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Preface

The 36th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2010) took place in Zarós, Crete, Greece, June 28–30, 2010.
About 60 mathematicians and computer scientists from all over the world
(Australia, Canada, Czech Republic, France, Germany, Greece, Hungary, Israel,
Japan, The Netherlands, Norway, Poland, Switzerland, the UK, and the USA)
attended the conference.

WG has a long tradition. Since 1975, WG has taken place 21 times in
Germany, four times in The Netherlands, twice in Austria, twice in France and
once in the Czech Republic, Greece, Italy, Norway, Slovakia, Switzerland, and
the UK.

WG aims at merging theory and practice by demonstrating how concepts
from graph theory can be applied to various areas in computer science, or
by extracting new graph theoretic problems from applications. The goal is to
present emerging research results and to identify and explore directions of future
research. The conference is well-balanced with respect to established researchers
and young scientists.

There were 94 submissions, two of which where withdrawn before entering
the review process. Each submission was carefully reviewed by at least 3, and
on average 4.5, members of the Program Committee. The Committee accepted
28 papers, which makes an acceptance ratio of around 30%. I should stress that,
due to the high competition and the limited schedule, there were papers that
were not accepted while they deserved to be.

The program also included two excellent invited talks: the first one was given
by Dimitris Achlioptas (Department of Computer Science, UC Santa Cruz) on
“Algorithmic Barriers from Phase Transitions in Graphs”and the second one was
given by Erik D. Demaine (MIT Computer Science and Artificial Intelligence
Laboratory) on “Algorithmic Graph Minors and Bidimensionality.”This volume
contains the abstracts of both talks.

I wish to thank all those who contributed to the success of WG 2010. While
it is impossible to enumerate them all, this includes the authors for submitting
high-quality papers, the reviewers and the members of the Program Committee
for their detailed work, the speakers for their well-prepared talks, all the partic-
ipants for their enthusiasm, and the personnel of the hotel “Idi” for the pleasant
conference environment and facilities.

I am grateful to all the students of the Department of Mathematics of the
National and Kapodistrian University of Athens that helped with the organiza-
tion. Among people from the Department of Mathematics, University of Crete, I
should thank Christos Kourouniotis for his link to the Anogia Academic Village
and Mihalis Kolountzakis for his valuable advice. But most of all, I am indebted
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to the conference secretary Marina Vassilaki for her professionality and diligence
during the preparation and the management of the conference.

All material of the conference, including photos and videos of the invited
talks, can be found at the homepage of WG 2010 (http://www.math.uoa.gr/
wg2010/). Special thanks to Charalampos Tampakopoulos for his programming,
development, and hosting services.

Finally, I should also thank the EasyChair team for the wonderful conference
management system.

September 2010 Dimitrios M. Thilikos
Δημήτριος Μ. Θηλυκός

WG 2010

Ζαρός, Κρήτη



The Long Tradition of WG
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Algorithmic Barriers from Phase
Transitions in Graphs

Dimitris Achlioptas

Department of Computer Science,

UC Santa Cruz

optas@cs.ucsc.edu

Abstract. For a number of optimization problems on random graphs

and hypergraphs, e.g., k-colorings, there is a very big gap between the

largest average degree for which known polynomial-time algorithms can

find solutions, and the largest average degree for which solutions provably

exist. We study this phenomenon by examining how sets of solutions

evolve as edges are added. We prove in a precise mathematical sense that,

for each problem studied, the barrier faced by algorithms corresponds

to a phase transition in the problems solution-space geometry. Roughly

speaking, at some problem-specific critical density, the set of solutions

shatters and goes from being a single giant ball to exponentially many,

well-separated, tiny pieces. All known polynomial-time algorithms work

in the ball regime, but stop as soon as the shattering occurs. Besides

giving a geometric view of the solution space of random instances our

results provide novel constructions of one-way functions.

D.M. Thilikos (Ed.): WG 2010, LNCS 6410, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Algorithmic Graph Minors and Bidimensionality

Erik D. Demaine

MIT Computer Science and Artificial Intelligence Laboratory

edemaine@mit.edu

Abstract. Graph Minor Theory, developed by Robertson and Seymour

over two decades, provides powerful structural results about a wide fam-

ily of graph classes (anything closed under deletion and contraction). In

recent years, this theory has been extended and generalized to apply to

many algorithmic problems. Bidimensionality theory is one approach to

algorithmic graph minor theory. This theory provides general tools for

designing fast (constructive, often subexponential) fixed-parameter algo-

rithms, kernelizations, and approximation algorithms (often PTASs), for

a wide variety of NP-hard graph problems for graphs excluding a fixed

minor. For example, some of the most general algorithms for feedback

vertex set and connected dominating set are based on bidimensionality.

Another approach is “deletion and contraction decompositions”, which

split any graph excluding a fixed minor into a bounded number of small-

treewidth graphs. For example, this approach has led to some of the

most general algorithms for graph coloring and the Traveling Salesman

Problem on graphs. I will describe these and other approaches to efficient

algorithms through graph minors.

D.M. Thilikos (Ed.): WG 2010, LNCS 6410, p. 2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Complexity Results for the Spanning Tree Congestion
Problem

Yota Otachi1, Hans L. Bodlaender2, and Erik Jan van Leeuwen3

1 Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan, JSPS
Research Fellow

otachi@dais.is.tohoku.ac.jp
2 Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508

TB Utrecht, The Netherlands
hansb@cs.uu.nl

3 Department of Informatics, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
E.J.van.Leeuwen@ii.uib.no

Abstract. We study the problem of determining the spanning tree congestion of
a graph. We present some sharp contrasts in the complexity of this problem. First,
we show that for every fixed k and d the problem to determine whether a given
graph has spanning tree congestion at most k can be solved in linear time for
graphs of degree at most d. In contrast, if we allow only one vertex of unbounded
degree, the problem immediately becomes NP-complete for any fixed k ≥ 10. For
very small values of k however, the problem becomes polynomially solvable. We
also show that it is NP-hard to approximate the spanning tree congestion within
a factor better than 11/10. On planar graphs, we prove the problem is NP-hard in
general, but solvable in linear time for fixed k.

1 Introduction

Spanning tree congestion is a relatively new graph parameter, which was formally de-
fined by Ostrovskii [21] in 2004. Prior to Ostrovskii [21], Simonson [25] studied the
same parameter under a different name to approximate the cutwidth of outerplanar graphs.
Although several graph theoretical results have been presented [7, 16–18, 20, 22] after
Ostrovskii [21], so far, no results on the complexity of the problem were known. In this
paper, we present the first such results. The parameter is defined as follows. Let G be a
graph and T a spanning tree of G. The detour for an edge {u, v} ∈ E(G) is the unique u–v
path in T . We define the congestion of e ∈ E(T ), denoted by cngG,T (e), as the number of
detours that contain e. The congestion of G in T , denoted by cngG(T ), is the maximum
congestion over all edges in T . The spanning tree congestion of G, denoted by stc(G), is
the minimum congestion over all spanning trees of G. We denote by STC the problem
of determining whether a given graph has spanning tree congestion at most given k. If
k is fixed, we denote the problem by k-STC.

The name of the parameter comes from the following analogy [7]: Edges of G are
roads, and edges of T are those roads which are cleaned from snow after snowstorms.
For an edge h ∈ E(T ), it is natural to define the congestion of h as the number of detours
passing through h. Clearly, the congestion of the busiest roads should be minimized. The

D.M. Thilikos (Ed.): WG 2010, LNCS 6410, pp. 3–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



4 Y. Otachi, H.L. Bodlaender, and E.J. van Leeuwen

tree spanner problem [6] is a variant of the problem, which minimize the dilation, that is,
the length of the longest detours. Several pairs of congestion and dilation problems are
known [23]. The most famous pair is the cutwidth problem and the bandwidth problem.

The rest of the paper is organized as follows. Section 2 provides some definitions and
basic facts. In Section 3, we study the problem for planar graphs, and show that STC
for planar graphs is NP-complete, and k-STC for planar graphs is solvable in linear
time. In Section 4, we show that k-STC can be solved in linear time for 1 ≤ k ≤ 3. In
Section 5, we show that k-STC can be solved in linear time also for graphs of bounded
degree. In Section 6, we show that k-STC is NP-complete for edge weighted graphs if
k ≥ 10. Using the result of Section 6, we show in Section 7 that for k ≥ 10, k-STC is
NP-complete for simple unweighted graphs with only one vertex of unbounded degree.
In the last section, we conclude the paper and show the approximation hardness of the
spanning tree congestion. Due to space limitation, some proofs are omitted.

2 Preliminaries

We extend the notion of spanning tree congestion to edge weighted graphs, by defining
the congestion of an edge as the sum of the weights of edges whose detours pass through
the edge. We denote by w(F) the sum of weights of edges in F for an edge set F ⊆ E(G).

Let G be a connected graph. For S ⊆ V(G), we denote by G[S ] the subgraph induced
by S . For an edge e ∈ E(G), we denote by G − e the graph obtained by the deletion of
e from G. For A, B ⊆ V(G), we define EG(A, B) = {u, v ∈ E(G) | u ∈ A, v ∈ B}.
For S ⊆ V(G), we define the boundary edges of S , denoted by θG(S ), as θG(S ) =
EG(S ,V(G) \ S ). Using this notation, we can redefine cngG,T (e) as cngG,T (e) = |θG(Ae)|,
where Ae is the vertex set of one of the two components of T − e. From this redefinition
through boundary edges, we can see that c-cut trees defined by Fekete and Kremer [12]
and spanning trees of congestion at most c are equivalent.

For an edge e in a tree T , we say that e separates A and B if A ⊆ Ae and B ⊆ Be,
where Ae and Be are the vertex sets of the two components of T − e. Clearly, if T is a
spanning tree of G and e ∈ E(T ) separates A and B, then cngG,T (e) ≥ |E(A, B)| (if G is
weighted, cngG,T (e) ≥ w(E(A, B))). If e separates A and B, we also say that e divides
A ∪ B into A and B.

From the definition of the spanning tree congestion, the following proposition holds.

Proposition 2.1. The spanning tree congestion of G equals the maximum spanning tree
congestion of its biconnected components.

Ostrovskii [21] showed the following lower bound on the spanning tree congestion of
graphs.

Lemma 2.2 ([21]). Let G be a graph, u, v ∈ V(G). If G has k edge disjoint u–v paths,
then stc(G) ≥ k.

Let G be a graph. We say that a graph H is obtained from G by an edge subdivision
if V(H) = V(G) ∪ {w} and E(H) = E(G) \ {{u, v}} ∪ {{u,w}, {w, v}} for some edge
{u, v} ∈ E(G) and a new vertex w. We say that H is a subdivision of G if H can be
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obtained from G by a finite sequence of edge subdivisions. If H is a subdivision of a
subgraph of G, then H is a topological minor of G.

The concept of treewidth was introduced by Robertson and Seymour in their project
of Graph Minor Theory (see [24] for example). A tree decomposition of a graph G is a
pair (X, T ), where T is a tree and X = {Xi | i ∈ V(T )} is a collection of subsets of V(G)
such that

–
⋃

i∈V(T ) Xi = V(G),
– for each edge {u, v} ∈ E(G), there is a node i ∈ V(T ) such that u, v ∈ Xi, and
– for each v ∈ V(G), the set of nodes {i | v ∈ Xi} forms a subtree of T .

The elements in X are called bags. The width of a tree decomposition (X, T ) equals
maxi∈V(T ) |Xi| − 1. The treewidth of G, denoted by tw(G), is the minimum width over all
tree decompositions of G.

3 Spanning Tree Congestion of Planar Graphs

Ostrovskii [22] has asked whether STC can be solved in polynomial time for planar
graphs. By combining a number of known results, we answer this question negatively
(assuming P � NP), and show that k-STC can be solved in linear time for planar graphs.
Our results follow easily from some known results for the tree spanner problem. Let G
be a graph and T a spanning tree of G. If distT (u, v) ≤ k for any {u, v} ∈ E(G), then T
is a tree k-spanner [6]. We denote by tsp(G) the minimum number k such that G has a
tree k-spanner. For planar graphs, the following results are known.

Lemma 3.1 ([12]). It is NP-complete to decide tsp(G) ≤ k for planar graphs G and
integers k.

Lemma 3.2 ([11]). For every fixed k, tsp(G) ≤ k can be decided in linear time for
planar graphs G.

A dual graph G∗ of a planar graph G is a graph that has the vertex set F (G), the faces
of a certain embedding of G, and in which two vertices f , f ′ ∈ F (G) are adjacent in G∗
if and only if the two faces f and f ′ have a common edge in G. It is known that a graph
G is planar if and only if G is a dual graph of a planar graph (see e.g. [10]). Since a cut
in G corresponds to a cycle in G∗, the following relation holds.

Lemma 3.3 ([12]). For any planar graph G, stc(G) = tsp(G∗) + 1.

A planar embedding of a planar graph can be constructed in linear time by an algorithm
proposed by Hopcroft and Tarjan [15]. From a planar embedding of a planar graph
G, we can easily construct geometrically a dual graph G∗ (see e.g. [19]). Note that
G = (G∗)∗. Thus, from Lemma 3.3, we can have the conclusions of this section.

Theorem 3.4. It is NP-complete to decide stc(G) ≤ k for planar graphs G and integers
k.

Theorem 3.5. For every fixed k, stc(G) ≤ k can be decided in linear time for planar
graphs G.
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4 Linear Time Solvability of k-STC for 1 ≤ k ≤ 3

In this section, we show that k-STC can be solved in linear time for 1 ≤ k ≤ 3. First, we
give characterizations for graphs of spanning tree congestion one and two.

Theorem 4.1. For a connected graph G, stc(G) = 1 if and only if G is a tree.

Proof. If G is a tree, then clearly stc(G) = 1. Assume G has a cycle C. Then, for any
two vertices in C, G has two edge disjoint paths between them. Thus, by Lemma 2.2, G
cannot have any cycle. 
�
A graph G is a cactus graph if no two cycles in G have a common edge.

Theorem 4.2. For a connected graph G, stc(G) = 2 if and only if G is not a tree but a
cactus graph.

Proof. Clearly, every biconnected component of a cactus graph G is either a cycle or
a single edge, and thus, G has spanning tree congestion at most two. It is easy to ver-
ify that a biconnected graph G has no vertex pair u, v such that G contains three edge
disjoint u–v paths if and only if G is either a cycle or a single edge. Thus, from Propo-
sition 2.1 and Lemma 2.2, the theorem holds. 
�
Obviously, the recognition of trees and cactus graphs can be done in linear time, by
using standard depth first search techniques (see e.g. [8]). For k = 3, we need the
following lemma.

Lemma 4.3. For a graph G, if stc(G) ≤ 3, then G is planar.

Proof. Suppose stc(G) ≤ 3 and G is not planar. From Kuratowski’s Theorem (see
e.g. [10]), G has either K5 or K3,3 as a topological minor. If G has K5 as a topological
minor, then clearly G contains two vertices such that G has at least four edge disjoint
paths between them. From Lemma 2.2, we have stc(G) ≥ 4, which is a contradiction.
Thus, G contains K3,3 as a topological minor. Let G′ be this topological minor, and
X = {x1, x2, x3}, Y = {y1, y2, y3} ⊂ V(G′) be the two sets corresponding to the two
color classes of K3,3. By Lemma 7.2 edge subdivisions do not change the spanning
tree congestion. Thus, stc(G′) = stc(K3,3). Moreover, by Hruska’s result that shows
stc(Km,n) = m + n − 2 [16], we can conclude stc(G′) = 4. Now we need the following
two propositions.

Proposition 4.4. Let H be a connected graph and H′ a connected subgraph of H. If
a spanning tree S of H has a spanning tree S ′ of H′ as a subgraph, then cngH(S ) ≥
cngH′(S

′).

Proof. Let e ∈ E(S ′) ⊆ E(S ). Assume e divides V(H) into A and B, and V(H′) into
A′ and B′. Clearly, A′ ⊆ A and B′ ⊆ B. Thus, cngH,S (e) = |E(A, B)| ≥ |E(A′, B′)| =
cngH′,S ′ (e). 
�
Proposition 4.5. Let H be a connected graph, S a spanning tree of H, and A, B ⊂
V(H). If H has p edge disjoint paths P1, . . . , Pp between A and B, and e ∈ E(S ) sep-
arates A and B, then cngH,S (e) ≥ p. Moreover, if e does not belong to any Pi, then
cngH,S (e) ≥ p + 1.
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Proof. For each Pi, there exists at least one edge ei such that the detour of ei in S passes
through the edge e. Since the paths P1, . . . , Pp are edge disjoint, cngH,S (e) ≥ p. Since e
itself is the detour for e, cngH,S (e) ≥ p + 1 if e � {ei | 1 ≤ i ≤ p}. 
�
We will show that cngG,T (e) > 3 for any spanning tree T of G. If T has a spanning
tree T ′ of G′ as a subgraph, then by Proposition 4.4, cngG(T ) ≥ cngG′ (T

′) ≥ 4. Thus
T contains no such a subgraph T ′. This implies that T contains an edge e � E(G′) that
divides X ∪ Y into two nonempty sets, say A and B. Since there are nine edge disjoint
paths between X and Y in G′, there exist at least three edge disjoint paths between
A ⊂ X ∪ Y and B = (X ∪ Y) \ A in G′. Proposition 4.5 implies cngG,T (e) ≥ 4 since
e � E(G′). 
�
From Theorem 3.5 and Lemma 4.3, 3-STC can be solved in linear time, with the linear
time algorithm for recognizing planar graphs [15]. This proves the following theorem.

Theorem 4.6. For 1 ≤ k ≤ 3, k-STC can be solved in linear time.

5 Linear Time Solvability of k-STC for Graphs of Bounded
Degree

In this section, we show that k-STC can be solved in linear time for graphs of bounded
degree. To this end, we use Courcelle’s theorem and a connection between the spanning
tree congestion and the treewidth. Courcelle [9] showed that every problem expressible
in MS2 can be solved in linear time for graphs of bounded treewidth, where MS2 is a
graph logic in the monadic second-order logic (see also [14]). In MS2, we are allowed
to use the incident relation inc, the membership relation ∈, and variables over vertices,
edges, vertex sets, and edge sets.

Theorem 5.1. For graphs of bounded treewidth, k-STC can be solved in linear time.

Proof. We show that k-STC is expressible in MS2. The proof is omitted. 
�
We can show that the treewidth of a graph of bounded degree is linear in its spanning
tree congestion. (The proof is omitted.)

Lemma 5.2. For any connected graph G, tw(G) ≤ max{stc(G), Δ(G)(stc(G) − 1)/2}.
Moreover, this bound is tight.

Lemma 5.2 can be proved similarly to results on the edge remember number, reported
in [3]. The upper bound improves on an earlier bound by Kozawa, Otachi, and Ya-
mazaki [17]. A tight example for the bound of Lemma 5.2 is a cycle. By using ex-
panders, we can even show that any upper bound must depend linearly on both the
maximum degree and the spanning tree congestion of the graph (we omit the proof).
This gives strong evidence that our bound cannot be improved upon. Combining the
above facts, we can obtain the main result of this section.

Theorem 5.3. For graphs of bounded degree, k-STC can be solved in linear time.
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Proof. Let G be a graph of bounded degree and Δ(G) = d. Since k and d are constants,
we can check whether tw(G) ≤ max{k, d(k − 1)/2} in linear time by Bodlaender’s algo-
rithm [2]. If the output of the algorithm is “no,” then stc(G) > k from Lemma 5.2. Oth-
erwise, G has bounded treewidth. Hence, from Theorem 5.1, we can determine whether
stc(G) ≤ k in linear time. 
�

6 Weighted k-STC is NP-Complete for k ≥ 10

In this section, we prove the following hardness result.

Theorem 6.1. For any fixed k ≥ 10, k-STC is NP-complete for edge weighted graphs.

Clearly, the problem belongs to NP. To show NP-completeness, we present a reduc-
tion from (3, B2)-SAT. The problem (3, B2)-SAT is a restricted version of the 3-SAT
problem, which is a well-known NP-complete problem [13]. An instance (U,C) of (3,
B2)-SAT consists of a set U of n distinct Boolean variables and a collection C of m
clauses such that each clause has exactly three literals, and each literal occurs exactly
twice. Berman, Karpinski, and Scott [1] showed the NP-completeness of (3, B2)-SAT.
In their construction of a hard instance of (3, B2)-SAT, every clause has exactly three
variables, that is, there is no clause like (u, u, ∗), (ū, ū, ∗), or (u, ū, ∗). Thus, in what
follows, we assume that instances of (3, B2)-SAT satisfy this condition as well.

The constructions in our proof are inspired by the proof of Cai and Corneil [6] for
the NP-completeness of the Weighted Tree Spanners problem. Let k ≥ 10 be a fixed
integer. For an arbitrary instance (U,C) of (3, B2)-SAT, we construct an edge weighted
graph GC such that C is satisfiable if and only if stc(GC) ≤ k. Let a = 
k/2� + 1 and
b = �k/2� − 3. Each edge in GC has a weight which will be either a, b, or 1. For
example, if k = 10, then the weight of an edge is six, two, or one. Clearly, the following
proposition holds.

Proposition 6.2. For k ≥ 10, a+ b+ 2 = k, 2b+ 6 ≤ k, 2a > k, 6b > k, and 4b+ 4 > k.

From an instance (U,C) of (3, B2)-SAT, the graph GC is constructed as follows (see
Fig. 1):

1. Take a vertex x, literal vertices ui and ūi for each variable ui ∈ U, and clause
vertices ci for each clause ci ∈ C.

2. Connect x to all literal vertices by literal edges of weight b.
3. For each variable ui ∈ U, create a path of length two between ui and ūi such that

edges in the path, which are called bridge edges, have weight a and the center vertex
of the path is a new vertex yi.

4. For each clause ci = {lp, lq, lr} ∈ C, connect the clause vertex ci to the literal vertices
lp, lq, and lr by clause edges of unit weight.

Clearly, the above construction can be done in polynomial time.
Now, we show the following useful properties of a spanning tree of GC with small

congestion.

Lemma 6.3. Let T be a spanning tree of GC. If cngGC
(T ) ≤ k, then
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x

ui ūi

yi

b b

a a

(a) Variable

ci = {up, ūq, ūr}

up ūq ūr

1 1 1

(b) Clause
x

c1 = {u1, ū2, u3} c2 = {u1, u2, ū3}

ū2
y2y1

ū1u1 u2 u3 ū3
y3

c3 = {ū1, ū2, u3} c4 = {ū1, u2, ū3}

(c) GC with C = {{u1, ū2, u3}, {u1, u2, ū3}, {ū1, ū2, u3}, {ū1, u2, ū3}}.

Fig. 1. Gadgets, and a constructed graph

1. All bridge edges are contained in T;
2. Each clause vertex is a leaf of T ;
3. For each variable, exactly one of its two literal edges is contained in T .

Proof (of the first property). Since yi has degree two, at least one of {ui, yi} and {ūi, yi}
must be in T . If {ūi, yi} is not in T , then cngGC ,T ({ui, yi}) = w(θ({yi})) = 2a > k. The
other case is almost the same. 
�
Proof (of the second property). Assume T has the first property. By way of contradic-
tion, suppose some clause vertex ci = {lp, lq, lr} has degree larger than one in T . Let
up, uq, ur be the variables corresponding to the literals lp, lq, lr, respectively. We divide
the proof into two cases depending on the degree of ci in T . Recall that all bridge edges
are in T from the first property.

Case 1: degT (ci) = 3. The three neighbors of ci in T are lp, lq, and lr. Let e
be the unique literal edge in the unique ci–x path in T . Then, e separates {x} and
{up, ūp, uq, ūq, ur, ūr}. Thus, cngGC ,T (e) ≥ w(E({x}, {up, ūp, uq, ūq, ur, ūr})) = 6b > k.

Case 2: degT (ci) = 2. Without loss of generality, we assume that the two neighbors
of ci in T are lp and lq. Then, at most one of the literal edges of up and uq can be in T .
From the above case, we can assume that no clause vertex has degree three in T .

First, assume that none of the literal edges of up and uq are in T . Let e = {x, ls} be
the unique literal edge in the unique ci–x path in T . Then, ls � {up, ūp, uq, ūq}, and e
separates {x} and {up, ūp, uq, ūq, us, ūs}. Thus, cngGC ,T (e) ≥ 6b > k.
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Next, assume that one of the literal edges of up and uq, say e, is in T (see Fig. 2). Let
us consider the clause vertices adjacent to at least one of the literal vertices up, ūp, uq,
and ūq in GC . If a clause vertex cz (� ci) is adjacent to two vertices in {up, ūp, uq, ūq} in
T , then T has a cycle. Hence, if cz � ci has degree two in T , and one of the two neigh-
bors of cz is in {up, ūp, uq, ūq}, then another neighbor, say ls, is not in {up, ūp, uq, ūq}. In
such a case, e separates {x} and {up, ūp, uq, ūq, us, ūs}, and thus, cngGC ,T (e) ≥ 6b > k
(see Fig. 2(a)). Therefore, every clause vertex (except for ci) that has at least one of
{up, ūp, uq, ūq} as a neighbor in T is a leaf of T . Let C1 be the set of such leaf clauses.
Since every clause has exactly three variables, each c ∈ C1 has at most two neighbors in
{up, ūp, uq, ūq} in GC . Hence, cngGC ,T (e) = w(θ({up, ūp, uq, ūq}∪{ci}∪C1)) ≥ 4b+ |C1|+1
(see Fig. 2(b)). Since cngGC

(T ) ≤ k < 4b + 4, we can conclude that |C1| ≤ 2. It is easy
to see that cngGC ,T (e) ≥ 4b + 5 > k if |C1| ≤ 2 (see Fig. 3). 
�

x

ci = {lp, lq, lr}

lp

lq

b

b
b b

b

b

ls

(a) Another clause vertex of degree two.

x

b b

lq

b b

lp

ci ...C1

1

cng
G,T

({x, lp}) ≥ 4b + |C1| + 1

1 1 1

(b) No other clause vertex of de-
gree two.

Fig. 2. A clause vertex ci of degree two

Proof (of the third property). Assume T has the first and the second properties. Since
T is a tree and contains all bridge edges, at most one of {x, ui} and {x, ūi} can be in T for
each ui ∈ U. Suppose T contains none of them. Since any clause vertex is a leaf of T ,
there is no path between ui and x. 
�
The next two lemmas show that C is satisfiable if and only if stc(GC) ≤ k, thus proving
Theorem 6.1.

Lemma 6.4. If stc(GC) ≤ k then C is satisfiable.

Proof. Let T be a spanning tree of GC such that cngGC
(T ) ≤ k. From Lemma 6.3, (1)

T contains all bridge edges, (2) every clause vertex is a leaf of T , and (3) T contains
exactly one literal edge for each variable. From the third property, we can define a
truth assignment ξT by setting ξT (ui) = true if {x, ui} ∈ E(T ) and ξT (ui) = false if
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x

b b b b

lp

ci

1

lq

1 1 1 1 1 1

(a) |C1| = 0.

x

b b

lq

b b

lp

ci

1

C1

1 1 1 1 1

(b) |C1| = 1.

x

b b

lq

b b

lp

ci C1

1 1 1 1 1

(c) |C1| = 2.

Fig. 3. The cases of |C1| ≤ 2

{x, ūi} ∈ E(T ). We show that ξT satisfies C. It suffices to show that for every c j ∈ C, the
unique neighbor li of c j is adjacent to x. If li is not adjacent to x, then cngGC ,T ({li, yi}) ≥
a + b + 3 > k (see Fig. 4). This contradicts cngGC

(T ) ≤ k. 
�

yi

x

b

a

cj

x

li l̄i

yi

b

a

cj

11

1

1 1 1 1

li l̄i

Fig. 4. Unsatisfied clauses

Lemma 6.5. If C is satisfiable then stc(GC) ≤ k.

Proof. Let ξ be a satisfying truth assignment for C. We say that a literal vertex li is a
true vertex if li becomes true by the assignment ξ. We construct a spanning tree T of
GC as follows:

1. Take all bridge edges.
2. Take all literal edges incident to true vertices.
3. For each clause, take an arbitrary clause edge incident with a true vertex.

Clearly, T is a spanning tree of GC . We show that cngGC
(T ) ≤ k.
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Let ui ∈ U. Without loss of generality, we assume that {x, ui} ∈ E(T ). Then T
contains edges {x, ui} and {ui, yi}, {ūi, yi}. From the construction of T , T may con-
tain any clause edge incident with ui, but cannot contain any clause edge incident
with ūi. See Fig. 5. Clearly, the edge {ui, yi} and {ūi, yi} have the same congestion,
and cngGC ,T ({ūi, yi}) = w(θ({ūi})) = a + b + 2 = k. If a clause edge incident with ui

is contained in T , then the edge has congestion 3 ≤ k. Obviously, cngGC ,T ({x, ui}) =
w(θ({ui, ūi} ∪ NT (ui) \ {x})) ≤ 2b + 6 ≤ k (see Fig. 5). 
�

x

ui ūi

yi

b b

a a
1 111

x

ui ūi

yi

b b

a a
1 11

11

x

ui ūi

yi

b b

a a
1 1

1111

Fig. 5. A spanning tree of congestion at most k

7 Unweighted k-STC is NP-Complete for k ≥ 10

Extending the result in the previous section, we prove the main theorem of the paper,
that is, NP-completeness of k-STC for unweighted graphs. We need the following two
lemmas. The proofs are omitted.

Lemma 7.1. An edge e of weight w ∈ Z+ can be replaced by w parallel edges of unit
weight without changing the spanning tree congestion.

Lemma 7.2. Edge subdivisions do not change the spanning tree congestion of un-
weighted graphs.

Combining the above two lemmas, we can conclude that an edge {u, v} of weight w can
be replaced by w internally disjoint u–v paths of length two that consist of unweighted
edges, without changing the spanning tree congestion. It is easy to see that this replace-
ment can be done in O(w) time. Thus, we have the following corollary.

Corollary 7.3. Let G be an edge weighted graph such that the weight of every edge
of G is a positive integer, and the maximum weight of the edges is w. Then G can be
transformed into unweighted simple graph G′ in O(w · |E(G)|) time, such that stc(G) =
stc(G′).

Now, we prove the main theorem of the paper.

Theorem 7.4. For any fixed k ≥ 10, k-STC is NP-complete for simple unweighted
graphs that have only one vertex of unbounded degree.
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Proof. Let (U,C) be an instance of (3, B2)-SAT, and GC the corresponding graph con-
structed in the previous section. From Corollary 7.3, we can construct a simple un-
weighted graph G′C in polynomial time such that stc(G′C) = stc(GC). Clearly, stc(G′C) ≤
k if and only if C is satisfiable.

We show that the vertices other than x have bounded degree. The new vertices added
by subdivisions have degree two. Clause vertices have degree three in GC . Since clause
vertices are only incident to unit weight edges, they have degree three in G′C . Since every
yi is incident to two bridge edges of weight a = 
k/2�+1, yi has degree 2a ≤ k+3 in G′C .
Literal vertex li is incident to two clause edges, one bridge edge, and one literal edge
that have weight one, a, and b = �k/2�−3, respectively. Thus, degG′C

(li) = a+b+2 = k.
Hence, the maximum degree of G′C is bounded by k + 3, which is a constant. 
�

8 Concluding Remarks

We have proved that for fixed k, the problem of determining whether the spanning tree
congestion of a given graph is at most k is solvable in linear time for planar graphs,
graphs of bounded treewidth, and graphs of bounded degree. We also show that the
problem can be solved in linear time for any graph if 1 ≤ k ≤ 3. On the other hand,
we show that if the input graph has one vertex of unbounded degree, then the problem
becomes NP-complete for k ≥ 10. The complexity of k-STC remains open for 4 ≤ k ≤ 9.

Since the problem is hard in general, an approximation algorithm with good approx-
imation ratio is required. We say that a polynomial time algorithm for spanning tree
congestion is a c1-approximation algorithm for positive number c1 if there is a posi-
tive integer c2 such that for any input graph G, the output k of the algorithm satisfies
k ≤ c1 · stc(G)+ c2. Using NP-hardness of 10-STC, the following constant lower bound
on the approximation ratio can be shown (the proof is omitted).

Theorem 8.1. There is no polynomial time c1-approximation algorithm for the span-
ning tree congestion of simple unweighted graphs such that c1 < 11/10, unless P = NP.

We also considered the complexity of STC or k-STC on some restricted graph classes.
It is known that the tree spanner problem is NP-hard for chordal graphs [4] and chordal
bipartite graphs [5]. It would be interesting to determine the complexity of STC or k-
STC for these graph classes.
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Abstract. We study max-cut in classes of graphs defined by forbidding

a single graph as a subgraph, induced subgraph, or minor. For the first two

containment relations, we prove dichotomy theorems. For the minor order,

we show how to solve max-cut in polynomial time for the class obtained

by forbidding a graph with crossing number at most one (this generalizes

a known result for K5-minor-free graphs) and identify an open problem

which is the missing case for a dichotomy theorem.
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1 Introduction

max-cut is a classical problem in combinatorial optimization and have been
studied in different contexts – heuristics, approximation algorithms, exact al-
gorithms, polyhedra. Here we suggest to look at the computational complexity
of the problem in different classes of graphs. We focus on graphs obtained by
forbidding a single graph as a subgraph, induced subgraph, or minor.

A cut in a graph is a partition of the vertex set into two disjoint sets. The
value of a cut is the total weight of edges whose endpoint belong to two different
parts of the cut. A cut of maximum value in G is called a maximum cut (or
max-cut) and the value is denoted by mc(G). Notice that there is a one to one
correspondence between a cut and the set of edges whose endpoint belong to
two different parts of the cut. For convenience, we will sometimes refer to this
set of edges as a cut as well.

The algorithmic max-cut problem is to determine mc(G) given an input graph
G. A cardinality variant of max-cut is called simple max-cut. (It is max-cut in
which all the weights on edges are equal.) Clearly, if max-cut is solvable in poly-
nomial time for some class of graphs, so it simple max-cut. Also, if simple max-

cut is NP-complete for some class of graphs, so is max-cut.
In this paper we consider simple, undirected, and real-weighted graphs. The

terminology used is standard; for notions not defined here, we refer the reader
to [15]. Kk is the complete graph on k vertices and Pk is the induced path on k
vertices. G ∪H denotes the disjoint union of G and H .

Our contribution. We look at the classes of graphs defined by forbidding a
single graph H as a subgraph, induced subgraph, or minor.
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1. For H-subgraph-free graphs, we show that both simple max-cut and max-

cut are solvable in polynomial time, if H is a forest every connected com-
ponent of which is a tree with at most one vertex of degree 3; and are
NP-complete otherwise.

2. For H-induced-subgraph-free graphs, we show that simple max-cut is solv-
able in polynomial time, if H is an induced subgraph of P4; and is
NP-complete otherwise. (For max-cut this containment relation is rather
uninteresting.)

Our contribution here is to notice that such dichotomy theorems hold and to
put known algorithmic and hardness results into this framework. Dichotomy
theorems of this type are rather rare. We are aware of just one result of this
type. For chromatic number, Král et al. proved that the class of H-induced-
subgraph-free graphs admits a polynomial-time algorithm, if H is an induced
subgraph of P4 or of P3 ∪K1; and the problem is NP-complete otherwise [25].
No such theorem is known for instance for stable set. In fact, P5-induced-
subgraph-free graphs is the unique minimal class defined by a single forbidden
induced subgraph for which the computational complexity of stable set is
unknown [26].

The case of minors is a bit different. Revisiting known results, we can show
that max-cut is solvable in polynomial time for H-minor-free graphs, for planar
H ; and simple max-cut is NP-hard, when H is at “vertex-distance” at least 2
to planarity (becomes planar only when two of its vertices are removed). A re-
maining open problem is to determine the computational complexity of (simple)

max-cut, when H is a strict apex, which means a graph at “vertex-distance”
1 to planarity. Perhaps those classes admit a polynomial-time algorithm for
max-cut. We show that this indeed is a case when H is at “edge-distance” 1
to planarity (becomes planar only when one of its edges is removed). Clearly,
graphs at “edge-distance” 1 to planarity are also at “vertex-distance” 1.

3. For H-minor-free graphs, we show that max-cut is solvable in polynomial
time, if H is a graph that can be drawn on the plane with at most one
crossing.

This generalizes previous work on max-cut for planar graphs [27], [23] and
K5-minor-free graphs [6].

2 Previous Work

Maximum Cut

max-cut was among the twenty one problems whose NP-hardness was estab-
lished in the foundational paper ”Reducibility among combinatorial problems“
by Richard Karp [24]. Since then it has been extensively studied and became
one of the classical problems in the field of combinatorial optimization.
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An early result that is of interest to us is a polynomial-time algorithm for
max-cut in planar graphs. It was first discovered by Orlova and Dorfman [27]
and then independently by Hadlock [23]. The main idea of the solution is to fix
an embedding of the planar input graph, take the dual, and find a pairing of
vertices of odd degree in the dual graph using matching.

Grötschel and Pulleyblank introduced – by means of a polyhedral definition
– the class of weakly bipartite graphs and showed how to solve max-cut in
this class [18]. Both planar and bipartite graphs are weakly bipartite, thus their
result generalizes [27] and [23], as well as a trivial polynomial-time algorithm for
bipartite graphs. (Notice that a maximum cut in a bipartite graph contains all
its edges.) Later, Guenin proved that weakly bipartite graphs are exactly these
that do not contain an odd-K5-minor1 [19], [20], [21] (see also [31] for a short
proof).

The result of Guenin implies that K5-minor-free graphs are weakly bipartite
(since every odd-K5-minor is a K5-minor) and therefore there is a polynomial-
time algorithm for max-cut in this class. Before the characterization of weakly
bipartite graphs was known, Barahona showed how to solve max-cut in poly-
nomial time in the class of graphs without a K5-minor [6]. The paper uses a
decomposition theorem for K5-minor-free graphs due to Wagner [32]. The same
paper also proves that max-cut is NP-hard for K6-minor-free graphs.

max-cut is also solvable in polynomial-time in the class of graphs of bounded
orientable genus [1]. This results was already attributed to Barahona by [18] but
the preprint to which [18] refers apparently has never been published.

max-cut is also known to be NP-complete on unit disk graphs [14] and solv-
able in polynomial time on graphs without long odd cycles (= a class of graphs
with no odd cycles longer than k, for some k ≥ 3) [17], on line graphs [5] (see
also [22] for a simple proof), on graphs of bounded tree-width [8], [9]. Also, there
exists a PTAS for max-cut in classes of graphs with a forbidden minor [10].

