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Abstract. The problem of determining the cutwidth of a graph is a
notoriously hard problem which remains NP-complete under severe re-
strictions on input graphs. Until recently, non-trivial polynomial-time
cutwidth algorithms were known only for subclasses of graphs of bounded
treewidth. In WG 2008, Heggernes et al. initiated the study of cutwidth
on graph classes containing graphs of unbounded treewidth, and showed
that a greedy algorithm computes the cutwidth of threshold graphs. We
continue this line of research and present the first polynomial-time algo-
rithm for computing the cutwidth of bipartite permutation graphs. Our
algorithm runs in linear time. We stress that the cutwidth problem is
NP-complete on bipartite graphs and its computational complexity is
open even on small subclasses of permutation graphs, such as trivially
perfect graphs.

1 Introduction

A large variety of problems in many different domains can be formulated as
graph layout problems [§]. A well known problem of this type is cutwidth. Given
a graph G and a positive integer k, the cutwidth problem is to decide whether
there is an ordering of the vertices of G such that any line inserted between
two consecutive vertices in the ordering cuts at most k edges of the graph. The
cutwidth of the input graph is the smallest integer for which the question can
be answered positively. This problem was first proposed as a model to minimize
the number of channels in a circuit [IJI4], and later it has found applications
in areas like protein engineering [3], network reliability [12], automatic graph
drawing [16], and as a subroutine in the cutting plane algorithm for TSP [II].
As most graph problems of practical interest, cutwidth is NP-complete [9],
even when input graphs are restricted to planar graphs of maximum degree
3 [15], split graphs [10], unit disk graphs, partial grids [7], and consequently
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bipartite graphs. There is a polynomial-time O(log2 n)-approximation algorithm
for general graphs [I3], and a polynomial-time constant factor approximation
algorithm for dense graphs [2].

The knowledge on polynomial-time algorithms for the exact computation of
cutwidth on restricted inputs is very limited. Cutwidth of certain trivial graph
classes, like meshes or complete p-partite graphs, can be computed easily as there
exist closed formulas for their cutwidth [§]. Cutwidth of proper interval graphs
has a trivial solution following an interval ordering of the vertices [21]. However,
there are very few graph classes whose cutwidth is non-trivially computable
in polynomial time. Until recently, polynomial-time cutwidth algorithms were
known only for subclasses of graphs of bounded treewidth. In particular, Yan-
nakakis [20] gave a sophisticated and technical algorithm for trees (see also [6]).
Furthermore, Thilikos et al. gave an algorithm for computing the cutwidth of
bounded cutwidth graphs [I8], and extended this result to graphs of bounded
treewidth and maximum degree [I9]. As a recent development, in a WG 2008
paper the study of cutwidth on graph classes containing graphs of unbounded
treewidth was initiated, resulting in a linear-time algorithm for computing the
cutwidth of threshold graphs [10].

In this paper, we continue this line of research by showing that the cutwidth
of a bipartite permutation graph can be computed in linear time. As mentioned
above, the cutwidth problem is NP-complete on bipartite graphs, and its compu-
tational complexity is open on permutation graphs. Thus bipartite permutation
graphs are natural candidates for studying the computational complexity of the
cutwidth problem. Our algorithm relies heavily on a characterization of bipartite
permutation graphs by strong orderings [I7]. We would like to point out that
bipartite permutation graphs and threshold graphs are two unrelated subclasses
of permutation graphs; the intersection of these two graph classes is restricted
to stars. We would also like to point out that bipartite permutation graphs form
the first graph class of unbounded clique-width [5] whose cutwidth is shown to
be computable in polynomial time.

2 Preliminaries

We consider undirected finite graphs with no loops or multiple edges. For a graph
G = (V, E), we denote its vertex set and edge set by V and E, respectively, with
n = |V] and m = |E|. Let S C V. The subgraph of G induced by S is denoted
by G[S]. We write G—S to denote the graph G[V \ S], and we simply write
G—v instead of G—{v} in case S = {v}. For two vertices u,v € V with uv ¢ E,
we write GH+uv to denote the graph (V, E U {uv}). The set of neighbors of a
vertex « of G is N(z) = {v | v € E}. The degree of x is d(z) = |N(x)|. A
graph is connected if there is a path between any pair of its vertices. A connected
component of a disconnected graph is a maximal connected subgraph of it.

