5,6], extended static checking and verification [7],
debugging [8], and automatic test case generation [9,10].

In the last decade a number of efficient symbolic execution engines for real
heap-based programming and intermediate languages were created including
KeY (for Java, C, Creol, see [3]), KIV (for Java, see [11]), Bogor/Kiasan (for
BIR, see [12]), Pex (for MSIL, see [9]), and VeriFast (for C, Java, see [13]).

128 R. Bubel, R. Hähnle, and R. Ji

In symbolic execution one permits either uninitialized program locations or,
more generally, program locations that are initialized with symbolic expressions.
The following PL program orders the values of x and y: after its execution x
contains the maximum of x0, y0 and y their minimum.

int x = x0; int y = y0; int z = max(x,y);
if (x < z) {y = x; x = z;}

We use location-value pairs to represent states in symbolic execution. The ex-
pression {l1 := t1 || · · · || ln := tn} denotes a symbolic state in which each
program location of the form li has the expression ti as its symbolic value.

After symbolic execution of the first three statements of the program above
we obtain the symbolic state U = {x := x0 || y := y0 || z := max(x0, y0)}.
Symbolic execution of the conditional splits the execution into two branches,
because the value x0 < max(x0, y0) of the guard expression is symbolic and
cannot be reduced. The (negated) value of the guard becomes a path condi-
tion relative to which symbolic execution continues. Under the path condition
P1 ≡ x0 < max(x0, y0) the body of the conditional is executed which results in
the final symbolic state U ′ = {x := max(x0, y0) || y := x0 || z := max(x0, y0)}.
From P1 and properties of max one can infer max(x0, y0)

.= y0 which simplifies
U ′ to {x := y0 || y := x0 || z := y0}. The other branch terminates immediately in
state U under path condition P2 ≡ x0 ≥ max(x0, y0) (≡ x0

.= max(x0, y0)).
It is obvious already from this small example that simplification of inter-

mediate states wrt first-order theories is essential for efficiency and to obtain
intuitive results. Modern symbolic execution engines use SMT solvers [9,13] and
also powerful built-in theorem provers [3,11] for this purpose.

The example suggests that a single state during symbolic execution of a
program p consists of the following three components:

1. A program pointer to the next executable statement of the remaining state-
ments in p that have to be executed.

2. A path condition P relative to which the remaining statements are executed.
3. A symbolic state U relative to which the remaining statements are executed.

Symbolic execution of a program is then arranged as a symbolic execution tree
whose nodes are triples consisting of program pointer, path condition, and sym-
bolic state.

In general it is not possible to symbolically execute a program fully, because
unbounded loops give rise to infinitely many branches with differing symbolic
path conditions. Loop invariants or induction are required to turn symbolic exe-
cution into a complete method for computing strongest post-states of programs.

2.3 Partial Evaluation

The ideas behind partial evaluation go back in time even further than those be-
hind symbolic execution: Kleene’s well-known smn theorem from 1943 states that
for each computable function f(x, y) where x = x1, . . . , xm, y = y1, . . . , yn there

Interleaving Symbolic Execution and Partial Evaluation 129

is an m+1-ary primitive recursive function sm
n such that φsm

n (f,x) = λy.f(x, y).
Partial evaluation can be characterized as the research programme to prove
Kleene’s theorem under the following conditions:

1. φsm
n (f,x) is supposed to run more efficiently than f .

2. f is a program from a non-trivial programming language, not merely a re-
cursive function.

3. The construction of φsm
n (f,x) is efficient, i.e., its runtime should be compara-

ble to compilation of f -programs.

In contrast to symbolic execution the result of a partial evaluator is not the
value of output variables, but another program. The known input (named x
above) is also called static input while the general part y is called dynamic
input. The partial evaluator or program specializer is often named mix. Fig. 1
gives a schematic overview of partial evaluation.

partial
evaluator mix

static input x

specialized pro-
gram px

specialized
program px

outputdynamic
input y

target
program p

Fig. 1. Partial evaluation schema [2]

The first efforts in partial evaluation date from the mid 1960s and were targeted
towards Lisp. Due to the rise in popularity of functional and logic programming
languages the 1980s saw a large amount of research in partial evaluation of such
languages. A seminal text on partial evaluation is the book by Jones et al. [2].

There has been relatively little research on partial evaluation of Java. The
paper [14] summarizes the state-of-art until 2002 and discusses the Java special-
izer JSpec which worked by cross-translation to C as an intermediate language.
JSpec seems to be no longer maintained. We found only one other (commercial)
Java partial evaluator called JPE1, but its capabilities and underlying theory
is not documented.

The application context of partial evaluation is rather different from that of
symbolic execution: in practice, partial evaluation is not only employed to boost
the efficiency of individual programs, but often used in meta-applications such
as parser/compiler generation.

We illustrate the main principles of partial evaluation by a small control circuit
PL program depicted in Fig. 2 on the left. The program approximates the value
of variable y to a given threshold with accuracy eps by repeatedly increasing
or decreasing it as appropriate.
1 http://www.gradsoft.ua/products/jpe_eng.html

http://www.gradsoft.ua/products/jpe_eng.html

130 R. Bubel, R. Hähnle, and R. Ji

y = 80;

threshold = 100;

if (y > threshold) {

decrease = true;

} else {

decrease = false;

}

while (|y-threshold| > eps) {

if (decrease) {

y-1;

} else {

y+1;

}

}

y=80

threshold=100

y>threshold ?

decrease=true decrease=false

|y-threshold| > eps ?

decrease ?

y=y-1 y=y+1

•
•

Fig. 2. A simple control circuit PL program and its control flow graph

We can imagine to walk a partial evaluator through the control flow graph
(for the example on the right of Fig. 2) while maintaining a table of concrete
(i.e., constant) values for the program locations. In the example, that table is
empty at first. After processing the two initial assignments it contains U = {y :=
80 || threshold := 100} (using the update notation of Section 2.2).

Whenever a new constant value becomes known, the partial evaluator attempts
to propagate it throughout the current control flow graph (CFG). For the example,
this constant propagation results in the CFG depicted in Fig. 3 on the left. Note
that the occurrences of y that are part of the loop have not been replaced. The
reason is that y might be updated in the loop so that these latter occurrences of y
cannot be considered to be static. Likewise, the value of decrease after the first
conditional is not static either. The check whether the value of a given program
location can be considered to be static with respect to a given node in the CFG is
called binding time analysis (BTA) in partial evaluation.

Partial evaluation of our example proceeds now until the guard of the first
conditional. This guard became a constant expression which can be evaluated
to false. As a consequence, one can perform dead code elimination on the left
branch of the conditional. The result is depicted in Fig. 3 in the middle. Now
the value of decrease is static and can be propagated into the loop (note that
decrease is not changed inside the loop). After further dead code elimination,
the final result of partial evaluation is the CFG on the right of Fig. 3.

Partial evaluators necessarily approximate the target programming language
semantics, because they are supposed to run fast and automatic. In the presence
of such programming language features as exceptions, inheritance with complex
localization rules (as in Java), and aliasing (e.g., references, array entries) BTA
becomes very complex [14].

Interleaving Symbolic Execution and Partial Evaluation 131

y=80

threshold=100

80>100 ?

decrease=true decrease=false

|y-100| > eps ?

decrease ?

y=y-1 y=y+1

•
•

y=80

threshold=100

decrease=false

|y-100| > eps ?

decrease ?

y=y-1 y=y+1

•
•

y=80

threshold=100

decrease=false

|y-100| > eps ?

y=y+1

•
•

Fig. 3. Partial evaluation example

3 Dynamic Logic with Updates

3.1 Program Logic

As program logic for PL we use a sorted first-order dynamic logic instantiated
by a given PL program p. We define formally the family of first-order dynamic
logics DPL used to reason about PL programs. Each concrete instance of this
family is associated to exactly one PL program which is then referred to as the
context program or sometimes the program context of that logic.

Definition 1 (Signature). For any PL program p a DPL signature Σp is de-
fined as a tuple (Types, FSym, PSym, VSym), where Types is a set of sort names
that contains at least {�, boolean, int, Object, Null} ∪ classes(p). Further,
FSym is a set of function symbols, PSym a set of predicate symbols, and VSym a
set of logic variable symbols (we omit the subscript p in Σp whenever it can be
unambiguously derived from the context). Function, predicate, and logic variable
symbols have a fixed sorted signature. Sorts are ordered wrt a sort hierarchy �.
The order � models p’s type hierarchy with maximum element �.

We distinguish between rigid and non-rigid function and predicate symbols.
Intuitively, the semantics of rigid symbols does not depend on the current state of
program execution while non-rigid symbols are state-dependent. (Local) program
variables, arrays, static, and instance fields are modeled as non-rigid function
symbols and together form a separate class of non-rigid symbols called location
symbols. Specifically, local program variables and static fields are modeled as
non-rigid constants, instance fields as unary non-rigid functions, and array access
as a binary non-rigid function. For example, an instance field size of type int

132 R. Bubel, R. Hähnle, and R. Ji

declared in a class List is modeled as a unary non-rigid function size@List :
List → int. For terms representing field accesses, such as size@List(head),
we use the more readable short form head.size, if no ambiguities arise (and
similar for array accesses). ΠΣ denotes the set of all executable PL programs
(i.e., sequence of statements) with locations over signature Σ.

The inductive definition of terms and formulas is standard, but we introduce
a new syntactic category called update to represent state updates with symbolic
expressions. An elementary update has the general shape l := t with terms l, t
and l being a location term (i.e., a program variable, field or array access). It
has the same semantics as an assignment. Updates can be composed into parallel
updates l1 := t1 || l2 := t2 or quantified updates for T x; φ; l(x) := t(x).

Definition 2 (Terms, Updates and Formulas). Terms t, updates u and
formulas φ are well-sorted first-order expressions of the following kind:

t := x | f(t1, . . . , tn) | if (φ) then (t) else (t) | {u}t
u := l := t | u ||u | for T x; φ; u
φ := q(t1, . . . , tn) | ¬φ | φ ◦ φ (◦ ∈ {∧,∨,→,↔} |

{u}t | Qx; φ (Q ∈ {∃, ∀}) | if (φ) then (φ) else (φ)
[s]φ | 〈s〉φ

s := any element of ΠΣ

The formula [p]φ has the intuitive meaning that if the program p terminates
then in its final state the formula φ must hold (partial correctness). The formula
〈p〉φ means that p terminates and in its final state φ holds (total correctness).

All formulas, terms and updates are evaluated with respect to a DPL-Kripke
structure whose states correspond to program states.

Definition 3 (DPL-Kripke structure). A DPL-Kripke structure is a tuple
K = (D, I,S, ρ) where:

– D is a non-empty domain together with a domain function δ : D → Types
mapping each domain element to its (run-time) type.
DT = {d ∈ D |δ(d) � T } denotes the projection of D to elements of sort
T or any subsort of T . We ensure DT �= ∅, for all T ∈ Types by setting
DNull = {null}, Dint = ZZ, Dboolean = {true, false}.

– I is an interpretation mapping each rigid function symbol f : T1× . . .×Tn →
S to a total function I(f) : DT1 × . . . × DTn → DS and each rigid predicate
symbol p : T1 × . . . × Tn to a relation I(p) ⊆ DT1 × . . . × DTn .

– S is a set of states. Each state s ∈ S is an interpretation of the non-rigid
function and predicate symbols.

– ρ : Π × S × S is a state transition relation relating two states s, t by a
program p iff p started in state s terminates in the final state t. Any set of
final states ρ(p)(s) is either a singleton set or empty as PL is deterministic.

As usual in first-order logic, to define evaluation of terms and formulas in addi-
tion to a structure we need the notion of a variable assignment. This is a function
β : VSym → D assigning to logical variables a value in D. The evaluation func-
tion valK,s,β is then defined as usual and summarized in Fig. 4. Due to space

Interleaving Symbolic Execution and Partial Evaluation 133

valK,s,β(f(t1, . . . , tn)) = I(f)(valK,s,β(t1), . . . , valK,s,β(t1))
valK,s,β(q(t1, . . . , tn)) = tt iff (valK,s,β(t1), . . . , valK,s,β(t1)) ∈ I(q)

valK,s,β(φ ∧ ψ) =
{

tt, if valK,s,β(φ) = tt and valK,s,β(φ) = tt
ff, otherwise.

. . .

valK,s,β([s](φ)) =
{

valK,s′,β(φ), if ∃ s ∈ S such that ρ(p)(s, s′)
tt, otherwise

Fig. 4. Definition (excerpt) of evaluation function val

reasons we do not give a formal semantics of updates and refer to [3] for details
on updates. Instead we explain the meaning intuitively along some examples:

– Elementary updates i := j have exactly the same meaning as assignments:
in a DPL-Kripke structure K and state s, an update application {i := j} ξ
on a term/formula ξ yields the same value as if evaluating ξ in K, s′ where
s′ is identical to s except at i which is evaluated to valK,s,β(j) in s′.

– Parallel updates u1 ||u2 are evaluated simultaneously and do not interfere
with each other. Content swapping of two program variables can thus be
expressed by i := j || j := i.

– Quantified updates for T x; φ; u allow to update arbitrarily many locations
simultaneously. The update “for int i; i ≥ 0 ∧ i < a.length; a[i] := 0”, for
example, assigns all array components the value 0.

– In case of parallel and quantified updates conflicts may arise when the same
location is assigned different values as in i := 0 || i := 1. Conflict resolution
for parallel updates utilizes a last-wins semantics where the previous update
is equivalent to i := 1. Conflict resolution for quantified updates requires
a well-founded order on T and the update with the smallest value for the
quantified variable wins [3].

To summarize, updates are similar to explicit substitutions and allow to express
state changes concisely at the syntactic level.

Definition 4 (Satisfiability and Validity). A DPL-formula φ is

– satisfiable iff there exists a DPL-Kripke structure K = (D, I,S, ρ), a state
s ∈ S and a variable assignment β such that valD,I,s,β(φ) = tt (or in short:
K, s, β |= φ);

– valid in a DPL-Kripke structure K (we also say that K is a model for φ and
write K |= φ) iff for all states s ∈ S and variable assignments β we have
K, s, β |= φ;

– logically valid iff all DPL-Kripke structures K are models for φ.

We introduce two notions which we will need later on. For technical reasons we
must have the possibility to extend a logic’s signature.

Definition 5 (Signature Extension). Let Σ, Σ′ denote two signatures. Σ′ is
called a signature extension of Σ if there is an embedding σ(Σ) ⊂ Σ′ that is
unique up to isomorphism and enjoys the following properties:

134 R. Bubel, R. Hähnle, and R. Ji

– σ(TypesΣ) = TypesΣ′

– σ(FSymΣ) ⊆ FSymΣ′ where for any arity countably infinite additional func-
tion symbols exist (analogously for predicates and logic variables)

– σ(ΠΣ) ⊆ ΠΣ′

An important property of signature extensions is the following:

Lemma 1. Let Σ′ ⊇ Σ denote a signature extension in the sense of Def. 5.
If a DPL-formula φ over Σ has a counter example, i.e., a DPL-Kripke structure
KΣ, s ∈ SΣ with K, s �|= φ then σ(K, s) �|= φ . In words, signature extensions are
counter example preserving.

Finally, we define the notion of an anonymizing update. The motivation behind
anonymizing updates is to erase knowledge about the values of the fields included
in the set mod of locations that can be modified by a program. This is achieved
by assigning fresh constant or function symbols to those locations. For example,
the anonymizing update for the modifier set modΣ = {i, j} is i := ci || j := cj

where ci, cj are constants freshly introduced in the extended signature Σ′.

Definition 6 (Anonymizing Update). Let mod denote a set of terms built
from location symbols in Σ. An anonymizing update for mod is an update Vmod

over an extended signature Σ′ assigning each location l(t1, . . . , tn) ∈ mod a term
f ′

l (t1, . . . , tn) where f ′
l ∈ Σ′\Σ.

3.2 Sequent Calculus

The calculus for reasoning in DPL is a sequent calculus. A sequent is an expres-
sion of the form Γ =⇒ Δ with Γ, Δ being sets of DPL-formulas. We call Γ the
antecedent and Δ the succedent of the sequent. A sequent has the same meaning
as the formula ∧

φ∈Γ

φ →
∨

ψ∈Δ

ψ .

Sequent rules have the general form

name
s1 · · · sn

s

where s, s1, . . . , sn are sequents. The sequents above the line are the rule’s
premises while sequent s is called the rule’s conclusion. A sequent without any
premises is an axiom.

A sequent proof is a tree whose nodes are labelled with sequents and with a
sequent whose validity is to be proven at its root. This proof tree is constructed
by applying sequent rules r to leaf nodes n whose sequent matches the conclusion
r. The premises of r are then added as children of n. A branch of a proof tree is
closed iff it contains an application of an axiom. A proof tree is closed iff all its
branches are closed.

Interleaving Symbolic Execution and Partial Evaluation 135

As usual, sequent rules are written in schematic form using schema variables
(pattern variables with matching restrictions):

andLeft
Γ, φ, ψ =⇒ Δ

Γ, φ ∧ ψ =⇒ Δ
close

∗
Γ, φ =⇒ φ, Δ

Here, φ, ψ (Γ, Δ) are schema variables that can be instantiated with any formula
(set of formulas). The sequent rule andLeft is applicable at any leaf sequent that
contains a disjunctively connected formula in its antecedent.

To handle formulas containing programs within our sequent calculus we aim
to model symbolic execution (see Sect. 2.2). Recall that a node in a symbolic
execution tree contains a program pointer to the next active statement, path
condition, and a symbolic state relative to which symbolic execution is executed.
Accordingly, nearly all sequent rules for programs work on a first active statement
s and a current update U in the following general form of a conclusion:

Γ =⇒ {U}[π s; ω]φ, Δ

In addition, π stands for an inactive prefix containing labels, opening braces or
method-frames (see below) and ω for the remaining program. Path conditions
are represented by suitable formulas and accumulate in the antecedent Γ .

Symbolic execution in our DPL-calculus can be roughly organized into two
phases. The first is the rewriting phase where the first active statement is re-
placed with an equivalent series of simpler statements. A typical rule is

evalIfGuard
Γ =⇒ {U}[π boolean b = nse; if (b) {s1} else {s2} ω]φ, Δ

Γ =⇒ {U}[π if (nse) {s1} else {s2} ω]φ, Δ

where nse is a schema variable matching any non-simple PL-expression (basi-
cally, an expression that is neither a literal nor a program variable). As these
kind of rules are pure rewrite rules that can be applied in any possible syntactic
context (antecedent, succedent, box, diamond) we use the short form ξ � ξ′ to
express that a term/program ξ is replaced with an equivalent term/program ξ′:

if (nse) {s1} else {s2} � boolean b = nse; if (b) {s1} else {s2}

After the first active statement has been reduced to an elementary statement it
is translated into a first-order representation of its semantics with the help of
rules belonging to the second phase. For instance, if the first active statement
is a conditional whose guard is a simple expression (a program variable or a
boolean literal) then the rule

ifElseSplit

Γ, {U}(b .= TRUE) =⇒ {U}[π {s1} ω]φ, Δ
Γ, {U}(b .= FALSE) =⇒ {U}[π {s2} ω]φ, Δ

Γ =⇒ {U}[π if (b) {s1} else {s2} ω]φ, Δ

splits the current proof branch into two branches, one for the case when the
guard evaluates to true, and the other covering the else case. Further important
representatives of the rules in this phase are assignment rules like

136 R. Bubel, R. Hähnle, and R. Ji

writeAttribute
Γ, {U} ¬(o .= null) =⇒ {U}{o.a := se}[π ω]φ, Δ

Γ =⇒ {U}[π o.a = se; ω]φ, Δ

where o is a schema variable matching program variables, a matches fields and se
matches simple expressions without side-effects that can be directly translated
into a logic term. Fig. 5 shows a small excerpt of a sequent proof illustrating
symbolic execution. Finally, we discuss how dynamic dispatch of a method is

...
...

Γ, {U} (b .= TRUE) =⇒ {U} [s1]φ, Δ Γ, {U} (b .= FALSE) =⇒ {U} [s2]φ, Δ

Γ =⇒ {U} [if (b) then s1 else s2;]φ, Δ

Γ =⇒ [boolean b = (i>=0); if (b) then s1 else s2;]φ, Δ

Γ =⇒ [if (i>=0) then s1 else s2;]φ, Δ

where U is the update b := if (i ≥ 0) then (TRUE) else (FALSE)

Fig. 5. Excerpt of a proof demonstrating symbolic execution

realized in the calculus. The rule for method invocation translates a dynamic
dispatch into a cascade of concrete method calls:

methodInvocation

Γ, {U} ¬(o .= null) =⇒ {U}[π
if (o instanceof Tn) res=o.m(se)@Tn;
else if (o instanceof Tn−1) res=o.m(se)@Tn−1;
. . .
else res=o.m(se)@T1;
ω]φ, Δ

Γ =⇒ {U} [π res = o.m(se); ω]φ, Δ

– o, res are schema variables for program variables.
– res=o.m(se)@T are so called method-body statements. A method-body state-

ment is a place holder for an actual method body namely exactly the method
body of method m with the specified number of parameters as implemented
in class T .

– T1, . . . , Tn are all the subtypes of the static type of the program variable
against which o is matched and that contain an actual implementation of
the method m. As the most specific implementation has to be taken, the list
T1, . . . , Tn fulfills the condition that for all 0 < i < j ≤ n : Ti �� Tj .

4 Interleaving Symbolic Execution and Partial Evaluation

4.1 General Idea

Recall from Section 2.2 that a symbolic execution tree unwinds a program’s
control flow graph (CFG). As a consequence, identical code is (symbolically) ex-
ecuted in many branches, however, under differing path conditions and symbolic

Interleaving Symbolic Execution and Partial Evaluation 137

states. Merging back different nodes is usually not possible without approxima-
tion or abstraction [15,16].

The hope with employing partial evaluation is that it is possible to factor
out common parts of computations in different branches by evaluating them
partially before symbolic execution takes place. The näıve approach, however, to
first evaluate partially and then perform symbolic execution fails miserably. The
reason is that for partial evaluation to work well the input space dimension of
a program must be significantly reducible by identifying certain input variables
to have static values.

Typical usage scenarios for symbolic execution like program verification are
not of this kind. For example, in the program of Fig. 2 in Sect. 2.3 it is unrealistic
to classify the value of y as static. If we redo the example without the initial
assignment y=80 then partial evaluation can only perform one trivial constant
propagation. The fact that input values for variables are not required to be static
can even be considered to be one of the main advantages of symbolic execution
and is the source of its generality: it is possible to cover all finite execution paths
simultaneously and one can start execution at any given source code position
without the need for initialization code.

The central observation that makes partial evaluation work in this context
is that during symbolic execution static values are accumulated continuously as
path conditions added to the current symbolic execution path. This suggests to
perform partial evaluation interleaved with symbolic execution.

To be specific, we reconsider the example shown in Fig. 2, but we remove the
first statement assigning the static value 80 to y. As observed above, no notewor-
thy simplification of the program’s CFG can be achieved by partial evaluation
any longer. The structure of the CFG after partial evaluation remains exactly

threshold=100

y>threshold ?

decrease=true decrease=false

|y-threshold|>eps ? |y-threshold|>eps ?

decrease ? decrease ?

y=y-1 y=y+1 y=y-1 y=y+1

|y-threshold|>eps? |y-threshold|>eps?

decrease? decrease?

y=y-1 y=y+1 y=y-1 y=y+1

|y-threshold|>eps? |y-threshold|>eps?

decrease? decrease?

y=y-1 y=y+1 y=y-1 y=y+1

Fig. 6. Symbolic execution tree of the control circuit program

138 R. Bubel, R. Hähnle, and R. Ji

the same and only the occurrences of variable threshold are replaced by the
constant value 100. If we perform symbolic execution on this program, then the
resulting execution tree spanned by two executions of the loop is shown in Fig. 6.
The first conditional divides the execution tree in two subtrees. The left subtree
deals with the case that the value of y is too high and needs to be decreased.
The right subtree with the complementary case.

threshold=100

y>100?

decrease=true decrease=false

|y-100|>eps? |y-100|>eps?

y=y-1 y=y+1

|y-100|>eps?

y=y-1

|y-100|>eps?

y=y+1

mix mix

mix

Fig. 7. Symbolic execution with
interleaved partial evaluation

All subsequent branches result from either
the loop condition (omitted in Fig. 6) or the
conditional expression inside the loop body
testing the value of decrease. As decrease
is not modified within the loop, some of
these branches are infeasible. For example the
branch below the boxed occurrence of y=y+1
(filled in red) is infeasible, because the value of
decrease is true in that branch. Symbolic ex-
ecution will not continue on these branches (at
least for simple cases like that), but abandon
them as infeasible by proving that the path
condition is contradictory. Since the value of
decrease is only tested inside the loop, how-
ever, the loop must still be first unwound and
the proof that the current path condition is
contradictory must be repeated. Partial eval-
uation can replace this potentially expensive
proof search by computation which is drastically cheaper.

In the example, specializing the remaining program in each of the two subtrees
after the first assignment to decrease eliminates the inner-loop conditional, see
Fig. 7 (the partial evaluation steps are labelled with mix). Hence, interleaving
symbolic execution and partial evaluation promises to achieve a significant speed-
up by removing redundancy from subsequent symbolic execution.

4.2 The Program Specialization Operator

We define a program specialization operator suitable for interleaving with sym-
bolic execution in DPL. A soundness condition ensures that the operator can
be safely integrated into the sequent calculus. This approach avoids to formalize
the partial evaluator in DPL which would be tedious and inefficient.

Definition 7 (Program Specialization Operator). Let Σ be a signature
and Σ′ an extension of Σ as in Def. 5 containing countably infinite additional
program variables and function symbols for any type and arity. Let σ be the
embedding of Σ in Σ′ (σ(Σ) ⊆ Σ′). The program specialization operator

↓Σ′⊇Σ: ProgramElement × UpdatesΣ′ × ForΣ′ → ProgramElement

takes as arguments a PL-statement (-expression), an update and a DPL-formula
and maps these to a PL-statement (-expression), where all arguments and the
result are over Σ′.

Interleaving Symbolic Execution and Partial Evaluation 139

The intention behind the above definition is that p ↓Σ′⊇Σ (U , ϕ) denotes a
“simpler” but semantically equivalent version of p under the assumption that
both are executed in a state coinciding with U and satisfying ϕ. The signa-
ture extension allows the specialization operator to introduce new temporary
variables or function symbols.

A program specialization operator is sound iff for all DPL-formulas ψ ∈ ForΣ ,
DPL-Kripke structures KΣ′ , and states s ∈ SΣ′

KΣ′ , s |= 〈(p) ↓Σ′⊇Σ (U , ϕ)〉ψ ⇒ KΣ′ , s |= U(ϕ → 〈p〉ψ) .

In words, the specialized program p ↓Σ′⊇Σ (U , ϕ) must be able to reach at least
the same post-states as the original program p when started in a state coinciding
with U in which (path condition) ϕ holds.

Interleaving partial evaluation and symbolic execution is achieved by intro-
duction rules for the specialization operator. The simplest possibility is:

introPE
Γ =⇒ {U} [(p) ↓ (U , true)]φ, Δ

Γ =⇒ {U} [p]φ, Δ

4.3 Specific Specialization Actions

We instantiate the generic program specialization operator of Def. 7 with some
possible actions. In each case we derive soundness conditions.

Specialization Operator Propagation. The specialization operator needs to be
propagated along the program as most of the different specialization operations
work locally on single statements or expressions. During propagation of the op-
erator, its knowledge base, the pair (U , φ), needs to be updated by additional
knowledge learned from executed statements or by erasing invalid knowledge
about variables altered by the previous statement. Propagation of the specializa-
tion operator as well as updating the knowledge base is realized by the following
rewrite rule

(p;q) ↓ (U , φ) � p ↓ (U , φ); q ↓ (U ′, φ′)

This rule is unsound for arbitrarily chosen U ′, φ′. Soundness is ensured under a
number of restrictions:

1. Let mod denote the set of all program locations possibly changed by p. Then
we require that the DPL-formula “{U} respectStrongModifies(p, mod)” is
valid where the predicate respectStrongModifies abbreviates a formula that
is valid iff p changes at most locations included in mod. “Strong” means that
mod must contain even locations whose values are only changed temporarily.
Such a formula is expressible in DPL, see [17] for details.

2. Let Vmod be the anonymizing update for mod (Def. 6). By fixing U ′ := UVmod

we ensure that the program state reached by executing p is covered by at least
one interpretation and variable assignment over the extended signature2.

2 It is sufficient to let U ′ be any update more general than UVmod.

140 R. Bubel, R. Hähnle, and R. Ji

3. φ′ must be chosen in such a way that if KΣ |= {U}〈p〉φ then there exists also
an extended DPL-Kripke structure KΣ′ over an extended signature Σ′ such
that KΣ′ |= {U ′}φ′. This ensures that the post condition of p is correctly
represented by φ′. One possible heuristic to obtain φ′ consists of symbolic
execution of p and applying the resulting update to φ. This yields a formula
φ′′ from which we obtain a candidate for φ′ by “anonymizing” all occurrences
of locations in it that occur in mod.

The first two soundness conditions can be expressed in DPL, the third one only
in absence of quantified updates. In the latter case, the necessary proofs could be
added as additional nodes that spawn side proofs. A more efficient (and generally
necessary) approach is to show once and for all that the oracle used to determine
mod and φ′ is correct wrt the conditions.

Constant propagation and constant expression evaluation. Constant propagation
is one of the most basic operations in partial evaluation and often a prerequisite
for more complex rewrite operations. Constant propagation entails that if the
value of a variable v is known to have a constant value c within a certain program
region (typically, until the variable is potentially reassigned) then usages of v can
be replaced by c. The rewrite rule

(v)↓(U , ϕ) � c

models the replacement operation. To ensure soundness the rather obvious con-
dition U(ϕ → v

.= c) has to be proved where c is a rigid constant. The above
rule can be easily modified to include constant expression evaluation.

Dead-Code Elimination. Constant propagation and constant expression evalu-
ation result often in specializations where the guard of a conditional (or loop)
becomes constant. In this case, unreachable code in the current state and path
condition can be easily located and pruned. A typical example for a specialization
operation eliminating an infeasible symbolic execution branch is the rule

(if (b) {p} else {q}) ↓ (U , φ) � p ↓ (U , φ)

which eliminates the else branch of a conditional if the guard can be proved
true. The soundness condition of the rule is straightforward and self-explaining:
U(φ → b

.= TRUE).

Safe Field Access. Partial evaluation can be used to mark expressions as safe
that contain field accesses or casts that may otherwise cause non-termination.
We use the notation @(e) to mark an expression e as safe, for example, if we can
ensure that o �= null, then we can derive the annotation @(o.a) for any field a
in the type of o. The advantage of safe annotations is that symbolic execution
can assume that safe expressions terminate normally and needs not to spawn
side proofs that ensure it. The rewrite rule for safe field accesses is

o.a ↓ (U , φ) � @(o.a) ↓ (U , φ) .

Its soundness condition is U(φ → ¬(o .= null)).

Interleaving Symbolic Execution and Partial Evaluation 141

Type Inference. For deep type hierarchies dynamic dispatch of method invo-
cations may cause serious performance issues in symbolic execution, because a
long cascade of method calls is created by the method invocation rule (Sect. 3.2,
p. 136). To reduce the number of implementation candidates we use information
from preceding symbolic execution to narrow the static type of the callee as far
as possible and to (safely) cast the reference to that type. The method invocation
rule can then determine the implementation candidates more precisely:

res = o.m(a1, . . . , an); ↓ (U , φ) �
res = @((C)o ↓ (U , φ)).m(a1 ↓ (U , φ), . . . , an ↓ (U , φ));

The accompanying soundness condition U(φ → ∃ C x; (o .= x)) ensures that the
type of o is compatible with C in any state specified by U , φ.

5 Application

As an application of interleaving symbolic execution and partial evaluation, con-
sider the verification of a GUI library. It includes standard visual elements such
as Window, Icon, Menu and Pointer. An element has different implementations
for different platforms or operating systems. Consider the following program
snippet involving dynamic method dispatch:

framework.ui.Button button = radiobuttonX11;
button.paint();

The element Button is implemented in one way for Max OS X, while it is im-
plemented in a different way for the X Window System. The method paint()
is defined in Button which is extended by CheckBox, Component, and Dialog.
Altogether, paint() is implemented in 16 different classes including ButtonX11,
ButtonMPC, RadioButtonX11, MenuItemX11, etc. The complete type hierarchy
is shown in Fig. 8. In the code above button is assigned an object with type
RadioButtonX11 which implements paint(). As a consequence, it should always
terminate and the DPL-formula 〈gui〉true should be provable where gui abbre-
viates the code above.

First, we employ symbolic execution alone to do the proof. During this process,
button.paint() is unfolded into 16 different cases by the method invocation rule
(Sect. 3.2, p. 136), each corresponding to a possible implementation of button

Button

CheckBox Component

DialogButtonX11 ButtonAqua ButtonMFC

RadioButtonX11 MenuItemX11

Fig. 8. Type hierarchy for the GUI example

142 R. Bubel, R. Hähnle, and R. Ji

in one of the subclasses of Button. The proof is constructed automatically in
KeY with 161 nodes and 10 branches in the proof tree.

In a second experiment, we interleave symbolic execution and partial evalu-
ation to prove the same claim. The partial evaluator propagates with the help
of the Type Inference rule in the previous section the information that the run-
time type of button is RadioButtonX11 and the only possible implementation of
button.paint() is RadioButtonX11.paint(). All other possible implementations
are pruned. Only 24 nodes and 2 branches occur in the proof tree when running
KeY integrated with a partial evaluator.

6 Evaluation

We implemented a simple partial evaluator for Java and interleaved it with
symbolic execution in the KeY system as described above. We formally verified
a number of Java programs with KeY with and without partial evaluation.

Table 1 shows the experimental results for a number of small Java programs
which can be found in the KeY distribution. The column “Program” shows
the name of the program we prove, the column “Strategy” shows the strat-
egy we choose to perform the proof where “SE” means symbolic execution and
“SE+PE” means interleaving symbolic execution and partial evaluation; the
column “#Nodes” shows the total number of nodes in the proof; the column
“#Branches” shows the total number of branches in the proof. The results show
that interleaving symbolic execution with partial evaluation significantly speeds
up the proof for complexEval, constantPropagation,dynamicDispatch, safe-
Access, and safeTypeCast which can all be considered to be amenable for
partial evaluation. Table 2 shows the experimental results of verifying a larger
and more realistic Java e-banking application used in [3, Ch. 10]. The column
“Proof Obligation” shows which property we prove; the remaining columns are
as in Table 1. The results show that symbolic execution interleaved with partial
evaluation can speed up verification proofs even for larger applications. As is

Table 1. Symbolic execution and partial evaluation for small Java programs

Program Strategy #Nodes #Branches

SE 261 15
complexEval

SE+PE 158 3
SE 65 1

constantPropagation
SE+PE 56 1
SE 161 10

dynamicDispatch
SE+PE 24 2
SE 113 4

methodCall
SE+PE 108 3
SE 28 4

safeAccess
SE+PE 24 3
SE 73 5

safeTypeCast
SE+PE 45 3

Interleaving Symbolic Execution and Partial Evaluation 143

Table 2. Symbolic execution and partial evaluation for an e-banking application

Proof Obligation Strategy #Nodes #Branches

SE 949 20
ATM.insertCard (EnsuresPost)

SE+PE 805 13
SE 2648 89

ATM.insertCard (PreservesInv)
SE+PE 2501 79
SE 661 7

ATM.enterPIN (EnsuresPost)
SE+PE 654 8
SE 1524 45

ATM.enterPIN (PreservesInv)
SE+PE 1501 44
SE 260 2

ATM.confiscateCard (EnsuresPost)
SE+PE 255 2
SE 739 19

ATM.confiscateCard (PreservesInv)
SE+PE 695 19
SE 1337 35

ATM.accountBalance (EnsuresPost)
SE+PE 1271 29
SE 2233 57

ATM.accountBalance (PreservesInv)
SE+PE 2223 59
SE 16174 136

Account.checkAndWithdraw (EnsuresPost)
SE+PE 17023 135
SE 14076 89

Account.checkAndWithdraw (PreservesInv)
SE+PE 10478 78

to be expected, depending on the structure of the program the benefit varies.
It is noteworthy that none of the programs and proof obligations used in the
present section have been changed in order to make them more amenable to
partial evaluation. In no case we have to pay a significant performance penalty
which seems to indicate that partial evaluation is a generally useful technology
for symbolic execution and should generally be applied.

The case study in Sect. 5 suggests that it could pay off to take partial evalua-
tion into account when designing programs, specifications, and proof obligations.

7 Related Work

Partial evaluation as a technique has been applied in a variety of areas includ-
ing program optimization, compiler generation and meta-compilation. Partial
evaluation has been applied successfully in logic programming [18] as well as
for imperative and object-oriented languages like C [19] and Java [14]. A good
overview including many references is given in [2]. As far as we know, the present
paper is the first application of partial evaluation in formal verification.

Our approach is also related to supercompilation [20]. Supercompilation goes
beyond partial evaluation by being able not only to specialize but also to gen-
eralize a program to achieve a functionally equivalent but better performing
program even in the absence of static input.

144 R. Bubel, R. Hähnle, and R. Ji

Partial evaluation is used in [21] to generate test cases and test case genera-
tors for given target programs. Instead of using a dedicated symbolic execution
engine, they use partial evaluation to obtain an executable version of the imple-
mentation under test in the language CLP. CLP programs can then be executed
on symbolic values returning a set of constraints on those input values. Par-
tial evaluation is used as an approximation and replacement for a fully precise
symbolic execution engine while we are interested in using partial evaluation to
speed up symbolic execution in a dedicated symbolic execution engine.

There is a close relationship between the rule for specialization operator prop-
agation (SOP) in Sect. 4.3 and what is known as binding time analysis (BTA)
in partial evaluation. Partial evaluation techniques roughly categorize program
variables into those which are known to have a constant value independent from
any input and those whose value may vary. BTA in partial evaluation determines
to which of these categories a variable belongs to. The precision of the analysis
has a significant impact on the power of partial evaluation as too early binding
prevents certain optimizations. The modifier set mod in the SOP rule influences
directly the precision of the BTA performed by our specialization operator. If
the oracle determining mod is too conservative (imprecise) too much knowledge
of the current state U will be lost and cannot be utilized in later specializations.

8 Conclusions and Future Work

In this paper we concentrated on deductive program verification as the main
application scenario, however, as pointed out in Sect. 2.2, symbolic execution has
other important usages, such as automatic test case generation [10,9]. It would
be interesting to investigate whether partial evaluation can lead to a reduction
of redundant test cases.

We showed that a fairly näıve partial evaluator can be used to boost perfor-
mance of a symbolic execution engine. In Sect. 7 we pointed out that symbolic
execution in connection with assignable-clauses amounts to a relatively precise
binding time analysis (BTA). As BTA becomes rather tricky for complex lan-
guages such as Java, it would be interesting to use symbolic execution and our
simple partial evaluator to bootstrap a sophisticated partial evaluator for Java.
It could also be interesting to use symbolic execution in addition to partial eval-
uation to improve precision, for example, in the test case generation approach
of [21] discussed in the previous section.

The example in Sect. 5 shows that interleaving partial evaluation and symbolic
execution has potential for speed-up especially for programs that are written
generically. This is the case for two software development paradigms that gained
much popularity in recent times: model-driven development (MDD) and soft-
ware product line (SWPL) engineering. In both cases, development takes place
as much as possible on a generic level: in MDD programs are modelled in abstract
notations (the Platform Independent Model) and code generation is used to de-
rive Platform-Specific Models and actual code; in SWPL one separates Domain
Engineering which includes feature modeling and library development from Ap-
plication Engineering where code is derived via instantiation and composition.

Interleaving Symbolic Execution and Partial Evaluation 145

In either case the executable code has been derived from generic artefacts and,
therefore, verification is likely to benefit from the ability to partially evaluate
specific information. We are currently experimenting with an SWPL scenario
where we plan to use interleaved partial evaluation and symbolic execution.

References

1. King, J.C.: A program verifier. PhD thesis, Carnegie-Mellon University (1969)
2. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial evaluation and automatic program

generation. Prentice-Hall, Englewood Cliffs (1993)
3. Beckert, B., Hähnle, R., Schmitt, P. (eds.): Verification of Object-Oriented Soft-

ware: The KeY Approach. LNCS, vol. 4334. Springer, Heidelberg (2006)
4. Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions: A basis for object-

oriented program verification. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS (LNAI), vol. 4130, pp. 266–280. Springer, Heidelberg (2006)

5. Heisel, M., Reif, W., Stephan, W.: Program verification by symbolic execution and
induction. In: Knuth, E., Neuhold, E.J. (eds.) Operating Systems 1982. LNCS,
vol. 152, Springer, Heidelberg (1985)

6. Pasareanu, C.S., Visser, W.: Verification of Java programs using symbolic execu-
tion and invariant generation. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS,
vol. 2989, pp. 164–181. Springer, Heidelberg (2004)

7. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

8. Baum, M.: Debugging by visualizing of symbolic execution. Master’s thesis, Dept.of
Computer Science, Institute for Theoretical Computer Science (June 2007)

9. de Halleux, J., Tillmann, N.: Parameterized unit testing with Pex. In: Beckert, B.,
Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 171–181. Springer, Heidelberg
(2008)

10. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich, Y.,
Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 169–188. Springer, Heidelberg
(2007)

11. Stenzel, K.: A formally verified calculus for full Java Card. In: Rattray, C., Maharaj,
S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 491–505. Springer,
Heidelberg (2004)

12. Deng, X., Lee, J.: Robby: Bogor/Kiasan: a k-bounded symbolic execution for check-
ing strong heap properties of open systems. In: Proc. 21st IEEE/ASM Intl. Con-
ference on Automated Software Engineering, Tokyo, Japan, pp. 157–166. IEEE
Computer Society, Los Alamitos (2006)

13. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical Report CW-520,
Department of Computer Science, Katholieke Universiteit Leuven (August 2008)

14. Schultz, U.P., Lawall, J.L., Consel, C.: Automatic program specialization for java.
ACM Transactions on Programming Languages and Systems 25 (2003)

15. Bubel, R., Hähnle, R., Weiss, B.: Abstract interpretation of symbolic execution
with explicit state updates. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E.
(eds.) FMCO 2008. LNCS, vol. 5751, pp. 247–277. Springer, Heidelberg (2009)

146 R. Bubel, R. Hähnle, and R. Ji

16. Weiß, B.: Predicate abstraction in a program logic calculus. In: Leuschel, M.,
Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 136–150. Springer, Heidelberg
(2009)

17. Engel, C., Roth, A., Schmitt, P.H., Weiß, B.: Verification of modifies clauses in
dynamic logic with non-rigid functions. Technical Report 2009-9, Department of
Computer Science, University of Karlsruhe (2009)

18. Sahlin, D.: Mixtus: an automatic partial evaluator for full prolog. New Gen. Com-
put. 12(1), 7–51 (1993)

19. Glenstrup, A.J., Makholm, H., Secher, J.P.: C-mix: Specialization of c programs.
Partial Evaluation, 108–154 (1998)

20. Turchin, V.F.: The concept of a supercompiler. ACM Trans. Program. Lang.
Syst. 8(3), 292–325 (1986)

21. Albert, E., Gomez-Zamalloa, M., Puebla, G.: PET: a partial evaluation-based test
case generation tool for Java bytecode. In: ACM SIGPLAN WS on Partial Evalu-
ation and Semantics-based Program Manipulation. ACM Press, New York (2010)

The Use of Model Transformation
in the INESS Project

Osmar M. dos Santos, Jim Woodcock, Richard F. Paige, and Steve King

University of York
Department of Computer Science

York, UK
{osantos,jim,paige,king}@cs.york.ac.uk

Abstract. The INESS (INtegrated European Signalling System) Proj-
ect is an effort, funded by the FP7 programme of the European Union, to
provide a common, integrated, railway signalling system within Europe.
It comprises 30 partners, including 6 railway companies. INESS experts
have been using the Executable UML (xUML) language to model the pro-
posed integrated signalling system. Because of the safety-critical aspects
of these systems, one key idea is to use formal verification techniques
to analyse the xUML models for inconsistencies in the requirements and
against core properties provided by professional railway engineers. Our
objective in the project is to equip our INESS partners with an au-
tomated tool to carry out this analysis. Therefore, we have devised a
formal verification strategy that uses model transformation technology
to automatically translate xUML models to the input language of exist-
ing, state-of-the-art, model checking tools. In this paper we describe this
formal verification strategy in more detail: we present initial results on
implementing the automatic generation of PROMELA models that can
be analysed using the SPIN model checker.

1 Introduction

INESS (INtegrated European Signalling System) [8] is an industry-focused
project funded by the FP7 programme of the European Union, comprising 30
partners, including 6 railway companies. The objective is to provide a common
railway signalling system that integrates existing European ones. The motiva-
tion is cost effectiveness: there is increasing competition from other kinds of
transport and from manufacturers outside Europe. The European Commission,
which is committed to revitalise rail transport, sees as the main obstacle to
further development the lack of infrastructure and interoperability between net-
works and systems. Signalling systems are perhaps the most significant part of
the railway infrastructure: they are essential for the performance and the safety
of train operations. Two of the objectives of INESS are to produce a common
core of validated, standardised functional requirements for future interlockings,
and to provide safety-verified test tools and techniques to enable the testing and
commissioning of future signalling applications.

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 147–165, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

148 O.M. dos Santos et al.

UML is the de facto language for modelling software systems in industry.
In particular, one of its profiles, Executable UML (xUML) [19], augments a
subset of UML with an action language that adds enough information to enable,
amongst other features, creating objects, establishing references and performing
operations. From the developer’s viewpoint, this has the benefit of providing
means to quickly prototype the system at the modelling level, which can then
have its behaviour analysed, for instance by simulation.

INESS experts have been using xUML to model a specification of the proposed
integrated signalling system. The idea is to use the specified xUML models to
check for inconsistencies in the requirements and against core properties of the
system provided by professional railway engineers. Currently, xUML models can
be analysed only via simulation. Due to safety-critical requirements involved
in railway signalling systems, using formal verification to analyse the model is
of vital importance. Therefore, our task in the project, together with partners
from the Universities of Eindhoven, Twente and Southampton is to equip railway
experts with an automatic tool able to analyse the models formally.

Similar to most work found in the literature targeting the automatic verifica-
tion of xUML models (e.g., [28,9,27]), we have focused our research on generating
code that can be used as input to a state-of-the-art model-checking tool. For this
technique to succeed in the context of the INESS project, three challenges have
to be faced:

1. The translation1 of the xUML model to the input language of the model-
checking tool has to be automatic.

2. The specification of verification properties has to be given in terms of the
xUML model, and the translation of properties to the model-checking tool
has to be automatic and transparent.

3. It must be possible to accurately trace back the results of the analysis from
the model-checking tool (i.e., success or a counter-example) to the abstrac-
tion level of the xUML model.

In order to tackle these challenges, we define a verification strategy that uses
model transformation technology to automatically and transparently generate
code from xUML models, which can then be used as input to model-checking
tools. Model transformation technology provides a major opportunity to auto-
mate all the steps necessary to achieve this task. In particular, for the trans-
formation of models, we use the Epsilon tool-set [11], based on the Eclipse
platform [25]. We take a diverse approach in our verification strategy. We fo-
cus on translating xUML models to different model-checking tools, which may
yield different and potentially better verification results under certain verification
scenarios.

In this paper, we describe the results obtained so far in the INESS project:

– The verification strategy for the different transformations of xUML to input
languages of different model-checkers.

1 The terms translation and transformation are used interchangeably in this paper.

The Use of Model Transformation in the INESS Project 149

– A translation of xUML models of railway signalling systems to the PRO-
MELA language, used as input by the SPIN model-checker [6].

– The implementation of an automated translation of this definition, using the
Epsilon tool-set.

This work forms the basis for automating future translations, defined by us and
our University partners, from xUML to different model-checking input languages.
Our idea is to reuse as much as possible of this work, e.g., transformation rules
and meta-models, in future translations.

This paper is structured as follows. The next section provides background
material on the behaviour of the xUML models we are working with (along
with a very simple example of a railway signalling system), basic features of the
PROMELA language, an overview of the Epsilon tool-set, and related work. In
Section 3, we explain the verification strategy for xUML models. The definition of
a translation of xUML models to PROMELA is described in Section 4. Section 5
details the implementation of this translation using the Epsilon tool-set. Finally,
Section 6 presents closing remarks and future work.

2 Background

2.1 xUML Models of Railway Signalling Systems

The Executable UML (xUML) language augments a subset of UML with an
action language. INESS experts have been using the tool Cassandra [10], a plug-
in for the UML modelling tool Artisan Studio [2], to model railway signalling
systems and simulate their execution. The Cassandra tool defines its own action
language. In our work, we follow Cassandra’s action language, since our intention
in the project is to provide experts with the possibility of formally analysing their
current railway signalling system models.

The xUML models used to describe railway signalling systems in INESS are
composed of class diagrams and states machines. Every class diagram has an
associated state machine that describes the behaviour of the class once instan-
tiated (the object). Some characteristics of the classes include the use of integer
attributes and derived attributes, which can have a very complex behaviour.
Amongst other features, the action language is used to send messages between
objects, create objects and set references. To illustrate the xUML models we are
dealing with, we present some parts of a very small interlocking example, which
we call the Micro model, provided by INESS partners.

Fig. 1 shows the class diagram of the Micro model, which is composed of six
different classes. In addition to inheritance and the use of references in the mod-
els, we also have integer attributes, like the id described in Fig. 1. In particular,
a class called application, which does not reference any other classes, is specified
to represent an initial scenario for executing the model.

Fig. 2 depicts the state machine for the route class. State machines can only
have initial and normal states. Moreover, they can have concurrent regions (not
shown in this particular example) and can execute actions when entering and

150 O.M. dos Santos et al.

Fig. 1. Micro model - class diagrams

Fig. 2. Micro model - route state machine

exiting states. With respect to transitions, the following are possible: (i) signal -
transitions, triggered once a signal is received; (ii) after -transitions, executed
after a given time specified in the guard has passed; and (iii) change-transitions,
taken once the condition of the when guard becomes true.

The Use of Model Transformation in the INESS Project 151

INESS experts have been using the Cassandra tool to analyse the xUML mod-
els via simulation. We have taken the behaviour implemented by this tool as the
operational semantics for the execution of the model. Cassandra imposes some
important constraints. Firstly, (a) even though after -transitions are possible in
the model, there is no notion of progressive increase of time during simula-
tion. During simulation, if two transitions are enabled (and one of them is an
after -transition), the system can choose (nondeterministically) which one to ex-
ecute. Secondly, (b) an enabled change-transition will always be executed, even
if other transitions are enabled. This means that, if the system still has an active
change-transition, it will be processed before any attempt to handle other events,
like an arriving signal. Thirdly, (c) the same signal arriving in a state machine
can generate different transitions (if they are enabled) in different concurrent
regions.

Continuing, Fig. 3 shows an example scenario for the Micro model specified in
the xUML action language. The same scenario is represented by an example of
a Track Layout diagram in Fig. 4. The Track Layout is a closer abstraction for
railway engineers. It effectively has an one-to-one correspondence to the xUML
model. Later, in Section 4 we describe the verification strategy used in the proj-
ect, which relates different levels of abstraction (from Track Layout down to
verification code).

1 create T1 from track by track;
2 create T2 from track by track;
3 create T3 from track by track;
4 create S1 from signal by signal;
5 create P1 from point by point;
6 create R1 from route by route;
7 create R2 from route by route;
8 link R1 via route with T1 via tracks;
9 link R1 via route with T3 via tracks;

10 link R1 via route with P1 via left_points;
11 link R1 via route with S1 via entry_signal;
12 link R2 via route with T1 via tracks;
13 link R2 via route with T2 via tracks;
14 link R2 via route with P1 via right_points;
15 link R2 via route with S1 via entry_signal;

Fig. 3. Micro model - scenario in the xUML action grammar

For specifying the xUML models of railway signalling systems, we have been
using a modified version of the Papyrus UML modelling tool [21], an open-source
tool based on Eclipse. The use of a homogeneous platform, in this case Eclipse,
for modelling and developing the transformation (with Epsilon), makes it easier
to provide one integrated tool. A key element of this modified version is that
we have integrated it with another Eclipse plugin, called EMFText [23], which
enables us to define an action grammar and automatically parse this grammar
from code to a model. This approach facilitates the translation between models,
since the xUML action grammar can be viewed as a model with well-defined
constraints, which is also part of the UML model. Section 5 provides more details
about our current xUML action grammar.

152 O.M. dos Santos et al.

Fig. 4. Micro model - example of a possible Track Layout for the scenario

2.2 PROMELA

PROMELA [7] is a process-based language, used by the SPIN model-checker [6]
for the specification of models. It is possible to define properties using LTL
(Linear Temporal Logic) formulas, and verify if the formulas are true for a given
specification.

The language has a C-like syntax and constructs for receiving and sending
messages similar to the ones found in CSP (Communication Sequential Pro-
cesses) [5]. Processes in PROMELA can be created statically or dynamically
(proctype keyword). There is a special process, called init, used to initialize
a specification. Processes can exchange information through message channels
(chan keyword) or global variables (variables declared outside the scope of the
processes). Message channels can be asynchronous (the buffer of the message
channel can have N messages, being N > 0). Message channels are typed, in
the sense that one has to explicitly declare the types of variables a channel might
receive. As well, PROMELA offers several functions used to check, for example,
if a channel is not full (nfull(channel)), not empty (nempty(channel)), empty
(empty(channel)), and others [7].

In PROMELA, nondeterminism is modeled in condition (if ... fi) or repeti-
tion (do ... od) structures. The entries of condition and repetition structures are
composed of guarded commands. Once the condition of a guarded command is
not satisfied, the entry is blocked, possibly blocking the process that contains it.
This blocking occurs until the condition is satisfied. In condition and repetition
structures, nondeterminism occurs when several entries have their conditions
satisfied. In this case, one of the possible paths is chosen in a nondeterministic
way. It is possible to define atomic structures (atomic { ... }) for a specification,
i.e., a sequence of statements that must be executed without interleaving with
the execution of statements of other processes. However, if there are guarded
commands inside an atomic structure and they are not satisfied, the structure
will lose its atomicity characteristic and will interleave its statements with other
processes. We can define enumeration types in PROMELA (mtype keyword).
One can insert assertions in a PROMELA specification. An assertion statement
evaluates an expression (assert(expression)) to true or false, each time the state-
ment is executed. If the expression evaluates to false, an error is generated and
the verification procedure stops. Finally, the language provides a special boolean

The Use of Model Transformation in the INESS Project 153

timeout keyword. This keyword is initially false, only becoming true when the
system gets to a stage where it can no longer progress (a deadlock occurs). The
timeout keyword can then be used in a guard in order to ensure that the system
can progress.

2.3 Epsilon

Epsilon [11] is both a platform for task-specific model management languages
and a framework for implementing new model management languages by exploit-
ing the existing ones. Epsilon is currently a component of the Eclipse Genera-
tive Modeling Technologies (GMT) research incubator project. More specifically,
Epsilon provides a language for direct manipulation of models (EOL) [13], and
further languages for model merging (EML) [12], model comparison (ECL) [16],
model-to-model transformation (ETL) [17], model validation (EVL) [15] model-
to-text transformation (EGL) [22], model migration, and unit testing of model
management operations (EUnit).

EOL is the core language in Epsilon, providing OCL-like [20] model navigation
and modification facilities; all the other languages of the platform build on EOL
and its runtime environment in different ways. As a result, all the languages in
Epsilon are highly interoperable. For example, an operation defined using EOL
can be imported as-is by the model-to-model and the model-to-text transfor-
mation languages. Because all languages in Epsilon share a common runtime,
modules of different languages can exchange variables with each other [14]. With
regard to supported modelling technologies, the architecture of Epsilon allows
users to manage models of different technologies such as MDR and EMF models
and XML documents and even implement support for additional formats. In
this work we are using both model-to-model (ETL) and model-to-text (EGL)
transformation languages.

2.4 Related Work

Related work [28,9,27] has targeted the automatic verification of xUML models
using model-checking technology. The idea followed is basically the same, trans-
late xUML models to the input language of an existing model-checker that is
then used to analyse the model. In [28], the COSPAN model-checker [4] is used
as the target for the verification of xUML models. Similarly, the SPIN model-
checker [6] is used in [9]. Neither work uses transformation technology, nor does
either address certain features, like the use of derived attributes, of the xUML
action grammar that are used in the INESS models. More recent work trans-
lates xUML models to CSP || B [27,26], where the FDR model-checker [3] is then
used to analyse the system. This work uses model transformation, but the xUML
models being translated make substantially less use of the action language than
the railway signalling systems we are analysing.

154 O.M. dos Santos et al.

3 The Verification Strategy

The verification strategy of INESS consists of defining a methodology for the ver-
ification of railway signalling system models specified in xUML. Fig. 5 illustrates
this methodology, where three different levels of abstraction are presented:

1. Track Layout level: We use a Domain-Specific Language (DSL) for describing
the scenario (diagram) of railway signaling systems for verification. In the
INESS Project, the xUML language is used to specify different European rail-
way signalling systems and how they integrate together. This culminates in
the definition of a set of components that can be combined in different ways.
In this sense, the Track Layout level provides an abstraction, understood by
railway engineers, that facilitates the definition of analysis scenarios. A com-
ponent at this level provides a direct mapping to an xUML component (at
the xUML level). Moreover, we are currently looking into method to specify
verification properties at this level.

2. xUML level: This represents the xUML level used to model the integrated
railway signalling system. An important element is the xUML Library of
railway signalling components that can be put together in order to define an
analysis scenario. We focus our work on providing a verification method at
this abstraction level. Given a transformed xUML model of the desired Track
Layout, we provide transformation rules to generate a model in the target
language (used as input to a model-checking tool) integrating the model
and the encoded verification property. Although we have initial results in
translating the xUML to PROMELA (see Section 4), we are still working on
a way to express verification properties in terms of the xUML model.

3. Verification level: This level represents the target verification model, already
encoded with the desired verification properties. Once the model has been
translated, the task is to generate the verification code, which is actually
used by the model checker for the automated formal verification. After ver-
ification, it is necessary to translate the results back from the verification
level to the xUML level, so that users can view the same abstraction level
(transparency, with respect to the verification, is obtained).

Starting from the top level, the verification strategy should work with the def-
inition of a Track Layout scenario. This is mapped to an xUML model. The
xUML model is then translated to the input language of a model checking tool
(Target Model), being analysed (Verification Code and Results) and have its re-
sults transformed back to the abstractions found in the Track Layout (Counter
Examples chain from Verification to Track Layout levels).

Note that, in our current work, we have not focused on the Track Layout
level, since it provides a direct and straightforward mapping of one-to-one to the
xUML level. In other words, the Track Layout level only facilitates transparency
of verification, since railway engineers do not have to even understand the xUML
model in order to use the verification facilities. However, one of our industrial
partners has already successfully defined a Track Layout level and mapped it

The Use of Model Transformation in the INESS Project 155

Fig. 5. Illustration of the verification strategy

to the xUML level, where the model can be simulated – as opposed to formally
verified, as we aim to achieve in our work.

We use model transformation technology to implement every transition be-
tween levels of the strategy. At its most basic form, model transformation consists
of defining transformation rules that are executed in order to translate a model
A (conforming to a given meta-model) to a new model B (which conforms to
another meta-model). In the verification strategy, two different types of model
transformation techniques found in Epsilon are used: model-to-model (ETL) and
model-to-text (EGL).

For translating an xUML model to a target input language, we firstly define
a meta-model for the target language. Secondly, we specify transformation rules
for populating the target model (using the elements of the xUML model), which
must conform to the meta-model of the target language. We show how this
is done in terms of the PROMELA language in Section 5. The same should
happen when translating the counter-examples from the verification level back
to the xUML level. Although, in this case we can potentially reuse the already
defined meta-models for verification and xUML.

