
On Stable Matchings and Flows

Tamás Fleiner�

Budapest University of Technology and Economics,
Department of Computer Science and Information Theory,

Magyar tudósok körútja 2. H-1117, Budapest, Hungary
fleiner@cs.bme.hu

Abstract. We describe a flow model that generalizes ordinary network
flows the same way as stable matchings generalize the bipartite matching
problem. We prove that there always exists a stable flow and generalize
the lattice structure of stable marriages to stable flows. Our main tool is a
straightforward reduction of the stable flow problem to stable allocations.

Keywords: Stable marriages; stable allocations; network flows.

1 Introduction

In the stable marriage problem of Gale and Shapley [6], there are n men and
n women and each person ranks the members of the opposite gender by an
arbitrary strict, individual preference order. A marriage scheme in this model is
a set of marriages between different men and women. Such a scheme is unstable
if there exists a blocking pair, that is, a man m and a woman w in such a way
that m is either unmarried or m prefers w to his wife, and at the same time, w
is either unmarried or prefers m to her partner. A marriage scheme is stable if
it is not unstable, that is, not blocked by any pair. It is a natural problem to
find a stable marriage scheme if it exists at all. Nowadays, it is already folklore
that for any preference rankings of the n men and n women, a stable marriage
scheme does exist. This theorem was proved first by Gale and Shapley in [6].
They constructed a special stable marriage scheme with the help of a finite
procedure, the so-called deferred acceptance algorithm. It also turned out that
for the existence of a stable scheme, it is not necessary that the number of men
is the same as the number of women or that for each person, all members of the
opposite gender are acceptable: the deferred acceptance algorithm is so robust
that it works properly in these more general settings.

Several interesting properties about the structure of stable marriage schemes
are known. Donald Knuth [7] attributes to John Conway the observation that

� Research is supported by OTKA grant K69027 and the MTA-ELTE Egerváry Re-
search Group (EGRES).

D.M. Thilikos (Ed.): WG 2010, LNCS 6410, pp. 51–62, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

52 T. Fleiner

stable marriages have a lattice structure: if each man picks the better assign-
ment out of two stable marriage schemes then another stable marriage scheme
is created in which each women receives the worse out of the two husbands.

There are further known extensions of the stable marriage problem. Bäıou
and Balinski proved in [1] that if each edge of the underlying bipartite graph
has a nonnegative capacity and each vertex has a nonnegative quota then the
accordingly modified deferred acceptance algorithm shows that there always ex-
ists a so called stable allocation. An allocation is an assignment of nonnegative
values to the edges that do not exceed the corresponding capacities such that
the total allocation of no vertex exceeds its quota. (That is, a “marriage” can
be formed with an “intensity” different from 0 and 1 and each participant has
an individual upper bound on his/her total “marriage intensity”.) An allocation
is stable if any unsaturated edge e has a saturated end vertex v such that no
edge e′ incident to v and preferred by v less than e has a positive value. Beyond
proving the existence of stable assignments, Bäıou and Balinski used flow-type
arguments to speed up the deferred acceptance algorithm in [1]. Later, Dean and
Munshi came up with an even faster algorithm for the same problem [3] that
also has to do with network flows.

It is fairly well-known that the bipartite matching problem can be formulated
in the more general network flow model, and the alternating path algorithm for
maximum bipartite matchings is a special case of the augmenting path algorithm
of Ford and Fulkerson for maximum flows. However, it seems that the question
whether there exists a flow generalization of the stable marriage theorem has
not been addressed so far. This very problem is in the focus of our present
work. In section 2, we formulate the stable flow problem and state a result
from [1] by Bäıou and Balinski on stable allocations. Section 3 contains the
stable flow theorem, a generalization of the Gale-Shapley theorem to flows. Our
reduction of the stable flow problem to the stable allocation problem resembles
to the reduction of the maximum flow problem to the maximum b-matching
problem. Actually, our construction has to do also with the one that Cechlárová
and Fleiner used in [2] to extend the stable roommates model to a multiple
partner model. Section 4 is devoted to certain structural results on stable flows,
in particular we generalize the lattice structure of stable marriages. To achieve
this, we lean on the construction we used for the reduction. The interested reader
can find the extended version of our work with the proofs and with an application
showing a certain “linking property of flows” in [5].