In a bipartite graph G = (A4, B, E), vertex sets A and B are called color
classes. The partition of the vertex set into color classes of a connected bipartite
graph is unique, up to symmetry. Vertices of A and of B are called A-vertices
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and B-vertices, respectively. We say that a vertex is bipartite universal if it is
adjacent to all the vertices of the opposite color class.

An ordering of a set A is a one-to-one mapping o : A — {1,...,|A|}. We also
use the notation o = (ay,az,...,a4|), meaning that o(a;) < o(a;) when i < j,
where each q; is a distinct element of A, for 1 < i < |A|. Integers 1,2, ..., |A]| are
called the positions of o, and o(a) is the position of a in o. Intuitively, we will
refer to the end of the ordering with a1 as the left and the end of the ordering
with aj4| as the right. For two elements a and a’ of A, we say that a appears
before (or to the left of) ' in o, denoted a <, o/, if o(a) < o(a). If o(a) > o(a’),
then we say that a appears after (or to the right of) @’ in o and write a >, a’. We
will also use the notion of a leftmost, rightmost, and middle vertex or neighbor,
analogously and intuitively. A subset of k£ elements of A are consecutive in o if
they occupy positions ¢ 4+ 1,...,7 + k, for some i between 0 and |A| — k. When
we say that we delete an element a of A from o, we get a new ordering in which
all elements before a in ¢ keep their original positions, and the position of each
element after a decreases by 1. We denote the new ordering by oc—a. For any
subset of A’ C A, we write 0—A’ to denote the ordering obtained from o by
consecutively deleting all the elements of A’ from o.

A layout of a graph G = (V, E) is an ordering of V. We write $(G) to denote
the set of all layouts of G. The rank of a vertex v with respect to a layout ¢,
denoted rank,(v), is the number of neighbors of v appearing after v in ¢ minus
the number of neighbors of v appearing before v in ¢, ie., rank,(v) = {w €
N@w) | w >, v} — [{w € N(v) | w <, v}|. Note that the rank of a vertex
can be negative. Given layout ¢ of a graph G and an integer 1 < i < n, we
define L(i,0,G) = {u € V | p(u) < i} and R(i,0,G) = {u € V | p(u) > i}.
The ith gap of ¢ is between L(i, ¢, G) and R(i, ¢, G), or equivalently, between
positions ¢ and ¢ + 1 of . For any set S C V, we define the cut of S to be
0(S,G) ={uve E|ue S v¢S} The cut of G at the ith gap of ¢ is defined as
0(i,p,G) ={uv € E | u € L(i,p,G) ANv € R(i,p,G)}. Note that by definition
0(i, 0, G) = 0(L(i, 0, G),G). We call an edge set § C E a cutof pif § = 0(i, p, G)
for some i € {1,2,...n—1}. The size of a cut 6 is |0|. The cutwidth of a layout v of
G is ewp(GQ) = maxi<i<n |0(4, ¢, G)|. A cut 0(i, ¢, G) with |0(¢, ¢, G)| = cw,(G)
is called a worst cut of p. The cutwidth of G is cw(G) = mingegg){cw,(G)},
where the minimum is taken over all layouts of G. An optimal layout of G is
a layout ¢ such that cw(G) = cw,(G). The cutwidth of a graph G equals the
maximum cutwidth over all connected components of G.

As the name already indicates, bipartite permutation graphs are permuta-
tion graphs that are bipartite. For the definition and properties of permutation
graphs, we refer to [4]. The study of bipartite permutation graphs was initiated
by Spinrad et al. in [I7]. They present two characterizations of bipartite per-
mutation graphs, leading to a linear-time recognition algorithm of this class as
well as polynomial-time algorithms for some NP-complete problems restricted
to bipartite permutation input graphs.