Graphs with No Single-Crossing Minor

A graph is a single-crossing graph when it can be drawn on the plane with at
most one crossing. K3,3 and K5 are examples of single-crossing graphs.

Wagner proved that a graph is K5-minor-free if and only if it can be con-
structed from planar graphs and copies of the four-rung Möbius ladder glued
together along cliques of size ≤ 3 [32]. He also showed that a graph is K3,3-
minor-free if and only if it can be constructed from planar graphs and copies
of K5 glued together along cliques of size ≤ 2 (possibly removing an edge after
pasting along it).

Robertson and Seymour proved a more general theorem, describing the struc-
ture of graphs with a forbidden single-crossing minor [30]. They can be obtained
from planar graphs and graphs of bounded tree-width (the bound depends on
the forbidden single-crossing graph) by pasting them along cliques of size at most
3 and (possibly) removing some of the edges of those cliques afterwards.

1 An odd minor is a restriction of the standard minor relation.
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This structural result was made algorithmic by Demaine et al.; they gave an
O(n4) algorithm for finding this decomposition [11]. This was subsequently used
to give parameterized algorithms with better dependence on the parameter [13]
and approximation algorithms with better approximation ratio in classes defined
by forbidding a single-crossing graph as a minor [11].

3 Forbidden Subgraph

In this section, we study classes of graphs defined by forbidding a single graph
as a subgraph. Let us start with a simple lemma.

Lemma 1. Let e be an edge of a graph G and G′ the graph obtained by subdi-
viding edge e twice. Then, mc(G′) = mc(G) + 2.

Proof. A double subdivision of e replaces e with 3 edges; let them be called
eL, e′, and eR. Let us say that a cut in G′ is good if it contains both eL and eR.
Notice that there is a maximum cut in G′ which is good. Also, there exists a
one-to-one correspondence between cuts in G and good cuts in G′: cuts have the
same edges f , for f �= e, and e belongs to the cut in G iff e′ belongs to the cut
in G′. This correspondence makes the value of the cut in G′ bigger by 2 than
the cut in G.

The following lemma is a consequence of this subdivision property.

Lemma 2. simple max-cut is NP-complete in the following two classes of
graphs:

◦ graphs not containing cycles of length at most k, for every k ≥ 3;
◦ graphs not containing a pair of vertices of degree at least 3 at distance at

most k, for every k ≥ 1.

Proof. Let us take a graph G, double subdivide all its edges, and then repeat the
operation �log3 k� times more, each time applying the operation to the outcome
of the previous operation. It is easy to see that the graph G′ obtained after
the series of subdivisions has no cycles of length at most k, and has no pair
of vertices of degree at least 3 at distance at most k. Notice that mc(G′) =
mc(G) + 2(�log3 k�+ 1) from Lemma 1. Since simple max-cut is NP-hard in
the class of all graphs, so it is in the two classes mentioned in the theorem.

We will need one more hardness result from [33].

Lemma 3. [33] simple max-cut is NP-complete in the class of graphs with
maximum degree 3.

We will need the following theorem from [7] (see also [28]) due to Bienstock,
Robertson and Seymour.

Theorem 1. [7] For every forest F , every graph with path-width ≥ |V (F )| − 1
has a minor isomorphic to F.
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Lemma 4. Let H be a forest whose every connected component is a tree with
at most one vertex of degree three. A graph contains H as a minor if and only
if it contains H as a subgraph.

Proof. The backward implication is clear. We will suppose that H is connected;
the forward implication will follow by induction on the number of connected
components of H . Let G contain H as a minor. Let us fix a model of H in G.
We will build a subgraph T . For each pair of adjacent vertices in H , we select
an edge of G whose endpoints are in the two different bags corresponding to
the vertices of H . Now, for each bag of the model of H that contains at least
two (at most three) endpoints of the edges already in T , let us add to T a tree
spanning these endpoints inside the bag. Clearly, T is a tree and T contains H
as a subgraph. Hence, G contains H as a subgraph.

Lemma 5. [9] For every constant t, there exists a polynomial-time algorithm
solving max-cut in the class of graphs of tree-width at most t.

Theorem 2. Both the simple max-cut and max-cut problems in the class of
H-subgraph-free graphs are:

◦ solvable in polynomial time, if H is a forest whose every connected component
is a tree with at most one vertex of degree three;

◦ NP-hard, otherwise.

Proof. For the first part, let H be a forest whose every connected component
is a tree with at most one vertex of degree three. The class of H-subgraph-free
graphs is also H-minor-free by Lemma 4. Since H is a forest, from Theorem 1,
the path-width of H-subgraph-free graphs is at most |V (H)| − 2. Therefore also
their tree-width is at most |V (H)| − 2. From Lemma 5, max-cut is solvable in
polynomial on H-subgraph-free graphs.

For the second part, assume that H is not a forest whose every connected
component is a tree with at most one vertex of degree three. Then, H contains a
vertex of degree at least 4, or a cycle, or a pair of vertices of degree 3 in the same
connected component. In the first case, the simple max-cut is NP-complete in
this class of H-subgraph-free graphs by applying Lemma 3, and in the two last
cases by applying Lemma 2 with k = |H |.

4 Forbidden Induced Subgraph

In this section, we study classes of graphs defined by forbidding a single graph
as an induced subgraph. We start with some useful definitions.

A co-bipartite graph is the complement of a bipartite graph. A split graph is
one whose vertex set can be partitioned into a clique and an independent set.
The class of split graphs was first studied in [16] where a characterization of
these graphs was proved.

Lemma 6. [16] The class of split graphs is the class of (2K2, C4, C5)-induced-
subgraph-free graphs.
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We will need two results from [9] (see also [8] for the conference version) that
we state as the following lemma.

Lemma 7. [9] simple max-cut is solvable in polynomial time in the class of
P4-induced-subgraph-free graphs and is NP-hard in the class of split graphs and
in the class of co-bipartite graphs.

Lemma 8. Let H be a tree containing a vertex of degree at least 3. Then, simple

max-cut is NP-hard in the class of H-induced-subgraph-free graphs.

Proof. A tree with a vertex of degree at least 3 has stability number at least 3.
Co-bipartite graphs have stability number at most 2 and hence are H-induced-
subgraph-free. The NP-hardness follows from Lemma 7.

Lemma 9. simple max-cut is NP-hard in the class of Pk-induced-subgraph-
free graphs, for all k ≥ 5.

Proof. Split graphs are Pk-induced-subgraph-free graphs, for all k ≥ 5. The
NP-hardness follows from Lemma 7.

Theorem 3. The simple max-cut problem in the class of H-induced-subgraph-
free graphs is:

◦ solvable in polynomial time, if H is an induced subgraph of P4;
◦ NP-hard, otherwise.

Proof. The first part of the theorem follows from Lemma 7.
For the second part, suppose H is not an induced subgraph of P4. If it contains

a cycle, then max-cut is NP-complete in the class of H-induced-subgraph-free
graphs by applying Lemma 2 with k = |H |. (Shortest cycle in a graph is neces-
sarily induced.) We can assume that H is a forest. If it has a vertex of of degree
3,T then from Lemma 8, simple max-cut is NP-hard. Thus, we can assume
that H is a forest of paths. If one of the paths (connected components of H) con-
tains more than 5 vertices, then the class of P5-induced-subgraph-free graphs is
contained in the class of H-induced-subgraph-free graphs and therefore simple

max-cut is NP-hard in H-induced-subgraph-free graphs from Lemma 9.
We can assume that H is a forest of induced subgraphs of P4. If two of the

connected components of H are not singletons, then H contains 2K2 and simple

max-cut is NP-hard in H-induced-subgraph-free graphs from Lemmas 6 and
7. Also, if H has three connected components, then the stability number of H
is at least 3, and since co-bipartite graphs have stability number at most 2, the
NP-hardness follows from Lemma 7. If H has two components, and one has at
least 3 vertices, simple max-cut is NP-hard for the same reason. Otherwise, H
is an induced subgraph of P4.

A similar theorem for max-cut is perhaps less interesting but we include it here
for completeness.

Theorem 4. The max-cut problem in the class of H-induced-subgraph-free
graphs is:
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◦ solvable in polynomial time, if H is clique on at most two vertices;
◦ NP-hard, otherwise.

Proof. The first part of the theorem is trivial since K2-induced-subgraph-free
graphs are edgeless. For the second part, notice that max-cut is NP-hard when-
ever simple max-cut is. It remains to show that max-cut is NP-hard for three
classes of graphs: K1 ∪ K1-induced-subgraph-free, K1 ∪ K2-induced-subgraph-
free, and P3-induced-subgraph-free. However, each of these three classes contains
the class of cliques and max-cut is NP-hard on cliques. Indeed, every graph can
be embedded in a clique using weights 0 and 1.

The techniques we use in this and the previous section have been dveloped by
Alekseev and Lozin and applied to different problems in the context of boundary
graph classes; see for example [2], [4], [3].

5 Forbidden Minor

In this section, we study classes of graphs defined by forbidding a single graph
as a minor.

Definitions

Let G and H be two graphs with disjoint vertex sets, KG and KH cliques of size
k ≥ 0 in G and H respectively. A k-sum G⊕H is the graph obtained from G and
H by identifying vertices of KG and KH (according to some bijection between
the cliques) and then possibly removing some edges between the vertices of the
identified clique.

A single-crossing graph is one that can be drawn on the plane with at most
one crossing of edges. K3,3 and K5 are examples of single-crossing graphs. A
graph H is an apex graph if it has a vertex v such that H − v is planar. Clearly,
single-crossing graphs are apex graphs. A graph H is a k-apex (for k ≥ 1) if it
has a set of vertices S of cardinality k such that H \ S is planar. An apex is a
1-apex. We say that a k-apex is strict, when it is not (k − 1)-apex, for k > 1, or
planar for 1-apex.

Single-Crossing-Minor-Free Classes

Now we focus on graph classes defined by forbidding a single-crossing graph as
a minor. We need to introduce a variant of max-cut, called restricted max-

cut, that allows to specify for some vertices of the input graph, to which part
of the cut they must belong.

First we need a decomposition theorem for graphs excluding a single-crossing
as a minor. This algorithmic version is due to Demaine et al. [11] (see also [12]
for the conference version).



22 M. Kamiński

Theorem 5. [11] For a single-crossing H, there exists a constant cH such that
every H-minor-free graph G can be decomposed in time O(n4) into a series of
clique-sum operations G = G1 ⊕ . . . ⊕ Gm, where each Gi (1 ≤ i ≤ m) is a
minor of G and is either planar or its tree-width is at most cH , and each ⊕ is
an k-sum, for 0 ≤ k ≤ 3.

When the graph is weighted, the edges of graphs Gi that also exist in G have the
same weights as in G; the edges of graphs Gi that do not exist in G are assigned
weight 0.

To be able to use the decomposition theorem we need to analyze how a solution
to max-cut propagates through clique sums.

Lemma 10. Let G and H be two graphs and G⊕H be their k-sum, for 0 ≤ k ≤
3. Given solutions to the instances of restricted max-cut on G defined by
considering all possible assignments of vertices from the k-clique to different parts
of the cut, one can find in time O(1) weights w∗ on H such that mcw(G⊕H) =
mcw∗(H) + T∅, where T∅ is the value of restricted max-cut on G when all
vertices of the k-clique are required to belong to the same part of the cut.

Proof. We will consider different cases depending on k.

Case k = 0, 1. If k = 0, then G⊕H is a disjoint union of G and H . If k = 1, G⊕H
is obtained from G and H by identifying one vertex. In both cases mcw(G⊕H) =
mcw(H) + mcw(G). Setting w∗ = w, we get mcw∗(H) = mcw(H). Clearly
T∅ = mcw(G). Hence, mcw(G⊕H) = mcw(H) + mcw(G) = mcw∗(H) + T∅.

Case k = 2. Let e0 be the edge of the 2-clique. Let Te0 be the value of
restricted max-cut on G when we require edge e0 to be in the cut (=
the endpoints of e0 are forced to be in two different parts of the cut). Let
w∗(e0) = Te0 − T∅; and for all edges e ∈ E(H) different than e0, w∗(e) = w(e).
Now, it is easy to verify that mcw(G⊕H) = mcw∗(H) + T∅.

Case k = 3. Let e0, e1, e2 be the three edges of the 3-clique. Notice that a
maximum-cut in G (in H , and in G ⊕H as well), will always contain an even
number of the edges of a 3-clique – either none, or exactly two. For two distinct
edges f, g ∈ {e0, e1, e2}, let Tf,g be the value of restricted max-cut on G
when we require f and g to belong to the cut (= the common endpoint of edges
f, g is forced to be in the other part of the cut than their “private” endpoints).

Let w∗(ej) = Tej−1,ej+1−T∅, for 0 ≤ j ≤ 2, where all indices are taken modulo
3; and for all edges e ∈ E(H) different than e0, e1, e2, w∗(e) = w(e). Now, it is
easy to verify that mcw(G⊕H) = mcw∗(H) + T∅.

We need to tailor the previous lemma to our needs.

Lemma 11. Let c be a constant and G be a planar graph or a graph of tree-
width at most c. Let H be a graph and G ⊕H be a k-sum, for 0 ≤ k ≤ 3 of G
and H. One can find in polynomial time weights w∗ on H and a constant d such
that mcw(G⊕H) = mcw∗(H) + d.
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Proof. To use Lemma 10 we need to show how to compute solutions to the
instances of restricted max-cut on G defined by considering all possible
assignments of vertices from the k-clique to different parts of the cut.

Notice that increasing the weight of an edge by a large number M (≥ than
the sum of the weights of all the edges in the graph) will force the endpoints
of this edge to belong to two different parts of every maximum cut in the new
graph.

max-cut in a graph with an edge contracted corresponds to restricted

max-cut in the original graph with the two endpoints of the contracted edge
required to belong to the same part of the cut. (After contraction we remove
loops; for multiple edges, we also remove them but the weight of the edge that
remains equals to the sum of the weights of all the parallel ones.)

Hence, we can simulate restricted max-cut by instances of max-cut.
Notice that edge contraction preserves planarity and does not increase tree-
width. Since G is planar or of bounded tree-width, max-cut can be solved in
polynomial time [27], [23], [9]. Also, since k ≤ 3, we only need to consider a
constant number of different max-cut instances on G.

Theorem 6. Let H be a single-crossing graph. max-cut can be solved in poly-
nomial time in the class of H-minor-free graphs.

Proof. First we apply Theorem 5 and find a decomposition of the input graph
G = G1 ⊕ . . . ⊕ Gm. We will be processing graphs Gi from left to right. Let
G∗

1 = G1.
We apply Lemma 11 to G∗

i ⊕Gi+1, i = 1, . . . , m−1. Hence, there is a constant
d and weights w∗ such that mcw(G∗

i ⊕Gi+1) = mcw∗(Gi)+ d. Let us denote Gi

with the new weights by G∗
i . Notice that every G∗

i is either planar or a graph of
tree-width at most cH (cH is the constant from Theorem 5), so Lemma 11 can
be applied.

Finally, we conclude that there is a constant d′ such that mc(G∗
m) + d′ =

mcw(G1 ⊕ . . .⊕Gm) = mcw(G).

H-Minor-Free Classes

Now we will look at classes of graphs defined by forbidding a single graph as a
minor. We will need the following theorem due to Robertson and Seymour.

Theorem 7. [29] For every planar graph H, there is a number w such that
every planar graph with no minor isomorphic to H has tree-width ≤ w.

The following lemma is a consequence of Lemma 5 and Theorem 7.

Lemma 12. Let H be a planar graph. max-cut can be solved in the class of
H-minor-free graphs in polynomial time.

We mentioned in Section 2 that Barahona proved in [6] that simple max-cut is
NP-hard on K6-minor-free graphs. Here is the precise statement of his result.
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Theorem 8 (Theorem 5.1 in [6]). Let G be a graph with a vertex v such that
G− v is a cubic planar graph. simple max-cut is NP-complete in the class of
such graphs.

This class of graphs is in fact K6-minor-free. However, as easily seen, it does
not contain any strict k-apex graph (for k ≥ 2) as a minor. Let us state it as a
lemma.

Lemma 13. Let H be a strict k-apex graph, for k ≥ 2. simple max-cut is
NP-hard in the class of H-minor-free graphs.

Considering the computational complexity of (simple) max-cut in the class
of H-minor-free graphs, we find an interesting situation. If H is planar, then
max-cut is solvable in polynomial time (Lemma 12); if H is a strict k-apex, for
k ≥ 2, then simple max-cut is NP-complete (Lemma 13). What happens when
H is an apex graph? – this is the missing case in a dichotomy theorem.

Graphs in classes of bounded orientable genus and graph classes obtained by
excluding some single-crossing are H-minor-free for some apex graph H . The fact
that max-cut is solvable in polynomial time in those classes of graphs provide
grounds for the following conjecture.

Conjecture. Let H be an apex graph. (simple) max-cut is solvable in poly-
nomial time in the class of H-minor-free graphs.
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Abstract. The longest path problem is the problem of finding a path

of maximum length in a graph. As a generalization of the Hamiltonian

path problem, it is NP-complete on general graphs and, in fact, on every

class of graphs that the Hamiltonian path problem is NP-complete.

Polynomial solutions for the longest path problem have recently been

proposed for weighted trees, ptolemaic graphs, bipartite permutation

graphs, interval graphs, and some small classes of graphs. Although

the Hamiltonian path problem on cocomparability graphs was proved

to be polynomial almost two decades ago [9], the complexity status of

the longest path problem on cocomparability graphs has remained open

until now; actually, the complexity status of the problem has remained

open even on the smaller class of permutation graphs. In this paper,

we present a polynomial-time algorithm for solving the longest path

problem on the class of cocomparability graphs. Our result resolves

the open question for the complexity of the problem on such graphs,

and since cocomparability graphs form a superclass of both interval

and permutation graphs, extends the polynomial solution of the longest

path problem on interval graphs [18] and provides polynomial solution

to the class of permutation graphs.

Keywords: Longest path problem, cocomparability graphs, per-

mutation graphs, polynomial algorithm, complexity.

1 Introduction

The problem of finding a path of maximum length in a graph (Longest Path
Problem) generalizes the Hamiltonian path problem and thus it is NP-complete
on general graphs; in fact, it is NP-complete on every class of graphs that the
Hamiltonian path problem is NP-complete. It is thus interesting to study the
longest path problem on classes of graphs C where the Hamiltonian path problem
is polynomial, since if a graph G ∈ C is not Hamiltonian, it makes sense in several
applications to search for a longest path of G. Although the Hamiltonian path
problem has been extensively studied in the past two decades, only recently did
the longest path problem start receiving attention [11,12,13,23,25,26,27].

The Hamiltonian path problem is known to be NP-complete in general
graphs [14,15], and remains NP-complete even when restricted to some small
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classes of graphs such as split graphs [16], chordal bipartite graphs, split
strongly chordal graphs [21], directed path graphs [22], circle graphs [7], planar
graphs [15], and grid graphs [19,24]. On the other hand, it admits polynomial
time solutions on some known classes of graphs; such classes include interval
graphs [1,8], circular-arc graphs [8], biconvex graphs [2], and cocomparability
graphs [9]. Note that the problem of finding a longest path on proper interval
graphs is easy, since all connected proper interval graphs have a Hamiltonian
path which can be computed in linear time [3].

Polynomial time solutions for the longest path problem are known only for
small classes of graphs. Specifically, a linear-time algorithm for finding a longest
path in a tree was proposed by Dijkstra early in 1960, a formal proof of which
can be found in [5]. Recently, through a generalization of Dijkstra’s algorithm for
trees, Uehara and Uno [25] solved the longest path problem for weighted trees
and block graphs in linear time and space, and for cacti in O(n2) time and space,
where n is the number of vertices of the input graph. Polynomial algorithms for
the longest path problem have been also proposed on bipartite permutation and
ptolemaic graphs having O(n) and O(n5) time complexity, respectively [23,26].
Furthermore, Uehara and Uno in [25] solved the longest path problem on a
subclass of interval graphs in O(n3(m + n logn)) time, and as a corollary they
showed that a longest path on threshold graphs can be found in O(n + m) time
and space. Recently, Ioannidou et al. [18] showed that the longest path problem
has a polynomial solution on interval graphs by proposing an algorithm that
runs in O(n4) time, answering thus the question left open in [25] concerning the
complexity of the problem on interval graphs.

In this paper we present a polynomial-time algorithm for solving the longest
path problem on the class of cocomparability graphs, an important and well-
known class of perfect graphs [16]. The Hamiltonian path problem on cocom-
parability graphs has been proved to be polynomial [9], while the status of the
longest path problem on such graphs was unknown; actually, the status of the
longest path problem was unknown even on the smaller class of permutation
graphs. Thus, our result resolves the open question for the complexity of the
problem on cocomparability graphs, and since cocomparability graphs form a
superclass of both interval and permutation graphs, extends the polynomial so-
lution of the longest path problem on interval graphs [18], and also provides
polynomial solution to the class of permutation graphs.

2 Theoretical Framework

For basic definitions in graph theory refer to [4,16,20]. A simple path (resp. an-
tipath) of a graph G is a sequence of distinct vertices v1, v2, . . . , vk such
that vivi+1 ∈ E(G) (resp. vivi+1 /∈ E(G)), for each i, 1 ≤ i ≤ k − 1, and is
denoted by (v1, v2, . . . , vk); throughout the paper all paths and antipaths
are considered to be simple. We denote by V (P ) the set of vertices in the
path (antipath) P , and define the length of the path (antipath) P to be
the number of vertices in P , i.e., |P | = |V (P )|. We call right endpoint of
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a path (antipath) P = (v1, v2, . . . , vk) the last vertex vk of P . Moreover, if
P = (v1, v2, . . . , vi−1, vi, vi+1, . . . , vj , vj+1, vj+2, . . . , vk) is a path (antipath) of
a graph and P0 = (vi, vi+1, . . . , vj) is a subpath (subantipath) of P , we shall
denote the path (antipath) P by P = (v1, v2, . . . , vi−1, P0, vj+1, vj+2, . . . , vk).

2.1 Partial Orders and Cocomparability Graphs

A partial order will be denoted by P = (V, <P), where V is the finite ground set
of elements or vertices and <P is an irreflexive, antisymmetric, and transitive
binary relation on V . Two elements a, b ∈ V are comparable in P (denoted
by a ∼P b) if a <P b or b <P a; otherwise, they are said to be incomparable
(denoted by a ‖ b). An extension of a partial order P = (V, <P) is a partial order
L = (V, <L) on the same ground set that extends P , i.e., a <P b ⇒ a <L b,
for all a, b ∈ V . The dual partial order Pd of P = (V, <P) is a partial order
Pd = (V, <Pd) such that for any two elements a, b ∈ V , a <Pd b if and only if
b <P a.

The graph G, edges of which are exactly the comparable pairs of a partial
order P on V (G), is called the comparability graph of P , and is denoted by
G(P). The complement graph G, whose edges are the incomparable pairs of P ,
is called the cocomparability graph of P , and is denoted by G(P). Alternatively,
a graph G is a cocomparability graph if its complement graph G has a transitive
orientation, corresponding to the comparability relations of a partial order PG.
Note that a partial order P uniquely determines its comparability graph G(P)
and its cocomparability graph G(P), but the reverse is not true, i.e., a cocompa-
rability graph G has as many partial orders PG as the number of the transitive
orientations of G. Also, the class of cocomparability graphs is hereditary.

Let G be a comparability graph, and let PG be a partial order which corre-
sponds to G. The graph G can be represented by a directed covering graph with
layers H1, H2, . . . , Hh, in which each vertex is on the highest possible layer. That
is, the maximal vertices of the partial order PG are on the highest layer Hh, and
for every vertex v on layer Hi−1 there exists a vertex u on layer Hi such that
v <PG u; such a layered representation of G (respectively PG) is a called the
Hasse diagram of G (respectively PG) [9].

Let σ = (V (G), <σ) be a partial order on the vertices of a comparability
graph G, such that for any two vertices v, u ∈ V (G), v <σ u if and only if
v ∈ Hi, u ∈ Hj , and i < j; hereafter, we equivalently denote v <σ u by u >σ v.
For simplicity sometimes we shall write v =σ u, for vertices v, u ∈ V (G) which
belong to the same layer Hi; we write v �=σ u to denote that vertices v, u ∈ V (G)
belong to different layers. Also, v ≤σ u implies that either v <σ u or v =σ u;
again, we equivalently denote v ≤σ u by u ≥σ v. Throughout the paper, such an
ordering σ is called a layered ordering of G. Note that, the partial order σ is an
extension of the partial order PG; in particular, it holds v <PG u if and only if
v <σ u and vu ∈ E(G), for any two vertices u, v ∈ V (G).

Since a comparability graph G does not uniquely determine a partial order,
hereafter we will represent a comparability graph G by its Hasse diagram and
we will denote the partial order (V (G), <PG) to which the Hasse diagram of G
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corresponds by PG; that is, the vertices which are on the highest layer Hh of
the Hasse diagram are the maximal vertices of the partial order PG, and for two
vertices u, v ∈ V (G), v <PG u if v ∈ Hi−1, u ∈ Hi and uv ∈ E(G). Thus, we will
say that PG is the partial order which corresponds to the comparability graph G.
Note that vertices in the Hasse diagram satisfy the following property: for any
three vertices v, u, w ∈ V (G) such that v ∈ Hi, u ∈ Hj , w ∈ Hk, and i < j < k
(or, equivalently, v <σ u <σ w), if vu ∈ E(G) and uw ∈ E(G), then vw ∈ E(G).

The following definition and results where given by Damaschke et al. in [9],
based on which they prove the correctness of their algorithm for finding a Hamil-
tonian path of a cocomparability graph; note that their algorithm uses the bump
number algorithm which is presented in [17].

Definition 1. (Damaschke et al. [9]): Let G be a comparability graph, and let
PG be the partial order which corresponds to G. A path P = (v1, v2, . . . , vk) of
the cocomparability graph G is monotone if vi <PG vj implies i < j.

Lemma 1. (Damaschke et al. [9]): Let G be a comparability graph, and let PG

be the partial order which corresponds to G. Let P = (v1, v2, . . . , vk) be a Hamil-
tonian path of the cocomparability graph G such that v1 is a minimal element of
PG. Then there exists a monotone Hamiltonian path P ′ of G starting with v1.

Theorem 1. (Damaschke et al. [9]): Let G be a cocomparability graph. Then,
G has a Hamiltonian path if and only if G has a monotone Hamiltonian path.

It appears that the above two results hold not only for Hamiltonian paths of a
cocomparability graph G, but also for any path of G. Indeed, let P be a path of
G and let G′ = G[V (P )] be the subgraph of G induced by the vertices of P . Also,
let PG′ be the partial order which corresponds to G′ such that PG is an extension
of PG′ , i.e., for any two vertices u, v ∈ V (G), if u <PG v and u, v ∈ V (G′), then
u <PG′ v. Then, since P is a Hamiltonian path of G′, from Theorem 1 there
exists a monotone path P ′ of G′ (with respect to PG′) such that V (P ′) = V (P ).
From Definition 1 it is easy to see that P ′ is also a monotone path of G (with
respect to PG), since PG is an extension of PG′ .

Additionally, since a path P of a cocomparability graph G is an antipath of
the comparability graph G, and since our algorithm for computing a longest
path of a cocomparability graph G computes in fact a longest antipath of the
comparability graph G, we restate the above definition and results and whenever
P denotes a path of a cocomparability graph G, we refer to P as an antipath of
the comparability graph G.

We first restate Definition 1 as follows: an antipath P = (v1, v2, . . . , vk) of a
comparability graph G is monotone if vi <PG vj implies i < j, where PG is the
partial order which corresponds to G. We next restate Lemma 1 and Theorem 1
in a form stronger than the one stated in [9].

Lemma 2. Let G be a comparability graph, and let PG be the partial order which
corresponds to G. Let P = (v1, v2, . . . , vk) be an antipath of G such that v1 is a
minimal element of V (P ) in PG. Then there exists a monotone antipath P ′ of
G starting with vertex v1 such that V (P ′) = V (P ).
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Theorem 2. Let G be a comparability graph. If P is an antipath of G, then
there exists a monotone antipath P ′ of G such that V (P ′) = V (P ).

The following lemma holds.

Lemma 3. Let G be a comparability graph, and let σ be the layered ordering of
G. Let P = (v1, v2, . . . , vk) be an antipath of G, and let v� /∈ V (P ) be a vertex of
G such that v1 ≤σ v� <σ vk and v�vk ∈ E(G). Then there exist two consecutive
vertices vi−1 and vi in P , 2 ≤ i ≤ k, such that vi−1v� /∈ E(G) and v� <σ vi.

2.2 Normal Antipaths on Comparability Graphs

Our algorithm for computing a longest antipath P of a comparability graph G
uses a specific type of antipaths, which we call normal antipaths.

Definition 2. Let G be a comparability graph, and let σ be a layered ordering
of G. The antipath P = (v1, v2, . . . , vk) of G is called normal, if v1 is a leftmost
(i.e., minimal) vertex of V (P ) in σ, and for every i, 2 ≤ i ≤ k, the vertex vi is
a leftmost vertex of NG(vi−1) ∩ {vi, vi+1, . . . , vk} in σ.

Based on Lemma 3 and Definition 2, we prove the following result.

Lemma 4. Let G be a comparability graph, and let σ be the layered ordering of
G. Let P = (v1, v2, . . . , vk) be a normal antipath of G, and let v�, and vj be two
vertices of P such that v� <σ vj and v�vj ∈ E(G). Then � < j, i.e., v� appears
before vj in P .

Recall that, if PG is the partial order corresponding to a comparability graph G,
and σ is the layered ordering of G, then v� <PG vj if and only if v� <σ vj

and v�vj ∈ E(G), for any two vertices v�, vj ∈ V (G). Therefore, the def-
inition of a monotone antipath can be paraphrased as follows: an antipath
P = (v1, v2, . . . , vk) of a comparability graph G is monotone if v� <σ vj and
v�vj ∈ E(G) implies that v� appears before vj in P . Then, from Lemma 4 we
obtain the following result.

Corollary 1. Let G be a comparability graph. If P is a normal antipath of G,
then P is a monotone antipath of G.

Note that the inverse of Corollary 1 is not always true; for example, see the
antipath P in Figure 1. In [9], for proving that for any Hamiltonian path P
of a cocomparability graph G there exists a monotone Hamiltonian path of G,
Damaschke et al. first show that there exists a path P ′ = (v1, v2, . . . , v|V (G)|) of G

such that v1 is a minimal vertex of either PG or Pd
G. Using the same arguments,

we obtain the following lemma.

Lemma 5. Let G be a comparability graph, and let PG be the partial order which
corresponds to G. If P is an antipath of G, then there exists an antipath P ′ of
G such that V (P ′) = V (P ) which starts with a minimal vertex of V (P ) in PG.
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Fig. 1. Illustrating a Hasse diagram of a comparability graph G, an antipath P of G
which is neither normal nor longest, an antipath P ′ of G such that |P ′| > |P | which is

not normal, and a normal antipath P ′′ of G such that V (P ′′) = V (P ′)

The following result is central for the correctness of our algorithm.

Lemma 6. Let P be a longest antipath of a comparability graph G. Then, there
exists a normal antipath P ′ of G such that V (P ′) = V (P ).

Figure 1 illustrates a Hasse diagram of a comparability graph G. The antipath
P = (v3, v1, v5, v7) of G is not normal, and there exists no normal antipath P̂ of
G such that V (P̂ ) = V (P ); however, note that P is monotone. Also, P is not a
longest antipath of G, since there exists an antipath P ′ = (v2, v3, v1, v5, v7, v6) of
G such that |P ′| > |P |. Also, P ′ is not a normal antipath of G and there exists a
normal antipath P ′′ = (v1, v3, v2, v5, v7, v6) of G such that V (P ′′) = V (P ′); note
that it is easy to see that P ′′ is a longest antipath of G.

3 The Algorithm

Our algorithm, which we call Algorithm LP Cocomparability, computes a longest
path P of a cocomparability graph G by computing a longest antipath P of the
comparability graph G.

Let G be a comparability graph and let H1, H2, . . . , Hk be the layers of its
Hasse diagram. For simplifying our description, we add a dummy vertex u0 to
G such that u0 belongs to a layer H0 and u0ui ∈ E(G) for every i, 1 ≤ i ≤ n;
let G′ be the resulting graph. Note that, G′ is a comparability graph having a
Hasse diagram with layers H0, H1, H2, . . . , Hk, and let σ be a layered ordering
of G′, where V (G′) = {u0, u1, u2, . . . , un}. It is easy to see that u0 does not
participate in any longest antipath P of G′ such that |P | ≥ 2. In general, a
longest antipath P of G′ which does not contain the vertex u0 is also a longest
antipath of G. Algorithm LP Cocomparability computes a longest antipath of
G′ which is a longest antipath of the original graph G as well. Hereafter, we
consider comparability graphs G having assumed that we have already added
the dummy vertex u0. Thus, the antipaths we compute in G are also antipaths
of the graph G \ {u0}.
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We next give some definitions and notations necessary for the description of
the algorithm. Let Lj = (v1, v2, . . . , vk) be an arbitrary ordering of the vertices
v1, v2, . . . , vk. We denote by V (Lj) the set {v1, v2, . . . , vk} and by |Lj| the cardi-
nality of the set V (Lj). For every vertex vz ∈ Lj , we denote by Lj(vz) the order-
ing (v1, v2, . . . , vz−1, vz+1, vz+2, . . . , v|Lj|, vz), and for every index r, 0 ≤ r ≤ |Lj |,
we denote by Lr

j(vz) the ordering containing the first r vertices of Lj(vz); thus:

• Lj = (v1, v2, . . . , vk),
• Lj(vz) = (v1, v2, . . . , vz−1, vz+1, vz+2, . . . , v|Lj|, vz),
• Lr

j(vz) = (v1, v2, . . . , vr) if 1 ≤ r ≤ z − 1,
• Lr

j(vz) = (v1, v2, . . . , vz−1, vz+1, vz+2, . . . , vr+1) if z ≤ r ≤ |Lj | − 1,

• L0
j(vz) = ∅, and L

|Lj|
j (vz) = Lj(vz).

Definition 3. Let G be a comparability graph, let H0, H1, H2, . . . , Hk be the
layers of its Hasse diagram, let V (G) = {u0, u1, u2, . . . , un}, and let σ be the
layered ordering of G. For every triple p, i, and j, where 1 ≤ i ≤ j ≤ k and
up ∈ Hi−1, we define the graph G(up, i, j) to be the subgraph G[S], where
S = {ux : ux ∈ H�, i ≤ � ≤ j} \ {ux : upux /∈ E(G)}.

Definition 4. Let Lj be an ordering of the set Hj ∩ V (G(up, i, j)). We define
the graph Gr

uz
(up, i, j), where uz ∈ Lj and 0 ≤ r ≤ |Lj|, to be the subgraph G[S],

where S = V (G(up, i, j − 1)) ∪ Lr
j(uz) if i < j, and S = Lr

j(uz) if i = j.

Note that, since the dummy vertex u0 is adjacent to every other vertex of G,
the graph G(up, 1, j), 1 ≤ j ≤ k, is the subgraph G[S] of G induced by the set
S = {ux : ux ∈ H�, 1 ≤ � ≤ j}. Additionally, G

|Lj|
uz (up, i, j) = G(up, i, j), and if

i < j, then G0
uz

(up, i, j) = G(up, i, j − 1).
Figure 2 illustrates examples of the graphs defined in Definitions 3 and 4.

In particular, the figure to the left illustrates a Hasse diagram of a compara-
bility graph G with layers H0, H1, . . . , H5. The figure in the middle illustrates
the subgraph G(v1, 2, 4) of G induced by the vertices {v3, v6, v7, v8, v9, v10}. The
figure to the right illustrates the subgraph G2

v9
(v1, 2, 4) of G, if we consider

the ordering L4 = (v8, v9, v10) for the vertices of H4 ∩ V (G(v1, 2, 4)). The sub-
graph G2

v9
(v1, 2, 4) of G is induced by the vertices {v3, v6, v7, v8, v10}, and it is

actually an induced subgraph of G(v1, 2, 4).

Notation 1. For every vertex ut ∈ V (Gr
uz

(up, i, j)), if ut ∈ Hj, then we denote
by f(ut) the smallest index such that f(ut) < j, for which there exists a vertex
ux of Gr

uz
(up, i, j) such that ux ∈ Hf(ut) and uxut /∈ E(G); in the case where no

such index f(ut) exists, we set f(ut) = j.

Notation 2. For every vertex uy ∈ V (Gr
uz

(up, i, j)) we denote by
P (uy; Gr

uz
(up, i, j)) a longest normal antipath of Gr

uz
(up, i, j) with right endpoint

the vertex uy, and by �(uy; Gr
uz

(up, i, j)) the length of P (uy; Gr
uz

(up, i, j)).
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v9

(v1, 2, 4)

Fig. 2. Illustrating a Hasse diagram of a comparability graph G and the induced sub-

graphs G(v1, 2, 4) and G2
v9(v1, 2, 4) of G

Note that, if P is a longest normal antipath of G(up, i, j) with right endpoint
the vertex uy, i.e., P = P (uy; G(up, i, j)), then P is not necessarily a longest
antipath of G(up, i, j). However, if P is a longest antipath of G(up, i, j), then
from Lemma 6 there exists in G(up, i, j) a normal antipath P ′ such that V (P ′) =
V (P ); let uy be the right endpoint of the normal antipath P ′. Thus, there exists
a longest normal antipath P ′ = P (uy; G(up, i, j)) which is also a longest antipath
in G(up, i, j) for some vertex uy ∈ V (G(up, i, j)).

Given a comparability graph G, Algorithm LP Cocomparability (presented
in Figures 3 and 4) computes for every induced subgraph G(up, i, j) and for
every vertex uy of G(up, i, j), the length �(uy; G(up, i, j)) and the correspond-
ing antipath P (uy; G(up, i, j)), and outputs the maximum among the values
{�(uy; G(u0, 1, k)) : uy ∈ V (G(u0, 1, k))}, and the corresponding normal an-
tipath P (uy; G(u0, 1, k)). We prove that P (uy; G(u0, 1, k)) is a longest antipath
of G.