It turned out that our model is closely related to so-called “supply chains”
well-known in the Economics literature. Prior to our work, Ostrovsky had a
related result in [8]. There, he considers only acyclic networks, but instead of
the Kirchhoff law, he requires a less restrictive property that he calls “same
side substitutability” and “cross side complementarity”. In [8] the author proves
the existence of a “chain stable network” and justifies that these “chain stable
networks” form a lattice under a natural partial order. Ostrovsky’s results are
very close to ours and these cry for a common generalization. This will be subject
of a future work.

On Stable Matchings and Flows 53

2 Preliminaries

Recall that by a network we mean a quadruple (D, s, t, c), where D = (V, A)
is a digraph, s and t are different nodes of D and c : A → R+ is a function
that determines the capacity c(a) of each arc a of A. (Sometimes it is assumed
that no arc enters vertex s and no arc leaves vertex t. Though this assumption
would allow a simpler proof, we do not require it for the reason that the result is
significantly more general this way. Still, if the reader finds it difficult to follow
the argument, it might be convenient to consider the source-sink case and skip
the irrelevant parts.) A flow of network (D, s, t, c) is a function f : A → R such
that capacity condition 0 ≤ f(a) ≤ c(a) holds for each arc a of A and each
vertex v of D different from s and t satisfies the Kirchhoff law:

∑
uv∈A f(uv) =∑

vu∈A f(vu), that is, the amount of the incoming flow equals the amount of the
outgoing flow for v. Note that there is no conceptual difference between s and
t: both are ordinary vertices that are exempt from the Kirchhoff law. (It seems
that many people do not realize this. The reason perhaps is that when we teach
network flows, we used to emphasize that the role of s and t are so different:
one is “the source” and the other is a “the sink”. To convince the sceptic, it is
illuminative to find a formula for the minimum value of an st flow in a network.
It is not 0 in general.)

A network with preferences is a network (D, s, t, c) along with a preference
order ≤v for each vertex v, such that ≤v is a linear order on the arcs that are
incident to v. (Note that preference orders ≤s and ≤t do not play a role in the
notion of stability. Moreover, we shall never have to compare an incoming and an
outgoing arc of the same vertex, so we may think that for each vertex v there is
a preference order on the incoming arcs and another one on the outgoing ones.)
For a given network with preferences, it is convenient to think that vertices of D
are “players” that trade with a certain product. An arc uv of D from player u to
player v with capacity c(uv) represents the possibility that player u can supply
at most c(uv) units of product to player v. A “trading scheme” is described by
a flow f of the network, as for any two players u and v, flow f(uv) determines
the amount of product that u sells to v. Everybody in the market would like to
trade as much as possible, that is, each player v strives to maximize the amount
of flow through v. In particular, if flow f allows player v to receive some more
flow (that is, there are products on the market that v can buy) and v can also
send some more flow (i.e. some player would be happy to buy more products
from v) then flow f does not correspond to a stable market situation.

Another instability occurs when vw ≤v vu (player v prefers to sell to w rather
than to u) and flow f is such that w would be happy to buy more product from
v (that is f(vw) < c(vw) and w has some extra selling capacity), moreover
f(vu) > 0 (v sells a positive amount of products to u). In this situation, v
would send flow rather to w than to u, hence a stable market situation does not
allow the above situation. A similar instability can be described if we talk about
entering arcs instead of outgoing ones, that is, if we exchange the roles of buying
and selling.