4 Translation of xUML into PROMELA

In this section we describe how the xUML constructs are translated to PRO-
MELA. The translation is divided in two different parts. The first describes the
translation of the class diagrams and state machines that compose the objects.
Then, in Subsection 4.2 we show the translation of the initial scenario of the
system, where objects are created and references between these objects are set.

4.1 Class Diagrams, State Machines and Objects

In the xUML model every class diagram has an associated state machine, al-
though only objects (the basic computation units) are used in the execution

156 O.M. dos Santos et al.

of the system. In our translation, every object becomes a PROMELA process,
which we call a translated process. Every translated process has an associated
channel, which is used to receive messages sent from other translated processes,
and the environment. Since generalisation is allowed in the xUML model, we
need to cope with inheriting the behaviour of state machines from super classes.
We tackle this problem by translating all the possible transitions from the class
and its super classes into a single translated process, flattening the structure
of the xUML object. With the intent to preserve the xUML behaviour, every
translated process has the basic structure shown in Fig. 6.

According to this structure, a translated process enters in a loop (lines 1 to 17).
There are two types of guards in this loop: guards used for translated change and
after transitions (lines 2 to 7), and the guard found in line 8, which only becomes
enabled when the timeout keyword is true and the translated process has mes-
sages in its associated channel (nempty function). Once this guard is enabled, the
translated process gets a message from its associated channel (line 9) and tries to
find a signal -transition that is triggered by that particular message (lines 11 to
13). Note that all the actions from lines 8 to 16 occur atomically.

1 do
2 :: /* Change-Transition 1 */
3 ...
4 :: /* Change-Transition N */
5 :: timeout && ... /* Time-Transition 1 */
6 ...
7 :: timeout && ... /* Time-Transition N */
8 :: atomic { timeout && nempty(obj_chan);
9 obj_chan?msg_name;

10 if
11 :: /* Signal-Transition 1 */
12 ...
13 :: /* Signal-Transition N */
14 ::else -> skip;
15 fi;
16 }
17 od;

Fig. 6. Basic structure for translated xUML objects

As presented in Subsection 2.2, the timeout keyword only becomes true when
the system gets to a deadlock stage where no more transitions can occur. The
basic idea for encoding the xUML behaviour in PROMELA is as follows. The
system starts and tries to apply all possible change-transitions in the different
translated processes. Once all change-transitions have occurred, the system gets
to a deadlocked situation and the timeout keyword becomes true. At this stage, it
may happen that translated processes have messages in their associated channels
(guard in line 8 becomes true). This leads to the translated process trying to apply
signal -transitions, and the timeout keyword becoming false. The applied signal -
transition may generate new change-transitions in the system. The system enters
the cycle once again, waiting for inputs to occur. There may be a case where no
translated processes have messages in their buffer and the system stops. In this
case, the initial process emulates the environment by generating a nondetermin-
istic input to the system. Below we describe in more details how specific xUML
components are translated to PROMELA.

The Use of Model Transformation in the INESS Project 157

Attributes and References. Attributes and references are part of the class
diagram definition. However, they have there values instantiated at the creation
of the process. We translate both attributes and references to parameters passed
during the creation of the translated process. Fig. 7 illustrates this in terms of
a translated route object R1, where the input parameters of the process are
presented. Channel obj chan is the process associated channel. The id attribute
is translated to the route id variable. The other channels are references for the
different objects in the system.

1 proctype R1(chan obj_chan; int route_id; chan point_P1;
2 chan track_T1; chan track_T3; chan signal_S1) {
3 ...
4 }

Fig. 7. Process parameters for the route object R1

States and Transitions. In order to keep the state-based structure found in
xUML, we decided to translate regions of a state machine to global variables.
This way, the states became constants in PROMELA that are set to the correct
global variable once the state is changed. Moreover, transitions are translated
to transition blocks. A transition block is an entry in a PROMELA condition or
repetition structure. It has a guard, which uses the global variables to match the
current state of the translated process. If a guard is true, other statements corre-
sponding to the actions of the xUML transition are executed. At the end of the
execution of the transition block, the new state is set for the translated process.
Examples of translated change and signal transitions are shown in Fig. 8.

1 /* Change-Transition */
2 :: atomic { (route_active_active[id] == preparing) &&
3 (route_route[id] == active) &&
4 ((((track_element[0] == automatic) &&
5 (track_automatic_automatic[0] == ready)) &&
6 ((track_element[2] == automatic) &&
7 (track_automatic_automatic[2] == ready))) &&
8 (((point_point[0] == normal) &&
9 (point_normal_detected[0] == left))) &&

10 (((signal_element[0] == automatic) &&
11 (signal_automatic_automatic[0] == ready))));
12 assert(nfull(signal_S1));
13 signal_S1!set_proceed;
14 route_active_active[id] = ready;
15 route_route[id] = active;
16 }
17 ...
18 /* Signal-Transition */
19 :: (msg_name == reserve_route) && (route_route[id] == idle);
20 assert(nfull(point_P1));
21 point_P1!to_left;
22 route_active_active[id] = preparing;
23 route_route[id] = active;

Fig. 8. Example of change and signal transitions for route object R1

158 O.M. dos Santos et al.

The guard of a translated change-transition (lines 2 to 16) is composed of
global variables checking the correctness of: (a) the source state of the translated
process (lines 2 and 3); and (b), the other states of translated processes (lines 4
to 11). Amongst the actions, the translated process can generate a message (line
13), although before sending a message it checks if the target channel is not full
(line 12), maintaining the atomicity of the whole transition. Finally, it sets the
target state by changing the values of the global variables (lines 14 and 15). A
translated signal -transition (lines 19 to 23) is similar to the change-transition.
The only difference is that it incorporates a message name (msg name), which
is the signal triggering the transition (line 19).

4.2 The Initial Scenario

In Fig. 3 the definition of a scenario uses the action grammar of the xUML lan-
guage in order to create the objects and define their references. We translate an
initial scenario of xUML (the application class and its associated state machine)
to a special PROMELA initial process.

A part of a translated PROMELA initial process, describing only the trans-
lation of the track object T 1, is presented in Fig. 9. In the translation, the
initial process has three different purposes. Firstly, it creates the channel that
is associated to the translated object (line 3). Then, it creates the process by
passing as parameters the associated channel and, if necessary, other channel
references needed by the process (line 5). Both the creation of the channels and
the processes occur atomically (lines 2 to 7).

The final purpose of the initial process is to generate inputs from the envi-
ronment for the execution of the verification scenario. Therefore, it enters in an
atomic loop (lines 8 to 19) that has only one guard (line 9) stating that the
system can no longer execute (timeout keyword) and all the other channels as-
sociated to translated processes are empty (empty function). Once this guard

1 init {
2 atomic {
3 chan T1_ = [5] of { mtype };
4 ...
5 run T1(T1_);
6 ...
7 }
8 do
9 :: atomic { timeout && empty(T1_) && ...;

10 if
11 ::(track_track[0] == free) -> T1_!occupied;
12 ::(track_track[0] == occupied) -> T1_!free;
13 ::(track_track[0] == free) -> T1_!automatic;
14 ::(track_element[0] == automatic) -> T1_!manual;
15 ::(track_element[0] == manual) -> T1_!automatic;
16 ...
17 fi;
18 }
19 od;
20 }

Fig. 9. Partial PROMELA initial process for the Micro model

The Use of Model Transformation in the INESS Project 159

becomes true, the initial process checks different states of each process and, if
more than one process is in the correct state for receiving the signal, it nondeter-
ministically selects an input to be generated (a signal to be sent via the channel).
The list of possible states and generated inputs for the translated process T 1 are
presented from lines 11 to 15.

5 Implementation of the Transformation

The previous section completed the description of the translation from xUML
to PROMELA, now we show how this translation is implemented. A key as-
pect of our work is the use of model transformation technology to implement
the translation between the different languages. As an underlying basis, model
transformation requires the use of meta-models to provide the basic structure
that models must conform to. In Subsection 5.1 we provide an overview of the
meta-models we are using for both the xUML action language and the PRO-
MELA translation. We describe the translation to PROMELA in Subsection 5.2.
The generation of code from translated PROMELA models is presented in Sub-
section 5.3.

5.1 Meta-Modelling

The meta-model is used to define a structure that models must conform to. By
using Eclipse and associated tools (Papyrus, EMFText and Epsilon), we have
defined our meta-models using the Eclipse Modelling Framework (EMF). Our
meta-models are composed of classes, references and basic attributes, such as
string and integer variables. In particular, we have defined two different meta-
models: one is for representing the xUML action language; another represents
the translated PROMELA model. We do not have to define a meta-model for the
UML files, since we use the UML2 project meta-model [24] found in Eclipse –
also produced as output by the Papyrus tool. UML2 provides an implementation
of the UML OMG meta-model standard in Eclipse.

Fig. 10 shows the meta-model used to represent the xUML action grammar
in the Papyrus tool-set. This is supposed to be a simple model, since we intend
to keep extending it in order to accommodate new actions in the language. As
shown in Fig. 10, all the actions are contained in a body class. Currently, we
have actions for the creation of links (set references), assignments, send messages,
create objects and rules for checking the state of different objects (used in the
change transitions).

In the PROMELA meta-model (Fig. 11) we have defined a model composed
of constants (state and message names from the xUML model), processes (from
class diagrams and associated state machines) and an initial process (Init).
Amongst the most important features, note that the processes include transi-
tions, states and references to their super classes (generalization) – much like the
structure of a UML class diagram. Translated processes (objects) are represented
by ProctypeDef ’s, contained in the initial process. When translating verification

160 O.M. dos Santos et al.

Fig. 10. Meta-model for xUML action grammar

Fig. 11. Meta-model for PROMELA

The Use of Model Transformation in the INESS Project 161

code, the transformation task is to generate code for every ProctypeDef defined
in the model. Due to its complexity, we present in Fig. 11 a subset of the PRO-
MELA meta-model necessary for understanding the translation process.

5.2 xUML Models to PROMELA Models

Rules in ETL (Epsilon Transformation Language) are defined in order to con-
struct a PROMELA model from the original xUML model. As shown previously,
the PROMELA model (according to its meta-model) has constants, processes
and an initial process. We define rules to translate each one of these elements
and a further rule to put them together inside a complete PROMELA model.

In order to illustrate the use of Epsilon, we present in Fig. 12 the ETL rule
used to transform a class and its associated state machine to a PROMELA

1 rule UMLClassToPROMELAProctype
2 transform class : UML!Class
3 to proctype : PROMELA!Proctype {
4
5 -- Application class defines the scenario: it is a PROMELA init proctype
6 guard : class.name <> ’Application’ and class.name <> ’application’
7
8 -- Sets the proctype name
9 proctype.name := class.name;

10
11 -- Transform generalizations
12 -- Find if it is a generalisation and link the superclasses if they have
13 -- been transformed, otherwise, trigger the transformation superclasses
14 var generalizations := class.generalization;
15 if (generalizations.isDefined()) {
16 for (g in generalizations) {
17 for (c in g.target) {
18 var proc := PROMELA!Proctype.all.select(t|t.name = c.name).first();
19 if (proc.isDefined()) {
20 proctype.generalizations.add(proc);
21 } else {
22 proctype.generalizations.add(c.equivalent());
23 }
24 }
25 }
26 }
27
28 -- Associate to the proctype, the messages that it can receive
29 -- Used in the code transformation to generate inputs from the environment
30 for (s in class.ownedReception) {
31 var msg := PROMELA!MessageSignature.createInstance();
32 msg.name := s.signal.name;
33 proctype.messageSignatures.add(msg);
34 }
35
36 -- Generate the attributes and references for this class
37 GenerateAttributesAndReferences(class, proctype);
38
39 -- Generate states and state variables according to the state machine
40 GenerateStateAndStateVariables(class, proctype);
41
42 -- Generate the transition blocks according to the state machine
43 GenerateTransitionBlocks(class, proctype);
44 }

Fig. 12. ETL rule transforming a class and its state machine to a PROMELA process

162 O.M. dos Santos et al.

process (Proctype). The first lines are used to define the name of the rule (line
1), specify the original element being transformed (UML class, line 2) and to
what element it is being mapped to (PROMELA Proctype, line 3). This informs
the transformation engine that for every class element in the UML model, this
rule must be called. However, we specify a guard (line 6) stating that any class
with the name application shall not be transformed. The application class defines
the initial scenario and is transformed in a different rule.

The name of the class is maintained in the target process element (line 9).
If the class diagram has generalisations (line 15), it makes sure that they are
translated as well (lines 20 and 22). The function equivalent() is used to trigger
an implicit rule. This way, if the super class has not been transformed yet, its
transformation rule is triggered in order to set the correct references in the
target model. We also translate the messages that a class can receive (lines
30 to 34) in order to correctly build the environment. Finally, we define three
different operations that are used for translating attributes and references (line
37), states and state variables (line 40) and the transition blocks obtained from
the associated state machine (line 43).

5.3 PROMELA Models to PROMELA Code

The Epsilon Generation Language (EGL) is used to generate the verification
code starting from the obtained PROMELA model. In EGL definitions, we de-
fine templates of the final text (which are not to be changed) and specify dy-
namic structures used to add information gathered from the model. This way, we
have specified in total, four different templates. They are used for declaring the

1 [%
2 for (p in ProctypeDef.allInstances) {
3 var s;
4 %]
5 proctype [%=p.name%](chan obj_chan[%=p.generateParameters()%]) {
6 atomic {
7 mtype msg_name;
8 int id = [%=p.id%];
9 [%=p.initialStates()%]

10 }
11 do
12 [%=p.transitionBlocks()%]
13 [%=p.changeTransitionBlocks()%]
14 [%=p.timeTransitionBlocks()%]
15 ::atomic { timeout && nempty(obj_chan);
16 obj_chan?msg_name;
17 [%=p.signalTransitionBlocks()%]
18 }
19 od;
20 }
21 [%
22 }
23 %]

Fig. 13. EGL rule for generating translated processes in PROMELA

The Use of Model Transformation in the INESS Project 163

PROMELA constants, the global variables of the processes (used to represent
the states), define the translated processes and generate the initial process.

We illustrate the use of Epsilon to generate verification code in Fig. 13. This
code generates translated processes (transformed xUML objects). We translate
all the possible instances of ProctypeDef ’s (lines 2 to 22). For each instance,
we define the header of the process, with its name and its input parameters
(line 5). The global variables associated to the translated process are initialised
with the correct states in line 9. Then, we generate all the transitions for the
process (lines 12, 13, 14 and 17). The transitions are used to populate the basic
structure (shown previously, in Fig. 6) used to maintain the behaviour of the
xUML models in the PROMELA language (lines 11 to 19).

6 Final Remarks

In this paper we presented the verification strategy for INESS, devised for
analysing xUML models of railway signalling systems, which is being currently
modelled by our Industry partners. At the core of our strategy is the use of model
transformation to facilitate the implementation and extension of the translation,
as new features (from the action language) used in the xUML models need to
be encoded in the verification tool. The strategy has three different levels of ab-
straction: (a) Track Layout level; (b) xUML level; (c) Verification level. We have
focused our efforts on implementing the automatic transformation from xUML
models down to verification code. This has been explained by exemplifying the
translation of xUML model to PROMELA verification code.

In this paper we have not shown the formal analysis of the xUML models. We
have focused on describing how model transformation can be used to automate
the translation of models. In fact, as we are currently developing a technique
to specify verification properties in terms of xUML and translate them to the
verification model, our only possibility of analysing the models is to encode
verification properties directly in SPIN. When doing that, we have analysed basic
properties of the Micro model, such as no two different routes can be active at
the same time. In terms of SPIN, this can be easily expressed as a temporal
formula stating that (in terms of the Micro model of Section 2.1) objects R1
and R2 are never in the active state at the same time. During verification, false
results were obtained. Given the simplicity of the Micro Model, which is being
used as a starting example for our translations, this was an expected result.
Currently, we are starting to analyse more complex models obtained from our
partners.

As an immediate future work, we aim to complete our current ongoing work
on defining the specification of properties in terms of xUML and how to trans-
late them to the verification model. We also plan to start tackling the automatic
translation of counter-examples from the Verification level to the xUML abstrac-
tions. SPIN’s counter-example result is made of a text file with the execution of
the model until the property under verification had a false result. In this case, we
can use text-to-model transformation from the counter-example file to a speci-
fied meta-model representing the model’s execution. Moreover, we are starting

164 O.M. dos Santos et al.

to implement the automatic translation of xUML models to other target lan-
guages such as CSP [5] and mCRL2 [1] with our partners from the Universities
of Twente and Eindhoven. With respect to the validation of the translation,
we are currently using testing to guarantee that the translated model indeed
maintains the behaviour of the xUML model [16,18].

Another important future work is to revise our current translation to PRO-
MELA. For instance, one of the restrictions in our current work is the use of
global variables. This has direct consequences on the use of the Partial Order
Reduction algorithm found in SPIN. Therefore, if there are errors in the model
that can be easily detected, as in the Micro model shown in this paper, this
may not be a problem, since SPIN dynamically generates the state space dur-
ing verification stopping once an error is found. However, as the models have
fewer errors, checking the whole state space without the use of the Partial Order
Reduction algorithm may prove to be difficult, due to the increased state space.

Acknowledgment. The work in this paper was funded by the European Com-
mission via the INESS project, Seventh Framework Programme (2008-2011).

References

1. Alexander, M., Gardner, W. (eds.): Process Algebra for Parallel and Distributed
Processing. CRC Press, USA (2008)

2. Artisan Software Tools Inc. Artisan studio UML modelling tool (2010),
http://www.artisansoftwaretools.com/

3. Formal Systems (Europe) Ltd. FDR 2.83 manual (2007)
4. Hardin, R.H., Har’El, Z., Kurshan, R.P.: COSPAN. In: Alur, R., Henzinger, T.A.

(eds.) CAV 1996. LNCS, vol. 1102, pp. 423–427. Springer, Heidelberg (1996)
5. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, USA (1985)
6. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-

neering 23(5), 279–295 (1997)
7. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley, USA (2003)
8. INESS Project. INtegrated European Signalling System (INESS) Project Web Page

(2010), http://www.iness.eu/
9. Jussila, T., Dubrovin, J., Junttila, T., Latvala, T., Porres, I.: Model checking dy-

namic and hierarchical UML state machines. In: 3rd Workshop on Model design
and Validation, Italy, pp. 94–110 (2006),
http://modeva.itee.uq.edu.au/accepted_papers/main.pdf

10. KnowGravity Inc. Cassandra/xUML User’s Guide (2008),
http://www.knowgravity.com/eng/value/cassandra.htm

11. Kolovos, D.S.: Extensible Platform for Specification of Integrated Languages for
mOdel maNagement Project Website (2010),
http://www.eclipse.org/gmt/epsilon

12. Kolovos, D.S., Paige, R.F., Polack, F.: Merging Models with the Epsilon Merg-
ing Language (EML). In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 215–229. Springer, Heidelberg (2006)

http://www.artisansoftwaretools.com/
http://www.iness.eu/
http://modeva.itee.uq.edu.au/accepted_papers/main.pdf
http://www.knowgravity.com/eng/value/cassandra.htm
http://www.eclipse.org/gmt/epsilon

The Use of Model Transformation in the INESS Project 165

13. Kolovos, D.S., Paige, R.F., Polack, F.: The Epsilon Object Language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

14. Kolovos, D.S., Paige, R.F., Polack, F.: A framework for composing modular and
interoperable model management tasks. In: Workshop on Model Driven Tool and
Process Integration, Germany, pp. 79–90. Fraunhofer-Verlag (2008)

15. Kolovos, D.S., Paige, R.F., Polack, F.: On the Evolution of OCL for Capturing
Structural Constraints in Modelling Languages. In: Abrial, J.-R., Glässer, U. (eds.)
Rigorous Methods for Software Construction and Analysis. LNCS, vol. 5115, pp.
204–218. Springer, Heidelberg (2009)

16. Kolovos, D.S., Paige, R.F., Polack, F.A.: Model comparison: a foundation for model
composition and model transformation testing. In: 1st International Workshop on
Global Integrated Model Management, Shanghai, China, pp. 13–20. ACM Press,
New York (2006)

17. Kolovos, D.S., Paige, R.F., Polack, F.A.: The Epsilon Transformation Language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008)

18. Kolovos, D.S., Paige, R.F., Rose, L.M., Polack, F.A.: Unit testing model manage-
ment operations. In: 5th IEEE Workshop on Model Driven Engineering Verification
and Validation, Norway, pp. 97–104. IEEE Computer Society Press, Los Alamitos
(2008)

19. Mellor, S.J., Balcer, M.J.: Executable UML. Addison Wesley, USA (2002)
20. OMG: Object Constraint Language, Version 2.2, OMG document number

formal/2010-02-01 (2010)
21. Papyrus UML - CEA LIST. Open source tool for graphical UML2 modelling (2008),

http://www.papyrusuml.org/

22. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.: The Epsilon Generation
Language. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS,
vol. 5095, pp. 1–16. Springer, Heidelberg (2008)

23. Software Technology Group - Dresden University of Technology. Emftext concrete
syntax mapper (2010), http://www.emftext.org/

24. The Eclipse Foundation. Eclipse UML2 Web Page (2010),
http://www.eclipse.org/uml2

25. The Eclipse Foundation. Eclipse Web Page (2010),
http://www.eclipse.org/

26. Treharne, H., Turner, E., Paige, R.F., Kolovos, D.S.: Automatic generation of in-
tegrated formal models corresponding to UML system models. In: GI-Fachtagung
1975. LNBIP, vol. 33, pp. 357–367. Springer, Heidelberg (2009)

27. Turner, E., Treharne, H., Schneider, S., Evans, N.: Automatic generation of
CSP || B skeletons from xUML models. In: Fitzgerald, J.S., Haxthausen, A.E.,
Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 364–379. Springer, Heidel-
berg (2008)

28. Xie, F., Levin, V., Kurshan, R.P., Browne, J.C.: Translating software designs
for model checking. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004.
LNCS, vol. 2984, pp. 324–338. Springer, Heidelberg (2004)

http://www.papyrusuml.org/
http://www.emftext.org/
http://www.eclipse.org/uml2
http://www.eclipse.org/

Suitability of mCRL2 for Concurrent-System
Design:

A 2 × 2 Switch Case Study

Frank P.M. Stappers, Michel A. Reniers, and Jan Friso Groote

Department of Computer Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600MB Eindhoven, The Netherlands

Abstract. Specifying concurrent systems can be done using a variety
of languages. These languages have different features and therefore are
not necessarily equally suitable for capturing concepts from reality with
respect to both expressivity and ease-of-use.

This paper addresses these aspects for the specification language
mCRL2 by considering the 2 × 2 Switch case study. This case study has
been used before to compare other specification languages, more specif-
ically TLA+, Bluespec, Statecharts and ACP. The case study primarily
focuses on two important features, namely multi-party communication
and priority of certain actions over other actions. We show that mCRL2 is
appropriate for the specification of these features, especially multi-party
communication. Moreover, we express some of the requirements of the
original case study in terms of modal μ-calculus formulae and establish
that these are indeed satisfied by the model.

1 Introduction

In today’s world, there are many different ways to specify system’s behavior. At
first, many specification languages seem suitable for describing system behaviour,
as they are applied to case studies and toy examples that are specially tailored to
assess certain features of a language. Unfortunately, when actual systems need to
be specified, it often turns out that a language cannot express a certain amount of
behavior, as the language is too generic or too limited, and therefore not vigorous
enough to express complex behavioral patterns. This way, designers are required
to deviate from the system’s behaviour or they have to apply abstractions such
that inexpressible behavior becomes irrelevant.

When designs are finished, it is difficult to ensure that a system meets the
requirements that were agreed upon in advance. In many cases human reasoning
is applied to validate that a system meets these requirements. However, a proof
or guarantee cannot be given. Especially for mission critical systems, but also for
concurrent systems, this might yield to undesired behaviour, which can result
into catastrophic disasters.

Selecting a suitable language for system design is a difficult task. To guide
designers, the authors of [6] have recently compared the specification languages
TLA+, Bluespec, Statecharts, and ACP for a particular case study. The authors
of [6] compare these languages with respect to the following three criteria:

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 166–185, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Suitability of mCRL2 for Concurrent-System Design 167

1. the local (as opposed to global and temporal) reasoning that is required by
the designer in order to specify behaviour,

2. adaptability to variations in design intent, and
3. checking whether a specification captures the corresponding design intent.

The case study they selected, deals with a switch that internally routes packets
from input buffers to output buffers. These packets are routed according to a set
of rules that specify priority amongst selected packets as well as simultaneous
packet transfers. As these rules are complementary to each other, they illus-
trate contradictive concerns and emphasize on the possible weaknesses of the
specification languages. In [6] it is concluded that each of the used specification
languages performs poorly for at least two of these criteria.

In extension to the framework, presented in [6], this paper puts mCRL2 [9] to
the same test. The goal of this paper is to show that the specification language
mCRL2 is better suited than the other specification languages, at least for the
presented case study.

mCRL2 is a specification language, especially targeted for describing com-
munication behaviour among systems. The behavioural part of the language is
based on process algebra [1]. For the purpose of specifying behaviour, mCRL2
facilitates a data part which is based on higher-order abstract equational data
types. It allows quantifiers, (unbounded) integers, (infinite) sets and bags, struc-
tured types, lists and real numbers, that are set up as close as possible to their
mathematical counterparts.

The models that we present for the cases are obtained in a relatively straight-
forward way from the informal description. It turns out that multi-party com-
munication is easily captured by the advanced communication mechanisms of
mCRL2. mCRL2 has no direct support for specifying priority. Nevertheless we
are able to describe the types of priority used in the cases at hand.

For the manipulation, analysis and visualisation of specifications, the language
is equipped by a range of tools [7,10]. These tools allow amongst others the
verification of requirements that are described in the modal μ-calculus [13].

This paper is structured as follows. Section 2 gives a brief introduction to
the relevant fragments of the language mCRL2 and the modal μ-calculus. The
switches are modelled in Sections 3,4 and 5. Section 6 elaborates on the require-
ments that have been verified on the constructed models. Section 7 compares
the work presented here to that of others. Section 8 describes our conclusions
and future work.

2 Preliminaries

2.1 Syntax and Semantics of mCRL2

An mCRL2 process is built from data-parameterized multi-actions and a collec-
tion of process operators. In this paper, a fragment of the syntax of the un-timed
mCRL2 language is used. It is given by the following BNF :

168 F.P.M. Stappers, M.A. Reniers, and J.F. Groote

P ::= α � P + P � P · P � c → P �
∑

x:D P � P ‖ P
� ∂B(P) � τB(P) � ΓV (P) � X(d)

α ::= τ � a(d) � α | α

The small � indicates a choice between symbols in the expression of the BNF. In
this syntax α denotes a multi-action. A multi-action consists of actions combined
by the big |. The empty multi-action is denoted by τ . An action a(d) consists
of an action name a and possibility a data parameter vector d (the syntax of
which is left unspecified). A multi-action represents the simultaneous execution
of the constituent actions.

Processes are denoted by P . For processes, + denotes non-deterministic choice,
i.e., a choice between behaviors, · denotes sequential composition, i.e., a process
followed by another process. The conditional operator, written as c → p, denotes
that if c data expression of sort B holds, then process P is executed. The non-
deterministic choice among processes is denoted by

∑
x:D P , where x is a variable

of sort D and P is a process expression in which the variable x may occur. The
parallel composition of processes is represented by ‖ operator, that denotes the
concurrent execution of both processes. The operator ∂B blocks all actions from
set B of action names, i.e., prevents the occurrence of the specified actions.
The operator τB replaces all occurrences of actions from B by τ . ΓV applies the
communications described by the set V to a process. A communication in the
set V is of the form a1 | · · · | an → a. Application of ΓV to a process means
that any occurrence of the multi-action a1(d) | · · · | an(d) is replaced by a(d),
for any d. X(d) is a reference to a process definition of the form X(x) = P , i.e.,
the process X(d) behaves as prescribed by P with x replaced by d.

The semantics associated with an mCRL2 process, as used in the mCRL2 tool
set, is a transition system where the transitions are labelled by multi-actions.
A more elaborate description of the syntax and (timed) semantics are given
in [9,10].

2.2 Modal μ-Calculus

Modal μ-calculus formulae are used to describe behavioral properties. These
properties are verified against a behavioral model described in mCRL2. In this
paper, requirements are specified in a variant of the modal μ-calculus extended
with regular expressions [8] and data. The restricted fragment of the modal
μ-calculus used, is as follows:

φ ::= false � φ ⇒ φ � φ ∧ φ � [ρ]φ � 〈ρ〉φ � ∀x:Dφ � c
ρ ::= α � ρ · ρ � ρ∗

α ::= a(d) � ¬α � α | α � true

In this syntax, φ represents a property, ρ represents a set of sequences of actions
and α represents the absence or presence of a multi-action. An arbitrary multi-
action is denoted by true. The property false holds for no model. The property
[ρ]φ states the property that φ holds in all states that can be reached by a

Suitability of mCRL2 for Concurrent-System Design 169

sequence described by ρ. The property 〈ρ〉φ describes that φ holds in some
state that can be reached by a sequence from ρ. To describe action sequences
concatenation and iteration can be used. A more elaborate description of the
modal μ-calculus and its semantics can be found in [5,8].

3 Specification of the Simple 2 × 2 Switch

The 2 × 2 Switch case study consists of three separate cases that gradually
increase in difficulty. These cases are referred to as the “Simplified Switch”,
the “Original Switch” [4] and the “Modified Switch”. In the specification of the
three cases, we follow the informal description from [6] as closely as possible. This
means that we introduce a single process for each of the four buffers. By means of
the advanced communication mechanisms offered in mCRL2, we describe their
non-trivial interaction. In this section, and in the sections to follow, we discuss
the way in which we have dealt with the modeling challenges posed by the case
studies.

The Simplified Switch contains two input FIFO buffers and two output FIFO
buffers. All buffers have a unique identity, w.r.t. the type of buffer, e.g. each
input or output buffer corresponds to a numerical value, and a finite capacity
for storing packets. All buffers have the same capacity.

Each packet consists of 32 bits. Packets enter the system via the input buffers
and depart the system via the output buffers. Packets are transferred from an
input buffer to one of the output buffers based on the first bit of the packet: If
the first bit of a packet is 0, it is routed to the output buffer with identity 0,
and otherwise it is routed to the output buffer with identity 1.

The packets may only be transferred if the relevant output buffer is not full.
A buffer operates per clock cycle and can do at most one operation, namely
receive a packet, send a packet, or nothing. Furthermore, we require maximum
throughput, e.g. a packet should be transferred if it has the ability to. Next to
that, if packets from different input buffers are available for transferral to the
same output buffer, transferral of the packet from input buffer 0 gets priority
over transferral of the packet from input buffer 1.

3.1 Bits and Packets

The data type of bits consists of two different values. In mCRL2, this is defined
as:

sort Bit = struct zero | one;

In the case study, packets consist of 32 bits. This implies that a single packet can
be represented by 232 different configurations. mCRL2 allows the description of
such a data type without any problems; e.g., by a structured sort that composes
32 bits by:

sort Packet = struct packet(b1, b2, . . . , b32 : Bit);

170 F.P.M. Stappers, M.A. Reniers, and J.F. Groote

From a modelling point of view, we do not object to such a representation or
see any difficulty to write it down in an mCRL2 specification. Unfortunately,
for a formal analysis with tools that require an explicit state space generation
such as model-checking tools, this has an apparent drawback. It gives rise to 232

different potential contents for each position in each of the considered buffers.
This number is usually too big to be handled by current state-of-the-art model-
checking tools. For that reason we require an appropriate abstraction.

Investigation shows that only two types of data packets are relevant for the
Simplified Switch. First, those data packets for which the first bit of the packet
is 0, and second, those data packets for which the first bit is 1. According to the
first bit, packets are respectively routed to output buffer 0 or to output buffer
1. For this reason, we choose to abstract from the irrelevant bits of a packet, by
only modeling the first bit. Consequently, the structure of a packet is redefined
as:

sort Packet = struct packet(b1 : Bit);

To route packets, we require a function that assigns a destination to a given
packet. So, we define a mapping dest that expresses the relation between the
data within the packet and the output buffer to which the packet is to be routed.

map dest : Packet → N;
eqn dest(packet(zero)) = 0;

dest(packet(one)) = 1;

3.2 Capacity of the Buffers

The system consists of four queues. Each buffer has the same capacity cap, which
is assumed to be at least 1. In order to specify the case study without referring
to an explicitly defined value we introduce the following constant.

map cap : Pos ;

By means of an equation we may assign a specific value to this mapping. This
is necessary for state space generation and simulation of the specification. This
way changing the capacity, if desired, needs to be done in one place only.

eqn cap = 3;

3.3 Information Exchange between the Processes

To observe packets that enter and leave the 2×2-switch, two parameterized ac-
tions are introduced, namely one for adding an element to an input buffer (enter)
and another one for removing an element from an output buffer (leave). The first
data parameter refers to the identity of an input buffer (for enter -actions) or an
output buffer (in case of leave-actions). The second data parameter is used to
represent the actual data for the packet itself.

Suitability of mCRL2 for Concurrent-System Design 171

act enter : N × Packet ;
leave : N × Packet ;

The sending of a packet from an input buffer to an output buffer is described
by means of the send action. Similarly, for the receipt of a packet by an out-
put buffer, the action recv is used. To synchronize actions, mCRL2 provides
synchronous communication between processes, if all the action data parame-
ters in the synchronizing actions have the same value. To show (and observe)
that a send and receive synchronize, we use the action comm , which reflects the
successful synchronization of a send and a recv .

The actions send , recv and comm are each modeled with three data param-
eters. The first parameter is used to denote the identity of the input buffer
that sends the package, the second parameter denotes the identity of the output
buffer that receives the package, and the last parameter denotes the packet that
is actually being transferred. The first and second parameter provide handles
to observe the routing of packets; i.e., they are used to express and verify re-
quirements later on. The last data parameter is required to transfer and observe
the data flow between buffers. Note that the second parameter is a cosmetic
addition, as its can also be obtained from the data of the packet itself.

act send : N × N × Packet ;
recv : N × N × Packet ;
comm : N × N × Packet ;

In the Simplified Switch case study, the packet exchange between an input buffer,
say i, and an output buffer, say o, not only depends on the behavior expressed
in the processes, but also on the contents of the other input buffer. In mCRL2,
it is possible to use multi-party communication to establish the involvement of
another process. This means that we require actions that reveal information
about a third party in the communication. We introduce actions grant and free
for this purpose. Both grant(i, j, p) and free(i, j, p) denote that input buffer i is
granted permission to send a packet p to output buffer j. One of these actions is
used for establishing priority and the other one for simultaneous packet transfer.
A more detailed explanation is provided later in this section.

act grant : N × N × Packet ;
free : N × N × Packet ;

3.4 The Output Buffers with Capacity cap

In mCRL2, a FIFO buffer Output with capacity cap is given by the following
process specification:

proc Output(i : N, c : List(Packet)) =
#c < cap →

∑

s:N

∑

p:Packet

recv (s, i, p) · Output(i, p � c)

+ c �≈ [] → leave(i, rhead(c)) · Output(i, rtail(c));

172 F.P.M. Stappers, M.A. Reniers, and J.F. Groote

The first line in the above model specifies the name of the process and declares
the associated process parameters. In this case the buffer has two parameters.
The first process parameter represents the identity of an output buffer. The
second process parameter captures the contents of the queue as a list of packets.
As already described, an arbitrary packet can be received as long as the buffer
is not yet full (#c denotes the number of elements in the list c). So the first
summand, specifies that when a packet is received, it is appended to the buffer.
Appending a packet p to a buffer contents c is denoted by p � c. The second
summand describes that the packet (if any) that has been inserted into the queue
(so the buffer is not empty, c �≈ []) first (rhead(c) denotes this element), it exits
the switch by means of the leave action and is removed from the queue (rtail (c)).
Note that modeling the buffer in this way, the specification of the output buffer
does not rely in any way on the fact that only packets with a specific first bit
will be send to it, e.g. it accepts packets regardless of their content.

For both the output buffer as described in this subsection and the input buffer
described in the following subsection we have chosen to allow it to perform at
most one action at the same time.

3.5 The Input Buffers with Capacity cap

The main challenges of this modeling exercise are to deal appropriately with the
priority of input buffer 0 over input buffer 1 in case both buffers want to transfer
a packet to the same destination; and to deal with the required simultaneous
packet transfer in case both buffers want to transfer packets to different destina-
tions. In this section we gradually shape the model, by defining the interaction
between the different processes, as well as specifying the input buffer such that
it eventually complies to the settled design intent.

We start by modeling the behavior of the input buffer analogously to the
output buffer:

proc Input(i : N, c : List(Packet)) =
#c < cap →

∑

p:Packet

enter(i, p) · Input(i, p � c)

+ c �≈ [] → send(i, dest(rhead(c)), rhead(c)) · Input(i, rtail(c));

Next, we setup the basic communication between input buffers and output
buffers. We first specify that the four buffers require to run in parallel. Fur-
thermore, we specify that a successful synchronization of send and recv actions,
results in a comm action. This is expressed by means of the subscript parameter
send |recv → comm in the communication operator Γ. We only allow successful
communications, therefore we encapsulate all send and recv actions that do not
result in a successful synchronization. This way, insertion or removal of a packet
can be done simultaneously, while other buffers transfer packets. Combining the
instantiated process definitions with the communication and encapsulated oper-
ators, leads to the following initialization:

Suitability of mCRL2 for Concurrent-System Design 173

init ∂{send ,recv}(Γ{send |recv→comm}(
Input(0, []) ‖ Input(1, []) ‖ Output(0, []) ‖ Output(1, [])));

To acquire the simultaneous packet transfer and prioritized packet transfer, the
model needs to be adapted in two ways. The first step takes care of the prioritized
packet transfer if packets route to the same destination. The second step takes
care of the required simultaneous packet transfer to different output buffers.

Prioritized packet transfer. The way in which we deal with the prioritized packet
transfer is as follows. The input buffer signals which transfers are allowed for
execution by the other input buffer by means of the grant -action. If a buffer is
empty it grants permission for any transfer in the other process of the input
queue. If the buffer is not empty it only grants permission for a transferral of
packets from each input buffer with a lower identity to the same output buffer.

proc Input(i : N, c : List(Packet)) =
#c < cap →

∑

p:Packet

enter(i, p) · Input(i, p � c)

+ c �≈ [] → send(i, dest(rhead(c)), rhead(c)) · Input(i, rtail(c));
+ c ≈ [] →

∑

n,m:N

∑

p:Packet

grant(n, m, p) · Input(i, c)

+ c �≈ [] →
∑

n:N
n < i → grant(n, dest(rhead(c)), rhead(c)) · Input(i, c)

To ensure that the grant-action synchronizes with the other corresponding send -
and recv -actions another communication function is added:

init ∂{send ,recv,grant}(Γ{send |recv→comm}(Γ{send |recv|grant→comm}(
Input(0, []) ‖ Input(1, []) ‖ Output(0, []) ‖ Output(1, []))));

The nesting of the communication functions this way is necessary to ensure that
priority is given.

Maximal communication. In order to meet the second requirement, the input
buffer announces that it allows a simultaneous transferral of packets (from the
other input buffer) with a different destination via the free-action.

proc Input(i : N, c : List(Packet)) =
#c < cap →

∑

p:Packet

enter(i, p) · Input(i, p � c)

+ c �≈ [] →
∑

n:N

∑

p:Packet

n �≈ i ∧ dest(p) �≈ dest(rhead(c)) →

send(i, dest(rhead(c)), rhead(c))|free(n, dest(p), p) · Input(i, rtail(c))
+ c �≈ [] → send(i, dest(rhead(c)), rhead(c)) · Input(i, rtail(c))
+ c ≈ [] →

∑

n,m:N

∑

p:Packet

grant(n, m, p) · Input(i, c)

+ c �≈ [] →
∑

n:N
n < i → grant(n, dest(rhead(c)), rhead(c)) · Input(i, c);

174 F.P.M. Stappers, M.A. Reniers, and J.F. Groote

By adapting the communications in the outermost communication operator to
{send |recv |free → comm} we achieve that packet transfers are only allowed in
case the other input buffer grants permission. This way simultaneous packet
transfers are achieved whenever possible. All possible communications are now
permitted by either a grant - or a free-action.

init ∂{send ,recv,grant,free}(Γ{send |recv|grant→comm}(Γ{send |recv|free→comm}(
Input(0, []) ‖ Input(1, []) ‖ Output(0, []) ‖ Output(1, []))));

The order in which the communication operators are applied to the parallel
composition of the buffers is of no importance. It is not allowed to declare both
communication operators by means of one communication operator since the left-
hand sides of the communication patterns share an action, which might lead to a
non-unique solution. For that reason the communication operators are placed in
a hierarchial composition. We conjecture that the order of these communication
operators is of no importance. To provide (partial) evidence, we have validated
this claim, by using the mCRL2 tool set to establish that the respective labelled
transition systems are strongly bisimilar (even isomorphic) for the case that the
capacity of the buffers is 1, 2 and 3.

4 Specification of the Original 2 × 2 Switch

The Original Switch is an extension of the Simplified Switch. The Original switch
contains an additional counter, that counts interesting packets that are trans-
ferred from input to output buffers. A packet is considered interesting if its
second, third, and fourth bit are all 0. The counter is restricted. Therefore the
value can only be incremented by one per clock cycle. So when both input buffers
are capable of transferring interesting packets, priority is given to the transferral
of packets from input buffer 0 and the transferral of packets from input buffer
1 is delayed. Thus, we may only transfer packets simultaneously if they are not
both interesting. In all other cases a process needs to either take or grant priority
as in the Simplified Switch case study.

In this section, we adapt the model of the Simplified Switch to obtain a model
that corresponds to the design intent of the Original Switch. Thereto, we need
to extend a part of the data specification and adapt the behaviors of the buffer
processes slightly.

4.1 Packets

The fact that the second, third and fourth bit of a packet have become relevant
for the behaviour of the switch means that we have to reconsider our defini-
tion of the data type representing packets. We can introduce packets with four
bits (all relevant ones) in a way similar to the current definition. Instead, and
more abstractly, we decide to model packets as before but now with an additional

Suitability of mCRL2 for Concurrent-System Design 175

Boolean parameter indicating whether the packet is interesting (true) or not
(false).

sort Packet = struct packet(b1 : Bit , int : B);

By extending the structured sort, we are required to update the definition of the
mapping for routing packets. As the second, third, and fourth bit have no effect
on the destination of a packet, the adaptation is straightforward.

map dest : Packet → N;
var b : B;
eqn dest(packet(zero, b)) = 0;

dest(packet(one, b)) = 1;

4.2 The Act of Counting

There are several ways of modelling the counting of interesting packets. One
way is to introduce a parameter that reflects the number of interesting packets
that have been transferred. Another way is to introduce an action to indicate a
transferral of an interesting packet. We have chosen the latter solution. Thus,
the act of counting interesting packets will be performed by executing an action
inc, that has no data parameters.

act inc;

Another decision that must be made is which entity actually performs the
counting. One solution is to introduce a separate process for this purpose. An-
other option is to enhance the functionality of either the input or the output
buffers. We have chosen to enhance the functionality of the output buffers. It
should be said that implementing the other solutions poses no real problems for
mCRL2.

To accommodate this behavior, the first summand of the output buffer from
the Simplified Switch is split into two cases, one for receiving and counting an
interesting packet and one for receiving a non-interesting packet. To decide if a
packet is interesting, the projection function int is used. The projection function
for a specific field of a structured sort is specified in the sort declaration. For the
sort Packet there are projection functions b1 and int for obtaining the values of
the first and second field, respectively.

proc Output(i : N, c : List(Packet)) =
#c < cap →

∑

s:N

∑

p:Packet

(int(p) → recv(s, i, p)|inc · Output(i, p � c)
+¬int(p) → recv(s, i, p) · Output(i, p � c))

+ c �≈ [] → leave(i, rhead(c)) · Output(i, rtail(c));

4.3 Adapting the Input Buffer

The Original Switch poses an additional restriction on the cases in which com-
munication between input and output buffer can be performed.

176 F.P.M. Stappers, M.A. Reniers, and J.F. Groote

We may only transfer packets simultaneously if they have different destina-
tions and at most one packet is interesting. This is expressed in the second
summand below.

In case both input buffers contain an interesting packet and these packets
have different destinations, priority is granted to any input buffer with lower
identity. See the fifth summand below.

We are required to grant priority to both interesting and non-interesting pack-
ets if the local packet is non-interesting. For that reason, the last summand is
adapted as well.

proc Input(i : N, c : List(Packet)) =
#c < cap →

∑

p:Packet

enter(i, p) · Input(i, p � c)

+ c �≈ [] →∑

p:Packet

dest(p) �≈ dest(rhead(c)) ∧ (¬int(p) ∨ ¬int(rhead(c))) →
∑

n:N
n �≈ i → send(i, dest(rhead(c)), rhead(c))|free(n, dest(p), p)·

Input(i, rtail(c))
+ c �≈ [] → send(i, dest(rhead(c)), rhead(c)) · Input(i, rtail(c))
+ c ≈ [] →

∑

n,m:N

∑

p:Packet

grant(n, m, p) · Input(i, c)

+ c �≈ [] ∧ int(rhead(c)) →
∑

p:Packet

dest(p) ≈ dest(rhead (c)) ∨ int(p) →
∑

n:N
n < i → grant(n, dest(p), p) · Input(i, c)

+ c �≈ [] ∧ ¬int(rhead(c)) →
∑

p:Packet

b1(p) ≈ b1(rhead(c)) →
∑

n:N
n < i → grant(n, dest(rhead(c)), p) · Input(i, c);

5 Specification of the Modified 2 × 2 Switch

The modified 2 × 2 switch alters the way the priority is handled amongst collid-
ing transfers in the case that the packets are both interesting and have a different
destination. We have defined two conditions, namely both head packets have the
same destination (C1) and both head packets are interesting (C2). If either one
of these conditions holds, priority is given to the transferral of the packet from
input buffer 0.

Now, in the Modified Switch, we keep that if C1 holds, the first input buffer
will be given priority over the second buffer. However if C1 does not hold, while
C2 holds, priority is given to transferral of the packet from input buffer 1.

This only requires the adaptation of the model of the input buffers. In the
relevant case this time priority is granted to the input buffer with the higher
identity. The last but one summand of the specification of the input buffer of
the Original Switch is split in these two cases.

Suitability of mCRL2 for Concurrent-System Design 177

proc Input(i : N, c : List(Packet)) =
#c < cap →

∑

p:Packet

enter(i, p) · Input(i, p � c)

+ c �≈ [] →∑

p:Packet

dest(p) �≈ dest(rhead(c)) ∧ (¬int(p) ∨ ¬int(rhead(c))) →
∑

n:N
n �≈ i → send(i, dest(rhead(c)), rhead(c))|free(n, dest(p), p)·

Input(i, rtail(c))
+ c �≈ [] → send(i, dest(rhead(c)), rhead(c)) · Input(i, rtail(c))
+ c ≈ [] →

∑

n,m:N

∑

p:Packet

grant(n, m, p) · Input(i, c)

+ c �≈ [] ∧ int(rhead(c)) →
∑

p:Packet

dest(p) ≈ dest(rhead (c)) →
∑

n:N
n < i → grant(n, dest(p), p) · Input(i, c)

+ c �≈ [] ∧ int(rhead(c)) →
∑

p:Packet

dest(p) �≈ dest(rhead (c)) ∧ int(p) →
∑

n:N
n > i → grant(n, dest(p), p) · Input(i, c)

+ c �≈ [] ∧ ¬int(rhead(c)) →
∑

p:Packet

b1(p) ≈ b1(rhead(c)) →
∑

n:N
n < i → grant(n, dest(rhead(c)), p) · Input(i, c);

6 Properties of the Models

In [6], the authors presented their models without any form of formal verifica-
tion. For Statecharts this already led to a model that did not meet the design
intent, according to [6]. Their model contained a flaw when both buffers con-
tain interesting head packets and one of the buffers was full while the other was
not. In that case, one packet should be delayed while the other head packet was
routed. This however was not covered.

To convince readers that our models capture the design intent, we formulate
some requirements and verify that the models satisfy them. These requirements
relate to deadlock analysis, overflowing buffers, packet collection and maximum
progress. The requirements are expressed in terms of modal μ-calculus formulae.
The mCRL2 tool set allows for checking the validity of such formulae on labelled
transition systems obtained from mCRL2 models.

6.1 Deadlock Detection

Deadlock is a specific condition that brings the system into a halt, from which it
cannot execute any behavior for any future. Deadlock can be caused by various
reasons, amongst others due to circular resource dependencies or when processes
cannot fulfill their precondition in order to execute an extension.

We claim that all of the presented models are free from deadlock. Deadlock
freedom is expressed by the following modal μ-calculus formula:

[true
]〈true〉true (1)

178 F.P.M. Stappers, M.A. Reniers, and J.F. Groote

6.2 Absence of Overflowing Buffers

We have used the standard mCRL2 type construction of lists for modeling the
contents of the buffer. Thought the lengths of such lists are not fixed or bound
from above, the use in combination with the constant cap guarantees that there
can be no overflows of the buffers. By means of adding the alternative summand:

#c > cap → overflow · Input(i, c)

to the input buffers, and the summand

#c > cap → overflow · Output(i, c)

to the output buffers, we can easily check that this situation can never occur by
verifying the validity of the modal formula

[true
 · overflow]false (2)

on the model that is obtained after abstracting from all actions besides overflow .
This formula then expresses that there can be no execution that performs the
action overflow .

6.3 Absence of Colliding Packets

The property that no simultaneous packet transfers are possible to the same
output buffer is specified by means of the following modal μ-calculus formula:

∀p,q:Packet∀i,j,k:N [true∗.(comm(i, j, p)|comm(k, j, q))]false (3)

This formula must be checked on the model after abstraction from all other
actions. This means that for the Simplified Switch the following model has been
used

init τ{enter ,leave}(∂{send ,recv,grant,free}(
Γ{send |recv|grant→comm}(Γ{send |recv|free→comm}(

Input(0, []) ‖ Input(1, []) ‖ Output(0, []) ‖ Output(1, [])))));

In a similar way, abstract models for Original and Modified Switch can be
defined.

It is not allowed to send two interesting packets simultaneously. This is verified
by checking the modal μ-calculus formula

∀p,q:Packet∀i,j,k,l:N (int(p) ∧ int(q)) ⇒ [true
.(comm(i, j, p)|comm(k, l, q))]false
(4)

on the system where all environmental actions are abstracted from.
Requirement 3 is relevant for all three models discussed in this paper and

Requirement 4 is only relevant for the latter two models.

Suitability of mCRL2 for Concurrent-System Design 179

6.4 Maximal Progress

A property we would like to verify is maximal progress. In the context of this
case study, the property can be phrased as: “It is impossible to transfer a single
packet from an input buffer to an output buffer in case a simultaneous packet
transfer is possible.” A modal μ-calculus formula that captures this (provided
that it is checked on the model after abstraction of environmental actions) is the
following:

∀p,q:Packet ([true
](〈comm(0, dest(p), p)|comm(1, dest(q), q)〉true
⇒ ([comm(1, dest(p), p)]false ∧ [comm(1, dest(q), q)]false)))

(5)

Note that this way of expressing maximal progress does not enforce that packet
transfer takes priority over environmental actions.

6.5 Verification Results

The requirements have been checked for the all the (relevant) models, for which
the buffers have capacity 3. This buffer capacity has been chosen because it still
allows for a reasonably fast analysis. The analysis has been conducted with the
mCRL2 tool set (Release 2010, January), on an x86-64 GNU/Linux, running
kernel 2.6.31.12, with an Intel� CoreTM 2 Duo Mobile Processor T9600 and
4GB of RAM.

The results of the formal analysis are captured in Table 1. Requirements
that hold w.r.t. a particular model are marked with “�”. The time that the
verification took is also indicated. Requirements that are irrelevant for a specific
model are marked with a “-”. It shows that for each of the models all relevant
formulae hold. It should be noted that we have not attempted to reduce these
numbers as much as possible by using state space reduction techniques.

Table 1. Results of verifying properties on the models

Requirement Simplified Original Modified

1 �, 3.550s �, 5m3.863s �, 5m16.921s
2 �, 3.729s �, 7m35.686s �, 7m35.202s
3 �, 3.778s �, 4m44.647s �, 4m49.101s
4 – �, 5m29.906s �, 5m39.844s
5 �, 3.301s �, 4m22.232s �, 4m33.786s

7 Comparison

This case study originates form work, gathered in [6]. There, the authors discuss
the same case studies, described in the specification languages: TLA+, Blue-
spec, State-charts and ACP. As we have elaborated on the construction of the
different models with their underlying design decisions in mCRL2, this section

180 F.P.M. Stappers, M.A. Reniers, and J.F. Groote

describes the deviation of the formalisms with respect to the case study. The
comparison focusses on three aspects, namely locality of reasoning, adaptability
of the language and maximal throughput. Furthermore we extend the focus by
taking verification into account.

Before explaining the comparison, we give a brief description of the four lan-
guages. First, TLA+ (the Temporal Logic of Actions) is a complete specifica-
tion language, that uses logic for the specification and reasoning about concur-
rent and reactive systems. It is designed for writing specifications consisting of
non-temporal mathematics with temporal logic and tries to capture a complete
system in a single formula [14]. Second, Bluespec [12] is a guarded command lan-
guage, based on an operation centric description, where the behavior of a system
is described as a collection of atomic operations in the form of rules. These rules
are defined by a predicate condition and the effect on the state of the system.
During execution several rules are concurrently executed in a clock cycle. Third
we consider Statecharts, which are an extension of conventional state-transition
diagrams with three elements, dealing, with hierarchy, concurrency and commu-
nication [11]. The graphical hierarchy presentation enables designers to adapt
to the required level of detail of the system. Finally, the comparison covers the
Algebra of Communicating Processes (ACP) [3]. ACP is a finite axiomatisation
based framework for specifying and manipulating the behaviour of models. It
facilitates the behavioural description for non-deterministic choices, sequential
operations, parallel composition, deadlock and communication.

7.1 Maximal Throughput

Within the specification maximal throughput is achieved by executing multiple
actions in a single clock cycle. Therefore, this comparison narrows down the
scope to the behaviour for simultaneous actions.

It is not possible to describe the simultaneous transfer of packets in TLA+
and ACP. Therefore a designer is required to apply a spatial reasoning to verify
that indeed packets are transferred simultaneously. As we compare the formalism
to mCRL2, we see that within mCRL2, it is possible to define multi-actions. We
believe that these multi-actions are more suitable for specifying the throughput
behavior as they relate better to the simultaneous packet transfers in the system.
Therefore it is not necessary for a designer to reason about multiple transitions.

For Bluespec specifications, a greedy run-time scheduler tries to acquire max-
imal throughput. It should be noted that in some cases a maximal throughput
cannot be obtained, even though all conflict-free rules are selected. To mini-
mize latency, the scheduler may chose a maximal set of actions of the design
for execution during each hardware clock cycle. Therefore it is possible that this
set does violate the maximal throughput requirement [15]. As exploration in
mCRL2 is exhaustive, and latency is no issue, maximal throughput can be guar-
anteed, by means of synchronizing actions and guards. Furthermore, although
not specified here, we believe that it possible to use the mCRL2 time operator to
enforce throughput in different ways, e.g. by enforcing the execution of actions
at predefined timestamps.

Suitability of mCRL2 for Concurrent-System Design 181

Regarding Statecharts, the authors of [6] did not give a suitable description
in their paper, as they specified a wrong model. Therefore a comparison for
maximal throughput, renders useless as a throughput analysis on Statecharts is
omitted. Note that this does not mean that it is impossible to give a correct
model using Statecharts.

7.2 Priority

The locality of reasoning is derived from the way priority is assigned to the
routing of packets.

To reduce the amount of global reason, w.r.t. the communication we have
generalized from the specific implementations of the input buffers. This allows
us to reason on a local level about priorities. This shows if we compare our
models to those as given in ACP. Note that within mCRL2, we have modelled
priority by means of permissions, and therefore the contents of the buffers are
invisible to other processes. In the given ACP models, the queues are directly
inspected by the other processes. This requires a more spatial reasoning in ACP,
in order to derive the priority.

Within TLA+, the priority of a packet transfer is handled at a local level. So
with respect to assigning priority to executing actions, mCRL2 and TLA+ are
comparable. We do have to note that the input queues, as well as the output
queues are grouped in TLA+. This makes it possible for TLA+ actions to directly
observe the queue of another process, at a local level. When comparing this
method to the one given in our models, we believe that it is possible in mCRL2
to apply reasoning on a more local level.

The Bluespec specification defines rules that implicitly deal with mutually
exclusive access to shared resources. When multiple rules access the same re-
source, access is given to the resource defined first in the priority hierarchy. In
this way, priority amongst packet transfers is ensured. Note that priority rules
are defined on a spatial level. Therefore, the reasoning that needs to be applied
is more spatial than the one used in mCRL2.

Within Statecharts all the behavior of the buffers are locally specified, however
global temporal reasoning is required to establish the priority among packet
transfers. A simultaneous transfer requires a global spatial reasoning over at
least four individual Statecharts.

7.3 Adaptability

In [6], the authors only explain TLA+ for the simple switch. Though they claim
that TLA+ relates to Bluespec, they do not show models for the original and
modified switch. For that reason, the adaptability of TLA+ is unclear, since we
are no experts in it. This does not permit us to judge whether mCRL2 performs
better or worse in terms of adaptability.

A similar reasoning holds for Statecharts. The authors describe in a fairly
easy way how to obtain a simple switch from the original switch. However,
the subsequent discussion they show that the presented model of the original

182 F.P.M. Stappers, M.A. Reniers, and J.F. Groote

switch is incorrect and requires a more complicated model to capture the design
intent. Since this correct complicated model is not given, it is not fair to make
a comparison.

For modeling the modified switch in Bluespec, the authors require an entire
redesign of the original switch, such that each priority separately defines rules.
This leads to almost a duplication of the model. As we compare the same exten-
sion for our modified switch in mCRL2, we only have to split a summand and
alter a guard, which is a rather small modification.

ACP serves well in terms of adaptability for this case study. As mCRL2 falls
in the same category as ACP, this also holds for mCRL2. Therefore in terms of
adaptability, mCRL2 and ACP are comparable.

Furthermore, we have set up the processes of the buffers in such a way that
they can be easily reused for a more general specification, e.g. a N ×M specifi-
cation. To do so, we are required to add extra process references in the initial-
isation, and add extra rules to the data equations for routing packets. Within
the current models we allow, that only one packet can be send simultaneously
within a clock cycle. By adding more processes, this bound will not change. To
increase the throughput, e.g. allowing more message transfers per clock cycle,
we need to add summands that grant this communication. We argue that these
modifications can be done at a local level.

7.4 Verification

The authors of [6] are unable to convince themselves that the specification they
give are correct with respect to the design intent. As their remark essentially
holds for all specifications, it already shows the first pitfalls in concurrent system
design.

In line with the authors of [6], we agree that global reasoning is required
on a specification across all the processes to verify system requirements. This
however is a difficult task. As the description of the models is fairly simple,
their explicit behaviour is not. In Figure 1 we have taken the opportunity to
show, that even for a small system like the simplified switch, it already leads to
systems that cannot be overlooked by human reasoning1. For a buffer capacity of
three elements, we generate a state-space of 3600 states with 41137 transitions2.
Nevertheless, with the automated methods of the mCRL2 tool set it turns out
to be possible to verify interesting properties of the modelled systems. This does
not require reasoning by humans, which is the case for establishing properties
using the formalisms used in [6].

1 These numbers are obtained, without applying any reduction techniques. We are
aware that these numbers can be reduced. Note that the number of states and the
number of transitions are given on a logarithmic scale.

2 Please note that multi-actions that contain precisely the same actions are only taken
into account once. Otherwise, the numbers of transitions would have been much
larger.