4 Correctness and Time Complexity

Let G be a comparability graph, let H0, H1, H2, . . . , Hk be the layers of its Hasse
diagram, and let σ be the layered ordering of G. We prove the following results.

Lemma 7. Let Lj be an ordering of the set Hj ∩ V (G(up, i, j)), let P =
(P1, v�, P2) be a normal antipath of Gr

uz
(up, i, j), and let v� be the last vertex

of Lr
j(uz). Then, P1 and P2 are normal antipaths of Gr

uz
(up, i, j).

Lemma 8. Let Lj be an ordering of the set Hj ∩ V (G(up, i, j)), and let ut be
the last vertex of Lr

j(uz). Let P1 be a normal antipath of Gr−1
uz

(up, i, j) with right
endpoint a vertex ux such that ux ∈ H�, f(ut) ≤ � ≤ j − 1, and utux /∈ E(G).
Let P2 be a normal antipath of Gr−1

uz
(ux, �+1, j) with right endpoint a vertex uy

such that uy ∈ Hh, �+1 ≤ h ≤ j, and V (P1)∩V (P2) = ∅. Then, P = (P1, ut, P2)
is a normal antipath of Gr

uz
(up, i, j) with right endpoint the vertex uy.



The Longest Path Problem is Polynomial on Cocomparability Graphs 35

Algorithm LP Cocomparability

Input: a comparability graph G where V (G) = {u0, u1, u2, . . . , un}, the layers

H0, H1, H2, . . . , Hk of its Hasse diagram, and a layered ordering σ of G.

Output: a longest normal antipath of G.

1. for j = 1 to k
2. for i = j downto 1

3. for every vertex up ∈ Hi−1

4. let Lj be an ordering of Hj ∩ V (G(up, i, j))
5. for every vertex uz ∈ Lj

6. for r = 1 to |Lj |
7. let ut be the last vertex of Lr

j (uz)

8. for every vertex uy ∈ V (Gr
uz

(up, i, j)) and y �= t {initialization}
9. if r = 1 then

10. �(uy ; G0
uz

(up, i, j))← �(uy; G(up, i, j − 1));

11. P (uy; G0
uz

(up, i, j))← P (uy; G(up, i, j − 1));

12. �(uy; Gr
uz

(up, i, j))← �(uy; Gr−1
uz

(up, i, j));
13. P (uy; Gr

uz
(up, i, j))← P (uy; Gr−1

uz
(up, i, j));

14. end for

15. if i = j then {case i = j}
16. �(ut; G

r
uz

(up, j, j))← |Lr
j (uz)|;

17. P (ut; G
r
uz

(up, j, j))← Lr
j (uz);

18. if i �= j then

19. �(ut; G
r
uz

(up, i, j))← 1; {initialization for uy = ut}
20. P (ut; G

r
uz

(up, i, j))← (ut);

21. execute process(Gr
uz

(up, i, j));
22. end for

23. �(uz; G(up, i, j))← �(uz; G
|Lj |
uz (up, i, j)); {for the vertex uz ∈ Lj}

24. P (uz; G(up, i, j))← P (uz; G
|Lj |
uz (up, i, j));

25. end for

26. for every vertex uy ∈ V (G(up, i, j)) and uy /∈ Lj {for uy /∈ Lj}
27. �(uy ; G(up, i, j))← �(uy; G

|Lj |
uz (up, i, j));

28. P (uy ; G(up, i, j))← P (uy; G
|Lj |
uz (up, i, j));

29. end for

30. end for

31. end for

32. end for

33. compute the max{�(uy; G(u0, 1, k)) : uy ∈ G(u0, 1, k)} and the corresponding

antipath P (uy; G(u0, 1, k));

Fig. 3. The algorithm for finding a longest antipath of G
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Process(Gr
uz

(up, i, j))

procedure bridge(Gr
uz

(up, i, j))
if f(ut) < j then {ut is the last vertex of Lr

j (uz)}
for h = f(ut) + 1 to j

for � = f(ut) to h− 1

for every vertex ux ∈ H� ∩ V (Gr−1
uz

(up, i, j)) and uxut /∈ E(G)

for every vertex uy ∈ Hh ∩ V (Gr−1
uz

(ux, � + 1, j))
w1 ← �(ux; Gr−1

uz
(up, i, j)); P ′

1 ← P (ux; Gr−1
uz

(up, i, j));
w2 ← �(uy; Gr−1

uz
(ux, � + 1, j)); P ′

2 ← P (uy; Gr−1
uz

(ux, � + 1, j));
if w1 + w2 + 1 > �(uy; Gr

uz
(up, i, j)) then

�(uy ; Gr
uz

(up, i, j))← w1 + w2 + 1;

P (uy ; Gr
uz

(up, i, j))← (P ′
1, ut, P

′
2);

procedure append(Gr
uz

(up, i, j))
for � = f(ut) to j {ut is the last vertex of Lr

j (uz)}
for every vertex ux ∈ H� ∩ (V (Gr−1

uz
(up, i, j)) and uxut /∈ E(G)

w1 ← �(ux; Gr−1
uz

(up, i, j)); P ′
1 ← P (ux; Gr−1

uz
(up, i, j));

if w1 + 1 > �(ut; G
r
uz

(up, i, j)) then

�(ut; G
r
uz

(up, i, j))← w1 + 1;

P (ut; G
r
uz

(up, i, j))← (P ′
1, ut);

return (the value �(uy ; Gr
uz

(up, i, j)) and the antipath P (uy; Gr
uz

(up, i, j)), for every

vertex uy ∈ V (Gr
uz

(up, f(ut) + 1, j)) if f(ut) < j, and for uy = ut if f(ut) = j);

Fig. 4. The procedure process()

Lemma 9. For every induced subgraph G(up, i, j) of G, and for every ver-
tex uy ∈ V (G(up, i, j)), the value �(uy; G(up, i, j)) computed by Algorithm
LP Cocomparability is equal to the length of a longest normal antipath of
G(up, i, j) with right endpoint the vertex uy and, also, the corresponding com-
puted antipath P (uy; G(up, i, j)) is a longest normal antipath of G(up, i, j) with
right endpoint the vertex uy.

Let P be a longest antipath of G such that |P | ≥ 2. From Lemma 6 we may
assume that P is a longest normal antipath of G and let uy be its right end-
point. Also, P belongs to the graph G \ {u0}. Since G(u0, 1, k) = G \ {u0}
and since Algorithm LP Cocomparability computes the maximum among the
lengths {�(uy; G(u0, 1, k)) : uy ∈ V (G(u0, 1, k))} and the corresponding antipath
P ′, from Lemma 9 we obtain that |P ′| = |P |. Therefore, we obtain the following.

Theorem 3. Algorithm LP Cocomparability computes a longest path of a co-
comparability graph in polynomial time.
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Abstract. We provide exact algorithms for enumeration and counting

problems on edge colorings and total colorings of graphs, if the number

of (available) colors is fixed and small. For edge 3-colorings the follow-

ing is achieved: there is a branching algorithm to enumerate all edge 3-

colorings of a connected cubic graph in time O∗(25n/8). This implies that

the maximum number of edge 3-colorings in an n-vertex connected cubic

graph is O∗(25n/8). Finally, the maximum number of edge 3-colorings in

an n-vertex connected cubic graph is lower bounded by 12n/10. Similar

results are achieved for total 4-colorings of connected cubic graphs. We

also present dynamic programming algorithms to count the number of

edge k-colorings and total k-colorings for graphs of bounded pathwidth.

These algorithms can be used to obtain fast exact exponential time al-

gorithms for counting edge k-colorings and total k-colorings on graphs,

if k is small.

1 Introduction

Graph coloring is one of the classical subjects in graph theory. The four color
conjecture asking whether every planar graph can be vertex-colored using at
most 4 colors has been triggering the research in graph theory for more than a
century. From an algorithmic point of view, for many coloring type problems, like
vertex coloring, edge coloring and total coloring, the existence problem asking
whether the graph has a coloring with a given number of colors is NP-complete.
Even more, these coloring problems remain NP-complete when the question is
whether there is a coloring of the input graph with a fixed (and small) number
of colors [12,13,20]. (For Definitions see Section 2.)
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Exact algorithms to solve NP-hard problems are a challenging research sub-
ject in graph algorithms. Many papers on exact exponential time algorithms
have been published in the last decade. One of the major results is the O∗(2n)
inclusion-exclusion algorithm to compute the chromatic number of a graph first
presented at FOCS 2006 by Björklund, Husfeldt [2] and Koivisto [14].1 This ap-
proach can also be used to establish a O∗(2n) algorithm to count the k-colorings
and to compute the chromatic polynomial of a graph. It also implies a O∗(2m)
algorithm to count the edge k-colorings and a O∗(2n+m) algorithm to count the
total k-colorings of the input graph.

The existence problem asking whether a graph has a k-coloring for a fixed
and small value of k also attracted a lot of attention. For vertex-colorability the
fastest algorithm for k = 3 has running time O∗(1.3289n) and was proposed by
Beigel and Eppstein [1], and the fastest algorithm for k = 4 has running time
O∗(1.7272n) and was given by Fomin et al. [7]. They also established algorithms
for counting vertex k-colorings for k = 3 and 4 [7]. The existence problem for an
edge 3-coloring is considered in [1,15] and the currently fastest algorithm with
the running time O(1.344n) is due to Kowalik [15]. Very recently Björklund et
al. showed how to detect whether a d-regular graph admits an edge d-coloring
in time O∗(2(d−1)n/2) [3].
Combinatorial bounds on the maximum number of combinatorial objects
in any n-vertex graph, as e.g. maximal independent sets or k-colorings, are of
interest in combinatorics. Such upper bounds can sometimes be achieved via
algorithms to enumerate all these objects. A well-known example is a branching
algorithm to enumerate all maximal independent sets of a graph that can be used
to establish an O∗(3n/3) upper bound for the number of maximal independent
sets in an n-vertex graph. Originally in 1965 Moon and Moser showed by an
inductive proof that the maximum number of maximal independent sets in an
n-vertex graph is 3n/3 [18]. Another interesting example is the upper bound
of O(1.7159n) on the number of minimal dominating sets of an n-vertex graph
established via a branching enumeration algorithm and its Measure & Conquer
analysis by Fomin et al. [10].

Our Results. For edge 3-colorings we achieve the following enumeration algo-
rithm and related combinatorial bounds.

– There is a branching algorithm to enumerate all edge 3-colorings of a con-
nected cubic graph of running time O∗(25n/8) = O(1.5423n) using polyno-
mial space (Subsection 3.1).

– The maximum number of edge 3-colorings in an n-vertex connected cubic
graph is at most O∗(25n/8) = O(1.5423n) (Subsection 3.1).

– The maximum number of edge 3-colorings in an n-vertex connected cubic
graph is lower bounded by 12n/10 = Ω(1.2820n) (Subsection 3.3).

For the counting problem of edge k-colorings of graphs we achieve the following
algorithms.
1 As has recently become standard, we write f(n) = O∗(g(n)) if f(n) ≤ p(n) · g(n) for

some polynomial p(n).
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– The edge k-colorings of a graph given with a path decomposition of width
at most p can be counted in time roughly O∗(

(
k

�k/2�
)p+1

) by a dynamic
programming algorithm using exponential space (Section 4).2

– The number of edge 3-colorings of a graph can be counted in time O∗(3n/6)
= O(1.201n) and exponential space (Section 4).

– The number of edge 4-colorings of a graph can be counted in time O∗(6n/3)
= O(1.8172n) and exponential space (Section 4).

Note that our algorithm to count edge 3-colorings in time O(1.201n) improves
upon the O(1.344n) time of Kowalik’s polynomial space branching algorithm
solving the decision problem [15].

For total k-colorings of graphs we achieve the following results.

– There is a branching algorithm to enumerate the total 4-colorings of a con-
nected cubic graph in time O∗(213n/8) = O(3.0845n), implying that the
maximum number of total 4-colorings in an n-vertex connected cubic graph
is at most O∗(213n/8) = O(3.0845n) (Subsection 3.2).

– The number of total k-colorings of a graph given with a path decomposition
of width at most p can be counted in time roughly O∗(

(
k ·

(
k−1

�(k−1)/2�
))p+1)

(Section 4).2

– The number of total 4-colorings of a graph G can be counted in time O(12n/6)
= O(1.5131n) (Section 4).

Let us emphasize that edge 3-colorings and total 4-colorings exist only for graphs
of maximum degree at most 3. Furthermore the largest number of such colorings
for connected graphs is achieved by the n-vertex path. To avoid such trivial cases,
it is natural to study these problems on connected cubic graphs; a well-known
class of graphs for which upper bounding the number of colorings (of both types)
is a non trivial and challenging task.

Furthermore we achieved similar results for the L(2, 1)-labeling problem of
graphs. Due to space restrictions only a short summary is given in Section 5.
For the same reason some proofs will be omitted.

2 Preliminaries

We consider finite undirected graphs without loops or multiple edges. The vertex
set of a graph G is denoted by V (G) and its edge set by E(G), or simply by V
and E if this does not create confusion. For a set of edges S ⊆ E(G), G−S is the
graph obtained from G by removing the edges of S. We denote by degG(v) the
degree of a vertex v. For a vertex v, EG(v) is the set of edges incident with v. We
may omit indices if the graph under consideration is clear from the context. The
maximum degree of a graph G is denoted by Δ(G). Let r be a positive integer.
A graph G is called r-regular if all vertices of G have degree r. A cubic graph is
a 3-regular graph.
2 See Theorem 3 for a precise estimation of the running time.



42 P.A. Golovach, D. Kratsch, and J.-F. Couturier

Let k be a positive integer. A vertex (edge) k-coloring of a graph G is an
assignment c : V (G) → {1, . . . , k} (c : E(G) → {1, . . . , k} respectively) of a
positive integer (color) to each vertex (edge) of G such that adjacent vertices
(edges) receive distinct colors. A total k-coloring of a graph G is a mapping
c : V (G) ∪ E(G) → {1, . . . , k} such that adjacent vertices and adjacent edges
have different colors, and for any edge e incident to vertex v, c(v) �= c(e). The
chromatic number of G (denoted by χ(G)) is the minimum k such that there
is a vertex k-coloring of G. The chromatic index (or edge chromatic number) is
the smallest k for which an edge k-coloring of G exists. We denote the chromatic
index by χ′(G). The total coloring number τ(G) is the minimum k for which
there is a total k-coloring of G.

It is easy to see that χ′(G) ≥ Δ(G) and τ(G) ≥ Δ(G) + 1 for every graph G.
Let us recall that by the well-known theorem of Vizing Δ(G) ≤ χ′(G) ≤ Δ(G)+1
[21]. Also it is known that for any graph G with maximum degree at most three,
there is a total 5-coloring of G [19].

3 Enumeration Algorithms for Cubic Graphs

3.1 Edge 3-Colorings

We present a branching algorithm to enumerate all edge 3-colorings of a given
connected cubic graph. Our branching algorithm consists of a recursive procedure
EnumCol and two auxiliary subroutines Color and Extend.

Procedure EnumCol(S, c);
Extend(S, c);1

if the graph H = G− S contains a component F s.t. F is not a cycle and2

not an isolated vertex then
choose a vertex v ∈ V (F ) s.t. degF (v) < 3 and edge e ∈ E(F ) incident with
v; let {α, β} = {1, 2, 3} \ {c(S ∩ EG(v))};set S′ = S, c′ = c;
if Color(S, c, e, α) = true then EnumCol(S, c);
if Color(S′, c′, e, β) = true then EnumCol(S′, c′);

if the graph H = G− S contains a component F s.t. F is an odd cycle and3

there is α ∈ {1, 2, 3} s.t. for all v ∈ V (F ), c(S ∩EG(v)) = α then Halt;
if there is an edge {u, v} in H = G− S s.t. c(S ∩ EG(u)) �= c(S ∩ EG(v)) then4

let α ∈ {1, 2, 3} \ c(S ∩ (EG(u) ∪EG(v));Color(S, c, {u, v}, α);
EnumCol(S, c);

if the graph H = G− S contains a component F s.t. F is a cycle and5

there is α ∈ {1, 2, 3} s.t. for all v ∈ V (F ), c(S ∩EG(v)) = α then
let e ∈ E(F ) and let {β, γ} = {1, 2, 3} \ {α};set S′ = S, c′ = c;
Color(S, c, e, β);EnumCol(S, c);
Color(S′, c′, e, γ);EnumCol(S′, c′);

if S = E(G) then Output(c)6

The procedure EnumCol takes as input a connected cubic graph G and a set of
colored edges S ⊆ E(G), i.e. for each e ∈ S, the assigned color c(e) ∈ {1, 2, 3} is
given. The procedure enumerates all edge 3-colorings of G which are extensions
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of the given edge coloring of S. Note that if v is an isolated vertex in G−S then
all edges incident to v are colored, and thus v is of no importance for extending
the partial edge coloring c.

The subroutine Color takes as input a set of colored edges S with a partial
edge coloring c, an edge {u, v} ∈ E(G) \ S and a color α ∈ {1, 2, 3}. It tries
to extend c by assigning to edge {u, v} the color α. If possible the subroutine
returns true, otherwise it returns false.

Subroutine Color(S, c, {u, v}, α);
if α /∈ c(S ∩ (EG(u) ∪EG(v))) then

set c({u, v}) = α, S = S ∪ {e};Return(true );
else Return(false )

The subroutine Extend tries to extend a given edge coloring c of S by reduction
(i.e. without branching) if there is a vertex incident with two already colored
edges.

Subroutine Extend(S, c);
while there is a vertex v ∈ V (G) s.t. |S ∩E(v)| = 2 do

let {α, β} = S ∩E(v), γ ∈ {1, 2, 3} \ {α, β} and e ∈ E(v) \ S;
if Color(S, c, e, γ) = false then Halt

To enumerate all edge 3-colorings of a connected cubic G we choose any
edge e ∈ E(G), set S = {e} and call the procedure EnumCol consecutively for
c(e) = 1, c(e) = 2 and c(e) = 3. If the aim is to enumerate all edge 3-colorings
up to permutations of colors then we choose two adjacent edges e1, e2 ∈ E(G),
set S = {e1, e2}, c(e1) = 1, c(e2) = 2 and call EnumCol.

Theorem 1. Our algorithm enumerates all edge 3-colorings of a connected cubic
graph G in time O∗(25n/8).

Proof. To prove the correctness of the algorithm we consider Procedure EnumCol.
By the step 1 we try to extend the coloring c of S without branching looking for
vertices incident with two already colored edges. By the step 2 we choose a vertex
v with exactly one incident colored edge, and then branch using an uncolored
edge e incident with v. Clearly, we have two possibilities to color this edge. Notice
that e is an edge of the component of H = G− S which is not a cycle. If for the
current input G, S, c the steps 1 and 2 are not applicable anymore, then since G
is a connected graph, every vertex is incident to at least one edge of S. Hence
the maximum degree of G − S is at most two, which implies that G − S is a
union of paths, cycles and isolated vertices. Furthermore no component can be
a path since such a component would be colored by applying step 1 successively
to an end vertex of the path. Thus in steps 3–5 all non empty components of
H = G− S are cycles. Suppose F is a component of H which is a cycle. If F is
an odd cycle and all vertices of F are incident with colored edges from S which
are colored by the same color, then all edges of F have to be colored by the two
remaining color, but this is impossible. This case is checked in the step 3. If F
has at least two vertices which are incident with edges of S colored by different
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colors, then F contains two adjacent vertices u and v with the same property.
Since there is only one possibility to color {u, v}, all edges of F can be colored
without branching, and it is done in step 4 and by a recursive call of EnumCol.
In step 5 we consider the final case when all non empty components of H are
even cycles, and for each cycle F , all vertices of F are incident with the edges
of S colored by the same color. Then two edge colorings of F are possible and
each is generated via a recursive call of EnumCol.

Now we estimate the running time. Consider the graph GS which is the sub-
graph of G with edge set S and the set of all end vertices of S as vertex set.
Notice that by each successive execution of step 2 and step 1 for the next recur-
sive call of EnumCol, we add at least two vertices to the graph GS by our choice
of the edges for the branching in step 2. It follows from the fact that after a call
of the subroutine Extend all non isolated vertices of G− S have degree at least
2 in this graph, and then the Extend subroutine colors edges along two paths in
G−S starting at the vertex v chosen for the branching and ending at a degree 3
vertex in G− S for each of them. Observe also that if these two paths reach the
same vertex then the subroutine extends the coloring along a new path starting
at this vertex until we reach a new vertex of degree 3. This means that the depth
of the search tree generated by branchings in step 2 only, and not considering
steps 3–6, is at most n−2

2 (recall that GS has two vertices when EnumCol is called
first). The branching on the steps 3–5 is done only when all non empty compo-
nents of H are even cycles, and for each cycle, only one binary branching is done.
Let us estimate the number of such cycles. Suppose that the set S constructed
by EnumCol is such that all non empty components of H = G − S are cycles.
Since G is a connected graph and by the choice of the edges for the branching,
GS is a connected graph with the vertex set V (G). Notice that GS has only
vertices of degree one or three. Let n1 be the number of vertices of degree one,
and let n3 be the number of vertices of degree three. Clearly, GS has 1

2 (n1 +3n3)
edges, and since it is connected, 1

2 (n1 + 3n3) ≥ n1 + n3 − 1. Hence, n+2
2 ≥ n1

and therefore the number of vertices of degree 2 in H = G − S is at most n+2
2

implying that H has at most n+2
8 even length cycles. Therefore, the depth of the

overall search tree is at most n−2
2 + n+2

8 . Since for each branching, we consider
two cases, the number of leaves in the search tree is at most 2

n−2
2 + n+2

8 , and the
running time of the algorithm is O∗(25n/8). ��
Using the fact that edge 3-colorings correspond to leaves of the search tree, we
have the following corollary.

Corollary 1. Let G be a connected cubic graph with n vertices. Then the number
of different edge 3-colorings of G is at most 3 · 2(5n−6)/8.

3.2 Total 4-Colorings

Using an algorithm similar to the one of the previous subsection it is possible to
enumerate the total 4-colorings of connected cubic graphs. The major ingredient
to be added to the above algorithm is that a vertex is colored as soon as one of
its incident edges is colored.
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Theorem 2. All total 4-colorings of a connected cubic graph G can be enumer-
ated in time O∗(213n/8).

Proof. We discuss those properties that are different from the algorithm in the
previous subsection.

Notice that if {u, v} is a colored edge and the vertex u is colored too, then
there are at most two possibilities to color v. Thus whenever a vertex is colored
(except the first two) at most two colors are possible. If a vertex v is colored
and it is incident with one colored edge, then there are at most two possibilities
to color the remaining edges incident to v. Also, if a vertex v is colored and it
is incident with two colored edge, then there is at most one possibility to color
the remaining edge incident to v.

Suppose that S is the set of colored edges. Let F be a component of G − S
and assume that F is a cycle. Since we color vertices as soon as at least one
incident edge is colored, all vertices of F are colored. If two adjacent vertices are
colored by the same color we stop since there is no total 4-coloring extending the
current partial total coloring. Assume that F is an odd cycle. Thus there is a
vertex u ∈ V (G) which is adjacent to vertices v, w ∈ V (G) which are colored by
different colors. In this case there is at most one possibility to extend the total
coloring by coloring either {u, v} or {u, w}, and therefore there is at most one
possibility to color the edges of F . Assume that F is an even cycle. Then there
are at most two possibilities to color the edges of F , and two possibilities may
exist only if the vertices of the cycle are colored alternately by two colors.

The time analysis is similar to the one in the proof of Theorem 1. The number
of possibilities to color the edges (using 4 colors) is O∗(25n/8) since the same
recurrences apply. Furthermore there are at most two possibilities to color a
vertex which contributes a factor of 2n and implies the stated running time. ��

3.3 Lower Bounds for Edge 3-Colorings

Let us note that the enumeration algorithm of Subsection 3.1 actively uses the
fact that the considered graphs are connected and have no vertices of degree one
or two. Particularly, our upper bound for the number of edge 3-colorings does
not apply to all graphs of maximum degree 3. For example, for an n-vertex path
Pn, the number of edge 3-colorings is 3 · 2n−2, and for the disjoint union of n

6

copies of K3,3, the number of edge 3-colorings is 12n/6. Now we give lower bound
for the number of edge 3-colorings of connected cubic graphs.

We consider a complete bipartite graph K3,3. Let e1 and e2 be edges of this
graph. We replace these edges by paths of length 3 with middle vertices a1, a2 and
b1, b2 respectively. Denote the obtained graph by H . We call vertices a1, a2, b1, b2

roots of H . Let n = 10r be a positive integer. We construct r copies of H denoted
by H1 . . . , Hr, and denote by a

(i)
1 , a

(i)
2 , b

(i)
1 , b

(i)
2 the roots of Hi for 1 ≤ i ≤ r.

Assume that b
(0)
1 = b

(r)
1 and b

(0)
1 = b

(r)
1 . For 1 ≤ i ≤ r, we add edges {b(i−1)

1 , a
(i)
1 }

and {b(i−1)
2 , a

(i)
2 }. Let us call the resulting connected cubic graph G. It is possible

to prove the following proposition.
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Proposition 1. The connected cubic graph G has n vertices and at least 12n/10

different edge 3-colorings.3

4 Dynamic Programming Counting Algorithms

We establish dynamic programming algorithms (needing exponential space) to
count the number of edge k-colorings and total k-colorings on graphs of bounded
pathwidth. This allows the design of exact algorithms to count the edge and total
k-colorings of graphs of bounded degree. It also implies a faster edge 3-coloring
algorithm. Notice that since χ′(G) ≥ Δ(G) and τ(G) ≥ Δ(G)+1, it is sufficient
to consider our problems for graphs of bounded maximum degree: Δ(G) ≤ k for
edge k-colorings and Δ(G) ≤ k − 1 for total k-colorings.

First we summarize a few fundamentals on treewidth and pathwidth.
A tree decomposition of a graph G is a pair (X, T ) where T is a tree whose

vertices we will call nodes and X = ({Xi | i ∈ V (T )}) is a collection of subsets
of V (G) (called bags) such that

1.
⋃

i∈V (T ) Xi = V (G),
2. for each edge {v, w} ∈ E(G), there is an i ∈ V (T ) such that v, w ∈ Xi, and
3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) equals maxi∈V (T ){|Xi|−
1}. The treewidth of a graph G, denoted tw(G), is the minimum width over all
tree decompositions of G.

A tree decomposition (X, T ) of a graph G with T being a path is called
a path decomposition of G. The pathwidth of G is the minimum width over
all path decompositions of G. The pathwidth is denoted by pw(G). For a path
decomposition (X, P ), we assume that the path P has nodes 1, . . . , r in the given
order. For 1 ≤ i ≤ r, by Gi we denote the graph induced by the set X1∪· · ·∪Xi.
It is well known that every path decomposition (X, P ) can be easily converted
(in linear time) to a nice path decomposition of same width (and with a linear
size of P ), such that nodes of P are of two types:

1. Introduce nodes i with Xi = Xi−1 ∪ {v} for some vertex v ∈ V (G).
2. Forget nodes i with Xi = Xi−1 \ {v} for some vertex v ∈ V (G).

We assume here that X0 = ∅. Nice path decompositions are used in the design
of our dynamic programming algorithm.

Nowadays dynamic programming algorithms on path or tree decompositions
are often used to establish exact exponential time algorithms (see e.g. [8,9,11]).
We discuss this approach for for graphs of maximum degree d ≥ 3. This approach
relies on upper bounds for the pathwidth. Fomin and Høie [11] proved that

3 It was pointed to us by Artem Pyatkin that it is possible to improve this lower

bound, if we consider the graph with n = 2r vertices obtained by joining two cycles

Cr by a perfect matching (vertices joined in the cyclical order). This graph has at

least 3
4
· 2n/2 different edge 3-colorings.
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for any ε > 0, there exists an integer nε such that for every graph G with
maximum vertex degree at most three and with |V (G)| > nε, pw(G) ≤ (1

6 +
ε)|V (G)|. It should be noted that the proof of this fact is constructive and a path
decomposition of width at most (1

6 + ε)|V (G)| can be constructed in polynomial
time. Fomin and Høie pointed out in [11] that such path decompositions can be
used for constructing fast exact algorithm for the graphs of maximum degree
three. They demonstrated it for the problems Maximum Independent Set,
Max-Cut and Minimum Dominating Set. This technique was also used for
the vertex 3- and 4-coloring problems in [7]. The best known upper bound is the
following.

Proposition 2 ([8]). For any ε > 0, there exists an integer nε such that for
every graph G with |V (G)| = n > nε,

pw(G) ≤ 1
6
n3 +

1
3
n4 +

13
30

n5 +
23
45

n6 + n≥7 + εn,

where ni is the number of vertices of degree i in G for any i ∈ {3, 4, 5, 6} and n≥7

is the number of vertices of degree at least 7. Moreover, a path decomposition of
the corresponding width can be computed in polynomial time.

This bound can be combined with dynamic programming algorithms for edge
k-coloring and total k-coloring on graphs of bounded pathwidth.

Theorem 3. For an n-vertex graph with pathwidth at most p,

1. all edge k-colorings can be counted in time O(
(

k
�k/2�

)p+1 · k · k! · log k · n2),

2. all total k-colorings can be counted in time O(
(
k ·

(
k−1

�(k−1)/2�
))p+1 ·k ·k! · log k ·

n2),

if the path decomposition is given.

Proof. To describe the dynamic programming algorithms, we describe what we
store in the tables corresponding to the bags of the path decomposition. We
consider a nice path decomposition of a graph G with maximum degree at most
k and pathwidth at most p with bags X1, . . . , Xr. For 1 ≤ i ≤ r, we denote by
Gi the subgraph of G induced by X1 ∪X2 ∪ · · ·Xi. For 1 ≤ i ≤ r and 0 ≤ j ≤ k,
let Z

(j)
i ⊆ Xi be the set of vertices in the bag Xi having degree j in Gi. Assume

that Z
(j)
i = {z(j)

1 , . . . , z
(j)
pj }.

At first we consider edge colorings. The table of data for a bag Xi stores entries
often called characteristics which contain collections of sets {S(j)

1 , . . . , S
(j)
pj } for

1 ≤ j ≤ k and an integer σ such that

– S
(j)
t ⊆ {1, . . . , k} and |S(j)

t | = j for 1 ≤ t ≤ pj and 1 ≤ j ≤ k, and
– there are σ edge k-colorings of Gi such that edges of Gi incident with z

(j)
t

are colored by the colors from S
(j)
t for 1 ≤ t ≤ pj and 1 ≤ j ≤ k.
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The first claim of the proposition follows from the observation that the table
contains at most

k∏
j=1

(
k

j

)pj

≤
(

k

�k/2�

)p+1

entries. Constructions of the tables for introduce and forget nodes are straightfor-
ward, and we omit these descriptions here. It remains to notice that the number
of all edge k-colorings of G equals to the sum of all integers σ over all entries of
the table for the node r.

The proof of the second claim is similar. For a node i, we keep collections of
pairs {(α(j)

1 , S
(j)
1 ), . . . , (α(j)

pi , S
(j)
pj )} for 1 ≤ j ≤ k − 1 and an integer σ such that

– α
(j)
t ∈ {1, . . . , k},

– S
(j)
t ⊆ {1, . . . , k} \ {α(j)

t } and |S(j)
t | = j for 1 ≤ t ≤ pj and 0 ≤ j ≤ k − 1,

and
– there are σ total k-coloring of Gi such that z

(j)
t is colored by α

(j)
t and edges

of Gi incident with z
(j)
t are colored by the colors from S

(j)
t for 1 ≤ t ≤ pj

and 0 ≤ j ≤ k − 1.

It remains to note that the table contains at most
k−1∏
j=0

(
k ·

(
k − 1

j

))pj

≤
(
k ·

(
k − 1

�(k − 1)/2�

))p+1

entries.
This implies that the overall number of entries stored in tables of bags is

O(
(

k
�k/2�

)p+1 ·n) in the first and O(
(
k·

(
k−1

�(k−1)/2�
))p+1 ·n) in the second algorithm.

The additional factors in the stated running times (though of little importance
for our further applications in which k > 0 is a small integer) are discussed
here for edge coloring only. When computing the entries for an insert node Xi

obtained from a fixed entry of Xi−1 with v ∈ Xi \ Xi−1, there are at most k!
possibilities to color the edges with endpoint v and another endpoint in Xi−1, and
it takes time O(k) to compute and verify the validity of an entry. Furthermore
the algorithm stores in each entry the number of valid partial edge colorings in
Gi. In a unit-cost RAM model the necessary arithmetic operations can be done
in time O(1). In a more realistic log-cost RAM model there is another factor
n log k since the number of edge k-colorings in an n-vertex graph is at most kn.

��
The above dynamic programming algorithm is simpler and has a better run-
ning time for a small number of colors than the known dynamic programming
algorithms for edge colorings on graphs of bounded treewidth [4,22,23].

Using our algorithms of Theorem 3 and upper bounds on the maximum path-
width of graphs of a given maximum degree, we can obtain exact algorithms
for counting edge k-colorings and total (k + 1)-colorings on graphs of maximum
degree k. Combined with the fact that graphs of maximum degree larger than k
have neither edge k-colorings nor total (k + 1)-colorings this implies algorithms
for all graphs. To mention a few:
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Theorem 4. For any ε > 0,

1. all edge 3-colorings of a graph can be counted in time O∗(3(1/6+ε)n),
2. all edge 4-colorings of a graph can be counted in time O∗(6(1/3+ε)n),
3. all total 4-colorings of a graph can be counted in time O∗(12(1/6+ε)n).

Theorem 4 implies a O∗(3n/6) = O(1.2010n) time exponential space algorithm
to count the edge 3-colorings of graphs improving upon the O(1.344n) running
time of Kowalik’s polynomial space algorithm for the edge 3-coloring decision
problem [15].

5 Conclusion

Results similar to those for edge and total k-colorings presented in previous
sections can be obtained for L(2, 1)-labelings of graphs. Due to space restrictions,
we give only a short summary of our results.

An L(2, 1)-labeling of a graph G of span k is a function f : V (G)→ {0, . . . , k}
such that for any adjacent vertices u and v, |f(u)− f(v)| ≥ 2, and for any two
vertices u and v at distance two, f(u) �= f(v). Fiala et al. proved that it is
NP-complete to decide whether a given graph has an L(2, 1)-labeling of span k
for any k ≥ 4 [6]. Exact algorithms for the L(2, 1)-labeling problem with span k
are given by Král [16] (for the more general Channel Assignment problem) and
Kratochv́ıl et al. [17]. For k = 4, an algorithm with running time O(1.3161n)
was given in [17].

Since cubic graphs have no L(2, 1)-labeling of span k for k ≤ 4, we are inter-
ested in L(2, 1)-labelings of span 5. One of the basic observations is the asym-
metry within the colors. Coloring a vertex x by 0 or 5 makes only two colors
unavailable for a neighbor of x. Coloring a vertex x by 1, 2, 3 or 4 makes three
colors unavailable for each neighbor of x.

By a classical branching algorithm we can prove the following theorem.

Theorem 5. All L(2, 1)-labelings of span 5 for a given connected cubic graph
with n vertices can be enumerated in time O(1.8613n), and the number L(2, 1)-
labelings of span 5 of any connected cubic graph is O(1.8613n).

We can also show that the maximum number of L(2, 1)-labelings of span 5 in a
connected cubic graph is lower bounded by 2n/6.

Finally for any ε > 0, the number of L(2, 1)-labelings of span 4 of n-vertex
graphs can be counted in time O∗(6(1/15+ε)n).
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Abstract. We describe a flow model that generalizes ordinary network

flows the same way as stable matchings generalize the bipartite matching

problem. We prove that there always exists a stable flow and generalize

the lattice structure of stable marriages to stable flows. Our main tool is a

straightforward reduction of the stable flow problem to stable allocations.

Keywords: Stable marriages; stable allocations; network flows.

1 Introduction

In the stable marriage problem of Gale and Shapley [6], there are n men and
n women and each person ranks the members of the opposite gender by an
arbitrary strict, individual preference order. A marriage scheme in this model is
a set of marriages between different men and women. Such a scheme is unstable
if there exists a blocking pair, that is, a man m and a woman w in such a way
that m is either unmarried or m prefers w to his wife, and at the same time, w
is either unmarried or prefers m to her partner. A marriage scheme is stable if
it is not unstable, that is, not blocked by any pair. It is a natural problem to
find a stable marriage scheme if it exists at all. Nowadays, it is already folklore
that for any preference rankings of the n men and n women, a stable marriage
scheme does exist. This theorem was proved first by Gale and Shapley in [6].
They constructed a special stable marriage scheme with the help of a finite
procedure, the so-called deferred acceptance algorithm. It also turned out that
for the existence of a stable scheme, it is not necessary that the number of men
is the same as the number of women or that for each person, all members of the
opposite gender are acceptable: the deferred acceptance algorithm is so robust
that it works properly in these more general settings.

Several interesting properties about the structure of stable marriage schemes
are known. Donald Knuth [7] attributes to John Conway the observation that
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stable marriages have a lattice structure: if each man picks the better assign-
ment out of two stable marriage schemes then another stable marriage scheme
is created in which each women receives the worse out of the two husbands.

There are further known extensions of the stable marriage problem. Bäıou
and Balinski proved in [1] that if each edge of the underlying bipartite graph
has a nonnegative capacity and each vertex has a nonnegative quota then the
accordingly modified deferred acceptance algorithm shows that there always ex-
ists a so called stable allocation. An allocation is an assignment of nonnegative
values to the edges that do not exceed the corresponding capacities such that
the total allocation of no vertex exceeds its quota. (That is, a “marriage” can
be formed with an “intensity” different from 0 and 1 and each participant has
an individual upper bound on his/her total “marriage intensity”.) An allocation
is stable if any unsaturated edge e has a saturated end vertex v such that no
edge e′ incident to v and preferred by v less than e has a positive value. Beyond
proving the existence of stable assignments, Bäıou and Balinski used flow-type
arguments to speed up the deferred acceptance algorithm in [1]. Later, Dean and
Munshi came up with an even faster algorithm for the same problem [3] that
also has to do with network flows.