54 T. Fleiner

To formalize our concept of stability we need a few definitions. For a network
(D, s, t, c) and flow f we say that arc a is f -unsaturated if f(a) < c(a), that is, if it
is possible to send some extra flow thorough P . A blocking walk of flow f is an al-
ternating sequence of incident vertices and arcs P = (v1, a1, v2, a2, . . . , ak−1, vk)
such that all the following properties hold.

arc ai points from vi to vi+1 for i = 1, 2, . . . , k − 1 and (1)
vertices v2, v3, . . . , vk−1 are different from s and t (2)

each arc ai is f -unsaturated and (3)
v1 ∈ {s, t} or there is an arc a′ = v1u such that f(a′) > 0 and a1 <v1 a′ (4)
vk ∈ {s, t} or there is an arc a∗ to vk such that f(a∗) > 0 and ak−1 <vk

a∗.
(5)

So directed walk P is blocking if each player that corresponds to an inner vertex
of P is happy and capable to increase the flow along P , moreover v1 can send
extra flow either because v1 = s or v1 = t is a terminal node or because v1

may decrease the flow toward some vertex u that v1 prefers less than v2, and at
last, vk can receive some extra flow either because either vk ∈ {s, t} or vk can
refuse some flow arriving from w whom vk ranks below vk−1. (As we mentioned
before, there is no difference between the roles of s and t in the network: none
of them have to obey the Kirchhoff law and both of them can send or receive
flow. If the reader is uncomfortable with the idea that the target node sends flow
to the source then consider the case where no arc enters s and no arc leaves t.
This assumption simplifies some of the proofs.) We say that an f -unsaturated
path P = (v1, v2, . . . , vk) is f -dominated at v1 if (4) does not hold, and P is
f -dominated at vk if (5) does not hold.

A flow f of a network with preferences is stable if no blocking walk exists for
f . In the stable flow problem we have given a network with preferences and our
task is to find a stable flow if such exists.

A special case of the stable flow problem is the stable allocation problem of
Bäıou and Balinski [1]. The stable allocation problem is defined by finite disjoint
sets W and F of workers and firms, a map q : W ∪ F → R, a set E of edges
between W and F along with a map p : E → R and for each worker or firm
v ∈ W ∪ F a linear order <v on those pairs of E that contain v. We shall refer
to pairs of E as “edges” and hopefully it will not cause ambiguity. Quota q(v)
denotes the maximum of total assignment that worker or firm v can accept and
capacity p(wf) of edge e = wf means the maximum allocation that worker w
can be assigned to firm f along e. An allocation is a nonnegative map g : E → R

such that g(e) ≤ p(e) holds for each e ∈ E and for any v ∈ W ∪ F we have

g(v) :=
∑

vx∈E

g(vx) ≤ q(v) , (6)

that is the total assignment g(v) of player v cannot exceed quota q(v) of v. If
(6) holds with equality then we say that player v is g-saturated. An allocation is
stable if for any edge wf of E at least one of the following properties hold:

On Stable Matchings and Flows 55

g(wf) = p(wf)(the particular employment is realized with full capacity), (7)

worker w is g-saturated and w does not prefer f to any of his employers
(we say that wf is g-dominated at w),

(8)

firm f is g-saturated and f does not prefer w to any of its employees
(that is, edge wf is g-dominated at firm f).

(9)

If g1 and g2 are allocations and w ∈ W is a worker then we say that allocation
g1 dominates allocation g2 for worker w (in notation g1 ≤w g2) if one of the
following properties is true:

either g1(wf) = g2(wf) for each f ∈ F (10)

or
∑

f ′∈F g1(wf ′) =
∑

f ′∈F g2(wf ′) = q(w), and

g1(wf) < g2(wf) and g1(wf ′) > 0 implies that wf ′ <w wf .
(11)

That is, if w can freely choose his allocation from max(g1, g2) then w would
choose g1 either because g1 and g2 are identical for w or because w is saturated
in both allocations and g1 represents w’s choice out of max(g1, g2). By exchanging
the roles of workers and firms, one can define domination relation ≤f for any
firm f , as well.