Suitability of mCRL2 for Concurrent-System Design 183

Fig. 1. Complexity of the model expressed in number of states and transitions for the
simplified and original switch models

8 Conclusion and Future Work

In this paper, we have shown, in a case-study, that mCRL2 is suitable for the
modelling and subsequent analysis of a system in which multi-party communi-
cations combined with priority-based communication occur. We have tried to
apply local reasoning as much as possible, by generalizing the behavior of the
buffers by type, thereby preserving both the possibility to send prioritized pack-
ets as well as sending packets simultaneously. As a consequence, it is possible
to re-use the models in a more general setting. Furthermore, we showed that
with mCRL2, we were also able to verify some properties, that has led to an
increase in confidence that the model represents the design intent. Thereby, we
have shown that mCRL2 is at least comparable to the formalisms used in [6],
and in some cases more suitable for specifying complex system designs.

We should note that the comparison is based on subjective grounds. For a fair
comparison, one should study the possible language constructs for each of the
formalisms and point out the differences. This requires an expert over multiple
formalisms or a cooperation among experts of different formalisms. Since the case
study is centered around a specific specification, for which the models are created
according to the level of expertise of the designers, the outcome of the comparison
is subjective. As the authors of this paper can be considered experts when it
comes to mCRL2 specifications, and are familiar with ACP and Statecharts, we
are confident about the claims made between these formalisms.

184 F.P.M. Stappers, M.A. Reniers, and J.F. Groote

We have shown that it is possible to capture relative performance require-
ments, without explicitly stating time. Since mCRL2 falls into the category of
timed process algebra’s [2], it allows designers to specify real-time behaviour.
Nevertheless, we have chosen not to do so for several reasons. First, we would
like to have a fair comparison between the untimed formalisms. Second, timed
requirements tend to be complex in general and require challenging manipula-
tions on the mCRL2 models before one can verify requirements. Nevertheless,
we believe that the case study considered in this paper can be formulated in a
timed specification, and can serve as subject of study for reduction and analysis
techniques for timed systems.

References

1. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories
of Communicating Processes. Cambridge tracts in theoretical computer science,
vol. 50. Cambridge University Press, Cambridge (2010)

2. Baeten, J.C.M., Kees Middelburg, C.A.: Process Algebra with Timing. In: EATCS
Monographs, Springer, Berlin (2002)

3. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Infor-
mation and Control 60(1-3), 109–137 (1984)

4. Bluespec: Automatic Generation of Control Logic with Bluespec SystemVerilog
(Februari 2005), http://www.bluespec.com/forum/download.php?id=63

5. Bradfield, J.C.: Verifying Temporal Properties of Systems. In: Progress in Theo-
retical Computer Science, Birkhäuser, Basel (1992)

6. Daylight, E.G., Shukla, S.K.: On the difficulties of concurrent-system design, illus-
trated with a 2 × 2 switch case study. In: Cavalcanti, A., Dams, D.R. (eds.) FM
2009. LNCS, vol. 5850, pp. 273–288. Springer, Heidelberg (2009)

7. Groote, J.F., Keiren, J., Mathijssen, A., Ploeger, B., Stappers, F., Tankink, C.,
Usenko, Y., van Weerdenburg, M., Wesselink, W., Willemse, T., van der Wulp, J.:
The mCRL2 toolset. In: Proceedings International Workshop on Advanced Soft-
ware Development Tools and Techniques, WASDeTT 2008 (2008)

8. Groote, J.F., Mateescu, R.: Verification of temporal properties of processes in a
setting with data. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp.
74–90. Springer, Heidelberg (1998)

9. Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y., van Weerdenburg, M.:
The formal specification language mCRL2. In: Brinksma, E., Harel, D., Mader,
A., Stevens, P., Wieringa, R. (eds.) Methods for Modelling Software Systems
(MMOSS). Dagstuhl Seminar Proceedings, vol. 06351, Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2007)

10. Groote, J.F., Mathijssen, A.H.J., Reniers, M.A., Usenko, Y.S., van Weerdenburg,
M.J.: Analysis of distributed systems with mCRL2. In: Alexander, M., Gardner, W.
(eds.) Process Algebra for Parallel and Distributed Processing, ch. 4, pp. 99–128.
Taylor & Francis, Abington (2009)

11. Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

http://www.bluespec.com/forum/download.php?id=63

Suitability of mCRL2 for Concurrent-System Design 185

12. Hoe, J.C., Arvind: Synthesis of operation-centric hardware descriptions. In:
Proceedings of the 2000 IEEE/ACM international conference on Computer-aided
design, ICCAD 2000, Piscataway, NJ, USA, pp. 511–519. IEEE Press, Los Alamitos
(2000)

13. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–
354 (1983)

14. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Reading (2002)

15. Singh, G., Shukla, S.K.: Verifying compiler based refinement of BluespecTM speci-
fications using the spin model checker. In: Havelund, K., Majumdar, R., Palsberg,
J. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 250–269. Springer, Heidelberg (2008)

Mapping UML to Labeled Transition Systems
for Test-Case Generation

A Translation via Object-Oriented Action Systems�

Willibald Krenn1, Rupert Schlick2, and Bernhard K. Aichernig1

1 Institute for Software Technology, Graz University of Technology, Austria
{wkrenn,aichernig}@ist.tugraz.at

2 Austrian Institute of Technology, Vienna, Austria
Rupert.Schlick@ait.ac.at

Abstract. The Unified Modeling Language (UML) is a well known and
widely used standard for building software models. While it is familiar
to many software engineers, it lacks standardized formal semantics. In
this paper, we extend on the formalism of object-oriented action systems
(OOAS) and describe a mapping of a selected UML-subset to OOAS by
choosing one of the several possible semantics of UML. This mapping,
together with the introduction of a trace semantics for OOAS, paves
the way for applying tools for and theory of labeled transition systems
to UML-models. As a running example, we use a car alarm system in
the context of model-based test-case generation and show how the UML
mapping is done.

1 Introduction

Today, embedded computer systems constitute an integral part of almost all
technology surrounding us. They are increasingly integrated in safety-relevant
systems, either in any kind of vehicles, medical equipment, or industrial or public
control systems. Evidently, any possible measure has to be taken to ensure the
dependability of such systems, from early planning and design to final installation
and maintenance.

The standards EN 50128 and IEC 61508 recommend the use of formal meth-
ods, especially at higher Safety Integrity Levels (SILs). However, despite the
decades of research dedicated to formal methods, most engineers still lack ex-
perience and confidence in this field. Techniques like theorem proving or model
checking are rarely applied to large and complex systems.

Therefore, testing remains the preferred method of verification, despite the
fact that it is very expensive. In general, about half of the overall effort of a
project is dedicated to testing, and for safety-relevant projects the amount of
time spent on testing is even higher. Consequently, there is a huge demand for

� Research herein was funded by the EU FP7 project ICT-216679, Model-based Gen-
eration of Tests for Dependable Embedded Systems (MOGENTES).

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 186–207, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Mapping UML to Labeled Transition Systems for Test-Case Generation 187

reliable automatic test case generation tools grounded on solid foundations. The
European FP7 project MOGENTES serves these demands.

MOGENTES stands for Model-based Generation of Tests for Dependable Em-
bedded Systems and its goal is to significantly enhance testing and verification
of dependable embedded systems by means of automated generation of efficient
test cases relying on development of new approaches as well as innovative inte-
gration of state-of-the-art techniques. In particular, MOGENTES aims at the
application of these technologies in large industrial systems, simultaneously en-
abling application domain experts (with rather little knowledge and experience
in usage of formal methods) to use them with minimal learning effort.

The industrial partners in the project identified UML as their future modeling
paradigm and hence, require test case generation tools to process UML models.
This need conflicts with the requirement that our test case generation technique
has to be build on solid foundations, because UML lacks a standard formal
semantics. However, a formal semantics is essential for our testing techniques
based on precise fault-models and formal notions of conformance. Therefore, we
decided to treat UML as a front-end modeling language and translate it to a
formal back-end formalism on which our test case generators will work on.

In this paper, we give insights into this translation process. A car alarm system
serves as a running example. Section 2 presents the UML model of the car alarm
system including the technique to express the testing interface in UML class dia-
grams. Then, Section 3 presents and motivates our back-end formalism, namely
Object-Oriented Action Systems (OOAS), a formalism well-suited for expressing
object-oriented models of embedded systems. This section also presents a further
level of semantic mapping: the behavior of state-rich OOAS is interpreted as a
series of controllable and observable events. It is this event-level on which our test
case generators work. This gives us the advantage that we can base our formal
testing approach on the existing testing theory on labeled-transition systems.
Next, in Section 4 we discuss our semantic mapping, including the translation
of non-trivial UML state charts with nested states, parallel regions and time
triggers. In Section 5 we discuss the case study. Finally, in Section 6 we draw
our conclusion and give an outlook on future and related work.

2 A UML-Model

We use a very simplified car alarm system as an example for discussing the
concepts and issues of the transformation of UML models to action systems.
The example is taken from Ford’s automotive demonstrator within MOGENTES
and the main purpose of this rather simple example within the project is to test
and validate the test-case generation work flow on a basic level. Notice that we
are dealing with black-box testing here, as, e.g., Ford wants to test components
provided by an external partner based on the requirements that were given to
this company.

Before we can generate any test-cases, we need to build a model from the
requirements. For our simplified car alarm system (CAS), we were given the
following three textual requirements.

188 W. Krenn, R. Schlick, and B.K. Aichernig

Requirement 1: Arming. The system is armed 20 seconds after the vehicle is
locked and the bonnet, luggage compartment and all doors are closed.

Requirement 2: Alarm. The alarm sounds for 30 seconds if an unauthorized
person opens the door, the luggage compartment or the bonnet. The hazard
flasher lights will flash for five minutes.

Requirement 3: Deactivation. The anti-theft alarm system can be deactivated
at any time, even when the alarm is sounding, by unlocking the vehicle from
outside.

When trying to construct an animated model based on textual requirements it is
often the case that conflicts or underspecified situations become apparent. One
might think that the simplistic car alarm system is sufficiently described by these
three textual requirements – the contrary is the case. What is left unspecified is
the case of what happens when an alarm is ended by the five minute timeout:
does the system go back to armed directly, or does it need to wait for all doors
to be closed again before returning to armed?

2.1 Testing Interface and Instantiation

The UML model of the car alarm system comprises four classes and four signals,
as shown in Fig. 1. The class AlarmSystem is marked as system under test (SUT)
and may receive any of the Lock, Unlock, Close, or Open signals. At the same
time, the SUT calls methods of the classes AlarmArmed, AcousticAlarm, and
OpticalAlarm – all of them marked as being part of the environment.

Notice that the context diagram specifies the observations (all calls to methods
being part of the environment) we can make and the stimuli the system under
test can take (all signals). In effect, this diagram specifies our testing interface.

«environment»

AcousticAlarm

 SetOn()
 SetOff()

«system_under_test»

AlarmSystem

 Lock
 Unlock
 Closed
 Opened

«environment»

AlarmArmed

 SetOn()
 SetOff()

«environment»

OpticalAlarm

 SetOn()
 SetOff()

«signal»
Lock

«signal»
Unlock

«signal»
Open

«signal»
Close

 + acousticAlarm

 [1]

 + opticalAlarm

 [1]
 + alarmArmed

 [1]

Fig. 1. Car Alarm System - Testing Interface

We use an initialization diagram (not shown) to specify the system configu-
ration: we create a singleton object for each of the classes.

2.2 State Machine

Fig. 2 shows the CAS state-machine diagram. From the state OpenAndUnlocked
one can traverse to ClosedAndLocked by closing all doors and locking the car.

Mapping UML to Labeled Transition Systems for Test-Case Generation 189

AlarmSystem_StateMachine

Alarm

Activate Alarms /entry
Deactivate Alarms /exit

Flash

FlashAndSound

Armed

Show Armed /entry
Show Unarmed /exit

ClosedAndLocked

OpenAndUnlocked

ClosedAndUnlocked OpenAndLocked

SilentAndOpen

Unlock

30 / Deactivate Sound

300

Open

Unlock

20

Close

Unlock OpenLock Close

Close LockOpen Unlock

Fig. 2. Car Alarm System - State Machine

Actions of closing, opening, locking, and unlocking are modeled by corresponding
signals Close, Open, Lock, and Unlock. As specified in the first requirement, the
alarm system is armed after 20 seconds in ClosedAndLocked. Upon entry of the
Armed state, the model calls the method AlarmArmed.SetOn. Upon leaving
the state, which can be done by either unlocking the car or opening a door,
AlarmArmed.SetOff is called. Similar, when entering the Alarm state, the optical
and acoustic alarms are enabled. When leaving the alarm state, either via a
timeout or via unlocking the car, both acoustic and optical alarm are turned
off. When leaving the alarm state after a timeout (cf. second requirement) we
decided to interpret the requirements in a way that the system returns to an
armed state only in case it receives a close signal. Turning off the acoustic alarm
after 30 seconds, as specified in the second requirement, is reflected in the time-
triggered transition leading to the Flash sub-state of the Alarm state.

2.3 Semantic Variation Points

Despite being machine readable, the presented UML model lacks precise seman-
tics. As an example, the event processing-machinery within a state machine is
not fully specified within the UML standard:

No assumptions are made about the time intervals between event occur-
rence, event dispatching, and consumption. This leaves open the possi-
bility of different semantic variations such as zero-time semantics. It is
a semantic variation whether an event is discarded if there is no appro-
priate trigger defined for them. [1], Trigger, p. 456

These intentionally underspecified areas in the UML standard are called “se-
mantic variation points” and are used within the UML specification to provide
leeway for domain-specific refinements of the general UML semantics ([1], p. 17).
Other semantic variation points affect, e.g., time events and signal events. When

190 W. Krenn, R. Schlick, and B.K. Aichernig

we discuss the mapping of UML to object-oriented action systems in Section 4,
we will make use of these semantic variation points and define one particular
behavior of our models. Note that these choices may form the basis for semantic
tests: when creating test cases from UML models we may want to find imple-
mentations that violate our chosen interpretation of a semantic variation point!
Note also that in addition to semantic variation points, there are other sources
of non-determinism in the UML specification, e.g., transition firing (cf. [1], State
Machine, p. 566).

3 Object-Oriented Action Systems

In this section we present object-oriented action systems, our intermediate-level
modeling language that we use for giving UML models precise semantics. Object-
oriented action systems are an extension to the action system formalism initially
proposed by Back et al. in [2,3]. The object-oriented extension presented here is
based on the work of Bonsangue et al., published in [4]. We also use a prioritized
composition operator that has already been introduced by Sekerinski et al. in [5].
Notice, however, that our work is the first to combine object-oriented action
systems (with custom extensions), prioritized composition, complex data types,
and a trace semantics of action systems. We start our description of object-
oriented action systems with the introduction of normal (non-object-oriented)
action systems.

3.1 Action Systems

Syntactically, we may represent an action system AS comprising m functions, a
named actions, d non-deterministically composed anonymous actions, and a set
FI of imported functions syntactically as follows.

AS =df |[var V : T = I
functions F 1

n = F 1
b ; . . . ; Fm

n = Fm
b

actions N1
n = N1

b ; . . . ; Na
n = Na

b

do A1 � ... � Ad od
]| : FI

Notice that functions have a name, a body and may return a value. Named
actions are similar to functions but may not have a return value. In the remainder
of this paper, we assume that named actions may only be called from within the
do od-block (that is, not from within named actions or functions), and that
function-calls may not be recursively nested. We also demand that each named
action has the form of a guarded command. Relying on these assumptions, we
are allowed to re-write the action system in a more classical form, where only
the actions within the do od-block are left:

AS =df |[var V : T = I
do A1 � ... � Ad od

]| : Z

Mapping UML to Labeled Transition Systems for Test-Case Generation 191

Within this representation, V is a vector of variables of types T , initialized with
values I, all Ai (1 ≤ i ≤ d) are actions, and � stands for non-deterministic,
demonic choice. Demonic choice of actions means that when an aborting action
is enabled, this action is chosen. Notice that after “inline’ning” all imported
functions ∈ FI , Z denotes the set of imported variables of the environment that
was accessed by the imported functions.

After eliminating all function calls, the action system consists of basic actions
only (cf. Table 1) and all actions are part of the do od-block, also known as
Dijkstra’s guarded iteration statement [6]. The guarded iteration statement can
be thought of as being a loop that selects one enabled action Ai for execution in
each iteration. In case there is no action enabled, execution of the action system
ceases as execution of the loop terminates.

We can determine the enabledness of an action Ai by computing the enabled-
ness guard: Because we do not want an action Ai to be enabled for states in which
it is guaranteed to establish any postcondition, i.e. behave miraculously, the en-
abledness guard is defined as g.A =df ¬wp(A, false), where wp : Action×(State �→
Bool) �→ (State �→ Bool) is the weakest precondition predicate transformer. For
example, the precondition of a guarded command is given by

wp(requires guard : A end, q) ≡ guard ⇒ wp(A, q)

with “⇒” denoting logical implication. Table 1 lists the weakest preconditions
of all actions for any given predicate q.

Table 1. Semantics of Basic Actions

Action Notation wp(Action, q)
Sequential Composition S1; . . . ; Sn wp(S1, wp(. . . , wp(Sn, q)))
Nondeterministic Composition S1 � S2 wp(S1, q) ∧ wp(S2, q)
Prioritizing Composition S1//S2 wp(S1, q)∧

(¬g.S1 ⇒ wp(S2, q))
Guarded Command requires p: S1 end p⇒ wp(S1, q)
Multiple Assignment y := e q[y := e]
Nondeterministic Assignment z := z′ with Q (∀z′ ∈ Q.z · q[z := z′])
Local Variables var ∀x1 . . . xn : wp(S, q)

x1 : T1; . . . ; xn : Tn : S

Skip skip q
Abort abort false

In Table 1, S1, S2 each denote an action, y lists of variables, z, z′ variables, e
is a list of expressions, p is a predicate over the state of the action system, g.S1
is the enabledness guard of action S1, and Q is a predicate over z, z′ (and the
state). The nondeterministic assignment assigns to variable z the value of z′ for
which Q holds. The statement aborts if this is not possible [3]. Notice that an
action will terminate if the termination guard t.A = wp(A, true) holds.

192 W. Krenn, R. Schlick, and B.K. Aichernig

For any of the defined actions, the monotonicity (1) and conjunctivity (2)
properties hold:

(p ⇒ q) =⇒ (wp(A, p) ⇒ wp(A, q)) (1)
wp(A, P) ∧ wp(A, Q) ≡ wp(A, P ∧ Q) (2)

In addition, we require an action to be bounded non-deterministic. The parallel
composition of two action systems is done by joining all actions and variables.
(Some variables may be shared between the systems.) As an example, the parallel
composition AS1 ‖ AS2 of two action systems

AS1 = |[var X : T 1 = I1;

do A1
1 � . . . � A1

m od]| : u1

AS2 = |[var Z : T 2 = I2;

do A2
1 � . . . � A2

n od]| : u2

yields AS1‖2:
AS1‖2 = |[var X : T 1 = I1; Z : T 2 = I2;

do A1
1 � . . . � A1

m

� A2
1 � . . . � A2

n od

]| : (u1 ∪ u2) \ (v1 ∪ v2)

where vi denotes all variables used (exported) from action system ASi.

3.2 Object Orientation

We use the work of Bonsangue et al. [4] as the basis for object-oriented action
systems: in particular we share the transformation step from object-oriented
action systems to action systems. We differ in the notion of named actions and
procedures and we add the ability to prioritize objects of a particular class
with respect to objects of another class. Within our methodology, we use a very
simple form of inheritance: A class C2 is a valid subclass of C1 if and only if the
(syntactic) superposition (cf. [7]) refinement holds between the classes. Roughly
speaking this means that C2 may introduce additional variables and actions.
However, none of the additional actions may have any effect on the variables of
C1, it must be guaranteed that when only considering the new actions and the
initial state the system terminates, and the exit condition of C2 must imply the
exit condition of C1. The subclass C2 may override (refine) actions of C1 in a
way that the guard is strengthened and values to the additional variables are
assigned.

Like most object-oriented programming languages, objects are constructed at
runtime from classes with the help of a constructor statement o := new(C),
where o represents the instance (object) and C stands for some class. Similar
to [4], a class C is a named type and can be represented as tuple C =df (Cn, Cb)

Mapping UML to Labeled Transition Systems for Test-Case Generation 193

where Cn ∈ CN is a class name from the set of class-names CN and Cb is the
body of the type definition:

Cb =df |[var V : T = I
methods M1

n = M1
b ; . . . ; Mm

n = Mm
b

actions N1
n = N1

b ; . . . ; Na
n = Na

b

do A od
]| : MI

Similar to our definition of action systems, V denotes a vector of state-variables
of types T , initialized with a value of I. A class may have m methods, each one
having a name and a body: M i =df (M i

n, M i
b) (1 ≤ i ≤ m). As in action systems,

the class may import a set of methods MI from other classes. Like before, we do
not allow for recursive calls of methods (so we can easily in-line the calls), and
named actions may only be called from within the do od-block. Notice that this
implies that methods are “public”, as they can be called by any other method
or action. Again, methods are free to return a value while named actions may
only take input parameters.

We restrict an object-oriented action system to a finite set of classes C =df

{C1, . . . , Ck} and a finite set of objects. Practically, this means that we allow
object-instantiation only during state-variable initialization, which permits us a
rather easy check of finiteness. When a class in an object-oriented action system
is marked as autocons, one instance of the class will be created automatically at
system start and is called a “root object”.

We assume that all objects of one class have the same priority. Between objects
of different classes, however, we allow ordering with the help of the prioritized
composition operator: we introduce a so-called system assembling block (SAB).
The SAB, which is an extension to the work of [4], specifies the ordering of
priorities between objects of different classes. We rely extensively on this feature
in order to model, e.g., event broadcasting, as is discussed in Section 4.4. The
syntax of the system assembling block is defined by the following grammar.

SAB ::= Cn ((� | //) SAB)?

Notice that the non-deterministic choice operator denotes parallel composition
and the prioritizing composition operator expresses a prioritizing composition of
objects. As an example, C1// C2 means that only if there is no action enabled
in any of the C1 objects, actions of any of the C2 objects will be looked at.

Hence, we define an object-oriented action system as a 3-tuple (C,R,SAB),
where C is a finite set of classes {C1, . . . Ck}, R ⊆ C is a set of classes that
need to be instantiated once at system start, and SAB is the system assembling
block. Within the system assembling block, each class-name Ci

n ∈ C must be
listed once, and all listed names must be from CN .

The semantics of object-oriented action systems are given by a mapping to
action systems which is based on the work presented in [4]. The main idea of the
mapping is to create one action system per object and join all action systems as
specified in the system assembling block.

194 W. Krenn, R. Schlick, and B.K. Aichernig

After generating the set of all object names ON =df ∪Ci∈CONCi , in a first
step every action of a class Ci is translated into an action of an action system.
During this step, method calls are transformed into function calls of action sys-
tems. Because a function call in an action system needs to statically specify the
target action system name and the function name, i.e. looks like ActionSystem-
Name.FunctionName(. . .), and the name of the target object (action system) is
not known until runtime, the translation needs to split the method call into a
non-deterministic choice over calls to all possible action systems (objects) created
for the target type. Notice that an implementation may do this more efficiently:
here we only show how an object-oriented action system could be directly spec-
ified using the action system syntax. Also notice that during the transformation
of an object-oriented action system all named actions and methods get renamed
so that the names are unique.

In a second step, each single class Ci of an object-oriented action system is
translated into an action system: for the class Ci itself and for each object of Ci

an action system is constructed. Remember that the methods have already been
translated in the previous step. All action systems that were built in this step are
then parallel composed and form the action system A(Ci) describing class Ci.

Finally composing all action systems A(Ci) as specified in the system assembly
block completes the mapping of the object-oriented action system OO to an
action system A(OO).

3.3 Prioritizing Composition

Given two actions S1 and S2, then the prioritizing composition S1 // S2 can be
re-written using non-deterministic choice and the enabledness guard as follows
(cf. Table 1).

S1 // S2 ≡ S1 � (requires ¬g.S1 : S2 end)

Hence, in case the enabledness guard of action S1 does not hold, the system
will deterministically choose action S2 provided S2 is enabled. However, if S1 is
enabled, the system will only choose S1 because action S2 is guarded by ¬g.S1.

When prioritizing composition is applied to action systems AS1 and AS2 (as
in the SAB), it is defined such that priority is given to the actions of AS1 over
the actions of AS2. As an example, the prioritized composition AS1 // AS2 of
two action systems

AS1 = |[var X : T 1 = I1
0 ;

do A1
1 � . . . � A1

m od]| : u1

AS2 = |[var Z : T 2 = I2
0 ;

do A2
1 � . . . � A2

n od]| : u2

yields AS1 // 2:
A1 // 2 = |[var X : T 1 = I1

0 ; Z : T 2 = I2
0 ;

do (A1
1 � . . . � A1

m)

Mapping UML to Labeled Transition Systems for Test-Case Generation 195

// (A2
1 � . . . � A2

n) od

]| : (u1 ∪ u2) \ (v1 ∪ v2)

where vi denotes all variables exported from action system ASi.
Like on actions, prioritizing composition is associative on action systems. How-

ever, it does not in general distribute over parallel composition to the right when
used on action systems. This is due to local variables that would be duplicated.

3.4 Complex Data Types

Finally we add complex data types, such as maps, lists, and tuples (besides ob-
jects) to our language of OOAS. Most operators on these complex types were
taken from the set of operators defined in the Vienna Development Method
(VDM) [8,9] and include domain/range restrictions, and distributed union/in-
tersection among other standard operators. We also allow array-like access of
list elements and set operators to be working on lists.

3.5 Trace Semantics

For black-box test-case generation purposes, we are interested in the abstract
computation sequences, i.e. traces, of an action system. In [2] the computation of
an action system starting from an initial state γ0 is defined as a possibly infinite
sequence t of the form

t =df γ0
Si−→ γ1 · · ·

with each g.Si enabled in the transition’s initial state.
We will use the concept of named actions to define more abstract computation

traces: we extend the name of named actions to include markers for observable
and controllable actions. All methods and all unmarked actions are considered
internal. Hence, any name N i

n of a named action is built according to the fol-
lowing grammar.

N i
n ::= (’obs’ | ’ctr’ |’ ’)’ ’ Identifier

Informally, an abstract computation sequence starting from an initial state γ0 is
a possibly empty or infinite sequence tabs of the form

tabs =df γ0
Ni

n−→ γ1 · · ·

where
Ni

n−→ means the application (call) of the action body N i
b of action N i when

g.N i
b holds at the transition’s initial state or there is some sequence of basic

actions (including method calls) γj
Si−→ · · · starting at the current state γj and

leading to a state where g.N i
b holds.

Notice that the concept of labeled actions can already be found in [2] and
that in [10] a similar event-based view of action systems is taken.

196 W. Krenn, R. Schlick, and B.K. Aichernig

4 Chosen UML Semantics

Since many UML constructs represent rather complex behavior, mapping to
OOAS means also implementing these constructs in OOAS. Because of the size
of UML, not only would full feature support be a major effort, but many elements
simply are not useful in the context of behavioral test models. Therefore, we limit
the transformation tool to a subset of UML.

In the following subsections, we describe the selected subset along with some
motivation and then four of the more interesting aspects of the transformation
are discussed, along with the taken decisions regarding semantic interpretation.

4.1 Used UML Subset

In the context of embedded and safety critical systems, modeling with state
machines is quite common and fits the needs of the domain. The UML subset
supported by the transformation therefore comprises class diagrams, state ma-
chines and a subset of OCL. The selection is mainly based on the needs of the
demonstrator applications within MOGENTES; some state-machine concepts
that were intentionally left out, like deferred triggers and history states, could
be added when needed. Table 2 summarizes all supported UML elements. In the
table, “Simple” Inheritance means that we do not support any polymorphism
or late-binding. It is set in brackets as our tool-support for inheritance is not
yet complete. Also, while the transformation in principle supports the float data
type, we do not use it currently. Method and effect opaque behavior bodies are
filled using a minimal custom language that can be used to express signal send-
ing/broadcasting, method calling and assignment. If needed, this small language
can easily be replaced by another one, e.g., the Object Action Language (OAL).

In the transformation, we strive for following UML v2.2 Standard. Nonetheless
we have made some design choices, aside from the selected elements: object

Table 2. Supported UML Elements

“T
yp

es
”

Class
Enums
Signal
Bool
Int
(Float)

C
la

ss
es

Active/Passive
Associations
(“Simple” Inheritance)
Member Fields
Methods Def. + Body
Signal Reception

O
C

L

and, or, not, implies
=, <, >, <=, >=
union, intersect
select, collect
exists, forall, oclIsInState
Literals (Numbers, Bool)

St
at

e
M

ac
hi

ne
s Substate Machine

Orthogonal Regions
(Final-, Initial-, Pseudo-) State
Entry, Exit Action
Transitions with Effects
Trigger with Change/Signal/Call/Time Events
Constraints (OCL)
Junctions, Choice

Mapping UML to Labeled Transition Systems for Test-Case Generation 197

instantiation is limited to the initialization phase while destruction of objects
is not used at all. This fits well into the current practice in embedded systems
design, where a constant, limited and predictable memory footprint is wanted.
This also avoids some of the semantic variation points on deletion/creation in
context of composition and aggregation relations between classes.

Classes, member-fields and method definitions map easily to the respective
counterparts in the OOAS as described in the previous section. Mapping of in-
heritance is also straight forward, provided the subclass is a valid superposition-
refinement of the superclass. Behavioral aspects are mainly expressed with state
machines in the selected UML subset; while there is a similarity between state
machine transitions and guarded actions, some of the features of UML state
machines need some more thought on how to implement them in OOAS.

4.2 Events

Transitions in UML state machines are triggered by events. There are four trig-
ger types: signal triggers, call triggers, change triggers and time triggers. All
events concerning an object are stored in the object’s event pool until they are
consumed, e.g., by transitions. Although we assume that there is always only one
external input event at a time, multiple objects might be interested in an event,
e.g., a signal reception event, and processing the event might produce further
events before the initial events are consumed in the other objects. Hence the
need to implement an event-management logic.

Most models are developed with an assumption of in order processing of
events, therefore we decided to use event queues, implemented as lists in OOAS.
The event distribution logic of the respective event type adds the event at the
end of the list. State machine transitions consume events from the front of
the list. Providing real pool behavior with OOAS can be easily done by non-
deterministically choosing the event to process next, at the cost of increased
non-determinism.

A transition path (one direct transition between states or a series of transitions
connected by choice pseudo-states) is implemented as a named action of the
following form:
1 transit ion OpenAndLocked to ClosedAndLocked =
2 requires (s t a t e = OpenAndLocked) and
3 (events <> [n i l]) and
4 (hd events) [0] = rece ived AlarmSystem Close) :
5 s t a t e := ClosedAndLocked
6 end ;
7 /� . . other t r an s i t i on s . . �/
8 dequeue =
9 requires events <> [n i l] :

10 events := t l s e l f . events
11 end

The requires expression (guard) of the transition tests if the object is in the
source state, and whether the first event in the event queue is one of the trigger
events of the transition. In case the transition has a guard, it is also checked.
All actions modeling transitions are combined by non-deterministic choice as
follows.

198 W. Krenn, R. Schlick, and B.K. Aichernig

1 do
2 ((t rans i t ion Armed to Alarm ;
3 cal l AlarmArmed SetOff ;
4 ca l l Opt i ca lAlarm SetOn ;
5 ca l l Acoust i cAlarm SetOn)
6 [] transit ion OpenAndLocked to ClosedAndLocked
7 [] /� . . other t r an s i t i on s . . �/
8) // dequeue ()
9 od

As can be seen, entry and exit actions, e.g., call AlarmArmed SetOff, are se-
quentially composed with the transition action. Transition effects, if present,
are treated in the same manner. Dequeuing of the event is done in the dequeue
action by removing the head-element of the event-list. The dequeue action is
enabled only if there is no enabled transition left. This allows modeling of events
triggering multiple transitions as well as events that enable no transition, as re-
quired by the standard (cf. [1], State Machine, p.566). We discuss the handling
of multiple transitions for one event in detail in Subsection 4.3.

Calls and Signals. After an object has received a signal or a method of the object
was called, the corresponding events are added to the object’s event queue.
(Currently, there is no support for handling synchronous method calls.) We
represent these events in the OOAS as data-tuples, hence the event queue is
a list of tuples, and is initially empty.
1 types
2 t eventname AlarmSystem = { rece ived AlarmSystem Close ,

rece ived AlarmSystem Lock , . . . } ; /�enumeration�/
3 t event AlarmSystem = (t eventname AlarmSystem) /� tup l e �/
4 var
5 /� ob je c t event queue �/
6 events : l i s t [7] of t event AlarmSystem = [n i l]
7

8 methods
9 /� add a lock event to queue �/

10 r c v Lock =
11 events := events ˆ [t event AlarmSystem (

rece ived AlarmSystem Lock)]
12 end ;

If there are call parameters and signal properties, the event-type has to be
extended to provide place for the event name itself and all parameters. In the ex-
ample above, there are no properties or parameters, hence t event Alarmsystem
is a 1-tuple.

According to the UML standard, signal transmission might be lossy, out of or-
der, or even allow duplication of signals. As a practical example we may consider
a distributed embedded system using the CAN bus: there, message transmission
is based on priorities. If we want to model this kind of behavior, we need to ex-
plicitly represent it in the UML-model as our transformation guarantees in-order
message processing.

4.3 Object Concurrency and Regions

There are two different sources of concurrency in UML models. One source are
active classes, the other one are orthogonal regions in state machines. Since the

Mapping UML to Labeled Transition Systems for Test-Case Generation 199

AlarmSystem_StateMachine
 Region_0

Alarm

Activate Alarms /entry
Deactivate Alarms /exit

Flash

FlashAndSound

Armed

Show Armed /entry
Show Unarmed /exit

ClosedAndLocked

OpenOrUnlocked

SilentAndOpen

 Region_1

Closed

IsOpen

 Region_2

Unlocked

Locked

when oclIsInState(Unlocked)

30 / Deactivate Sound

300

when oclIsInState(IsOpen)

when oclIsInState(Closed)

20

when oclIsInState(Closed)
and oclIsInState(Locked)

OpenClose

Lock Unlock

when oclIsInState(IsOpen)

Fig. 3. Car Alarm System - State machine implemented using orthogonal regions

UML standard does not request true parallel execution we decided to use the
interleaving semantics provided by the non-deterministic choice operator. There-
fore, concurrent execution of active classes can be trivially mapped to a parallel
composition of classes of an OOAS (cf. Section 3). The resulting interleavings of
the active objects represent all possible “sequentializations”.

The second source of concurrency are orthogonal regions of state machines.
State machines and states may be split into two or more parallel active regions, so
called orthogonal regions. To discuss our support of orthogonal regions, we extend
the testing-model presented in Section 2. Instead of permitting an input signal,
e.g., Open, only at certain places, we take a more realistic view and add two or-
thogonal regions. Each of the new regions has two states and the state machine
may flip between these states when encountering a matching input signal. This
may happen at any time and “runs” in parallel with the main-logic of the car-
alarm-system. Fig. 3 shows the resulting state machine that includes all behavior
that was possible in our first CAS-version. Notice that the UML standard does
not specify the order in which parallel enabled and selected transitions have to
fire (cf. [1], State Machine, p. 566). Hence we are allowed to map this type of con-
currency to non-deterministic choice over enabled transitions again.

Since we need to memorize the state of each region of the state machine
(notice that sub-states of a state automatically lie in a separate region) we need
to introduce a state variable for every region in the OOAS. Below we sketch the
state variable definitions for the CAS with regions.
1 types
2 /� enumeration types for c l a s s s t a t e v a r i a b l e s �/
3 AlarmSystem Region 2 = {AlarmSystem Region 2 Unlocked , . . . } ;
4 AlarmSystem Region 0 Alarm Region 0 = {

AlarmSystem Region 0 Alarm Region 0 In i t ia l 0 , . . . } ;
5 AlarmSystem Region 0 = {AlarmSystem Region 0 In i t ia l 0 , . . . } ;
6 AlarmSystem Region 1 = {AlarmSystem Region 1 In i t ia l 0 ,

AlarmSystem Region 1 IsOpen , AlarmSystem Region 1 Closed}
7 var
8 /� c l a s s s t a t e v a r i a b l e s �/
9 Region 2 : AlarmSystem Region 2 = Ala rmSys t em Reg i on 2 In i t i a l 0 ;

10 Region 0 Alarm Region 0 : AlarmSystem Region 0 Alarm Region 0
= . . . ;

11 Region 0 : AlarmSystem Region 0 = . . . ;
12 Region 1 : AlarmSystem Region 1 = . . . ;

200 W. Krenn, R. Schlick, and B.K. Aichernig

The state of the object is made up from all region states with an active parent
region. Sub regions of inactive states are ignored for the moment, but can be
used to support history pseudo states. The transitions from Locked to Unlocked
and from FlashAndSound to Flash in the CAS are translated to the following:

1 t r an s i t i on Locked to Un l ocked Tran s i t i on 0 =
2 requires ((Region 2 = AlarmSystem Region 2 Locked)
3 and (not consumed Region 2) and (events <> [n i l])
4 and ((hd events) [0] = rece ived AlarmSystem Unlock)) :
5 Region 2 := AlarmSystem Region 2 Unlocked ;
6 /� se t consumed f l a g s �/
7 consumed Region 2 := true
8 end ;
9 t r an s i t i on F l a shAndSound to F la sh Tran s i t i on 0 =

10 requires ((Reg ion 0 Alarm Region 0 =
11 AlarmSystem Region 0 Alarm Region 0 FlashAndSound)
12 and (Region 0 = AlarmSystem Region 0 Alarm)
13 and (not consumed Region 0 Alarm Region 0)
14 and (events <> [n i l])
15 and ((hd events) [0] = t ime tr igge r F lashAndSound 30 Flash)) :
16 Region 0 Alarm Region 0 :=

AlarmSystem Region 0 Alarm Region 0 Flash ;
17 /� se t consumed f l a g s �/
18 consumed Region 0 Alarm Region 0 := true
19 end

The consumed flags in the OOAS-code are necessary to guarantee standard-
conforming behavior of transitions in orthogonal regions that are triggered by the
same event. When the consumed flag for a region is set, it means that the event has
already been processed by the region. Hence the transitions of the region depend-
ing on events must not fire as long as the flag is set: each transition tests for its
region’s consumed flag being false and sets it when it is done. The dequeue action
then resets all flags. Transitions in sub-states may also consume events for the re-
gion and in fact have priority over transitions with the same trigger in higher level
regions. To ensure this behavior, before processing the next transition, the con-
sumed flags for regions whose child regions have the flag set, are set. Furthermore,
transitions within sub-state machines are put first in a prioritized composition to
mirror the priority of transitions given by the standard, as can be seen below.

1 actions
2 mark Region 0 cond i t iona l consumed =
3 requires consumed Region 0 = fa l se
4 and (consumed Region 0 Alarm Region 0) :
5 consumed Region 0 := true
6 end ;
7 /� other ac t ions �/
8 do
9 (t r an s i t i on F l a shAndSound to F la sh Tran s i t i on 0 ;

10 ca l l Acou s t i cA la rm Se tOf f)
11 //
12 mark Region 0 cond i t iona l consumed ()
13 //
14 (
15 t r an s i t i on Un l ocked to Locked Tran s i t i on 0 =
16 [] /� other t rans i t ion paths �/
17)
18 // dequeue ()
19 od

Mapping UML to Labeled Transition Systems for Test-Case Generation 201

4.4 Input / Output

There is no canonical form to express borders of a system and I/O across these
borders in UML. For our purposes, we use a self-defined, minimal UML profile,
providing the class stereotypes <<system under test>> and <<environment>>
as we have already shown in Fig. 1. Classes without one of these stereotypes are
considered to be part of the SUT.

There are several ways of communication between the SUT and its environ-
ment classes:

Incoming signals. In UML, incoming signals are modeled by signal receptions
either in the SUT class or in an interface implemented by the SUT class. The
latter is used for signals not directly handled by the SUT class but delegated
to another class. In the OOAS code, this is modeled by a controllable action
that puts the signal event into the event queues of all objects registered as
listeners on this signal.

Outgoing signals. Outgoing signals are modeled as signal receptions in the
environment classes in the UML model. In the OOAS code, this is mapped
to an observable action that is called when the signal sending occurs.

Outgoing calls. In UML, outgoing calls are modeled as methods of environ-
ment classes (like the setOn/setOff methods in the Car Alarm System). In
the OOAS this is mapped to a call of an observable action. If the callee has
a return value, the observable action is directly followed by a controllable
action.

Incoming calls. Incoming calls are modeled as method invocations of the SUT
class in UML. In the OOAS this is reflected by a call of a controllable action.
If the callee has a return value, the controllable action is directly followed
by an observable action.

The classes in the OOAS directly derived from classes in the UML model are
accompanied by two additional classes: model and environment. The model
class is put before the SUT class in a prioritized composition and provides house-
keeping functionality like distributing broadcast signals and time triggers (see
next subsection). The environment class is put after the SUT class in a priori-
tized composition in the SAB and contains all the controllable actions like signal
receptions. The system assembling block for the CAS is shown below.
1 /� a l l d e f i n i t i on s be fore �/
2 system
3 model // AlarmSystem // env i ronment

External inputs are put last in the OOAS execution because internal opera-
tions are assumed to happen in zero time steps and therefore would always be
completed before the next input can happen - resulting in a run-to-completion
behavior.

One important semantical difference between the behavior of the OOAS- and
the UML model concerns the handling of input events that do not enable any
transition in the current state of the state-machine. In the UML standard for
state-machines (this is a semantic variation point for protocol state-machines)

202 W. Krenn, R. Schlick, and B.K. Aichernig

it is requested that these inputs are ignored (cf. [1], State Machine, p. 566).
We deviate from the behavior specified in the UML standard and only allow
inputs that enable transitions. The reasons for this design choice are among the
following.

– Firstly, we use the input-output conformance relation (IOCO [11]) for test-
ing. This conformance relation enables us to work with partial models, which
is an advantage we want to preserve. Allowing all input events at all times
would make the testing model input complete and disallow the use of several
partial models working on the same inputs for test-case generation. Notice
that IOCO assumes the implementation to be input-enabled.

– Secondly, disallowing inputs that are ignored also has the benefit of shrinking
the state-space, which is an advantage during test-case generation: models of
other demonstrators within the MOGENTES project are significantly more
complex than the car alarm system.

Hence, we limit the OOAS to a non-input-enabled system. Within the OOAS-
code, enabling and disabling of controllables is controlled via flags that are
managed by the model class.

4.5 Time Triggers

A time triggered transition fires a given amount of time after entering the source
state if the state has not been left before. Object-oriented action systems, as
described, have no notion of time, hence we need to emulate it. We also need to
say that our support of time is restricted to cases of observable, variable delay:
we do not control the SUT via timeouts.

We use an additional action after(t), which is non-deterministically composed
with the actions representing input from the environment, to mark the observa-
tion of passing time. Notice that we do not allow the waiting time to be split:
two consecutive after(t) may not occur without either the first causing a time
trigger to fire or a controllable action is used between them. This avoids series
of after(t) actions which can be represented by one having a larger t parameter.

The time trigger functionality is realized by managing an ordered list of active
timers. When a state with a leaving time triggered transition is entered, the timer
is registered with the value of the time trigger.

The occurrence of after(t) reduces all timers in the list by the value of t. When
a timer value is reduced to zero this way, the corresponding time trigger event
is added to the event queue of the registered object. To simplify the implemen-
tation, we limit the allowed value of t to the minimum value of all registered
timers. The following pseudo-code sketches the after action.
1 obs after (c wai t t ime : t t ime) =
2 requires c wai t t ime > 0 and wait a l lowed and
3 (len m. ge t t ime r s () > 0) and (t = min timeout (m. ge t t ime r s ())) :
4 /�update timers and event queue�/
5 end
6

7 do

Mapping UML to Labeled Transition Systems for Test-Case Generation 203

8 var t : t t ime : after (t)
9 []

10 r e c e i v e e x t e r n a l s i g n a l C l o s e ()
11 /� fu r the r recept ions �/
12 od

Always taking the minimum time of the next timer due as a waiting time disal-
lows certain behaviors, as is demonstrated in Fig. 4.

StateMachine_0

State_0 State_1 State_2

State_3

State_4

Signal_1

[else] / send_Signal_2

[oclIsInState(State_3)] / send_Signal_3

5 Signal_0

2

Fig. 4. Simple State Machine Example with Interdependent Time Triggers

In the example, due to the restriction to move to the next timer firing, a trace
like

ctr Signal_1, obs after(4), ctr Signal_0 ,after(1), obs Signal_3

cannot be taken any longer. Therefore we lose the observation Signal 3 in the
example. In order to mitigate this shortcoming without the need to enumerate
every time value that is smaller than the time value of the next timer firing, we
propose to add non-deterministic transitions in the UML model that explicate
these additional interleavings. Notice that this might be done on the fly by a
tool that over-approximates such situations and adds the relevant transitions.

5 Results

We have implemented the presented transformations in a tool chain compris-
ing two applications. The first utility takes a UML model and generates the
object-oriented action system code. The second tool (“Argos”) then converts
the OOAS to an action system that is the input for our test-case generator
called “Ulysses” [12,13]. As a second option, Argos is able to generate an im-
plicit labeled-transition system in CADP-style (cf. [14]). All figures in this section
were produced using this second back-end of Argos and the CADP tools.

Table 3 shows some basic figures for three different models of the car alarm
system. The two one-region-only models are branching bisimilar [15] and in-
cluded (modulo branching equivalence) in the multi-region model. Within the
table, B-Min. stands for a minimization using strong bisimulation [16], while
W-Min. stands for a sequence of weak-trace minimization that eliminates all

204 W. Krenn, R. Schlick, and B.K. Aichernig

Table 3. Comparison of CAS Models

One Region Mult. Regions
LoC UML [#] – 263 273
LoC OOAS [#] 105 720 790
LoC impl. LTS [#] 2880 13 420 14 430
States [#] 28 167 503
B-Min. States [#] 22 58 159
W-Min. States [#] 18 18 26
Transitions (hidden) [#] 37 (7) 202 (140) 742 (662)
B-Min. Transitions (hidden)[#] 31 (4) 67 (39) 178 (134)
W-Min. Transitions [#] 27 27 42
Time Gen./Compile [sec] 0.1/1.0 0.3/2.5 0.4/2.5

internal transitions followed by a minimization using strong bisimulation. The
lines-of-code (LoC) figures as well as the time figures are reproduced only in
order to give a hint on the complexity and performance. The experiments were
carried out within a virtual machine running Ubuntu 9.04 on a Lenovo T400
laptop running Windows Vista. During the development of the models (and
tools), we extensively used the animation, model-checking, minimization, and
bisimulation capabilities offered by the CADP toolbox.

The first (left-to-right) model in the table is a hand-crafted OOAS model of
our one-region car alarm system. It serves the purpose of showing the minimal
number of lines necessary to model the CAS behavior. The second model is
the UML-model presented in Fig. 2, and the third one is the multiple-regions
CAS-model that was presented in Fig. 3.

Because the first model omits any event-handling overhead it has significantly
less lines of code than the second model. It can also be seen that the percentage
of hidden, i.e. internal, transitions is much lower for the first model: the event
processing machinery contributes a lot of hidden transitions. These additional
transitions also blow up the non-minimized state space, as can be seen in the
table (167 vs. 28 states). Notice that the third model defines more testable
behavior, which is reflected in additional states and transitions. In particular
the third model allows for tests that send Open and Close events while being in
the alarm state. However, it can be proved that under branching bisimulation
(we are not interested in internal transitions) all the behavior specified in the
second model (Fig. 2) is still present in the third one (Fig. 3).

While for the first model only one object is instantiated, models two and
three comprise three objects each: the first object is used for event processing
and house keeping, the second one models the alarm system itself, and the last
one models the environment and it’s capabilities of sending events.

Finally, Fig. 5 shows the explored state-space (weak-trace minimized) of our
running one-region example. Notice the appearance of the observable “after”,
that models the observation of passing time.

Mapping UML to Labeled Transition Systems for Test-Case Generation 205

Fig. 5. Alarm System - Labeled Transition System

6 Conclusion

We have presented our mapping of a UML-subset to object-oriented action sys-
tems. It turns out that the mapping is relatively straight forward. In particu-
lar, we map concurrency to standard conformant non-deterministic choice, treat
event processing as in-order and loss-less, and support time triggered transitions
via timer queues. Having said that, some of our design decisions give our models
a behavior that deviates from the UML standard: In case of time triggered tran-
sitions, we have proposed a way around this limitation, while in the case of the
non-input-enabledness of the model we argue with the support of partial test-
models. It is important to say that none of these choices constitute a principal
limitation of our approach.

Other contributions of this paper are the extension of object-oriented action
systems with prioritized composition and a system assembling block, the presen-
tation of a tool chain that maps UML diagrams to labeled transition systems,
and the discussion of a case study taken from industry. We have also demon-
strated our ability to check that a refined model preserves the behavior of the
more abstract one and we have given hints on how we validate our tools.

It is out of the scope of this paper to review all UML semantics, however,
closest to our work on mapping UML to action systems is work on defining a
UML profile for action systems (cf. [17]). This work is exactly the opposite of
ours, as it aims to add a special UML profile that maps one-to-one to action
systems. There has also been work on defining a mapping of UML to B which,

206 W. Krenn, R. Schlick, and B.K. Aichernig

according to [18], did not entirely meet the expectations as schematic translations
that attempt to cover a broad class of UML models usually result in B models
that are hard to read and quite unnatural. Because we do not aim at supporting
a broad class of UML models in MOGENTES – in fact we are interested in
supporting (partial) test models that are made from the requirements – and
since the mapping to object-oriented action systems feels very natural, we do not
suffer from the problem of ’unnatural’ OOAS models. (Automatically generated
code, however, always is a pity to read.)

By giving the action systems abstract trace semantics and generating labeled
transition systems for them, we can leverage existing tools, such as the well-
known CADP toolbox: checking of model-inclusion, absence of particular prop-
erties, and test-case generation becomes the problem of invoking the right CADP
tool.

Finally, future work will concentrate on dealing with more complex models
and finishing tool support for inheritance.

References

1. OMG: OMG Unified Modeling Language (OMG UML), superstructure, Version
2.2. (2009)

2. Back, R.J., Kurki-Suonio, R.: Decentralization of process nets with centralized
control. Distributed Computing 3(2), 73–87 (1989); Appeared previously in 2nd
ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing (1983)

3. Back, R.J., Sere, K.: Stepwise refinement of action systems. Structured Program-
ming 12, 17–30 (1991)

4. Bonsangue, M.M., Kok, J.N., Sere, K.: An approach to object-orientation in action
systems. In: Jeuring, J. (ed.) MPC 1998. LNCS, vol. 1422, pp. 68–95. Springer,
Heidelberg (1998)

5. Sekerinski, E., Sere, K.: A theory of prioritizing composition. Technical Report 5,
Turku Centre for Computer Science (1996)

6. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Inc., Englewood Cliffs
(1976)

7. Back, R.J., Sere, K.: Superposition refinement of parallel algorithms. In: Proceed-
ings of the IFIP TC6/WG6.1 Fourth International Conference on Formal Descrip-
tion Techniques for Distributed Systems and Communication Protocols, FORTE
1991, pp. 475–493. North-Holland Publishing Co, Amsterdam (1992)

8. Fitzgerald, J., Larsen, P.G.: Modelling systems: practical tools and techniques in
software development. Cambridge University Press, New York (1998)

9. Lucas, P.: Formal semantics of programming languages: VDL. IBM J. Res.
Dev. 25(5), 549–561 (1981)

10. Butler, M., Morgan, C.: Action systems, unbounded nondeterminism, and infinite
traces. Formal Aspects of Computing 7, 37–53 (1995)

11. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft-
ware - Concepts and Tools 17(3), 103–120 (1996)

12. Brandl, H., Weiglhofer, M., Aichernig, B.K.: Automated conformance verification
of hybrid systems. In: QSIC (2010) (under review)

13. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W.: Model-based mutation testing
of hybrid systems. In: Proceedings of Formal Methods for Components and Objects
FMCO 2009 (2010) (under review)

Mapping UML to Labeled Transition Systems for Test-Case Generation 207

14. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A toolbox for the
construction and analysis of distributed processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

15. Glabbeek, R.v., Weijland, W.: Branching time and abstraction in bisimulation
semantics (extended abstract). In Ritter, G., ed.: Information Processing 89, Pro-
ceedings of the IFIP 11th World Computer Congress, San Fransisco 1989, North-
Holland (1989) 613–618 Full version in Jounal of the ACM 43(3), 1996, pp. 555–600.

16. Park, D.: Concurrency and automata on infinite sequences. In: Proceedings of the
5th GI-Conference on Theoretical Computer Science, London, UK, pp. 167–183.
Springer, Heidelberg (1981)

17. Westerlund, T., Seceleanu, T.: An UML profile for action systems. Technical Report
581, Turku Centre for Computing Science (December 2003)

18. Fekih, H., Ayed, L.J.B., Merz, S.: Transformation of B specifications into UML
class diagrams and state machines. In: Proceedings of the 2006 ACM Symposium
on Applied Computing, SAC 2006, pp. 1840–1844. ACM, New York (2006)

Mutation-Based Test Case Generation for
Simulink Models�

Angelo Brillout1, Nannan He2, Michele Mazzucchi1, Daniel Kroening2,
Mitra Purandare1, Philipp Rümmer2, and Georg Weissenbacher1,2

1 Computer Systems Institute, ETH Zurich
2 Computing Laboratory, Oxford University

Abstract. The Matlab/Simulink language has become the standard for-
malism for modeling and implementing control software in areas like
avionics, automotive, railway, and process automation. Such software is
often safety critical, and bugs have potentially disastrous consequences
for people and material involved. We define a verification methodology
to assess the correctness of Simulink programs by means of automated
test-case generation. In the style of fault- and mutation-based testing,
the coverage of a Simulink program by a test suite is defined in terms
of the detection of injected faults. Using bounded model checking tech-
niques, we are able to effectively and automatically compute test suites
for given fault models. Several optimisations are discussed to make the
approach practical for realistic Simulink programs and fault models, and
to obtain accurate coverage measures.

1 Introduction

Model-based design is a development methodology for modern software artifacts.
It promotes the use of powerful and specialized modeling languages, allowing the
engineer to focus on the domain-specific aspects of the system under develop-
ment. The implementation of the system is either generated or derived manually
from high-level models. The goal is to identify design flaws as early as possible
in the development cycle, thereby avoiding costly late-stage design fixes.

The Matlab/Simulink language, developed by The MathWorks,1 has emerged
as the predominant modeling formalism in the automotive industry and is also
widely deployed for avionic applications. A software glitch in these application
domains may result in high cost and considerable damage of reputation. Due to
the safety-critical nature of these domains, defects in the software may put hu-
man lives at stake. Accordingly, international safety standards such as DO-178B
or IEC 61508 demand the application of rigorous verification techniques. In par-
ticular, they require the test engineers to provide a set of test cases that exercise
the implementation of the system according to certain coverage metrics. The

� Supported by the EU FP7 STREP MOGENTES (project ID ICT-216679) and the
ARTEMIS CESAR project.

1 http://www.mathworks.com/products/simulink/

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 208–227, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.mathworks.com/products/simulink/

Mutation-Based Test Case Generation for Simulink Models 209

effort to create appropriate test suites is substantial, and the execution of the
test suites is time consuming. There is therefore a strong incentive to automate
the generation of test cases and to keep the resulting test suite small.

Model-based testing is an application of model-based design for deriving test
cases from a model of the design, which promises better scalability and is applica-
ble before the implementation phase. In the context of model-based testing, the
question of suitable coverage metrics has to be reconsidered: traditional metrics
such as location or branch coverage are no longer meaningful, since the test cases
are not derived from implementation source code. In this paper, we focus on mu-
tation testing: the quality of the test suite is assessed by injecting mutations into
the model and by measuring which percentage of these modifications can be de-
tected when exercising the test cases. We say that a modification is detected if we
can observe that the modified and the original model generate different output
signals. The resulting test vectors can be used to check that the model satisfies
requirements or can be applied to an implementation of the design.

The generation of test suites that achieve high mutation coverage is difficult.
We use model checking [1] for this task, as it is also able to address the issue of
equivalent mutants. The application of model checking to generate high-coverage
test suites has become commonplace (see, for instance, [2] for an application in
the automotive domain). Test case generation for Simulink models is complicated
by the fact that the Simulink language lacks a formal semantics and makes heavy
use of floating-point arithmetic.

Contribution. We describe an application of the bounded model checking engine
Cbmc [3] to generate test suites for Simulink models with high mutation coverage.
The implementation features precise reasoning with respect to the floating-point
semantics of the models. The computational complexity of the underlying model
checking algorithm requires us to deploy a number of heuristics to achieve the
desired coverage if the number of mutations is large. Moreover, these heuristics
also serve the orthogonal purpose of keeping the number of redundant test cases
small in order to reduce the time required to execute the test suite.

Related Work. We briefly relate our work to other tools that generate test-
vectors by means of software model checkers. A number of papers report appli-
cations of Cbmc or similar techniques for generating high-coverage test suites
[4,5,6]. These implementations are very similar to ours. There are also reports
of the use of predicate abstraction in test-vector generation, e.g., using Slam [7]
and Blast [8].

We refer the reader to [9] for a broad survey on mutation testing. We only con-
sider mutant models with single mutations, whereas other authors also consider
combinations of faults [10]. Do and Rothermel [11] proposes to use mutations to
prioritise test cases to increase a test suite’s rate of fault detection.

Schuler et al. [12] discusses the impact of equivalent mutations (mutations
that keep the semantics of the model unchanged) and presents an approach to
detect such mutations by means of checking dynamic invariants. We propose a
similar approach in Section 5, but we rely on invariants statically generated by
means of verification techniques such as k-induction.

210 A. Brillout et al.

We also relate our work to other methods for analyzing Simulink models.
Most tools that aim at formal analyses of Simulink models focus on a partic-
ular and usually relatively small fragment. In particular, models that contain
ANSI-C are often not considered [13,14,15]. Strichman and Ryabtsev [16] uses
an automated decision procedure to validate code generated by Simulink against
a set of verification conditions extracted from the model.

Another issue is the floating-point semantics of Simulink. Tools such as the
Simulink Design Verifier rely on approximations of floating point arithmetic by
means of infinite-precision rational numbers [17]. In contrast to that, we use a
bit-accurate representation of floating-point arithmetic, as presented in [18]. We
are therefore able to analyse the exact behaviour of the model rather than an
approximation. Furthermore, our bit-level technique enables the use of mutations
such as bit-flips in data values.

Outline. Section 2 describes the transformation of Simulink diagrams into an
intermediate representation amenable to static analysis. This translation process
conclusively determines the semantics of the model. Section 3 discusses how fault
injection and mutations of the model and (bounded) model checking can be used
to generate test cases. For this purpose, we rely on a model checking technique
able to deal with floating-point arithmetic. We present a novel algorithm which
aims at identifying efficient test cases that cover more than one mutation, thus
reducing the size of the test suite and improving the performance of the test-
case generation process in Section 4. In Section 5, we discuss strategies to detect
mutations that do not have an observable impact on the model.

2 Simulink Models

The Simulink language is a graphical modeling language comprising block dia-
grams and an extensive set of block libraries. An example of a Simulink model
is presented in Figure 1. Due to the complexity of the language and the lack of
formal semantics, Simulink models are not directly amenable to automated anal-
ysis. We present a front-end to transform these models into intermediate ANSI-
C programs with well-defined semantics. This transformation is performed fully
automatically and allows us to separate the ambiguity issues in the Simulink
semantics from our test case generation process.

Each Simulink block is associated with a type. We define the meaning of blocks
of a particular type by means of C code, which is organized in a library. This
library can be independently refined or modified (e.g., to add a new block-type
definition) without the need to change the transformation process.

A block-type X is defined with the following artifacts:
– X in t: a C struct that defines the input ports of X.
– X out t: a C struct that defines the output ports of X.
– X props t: a C struct that specifies the verification-relevant properties of X.
– X semfun: a C function that defines the semantics of X as a mapping from

input ports to output ports. Its declaration format is
X out t* X semfun(X props t *prop, X in t *in).