A strong ordering (ca,0p) of a bipartite permutation graph G = (A, B, F)
consists of an ordering 04 of A and an ordering op of B such that for all
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ab,a’t! € E, where a,a’ € A and b, € B, a <,, o’ and V' <,, b implies
that ab’ € F and a'b € E. An ordering 04 of A has the adjacency property
if, for every b € B, N(b) consists of vertices that are consecutive in o4. The
ordering o4 has the enclosure property if, for every pair b,b" of vertices of B
with N(b) C N(b'), the vertices of N(V') \ N(b) appear consecutively in o4,
implying that b is adjacent to the leftmost or the rightmost neighbor of ¥’ in 0 4.

Theorem 1 ([17]). The following statements are equivalent for a bipartite graph
G=(A,B,E).

1. G is a bipartite permutation graph.

2. G has a strong ordering.

8. There exists an ordering of A which has the adjacency and enclosure prop-
erties.

A strong ordering of a bipartite permutation graph can be computed in linear
time [I7]. If the graph G in Theorem [ is connected, then it follows from the
proof of Theorem 1 in [I7] that we can combine statements 2 and 3 in Theorem [I]
as follows.

Lemma 1 ([I7]). Let (ca,0p) be a strong ordering of a connected bipartite
permutation graph G = (A, B, E). Then both o4 and op have the adjacency and
enclosure properties.

3 Cutwidth of Bipartite Permutation Graphs

In this section we prove that the cutwidth of bipartite permutation graphs can
be computed in linear time. The complete algorithm is given in the proof of
Theorem [2] The main ingredient is an algorithm that we call MinCutBPG. This
algorithm takes as input a connected bipartite permutation graph G and a strong
ordering of G, and it outputs an optimal layout of G. We will spend most of this
section describing and proving the correctness of Algorithm MinCutBPG. Before
we give the algorithm, we define an operation to modify a given layout in an
intuitive way. Given a layout ¢ of a graph, when we move a vertex v from position
1 to position j, with ¢ < j, only vertices in positions from ¢ to j are affected.
We get a new layout ¢’ in which v gets position ¢’(v) = j, the vertex z with
p(x) = j gets position ¢'(x) = j — 1, and each of the other affected vertices
decrease their positions by 1, similarly. All other vertices have the same position
in ¢ as they had in . What we described is a move toward the right. A move
toward the left is defined symmetrically.

3.1 Description of Algorithm MinCutBPG

We now give an outline of Algorithm MinCutBPG, which takes as input a con-
nected bipartite permutation graph G = (A, B, E) and a strong ordering (o 4,05)
of G. It outputs an optimal layout ¢ of G. Let A = {a1,...,as} where a1 <.,
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- =g, s, and let B = {by,...,b:} where by <y, -+ <55 bt. The vertices
of A will appear in the final layout ¢ in the same order as they appear in 4.
Similarly, the order in which the vertices of B appear in ¢ corresponds to the
order in which they appear in opg.

Before deciding where the vertices of A will appear in ¢ with respect to the
vertices of B, the algorithm first assigns the vertices of B to “boxes”. There
are two types of boxes: a box X; for every vertex a; € A, and a box X; ;41 for
every pair of consecutive vertices a;,a;+1 € A. Recall that the neighbors of any
vertex b € B appear consecutively in o4 by Lemma[Il If b has even degree and
its two middle neighbors are a; and a;41, then b is assigned to box Xj ;1. If
b has odd degree and its middle neighbor is a;, then b is assigned to box X;.
For convenience, we also define the boxes X1 = 0 and X 5,541 = (). Observe
that some boxes might be empty and the collection of non-empty boxes is a
partition of B. The following observation is a direct consequence of Lemma [I]
the properties of a strong ordering, and the definition of boxes.

Observation 1. Given a connected bipartite permutation graph G = (A, B, E)
with |A| = s and a strong ordering (ca,0p), where o4 = {(a1,az2,...,as), let
bozes Xo.1,X1,X1,2,...,Xs, Xs 541 be defined as above. Then we have the fol-
lowing:

1. every vertex of X; appears before every vertex of X;;y1 in op, and every
vertex of X; ;41 appears before every vertex of X411 in op, for 1 <i <s;
2. N(b) = N(V') for any two vertices b and b’ appearing in the same boz.