It is fairly well-known that the bipartite matching problem can be formulated
in the more general network flow model, and the alternating path algorithm for
maximum bipartite matchings is a special case of the augmenting path algorithm
of Ford and Fulkerson for maximum flows. However, it seems that the question
whether there exists a flow generalization of the stable marriage theorem has
not been addressed so far. This very problem is in the focus of our present
work. In section 2, we formulate the stable flow problem and state a result
from [1] by Bäıou and Balinski on stable allocations. Section 3 contains the
stable flow theorem, a generalization of the Gale-Shapley theorem to flows. Our
reduction of the stable flow problem to the stable allocation problem resembles
to the reduction of the maximum flow problem to the maximum b-matching
problem. Actually, our construction has to do also with the one that Cechlárová
and Fleiner used in [2] to extend the stable roommates model to a multiple
partner model. Section 4 is devoted to certain structural results on stable flows,
in particular we generalize the lattice structure of stable marriages. To achieve
this, we lean on the construction we used for the reduction. The interested reader
can find the extended version of our work with the proofs and with an application
showing a certain “linking property of flows” in [5].

It turned out that our model is closely related to so-called “supply chains”
well-known in the Economics literature. Prior to our work, Ostrovsky had a
related result in [8]. There, he considers only acyclic networks, but instead of
the Kirchhoff law, he requires a less restrictive property that he calls “same
side substitutability” and “cross side complementarity”. In [8] the author proves
the existence of a “chain stable network” and justifies that these “chain stable
networks” form a lattice under a natural partial order. Ostrovsky’s results are
very close to ours and these cry for a common generalization. This will be subject
of a future work.
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2 Preliminaries

Recall that by a network we mean a quadruple (D, s, t, c), where D = (V, A)
is a digraph, s and t are different nodes of D and c : A → R+ is a function
that determines the capacity c(a) of each arc a of A. (Sometimes it is assumed
that no arc enters vertex s and no arc leaves vertex t. Though this assumption
would allow a simpler proof, we do not require it for the reason that the result is
significantly more general this way. Still, if the reader finds it difficult to follow
the argument, it might be convenient to consider the source-sink case and skip
the irrelevant parts.) A flow of network (D, s, t, c) is a function f : A→ R such
that capacity condition 0 ≤ f(a) ≤ c(a) holds for each arc a of A and each
vertex v of D different from s and t satisfies the Kirchhoff law:

∑
uv∈A f(uv) =∑

vu∈A f(vu), that is, the amount of the incoming flow equals the amount of the
outgoing flow for v. Note that there is no conceptual difference between s and
t: both are ordinary vertices that are exempt from the Kirchhoff law. (It seems
that many people do not realize this. The reason perhaps is that when we teach
network flows, we used to emphasize that the role of s and t are so different:
one is “the source” and the other is a “the sink”. To convince the sceptic, it is
illuminative to find a formula for the minimum value of an st flow in a network.
It is not 0 in general.)

A network with preferences is a network (D, s, t, c) along with a preference
order ≤v for each vertex v, such that ≤v is a linear order on the arcs that are
incident to v. (Note that preference orders ≤s and ≤t do not play a role in the
notion of stability. Moreover, we shall never have to compare an incoming and an
outgoing arc of the same vertex, so we may think that for each vertex v there is
a preference order on the incoming arcs and another one on the outgoing ones.)
For a given network with preferences, it is convenient to think that vertices of D
are “players” that trade with a certain product. An arc uv of D from player u to
player v with capacity c(uv) represents the possibility that player u can supply
at most c(uv) units of product to player v. A “trading scheme” is described by
a flow f of the network, as for any two players u and v, flow f(uv) determines
the amount of product that u sells to v. Everybody in the market would like to
trade as much as possible, that is, each player v strives to maximize the amount
of flow through v. In particular, if flow f allows player v to receive some more
flow (that is, there are products on the market that v can buy) and v can also
send some more flow (i.e. some player would be happy to buy more products
from v) then flow f does not correspond to a stable market situation.

Another instability occurs when vw ≤v vu (player v prefers to sell to w rather
than to u) and flow f is such that w would be happy to buy more product from
v (that is f(vw) < c(vw) and w has some extra selling capacity), moreover
f(vu) > 0 (v sells a positive amount of products to u). In this situation, v
would send flow rather to w than to u, hence a stable market situation does not
allow the above situation. A similar instability can be described if we talk about
entering arcs instead of outgoing ones, that is, if we exchange the roles of buying
and selling.
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To formalize our concept of stability we need a few definitions. For a network
(D, s, t, c) and flow f we say that arc a is f -unsaturated if f(a) < c(a), that is, if it
is possible to send some extra flow thorough P . A blocking walk of flow f is an al-
ternating sequence of incident vertices and arcs P = (v1, a1, v2, a2, . . . , ak−1, vk)
such that all the following properties hold.

arc ai points from vi to vi+1 for i = 1, 2, . . . , k − 1 and (1)
vertices v2, v3, . . . , vk−1 are different from s and t (2)

each arc ai is f -unsaturated and (3)
v1 ∈ {s, t} or there is an arc a′ = v1u such that f(a′) > 0 and a1 <v1 a′ (4)
vk ∈ {s, t} or there is an arc a∗ to vk such that f(a∗) > 0 and ak−1 <vk

a∗.
(5)

So directed walk P is blocking if each player that corresponds to an inner vertex
of P is happy and capable to increase the flow along P , moreover v1 can send
extra flow either because v1 = s or v1 = t is a terminal node or because v1

may decrease the flow toward some vertex u that v1 prefers less than v2, and at
last, vk can receive some extra flow either because either vk ∈ {s, t} or vk can
refuse some flow arriving from w whom vk ranks below vk−1. (As we mentioned
before, there is no difference between the roles of s and t in the network: none
of them have to obey the Kirchhoff law and both of them can send or receive
flow. If the reader is uncomfortable with the idea that the target node sends flow
to the source then consider the case where no arc enters s and no arc leaves t.
This assumption simplifies some of the proofs.) We say that an f -unsaturated
path P = (v1, v2, . . . , vk) is f -dominated at v1 if (4) does not hold, and P is
f -dominated at vk if (5) does not hold.

A flow f of a network with preferences is stable if no blocking walk exists for
f . In the stable flow problem we have given a network with preferences and our
task is to find a stable flow if such exists.

A special case of the stable flow problem is the stable allocation problem of
Bäıou and Balinski [1]. The stable allocation problem is defined by finite disjoint
sets W and F of workers and firms, a map q : W ∪ F → R, a set E of edges
between W and F along with a map p : E → R and for each worker or firm
v ∈ W ∪ F a linear order <v on those pairs of E that contain v. We shall refer
to pairs of E as “edges” and hopefully it will not cause ambiguity. Quota q(v)
denotes the maximum of total assignment that worker or firm v can accept and
capacity p(wf) of edge e = wf means the maximum allocation that worker w
can be assigned to firm f along e. An allocation is a nonnegative map g : E → R

such that g(e) ≤ p(e) holds for each e ∈ E and for any v ∈W ∪ F we have

g(v) :=
∑

vx∈E

g(vx) ≤ q(v) , (6)

that is the total assignment g(v) of player v cannot exceed quota q(v) of v. If
(6) holds with equality then we say that player v is g-saturated. An allocation is
stable if for any edge wf of E at least one of the following properties hold:
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g(wf) = p(wf)(the particular employment is realized with full capacity), (7)

worker w is g-saturated and w does not prefer f to any of his employers
(we say that wf is g-dominated at w),

(8)

firm f is g-saturated and f does not prefer w to any of its employees
(that is, edge wf is g-dominated at firm f).

(9)

If g1 and g2 are allocations and w ∈ W is a worker then we say that allocation
g1 dominates allocation g2 for worker w (in notation g1 ≤w g2) if one of the
following properties is true:

either g1(wf) = g2(wf) for each f ∈ F (10)

or
∑

f ′∈F g1(wf ′) =
∑

f ′∈F g2(wf ′) = q(w), and

g1(wf) < g2(wf) and g1(wf ′) > 0 implies that wf ′ <w wf .
(11)

That is, if w can freely choose his allocation from max(g1, g2) then w would
choose g1 either because g1 and g2 are identical for w or because w is saturated
in both allocations and g1 represents w’s choice out of max(g1, g2). By exchanging
the roles of workers and firms, one can define domination relation ≤f for any
firm f , as well.

For any stable allocation problem, one can design a network (D, s, t, c) such
that V (D) = {s, t} ∪W ∪ F , A(D) = {sw : w ∈ W} ∪ {ft : f ∈ F} ∪ {wf :
wf ∈ E} and c(sw) = q(w), c(ft) = q(f) and c(wf) = p(wf) for any worker w
and firm f . That is, we consider the underlying bipartite graph, orient its edges
from W to F , add new vertices s and t, with an arc from s to each worker-node
and an arc from each firm-node to t, and capacities are given by the original
edge-capacities and the corresponding quotas. Preference orders <v on the arcs
incident to v are induced by the preference order on the corresponding edges
incident to v, or, if there is no such edge, then it is a trivial linear order. It
is straightforward to see from the definitions that g is a stable allocation if
and only if there exists a stable flow f such that g(e) = f(e) holds for each
edge e ∈ E, where e is the arc that corresponds to edge e. The stable allocation
problem was introduced by Bäıou and Balinski as a certain “continuous” version
of the stable marriage problem in [1]. It turned out that a natural extension of
the deferred acceptance algorithm of Gale and Shapley [6] works for the stable
allocation problem and the structure of stable allocations is similar to that of
stable marriages. Beyond stating the existence of stable allocations, the theorem
below describes some structural properties of them. The interested reader finds
a proof based on Tarski’s fixed point theorem in [5].

Theorem 1 (See Bäıou and Balinski [1])
1. If stable allocation problem is described by W, F, E, p and q then there always

exists a stable allocation g. Moreover, if p and q are integral, then there exists
an integral stable allocation g.

2. If g1 and g2 are stable allocations and v ∈W ∪F then g1 ≤v g2 or g2 ≤v g1

holds.



56 T. Fleiner

3. Stable allocations have a natural lattice structure. I.e., if g1 and g2 are
stable allocations then g1 ∨ g2 and g1 ∧ g2 are stable allocations, where

(g1 ∨ g2)(wf) =
{

g1(wf) if g1 ≤w g2

g2(wf) if g2 ≤w g1
and (12)

(g1 ∧ g2)(wf) =
{

g1(wf) if g1 ≤f g2

g2(wf) if g2 ≤f g1
(13)

In other words, if workers choose from two stable allocations then we get another
stable allocation, and this is also true for the firms’ choices. Moreover, it is true
that

(g1 ∨ g2)(wf) =
{

g1(wf) if g1 ≥f g2

g2(wf) if g2 ≥f g1
and (14)

(g1 ∧ g2)(wf) =
{

g1(wf) if g1 ≥w g2

g2(wf) if g2 ≥w g1
(15)

That is, in stable allocation g1∨g2 where each worker picks his better assignment,
each firm receives the worse out of the two. Similarly, in g1 ∧ g2 the choice of
the firms means the less preferred situation to the workers.

3 Stable Flows

Our goal in this section is to prove a generalization of Theorem 1. The “natural”
approach to achieve this would be an appropriate generalization of the deferred
acceptance algorithm of Gale and Shapley. The difficulty is that though the
Gale-Shapley algorithm can handle quota function q, somehow it has problems
with ensuring the Kirchhoff law.

Theorem 2. If network (D, s, t, c) and preference orders <v describe a stable
flow problem then there always exists a stable flow f . If capacity function c is
integral then there exists an integral stable flow.

Note that it is possible to prove Theorem 2 by a mixture of the deferred accep-
tance algorithm and the augmenting path algorithm. That is, starting from s or
from t, we follow “first choice walks” until they arrive to s or t and we augment
along them with observing the capacity constraints. If a new path collides with
an earlier one then some amount of flow is refused by the receiving vertex and
we try to reroute the flow excess from the starting point of the refused arc. We
have a stable flow as soon as we cannot find an augmenting path between the
terminals.

Our proof of Theorem 2 follows a different approach for two reasons. On
one hand, it seems that in the area of stable matchings neither the reduction
of one problem to another one nor the use of graph terminology is routine.
We demonstrate here that these methods may be fruitful. On the other hand,
the “deferred augmentation” algorithm we sketched above does not give much
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information about the rich structure of stable flows that we shall deduce from
the lattice property of stable allocations.

With the help of the given stable flow problem, we shall define a stable allo-
cation problem. For each vertex v of D calculate

M(v) := min

⎛⎝ ∑
xv∈A(D)

c(xv),
∑

vx∈A(D)

c(vx)

⎞⎠ ,

that is, M(v) is the minimum of total capac-
ity of those arcs of D that enter and leave v.
So M(v) is an upper bound on the amount of
flow that can flow through vertex v. Choose
q(v) := M(v) + 1. Construct graph GD as
follows. Split each vertex v of D into two
distinct vertices vin and vout, and for each
arc uv of D add edge uoutvin to GD.

v
c2

c5c1

c3

c4

c2

c5

q(v)

c1

c3

c4
first

vout
q(v)

vin

last

firstlast

For each vertex v of D different from s and t add two parallel edges between
vin and vout: to distinguish between them we will refer them as vinvout and
voutvin. Let p(vinvout) = p(voutvin) := q(v), p(uoutvin) := c(uv) and q(vin) =
q(vout) := q(v). To finish the construction of the stable allocation problem, we
need to fix a linear preference order for each vertex of GD. For vertex vin let
vinvout be the most preferred and voutvin be the least preferred edge (if these
edges are present), and the order of the other edges incident to vin are coming
from the preference order of v on the corresponding arcs. For vertex vout the
most preferred edge is voutvin and the least preferred one is vinvout (if it makes
sense), and the other preferences are coming from <v.

The proof of Theorem 2 is a consequence of the following Lemma that de-
scribes a close relationship between stable flows and stable allocations.

Lemma 1. If network (D, s, t, c) and preference orders <v describe a stable flow
problem then f : A(D) → R is a stable flow if and only if there is a stable
allocation g of GD such that f(uv) = g(uoutvin) holds for each arc uv of D.

Proof. Assume first that g is a stable allocation in GD. This means that none
of the vinvout edges is blocking, so either g(vinvout) = p(vinvout) = q(v) or
vinvout must be g-dominated at vout, hence vout is assigned to q(vout) = q(v)
amount of allocation. As q(v) is more than the total capacity of arcs leaving
v, g(vinvout) > 0 or g(voutvin) > 0 must hold. So vout must have exactly q(v)
amount of allocation whenever vinvout is present. An exchange of in and out
shows that the presence of voutvin implies that vin has exactly q(vin) = q(v)
allocation. These observations directly imply that the Kirchhoff law holds for f
at each node different from s and t. The capacity condition is also trivial for
f , hence f is a flow of D. Observe that by the choice of q, neither s nor t is
g-saturated hence no edge is g-dominated at s or at t.
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Assume that walk P = (v1, v2, . . . , vk) blocks flow f . As P is f -unsaturated,
each edge vout

i vin
i+1 of GD must be g-dominated at vout

i or at vin
i+1. Walk P is

blocking, hence either v1 ∈ {s, t}, and hence vout
1 vin

2 cannot be dominated at
v1 or there is a v1u arc with positive flow value such that v1u > v1v2. In both
cases, edge vout

1 vin
2 has to be g-dominated at vin

2 . It means that g(vin
2 vout

2 ) > 0.
As arc v2v3 is f -unsaturated, it follows that edge vout

2 vin
3 must be g-dominated

at vin
3 . This yields that g(vin

3 vout
3 ) > 0. Again, arc v3v4 is f -unsaturated, hence

edge vout
3 vin

4 has to be g-dominated at vin
4 , and so on. At the end we get that

vout
k−1v

in
k is g-dominated at vin

k . If vk ∈ {s, t} then it is impossible as both these
vertices are g-unsaturated. Otherwise by the blocking property of P there is an
arc wvk with positive flow and vk−1vk <vk

wvk, hence again, vout
k−1v

in
k cannot be

g-dominated at vin
k . The contradiction shows that no path can block f .

Assume now that f is a stable flow of D. We have to exhibit a stable allocation
g of GD such that f is the “restriction” of g. To determine g, our real task is to
find the g(vinvout) and g(voutvin) values, as all other values of g are determined
directly by f : g(uoutvin) = f(uv). The stable allocation we look for might not
be unique. In what follows, we shall construct the canonical representation gf

of f .
Let S be the set of those vertices u of D such that there exists an f -unsaturated

directed path P = (v1, v2, . . . , vk = u) that is not f -dominated at v1. As no path
can block f , neither s, nor t belongs to S. To determine gf , for each vertex
v �= s, t allocate the remaining quota of v to vinvout or to voutvin depending on
whether v ∈ S or v �∈ S holds. More precisely, define

gf (vinvout) =
{

q(v)−
∑

x∈V (D) f(vx) if v ∈ S

0 if v �∈ S
and (16)

gf (voutvin) =
{

q(v)−
∑

x∈V (D) f(xv) if v �∈ S

0 if v ∈ S .
(17)

By the definition of q, both gf (vinvout) and gf (voutvin) are nonnegative. If v ∈ S
then the amount of total allocation of vout is q(v) = q(vout) by (16), and for
v �∈ S the amount of total allocation of vin is q(v) = q(vin) by (17). So if v �= s, t
then the total allocation of vin and vout is q(v) by the Kirchhoff law. The total
allocations of sin, sout and tin, tout is less than q(s) and q(t) respectively, by the
choice of q. That is, gf is an allocation on GD.

To justify the stability of gf , we have to show that no blocking edge exists.
We have seen earlier, that the presence of vinvout in GD means that vout g-
dominates vinvout. Similarly, each edge voutvin is gf -dominated at vin. Assume
now that gf(voutuin) < p(voutuin) = c(vu) holds.

If there is an f -unsaturated path P that is not f -dominated at its starting
node and ends with arc vu then u ∈ S by the definition of S, hence gf (uoutuin) =
0. Moreover, if some edge woutuin with voutuin <uin woutuin would have positive
allocation then path P would block f , a contradiction. As uin has q(uin) amount
of total allocation, edge voutuin is gf -dominated at uin.

The last case is when any f -unsaturated path that ends with arc vu is f -
dominated at its starting vertex. In particular, v �∈ S, so gf (vinvout) = 0.



On Stable Matchings and Flows 59

Moreover, f -unsaturated path (v, u) must be f -dominated at v, hence v �∈ {s, t}
and voutuin is gf -dominated at vout as vout has q(v) = q(vout) amount of allo-
cation. The conclusion is that g := gf is a stable allocation, just as we claimed.

At this point, we are ready to prove our main result.

Proof (Proof of Theorem 2). There is a stable allocation for GD by Theorem
1, hence there is a stable flow for D due to the first part of Theorem 1. If c is
integral then q(v) is an integer for each vertex v of D hence p is integral for
GD. The integrality property of stable allocations in the first part of Theorem
1 shows that there is an integral stable allocation g of GD that describes an
integral stable flow f of D.

At the end of this section let us point out a weakness of our stability concept.
The motivation behind the notion is that we look for a flow that corresponds
to an equilibrium situation where the players represented by the vertices of the
network act in a selfish way. This equilibrium situation occurs if no coalition of
the players can block the underlying flow f , and this blocking is defined by a
certain f -unsaturated path (or cycle through s or t) along which the players are
capable and prefer to increase the flow. However, in some sense an f -unsaturated
cycle C per se causes instability because the players of C mutually agree to send
some extra flow along C. So it is natural to define flow f of network (D, s, t, c)
with preferences to be completely stable if f is stable and there exists no f -
unsaturated cycle in D whatsoever. If f is a stable flow then we can “augment”
along f -unsaturated cycles, and hence we can construct a flow f ′ ≥ f such that
there no longer exists an f ′-unsaturated cycle. But unfortunately flow f ′ might
not be stable any more because we might have created a blocking walk by the
cycle-augmentations.

In fact, there exist networks with preferences that do not have a completely
stable flow. One example is on the figure: each arc has unit capacity, preferences
are indicated around the vertices: lower rank is preferred to the higher.

As no arc leaves subset U := {a, b, c} of the
vertices, no flow can leave U , hence no flow enters
U . In particular, arc sa has zero flow. If we as-
sume indirectly that f is a completely stable flow
then cycle abc cannot block, hence there must be
a unit flow along it. But now path sa is blocking,
a contradiction.

s

t

b

c

Stable flows have a blocking cycle
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2

2

1

1 1
12

3

2
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4 The Structure of Stable Flows

It is well-known about the stable marriage problem that in each stable marriage
scheme, the same set of participants get married. That is, if someone does not get
a marriage partner in some stable scheme then this very person remains single
in each stable marriage schemes. A generalization of this is the rural hospital
theorem of Roth [9] (see also Theorem 5.13 in [10]). It is about the college model,
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where instead of men we work with colleges, women correspond to students and
each college has a quota on the maximum number of students. In the college
admission problem, it is true that if a certain college c cannot fill up its quota in
a stable admission scheme then c receives the same set of students in any stable
admission scheme. (The phenomenon is named after the assignment problem of
medical interns to hospitals.)

It seems that the rural hospital theorem cannot be generalized to the sta-
ble flow problem. It may happen in a network that a certain vertex transmits
different amounts of flow in two stable flows.

An example is shown in the figure where
each arc has unit capacity. There are two sta-
ble flows: one is along path sbact and the other
follows path sbdct. So in one stable flow, ver-
tex a transmits unit flow and no flow passes
through a in the other one.

a

Network for a stable flow

s tc

d
b

2 1

1

2

12

3
1

2
3

There is however a consequence of the rural hospital theorem that can be gen-
eralized, namely, that the size of a stable matching is always the same. We have
seen that the stable allocation problem is a special case of the stable flow prob-
lem, and from the construction it is apparent that the size of a stable matching
(more precisely the total amount of assignments in a stable allocation) equals
the value of the corresponding flow.

Theorem 3. If network (D, s, t, c) and preference orders <v describe a stable
flow problem and f1 and f2 are stable flows then the value of f1 and f2 are the
same. More generally, f1(a) = f2(a) for any arc of D that is incident to s (or
to t).

Proof. Lemma 1 implies that there exist stable allocations g1 and g2 of GD that
correspond to stable flows f1 and f2, respectively. The value of a flow is the net
amount that leaves s in D, or, in GD one can calculate it as the difference of
total allocation of sout and sin. This means that the second part of the theorem
implies the first one.

As there is no edge between sout and sin, the choice of q(s) implies that both
sout and sin are g1-unsaturated. Hence property (11) can hold neither for sin nor
for sout. But Theorem 1 implies that g1 and g2 are ≤sout and ≤sin -comparable.
So property (10) must be true for both flows g1 and g2 for vertices v = sout and
v = sin. This shows the second part of the Theorem for s. The argument for t
is analogous to the above one.

As we have seen in Theorem 1, stable allocations have a lattice structure. Based
on the connection of stable allocations and stable flows described in Lemma 1,
we can prove that stable flows of a network with preferences also form a natural
lattice. So assume that f is a stable flow in network (D, s, t, c, ) with preferences
and let stable allocation gf of GD be the canonical representation of f as in the
proof of Lemma 1.

Observe that any vertex v �= s, t of D, exactly one of gf (vinvout) and
gf (voutvin) is positive by the choice of q and gf . For stable flow f , we can classify
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the vertices of D different from s and t: v is an f -vendor if gf (vinvout) > 0 and
v is an f -customer if gf(voutvin) > 0. If v is an f -vendor then no edge voutuin

can be gf -dominated at vout (as gf (vinvout) > 0), hence player v sends as much
flow to other vertices as much they accept. Similarly, if v is an f -customer then
no edge uoutvin can be gf -dominated at vout, that is, player v receives as much
flow as the others can supply her.

To explore the promised lattice structure of stable flows, let f1 and f2 two
stable flows with canonical representations gf1 and gf2 , respectively. From The-
orem 1 we know that stable allocations form a lattice, so gf1 ∨ gf2 and gf1 ∧ gf2

are also stable allocations of GD, and by Theorem 2, these stable allocations
define stable flows f1 ∨ f2 and f1 ∧ f2, respectively. How can we determine these
latter flows directly, without the canonical representations? To answer this, we
translate the lattice property of stable allocations on GD to stable flows of D.

Theorem 3 shows that stable flows cannot differ on arcs incident to s or t, so
on these arcs f1∨f2 and f1∧f2 are determined. However, vertices different from
s and t may have completely different situations in stable flows f1 and f2. The
two colour classes of graph GD are formed by the vin and vout type vertices,
respectively. So, by Theorem 1, gf1 ∨gf2 can be determined such that (say) each
vertex vout selects the better allocation and each vertex vin receives the worse
allocation out of the ones that gf1 and gf2 provides them. Similarly, for stable
allocation gf1 ∧ gf2 the “in”-type vertices choose according to their preferences
and the “out”-type ones are left with the less preferred allocations. This means
the following in the language of flows. If we want to construct f1 ∨ f2 and v is a
vertex different from s and t then either all arcs entering v will have the same
flow in f1 ∨ f2 as in f1, or for all arcs a entering v we have (f1 ∨ f2)(a) = f2(a)
holds. A similar statement is true for the arcs leaving v. To determine which of
the two alternatives is the right one, the following rules apply:

– If v is an f1-vendor and an f2-customer then v chooses f2. If v is an f2-vendor
and an f1-customer then v chooses f1. That is, each vertex strives to be a
customer.

– If v is an f1-vendor and an f2-vendor and v transmits more flow in f1 than in
f2 (i.e. 0 < gf1(vinvout) < gf2(vinvout)) then v chooses f1. That is, vendors
prefer to sell more.

– If v is an f1-customer and an f2-customer and v transmits more flow in f1

than in f2 (i.e. 0 < gf1(voutvin) < gf2(voutvin)) then v chooses f2. That is,
customers prefer to buy less.

– Otherwise v is a customer in both f1 and f2 or v is a vendor in both flows and
v transmits the same amount in both flows (i.e. gf1(voutvin) = gf2(voutvin)
and gf1(vinvout) = gf2(vinvout)). In this situation, v chooses the better “sell-
ing position” and gets the worse “buying position” out of stable flows f1 and
f2.

Clearly, for the construction of f1 ∧ f2, one always has to choose the “other”
options than the one that the above rules describe.
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The lattice structure of stable flows defines a partial order on stable flows:
f1 � f2 if and only if f1∨f2 = f2 holds, or equivalently, if f1∧f2 = f1 is true. By
to the above rules, this means that each f1-customer v is an f2-customer, such
that v buys at least as much in f1 as in f2. Each f2-vendor u is an f1-vendor
and u sells at most as much in f1 as in f2. If w plays the same role (vendor
or customer) in both flows and transmits the same amount then v prefers the
selling position of f2 and the buying position of f1.
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Abstract. A graph is Pk-free if it does not contain an induced subgraph

isomorphic to a path on k vertices. We show that deciding whether a P8-

free graph can be colored with at most four colors is an NP-complete

problem. This improves a result of Le, Randerath, and Schiermeyer, who

showed that 4-coloring is NP-complete for P9-free graphs, and a result

of Woeginger and Sgall, who showed that 5-coloring is NP-complete for

P8-free graphs. Additionally, we prove that the pre-coloring extension

version of 4-coloring is NP-complete for P7-free graphs, but that the

pre-coloring extension version of 3-coloring is polynomially solvable for

(P2 + P4)-free graphs, a subclass of P7-free graphs.

1 Introduction

Due to the fact that the usual �-Coloring problem is NP-complete for any
fixed � ≥ 3, there has been a considerable interest in studying its complexity
when restricted to certain graph classes, in particular graph classes that can be
characterized by forbidden induced subgraphs. We refer to [14, 17] for surveys.
Instead of repeating what has been written in so many papers over the years,
and in order to save as much space as possible for relevant details related to
our results, we also refer to these surveys for motivation and background. Here
we continue the study of �-Coloring for Pk-free graphs. This setting has been
studied in several earlier papers by different groups of researchers (see, e.g., [3,
5, 9–13, 18]). Before we summarize their results we first introduce the necessary
terminology.

Terminology. We only consider finite undirected graphs without loops and
multiple edges. We refer to [2] for any undefined graph terminology. The graph
Pk denotes the path on k vertices. The disjoint union of two graphs G and H is
denoted G + H , and the disjoint union of k copies of G is denoted kG. A linear
forest is the disjoint union of a collection of paths. Given two graphs G and H
we say that G is H-free if G has no induced subgraph isomorphic to H .

A (vertex) coloring of a graph G = (V, E) is a mapping φ : V → {1, 2, . . .}
such that φ(u) �= φ(v) whenever uv ∈ E. Here φ(u) is referred to as the color
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of u. An �-coloring of G is a coloring φ of G with φ(V ) ⊆ {1, . . . , �}. Here we
use the notation φ(U) = {φ(u) | u ∈ U} for U ⊆ V . We let χ(G) denote the
chromatic number of G, i.e., the smallest � such that G has an �-coloring. The
problem �-Coloring is the problem to decide whether a given graph admits an
�-coloring.

In list-coloring we assume that V = {v1, v2, . . . , vn} and that for every vertex
vi of G there is a list Li of admissible colors (a subset of the natural numbers).
We say that a coloring φ : V → {1, 2, . . .} respects these lists if φ(vi) ∈ Li for all
i ∈ {1, 2, . . . , n}. We also call φ a list-coloring in this case.

In pre-coloring extension we assume that a (possibly empty) subset W ⊆ V of
G is pre-colored with φW : W → {1, 2, . . .} and the question is whether we can
extend φW to a coloring of G. If φW is restricted to {1, 2, . . . , �} and we want to
extend it to an �-coloring of G, we say we deal with the pre-coloring extension
version of �-Coloring.
Known results. Results of Hoàng et al. [9] imply that the pre-coloring exten-
sion version of �-Coloring is polynomially solvable on P5-free graphs for any
fixed �. In contrast, determining the chromatic number is NP-hard for P5-free
graphs [10], whereas this problem is polynomially solvable for P4-free graphs (be-
cause a P4-free graph is perfect, and the chromatic number of a perfect graph
can be determined in polynomial time [8]). Le, Randerath, and Schiermeyer [12]
proved that 4-Coloring is NP-complete for P9-free graphs. Woeginger and
Sgall [18] showed that 5-Coloring is NP-complete for P8-free graphs. In [3]
we established the following three results. Firstly we proved that 6-Coloring is
NP-complete for P7-free graphs, secondly that the pre-coloring extension version
of 3-Coloring is polynomially solvable for P6-free graphs, and thirdly that the
pre-coloring extension version of 5-Coloring is NP-complete for P6-free graphs.
All these results together lead to the following table that shows the current sta-
tus of �-Coloring and its pre-coloring extension version for Pk-free graphs. This
table also shows which cases are still open.

Table 1. The complexity of �-Coloring and its pre-coloring extension version (marked

by *) on Pk-free graphs for combinations of fixed k and �

� →
Pk-free 3 3* 4 4* 5 5* ≥ 6 ≥ 6∗

k ≤ 5 P P P P P P P P

k = 6 P P ? ? ? NP-c ? NP-c

k = 7 ? ? ? ? ? NP-c NP-c NP-c

k = 8 ? ? ? ? NP-c NP-c NP-c NP-c

k ≥ 9 ? ? NP-c NP-c NP-c NP-c NP-c NP-c

Our results and paper organization. In Section 2 we present a common
improvement to results in [12] and [18] by showing that 4-Coloring is NP-
complete for P8-free graphs. In Section 3 we give a closely related result showing
that the pre-coloring extension version of 4-Coloring is NP-complete for P7-free
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graphs. It seems hard to extend our result from [3] on the pre-coloring extension
version of 3-Coloring for P6-free graphs to P7-free graphs. This motivates our
focus on subclasses of P7-free graphs, namely H-free graphs, where H is a linear
forest on at most 6 vertices. We show in Section 4 that the first nontrivial case
is H = P2 + P4 and that the pre-coloring extension version of 3-Coloring is
polynomially solvable for (P2+P4)-free graphs. Section 5 contains the conclusions
and mentions open problems.

2 4-Coloring for P8-Free Graphs

In this section we prove that 4-Coloring is NP-complete for P8-free graphs.
We use a reduction from 3-Satisfiability (3SAT), which is an NP-complete
problem [7]. We consider an arbitrary instance I of 3SAT that has variables
{x1, x2, . . . , xn} and clauses {C1, C2, . . . , Cm} and define a graph GI . Next we
show that GI is P8-free and that GI is 4-colorable if and only if I has a satisfying
truth assignment.

Here is the construction that defines GI .

– For each clause Cj we introduce a 7-vertex cycle with vertex set

{bj,1, bj,2, cj,1, cj,2, cj,3, dj,1, dj,2}

and edge set

{bj,1cj,1, cj,1dj,1, dj,1cj,2, cj,2dj,2, dj,2cj,3, cj,3bj,2, bj,2bj,1}.

We say that these vertices are of b-type, c-type and d-type, respectively.
They induce disjoint 7-cycles (i.e., cycles on 7 vertices) in GI which we call
clause-components in the sequel.

– For each variable xi we introduce a copy of a K2, i.e., two vertices joined
by an edge xixi. We say that both xi and xi are of x-type, and we call the
corresponding disjoint K2s in GI variable-components in the sequel.

– For every clause Cj we fix an arbitrary order of its variables xi1 , xi2 , xi3 . For
h = 1, 2, 3 we either add the edge cj,hxih

or the edge cj,hxih
depending on

whether xih
or xih

is a literal in Cj , respectively.

– We add an edge between any x-type vertex and any b-type vertex. We also
add an edge between any x-type vertex and any d-type vertex.

– We introduce one additional new vertex a which we make adjacent to all
b-type, c-type and d-type vertices.

See Figure 1 for an example of a graph GI . In this example C1 is a clause with
ordered literals xi1 , xi2 , xi3 and Cm is a clause with ordered literals x1, xi3 , xn.
The thick edges indicate the connections between the literal vertices and the
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c-type vertices of the clause gadgets. We omitted the indices from the labels of
the clause gadget vertices to increase the visibility.

We complete this section by proving two lemmas. Lemma 1 shows that the
graph GI is P8-free (in fact it shows a slightly stronger statement as this will be
of use for us in Section 3). In Lemma 2 we prove that GI admits a 4-coloring if
and only if I has a satisfying truth assignment.

a

C1 Cm

b c d c d c b b c d c d c b

x1 x1 xi1 xi1 xi2 xi2 xi3 xi3 xn xn

Fig. 1. The graph GI in which clauses C1 = {xi1 , xi2 , xi3} and Cm = {x1, xi3 , xn} are

illustrated

Lemma 1. The graph GI is P8-free. Moreover, every induced path in GI on
seven vertices contains a.

Proof. Let P be an induced path in GI . We show that GI is P8-free by proving
that P has at most seven vertices. We also show that P contains a in case P has
exactly seven vertices. We distinguish a number of cases and subcases.

Case 1. a /∈ V (P ).

Case 1a. P contains no x-type vertex.
This means that P is contained in one clause-component, which is isomorphic
to an induced 7-cycle. Consequently, P has at most 6 vertices.

Case 1b. P contains exactly one x-type vertex.
Let xi be this vertex. Then P contains vertices of at most two clause-components.
Since xi is adjacent to all b-type and d-type vertices, we then find that P contains
at most two vertices of each of the clause-components. Hence P has at most 5
vertices.

Case 1c. P contains exactly two x-type vertices.
First suppose that these vertices are adjacent, say P contains xi and xi. By the
same reasoning as above we find that P has at most 4 vertices.
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Now suppose the two x-type vertices of P are not adjacent. By symmetry, we
may assume that P contains xh and xi. If P contains no b-type vertex and no
d-type vertex, then there is no subpath in P from xh to xi, a contradiction. If
P contains two or more vertices of b-type and d-type, then P contains a cycle,
another contradiction. Hence P contains exactly one vertex z that is of b-type
or d-type. Then xhzxi is a subpath in P . If both xh and xi have a neighbor in
V (P )\{z}, then this neighbor must be of c-type, and consequently an end vertex
of P (because a c-type vertex is adjacent to only one x-type vertex). Hence P
contains at most five vertices.

Case 1d. P contains at least three x-type vertices.
Then P contains no b-type vertex and no d-type vertex, because such vertices
would have degree 3 in P . However, on the other hand the three x-type vertices
come from at least two different variable-components. Since any c-type vertex is
adjacent to exactly one x-type vertex, P must contain a b-type or d-type vertex
to connect the x-type vertices of P to one another. We conclude that this subcase
is not possible.

Case 2. a ∈ V (P ).
First suppose a is an end vertex of P . If |V (P )| ≥ 2 then P contains exactly one
vertex that is of b-type, c-type or d-type. Since every x-type vertex is adjacent to
only one other x-type vertex, this means that P can have at most four vertices.

Now suppose a is not an end vertex of P . Then P contains exactly two vertices
that are of b-type, c-type or d-type. By the same arguments as above, we then
find that P has at most 7 vertices. This completes the proof of Lemma 1. ��

Lemma 2. The graph GI is 4-colorable if and only if I has a satisfying truth
assignment.

Proof. Suppose we have a 4-coloring of GI with colors {1, 2, 3, 4}. We may as-
sume without loss of generality that a has color 1, that b1,1 has color 3 and that
b1,2 has color 4. This implies that all x-type vertices have a color from {1, 2}.
Furthermore, for i = 1, . . . , n, if xi has color 1 then xi has color 2, and vice
versa. Hence we find that all b-type and d-type vertices have a color from {3, 4}.
Then by symmetry we may assume that every bj,1 has color 3 and every bj,2

has color 4. This means that every cj,1 has a color from {2, 4}, every cj,2 has
a color from {2, 3, 4} and every cj,3 has a color from {2, 3}. Now suppose there
is a clause Cj with each of its three literals colored by color 2. Then cj,1 must
have color 4 and cj,3 must have color 3. Consequently, dj,1 has color 3 and dj,2

has color 4. Then cj,2 cannot have a color in a proper 4-coloring of GI . Hence
this is not possible and we find that at least one literal in every clause is colored
by color 1. This means we can define a truth assignment that sets a literal to
FALSE if the corresponding x-type vertex has color 2, and to TRUE otherwise.
So a 4-coloring of GI implies a satisfying truth assignment for I.