Mutation-Based Test Case Generation for Simulink Models 211

i0
1
z

1

o0+

+

Add

×
÷

Division

Constant

Unit Delay

–

+

Subtract

Saturation [1,5]

Fig. 1. A Simulink model example

Currently, our Simulink front-end supports a set of commonly used block types
that belong to a variety of Simulink libraries, such as Math, Discrete, Logic and
Bit, Sinks, Sources, Ports&Subsystems, Discontinuities, Signal Routing, Signal
Attributes and Model Verification. Some important block types include Subsys-
tems, Unit Delay that forms feedback loops, Switches, and From/Goto pairs.
With our uniform definition artifacts, further block types can easily be added to
the library as needed. Support for Stateflow diagrams is under development.

The transformation source is a Simulink model composed of a set of intercon-
nected blocks, organized into a hierarchy of subsystems. The front-end parses the
model, flattens the hierarchy and derives an appropriate block execution order
which determines the simulation order of blocks in the resulting ANSI-C model.
The front-end identifies the type and property specifications of each individual
block instance and maps it to the corresponding block-type definition in the li-
brary. Then, it determines which C block-type definitions need to be included and
assigns values to block properties. Some analyses like type inference are also per-
formed during the transformation to resolve ambiguities in the Simulink model.

Figure 2 shows the basic structure of the C code transformed from the model
in Figure 1 with the front-end. Our analysis and test-case generation approach
based on the resulting C code is introduced in the sections below.

3 Generating Test Cases Using Mutations

3.1 Overview

Many existing test case generation techniques permit the generation of test suites
that satisfy structural coverage criteria such as condition or statement coverage.
One approach to achieve such coverage is to use a model checker, which can gen-
erate counterexamples that demonstrate the reachability of certain statements
or conditions.

212 A. Brillout et al.

/*1. Links to blocktypes definitions */

#include <Sum.h> // Corresponds to the Add block

...

/*2. Declaration and initialization of block instances */

Sum_in_t b3_in;

Sum_out_t b3_out;

const Sum_prop_t b3_props ={. Inputs="++"}; ...

/*3. Simulation loop: define data dependencies w.r.t.

block connections extracted from the model */

int main() {

for(sim_time=START; sim_time <END; sim_time += sim_step) {

b3_in.port1 = b7_out.port1;

b3_in.port2 = b2_out.port2;

b3_out = *Sum_semfun (&b3_props , &b3_in); ...

}

}

Fig. 2. Structural overview of the C code transformed from a Simulink model

The following sections present mutation-based test case generation (TCG)
using bounded model checking (see Section 3.2). We describe how test cases can
be extracted automatically from a model or implementation M by injecting
mutations or faults into M (producing in a mutant model M ′) and checking the
equivalence of M and M ′ by means of model checking. If M and M ′ are not
equivalent, a model checking tool is able to generate a witness for the inequality
(a counterexample for equality). This counterexample determines a set of input
values for which the executions of M and M ′ produce different outputs.

The coverage criteria for fault-based testing in our work are based on syntactic
and semantic modifications of the model. Given a modification to the model, the
aim is to generate a test case that demonstrates the resulting change of the be-
havior. Simple structural coverage metrics are not sufficient, since even exhaus-
tive coverage criteria such as modified condition/decision coverage (MC/DC)
provide no guarantee that the error resulting from the modification of the model
has a visible impact on the behavior generated by exercising the test suite.

The fault-driven test case generation approach is inspired by mutation testing
and fault injection:

– Mutation testing denotes the method of making (syntactic) modifications
to the source code of the implementation. The intention is to evaluate a
given test suite based on whether it is able to detect the introduced faults
and to aid the generation of additional meaningful test cases.

– Fault injection. Fault injection triggers the occurrences of faults in the
system under test. The main purpose of this technique is to evaluate the
error handling mechanisms of the system.

Mutation-Based Test Case Generation for Simulink Models 213

Examples for injected faults and mutations are provided in Section 3.5. The
common idea underlying both approaches is to make modifications to the system
and to run test cases that demonstrate the impact of these changes.

The following subsection provides a brief overview over the formal verification
techniques we apply to generate test suites from models containing mutations
or failure modes.

3.2 Bounded Model Checking

Model checking, in the most general sense, is a technique that explores the
reachable states of a model in order to determine whether a given specifica-
tion is satisfied [1]. It differs from testing in so far as it aims at an exhaustive
exploration of the state space of the model or program under test, thereby pro-
viding a correctness guarantee that is rarely achieved by means of testing. If
the specification is violated, model checking tools are often able to provide a
counterexample, i.e., a witness that demonstrates how the specification can be
violated in the model.

Bounded model checking (BMC) is a variation of model checking which re-
stricts the exploration to execution traces up to a certain (user-defined) length
k. BMC either provides a guarantee that the first k execution steps of the pro-
gram are correct with respect to the property P or a counterexample of length
at most k. The ability to report counterexamples is the essential feature we use
to generate test cases. The disadvantage of model checking is that it does not
scale as well as testing.

Figure 3a illustrates the schema of a Simulink model with a feedback loop.
Simulink diagrams comprise blocks instances and signals and wires represent-
ing the connections between these blocks. These components determine the in-
put and output signals (i and o, respectively) and the transition function R
represented by the model. A bounded model checking algorithm unwinds such
models as indicated in Figure 3b; the signals ii and oi refer to the input and
output signals in the ith step (or point in time), respectively, and 	 denotes an
undefined/non-deterministic signal value.

For the purpose of test case generation it suffices to determine whether certain
states in a model are reachable. A model is specified by a formula representing
a (possibly partial) transition relation R (e.g., specified by means of a Simulink
diagram or ANSI-C program) and a predicate I that determines the valid ini-
tial states of the model. The transition relation R relates the current state of
the model to its successor states (i.e., the potential states after one step). The
structure of R may be further detailed by means of a control flow graph, which
partitions R into a separate transition function for each program location. This
simple formalism is sufficiently general to allow imperative models (such as C
programs or state charts) as well as data flow models (such as Simulink models).
Furthermore, the predicate I characterizes the set of valid initial states of the
model (this may be the safe or reset state of the system), i.e., I(s) holds if s is
a valid initial state.

214 A. Brillout et al.

i

R

o

(a) Schema of a Simulink model with a loop

i0

R

o0 i1

R

o1

�
l1

(b) Unwinding of the model in Figure 3a

Fig. 3. Unwinding Simulink models

A path (or execution trace) π of the model is a sequence of states s0, s1, . . . , sn

such that the adjacent pairs si, si+1 of states in that sequence are related by R
(i.e.,

∧n−1
i=0 R(si, si+1)), and I(s0) holds (i.e., s0 is a valid initial state). A state

is induced by the values of the variables (or wires and signals) of the model. In
reactive models, the variables are typically partitioned into input variables, hidden
(or internal) variables, and output variables. The observable part of an execution
trace is therefore the sequence of inputs and the resulting sequence of outputs.
Given a state si, we use si.i to refer to the input, and si.o to denote the output.

3.3 Equivalence Checking
Formal Equivalence Checking is a technique used to formally prove that two
models M and M ′ exhibit the same observable behavior [19]. This is achieved by
comparing the input and the output behavior of the two models. To construct a
test-scenario (i.e., a sequence of input/output pairs), we are interested in checking
whether for a given input sequence the outputs in the first k steps of the execu-
tions of the models match. This notion of “k-equivalence” is decidable, assuming
that the input and output values have a finite range.

Whether two given models are k-equivalent can be decided using model check-
ing. Given two models M and M ′ (comprising the transition functions R and R′

and the initial state predicates I and I ′, respectively), we can check (assuming
that the size of the states is finite) whether the following is satisfiable:

k∧

i=0

si.i = s′i.i

︸ ︷︷ ︸
equality of all inputs

∧ I(s0) ∧
k−1∧

i=0

R(si, si+1)

︸ ︷︷ ︸
first model

∧

I ′(s′0) ∧
k−1∧

i=0

R′(s′i, s
′
i+1)

︸ ︷︷ ︸
second model

∧
k∨

i=0

si.o �= s′i.o

︸ ︷︷ ︸
inequality of an output

(1)

Mutation-Based Test Case Generation for Simulink Models 215

Any satisfying assignment to this formula represents two executions of M and
M ′ that yield a different output sequence. The models are equivalent (up to k
steps) if Formula (1) is unsatisfiable.

Checking software equivalence is more complicated, since the two programs
rarely perform input/output in lockstep. Algorithmic details of equivalence check-
ing using BMC are covered in [3]. An approach based on predicate abstraction [20]
is presented in [21].

3.4 Floating-Point Arithmetic

Simulink models make heavy use of floating-point arithmetic (FPA). Although
reasoning about FPA is an active field of research, existing methods are primar-
ily tailored to interactive proof assistants (e.g., [22,23]) or abstract floating-point
number to intervals of the reals (e.g., [24,25]). The methods of the first kind are
unsuitable for automated tools, while the latter ones are not able to construct
models for satisfiable formulae and therefore cannot be used for test-case gener-
ation. Currently, there are only few model checkers that handle FPA accurately.

In our model checker Cbmc, we use the mixed abstraction framework de-
scribed in [18]. By using both over- and under-approximations simultaneously,
combined with a novel abstraction refinement approach, we are able to achieve
both accurate reasoning and a significantly better performance than ordinary
bit-blasting approaches [26].

Previous work on test case generation for Simulink programs, for instance in
the Simulink Design Verifier [17], employs approximations of floating-point arith-
metic by means of infinite-precision rational numbers. While this allows efficient
reasoning in the case of models only containing linear arithmetic, rationals do
not faithfully reflect the actual behavior of Simulink programs: in equivalence
checking, it can happen that Simulink models are erroneously reported as equiv-
alent (although they are not with FPA semantics), or that equivalent Simulink
models are erroneously reported as non-equivalent. This is particularly relevant
because unexpected over- or underflows due to FPA semantics can be hard to
detect, but can have profound consequences.

We illustrate the inconsistencies between rational arithmetic and FPA us-
ing the Simulink model in Figure 1. The model contains a feedback loop that
computes the consecutive sums

tn =
n∑

j=1

ij

given the stream i1, i2, i3, . . . of inputs. Furthermore, in each time frame, the
quotient

1
tn − tn−1

is computed. Because the inputs are constrained to the interval [1, 5] with the
help of a Saturation block, and since tn = tn−1 + in, the computation of
the fraction will always succeed when computing with infinite-precision rational

216 A. Brillout et al.

numbers. If the model is implemented and executed using floating-point num-
bers, however, the stream of sums t1, t2, t3, . . . will eventually get stationary due
to lack of precision: in FPA, it is the case that a + b = a if a is a very large and
b a very small number. As soon as tn = tn−1 occurs in the sequence of sums, the
computation of the quotient will raise a division-by-zero exception.

The use of a bit-accurate decision procedure has further advantages in the
context of mutation testing: Many fault models are based on bit-level modifica-
tions (such as single-bit-stuck-at faults). The effect of these mutations is trivial to
model using a propositional formula, and SAT-solvers can deal with the resulting
encoding very efficiently. For instance, modeling a single-bit-stuck-at-1 fault cor-
responds to setting a single propositional variable to true. Modern SAT-solving
algorithms deal with this case by using unit propagation, which is extremely
efficient. If, on the other hand, a decision procedure for reasoning about real
arithmetic was used, encoding the same fault would be complicated and would
result in constraints that are very hard to solve.

3.5 Mutation Testing and Fault Injection

From an abstract point of view, mutations as well as injected faults are simply
modifications to the behavior of the model.

Example 1. Consider the simple Simulink diagram in Figure 4a. The input sig-
nals i1 and i2 are related to the output signal o by means of the formula
o = i1 × i2, i.e., the transition function is

R(si, si+1)
def
= si.o = si.i1 × si.i2 ∧ si+1.o = si+1.i1 × si+1.i2 .

A possible syntactic mutation is to replace the multiplication (×) with an
addition:

R′(si, si+1)
def
= si.o = si.i1 + si.i2 ∧ si+1.o = si+1.i1+ si+1.i2 .

This mutation can be implemented in the diagram using an enable signal, al-
lowing us to switch the mutation on and off (see Figure 4b).

In our formalism, such a modification can be modeled by replacing the tran-
sition relation R of our model M ′ with a slightly modified transition relation R′

(and possibly a modified condition I ′ for the initial state). The faults introduced
into the system may be either permanent, transient, or intermittent (i.e., occur
repeatedly). The former case can be simply modeled by permanently altering
the transition relation R, and applying the resulting relation R′ in each step:

I ′(s0) ∧ R′(s0, s1) ∧ R′(s1, s2) ∧ R′(s2, s3) ∧ R′(s3, s4)
︸ ︷︷ ︸

permanent fault

∧ . . .

To model transient or intermittent faults, we have to take the temporal aspect
into account, i.e., the alteration becomes only effective at certain points in time.

Mutation-Based Test Case Generation for Simulink Models 217

1

2

× 1Input signal 1

Input signal 2

Output signal

(a) A simple Simulink diagram

Mutation

1

2

× 1

∑

4

Input signal 1

Input signal 2

Output signal

Mutation enable

(b) A Simulink diagram with a mutation

Fig. 4. A simple Simulink program and its mutation

Accordingly, a typical execution satisfies the following constraint:

I(s0) ∧ R(s0, s1) ∧ R(s1, s2) ∧ R′(s2, s3)
︸ ︷︷ ︸

intermittent fault

∧R(s3, s4) ∧ . . .

Transient or intermittent faults can be modeled by referring to a global timer. Let
R′ be a transition function with a permanently enabled mutation. Furthermore,
given a state si, let si.t denote a signal tracking progression of time during the
execution. A transition function R′′ with an intermittent fault occurring every
c execution steps can be modeled as

R′′(si, si+1)
def
=

{
R′(si, si+1) if (si.t = 0 mod c)
R(si, si+1) if (si.t �= 0 mod c) .

Mutations are small syntactic changes of the model, whereas simulated hardware
faults require semantic changes to the model that reflect physical faults of the
system as accurately as possible. Conceptually, however, there is no difference
when it comes to their integration into the transition relation: The implementa-
tion of faults in the model M requires syntactic changes to M .

218 A. Brillout et al.

Depending on the extent of these modifications, the resulting error may not
be immediately observable, i.e., it is not necessarily the case that

s0.i = s′0.i ∧ R(s0, s1) ∧ R′(s′0, s
′
1) =⇒ s1.o �= s′1.o

holds. Even though s1 differs from s′1, the outputs s1.o and s′1.o may be indis-
tinguishable: the modification of R may not necessarily have an (immediate)
impact on the observable behavior. Intuitively, a test case is “good” if it yields
a different outcome for M and M ′. In mutation testing, the term weak mutation
testing refers to the condition that the test cases should cause different program
states for the mutant and the original model. In the case that the affected part
of the state is not observable, this condition is not sufficient for our purpose.
Strong mutation testing refers to the case where the error propagates to the
output of the model and is caught by an appropriate test case. In dependable
systems, this notion may be too strong, since redundant systems may tolerate a
certain number of faults. Note that this case can be detected using a complete
model checking technique or k-induction. A brief outline of these techniques is
provided in Section 5.1.

3.6 Generating Test Cases

One way of generating test cases that detect a mutation is to find a satisfying
assignment to Formula (1). Such a satisfying assignment provides the inputs
that yield a different output sequence during the first k steps and, provided the
observable behaviors of the two models M and M ′ are not fully equivalent, such
a solution must exist for some k.

Encoding Combinations of Faults. Assume that the objective is to gener-
ate a test suite that detects single faults (or mutations). The näıve approach
to create such a test suite is to generate a new model M ′ for each conceivable
fault or mutation and to generate an instance of Formula (1) for each pair of
models M and M ′. In practice, this approach is very wasteful, since modern
satisfiability checkers such as MiniSAT [27] are able to solve problem instances
incrementally. Encoding M ′ in a way such that faults or mutations can be acti-
vated or deactivated by adding constraints to the formula allows the SAT solver
to (partially) reuse the information it has already derived.

Therefore, we propose to generate a modified model M ′ that contains all faults
and mutations for which we want to generate test cases. We use the same idea
as in Figure 4b and introduce a Boolean flag f for each modification that allows
us to activate (deactivate) the respective fault/mutation by setting f to true
(false). Assume that R is the transition relation of the original model M and
that R′

i is the transition relation of the model M ′
i that contains the ith of the n

modifications in question. We define the model Rμ as follows:

Mutation-Based Test Case Generation for Simulink Models 219

Rμ(s0, s1, f
1, . . . , fn) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R(s0, s1) if
∨n

i=1 f i = F
R′

1(s0, s1) if f1 = T ∧
(∨n

=2 f i
)

= F
R′

2(s0, s1) if f2 = T ∧ f1 = F ∧
(∨n

=3 f i
)

= F
...

R′
n(s0, s1) if fn = T ∧

(∨n−1
=1 f i

)
= F

(2)

We use Mμ to denote the model with the transition relation Rμ.
Given the resulting transition relation Rμ (as defined in (2)) we can construct

an instance of Formula (1). A fault in the modified model Mμ can be triggered
by adding a constraint of the form

F j := f j ∧
∧

0<i≤n,i�=j

¬f i . (3)

Example 2. Figure 5 shows a mutation and a fault injected into the Simulink
diagram in Figure 4a. The first diagram shows the implementation of a signal-
stuck-at-0 fault. The diagram below combines this fault and the mutation in
Figure 4b into one model. The model provides two flags allowing us to trigger
the mutations.

The decision procedure of Cbmc, the model checker which our test case gener-
ation tool Cover is based on, performs bit-level accurate reasoning by trans-
forming the instance of Formula (1) into an equi-satisfiable propositional formula
EQk in Conjunctive Normal Form2 (CNF). This formula is then handed over
to the satisfiability checker MiniSAT [27]. The decision process of MiniSAT is
incremental, i.e., it allows

– to add additional clauses, and
– to add or remove a constraint F j of the form described in (3)

without reinitializing the solver, meaning that the solver can reuse intermediate
results if it has to solve similar problem instances.

Let EQk denote the CNF of the instance of Equation (1) derived from the
models M and Mμ. We can generate a test suite covering all n mutations in
question by iteratively computing satisfiable assignments to

EQk ∧ F i, i ∈ {1, . . . , n} . (4)

We say that a test case t independently covers a mutation if it corresponds to
a satisfying assignment of (4) for that mutation i. If each of the instances of
Formula (4) has a solution, we obtain n (not necessarily different) test cases
that cover all mutations injected into the model Mμ.

2 A propositional formula in conjunctive normal form is a conjunction of disjunctions
of literals, where a literal l is a propositional variable or its negation (e.g., a or ¬a).
A clause is a disjunction of literals.

220 A. Brillout et al.

1

2

× 1

3

0

Fault

Input signal 1

Input signal 2

Output signal

FI enable

Constant

(a) Fault Injection: A signal-stuck-at-0 fault

Mutation

1

2

× 1

∑

3

4

0

Fault

Input signal 1

Input signal 2

Output signal

en
ab

le

Constant

(b) The fault and the mutation from Figure 4b combined in one model

Fig. 5. Mutations and Faults injected into a simple Simulink model

4 Generating Test-Cases for Many Mutations

In this section, we propose an optimisation of the mutation-based test-case
generation approach discussed in Section 3.

4.1 Finding an Efficient and Sufficient Test-Suite

The technique described in Section 3.6 uses a SAT-solver to extract n test cases
from Formula (4), each of which corresponds to one mutation. If the number of

Mutation-Based Test Case Generation for Simulink Models 221

mutations (n) is large, this may lead to an equally large number of test cases.
These test-cases are computationally expensive to generate and time-consuming
to execute. Therefore, it is desirable to minimize the size of the test-suite.

Example 3. Consider the Simulink diagrams in Figures 4a, 4b, and 5. Assume
that we use the model in Figure 5b to generate a test case. Consider the test
case s.i1 = 1.2 and s.i2 = 23.4. The following table lists the observable outputs
of the model for all possible combinations of enable flags:

Input signal 1 Input signal 2 Fault Mutation Output
1.2 23.4 off off 28.08
1.2 23.4 on off 0.0
1.2 23.4 off on 24.6
1.2 23.4 on on 23.4

This test case is sufficient to detect the syntactic mutation, the signal-stuck-at-0
fault, as well as the combination of these modifications.

The observation in Example 3 suggests that it is not strictly necessary to
generate a separate test case for each single modification. In the setting presented
in Example 3, the test vector t = {i1 �→ 1.2, i2 �→ 23.4} can be obtained from
the model in which both modifications are enabled. This can be achieved by
generalizing the constraint F j (see (3)) accordingly, i.e., for a set T of indices
corresponding to mutations or faults

FT :=
∧

0<i≤n

(
(i ∈ T) ⇒ f i

)
∧

(
(i �∈ T) ⇒ ¬f i

)
. (5)

Notably, t is sufficient to cover the fault and the mutation independently.
It follows that it is possible that a test-case t derived from a model Mμ with a

combination of several mutations {ν1, ν2, . . .} detects the independent mutations,
too. This can be efficiently checked by evaluating the behavior of the mutated
models Mν1 , Mν2 , . . . for the input defined by the test-vector t. The execution of
a given test-case on a model is very efficient compared to the model checking-
based computation of a new test-vector for Mνi .

Example 4. We continue working in the setting of Example 4. Consider the test
case s.i1 = 0.0 and s.i2 = 23.4. We can compute the outcome for all different
models for this input by simply executing the test cases:

Input signal 1 Input signal 2 Fault Mutation Output
0.0 23.4 off off 0.0
0.0 23.4 on off 0.0
0.0 23.4 off on 23.4
0.0 23.4 on on 23.4

This test case is sufficient to detect the combination of the syntactic mutation
and the injected signal-stuck-at-0 fault, as well as the single syntactic mutation.
However, it fails to detect the signal-stuck-at-0 fault.

222 A. Brillout et al.

Example 4 shows that it is not always the case that a test-case that detects
a combination of mutations and faults also covers each mutation independently.
While we have found a test vector t = {i1 �→ 0.0, i2 �→ 23.4} which “kills”
the mutation, the same test vector fails to cover the fault. We are forced to
generate an additional test case for the injected fault, which can be achieved by
deactivating the enable flag for the fault and starting another incremental run
of the SAT solver.

We propose to analyze the model systematically, starting with a set of muta-
tions T . The corresponding algorithm is outlined in Figure 6. We generate a test
case which covers this set of mutations T and check whether it independently
covers the single elements of T . The advantage of the algorithm is that it is
possible to prune entire subsets of mutations if C in step ➂ is non-empty. If this
is not the case, we have to split T recursively. In the worst case, we still require
n test-cases to cover all n mutations.

Input: A model and a set of mutations T
Output: A test-suite S covering the mutations in T .

➀ If T = ∅, terminate.
➁ Compute a test case t satisfying EQk ∧ F T (as defined in (5)).

(C = ∅ if there is no such t).
➂ Let C ⊆ T be the set of mutations independently covered by t:

➊ If C �= ∅, let T := T \ C. Add t to the test suite and proceed to ➀.
➋ If C = ∅, partition T into T1 and T2 s.t. T = T1∪T2, and T1∩T2 = ∅.

Call the algorithm recursively with T := T1 and T := T2, respectively.

Fig. 6. An algorithm for systematic test-case generation

The success or failure of this approach depends inherently on the structure of
the mutations and the model M . In the following, let ν1 and ν2 be two mutations
for M . Furthermore, let s0, . . . , sn be an execution trace of M , and s′0, . . . , s

′
n be

an execution trace of M with both mutations enabled.
Assume that ν1 and ν2 affect different output signals, i.e., given a fixed input

sequence s0.i, . . . sn.i, the set of signals changed by activating the mutation ν1
is disjoint from the set of signals changed by enabling the mutation ν2. Then,
we can increase the chance of finding a test case that covers both mutations
independently by trying to maximize the difference between s0.o, . . . sn.o and
s′0.o, . . . s′n.o.

Unfortunately, such an independence cannot be assumed in general, since
there may be a mutual influence between mutations. In particular, two mutations
may cancel each other out. Checking whether two mutations are independent in
the sense explained above is computationally as expensive as model checking
and therefore not a feasible strategy.

Mutation-Based Test Case Generation for Simulink Models 223

5 Detecting Non-observability of Mutations

In traditional mutation-based testing, the difficulty to identify mutations without
observable effect on the system outputs is known to be one of the main obstacles.
Assume that one instance EQk ∧ F c of (4) (with i = c) is unsatisfiable. This
indicates that the injected fault corresponding to f c (see Formula (2)) does not
result in an error that propagates to an observable output within k steps. There
are two possible reasons for this phenomenon:

1. The bound k is not sufficiently large to reveal the error.
2. The model contains redundancy and the injected fault does not result in an

observable change of its behavior. We say that the model tolerates the fault.
The mutant is an equivalent mutant.

A complete model checking algorithm can distinguish both cases. The first case
can be addressed by simply increasing the bound k. In the second case, the
mutation is not strong enough to have any impact on the observable behavior
of the model and the model checking tool provides a proof for the equivalence
of the mutated and original model. This concept is explained in the following
subsection.

5.1 Model Checking, Induction, and Invariants

BMC is only capable of providing a guarantee that a property P is not violated
within at most k execution steps. In this section, we briefly discuss two techniques
to lift this restriction: k-induction [28] and finding invariants by means of fixed-
point detection [1].

k-Induction. This technique generalizes the standard induction principle, and
has been used before for test-vector generation for Simulink models [2]. The base
case is established by means of BMC. The following equation holds if and only
if the property P is not violated in the first k execution steps:

I(s0) ∧
k−1∧

i=0

R(si, si+1) ∧
k∧

i=0

P (si) (6)

If the base case (6) holds, the technique proceeds to show by induction that P
holds for any arbitrary k ∈ �:

⎛

⎝
k∧

i=0

R(si, si+1) ∧
k∧

j=0

P (sj)

⎞

⎠ ⇒ P (sk+1) (7)

Formula (6) in combination with (7) implies that the sequence of states can be
extended to a path of arbitrary length without ever violating P . Thus, if we can
find a k for which the conjunction of (6) and (7) holds, then the model is safe.

To check whether this conjunction holds for a given k, we rely on efficient
decision procedures (SAT solvers such as [27], in particular). Let G = (6)∧(7). If

224 A. Brillout et al.

G holds, modern decision procedures are able to generate a proof. In our setting,
a proof is a directed acyclic graph (V, E, �), where V is a set of vertices, E is a
set of edges, and � is a labeling function. Each initial vertex v has in-degree 0
and �(v) is an axiom or a sub-conjunct of G. Each internal vertex has in-degree
m, m ≥ 1. The label of each inner node w is derived from the labels of its
predecessors {v1, . . . , vm} by means of a deduction rule �(v1), . . . , �(vm) % �(w).
The final vertex u has out-degree 0 and �(u) is the conclusion of the proof. SAT
solvers typically generate proofs that ¬G is unsatisfiable, that is, the conclusion
is F.

Fixed-Points and Invariants. For finite-state systems, iterating the transition
function until no new states are found is a viable verification technique, known
as fixed-point detection. This technique relies on an efficient symbolic repre-
sentation of sets of states such as binary decision diagrams [29]. The following
recursive equations are iterated until Si = Si+1:

S0 = {s0|I(s0)}, Si+1 = Si ∪ {si+1|si ∈ Si ∧ R(si, si+1)} (8)

Let J be a symbolic representation of the final Si in this sequence. Then J is an
inductive invariant, i.e., it holds that

I(s0) ⇒ J(s0) , and J(si) ∧ R(si, si+1) ⇒ J(si+1) . (9)

A popular technique to find invariants is the over-approximation of the set of
safe states by means of Craig interpolation [30].

5.2 Reusing Proofs and Invariants for Proving Unobservability

Proof Analysis. The techniques presented in this section are based on work re-
cently presented by Purandare et al. [31]. Consider a system M and a mutated
system Mo in which all the mutations are introduced, but disabled using F ∅, i.e.
∀i.¬f i. Thus, M and Mo are equivalent, i.e. si.o = s′i.o at all times. The equiv-
alence checking Formula (1) is unsatisfiable for all k. As stated in Section 5.1,
k-induction is one possibility to prove equivalence of M and Mo. Let T be a set
of indices corresponding to all possible mutations (cf. Section 4.1). The formulae
that k-induction checks to establish equivalence of M and Mo are as follows:

I(s0) ∧
k−1∧

i=0

R(si, si+1)

︸ ︷︷ ︸
original model

∧ I ′(s′0) ∧
k−1∧

i=0

R′(s′i, s
′
i+1)

︸ ︷︷ ︸
mutated model

∧
∧

j∈T

¬f j

︸ ︷︷ ︸
disable T

∧
k∧

i=0

si.o = s′i.o

︸ ︷︷ ︸
equality of output

(10)
⎛

⎝
k∧

i=0

(R(si, si+1) ∧ R′(s′i, s
′
i+1)) ∧

∧

j∈T

¬f j ∧
k∧

j=0

sj .o = s′j .o

⎞

⎠ ⇒ sk+1.o = s′k+1.o

(11)

Mutation-Based Test Case Generation for Simulink Models 225

The following theorem states that those mutations that do not appear in the final
proof of G = (10) ∧ (11) checked during k-induction are non-observable [31].

Theorem 1. A mutation corresponding to an enabling variable f j that does not
appear in the final proof of G is unobservable.

Proof. A variable absent in the proof does not influence the conclusion of the
proof. Thus, enabling a flag f j absent in the proof does not invalidate the proof
of k-inductivity and hence, does not break equivalence.

Thus, mutations absent in the proof do not need to be checked as these are
unobservable.

Inductive Invariant. An inductive invariant represents a set of safe states with
respect to a certain property of the model. Consider the composition of the
two models M and Mo (where ∀i . (si.i = s′i.i)) and let ∀i . (si.o = s′i.o) be the
property in question.

Theorem 2. Let J(s, s′) represent an invariant over the state space of the two
models that warrants the equivalence of M and Mo, i.e., that ∀i .J(si, s

′
i) ⇒

(si.o = s′i.o) holds. Furthermore, let R′ be the transition function of Mo, only
that the jth mutation is enabled (f j = T). If

I(s0) ∧ I ′(s′0) ⇒ J(s0, s
′
0) and
J(si, s

′
i) ∧ R(si, si+1) ∧ R′(s′i, s

′
i+1) ⇒ J(si+1, s

′
i+1)

holds, then the jth mutation is unobservable.

Proof. The inductive invariant J is also an inductive invariant of the resulting
mutated system and therefore establishes equivalence.

6 Conclusion

We have defined a methodology for automated test case generation for Simulink
models. By formulating test coverage and goals in terms of fault models, we
achieve a flexible and general framework that subsumes standard coverage crite-
ria and is directly related to functional and non-functional requirements specifi-
cations. The use of equivalence checking and bounded model checking makes it
possible to explore the behavior of models with high precision, taking intricate
details such as the actual floating-point semantics of execution platforms into
account. We implemented this approach in our test-case generation tool Cover,
which is based on the model checker Cbmc. The evaluation of Cover on indus-
trial case studies developed in the European projects MOGENTES and CESAR
is currently in progress.

In order to handle the size of real-world Simulink models, we have introduced
two main concepts to keep the complexity of test case generation manageable:
a strategy to compute small test suites by maximizing the number of mutations
that are covered by each test case, and techniques to efficiently detect unobserv-
ability of mutations. An experimental evaluation of both techniques is planned
as future work.

226 A. Brillout et al.

References

1. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

2. Gadkari, A., Yeolekar, A., Suresh, J., Ramesh, S., Mohalik, S., Shashidar, K.C.:
AutoMOTGen: Automatic model oriented test generator for embedded control
systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 204–208.
Springer, Heidelberg (2008)

3. Kroening, D., Clarke, E.M., Yorav, K.: Behavioral consistency of C and Verilog pro-
grams using bounded model checking. In: Design Automation Conference (DAC),
pp. 368–371. ACM, New York (2003)

4. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: Systematic test case
generation for dynamic analysis and measurement. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 209–213. Springer, Heidelberg (2008)

5. Angeletti, D., Giunchiglia, E., Narizzano, M., Puddu, A., Sabina, S.: Automatic
test generation for coverage analysis using CBMC. In: Moreno-Dı́az, R., Pichler,
F., Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory - EUROCAST
2009. LNCS, vol. 5717, pp. 287–294. Springer, Heidelberg (2009)

6. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-driven program testing.
In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 151–166.
Springer, Heidelberg (2009)

7. Ball, T.: A theory of predicate-complete test coverage and generation. In: de Boer,
F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2004. LNCS,
vol. 3657, pp. 1–22. Springer, Heidelberg (2005)

8. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: International Conference on Software Engineering
(ICSE), pp. 326–335 (2004)

9. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering, TSE (2010)

10. Kupferman, O., Li, W., Seshia, S.A.: A theory of mutations with applications to
vacuity, coverage, and fault tolerance. In: Formal Methods in Computer-Aided
Design (FMCAD), pp. 1–9. IEEE, Los Alamitos (2008)

11. Ruthruff, J.R., Burnett, M.M., Rothermel, G.: Interactive fault localization tech-
niques in a spreadsheet environment. IEEE Transactions on Software Engineering
(TSE) 32, 213–239 (2006)

12. Schuler, D., Dallmeier, V., Zeller, A.: Efficient mutation testing by checking in-
variant violations. In: International Symposium on Software Testing and Analysis
(ISSTA), pp. 69–80. ACM, New York (2009)

13. Meenakshi, B., Bhatnagar, A., Roy, S.: Tool for translating simulink models into
input language of a model checker. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 606–620. Springer, Heidelberg (2006)

14. Fehnker, A., Krogh, B.H.: Hybrid system verification is not a sinecure: The elec-
tronic throttle control case study. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299,
pp. 263–277. Springer, Heidelberg (2004)

15. Joshi, A., Heimdahl, M.P.E.: Model-based safety analysis of Simulink models using
SCADE design verifier. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP
2005. LNCS, vol. 3688, pp. 122–135. Springer, Heidelberg (2005)

16. Ryabtsev, M., Strichman, O.: Translation validation: From simulink to c. In:
Bouajjani, A., Maler, O. (eds.) Computer Aided Verification. LNCS, vol. 5643,
pp. 696–701. Springer, Heidelberg (2009)

Mutation-Based Test Case Generation for Simulink Models 227

17. The Mathworks: Simulink design verifier user’s guide. version 1.5 (2009),
http://www.mathworks.com/access/helpdesk/help/toolbox/sldv/

18. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arith-
metic. In: Formal Methods in Computer-Aided Design (FMCAD), pp. 69–76. IEEE,
Los Alamitos (2009)

19. Kuehlmann, A., van Eijk, C.A.J.: Combinational and sequential equivalence check-
ing. In: Logic Synthesis and Verification. Kluwer International Series in Engineering
and Computer Science Series, pp. 343–372. Kluwer, Norwell (2002)

20. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

21. Kroening, D., Clarke, E.: Checking consistency of C and Verilog using predicate
abstraction and induction. In: IEEE/ACM International Conference on Computer-
Aided Design, pp. 66–72. IEEE, Los Alamitos (2004)

22. Victor, A.C.: Interpretation of IEEE-854 floating-point standard and definition in
the HOL system. Technical report, NASA Langley (1995)

23. Harrison, J.: Formal verification of square root algorithms. Formal Methods in
System Design (FMSD) 22, 143–153 (2003)

24. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A.,
Monniaux, D., Rival, X.: A static analyzer for large safety-critical software. In:
Programming Language Design and Implementation (PLDI), pp. 196–207. ACM,
New York (2003)

25. Miné, A.: Relational abstract domains for the detection of floating-point run-time
errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer,
Heidelberg (2004)

26. Kroening, D., Strichman, O.: Decision Procedures. Springer, Heidelberg (2008)
27. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,

A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
28. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction

and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

29. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers 35, 677–691 (1986)

30. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

31. Chockler, H., Kroening, D., Purandare, M.: Coverage in interpolation-based model
checking. In: Design Automation Conference (DAC), ACM, New York (2010)

http://www.mathworks.com/access/helpdesk/help/toolbox/sldv/

Model-Based Mutation Testing of
Hybrid Systems�

Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, and Willibald Krenn

Institute for Software Technology, Graz University of Technology
{aichernig,hbrandl,ejoebstl,wkrenn}@ist.tugraz.at

Abstract. This paper presents a novel model-based testing approach
developed in the MOGENTES project. The aim is to test embedded
systems controlling a continuous environment, i.e., hybrid systems. We
present our two key abstractions against which we systematically test
for conformance. (1) Classical action systems are used to model the dis-
crete controller behavior. (2) Qualitative differential equations are used
to model the evolutions of the environment. The latter is based on a
technique from the domain of Artificial Intelligence called qualitative
reasoning. Mutation testing on these models is used to generate effec-
tive test cases. A test case generator has been developed that searches
for all test cases that would kill a mutant. The mutant models repre-
sent our fault models. The generated test cases are then executed on the
implementation in order to systematically exclude the possibility that a
mutant has been implemented.

1 Introduction

The EU FP7 project MOGENTES aims at significantly enhancing testing of
dependable embedded systems by means of automated generation of test cases.
As its full name Model-based Generation of Tests for Dependable Embedded
Systems indicates the approach to address this aim is model-based testing.

In model-based testing a (formal) model of the system under test (SUT) serves
two purposes, to generate the input stimuli and as a test oracle for the expected
behavior. Figure 1 gives the general picture. A tester produces a model and gen-
erates test cases from it. The tests are automatically executed. If all possible tests
pass, we have conformance between the model and the SUT. However, since ex-
haustive testing is impractical, we have to select a proper subset of possible test
cases. Hence, the aim is to show non-conformance, i.e., to find bugs in the SUT.

Since the project deals with highly critical systems, e.g., in the transportation
domain, the techniques have to be well-grounded. Therefore, a formal testing
approach is required implying, (1) models with precise semantics, (2) well-defined
notions of conformance, and (3) an explicit notion of fault models and coverage.
The latter is addressed by applying mutation testing techniques to the modeling
level.
� Research herein was funded by the EU FP7 project ICT-216679, Model-based Gen-

eration of Tests for Dependable Embedded Systems (MOGENTES).

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 228–249, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Model-Based Mutation Testing of Hybrid Systems 229

Fig. 1. Model-based testing: (1) a
tester develops a model of the system
under test, (2) test cases are gener-
ated from the model, (3) the test cases
are executed on the system under test
(SUT) to check for conformance

Mutation testing is a way of assessing
and improving a test suite by checking
if its test cases can detect a number of
injected faults in a program. The faults
are introduced by syntactically changing
the source code following patterns of typ-
ical programming errors [10,9]. However,
in MOGENTES we apply model-based
mutation testing. The idea is to mutate
the models and generate those test cases
that would kill a set of mutated mod-
els. The generated tests are then executed
on the SUT and will detect if a mu-
tated model has been implemented. Hence,
model-based mutation testing tests rather
against non-conformance than for confor-
mance. In terms of epistemology, we are
rather aiming for falsification than for
verification. It is a complementary fault-
centered testing approach, well-suited for
dependability analysis.

In the past, we have successfully applied model-based mutation testing to test
communication protocols: e.g., HTTP [3] and SIP [18]. Furthermore, we have
investigated its semantic foundations [4]. In this paper we extend our model-
based mutation testing approach to models of hybrid systems. Hybrid systems
involve discrete and continuous state updates as typically found in controllers
interacting with a physical environment. Many embedded systems interact with
a continuous environment and hence there is a strong interest in applying model-
based testing to such systems.

The key technique is abstraction. Note that our models are abstract test mod-
els capturing the requirements. They are not implementation models for code
generation as, e.g., found in model-driven development. The requirements of
hybrid systems are largely qualitative and hence, as testers we are mainly in-
terested in the qualitative changes of the system over time. As a consequence,
in our test models we are able to abstract away from continuous environmental
changes to qualitative changes. We use techniques from the field of Qualitative
Reasoning (QR) [13] to model and reason over the qualitative behavior of the
continuous environment. In QR modeling, numerical values are abstracted to rel-
evant qualitative symbolic values. The behavior of these models is described in so
called Qualitative Differential Equations. In order to model both, the controller
and the environment, we have integrated these Qualitative Differential Equa-
tions into classical Action System before [2]. We call this extension Qualitative
Action Systems (QAS).

The main contribution of this paper is the new combination of model-
based mutation testing and qualitative reasoning. This involves a new test case

230 B.K. Aichernig et al.

Fig. 2. Overview of our approach: Based on two QAS (a model of the SUT and a
mutated system model), we calculate the synchronous product modulo ioco on-the-fly,
i.e., we explore both QAS to gain the LTS semantics, add quiescence where needed,
and determinize the resulting LTS in parallel. Finally, we extract a controllable test
case from the synchronous product.

generator that combines a qualitative reasoning engine with an equivalence (con-
formance) checker. Note that we rely on classical notions of conformance defined
over labeled transition systems (LTS). This is achieved by interpreting an action
system as an LTS via a labeling of actions. We distinguish between input, output
and internal labels representing the communication events between tester and
SUT.

Figure 2 gives an overview of our test case generation approach. It relies on
two inputs: (a) a model of the SUT in the form of a QAS and (b) a mutated sys-
tem model, which is derived from the original QAS by applying a certain fault
model. Note that modeling (cf. Step 1) as well as fault injection (cf. Step 2)
have to be carried out manually. By the exploration of qualitative action sys-
tems, we are able to give them an LTS semantics. Our testing approach relies
on the well-known input-output conformance relation ioco [17]. For test case
generation, we check if the mutated model conforms to the original one. If not,
a counter-example is turned into a test case. The conformance check is imple-
mented as an on-the-fly calculation of the synchronous product modulo ioco of
the two given QAS, i.e., we explore both QAS to gain the LTS semantics, add
ioco’s additional quiescence observation where needed (see Section 5.2), and de-
terminize the resulting LTS in parallel (cf. Step 3). In this way, only parts of
the QAS which are relevant for the test case generation are explored. Finally,
we extract a controllable test case, which is an LTS again.

In the rest of this paper we present the details of this approach. Section 2 in-
troduces our running hybrid systems example. Section 3 presents the qualitative
abstraction of continuous functions and Section 4 describes the modeling of a
hybrid system by means of QAS. Then, we discuss how test cases are identified

Model-Based Mutation Testing of Hybrid Systems 231

via mutation testing in Section 5 and show how to select test cases in Section 6.
Finally, we draw our conclusions, discuss related work and give an outlook to
future work in Section 7.

2 Hybrid Systems

Hybrid systems provide a closed-

Fig. 3. A Two-Tank System with two
pumps

loop view on control programs oper-
ating in their environment. This
closed-loop view, which incorporates
continuous (environment) and discrete
(controller) behavior, allows to draw
more conclusions than by looking at
the controller in isolation. For exam-
ple, properties about the system’s sta-
bility or its long term behavior.

Consider the example hybrid sys-
tem of Figure 3 and the task to auto-
matically derive tests. The first step
towards a hybrid system model is to
know the (informal) system require-
ments : in the two-tank system in
Figure 3 tank T 1 is on a lower level

than the tank T 2. T 1 is being filled with water having some inflow rate in. Both
tanks (T 1, T 2) are connected by the pump P1 that is controlled such that: if
the water level in T 2 decreases below a certain Reserve mark and T 1 is full,
pump P1 starts pumping water until T 2 is full or T 1 gets empty. In addition,
the controller needs to control the pump P2 that is pumping water out of T 2:
P2 shall be turned on as long as a button WaterRequest is pressed and there
is enough water in T 2 (T 2 not Empty). Note that the signal WaterRequest and
the inflow rate in are not controllable, hence T1 may overflow.

Given these requirements, one is able to derive a formal model. In this exam-
ple, the continuous dynamics of the system is expressed by two coupled differ-
ential equations:

ẋ1 = (in − inout)/A1 and ẋ2 = (inout − out)/A2. (1)

Here, A1 and A2 are the base areas of the two tanks and x1 and x2 denote the
current level in the tanks. The variables in, inout, and out denote the flow rates
into T 1, between T 1 and T 2, and out of T 2 respectively.

Observe that for testing whether some given implementation of this two-tank
system conforms to the stated requirements we do not need to know the exact
numerical value of the water level at all times, nor do we care about the exact
time information. We would also need to incorporate additional knowledge, such
as the exact base areas of the tanks in order to solve these equations numerically:
in reality we might not have all information that is required for such a detailed

232 B.K. Aichernig et al.

model. Informal requirements, as in our example, mostly describe evolutions of
hybrid systems in a qualitative manner like “when something increases to a cer-
tain value another thing will start decreasing”. Finally, in order to transform the
informal requirements to the differential equation model, one needs experience
in physics and applied mathematics. To put a long story short: for our purposes
of model-based mutation testing, the full differential model – most of the time –
requires (and carries) too much detail. Hence, we abstract away these unneces-
sary details by using a technique called qualitative abstraction. After applying
qualitative abstraction to the continuous behavior of our hybrid system we ob-
tain a discrete model which we discuss in the next section. Having dealt with the
continuous parts of the hybrid system, we then use action systems to formalize
the discrete part. How action systems and qualitative evolutions can be joined
to a hybrid system model has already been described in [2] and yields a formal-
ism called Qualitative Action Systems (QAS). This provides us a framework for
modeling and analyzing hybrid systems.

3 Environment Modeling with Qualitative Evolutions

In difference to most hybrid system models that use Ordinary Differential Equa-
tions (ODEs) to model continuous evolutions, a qualitative action system only
knows about discrete, qualitative evolutions. Each of these qualitative evolutions
forms a transition system that is constructed from Qualitative Differential Equa-
tions (QDEs) by applying a technique called Qualitative Reasoning (QR) [13].
Qualitative Reasoning originates from the area of Artificial Intelligence and is ap-
plied in common sense reasoning about physical systems with incomplete knowl-
edge. The technique is based on the well founded theory of QDEs which are
an abstraction of ODEs. Solutions to QDEs are usually found by inference sys-
tems like QSIM [13]. Qualitative reasoning relies on two abstractions: (1) value
abstraction and (2) time abstraction.

Value abstraction is a data abstraction mapping the continuous real-valued vari-
ables of a physical environment to discrete variables with symbolic values. These
symbolic variables are called quantities and have a finite domain of symbolic
values. This finite domain of a quantity variable, i.e., its type, is called quantity
space. There are two kinds of symbolic values in a quantity space: landmark
values and open intervals.

Landmark values are the “natural joints” that break a continuous set of values
into qualitatively distinct regions. A landmark value is a symbolic name for a
particular real number, whose numerical value may or may not be known. It
serves as a precise boundary for a qualitative region. For example, the landmark
values of our water level in tank T 2 are Zero, Empty, Reserve and Full. These
names indicate the interesting points where a behavior changes from a qualitative
point of view. Hence, in our qualitative abstraction, the water level x2 may
evaluate to the landmark values, e.g., x2 = Empty. Furthermore, the landmark
values are defined to form a strict total order. In our example Zero < Empty <
Reserve < Full holds.

Model-Based Mutation Testing of Hybrid Systems 233

The qualitative values of a quantity variable are not only the landmark values,
but also the open intervals between them. Hence, a quantity evaluates either to
a landmark value or to an interval between landmarks. For example, the water
level of tank T2 can evaluate to seven different symbolic values:

x2 ∈ {Zero, Zero..Empty, Empty, Empty..Reserve,

Reserve, Reserve..Full, Full}

Please note, in this abstraction the syntax Empty..Reserve represents a sym-
bolic value expressing the imprecise knowledge that the concrete real value is
somewhere in between those landmarks. For modeling, it is sufficient to define a
list of landmarks, the interval values are implicit.

In order to describe the dynamics of a continuous system on a qualitative
level, the symbolic values alone would be insufficient. Therefore, the direction
of change δ =df {−, 0, +} is also part of the abstract value space. This is an
abstraction of the first derivation of the continuous behavior. Hence, the type
of a qualitative variable is a pair consisting of a qualitative value and δ. For
example, x2 = (Reserve,−) expresses the state of tank T2 when its water-level
reaches the reserve level and the water-level is still decreasing.

A typical evolution of the water level x2 when filling up the tank would be

(Zero, 0), (Zero..Empty, +), (Empty, +), (Empty..Reserve, +),
(Reserve, +), (Reserve..Full, +), (Full, 0).

Note that jumps in the qualitative evolution are forbidden. The water level
cannot go from increasing to decreasing without first being steady. Furthermore,
the qualitative value cannot jump from one landmark value to the next without
the interval value in between.

Time abstraction. Time intervals in which the qualitative behavior does not
change are abstracted away. As a consequence, we abstract from continuous time
to a temporal ordering of qualitative states. Figure 4 shows the relation between
a continuous function v (top-right) and the according qualitative behavior q
(bottom-left). Here, four landmarks split the value space into three regions of
interest. The symbolic values show if a value is on a landmark or in between as
well as its direction of change. The symbols in the qualitative trace denote steady
behavior (circle), increasing behavior (arrow pointing upward), and decreasing
behavior (arrow pointing downward). In addition, the abstraction s of the time
intervals to steps in the evolution is also made explicit (bottom-right diagram).

The intended qualitative behavior is specified via Qualitative Differential
Equations (QDEs). Like Ordinary Differential Equations, a QDE defines the dy-
namics of a system via relating the symbolic variables and their first derivations.
Auxiliary variables may be used to link a set of QDEs. Our running example
serves to illustrate the modeling approach.

In order to model the controller environment of our example we have to define
the domains of the model quantities. The quantities x1 and x2 denoting the fill

234 B.K. Aichernig et al.

0
1
2

0
1
2

zero

m ed

hig h

m ax

Fig. 4. Abstracting a continuous state evolution to a qualitative trace

levels in the two tanks have the quantity spaces T 1 =df {Zero,Empty,Full} and
T 2 =df {Zero,Empty,Reserve,Full} respectively (see Figure 3). Remember that
the implicit intervals between the landmarks are part of the quantity spaces.
The flow rates have the quantity space FR =df {Zero, Max}. We also need
to introduce auxiliary quantities in order to be able to set up the QDEs. The
auxiliary quantities diff1 and diff2 have to link the different QDEs. Hence, they
only need a coarse quantity space NZP =df {minf, Zero, inf}.

Table 1. Qualitative Addition

add + 0 –
+ + + +/0/–
0 + 0 –
– +/0/– – –

We use two types of qualitative constraints
to formulate the QDEs of the water tank exam-
ple: add and d/dt. The constraint add(x, y, z)
denotes the qualitative addition of two qualita-
tive values x + y = z. It is defined over sign
algebra and simply expresses facts like that two
positive qualitative values will also be positive,
etc. Table 1 shows the full definition of this qualitative addition. Note that in
contrast to the real-valued algebra, here the addition is a relation rather than a
function. This is because the result of adding opposing signs cannot be uniquely
determined. The second constraint d/dt(x, y) denotes that y is the qualitative
derivation of x. This means that the sign of y determines the direction of change
of x. The qualitative model of the two-tank system is given by the conjunction
of the following QDEs:

add(diff2, out, inout) ∧ add(diff1, inout, in) ∧ d/dt(x1, diff1) ∧ d/dt(x2, diff2) (2)

Since QR only deals with symbolic values and monotonic function relations
(e.g., if x increases then y decreases) constant factors have no influence on the
qualitative behavior. For example, the continuous functions f1(t) = t2 and f2(t) =

Model-Based Mutation Testing of Hybrid Systems 235

3 · t2 with t > 0 both map to the same qualitative value (0..inf , +) denoting some
unknown function increasing in the interval (0,∞). Hence, the base areas of the
two tanks in Equation 1 are not considered by the qualitative model.

Starting from a given initial state, a qualitative inference engine like QSIM [13]
derives all possible behaviors which may evolve over time. This qualitative in-
ference process results in a transition system. It represents the set of all possible
behaviors, which is the set of all state sequences starting from the initial state,
referred to as traces.

Behavior inference relies on solving constraints between the quantities ex-
pressed as QDEs and on transition rules between the current state and succes-
sor states imposed by the qualitative theory. For example, the earlier mentioned
continuity law preventing jumps in the qualitative evolution is such a transi-
tion rule. A behavior is extended with a new state if at least one of the model
quantities changes its value and the new state satisfies the QDEs and transition
constraints.

Zero

Empty

Full

Zero

Empty

Reserve

Full

Fig. 5. Qualitative evolution of the two-tank system

Figure 5 shows an example evolution of our system. The upper diagram shows
a concrete evolution while the lower diagram shows the corresponding qualitative
evolution. In hybrid systems theory, a continuous region is denoted as mode. The
scenario comprises four different modes. Discrete controller actions may cause
non-continuous changes in the system as can be observed for the quantity x1 at
the change from mode P1 ON to P1 OFF in the qualitative trace. Here, the
water level x1 changes directly from decreasing to increasing. Of course, in a
real system the changes would be continuous as mass inertia requires changes to
take some time.

236 B.K. Aichernig et al.

For a more detailed description of the process of qualitative behavior inference
and the possible qualitative constraints see [13]. The following section presents
the hybrid model of our running example.

4 System Modeling with Qualitative Action Systems

In the previous section, we have developed a set of QDEs expressing the con-
tinuous evolutions of our running example. For our hybrid system model to be
complete, we now have to merge the qualitative evolutions of the environment
with the behavior of the controller into a single qualitative action system model.
Qualitative action systems are based on the formalism of action systems by Back
et al. [5] that provide a framework for describing discrete and distributed sys-
tems. The actions are statements in the form of Dijkstra’s guarded commands
where the semantics is defined via weakest precondition predicate transformers.
An action system (see Equation 3) consists of a block of variable declarations
followed by an initialization action S0 assigning to each variable an initial value
and a do od block looping over the non-deterministic choice of all actions. Vari-
ables declared with a star are exported by an action system and can be imported
by others in the import list I at the end of the action system block. Exported
variables have to be unique among all other exported variables.

AS =df |[var Y : T • S0;do A1� . . .�Anod]| : I (3)

In order to specify distributed concurrent systems, several action systems can be
composed in parallel. For two action systems A1 and A2 the import list of the
resulting system gets (u1 ∪u2)\(v1 ∪ v2) where u1, u2 are the imported variables
and v1, v2 are the exported variables of A1 and A2 respectively. It follows that
communication of parallel running action systems is modeled by access to shared
(imported/exported) variables which is a good choice (easy semantics) when
modeling distributed and parallel systems.

In order to model our water-tank system as action system, we have to be more
precise on its requirements:

1. If a button WaterRequest is pressed (on) and provided T 2 is not
empty (water level above Reserve), start pump P2 and pump water
out of tank T 2.

2. If P2 is running and WaterRequest is not pressed, stop P2.
3. If P2 is running and the water level of T 2 drops to Empty, stop P2.
4. If tank T 2 gets empty (water level below Reserve mark) and T 1 is

full, pump water out of tank T 1 into tank T 2 by starting pump P1.
5. If pump P1 is running and the water level in tank T 1 drops to Empty,

then stop P1.
6. If pump P1 is running and the water level in tank T 2 reaches Full,

then stop P1.

The formal model of the system is given in Figure 6 and comprises three sections.
In the var section all variables are declared and initialized: the system starts with

Model-Based Mutation Testing of Hybrid Systems 237

both tanks empty, both pumps turned off, and some non-zero inflow rate into
tank T 1. The two keywords alt and with are used to denote the principle of
hybrid alternation: the discrete actions in the alt block are alternated with the
continuous action in the with block. In order to model reactive behavior, we give
the controller priority over the environment. In other words, whenever an action
of the alt block (which models the controller) is enabled for execution, a possibly
running continuous action terminates and the action of the alt block is executed.
This type of alternation is called interrupting prioritized alternation. Notice that
the controller eventually has to reach a stable state in its computation where
it waits for environmental updates. Otherwise, the environment and hence the
progress of time would be blocked. The work in [15] discusses various kinds of
hybrid alternation.

In order to apply standard LTS-based testing techniques we label each action
with a name, denoting an event. For environmental changes (the execution of
qualitative actions) we introduce the so-called qual event which may have pa-
rameters. The parameters determine the valuation of certain model quantities at
the end of an evolution. This event view provides a further level of abstraction
since, for blackbox testing, we are only interested in the external event behavior
of a system. If the tester is only interested in the discrete controller events, the
environmental qual events can also be hidden and considered as internal. Even
in this case, a wrong environmental behavior can be detected if it has influence
on the discrete controller events. Internal events are denoted with τ .

By executing a (qualitative) action system we obtain the set of all possible
event sequences starting from the initial state. This gives us the trace (LTS)
semantics of the action system. The trace semantics of qualitative action systems
is described in [6]. Hence, our test model is an LTS obtained by exploration rather
than the action system itself.

We need to create five discrete actions in order to model the controller. Each
discrete action has a name (label) followed by a guard and an action body. When
the action guard holds in a certain computation state, the body is executed
and the model variables are updated accordingly. For instance, the first discrete
action

PUMP1 ON : g1 → p1 running := true; inout := (0..Max, 0)

has some guard g1 and switches on pump P1 by setting the Boolean variable
p1 running to true and the pump to some non-zero, steady flow rate. The action
system in Figure 6 still has general guards g1 to g5 instead of concrete ones.
Hence, we need to find the correct guards so that our controller behavior matches
the requirements. Starting with the first requirement that specifies when P2
should be enabled we can replace g3 by:

g3 =df wr ∧ ¬p2 running ∧ x2 > Empty

Requirements 2 and 3, dealing with cases when to stop P2, can be translated
into guard g4:

g4 =df p2 running ∧ (¬wr ∨ x2 ≤ Empty)

238 B.K. Aichernig et al.

System =df

|[var x1 : T1, x2 : T2, out, inout : FR,
diff1, diff2 : NZP,
p1 running, p2 running, wr : Bool
• x1 := (0, 0); x2 := (0, 0);

out := (0, 0); inout := (0, 0);wr := false
p1 running := false; p2 running := false

alt PUMP1 ON : g1 → p1 running := true;
inout := (0..Max, 0)

� PUMP1 OFF : g2 → p1 running := false;
inout := (0, 0)

� PUMP2 ON : g3 → p2 running := true;
out := (0..Max, 0)

� PUMP2 OFF : g4 → p2 running := false;
out := (0, 0)

� WATER REQ(X) : g5 → wr := X
with ¬(g1 ∨ g2 ∨ g3 ∨ g4 ∨ g5) :⇁

add(diff2, out, inout) ∧ add(diff1, inout, in)∧
d/dt(x1, diff1) ∧ d/dt(x2, diff2)

]| : in

Fig. 6. Qualitative action system of the two-tank system

Similarly, g1 and g2 can be given as follows:

g1 =df x2 < Reserve ∧ x1 = Full ∧ ¬p1 running
g2 =df p1 running ∧ (x1 < Empty ∨ x2 = Full)

The first four controller actions are observable by a user of the system. The
fifth discrete action WATER REQ(X) is controllable and models a user scenario
where water is requested when tank T 2 is full and the water is being turned off
as soon as the water level drops below the Reserve level. Guard g5 expresses this
behavior:

g5 =df(¬wr ∧ x2 = Full ∧X = true) ∨ (wr ∧ x2 < Reserve ∧ X = false)

Since WATER REQ(X) is a controllable action, the tester sets the Boolean pa-
rameter X for requesting water or not depending on the described user scenario.
All discrete actions are combined via demonic choice.

The qualitative action in the with section consists of an evolution guard (EG),
the :⇁ arrow denoting a qualitative action, and a body comprising a set of QDEs.
If the EG holds in a certain state, the corresponding evolution consists of the
set of qualitative traces which terminate in post-states where EG does not hold
anymore. If there exist no post-states, the evolution does not terminate. The
weakest precondition (wp) semantics of qualitative actions is described in [2]
and can be interpreted as a non-deterministic update statement. The action
relates the initial state of a qualitative evolution to a set of post-states. From
these post-states further actions or evolutions can proceed. The wp semantics of
qualitative action systems ensures that only terminating actions are executed.

Model-Based Mutation Testing of Hybrid Systems 239

The qualitative differential equation in (2) is totally defined, which means that
we could use predicate true as evolution guard. However, since the evolution is
considered atomic, it would never terminate and as a result the controller would
not be able to interrupt it once it is run. So in order to realize the interrupted
prioritized alternation between discrete and qualitative actions, we conjoin the
negated guards of all discrete actions to strengthen the evolution guard. This
guarantees that whenever the controller has something to do, it can interrupt
the evolution of the environment.