We start with an initial layout of G in which a; is placed first, vertices of X3
are placed in the immediately following positions, vertices of X; o are placed
in the next positions, then as is placed, followed by vertices of Xa, X2 3, {as},
X3, oo {as—1}, Xs—1, Xs—1.5, {as}, and X5. Within each box, the vertices of B
belonging to that box are ordered according to op. For 1 < i < s, a; appears just
before the vertices of box X;. To define and obtain the final layout ¢, we just
need to move each a; to its final position. This will be one of the initial positions
of {a;} UX;. As a consequence, we can observe already now that, for every b € B,
ranky(b) € {—1,0.1}. The ranks of the A-vertices might have a larger range of
values. Let ¢ be any index satisfying 1 < ¢ < s. Recall that rank,(a;) depends
on the position where a; is placed: the further to the left a; appears, the higher
its rank. The algorithm moves a; in such a way that rank,(a;) is as close to 0
as possible, i.e., the value of [rank,(a;)| is as small as possible, subject to the
condition that the position of a; is one of the initial positions of {a;} U X;. This
is done in the following way. Note first that the set of possible positions for a;
does not intersect with the set of possible positions for any other A-vertex a;
with i # j. Furthermore, rank,(a;) is only dependent on the neighbors of a;
and no two A-vertices are adjacent. Therefore, the placement of each a; among
the positions of {a;} U X; can be decided independently of the placements of the
other A-vertices. By Lemma [Tl the neighbors of a; appear consecutively in opg.
If a; has odd degree then let b be the middle neighbor of a; in 0. If a; has even
degree then let b be the right one of the two middle neighbors of a;. If b € X,
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then we move a; to the position just before the position of b. If b appears in a
box to the left of X; then we do not move a;. If b appears in a box to the right
of X; then we move a; to the last position among the positions of X;. Thus, if a;
is placed between two vertices of X; then its rank is 0 or 1. If a; is placed before
or after all vertices of X; then its rank can be higher or lower. This completes
the definition and computation of .

We make the following observations about the layout ¢ generated by Algo-
rithm MinCutBPG, which are direct consequences of Lemma [Tl

Observation 2. Let G = (A, B, E) be a connected bipartite permutation graph
and let (04,0p) be a strong ordering of G, where o4 = {a1,as,...,as). Let ¢ be
the layout of G generated by Algorithm MinCutBPG on input G and (oa,0B).
Then, for 1 <1 <'s, we have the following:

1. for any b € X; 41, rank,(b) = 0;
2. for any b € X;, rank,(b) =1 if b <, a; and rank,(b) = —1 if a; <, b;
3. everybe X;—1,;UX; UX; 11 1s adjacent to a;;

3.2 Correctness of Algorithm MinCutBPG

We show that Algorithm MinCutBPG produces an optimal layout when the input
is a connected bipartite permutation graph and a strong ordering of that graph.
We assume for contradiction that there is a connected bipartite permutation
graph G for which the algorithm outputs a layout ¢ such that cw,(G) > cw(G).
Such a graph is called a countererample, and we write G to denote the set of all
counterexamples. Let G’ C G be the set of counterexamples having the minimum
number of vertices among all counterexamples, and let G” C G’ be the set of
graphs in G’ having the maximum number of edges among all graphs in G’. A
graph in G” is called a tight counterexample. If there exists a counterexample,
then there also exists a tight counterexample.

For the statements and the proofs of the following lemmas, let G = (A, B, F)
with E # () be a connected bipartite permutation graph that is a tight counterex-
ample, and let (04,0p) be a strong ordering of G such that o4 = (aq,...,as)
and op = (b1,...,bt). Furthermore, let ¢ = (v1,...,v,) be the layout of G
generated by Algorithm MinCutBPG on input G and (o4,0p).