For the converse, suppose I has a satisfying truth assignment. We use color 1
to color the x-type vertices representing the true literals and color 2 for the false
literals. Since each clause contains at least one true literal, we note that we can
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color cj,1, cj,2 and cj,3 and also all other remaining vertices in a straightforward
way. This implies a 4-coloring for GI and completes the proof of Lemma 2. ��

3 Pre-coloring Extension of 4-Coloring for P7-Free
Graphs

In this section we show that the pre-coloring extension version of 4-Coloring

is NP-complete for the class of P7-free graphs. We use a reduction from Not-

All-Equal 3-Satisfiability with positive literals only, which we denote as
NAE 3SATPL. This NP-complete problem [15] is also known as Hypergraph

2-Colorability and is defined as follows. Given a set X = {x1, x2, . . . , xn} of
logical variables, and a set C = {C1, C2, . . . , Cm} of three-literal clauses over X
in which all literals are positive, does there exist a truth assignment for X such
that each clause contains at least one true literal and at least one false literal?

We consider an arbitrary instance I of NAE 3SATPL that has variables
{x1, x2, . . . , xn} and clauses {C1, C2, . . . , Cm}, and we define a graph G∗

I with a
pre-coloring on some vertices of G∗

I . Then we show that G∗
I is P7-free and that

the pre-coloring on G∗
I can be extended to a 4-coloring of G∗

I if and only if I
has a satisfying truth assignment in which each clause contains at least one true
literal and at least one false literal.

Here is the construction that defines G∗
I with a pre-coloring.

– For each clause Cj we introduce a gadget with vertex set

{aj,1, aj,2, aj,3, bj,1, bj,2, cj,1, cj,2, cj,3, dj,1, dj,2}

and edge set

{aj,1cj,1, aj,2cj,2, aj,3cj,3, bj,1cj,1, cj,1dj,1, dj,1cj,2, cj,2dj,2, dj,2cj,3, cj,3bj,2, bj,2bj,1},
and a disjoint gadget called the copy with vertex set

{a′
j,1, a

′
j,2, a

′
j,3, b

′
j,1, b

′
j,2, c

′
j,1, c

′
j,2, c

′
j,3, d

′
j,1, d

′
j,2}

and edge set

{a′
j,1c

′
j,1, a

′
j,2c

′
j,2, a

′
j,3c

′
j,3, b

′
j,1c

′
j,1, c

′
j,1d

′
j,1, d

′
j,1c

′
j,2, c

′
j,2d

′
j,2, d

′
j,2c

′
j,3, c

′
j,3b

′
j,2, b

′
j,2b

′
j,1}.

We say that all these vertices (so including the vertices in the copy) are of
a-type, b-type, c-type and d-type, respectively. They induce 2m disjoint 10-
vertex components in G∗

I which we will call clause-components in the sequel.
We pre-color every aj,h by 1 and every a′

j,h by 2.

– Every variable xi will be represented by a vertex in G∗
I , and we say that

these vertices are of x-type.

– For every clause Cj we fix an arbitrary order of its variables xi1 , xi2 , xi3 and
add edges cj,hxih

and c′j,hxih
for h = 1, 2, 3.
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– We add an edge between every x-type vertex and every b-type vertex. We
also add an edge between every x-type vertex and every d-type vertex.

– We add an edge between every a-type vertex and every b-type vertex. We
also add an edge between every a-type vertex and every d-type vertex.

In Figure 2 we illustrate an example in which Cj is a clause with ordered vari-
ables xi1 , xi2 , xi3 . The thick edges indicate the connection between the variables
vertices and the c-type vertices of the two copies of the clause gadget. The dashed
thick edges indicate the connections between the (pre-colored) a-type and c-type
vertices of the two copies of the clause gadget. We omitted the indices from the
labels of the clause gadget vertices to increase the visibility.

a a′a a′a a′
Cj C ′j

b c

d

c

d

c b b′ c′
d′

c′
d′

c′ b′

x1 xi1 xi2 xi3 xn

Fig. 2. The graph G∗
I for the clause Cj = {xi1 , xi2 , xi3}

We complete this section by proving two lemmas. Lemma 3 shows that the
graph G∗

I is P7-free. Its proof is postponed to the journal version of our paper. In
Lemma 4 we prove that the pre-coloring of G∗

I can be extended to a 4-coloring
of G∗

I if and only if I has a truth assignment in which each clause contains at
least one true and at least one false literal.

Lemma 3. The graph G∗
I is P7-free.

Lemma 4. The pre-coloring of G∗
I can be extended to a 4-coloring of G∗

I if and
only if I has a truth assignment in which each clause contains at least one true
and at least one false literal.

Proof. Suppose the pre-coloring of G∗
I can be extended to a 4-coloring of G∗

I .
Since a1,1 with color 1 and a′

1,1 with color 2 are adjacent to every b-type vertex,
we may assume by symmetry that every bj,1 and every b′j,1 has color 3, whereas
every bj,2 and every b′j,2 has color 4. This implies the following. Firstly, it implies
that all x-type vertices have a color from {1, 2}. Consequently, all d-type vertices
must have a color from {3, 4}. Secondly, it implies that every cj,1 has a color
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from {2, 4}, every cj,2 has a color from {2, 3, 4} and every cj,3 has a color from
{2, 3}. Thirdly, it implies that every c′j,1 has a color from {1, 4}, every cj,2 has a
color from {1, 3, 4} and every cj,3 has a color from {1, 3}.

Now suppose there is a clause Cj with each of its three literals colored by
color 2. Then cj,1 must have color 4 and cj,3 must have color 3. Consequently,
dj,1 has color 3 and dj,2 has color 4. Then cj,2 cannot have a color in a proper
4-coloring. Hence this is not possible and we find that at least one literal in
every clause is colored by color 1. By considering the copies, in a similar way
we find that at least one literal in every clause is colored by color 2. Hence, we
can define a truth assignment that sets a literal to FALSE if the corresponding
x-type vertex has color 2, and to TRUE otherwise. So a 4-coloring of G∗

I that
extends the pre-coloring on G∗

I implies a truth assignment for I in which each
clause contains at least one true and at least one false literal.

For the converse, suppose I has a satisfying truth assignment in which each
clause contains at least one true and at least one false literal. We use color 1 to
color the x-type vertices representing the true literals and color 2 for the false
literals. Since each clause contains at least one true literal, we can color cj,1,
cj,2 and cj,3, respecting the pre-coloring. Similarly, since each clause contains at
least one false literal, we can color c′j,1, c′j,2 and c′j,3, respecting the pre-coloring.
We color all other remaining uncolored vertices in a straightforward way. This
completes the proof of Lemma 4. ��

4 Pre-coloring Extension of 3-Coloring for Subclasses of
P7-Free Graphs

Here we consider the pre-coloring extension version of 3-Coloring for H-free
graphs, where H is a subgraph of P7 on at most 6 vertices. We can use the
polynomial-time algorithm of [3] for solving this problem when H is an induced
subgraph of P6, because then any H-free graph is also P6-free. Then the following
cases remain:

H1 = 6P1 H6 = 3P1 + P3 H11 = P1 + P2 + P3

H2 = 5P1 H7 = 2P1 + 2P2 H12 = P1 + P5

H3 = 4P1 H8 = 2P1 + P3 H13 = 3P2

H4 = 4P1 + P2 H9 = 2P1 + P4 H14 = P2 + P4

H5 = 3P1 + P2 H10 = P1 + 2P2 H15 = 2P3.

We first consider Hi for i = 1, . . . , 12. For these graphs we need the following
observation, the proof of which follows from the fact that the decision problem
in this case can be modeled and solved as a 2SAT-problem. This approach has
been introduced by Edwards [6] and is folklore now, see also [9] and [13].

Observation 1 ([6]). Let G be a graph in which every vertex has a list of
admissible colors of size at most 2. Then checking whether G has a coloring
respecting these lists is solvable in polynomial time.
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Proposition 1. Let H be a graph. If the pre-coloring extension version of 3-
Coloring is solvable in polynomial time for H-free graphs, then it is also solv-
able in polynomial time for (H + P1)-free graphs.

Proof. Let G be an (H +P1)-free graph with pre-coloring φW : W → {1, 2, 3} for
some W ⊆ V (G). If G is H-free, we are done. Otherwise, we use φW to construct
a list of admissible colors for each vertex in G.

Suppose G contains an induced subgraph H ′ that is isomorphic to H . Because
G is (H +P1)-free, every vertex in V (G)\V (H ′) must be adjacent to a vertex in
H ′. We guess a coloring of V (H ′) that respects the lists. Afterwards we apply
Observation 1. Since H ′ has a fixed size, the number of guesses is polynomially
bounded. ��

Using the polynomial-time algorithm of [3] that solves the pre-coloring extension
version of 3-Coloring for P6-free graphs, and (repeatedly) applying Proposi-
tion 1 yields polynomial-time results of the same problem for Hi-free graphs for
i = 1, . . . , 12.

The case H13 = 3P2 follows from the more general result that 3-Coloring is
polynomial-time solvable for sP2-free graphs for any s ≥ 1. This is known already
and can be seen as follows. Balas and Yu [1] showed that for any s ≥ 1 the number
of maximal independent sets in an sP2-free graph G = (V, E) is bounded by a
polynomial. These maximal independent sets can then be efficiently enumerated
by applying the algorithm of Tsukiyama, Ide, Ariyoshi and Shirakawa [16]. We
note that G has a 3-coloring if and only if V can be partitioned into at most 3
independent sets V1, V2, V3, one of which may be assumed to be maximal. Hence,
for each maximal independent set I in G we check if the subgraph induced by
V \I is bipartite. This can be done in polynomial time.

In Section 4.1 we consider H14.

4.1 Pre-coloring Extension of 3-Coloring for (P2 + P4)-Free Graphs

Below we describe how to test in polynomial time whether a given (P2 +P4)-free
graph G with pre-coloring φW : W → {1, 2, 3} for some W ⊆ V (G) allows a
coloring φ : V (G)→ {1, 2, 3} with φ(u) = φW (u) for all u ∈ W .

We start by making two assumptions. Firstly, we assume that G is connected
as otherwise we apply our algorithm on each component of G. Secondly, we
assume that G contains an induced subgraph H isomorphic to P6. If not, then
G would be P6-free and we could use the polynomial-time algorithm for P6-free
graphs of [3] to solve our problem.

We use φW to construct a list of admissible colors for each vertex in G. We
guess a coloring of H respecting these lists and start our algorithm, which we run
at most 36 times as this is an upper bound on the number of possible 3-colorings
of H . From the description of the algorithm it will be immediately clear that its
running time is polynomial in |V (G)|.

Our algorithm first applies the following subroutine. Let U ⊆ V (G) contain
all vertices that have a list consisting of exactly one color. For every vertex u ∈ U
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we remove this single color c(u) from the lists of its neighbors. If this results in
an empty list at some vertex, then we output No. We remove u from G and
repeat this process in the remaining graph as long as there exists a vertex with
a list of size 1. This process is called updating the graph. Note that during this
procedure we removed all vertices of H . We restore them back into G. We may
assume that G is still connected; otherwise, due to the (P2 + P4)-freeness of G,
every component not containing H is a single vertex and can be colored trivially.
Let S be the set of vertices that still have a list of admissible colors of size 3. If
S = ∅ then we can apply Observation 1.

Suppose S �= ∅. Let T be the set of vertices of V (G)\V (H) that have at least
one neighbor in H . Because we colored every vertex in H and updated G, every
vertex of T has a list of exactly two admissible colors, and consequently, S ∩
(V (H)∪T ) = ∅. Since G contains no induced P2+P4, we find that V (G)\(V (H)∪
T ), and consequently S, is an independent set in G. Since G is connected, each
vertex in S has at least one neighbor in T (so T �= ∅).

For convenience we order the vertices of H along the P6 as p1, p2, . . . , p6,
starting with vertex p1 with degree 1 in H . Let T ∗ ⊆ T consist of all vertices
in T that have a neighbor in S. Let T1 denote the subset of vertices of T ∗

adjacent to p1, p3, p5 and not to p2, p4, p6; let T2 denote the subset of vertices of
T ∗ adjacent to p2, p4, p6 and not to p1, p3, p5; let T3 denote the subset of vertices
of T ∗ adjacent to p2, p5 and not to p1, p3, p4, p6.

Because every vertex u ∈ T has a list of two admissible colors, u is not
adjacent to two adjacent vertices of H (as these vertices have different colors).
By considering a vertex in T ∗ together with one of its neighbors in S and using
the (P2 + P4)-freeness of G, we then find that T ∗ = T1 ∪ T2 ∪ T3.

Claim 1. Either T1 ∪ T2 or T3 is empty.

We prove Claim 1 as follows. Assume T1 ∪ T2 �= ∅ and T3 �= ∅. Without loss of
generality, assume there is a vertex u ∈ T1 and a vertex v ∈ T3. By definition, u
is adjacent to p1, p3 and p5. Since u has a list of 2 admissible colors, p1, p3 and p5

are colored by the same color, say color 1. Because p2 is adjacent to p1, vertices
p1 and p2 have different colors. Thus the colors of p2 and p5 are different. Then
v has only one admissible color in its list. This contradiction proves Claim 1.

Using Claim 1 we distinguish two cases.

Case 1. T1 ∪ T2 is empty and T3 is not empty.

Since every vertex in T3 has a list of 2 admissible colors, p2 and p5 are colored
the same. Recall that S is an independent set. Hence we can safely color all the
vertices in S by the same color as p2 and p5. We are left to apply Observation 1.

Case 2. T3 is empty and T1 ∪ T2 is not empty.

If one of T1 and T2 is empty, say T2 = ∅, we proceed as in Case 1. We now assume
that none of T1 and T2 is empty. As before, this means that p1, p3, p5 must have
the same color, say color 1, whereas p2, p4, p6 also have the same color, say color
2. Recall that S is an independent set. Hence, we can safely color all vertices of
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Table 2. An update of Table 1

� →
Pk-free 3 3* 4 4* 5 5* ≥ 6 ≥ 6∗

k ≤ 5 P P P P P P P P

k = 6 P P ? ? ? NP-c ? NP-c

k = 7 ? ? ? NP-c ? NP-c NP-c NP-c

k = 8 ? ? NP-c NP-c NP-c NP-c NP-c NP-c

k ≥ 9 ? ? NP-c NP-c NP-c NP-c NP-c NP-c

S that only have neighbors in T1 by color 1, and all vertices of S that only have
neighbors in T2 by color 2. Afterwards we remove them from G. If no vertices
of S remain we apply Observation 1. Suppose S did not become empty. Then
each (remaining) vertex of S has a neighbor in T1 and T2. We first try the case
that all vertices of T1 receive color 2. For this coloring of T1, all vertices in S get
reduced lists of size at most 2, so we can again apply Observation 1.

We are left to consider the possibility that color 3 is used on at least one
vertex of T1. We try all possible O(|V (G)|) choices in which we give one fixed
vertex x ∈ T1 color 3. Below we describe what we do for each such choice.

We first update G. If G then only contains vertices that have a list of admis-
sible colors of size 2, we apply Observation 1. Otherwise, we restore x and all
vertices of H back into G and redefine sets T1, T2 and S accordingly. We find
that no vertex in T2 is adjacent to x, because such vertex would have received
color 1 and would have been removed when we were updating G. Furthermore,
by definition of S, no vertex in S is adjacent to x, and we may again assume
that each vertex in S is adjacent to a vertex in T1 and to a vertex in T2.

Let y be an arbitrary vertex of T2. Suppose there exists an edge ab such that
a ∈ T2, b ∈ S and y is not adjacent to a, b. Then G contains an induced P2 + P4

formed by bap6y and xp1. This is not possible. Hence, the vertex y is adjacent to
at least one of the vertices of every edge ab with a ∈ T2 and b ∈ S. We consider
all possible colorings of y. This way we reduce the list of admissible colors of
each vertex in S by at least one (either directly or via one of its neighbors in
T2) and we apply Observation 1. This finishes Case 2, and thus the description
of our algorithm is completed.

5 Conclusions

Due to our new results we can update Table 1. This yields Table 2. Positions
in this table marked by “?” are still open. We also showed that 3-Coloring is
polynomial-time solvable for H-free graphs if H is any fixed linear forest on at
most 6 vertices, except when H = 2P3. Recently, we showed that 3-Coloring

is also polynomial-time solvable for 2P3-free graphs [4].
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Abstract. The problem of determining the cutwidth of a graph is a

notoriously hard problem which remains NP-complete under severe re-

strictions on input graphs. Until recently, non-trivial polynomial-time

cutwidth algorithms were known only for subclasses of graphs of bounded

treewidth. In WG 2008, Heggernes et al. initiated the study of cutwidth

on graph classes containing graphs of unbounded treewidth, and showed

that a greedy algorithm computes the cutwidth of threshold graphs. We

continue this line of research and present the first polynomial-time algo-

rithm for computing the cutwidth of bipartite permutation graphs. Our

algorithm runs in linear time. We stress that the cutwidth problem is

NP-complete on bipartite graphs and its computational complexity is

open even on small subclasses of permutation graphs, such as trivially

perfect graphs.

1 Introduction

A large variety of problems in many different domains can be formulated as
graph layout problems [8]. A well known problem of this type is cutwidth. Given
a graph G and a positive integer k, the cutwidth problem is to decide whether
there is an ordering of the vertices of G such that any line inserted between
two consecutive vertices in the ordering cuts at most k edges of the graph. The
cutwidth of the input graph is the smallest integer for which the question can
be answered positively. This problem was first proposed as a model to minimize
the number of channels in a circuit [1,14], and later it has found applications
in areas like protein engineering [3], network reliability [12], automatic graph
drawing [16], and as a subroutine in the cutting plane algorithm for TSP [11].

As most graph problems of practical interest, cutwidth is NP-complete [9],
even when input graphs are restricted to planar graphs of maximum degree
3 [15], split graphs [10], unit disk graphs, partial grids [7], and consequently

� This work is supported by the Research Council of Norway and by EPSRC UK grant

EP/D053633/1.

D.M. Thilikos (Ed.): WG 2010, LNCS 6410, pp. 75–87, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



76 P. Heggernes et al.

bipartite graphs. There is a polynomial-time O(log2 n)-approximation algorithm
for general graphs [13], and a polynomial-time constant factor approximation
algorithm for dense graphs [2].

The knowledge on polynomial-time algorithms for the exact computation of
cutwidth on restricted inputs is very limited. Cutwidth of certain trivial graph
classes, like meshes or complete p-partite graphs, can be computed easily as there
exist closed formulas for their cutwidth [8]. Cutwidth of proper interval graphs
has a trivial solution following an interval ordering of the vertices [21]. However,
there are very few graph classes whose cutwidth is non-trivially computable
in polynomial time. Until recently, polynomial-time cutwidth algorithms were
known only for subclasses of graphs of bounded treewidth. In particular, Yan-
nakakis [20] gave a sophisticated and technical algorithm for trees (see also [6]).
Furthermore, Thilikos et al. gave an algorithm for computing the cutwidth of
bounded cutwidth graphs [18], and extended this result to graphs of bounded
treewidth and maximum degree [19]. As a recent development, in a WG 2008
paper the study of cutwidth on graph classes containing graphs of unbounded
treewidth was initiated, resulting in a linear-time algorithm for computing the
cutwidth of threshold graphs [10].

In this paper, we continue this line of research by showing that the cutwidth
of a bipartite permutation graph can be computed in linear time. As mentioned
above, the cutwidth problem is NP-complete on bipartite graphs, and its compu-
tational complexity is open on permutation graphs. Thus bipartite permutation
graphs are natural candidates for studying the computational complexity of the
cutwidth problem. Our algorithm relies heavily on a characterization of bipartite
permutation graphs by strong orderings [17]. We would like to point out that
bipartite permutation graphs and threshold graphs are two unrelated subclasses
of permutation graphs; the intersection of these two graph classes is restricted
to stars. We would also like to point out that bipartite permutation graphs form
the first graph class of unbounded clique-width [5] whose cutwidth is shown to
be computable in polynomial time.

2 Preliminaries

We consider undirected finite graphs with no loops or multiple edges. For a graph
G = (V, E), we denote its vertex set and edge set by V and E, respectively, with
n = |V | and m = |E|. Let S ⊆ V . The subgraph of G induced by S is denoted
by G[S]. We write G−S to denote the graph G[V \ S], and we simply write
G−v instead of G−{v} in case S = {v}. For two vertices u, v ∈ V with uv /∈ E,
we write G+uv to denote the graph (V, E ∪ {uv}). The set of neighbors of a
vertex x of G is N(x) = {v | xv ∈ E}. The degree of x is d(x) = |N(x)|. A
graph is connected if there is a path between any pair of its vertices. A connected
component of a disconnected graph is a maximal connected subgraph of it.

In a bipartite graph G = (A, B, E), vertex sets A and B are called color
classes. The partition of the vertex set into color classes of a connected bipartite
graph is unique, up to symmetry. Vertices of A and of B are called A-vertices
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and B-vertices, respectively. We say that a vertex is bipartite universal if it is
adjacent to all the vertices of the opposite color class.

An ordering of a set A is a one-to-one mapping σ : A→ {1, . . . , |A|}. We also
use the notation σ = 〈a1, a2, . . . , a|A|〉, meaning that σ(ai) < σ(aj) when i < j,
where each ai is a distinct element of A, for 1 ≤ i ≤ |A|. Integers 1, 2, . . . , |A| are
called the positions of σ, and σ(a) is the position of a in σ. Intuitively, we will
refer to the end of the ordering with a1 as the left and the end of the ordering
with a|A| as the right. For two elements a and a′ of A, we say that a appears
before (or to the left of) a′ in σ, denoted a ≺σ a′, if σ(a) < σ(a′). If σ(a) > σ(a′),
then we say that a appears after (or to the right of) a′ in σ and write a �σ a′. We
will also use the notion of a leftmost, rightmost, and middle vertex or neighbor,
analogously and intuitively. A subset of k elements of A are consecutive in σ if
they occupy positions i + 1, . . . , i + k, for some i between 0 and |A| − k. When
we say that we delete an element a of A from σ, we get a new ordering in which
all elements before a in σ keep their original positions, and the position of each
element after a decreases by 1. We denote the new ordering by σ−a. For any
subset of A′ ⊆ A, we write σ−A′ to denote the ordering obtained from σ by
consecutively deleting all the elements of A′ from σ.

A layout of a graph G = (V, E) is an ordering of V . We write Φ(G) to denote
the set of all layouts of G. The rank of a vertex v with respect to a layout ϕ,
denoted rankϕ(v), is the number of neighbors of v appearing after v in ϕ minus
the number of neighbors of v appearing before v in ϕ, i.e., rankϕ(v) = |{w ∈
N(v) | w �ϕ v}| − |{w ∈ N(v) | w ≺ϕ v}|. Note that the rank of a vertex
can be negative. Given layout ϕ of a graph G and an integer 1 ≤ i ≤ n, we
define L(i, ϕ, G) = {u ∈ V | ϕ(u) ≤ i} and R(i, ϕ, G) = {u ∈ V | ϕ(u) > i}.
The ith gap of ϕ is between L(i, ϕ, G) and R(i, ϕ, G), or equivalently, between
positions i and i + 1 of ϕ. For any set S ⊆ V , we define the cut of S to be
θ(S, G) = {uv ∈ E | u ∈ S, v /∈ S}. The cut of G at the ith gap of ϕ is defined as
θ(i, ϕ, G) = {uv ∈ E | u ∈ L(i, ϕ, G) ∧ v ∈ R(i, ϕ, G)}. Note that by definition
θ(i, ϕ, G) = θ(L(i, ϕ, G), G). We call an edge set θ ⊆ E a cut of ϕ if θ = θ(i, ϕ, G)
for some i ∈ {1, 2, . . . n−1}. The size of a cut θ is |θ|. The cutwidth of a layout ϕ of
G is cwϕ(G) = max1≤i≤n |θ(i, ϕ, G)|. A cut θ(i, ϕ, G) with |θ(i, ϕ, G)| = cwϕ(G)
is called a worst cut of ϕ. The cutwidth of G is cw(G) = minϕ∈Φ(G){cwϕ(G)},
where the minimum is taken over all layouts of G. An optimal layout of G is
a layout ϕ such that cw(G) = cwϕ(G). The cutwidth of a graph G equals the
maximum cutwidth over all connected components of G.

As the name already indicates, bipartite permutation graphs are permuta-
tion graphs that are bipartite. For the definition and properties of permutation
graphs, we refer to [4]. The study of bipartite permutation graphs was initiated
by Spinrad et al. in [17]. They present two characterizations of bipartite per-
mutation graphs, leading to a linear-time recognition algorithm of this class as
well as polynomial-time algorithms for some NP-complete problems restricted
to bipartite permutation input graphs.

A strong ordering (σA, σB) of a bipartite permutation graph G = (A, B, E)
consists of an ordering σA of A and an ordering σB of B such that for all
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ab, a′b′ ∈ E, where a, a′ ∈ A and b, b′ ∈ B, a ≺σA a′ and b′ ≺σB b implies
that ab′ ∈ E and a′b ∈ E. An ordering σA of A has the adjacency property
if, for every b ∈ B, N(b) consists of vertices that are consecutive in σA. The
ordering σA has the enclosure property if, for every pair b, b′ of vertices of B
with N(b) ⊆ N(b′), the vertices of N(b′) \ N(b) appear consecutively in σA,
implying that b is adjacent to the leftmost or the rightmost neighbor of b′ in σA.

Theorem 1 ([17]). The following statements are equivalent for a bipartite graph
G = (A, B, E).

1. G is a bipartite permutation graph.
2. G has a strong ordering.
3. There exists an ordering of A which has the adjacency and enclosure prop-

erties.

A strong ordering of a bipartite permutation graph can be computed in linear
time [17]. If the graph G in Theorem 1 is connected, then it follows from the
proof of Theorem 1 in [17] that we can combine statements 2 and 3 in Theorem 1
as follows.

Lemma 1 ([17]). Let (σA, σB) be a strong ordering of a connected bipartite
permutation graph G = (A, B, E). Then both σA and σB have the adjacency and
enclosure properties.

3 Cutwidth of Bipartite Permutation Graphs

In this section we prove that the cutwidth of bipartite permutation graphs can
be computed in linear time. The complete algorithm is given in the proof of
Theorem 2. The main ingredient is an algorithm that we call MinCutBPG. This
algorithm takes as input a connected bipartite permutation graph G and a strong
ordering of G, and it outputs an optimal layout of G. We will spend most of this
section describing and proving the correctness of Algorithm MinCutBPG. Before
we give the algorithm, we define an operation to modify a given layout in an
intuitive way. Given a layout ϕ of a graph, when we move a vertex v from position
i to position j, with i < j, only vertices in positions from i to j are affected.
We get a new layout ϕ′ in which v gets position ϕ′(v) = j, the vertex x with
ϕ(x) = j gets position ϕ′(x) = j − 1, and each of the other affected vertices
decrease their positions by 1, similarly. All other vertices have the same position
in ϕ′ as they had in ϕ. What we described is a move toward the right. A move
toward the left is defined symmetrically.

3.1 Description of Algorithm MinCutBPG

We now give an outline of Algorithm MinCutBPG, which takes as input a con-
nected bipartite permutation graph G = (A, B, E) and a strong ordering (σA, σB)
of G. It outputs an optimal layout ϕ of G. Let A = {a1, . . . , as} where a1 ≺σA
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· · · ≺σA as, and let B = {b1, . . . , bt} where b1 ≺σB · · · ≺σB bt. The vertices
of A will appear in the final layout ϕ in the same order as they appear in σA.
Similarly, the order in which the vertices of B appear in ϕ corresponds to the
order in which they appear in σB.

Before deciding where the vertices of A will appear in ϕ with respect to the
vertices of B, the algorithm first assigns the vertices of B to “boxes”. There
are two types of boxes: a box Xi for every vertex ai ∈ A, and a box Xi,i+1 for
every pair of consecutive vertices ai, ai+1 ∈ A. Recall that the neighbors of any
vertex b ∈ B appear consecutively in σA by Lemma 1. If b has even degree and
its two middle neighbors are ai and ai+1, then b is assigned to box Xi,i+1. If
b has odd degree and its middle neighbor is ai, then b is assigned to box Xi.
For convenience, we also define the boxes X0,1 = ∅ and Xs,s+1 = ∅. Observe
that some boxes might be empty and the collection of non-empty boxes is a
partition of B. The following observation is a direct consequence of Lemma 1,
the properties of a strong ordering, and the definition of boxes.

Observation 1. Given a connected bipartite permutation graph G = (A, B, E)
with |A| = s and a strong ordering (σA, σB), where σA = 〈a1, a2, . . . , as〉, let
boxes X0,1, X1, X1,2, . . . , Xs, Xs,s+1 be defined as above. Then we have the fol-
lowing:

1. every vertex of Xi appears before every vertex of Xi,i+1 in σB, and every
vertex of Xi,i+1 appears before every vertex of Xi+1 in σB, for 1 ≤ i ≤ s;

2. N(b) = N(b′) for any two vertices b and b′ appearing in the same box.

We start with an initial layout of G in which a1 is placed first, vertices of X1

are placed in the immediately following positions, vertices of X1,2 are placed
in the next positions, then a2 is placed, followed by vertices of X2, X2,3, {a3},
X3, . . ., {as−1}, Xs−1, Xs−1,s, {as}, and Xs. Within each box, the vertices of B
belonging to that box are ordered according to σB. For 1 ≤ i ≤ s, ai appears just
before the vertices of box Xi. To define and obtain the final layout ϕ, we just
need to move each ai to its final position. This will be one of the initial positions
of {ai}∪Xi. As a consequence, we can observe already now that, for every b ∈ B,
rankϕ(b) ∈ {−1, 0.1}. The ranks of the A-vertices might have a larger range of
values. Let i be any index satisfying 1 ≤ i ≤ s. Recall that rankϕ(ai) depends
on the position where ai is placed: the further to the left ai appears, the higher
its rank. The algorithm moves ai in such a way that rankϕ(ai) is as close to 0
as possible, i.e., the value of |rankϕ(ai)| is as small as possible, subject to the
condition that the position of ai is one of the initial positions of {ai} ∪Xi. This
is done in the following way. Note first that the set of possible positions for ai

does not intersect with the set of possible positions for any other A-vertex aj

with i �= j. Furthermore, rankϕ(ai) is only dependent on the neighbors of ai

and no two A-vertices are adjacent. Therefore, the placement of each ai among
the positions of {ai}∪Xi can be decided independently of the placements of the
other A-vertices. By Lemma 1, the neighbors of ai appear consecutively in σB .
If ai has odd degree then let b be the middle neighbor of ai in σB . If ai has even
degree then let b be the right one of the two middle neighbors of ai. If b ∈ Xi,
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then we move ai to the position just before the position of b. If b appears in a
box to the left of Xi then we do not move ai. If b appears in a box to the right
of Xi then we move ai to the last position among the positions of Xi. Thus, if ai

is placed between two vertices of Xi then its rank is 0 or 1. If ai is placed before
or after all vertices of Xi then its rank can be higher or lower. This completes
the definition and computation of ϕ.

We make the following observations about the layout ϕ generated by Algo-
rithm MinCutBPG, which are direct consequences of Lemma 1.

Observation 2. Let G = (A, B, E) be a connected bipartite permutation graph
and let (σA, σB) be a strong ordering of G, where σA = 〈a1, a2, . . . , as〉. Let ϕ be
the layout of G generated by Algorithm MinCutBPG on input G and (σA, σB).
Then, for 1 ≤ i ≤ s, we have the following:

1. for any b ∈ Xi,i+1, rankϕ(b) = 0;
2. for any b ∈ Xi, rankϕ(b) = 1 if b ≺ϕ ai and rankϕ(b) = −1 if ai ≺ϕ b;
3. every b ∈ Xi−1,i ∪Xi ∪Xi,i+1 is adjacent to ai;

3.2 Correctness of Algorithm MinCutBPG

We show that Algorithm MinCutBPG produces an optimal layout when the input
is a connected bipartite permutation graph and a strong ordering of that graph.
We assume for contradiction that there is a connected bipartite permutation
graph G for which the algorithm outputs a layout ϕ such that cwϕ(G) > cw(G).
Such a graph is called a counterexample, and we write G to denote the set of all
counterexamples. Let G′ ⊆ G be the set of counterexamples having the minimum
number of vertices among all counterexamples, and let G′′ ⊆ G′ be the set of
graphs in G′ having the maximum number of edges among all graphs in G′. A
graph in G′′ is called a tight counterexample. If there exists a counterexample,
then there also exists a tight counterexample.

For the statements and the proofs of the following lemmas, let G = (A, B, E)
with E �= ∅ be a connected bipartite permutation graph that is a tight counterex-
ample, and let (σA, σB) be a strong ordering of G such that σA = 〈a1, . . . , as〉
and σB = 〈b1, . . . , bt〉. Furthermore, let ϕ = 〈v1, . . . , vn〉 be the layout of G
generated by Algorithm MinCutBPG on input G and (σA, σB).

Lemma 2. Let θ(j, ϕ, G) be a worst cut of ϕ. Then we have the following:

1. a1 is adjacent to the rightmost B-vertex of L(j, ϕ, G);
2. b1 is adjacent to the rightmost A-vertex of L(j, ϕ, G);
3. as is adjacent to the leftmost B-vertex of R(j, ϕ, G);
4. bt is adjacent to the leftmost A-vertex of R(j, ϕ, G).

Proof. We only prove claim 1; the proofs of claims 2, 3, and 4 are very similar
and have therefore been omitted. Let θ = θ(j, ϕ, G) and let b be the rightmost
B-vertex of L = L(j, ϕ, G). If b ≺ϕ a1 then all B-vertices in L appear before a1

in ϕ, and b is the vertex just before a1 in ϕ, implying that ϕ(b) = ϕ(a1) − 1.
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Hence b ∈ X1, and by Observation 2, a1b ∈ E. Now assume that a1 ≺ϕ b, and
suppose for contradiction that a1 is not adjacent to b. Note that this means
that b /∈ X1, since every vertex in box X1 is adjacent to a1 by Observation 2.
We claim that G′ = G−({a1} ∪ X1) is a counterexample, contradicting the
assumption that G is a tight counterexample. Observe that G′ is a connected
bipartite permutation graph and (σA−a1, σB−X1) is a strong ordering of G′.
We will prove the claim by showing that θ is a cut of the layout ϕ′ returned by
Algorithm MinCutBPG on input G′ and (σA−a1, σB−X1). Since a1b /∈ E, a1 has
no neighbors in R = R(j, ϕ, G) as a result of the properties of a strong ordering.
None of the vertices in X1 has a neighbor in R either, because they are adjacent
to a1 only. Therefore, θ is a cut of ϕ−({a1}∪X1). We will show that all vertices
of L\({a1}∪X1) that appear to the left of b in ϕ−({a1}∪X1) also appear to the
left of b in ϕ′. This will imply that θ is a cut of ϕ′ as well. Clearly, the relative
orderings of the A-vertices and of the B-vertices are the same in ϕ′ as in ϕ. Let
us analyze how the deletion of the vertices in {a1} ∪X1 can affect the ranks of
vertices and the boxes that they belong to. Deleting {a1} ∪X1 does not change
the rank of any A-vertex or the rank of b, since these vertices were not adjacent
to any of the vertices in {a1} ∪ X1. Consequently, b appears in the same box
after the deletion of a1 as it did before. Let a �= a1 be the rightmost A-vertex of
L; note that a might not be defined in case a1 is the only A-vertex of L. Either
a or b is the rightmost vertex of L in ϕ. In either case, since the ranks of a and
b did not change, a and b have the same relative order to each other in ϕ′ as
in ϕ. The only vertices whose ranks might change by the deletion of {a1} ∪X1

are the B-vertices of L that were adjacent to a1. However, these vertices cannot
appear to the right of b in ϕ′, as the algorithm respects the strong ordering
(σA−a1, σB−X1). As a result, the set of vertices that appear to the left of b is
the same in ϕ′ as in ϕ, which means that θ is a cut of ϕ′. Since cw(G′) ≤ cw(G)
and the size of the cut did not change, we conclude that G′ is a counterexample
with at least one fewer vertex than G, giving us the desired contradiction.

Lemma 3. Let θ(j, ϕ, G) be a worst cut of ϕ. Then both G[L(j, ϕ, G)] and
G[R(j, ϕ, G)] are complete bipartite graphs.

Proof. Let a and b be the rightmost A-vertex and B-vertex of L = L(j, ϕ, G),
respectively. By Lemma 2, a1 is adjacent to b and b1 is adjacent to a. By the
definition of a strong ordering, a1 is adjacent to b1 and a is adjacent to b. Since
G is connected, and σA and σB have the adjacency property by Lemma 1, a and
a1 are adjacent to all B-vertices in L, and b and b1 are adjacent to all A-vertices
in L. As a result, every vertex of A∩L is adjacent to every vertex of B∩L. This
means that G[L(j, ϕ, G)] is complete bipartite. By symmetry the same holds for
G[R(j, ϕ, G)].

Lemma 4. There is a worst cut θ(j, ϕ, G) of ϕ such that vj and vj+1 belong to
different color classes.

Proof. Let L = L(j, ϕ, G) and let R = R(j, ϕ, G). Assume that either L or
R, say L, contains vertices of only one color class. Since G is connected, G
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contains vertices from both color classes. Let us consider the smallest index
k ≥ j such that there is a vertex of the other color class in position k + 1. Then
|θ(k, ϕ, G)| ≥ |θ(j, ϕ, G)| because L ⊆ L(k, ϕ, G), there are no edges between the
vertices of L(k, ϕ, G), and each vertex of L(k, ϕ, G) has a neighbor in R(k, ϕ, G).
Hence we can conclude that there is a worst cut at the gap between two vertices
of opposite color. The case where R contains only vertices of one color class
is completely symmetric. For the rest of the proof, assume that both L and R
contain vertices of both color classes.