For any stable allocation problem, one can design a network (D, s, t, c) such
that V (D) = {s, t} ∪ W ∪ F , A(D) = {sw : w ∈ W} ∪ {ft : f ∈ F} ∪ {wf :
wf ∈ E} and c(sw) = q(w), c(ft) = q(f) and c(wf) = p(wf) for any worker w
and firm f . That is, we consider the underlying bipartite graph, orient its edges
from W to F , add new vertices s and t, with an arc from s to each worker-node
and an arc from each firm-node to t, and capacities are given by the original
edge-capacities and the corresponding quotas. Preference orders <v on the arcs
incident to v are induced by the preference order on the corresponding edges
incident to v, or, if there is no such edge, then it is a trivial linear order. It
is straightforward to see from the definitions that g is a stable allocation if
and only if there exists a stable flow f such that g(e) = f(e) holds for each
edge e ∈ E, where e is the arc that corresponds to edge e. The stable allocation
problem was introduced by Bäıou and Balinski as a certain “continuous” version
of the stable marriage problem in [1]. It turned out that a natural extension of
the deferred acceptance algorithm of Gale and Shapley [6] works for the stable
allocation problem and the structure of stable allocations is similar to that of
stable marriages. Beyond stating the existence of stable allocations, the theorem
below describes some structural properties of them. The interested reader finds
a proof based on Tarski’s fixed point theorem in [5].

Theorem 1 (See Bäıou and Balinski [1])
1. If stable allocation problem is described by W, F, E, p and q then there always

exists a stable allocation g. Moreover, if p and q are integral, then there exists
an integral stable allocation g.

2. If g1 and g2 are stable allocations and v ∈ W ∪F then g1 ≤v g2 or g2 ≤v g1

holds.

56 T. Fleiner

3. Stable allocations have a natural lattice structure. I.e., if g1 and g2 are
stable allocations then g1 ∨ g2 and g1 ∧ g2 are stable allocations, where

(g1 ∨ g2)(wf) =
{

g1(wf) if g1 ≤w g2

g2(wf) if g2 ≤w g1
and (12)

(g1 ∧ g2)(wf) =
{

g1(wf) if g1 ≤f g2

g2(wf) if g2 ≤f g1
(13)

In other words, if workers choose from two stable allocations then we get another
stable allocation, and this is also true for the firms’ choices. Moreover, it is true
that

(g1 ∨ g2)(wf) =
{

g1(wf) if g1 ≥f g2

g2(wf) if g2 ≥f g1
and (14)

(g1 ∧ g2)(wf) =
{

g1(wf) if g1 ≥w g2

g2(wf) if g2 ≥w g1
(15)

That is, in stable allocation g1∨g2 where each worker picks his better assignment,
each firm receives the worse out of the two. Similarly, in g1 ∧ g2 the choice of
the firms means the less preferred situation to the workers.

3 Stable Flows

Our goal in this section is to prove a generalization of Theorem 1. The “natural”
approach to achieve this would be an appropriate generalization of the deferred
acceptance algorithm of Gale and Shapley. The difficulty is that though the
Gale-Shapley algorithm can handle quota function q, somehow it has problems
with ensuring the Kirchhoff law.

Theorem 2. If network (D, s, t, c) and preference orders <v describe a stable
flow problem then there always exists a stable flow f . If capacity function c is
integral then there exists an integral stable flow.

Note that it is possible to prove Theorem 2 by a mixture of the deferred accep-
tance algorithm and the augmenting path algorithm. That is, starting from s or
from t, we follow “first choice walks” until they arrive to s or t and we augment
along them with observing the capacity constraints. If a new path collides with
an earlier one then some amount of flow is refused by the receiving vertex and
we try to reroute the flow excess from the starting point of the refused arc. We
have a stable flow as soon as we cannot find an augmenting path between the
terminals.

Our proof of Theorem 2 follows a different approach for two reasons. On
one hand, it seems that in the area of stable matchings neither the reduction
of one problem to another one nor the use of graph terminology is routine.
We demonstrate here that these methods may be fruitful. On the other hand,
the “deferred augmentation” algorithm we sketched above does not give much

On Stable Matchings and Flows 57

information about the rich structure of stable flows that we shall deduce from
the lattice property of stable allocations.