Lemma 2. Let 0(j, 0, G) be a worst cut of ¢. Then we have the following:

a1 is adjacent to the rightmost B-vertex of L(j, 0, G);
by is adjacent to the rightmost A-vertex of L(j, v, G);
as is adjacent to the leftmost B-vertex of R(j, ¢, G);
by is adjacent to the leftmost A-vertex of R(j,, G).

™ oo~

Proof. We only prove claim 1; the proofs of claims 2, 3, and 4 are very similar
and have therefore been omitted. Let 8 = 0(j, », G) and let b be the rightmost
B-vertex of L = L(j,¢,G). If b <, a1 then all B-vertices in L appear before a;
in ¢, and b is the vertex just before a; in ¢, implying that ¢(b) = p(a1) — 1.
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Hence b € X1, and by Observation 2, a1b € E. Now assume that a; <, b, and
suppose for contradiction that a; is not adjacent to b. Note that this means
that b ¢ X7, since every vertex in box X; is adjacent to a3 by Observation [2
We claim that G’ = G—({a1} U X1) is a counterexample, contradicting the
assumption that G is a tight counterexample. Observe that G’ is a connected
bipartite permutation graph and (c4—a;,05—X1) is a strong ordering of G'.
We will prove the claim by showing that 6 is a cut of the layout ¢’ returned by
Algorithm MinCutBPG on input G’ and (04—a1,05—X1). Since a1b ¢ E, a1 has
no neighbors in R = R(j, ¢, G) as a result of the properties of a strong ordering.
None of the vertices in X; has a neighbor in R either, because they are adjacent
to ay only. Therefore, 6 is a cut of p—({a;} UX;). We will show that all vertices
of L\ ({a1}UX7) that appear to the left of b in p—({a;}UX) also appear to the
left of b in ¢'. This will imply that 6 is a cut of ¢’ as well. Clearly, the relative
orderings of the A-vertices and of the B-vertices are the same in ¢ as in . Let
us analyze how the deletion of the vertices in {a;1} U X can affect the ranks of
vertices and the boxes that they belong to. Deleting {a;} U X7 does not change
the rank of any A-vertex or the rank of b, since these vertices were not adjacent
to any of the vertices in {a;} U X;. Consequently, b appears in the same box
after the deletion of a; as it did before. Let a # a1 be the rightmost A-vertex of
L; note that a might not be defined in case a; is the only A-vertex of L. Either
a or b is the rightmost vertex of L in ¢. In either case, since the ranks of a and
b did not change, a and b have the same relative order to each other in ¢’ as
in ¢. The only vertices whose ranks might change by the deletion of {a;} U X3
are the B-vertices of L that were adjacent to a;. However, these vertices cannot
appear to the right of b in ¢/, as the algorithm respects the strong ordering
(ca—a1,05—X1). As a result, the set of vertices that appear to the left of b is
the same in ¢’ as in ¢, which means that 6 is a cut of ¢'. Since cw(G’) < cw(Q)
and the size of the cut did not change, we conclude that G’ is a counterexample
with at least one fewer vertex than G, giving us the desired contradiction.

Lemma 3. Let 0(j,0,G) be a worst cut of p. Then both G[L(j,¢,G)] and
G[R(j, ¢, Q)] are complete bipartite graphs.

Proof. Let a and b be the rightmost A-vertex and B-vertex of L = L(j, ¢, G),
respectively. By Lemma [2] a; is adjacent to b and by is adjacent to a. By the
definition of a strong ordering, a; is adjacent to by and a is adjacent to b. Since
G is connected, and 04 and o have the adjacency property by Lemma/[Il a and
a1 are adjacent to all B-vertices in L, and b and b; are adjacent to all A-vertices
in L. As a result, every vertex of AN L is adjacent to every vertex of BN L. This
means that G[L(j, p, G)] is complete bipartite. By symmetry the same holds for
G[R(j, ¢, G)].

Lemma 4. There is a worst cut 6(j, ¢, G) of ¢ such that v; and vj41 belong to
different color classes.