Assume first that both vj and vj+1 are B-vertices. Let ai be the rightmost
A-vertex in L, which means that ai+1 is the leftmost A-vertex in R. Both b = vj

and b′ = vj+1 are between ai and ai+1; more precisely, ai ≺ϕ b ≺ϕ b′ ≺ϕ ai+1. If
rankϕ(b) = 1 then b ∈ Xi+1 by Observation 2. Then by Observation 1, b′ ∈ Xi+1

as well, and consequently rankϕ(b′) = 1 . Thus we can conclude that b and b′

have the same neighborhood and they have one more neighbor in R than in L.
In this case θ(j, ϕ, G) cannot be a worst cut, because the cut just to the right
of b′ has larger size. Therefore, rankϕ(b) ≤ 0, which means that b has at least
as many neighbors to the left as it has to the right. Since b has no neighbors
appearing between ai and b, the cut just to the right of ai is of size at least
|θ(j, ϕ, G)|. Hence we can take that cut as the worst cut. Consequently there is
a worst cut at the gap between an A-vertex and a B-vertex.

Assume now that both vj and vj+1 are A-vertices, say ai and ai+1. First
we show that in this case both ai and ai+1 are bipartite universal. Assume for
contradiction that this is not true, and let b be the leftmost B-vertex in R which
is not a neighbor of ai. We claim that G′ = G+aib is also a counterexample,
contradicting the assumption that G is a tight counterexample. Recall that G[L]
and G[R] are complete bipartite graphs due to Lemma 3. Now observe that G′ is
a bipartite permutation graph and (σA, σB) is a strong ordering of G′. Let ϕ′ be
the layout computed by Algorithm MinCutBPG on input G′ and (σA, σB). Let
us analyze how the layout ϕ can change to ϕ′ due to the addition of edge aib.
Observe that Xi,i+1 is empty before the addition of edge aib, since ai and ai+1

are consecutive in ϕ. When we add edge aib, vertex b gets one more neighbor
to the left, and thus might appear in a box further to the left than the box it
was in before. By Observation 1 we know that b was not in Xi or Xi,i+1 before
the addition of edge aib. Now it can enter Xi,i+1 but it cannot enter Xi, since it
only gained one more neighbor. This means that it can move past ai+1 toward
the left, but it cannot move past ai. Thus L(j, ϕ′, G′) = L and R(j, ϕ′, G′) =
R, although some vertices in R might have changed positions. Consequently,
θ(j, ϕ′, G′) = θ(j, ϕ, G) ∪ {aib} is a cut of ϕ′, which means that ϕ′ has a cut
whose size is 1 more than a worst cut of ϕ. Since cw(G′) ≤ cw(G) + 1, G′ is a
counterexample, contradicting the assumption that G is a tight counterexample.
Thus there cannot be a B-vertex in R that ai is not adjacent to. By Lemma 3 we
know that ai is adjacent to all B-vertices in L, and hence ai is bipartite universal.
By symmetry and with similar arguments, ai+1 is also bipartite universal. This
means that rankϕ(ai) = rankϕ(ai+1). If this rank is negative, then the cut at
the (j − 1)th gap is a larger cut than θ(j, ϕ, G) since ai and ai+1 have more



Computing the Cutwidth of Bipartite Permutation Graphs in Linear Time 83

neighbors in L than in R. Symmetrically, if this rank is positive then the cut
at the (j + 1)th gap is a larger cut. Therefore rankϕ(ai) = rankϕ(ai+1) = 0,
because otherwise we get a contradiction to the assumption that θ(j, ϕ, G) is a
worst cut. This means that ai and ai+1 have as many neighbors in L as they have
in R. Since ai and ai+1 are both bipartite universal and they are not adjacent
to each other, the cut at the (j− 1)th gap and the cut at the (j + 1)th gap have
the same size as θ(j, ϕ, G). Hence we can take one of these cuts as a worst cut.
We can repeat this argument until we reach a B-vertex on the other side of a
worst cut.

Lemma 5. There is a worst cut θ(j, ϕ, G) of ϕ such that both vj and vj+1 are
bipartite universal.

Proof. By Lemma 4, we know that there is a worst cut θ = θ(j, ϕ, G) such that
vj and vj+1 belong to different color classes. Let us now show that both vj and
vj+1 are bipartite universal. Let a = vj ∈ A and let b = vj+1 ∈ B. By Lemma 3
we know that a is adjacent to every B-vertex in L and b is adjacent to every A-
vertex in R. If abt ∈ E then a is bipartite universal as a result of the properties of
a strong ordering. If abt /∈ E, we claim that G′ = G−bt is also a counterexample,
contradicting the assumption that G is a tight counterexample. We observe that
G′ is a bipartite permutation graph with strong ordering (σA, σB−bt). Since bt

has no neighbors in L as a result of the properties of a strong ordering, θ is a
cut of ϕ−bt. Let ϕ′ be the layout computed by MinCutBPG on input G′ and
(σA, σB−bt). Since no B-vertex was adjacent to bt, every remaining B-vertex
appears in the same box after the deletion of bt as it did before. However, an
A-vertex ai that was adjacent to bt might move one position to the left inside
the box Xi. Hence ai can move past b toward the left, but it cannot move past
a, since the algorithm respects the strong ordering. Consequently, all vertices
of L to the left of a in ϕ appear also to the left of a in ϕ′. Thus θ is a cut
of ϕ′. Since cw(G′) ≤ cw(G) and the size of the cut did not change, G′ is a
counterexample, contradicting the assumption that G is a tight counterexample.
Hence a is bipartite universal. To show that b is bipartite universal we use similar
arguments: by symmetry, if a1b /∈ E then G′ = G−a1 is a counterexample as
well. Finally, the case where vj ∈ B and vj+1 ∈ A is completely symmetric.

Corollary 1. There is a worst cut θ(j, ϕ, G) of ϕ such that vj and vj+1 belong
to different color classes and they are both bipartite universal.

Proof. The proof of Lemma 5 takes a cut as mentioned in Lemma 4, and shows
the claim of Lemma 5 using the same cut. Hence, there is a cut that satisfies
both lemmas at the same time, and the corollary follows.

The proof of the following lemma has been omitted due to page restrictions.

Lemma 6. There is a worst cut θ(j, ϕ, G) such that there are
⌊
|A|/2

⌋
A-vertices

and
⌈
|B|/2

⌉
B-vertices on one side of the jth gap of ϕ, and there are

⌈
|A|/2

⌉
A-vertices and

⌊
|B|/2

⌋
B-vertices on the other side of the jth gap.

We are now ready to prove the main theorem of this paper.
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Theorem 2. The cutwidth of a bipartite permutation graph can be computed in
linear time.

Proof. We describe the main algorithm for computing the cutwidth of a bipar-
tite permutation graph G. First we compute a strong ordering of each connected
component of G. Then we run MinCutBPG on each connected component with
the computed strong ordering of that connected component. We concatenate the
returned layouts from each of these calls into one layout ϕ for G. The order in
which the layouts are concatenated does not matter, as the cuts at the concate-
nation points are empty. We check every position j with 1 ≤ j < n to find a
largest cut θ(j, ϕ, G), and we output |θ(j, ϕ, G)| as the cutwidth of G. If Algo-
rithm MinCutBPG is correct then clearly the output of the described algorithm
is equal to cw(G).

Before we prove the correctness of Algorithm MinCutBPG, let us analyze the
running time of the above algorithm. By the results of [17], computing a strong
ordering for each connected component of G takes in total O(n + m) time. The
running time of Algorithm MinCutBPG is also O(n + m). To see this, observe
that in the first loop, when deciding the box of a B-vertex, we never need to
consider boxes to the left of the most recently considered box. By Observation
1, the next B-vertex is placed in either the box in which the previous B-vertex
was placed, or a box further to the right. Thus running MinCutBPG on each
connected component takes O(n + m) time for the whole graph. Concatenating
the returned layouts and finding the largest cut takes O(n) time, and the overall
running time follows.

Let us prove that Algorithm MinCutBPG correctly computes the cutwidth of
a connected bipartite permutation graph. Assume for contradiction that there
is a tight counterexample G = (A, B, E). By Lemma 6, we know that there is
a worst cut θ = θ(j, ϕ, G) of the layout ϕ computed by Algorithm MinCutBPG
on G, such that there are

⌊
|A|/2

⌋
A-vertices and

⌈
|B|/2

⌉
B-vertices on one side

of the jth gap of ϕ, and
⌈
|A|/2

⌉
A-vertices and

⌊
|B|/2

⌋
B-vertices on the other

side. Let F = {ab /∈ E | a ∈ A∧b ∈ B}. Then F ∩E = ∅ and (A, B, (E ∪F )) is a
complete bipartite graph. Since by Lemma 3 vertices on either side of θ induce a
complete bipartite graph, we have that for each ab ∈ F , a and b are on different
sides of θ. Thus we can conclude the following about the size of θ:

|θ| =
⌊
|A|
2

⌋⌊
|B|
2

⌋
+

⌈
|A|
2

⌉⌈
|B|
2

⌉
− |F | .

Let S be any set of
⌊
|A|/2

⌋
+
⌈
|B|/2

⌉
vertices of G. We claim that |θ(S, G)| ≥ |θ|,

regardless of how many A-vertices and how many B-vertices there are in S. To
consider all possibilities, let there be

⌊
|A|/2

⌋
− x A-vertices and

⌈
|B|/2

⌉
+ x

B-vertices in S, for an appropriate (positive, zero or negative) integer x. Con-
sequently, there are

⌈
|A|/2

⌉
+ x A-vertices and

⌊
|B|/2

⌋
− x B-vertices in

(A∪B)\S. Some of the set F of missing edges might have endpoints on different
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sides of the cut θ(S, G) and some might not. Since (A, B, (E ∪F )) is a complete
bipartite graph, we know the following about the size of θ(S, G):

|θ(S, G)| ≥
(⌊
|A|
2

⌋
− x

)(⌊
|B|
2

⌋
− x

)
+

(⌈
|A|
2

⌉
+ x

)(⌈
|B|
2

⌉
+ x

)
− |F |

=
⌊
|A|
2

⌋⌊
|B|
2

⌋
−
⌊
|A|
2

⌋
x−

⌊
|B|
2

⌋
x+x2+

⌈
|A|
2

⌉⌈
|B|
2

⌉
+
⌈
|A|
2

⌉
x+

⌈
|B|
2

⌉
x+x2−|F |

= |θ|+ 2x2 + x

(⌈
|A|
2

⌉
−

⌊
|A|
2

⌋
+

⌈
|B|
2

⌉
−

⌊
|B|
2

⌋)
.

Note that the value of the expression in parentheses in the last line of the
equation is 0, 1, or 2. Consequently, for all possible values of x, we have that
|θ(S, G)| ≥ |θ|.

Let ϕ∗ be an optimal layout of G, and let j =
⌊
|A|/2

⌋
+

⌈
|B|/2

⌉
. Let S∗ =

L(j, ϕ∗, G). Hence S∗ contains
⌊
|A|/2

⌋
+

⌈
|B|/2

⌉
vertices and θ(j, ϕ∗, G) =

θ(S∗, G). Clearly cw(G) ≥ |θ(j, ϕ∗, G)| = |θ(S∗, G)|. However, for any such set
S∗, we have shown above that a worst cut θ of the layout computed by Algo-
rithm MinCutBPG has the property |θ(S∗, G)| ≥ |θ|. Therefore, cw(G) ≥ |θ|,
contradicting the assumption that G is a counterexample. Consequently, no
counterexample exists, and the algorithm correctly computes the cutwidth of
every connected bipartite permutation graph.

4 Concluding Remarks

Algorithm MinCutBPG takes as input a connected bipartite permutation graph
G = (A, B, E) and a strong ordering (σA, σB) of G. Before the algorithm is
called, O(n + m) time is spent on recognizing G as a bipartite permutation
graph and computing a strong ordering of G. Within the same running time
one can assign two integers �(v) and r(v) to every vertex v ∈ A ∪ B for the
following purpose. If v ∈ A then �(v) and r(v) are the positions of the leftmost
and the rightmost neighbor of v in σB . If v ∈ B then �(v) and r(v) are the
positions of the leftmost and the rightmost neighbor of v in σA. Observe that
with this information, d(v) can be computed in constant time, and the middle
neighbor of a vertex can be found in constant time. Consequently, if �(v) and
r(v) are supplied to MinCutBPG as input for every v ∈ A ∪B, the running time
of MinCutBPG is in fact O(n).

With our results in addition to the results of [10], the cutwidth of two unre-
lated subclasses of permutation graphs can be computed in linear time: threshold
graphs and bipartite permutation graphs. We leave as an open problem to de-
cide the computational complexity of computing the cutwidth of permutation
graphs. In fact, it would be interesting to know the computational complexity of
cutwidth on other well known subclasses of permutation graphs, like cographs
or even their subclass trivially perfect graphs.
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Abstract. The Capacitated Dominating Set problem is the problem

of finding a dominating set of minimum cardinality where each vertex

has been assigned a bound on the number of vertices it has capacity to

dominate. Cygan et al. showed in 2009 that this problem can be solved in

O(n3m
(

n
n/3

)
) or in O∗(1.89n) time using maximum matching algorithm.

An alternative way to solve this problem is to use dynamic program-

ming over subsets. By exploiting structural properties of instances that

can not be solved fast by the maximum matching approach, and “hid-

ing” additional cost related to considering subsets of large cardinality

in the dynamic programming, an improved algorithm is obtained. We

show that the Capacitated Dominating Set problem can be solved in

O∗(1.8463n) time.

1 Introduction

The problem of finding a vertex subset of cardinality at most k that dominates all
remaining vertices in a graph has received a considerable amount of attention
over the last two decades. This problem is known as the Dominating Set

problem and is a classical NP-complete and also W [2]-complete problem [5]. If
each vertex is equipped with a bound on the number of neighbors that it has
capacity to dominate additionally to itself, the problem is called Capacitated

Dominating Set. By simply assigning the degree as the capacity to each vertex,
the hardness results carry over to the Capacitated Dominating Set problem.
Recently it has been proven that this problem remains W [1]-hard even in the
planar case [2], and thus distinguishing it from Dominating Set which is Fixed
Parameter Tractable on planar graphs [1].

For the general domination problem there has been a long sequence of mod-
erately exponential time algorithms starting in 2004 by [8], where the currently
last result is [10]. Also in the case where we ask for a connected dominating set
the trivial bound was broken back in 2006 [6].

� This work has been supported by ANR Blanc AGAPE (ANR-09-BLAN-0159-03)

and EGIDE Aurora (18809RM).

D.M. Thilikos (Ed.): WG 2010, LNCS 6410, pp. 88–99, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Solving Capacitated Dominating Set 89

The Capacitated Dominating Set problem have a slightly different story. The
question if the “trivial” O∗(2n) could be broken was first asked at IWPEC 2008,
and repeated later that year by Johan van Rooij at Dagstuhl [7]. Cygan et
al. show in [4] that the Capacitated Dominating Set problem could be solved
exactly in O∗(1.89n) time. They first provide an algorithm that, given a set U
of vertices, computes in polynomial time a minimum dominating set D with
U ⊆ D and such that only the elements of U are allowed to dominate two or
more vertices outside D. This algorithm is based on a reduction to a maximum
matching problem. Then the result is obtained by guessing U , which is of size
no more than n/3.

Koivisto [9] gave a clever algorithm for the following problem: the input is
a family F of subsets of a universe V and the output is a partition of V into
a minimum number of elements of F . The running time is o(2n) if all the sets
of F are small (bounded by a constant). This yields an o(2n) algorithm for the
Capacitated Dominating problem when all capacities are all upper bounded by a
constant k. Indeed, we can put in F all subsets X ⊆ N [v] such that |X | ≤ c(v)+1,
for all vertices v (see next section for details).

For both Cygan’s et al. and Koivisto’s algorithms there exist instances that
forces the algorithms to spend respectively O∗(1.89n) and O∗(2n) time. There are
even instances that force both algorithms to their respective maximum bound.
Consider a Capacitated Dominating Set D where a constant number of vertices
W dominate ρn vertices for a constant 0 < ρ < 1, and every vertex of D\W uses
its capacity to dominate exactly two vertices in V \D. Such an instance will force
Koivisto’s algorithm to consider dominating vertices that use their capacity to
dominate ρn other vertices (hence the sets of F are not of bounded size), and
the maximum matching approach by Cygan et al. has to test all subsets U of
size |W |+ (n− |W |ρn)/3. Thus, no significant improvement can be obtained by
simply balancing the two approaches.

In this paper we adapt the algorithm by Koivisto to avoid the “constant”
restriction on the capacities, meaning that the elements of the family F will not
necessarily be of bounded size. This generalization works under the condition
that there are not too many vertices in the dominating set using unbounded ca-
pacity. Maybe the most interesting contribution here is that handling elements
of F of unbounded size does not add to the total running time of the algorithm.
The reason for this comes form the fact that all unbounded sets are handled
in the beginning of the dynamic programming, before the considering smaller
sets. This is then balanced with the maximum matching approach of Cygan et
al. to optimize the time bound. As a result of this we get that the Capaci-

tated Dominating Set problem can be solved in O∗(1.8463n) time. When
we look further into the polynomial factors hidden by the big-Oh notation, we
can actually notice that there is a trade-off between the polynomial factor and
the basis of the exponent, with running times ranging from O(n9 · 1.8844n) to
O(n40005 · 1.8463n).
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2 Preliminaries

In this paper we consider simple and undirected graphs. Given a graph G =
(V, E), we denote by n the number of its vertices. If the given graph is equipped
with a capacity function c : V → N, we say that a subset D ⊆ V is a Capacitated
Dominating Set if there exists a function f : V \ D → D such that f(u) ∈
N(u) ∩D and |f−1(v)| ≤ c(v) for each v ∈ D. Alternatively the Capacitated

Dominating Set problem can be viewed as a partitioning problem. Let F be
the family of subsets of V such that X ⊆ V is a member of F if and only if there
exists a vertex v ∈ X such that X ⊆ N [v] and |X | ≤ c(v) + 1. Such a vertex
v will be refereed to as the representative of X and is denoted v = R(X). Any
partitioning S1, S2, . . . , Sd of V where Si ∈ F for every i ∈ {1, . . . , d} defines a
Capacitated Dominating Set D of G, where |D| = d. The capacitated dominating
set D can be retrieved from the partitioning by selecting the representative of
each set, i.e. D = ∪d

i=1R(Si). In the next section, we will view the Capacitated

Dominating Set problem as the problem of finding such a partitioning where
d is minimized.

3 The Two Main Ingredients

We start by briefly recalling the construction of Cygan et al. and Koivisto’s
algorithms.

3.1 Cygan et al.’s Algorithm

Let G = (V, E) be a graph with a capacity function c. In [4], Cygan, Pilipczuk
and Wojtaszczyk give a O∗(1.89n) time exact algorithm to compute a capaci-
tated dominating set. This algorithm heavily relies on a reduction to a matching
problem. Namely, they consider the Constrained CDS problem defined as follows:
Given a set U of representatives of sets of size at least 3, compute a smallest
CDS D ⊆ V such that U ⊆ D, and D\U are the representatives of sets of size at
most 2. In words, the vertices of D \U will dominate at most one vertex outside
D. Cygan et al. give a polynomial algorithm for this problem. We refer to this
algorithm as ExtendSolution(G, c, U). By enumerating all subsets U of size at
most n/3, one can solve the CDS problem in O∗(

(
n

n/3

)
= O∗(1.89n) time.

Theorem 1 (see [4]). Given a set U of representatives of sets of size at least
3, algorithm ExtendSolution(G, c, U) computes a smallest CDS D ⊆ V such
that U ⊆ D, in O(n2m) running time. Consequeltly, the CDS problem can be
solved in O∗(1.89n) time.

3.2 Koivisto’s Algorithm: Partitioning into Sets

In [9], Koivisto investigates the problem of finding a partition of a universe
V into k disjoints sets S1, S2, . . . , Sk from a family F of subsets of V under
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the restriction that the subsets of F are of bounded cardinality. Thanks to an
(arbitrary) linear order < on the elements of V (implying a lexicographic order
≺ on the subsets of V ), Koivisto designs an algorithm with a proved worst-
case running-time O∗(cn) with c < 2. We recall briefly the approach developped
by Koivisto. In the next section, we show how to extend this approach if the
familly F contains some sets of unbounded cardinality. Formally, the following
was proved in [9]:

Theorem 2. Given an n-element universe V , a number k, and a familly F of
subsets of V , each of cardinality at most r, the partitions of V into k members
of F can be counted in time O∗(|F|2nλr ) where λr = 2r−2√

(2r−1)2−2 ln 2
.

To achieve this result, one idea of Koivisto approach is to define an arbitrary
linear order < on the universe and to count the lexicographic ordered k-partitions
(S1, S2, . . . , Sk) of V such that Si ≺ Sj whenever 1 ≤ i < j ≤ k. It is shown in
[9] that w.l.o.g the number of lexicographic ordered k-partition is equal to the
number of k-partitions.

The algorithm is very simple and is based on dynamic programming: for any
W ⊆ V and integer j, 1 ≤ j ≤ k, let fj(W ) be the number of ordered partitions
of W into j sets of F . Clearly, we have (see [9] for details):

f1(W ) = [W ∈ F ] and fj(W ) =
∑

X⊆W

fj−1(W \X)[X ∈ F ] for j > 1.

Here [W ∈ F ] counts the occurences of the set W in the family F .
As observed in [9], considering only lexicographic ordered partitions leads

to a reduction in the number of subsets of V needed to be considered by the
algorithm. Indeed, the set Sj must contain the smallest element of V not in
S1 ∪ S2 ∪ ... ∪ Sj−1. Let Rj be the familly of sets W that is the union of j such
sets S1, S2, . . . , Sj . This familly is defined recursively by:

R1 = {X s.t. X ∈ F , min V ∈ X};
Rj = {Y ∪X s.t. Y ∈ Rj−1, X ∈ F , Y ∩X = ∅, min V \ Y ∈ X}.

It is shown in [9] that the running-time of the algorithm is proportional to
(|R1| + |R2| + · · · + |Rk|) · |F|. Note that if we require the size of each sets in
F to be bounded by a constant r, then the size of the family F is no more
than nr. Now we derive an upper bound on each |Rj | being sharper than the
one of Theorem 2. However, contrary to Theorem 2 which provides an algebraic
expression on the running-time, our result will involve calculus, see the next
theorem and Table 1 for some values.

Theorem 3. Given an n-element universe V , a number k, and a familly F of
subsets of V , each of cardinality at most r, the partitions of V into k members
of F can be counted in time O∗(|F| · ( (1−λ)n

(r−1)λn

))
where λ is the unique solution

of (1−λr)r

(λ(r−1))r−1 = 1− λ in [0; 1
2r−1 ].

Proof. Let V an n-element universe with an arbitrary linear order on its ele-
ments: v1, v2, . . . , vn. Let j be an integer of {1, 2, . . . , k}. Recall that Rj is the
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familly of sets W being the union of j disjoint sets S1, S2, . . . , Sj , each of size no
more than r. Also by definition of Rj , for any set W ∈ Rj , {v1, v2, . . . , vj} ⊆W .
Thus the size of Rj is upper bounded by the maximum number of different sets
W that it can contain. This number is no more than the largest value of

(
n−j
w−j

)
for j ≤ w ≤ rj. Indeed, the size of W , denoted here by w is at least j since W
contains the j first vertices and at most rj since W is the disjoint union of j sets
of size at most r. As W has to contain the j first vertices, the |W | − j others
vertices have to be choosen among the n− j remaining vertices.

By denoting ρn, with 0 ≤ ρ ≤ 1, the value of j and by w′, with 0 ≤ w′ ≤
(r − 1)ρ, the value of w − j, the expression

(
n−j
w−j

)
can be rewritten

(
n(1−ρ)

nw′
)
.

This latter expression is maximum for w′ = 1−ρ
2 whenever 1−ρ

2 ≤ (r− 1)ρ or for
w′ = (r − 1)ρ otherwise. (This can easily be seen from the well-known binomial
formula.) Note that 1−ρ

2 = (r − 1)ρ for ρ = 1
2r−1 .

Also, by Stirling’s approximation,
(
αn
βn

)
is asymptotically bounded by B(α, β)n

where B : (α, β) �→ αα

ββ(α−β)α−β .
Thus in the next part of the proof we study the functions f1 : ρ �→ B(1 −

ρ, (r−1)ρ) defined over [0; 1
2r−1 ] and f2 : ρ �→ B(1−ρ, 1−ρ

2 ) defined over [ 1
2r−1 ; 1]

(see Fig. 1 for a plot of these two functions).

1

1.2

1.4

1.6

1.8

2

0 1λ 1
2r−1

f1

f2

Fig. 1. The two functions f1 and f2 plotted for r = 3. The maximum of f1 is reached

for λ.

We first start by studying f2. Its derivative f ′
2 = −(1 − ρ)1−ρ(1−ρ

2 )ρ−1 ln(2)
is non positive on [ 1

2r−1 ; 1]. Thus the maximum of f2 is obtained for ρ = 1
2r−1 .

Since f2( 1
2r−1 ) = f1( 1

2r−1 ), it sufficient to restrict ourselves to the analysis of
function f1 over [0; 1

2r−1 ].
Then we consider f1. Its derivative is f ′

1 = (1 − ρ)1−ρ((r − 1)ρ)(1−r)ρ(1 −
ρr)ρr−1(− ln(1 − ρ) − r ln((r − 1)ρ) + ln((r − 1)ρ) + r ln(1 − ρr)) and is equal
to zero over [0; 1

2r−1 ] if and only if ρ satisfies (− ln(1 − ρ) − r ln((r − 1)ρ) +
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ln((r − 1)ρ) + r ln(1 − ρr)) = 0. In other words, whenever ρ ∈ [0; 1
2r−1 ] satifies

(1−ρr)r

(ρ(r−1))r−1 = 1−ρ in [0; 1
2r−1 ]. Let us show that such a zero exists and is unique.

(The zero will correspond to λ on Fig. 1.) Consider f̃ ′
1 : ρ �→ − ln(1−ρ)−r ln((r−

1)ρ)+ln((r−1)ρ)+r ln(1−ρr); its derivative is f̃ ′′
1 : 1−r

ρ(ρ−1)(ρr−1) and is negative

over [0; 1
2r−1 ] for any r > 1. Thus f̃ ′

1 is strictly decreasing over [0; 1
2r−1 ] and

admits a unique zero since f̃ ′
1(0) ≥ 0 and f̃ ′

1(
1

2r−1) ≤ 0. ��

Now we shortly explain how to compute a good approximation of λ (defined as in
Theorem 3) and then provide an asymptotic upper bound on the running-time
claimed by Theorem 3.

We have shown that f ′
1 has a unique zero over [0; 1

2r−1 ]; it can easily be shown
that f ′

1 is decreasing and monotone over [0; 1
2r−1 ] with f ′

1 positive over [0; λ] and

negative over [λ; 1
2r−1 ]. Here, λ is the unique solution of (1−λr)r

(λ(r−1))r−1 = 1 − λ in
[0; 1

2r−1 ].
Let ε be a positive real. Let λ̃ “close enough to λ”, i.e. so that f ′

1(λ̃− ε) ≥ 0
and f ′

1(λ̃+ε) ≤ 0. Since the zero of f ′
1 is unique, such a λ̃ can be found by binary

search. Since f ′
1 is monotone, it follows that λ̃−ε > λ > λ̃+ε and thus |λ̃−λ| ≤ ε.

Let Δ = max
(
|f ′

1(λ̃ − ε)|, |f ′
1(λ̃ + ε)|

)
. By the classical mean value theorem,

|f(λ̃) − f(λ)| ≤ Δ · |λ̃ − λ| ≤ Δ · ε. Consequently we have f(λ) ≤ f(λ̃) + Δ · ε.
Finally we recall that O∗(f(λ)n) =

( (1−λ)n
(r−1)λn

)
.

Thus it is sufficient to find a λ̃ close enough to λ by binary search to establish
an upper bound on the running-time of Koivisto algorithm. Table 1 provides
values of λ̃ for some values of r. We also give the corresponding running-time
obtained by Theorem 3 (named as “Koivisto*”) and the running-time from the
original analysis by Koivisto [9] (see column “Koivisto”).

Table 1. The table provides, for several values of r, the running-time of Koivisto’s

algorithm [9] according to Koivisto’s analysis (column “Koivisto”) and according to

the new analysis devised by Theorem 3 (column “Koivisto*”). We also provide the

value of λ̃ which act as a certificate together with ε = 10−5 for proving the correctness

of values given by Koivisto*. Note that for the special case r = 2, the analysis provided

by [9] is already sharp.

r Koivisto Koivisto* λ̃

2 1.6181 1.6181 0.27629

3 1.7693 1.7549 0.17701
4 1.8271 1.8192 0.13051
10 1.9308 1.9296 0.05081

20 1.9654 1.9651 0.02520
50 1.9862 1.9861 0.01003
100 1.9931 1.9931 0.00501
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3.3 A New Recipe for Capacitated Dominating Set: Combining and
Cooking the Ingredients

We are now ready to explain how the Capacitated Dominating Set problem can
be solved in time O∗(1.8463n) by combining the approach of Cygan et al. [4]
and an extended version of the result by Koivisto [9] for bounded cardinalty
sets family. Namely, we will show that Koivisto’s approach can be used even
if some sets of the family are of unbounded size. To do that, instead of fixing
an arbitrary ordering over the elements of a universe, we use this freedom to
put some elements playing a special role at the begining of the ordering. These
elements are the representatives of sets being of unbounded cardinality (i.e. not
constant bounded). As we will see, in our Capacitated Dominating Set algorithm,
these elements have to be guessed. It is worth to note that if these elements are
given as part of the input, the running-time analysis can be improved. Then,
once the unbounded sets have been guessed, the algorithm has to deal only with
bounded-cardinality sets.

Description of the Algorithm. Let G = (V, E) be a graph with a capacity
function c defined over V . Let F be the family of subsets X ⊆ V such that
X ∈ F if and only if there exists a vertex v ∈ X such that X ⊆ N [v] and
|X | ≤ c(v) + 1. We recall here that such a v = R(X) is called the representative
of X . Note that it is possible that two sets X1 and X2 with X1 = X2, R(X1) = u,
R(X2) = v, u �= v satisfy the required properties for belonging to F . In that case,
it is sufficient to keep only one of these sets in F together with its corresponding
representative. In that way, given a X ∈ F , its representative is unique. From
now on a family F constructed as explained is called a family; we will omit to
precise the universe V and the capacity function c when it is clear from the
context.

Lemma 1. Let F be a family. If S1, S2, . . . , Sd, with Si ∈ F for each i ∈
{1, . . . , d}, is a partition of the universe V then their representatives are pairwise
distinct.

Proof. Since S1, S2, . . . , Sd is a partition of V and for each i ∈ {1, . . . , d}, R(Si) ∈
Si, the lemma follows. ��
Let β ∈ N with 3 < β ≤ n. Let F be a family and let S1, S2, . . . , Sd be a
partition of V . We enrich the notion of representatives with the notions of big
representatives, medium representatives and tiny representatives with respect to
this partition. We say that a vertex v is a
– big representative if there is a Si, 1 ≤ i ≤ d, with v = R(Si) and |Si| ≥ β;
– medium representative if there is a Si, 1 ≤ i ≤ d, with v = R(Si) and

β > |Si| ≥ 3;
– tiny representative if there is a Si, 1 ≤ i ≤ d, with v = R(Si) and 3 > |Si|;

The set of all big (resp. medium and tiny) representative is denoted by (BR)
(resp. (MR) and (TR)).

To simplify further the description, given a disjoint collection S1, S2, . . . , Sd of
subsets and a representative v, we denote by S(v) the set Si such that v = R(Si).
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How does the algorithm work? A complete and formal description of the algo-
rithm is given by Algorithm minCDS. Suppose that D ⊆ V is a solution of size d
of the minimum Capacitated Dominating Set problem. Then, there exists a par-
tition of V into d sets S1, S2, . . . , Sd such that each v ∈ D is the representative
of one set Si with |Si| ≤ c(v) + 1. Thus D can also be partitioned into (BR),
(MR) and (TR).

First we start in “Step 1” (see Algorithm minCDS) by computing all possible
solutions (possibly not of minimum size) such that |(BR)∪(MR)| ≤ γn, for some
fixed γ ∈ [1/4; 1/3]. This is done using Algorithm ExtendSolution. Then in
all solutions computed in “Step 2” we may assume that |(BR) ∪ (MR)| ≥ γn.
Since all sets S(v) with v ∈ (BR) ∪ (MR) are of cardinality at least 3, it follows
that (BR) is of moderate size as shown by the next lemma. This set (BR) of big
representatives is guessed by our algorithm.

Lemma 2. Suppose that there exists a solution S1, S2, . . . , Sd such that |(BR)∪
(MR)| ≥ γn, for γ ∈ [0; 1]. Then the size of (BR) is at most n−3γn

β−3 .

Proof. Each set Si such that R(Si) ∈ (BR)∪(MR) has cardinality at least 3. Thus
only n−3γn vertices can be distributed over the Si’s having a big representative.
Since sets with a big representative are of size at least β (and already contain 3
vertices), it follows that |(BR)| ≤ n−3γn

β−3 . ��

In addition, for each Si with a big representative, the size of Si is not necessary
bounded by a constant, but a linear bound can be established on its size:

Lemma 3. Suppose that there exists a solution S1, S2, . . . , Sd such that |(BR)∪
(MR)| ≥ γn, for γ ∈ [0; 1]. Then the size of each Si such that R(Si) ∈ (BR) is at
most n− 3γn+3. Moreover, the following is satisfied | ∪v∈(BR) S(v)| ≤ nβ−3γβn

β−3 .

Proof. As shown in the proof of Lemma 2, only n−3γn vertices can be distributed
over the Si having a big representative, assuming that each Sj with R(Sj) ∈
(BR)∪(MR) has cardinality at least 3. Thus, each such Si has at most n−3γn+3
vertices. Since by Lemma 2, the number of sets with a big representative is at
most n−3γn

β−3 , it follows that | ∪v∈(BR) S(v)| ≤ 3 · n−3γn
β−3 + n− 3γn. ��

In “Step 2.1”, our algorithm deals with such sets Si having a big representative.
These sets can only appear during this step since we put the big representatives
(guessed by the foreach-loop) at the very beginning of ordering <. Then we start
to compute partitions of V into sets using the dynamic programming approach
recalled in Section 3.2 (see also [9]). Here the size of the sets of F̃ are not bounded
by a constant; nevertheless we will show in Section 3.3 that a good bound on
the running-time can be established. Finally, in “Step 2.2” it only remain sets of
size bounded by the constant β − 1, and the dynamic programming is pursued.
We combine the possible cases in order to retrieve the global optimum solution.

Remark 1. It is straightforward to adapt our Algorithm minCDS so that it returns
a minimum capacitated dominating set instead of its size.
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Algorithm minCDS
(
G = (V, E), c : V → N

)
Input: A graph G = (V, E) and a capacity function c.
Output: The size of a minimum Capacitated Dominating Set of G.

/* γ is a constant that has to be choosen in [1/4; 1/3] and β is a

constant so that β > 3 (see Section 3.3) */

γ ← 31/100
β ← 15

MinSol←∞
/* --- Step 1 : based on Cygan et al. approach --- */

for � = 0 to γn do
foreach U ⊆ V of size � do

MinSol← min{MinSol, � + ExtendSolution(G, c, U)}

/* --- Step 2 : based on Koivisto approach --- */

for � = 0 to n−3γn
β−3

do

foreach (BR) ⊆ V of size � do
Define an ordering < by putting first the vertices of (BR) (in arbitrary

order) and then the vertices of V \ (BR) (in arbitrary order)

forall i ∈ {0, 1, . . . , n} do Ri ← ∅
/* -- Step 2.1: dealing with sets of size ≥ β -- */

z ← n− 3γn
Let

F̃ =
{
X ⊆ V, |X| ≤ z + 3,∃v ∈ (BR) s.t. X ⊆ N [v] and |X| ≤ c(v) + 1

}
for i = 1 to � do

foreach Y ∈ Ri−1 and X ∈ F̃ s.t. Y ∩X = ∅ and minV \Y ∈ X do
Add Y ∪X to Ri

/* -- Step 2.2: dealing with sets of size < β -- */

Let

F =
{
X ⊆ V, |X| < β,∃v ∈ V \ (BR) s.t. X ⊆ N [v] and |X| ≤ c(v) + 1

}
for i = � + 1 to n do

foreach Y ∈ Ri−1 and X ∈ F s.t. Y ∩X = ∅ and minV \Y ∈ X do
Add Y ∪X to Ri

Let i be the smallest index such that V ∈ Ri

MinSol← min{MinSol, i}
return MinSol

Running-Time Analysis. In this section we show that the worst-case running-
time of Algorithm minCDS is O∗(1.8573n) (using γ = 31/100 and β = 15 as stated
in the algorithm). With some appropriate values for γ and β which are used as
constants by Algorithm minCDS, this worst-case running-time can be lowered to
O∗(1.8463n). We already emphasys that a big polynomial is hidden in this lattest
big-Oh notation. This issue will be discussed in Section 3.3 (see also Table 2).

Lemma 4. The running-time of Step 1 is bounded by O(n3m
(

n
γn

)
).
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Proof. The total number of sets U is
∑γn

�=1

(
n
�

)
≤ n

(
n

n/3

)
since γ ≤ n/3. Each

call to ExtendSolution costs O(n2m) time by Theorem 1. Total time for this
step becomes O(n3m

(
n
γn

)
). ��

By the same argument as above combined with Lemma 2 and Lemma 3 we get:

Lemma 5. The number of sets (BR) considered by the outmost ForEach-loop

in Step 2 is at most O

(
n

(
n

n−3γn
β−3

))
.

Lemma 6. The size of the family F̃ is bounded by O(n
(

n
n−3γn+3

)
).

Lemma 7. Let 1/4 < γ. The running-time of Step 2.1 is bounded by O
(
n4|F̃ | ·( (1−λ)n

(2λ+1−3γ)n

))
where λ is the (possible) unique real solution of 27(γ − λ)3 =

(1−λ)(1−3γ +2λ)2 over [0; 1−3γ
β−3 ] if such a solution exists, or the running-time

is bounded by O
(
n4|F̃ | ·

( ( β−4+3γ
β−3 )n

( 1+3γ+β−3γβ
β−3 )n

))
otherwise.

Proof. We first provide a bound on the size of the family Ri, 1 ≤ i ≤ �, where �
denotes the size of (BR). For each W ∈ Ri its size is at most 3i+n−3γn (recall
that W is the union of at most i sets S of cardinality at least 3; furthermore at
most n−3γn vertices can be distributed over all these sets — see Lemma 3 and its
proof). However, due to the ordering < and by the construction of W ∈ Ri, each
W ∈ Ri has to contains the first i elements. Thus there are at most n

(
n−i

2i+n−3γn

)
possible W in Ri.