With the help of the given stable flow problem, we shall define a stable allo-
cation problem. For each vertex v of D calculate

M(v) := min

⎛

⎝
∑

xv∈A(D)

c(xv),
∑

vx∈A(D)

c(vx)

⎞

⎠ ,

that is, M(v) is the minimum of total capac-
ity of those arcs of D that enter and leave v.
So M(v) is an upper bound on the amount of
flow that can flow through vertex v. Choose
q(v) := M(v) + 1. Construct graph GD as
follows. Split each vertex v of D into two
distinct vertices vin and vout, and for each
arc uv of D add edge uoutvin to GD.

v
c2

c5c1

c3

c4

c2

c5

q(v)

c1

c3

c4
first

vout
q(v)

vin

last

firstlast

For each vertex v of D different from s and t add two parallel edges between
vin and vout: to distinguish between them we will refer them as vinvout and
voutvin. Let p(vinvout) = p(voutvin) := q(v), p(uoutvin) := c(uv) and q(vin) =
q(vout) := q(v). To finish the construction of the stable allocation problem, we
need to fix a linear preference order for each vertex of GD. For vertex vin let
vinvout be the most preferred and voutvin be the least preferred edge (if these
edges are present), and the order of the other edges incident to vin are coming
from the preference order of v on the corresponding arcs. For vertex vout the
most preferred edge is voutvin and the least preferred one is vinvout (if it makes
sense), and the other preferences are coming from <v.

The proof of Theorem 2 is a consequence of the following Lemma that de-
scribes a close relationship between stable flows and stable allocations.

Lemma 1. If network (D, s, t, c) and preference orders <v describe a stable flow
problem then f : A(D) → R is a stable flow if and only if there is a stable
allocation g of GD such that f(uv) = g(uoutvin) holds for each arc uv of D.

Proof. Assume first that g is a stable allocation in GD. This means that none
of the vinvout edges is blocking, so either g(vinvout) = p(vinvout) = q(v) or
vinvout must be g-dominated at vout, hence vout is assigned to q(vout) = q(v)
amount of allocation. As q(v) is more than the total capacity of arcs leaving
v, g(vinvout) > 0 or g(voutvin) > 0 must hold. So vout must have exactly q(v)
amount of allocation whenever vinvout is present. An exchange of in and out
shows that the presence of voutvin implies that vin has exactly q(vin) = q(v)
allocation. These observations directly imply that the Kirchhoff law holds for f
at each node different from s and t. The capacity condition is also trivial for
f , hence f is a flow of D. Observe that by the choice of q, neither s nor t is
g-saturated hence no edge is g-dominated at s or at t.

58 T. Fleiner

Assume that walk P = (v1, v2, . . . , vk) blocks flow f . As P is f -unsaturated,
each edge vout

i vin
i+1 of GD must be g-dominated at vout

i or at vin
i+1. Walk P is

blocking, hence either v1 ∈ {s, t}, and hence vout
1 vin

2 cannot be dominated at
v1 or there is a v1u arc with positive flow value such that v1u > v1v2. In both
cases, edge vout

1 vin
2 has to be g-dominated at vin

2 . It means that g(vin
2 vout

2) > 0.
As arc v2v3 is f -unsaturated, it follows that edge vout

2 vin
3 must be g-dominated

at vin
3 . This yields that g(vin

3 vout
3) > 0. Again, arc v3v4 is f -unsaturated, hence

edge vout
3 vin

4 has to be g-dominated at vin
4 , and so on. At the end we get that

vout
k−1v

in
k is g-dominated at vin

k . If vk ∈ {s, t} then it is impossible as both these
vertices are g-unsaturated. Otherwise by the blocking property of P there is an
arc wvk with positive flow and vk−1vk <vk

wvk, hence again, vout
k−1v

in
k cannot be

g-dominated at vin
k . The contradiction shows that no path can block f .

Assume now that f is a stable flow of D. We have to exhibit a stable allocation
g of GD such that f is the “restriction” of g. To determine g, our real task is to
find the g(vinvout) and g(voutvin) values, as all other values of g are determined
directly by f : g(uoutvin) = f(uv). The stable allocation we look for might not
be unique. In what follows, we shall construct the canonical representation gf

of f .
Let S be the set of those vertices u of D such that there exists an f -unsaturated

directed path P = (v1, v2, . . . , vk = u) that is not f -dominated at v1. As no path
can block f , neither s, nor t belongs to S. To determine gf , for each vertex
v 	= s, t allocate the remaining quota of v to vinvout or to voutvin depending on
whether v ∈ S or v 	∈ S holds. More precisely, define

gf (vinvout) =
{

q(v) − ∑
x∈V (D) f(vx) if v ∈ S

0 if v 	∈ S
and (16)

gf (voutvin) =
{

q(v) − ∑
x∈V (D) f(xv) if v 	∈ S

0 if v ∈ S .
(17)