Proof. Let L = L(j,p,G) and let R = R(j,p,G). Assume that either L or
R, say L, contains vertices of only one color class. Since G is connected, G
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contains vertices from both color classes. Let us consider the smallest index
k > j such that there is a vertex of the other color class in position k£ + 1. Then
|0(k, 0, G)| > 10(4, ¢, G)| because L C L(k, ¢, G), there are no edges between the
vertices of L(k, ¢, G), and each vertex of L(k, ¢, G) has a neighbor in R(k, ¢, G).
Hence we can conclude that there is a worst cut at the gap between two vertices
of opposite color. The case where R contains only vertices of one color class
is completely symmetric. For the rest of the proof, assume that both L and R
contain vertices of both color classes.

Assume first that both v; and v;41 are B-vertices. Let a; be the rightmost
A-vertex in L, which means that a; 41 is the leftmost A-vertex in R. Both b = v;
and b’ = v; 41 are between a; and a;41; more precisely, a; <, b <, b <, aiy1. If
rank,(b) =1 then b € X; 11 by Observation[2 Then by Observation[] b’ € X; 4
as well, and consequently rank, (') = 1 . Thus we can conclude that b and v/
have the same neighborhood and they have one more neighbor in R than in L.
In this case (4, ¢, G) cannot be a worst cut, because the cut just to the right
of b has larger size. Therefore, rank,(b) < 0, which means that b has at least
as many neighbors to the left as it has to the right. Since b has no neighbors
appearing between a; and b, the cut just to the right of a; is of size at least
|60(4, ¢, G)|. Hence we can take that cut as the worst cut. Consequently there is
a worst cut at the gap between an A-vertex and a B-vertex.

Assume now that both v; and v;;1; are A-vertices, say a; and a;41. First
we show that in this case both a; and a;y1 are bipartite universal. Assume for
contradiction that this is not true, and let b be the leftmost B-vertex in R which
is not a neighbor of a;. We claim that G’ = G+a;b is also a counterexample,
contradicting the assumption that G is a tight counterexample. Recall that G[L]
and G[R] are complete bipartite graphs due to Lemma[8l Now observe that G’ is
a bipartite permutation graph and (o4, 0p) is a strong ordering of G’. Let ¢’ be
the layout computed by Algorithm MinCutBPG on input G’ and (04,0p). Let
us analyze how the layout ¢ can change to ¢’ due to the addition of edge a;b.
Observe that X; ;1 is empty before the addition of edge a;b, since a; and a;11
are consecutive in ¢. When we add edge a;b, vertex b gets one more neighbor
to the left, and thus might appear in a box further to the left than the box it
was in before. By Observation [Il we know that b was not in X; or X; ;41 before
the addition of edge a;b. Now it can enter X; ;41 but it cannot enter X;, since it
only gained one more neighbor. This means that it can move past a;+; toward
the left, but it cannot move past a;. Thus L(j,¢',G’) = L and R(j,¢’,G’") =
R, although some vertices in R might have changed positions. Consequently,
005, ,G") = 0(4,0,G) U {a;b} is a cut of ¢, which means that ¢’ has a cut
whose size is 1 more than a worst cut of ¢. Since cw(G’') < cw(G) +1, G’ is a
counterexample, contradicting the assumption that G is a tight counterexample.
Thus there cannot be a B-vertex in R that a; is not adjacent to. By Lemma Bl we
know that a; is adjacent to all B-vertices in L, and hence a; is bipartite universal.
By symmetry and with similar arguments, a;11 is also bipartite universal. This
means that rank,(a;) = ranky(ai+1). If this rank is negative, then the cut at
the (j — 1)th gap is a larger cut than 6(j, ¢, G) since a; and a;y; have more
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neighbors in L than in R. Symmetrically, if this rank is positive then the cut
at the (j 4+ 1)th gap is a larger cut. Therefore rank,(a;) = ranky(ai+1) = 0,
because otherwise we get a contradiction to the assumption that 0(j, ¢, G) is a
worst cut. This means that a; and a;; have as many neighbors in L as they have
in R. Since a; and a;41 are both bipartite universal and they are not adjacent
to each other, the cut at the (7 — 1)th gap and the cut at the (j + 1)th gap have
the same size as 0(j, p, G). Hence we can take one of these cuts as a worst cut.
We can repeat this argument until we reach a B-vertex on the other side of a
worst cut.