By Stirling’s approximation,
(
αn
βn

)
is asymptotically bounded by B(α, β)n

where B : (α, β) �→ αα

ββ(α−β)α−β . As done in the proof of Theorem 3, consider the

function f1 : ρ �→ B(1 − ρ, 2ρ + 1 − 3γ) defined over [0; 1−3γ
β−3 ]. Its derivative is

equal to zero if and only if 3 ln(3)+3 ln(γ− ρ− ln(1− ρ)− 2 ln(1− 3γ + 2ρ) = 0,
or in other words whenever 27(γ − ρ)3 = (1 − ρ)(1 − 3γ + 2ρ)2. By standard
calculation, this equation has a unique solution, if it exists, over [0; 1−3γ

β−3 ]. Oth-
erwise, if no solution exists, then f1 is increasing over [0; 1−3γ

β−3 ] and its maximum
is f1(1−3γ

β−3 ). For the polynomial contribution of the running time we get n2 for
running from 0 to � and then 0 to n, each set Ri might contain subsets of O(n)
different sizes, and finaly we need O(n) time to find sets and check presence of
edges. ��

Lemma 8. Let γ ∈ [0.18995; 1/3]. The running-time of Step 2.2 is bounded by
O
(
n4 ·nβ ·

( (1−λ)n
(1−3γ+2λ)n

))
where λ is the unique real root of (1−λ)(1−3γ +2λ)2−

27(γ − λ)3 over [0; 6γ−1
5 ].

Proof. The proof is quite similar to the previous one. Again each W ∈ Ri,
� < i ≤ n, is of size at most 3i + n − 3γn. Since it is required that each such
set W contains the first i elements, it follows that the size of Ri is at most(

n−i
2i+n−3γn

)
.
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Table 2. The table provides worst-case running-times of Algorithm minCDS, depending

on the values for γ and β. The order of the hidden polynomial term in the big-Oh

notation is given by the second column.

Running-Time order of the polynomial γ β

O∗(1.8844n) n5 · n4 0.32914 4

O∗(1.8798n) n5 · n5 0.32574 5

O∗(1.8649n) n5 · n10 0.31520 10

O∗(1.8573n) n5 · n15 0.31000 15

O∗(1.8486n) n5 · n50 0.30424 50

O∗(1.8463n) n5 · n40000 0.30275 40000

Now we consider the functions f1 : ρ �→ B(1 − ρ, 1 − 3γ + 2ρ) defined over
[0; 6γ−1

5 ] and f2 : ρ �→ B(1 − ρ, 1−ρ
2 ) defined over [6γ−1

5 ; 1]. (To justify this cut
between f1 and f2, observe that (1− ρ)/2 ≤ 1− 3γ + 2ρ whenever ρ ≥ 6γ−1

5 .) It
can easily be shown that f2 is decreasing over [ 6γ−1

5 ; 1] and thus we can restrict
ourself on f1. Again, by studying its derivative, we claim that f1 is maximum
over [0; 6γ−1

5 ] for λ being the unique real root of (1−λ)(1−3γ+2λ)2−27(γ−λ)3.
By the same agruments as used in the proof of Lemma 7, we get the polynomial
factor to be n4. ��

By combining the previous lemmata, we establish the following bound on the
worst-case running-time:

Theorem 4. The worst-case running-time of Algorithm minCDS is the maxi-
mum over:

– Step 1 : O
(
n
(

n
γn

))
(by Lemma 4);

– Step 2.1 : O
(
n6

(
n

n−3γn
β−3

)
·
(

n
n−3γn+3

)
·
( (1−λ)n
(2λ+1−3γ)n

))
if a solution λ of 27(γ −

λ)3 = (1− λ)(1− 3γ + 2λ)2 exists over [0; 1−3γ
β−3 ] ; otherwise O∗(n6

(
n

n−3γn
β−3

)
·(

n
n−3γn+3

)
·
( ( β−4+3γ

β−3 )n

( 1+3γ+β−3γβ
β−3 )n

))
(by Lemma 5, Lemma 6 and Lemma 7);

– Step 2.2 : O
(
n5

(
n

n−3γn
β−3

)
·
( (1−λ)n
(1−3γ+2λ)n

))
where λ is the unique real root of

(1−λ)(1−3γ+2λ)2−27(γ−λ)3 over [0; 6γ−1
5 ] (by Lemma 5 and Lemma 8).

We finally derive to the following corollary:

Corollary 1. By setting γ = 31/100 and β = 15, Algorithm minCDS runs in
O(n201.8573n) and exponential space.

A Trade-Off between Polynomial and Exponential Terms. As shown in
Theorem 4, the running-time of Algorithm minCDS depends on two parameters:
γ and β. The parameter β has a direct influence on the order of the polynomial
term which appears in the running-time. As well, we recall that the size of
the family F of subsets also contributes to the running-time of the algorithm
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in [9]. Thus, by adequately tuning the parameters (i.e. with γ = 0.30275 and
β = 40000) Theorem 4 shows that the algorithm runs in O∗(1.8463n). However
the big-Oh notation hides a huge polynomial term of order nβ . In Table 2 we
give some possible running-times achieve by our algorithm for several values of
γ and β.
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Abstract. Eulerian extension problems aim at making a given (directed)

(multi-)graph Eulerian by adding a minimum-cost set of edges (arcs).

These problems have natural applications in scheduling and routing and

are closely related to the Chinese Postman and Rural Postman prob-

lems. Our main result is to show that the NP-hard Weighted Multi-

graph Eulerian Extension is fixed-parameter tractable with respect

to the number k of extension edges (arcs). For an n-vertex multigraph,

the corresponding running time amounts to O(4k · n3). This implies a

fixed-parameter tractability result for the “equivalent” Rural Postman

problem. In addition, we present several polynomial-time algorithms for

natural Eulerian extension problems.

1 Introduction

Edge modification problems in graphs have many applications and are well-
studied in algorithmic graph theory [4,14]. The corresponding minimization
problems ask to modify as few (potential) edges as possible such that an in-
put graph is transformed into a graph with a desired property. Most studies in
this context relate to undirected graphs whereas we are aware of only few studies
of “arc modification” problems on directed graphs (digraphs). One example in
this direction is given by the NP-hard Transitivity Editing problem, asking
to make a digraph transitive by adding and deleting as few arcs as possible [18].
In this work, as part of a larger project on Eulerian graph modification prob-
lems, we study the problem of making a (directed) (multi-)graph Eulerian by
edge (arc) additions.1

A (directed) (multi-)graph is called Eulerian if it contains an oriented cycle
visiting every edge (arc) exactly once. An Eulerian extension is a set of edges
(arcs) to add to a (directed) (multi-)graph so that it becomes Eulerian.

Eulerian Extension (EE)
Input: A (directed) graph G = (V, E) and ωmax ∈ N.
Question: Is there an Eulerian extension E for G with |E| ≤ ωmax?

� Supported by the DFG, project AREG (NI 369/9).
�� Supported by the DFG, project DARE (NI 369/11).
1 Here, following previous work, we call this “extension” problem. In the graph mod-

ification context, this is also known as “completion” or “addition” problem.

D.M. Thilikos (Ed.): WG 2010, LNCS 6410, pp. 100–111, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Variants of EE include Weighted Eulerian Extension (WEE), where an
additional weight function ω : V ×V → N is given2 and the sum of the weights of
the arcs in the Eulerian extension we are looking for must not exceed ωmax, and
the multigraph variants (where parallel arcs are allowed as input and output)
Multigraph Eulerian Extension (MEE) and Weighted Multigraph

Eulerian Extension (WMEE), respectively. This work focuses on the lat-
ter problem, which has applications in scheduling [11]. Furthermore, the various
applications of Rural Postman [7] carry over to WMEE since both problems
are equivalent.

Related Problems and Previous Work. Lesniak and Oellermann [13] presented
an overview of undirected Eulerian graphs. The unweighted and undirected ex-
tension problems for graphs and multigraphs were already discussed by Boesch
et al. [3], who developed a linear time algorithm for the multigraph case and a
matching based algorithm for the graph case. Recently, Höhn et al. [11] initiated
a study of Eulerian extension problems applied to sequencing problems. To the
best of our knowledge, WEE has not been considered in the literature so far.

EE is closely related to the well-known Chinese Postman problem [6] and
the more general Rural Postman problem [7,12]. More specifically, Rural

Postman and WMEE are “equivalent” (see Section 2 for details). With this
equivalence, the NP-hardness of WMEE directly follows from the known NP-
hardness result for Rural Postman [12]. Moreover, the fact that Rural Post-

man is solvable in polynomial time if the the set of required arcs is connected [10]
directly implies that WMEE is solvable in polynomial time if the input is
(weakly) connected.

Our Results. Our main achievement is to show that WMEE is fixed-parameter
tractable with respect to the parameter “number of extension arcs”3 denoted
by k. The running time is O(4k·n3), where n denotes the number of vertices in the
input multigraph and k denotes the number of additional arcs. Using the above-
mentioned equivalence, this implies a first fixed-parameter tractability result for
Rural Postman. In contrast to Rural Postman, whose unweighted variant
is NP-hard [12], we can show that EE and MEE are polynomial-time solvable.
Altogether, our work complements and extends known results for WMEE with
restricted weight function [11] and Rural Postman, for which mainly approx-
imation, heuristic, and some polynomial-time algorithms for special cases are
known [7,10].

Due to the lack of space, several technical details are deferred to a full version
of the paper.

2 We assume the weight function to also assign weights to so far nonexistent arcs.
3 Replacing each weight by a shortest-path-weight, much like in the proof of Lemma 2,

decreases the number of arcs needed for an optimal Eulerian extension. It seems

possible to extend our results to the corresponding stronger parameter “number

of extension arcs after shortest-path-preprocessing”. Further considerations in the

direction are deferred to a full version of this paper.
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2 Preliminaries and Basic Observations

The main focus of this work is on directed (multi-)graphs and, therefore, pre-
liminaries for undirected (multi-)graphs are omitted if they follow trivially from
the directed case. In the context of directed (multi-)graphs, connectivity al-
ways means weak connectivity, that is, connectivity of the underlying undirected
graph. Let G = (V, A) be a directed graph or multigraph (that is, a graph with
parallel arcs allowed—we also use the letter M to refer to multigraphs). The set
of connected components of G that are not isolated vertices is denoted by CG. In
this work we sometimes apply definitions for graphs to connected components or
sets of connected components. For example, we use V (G) to refer to the vertices
of the graph G and V (C) to refer to the vertices of the connected component C.
For a vertex set V ′ ⊆ V , let G[V ′] := (V ′, A ∩ (V ′ × V ′)) denote the directed
(multi-)graph that is induced by V ′. For an arc set E and some arc a, we abbre-
viate E ∪ {a} to E + a. If G is not a multigraph, then the complement G of G is
the digraph on the vertex set V that contains exactly the arcs that are not in A.
An Eulerian cycle in a directed (multi-)graph G is a (not necessarily simple)
directed cycle that visits all arcs of G exactly once. If such a cycle exists, then
we call G Eulerian. We call a (multi-)set E ⊆ V ×V an Eulerian extension for G
if (V, A∪ E) is Eulerian. Furthermore, E is called optimal if there is no Eulerian
extension of less total weight for G. A walk W in G is a sequence of arcs of A
such that each arc starts in the end vertex of the previous arc. Walks may also
be considered as multisets of arcs. For a vertex v of a directed (multi-)graph G,
the outdegree (indegree) of v, denoted by outdeg (v) (indeg (v)), is the number
of arcs in A that are outgoing of (incoming to) v. The balance of a vertex v is

bal(v) := indeg (v)− outdeg (v) .

Specifically, let I+
G (I−G ) denote the set of vertices v of G for which bal(v) > 0

(b(v) < 0), that is, indeg (v) > outdeg (v) (indeg (v) < outdeg (v)). In an undi-
rected graph, we define the balance bal(v) of a vertex v to be one if the number
of its neighbors is odd and zero otherwise. For both directed and undirected
(multi-)graphs G, vertices v of G with bal(v) = 0 are called balanced, while all
other vertices of G are called imbalanced, with IG denoting the set of imbalanced
vertices of G. With the concept of vertex balance, we can state a well-known
fact about Eulerian graphs and multigraphs.

Lemma 1 (Folklore). A (directed) (multi-)graph is Eulerian if and only if all
edges (arcs) are in the same connected component and all vertices are balanced.

Eulerian extension and Related Problems. In the most general problem that we
study, we have weights and allow the input and output to be multigraphs.

Weighted Multigraph Eulerian Extension (WMEE)
Input: A directed multigraph M = (V, A), a weight function ω : V×V →
N, and positive integers k and ωmax.
Question: Is there an arc multiset E with |E| ≤ k and total weight at
most ωmax such that (V, A ∪ E) is an Eulerian multigraph?
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Since multigraphs allow the presence of parallel arcs, we may also add arcs
that are already present in the input. If we restrict the problem to digraphs,
that is, we prohibit parallel arcs in both the input and the resulting digraph,
then we arrive at the Weighted Eulerian Extension problem (WEE). Both
WMEE and WEE are also considered in their unweighted versions, where all
arcs have weight one (and, hence, the extension set E may contain at most ωmax

arcs). Since being Eulerian is defined for both directed and undirected graphs,
all presented variants of Eulerian Extension also have an undirected version.

Eulerian extensions are closely related to arc routing. An important role in
this relation plays the following problem:

Rural Postman (RP)
Input: A digraph G = (V, A), a nonempty set R ⊆ A of “required” arcs,
a weight function ω : A→ N, and integers q and ωmax ≥ 0.
Question: Is there a closed walk W in G such that W visits all arcs in R
and contains at most q + |R| arcs whose total weight is at most ωmax?

If R = A, then RP degenerates to the also well-known Chinese Postman

problem.

Parameterized Complexity. Our results are in the context of parameterized
complexity, which is a two-dimensional framework for studying computational
complexity [5,9,15]. One dimension is the input size n, and the other one is
the parameter (usually a positive integer). A problem is called fixed-parameter
tractable (fpt) with respect to a parameter k if it can be solved in f(k) · nO(1)

time, where f is a computable function only depending on k. A parameterized
problem P1 is parameterized reducible to a parameterized problem P2 if P1 can
be reduced to P2 in “fpt-time” such that the new parameter exclusively depends
on the old parameter. If P1 is parameterized reducible to P2 and vice versa,
then P1 and P2 are parameterized equivalent. If used as parameterized problems,
all variants of EE are parameterized by the number k of allowed arcs in a solu-
tion and RP is parameterized by the number q of allowed additional arcs, that
is, the number of arcs outside of R that are visited by the walk W . Note that
for RP, q is a “stronger” parameter than the number of arcs in W , because it
is always smaller. Since all solutions guarantee to contain R, choosing q can be
considered an above-guarantee parameterization of RP.

Helpful Observations. We present observations that help us prove our results
and give insights into the structure of the considered problems. First, observe
that, over all vertices of a graph, the balance always adds up nicely, that is, for
each “missing” incoming arc, there is also a “missing” outgoing arc.

Observation 1. Let G be a directed (multi-)graph. Then,
∑

v∈V (G) bal(v) = 0.

In undirected graphs and multigraphs we can observe that the sum over all
balances is even. Observation 1 can also be applied to connected components.
Next, we note the relation between RP and WMEE.
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Table 1. Polynomial-time solvable Eulerian extension problems. Here, n,m, and m are

defined as in Section 3. In general, weighted variants of Eulerian extension problems

are NP-hard if the input (multi-)graph is not connected [11,12].

unweighted weighted, connected

undir. graph O(m
√

n) (Theorem 1) O(n3 log n) (Corollary 2)

undir. multigraph O(n + m) (Proposition 4) O(n3 log n) (Corollary 2)

dir. graph O(m2 + nm log n)) (Prop. 3) O(m2 + nm log n)) (Prop. 2)

dir. multigraph O(n + m) (Proposition 4) O(n3 log n) (Corollary 1)

Proposition 1. RP is parameterized equivalent to WMEE.

This implies that the NP-hardness of RP for disconnected arc sets R carries
over to WMEE for disconnected inputs. The basic idea is to let R be the arc
set in the WMEE instance and identify an Eulerian extension with the set of
additional arcs in a walk that visits all arcs in R.

3 Polynomial-Time Cases of Eulerian Extension

In this section, we present polynomial-time algorithms for various variants of
Eulerian extension problems and their weighted versions. All running times are
given as functions in n (the number of vertices in the input), m (the number of
arcs (edges) in the input), and m (the number of arcs (edges) in the complement
of the input). We refer to Table 1 for an overview of the results of this section.
So far, the following result was known.

Theorem 1 ([3,13]). Eulerian Extension on undirected graphs can be solved
in O(m

√
n) time.

In the following, we present polynomial-time algorithms for weighted variants of
Eulerian extension problems if the input (multi-)graph is connected. Then, we
consider the unweighted variant and allow disconnected (multi-)graphs.

Algorithms for Connected Weighted Variants. Keeping in mind that the discon-
nected versions of WEE and WMEE are NP-hard [11] (see also [12]), we provide
polynomial-time algorithms for both problems in case of connected inputs. Most
algorithms are based on computing flows or matchings. First, we present an al-
gorithm for digraphs, which is then modified to work for directed multigraphs
and undirected graphs as well.

Proposition 2. Weighted Eulerian Extension on connected digraphs can
be solved in O(m2 + nm log n)) time.

Proof. Consider an instance (G, ω, ωmax) for WEE, where G is a connected di-
graph, and a function b : V (G) → Z measuring the balance of each vertex (see
Section 2). Consider the flow network G with supply determined by b (negative
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supply indicates demand), arc capacity one for each arc, and arc-costs deter-
mined by ω. It is easy to see that a flow of value 1

2

∑
v∈V | bal(v)| in this network

corresponds to an Eulerian extension for G and, thus, the minimum cost of such
a flow is also the minimum cost of an Eulerian extension for G. Such a flow can
be computed in O(m2 + nm log n)) time.4 ��

Next, for a directed multigraph M let GM be the complete digraph (contain-
ing all possible arcs) on the vertex set of M . Analogously to the proof of
Proposition 2, we can use a min-cost flow algorithm on GM with arc capaci-
ties ∞ and weights according to ω to solve WEE on connected directed multi-
graphs M . The uncapacitated version of the min-cost flow algorithm (running
in O(n3 log n) time [2]) suffices in this case.

Corollary 1. Weighted Multigraph Eulerian Extension on connected
directed multigraphs can be solved in O(n3 log n) time.

To handle undirected multigraphs, we replace the min-cost flow in the auxiliary
graph GM with a min-cost perfect matching in the complete undirected graph
on the vertex set IM with the weight of each edge {u, v} equal to the weight of a
minimum weight path between u and v in M . These paths are computed by an
all-pairs shortest path algorithm. For each edge in the perfect matching, all edges
of the corresponding shortest path are added to the extension set. With some
effort we can show that the same algorithm can be used for WEE (assuming
connected inputs).

Corollary 2. Weighted (Multigraph) Eulerian Extension on connected
undirected graphs and multigraphs can be solved in O(n3 log n) time.

Algorithms for General Unweighted Variants. Since EE is a special case of
WEE, we can solve EE for connected digraphs using the algorithm from the
proof of Proposition 2 with a unit-weight version of the min-cost flow algorithm
running in O(m2) time.5

Corollary 3. Eulerian Extension on connected directed graphs can be solved
in O(m2) time.

This algorithm cannot handle multiple components. A more general algorithm
that also allows to solve the problem on disconnected digraphs (at the cost of
increased running time) will be presented in the full paper.

Proposition 3. Eulerian Extension on disconnected digraphs can be solved
in O(m2 + nm log n)) time.

This stands in contrast with RP being NP-hard for unweighted digraphs [12],
which seems to be due to the possibility to prohibit arcs by choosing the input

4 See Exercise 10.17 of [2], a solution to which can be found in [1].
5 Combine the solution found in [1] for Exercise 10.17 in [2] with breadth-first search

as shortest path algorithm, which is valid in case of unit weights.
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digraph. In fact, the subsequent Proposition 4 implies that unweighted RP is
solvable in polynomial time if the input digraph is complete. More precisely, we
can solve MEE for directed inputs by a straightforward greedy strategy much
like the algorithm known for undirected multigraphs [3].

Proposition 4 (See [3]). Multigraph Eulerian Extension on directed
and undirected multigraphs can be solved in O(n + m) time.

4 Weighted Eulerian Extension on Directed Multigraphs

We prove that WMEE is fpt with respect to the size k of a solution by describ-
ing a dynamic programming algorithm to solve WMEE. More precisely, our
algorithm computes the solution with smallest total weight over all solutions of
size at most k. First, we modify the input, to obtain an equivalent but simpler
instance. This preprocessing is described in the first paragraph. Next, we trans-
form the preprocessed instance into an instance of a modified problem called
Black/Gray Weighted Multigraph Eulerian Extension (BGWMEE).
This problem has the advantage that a corresponding Eulerian extension has a
particularly simple structure to be exploited by a dynamic programming algo-
rithm. In the last paragraph, we present such an algorithm for BGWMEE.

Preprocessing the Input. We present two preprocessing algorithms that compute
an equivalent instance in which (a) the balance of each vertex v is in {−1, 0, 1},
and (b) there are no isolated vertices. To achieve (a), we repeatedly find a vertex v
with | bal(v)| > 1 and split v into two vertices: one vertex v′ with | bal(v′)| = 1
and one vertex v′′ with | bal(v′′)| < |b(v)|. To achieve (b), we replace the weight of
a direct connection between two vertices u and v with the weight of the cheapest
path of potential arcs from u to v that visits only isolated vertices.

Lemma 2. Let (M, ω, ωmax) be an instance of Weighted Multigraph Eu-

lerian Extension and let VI denote the set of isolated vertices in M . Then,
in O(n3) time, we can compute a weight function ω′ such that (M−VI , ω

′, ωmax)
is equivalent to (M, ω, ωmax).

Lemma 3. Let (M, ω, ωmax) be an instance of Weighted Multigraph Eu-

lerian Extension and let CM be the set of connected components of M . One
can modify (M, ω, ωmax) in O(k(n + m) + k2) time to obtain an equivalent in-
stance (M ′, ω′, ωmax) such that | bal(u)| ≤ 1 for each vertex u in M ′.

Lemma 2 and Lemma 3 imply a preprocessing algorithm that removes all iso-
lated vertices and assures | bal(v)| ≤ 1 for all vertices v in O(n3) time. In the
following, we assume all inputs to be preprocessed in this way.

Transformation To BGWMEE. The following observation helps to picture Eu-
lerian extensions as collections of paths between imbalanced vertices which is
fundamental for the algorithm. The observation is based on the fact that for
each balanced vertex u, each Eulerian extension contains as many arcs outgoing
of u as arcs incoming to u.
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Observation 2. Let M be a directed multigraph and let E be an Eulerian ex-
tension of M . Then, E can be decomposed into a collection of paths that start at
a vertex in I+

M and end at a vertex in I−M or start and end at a balanced vertex.

Observation 2 implies that an Eulerian extension E can be decomposed into
paths. Our idea to attack WMEE is to use dynamic programming to construct
such paths arc by arc. There are, however, a few obstacles to this approach.
Assuming that each path visits a component of the input multigraph at most
once, that is, no path contains two vertices of the same component, proved helpful
in overcoming these obstacles. Since this is not always the case, we modify the
input multigraph in order to use it in a slightly different (unfortunately more
technical) problem, for which this assumption is valid.

Black/Gray WMEE (BGWMEE)
Input: A directed multigraph M = (V, Ablack ∪Agray) where each con-
nected component of (V, Ablack) has either no imbalanced vertex or ex-
actly two imbalanced vertices (one in I−M and one in I+

M ), a weight
function ω : V × V → N, and an integer ωmax ≥ 0.
Question: Is there an Eulerian extension E ′ of total weight at most ωmax

for M such that in each component Cblack of (V, Ablack) there is exactly
one start vertex of an arc in E ′ and exactly one end vertex of an arc in E ′
(that is, |(V (Cblack)× V ) ∩ E ′| = 1 and |(V × V (Cblack)) ∩ E ′| = 1)?

Again, we can decompose a black/gray Eulerian extension into paths analogously
to Observation 2. The advantage of BGWMEE is that each black component is
visited exactly once by such a path. The gray arcs (arcs in Agray) are used
to model the connectivity constraints given by the original WMEE instance.
We first describe how WMEE can be solved using an algorithm for BGWMEE
and then present such an algorithm in the next paragraph. The main idea is to
transform an instance (M, ω, ωmax) of WMEE into an instance (M ′, ω′, ω′

max) of
BGWMEE by duplicating each component C of M as many times as it is visited
by paths of a solution for (M, ω, ωmax). To model that the copies of C originate
from one connected component of M , the copies of C are connected by adding
gray arcs. In the following, we describe the exact transformation algorithm.

First, find pairs of imbalanced vertices sharing a component. By Observation 1
and Lemma 3, there is a bijection m : I−M → I

+
M such that for all v ∈ I−M , the

vertices v and m(v) are in the same component. We use an arbitrary bijection
that respects this condition. Second, for a fix solution E of (M, ω, ωmax) and all
arcs (u, v) ∈ E , make a copy of the component of M that contains u. In the
following, we denote the number of copies of C by #(C). Since #(C) depends
on E , we do not know it in advance. Hence, we will try all possibilities. However,
not all functions # are feasible: The total number of copies cannot exceed |E|
(= k) and since each copy has at most two imbalanced vertices, each component
C must have at least |IC |/2 copies. Thus, we need only consider functions of
the form # : CM → N+ with

∑
C∈CM

#(C) ≤ k and #(C) ≥ |IC |/2 for all C ∈
CM . It can be shown that there are at most 2k such functions. Third, for each
component C of M , assign a copy C′ of C to each pair (v, m(v)) of imbalanced
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u

vx

y

u′

v′x′

y′

u′′

v′′x′′

y′′

(a) (b)

Fig. 1. (a): A component C of a directed multigraph. With #(C) = 2, m(v) = u
and m(y) = x, the transformation trm

# transforms (a) into (b). Here, white vertices

are balanced, black vertices are imbalanced. Note that, (v′, u′) is fixed in the first copy

and (y′′, x′′) is fixed in the second copy. Furthermore, u′ and u′′ are connected by gray

arcs, according to the last step of the transformation.

vertices of C and “fix” C′, that is, add an arc from the copy of m(u) to the copy
of u in C′ for all u ∈ I−C − v. This assures that each copy of C contains at most
one pair of imbalanced vertices, and each pair of imbalanced vertices (paired
by m) is represented in one copy. All copies that have not been assigned to an
imbalanced pair are balanced completely in the above mentioned way. Fourth, for
each component C of M , its copies are pairwisely connected by adding gray arcs.
To this end, select a vertex v of each component of M and add all possible arcs
between all copies of v. Note that only copies of the same component of M are
connected by gray arcs. We denote the transformed instance by (M ′, ω′, ωmax) :=
trm

#(M, ω, ωmax). See Figure 1 for an example of the described transformation.

An Algorithm for BGWMEE. Having transformed an instance of WMEE to an
instance of BGWMEE using the algorithm presented in the previous paragraph,
we can now exploit the simple structure of BGWMEE in a dynamic program-
ming algorithm. The main idea in this algorithm is to construct an Eulerian
extension arc by arc while maintaining a set of connected components of the
input multigraph that have already been visited.

In the following, we describe a dynamic programming algorithm that solves
BGWMEE. Let (M, ω, ωmax) be an instance of BGWMEE and let Cblack

M be the
set of black connected components of M . For each subset S ⊆ Cblack

M and each
pair of vertices u, v ∈ V (S), our algorithm computes an entry ω(S, u, v) with

ω(S, u, v) = minimum weight ω(E) of an arc set E such that E + (v, u)
is a black/gray Eulerian extension for M [V (S)]. (1)

If no black/gray Eulerian extension is possible with S, u, and v, then the en-
try ω(S, u, v) is assigned “∞”. The set S represents a subgraph of M and the
two vertices correspond to the endpoints of a (possibly “unfinished”) path of
an Eulerian extension (see Observation 2). The dynamic programming starts
with computing the entries for sets S that contain exactly one component and
augments S step by step, finally computing the entries for S = Cblack

M , which
are used to derive a minimum weight black/gray Eulerian extension for M with
respect to ω. In the following, we describe the update process for the entries.
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For each C ∈ Cblack
M not containing imbalanced vertices and each u, v ∈ V (C),

set

ω({C}, u, v) :=

{
0, if u = v,
∞, otherwise.

This assignment is correct, that is, it satisfies (1) by setting E := ∅ (which has
obviously minimum weight) because adding an arc to a balanced component can
only keep the component balanced if the added arc is a loop. Thus E + (v, u)
is an Eulerian extension for M [V (C)]. Moreover, E + (v, u) is also a black/gray
Eulerian extension for M [V (C)] since the only connected component has exactly
one incoming arc as well as one outgoing arc in E (in this case, the incoming and
outgoing arc is (v, u)).

For each C ∈ Cblack
M containing two imbalanced vertices x ∈ I−M and y ∈ I+

M ,
and each u, v ∈ V (C), set

ω({C}, u, v) :=

{
0, if u = x and v = y,
∞, otherwise.

This assignment satisfies (1) since, by definition of black/gray Eulerian exten-
sion, x and y are the only imbalanced vertices of C and both are balanced
adding (y, x) (that is, by using E = ∅). For the same reasons as above, E +(v, u)
is also a black/gray Eulerian extension for M [V (C)].

Next, we describe the computation of the entries for larger sets S. When
we compute the entry for a set S, we assume that all the entries for sets S′

with |S′| < |S| have already been computed. For a given S ⊆ Cblack
M with |S| > 1,

and vertices u, v ∈ V (S), the entry ω(S, u, v) is computed as follows. Let C ∈ S
denote the black component of M that contains v and let S′ := S \ {C}. If C is
balanced, then distinguish the following three subcases:

1. If u = v and there is a gray arc between C and S′, then set

ω(S, u, v) := min
u′,v′∈V (S′),u′ �=v′

ω(S′, u′, v′) + ω(v′, u′).

2. If u ∈ V (S′), then set

ω(S, u, v) := min
w∈V (S′)

{ω(S′, u, w) + ω(w, v)}.

3. Otherwise, set ω(S, u, v) :=∞.

If C contains two imbalanced vertices x ∈ I−M and y ∈ I+
M , then we distinguish

the following three subcases:

1. If u = x and v = y, and there is a gray arc between C and S′, then set

ω(S, u, v) := min
u′,v′∈V (S′),u′ �=v′

ω(S′, u′, v′) + ω(v′, u′).
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2. If u ∈ V (S′) and v = y, then set

ω(S, u, v) := min
w∈V (S′)

{ω(S′, u, w) + ω(w, x)}.

3. Otherwise, set ω(S, u, v) :=∞.

Finally, the weight ωopt of an optimal black/gray Eulerian extension for (M ′, ω)
is computed as follows:

ωopt := min
u,v∈V (Cblack

M ),u�=v
ω(Cblack

M , u, v) + ω(v, u)

This follows immediately from (1). A corresponding black/gray Eulerian exten-
sion can be computed by storing each solution E in addition to its weight in each
entry in the dynamic programming algorithm. Altogether, this algorithm takes
O(2k · n3) time for solving a given instance.

Lemma 4. Black/Gray Weighted Multigraph Eulerian Extension

can be solved in O(2k · n3) time.

The Complete Algorithm. The complete algorithm to solve WMEE runs in three
steps. First, the input multigraph M is preprocessed in O(n3) time such that it
does not contain isolated vertices or vertices with absolute balance more than
one (see Lemma 2 and Lemma 3). Second, a component-respecting bijection m :
I−M → I

+
M is chosen arbitrarily. Third, for all 2k possible functions # : CM → N+,

the instance is transformed and the resulting instance of BGWMEE is solved
in O(2k · n3) time (see Lemma 4). The correctness of this algorithm follows
directly from the correctness of the transformation algorithm and Lemma 4.
The overall running time is O(4k · n3).

Theorem 2. Weighted Multigraph Eulerian Extension can be solved
in O(4k · n3) time.

Consequently, we can analogously solve Rural Postman parameterized by q
(see Proposition 1).

Corollary 4. Rural Postman can be solved in O(4q · n3) time.

5 Conclusion

We focused on Eulerian extension problems (and due to equivalence, the Rural

Postman problem), leaving yet unstudied other Eulerian graph modification
problems including the editing version. Eulerian extension problems alone still
offer a rich field of challenges for future research in terms of multivariate algorith-
mics [8,16]. More specifically, we concentrated on the parameterized complexity
with respect to the parameter “number of extension arcs”, but there are many
natural structural parameters that make sense. For instance, it would be inter-
esting to determine the parameterized complexity with respect to the parameter
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“number of weakly connected components” in a Weighted Multigraph Eu-

lerian Extension instance. In this context, Orloff [17] observed that “the
determining factor in the complexity of the problem seems to be the number
(c) of connected components in the required edge set”; Frederickson [10] noted
“the existence of an exact recursive algorithm that is exponential only in the
number of disconnected components.” However, it is doubtful that this meant
fixed-parameter tractability with respect to c. In further future work, we also
want to study the undirected and non-multigraph versions of WMEE. Here, we
conjecture that similar algorithmic approaches may allow for similar results.
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Abstract. We consider the problem of finding a k-edge transversal set

that intersects all (simple) cycles of length at most s in a planar graph,

where s ≥ 3 is a constant. This problem, referred to as Small Cycle

Transversal, is known to be NP-complete. We present a polynomial-

time algorithm that computes a kernel of size 36s3k for Small Cycle

Transversal. In order to achieve this kernel, we extend the region de-

composition technique of Alber et al. [J. ACM, 2004 ] by considering a

unique region decomposition that is defined by shortest paths. Our ker-

nel size is an exponential improvement in terms of s over the kernel size

obtained under the meta-kernelization framework by Bodlaender et al.

[FOCS, 2009 ].

Keywords: Parameterized Complexity, Kernelization, Planar Graphs,

Cycle Transversal.

1 Introduction

Graphs without small cycles (or with large girth) are well studied objects in areas
such as extremal graph theory [9,2] and graph coloring [18]. Finding a maximal
subgraph without small cycles has applications in areas such as computational
biology [12]. Raman and Saurabh [13] showed that several problems such as
Dominating Set and t-Vertex Cover that are hard for various parameterized
complexity classes on general graphs become fixed parameter tractable (FPT)
when restricted to graphs without small cycles. On planar graphs, Timmons [14]
showed that every planar graph with girth at least nine can be star colored using
5 colors and every planar graph with girth at least 14 can be star colored using
4 colors.

Problem kernelization is a useful preprocessing technique in practically deal-
ing with NP-hard problems. The kernelization of a parameterized problem is a
reduction to a problem kernel, that is, to apply a polynomial-time algorithm to
transform any input instance (x, k) to an equivalent reduced instance (x′, k′)
such that k′ ≤ k and |x′| ≤ g(k) for some function g solely dependent on k.
We refer interested readers to [6,7] for more details on parameterized complexity
and kernelization.
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In this paper we study the problem of finding a maximum subgraph without
small cycles in a graph through edge deletions. Fix a constant s ≥ 3. We call a
cycle small if its length is at most s. A set S of edges in a graph G is called a
small cycle transversal set if S intersects every small cycle in G. For simplicity,
we refer to a small cycle transversal set of size k as a k-transversal set. We
consider the following problem henceforth called Small Cycle Transversal:
Given an undirected graph G and an integer k, is there a k-transversal set in G?

Small Cycle Transversal is known to be NP-complete on general graphs
[17]. Kortsarz et al. [10] showed that the approximation ratio of 2 is likely the best
possible for case s = 3, and they also presented (s−1)-approximation algorithms
for the case when s > 3 is any odd number. Brügmann et al. [5] showed that
Small Cycle Transversal remains NP-complete on planar graphs when s =
3. For s = 3 they gave data reduction rules to yield a kernel with 6k vertices for
Small Cycle Transversal on general graphs and an 11k/3 kernel on planar
graphs. The proof by Brügmann et al. [5] for the NP-completeness of Small

Cycle Transversal on planar graphs when s = 3 can be generalized to prove
the NP-completeness of Small Cycle Transversal on planar graphs for any
fixed s ≥ 3 [16].

A multitude of problems have been shown to admit linear kernels on pla-
nar graphs using the so called region decomposition technique, which was first
developed by Alber et al. [1] and was later generalized by Guo and Nieder-
meier [8]. All these previous results have recently been subsumed into a unifying
meta-kernelization framework by Bodlaender et al. [4], which can be informally
stated as follows: If a parameterized problem is quasi-compact and has finite
integer index then it admits a linear kernel on graphs of bounded genus. Bod-
laender et al. [4] proved that the problems known to have linear kernels from
the previous results all satisfy strong monotonicity [4], which is a sufficient con-
dition of finite integer index. Even though Small Cycle Transversal is not
strongly monotone, it is not difficult to prove that it has finite integer index [15]
(by an anonymous reviewer). Since Small Cycle Transversal is also quasi-
compact, this implies that Small Cycle Transversal has a kernel of size
linear in k on graphs of bounded genus. However, the size of the kernel could be
superpolynomial in s.

The main contribution of this paper is a kernelization algorithm that com-
putes a problem kernel of size 36s3k for Small Cycle Transversal on planar
graphs, which is a significant improvement in terms of s over the kernel size ob-
tained under the meta-kernelization framework by Bodlaender et al. [4].

In order to obtain this kernel, we extend the region decomposition technique
of Alber et al. [1]. We propose an enhanced region decomposition technique, in
which the region decomposition is based on a special set of shortest paths called
“witness-paths”. This technique produces a unique region decomposition of the
graph.

The rest of the paper is organized as follows. In Section 2 we give the necessary
definitions and background. Section 3 contains several structural results that
will be used in the design and analysis of the kernelization algorithm. Section 4
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contains the kernelization algorithm and the proof of its correctness. In Section 5,
we show that the size of the kernel produced by our algorithm is 36s3k.

Due to the lack of space, some proofs are omitted and the interested reader
is referred to a technical report [15] that contains all the proofs.