The imported variable in denotes that the inflow rate into the lower tank
is external to the system. In our example we assume a steady, non-zero inflow
rate, i.e., in = (0..Max, 0). This concludes the description of the model and we
proceed with the testing techniques applied to our running example.

5 Model-Based Mutation Testing

Given the hybrid system model of the previous section, we derive test cases by
mutation: we compare the behavior of the original model with mutated ones
and extract behavior traces (tests) that allow us to distinguish implementations
conforming to the original specification from implementations that do not.

5.1 Mutation Testing

Classical mutation testing is a way of assessing and improving a test suite by
checking if its test cases can detect a number of injected faults in a program.
The faults are introduced by syntactically changing the source code following
patterns of typical programming errors. These deviations in the code are called
mutations. The resulting faulty versions of the program are called mutants. Usu-
ally, each mutant includes only one mutation. Examples of typical mutations
include renaming of variables, replacement of operators, e.g., an assignment for
an equivalence operator, and slightly changing Boolean and arithmetic expres-
sions. The number and kind of mutations depend on the programming language
and are defined as so called mutation operators. A mutation operator defines
a rewrite rule how certain terms in the programming language are replaced by
mutations. For every occurrence of the term the mutation operator rewrites the
original program into a new mutant. After a set of mutants has been generated,
the test cases are run both on the original and on each mutant. If a test case can
distinguish a mutant from the original program, i.e., a different output behavior
can be observed, we say that this test case kills a mutant. The goal is to develop
a test suite that kills all mutants. This technique of program testing has been
invented by Hamlet [10] and DeMillo et al. [9] in the 70-ies.

Mutation testing has three basic assumptions: (1) the competent programmer
assumption assumes that programmers make only small errors. This argument
supports the use of small variations in the code to represent the fault models,
i.e., the typical faults of programmers; (2) the chosen mutation operators are a
representative set of those errors; (3) via a coupling effect, more subtle errors
can be detected by testing against the simple errors only.

240 B.K. Aichernig et al.

However, even with this assumptions there is a fundamental difficulty in this
approach. Not all mutations represent actual faults producing observable failures.
For example, a mutation in dead code, i.e., code that is never executed, will not
lead to failures. Mutants with such an equivalent behavior are called equivalent
mutants and can never be killed by any test case. This posed a serious limitation
to the mutation testing technique: for a mutant surviving the tests, i.e., it is not
killed, we do not know if this is due to our inability to come up with a proper
test case or due to the fact that there is no such test case. Unfortunately, the
problem is undecidable in general.

In recent years, however, with the advent of model checking techniques, the
situation improved considerably: Today, the equivalence of two mutants can be
decided for a growing class of programs assuming finite datatypes. This may
explain the returning interest in mutation testing. For abstract models of a SUT
the situation is even better. We have implemented such an equivalence checker,
more precisely a conformance checker, for deciding if two action systems are
equivalent. In case of non-equivalence (non-conformance) we generate a discrim-
inating test case.

Hence, in model-based mutation testing we mutate the models of a SUT and
generate test cases that would kill an implementation of a mutated model. The
test cases are generated with the help of a conformance checker. In the following,
we describe this test case generation technique in more detail.

5.2 Test Case Generation via Conformance Checking

As explained above, conformance or equivalence checking is at the heart of
our test case generation technique. The reason why we prefer the term con-
formance checking to equivalence checking is the fact that our models are non-
deterministic. Therefore, conformance is formally a pre-order relation, but not
an equivalence relation.

In testing, we are only interested in external events. By interpreting our action
systems in terms of their labeled actions, we map qualitative action systems to a
labeled transition system (LTS) semantics. Furthermore, we distinguish between
controllable (input), observable (output), and internal (τ) actions. Based on
this LTS semantics we apply the input-output conformance relation ioco [17]
for generating mutation-based test cases. Therefore we implemented an ioco
checker in SICStus Prolog1 which verifies the conformance between two given
qualitative action systems by computing the synchronous product modulo ioco
[6]. The result of the check is again an LTS which, in the case of non-conformance,
contains fail states. These fail states are then used in the step of test case
extraction to obtain test cases which reveal the mutated behavior.

The ioco relation states that for all suspension traces in the specification
the outputs of the implementation after such a trace must be allowed in the
specification after the same trace. Here, suspension traces are traces of the spec-
ification over inputs, outputs, and quiescence. These traces are obtained from a

1 http://www.sics.se/sicstus/

http://www.sics.se/sicstus/

Model-Based Mutation Testing of Hybrid Systems 241

specification by adding quiescence (δ) self loops in states where no output event
is observable. Such states are called quiescent states. The purpose of quiescence
is to exploit the absence of any observable events as an observation itself. Quies-
cence is realized as timeout event, i.e., if the implementation does not send any
output within a specified timeout then δ can be observed. Thus, the timeout as-
sociated with δ has to be greater than the maximum response time of all other
output events in the system. In Example 2, we discuss how the observation of qui-
escence can be employed to resolve decision conflicts during synchronous testing.
Such conflicts arise in states where the tester has the choice between either apply-
ing an input or observing outputs. After adding δ self loops in quiescent states,
determinization is applied resulting in the suspension automaton.

Environmental changes in qualitative action systems are designated by qual
events. These events mark the firing of the qualitative action. If a tester’s choice
depends on a previous environmental update, such qual events have to be ob-
servable by the tester. Referring to our running example, a tester’s input to the
system is the controllable WATER REQ(X) event, where X is a Boolean param-
eter for requesting water or not. Note that the guard of this input action depends
on the water level of tank T 2. Hence, we have to declare qualitative evolutions
as observable events. Otherwise, the nondeterminism of the model would pre-
vent the enabledness of the controllable action according to the controllability
condition (4), discussed in section 5.3.

Example 1. Figure 7 shows a part of the conformance verification result between
the system specification and a mutant. In the mutant, the action

PUMP1 OFF : g2 → p1 running := true; inout := (0, 0)

has been modified such that the Boolean flag denoting the state of pump P1
remains true although it should be set to false. The ctr prefix of actions means
that the action is controlled by a tester while obs denote observations a tester
can make from the implementation. As can be seen in Figure 7, the mutation is
revealed when the tester tries to turn off pump P1 twice which is in difference
to the specified behavior. After unexpected output behavior, not permitted by
the specification, fail states are appended in the product LTS. The behavior of a
mutant following after pass states is allowed by the ioco relation. Furthermore,
the parametric values of qual events denote the environmental condition at the
end of an evolution. For example, the first evolution after the initial state fills
the lower tank to the Full level and the upper tank remains empty. Then pump
P1 is turned on which subsequently causes another evolution filling the upper
tank T 2. Here, depending on the flow rates and tank volumes several outcomes
are possible.

Applying the conformance verification step to several different mutants yields
the results shown in Table 2. In the first column ASO stands for the Associa-
tion Shift Operator which changes the association between variables in Boolean
expressions. ENO is the shorthand for the Expression Negation Operator, ERO

242 B.K. Aichernig et al.

0

1

 obs qual([x1:full/inc,x2:zero/std])

28

29

obs pump1_off

30 (pass)

obs qual([x1:empty..full/inc,x2:empty..reserve/dec])

31 (fail)

 obs pump1_off

27

obs pump2_on

32

obs pump1_off

obs pump2_on

33 (fail)

 obs pump1_off

35 (pass) 36 (fail)

34

ctr water_req(1) obs delta obs pump1_off

26

ctr water_req(1) obs pump1_off

...

 ...

2

obs qual([x1:empty..full/inc,x2:full/inc]) obs qual([x1: ...,x2: ...])

 obs pump1_on

Fig. 7. Part of the result of the conformance check between the original and the mu-
tated specification

Table 2. Results when applying conformance verification to mutated specifications

Mut. No. Avg.Time Average No. =
Op. Mutants [s] States Trans.

�=
No. Perc.

ASO 10 13.9 64 117 7 3 30%
ENO 6 7.6 68 120 5 1 17%
ERO 20 12.9 62 110 20 0 0%
LRO 13 12.8 93 168 9 4 31%
MCO 16 12.8 70 126 10 6 38%
RRO 12 12.0 40 73 10 2 17%
Total 77 12.0 66 119 61 16 21%

means the Event Replacement Operator, LRO stands for Logical Operator Re-
placement, MCO denotes the Missing Condition Operator, and RRO is the ab-
breviation for the Relational Replacement Operator. The second column shows
the number of generated mutants for each of the different operators. The average
time needed for the conformance verification is given in the third column. The av-
erage number of states and transitions of the resulting product graphs are given
in the fourth and fifth column, while the next to last column shows how many
equivalent mutants were found: from a total of 77 mutants, 16 (about 21%) were
found to be equivalent and cannot contribute any test cases. All conformance
results were derived using unbounded search, i.e., the results are exact. The state
space of the original specification comprises 59 states and 107 transitions.

Model-Based Mutation Testing of Hybrid Systems 243

5.3 Ensuring Controllability in Presence of Non-determinism

Fig. 8. An uncontrollable
two-tank system caused by
too coarse observations

The ioco relation is a global property referring to la-
bel traces of the specification rather than to states
like simulation relations. This implies that the lo-
cal information in a certain state, in general, is
not enough to decide conformance. That is the
case for non-deterministic specifications where the
same trace leads to different states. Here the out-
puts of both states have to be considered by ioco
which requires preceded determinization. Our ioco
checker applies the computation of the suspension
automaton on-the-fly while computing the prod-
uct LTS of two given QAS. However, care has to
be taken during determinization regarding the en-
abledness of events. In action systems, events can
only occur if the action’s enabledness guard is sat-
isfied in the current state. This guard is defined as
g(A) =df ¬wp(A, false), ensuring that the action will
not terminate in an undefined post-state. Here, wp
denotes the weakest precondition.

In the case of black-box testing, the state of a
system is internal and cannot be observed from
outside. If an action system model contains non-
determinism, i.e., internal actions and nondeter-
ministic updates, determinization of its labeled
transition system via subset construction leads to
sets of states. In the action system model, however,
for each of these states different subsequent events
(actions) could be enabled. Due to the abstraction
to an LTS we lose this information and in the LTS
the union of all enabled events would be indicated
as valid subsequent actions. This information loss
leads to a problem during test case execution, as the implementation might
make another internal decision than the test driver. In the end, the tester might
not know in which state the SUT is in and worse, which events are allowed. Be-
cause we require the SUT to be input-enabled, the tester might not even notice
the loss of synchronization immediately: the SUT has to ignore all inputs that
are not allowed. Of course, if the tester subsequently encounters an unexpected
observation, it would issue a fail verdict - which would be wrong in this case, as
the SUT made a valid internal choice.

To overcome this problem, we need to synchronize the test case execution
with the internal state decisions of the implementation. Since this is not possible
in blackbox testing, the alternative is to disallow input events with guards that
do not hold for all internal states. We denote the occurrence of an event a in
a state s as s

a→. The following property states that an action from the set of

244 B.K. Aichernig et al.

input actions LI is enabled in a state s ∈ S of the suspension automaton iff the
action is enabled in all sub-states of s:

∀a ∈ LI , s ∈ S • (∀si ∈ s • g(a)(si)) ⇐⇒ s
a→ (4)

According to ioco this is a valid abstraction since input behavior can get stronger,
which reduces the number of testing scenarios. If this causes the loss of many
input events then this is an indication that the tester needs more observations
to control the implementation. The work in [19] exploits the observation of qui-
escence to resolve the internal decision of the implementation to either accept
inputs or to produce outputs. The enabledness of (additional) output events
causes no problem since the ioco relation allows weaker output behavior in the
specification. For events in the output alphabet LU we get the property:

∀a ∈ LU , s ∈ S • (∃si ∈ s • g(a)(si)) ⇐⇒ s
a→ (5)

To sum up, the suspension automaton is a valid abstraction of the event traces
generated during the exploration of the action system regarding ioco.

Example 2. Consider an internal choice between two events, i.e., (τ ; a) � (τ ; b),
where τ denotes an internal event, ?a is an input event, !b is an output event,
the semicolon denotes sequential composition, and � is the external choice. The
first (left-to-right) LTS in Figure 9 shows the LTS of the internal-choice example.
Notice that states with output quiescence are augmented with δ self loops. The
suspension automaton in LTS 2 is obtained after determinization of LTS 1 by
computing the τ closure. A problem arises here since both events ?a and !b can
occur at the initial state which is not the behavior specified by the internal
choice. We can only apply input ?a if the implementation is in the according
internal state. Hence, we forbid event ?a in the initial state, see LTS 3. Then
two things can happen: either the output event !b or no output is observed. In
the case of quiescence, the tester changes to a state where the input event is
enabled.

Due to the inherent non-determinism of qualitative actions, controllability is a
major issue. Figure 8 shows the complete LTS of the two-tank system in the
case where the parameters of qual events are omitted. This weaker environmen-
tal behavior causes the loss of controllability which means that the tester has

LTS 1

τ τ

?a

δ

δ

!b

δ

LTS 2

δ

δ

?a

δ

!b

?a

δ

δ

LTS 3

δ
δ

!b
δ

?a

δ

Fig. 9. Internal choice between an input and an output action

Model-Based Mutation Testing of Hybrid Systems 245

not enough information to control the system under test. In this example all
controllable actions have been removed since no state satisfies condition (4), i.e.,
in every state a controllable action may be disabled. Such a system model is
restricted to monitoring the behavior of an implementation.

In the following section we discuss the test case extraction from the product
LTS.

6 Test Case Extraction

From the resulting product LTS, which will be referred to as test graph in the
following, test cases that aim at detecting the mutation can be generated. Note
that in order to generate proper test cases, the labels in the test graph are
divided into two categories: (1) Observables (keyword obs) denote actions that
are observable by the tester, i.e., they denote outputs of the implementation
under test. (2) Controllables (keyword ctr) denote actions that are controllable
by the tester, i.e., they denote inputs of the implementation under test.

The resulting test cases must fulfill certain properties in order to form valid
ioco test cases. One characteristic is controllability, which means that a test case
must not contain choices between several controllables or between controllables
and observables. Furthermore, each final state of the test case has to be la-
beled with a verdict, which can be pass, fail, or inconclusive. Pass means that
the implementation has successfully passed the test case. Fail denotes that the
implementation does not conform to the specification. Fail verdicts may be ex-
pressed implicitly by defining that each unspecified behavior causes a fail verdict.
Inconclusive says that the implementation behaved correctly but that the goal
of the test case, the so-called test purpose, could not be reached. A test purpose
describes what shall be tested by the test case. In our case, the test purpose is
to pass so-called unsafe states. An unsafe state denotes the direct predecessor of
a fail state of the test graph, which indicates a mutation. If a fail state cannot
be reached any more, i.e., if its unsafe state has been passed and the fail state
has not been reached, then the fault injected into the mutant used for test case
generation could not be identified in the implementation by the test case. In
this case, the verdict has to be pass. Note that the verdicts of the test cases are
assigned during test case extraction. They are not specified by the pass and fail
states generated throughout the product calculation described in the previous
section.

There exists more than just one approach to extract test cases that detect the
injected fault from a given test graph. Describing all of them in detail would go
beyond the scope of this paper. Hence, in the following we will only outline sev-
eral of our ideas for selecting test cases from our test graph. Our first approach,
called A1 in the following, is to unfold the test graph and subsequently select one
controllable test case for each unsafe state in the resulting tree. The extracted
test cases have a special structure. They consist of one main branch representing
the path to the unsafe state. All other branches not leading to the unsafe state
are cut right after one observation and terminated via an inconclusive verdict.
This is also illustrated by our example test case depicted in Figure 10 . This test

246 B.K. Aichernig et al.

0

1

 obs qual([x1:full/inc,x2:zero/std])

106 (pass)

104

 obs qual([x1:empty..full/inc,x2:empty..reserve/dec])

102

 obs out_pump2_on

99

 ctr in_water_req(1)

98

 obs out_pump1_off

... (inconcl)

2

 obs qual([x1:empty..full/inc,x2:full/inc]) obs qual([x1: ...,x2: ...])

 obs out_pump1_on

Fig. 10. Example test case for our two-tank system extracted from the test graph
(product LTS) depicted in Figure 7 by applying approach A1. Several inconclusive
states have been merged for the sake of clarity. Fail verdicts are implicit.

case for our two-tank example has been extracted from the test graph (prod-
uct LTS) depicted in Figure 7. Note that several inconclusive states have been
merged for the sake of clarity and that fail verdicts are implicit. This first ap-
proach yields one test case for each path to an unsafe state and hence a possibly
huge number of test cases is produced.

Our second approach A2 significantly reduces the number of generated test
cases. It works directly on the test graph and in contrast to A1 produces adap-
tive test cases, i.e., the controllables depend on previously made observations.
Figure 11 shows a test case for the two-tank system that has been generated in
this way. The test case contains more than just one path leading to the unsafe
state, which is numbered by 6. For the sake of simplicity, qual events are inter-
nal, i.e., not visible. Our third approach A3 results in even less test cases, since
it works globally over all injected faults. Again, we successively generate test
cases in order to generate a test suite which kills all mutants. But this strategy
checks whether an already generated test case is able to kill other mutants for
which in turn no further test cases need to be generated and added to the test
suite. Again, the extracted test cases are adaptive and have the same structure
as those resulting from A2. The evaluation of these three approaches is ongoing
work. It has to be assessed, which of the strategies provides sufficient coverage
on the implementation under test in order to gain a satisfactory test suite.

Model-Based Mutation Testing of Hybrid Systems 247

Fig. 11. Adaptive example test case for our two-tank system. For the sake of simplicity,
qual events are internal, i.e., not visible.

7 Concluding Remarks

We have presented two key abstractions for testing a hybrid system: action sys-
tems and qualitative differential equations. The core of the paper covers our tool-
supported mutation testing approach including empirical results of the running
example. In addition, we have discussed the different possibilities for selecting
test cases.

To our knowledge this is the first work on model-based mutation testing for
hybrid systems. The modeling formalism [2] and the conformance checker [6]
have been published previously, but the testing approach is a new contribution
of this paper. Furthermore, we added parameters to the qualitative events to
guarantee controllability. The idea of model-based mutation testing can be traced
back to Budd and Gopal, who mutated specifications in the form of predicate
calculus [7]. For a thorough overview of related work on model-based mutation
testing we refer to our theory paper on mutation testing [4]. With respect to
the LTS interpretation of action systems our work is close to other integrated
approaches combining state-based modeling languages and process algebras, e.g.,
[8]. The B model specifies the abstract state and the operations of the system
while the CSP model describes the order in which the operations occur. The
combined semantics is a parallel composition of the models which synchronize
on common operations (events). This combination of B [1] and CSP [12] has
been implemented in the ProB tool [14], a model checker and animator for B
that can also check for CSP’s notions of (event) refinement. ProB also relates
to our conformance checker from an implementation point of view: both are
implemented in SICStus Prolog. Finally, with respect to hybrid system analysis,
we refer to Henzinger’s work on hybrid automata [11]. However, our extension
of action systems was mainly inspired by Rönkkö et al. [16].

The test case generation process via conformance checking between a speci-
fication and a mutant is costly. Therefore, in practise we delay this process as
long as possible. We start with a set of randomly generated test cases and run

248 B.K. Aichernig et al.

these against the mutants. This will kill many simple mutants without the need
to generate new test cases for them. Only for the surviving mutants, we check
their conformance. If a new test case is generated, we use it on the other surviv-
ing mutants. Unfortunately, there will always remain some equivalent mutants
for which the whole state space has to be explored. However, we could start
with a lower search-depth in the beginning and only increase it later on. We are
currently experimenting with these heuristics. Furthermore, we are currently
working on the test execution of the hybrid systems.

The next step in our research is to analyse the fault-detection rate of our
testing technique. In addition, we are working on methods to eliminate redundant
mutations. Our final objective is to integrate the presented technique into the
testing process of our industrial partners.

References

1. Abrial, J.-R.: The B-book: assigning programs to meanings. Cambridge University
Press, New York (1996)

2. Aichernig, B.K., Brandl, H., Krenn, W.: Qualitative action systems. In: Breitman,
K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 206–225. Springer,
Heidelberg (2009)

3. Aichernig, B.K., Delgado, C.C.: From faults via test purposes to test cases: on the
fault-based testing of concurrent systems. In: Baresi, L., Heckel, R. (eds.) FASE
2006. LNCS, vol. 3922, pp. 324–338. Springer, Heidelberg (2006)

4. Aichernig, B.K., He, J.: Mutation testing in UTP. Formal Aspects of Computing
Journal 21(1-2), 33–64 (2009)

5. Back, R.-J., Kurki-Suonio, R.: Decentralization of process nets with centralized
control. In: Proceedings of the 2nd ACM SIGACT-SIGOPS Symp. on Principles
of Distributed Computing, Montreal, Quebec, Canada, pp. 131–142. ACM, New
York (1983)

6. Brandl, H., Weiglhofer, M., Aichernig, B.K.: Automated conformance verification
of hybrid systems. In: QSIC (2010) (in press)

7. Budd, T.A., Gopal, A.S.: Program testing by specification mutation. Comput.
Lang. 10(1), 63–73 (1985)

8. Butler, M., Leuschel, M.: Combining CSP and B for specification and property
verification. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 221–236. Springer, Heidelberg (2005)

9. DeMillo, R., Lipton, R., Sayward, F.: Hints on test data selection: Help for the
practicing programmer. IEEE Computer 11(4), 34–41 (1978)

10. Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE Transactions on
Software Engineering 3(4), 279–290 (1977)

11. Henzinger, T.A.: The theory of hybrid automata, pp. 278–292. IEEE Computer
Society Press, Los Alamitos (1996)

12. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 26(1), 100–
106 (1983)

13. Kuipers, B.: Qualitative Reasoning: Modeling and Simulation with Incomplete
Knowledge. MIT Press, Cambridge (1994)

14. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

Model-Based Mutation Testing of Hybrid Systems 249

15. Rönkkö, M., Ravn, A.P.: Switches and jumps in hybrid action systems. Technical
Report 152, Turku Centre for Computer Science (1997)

16. Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theoretical Computer
Science 290, 937–973 (2003)

17. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft-
ware - Concepts and Tools 17(3), 103–120 (1996)

18. Weiglhofer, M., Aichernig, B., Wotawa, F.: Fault-based conformance testing in
practice. International Journal of Software and Informatics 3(2-3), 375–411 (2009)

19. Weiglhofer, M., Wotawa, F.: Asynchronous input-output conformance testing. In:
Ahamed, S.I., Bertino, E., Chang, C.K., Getov, V., Liu, L., Ming, H., Subra-
manyan, R. (eds.) COMPSAC (1), pp. 154–159. IEEE Computer Society, Los
Alamitos (2009)

Property-Based Testing - The ProTest Project

John Derrick1, Neil Walkinshaw1, Thomas Arts2, Clara Benac Earle4,
Francesco Cesarini3, Lars-Ake Fredlund4, Victor Gulias5,

John Hughes6, and Simon Thompson7

1 Department of Computing, University of Sheffield, Sheffield, S1 4DP, UK
2 Goteborgs Universitet, Goeteboug, Sweden

3 Erlang Solutions Ltd, London
4 Universidad Politecnica de Madrid, Madrid, Spain

5 Lambdastream Servicios Interactivos SL, A Coruna, Spain
6 Quviq AB, Savedalen, Sweden

7 University of Canterbury, Canterbury, Kent, UK
J.Derrick@dcs.shef.ac.uk

Abstract. The ProTest project is an FP7 STREP on property based
testing. The purpose of the project is to develop software engineering
approaches to improve reliability of service-oriented networks; support
fault-finding and diagnosis based on specified properties of the system.
And to do so we will build automated tools that will generate and run
tests, monitor execution at run-time, and log events for analysis.

The Erlang / Open Telecom Platform has been chosen as our initial
implementation vehicle due to its robustness and reliability within the
telecoms sector. It is noted for its success in the ATM telecoms switches
by Ericsson, one of the project partners, as well as for multiple other uses
such as in facebook, yahoo etc. In this paper we provide an overview
of the project goals, as well as detailing initial progress in developing
property based testing techniques and tools for the concurrent functional
programming language Erlang.

1 Introduction

Communication networks, based on telephony, wireless and Internet, have over
the last few years been converging. At the present time and for the foreseeable
future, more and more services will be added to these merging networks. More-
over, these services are becoming more complex, both in themselves and in their
interactions with each other and their end users. The telecoms industry has an
admirable record in providing reliability and robust services to its clients, and
indeed it is the telecoms industry that can point to 5-nines reliability: that is
99.999% reliability, of their core systems.

This context provides the motivation of the ProTest project - namely that of
maintaining 5-nines reliability in future service-oriented networks and systems.

The software for new services and network devices is rapidly growing in com-
plexity, among other things because of the variety of formats and multiplicity
of delivery modes evident in modern communication protocols (with thousands

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 250–271, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Property-Based Testing - The ProTest Project 251

of optional fields, for instance). In addition, such software needs to be context-
aware, since the requirements vary when the same software is used in different
ways. There are several ingredients for ensuring that such complex systems pro-
vide the expected reliability, among them choosing a good architecture, using
the right technologies, improving the software process, and also being extremely
thorough and efficient in testing.

Testing of complex systems is difficult and time-consuming in the extreme,
and in the ProTest project we build upon the innovative idea of using properties
as objects for testing software. In order to deliver dynamic services and interop-
erable network applications with guaranteed properties, we focus testing around
these properties.

The economic motivator is that testing with properties as objects improves
the competitiveness of software developers, since they can deliver higher quality
software for a lower price. It also allows collaborating companies to improve the
definition of their software interfaces and therewith improve the compatibility
between their services.

Our objective is to deliver methods and tools to support property-based de-
velopment of systems, and in order to do so we need tools to integrate property-
based testing into the development life cycle. To this extent we are conducting
work along four technical themes as follows:
Property discovery. Current testing is based on sets of test cases embedded in
test suites; over the lifetime of the project we will aim to provide tools to aid
the software developers to extract properties from this test data. Current speci-
fications and models are often informal: so we will develop specialised property
languages to ease the formalisation of existing specifications.
Test and property evolution. All software systems are subject to change and
evolution; we will thus provide tools to support the evolution of tests and
properties in line with the evolution of the system itself.
Property monitoring. Not all properties can be tested in advance of systems being
executed, and so we will provide tools to support the post hoc examination of
trace details for conformance to (or indeed violation of) particular constraints.
Analysing concurrent systems. At the heart of service oriented systems is
concurrency: servers will provide services to multiple clients in a seamlessly
concurrent way; services will federate to provide complex functionality through
concurrently performing parts of a task. We will provide tools by which such
concurrent systems can be analysed for fundamental properties by way of model-
checking and testing.

In subsequent sections of this paper we explain work in progress under each
of these themes.

2 Background

The ProTest project aims to introduce property-driven development into the
software engineering process. Property-driven development can be used in a va-
riety of programming languages and systems. The particular platform chosen for

252 J. Derrick et al.

initial implementation of the project is Erlang/OTP (Open Telecom Platform),
but a crucial aspect of our proposal is the dissemination and adoption of the ap-
proach much more widely, particularly into the model driven development arena
(UML) and other implementation languages (C/C++, Java, etc).

Erlang/OTP has been chosen as the implementation vehicle because of its
robustness and reliability within the telecoms sector; witness, for example, its
success in the implementation of the AXD301 ATM telecoms switch by Ericsson,
one of the project partners. Erlang [AVWW96] is a concurrent functional lan-
guage with specific support for the development of distributed, fault-tolerant sys-
tems with soft real-time requirements. Language and implementation design have
aimed from the start to support a concurrency-oriented programming paradigm
and the massively concurrent systems that it leads to.

The project consortium contains a balance of academics from Universities of
Sheffield, Kent, Politecnica de Madrid, Goteborg, Chalmers University of Tech-
nology, SMEs, and a larger company. One of the SMEs is Quviq which is a
spin-off from academia, founded to commercialise the property-based testing
tool QuickCheck. The remaining industrial partners are system builders (Erics-
son, LambdaStream) together with Erland Solutions who are consultants, system
developers and trainers. These partners provide invaluable insights into what is
required of practical tools, what properties will need to be checked, and ways of
fitting the results from the project into practical software development methods.

Our own work on QuickCheck [AHJW06] combines random test case gener-
ation, with a flexible language for specifying generators, with the use of prop-
erties to adjudge success [CH00]. The inevitable noise in random test cases is
removed by automatic simplification, using an approach resembling Zellers delta-
debugging [ZH02]. This technique enabled us to isolate subtle faults in industrial
telecommunications software [AHJW06], and has also been used successfully to
test software for space missions [GHJ07].

Refactoring has become a well-known technique, particular in the realm of
object oriented software development. It is standard for Integrated Development
Environments, such as Eclipse, NetBeans and IntelliJ IDEA, to support a selec-
tion of refactorings, particularly those to do with the structure of the code base.
Refactorings are also commonly discussed in the context of transforming code
so that it conforms to a particular design pattern or coding standard. Here we
build on existing work undertaken at Kent who have developed refactoring tool
support for functional programming [Tho04] in the languages Erlang [LT08] and
Haskell [LTR05] and their relationship [LT06].

Trace analysis is a natural extension to testing. Instead of only studying the
outcome of a test case, all events (at some appropriate level of detail) during the
test execution are recorded in a trace. By analyzing the trace in an intelligent
way more information can be extracted from a single test. The Erlang run-time
system has a built-in trace recording functionality, which has lead to wide-spread
use of trace analysis as a verification technique for Erlang systems. Trace analysis
for Erlang systems has been studied by [AF02] and further by [ACS04]. Our
previous work on trace analysis for Erlang includes trace abstraction, in which

Property-Based Testing - The ProTest Project 253

an approximation of a system’s state space is built from an actual concrete trace.
This is done using an abstraction function; the resulting state space is called an
abstract trace.

Model checking offers the promise of a push-button solution for verification,
and during the last twenty years many researchers have been pursuing that goal.
In practise the technique still suffers from the well known state explosion prob-
lem, i.e. models become too large for analysis. Thus a priority is developing
tractable models by abstracting from the full complexity of the artefact being
verified. Our work in the project on model checking will investigate the inte-
gration of property-based testing and model checking techniques for Erlang. As
model checking inevitably fails to fully verify a piece of software (e.g., due to
state explosion or the problem of constructing an accurate model from a complex
program), we have to resort to testing. But, in fact, testing and model checking
are often complementary techniques. In ProTest we will explore their combina-
tion in model based testing (to provide accurate estimations of space coverage,
to provide a test oracle, etc) and to explore non-exhaustive model checking as
an alternative to testing for highly concurrent and complex distributed systems.

3 Property Discovery

Our work on property discovery covers two main aspects, one dealing with
obtaining properties from a specification, the other dealing with obtaining
properties from a library of existing test cases.

3.1 Properties from Specifications

To enhance how QuickCheck can be applied to other languages, we have pro-
duced a library for testing finite state machines, which has been used in an
industrial project in which the UML design tool Rose/RT was connected to
QuickCheck, allowing systems designed in Rose/RT to be using QuickCheck’s
finite state machine library. We have also developed a general approach to test
C software with QuickCheck. In this way, all QuickCheck libraries developed in
the ProTest project also become available to Rose/RT and C programmers.

We have also developed two ways of obtaining properties from specification,
viz. obtaining properties from data type definitions and from databases. The
methods have been evaluated in a number of industrial projects, and some subtle
errors were identified in the financial systems of these companies and the methods
proved useful [ACH08]. The novelty here is that one is assured that the properties
together span the complete set of all possible tests.

Going further we have developed a fully automatic method to generate prop-
erties from purely functional descriptions for both Haskell and Erlang. This tool,
called QuickSpec [Hug08], can automatically generate properties for a given li-
brary of functions. QuickSpec reads in an API of an Erlang module or a Haskell
module, and automatically produces a list of equations that hold for the func-
tions in that module. The method uses random testing to do this (no heavy

254 J. Derrick et al.

theorem proving is performed); the only extra input the tool might require is
some information on how to generate test data.

For example, given the function names of the standard list functions append
(++), reverse, tail, cons, empty list ([]), insert and sort, the tool produces the
following algebraic properties of the functions, fully automatically, in about 1
second:

1: insert(X,[]) = [X]
2: insert(X,[X|Xs]) = [X|[X|Xs]]
3: insert(Y,[X]) = insert(X,[Y])
4: insert(Y,insert(X,Xs)) = insert(X,insert(Y,Xs))
5: reverse([]) = []
6: reverse([X]) = [X]
7: reverse(reverse(Xs)) = Xs
8: sort([]) = []
9: sort([X|Xs]) = insert(X,sort(Xs))
10: sort(insert(X,Xs)) = insert(X,sort(Xs))
11: sort(reverse(Xs)) = sort(Xs)
12: sort(sort(Xs)) = sort(Xs)
13: sort(Ys++Xs) = sort(Xs++Ys)
14: stail([]) = []
15: stail([X|Xs]) = Xs
16: Xs++[] = Xs
17: []++Xs = Xs
18: [X|Xs]++Ys = [X|Xs++Ys]
19: reverse(Xs)++[X] = reverse([X|Xs])
20: reverse(Xs)++reverse(Ys) = reverse(Ys++Xs)
21: stail(Xs)++Xs = stail(Xs++Xs)
22: (Xs++Ys)++Zs = Xs++(Ys++Zs)

The basic method we use is the following. We start by generating a finite set
of well-typed terms that contain variables (in the above example there are 2298
such terms of depth 3). Next, we compute equivalence classes of these terms, by
means of random testing and refining: we start by assuming that all terms are
in the same equivalence class, and partition equivalence classes into smaller ones
by running random tests and inspecting the values of the terms (in the above
example, this results in 1931 equivalence classes). For each equivalence class,
we pick one representative, and produce equations between that representative
and all other terms in an equivalence class. For the example, this results in 367
equations, these are all equations that are true, but there are clearly too many
to be useful, thus we spent some effort into producing a list of non-overlapping
algebraic equations.

When one naively generates equations that hold between terms, many of which
are not independent. To reduce the number, we have developed several filtering
algorithms that remove superfluous equations. Choosing the right filtering algo-
rithm constitutes finding a balance between (1) not keeping too many equations,

Property-Based Testing - The ProTest Project 255

(2) how expensive is it to check that equations follow from other equations, (3)
not removing too many equations (even though an equation follows from other
ones, it might still be useful to have in the list). The algorithm we finally settled
for uses a congruence closure algorithm to approximate if an equation follows
from a set of equations.

We have applied QuickSpec to a number of concrete Erlang and Haskell mod-
ules. Most notably, we applied it on the Erlang standard functional array library,
and on a library for fixed-point arithmetic that was written by a company in
South Africa. Exploring the properties that QuickSpec produced (and the prop-
erties it did not produce!) was a great way of understanding code that someone
else had written, and has lead us to come up with a number of concrete tech-
niques that may be used for applying QuickSpec in this way. Other applications
of QuickSpec include providing a cheap and easy way for programmers and
testers to start writing properties.

3.2 Reverse Engineering

We have developed two methods to extract properties from test cases - one
dynamic, the other static. That is, in the first approach, the test cases are run,
generating traces for the program. From these traces a finite state machine can
be abstracted. This is described fully in the companion paper [WD09] as well as
in [WDG09].

The second approach works on the level of the source code of the test cases. It
is a guided automatic approach; testers know best what part of the test case they
like to generate and what part they want to keep specific. Recent work with test
suites from Ericsson, and with tests from an Open Source project (Engineyard’s
Natter application) confirm that this approach is a fruitful one.

3.3 Building Domain Specific Languages

QuickCheck has long provided a DSL (Domain Specific Language) for specifica-
tions based on abstract state machines; however, this DSL represents states as
arbitrary Erlang data values - for example, a list of key-value pairs if modeling
a key-value store. With this approach, each operation of the API under test is
applicable in every state, unless an explicit precondition is given to restrict this.
Software is commonly specified instead via a state transition diagram, in which
states are distinguished by name, and operations are typically applicable only
in a certain named state.

Of course, such a specification can be based on the previous state machine
library, but doing so in effect encodes the structure of the diagram in an ugly
way in many different places in the code.

To help overcome this, we have developed a new FSM library, implemented on
top of the original one, which separates state names and state data. Specifications
using the new library are much more concise and perspicuous than the equivalent
specification using the old one. Our FSM library allows weights to be assigned
to transitions, but assigning weights well is difficult, since changing a weight

256 J. Derrick et al.

on one transition can affect the execution frequency of many others in quite
non-obvious ways. We have therefore developed an optimization criterion for
weighting (which essentially tries to distribute test effort as evenly as possible
across the transitions in the state diagram), and an approximation algorithm
for assigning weights automatically. Although the algorithm is not optimal (and
finding an optimal solution appears to be NP-hard), it usually produces good
results.

The weight assignment algorithm can take priorities into account - for exam-
ple, if the user specified that testing the lock transaction is 10x as important
as testing others (for example, because it contains new code), then the weight
assignment algorithm results in the distribution to the left. Note that unlock is
also assigned a higher weight necessary, since without an unlock, we can never
perform more than one lock in a test case. The new library has now been released
as a part of Quviqs product.

4 Refactoring

Our second strand of work addresses software evolution and the way that this
impacts on testing, and in particular property-based testing. The Wrangler refac-
toring tool [LT08, ST08], developed at Kent, is used to support refactorings of
tests, test-aware refactorings and property discovery.

Initial work has investigated the impact of various refactorings on testing as
practised in three systems:

– EUnit (for unit testing of Erlang systems),
– Quviq QuickCheck (for property-based testing of Erlang systems), and
– Common Test / OTP Test Server (for system testing)

and we describe a selection of work below.

4.1 Duplicate/Similar Code Detection in Wrangler

Duplicated/similar code is common in software, especially in test cases. For
example, in industrial test suites, some test case functions only differ in an atom
and a record definition. It would be desirable to have a generalised abstraction
of these similar test case functions, and make each test case an instance of the
generalised abstraction.

Wrangler’s support for ”duplicated code detection” and ”expression search”
is able to report code fragments that are syntactically identical after semantic-
preserving renaming of variable names, ignoring variations in literals, layout and
comments.

The requirement of ”syntactic identity” is somehow restrictive because it could
not detect code fragments that look similar but are not syntactically identical.
For instance, Wrangler’s original ”expression search” would not report the fol-
lowing two pieces of code as clones because of the slight syntactical difference in
the record field ”codec” though they look very similar.

Property-Based Testing - The ProTest Project 257

Code fragment 1:

%%%

?COMMENT("Test case create_2 started.",[]),

%%%

SidMux = {mux_id_1, h223_id_1},

{TdmSid, LocalData, _, _} = precond_one_blade_tdm_mux_create(SidMux),

?CHECK(ok, hcfTraceServerSupport, start, [[{brchDspRhI, exported}]]),

SidLc = {mux_id_1, audio_id_1},

CreateData = #brchMuxLcAccess{sid = SidLc,

stream_type = ?BRCH_AUDIO,

local_data = LocalData,

codec = {?AMR,

{?R_122, ?BRCH_DISABLED,

?BRCH_DISABLED, ?BRCH_BIT},

33, 44, 40},

event_module = iptermCb},

?CH(1, brchShI, create, [[CreateData]]),

?CHECK([], hcfTraceServerSupport, get_trace_list, []),

clean_up([SidLc, SidMux, TdmSid]),

?RESULT("DONE", []).

Code fragment 2:

%%%

?COMMENT("Test case create_3 started.",[]),

%%%

SidMux = {mux_id_1, h223_id_1},

{TdmSid, LocalData, _, _} = precond_one_blade_tdm_mux_create(SidMux),

?CHECK(ok, hcfTraceServerSupport, start, [[{brchDspRhI, exported}]]),

SidLc = {mux_id_1, audio_id_1},

CreateData = #brchMuxLcAccess{sid = SidLc,

stream_type = ?BRCH_AUDIO,

local_data = LocalData,

codec = {?G723_1, {?R_53, ?BRCH_DISABLED},

33, 44, 40},

event_module = iptermCb},

[{ok, [{SidLc, _IntCep}], ?BRCH_REPLICATION_NEEDED}] =

?CH(1, brchShI, create, [[CreateData]]),

?CHECK([], hcfTraceServerSupport, get_trace_list, []),

clean_up([SidLc, SidMux, TdmSid]),

?RESULT("DONE", []).

To be able to detect this kind of similarity, we have extended Wrangler with
a ”Similar expression search” . The functionality allows the user to search for
expressions that are similar to the expression selected according to a similarity
score specified by the user.

Furthermore, ”Similar expression search” also automatically generates the
least general common abstraction of those similar expressions found, which is
also known as anti-unifier. With the example above, Wrangler would suggest the
generalised abstraction as:

258 J. Derrick et al.

new_fun(NewVar_1, NewVar_2, NewVar_3) ->

?COMMENT(NewVar_1, []),

SidMux = {mux_id_1, h223_id_1},

{TdmSid, LocalData, _, _} = precond_one_blade_tdm_mux_create(SidMux),

?CHECK(ok, hcfTraceServerSupport, start, [[{brchDspRhI, exported}]]),

SidLc = {mux_id_1, audio_id_1},

CreateData = #brchMuxLcAccess{sid=SidLc,

stream_type = ?BRCH_AUDIO,

local_data=LocalData,

codec={NewVar_2, NewVar_3, 33, 44, 40},

event_module=iptermCb},

[{ok, [{SidLc, _IntCep}], ?BRCH_REPLICATION_NEEDED}] =

?CH(1, brchShI, create, [[CreateData]]),

?CHECK([], hcfTraceServerSupport, get_trace_list, []),

clean_up([SidLc, SidMux, TdmSid]),

?RESULT("DONE", []).

Being able to generate the least general abstraction automatically speeds up the
similar code elimination process, because the user does not need to inspect the
differences manually, and generalise the function step by step.

The notion of least general abstraction (anti-unifier) and the definition of
”similarity” need to be refined further, but for the moment we have a working
definition. We are now also in the process of designing a more efficient algorithm
so that we could apply ”similar code detection” to large projects, as well as
investigating a more general notion of ”similarity” than having a non-trivial
common generalisation.

Apart from the work on duplicate code detection and the introduction of
”similar expression search”, a number of new refactorings have also been added
including the introduction macros (optionally with parameters), folding expres-
sions against a macro definition, and the normalisation of record expressions.

4.2 Extension to Wrangler to Refactor EUnit Test Data

We have been working on the extension of the Wrangler tool to accompany
the basic refactorings in Wrangler with refactorings of EUnit test data. This
extension has two aspects:

1. When application code is refactored, Wrangler should make sure that the
test code of the application code is also refactored consistently.

2. Since test code is also Erlang code, it can be refactored in its own right, but
Wrangler needs to make sure the refactoring of test code preserves the test
framework’s particular idioms, such as naming conventions.

The extension affects all the refactorings that change module/function/macro
interfaces, such as renaming, generalisation, move function between modules,
function extraction, etc.

Property-Based Testing - The ProTest Project 259

The major challenge with extending Wrangler to the EUnit test framework lies
in the interpretation of symbolic representation of test data, and the multiple
roles of atoms in the Erlang language. For example, with EUnit’s test data
representation, a single module name, which is an atom, can be used to represent
the whole test set from the exported test functions of the named module; so when
the named module is renamed, Wrangler needs to make sure all the related uses
of this module name in the test data are renamed, and also make sure that atoms
with the same name, but not used as a module name are not renamed.

To ensure that Wrangler refactors test data correctly, we designed some invari-
ants which should hold for a refactoring. For example, for each test generation
function, F say, affected by a renaming refactoring, suppose F becomes F’ after
the refactoring, then the following invariant should hold:

rename(parse(F())) == parse(F’())

where function parse transforms the test set representation into a normal form,
rename does renaming in the normal form in which each atom’s role can be
decided precisely. If the above invariant does not hold for a particular test gen-
eration function, Wrangler will ask the user for manual inspection.

4.3 Wrangler and Eclipse: Integration with Erlide

Another strand of work has been to support the integration of Wrangler into
the Eclipse binding for Erlang, Erlide. Erlide is under active development at
Ericsson, as well as being made available freely to the Erlang community. Wran-
gler is currently a part of the standard Erlide distribution, freely available for
download.

Integration with Eclipse through Erlide provides a number of advantages over
emacs. For example, it has a well-defined notion of project, and so this gives a
scope to refactorings which affect more than one module; it has a well-defined
distribution and update mechanism, which means that users will automatically
pick up the latest version of the tool (should they choose to); it provides multiple
views of a code base, so that users can access refactorings in different ways. In
addition, through its refactoring API, it provides some facilities ”for free” such
as preview of the effect of refactorings (across multiple modules), and through
its interface it is possible to present results of searches or the effect of a multisite
refactoring in a more explicit way than emacs. For instance, search results can
be browsed, and choices for multi-site refactorings be specified through a series
of check boxes.

Future work will see the creation of a new integration structure which relies
more on Erlide. With this development it will be possible to access the refac-
torings through the Outline, Navigator and Duplicated Code views as well as
through the Refactor menu at present. This will in turn simplify the User In-
terface, and eliminate a number of current error possibilities which arise as a
consequence of the form of the interface.

260 J. Derrick et al.

5 Property Monitoring

The final goal of the audit-trace analysis is to be able to monitor properties
determining the correct behaviour of the system, be in real time through analysis
of trace events, or offline , through the analysis of audit-log batches. Online and
offline analysis requires a way to aggregate data and rigidly specify what should
be checked. These requirements resulted in tools allowing the user to describe
inter-log-file relations and merge live traces originating across a cluster of nodes.

Work on developing a monitoring tool for offline analysis was concentrated on
a prototype that automatically analyses a set of log files, given a description of
what constitutes the key and what is the interesting value. This simple analysis
will track a session ID through several separate log files, or track a single request
by focusing on a request ID. Events are either sorted by appearance in the
log files or by their timestamps. The sequences are presented graphically using
the graphviz visualization package. The prototype is also able to check sessions
against a specification (represented as a state machine).

In audit trails used for offline analysis, the content and format of the audit
logs are usually defined by developers. In online analysis, however, there is a de
facto standard defined by a set of live tracing tools. These tools are based on the
Erlang trace BIFs, and support different tracing scenarios. However, we found
that for tracing of multi-node environments, no tool offered the combination
of user-friendliness and power that we needed. We developed to close that gap
in the OTP trace tool suite. The next step is to examine the aggregated traces
with the analysis tools built for the offline tracing tool, merging offline and online
tracing analysis.

The current versions of the tools show there is a need to design audit trails
which facilitate the definition of properties to be verified. Our research has used a
simple example of an SMS Log System to design the criteria and standards needed
to provide a testing basis, not only for our tools, but for any valid audit trail.

5.1 Exago, the Offline Monitoring Tool

Exago is an offline monitoring tool that allows property monitoring via audit log
file analysis. The applicability of the tool is independent of the implementation
language of the target system, placing requirements on the syntax and semantics
of the log files.

Exagos approach is to parse the log files, creating abstract representations of
the live events over a predefined time interval, and re-evaluate them against a
model of the system. If these abstract commands are accepted by the model, the
system behaves as expected. If they are not accepted, Exago reveals the system
anomalies in the information provided in the audit trails.

To use Exago, the relevant information of the events should be identified in
each log file:

– The timestamp of the events
– The identifier of the session the event belongs to
– An abstract value which describes the type and the details of the event.

Property-Based Testing - The ProTest Project 261

Events belonging to the same session will be tracked through the session id
across different log files. Optionally, a transaction id can be specified, aggregating
together events that belong to the same transaction.

When some of the required information is only present implicitly, inter-log-file
relations can be described to resolve them. The timestamp can also be adjusted
with an offset for each different log file, allowing event sequences to be sorted
and reconstructed in their proper order.

The data extracted from the log files will then be abstracted into events.
Testers have to specify the method of how the abstraction is achieved by defining
first order functions. Exago will then check each session of abstract events against
a Finite State Machine model of the system. It will generate an abstracted events
report with the point of failure and the visualization of the state machine.

The first prototype of the tool was developed by testing a simple SMS log
example. Two case studies on commercial systems, an SMS gateway that had
been in production for years and an SMSC system under development were used.

In the SMS gateway case study, over 20000 sessions were analyzed. During this
small timeframe (The system handles millions of SMS messages a day), Exago
found discrepancies in the logs, which when analysed, were narrowed down to
bugs.

We find this result particularly satisfying, as the SMS gateway had been in
commercial operation for several years, and by all reasonable accounts was a
well tested system; yet there was evidence of malfunction in the logs that went
unnoticed. The obvious reason is that the amount of data in the logs makes it
extremely hard to find spurious faults through manual inspection.

Exago was also used in the early stages of development of an SMSC system.
This experience indicated that integrating Exago into the test-driven design flow
helps designers to develop an optimal level of detail in the audit log output.

5.2 Onviso, Simple and Intuitive Tracing Environment

In order to obtain data for property testing or debugging, it is often necessary to
use live tracing. Whereas there are established tracing tools for Erlang (Erlang
Trace BIFs, the dbg library), for the more complex cases where multiple nodes
are involved, the current trace tool interfaces are confusing. As far as we can
determine, very few people use the existing multi-node tracing facilities.

In order to establish a good and user-friendly platform for integration with
our property-based testing tools, we created Onviso. Onviso builds on the exist-
ing OTP tool, Inviso. Whereas Inviso provides the online tracing for small and
large systems, Onviso provides default settings that suit most setups, making it
user-friendly and re-usable.

It is now possible to set up tracing across multiple nodes and merge the
result in a variety of combinations. Tracing can be re-enabled if the traced node
restarts. Additionally, for convenience when using Onviso as an ad-hoc tracing
tool, it is also possible to retrieve the status of the recent traces run and the
configuration that was used.

262 J. Derrick et al.

For merging the traces, there are a number of options provided. The simplest
of them is to write every trace to a file in the order that it was generated. The
merge functionality can also be used to conduct property checking or profiling
the system. Moreover, it is possible to merge the same data multiple times with
different specifications, making it possible to check for various properties with
every merge.

Onviso Example. The following example demonstrates one of the simplest
use-cases of Onviso. The user specifies the patterns which can be either local
or exported functions of any module on any of the following nodes. A pattern
is specified as {Module, Format, Arguments, Match_specification}. Obvi-
ously any number of patterns can be specified.

1> onviso:trace([{heart, send_heart_beat, ’_’, []},

{io, format, ’_’, return}],

[’server@linux’, ’client@linux’],

{all, [call]}).

{ok, 1}

2> onviso:merge(1, void, void, shell).

...

{server@linux, Pid, call, {io,format,["~p,~p~",[jacques, derida]]},

{1250,585321,791722}}

...

{ok, 15}

As seen in the second trace pattern, defined above, it is possible to use short-cuts
for the most common match specification actions (like return).

If desired one can, of course, write custom functions for merging. The following
example illustrates writing trace data into a file (as this is a common use case,
there is another shortcut provided so that it is not necessary to write the funs
by hand).

3> BeginFun = fun(_InitData) ->

case file:open("output.txt", [write]) of

{ok, FD} ->

{ok, FD};

{error, Reason} ->

{error, Reason}

end

end,

#Fun<erl_eval.6.13229925>

4> WorkFun = fun(Node, Trace, _, FD) ->

io:format(FD, "~p >> ~p~n", [Node, Trace]),

{ok, FD}

end,

#Fun<erl_eval.4.105156089>

Property-Based Testing - The ProTest Project 263

5> EndFun = fun(FD) ->

file:close(FD)

end,

#Fun<erl_eval.6.13229925>

6> onviso:merge(1, BeginFun, WorkFun, EndFun).

{ok, 15}

It is important to note that these only demonstrate basic usage. It is, of course,
possible to build significantly more complex functions for evaluating the traces
collected.

Future Work. Currently two components comprise Onviso: Trace Setup API,
used to run, stop and analyse traces and Trace Management API used to man-
age units called trace cases, which keep together trace options, merge options
and trace data. In order to encourage their usage, we plan to include our APIs
into existing OTP applications, namely runtime-tools for Trace Setup API and
observer for Trace Management API. We will also develop necessary documen-
tation and tutorials.

For Exago, we plan to run further pilot projects, e.g. on systems devel-
oped using other technologies and targeting different domains. We will improve
documentation and also experiment with other ways to define the specification.

6 Analysing Concurrent Systems

Our work on support for concurrent system analysis has included a number of
themes. Part of this is working out how to shrink counter-examples resulting
from an error found in a system, and to support repeatable testing. Another
major theme is development of McErlang, a model-checker for Erlang.

6.1 Shrinking Trace Counter-Examples

The goal here is to investigate, and implement, methods to shrink trace counter-
examples (resulting from testing or model checking concurrent systems) to ease
the task of understanding the reason for a fault detected during testing. As such
trace counter-examples frequently grow very large, having such a reduction facil-
ity is highly desirable. Our work has resulted in the development of a new tool,
PULSE, which is now implemented as part of the commercial QuickCheck distri-
bution. PULSE has been used for finding race conditions in industrial software.
See [CPS+09] for more information.

To achieve property-based testing of concurrent software, several challenges
have to be overcome. We must be able to decide whether tests have passed, and
to run tests repeatably.

Our approach to automatically simplifying failing tests is based on running
many simpler variations on the first failing test found, culminating in a minimal

264 J. Derrick et al.

example that provokes a fault in the software under test. Finding such minimal
failing tests is invaluable in speeding fault diagnosis. Yet our approach depends
fundamentally on being able to repeat a test, with the same result as the first
time it was run; finding minimal failing tests then requires that we can repeat
smaller tests, in the same way as the original failing test was run. In concurrent
programs, where the scheduling can vary from run to run, achieving repeatable
behaviour is already a challenge.

Our first goal is thus to enable repeatable testing of concurrent Erlang code.
This could be achieved by modifying the underlying Erlang virtual machine to
use a custom, controllable process scheduler. But in practice, users will not be
interested in using a custom version of the Erlang VM to test their systems
- in fact, many projects continue to use outdated virtual machines long after
upgrades are released, to avoid problems in their own software that might be
caused by changes in the behaviour of the VM. Thus we consider it essential
to achieve repeatable testing without changing the underlying Erlang VM. As
multicore systems become more and more prevalent, it will be less and less
reasonable to assume that the underlying scheduler can be replaced.

Our approach is instead to instrument the code under test, to make it com-
municate with a scheduler of our own design, written in Erlang, such that our
scheduler can impose purely deterministic execution on the code under test,
regardless of the underlying concurrent execution. We have developed an instru-
menting compiler (in only 400LOC) which handles almost full Erlang, and an
associated scheduler which takes control of the order of delivery of interprocess
messages. By varying this order, we can even test the behaviour of distributed
systems (which have a different semantics for message passing) on a single Erlang
node. In addition we created a way to visualize the scheduling of events, such
that the analysis of error cases becomes much easier. The scheduler currently
makes random scheduling choices, and has proven quite effective in revealing
race conditions in the examples studied so far.

6.2 Developing Model-Checking Techniques for Erlang

The other strand of work in our support for concurrency involves development of
model checking as a complementary verification technique to the use of testing.
Our initial goal was to deliver a model checker that supports a very large frag-
ment of the Erlang language (e.g., with full support for all Erlang data types,
the distributed Erlang API, and many OTP behaviours) to ease the task of
constructing a verifiable model from an Erlang program.

A prototype model checker existed at the start of the project, and we have
concentrated on delivering a number of enhancements to it, including:

– support for model checking a much larger language fragment. To achieve this
a new source-to-source translation was realised as a number of transforma-
tions on HiPE Core Erlang code – an intermediate code level in the Erlang
compiler. In addition more OTP behaviours are handled (gen fsm, gen event,
partial support for ets tables, ...). In fact we are able to use the source code
for some Erlang/OTP modules, without changes, in model checking.

Property-Based Testing - The ProTest Project 265

– the implementation of an alternative small-step Erlang semantics which is
able to detect more program errors, but which may yield substantially larger
state spaces,

– initial support for using multiple processors (SMP) for model checking,
– improved handling of Linear Temporal Logic claims through the integration

of a new translator from Linear Temporal Logic to Buchi automata (see
discussion below),

– support for combining simulation and model checking algorithms to reduce
the state space needed to verify a program. This is used to reduce the cost
of using OTP behaviours such as e.g. the supervisor behaviour,

– providing user documentation, including a tutorial, a user manual, and a
web page.

This has resulted in the production of the McErlang model checker which has
been released as open source under the agreed project license (a BSD variant);
more documentation and the option to download it is available at the tool web
site: https://babel.ls.fi.upm.es/trac/McErlang/.

A sign of the increasing maturity of the tool is that we were able to analyse a
RoboCup simulation league team programmed in Erlang (comprising some 8500
lines of Erlang code) using the McErlang tool, see [EFIL08]. A number of recent
improvements to the McErlang tool realised in the ProTest project are described
in [EF09].

LTL-to-Buchi Translation. One of the additions made to McErlang during the
ProTest project was to add the possibility of expressing and checking correctness
properties expressed in Linear Temporal Logic (LTL). This is fairly straightfor-
ward, since LTL expressions can be automatically translated into Buchi automata.
However, for model checking to be efficient it is important to produce as small
an automaton as possible, thus a good translator was needed. The obvious solu-
tion was to use an existing implementation. However, this was not done for two
reasons: by developing an in-house translator we avoided licensing problems (our
in-house translator is licensed under the same BSD license as McErlang unlike,
e.g., the LTL2Buchi translator used in the JavaPathfinder project), and secondly
its proper integration into the McErlang verification framework enabled a better
end-user experience (e.g., with regards to formula parsing/deparsing, conversion
to an executable Erlang module, and so on).

The LTL-to-Buchi translator we have developed [Sve09] consists of the follow-
ing three parts: - A rewrite engine, which aims to simplify the LTL formula. It
uses a fixed set of (heuristically chosen) rewrite rules. - A core translation algo-
rithm Construction of the Buchi automaton from the re-written LTL formula.
We use a tableau-based algorithm. - A reduction step, where optimizations such
as simulation reductions and removal of non-reachable and non-accepting states,
are applied to the Buchi automaton.

The efficiency of the LTL-to-Buchi translator was evaluated against two refer-
ence implementations; the LTL2Buchi translator in the JavaPathfinder and the
Wring tool. Our translator clearly outperforms Wring; moreover the evaluation

266 J. Derrick et al.

also uncovered a few remaining errors in the Wring tool. The resulting automata
generated by our tool and LTL2Buchi are very similar in size, perhaps not very
surprising since similar translation algorithms are used. However, on average our
implementation generates about 1% smaller automata, when tested on randomly
generated LTL formulas.

The development process (the implementation was carried out using property
driven development supported by the QuickCheck tool) for the LTL-to-Buchi
translator, as well as the implementation and the result of the evaluation are
described in [EF09].

7 Tool Integration

In addition to work on the individual tools and methods described above, we
aim to integrate the tools we are building in a number of ways. As a first step,
we focused on the verification of the global process registry with an approach
that combined QuickCheck and McErlang. Here, the QuickCheck tool was used
to generate a number of test sequences for the global process registry; these
were then fed to McErlang which explored all possible interleavings of the test
sequences using its model checking algorithms. Finally the results (a set of se-
quences of return values of a set of API calls) were checked using the QuickCheck
tool. Early results are promising, as the combined tool set was also able to
discover race conditions in the global process registry.

We are also working on a integration of the other relevant tools. Essentially
we want to be able to run a set of QuickCheck tests where the program under
test is capable of being controlled by different schedulers: (i) either using the
standard Erlang program scheduler, or (ii) using the PULSE scheduler which
offers more control over scheduling and a more random behaviour, or (iii) the
program is controlled by the McErlang model checker which in theory can fully
explore the state space corresponding to any given test case.

As an example of how the tools and methodologies can be integrated consider
the following example, where we describe how we can refactor a test suite into
properties.

7.1 Example

The test suite in this example is 2228 lines of code, containing 4 groups of test
cases:

– 5 test cases in the create group,
– 4 test cases in the set topology group,
– 11 test cases in the modify group,
– 10 test cases in the delete group.