Lemma 5. There is a worst cut 0(j, ¢, G) of ¢ such that both v; and vjy1 are
bipartite universal.

Proof. By Lemma [ we know that there is a worst cut 8 = 6(j, p, G) such that
v; and v;j41 belong to different color classes. Let us now show that both v; and
vj4+1 are bipartite universal. Let a = v; € A and let b = v,;41 € B. By Lemma[3]
we know that a is adjacent to every B-vertex in L and b is adjacent to every A-
vertex in R. If ab; € E then a is bipartite universal as a result of the properties of
a strong ordering. If ab; ¢ E, we claim that G’ = G—b; is also a counterexample,
contradicting the assumption that G is a tight counterexample. We observe that
G’ is a bipartite permutation graph with strong ordering (c4,0p5—b;). Since b,
has no neighbors in L as a result of the properties of a strong ordering, € is a
cut of o—bs. Let ¢’ be the layout computed by MinCutBPG on input G’ and
(0a,05—0b;). Since no B-vertex was adjacent to by, every remaining B-vertex
appears in the same box after the deletion of b; as it did before. However, an
A-vertex a; that was adjacent to by might move one position to the left inside
the box X;. Hence a; can move past b toward the left, but it cannot move past
a, since the algorithm respects the strong ordering. Consequently, all vertices
of L to the left of a in ¢ appear also to the left of a in ¢'. Thus 0 is a cut
of ¢'. Since cw(G’) < cw(G) and the size of the cut did not change, G’ is a
counterexample, contradicting the assumption that G is a tight counterexample.
Hence a is bipartite universal. To show that b is bipartite universal we use similar
arguments: by symmetry, if a;b ¢ E then G’ = G—ay is a counterexample as
well. Finally, the case where v; € B and vj41 € A is completely symmetric.

Corollary 1. There is a worst cut 0(j, , G) of ¢ such that v; and vj41 belong
to different color classes and they are both bipartite universal.

Proof. The proof of Lemma [ takes a cut as mentioned in Lemma [, and shows
the claim of Lemma [l using the same cut. Hence, there is a cut that satisfies
both lemmas at the same time, and the corollary follows.

The proof of the following lemma has been omitted due to page restrictions.

Lemma 6. There is a worst cut 0(j, ¢, G) such that there are || A|/2] A-vertices
and [|B|/2] B-vertices on one side of the jth gap of ¢, and there are [|A|/2]
A-vertices and ||B|/2| B-vertices on the other side of the jth gap.

We are now ready to prove the main theorem of this paper.
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Theorem 2. The cutwidth of a bipartite permutation graph can be computed in
linear time.

Proof. We describe the main algorithm for computing the cutwidth of a bipar-
tite permutation graph G. First we compute a strong ordering of each connected
component of G. Then we run MinCutBPG on each connected component with
the computed strong ordering of that connected component. We concatenate the
returned layouts from each of these calls into one layout ¢ for G. The order in
which the layouts are concatenated does not matter, as the cuts at the concate-
nation points are empty. We check every position j with 1 < j < n to find a
largest cut 6(j, ¢, G), and we output |0(4, ¢, G)| as the cutwidth of G. If Algo-
rithm MinCutBPG is correct then clearly the output of the described algorithm
is equal to cw(G).

Before we prove the correctness of Algorithm MinCutBPG, let us analyze the
running time of the above algorithm. By the results of [I7], computing a strong
ordering for each connected component of G takes in total O(n + m) time. The
running time of Algorithm MinCutBPG is also O(n + m). To see this, observe
that in the first loop, when deciding the box of a B-vertex, we never need to
consider boxes to the left of the most recently considered box. By Observation
[ the next B-vertex is placed in either the box in which the previous B-vertex
was placed, or a box further to the right. Thus running MinCutBPG on each
connected component takes O(n + m) time for the whole graph. Concatenating
the returned layouts and finding the largest cut takes O(n) time, and the overall
running time follows.