By the definition of q, both gf (vinvout) and gf (voutvin) are nonnegative. If v ∈ S
then the amount of total allocation of vout is q(v) = q(vout) by (16), and for
v 	∈ S the amount of total allocation of vin is q(v) = q(vin) by (17). So if v 	= s, t
then the total allocation of vin and vout is q(v) by the Kirchhoff law. The total
allocations of sin, sout and tin, tout is less than q(s) and q(t) respectively, by the
choice of q. That is, gf is an allocation on GD.

To justify the stability of gf , we have to show that no blocking edge exists.
We have seen earlier, that the presence of vinvout in GD means that vout g-
dominates vinvout. Similarly, each edge voutvin is gf -dominated at vin. Assume
now that gf(voutuin) < p(voutuin) = c(vu) holds.

If there is an f -unsaturated path P that is not f -dominated at its starting
node and ends with arc vu then u ∈ S by the definition of S, hence gf (uoutuin) =
0. Moreover, if some edge woutuin with voutuin <uin woutuin would have positive
allocation then path P would block f , a contradiction. As uin has q(uin) amount
of total allocation, edge voutuin is gf -dominated at uin.

The last case is when any f -unsaturated path that ends with arc vu is f -
dominated at its starting vertex. In particular, v 	∈ S, so gf (vinvout) = 0.

On Stable Matchings and Flows 59

Moreover, f -unsaturated path (v, u) must be f -dominated at v, hence v 	∈ {s, t}
and voutuin is gf -dominated at vout as vout has q(v) = q(vout) amount of allo-
cation. The conclusion is that g := gf is a stable allocation, just as we claimed.

At this point, we are ready to prove our main result.

Proof (Proof of Theorem 2). There is a stable allocation for GD by Theorem
1, hence there is a stable flow for D due to the first part of Theorem 1. If c is
integral then q(v) is an integer for each vertex v of D hence p is integral for
GD. The integrality property of stable allocations in the first part of Theorem
1 shows that there is an integral stable allocation g of GD that describes an
integral stable flow f of D.

At the end of this section let us point out a weakness of our stability concept.
The motivation behind the notion is that we look for a flow that corresponds
to an equilibrium situation where the players represented by the vertices of the
network act in a selfish way. This equilibrium situation occurs if no coalition of
the players can block the underlying flow f , and this blocking is defined by a
certain f -unsaturated path (or cycle through s or t) along which the players are
capable and prefer to increase the flow. However, in some sense an f -unsaturated
cycle C per se causes instability because the players of C mutually agree to send
some extra flow along C. So it is natural to define flow f of network (D, s, t, c)
with preferences to be completely stable if f is stable and there exists no f -
unsaturated cycle in D whatsoever. If f is a stable flow then we can “augment”
along f -unsaturated cycles, and hence we can construct a flow f ′ ≥ f such that
there no longer exists an f ′-unsaturated cycle. But unfortunately flow f ′ might
not be stable any more because we might have created a blocking walk by the
cycle-augmentations.

In fact, there exist networks with preferences that do not have a completely
stable flow. One example is on the figure: each arc has unit capacity, preferences
are indicated around the vertices: lower rank is preferred to the higher.

As no arc leaves subset U := {a, b, c} of the
vertices, no flow can leave U , hence no flow enters
U . In particular, arc sa has zero flow. If we as-
sume indirectly that f is a completely stable flow
then cycle abc cannot block, hence there must be
a unit flow along it. But now path sa is blocking,
a contradiction.

s

t

b

c

Stable flows have a blocking cycle

a

2

2

1

1 1
12

3

2

1

4 The Structure of Stable Flows

It is well-known about the stable marriage problem that in each stable marriage
scheme, the same set of participants get married. That is, if someone does not get
a marriage partner in some stable scheme then this very person remains single
in each stable marriage schemes. A generalization of this is the rural hospital
theorem of Roth [9] (see also Theorem 5.13 in [10]). It is about the college model,

60 T. Fleiner

where instead of men we work with colleges, women correspond to students and
each college has a quota on the maximum number of students. In the college
admission problem, it is true that if a certain college c cannot fill up its quota in
a stable admission scheme then c receives the same set of students in any stable
admission scheme. (The phenomenon is named after the assignment problem of
medical interns to hospitals.)