It is clear that certain test cases have some similarity. For example, we have a
number of occurrences where a test case for audio is repeated for video. There
are two ways in which we can work with this in the refactoring tool: We can

Property-Based Testing - The ProTest Project 267

search for expressions identical to this, or we can perform a general search for
code clones in the existing file (or indeed in a complete project). Currently under
development is a facility to search for ”similar” code.

Using this approach we automatically find that test cases create 2, create 3
and create 4 only differ in an atom and a record definition. The test cases create 2
and create 3 are for audio, the test case create 4 is for video.

create_2(id) -> "create_2";

create_2(doc) -> "Create basic VIG MUX + audio LC AMR segment";

create_2(setupimg) -> "";

create_2(fts) ->

"/vobs/mgwblade/HCF/HCF_CRA1190072/test/doc/15241/XYZ_FTS.fm";

create_2(class) -> auto;

create_2(time) -> {{00,00,00},{00,00,00}};

create_2(config) -> [];

create_2(main) ->

%%

?COMMENT("Test case create_2 started.",[]),

%%

SidMux = {mux_id_1, h223_id_1},

{TdmSid, LocalData, _, _} = precond_one_blade_tdm_mux_create(SidMux),

?CHECK(ok, hcfTraceServerSupport, start, [[{brchDspRhI, exported}]]),

SidLc = {mux_id_1, audio_id_1},

CreateData = #brchMuxLcAccess{sid = SidLc,

stream_type = ?BRCH_AUDIO,

local_data = LocalData,

codec = {?AMR,

{?R_122, ?BRCH_DISABLED,

?BRCH_DISABLED, ?BRCH_BIT},

33, 44, 40},

event_module = iptermCb},

[{ok, [{SidLc, _IntCep}], ?BRCH_REPLICATION_NEEDED}] =

?CH(1, brchShI, create, [[CreateData]]),

?CHECK([], hcfTraceServerSupport, get_trace_list, []),

%%

%% Clean up this test case

%%

clean_up([SidLc, SidMux, TdmSid]),

?RESULT("DONE", []).

If we select the body of the create 2(main) clause and search for expressions (i.e.,
similar code), we will find create 4, but also a create 3, which is also for audio,
but which differs much less. We found out that generalizing code further apart
from each other will result in being able to automatically include code closer to
the original copy.

Using the facilities in Wrangler to generate this, we automatically get the
most general antiunifier of the code, that is, variables replace subterms that are
different. The most general part is copied into a new function create 234, since
it combines the 3 test cases create 2, create 3 and create 4.

268 J. Derrick et al.

Another refactoring (”folding”) lets us now replace the bodies of create 2,
create 3 and create 4 to function calls to create 234 with different arguments.

So far, this is pure refactoring, the code that we produce has the same se-
mantics as the original test cases. Now we introduce a step that helps us to lift
test cases to properties. We collect all calls to create 234 in one generator that
randomly selects one of the alternatives and we create a property that does test
each of these 3 alternatives:

create_234_gen() ->

oneof([{audio_id_1,?BRCH_AUDIO,{?G723_1, {?R_53, ?BRCH_DISABLED}, 33,

44, 40}},

{audio_id_1,?BRCH_AUDIO,{?AMR, {?R_122, ?BRCH_DISABLED,

?BRCH_DISABLED, ?BRCH_BIT}, 33, 44, 40}},

{video_id_1,?BRCH_VIDEO,{?H264, ?BRCH_NO_OPTION, 33, 44, 40}}

]).

prop_create_234() ->

?FORALL({Media,Channel,Codec},create_234_gen(),

create_234(Media,Channel,Codec)).

The property should be a bit more complex, since it should return true or false,
not the result of create 234, but for reasons of clarity we keep it simple here.

Now normal refactoring steps should be used to refactor the generator in this
property to more detailed generators. We know how to do this manually, and
automation will possible, and is in our future plans.

The result will be:

media() ->
oneof([audio_id_1,video_id_1]).

streamtype(audio_id_1) ->
?BRCH_AUDIO;

streamtype(video_id_1) ->
?BRCH_VIDEO.

codec(audio_id_1) ->
oneof([{?G723_1, {?R_53, ?BRCH_DISABLED}, 33, 44, 40},
{?AMR, {?R_122, ?BRCH_DISABLED, ?BRCH_DISABLED, ?BRCH_BIT}, 33,
44, 40}
]);

codec(viedo_id_1) ->
{?H264, ?BRCH_NO_OPTION, 33, 44, 40}

This requires that we know that there is a dependency between the different
fields and it also requires automatic refactoring of the property as soon as the
generators are refined:

Property-Based Testing - The ProTest Project 269

prop_create_234() ->
?FORALL(Media,media(),
?FORALL(Channel,streamtype(Media),
?FORALL(Codec,codec(Media),
create_234(Media,Channel,Codec)).

Now the tester can add additional alternatives to the generator which will au-
tomatically increase the number of tests, without having to copy and paste test
cases. In addition, the test code becomes more structured and readable.

This example shows how refactoring and related transformations in Wrangler
can be used to support the extraction of Quick Check properties from ’free’ tests.
A similar approach allows Quick Check properties to be extracted from EUnit
tests, and we anticipate implementing a suite of transformations supporting in
the near future.

8 Conclusions

Our work on property discovery has already shown very promising results. Work-
ing with our industrial partners we are now close to having automatic support
for extracting properties from test cases. In addition, we have worked on two
other ways of obtaining properties from specification, viz. obtaining properties
from data type definitions and from databases. The methods have been eval-
uated by the Swedish company Klarna, and Ericsson’s OTP team, and have
shown their immediate benefit. We have developed a tool, called QuickSpec that
can automatically generate properties for a given library of functions.

We have developed two methods to extract properties from test cases. One is
dynamic, the other static. In the first approach, the test cases are run, generating
traces for the program, from these traces a finite state machine can be abstracted.
The second approach works on the level of the source code of the test cases. It is
a guided automatic approach; testers know best what part of the test case they
like to generate and what part they want to keep specific.

Our work on test and property evolution has concentrated on the develop-
ment of the Wrangler refactoring tool that can be used to support refactorings
of tests, test-aware refactorings and property discovery. We have investigated
the impact of various refactorings on the industrial practise of testing using:
EUnit, QuickCheck, and Common Test / OTP Test Server, and have worked
on extending Wrangler with refactorings of EUnit test data. We have begun the
integration of Wrangler into the Eclipse binding for Erlang, Erlide.

In property monitoring we have developed a prototype tool that automati-
cally analyses a set of log files given a description of what constitutes the ’key’
and what is the interesting ’value’, and is capable of handling some non-trivial
inter-log-file relations.

We have made significant progress in our work on analysing concurrent sys-
tems. Our work on developing methods to shrink trace counter-examples (re-
sulting from testing or model checking concurrent systems) has resulted in the

270 J. Derrick et al.

development of a new tool, PULSE, which is now implemented as part of the
commercial QuickCheck distribution. PULSE has been successfully used to find
race conditions in software provided by an industrial partner.

In addition we have developed a model checker, McErlang, which was released
as open source under the agreed project license that supports a very large frag-
ment of the Erlang language to ease the task of constructing a verifiable model
from an Erlang program.

References

[ACH08] Arts, T., Castro, L.M., Hughes, J.: Testing Erlang data types with Quviq
QuickCheck. In: Teoh and Horváth DBLP:conf/erlang/2008, pp. 1–8
(2008)

[ACS04] Arts, T., Claessen, K., Svensson, H.: Semi-formal Development of a Fault-
Tolerant Leader Election Protocol in Erlang. In: Grabowski, J., Nielsen,
B. (eds.) FATES 2004. LNCS, vol. 3395, pp. 140–154. Springer, Heidelberg
(2005)

[AF02] Arts, T., Fredlund, L.-Å.: Trace analysis of Erlang programs. In: Page,
R.L., Hughes, J. (eds.) Erlang Workshop, pp. 16–23. ACM, New York
(2002)

[AHJW06] Arts, T., Hughes, J., Johansson, J., Wiger, U.: Testing Telecoms Software
with Quviq Quickcheck. In: Feeley, M., Trinder, P.W. (eds.) Proceedings
of the 2006 ACM SIGPLAN Workshop on Erlang (Erlang 2006), pp. 2–10.
ACM Press, New York (2006)

[AVWW96] Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Pro-
gramming in Erlang, 2nd edn. Prentice-Hall, Englewood Cliffs (1996)

[CH00] Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random test-
ing of Haskell programs. In: ICFP, pp. 268–279 (2000)

[CPS+09] Claessen, K., Palka, M., Smallbone, N., Hughes, J., Svensson, H., Arts,
T., Wiger, U.: Finding race conditions in Erlang with QuickCheck and
PULSE. In: ICFP, pp. 149–160. ACM, New York (2009)

[EF09] Earle, C.B., Fredlund, L.-Å.: Recent improvements to the McErlang model
checker. In: Erlang Workshop, pp. 93–100 (2009)

[EFIL08] Earle, C.B., Fredlund, L.-Å., Iglesias, J.A., Ledezma, A.: Verifying
robocup teams. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008.
LNCS, vol. 5348, pp. 34–48. Springer, Heidelberg (2009)

[ET09] Earle, C.B., Thompson, S.J. (eds.): Proceedings of the 8th ACM SIG-
PLAN Workshop on Erlang, Edinburgh, Scotland, UK, September 5.
ACM, New York (2009)

[GdM08] Glück, R., de Moor, O. (eds.): Proceedings of the 2008 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-based Program Manip-
ulation, PEPM 2008, San Francisco, California, USA, January 7-8. ACM,
New York (2008)

[GHJ07] Groce, A., Holzmann, G.J.: Randomized differential testing as a prelude
to formal verification. In: ICSE, pp. 621–631. IEEE Computer Society, Los
Alamitos (2007)

[Hug08] Hughes, J.: Formal Specification for Free!. In: Erlang Workshop (2008)
[LT06] Li, H., Thompson, S.: Comparative Study of Refactoring Haskell and Er-

lang Programs. In: SCAM, pp. 197–206. IEEE Computer Society, Los
Alamitos (2006)

Property-Based Testing - The ProTest Project 271

[LT08] Li, H., Thompson, S.J.: Tool support for refactoring functional programs.
In: Glück and de Moor/pepm/2008, pp. 199–203 (2008)

[LTR05] Li, H., Thompson, S., Reinke, C.: The Haskell Refactorer, HaRe, and its
API. Electr. Notes Theor. Comput. Sci. 141(4), 29–34 (2005)

[ST08] Sultana, N., Thompson, S.J.: Mechanical verification of refactorings. In:
pepm, pp. 51–60 (2008)

[Sve09] Svensson, H.: Implementing an ltl-to-büchi translator in erlang: a protest
experience report. In: Erlang Workshop, pp. 63–70 (2009)

[TH08] Teoh, S.T., Horváth, Z. (eds.): Proceedings of the 7th ACM SIGPLAN
workshop on ERLANG, Victoria, BC, Canada, Se ptember 27. ACM, New
York (2008)

[Tho04] Thompson, S.: Refactoring functional programs. In: Vene, V., Uustalu,
T. (eds.) AFP 2004. LNCS, vol. 3622, pp. 331–357. Springer, Heidelberg
(2005)

[WD09] Walkinshaw, N., Derrrick, J.: Incrementally discovering testable specifica-
tions from program executions. In: FMCO (2009)

[WDG09] Walkinshaw, N., Derrick, J., Guo, Q.: Iterative refinement of reverse-
engineered models by model-based testing. In: Cavalcanti, A., Dams, D.R.
(eds.) FM 2009. LNCS, vol. 5850, pp. 305–320. Springer, Heidelberg (2009)

[ZH02] Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing in-
put. IEEE Trans. Software Eng. 28(2), 183–200 (2002)

Incrementally Discovering Testable
Specifications from Program Executions

Neil Walkinshaw and John Derrick

Department of Computer Science, The University of Sheffield, Sheffield, UK

Abstract. The ProTest project1 is an EU FP7 project to develop tech-
niques that improve the testing and verification of concurrent and dis-
tributed software systems. One of the four main work packages is
concerned with the automated identification of specifications that could
serve as a suitable basis for testing; this is currently a tedious and error-
prone manual task that tends to be neglected in practice. This paper
describes how this problem has been addressed in the ProTest project.
It describes a technique that uses test executions to refine the specifi-
cation from which they are generated. It shows how the technique has
been implemented and applied to real Erlang systems. It also describes in
detail the major challenges that remain to be addressed in future work.

1 Introduction

The ProTest project [1] is motivated by the need to develop improved testing
and verification techniques for concurrent and distributed software systems. This
paper describes a particular programme of work within the project that aims
to reverse-engineer testable models. The work is targeted at systems that are
implemented in Erlang [2], and makes use of QuickCheck, the most popular
model-based testing framework for Erlang systems.

Erlang is the leading platform for the development of distributed and concur-
rent software systems. With its Open Telecom Platform (OTP) libraries, Erlang
applications can be rapidly developed and deployed across a large variety of
hardware platforms. This has caused it to become increasingly popular, not only
within large telecoms companies such as Ericsson, but also with a variety of
SMEs in different areas. It is increasingly used to develop applications that are
business-critical, from financial transaction systems (e.g. it forms the basis for
Klarna’s services 2), telephone switches, and web-based communication services.

However, in contrast to the extensive support for rapid program development,
the verification and validation of Erlang systems is to-date largely unsupported.
Consequently there is an inherent danger that important functionality remains
untested and undocumented. The ProTest project is intended to develop a suite
of tools and techniques that help to address this problem.

1 http://www.protest-project.eu
2 http://www.klarna.com

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 272–289, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.protest-project.eu
http://www.klarna.com

Incrementally Discovering Testable Specifications from Program Executions 273

As a part of this effort, we have developed an automated technique to infer
testable specifications from Erlang systems [3]. This does not completely elim-
inate the need for manual intervention – it has to be inspected and perhaps
slightly amended to represent the correct system – but the required effort is
nonetheless substantially reduced. Specifications of the actual system behaviour
can be obtained relatively cheaply; they can serve as a useful guide to under-
standing system behaviour as-is, and can form a suitable basis for regression
testing if the current system behaviour is deemed to be correct.

The technique operates by reverse-engineering a specification from traces of
program executions. As with most techniques that are based on program traces
(referred to as dynamic analysis techniques), the selection of traces is critical
[4]. One of the key novelties of our technique is that, instead of relying on the
developer to record and supply traces, they are obtained automatically by using
a model-based test-set generator. The resulting traces are used to refine the
model at each iteration, until no further tests that contradict the hypothesised
model can be found.

This paper provides details on how the technique works. It shows how the
technique has been combined with an Erlang TCP-testing framework to auto-
matically reverse-engineer a model for a Linux TCP implementation. This is
followed by a substantial discussion of the main areas that need to be addressed
by future work.

2 Background

To provide a motivation for our work, we show in section 2.1 how Erlang appli-
cations are currently tested with the QuickCheck tool, a commonplace Erlang
model-based testing framework. Its weakness is that it currently relies on the
developer to supply the models to be tested. An overview of the challenges of
reverse-engineering models is given in section 2.2.

2.1 Model-Based Testing of Erlang Applications

QuickCheck [5] is an automated model-based testing tool for Erlang. It has
become one of the standard testing tools used by Erlang developers. The ‘model’
is conventionally provided by the developer, as a set of simple properties that
must hold for the program to behave correctly, and these have conventionally
been expressed as logical properties in Erlang itself. For example, the following
property would check that the reverse function for lists behaves as expected:

prop_reverse() ->
?FORALL(Xs,list(int()),
lists:reverse(lists:reverse(Xs)) == Xs).

The property prop reverse generates lots of lists of random length, filled with
random integers. For each list (assigned to the variable Xs) it ensures that the
list is the same as the reverse of the reverse. Were this not the case, it would
have found a bug in the lists:reverse function.

274 N. Walkinshaw and J. Derrick

As part of the ProTest project, QuickCheck has been extended to so that
it is possible to test an implementation against a finite state machine (rather
than just a simple property). The use of a finite state machine enables the
developer to specify the permitted sequences of program functions, along with
their effect on the data-state of the system. QuickCheck tests an implementation
by selecting random paths through the state machine, with the aim of verifying
their behaviour in the implementation (i.e. checking that pre-/post-conditions
hold on the data state once a transition is executed). Given state-machine model,
QuickCheck can produce the requisite sequences of inputs (with the necessary
data parameters) to automatically test any path in the model against the actual
software system (this is important to with respect to our reverse-engineering
technique described later).

The key problem with model-based techniques such as QuickCheck is the
reliance upon a model that is both accurate and complete. In practice, large
and complex systems are often developed under restrictive time-constraints,
across multiple sites by different developers, and are constantly evolving. Un-
der such circumstances a developer can at best provide a partial model. This is
undermined further as the system evolves due to changes in requirements and
bug-fixes.

2.2 Reverse-Engineering State Machines

Reverse-engineering techniques aim to address this problem. Broadly speaking,
these approaches can be separated into two categories: Those based on source-
code analysis (c.f. [6]), and those based on the analysis of execution traces. Here
we focus on the latter (dynamic) approaches. They are based on the analysis
of program traces, which are sequences of events (e.g. function calls, message-
passing events etc.), that may optionally be annotated with variable values. The
traces can be recorded by instrumenting the source code, or by using tracing
tools. For Erlang several such tools are included in the OTP framework.

From a given set of traces, the challenge for reverse-engineering techniques
is to produce a candidate state machine that conforms to the provided set of
traces. This is not a new problem. Its roots can be traced back to to the 50s,
in Moore’s work on “gedanken experiments” on state machines [7] and Nerode’s
work on the synthesis of machines from equivalence relations [8]. However it
was Gold’s work on Grammar Inference in 1967 that was arguably most influ-
ential, establishing the theoretical limits of regular grammar (i.e. deterministic
state machine) learnability [9]. Most reverse-engineering techniques in the field
of software engineering are inspired by techniques that were initially devised as
grammar-inference techniques [10,11,12,4].

It is unrealistic to expect an inference technique to be able to infer a machine
that is 100% accurate from any arbitrary set of traces. An inference technique
will only produce an accurate result if the provided set of traces is characteristic
of the behaviour of the underlying software system [11,4]. In terms of state
machines, this must include enough information about what the program can
and cannot do to enable the inference technique to identify every state transition,

Incrementally Discovering Testable Specifications from Program Executions 275

and to distinguish between every pair of non-equivalent states. Thus the key
challenges lie in (a) identifying the relevant subset of executions and (b) collecting
them - a potentially expensive and time-consuming process.

Current reverse-engineering techniques force the user to make a difficult com-
promise between accuracy and practical applicability. On the one hand, there
are several passive inference techniques [10,13,14] that are reasonably easy to
apply and cheap to use, but these can result in inaccurate models unless the
user has a prior comprehensive knowledge of the system that can be used to
obtain required set of traces [4]. On the other hand, they can choose active in-
ference techniques (e.g. based on Angluin’s L∗ algorithm [15,16]), that guarantee
an accurate model, but are usually prohibitively expensive and fail to scale to
larger, more complex systems.

3 An Iterative, Test-Driven Model Inference Approach

This section describes a specification inference technique that was developed by
the authors as part of the ProTest project [3]. It circumvents the problems that
are intrinsic to conventional passive approaches. It does not rely on a human user
to supply it with traces, but instead resorts to a model-based test set generator
to identify and collect the traces automatically. The model from which these
tests are generated is updated and refined with each iteration, until no more
tests can be found that conflict with the model.

The approach is underpinned by the Erlang QuickCheck tool described in sec-
tion 2.1. The presented technique will infer state machine transition structures,
which are represented as Labelled Transition Systems. An LTS3 is a quadru-
ple A = (Q, Σ, δ, q0), where Q is a finite set of states, Σ is a finite alphabet,
δ : Q×Σ → Q is a partial function and q0 ∈ Q. In this work we assume that an
LTS is deterministic.

The rest of this section describes the basic (passive) algorithm that can be
used to infer state machines from traces. We use the EDSM Blue-Fringe algo-
rithm [17]. This is followed by a description of how the EDSM algorithm can be
combined with the QuickCheck testing framework, so that traces are automati-
cally extracted from the subject system.

3.1 Inferring State Machines from Traces

We begin by describing the underlying algorithm for inferring state machines
from traces. State machine inference techniques in the software engineering do-
main tend to use the k-tails algorithm [10,18]. This is however prone to several
weaknesses (see previous work by the authors [4]). Instead we use the more re-
cent EDSM algorithm that has emerged from the closely related field of regular
grammar inference [17].

The EDSM algorithm is presented in Algorithm 1. The algorithm works on
the basis of two types of trace: a set Pos of traces that represent valid program
3 References to “state machines” are henceforth assumed to refer to their LTS.

276 N. Walkinshaw and J. Derrick

Input: (Pos, Neg)
LTS ← generateAPTA(Pos,Neg);1

while (q, q′)← selectStatePair(LTS) do2

LTS′ ← merge(PLTS, (q, q′));3

if Compatible(PLTS′, P os, Neg) then4

LTS ← LTS′;5

end6

end7

return LTS8

Algorithm 1. EDSM algorithm

executions, and a set Neg of traces that represent either infeasible executions,
or executions that terminate with an exception or failure4. These traces are first
arranged into a tree-structured state machine that exactly accepts the given
set of traces (this is referred to as an Augmented Prefix Tree Acceptor). In the
algorithm this is carried out by the generateAPTA function in line 1. The
process of inferring the state machine subsequently consists of repeating the
following process: A pair of states that are deemed to be equivalent is selected,
(2) the pair is merged, and (3) the resulting machine is checked against Pos
and Neg to ensure that it is still compatible – if not the merge is ignored. The
process terminates when no further mergable state-pairs are found.

The key to the effectiveness of the EDSM algorithm is the selectStatePair
function. It does not simply select the first pair of states that are deemed to
be compatible. It computes a “similarity score” for each pair, and then merges
pairs in the order of their scores (highest to lowest). The similarity score is
computed by counting the extent to which their outgoing paths overlap with each
other. The greater the overlap, the greater the score. Thanks to the availability
of negative traces, it is also possible to rule-out state merges if they have a
conflicting set of outgoing paths (i.e. a sequence is deemed to be possible from
one state but not from another). If this is the case, the pair is assigned a score
of -1 to prevent a merge from occurring.

The merge function (Line 3) takes two states q and q′, along with the current
state machine A. In effect, the state q′ is removed, all of its incoming transitions
are routed to q instead and all of its outgoing transitions are routed from q.
Every time a pair of states is merged, the resulting state machine may be non-
deterministic. Nondeterminism is eliminated by recursively merging the targets
of non-deterministic transitions.

A comprehensive description of the EDSM algorithm itself is beyond the scope
of this paper, and the reader is referred to the original paper by Lang et al. [17] for a
more complete description. In practice, our implementation does not compare ev-
ery pair of states at any given point. It uses a windowing-strategy to compare only
4 Traditional dynamic analysis approaches presume that all traces represent positive

/ valid executions. However, in our work, traces that lead to a program failure (i.e.
an exception) are interpreted as “invalid” and so added to the Neg set in the EDSM
algorithm.

Incrementally Discovering Testable Specifications from Program Executions 277

Positive traces:
< load, edit, edit, save, close >
< load, edit, save, edit, edit >
< load, close, exit >
< load, edit, save, edit, save >
< load, edit, save, close, exit >

Negative traces:
< load, close, close >

Fig. 1. Prefix Tree Acceptor with added negative trace

those states that are most likely to produce high scores called the “Blue-Fringe”
strategy. A detailed description is provided by Lang et al., or in a subsequent sur-
vey of grammar inference techniques by Cicchello and Kremer [19].

To provide the reader with an intuition of how the algorithm operates, we
refer to the example in Figure 1. The state machine at the top represents a
simple, fictional text editor. The task is to infer it from the set of traces given

278 N. Walkinshaw and J. Derrick

below, where there are five valid traces, and one trace that has been found to be
impossible / invalid. The “prefix acceptor” that is generated from these traces
is shown to the left, below the traces. The process of selecting state pairs to be
merged (as carried out by the selectStatePair function) is illustrated with a
selection of examples. Pair (b, f) produce a high score of 5; by tracing out the
sub-trees from both states there are 5 matching labels in the outgoing sub-trees.
On the other hand, pair (b, c) produce a score of -1, because a “close” is possible
from b, but not from c. Any pair that involves node a produces a score of 0,
because a “load” only appears once in the machine and cannot be matched to
any other edges in the tree. Thus, we would begin by merging pair (b, f), which
would lead to the machine shown to the right of the original prefix tree, and the
search begins for the next pair of states to merge.

3.2 Automating Trace Collection for the EDSM Algorithm with
QuickCheck

When using traces to reverse-engineer state machines (or any other type of
model), the key challenge is to supply the technique with a suitable set of traces.
The sheer number of traces required, and the prior knowledge and time on the
part of the user that is required to execute these traces, often renders the task
infeasible in practice [4]. The technique that is presented here addresses this
problem; it requires no traces from the user, and shows how QuickCheck can be
used to automatically gather traces.

Instead of starting with a set of traces, we begin simply with the set of possible
inputs or functions that are to label the transitions in the final state machine
(i.e. the set Σ in the LTS), and also supply the program that is to be tested.
Our technique generates the most basic possible state machine from Σ – a single
state with a loop that is labelled by every element in Σ. This is translated into
a corresponding QuickCheck specification, and QuickCheck attempts to execute
a set of random tests that are generated from this general machine. Invariably,
tests will disagree with the model (i.e. a test may fail, but be deemed valid
by the hypothesis model or vice versa); these are recorded and fed into the
EDSM algorithm, which produces a more refined model. This is in turn used
to generate more tests, which produce a more refined model, and the iterative
process continues until QuickCheck can find no further tests that disagree with
the model.

The algorithm is displayed in algorithm 2. The notation LLTS refers to the
language of the hypothesis LTS. If a sequence belongs to the language, it repre-
sents a sequence of events that should be permitted according to the LTS. The
runTest function refers to QuickCheck executing a test, and generateT ests
refers to the automated random test set generation process implemented by
QuickCheck. The process broadly consists of executing the tests, observing if
they pass or fail, and then checking (in lines 8 and 14) whether these are in
agreement with the hypothesis LTS.

A QuickCheck state machine specification consists of more than just an LTS.
It corresponds to an extended state machine [20]; for each element in Σ it can

Incrementally Discovering Testable Specifications from Program Executions 279

Input: Prog, Σ
Pos← ∅; Neg ← ∅;1

LTS ← generateInitLTS(Σ);2

Test← generateTests(LTS);3

foreach test ∈ Test do4

(trace, pass)← runTest(test,P rog);5

if pass then6

Pos← Pos ∪ {trace};7

if trace /∈ LLTS then8

LTS ← EDSM(Pos, Neg);9

Test← generateTests(LTS);10

11

else12

Neg ← Neg ∪ {trace};13

if trace ∈ LLTS then14

LTS ← EDSM(Pos, Neg);15

Test← generateTests(LTS);16

17

end18

end19

return LTS20

Algorithm 2. InferWithTests

contain data transformations that manipulate some underlying memory. As it
stands, the inference algorithm is restricted to inferring the LTS, and extending
it to deal with data-constraints will be discussed in section 5. In its current form,
these elements are supplied by the user in the form of a template. The data-state,
along with the way elements in Σ change it, is specified by the user and made
available as a template file.

The EDSM algorithm has been implemented by the authors in their Stat-
eChum tool [12,21]. Traces are recorded by using the comprehensive tracing
framework that is built into the Erlang OTP [2]. Given the template file gen-
erated by the user, a simple Bash script is used to orchestrate the interac-
tion between the QuickCheck testing/tracing process and the StateChum model
inference framework.

4 Case Study - Reverse-Engineering a TCP Stack

The ProTest project has involved a selection of case studies, to explore the
efficacy of the various tools and techniques that are being developed. One of
those case studies is a comprehensive QuickCheck testing specification for TCP
stacks, which was developed by Paris and Arts [22]. To provide a preliminary
assessment of our technique, we have applied it to this case-study, with the aim
of reverse-engineering an accurate model of a Linux TCP/IP implementation
(via a TCP testing extension of the QuickCheck framework).

280 N. Walkinshaw and J. Derrick

Fig. 2. Communication between tester and subject

Paris and Arts developed a network interface for QuickCheck that enables
it to check network protocols on remote machines. The basic process is shown
in Figure 2. They use two channels to interact with the system under test; one
channel is used to induce certain behaviour from the subject (invoking behaviour
by invoking functions with Erlang messages), and the other is the network-level
channel, which is used to inspect the actual packets that are sent over the network
as a result, and to send packets over the network to the subject. The model on
the tester machine contains certain constraints that the messages are expected
to adhere to, and every time a message is received, it is checked against those
constraints. The model then uses the information on these packets to generate
valid replies and transition the subject stack through the state machine. Using
these two channels enables black box testing of the subject by observing and
steering the behaviour using the two interfaces the stack has: to the user through
the API (managed through the subject controller), and to the network (using
the network channel).

Paris and Arts have used this framework, along with a QuickCheck specifica-
tion that they have manually generated from the TCP RFC [23]. They have used
this as the basis for testing a number of TCP stacks, including the Linux kernel
release, as well as a specialised Erlang TCP implementation. As mentioned pre-
viously, the state machine is not complete; there are some legal transitions which
are not explicitly stated in the graph. There are also many self transitions which
are not represented in the graph, but are referred to in the natural language of
the RFC. Therein lies the rationale for applying the approach presented here;
we want to find the real specification, and not merely an idealized one, so that
we have a more authoritative basis for understanding how the system works.

4.1 Results

Any testing technique for TCP implementations is necessarily limited by the
time taken waiting for responses for the server. Some of the operations could take
several minutes to execute (mainly due to waiting for time-outs, or packets that
may have been lost on the network). Consequently, the process of collecting tests
was a very time-consuming process. For this reason, the process was limited to

Incrementally Discovering Testable Specifications from Program Executions 281

474 iterations (which took 9 hours to collect). In total 1085 tests were executed,
611 of which passed, and 474 of which failed. It is important to bear in mind
that this would have been virtually impossible if it was up to a human to collect
the traces, and that the diversity of the traces would have been substantially
less if the collection process had not been guided by the inference algorithm.

To provide some intuition of the process, the test executions generated for the
first 10 test iterations are shown in Figure 3, with the hypothesis model generated
for the 10th iteration shown at the bottom and the reference model shown on
the right. Failed tests are prefixed with a ‘-’, and passed tests are prefixed with
a ‘+’. At the beginning, the process starts with the most general LTS, where
everything loops to the same state. The first tests are very short, because most
of them fail instantly. Nonetheless, these already form a model that has some
important commonalities with the reference model; any communication must
either start with a listen or an open. An open must be followed by a syn ack
before anything else can happen, and a send last ack returns to the initial
state.

As more tests are executed, and more possible and impossible sequences are
identified, the model is gradually refined. Every test that conflicts with the cur-
rent model leads to a new, improved model. Depending on the current hypothesis
model, QuickCheck will generate tests that exercise scenarios that were not envis-
aged. In Figure 3, the test listen, send last ack, listen, passive close
passes (does not cause a program or pre/post-condition failure), even though
it should not be possible according to the reference model (also in Figure 3).
To provide an intuition of the extent of the final set of traces that the tech-
nique ended up with, the final APTA is shown in Figure 4. Although far too
small to read the labels5, it does show that the iterative test-generation-and-
mode-refinement process was successful at collecting a broad range of program
executions.

The final model consists of 38 states, with 277 permitted and 157 forbidden
transitions. Structurally, the inferred machine is completely different from the
reference model. It is however important to bear in mind that the reference
model is only partial – it only describes the small portion of behaviour that is
expected, and does not account for what may happen if unexpected sequences of
events are produced. For this to be the case it would have to account for every
operation at every state. It is this more complete spectrum of behaviour that is
represented by the inferred model.

Although more representative of the actual TCP implementation, the in-
ferred model inevitably still contains inaccuracies. The trace-collection process is
hampered by the fact that it had to wait for timeouts. More traces would in-
evitably have led to a more accurate machine. Nonetheless, given that no infer-
ence algorithm has been empirically shown to outperform the EDSM algorithm
yet [17], the inferred model is the most accurate one possible with current state
machine inference techniques.

5 The PDF version of this paper does permit the user to zoom in to read the labels.

282 N. Walkinshaw and J. Derrick

1: - send ack

2: - simultaneous close

3: - open passive close

4: - active close

5: - passive close

6: - syn ack

7: - listen active close

8: - ack handshake

9: + listen send last ack

listen passive close

- listen wait local close

10: - open

simultaneous close

Fig. 3. Test cases for 10 iterations on the left, with the reference TCP model on the
right and the hypothesis model after 10th iteration below (Forbidden transitions are
omitted for readability)

Fig. 4. Final APTA

5 Improving the Inference Process

The presented technique is promising. The combination of QuickCheck with
the StateChum model inference framework can seek out the necessary traces,
automatically record them, and use them as a basis for inferring a model. All
this without the need for interventions from the developer.

Incrementally Discovering Testable Specifications from Program Executions 283

Fig. 5. Behaviour of “close” function in extended text editor

There are however still aspects of the technique that do require expertise and
effort on the part of the developer. Currently, the QuickCheck template file (mi-
nus LTS) has to be generated by hand. This must include any relevant data state
information, along with appropriate data transformations. Furthermore, the de-
veloper has to manually identify a mapping from the low-level trace events to
abstract transition labels in the machine. Both can involve a substantial amount
of effort, which we aim to reduce in future work. This section will elaborate on
these problems, and will provide some preliminary suggestions for solutions.

5.1 Inferring Extended State Machines

The current approach, with the help of the EDSM algorithm, infers labelled
transition systems. In practice however, software behaviour cannot be completely
described by a simple LTS. In reality, the sequence of events or functions in a
program is also dependent upon the memory of the system; a particular function
may behave differently (and affect the state of the system in a different way)
depending on the state of the system when it is invoked.

To illustrate this problem, we envisage a slightly more sophisticated text editor
than the example in Figure 1. Imagine that, instead of only being able to open
one file at a time, the editor can open and edit multiple files concurrently. This
system can no longer be represented in a straightforward LTS with the same
labels we use in Figure 1. As a simple example, we focus in on the “close”
function. As illustrated in Figure 5, if multiple files are open, its behaviour
ultimately depends on how many files are open; if multiple files are open, it
is possible to close one of them and subsequently edit / save / close others.
However, if only one file is open, it is subsequently impossible to do any further
editing or saving. There are two different ways in which “close” can affect the
subsequent behaviour of the software system, and this depends on the underlying
state of the system. This more complex, data state-dependent behaviour cannot
be represented on a simple deterministic LTS.

There are two approaches that attempt to address this problem. The first
approach, which is currently adopted by the authors, is to ensure that functions
are chosen in such a way that the different data constraints are encompassed

284 N. Walkinshaw and J. Derrick

in the labels. The second approach is to adopt a state-labelling procedure that
augments states in the PTA or the LTS with data constraints.

Decomposition into Atomic Functions. The decomposition approach works
as follows. Instead of using data-sensitive functions such as the “close” example
above, it can be decomposed into separate sub-functions, based on the different
ways it can affect the system state. The approach is analogous to the Category
Partition method used in functional testing [24]. So the “close” function could
be divided into “close” and “close last”, making the distinction between the two
different types of close behaviour. The data constraints remain implicit, but the
data state-based behaviour is represented more accurately by the labels.

This approach places a significant burden on the developer. They have to
be aware not only of the individual functions in the system, but also of their
potential to change the state of the system. Furthermore, the process of trace
collection becomes more intricate. It is no longer sufficient to simply list the
functions in the order in which they occur. Every time a data state-dependent
function is executed, the data state has to be interpreted, and mapped to the
appropriate re-labelled function name that represents the new sub-function. For
example, the execution of “close” could no longer be simply listed in the trace as
“close”, but would have to be mapped to either “close” or “close last” depending
on the current data state.

Labelling States with Data Constraints. Both Dupont et al. [25,11] and
Lorenzoli et al. [26] describe techniques for integrating data-constraints into
the inference process. They deal with different settings; Dupont et al. assume
a forward-engineering scenario, where the developer can manually provide the
relevant rules for particular sets of states, whereas Lorenzoli et al. describe a
reverse-engineering scenario, where they have to mine data constraints from the
variable values in a given set of traces.

In the approach proposed by Dupont et al., additional domain knowledge
about the system is added in the form of fluents. A fluent is in effect a proposition
that is given an initial state, and this state can be altered by a selection of events
in Σ. Given that the relevant fluents are specified for the initial state, the rest
of the states in the state machine can be annotated in terms of the fluents by
symbolic execution. Consequently, these state annotations can be fed into the
inference process, preventing states that correspond to distinct data states from
being merged.

Lorenzoli et al. approach the problem from a reverse-engineering angle. In
their setting, there is no well-informed developer who can supply suitable fluent-
like constraints. Instead, they extract data constraints from variable values in
execution traces. Data constraints are obtained with the Daikon tool [27], and
state comparisons take account of these constraints. Although they describe the
approach with respect to the problematic k-tails algorithm, there is no reason
why it cannot be adapted to other algorithms such as EDSM.

The approach proposed by Lorenzoli et al., of extracting data constraints di-
rectly from the traces, is appealing. It provides additional information without

Incrementally Discovering Testable Specifications from Program Executions 285

increasing the expense in terms of the human effort involved in using the tech-
nique. The idea of using data constraint inference to augment the EDSM process
forms part of our future work.

Such an approach can however not be applied as-is to large-scale models,
derived from realistic traces. Its effectiveness is dependent on the effectiveness
of the constraint-inference technique. Daikon (used by Lorenzoli et al.) has some
important limitations. It was only designed to identify simple, linear constraints,
and any constraint types have to be pre-supplied to the tool.

With respect to our technique, we intend to extend it in the manner of Loren-
zoli et al.. To apply to realistic traces, it will necessitate the investigation of
more powerful data constraint / function identification techniques – techniques
that can identify more relevant complex data transformations, that perhaps in-
corporate nonlinear variable relationships (c.f. work by Bongard and Lipson on
identifying non-linear functions from data [28]).

5.2 Identifying the Primary Functions in a Trace

All current reverse-engineering approaches, including those discussed in the pre-
vious subsection, make the assumption that the functions used to label the edges
are trivially known (i.e. “edit” and “save”). It is presumed that these functions
clearly map to a given trace (i.e. “edit” corresponds to a method in the trace
called “edit” etc.). This is fine if the trace contains only a small number of differ-
ent types of event (such as the traces for the TCP example used above). However,
when traces scale up to larger and more complex systems, this becomes impossi-
ble. A trace of a trivial Java system for example will often encompass hundreds
of thousands calls to thousands of different methods. A simple operation to load
a text file might encompass hundreds of different input/output library methods
to read the file, and hundreds of font-rendering library methods to render the
characters onto the screen for example. Given such a trace, how do we reduce it
to a sequence of symbols that can be used to infer a state machine?

To illustrate the problem, we use a simple example of an openly-available
Java drawing application called JHotDraw. We may want an abstracted state
machine that describes its core functionality. To do so, it is executed and record
the trace is recorded: we create three new drawings, and insert five figures into
each drawing. The figure in 6 shows the result in JHotdraw.

The problem facing us is this: the ensuing trace contains 161,087 method calls
to 1489 different methods6. To reverse-engineer a machine from such a system, we
need to map this extremely large trace to a sequence of symbols that will result
in a machine that is readable and can be readily understood by the developer.
So far, model inference work implies that this is a relatively straightforward
process [14]; but it can be a very challenging task - especially if the developer is
not familiar with the functionality, let alone the architecture of the underlying
system.

6 The trace was recorded by Cornelissen et al. [29] and can be downloaded from their
website.

286 N. Walkinshaw and J. Derrick

Fig. 6. Screenshot from JHotDraw along with phase-visualisation of the trace [29]

In practice, a trace is not just an homogeneous series of calls to different
methods. It consists of patterns; processing of text file might contain a loop
to read in characters that causes the repetition of a few specific methods for a
long period of time, followed by a different loop of method calls to display these
characters etc. These phases of activity tend to correspond to high-level units
of behaviour, and are what we are looking to identify from these traces for our
purpose of trace abstraction.

The solution lies in the identification of those ‘segments’ of the trace that
correspond to a particular item of functionality (i.e. rendering a figure). In the
trace-analysis community this is refered to as phase analysis. Phase analysis is
an established problem [29]. Current solutions rely on visualisation techniques.
The trace is visualised as a vast message sequence chart, which is compressed
into a bitmap that fits to the screen. As an example see the trace-visualisation
produced by Cornelissen et al. to the right in Figure 6. Despite the size of the
trace, it is clear that the trace consists of distinct phases of activity. The three
repeated actions of drawing figures on the three canvasses is clearly visible in
the visualisation.

Incrementally Discovering Testable Specifications from Program Executions 287

For the purposes of inferring models however, visualisations are not enough.
They only produce bitmaps, as opposed to sequences of symbols that can be
used for state machine executions. Visualisations are left to the developer to
interpret, and although two phases may look visually identical, they can hide
significant differences.

Solving this problem is the focus of ongoing work within the ProTest project.
The authors are investigating the application of string compression algorithms
such as the LZW algorithm [30] and the SEQUITUR algorithm [31,32]. These
can automatically identify and label repeated patterns of method invocations,
to pull out sequences of high-level functions from a trace, without requiring the
expensive and tedious intervention of identifying these functions by hand.

6 Conclusions

This paper has presented the challenge of inferring testable models, with a spe-
cific focus on testing Erlang systems. The basic reverse-engineering challenge is
to find a set of program executions that sufficiently exercise a program to ensure
that the reverse-engineered model is accurate. This problem has traditionally
been overlooked; developers have supplied sets of traces that are effectively ar-
bitrary; without extensive prior knowledge about the program, it is virtually
impossible to collect an adequate set of traces [4].

As part of the ProTest project, the authors have devised a technique [3] that,
instead of relying on the manualy supply of traces, automates the trace collection
process. It requires a template specification that contains the necessary input
values for the functions, but does not need to know the order in which they can
be executed. Once this is supplied, it combines a model-based test generation
tool [5] with a state machine inference framework [12,17] to automatically collect
the traces and home-in on a more accurate specification. Its feasibility has been
demonstrated with respect to a TCP implementation [22].

One of the main aims of this paper was to present the main remaining chal-
lenges in this area, of which there are several. Current reverse-engineering tech-
niques only have crude approaches to dealing with data-constraints in the model.
They also make the big assumption that it is trivial to abstract a program ex-
ecution trace to a corresponding abstract sequence of symbols. This paper has
presented potential avenues of research in these areas, some of which are already
being pursued in the context of the ProTest project.

References

1. Derrick, J., Walkinshaw, N.: Property-based testing: The protest project. In:
FMCO (2009)

2. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (July 2007)

3. Walkinshaw, N., Derrick, J., Guo, Q.: Iterative refinement of reverse-engineered
models by model-based testing. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009.
LNCS, vol. 5850, pp. 305–320. Springer, Heidelberg (2009)

288 N. Walkinshaw and J. Derrick

4. Walkinshaw, N., Bogdanov, K., Holcombe, M., Salahuddin, S.: Improving Dynamic
Software Analysis by Applying Grammar Inference Principles. Journal of Software
Maintenance and Evolution: Research and Practice (2008)

5. Claessen, K., Hughes, J.: Quickcheck: A Lightweight Tool for Random Testing of
Haskell Programs. In: Proceedings of the International Conference on Functional
Programming (ICFP), pp. 268–279 (2000)

6. Walkinshaw, N., Bogdanov, K., Ali, S., Holcombe, M.: Automated discovery of
state transitions and their functions in source code. Software Testing, Verification
and Reliability 18(2) (2008)

7. Moore, E.F.: Gedanken–experiments on sequential machines. In: Shannon, C.E.,
McCarthy, J. (eds.) Annals of Mathematics Studies (34), Automata Studies, pp.
129–153. Princeton University Press, Princeton (1956)

8. Nerode, A.: Linear automata transformations. Proceedings of the American Math-
ematical Society 9, 541–544 (1958)

9. Gold, E.: Language Identification in the Limit. Information and Control 10, 447–
474 (1967)

10. Biermann, A., Feldman, J.: On the Synthesis of Finite-State Machines from Sam-
ples of their Behavior. IEEE Transactions on Computers 21, 592–597 (1972)

11. Dupont, P., Lambeau, B., Damas, C., van Lamsweerde, A.: The QSM Algorithm
and its Application to Software Behavior Model Induction. Applied Artificial In-
telligence 22, 77–115 (2008)

12. Walkinshaw, N., Bogdanov, K., Holcombe, M., Salahuddin, S.: Reverse Engineering
State Machines by Interactive Grammar Inference. In: 14th IEEE International
Working Conference on Reverse Engineering, WCRE (2007)

13. Cook, J., Wolf, A.: Discovering Models of Software Processes from Event-Based
Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249
(1998)

14. Ammons, G., Bod́ık, R., Larus, J.: Mining Specifications. In: 29th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), Portland,
Oregon, pp. 4–16 (2002)

15. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation 75, 87–106 (1987)

16. Shahbaz, M., Groz, R.: Inferring mealy machines. In: Cavalcanti, A., Dams, D.R.
(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009)

17. Lang, K., Pearlmutter, B., Price, R.: Results of the Abbadingo One DFA Learning
Competition and a New Evidence-Driven State Merging Algorithm. In: Honavar,
V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 1–12. Springer,
Heidelberg (1998)

18. Biermann, A.W., Krishnaswamy, R.: Constructing programs from example com-
putations. IEEE Trans. on Software Engineering SE 2, 141–153 (1976)

19. Cicchello, O., Kremer, S.: Inducing grammars from sparse data sets: A survey of
algorithms and results. Journal of Machine Learning Research 4, 603–632 (2003)

20. Cheng, K., Krishnakumar, A.: Automatic functional test generation using the ex-
tended finite state machine model. In: 30th ACM/IEEE Design Automation Con-
ference, pp. 86–91 (1993)

21. Walkinshaw, N., Bogdanov, K.: Inferring Finite-State Models with Temporal Con-
straints. In: Proceedings of the 23rd International Conference on Automated Soft-
ware Engineering, ASE (2008)

22. Paris, J., Arts, T.: Automatic testing of tcp/ip implementations using quickcheck.
In: Proceedings of the 8th ACM SIGPLAN workshop on Erlang, Erlang 2009, pp.
83–92. ACM, New York (2009)

Incrementally Discovering Testable Specifications from Program Executions 289

23. Postel, J.: Transmission control protocol. Technical Report 793, DDN Network
Information Center, SRI International, RFC (September 1981)

24. Ostrand, T., Balcer, M.: The category-partition method for specifying and gener-
ating functional tests. Communications of the ACM 31(6), 676–686 (1988)

25. Damas, C., Lambeau, B., Dupont, P., van Lamsweerde, A.: Generating Annotated
Behavior Models from End-User Scenarios. IEEE Transactions on Software Engi-
neering 31(12), 1056–1073 (2005)

26. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: Proceedings of the 30th international conference on Software engineer-
ing, ICSE 2008, pp. 501–510. ACM, New York (2008)

27. Ernst, M., Cockrell, J., Griswold, W., Notkin, D.: Dynamically Discovering Likely
Program Invariants to Support Program Evolution. Transactions on Software En-
gineering 27(2), 1–25 (2001)

28. Bongard, J.C., Lipson, H.: Nonlinear system identification using coevolution of
models and tests. IEEE Trans. Evolutionary Computation 9(4), 361–384 (2005)

29. Cornelissen, B., Zaidman, A., Holten, D., Moonen, L., van Deursen, A., van Wijk,
J.: Execution trace analysis through massive sequence and circular bundle views.
Journal of Systems and Software 81(12), 2252–2268 (2008)

30. Afshan, S., McMinn, P., Walkinshaw, N.: Using dictionary compression algorithms
to identify phases in program traces. Technical Report CS-10-01, Department of
Computer Science, The University of Sheffield (2010)

31. Walkinshaw, N., Afshan, S., McMinn, P.: Using compression algorithms to support
the comprehension of program traces. In: Proceedings of the Eighth International
Workshop on Dynamic Analysis (WODA 2010). ACM, New York (2010)

32. Nevill-Manning, C., Witten, I.: Compression and explanation using hierarchical
grammars. Computer Journal 40(2/3), 103–116 (1997)

Methodologies for Specification of Real-Time
Systems Using Timed I/O Automata

Alexandre David1, Kim G. Larsen1, Axel Legay2,
Ulrik Nyman1, and Andrzej Wąsowski3

1 Computer Science, Aalborg University, Denmark
2 INRIA/IRISA, Rennes Cedex, France

3 IT University of Copenhagen, Denmark

Abstract. We present a real-time specification framework based on
Timed I/O Automata and a comprehensive tool support for it. The
framework supports various design methodologies including: top-down
refinement—for decomposition of abstract specifications towards increas-
ingly detailed models; bottom-up abstraction—for synthesis of complex
systems from more concrete models; and step-wise modularisation of
requirements—to factor out behaviours given by existing available com-
ponents from a complex global requirements specification to be imple-
mented. These methodologies are realized by consecutive applications of
operators from the following set: refinement, consistency checking, log-
ical and structural composition and quotienting. Additionally, our tool
allows combining the component-oriented design process with verifica-
tion of temporal logic properties increasing the flexibility of the process.

1 Context and Motivation

Industries developing complex embedded systems, such as aerospace and auto-
motive, have undergone deep organisational changes with tremendous impact on
development processes. In the past, they were vertically integrated companies,
internally supporting all design activities from specification to implementation.
Today they rely increasingly on external suppliers and on independent teams
to provide essential components of systems. It is no longer possible for a single
team to control the entire design process from specification to implementation.
Complex systems emerge from assembling multiple components. These com-

ponents are designed by independently working teams, who adhere to a common
agreement, a contract, on what the interface of each component should be. Such
an interface defines the behaviours expected from the component as well as the
environment in which it can be used. The main advantage is that it abstracts
from the way the component can be implemented.
In practice interfaces are described using textual documents or modelling lan-

guages such as UML or WSDL. Unfortunately, such specifications are ambiguous
and thus are subject to interpretation. We instead recommend relying on math-
ematically sound formalisms to reduce ambiguities. In this context, the vibrant
research area of compositional reasoning [20] gives the foundations that allow to

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 290–310, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Methodologies for Specification of Real-Time Systems 291

reason about properties of the global system based on properties of individual
components. The essential advantage of compositional reasoning is its support
for safe reuse of components, well known from other engineering disciplines.
Building specification theories is a subject of intensive studies [11, 14]. One

particularly successful direction are interface automata [14, 15, 23, 31]. In this
framework, an interface is represented by an input/output automaton [29], where
transitions are typed as input and output . The semantics is given by a two-
player game: the input player represents the environment, and the output player
represents the component itself. Contrary to the input/output model of [29],
this semantic offers an optimistic treatment of composition: two interfaces can
be composed if there exists an environment in which they can safely interact.
The existing interface theories focus primarily on composition (and sometimes

on refinement). There hardly exist supporting tools that could be used by engi-
neers. Over the years of interaction with industrial partners, we have collected
the following requirements for interfaces theories. Notice that they significantly
exceed the usual scope of studying composition and refinement.

1. It should be decidable whether an interface admits an implementation.1

2. There must be a mechanism to safely replace a component by another one.
Technically this corresponds to the requirements of precongruence and com-
pleteness for Refinement. Refinement (written ≤), which is a preorder on the
set of interfaces, should satisfy the following property:
Every implementation satisfying a refinement of an interface should
also satisfy this interface.

3. To control design complexity, one should be able to decide whether there
exists an interface that refines two different interfaces (a shared refinement).

4. Different aspects of systems are often specified by different teams. The issue
of dealing with multiple aspects or multiple viewpoints is thus essential. It
should be possible to represent several interfaces (viewpoints) for the same
component, and to combine then in a conjunctive fashion. Conjunction (writ-
ten ∧) should satisfy the following property:
Given two viewpoints represented by two interfaces, any implemen-
tation that satisfies the conjunction must satisfy the two viewpoints.

5. The framework should provide a combination operation reflecting the stan-
dard interaction between systems. It should respect the refinement to sup-
port independent development:
Given two implementations of two interfaces, the composition of the
implementations satisfies the composition of their interfaces.

6. It should be possible to factor in existing components into general require-
ments, in order to facilitate reuse of accumulated assets. In interface theories
this is realized using a quotient operator.

7. Conjunction and composition must be associative and commutative, so that
the emergent behaviour of the system depends only on the specifications,
not on the order in which they have been combined.

1 In our theory, an implementation shall not be viewed as a program in a concrete
programming language but rather as an abstract mathematical object that represents
a set of programs sharing common properties.

292 A. David et al.

8. There must exist a specification language to specify properties of interfaces
as well as a procedure to decide whether the interface satisfies the properties.

9. All the above operations and properties should be performed and checked
with efficient algorithms.

10. User-friendly tools providing comprehensible feedback to the user must be
available. For example, if an implementation violates a specification, a useful
feedback inspires the designer on how to correct it.

In [16], a timed extension of the theory of interface automata has been intro-
duced, motivated by the fact that time can be a crucial parameter in practice,
for example in embedded systems. The results of [16] focus mostly on structural
composition. Recently [12] we have proposed what seems to be the first complete
interface theory for timed systems (with respect to the above requirements). Our
specifications are timed input/output automata [21]—timed automata whose
sets of discrete transitions are split into input and output transitions. Contrary
to [16] and [21] our theory distinguishes between implementations and specifi-
cations. This is done by assuming that the former have fixed timing behaviour
and they can always advance either by producing an output or delaying. The
theory also provides a game-based algorithm to decide whether a specification is
consistent, i.e. whether it has at least one implementation. The latter reduces to
deciding existence of a strategy that despite the behaviour of the environment
will avoid states that cannot possibly satisfy the implementation requirements.
A pruning facility removes all the states not covered by the strategy. It can

drastically reduce the state-space of the system. Following a similar principle, it
is possible to constrain an interface with a timed temporal logic formula [1]. For
example, like in [16], one can use a Büchi objective to remove states allowing Zeno
behaviours. Our theory is rich in the sense that it captures all the good operations
for a compositional design theory presented above. Also all the algorithms have
been implemented. This implementation (available at [36]) comes as an extension
of the Uppaal-tiga tool-set [3]. Uppaal-tiga is a tool that implements a series
of algorithms for solving timed games [9] as well as checking timed temporal logic
properties. Working within Uppaal-tiga allows us to propose a state-of-the-art
user interface for verification tools.
In this paper our objectives are (1) to give more insight into design choices

made in [12], (2) to report on challenges of the implementation, (3) to discuss
design methodologies compatible with our theory, (4) to evaluate the implemen-
tation, and (5) to compare our results with other results in the same field.

2 Specifications and Implementations

We shall now introduce our component model.

Definition 1. A Timed I/O Transition System (TIOTS) is a quadruple S =
(StS , s0, Σ

S,−→S), where StS is an infinite set of states, s0 ∈ St is the initial
state, ΣS = ΣS

i ⊕ΣS
o is a finite set of actions partitioned into inputs (Σ

S
i) and

outputs (ΣS
o) and −→S : StS × (ΣS ∪ R≥0) × StS is a transition relation. We

Methodologies for Specification of Real-Time Systems 293

write s a−→Ss′ instead of (s, a, s′) ∈ −→S and use i?, o! and d to range over inputs,
outputs and R≥0 respectively. In addition any TIOTS satisfies the following:

[time determinism] whenever s d−→Ss′ and s d−→Ss′′ then s′=s′′

[time reflexivity] s 0−→Ss for all s ∈ StS

[time additivity] for all s, s′′∈ StS and all d1, d2 ∈ R≥0 we have s d1+d2−−−−→Ss′′ iff
s d1−−→Ss′ and s′ d2−−→Ss′′ for an s′ ∈ StS

TIOTSs are semantic objects that represent timed interactive processes. In
our framework we use Timed I/O Automata as a syntactic domain in which
specifications and implementations are represented.

Definition 2. A Timed I/O Automaton (TIOA) is a tuple A = (Loc, q0,Clk, E,
Act, Inv) where Loc is a finite set of locations, q0 ∈ Loc is the initial location, Clk
is a finite set of clocks, E ⊆ Loc×Act×B(Clk)×P(Clk)×Loc is a set of edges
with B(Clk) being a set of clock constraints, Act = Acti⊕Acto is a finite set of
actions, partitioned into inputs and outputs respectively, and Inv : Loc �→ B(Clk)
is a set of location invariants.

As for timed automata, a state of A is a pair (q, V) where q is a location and
V : Clk �→ R≥0 is a valuation function that assigns a non-negative value to each
clock in Clk. We write u + d to denote a valuation such that for any clock r we
have (u + d)(r) = x + d iff u(r) = x. Given d ∈ R≥0, we write u[r �→ 0]r∈c for a
valuation which agrees with u on all values for clocks not in c, and returns 0 for
all clocks in c. We use 0 to denote the constant function mapping all clocks to
zero. The initial state of A is the pair (q0,0).
We visualise TIOAs using classical Timed Automata notation, extending it

with two types of transitions (inputs and outputs). See example in Figure 1.

The semantics of a TIOA A=(Loc, q0,Clk, E,Act, Inv) is a TIOTS [[A]]sem =
(Loc × (Clk �→ R≥0), (q0,0),Act,−→), where −→ is the largest transition relation
generated by the following rules:

– Each (q, a, ϕ, c, q′) ∈ E gives rise to (q, u) a−→(q′, u′) for each clock valuation
u ∈ [Clk �→ R≥0] such that u |= ϕ and u′ = u[r �→ 0]r∈c and u′ |= Inv(q′).
– Each location q ∈ Loc with a valuation u ∈ [Clk �→ R≥0] gives rise to a
transition (q, u) d−→(q, u + d) for each delay d ∈ R≥0 such that u+d |= Inv(q).

Observe that the TIOTSs induced by a TIOAs naturally satisfy the three axioms
of Definition 1. In the rest of the paper, we will only consider deterministic
TIOAs, whose corresponding TIOTSs are deterministic.
A TIOTS represents a two-player timed game [9]. The Input player (the envi-

ronment) controls the input transitions of the TIOTS. The Output player (the
system) controls the output transitions. The formal definitions of strategy and
move outcomes for such a game are given in [12]. The set of winning states
from which one of the players has a strategy to satisfy a safety or a reachability
objective can be computed with algorithms presented in [9]—efficient symbolic
versions of well-known controller synthesis algorithms of [30].

294 A. David et al.

We now define implementations and specifications in terms of TIOAs.

Definition 3. A specification automaton is a TIOA that is input-enabled, i.e.,
in each state all the inputs should be available.

The assumption of input-enabledness, also seen in many interface theories [28,
18, 34, 37, 32], reflects our belief that an input cannot be prevented from be-
ing sent to a system, but it might be unpredictable how the system behaves
after receiving it. Input-enabledness encourages explicit modelling of this un-
predictability, and compositional reasoning about it; for example, deciding if an
unpredictable behaviour of one component induces unpredictability of the entire
system. Observe that it is easy to check whether a TIOA is input-enabled. In
practice tools can interpret absent input transitions in at least two reasonable
ways. First, they can be interpreted as ignored inputs, corresponding to location
loops in the automaton. Second, they may be seen as unavailable (’blocking’)
inputs, which can be achieved by assuming implicit transitions to a designated
error state. Later, in Section 4.2 we will call such a state strictly undesirable and
give a rationale for this name.

The role of specifications in a specification theory is to abstract, or under-
specify, sets of possible implementations. Implementations are concrete exe-
cutable realizations of systems. We will assume that implementations of timed
systems have fixed timing behaviour (outputs occur at predictable times) and
systems can always advance either by producing an output or delaying. Formally:

Definition 4. An implementation is a specification that satisfies the two
following conditions:

1. Independent progress: implementations cannot get stuck in a state where
it is up to the environment to induce progress. In each implementation state
either an output is possible or one can delay until an output is enabled.

2. Output urgency: if an output is available, then it cannot be delayed.

Since specifications and implementations are TIOAs, their semantics are still
given in terms of TIOTs. We refer the interested reader to [12] for more details.