Let us prove that Algorithm MinCutBPG correctly computes the cutwidth of
a connected bipartite permutation graph. Assume for contradiction that there
is a tight counterexample G = (4, B, E). By Lemma [6 we know that there is
a worst cut 6 = 0(j, p, G) of the layout ¢ computed by Algorithm MinCutBPG
on G, such that there are ||A|/2] A-vertices and [|B|/2] B-vertices on one side
of the jth gap of ¢, and [|A|/2] A-vertices and ||B|/2| B-vertices on the other
side. Let F ={ab¢ E |a € AAb€ B}. Then FNE =( and (A, B, (FUF)) is a
complete bipartite graph. Since by Lemma [3] vertices on either side of 6 induce a
complete bipartite graph, we have that for each ab € F, a and b are on different
sides of . Thus we can conclude the following about the size of 6:

Al ] 1B Al 1Bl
6| = —|F| .
1 L 2 2 + 2 2 |
Let S be any set of | |A|/2] +[|B|/2] vertices of G. We claim that [0(S, G)| > 6],
regardless of how many A-vertices and how many B-vertices there are in S. To
consider all possibilities, let there be [|A|/2] —x A-vertices and [|B|/2] + z
B-vertices in S, for an appropriate (positive, zero or negative) integer x. Con-

sequently, there are [|A|/2] + 2 A-vertices and ||B|/2| — z B-vertices in
(AUB)\S. Some of the set F' of missing edges might have endpoints on different
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sides of the cut (S, G) and some might not. Since (4, B, (F U F)) is a complete
bipartite graph, we know the following about the size of 6(5, G):

oo ([2]-)((2] )+ (14]-)(2] )
V) |12 o B0 o [T [0 [ [ 21
oo 2] 4212

Note that the value of the expression in parentheses in the last line of the
equation is 0, 1, or 2. Consequently, for all possible values of z, we have that
0(S,G)| = 10].

Let ¢* be an optimal layout of G, and let j = [|A]/2] + [|B|/2]. Let S* =
L(j,¢*,G). Hence S* contains ||A|/2| + [|B|/2] vertices and 0(j,¢*,G) =
0(S*, Q). Clearly cw(G) > |0(4, ¢*, G)| = |0(S*, G)|. However, for any such set
S*, we have shown above that a worst cut 6 of the layout computed by Algo-
rithm MinCutBPG has the property |6(S*,G)| > |0|. Therefore, cw(G) > |6],
contradicting the assumption that G is a counterexample. Consequently, no
counterexample exists, and the algorithm correctly computes the cutwidth of
every connected bipartite permutation graph.

4 Concluding Remarks

Algorithm MinCutBPG takes as input a connected bipartite permutation graph
G = (A,B,FE) and a strong ordering (04,05) of G. Before the algorithm is
called, O(n 4+ m) time is spent on recognizing G as a bipartite permutation
graph and computing a strong ordering of G. Within the same running time
one can assign two integers ¢(v) and r(v) to every vertex v € AU B for the
following purpose. If v € A then £(v) and r(v) are the positions of the leftmost
and the rightmost neighbor of v in op. If v € B then ¢(v) and r(v) are the
positions of the leftmost and the rightmost neighbor of v in 4. Observe that
with this information, d(v) can be computed in constant time, and the middle
neighbor of a vertex can be found in constant time. Consequently, if ¢(v) and
r(v) are supplied to MinCutBPG as input for every v € AU B, the running time
of MinCutBPG is in fact O(n).

With our results in addition to the results of [10], the cutwidth of two unre-
lated subclasses of permutation graphs can be computed in linear time: threshold
graphs and bipartite permutation graphs. We leave as an open problem to de-
cide the computational complexity of computing the cutwidth of permutation
graphs. In fact, it would be interesting to know the computational complexity of
cutwidth on other well known subclasses of permutation graphs, like cographs
or even their subclass trivially perfect graphs.
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