It seems that the rural hospital theorem cannot be generalized to the sta-
ble flow problem. It may happen in a network that a certain vertex transmits
different amounts of flow in two stable flows.

An example is shown in the figure where
each arc has unit capacity. There are two sta-
ble flows: one is along path sbact and the other
follows path sbdct. So in one stable flow, ver-
tex a transmits unit flow and no flow passes
through a in the other one.

a

Network for a stable flow

s tc

d
b

2 1

1

2

12

3
1

2
3

There is however a consequence of the rural hospital theorem that can be gen-
eralized, namely, that the size of a stable matching is always the same. We have
seen that the stable allocation problem is a special case of the stable flow prob-
lem, and from the construction it is apparent that the size of a stable matching
(more precisely the total amount of assignments in a stable allocation) equals
the value of the corresponding flow.

Theorem 3. If network (D, s, t, c) and preference orders <v describe a stable
flow problem and f1 and f2 are stable flows then the value of f1 and f2 are the
same. More generally, f1(a) = f2(a) for any arc of D that is incident to s (or
to t).

Proof. Lemma 1 implies that there exist stable allocations g1 and g2 of GD that
correspond to stable flows f1 and f2, respectively. The value of a flow is the net
amount that leaves s in D, or, in GD one can calculate it as the difference of
total allocation of sout and sin. This means that the second part of the theorem
implies the first one.

As there is no edge between sout and sin, the choice of q(s) implies that both
sout and sin are g1-unsaturated. Hence property (11) can hold neither for sin nor
for sout. But Theorem 1 implies that g1 and g2 are ≤sout and ≤sin -comparable.
So property (10) must be true for both flows g1 and g2 for vertices v = sout and
v = sin. This shows the second part of the Theorem for s. The argument for t
is analogous to the above one.

As we have seen in Theorem 1, stable allocations have a lattice structure. Based
on the connection of stable allocations and stable flows described in Lemma 1,
we can prove that stable flows of a network with preferences also form a natural
lattice. So assume that f is a stable flow in network (D, s, t, c,) with preferences
and let stable allocation gf of GD be the canonical representation of f as in the
proof of Lemma 1.

Observe that any vertex v 	= s, t of D, exactly one of gf (vinvout) and
gf (voutvin) is positive by the choice of q and gf . For stable flow f , we can classify

On Stable Matchings and Flows 61

the vertices of D different from s and t: v is an f -vendor if gf (vinvout) > 0 and
v is an f -customer if gf(voutvin) > 0. If v is an f -vendor then no edge voutuin

can be gf -dominated at vout (as gf (vinvout) > 0), hence player v sends as much
flow to other vertices as much they accept. Similarly, if v is an f -customer then
no edge uoutvin can be gf -dominated at vout, that is, player v receives as much
flow as the others can supply her.

To explore the promised lattice structure of stable flows, let f1 and f2 two
stable flows with canonical representations gf1 and gf2 , respectively. From The-
orem 1 we know that stable allocations form a lattice, so gf1 ∨ gf2 and gf1 ∧ gf2

are also stable allocations of GD, and by Theorem 2, these stable allocations
define stable flows f1 ∨ f2 and f1 ∧ f2, respectively. How can we determine these
latter flows directly, without the canonical representations? To answer this, we
translate the lattice property of stable allocations on GD to stable flows of D.