Example. Figure 1a specifies a vending machine that can serve tea or coffee. A
possible implementation of this machine can be found in Figure 1b. Both au-
tomata are deterministic. Note that the output transitions of the implementation
Impl arrive at a fixed moment in time and cannot be delayed, which guarantees
output urgency (the invariant guarantees progress and the guard constrains the
transition). Each time the output tea! from Idle to Idle is taken, the clock y
is reset. Without this reset, independent progress would not be guaranteed for
valuations of the clock y that are greater than 6.

We now introduce refinement—a notion of comparison between two specifica-
tions and a way to relate implementations to specifications. Refinement should
satisfy the following substitutability condition. If AS refines AT , it should be pos-
sible to replace AT with AS in every context and obtain an equivalent system.
Contrary to the other operations, refinement is defined at the level of TIOTSs.

Methodologies for Specification of Real-Time Systems 295

a)

teacoin cof

tea!

coin?

tea!

cof!

coin?

Idle

Serving
y=0

y>=4 y<=6

y>=2Machine b)

teacoin cof

coin?

tea!
y=0

cof!

coin?

Idle

y<=5

Serving

y = 0

y==5

y <= 6
y==6Impl.

Fig. 1. a) Specification of a coffee and tea Machine and b) an implementation

Definition 5. Let AS and AT be two specification automata and S = (StS , s0, Σ,

−→S) and T = (StT, t0, Σ,−→T) be their corresponding timed transition systems. We
say that AS refines AT , written AS ≤ AT , iff there exists a binary relation R ⊆
StS×StTcontaining (s0, t0) and for all states sRt implies:

1. whenever t i?−−→T t′ for some t′∈StT then s i?−−→Ss′ and s′Rt′ for some s′∈StS

2. whenever s o!−−→Ss′ for some s′ ∈ StS then t o!−−→T t′ and s′Rt′ for some t′ ∈ StT

3. whenever s d−→Ss′ for d ∈ R≥0 then t d−→T t′ and s′Rt′ for some t′ ∈ StT

It is easy to see that the refinement is reflexive and transitive, so it is a pre-
order on the set of all specifications. Refinement can be checked for specification
automata by reducing the problem to a specific refinement game, and using a
symbolic representation to reason about it. See Section 5 for more details.
Satisfaction is a simple application of refinement. More precisely, we say that

an implementation satisfies a specification automaton iff it refines this specifica-
tion. As an example, observe that the automaton in Figure 1b is a refinement of
the one in Figure 1a, and thus it is also an implementation of it.
The set of all implementations of A is denoted [[A]]mod. In [12], we have shown

that the refinement relation is complete for our specification model, i.e, AS

refines AT iff the set of implementations that satisfy AS is included in the set of
implementations that satisfy AT .
A specification may be locally inconsistent in the sense that it may contain

bad states, i.e., states that do not satisfy the independent progress property2.
We say that a specification is consistent, and thus useful, if it admits at least
one implementation. It is important to have a procedure to decide whether a
specification admits at least one implementation. In [12], we have shown that this
question reduces to the one of deciding if there exists a strategy for the system
(Output player) to avoid reaching bad states in the specification. A pruning
facility removes from the TIOA all the behaviours that are not covered by the
strategy. It can drastically reduce the state-space of the automaton. In the rest
of the paper, we assume that bad states are always pruned away.
2 In section 4, we shall observe that the combination of two specifications without bad
states may lead to a specification with bad states.

296 A. David et al.

a)

grant patent

patent!

grant?grant?

grant?

u>2

u<=2

u<=20

grant?
u=0

patent! u=0

UniSpec

b)

grant pubpatent coin

patent!

pub?

grant?

grant?

pub?

coin!

grant?
BA

z<=2

CD

grant?

pub?

z=0

pub?

z<=2

z=0

Administration

Fig. 2. a) University specification UniSpec. b) Specification of an Administration.

3 Design Methodologies

In the following we introduce three different development methodologies sup-
ported by our framework. These development methodologies are in no way in
conflict with each other, but should more be seen as prototype work-flows that in
a concrete development process would be combined. First we present the running
example that will be used in presenting the methodologies.
The example is based on a very simplified view of a modern university. The

purpose of the university is to file as many patents as possible. More precisely
the requirements imposed on the university is given by the TIOA UniSpec as
presented in Figure 2a. The border around the specification shows the input and
output sort by incoming and outgoing arrows respectively. The initial state of
the specification is marked by a double circled state. Given that the university
receives a grant (solid transition marked with grant?) after a delay of less than
two time units it will output (dashed transition marked with patent!) a patent
within the next 20 time units. If the first grant comes after more than two time
units or any subsequent grant comes more than two time units after a patent has
been filed then the behaviour of the university becomes unpredictable, which is
modelled by the leftmost state in the specification.

Stepwise Refinement. The first methodology presented is the classic top-down
development through stepwise decomposition and refinement. Starting from the
overall specification of Figure 2a one can refine this into a specification that
contains several parallel components. The refinement is based on a knowledge of
how the system under design is supposed to meet the overall requirements. This
refined specification can again be refined further, until the desired level of detail
has been reached. It is important to note that the independent implementability
property allows for these refinement steps to be taken for individual components,
greatly increasing the scalability of the framework through compositional design.
We will decompose the University specification into three components: an Ad-

ministration, a Coffee/Tea machine and a Researcher. The responsibility of the
Administration (Figure 2b) is to convert the grants provided to the University
into coins that can be used in the coffee and tea machine. The coffee and tea

Methodologies for Specification of Real-Time Systems 297

a)

coftea
pub

tea?

tea?

pub!

cof?

pub!

x=0 pub!
tea?cof?

Idle

x<=8x<=4

Stuck

Coffee Tea

x=0x=0

x<=15 x=0

x>15

x>=4

x>=2

Researcher
b)

grant pubpatent coin

patent!

pub?

grant?

grant?

pub?

coin!

grant?
BA

z<=2

CD

grant?

pub?

z=0

pub?

z<=2

z=0

Administration2

Fig. 3. Specifications for the a) Researcher and b) Administration2

Administration || Machine || Researcher ≤ UniSpec

Administration2 || Machine || Researcher �≤ UniSpec

Stepwise refinement

Fig. 4. One possible step in Top-down development: Modifying a component and
rechecking refinement

Machine (Figure 1a) will then in turn provide the Researcher (Figure 3a) with
coffee and tea so that the researcher can produce publications. The Administration
component also has the responsibility of converting publications into patents.
The top line in Figure 4 shows a successful refinement check which shows that

the three components together refine the overall specification.
The bottom part of Figure 4 shows an additional step in the refinement pro-

cess. Here a single component is updated (Administration to Administration2).
This new version (Figure 3b) differs in a single transition. If it receives a publi-
cation (pub?) in the initial, left most state, then it will not loop but instead shift
to the lower left state indicating that it is ready to output a patent based on
this publication. This new version of the administration is thus able to receive
and process free publications that it has not payed for.
Figure 4 shows that the refinement check fails after this update of the model.

By the independent implementability property this could also have been discov-
ered by checking whether Administration2 refines Administration, which indeed
it does not. This might come as a surprise to the developer as it seems like
a reasonable improvement to be able to accept free publications. We defer the
discussion of how to solve this issue to Section 5.
In stepwise refinement this step of decomposing and refining individual

components is applied iteratively, until a suitable level of detail is reached.

Bottom-up Synthesis. The second development methodology that our framework
supports is a bottom-up development process through stepwise composition. Here
we assume that actual implementations of some components already exist and

298 A. David et al.

consistency: Administration || Machine || Researcher

consistency: Administration || Machine

Adding a component

Fig. 5. One possible step in Bottom-up development: Checking consistency before and
after adding an extra component

Machine || Researcher || Administration ≤ UniSpec

Machine || Researcher ≤ UniSpec \\ Administration

Factoring out some behaviour

Fig. 6. One possible step in Stepwise modularisation of requirements: Factoring out
the behaviour of the Administration

that models are made that describe the behaviour of these components. The aim
of the bottom-up development in our setting is to verify that a complete system
can be built from the preexisting components. Figure 5 shows one possible step in
a bottom-up development process. Here a consistency check is performed on the
parallel composition of two components after which another component is added
and the consistency check is redone. The bottom up development methodology
could easily be combined with refinement checking where the overall require-
ments are stepwise refined to see what the actual combination of components
can guarantee in terms of behaviour and timing.

Stepwise Modularisation of Requirements. The third and more novel type of
development methodology that our framework supports is the Stepwise modu-
larisation of requirements. Here the idea is, like for the top-down development
to start with a general specification of the requirements to the system and then
using the quotient operator to factor out behaviour that is already implemented
by existing components, so that one is left with a specification for the missing be-
haviour. This specification, which is synthesised by the tool, can now be further
refined to provide the implementation of missing functionality in terms of new
components. In that this process generalises stepwise refinement and bottom-up
synthesis. Figure 6 shows how one component can be moved from one side of
the refinement check to the other by factoring out the behaviour.
Another aspect of our framework that can be used orthogonally to the three

described development ideas is conjunction. Conjunction allows to specify dif-
ferent aspects or requirements to a component and then compose these using
logical conjunction, such that an implementation would have to individually
satisfy each conjunct in order to satisfy the conjunction. Figure 7 shows an
example of two specifications that each handle one aspect of the responsibilities

Methodologies for Specification of Real-Time Systems 299

a)

grant pubpatent coin

pub? patent!

patent!

coin! grant?

A

B

pub? grant?

x<=2

x=0

HalfAdm1 b)

grant pubpatent coin

grant? coin!

coin!

patent! pub?

C

D

pub? grant?

y<=2

y=0

HalfAdm2

Fig. 7. Example of two conjuncts, each handling one aspect, that make up a different
model of the Administration component

of the Administration component. Figure 7a describes an alternation between the
coin! and grant? while Figure 7b describes the alternation between patent! and
pub?. Together these form an alternative and slightly more loose specification of
the administration. It is the case that both Administration and Administration2
refine the conjunction HalfAdm1∧HalfAdm2, while the opposite is not the case.
Finally the tool is able to verify TCTL∗ [1] properties on the specifications.

This feature is made possible thanks to the modified underlying verification
engine. This will be exemplified in section 5.

4 Combining Specification Automata

In this section, we discuss the three main operations defined on specification
automata, namely: conjunction, composition, and quotient. All of these were
used to support different design processes described in the previous section.
In the rest of the section, we will consider two specification automata AS =

(Loc1, q1
0 ,Clk1, E1, Act1, Inv1) and AT = (Loc2, q2

0 ,Clk2, E2, Act2, Inv2). For tech-
nical reasons, we also assume that Clk1 ∩ Clk2 = ∅.

4.1 Conjunction

Conjunction allows to test whether several specifications can be simultaneously
met by the same component. In our framework, conjunction can only be defined
if ActSi = ActTi and ActSo = ActTo . The operation reduces to check whether
the two specifications can progress in the same way. Formally the conjunction
of AS and AT , denoted AS ∧ AT , is the TIOA A = (Loc, q0,Clk, E, ActS , Inv)
given by: Loc = LocS × LocT , q0 = (qS

0 , qT
0), Clk = ClkS � ClkT , Inv((qS , qT)) =

Inv(qS) ∧ Inv(qT). The set of edges E is defined by the following rule:

300 A. David et al.

AS0

AS1

AS2

InvS

a?

gi

ri

· · ·
o!

hl

sl

· · ·
AT0

AT1

AT2

InvT

a?

uj

tj

· · ·
o!

vm

pm

· · ·
AS0T0

AS1T1 AS2T2

InvA ∧ InvB

a?

gi ∧ uj

ri ∪ tj

· · · o!

hl ∧ vm

sl ∪ pm

· · ·

Fig. 8. Two states of TIOAs AS and AT are combined into one TIOA A with the
conjunction operator for one step. This process is then iterated.

– If (qS , a, ϕS , cS, q′S) ∈ ES and (qT , a, ϕT , cT , q′T) ∈ ET this gives rise to
((qS , qT), a, ϕS ∧ ϕT , cS ∪ cT , (q′S , q′T)) ∈ E.

An example of how the conjunction of two specific states from two different TIOA
with example input and output transitions will look is given in Figure 4.1.
Conjunction may introduce locally inconsistent states. For example, assume

that AS reaches a state from s where the only available action is the output a
and AT reaches a state t from where the only available action is the output b.
Assume also that AS and AT cannot delay in s and t. In (s, t), the conjunction
will not issue any output and will not be able to delay, which violates the inde-
pendent progress property. As stated in Section 2, locally inconsistent states can
be removed with the help of a pruning operation. In the rest of the paper, we
assume that each conjunction is immediately followed by a pruning.

In [12], we have shown the following results:

– The set of implementations satisfying a conjunction is the intersection of the
implementation sets of the operands: [[(AS ∧AT)]]mod=[[AS]]mod ∩ [[AT]]mod.
– The conjunction of AS and AT corresponds to the greatest lower bound of
their implementations sets: if A≤AS and A≤AT we have that A≤AS ∧AT .
– The conjunction operation (also if combined with pruning) is associative and
commutative, so among others: [[(AS∧AT)∧AU]]mod = [[AS∧(AT ∧AU)]]mod.

4.2 Composition

We shall now define structural composition, also called parallel composition, be-
tween specifications. Roughly speaking, this operation computes the classical
product between timed specifications [21], where components synchronise on
common inputs/outputs. Two components are composable iff the intersection
between their output alphabets is empty. Formally the parallel composition of
AS with AT , denoted AS ||AT , is the TIOA A = (Loc, q0,Clk, E, Act, Inv) given
by: Loc = LocS × LocT , q0 = (qS

0 , qT
0), Clk = ClkS � ClkT , Inv((qS , qT)) =

Inv(qS) ∧ Inv(qT) and the set of actions Act = Acti � Acto is given by Acti =

Methodologies for Specification of Real-Time Systems 301

ActSi \ActTo ∪ActTi \ActSo and Acto = ActSo ∪ActTo . The set of edges E is defined
by the following rules:

1. If (qS , a, ϕS , cS , q′S) ∈ ES with a ∈ ActS \ActT then for each qT ∈ LocT this
gives ((qS , qT), a, ϕS , cS , (q′S , qT)) ∈E

2. If (qT , a, ϕT , cT , q′T) ∈ ET with a ∈ ActT \ActS then for each qS ∈ LocS this
gives ((qS , qT), a, ϕS , cS , (qS , q′T)) ∈E

3. If (qS , a, ϕS , cS , q′S) ∈ ES and (qT , a, ϕT , cT , q′T) ∈ ET with a ∈ ActS ∩ ActT
this gives rise to ((qS , qT), a, ϕS ∧ ϕT , cS ∪ cT , (q′S , q′T)) ∈ E.

The first rule represent all the cases where AS makes an individual move, be it
input or output, because a is not in the signature of AT . Similarly the second rule
handles all individual moves by the second componentAT . The third rule handles
all synchronisations between the two components, no matter the combination of
input and/or output. The rule is so simple because the type of the resulting
transition is given by the sets Acti and Acto. The new output set, Acto, is just a
simple union of the outputs, while the input set, Acti, is all the inputs that are
not outputs of the other component.
Observe that if we compose two locally-consistent specifications using the

above product rules, then the resulting product is also locally consistent. More-
over, unlike [16], our specifications are input-enabled, and there is no way to
define an error state in which a component can issue an output that cannot be
captured by the other component. The absence of “model-related” error states
allows us to define more elaborated errors specified by the designer [12]. As an
example, a temporal property written in some logic such as TCTL∗ can be in-
terpreted over our specification, which when analysed by a model checker, will
result in partitioning of the states into good ones (say satisfying the property)
and bad ones (violating the property).
In contrast to conjunction, parallel composition is used to reason about exter-

nal use of two (or more) components. We assume an independent implementation
scenario, where the two composed components are implemented by independent
designers. The designer of any of the environment components can only assume
that the composed implementations will adhere to original specifications being
composed. Consequently if an error occurs in parallel composition of the two
specifications, the environment is the only entity that is possibly in a position
to avoid it. Thus, each composition is followed by a pruning operation where all
the states from which the environment has no strategy to avoid the set of bad
states are removed.

In [12], we have shown the following important results regarding composition.

– Any implementation of composition can be realized by implementations of
composed specifications: [[(AS ||AT)]]mod = [[AS]]mod||[[AT]]mod.
– The composition operation (also if combinedwith a pruning) is associative and
commutative, so among others: [[(AS ||AT)||AU]]mod = [[AS ||(AT ||AU)]]mod.
– Refinement is a precongruence with respect to parallel composition; for any
specifications AS , AT , and AU such that AS ≤ AT and AS composable with

302 A. David et al.

a)
AT0

AT1
AT2

AT3InvT

i?
gT

rT

· · ·
oS !

hT

sT

· · ·

oX !kT qT

··
·

b)
AS0

AS1
AS2

AS3InvS

i?
uS

tS

· · ·
oS !

vS

pS

· · ·

oX !wS zS

··
·

d)
T0\\S0

lu

l∅

T1\\S1

T3\\S3

lul∅T2\\S2

¬InvS
Act

?/!¬In
vT

∧In
vS

in
ew

?

gT ∧us i? rT ,tS

k
T ∧w

s

o
x !

s
T ,p

S

¬
G

s

o
s ?

v
s ∧¬

G
T

o
s ?

h
T∧

v
s

o
s?

s
T

,p
S

c)

X

S
T

i?

os!

ox!

Fig. 9. Initial states of two example TIOA a) AT , b) AS, c) an overview of the com-
munication flow and d) the initial state of the resulting quotient

AU , we have that AT composable with AU and AS ||AU ≤ AT ||AU . Moreover
if AT compatible with AU then AS compatible with AU .

4.3 Quotient

An essential operator in a complete specification theory is the one of quotienting.
It allows for factoring out behaviour from a larger component. If one has a large
component specification AT and a small one AS then AT \\AS is the specification
of exactly those components that when composed with AS refine AT . In other
words, AT \\AS specifies the work that still needs to be done, given availability
of an implementation of AS , in order to provide an implementation of AT . This
is a non trivial operation which reduces to synthesis of a timed game. To the best
of our knowledge, we are the first to compute the quotient in a timed setting.
We require that for the dividend AT and the divisor AS the following relations

on action sets hold: ΣS
i ⊆ ΣT

i and ΣS
o ⊆ ΣT

o . If these requirements on the input
and output sets are met, then the quotient of AT by AS , which is denoted
AT \\AS is the TIOA given by: Loc = LocT ×LocS ∪{lu, l∅}, q0 = (qT

0 , qS
0), Clk =

ClkT � ClkS � {xnew}, Inv((qT , qS)) = Inv(lu) = true and Inv(l∅) = {xnew ≤ 0}.
The two new states lu and l∅ are respectively universal and inconsistent. The
set of actions Act = Acti � Acto is given by Acti = ActTi ∪ ActSo ∪ {inew} and
Acto = ActTo \ActSo . The set of edges E is defined by the following rules:

1. if qT ∈LocT , qS ∈ LocS , a∈Act then ((qT , qS), a,¬InvS(qS), {xnew}, lu)∈E
2. if qT ∈LocT , qS ∈LocS then ((qT, qS), inew,¬InvT (qT)∧InvS(qS), {xnew}, l∅)∈E

Methodologies for Specification of Real-Time Systems 303

3. if (qT , a, ϕT , cT , q′T) ∈ ET and (qS , a, ϕS , cS , q′S) ∈ ES this gives ((qT , qS), a,
ϕT ∧ ϕS , cT ∪ cS , (q′T , q′S)) ∈ E

4. for each (qS , a, ϕS , cS , q′S) ∈ ES with a ∈ ActSo this gives rise to ((qT , qS), a,
ϕS ∧ ¬GT , {xnew}, l∅) where GT =

∨
{ϕT | (qT , a, ϕT , cT , q′T)}

5. if (qT, a, ϕT , cT, q
′
T)∈ET , a /∈ActS then ((qT, qS), a, ϕT, cT , (q′T , qS)) ∈ E

6. for each (qT , a, ϕT , cT , q′T) ∈ ET with a ∈ ActSo this gives rise to ((qT , qS), a,
¬GS , {}, lu) where GS =

∨
{ϕS | (qS , a, ϕS , cS , q′S)}

7. for each a ∈ Acti this gives rise to (l∅, a, xnew = 0, {}, l∅)
8. for each a ∈ Act this gives rise to (lu, a, true, {}, lu)

The quotients input set, Acti, consists of the inputs to the outer component
AT and the outputs of the existing inner component AS (See Figure 9c) and
a new fresh input action inew. The output set of the quotient, Acto, is simply
the output set of the outer component, AT , minus the outputs handled by the
existing inner component AS . The resulting quotient has two new special states
lu and l∅. The first universal state, lu, represents all the cases where the existing
inner component As has violated the guarantees of the outer component AT and
thus there are no restrictions on the future behaviour of the quotient. The second
inconsistent state, l∅, represents all the cases where the quotient by taking this
action would itself violate the assumptions of the other components.
In the above definition we have eight rules. The first rule creates a new transi-

tion leading to the universal state with a guard that equals the original invariant
of the existing inner specification. The second rule reflects the case where the in-
variant of AT is not satisfied while the invariant of AS is. The third rule handles
all regular synchronisation where the guards of both components are satisfied.
The fourth rule handles the case where the inner component generates an output
at a time where it is not allowed by any of the matching guards in the outer
component AT . The fifth rule handles the cases where AT takes an action which
is not in the action set of AS . The sixth rule represents all the cases where AT

takes an action which is not allowed by any of the matching guards in AS thus
leading to the universal state. Finally the seventh rule makes the l∅ state in-
consistent and the eighth rule ensures that the universal state has all possible
behaviour. Figure 9 illustrates one step in the computation of a quotient.
Like Conjunction, the quotient operation may produce (locally) inconsistent

specifications. Hence, each quotient operation has to be followed by a pruning.
In [12], we have shown that the quotient operation produces the most liberal

specification with respect to refinement. Formally we have the following theorem.

Theorem 1. For any two specification automata AS and AT such that the quo-
tient is defined, and for any implementation X over the same alphabet as T \\S
we have that S||X is defined and S||X ≤ T iff X ≤ T \\S.

5 Tool Implementation

We begin with summarising the functionality of the tool, and proceed later to
present a running example.

304 A. David et al.

Our specification theory has been implemented as an extension of Uppaal-
tiga [3], which is an engine for solving timed games. We have made two major
modifications to the original engine. The first modification was to enrich the input
language in order to allow for the description of specifications/implementations
and operations between them; the second one was to modify the timed-game al-
gorithms in order to take the compositional reasoning methodology into account.

Modelling Language. The input syntax of Uppaal-tiga is identical to the one
of Uppaal [4, 26] – a tool for specifying, combining and verifying properties of
timed automata. The user-friendly interface of Uppaal is divided in two parts:
1) the specification interface where automata are specified in a graphical manner,
and 2) the query interface where one can ask verification questions. The main
difference between the input language of Uppaal-tiga and Uppaal is that, due
to the game interpretation, transitions are typed with control modalities. The
specification interface of our tool is similar to the one of Uppaal-tiga, except
that we decorate transitions with input and output modalities, which allows
the user to specify timed I/O automata. Like timed automata, interfaces can
communicate via broadcast channels, but global variables are not permitted.
The query interface allows the user to (a) check whether a TIOA is a proper
implementation or a specification, (b) to apply composition operations and (c)
to check refinement relations. More details can be found at [36].
Each time we specify a TIOA, the tool automatically checks whether it is

deterministic and input-enabled. In case of an implementation, the tool also
checks whether it satisfies the output urgency and independent progress prop-
erties. Also, the tool automatically computes the set of states for which the
specification is consistent. When the specification is combined with another one,
this information is used in order to avoid involving bad states.

Timed Interface Operators. We have implemented the composition, conjunc-
tion, and refinement operators. Quotient is being implemented. These opera-
tors are available from the query interface. We now give details regarding the
modifications we have made on the original version of Uppaal-tiga.
As we have seen, the operations of conjunction, composition, and quotienting

may produce specifications with bad states. Such states need to be identified and
pruned away. For doing so, we have adapted the game algorithm implemented
in Uppaal-tiga. The main challenge, in terms of implementation, is that the
original algorithms work on fixed input automata. In our case the automata are
not known in advance since they result from the successive pruning operations.
The problem of checking whether AS refines AT reduces to the one of solving

a timed game between two players on the graph-product of AS and AT [12].
The first player, or attacker, plays outputs on AS and inputs on AT , whereas
the second player, or defender, plays inputs on AS and outputs on AT . One
can show that Refinement does not hold if and only if the attacker can put
the defender in a bad state. There are two kinds of bad states in this game: 1)
the attacker may delay and violates invariants on AT , which is, the defender
cannot match a delay, and 2) the defender has to play a given action and cannot

Methodologies for Specification of Real-Time Systems 305

do so, i.e., a deadlock with respect to the game. In [8], we have proposed and
implemented an efficient algorithm for solving such a game.
We illustrate the input language and the functionalities of the tool with the

university example presented in Section 3. We fist consider the part of the exam-
ple in which the administration is split in two parts (see Figure 7). We thus have
four implementations (Machine, HalfAdm1, HalfAdm2, and Researcher) and one
specification (UniSpec). All of these machines can easily be drawn in the speci-
fication interface. In the query interface, specifications and implementations are
declared as follows: specification: UniSpec, and implementation: HalfAdm1. The
tool automatically plays a safety-game followed by a pruning in order to remove
locally inconsistent states. The tool also makes sure that the implementation
and the specification satisfy Definitions 3 and 4. If this is not the case, or if the
specification admit no implementation, then the tool stops.
We combine implementations with composition and conjunction operators as

follows. The interface of the administration is the conjunction of two interfaces,
one specifying when to output coins (after grants) and the other when to deliver a
patent (after a publication). This is a better (and less restrictive approach) than
to specify manually the combination of both. Then we compose the interfaces
of the researcher, the university, and the machine. To check if this composition
refines our original specification we check the following query

refinement: (Researcher || (HalfAdm1 && HalfAdm2) || Machine) <= UniSpec.

Figure 10 illustrates the different steps of the verification. The checker ex-
plores each component locally and prunes them from inconsistent states. The
results of the exploration of the two “half-administrations” are conjuncted and
pruned. Then the three automata are composed and pruned. The same is done
for the specification and then the safety-game algorithm is used to check whether
refinement holds. If at any step an automaton turns to be inconsistent then the
check stops and the tool reports the error to the user. In this latter case, the
user can invoke the simulator of Uppaal-tiga which will play the game until
it breaks down. This information can be used to improve/change the design of
the specification or of the implementation.
For the above example, it turns out that the refinement does not hold. The tool

reveals that the UniSpec interface does not allow patents to be produced without
a preceding grant. However, the composition allows researchers to publish with
free tea, which is accepted by the conjunction of the two half administrations,
which results in a patent. If we check instead

refinement: (Researcher || Administration || Machine) <= UniSpec.

with the administration of Figure 2b then the refinement holds as mentioned in
Section 3 because this administration does not accept patents without grants
first. However, specifying the administration manually exhibits a restricting be-
haviour that is not present in the cleaner conjunction of the two smaller specifi-
cations. Here the right correction would be to allow for free patents in UniSpec.
The conclusion is that the user should not try to make the conjunction by hand
and use conjunctions to specify more accurate specifications.

306 A. David et al.

E
ng
in
e

tea!

coin?

tea!

cof!

coin?

Idle

Serving
y=0

y>=4 y<=6

y>=2

Machine
pub? patent!

patent!

coin! grant?

A

B

pub? grant?

x<=2

x=0

HalfAdm1
grant? coin!

coin!

patent! pub?

C

D

pub? grant?

y<=2

y=0

HalfAdm2
tea?

tea?

pub!

cof?

pub!

x=0 pub!
tea?cof?

Idle

x<=8x<=4

Stuck

Coffee Tea

x=0x=0

x<=15 x=0

x>15

x>=4

x>=2

Researcher

grant? grant?

grant?

patent! patent!

grant?
GrantStartEnd

u=0

u<=2

u=0

u<=20
u>2

UniSpec

explore

and
prune

in
te
rn
al

T
IO
A

&&

co
nj
un
ct

||

co
m
po
sit
io
n

combine with operator
≤

re
fin
em
en
t
ch
ec
k

yes/no+strategy

Fig. 10. Illustration of the steps performed in a concrete refinement check. The grey
box represents the part carried out internally by the verification engine.

Finally, we illustrate the advantage of being capable to model check TCTL
properties on TIOAs. We would like to avoid considering zeno behaviours. The
idea is to combine our specification with an observer and then make sure that
the observer visits infinitely often a state in which time advances. The latter can
be specified with a TCTL property. The observer Obs has two states reset and
advance and a witness clock w. The observer issues a non shared output from
reset to advance if w > 1. Then it directly moves back to reset and resets the
clock. The observer is then composed with the specification. There will be no
synchronisation between the observer and the specification. Non zeno behaviours
in the composition are those where Obs visits the state advance infinitely often.
We use the following property that checks for refinement with an additional
Büchi condition constraining the composition.

refinement: (Researcher || Administration2 || Machine || Obs
: A[] A<> Obs.advance) <= UniSpec.

6 Related Work

In this section, we compare our results with other timed interface theories.

Input/Output automata model There have been several other attempts to pro-
pose an interface theory for timed systems (see [14, 16, 13, 7, 6, 10, 35, 17, 27] for
some examples). Our model shall definitely be viewed as an extension of the
timed input/output automaton model proposed by Lynch et al. [21]. The major
differences are in the game-based treatment of interactions and the addition of
quotient and conjunction operators.

Timed Interfaces by de Alfaro et al. In [16], de Alfaro et al. proposed timed
interfaces, a timed extension of the interface model they introduced in [14]. Like
for specification automata, the syntax of a timed interface is similar to the one
of a timed input/output automaton [22] and the semantic is given by a timed

Methodologies for Specification of Real-Time Systems 307

game. However, unlike specification automata, timed interfaces are not forced
to be deterministic or input-enabled. The absence of input-enabledness allows
for defined error states in the composition where one component can issue an
output that cannot be captured by the other component. Two timed interfaces
are said to be compatible if there exists an environment in which they can
work together while avoiding such error states. This definition of compatibility
allows to capture the timing between interfaces: “what are the temporal ordering
constraints on communication events between components?”. Unfortunately, the
work in [16] is incomplete. Indeed there is no notion of implementation and
refinement. Moreover, conjunction and quotient are not studied. Also, de Alfaro
et al. did not consider more elaborated error states specified by the user with
some timed temporal logic. Finally, the theory has only been implemented in
a prototype tool called TICC [13], which does not handle continuous time. A
main drawback of TICC is its textual input language that is far from modern
graphical specification languages used by engineers.

Timed Modal Specifications In [23] Larsen proposes modal automata, which are
deterministic automata equipped with transitions of the following two types:may
and must . The components that implement such interfaces are simple labelled
transition systems. Roughly, a must transition is available in every component
that implements the modal specification, while a may transition need not be.
Recently [7, 6] a timed extension of modal automata was proposed, which em-
beds all the operations presented in the present paper. However, modalities are
orthogonal to inputs and outputs, and it is well-known [24] that, contrary to
the game-semantic approach, they cannot be used to distinguish between the
behaviours of the component and those of the environment. Aside from the or-
thogonality between input/output and may/must modalities. Our model does
not allow to combine/compare automata that share common clock names, while
in [7, 6] they restrict themselves to even-clock automata [2] for doing so. We are
convinced that our theory directly extends to an event-clock automata version
of TIOA with shared clocks. Finally, our work is implemented, while the work
in [7, 6] is not implemented.

7 Conclusion

We have proposed a complete game-based specification theory for real time sys-
tems, in which we distinguish between a component and the environment in
which it is used. To the best of our knowledge, our contribution is the first
game-based approach to support both refinement, consistency checking, logical
and structural composition, and quotient. Our results have been implemented
in the Uppaal tool family [3].
In the future one could extend our model with global variables. This was

already suggested by Berendsen and Vaandrager in [5], but only for structural
composition and refinement and without the game-based semantic.
One could also investigate whether our approach can be used to perform

scheduling of timed systems (see [13, 19, 17] for examples). For example, the

308 A. David et al.

quotient operation could perhaps be used to synthesise a scheduler for such
problems. It would also be of interest to add stochastic features to the model.
In [33, 25], we have proposed a model which takes advantages of both interface

automata and modal specifications. One should follow a similar direction in the
timed setting and combine our model with the one proposed in [7, 6].
Finally, our notion of error states is still primitive and in the future we plan

to allow the users to define their own error states. This will be done with the
help of some temporal logic, just like it was done for a refinement in [8].

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: A determinizable class
of timed automata. Theoretical Computer Science 211, 1–13 (1999)

3. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
Uppaal-tiga: Time for playing games? In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

4. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: QEST, pp. 125–126. IEEE Computer Society, Los
Alamitos (2006)

5. Berendsen, J., Vaandrager, F.W.: Compositional abstraction in real-time model
checking. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp.
233–249. Springer, Heidelberg (2008)

6. Bertrand, N., Legay, A., Pinchinat, S., Raclet, J.-B.: A compositional approach
on modal specifications for timed systems. In: Breitman, K., Cavalcanti, A. (eds.)
ICFEM 2009. LNCS, vol. 5885, Springer, Heidelberg (2009)

7. Bertrand, N., Pinchinat, S., Raclet, J.-B.: Refinement and consistency of timed
modal specifications. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA
2009. LNCS, vol. 5457, pp. 152–163. Springer, Heidelberg (2009)

8. Bulychev, P., Chatain, T., David, A., Larsen, K.G.: Efficient on-the-fly algorithm
for checking alternating timed simulation. In: Ouaknine, J., Vaandrager, F.W.
(eds.) FORMATS 2009. LNCS, vol. 5813, pp. 73–87. Springer, Heidelberg (2009)

9. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

10. Čerāns, K., Godskesen, J.C., Larsen, K.G.: Timed modal specification - theory and
tools. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 253–267. Springer,
Heidelberg (1993)

11. Chakabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Resource inter-
faces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133.
Springer, Heidelberg (2003)

12. David, A., Larsen, K.G., Legay, A., Nyman, U., Wąsowski, A.: Timed I/O au-
tomata: a complete specification theory for real-time systems. In: HSCC (2010)
(accepted)

13. de Alfaro, L., Faella, M.: An accelerated algorithm for 3-color parity games with
an application to timed games. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 108–120. Springer, Heidelberg (2007)

Methodologies for Specification of Real-Time Systems 309

14. de Alfaro, L., Henzinger, T.A.: Interface automata. In: FSE, Vienna, Austria, pp.
109–120. ACM Press, New York (2001)

15. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Marktoberdorf Summer
School. Kluwer Academic Publishers, Dordrecht (2004)

16. de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Timed interfaces. In:
Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491,
pp. 108–122. Springer, Heidelberg (2002)

17. Deng, Z., Liu, J.W.s.: Scheduling real-time applications in an open environment.
In: Proceedings of the 18th IEEE Real-Time Systems Symposium, pp. 308–319.
IEEE Computer Society Press, Los Alamitos (1997)

18. Garland, S.J., Lynch, N.A.: The IOA language and toolset: Support for design-
ing, analyzing, and building distributed systems. Technical report, Massachusetts
Institute of Technology, Cambridge, MA (1998)

19. Henzinger, T.A., Matic, S.: An interface algebra for real-time components. In: IEEE
Real Time Technology and Applications Symposium, pp. 253–266. IEEE Computer
Society, Los Alamitos (2006)

20. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer,
Heidelberg (2006)

21. Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: Timed i/o automata: A
mathematical framework for modeling and analyzing real-time systems. In: RTSS,
pp. 166–177. IEEE Computer Society, Los Alamitos (2003)

22. Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: The Theory of Timed
I/O Automata. Synthesis Lectures on Computer Science. Morgan & Claypool Pub-
lishers, San Francisco (2009)

23. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

24. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

25. Larsen, K.G., Nyman, U., Wasowski, A.: Modal i/o automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

26. Larsen, K.G., Steffen, B., Weise, C.: Continuous modeling of real-time and hybrid
systems: From concepts to tools. STTT 1(1-2), 64–85 (1997)

27. Lee, I., Leung, J.Y.-T., Son, S.H.: Handbook of Real-Time and Embedded Systems.
Chapman, Boca Raton (2007)

28. Lynch, N.: I/O automata: A model for discrete event systems. In: Annual Con-
ference on Information Sciences and Systems, pp. 29–38. Princeton University,
Princeton (1988)

29. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. Technical
Report MIT/LCS/TM-373. The MIT Press, Cambridge (November 1988)

30. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems (an extended abstract). In: STACS, pp. 229–242 (1995)

31. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1988)

32. Nicola, R.D., Segala, R.: A process algebraic view of input/output automata. The-
oretical Computer Science 138 (1995)

33. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
Modal interfaces: unifying interface automata and modal specifications. In: EM-
SOFT, pp. 87–96. ACM, New York (2009)

310 A. David et al.

34. Stark, E.W., Cleavland, R., Smolka, S.A.: A process-algebraic language for proba-
bilistic I/O automata. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS,
vol. 2761, pp. 193–207. Springer, Heidelberg (2003)

35. Thiele, L., Wandeler, E., Stoimenov, N.: Real-time interfaces for composing real-
time systems. In: EMSOFT, pp. 34–43. ACM, New York (2006)

36. http://www.cs.aau.dk/~adavid/tiga/tio.html
37. Vaandrager, F.W.: On the relationship between process algebra and input/output
automata. In: LICS, pp. 387–398 (1991)

The How and Why
of Interactive Markov Chains�

Holger Hermanns1,2 and Joost-Pieter Katoen3,4

1 Dependable Systems and Software, Universität des Saarlandes, Germany
2 VASY Team, INRIA Grenoble – Rhône-Alpes, France
3 MOVES Group, RWTH Aachen University, Germany
4 FMT Group, University of Twente, The Netherlands

Abstract. This paper reviews the model of interactive Markov chains
(IMCs, for short), an extension of labelled transition systems with expo-
nentially delayed transitions. We show that IMCs are closed under paral-
lel composition and hiding, and show how IMCs can be compositionally
aggregated prior to analysis by e.g., bisimulation minimisation or aggres-
sive abstraction based on simulation pre-congruences. We survey some
recent analysis techniques for IMCs, i.e., explaining how measures such
as reachability probabilities can be obtained. Finally, we demonstrate
that IMCs are a natural (and simple) semantic model for stochastic pro-
cess algebras and generalised stochastic Petri nets and can be used for
engineering formalisms such as AADL and dynamic fault trees.

1 Introduction

Designing correct and efficient distributed systems is a difficult task. As a chal-
lenging case take an offshore wireless sensor network that is designed to identify
tsunami situations and relay tsunami warnings [61]. Once fully operational, will
this network help to save human life? Can we guarantee its correct functioning,
or is there a risk of failure at the very moment when it is seriously needed?
To say it with Barendregt, correct systems for information processing are more
valuable than gold [4]. In the tsunami context, a correct system is one that
guarantees certain time bounds for the tasks it needs to perform, even in the
presence of message losses or component failures. Correctness, performance and
dependability are intertwined here, and so they are in many other contemporary
IT applications. These applications ask for quantitative correctness properties
such as: The frequency of system downtime is below one hour per year, and
packets arrive timely in at least 99.96% of all cases.

� This research has been funded by NWO under grant 612.000.420 (QUPES) and
DFG-NWO grant Dn 63-257 (ROCKS), by the EU under FP7-ICT-2007-1 grant
214755 (Quasimodo), and by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” SFB/TR 14 AVACS.

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 311–337, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

312 H. Hermanns and J.-P. Katoen

Performance and dependability evaluation is a discipline that aims at analysing
these quantitative system aspects. Major strands of performance evaluation ap-
proaches are measurement-based and model-based techniques. In measurement-
based evaluation, experiments are performed on a concrete (often prototypical)
realisation of the system, and timing information is gathered, which is then
analysed to evaluate measure(s) of interest. These techniques are routinely prac-
ticed in the systems engineering world. They provide specific, precise and very
concrete insights into the functioning of a real system. The drawback of these
approaches is mainly the fact that they are not reproducible, are hard to scale,
and difficult to generalise beyond the concrete setup experimented with. In order
to increase reproducibility and reduce costs of larger experiments, distributed
systems researchers often resort to emulation studies, where the real system code
is executed on a virtualised hardware, instead of distributing it physically on the
target systems. This especially allows for better concurrency control and thus
improved reproducibility. However, it remains notoriously unclear to what extent
the imposed control mechanisms tamper the validity of the obtained measures.

In model-based performance evaluation, a more general, and thus more ab-
stract approach is taken. A model of the system is constructed that is deemed
just detailed enough to evaluate the measure(s) of interest with the required ac-
curacy. In this context the modelling process is an additional step that needs to
be performed, and this is a non-trivial task. Process calculi [5] provide a formal
basis for designing models of complex systems, especially those involving com-
municating and concurrently executing components. The underlying basis is the
model of labelled transition systems, which represent system behaviour as tran-
sitions representing discrete system moves from state to state. The consideration
of stochastic phenomena has led to a plethora of stochastic process calculi, cf.
the survey in [36]. One of their semantical models is the topic of this paper: in-
teractive Markov chains (IMCs, for short) [35]. It stands out in the sense that it
extends classical labeled transition systems in a simple yet conservative fashion.
IMCs arise from classical concurrency models by incorporating a second type of
transitions, denoted s λ−−→ s′, that embodies a random delay governed by a nega-
tive exponential distribution with parameter λ ∈ R>0. This twists the model to
one that is running on a continuous timeline, and where the execution of actions
is supposed to take no time —unless they can be blocked by the environment.
(This is linked to the notion of maximal progress.) By dropping the new type
of transitions, labeled transition systems are regained in their entirety. By in-
stead dropping the old-fashioned action-labeled transitions, one arrives at one of
the simplest but also most widespread class of performance and dependability
models, continuous-time Markov chains (CTMCs). They can be considered as
labeled transition systems, where the transition labels —rates of negative expo-
nential distributions— indicate the speed of the system evolving from one state
to another. Their benefits for stochastic process calculi is summarised in [16].

While this simple combination of LTS and CTMCs was at first viewed as a
rather academic distinction, the last decade has shown and stressed its
importance. First and foremost, IMCs have shown their practical relevance in

The How and Why of Interactive Markov Chains 313

applications of various domains, ranging from dynamic fault trees [11,10,12],
architectural description languages such as AADL (Architectural Analysis and
Design Language) [9,15,13,14], generalised stochastic Petri nets [40] and State-
mate [8] to GALS (Globally Asynchronous Locally Synchronous) hardware de-
sign [22,19,23]. The availability of CTMC-based tool support [31] for IMCs has
led to several of these applications. On the other hand, a rich set of algorith-
mic advances for the analysis and minimisation of IMCs have been recently
developed that enable the analysis of large IMCs [49,66]. Whereas so far the
analysis trajectory was restricted to CTMC models obtained from IMCs whose
weak bisimulation quotient is free of nondeterminism, with the work of [66] this
restriction has become obsolete. In addition, recent developments in composi-
tional abstraction techniques for IMCs are promising means to analyse huge,
and even infinite IMCs. This paper provides a survey of IMCs, some of their
recent applications and algorithmic advancements.

Organization of this paper. Section 2 introduces IMCs, explains their seman-
tics, defines some basic composition operators and considers (bi)simulation.
Section 3 focuses on the analysis of measures-of-interest on IMCs, such as reduc-
tion to CTMCs and reachability probabilities of various kinds. Section 4 reports
on compositional minimisation techniques for IMCs, including recent progress
in aggressive abstraction. Section 5 describes the usage of IMCs as semantical
backbone for industrially relevent formalisms such as fault trees and AADL, as
well as of other modeling formalisms. Finally, section 6 concludes the paper and
gives some propects for future research directions.

2 Interactive Markov Chains

What are IMCs? IMCs are basically labeled transition systems with a denu-
merable state space, action-labeled transitions, as well as Markovian transitions
that are labeled with rates of exponential distributions. In the remainder of this
paper, we assume the existence of a denumerable set of actions, ranged over by
α and β, and which includes a distinguished action, denoted τ . Actions τ models
internal, i.e., unobservable activity, whereas all other actions model observable
activities.

Definition 1 (Interactive Markov chain). An interactive Markov chain is
a tuple I = (S, Act, −→ , ⇒ , s0) where

– S is a nonempty set of states with initial state s0 ∈ S.
– Act is a set of actions,
– −→ ⊆ S × Act × S is a set of interactive transitions, and
– ⇒ ⊆ S × R>0 × S is a set of Markovian transitions.

We abbreviate (s, α, s′) ∈ −→ as s α−−→ s′ and similarly, (s, λ, s′) ∈ ⇒ by

s
λ⇒ s′. States are by the type of their outgoing transitions. Let:

314 H. Hermanns and J.-P. Katoen

– IT(s) =
{
s α−−→ s′

}
be the set of interactive transitions that leave s, and

– MT(s) = {s λ⇒ s′} be the set of Markovian transitions that leave s.

A state s is Markovian iff MT(s) �= ∅ and IT(s) = ∅; it is interactive iff MT(s) =
∅ and IT(s) �= ∅. Further, s is a hybrid state iff MT(s) �= ∅ and IT(s) �= ∅; finally,
s is a deadlock state iff MT(s) = IT(s) = ∅. Let MS ⊆ S and IS ⊆ S denote the
sets of Markovian and interactive states in IMC I.

A labeled transition system (LTS) is an IMC with MT(s) = ∅ for any state
s. A continuous-time Markov chain (CTMC) is an IMC with IT(s) = ∅ for any
state s. (The case in which MT(s) = ∅ = IT(s) for any s is both an LTS and a
CTMC). IMCs are thus natural extensions of labeled transition systems, as well
as of continuous-time Markov chains.

The semantics of an IMC. Roughly speaking, the interpretation of Markovian

transition s
λ⇒ s′ is that the IMC can switch from state s to s′ within d time

units with probability 1−e−λ·d. The positive real value λ thus uniquely identifies
a negative exponential distribution. For a Markovian state s ∈ MS, let R(s, s′) =
∑

{λ | s
λ⇒ s′} be the rate to move from state s to state s′. If R(s, s′) > 0 for

more than one state s′, a competition between the transitions of s exists, known
as the race condition. The probability to move from such state s to a particular
state s′ within d time units, i.e., the Markovian transition s → s′ wins the race,
is given by:

R(s, s′)
E(s)

·
(
1 − e−E(s)·d

)
,

where E(s) =
∑

s′∈S R(s, s′) denotes the exit rate of state s. Intuitively, it
states that after a delay of at most d time units (second term), the IMC moves
probabilistically to a direct successor state s′ with discrete branching probability
P(s, s′) = R(s,s′)

E(s) .

s0

s1

s2

s3

s4

0.6

0.3
0.4 0.4

0.2

0.1

β

α

α

Fig. 1. Example of an IMC with Markovian and interactive states

Example 1. Consider the IMC I of Fig. 1 where dotted arrows denote interactive
transitions and solid arrows Markovian transitions. We have MS = {s0, s1, s4}
and IS = {s2, s3}. Markovian states behave like CTMC states, e.g., the transition

s0
0.3⇒ s2 expires within z ∈ R≥0 time units with probability 1 − e−0.3·z. The

two Markovian transitions of s0 compete for execution and the transition whose

The How and Why of Interactive Markov Chains 315

delay expires first is taken. In such a race the sojourn time in s0 is determined by
the first transition that executes. As the minimum of exponential distributions
is exponentially distributed with the sum of their rates, the sojourn time of s
is determined by its exit rate E(s). In general, the probability to move from a
state s ∈ MS to a successor state s′ ∈ S equals the probability that (one of)
the Markovian transitions that lead from s to s′ wins the race. Accordingly,
R(s0, s2) = 0.3, E(s0) = 0.3 + 0.6 = 0.9 and P(s0, s2) = 1

3 . The probability to
move from state s0 to s2 within 3 time units is 1

3 ·
(
1 − e−2.7

)
.

Internal interactive transitions, i.e., τ -labeled interactive transitions, play a spe-
cial role in IMCs. As they are not subject to any interaction, they cannot be
delayed. Thus, internal interactive transitions can be assumed to take place im-
mediately. Now consider a state with both a Markovian transition with rate λ,
say, and a τ -transition. Which transition can now occur? As the τ -transition
takes no time, it can be taken immediately. The probability that the Markovian
transition executes immediately is, however, zero. This justifies that internal in-
teractive transitions take precedence over Markovian transitions. This is called
the maximal progress assumption.

Definition 2 (Maximal progress). In any IMC, internal interactive transi-
tions take precedence over Markovian transitions.

Composition and hiding. The main strength of IMCs is that they are composi-
tional.

Definition 3 (Parallel composition). Let I1 = (S1, Act1, −→1, ⇒1, s0,1)
and I2 = (S2, Act2, −→2, ⇒2, s0,2) be IMCs. The parallel composition of I1
and I2 wrt. set A of actions is defined by:

I1 ||A I2 = (S1 × S2, Act1 ∪ Act2, −→ , ⇒ , (s0,1, s0,2))

where −→ and ⇒ are defined as the smallest relations satisfying

1. s1
α−−→1 s′1 and s2

α−−→2 s′2 and α ∈ A, α �= τ implies (s1, s2) α−−→ (s′1, s
′
2)

2. s1
α−−→1 s′1 and α �∈ A implies (s1, s2) α−−→ (s′1, s2) for any s2 ∈ S2

3. s2
α−−→2 s′2 and α �∈ A implies (s1, s2) α−−→ (s1, s

′
2) for any s1 ∈ S1

4. s1
λ⇒1 s′1 implies (s1, s2)

λ⇒ (s′1, s2) for any s2 ∈ S2

5. s2
λ⇒2 s′2 implies (s1, s2)

λ⇒ (s1, s
′
2) for any s1 ∈ S1.

The first three constraints define a TCSP-like parallel composition [45]: actions
in A need to be performed by both IMCs simultaneously, except for internal
actions (first constraint), whereas actions not in A are performed autonomously
(second and third constraint). According to the last two constraints, IMCs can
delay independently. This differs from timed models such as timed automata,
in which individual processes typically need to synchronise on the advance of
time. The memoryless property of exponential distributions justifies independent
delaying: if two Markovian transitions with rates λ and μ, say, are competing to
be executed, then the remaining delay of the μ-transition after the λ-transition
has been taken, is exponentially distributed with rate μ.

316 H. Hermanns and J.-P. Katoen

Definition 4 (Hiding). The hiding of IMC I = (S, Act, −→ , ⇒ , s0) wrt. the
set A of actions is the IMC I \ A = (S, Act \ A, −→′, ⇒ , s0) where −→′ is the
smallest relation defined by:

1. s α−−→ s′ and α �∈ A implies s α−−→′ s′, and
2. s α−−→ s′ and α ∈ A implies s τ−−→′ s′.

Hiding thus transforms α-transitions with α ∈ A into τ -transitions. All other
transition labels remain unaffected. This operation is of importance for the maxi-
mal progress assumption of IMCs. Turning an α-transition emanating from state
s, say, into a τ -transition may change the semantics of the IMC at hand, as after
hiding no Markovian transition will be ever taken in s.

Bisimulation. To compare IMCs, we introduce the notions of strong and weak
bisimulation. For set C ⊆ S of states and state s, let R(s, C) =

∑
s′∈C R(s, s′).

Intuitively, two states s and t are strongly bisimilar if any interactive transition
s α−−→ s′ can be mimicked by t, i.e., t α−−→ t′ such that s′ and t′ are bisimilar. In
addition, the cumulative rate of moving from s to some equivalence class C of
states, i.e., R(s, C) equals R(t, C). Since the probability of a Markovian transi-
tion to be executed immediately is zero, whereas internal interactive transitions
take always place immediately, there is no need to require equality of cumulative
rates if states have outgoing internal transitions. Let s

τ−−→/ denote a predicate
that is true if and only if s has no outgoing τ -transition. For state s, action α
and C ⊆ S, let T(s, α, C) = 1 if and only if {s′ ∈ C | s α−−→ s′} is non-empty.

Definition 5 (Strong bisimulation). Let I = (S, Act, −→ , ⇒ , s0) be an
IMC. An equivalence relation R ⊆ S × S is a strong bisimulation on I if for
any (s, t) ∈ R and equivalence class C ∈ S/R the following holds:

1. for any α ∈ Act, T(s, α, C) = T(t, α, C), and
2. s

τ−−→/ implies R(s, C) = R(t, C).

States s and s′ are strongly bisimilar, denoted s ∼ s′, if (s, s′) ∈ R for some
strong bisimulation R.

The rate equality is adopted from the notion of lumping equivalence [18]. Two
IMCs I1 and I2 on (disjoint) state spaces S1 and S2 respectively are bisimilar,
denoted I1 ∼ I2, if there exists a strong bisimulation R on S1 ∪ S2 such that
(s0,1, s0,2) ∈ R. The next property asserts that ∼ is substitutive with respect
to parallel composition and hiding, so, e.g., I ∼ I′ implies for any set A that
I \ A ∼ I′ \ A.

Theorem 1. [35] ∼ is a congruence wrt. parallel composition and hiding.

As discussed before, τ -transitions play a special role in IMCs. Whereas strong
bisimulation treats all interactive transitions in the same way, regardless whether
they are internal (i.e., labelled by τ) or not, weak bisimulation takes an ob-
server’s point of view and cannot distinguish between executing several succes-
sive τ -transitions or a single one. This allows for collapsing sequences of internal

The How and Why of Interactive Markov Chains 317

interactive transitions by a single such transition. This acts exactly the same as
for labeled transition systems. The treatment of Markovian transitions is a bit
more involved, however. First, let us remark that the probability distribution
of a sequence of exponential distributions is not an exponential distribution but
constitutes a phase-type distribution. Therefore, it is not possible to define a
weak version of the transition relation ⇒ as is done for weak bisimulation in
labeled transition systems. The solution is to demand that Markovian transitions
have to be mimicked in the strong sense, while they can be preceded and/or fol-
lowed by arbitrary sequences of internal interactive transitions. The treatment of
sequences of internal interactive transitions is similar to that of branching bisim-
ulation [62]. As for strong bisimulation, rate equality is only required if a state
has no outgoing internal transitions (maximal progress). Let s τ∗

−−→ s′ denote
that s′ can be reached from s solely via zero or more τ -transitions; in particular
s τ∗−−→ s for any state s. For state s, action α and C ⊆ S, let W(s, α, C) = 1 if
and only if {s′ ∈ C | s τ∗−−→ α−−→ τ∗−−→ s′} is non-empty.

Definition 6 (Weak bisimulation). Let I = (S, Act, −→ , ⇒ , s0) be an IMC.
An equivalence relation R ⊆ S × S is a weak bisimulation on I if for any
(s, t) ∈ R and equivalence class C ∈ S/R, the following holds:

1. for any α ∈ Act, W(s, α, C) = W(t, α, C), and
2. s τ∗−−→ s′ and s′ τ−−→/ implies t τ∗−−→ t′ and t′ τ−−→/ and R(s′, C) = R(t′, C)

for some t′ ∈ S.

States s and s′ are weakly bisimilar, denoted s ≈ s′, if (s, s′) ∈ R for some weak
bisimulation R.

Theorem 2. [35] ≈ is a congruence wrt. parallel composition and hiding.

Bisimulation relations are equivalences requiring two bisimilar states to exhibit
identical stepwise behaviour. On the contrary, simulation relations [46] are pre-
orders on the state space requiring that whenever s � s′ (s′ simulates s) state s′

can mimic all stepwise behaviour of s; the converse is not guaranteed, so state
s′ may perform steps that cannot be matched by s.

Definition 7 (Strong simulation). For IMC I = (S, Act, −→ , ⇒ , s0), R ⊆
S × S is a simulation relation, iff for any (s, t) ∈ R it holds:

1. for any α ∈ Act and s′ ∈ S, s α−−→ s′ implies t α−−→ t′ and (s′, t′) ∈ R for some
t′ ∈ S

2. s
τ−−→/ implies E(s) ≤ E(t)

3. s
τ−−→/ implies for distributions μ = P(s, ·) and μ′ = P(s′, ·) there exists

Δ : S × S → [0, 1] such that for all u, u′ ∈ S:
(a) Δ(u, u′) > 0 =⇒ (u, u′) ∈ R (b) Δ(u, S) = μ(u) (c) Δ(S, u′) = μ′(u′)

We write s � s′ if (s, s′) ∈ R for some simulation R and I � I′ for IMCs I
and I ′ with initial states s0 and s′0, if s0 � s′0 in the disjoint union of I and I ′.
The last constraint requires the existence of a weight function Δ that basically

318 H. Hermanns and J.-P. Katoen

distributes μ of s to μ′ of s′ such that only related states obtain a positive weight
(3(a)), and the total probability mass of u that is assigned by Δ coincides with
μ(u) and symmetrically for u′ (cf. 3(b), 3(c)).

Theorem 3. � is a precongruence wrt. parallel composition and hiding.

Constraint-oriented specification of performance aspects. Let us conclude this
section by describing how IMCs can be used to meet the challenges as put
forward in the well-known paradigm of separation of concerns. We do so by
showing that IMCs can be naturally used to specify performance aspects in the
so-called constraint-oriented specification style [64]. This style is a format par
excellence to support the separation of concerns principle when specifying the
characteristics of complex distributed systems. It has been originally developed
to support the early phases of the design trajectory. Put in a nutshell, constraints
are viewed as separate processes. Parallel composition is used to combine these
constraints much in the same vein as logical conjunction.

To illustrate how IMCs perfectly match the constraint-oriented specification
style consider a given system model P that does not contain random timing
constraints yet —i.e., P is a labeled transition system— and let α and β be two
successive actions in P . To insert a random delay between these two actions, it
now suffices to construct an IMC Dp with an initial state with outgoing transition
α and a final state, i.e. a state without outgoing transitions, that can can only
be reached by a β-transition. The state reached after performing α and the state
from which the β-transition is emanating are connected by a CTMC, i.e., an IMC
with only Markovian transitions. This CTMC models the random delay that we
want to impose on the delay between α and β. The resulting system is now
obtained as P ||{α,β} Dp. The “delay” process Dp is thus imposed as additional
constraint to process P . This procedure can now be repeated to impose delays
between other actions in P . As CTMCs can approximate general probability
distributions arbitarily closely, this is a powerful recipe. This is exemplified in
[39] where a complex telephone system specification in LOTOS has been enriched
with performance characteristics using a constraint-oriented specification style.

Now assume that we want to impose random delays on some of the observable
actions from P and Q. Following the procedure just described, this yields

(P ||A Q) ||Ap∪Aq (Dp ||∅ Dq)

where Ap are the synchronised actions with “delay” process Dp and Aq the
ones with Dq. Note that the timing constraints are added “on top” of the entire
specification. As it suffices to impose a single delay on each action, the processes
Dp and Dq are independent, and thus need not to synchronise. In case Dp

delays some local actions from P , and Dq delays local actions from Q, the above
specification can be rewritten into the weak bisimilar specification:

(
P ||Ap Dp

)

︸ ︷︷ ︸
local constraints of P

||A
(
Q ||Aq Dq

)

︸ ︷︷ ︸
local constraints of Q

The How and Why of Interactive Markov Chains 319

Note that in this system specification, the functional and performance aspects
of each individual component are separated, as well as the specifications of the
components themselves.

3 IMC Analysis

Assume that the IMC under consideration is complete, i.e., it is not subject any
further to interaction with other components that are modeled as IMCs. This is
important, as this means that actions cannot be further delayed due to a delay
which is imposed by the environment. Formally, this means that we can safely
hide all actions in the IMC at hand, i.e., we consider I \ A where A contains
all actions occuring in I. Accordingly, all actions are labeled by τ . The typical
specification that is subject to analysis is thus of the form:

(I1 ||A1 I2 ||A2 . . . ||AN IN) \ A

where A is the union of all actions in IMC Ii, i.e., A = ∪N
i=1Acti. Due to the

maximal progress assumption, the resulting IMC can be simplified: in any state
that has a τ -transition, all Markovian transitions can be removed. Subsequently,
sequences of τ -transitions can be collapsed by applying weak bisimulation. If
nondeterminism is absent in the resulting IMC, in fact a CTMC remains, and
all analysis techniques for CTMCs can be employed [34], such as transient or
steady-state analysis or CSL model checking [2].

Time-bounded reachability. An alternative analysis technique is to compute time-
bounded reachability probabilities. This does not require the IMC to be reducible
to a CTMC, and can thus be applied to any IMC. Let us explain the kind of
measure we are interested in. First, consider infinite paths in an IMC. An infinite
path π in an IMC is an infinite sequence of the form

π = s0
σ0,t0−−−−→ s1

σ1,t1−−−−→ s2
σ2,t2−−−−→ . . .

with si ∈ S, σi is either an action in Act or equals ⊥, and ti ∈ R≥0. The oc-
currence of action α after a delay of t time units in state si in π is denoted by
si

α,t−−−→ si+1; in case of a Markovian transition after t time units delay, this is de-
noted by si

⊥,t−−−→ si+1. As internal interactive transitions take place immediately,
their occurrence is denoted si

τ,0−−−→ si+1. For time point t ∈ R≥0, let π@t denote
the sequence of states that π occupies at time t. Note that π@t is in general not
a single state, but rather a sequence of several states, as an IMC may exhibit
immediate transitions and thus may occupy various states at the same time in-
stant. An example path in the IMC of Fig. 1 is s0

⊥,3.0−−−−→ s1
⊥,2.0−−−−→ s2

β,0−−−→ s4 . . .
which occupies the states s2 and s4 at time instant 5.0. Let Pathsω(s) denote the
set of infinite paths starting in state s. Using a standard cylinder construction,
a sigma-algebra can be defined over the set of infinite paths of an IMC, and can
be equipped with a probability measure [66], denoted Pr in the sequel.

320 H. Hermanns and J.-P. Katoen

Now, let I be an IMC with state space S, initial state s, and let G ⊆ S
be a set of goal states and I ⊆ R a time interval with rational bounds. The
time-bounded reachability event �IG is defined as:

�IG = {π ∈ Pathsω(s) | ∃t ∈ I. ∃s′ ∈ π@t. s′ ∈ G}

It thus contains all infinite paths starting in state s that hit a state in G at some
time point that lies in the interval I. We are basically interested in the probability
of the event �IG. The problem, however, is that —due to the presence of non-
determinism— this is not uniquely defined. To see this, consider the IMC of
Fig. 1 with G = {s4}. The probability of the event �[0,2]G for state s2, for
instance, now depends on how the non-deterministic choice between α and β
has been resolved in state s2. If β is chosen the probability equals one; otherwise
it depends on the choice in state s1. We therefore consider the probability of
�IG relative to a specific resolution of the non-determinism in the IMC. Such
resolution is defined by a total-time deterministic positional policy D, say. It
goes beyond the scope of this paper to fully define this class of policies. For the
sake of the remainder of this paper, it suffices to consider D as a function that
takes as argument the current state si, say, and the total time that has elapsed
along the path leading to si, including the time already spent in state si so
far. Based on this information, D will select one of the actions of an outgoing
transition of si.

Example 2. Consider again the IMC of Fig. 1. Assume the execution of the IMC
so far is s0

⊥,3.0−−−−→ s1
⊥,2.0−−−−→ s2. A choice between the actions α and β has to be

made in s2. An example policy D is D(s2, t) = α if t ≤ 10, and D(s2, t) = β
otherwise. Thus, if the residence time in the current state s2 is d time units, say,
then α will be chosen if d ≤ 5 (as 5 time units have passed until reaching s2),
whereas β will be chosen if d > 5.

We can now be more precise about the measure-of-interest: we are interested in
maximizing the probability of �IG for all possible total-time dependent policies,
i.e., we want to determine

pmax(s, I) = sup
D

Pr
s,D

(
�IG

)
for timed policy D.

One may wonder whether we should not consider more powerful classes of poli-
cies, such as randomised ones, or policies that may base their decision on the
entire computation so far, but this does not lead to a larger value for pmax(s, I):

Theorem 4. [57] Total-time deterministic positional policies are optimal for
maximising Pr(�IG).

Reachability probabilities. Before discussing how to compute pmax(s, I), let us
first discuss a simpler variant of the event �IG. This case occurs if sup I = ∞ and
inf I = 0. As the time interval does not impose any timing constraint anymore,
this amounts to a simple reachability event:

�G = {π ∈ Pathsω(s) | ∃i ∈ N. π[i] ∈ G}

The How and Why of Interactive Markov Chains 321

where π[i] denotes the i-th state along π. Thus all paths are considered that hit G
at some position, no matter how much time has elapsed upon hitting G. For such
(unbounded) reachability events, positional policies suffice, i.e., there is no need
anymore to “know” the total time that has elapsed along the computation so far.
In fact, pmax(s, [0,∞)) can be determined by considering the discrete-probabi-
listic process that is embedded in the IMC at hand. The discretised counterpart
of an IMC is an interactive probabilistic chain.

Definition 8 (Interactive probabilistic chain [23]). An interactive proba-
bilistic chain (IPC) is a tuple P = (S, Act, −→ ,P, s0), where S, Act, IT and s0
are as in Def. 1 and P : S × S → [0, 1] is a transition probability function
sastifying ∀s ∈ S. P(s, S) ∈ {0, 1}.

A state s in an IPC P is probabilistic iff
∑

s′∈S P(s, s′) = 1 and IT(s) = ∅. As for
IMCs, we adopt the maximal progress assumption. Hence, interactive internal
transitions take precedence over probabilistic transitions and their execution
takes zero discrete time steps. The embedded IPC of an IMC is obtained by
considering the discrete-probabilistic interpretation of ⇒ , i.e., P(s, s′) = R(s,s′)

E(s)
if MT(s) �= ∅, and 0 otherwise. It then follows:

Theorem 5. For any IMC I with embedded IPC P: pI(s, [0,∞))=pP(s, [0,∞)).

The values pP(s, [0,∞)) can be obtained by applying a slight variation of value
iteration algorithms for MDPs [7].

Discretisation. The computation of pmax(s, I) with inf I �= ∅ can be done using
discretisation, and as we will see, can also be reduced —though in a different
way as explained above— to value iteration on MDPs.

Definition 9 (Discretisation [66]). An IMC I = (S, Act, −→ , ⇒ , s0) and
a step duration δ ∈ R>0 induce the discretised IPC Pδ = (S, Act, −→ ,P′, s0),
where

P′(s, s′) =

{(
1 − e−E(s)·δ) ·P(s, s′) if s �= s′

(
1 − e−E(s)·δ) ·P(s, s′) + e−E(s)·δ if s = s′.

(1)

Let pPmax (s, [ka, kb]) for an IPC P with state s and step-interval 0 ≤ ka ≤ kb be
the supremum of the probabilities to reach a set of goal states within step interval
[ka, kb], ka, kb ∈ N. The following result allows to approximate this probability
in the underlying IMC by a step-bounded reachability analysis in its discretised
IPC. This discretisation is indeed quantifiably correct :

Theorem 6 (Approximation theorem [66]). Let I = (S, Act, −→ , ⇒ , s0)
be an IMC, G ⊆ S a set of goal states and δ > 0 a step duration. Further, let I
be a time interval with inf I = a and sup I = b such that a < b and a = kaδ and
b = kbδ for some ka ∈ N and kb ∈ N>0. Then:

pPδ
max

(
s, (ka, kb]

)
− ka · (λδ)2

2
≤ pImax (s, I) ≤ pPδ

max

(
s, (ka, kb]

)
+ kb ·

(λδ)2

2
+ λδ.

322 H. Hermanns and J.-P. Katoen

Given an error bound ε, we can choose a sufficiently small step duration δ > 0
such that

∣
∣pPδ

max

(
s, (ka, kb]

)
− pImax (s, I)

∣
∣ ≤ kb · (λδ)2

2 + λδ < ε holds. Note that
this can be done a priori. Hence, pPδ

max

(
s, (ka, kb]

)
approximates the probabilities

pImax (s, I) up to ε. Further, pPδ
max

(
s, (ka, kb]

)
can easily be computed by slightly

adapting the well-known value iteration algorithm for MDPs [7]. For an error-
bound ε > 0 and a time-interval I with sup I = b, this approach has a worst
case time complexity in O

(
n2.376 + (m + n2) · (λb)2 /ε

)
where λ is the maximal

exit rate and m and n are the number of transitions and states of the IMC,
respectively.

Example 3. (Adopted from [58].) Consider the IMC depicted in Fig. 2(a). Let
G = {s4} as indicated by the double-circled state s4. The only state which
exhibits non-determinism is state s1 where a choice between α and β has to be
made. Selecting α rapidly leads to the goal state as with probability 1

2 , s4 is
reached with an exponential distribution of rate one. Selecting β almost surely
leads to the goal state, but, however, is subject to a delay that is governed by
an Erlang(30,10)-distribution, i.e., a sequence of 30 exponential distributions of
each rate 10. Note that this approximates a deterministic delay of 3 time units.
The time-bounded reachability probabilities are plotted in Fig 2(b). This plot
clearly shows that it is optimal to select α upto about time 3, and β afterwards.
The size of the IMC, its maximal exit rate (λ), accuracy (ε), time bound (b) and
the computation time are indicated in Fig. 2(c).

Fig. 2. Time-bounded reachability probabilities in an example IMC

Time-bounded reachability-avoid probabilities. To conclude this section, we will
explain that determining pmax(s, I) can also be used for more advanced measures-
of-interest, such as “reach-avoid” probabilities. Let, as before, s be a state in an

The How and Why of Interactive Markov Chains 323

IMC, I = [0, d] a time interval with rational d, G be a set of goal states, and
A a set of states that need to be avoided before reaching G. The measure-of-
interest now is to maximise the probability to reach G at some time point in
the interval I while avoiding any state in A prior to reaching G. Formally, the
event-of-interest is:

AU[0,d] G =
{
π ∈ Pathsω(s) | ∃t ≤ d.∃s′ ∈ π@t. s′ ∈ G ∧ ∀s′′ ∈ pref(s′). s′′ �∈ A

}

where pref(s′) is the set of states along π that are reached before reaching s′ and
A is the complement of A, i.e., A = S \A. The maximal probability of this event
can be computed in the following way. The IMC is first transformed by making
all states in G absorbing, i.e., for any state s ∈ G, the outgoing transitions are
removed. This is justified by the fact that it is not of importance what happens
once a state in G has been reached (via a A-path); in addition, if a G-state is
reached before the deadline d, this does not matter, as it will still be in G at
time d since it is made absorbing. In addition, all states in A ∩ G are made
absorbing as the probability of a path that reaches an A-state which is also a
G-state to satisfy the event-of-interest is zero. The resulting structure is thus an
IMC in which only the states in A \ G are unaffected; all other states are made
absorbing. It now follows in a similar way as in [2]:

Theorem 7. sup
D

Pr
s,D

(
A U[0,d] G

)

︸ ︷︷ ︸
in the IMC I

= sup
D

Pr
s,D

(
�[0,d] G

)

︸ ︷︷ ︸
in the IMC I’

.

Here, IMC I ′ is obtained from I by making all states outside A\G absorbing. As
a result of the above theorem, computing time-bounded reach-avoid probabilities
is reduced to determining time-bounded reachability probabilities, which can be
determined in the way described earlier. It goes without saying that a similar
strategy can be applied to (unbounded) reach-avoid probabilities.

4 Abstraction

As for any state-based technique, the curse of dimensionality is a major limitation
for IMCs. Although its approximate analysis algorithms as described above are
polynomial (with relatively low degree) in the state space size, state spaces of
realistic systems easily consist of millions or even billions of states. In order
to deal with such systems, aggressive abstraction techniques are required. In
the following, we consider abstraction techniques that are based on partitioning
the state space into groups of states. A possibility to achieve this, is to apply
bisimulation minimisation.

Compositional bisimulation minimisation. An important property that provides
the basis for such abstraction is the fact that for bisimilar states time-bounded
(as well as unbounded) reachability probabilities are preserved:

324 H. Hermanns and J.-P. Katoen

Theorem 8. [56] For any finitely-branching IMC with state space S, states
s, s′ ∈ S, G ⊆ S and time interval I:

s ∼ s′ implies pmax(s, I) = pmax(s′, I).

The above result opens the way to generate —prior to any (time-consuming)
analysis— an IMC that is bisimilar to the IMC under consideration, but prefer-
ably much smaller. This is called the quotient IMC. For equivalence relation R
on state space S and s ∈ S, let [s]R denote the equivalence class of s under R,
and let S/R = {[s]R | s ∈ S} denote the quotient space of S under R.

Definition 10 (Quotient IMC). Let I = (S, Act, −→ , ⇒ , s0) be an IMC
and R a strong bisimulation on S. The quotient IMC I/R =

(
S/R, Act, −→′,

⇒′, [s0]R
)

where −→′ and ⇒′ are the smallest relations satisfying:

1. s α−−→ s′ implies [s]R α−−→′ [s′]R , and

2. s
λ⇒ s′ implies [s]R

R(s,[s′]R)
⇒′ [s′]R.

It now follows that for any IMC I and strong bisimulation, it holds I ∼ I/R.
(A similar result holds for weak bisimulation, replacing ∼ by ≈).

The next question is how to obtain the bisimulation quotient of a given IMC,
and preferably even the quotient with respect to the coarsest bisimulation, as
this yields an IMC of minimal size which is strong bisimilar to the original one.
Using a variant of Paige-Tarjan’s partition-refinement algorithm for computing
strong bisimulation on labeled transition systems we obtain:

Theorem 9. [35] For any IMC I with state space S and strong bisimulation
R on S, the quotient IMC I/R can be computed in time complexity O(m log n)
where m and n are the number of transitions and states of the IMC I.

The results so far suggest to compute the quotient IMC prior to the analysis
of, e.g., time-bounded reachability probabilities. This leads to significant state-
space reductions and efficiency gains in computation times, as e.g., is shown
in [47] for CTMCs. But, as the bisimulation minimisation is not an on-the-fly
algorithm, it requires the entire state space of the original, i.e., non-minimised
IMC up front. For realistic systems, this requirement is a significant burden.
Fortunately, as IMCs are compositional —they can be put in parallel in a simple
manner— and as bisimulation is a congruence wrt. parallel composition, bisim-
ulation minimisation can be applied in a component-wise manner. This works as
follows. Suppose the system-to-be-analysed is of the form:

I = I1 ||A1 I2 ||A2 . . . ||AN IN ,

i.e., a parallel composition of N IMCs. For the sake of our argument, let us
assume that the size of I is too large to be handled, and therefore bisimulation
minimisation cannot be applied. However, each component is of a moderate
size that can be subject to minimisation. Let Îi be the quotient of IMC Ii, for
0 < i ≤ N . Each such quotient can be obtained by the aforementioned partition-
refinement algorithm. Thanks to the property that bisimulation is substitutive

The How and Why of Interactive Markov Chains 325

wrt. parallel composition, it follows from the fact that Ii ∼ Îi, for 0 < i ≤ N ,
that:

I1 ||A1 I2 ||A2 . . . ||AN IN ∼ Î1 ||A1 Î2 ||A2 . . . ||AN ÎN .

The worst case time complexity to obtain this reduced system is determined
by the largest IMC Ii and equals O(maxi(mi log ni)) where mi and ni are the
number of transitions and states in IMC Ii. Similar reasoning applies to weak
bisimulation, with the exception that the time complexity for determining the
quotient under weak bisimulation requires the computation of a transitive clo-
sure which is in O(n2.376). As weak bisimulation also preserves maximal time-
bounded reachability probabilities, and is substitutive, an IMC can be minimised
compositionally before any analysis:

Theorem 10. For any finitely-branching IMC with state space S, states s, s′ ∈
S, G ⊆ S and time interval I:

s ≈ s′ implies pmax(s, I) = pmax(s′, I).

Finally, for simulation preorders we obtain a slightly other preservation result.
Intuitively speaking, whenever I � I′, then I ′ can mimic all behaviours of I,
but perhaps can do more (and faster). This yields:

Theorem 11. For any finitely-branching IMC with state space S, states s, s′ ∈
S, G ⊆ S and time interval I:

s � s′ implies pmax(s, I) ≤ pmax(s′, I).

One may now be tempted to first minimise an IMC wrt. simulation preorder or
its corresponding equivalence � ∩ �−1, but it turns out that checking a sim-
ulation relation between probabilistic models such as IMCs is computationally
involved [1,67]. In the sequel, we will see that simulation preorders are nonethe-
less crucial to obtain more aggressive abstraction techniques for IMCs.

Interval abstraction. Compositional bisimulation minimisation has been applied
to several examples yielding substantial state-space reductions. It allowed the
analysis of IMCs (in fact, CTMCs) that could not be analysed without composi-
tional minimisation [39,30,32]. With the advent of increasingly complex systems,
more radical reduction techniques are needed. In the sequel, we present a recent
framework to perform aggressive abstraction of IMCs in a compositional man-
ner [49]. The key idea is to (again) partition the state space, but rather requiring
that each partition solely consists of equivalent (strong or weak bisimilar) states,
we are more liberal, and in fact allow for any state space partitioning. As a re-
sult, a state s is not bisimilar to its partition (as for bisimulation), but instead
its partition simulates s. Intuitively speaking, this means that all behaviour of
s can be mimicked, but perhaps that the partition exhibits more behaviours
than s. As the partition is aimed to be coarser than in the case of bisimulation,
a central question is which measures are preserved, i.e., what does a maximal
(time-bounded) reachability probability computed on the minimised IMC imply
for the original IMC?

In the remainder of this section, we assume that IMCs are uniform.

326 H. Hermanns and J.-P. Katoen

Definition 11 (Uniform IMC). An IMC is uniform if for any state s we have
that MT(s) �= ∅ implies E(s) = λ for a given fixed λ ∈ R>0.

The residence time in any state with at least one Markovian transition is thus
governed by the same exponential distribution. Although this seems a rather
severe restriction, there is an important class of systems for which this applies,
viz. IMCs in which delays are imposed in a compositional manner using the
constraint-oriented specification style. The point is that any CTMC can be
transformed by a simple linear-time procedure into a weak bisimilar uniform
CTMC [3]. Consider the specification P ||A Dp where P is an IMC with only
interactive transitions, i.e., P is an LTS, and Dp is a CTMC, probably enhanced
with a start action α and end action β as explained before. The purpose of Dp

is to impose a random delay between the occurrence of α and β in P . This is
modeled as an arbitrary, finite-state CTMC. We can now transform D into its
uniform counterpart D̂p, say. As Dp ≈ D̂p and ≈ is substitutive wrt. parallel
composition, it follows that the non-uniform IMC P ||A Dp is weak bisimilar to
the uniform IMC P ||A D̂p. (Several operators are preserving uniformity, see [38].)

Let IMC I be uniform. Our abstraction technique for I is a natural mixture of
abstraction of labeled transition systems by modal transition systems [51,52] and
abstraction of probabilities by intervals [27,48]. This combination yields abstract
IMCs.

Definition 12 (Abstract IMC). An abstract IMC is a tuple I = (S, Act, L,
Pl, Pu, λ, s0) with S, s0 and Act as before, and

– L : S × Act × S → B3, a three-valued labeled transition function
– Pl,Pu : S × S → [0, 1], lower/upper transition probability bounds s.t.

Pl(s, S) ≤ 1 ≤ Pu(s, S) and

– λ ∈ R>0, an exit rate.

Here B3 = {⊥, ?,�} is the complete lattice with the ordering ⊥ < ? < � and
meet (*) and join (�) operations. The labeling L(s, α, s′) identifies the transition
“type”: � indicates a must-transition, ? a may-transition, and ⊥ the absence of
a transition. Pl(s, s′) is the minimal one-step probability to move from s to
s′, whereas Pu(s, s′) is the maximal one-step probability between these states.
Given these bounds, the IMC can move from s to s′ with any probability in
the interval [Pl(s, s′),Pu(s, s′)]. Any uniform IMC is an AIMC without may-
transitions and for which Pl(s, s′) = Pu(s, s′). The requirement Pl(s, S) ≤ 1 ≤
Pu(s, S) ensures that in any state s, a distribution μ over the direct successor
states of s can be chosen such that for any s′ we have: Pl(s, s′) ≤ μ(s′) ≤
Pu(s, s′).

Let us now describe how to perform abstraction of an (A)IMC. As stated
above, the principle is to partition the state space by grouping concrete states
to abstract states. For concrete state space S and abstract state space S′, let
α : S → S′ map states to their corresponding abstract ones, i.e., α(s) denotes
the abstract state of s and α−1(s′) = γ(s′) is the set of concrete states that are

The How and Why of Interactive Markov Chains 327

mapped onto s′. α is called the abstraction function whereas γ = α−1 is known
as the concretization function.

Definition 13 (Abstraction). For an AIMC I = (S, Act, L,Pl,Pu, λ, s0), the
abstraction function α : S → S′ induces the AIMC α(I) = (S′, Act, L′,P′

l,P
′
u, λ,

α(s0)), where:

– L′(s′, β, u′) =

⎧
⎪⎪⎨

⎪⎪⎩

� if
⊔

u∈γ(u′) L(s, β, u) = � for all s ∈ γ(s′)

⊥ if
⊔

u∈γ(u′) L(s, β, u) = ⊥ for all s ∈ γ(s′)

? otherwise
– P′

l(s
′, u′) = mins∈γ(s′)

∑
u∈γ(u′) Pl(s, u)

– P′
u(s′, u′) = min(1, maxs∈γ(s′)

∑
u∈γ(u′) Pu(s, u))

There is a must-transition s′ α−−→u′ if any concrete version s ∈ γ(s′) exhibits
such transition to some state in γ(u). There is no transition between s′ and u′ if
there is no such transition from s ∈ γ(s′) to γ(u). In all other cases, we obtain
a may-transition s′ α−−→u′.

Example 4. Consider the uniform IMC depicted in the figure below on the left,
and ket S′ = {s, u} be the abstract state space. Assume the abstraction is
defined by α(u0) = α(u1) = u, and α(s0) = α(s1) = s. This yields the abstract
IMC depicted on the right. As s0

α−−→u0 and s1
α−−→u1, there is a must-transition

labeled by α from s to u. Although s0
β−−→u0, s1 has no β-transition to u0 or

u1. Accordingly, we obtain a may-transition labeled with β between s and u. As
P(u0, s1) = 1

2 and P(u1, s1) = 1
3 , we obtain that Pl(u, s) = 1

3 and Pu(u, s) = 1
2 .

The other probability intervals are justified in a similar way.

s0 u0

s1 u1

β

α

α

1
2

1
3

1
2

2
31

1

s u

may β

α

[13 , 1
2][1, 1] [12 , 2

3]

The formal relationship between an AIMC and its abstraction is given by a
simulation relation which is in fact a combination of probabilistic simulation on
IMCs as defined before (with a slight adaptation to deal with intervals) and the
concept of refinement on modal transition systems [52]. Let T(s) denote the set
of probability distributions that exist in state s and that satisfy all bounds of
the probability intervals of the outgoing Markovian interval transitions of s.

328 H. Hermanns and J.-P. Katoen

Definition 14 (Strong simulation). For AIMC I = (S, Act, L,Pl,Pu, λ, s0),
R ⊆ S × S is a simulation relation, iff for any (s, s′) ∈ R it holds:

1a. for all α ∈ Act and u ∈ S with L(s, α, u) �= ⊥ there exists u′ ∈ S with
L(s′, α, u′) �= ⊥ and (u, u′) ∈ R,

1b. for all α ∈ Act and u′ ∈ S with L(s′, α, u′) = � there exists u ∈ S with
L(s, α, u) = � and (u, u′) ∈ R, and

2. L(s, τ, u) �= � for all u ∈ S, implies for all μ ∈ T(s) there exists μ′ ∈ T(s′)
and Δ : S × S → [0, 1] such that for all u, u′ ∈ S:

(a) Δ(u, u′) > 0 =⇒ uRu′ (b) Δ(u, S) = μ(u) (c) Δ(S, u′) = μ′(u′)

We write s � s′ if (s, s′) ∈ R for some simulation R and I � I′ for AIMCs I
and I ′ with initial states s0 and s′0, if s0 � s′0 in the disjoint union of I and I ′.

Let us briefly explain this definition. Item 1a requires that any may- or must-
transition of s must be reflected in s′. Item 1b requires that any must-transition
of s′ must match some must-transition of s, i.e., all required behavior of s′ stems
from s. Note that this allows a must-transition of s to be mimicked by a may-
transition of s′. Condition (2) is the same as in the defininition of simulation for
IMCs, except that the set of distributions in a state in an IMC is a singleton,
whereas for AIMCs this set can be infinite.

Theorem 12. [49] For any AIMC I and abstraction function α, I � α(I).

As this abstraction is coarser than bisimulation, a significantly larger state-
space reduction may be achieved and peak memory consumption is even further
reduced. The notion of parallel composition and hiding, as defined for IMCs can
now be lifted to AIMCs in a natural manner, and it can be shown that

Theorem 13. [49] � is a pre-congruence wrt. parallel composition and hiding.

This result provides us the means to carry out abstraction on (A)IMCs in a fully
compositional manner. Suppose the system-to-be-analysed is of the form

I = I1 ||A1 I2 ||A2 . . . ||AN IN ,

i.e., a parallel composition of N IMCs. Let α(Ii) be the abstraction of IMC Ii,
for 0 < i ≤ N . Thanks to the property that strong simulation is substitutive
wrt. parallel composition, it follows from the fact that Ii � α(Ii), for 0 < i ≤ N ,
that:

I1 ||A1 I2 ||A2 . . . ||AN IN � α(I1) ||A1 α(I2) ||A2 . . . ||AN α(IN).

5 IMCs as Semantical Model

Much of computer science is about specification formalisms. Domain specific
languages as well as universal notations are being promoted by various interest
groups and taken up by standardization bodies. Some of them appeal due to their
graphical notation convenience, such as the UML, others appeal because they

The How and Why of Interactive Markov Chains 329

clarify the aspects of a certain domain. One example of the latter is AADL, the
Architectural Analysis and Design Language [28]. For many of these languages
the work is considered done once the syntax is fixed, and an intuitive explana-
tion of the semantics is provided. Formalizing these intuitions is sometimes a
task for legions of scientists: The conception of Statecharts for instance has lead
to several dozens of different semantics, and more are on the horizon. Still, one
of the lessons generally learnt from these experiences is that a good semantics
is compositional [29], a semantics that provides a meaning to an object based
on a composition of the semantics of its parts. If the composition adheres to
simple-to-grasp rules, this semantics can become consensus. Compositionality is
a fundamental and highly desirable property of a semantics: it enables compo-
sitional reasoning, i.e. analyzing complex systems by breaking them down into
their constituting parts. Examples par excellence of simple-to-grasp rules have
been given before: parallel composition and hiding.

A clean and well-understood semantics is a necessity for model-based evalua-
tion of such languages. It is as simple as that. Whenever performance figures or
correctness claims are presented for UML fragments or the like, they are specific
to the semantics chosen, and in case that semantics is neither commonly agreed
nor easy-to-grasp, doubts remain concerning the general validity of such claims.

Dynamic fault trees. Let us consider a classical domain specific language, known
as fault trees. Fault trees were first planted in the youth of civil nuclear energy,
as means to systematically quantify the risk of a catastrophic hazard [63] in a
plant. A fault tree is a diagrammatical variation of a boolean function, drawn
in a tree-structured manner where the leaves correspond to boolean variables.
These leaves represent basic operational units of the plant such as valves and
pipes. The failure of an operational components flips the corresponding boolean
value to true. If the entire function evaluates to true, a catastrophic event is
supposed to be unavoidable. Fault trees have been standardised, and their use is
prescribed in many engineering areas. A classical fault tree is static, the order of
failure occurences is assumed not important, and components cannot be replaced
dynamically by spare components. If considering such extensions, one arrives at
the diagrammatical notation of dynamic fault trees (DFT) [25].

The semantics of a dynamic fault tree can no longer be mapped directly on
a boolean function, but instead needs a state-transition graph representation to
reflect the system dynamics. If one assumes that failure occurences follow expo-
nential laws, which is a standard and sometimes justified assumption, it seems
natural to expect that the resulting model is a CTMC. Actually, the first com-
plete formalisation attempted [21] aimed at providing a CTMC semantics, but
revealed a number of ambiguities in the DFT framework. Most notably, in some
instances of DFTs non-determinism arises. This is where IMC and its composi-
tionality property can play a pivotal role: The work of Crouzen et al. [12,11,10]
provides a clean and elegant compositional semantics, a semantics that maps on
IMC. More precisely, the semantics takes up ideas of I/O-automata [53], and
uses input/output interactive Markov chains (I/O-IMC). I/O-IMC are restricted
versions of IMC that allow for non-blocking communication. The semantics is

330 H. Hermanns and J.-P. Katoen

fully compositional: The semantics of each DFT element is an I/O-IMC. The se-
mantics of a DFT is then obtained by parallel composing the I/O-IMC semantics
of all its elements.

Example 5. As an example, we demonstrate this approach for a SPARE gate,
a functional unit that makes a redundant unit of functionality available (the
spare), in case the original unit (the primary) fails [12]. Figure 3 shows the I/O-
IMC semantics of a DFT consisting of a SPARE gate A having a primary B and
a spare C.

A

B C

�B�

aB?
λ fB !

�C�

aC?
μ

λ fC !

�A�fB?

fC?

aA?

aA?
fC?

fB?

aA?

fB?

fC?

fC?

aC,A!

fC?

fB?

fA!

AA(aA, ∅)
aA!

AA(aB, ∅)
aB !

AA(aC, {aC,A})
aC,A? aC !

Fig. 3. A DFT example and six I/O-IMCs that model its behavior [12]

The I/O-IMC of the DFT is obtained by parallel composing the six IMCs,
properly synchronised. The congruence property established before is inherited
by I/O-IMCs and enables compositional aggregation to combat the state-space
explosion problem existing in DFTs, see [10,12].

Archtectural Description Languages. Hardware/software (HW/SW) co-design of
safety-critical embedded systems such as on-board systems that appear in the
aerospace domain is a very complex and highly challenging task. Component-
based design is an important paradigm here to master this design complexity
while, in addition, allowing for reusability. As safety-critical systems are subject
to hardware and software faults, the adequate modeling of faults, their likeli-
hood of occurrence, and the way in which a system can recover from faults,
are essential to a model-based approach for safety-critical systems. To overcome
these shortcomings one needs an enriched practical component-based modeling
approach with appropriate means for modeling probabilistic fault behavior.

To warrant acceptance by design engineers in, e.g., aerospace industry and the
automotive engineers, efforts have been spent to based on the Architecture Anal-
ysis and Design Language (AADL) [28], a design formalism that is standardised
by the Society of Automotive Engineers. Among these efforts, Arcade [9] has

The How and Why of Interactive Markov Chains 331

adopted the DFT work mentioned above to the recent AADL Error Model An-
nex, and provides a map of each of the components on an I/O-IMC, again in a
fully compositional manner. This is in spirit similar to the work performed in the
ESA project COMPASS [13,14,15], where IMC are targetted to model nominal
and probabilistic fault behaviour, fault propagation and recovery, and degraded
modes of operation. The integration of nominal behavior and error models ba-
sically boils down to a parallel composition of a variable-decorated transition
system (which is a semantically an IMC) and an IMC.

Generalised stochastic Petri nets. Generalised Stochastic Petri Nets (GSPNs) are
a well-established modelling formalism for performance and dependability eval-
uation, supporting stochastic timed behavior and weighted immediate choices
[54,55]. To this end, timed transitions and immediate transitions are supported
in a GSPN. Performance evaluation of a GSPN proceeds at the level of the
reachability (or: marking) graph. That graph is transformed into a CTMC, for
which efficient steady-state and transient solvers are at hand. This evaluation
trajectory was pioneered by the tool GreatSPN [20], nowadays it is implemented
in a plethora of tools.

However, it is notoriously overlooked that the above evaluation trajectory is
incomplete. It is restricted to confusion-free GSPNs. Confusion arises if a firing
sequence admits the simultaneous enabling of multiple non-conflicting immediate
transitions. GSPNs equip immediate transitions with global priority levels and
globally assigned weights to diminish the occurrence of such nondeterministic
choices. But priorities and weights do not, and cannot, eliminate confusion in its
full entirety. The presence of nondeterminism, however, makes it impossible to
associate an unambiguous stochastic process to such nets.

Recently we managed to attack this principal problem [40]. We have taken
up earlier thoughts on nondeterministic GSPN semantics [37] to come up with
an IMC semantics for GSPNs. Actually, this semantics is not more than a re-
interpretation of the marking graph as an IMC. With the analysis results re-
ported in this paper, this means that also confused GSPNs can now be analysed.
This was not possible before.

Example 6. Consider the GSPN depicted in the figure below on the left where
solid bars depict immediate transitions and open bars represent delayed tran-
sitions. This GSPN is confused. In marking (0, 0, 1, 1), for instance, the set of
reachable tangible markings is {(1, 0, 0, 0), (0, 0, 0, 1)}. If the enabled transition
t5 is chosen, the tangible marking (0, 0, 0, 1) is reached almost surely. However, if
enabled transition t6 is chosen, we enter the tangible marking (1, 0, 0, 0) almost
surely. Hence, the next tangible markings depends on the way the nondetermin-
ism in (0, 0, 1, 1) is resolved and cannot be quantified. The usual way to deal
with this situation is to equip transitions t5 and t6 with weigths. The marking
graph of the GSN is depicted in the figure on the right. Here, solid arrows depict
Markovian transitions, and dashed arrows correspond to the firing of immediate
transitions in the net, and are interpreted as τ -labeled IMC transitions.

332 H. Hermanns and J.-P. Katoen

p0

t0

λ

t1

η

t2

μ

p2

p3

p1

t3 t4

t5

t6

t7 t8γ

2

12

2
1

1000

0200 0010

0110 0101

0020

0011 0002

0100

0001
λ

η+μ

γ

t3 t4

t5
t4 t3

t5

t6

t5

t3 t4

t7

t5

t4 t3

Statecharts. A modelling environment used by engineers in several avionic and
automotive companies like Airbus or Bmw is Statemate, a Statechart-based
tool-set. To enable performance and dependability evaluation of Statemate de-
signs, the German special research initiative AVACS has spent considerable en-
ergy to a connection between Statemate and IMC [8,38,65,42].

OBSERVER

SENSOR

MONITOR

CONTROLLER

HEATER CTRL

CTRL OFF
HEATER ON

HEATER OFF

CTRL ON

C

e13

[SHUTDOWN]/
HEATER:=DISABELD

[M ACTIVE
and S ACTIVE
and not SHUT-
DOWN]

e02
e01

[TEMP==TOO HOT]/
HEATER:=DISABLED

[TEMP==TOO COLD]/
HEATER:=ENABLED

e14

[TEMP==TOO COLD]/
HEATER:=ENABLED

e15

[TEMP==TOO HOT]/
HEATER:=DISABLED

SAFE WAIT TLE
e03

[S FAILED and
HEATER==ENABLED]

e04

[not S FAILED
or HEATER==DISABLED]

e05

SYNC

S INIT S OK S STUCKe06

[true]/S ACTIVE:=true;
TEMP:=TEMP IN

e16

UP/
TEMP:=TEMP IN

e07

FS/
S FAILED:=true

M INIT M OK M FAILED
EMERGENCY
SHUTDOWNe11

[S ACTIVE]
/M ACTIVE:=true

e08

FM

e12

[S FAILED]/M ACTIVE:=false;
SHUTDOWN:=true

Fig. 4. A Statechart [8]

One key feature of this approach is that the model construction steps rely
heavily on compositional properties of the IMC model, and employ precisely the
constraint-oriented specification style advocated in Section 2. For this, the design
comprises distinguished delay transitions. In the figure, these are FM, failure of
monitor and FS, failure of sensor). These transitions have an effect or are affected
by the advance of time. Mostly, delay transitions indicate component failures,
but the concept is more flexible. Delay distributions, in the form of continuous
probability distributions affecting the occurrence of the delay transitions are

The How and Why of Interactive Markov Chains 333

incorporated via the elapse-operator. Symbolic (i. e. BDD-based) representations
and compositional methods are exploited to keep the model sizes manageable.

The complexity challenges posed by this problem domain could only be ad-
dressed by (1) performing a state space reduction on the non-deterministic part
of the model by means of a symbolic minimisation capable of handling huge state
spaces and (2) constraint-oriented specification of time-constraints after this re-
duction into the model. The developed technology was applied to a non-trivial
case study from the train control domain with an explication of the improve-
ments contributed by each of the relevant translation steps. In Figure 5 we quote
a fraction of the relevant information from [8], illustrating the effects and costs
of compositional minimisation.

Tracks – Compositional Construction Final Quotient IMC
Choices States Transitions Time (sec.) States Transitions
1 – 1 71 261 18.70 16 55
1 – 2 79 325 22.58 29 101
1 – 3 99 419 26.87 39 143
1 – 4 119 513 30.43 49 185
2 – 1 731 3888 31.72 187 1006
2 – 2 1755 11059 39.55 665 3442
2 – 3 3127 20737 47.71 1281 6991
2 – 4 4899 33495 57.83 2097 11780
3 – 1 10075 75377 50.01 2573 18260
3 – 2 53858 387501 293.53 16602 112011
3 – 3 134555 1061958 1114.82 44880 320504
4 – 1 143641 1343747 785.30 35637 313270
4 – 2 1350908 11619969 243687.33 416274 3452502

Fig. 5. Composition and minimisation statistics [8]

6 Concluding Remarks

This paper has presented an overview of foundational, algorithmic and pragmatic
aspects of IMCs, a simple generalisation of both CTMCs and LTS with a fully
compositional semantics. There are other approaches that give a compositional
semantics in a continuous time Markov setting, among them popular formalisms
such as PEPA [43], EMPA [6] or MTIPP [41], the latter being the semantic ba-
sis of the PRISM toolkit [44] in ’ctmc’ mode. None of these formalisms has the
properties that IMCs possess. In particular, they do not extend classical concur-
rency models in a conservative fashion. For each of these calculi the role of an
atomic action is particular. This affects the synchronisation of actions, and thus
the final performance results – in different ways for each of these calculi. It is
not easy to explain what is happening precisely, and this is not the topic of this
paper; the interested reader may consult [17]. In IMC, the separation of delays
and actions allows to treat action synchronisation as in standard concurrency

334 H. Hermanns and J.-P. Katoen

models. It is surprising that given the advantages of IMCs, recent approaches
for CTMC-variants of process calculi for mobility and service-oriented comput-
ing [59] and interesting new developments in structured operational semantics
for such calculi [50,24] do not adopt this approach.

An extension of IMC towards time-inhomogeneous continuous-time dynamics
is provided in [33]. In the discrete time setting, a model class with similarly distin-
guishing properties is provided by probabilistic automata [60]. Probabilistic au-
tomata can be integrated into the IMC model, retaining full compositionality [26].

We have reviewed the theoretical basis of IMC, and have discussed two re-
cent algorithmic achievements that foster the applicability of IMC: analysis
techniques in the presence of nondeterminism, and compositional abstraction
techniques. IMCs practical relevance has been highlighted by reviewing in ap-
plications of various domains, ranging from dynamic fault trees to generalized
stochastic Petri nets. While the first generation of tool support, CADP, has
found several academic and non academic uses, the recent algorithmic advances
described in this paper are not yet fully integrated in a tool. This is a major
topic of ongoing work.

References

1. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and sim-
ilarity for probabilistic processes. Journal of Computer and System Sciences 60,
187–231 (2000)

2. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algo-
rithms for continuous-time Markov chains. IEEE TSE 29, 524–541 (2003)

3. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for Markov chains. Information and Computation 200, 149–214 (2005)

4. Barendregt, H.: The quest for correctness. In: Images of SMC Research 1996. Sticht-
ing Mathematisch Centrum, pp. 39–58 (1996)

5. Bergstra, J.A., Ponse, A. (eds.): Handbook of Process Algebra. Elsevier Publishers
B.V, Amsterdam (2001)

6. Bernardo, M., Gorrieri, R.: Corrigendum to “A tutorial on EMPA: A theory of
concurrent processes with nondeterminism, priorities, probabilities and time. TCS
202 254, 1–54 (1998); Theoretical Computer Science 254, 691–694 (2001)

7. Bertsekas, D.: Dynamic Programming and Optimal Control, vol. II. Athena Scien-
tific, Belmont (1995)

8. Böde, E., Herbstritt, M., Hermanns, H., Johr, S., Peikenkamp, T., Pulungan, R.,
Rakow, J., Wimmer, R., Becker, B.: Compositional dependability evaluation for
STATEMATE. IEEE TSE 35, 274–292 (2009)

9. Boudali, H., Crouzen, P., Haverkort, B.R., Kuntz, M., Stoelinga, M.I.A.: Architec-
tural dependability evaluation with Arcade. In: Dependable Systems and Networks
(DSN), pp. 512–521. IEEE, Los Alamitos (2008)

10. Boudali, H., Crouzen, P., Stoelinga, M.: A compositional semantics for dynamic
fault trees in terms of interactive Markov chains. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 441–456.
Springer, Heidelberg (2007)

11. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: Dynamic fault tree analysis using
input/output interactive Markov chains. In: Dependable Systems and Networks
(DSN). IEEE, Los Alamitos (2007)

The How and Why of Interactive Markov Chains 335

12. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: Rigorous, compositional, and extensi-
ble framework for dynamic fault tree analysis. IEEE Transactions on Secure and
Dependable Computing 7, 128–143 (2009)

13. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V., Noll, T., Roveri, M.: Codesign
of dependable systems: A component-based modelling language. In: Proc. 7th Int.
Conf. on Formal Methods and Models for Co-Design MEMOCODE, pp. 121–130.
IEEE CS Press, Los Alamitos (2009)

14. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V., Noll, T., Roveri, M.: The
COMPASS approach: Correctness, modelling and performability of aerospace sys-
tems. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS,
vol. 5775, pp. 173–186. Springer, Heidelberg (2009)

15. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. The Computer
Journal (2010)

16. Bravetti, M., Hermanns, H., Katoen, J.-P.: YMCA: Why Markov chain algebra?
In: Proceedings of the Workshop Essays on Algebraic Process Calculi. Electronic
Notes in Theoretical Computer Science, vol. 162, pp. 107–112. Elsevier, Amsterdam
(2006)

17. Brinksma, E., Hermanns, H.: Process Algebra and Markov Chains. In: Brinksma,
E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS,
vol. 2090, pp. 183–231. Springer, Heidelberg (2001)

18. Buchholz, P.: Exact and ordinary lumpability in finite markov chains. J. of Applied
Probability 31, 59–75 (1994)

19. Chehaibar, G., Zidouni, M., Mateescu, R.: Modeling multiprocessor cache protocol
impact on MPI performance. In: IEEE International Workshop on Quantitative
Evaluation of Large-Scale Systems and Technologies. IEEE, Los Alamitos (2009)

20. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: GreatSPN 1.7: Graphical
editor and analyzer for timed and stochastic Petri nets. Performance Evaluation 24,
47–68 (1995)

21. Coppit, D., Sullivan, K.J., Dugan, J.B.: Formal semantics for computational en-
gineering: A case study on dynamic fault trees. In: ISSRE, pp. 270–282. IEEE
Computer Society, Los Alamitos (2000)

22. Coste, N., Garavel, H., Hermanns, H., Hersemeule, R., Thonnart, Y., Zidouni, M.:
Quantitative evaluation in embedded system design: Validation of multiprocessor
multithreaded architectures. In: Design, Automation and Test in Europe (DATE),
pp. 88–89. IEEE, Los Alamitos (2008)

23. Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance predic-
tion of compositional models in industrial GALS designs. In: Bouajjani, A., Maler,
O. (eds.) Computer Aided Verification. LNCS, vol. 5643, pp. 204–218. Springer,
Heidelberg (2009)

24. De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-based transition systems
for stochastic process calculi. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 435–446.
Springer, Heidelberg (2009)

25. Dugan, J., Bavuso, S., Boyd, M.: Dynamic fault-tree models for fault-tolerant com-
puter systems. IEEE Transactions on Reliability 41, 363–377 (1992)

26. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continu-
ous time. In: IEEE Symposium on Logic in Computer Science (LICS). IEEE, Los
Alamitos (2010)

27. Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006)

336 H. Hermanns and J.-P. Katoen

28. Feiler, P.H., Rugina, A.: Dependability modeling with the Architecture Analysis &
Design Language (AADL). Technical Note CMU/SEI-2007-TN-043, CMU Software
Engineering Institute (2007)

29. Frenkel, K.A., Milner, R.: An interview with Robin Milner. CACM 36, 90–97 (1993)
30. Garavel, H., Hermanns, H.: On combining functional verification and performance

evaluation using CADP. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 410–429. Springer, Heidelberg (2002)

31. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A toolbox for the
construction and analysis of distributed processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

32. Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA
models. IEEE Trans. Software Eng. 27, 449–464 (2001)

33. Han, T., Katoen, J.-P., Mereacre, A.: Compositional modeling and minimization
of time-inhomogeneous Markov chains. In: Egerstedt, M., Mishra, B. (eds.) HSCC
2008. LNCS, vol. 4981, pp. 244–258. Springer, Heidelberg (2008)

34. Haverkort, B.R.: Performance of Computer Communication Systems: A Model-
Based Approach. John Wiley & Sons, Chichester (1998)

35. Hermanns, H. (ed.): Interactive Markov Chains. LNCS, vol. 2428. Springer, Hei-
delberg (2002)

36. Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evalua-
tion. Theoretical Computer Science 274, 43–87 (2002)

37. Hermanns, H., Herzog, U., Mertsiotakis, V., Rettelbach, M.: Exploiting stochastic
process algebra achievements for generalized stochastic Petri nets. In: Petri Nets
and Performance Models (PNPM), pp. 183–192. IEEE, Los Alamitos (1997)

38. Hermanns, H., Johr, S.: Uniformity by construction in the analysis of nondeter-
ministic stochastic systems. In: Dependable Systems and Networks (DSN), pp.
718–728. IEEE, Los Alamitos (2007)

39. Hermanns, H., Katoen, J.-P.: Automated compositional Markov chain generation
for a plain-old telephone system. Science of Comp. Progr. 36, 97–127 (2000)

40. Hermanns, H., Katoen, J.-P., Neuhäußer, M.R., Zhang, L.: GSPN model checking
despite confusion. Technical report, RWTH Aachen University (2010)

41. Hermanns, H., Rettelbach, M.: Syntax, Semantics, Equivalences, and Axioms for
MTIPP. In: Herzog, U., Rettelbach, M. (eds.) Proc. of the 2nd Int. Workshop
on Process Algebras and Performance Modelling. Arbeitsberichte des IMMD,
vol. 27(4), Universität Erlangen (1994)

42. Hermanns, H., Johr, S.: we reach it? or must we? in what time? with what probabil-
ity? In: Measurement, Modelling and Evaluation of Computer and Communication
Systems (MMB), pp. 125–140. VDE Verlag (May 2008)

43. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

44. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A tool for au-
tomatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

45. Hoare, C., Brookes, S., Roscoe, A.: A theory of communicating sequential processes.
J. ACM 31, 560–599 (1984)

46. Jonsson, B.: Simulations between specifications of distributed systems. In: Groote,
J.F., Baeten, J.C.M. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 346–360. Springer,
Heidelberg (1991)

47. Katoen, J.-P., Kemna, T., Zapreev, I.S., Jansen, D.N.: Bisimulation minimisation
mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 87–102. Springer, Heidelberg (2007)

The How and Why of Interactive Markov Chains 337

48. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for
continuous-time Markov chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 311–324. Springer, Heidelberg (2007)

49. Katoen, J.-P., Klink, D., Neuhäußer, M.R.: Compositional abstraction for stochas-
tic systems. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS,
vol. 5813, pp. 195–211. Springer, Heidelberg (2009)

50. Klin, B., Sassone, V.: Structural operational semantics for stochastic process cal-
culi. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 428–442.
Springer, Heidelberg (2008)

51. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

52. Larsen, K.G., Thomsen, B.: A modal process logic. In: IEEE Symposium on Logic
in Computer Science (LICS), pp. 203–210. IEEE, Los Alamitos (1988)

53. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quar-
terly 2, 219–246 (1989)

54. Marsan, M.A., Balbo, G., Chiola, G., Conte, G., Donatelli, S., Franceschinis, G.:
An introduction to generalized stochastic Petri nets. Microelectronics and Relia-
bility 31, 699–725 (1991)

55. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with Generalized Stochastic Petri Nets. John Wiley & Sons, Chichester (1995)

56. Neuhäußer, M.R., Katoen, J.-P.: Bisimulation and logical preservation for
continuous-time Markov decision processes. In: Caires, L., Vasconcelos, V.T. (eds.)
CONCUR 2007. LNCS, vol. 4703, pp. 412–427. Springer, Heidelberg (2007)

57. Neuhäußer, M.R., Stoelinga, M., Katoen, J.-P.: Delayed nondeterminism in
continuous-time Markov decision processes. In: de Alfaro, L. (ed.) FOSSACS 2009.
LNCS, vol. 5504, pp. 364–379. Springer, Heidelberg (2009)

58. Neuhäußer, M.R.: Model Checking Nondeterministic and Randomly Timed Sys-
tems. PhD thesis, RWTH Aachen University / University of Twente (2010)

59. Prandi, D., Quaglia, P.: Stochastic COWS. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 245–256. Springer, Hei-
delberg (2007)

60. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Laboratory for Computer Science, Massachusetts Institute of
Technology (1995)

61. http://portal.acm.org/citation.cfm?id=1451820

62. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43, 555–600 (1996)

63. Veseley, W., Goldberg, F., Roberts, N., Haasl, D.: Fault Tree Handbook. US Nu-
clear Regulatory Commission, NUREG- 0492 (1981)

64. Vissers, C., Scollo, G., van Sinderen, M., Brinksma, E.: On the use of specification
styles in the design of distributed systems. Theor. Comput. Sci. 89, 179–206 (1991)

65. Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker, B.: Sigref – a
symbolic bisimulation tool box. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS,
vol. 4218, pp. 477–492. Springer, Heidelberg (2006)

66. Zhang, L., Neuhäußer, M.R.: Model checking interactive Markov chains. In: Es-
parza, J., Majumdar, R. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems. LNCS, vol. 6015, pp. 53–68. Springer, Heidelberg (2010)

67. Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.N.: Flow faster: Efficient de-
cision algorithms for probabilistic simulations. Logical Methods in Computer Sci-
ence 4 (2008)

http://portal.acm.org/citation.cfm?id=1451820

Author Index

Aichernig, Bernhard K. 41, 186, 228
Alba-Castro, Mauricio 105
Alpuente, Maŕıa 105
Arts, Thomas 250

Baier, Christel 41
Benac Earle, Clara 250
Blechmann, Tobias 41
Brandl, Harald 228
Brillout, Angelo 208
Bubel, Richard 125
Butler, Michael 89

Cesarini, Francesco 250

David, Alexandre 290
de Boer, Frank 41
Derrick, John 250, 272
de Vink, Erik P. 21
dos Santos, Osmar M. 147

Escobar, Santiago 105

Fredlund, Lars-Ake 250

Grabe, Immo 41
Griesmayer, Andreas 41
Groote, Jan Friso 166
Gulias, Victor 250

Hähnle, Reiner 125
He, Nannan 208
Henrio, Ludovic 1
Hermanns, Holger 311
Hughes, John 250

Iliasov, Alexei 70

Jaghoori, Mohammad Mahdi 41
Ji, Ran 125
Jöbstl, Elisabeth 228
Johnsen, Einar Broch 41

Kammüller, Florian 1
Katoen, Joost-Pieter 311

Khan, Muhammad Uzair 1
King, Steve 147
Klein, Joachim 41
Klüppelholz, Sascha 41
Kokash, Natallia 21
Krause, Christian 21
Krenn, Willibald 186, 228
Kroening, Daniel 208
Kyas, Marcel 41

Laibinis, Linas 70
Larsen, Kim G. 290
Legay, Axel 290
Leister, Wolfgang 41

Mazzucchi, Michele 208

Nyman, Ulrik 290

Paige, Richard F. 147
Purandare, Mitra 208

Reniers, Michel A. 166
Romanovsky, Alexander 70
Rümmer, Philipp 208

Salehi Fathabadi, Asieh 89
Schlatte, Rudolf 41
Schlick, Rupert 186
Stam, Andries 41
Stappers, Frank P.M. 166
Steffen, Martin 41

Thompson, Simon 250
Troubitsyna, Elena 70
Tschirner, Simon 41

Walkinshaw, Neil 250, 272
W ↪asowski, Andrzej 290
Weissenbacher, Georg 208
Woodcock, Jim 147

Xuedong, Liang 41

Yi, Wang 41

	Title
	Preface
	Organization
	Table of Contents
	The BIONETS Project
	A Framework for Reasoning on Component Composition
	Introduction
	Background
	Related Work
	Component Model Overview
	Positioning

	Formalisation of Component Model in Isabelle/HOL
	Component Structure
	 Efficient Specification of Component Manipulation
	Component State
	Correct Component
	Basic Properties on Component Structure and Manipulation
	Properties on Component Correctness

	Components at Runtime
	Semantics
	Reconfiguration

	Conclusion
	References

	The COMPAS Project
	Verification of Context-Dependent Channel-Based Service Models
	Introduction
	The Reo Coordination Language
	The mCRL2 Specification Language
	Translating Reo to mCRL2
	Correctness of the Translation
	Coloring Semantics
	Implementation
	Related Work
	Conclusions
	References

	The CREDO Project
	The Credo Methodology
	Introduction
	High-Level Dataflow Model
	Structural Interface Description
	Behavioral Interface Description

	Dataflow Model
	Modeling in Vereofy
	Analysis of the Model

	Object-Oriented Model of the Components
	Modeling in Creol
	Analysis of the Model
	Schedulability Analysis

	Conclusions
	References

	The DEPLOY Project
	Patterns for Refinement Automation
	Introduction
	Towards Refinement Automation
	Formal Development by Refinement
	Event B
	Event-B Models as Syntactic Objects

	Refinement Patterns
	Definitions
	The Language of Transformations
	Examples

	Pattern Composition
	Rule Applicability Conditions
	Effect of Pattern Application
	Pattern Proof Obligations
	Assertions

	Triple Modular Redundancy Pattern
	Tool for Refinement Automation
	Conclusions
	References

	Applying Event-B Atomicity Decomposition to a Multi Media Protocol
	Introduction
	Event-B Background
	Atomicity Decomposition in Event-B
	An Overview of Media Channel System Requirements and Multi Media Protocol
	Requirements for Establishing a Media Channel
	Requirements for Modifying an Established Media Channel
	Requirements for Closing an Established Media Channel

	Linking Requirements and Atomicity Decomposition
	Abstract Specification
	Refinement 1: Breaking the Atomicity of Establish Media Channel
	Refinement 2: Breaking the Atomicity of Modify Media Channel
	Refinement 3: Breaking the Atomicity of Close Media Channel
	Assessment

	Extending the Diagrammatic Notation
	Case Splitting Pattern
	Weak Sequencing and Guard Lines
	Weak Sequencing in the Media Channel Model

	Conclusion and Directions for Future Work
	References

	The FM-SOA Working Group
	Abstract Certification of Global Non-interference in Rewriting Logic
	Introduction
	Non–interference
	The Rewriting Logic Semantics of Java
	Proving Non–interference by Using an Extended Instrumented Semantics
	Proving Non-interfence as a Safety Property

	Approximating Non–interference by Using an Abstract Semantics
	Experiments
	Related Work
	Conclusion
	References

	The HATS Project
	Interleaving Symbolic Execution and Partial Evaluation
	Introduction
	Background
	A Simple Programming Language
	Symbolic Execution
	Partial Evaluation

	Dynamic Logic with Updates
	Program Logic
	Sequent Calculus

	Interleaving Symbolic Execution and Partial Evaluation
	General Idea
	The Program Specialization Operator
	Specific Specialization Actions

	Application
	Evaluation
	Related Work
	Conclusions and Future Work
	References

	The INESS Project
	The Use of Model Transformation in the INESS Project
	Introduction
	Background
	xUML Models of Railway Signalling Systems
	PROMELA
	Epsilon
	Related Work

	The Verification Strategy
	Translation of xUML into PROMELA
	Class Diagrams, State Machines and Objects
	The Initial Scenario

	Implementation of the Transformation
	Meta-Modelling
	xUML Models to PROMELA Models
	PROMELA Models to PROMELA Code

	Final Remarks
	References

	Suitability of mCRL2 for Concurrent-System Design: A 2 × 2 Switch Case Study
	Introduction
	Preliminaries
	Syntax and Semantics of mCRL2
	Modal -Calculus

	Specification of the Simple 2 2 Switch
	Bits and Packets
	Capacity of the Buffers
	Information Exchange between the Processes
	The Output Buffers with Capacity cap
	The Input Buffers with Capacity cap

	Specification of the Original 2 2 Switch
	Packets
	The Act of Counting
	Adapting the Input Buffer

	Specification of the Modified 2 2 Switch
	Properties of the Models
	Deadlock Detection
	Absence of Overflowing Buffers
	Absence of Colliding Packets
	Maximal Progress
	Verification Results

	Comparison
	Maximal Throughput
	Priority
	Adaptability
	Verification

	Conclusion and Future Work
	References

	The MOGENTES Project
	Mapping UML to Labeled Transition Systems for Test-Case Generation A Translation via Object-Oriented Action Systems
	Introduction
	A UML-Model
	Testing Interface and Instantiation
	State Machine
	Semantic Variation Points

	Object-Oriented Action Systems
	Action Systems
	Object Orientation
	Prioritizing Composition
	Complex Data Types
	Trace Semantics

	Chosen UML Semantics
	Used UML Subset
	Events
	Object Concurrency and Regions
	Input / Output
	Time Triggers

	Results
	Conclusion
	References

	Mutation-Based Test Case Generation for Simulink Models
	Introduction
	Simulink Models
	Generating Test Cases Using Mutations
	Overview
	Bounded Model Checking
	Equivalence Checking
	Floating-Point Arithmetic
	Mutation Testing and Fault Injection
	Generating Test Cases

	Generating Test-Cases for Many Mutations
	Finding an Efficient and Sufficient Test-Suite

	Detecting Non-observability of Mutations
	Model Checking, Induction, and Invariants
	Reusing Proofs and Invariants for Proving Unobservability

	Conclusion
	References

	Model-Based Mutation Testing of Hybrid Systems
	Introduction
	Hybrid Systems
	Environment Modeling with Qualitative Evolutions
	System Modeling with Qualitative Action Systems
	Model-Based Mutation Testing
	Mutation Testing
	Test Case Generation via Conformance Checking
	Ensuring Controllability in Presence of Non-determinism

	Test Case Extraction
	Concluding Remarks
	References

	The PROTEST Project
	Property-Based Testing - The ProTest Project
	Introduction
	Background
	Property Discovery
	Properties from Specifications
	Reverse Engineering
	Building Domain Specific Languages

	Refactoring
	Duplicate/Similar Code Detection in Wrangler
	Extension to Wrangler to Refactor EUnit Test Data
	Wrangler and Eclipse: Integration with Erlide

	Property Monitoring
	Exago, the Offline Monitoring Tool
	Onviso, Simple and Intuitive Tracing Environment

	Analysing Concurrent Systems
	Shrinking Trace Counter-Examples
	Developing Model-Checking Techniques for Erlang

	Tool Integration
	Example

	Conclusions
	References

	Incrementally Discovering Testable Specifications from Program Executions
	Introduction
	Background
	Model-Based Testing of Erlang Applications
	Reverse-Engineering State Machines

	An Iterative, Test-Driven Model Inference Approach
	Inferring State Machines from Traces
	Automating Trace Collection for the EDSM Algorithm with QuickCheck

	Case Study - Reverse-Engineering a TCP Stack
	Results

	Improving the Inference Process
	Inferring Extended State Machines
	Identifying the Primary Functions in a Trace

	Conclusions
	References

	The QUASIMODO Project
	Methodologies for Specification of Real-Time Systems Using Timed I/O Automata
	Context and Motivation
	Specifications and Implementations
	Design Methodologies
	Combining Specification Automata
	Conjunction
	Composition
	Quotient

	Tool Implementation
	Related Work
	Conclusion
	References

	The How and Why of Interactive Markov Chains
	Introduction
	Interactive Markov Chains
	IMC Analysis
	Abstraction
	IMCs as Semantical Model
	Concluding Remarks
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