Theorem 3 shows that stable flows cannot differ on arcs incident to s or t, so
on these arcs f1∨f2 and f1∧f2 are determined. However, vertices different from
s and t may have completely different situations in stable flows f1 and f2. The
two colour classes of graph GD are formed by the vin and vout type vertices,
respectively. So, by Theorem 1, gf1 ∨gf2 can be determined such that (say) each
vertex vout selects the better allocation and each vertex vin receives the worse
allocation out of the ones that gf1 and gf2 provides them. Similarly, for stable
allocation gf1 ∧ gf2 the “in”-type vertices choose according to their preferences
and the “out”-type ones are left with the less preferred allocations. This means
the following in the language of flows. If we want to construct f1 ∨ f2 and v is a
vertex different from s and t then either all arcs entering v will have the same
flow in f1 ∨ f2 as in f1, or for all arcs a entering v we have (f1 ∨ f2)(a) = f2(a)
holds. A similar statement is true for the arcs leaving v. To determine which of
the two alternatives is the right one, the following rules apply:

– If v is an f1-vendor and an f2-customer then v chooses f2. If v is an f2-vendor
and an f1-customer then v chooses f1. That is, each vertex strives to be a
customer.

– If v is an f1-vendor and an f2-vendor and v transmits more flow in f1 than in
f2 (i.e. 0 < gf1(vinvout) < gf2(vinvout)) then v chooses f1. That is, vendors
prefer to sell more.

– If v is an f1-customer and an f2-customer and v transmits more flow in f1

than in f2 (i.e. 0 < gf1(voutvin) < gf2(voutvin)) then v chooses f2. That is,
customers prefer to buy less.

– Otherwise v is a customer in both f1 and f2 or v is a vendor in both flows and
v transmits the same amount in both flows (i.e. gf1(voutvin) = gf2(voutvin)
and gf1(vinvout) = gf2(vinvout)). In this situation, v chooses the better “sell-
ing position” and gets the worse “buying position” out of stable flows f1 and
f2.

Clearly, for the construction of f1 ∧ f2, one always has to choose the “other”
options than the one that the above rules describe.

62 T. Fleiner

The lattice structure of stable flows defines a partial order on stable flows:
f1
 f2 if and only if f1∨f2 = f2 holds, or equivalently, if f1∧f2 = f1 is true. By
to the above rules, this means that each f1-customer v is an f2-customer, such
that v buys at least as much in f1 as in f2. Each f2-vendor u is an f1-vendor
and u sells at most as much in f1 as in f2. If w plays the same role (vendor
or customer) in both flows and transmits the same amount then v prefers the
selling position of f2 and the buying position of f1.

Acknowledgment. The author kindly acknowledges the support of the EGRES.

References

1. Bäıou, M., Balinski, M.: The stable allocation (or ordinal transportation) problem.
Math. Oper. Res. 27(3), 485–503 (2002)

2. Cechlárová, K., Fleiner, T.: On a generalization of the stable roommates problem.
ACM Trans. Algorithms 1(1), 143–156 (2005)

3. Dean, B.C., Munshi, S.: Faster algorithms for stable allocation problems. In: Pro-
ceedings of the MATCH-UP (Matching Under Preferences) Workshop at ICALP
2008, Reykjavik, pp. 133–144 (2008)

4. Fleiner, T.: A fixed point approach to stable matchings and some applications.
Mathematics of Operations Research 28(1), 103–126 (2003)

5. Fleiner, T.: On stable matchings and flows. Technical Report TR-2009-11, Egerváry
Research Group, Budapest (2009), http://www.cs.elte.hu/egres

6. Gale, D., Shapley, L.S.: College admissions and stability of marriage. Amer. Math.
Monthly 69(1), 9–15 (1962)

7. Knuth, D.E.: Stable marriage and its relation to other combinatorial problems.
American Mathematical Society, Providence (1997); An introduction to the math-
ematical analysis of algorithms, Translated from the French by Martin Goldstein
and revised by the author

8. Ostrovsky, M.: Stability in supply chain networks. American Economic Re-
view 98(3), 897–923 (2006)

9. Roth, A.E.: On the allocation of residents to rural hospitals: a general property of
two-sided matching markets. Econometrica 54(2), 425–427 (1986)

10. Roth, A.E., Oliveria Sotomayor, M.A.: Two-sided matching. Cambridge University
Press, Cambridge (1990); A study in game-theoretic modeling and analysis, With
a foreword by Robert Aumann

11. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. of
Math. 5, 285–310 (1955)

http://www.cs.elte.hu/egres

	On Stable Matchings and Flows
	Introduction
	Preliminaries
	Stable Flows
	The Structure of Stable Flows
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