2 Preliminaries

Fix an undirected simple plane graph G = (V, E). A walk in G is a sequence
W = v0v1 . . . vl of vertices such that vi−1 and vi are adjacent in G, 1 ≤ i ≤ l.←−
W = vlvl−1 . . . v0 denotes the reversal of W . We refer to the vertex set of W as
V (W ) = {v0, . . . , vl} and the edge set of W as E(W ) = {(v0, v1), . . . , (vl−1, vl)}.
If v0 = x and vl = y, we say that W connects x to y, and refer to W as an
xy-walk, denoted by W (xy). The vertices x and y are called the ends (or the end
points) of the walk, x being its initial vertex and y being its terminal vertex, and
the vertices v1, . . . , vl−1 are its internal vertices. The length of W , denoted by
|W |, is the number of edges in W . If u, v are two vertices in W and u precedes
v in W , then we write u ≺W v and call the subsequence of W starting with u
and ending with v the subwalk of W from u to v, denoted by W (uv). If w is an
internal vertex of W (uv), we sometimes refer to W (uv) as W (uwv) to signify
that W (uv) contains w. For notational simplicity, we may also refer to W (uv)
as W (uev) if W (uv) contains an edge e. Let W1 = u0 . . . ul and W2 = v0 . . . vm

be two walks. If ul = v0, then we can apply a concatenation operation ◦ to form
a new walk W = W1 ◦W2 = u0 . . . ul(v0) . . . vm.

A simple path is a walk in which all vertices are distinct. All paths referred to
in this paper are assumed to be simple. A closed walk is one whose initial vertex
and terminal vertex are identical. A cycle is a closed walk that has no other
repeated vertices than the initial and terminal vertices. The notations defined
above on walks extend naturally to paths and cycles.

Let W = {W1, . . . , Wl} be a set of walks in G. The subgraph of G defined
by W is GW = (V (W1) ∪ . . . ∪ V (Wl), E(W1) ∪ . . . ∪ E(Wl)). We say that W
contains a cycle C if GW contains C. Note that |C| ≤ |W1|+ . . . + |Wl|.

Let C be a cycle. Let e be an edge in C and u, v be two different vertices in
C, where u precedes e and v succeeds e. We denote by C(uev) the part of C
between u and v that contains e and by C(veu) the part of C between v and u
that does not contain e. C(uev) and C(veu) are paths between u and v.

The following propositions are easy to verify.

Proposition 1 (proof in [15]). Let W be a closed walk. If an edge e occurs
only once in W , then W contains a cycle C and e is in C.

Proposition 2 (proof in [15]). If no edge occurs immediately after itself in a
walk W , then either W contains a cycle, or W is a path.

Proposition 3 (proof in [15]). Let P1(uv) and P2(uv) be two different paths
between u and v. Then the walk W = P1(uv) ◦←−P2(uv) contains a cycle.
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Let P = u0u1 . . . ul and Q = v0v1 . . . vm be two paths in G. We say that P and
Q cross at a vertex w if w = ui = vj , 0 < i < l, 0 < j < m and the subpaths
P (u0w), P (wul), Q(v0w) and Q(wvm) are all distinct. Note that our definition
of two paths crossing not only includes crossing in the topological sense, i.e., the
first path crosses from one side of the second path to the other side of the second
path, but also includes the case where the paths merge at a vertex and diverge
at a later vertex without changing sides.

Lemma 1 (proof in [15]). Let P (uv) and Q(uv) be two paths between u and
v. Suppose that |P |, |Q| ≤ s− 1. Then the following statements are true:

1. If P and Q cross at a vertex w, then P ∪Q contains a small cycle.
2. If there are two vertices r, t such that r ≺P t and t ≺Q r, then P ∪Q contains

a small cycle.
3. If there exists an edge e = (r, t) such that r is in P and t is in Q, but e is

neither in P nor in Q, then P ∪Q ∪ e contains a small cycle.

For simplicity, we impose the condition that between any two vertices there is
a unique shortest path. This condition can be easily achieved by a standard
perturbation technique (see for example [3]): First assign a unit weight to each
edge in G and then slightly perturb the edge weights such that no two paths have
the same weight and that shorter paths have lower weights than longer paths.
Note that the notion of path weight should not be confused with the previously
defined notion of path length (the number of edges in a path). For this reason,
we call a path of lower weight “lighter” instead of “shorter”.

3 The Structural Results

In this section we present some structural results on witness-paths that will be
used in both Section 4 and Section 5 that follow.

Definition 1. Let X be a set of vertices in G. A vertex w /∈ X is said to be
restricted by X if w is contained in at least one small cycle and every small
cycle containing w contains at least two vertices in X . Let Y be a set of vertices
restricted by X . For every vertex w ∈ Y , define the witness-path of w with respect
to X , denoted by PX

w , to be the lightest path among all paths containing w with
both ends in X . Since w is restricted by X , the witness-path PX

w exists, is unique,
and |PX

w | ≤ s− 1. Let PX
Y =

⋃
w∈Y PX

w . We say that the set PX
Y is “nice” if no

two paths in PX
Y induce a small cycle.

Lemma 2 (proof in [15]). If PX
Y is “nice”, then no two paths P, Q in PX

Y

cross.

Definition 2. If PX
Y is “nice”, then define PX

Y (u, v) to be the subset of PX
Y that

consists of witness-paths whose ends are {u, v}, and define an auxiliary directed
graph DX

Y (u, v) to be the subgraph of G defined by PX
Y (u, v), in which each edge

is directed in the same direction as it appears in a path P in PX
Y (u, v) with start

vertex u.
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Each edge in DX
Y (u, v) will receive a unique direction because by Statement 2 of

Lemma 1, each edge appears in the same direction in all paths in PX
Y (u, v). The

following lemma indicates that every directed path in DX
Y (u, v) is contained in

a witness-path.

Lemma 3 (proof in [15]). Let Q = v0 . . . vl be a directed path in DX
Y (u, v).

Then there exists a path P ∈ PX
Y (u, v) containing Q.

Corollary 1 (proof in [15]). DX
Y (u, v) is a directed acyclic graph.

4 A Kernelization Algorithm

In this section, we will present a kernelization algorithm for Small Cycle

Transversal that runs in polynomial time. We will show in the next section
that the algorithm produces a linear size kernel.

Let u, v be two vertices in G. We say that a vertex w /∈ {u, v} is locked by
{u, v} if w is restricted by {u, v}, and the witness-path of w with respect to
{u, v} has length greater than s/2, i.e., |P {u,v}

w | > s/2. We say that an edge e
is locked by {u, v} if at least one of its ends is locked by {u, v}. A path P (xy)
between x and y is called a locked path of {u, v} if |P (xy)| ≥ 2 and every internal
vertex w in P (xy) is locked by {u, v}. A locked path is said to be maximal if x, y
are not locked by {u, v}.

Let X = {u, v} and Y be the set of vertices locked by {u, v}. Recall that by
Definition 1, P{u,v}

Y =
⋃

w∈Y P
{u,v}
w , where P

{u,v}
w is the witness-path of w with

respect to {u, v}. Since w is locked by {u, v}, we have |P {u,v}
w | > s/2. Also recall

that the length of any witness-path is at most s− 1, and thus |P {u,v}
w | ≤ s− 1.

Also define the auxiliary directed graphD{u,v}
Y based on P{u,v}

Y as in Definition 2.

Lemma 4 (proof in [15]). P{u,v}
Y is “nice”.

Lemma 5 (proof in [15]). Let u, v be two vertices in G. If G has a k-transversal
set, then G has a k-transversal set that does not contain any edge locked by {u, v}.

The above lemma shows that there is a k-transversal set that does not contain
the locked edges and hence the locked edges can be pruned by the following
kernelization algorithm, which consists of repeatedly applying the procedure
Reduce(G) until the number of vertices in G cannot be further reduced.

Theorem 1 (proof in [15]). The kernelization algorithm runs in O(s2n4)
time.

Lemma 6. After Reduce(G) is applied, every remaining locked path P (st) in
D{u,v}

Y is contained in a “selected” path.

Proof. Proceed by induction on the length of P . If |P | = 1, the statement is
obviously true. Let P = v1 . . . vl−1vl, and P ′ = v1 . . . vl−1. By the inductive
hypothesis, let P1 be a “selected” path containing P ′, and let P2 be a “selected”
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Algorithm: Reduce(G)

1. Find a set B of vertices in G that are not contained in any small cycles; we

call such vertices baseless. Remove B from G. Running a breadth-first search

starting from a vertex v can determine whether v is baseless.

2. For every vertex v in G, find a set Bv of vertices that are baseless in G− v.

3. For every pair of vertices {u, v}, do the following:

3.1. Let Zu,v = Bu∩Bv . Note that Zu,v is the set of vertices that are restricted

by {u, v}.
3.2. For every w ∈ Zu,v, compute the witness-path P

{u,v}
w . If |P {u,v}

w | > s/2,
then w is locked by {u, v}; in this case, add w to the set Y of vertices

locked by {u, v} and add P
{u,v}
w to the set P{u,v}

Y . For every w, the witness-

path P
{u,v}
w can be computed in O(n2) time using a min-cost max-flow

algorithm [11, Lemma 3].

3.3. For every path P ∈ P{u,v}
Y , if Q is a subpath of P and Q is a maximal locked

path of {u, v}, then add Q to P, where P is the set of maximal locked paths

that are subpaths of paths in P{u,v}
Y . Group the paths in P according to

their end points. Mark the lightest one in each group as “selected”.

3.4. Remove all locked vertices in P{u,v}
Y that are not contained in a “selected”

path.

path containing (vl−1, vl). If P1 contains (vl−1, vl) or P2 contains P ′ then we
are done. Otherwise since vl−1 has both incoming and outgoing edges in D{u,v}

Y ,
vl−1 /∈ {u, v}. Therefore P1 and P2 cannot have vl−1 as an end vertex. This
means that P1 and P2 cross at vl−1. By Lemma 3, there are two paths in P{u,v}

Y

that contain P1 and P2, respectively. They will also cross, a contradiction to
Lemma 2. ��

Lemma 7. After Reduce(G) is applied, there is at most one locked path be-
tween any two vertices in D{u,v}

Y .

Proof. Let s, t be two vertices in D{u,v}
Y . Suppose that there are two locked paths

P and Q between s and t. By Corollary 1,D{u,v}
Y is a directed acyclic graph, P and

Q must have the same direction. Without loss of generality, assume that P (st) is
lighter than Q(st). By Lemma 6, Q is contained in a “selected” path Q′. Replacing
Q(st) by P (st) in Q′ yield a path Q′′ lighter than Q′ and hence Q′ should not be
marked as “selected”, a contradiction. ��

Theorem 2. The procedure Reduce(G) is correct.

Proof. Let G′ be the subgraph of G obtained after Reduce(G) is applied. We
will show that G has a k-transversal set if and only if G′ has one. The only-if
part is obvious because G′ is a subgraph of G.
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Now suppose that G′ has a k-transversal set S′. By Lemma 5, we can assume
that S′ does not contain any edge locked by {u, v}. Suppose that G has a small
cycle C that is not intersected by S′. C contains at least one edge e that was
removed by Reduce(G). This means that e is locked by {u, v} because only
locked vertices are removed by Reduce(G) and the edges removed along with
the locked vertices are locked edges. Thus C contains u and v. Let x be the
last vertex preceding e in C(uev) that is not locked. Let y be the first vertex
succeeding e in C(uev) that is not locked. Then C(xey) is a maximal locked
path. Since |C(xey)| ≤ s− 1, by Statement 2 of Lemma 1, the edges in C(xey)
appear in the same direction as in D{u,v}

Y . This means that C(xey) is a directed
path in D{u,v}

Y . By Lemma 3, C(xey) is a subpath of a path P ∈ P{u,v}
Y . This

means that C(xey) ∈ P. There is a lightest path P ′ between x and y that is
selected by Reduce(G). Thus P ′ �= C(xey) because e is removed by Reduce(G).
P ′ ≤ |C(xey)| and P ′ is in G′.

Since P ′ and C(xey) are directed paths in D{u,v}
Y , by Lemma 3, there are two

paths in P{u,v}
Y that contain P ′ and C(xey), respectively. This means that P ′

and C(xey) do not contain a small cycle because P{u,v}
Y is “nice”. But C(yex)

and C(xey) form a small cycle. Hence C(yex) �= P ′ and |C(yex)| < |P ′| ≤
|C(xey)|. This means that |C(yex)| < s/2 because |C(yex)| + |C(xey)| = s.
As a consequence, no vertex in C(yex) is locked and hence C(yex) is in G′.
P ′ ∪ C(yex) contains a cycle and this cycle is small because |P ′| + |C(yex)| ≤
|C(xey)|+ |C(yex)| ≤ s. This small cycle is not intersected by S′ because C(yex)
is not intersected by S′ and P ′, being a locked path, is also not intersected by
S′. Since both P ′ and C(yex) are in G′, we have a small cycle in G′ that is
not intersected by S′, a contradiction to the fact that S′ is a k-transversal set
of G′. ��

5 A Linear Size Kernel

Let G be a plane graph in which the application of Reduce(G) does not further
reduce its size. In this case, we call G a reduced graph. Suppose that G has a
transversal set S, where |S| ≤ k. For simplicity, we assume that S is minimal,
i.e, for any edge e ∈ S, S− e is not a transversal set. Let X be the set of the end
points of the edges in S and let Y = V (G)−X . Note that Y is the set of vertices
restricted by X . Recall that by Definition 1, PX

Y =
⋃

w∈Y PX
w , where PX

w is the
witness-path of w with respect to X , |PX

w | ≤ s− 1. If PX
w is a path between two

vertices u, v ∈ X , we say that w is (uniquely) witnessed by {u, v}. Since PX
Y does

not contain any edge in S, no two paths in it contain small cycles. This means
that PX

Y is “nice”.

Definition 3. A region R(u, v) between two vertices u, v ∈ X is a closed subset
of the plane whose boundary is formed by two paths P, Q ∈ PX

Y (u, v) and whose
interior is devoid of any vertex in X . A region is maximal if there is no region
R′(u, v) � R(u, v). A region decomposition of G is a maximal set R of maximal
regions between vertices in X whose interiors are pairwise disjoint.
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Lemma 8. Let w be a vertex in the interior of a region R(u, v). Then any
witness-path containing w is between u and v. Furthermore, w is witnessed by
{u, v}.

Proof. Let Q(xwy) be a witness-path containing w, where x, y ∈ X and {x, y} �=
{u, v}. Since Q connects w to a vertex outside of R(u, v), Q must cross the
boundary of R(u, v) at a vertex t /∈ {x, y}. Since Q has no vertices in X in its
interior, t /∈ {u, v}. This implies that Q crosses a witness-path on the boundary
of R(u, v), a contradiction to the fact that witness-paths in PX

Y do not cross.
In particular, w’s witness-path is between u and v, i.e. w is witnessed by

{u, v}. ��

We say that two regions cross if their boundary paths cross.

Lemma 9. Two regions do not cross.

Proof. Since the boundaries of regions are witness-paths in PX
Y , they do not

cross. ��

Corollary 2. The number of maximal regions in a region decomposition is at
most 6k.

Proof. Create an auxiliary graph GR whose vertex set is X and each edge (u, v)
in GR corresponds to a maximal region between u and v. By [1, Lemma 5], GR
has at most 6k edges, which implies that the number of maximal regions is at
most 6k. ��

Let PR be the set of witness-paths in the region R(u, v). PR ⊆ PX
Y (u, v). Let DR

be the subgraph of the auxiliary directed graph DX
Y (u, v) defined in Definition 2,

whose edges correspond to elements of PR. By Corollary 1, DX
Y (u, v) is a directed

acyclic graph and so is DR. By Statement 3 of Lemma 1, all edges in R(u, v) are
in DR because otherwise, there is a small cycle that is not intersected.

Corollary 3. Let P be an directed path in D(u, v), then there is a witness-path
that contains P .

Proof. Implied by Lemma 3. ��

Lemma 10. Let P be a path from u to v in R(u, v). If |P | ≤ s− 1, then P is a
witness-path.

Proof. By Statement 2 of Lemma 1, each edge in P receives a direction in D(u, v)
that is consistent with the sequence of P . This means that P is a directed path
in D(u, v). By Corollary 3, P is a witness-path because the end points of P are
in X . ��

Definition 4. Let x, y be two vertices on the boundary of R(u, v). Define a
subregion Rsub(x, y) to be a closed subset of R(u, v) whose boundary is formed
by two paths P (xy), Q(xy), which are subpaths of P, Q ∈ PR between u and v.
A subregion is maximal if there is no subregion Rsub

1 (x, y) � Rsub(x, y).
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Note that a subregion Rsub(x, y) lies entirely in the interior of R(u, v) except for
x and y. Since paths in PR do not cross, similar to Lemma 9 two subregions do
not cross, although they can share vertices or edges on the boundaries.

Corollary 4. Two subregions do not cross.

The following proposition is needed for the proofs that follow.

Proposition 4. Let H be a plane simple graph. Let C be a closed subset of the
plane whose boundary is a cycle in H and whose interior is devoid of any vertex
of H. Let E1 be the set of edges of H in the interior of C. Let E2 be the set of
edges on the boundary of C. Then |E1| ≤ |E2| − 3.
Proof. Let F be the set of faces inside C. Since each edge in E2 appears in one
face in F while each edge in E1 appears in two faces in F , we have 3|F | ≤
2|E1|+ |E2|. Also observe that if |E1| = 0 then |F | = 1 and each additional edge
in E1 increases |F | by 1. Hence |F | = |E1| + 1. Combining this with the above
inequality, we have |E1| ≤ |E2| − 3. ��

Lemma 11. There are at most 2s− 3 subregions in a region R(u, v).

Proof. First note that if x, y are two adjacent vertices on the boundary of R(u, v),
then there is no subregion between x and y because otherwise the edge (x, y)
with a path of length at most s−1 in the subregion between x and y form a small
cycle that is not intersected. There is at most one maximal subregion between a
pair of non-adjacent vertices on the boundary of R(u, v). If we replace every such
pair of vertices on the boundary of R(u, v) by an edge, then by Proposition 4,
there are at most 2s− 3 such edges. This implies that there are at most 2s− 3
subregions in R(u, v). ��

The following lemma shows that the subregions satisfy the local property that any
small cycle involving a vertex in the interior of a subregion must pass through
the two ends of the subregion.

Lemma 12 (proof in [15]). Let Rsub(x, y) be a subregion between x, y in a
region R(u, v). Then every vertex in the interior of Rsub(x, y) is restricted by
{x, y}.

Lemma 13. A subregion Rsub(x, y) contains no more than 3s2 − 5s vertices in
its interior.

Proof. In the interior of Rsub(x, y), all vertices are restricted by {x, y}. Any
vertex w in the interior of Rsub(x, y) that is not locked by {x, y} is contained
in a path P between x and y of length at most s/2. All such vertices that are
not locked by {x, y} must appear in a single path P because otherwise there
is a small cycle in Rsub(x, y) that is not intersected. The path P , if it exists,
divides Rsub(x, y) into two smaller regions R∗

1 and R∗
2, each with 3s/2 vertices

on its boundary. In the interior of each smaller region R∗
i , i ∈ {1, 2}, all vertices

are locked by {x, y} and they are contained in locked paths between pairs of
non-adjacent vertices on the boundary of R∗

i (if such a path exists between two



On the Small Cycle Transversal of Planar Graphs 121

adjacent vertices on the boundary of R∗
i , then they form a small cycle that is not

intersected). By Proposition 4, there are at most 3s/2−3 pairs of vertices on the
boundary of R∗

i that are connected by a locked path inside R∗
i . By Lemma 7,

there is at most one locked path of length at most s − 1 between each of these
pairs. Thus R∗

i contains at most (3s/2 − 3)(s − 1) vertices in its interior, and
Rsub(x, y) contains no more than 2(3s/2 − 3)(s − 1) + s/2 ≤ 3s2 − 5s vertices
in its interior. By a similar argument, if the path P does not exist in Rsub(x, y),
there are at most (2s− 3)(s− 1) ≤ 3s2− 5s vertices in its interior, for s ≥ 3. ��

Theorem 3. Let G be a reduced graph. Then G has at most 36s3k vertices.

Proof. Consider the region R(u, v). By Lemma 11, there are at most 2s − 3
subregions in R(u, v), each of which has at most 3s2− 5s vertices in its interior.
The boundaries of the subregions in R(u, v) have at most (2s−2)(2s−3) vertices.
The boundary of R(u, v) has at most 2s vertices. Hence there are at most (2s−
3)(3s2 − 5s) + (2s− 2)(2s− 3) + 2s ≤ 6s3 − 1 vertices in R(u, v) for s ≥ 3. By
Corollary 2, the number of maximal regions in a region decomposition is at most
6k. Since every vertex not in X belongs to a maximal region and the set X has
size 2k, the problem kernel has size at most (6s3 − 1) · 6k + 2k ≤ 36s3k, which
is linear in k. ��
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Abstract. The Discrete Milling problem is a natural and quite gen-

eral graph-theoretic model for geometric milling problems: Given a graph,

one asks for a walk that covers all its vertices with a minimum number

of turns, as specified in the graph model by a 0/1 turncost function fx at

each vertex x giving, for each ordered pair of edges (e, f) incident at x,

the turn cost at x of a walk that enters the vertex on edge e and departs

on edge f . We describe an initial study of the parameterized complexity

of the problem.

1 Introduction

We study the parameterized complexity of the following problem:
Discrete Milling

Instance: A simple graph G = (V, E) and for each vertex x, a turncost function
fx indicating whether a turn is required, with fx : E(x)×E(x)→ {0, 1}, where
E(x) is the set of edges incident on x.

� Research initiated at the 6th McGill - INRIA Barbados Workshop on Computa-

tional Geometry in Computer Graphics, 2007.
�� Research supported by the Australian Research Council through the ARC Centre

of Excellence in Bioinformatics and Discovery Project DP0773331.
� � � Research supported by the German Science Foundation (DFG) under grant

Kn 591/3-1.
† Research conducted while the author was on sabbatical at McGill University,

School of Computer Science, Canada. Supported by the project ANR-06-BLAN-

0148.
‡ Research supported by the Australian Research Council.
§ Research supported by NSERC and FQRNT.

D.M. Thilikos (Ed.): WG 2010, LNCS 6410, pp. 123–134, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



124 M. Fellows et al.

Question: Is there a walk making at most k turns that visits every vertex of G?
The Grid Milling problem restricts the input to grid graphs: rectilinearly
plane-embedded graphs that are subgraphs of the integral grid, with the natural
turncost function.

Related Work. Discrete Milling was introduced by Arkin et al. [1] as
a graph model for studying geometric milling problems with turn costs and
other constraints. Such problems are common in manufacturing applications
such as numerically controlled machining and automatic tool path generation;
see Held [6] for a survey. In Discrete Milling, a solution path must visit a
set of vertices that are connected by edges representing the different directions
(“channels”) that the “cutter” can take. Arkin et al. studied a restricted version
of the problem where incident edges to a vertex x are paired in the cost function
fx in the sense that for each incident edge e there is at most one incident edge
f such that fx(e, f) = 0, and symmetric: if fx(e, f) = 0 then fx(f, e) = 0. Here,
we consider also a more general version that allows an arbitrary 0/1 turncost
function at each vertex.

Arkin et al. [1] showed that Discrete Milling is NP-hard (even for grid
graphs) and described a constant-factor approximation algorithm for minimizing
the number of turns in a solution walk. They also described a PTAS for the case
where the cost is a linear combination of the length of the walk and the number
of turns. No PTAS is known for the case of turn costs only.

Results. We start by showing that Grid Milling is fixed-parameter tractable
when parameterized by the numbers of turns. For this, two approaches are pre-
sented: one that is based on monadic second-order logic of graphs of bounded
treewidth, and another, more practical one, based on dynamic programming on
branch decompositions. Generalizing the former approach, we give an FPT re-
sult for Discrete Milling, parameterized by (k, t, d), where k is the number
of turns, t is the tree-width of the input graph G, and d is the maximum degree
of G. We then explore whether this positive result can be further strengthened.
However: Discrete Milling, even in its restricted version, is W [1]-hard when
parameterized by (k, p), where k is the number of turns and p is the path-width
of G (and therefore also when parameterized by (k, t)). Our negative result pro-
vides one of the few problems known to be W [1]-hard when parameterized by
pathwidth.

Definitions and Preliminaries. We will assume that the basic ideas of pa-
rameterized complexity theory and bounded tree-width algorithmics up through
the basic form of Courcelle’s Theorem and monadic second-order logic (MSO)
are known to the reader. For background on these topics, see [3,5,7]. Details of
routine deployments of MSO in the proofs of our theorems (that can be labori-
ous in full formality) are relegated to the full version of the paper due to space
limitations.

For a graph G, let tw(G) be its treewidth. We assume that all graphs G
are simple (no loops or multiple edges). A walk W = [x0, . . . , xl] on a graph
G = (V, E) is a sequence of vertices such that every pair xi, xi+1 of consecutive
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vertices of the sequence are adjacent (we use xixi+1 to refer to the edge between
them). The turn cost of a walk W is defined as

tc(W ) =
l−1∑
i=1

fxi(xi−1xi, xixi+1) .

A walk that visits every vertex of a graph is termed a covering walk. Note that
in Discrete Milling a solution covering walk may visit a vertex many times.

2 Grid Milling is Fixed-Parameter Tractable

We prove here that Grid Milling is FPT for parameter k, the number of turns.
We first argue that instances with large tree-width are no-instances.

Lemma 1. Let G = (V, E) be a connected grid graph with tw(G) > 6k−5. Then
G does not contain a (k − 2)-turn covering walk.

Proof. We show that G contains k vertices that have pairwise different x- and
y-coordinates. Then, any covering walk needs to take at least one turn between
any two such vertices, and thus it needs at least k − 1 turns in total.

Since G is planar and tw(G) > 6k − 5, by the Excluded Grid Theorem for
planar graphs (c.f. [5]), it has a (k × k)-grid H as a minor. H contains k/2
vertex-disjoint consecutively nested cycles. Since taking minors can destroy or
merge cycles but not create completely new ones, in the “pre-images” (under
the operation taking minor) of these cycles there must be k/2 vertex-disjoint
subgraphs in G, each containing a cycle. Thus, G contains a set C of k/2 nested
vertex-disjoint cycles. Consider a straight line L of unit slope that intersects the
innermost cycle of C at two vertices (grid points). L must also intersect every
other cycle at at least two vertices. This produces a set of at least k vertices in
G with the claimed property.

2.1 FPT via MSO

We give an MSO-based approach first, which also serves as a good starting point
for our result on the general Discrete Milling problem.

We associate to the grid graph G an annotated graphM(G): we simply regard
the horizontal edges as being of one type, and the vertical edges as being of a
second type. Equivalently, we can think of G as presented to us with a partition
of the edge set: G = (V, Eh, Ev). The idea is to show that the property of being
a yes-instance of the problem can be expressed as an MSO property ofM(G).

Intuitively, G has a k-covering walk if and only if there exist a start vertex v0,
turn vertices v1,. . . ,vk, an end vertex vk+1, and sets of vertices S0,. . . ,Sk, such
that:

(i) the graph induced by Si, i = 0, . . . , k, is a monochromatic path, i.e. a path
whose edges are all either in Eh or in Ev,
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(ii) the path induced by Si starts at vi and ends at vi+1, and
(iii) V = ∪Si, i.e. all vertices of G are covered.

This can be straightforwardly formalized in MSO.

Lemma 2. Let G = (V, Eh, Ev) be a grid graph. The property of having a k-
covering walk on G is expressible in MSO.

Easily, M(G) has treewidth bounded as a function of tw(G), and from Lem-
mata 1, 2 and Courcelle’s Theorem we get:

Theorem 1. Grid Milling is FPT with respect to k (number of turns).

2.2 Dynamic Programming on a Sphere Cut Decomposition

A branch decomposition (T , μ) of a graph G is an unrooted ternary tree T to-
gether with a bijection μ between the leaves of T and the edge set of G. For
an edge e of T , let T1, T2 be the two subtrees obtained by removing e, and let
G1, G2 be the subgraphs of G induced by the edges of the leaves of T1 and T2 re-
spectively. The middle set of e is defined as mid(e) = V (G1)∩V (G2). The width
of a branch decomposition is the maximum size of a middle set over all edges.
The branchwidth bw(G) of G is the minimum width over all possible branch
decompositions.

A noose of a plane graph G is a simple closed curve on the plane that intersects
G only at vertices and every face at most once. The noose separates the plane
into two regions, which have the noose as a common boundary, and G into
two subgraphs, each lying inside one of the regions; the subgraphs meet only
at vertices on the noose. A sphere cut (sc-) decomposition (T , μ) is a branch
decomposition with the property that for every edge e of T there is a noose of G
such that its two corresponding subgraphs are the subgraphs G1, G2 associated
with e. Note that the noose intersects G in mid(e). An sc-decomposition of a
plane graph G (with no degree-1 vertices) of width bw(G) can be constructed in
O(n3) time [2].

Let G be a grid graph (with no degree-1 vertices) and (T , μ) a sphere cut de-
composition of G with minimum width. Since tw(G) = Θ(bw(G)), from Lemma 1
we can assume that bw(G) = O(k). We root T as explained in [2]. For a node v
of T , other than the root, let Ov be the noose corresponding to the edge between
v and its parent. Let Gv be the subgraph of G that is associated with this edge
and induced by the leaves of the subtree rooted at v, and let Δv be the region
where Gv lies into. A covering walk of G induces a sequence of paths in Δv.
Their union covers all vertices (of Gv) in the interior of Δv but not necessarily
all its boundary vertices, i.e., the vertices on Ov. Note that any vertex or edge
might be used more than once.

For a node v of T we define a table Sv of subproblems as follows: Let Cv ⊆
Ov ∩ V (Gv) be a set of boundary vertices and Dv ⊆ E(Gv) be the set of edges
with at least one endpoint in Cv. Also, let Qv = (e1, e

′
1, . . . , el, e

′
l) be a sequence

of edges with ei ∈ Dv for i = 1, . . . , l and some l ∈ N ∗. We want to compute
Sv(Cv, Qv), which is a set P = {P1, . . . , P|Qv |} of paths satisfying the following:
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(i) The first (last) edge of Pi is ei (e′i),
(ii) Pi is contained in Gv,
(iii) the union of the paths in P covers all vertices in Cv along with all the

interior vertices of Gv, and
(iv) the total number of turns of all paths in P is minimum.

We compute Sv(Cv, Qv) for all possible combinations of Cv and Qv.
The dynamic program proceeds from the leaves to the root of T . Let x, y be

the children of v. Observe that Gv is the union of the two subgraphs Gx, Gy

drawn in the regions Δx, Δy (corresponding to the nooses Ox and Oy). Thus, a
path in Sv(Cv, Qv) consists of a sequence of path segments in Δx and Δy. We
compute Sv(Cv, Qv) by enumerating all possible combinations of Sx(Cx, Qx) and
Sy(Cy, Qy) that form paths in Qv. Note than when joining two paths an increase
of the total turn cost by one might be needed.

Since bw(G) = O(k), there are O(k) vertices on every noose and 2O(k) possible
subsets Cv. Since the degree of every vertex of G is at most 4, we have that
|Dv| = O(k). The crucial observation for bounding the size of Qv is the following:
any covering walk that uses an edge more than k + 1 times makes at least k + 1
turns. Thus, any edge of Dv cannot appear in Qv more than k + 1 times, and so
|Qv| = O(k2). There are O(2k ·kk2

) = O(2O(k2 log k)) possible sequences Qv, thus
each Sv has O(2k · 2O(k2 log k)) = O(2O(k2 log k)) entries, and since T has O(n)
nodes, the total time of the algorithm is O(2O(k2 log k))n.

Theorem 2. Grid Milling can be solved in O(2O(k2 log k)n + n3) time.

3 Extending Tractability

What makes the Grid Milling problem FPT? A few properties of grid graphs
might lead us to tractable generalizations: (i) yes-instances must have bounded
treewidth, (ii) vertices in grid graphs have bounded degree, and (iii) the turn-cost
function is pairing and symmetric.

We are naturally led to three questions, by relaxing these conditions:
•What is the complexity of Discrete Milling parameterized by (k, t, d), where
k is the number of turns, t is a treewidth bound, and d is a bounded on maximum
degree?
• What is the complexity of Discrete Milling parameterized by (k, t)?
• What is the complexity of Discrete Milling parameterized by (k, d)?
In the remainder of this paper, we answer the first two. The third question
remains open.

Theorem 3. Discrete Milling is FPT for parameter (k, t, d), where k is the
number of turns, t the tree-width of the graph G and d is the maximum degree
of G.

Proof. We describe how an instance of the Discrete Milling problem, con-
sisting of G and the turncost functions, can be represented by an annotated
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digraphM(G), that allows us to use MSO logic to express a property that cor-
responds to the question that the Discrete Milling problem asks. The proof
therefore consists of three parts: (1) a description of M(G), (2) necessary and
sufficient criteria regardingM(G), for the instance of Discrete Milling to be
a yes-instance, and (3) the expression of these criteria in MSO logic.

Let G = (V, E) be the graph of the Discrete Milling instance. The vertex
set of the digraphM(G) is V = V1 ∪ V2 where

V1 = {l[v] : v ∈ V } and V2 = {t[e] : e ∈ E} ∪ {t′[e] : e ∈ E}

Intuitively (see Figure 1), we “keep a copy” of the vertex set V of G, mnemon-
ically “l[v]” for v, as a vertex location we might be during a solution walk in
G. Each edge e of G is replaced by two vertices t[e] and t′[e] that represent a
“state” in a solution walk: traversing e in one direction or the other. In order to
distinguish the directions, consider that the vertex set V of G is linearly ordered.
Let e = uv ∈ E with u < v in the ordering. Our convention will be that t[e]
represents a traversal of e from u to v, and that t′[e] represents a traversal of e
in the direction from v to u. Thus each edge e of G is represented by two vertices
in M(G).

In describing arcs of the digraph model M(G) we will use the notation x · y
to denote an arc from x to y. The arc set of the digraphM(G) is

A = A1 ∪ A2 ∪ A3 ∪A4 ∪ A5

where

A1 = {t[e] · l[v] : e = {u, v} ∈ E with u < v}
A2 = {l[u] · t[e] : e = {u, v} ∈ E with u < v}
A3 = {t′[e] · l[u] : e = {u, v} ∈ E with u < v}
A4 = {l[v] · t′[e] : e = {u, v} ∈ E with u < v}

Let A′ denote the union of these four sets of arcs. Intuitively, the arcs of A′ just
“attach” the vertices of the digraph that represent edges in G to the vertices of
the digraph that represent the endpoints of the edge, so that the orientations of
the arcs are compatible with the interpretation of a vertex of V2 as representing,
say, a traversal of the edge uv in the direction from u to v; the vertex therefore
has an arc to it from l[u] and an arc from it to l[v]. An inspection of Figure 1
will help to clarify.

The arc set A5 is more complicated to write down formally. Its mission is to
record the possibilities for cost-free passages through vertices of a solution walk
in G. Suppose a is an arc in A′. Then a is to or from either a t[e] vertex, for
some e, or a t′[e] vertex for some e. Let ε(a) be defined to be this edge e of G.
This is well-defined. We can then define

A5 = {x · y : x, y ∈ V2, ∃z = l[v] ∈ V1 and ∃a, b ∈ A′

with a = x · z and b = z · y and fv(ε(a), ε(b)) = 0}
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Fig. 1. The arrows drawn near the G vertices represent the turncost functions, indi-

cating the zero-cost possibilities. These become arcs in the digraph M(G).

We regardM(G) as an annotated digraph, in the sense that there are two kinds
of vertices, those of #1 and those of #2, and two kinds of arcs, those of A′ and
those of A5.

The rest of the proof will show that that the question of whether G admits
a covering walk making at most k turns is represented by a property of the
annotated digraphM(G) that can be expressed in MSO logic. However, before
proceeding to that, it is important to verify that if the treewidth of G is bounded
by t, then the treewidth of M(G) is bounded by a function of the parameter.
This depends crucially on the fact that the maximum degree of G is part of our
compound parameterization.

Suppose T (G) is a tree-decomposition of G of width at most t. We can describe
a bounded width tree-decomposition T ′ ofM(G) as follows. Without confusion,
henceforth in this argument considerM(G) as an undirected graph by forgetting
all arc orientations. Use the same bag-indexing tree for T ′ as for T (G). Suppose
B ⊆ V is a bag of T (G). Replace B with the union of the closed neighborhoods
of the vertices of V1 corresponding to the vertices of B, in M(G). It is easy to
check that all the axioms for a tree-decomposition hold, and that the treewidth
ofM(G) is therefore bounded by 2dt.

In a digraph D = (V, A), by a purposeful set of arcs (S, s, t) we refer to a set
of arcs S ⊆ A, together with two distinguished vertices s, t ∈ V . We say that a
purposeful set of arcs (S, s, t) is walkable if there is a directed walk W in D from
s to t such that the set of arcs traversed by W (possibly repeatedly) is S.

Now consider how the information about G and its turncost functions is rep-
resented inM(G). A k-turn covering walk W in G that starts at a vertex s and
ends at a vertex t is described by the information:

(1) a sequence of k + 2 vertices: s = x0, x1, ..., xk+1 = t, and
(2) a sequence of k+1 subwalks W0, ..., Wk where for i = 0, ..., k, Wi is a turncost-
free walk from xi to xi+1, that has the property that every vertex of G is visited
on at least one of the subwalks.
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Let D(G) be the subdigraph ofM(G) induced by the vertices of V2. A turncost-
free walk in G corresponds to a directed walk in D(G), and vice versa, by the
definition of A5.

Claim 1. G admits a k-turn covering walk if and only if:

(1) there are k + 2 vertices x0, ..., xk+1 of V1 in M(G), and
(2) k + 1 purposeful sets of arcs (Si, si, ti) in D(G), 0 ≤ i ≤ k, such that

(i) (Si, si, ti) is walkable in D(G) for i = 0, . . . , k,
(ii) there is an arc in A′ from ti to xi+1 ∈ V1 = V , and from xi to si, for

i = 0, . . . , k,
(iii) for every vertex x ∈ V1 = V , there is some index j, 0 ≤ j ≤ k, and an

arc a = u · v ∈ Sj , such that there is an arc in A′ in either direction,
between x and u or v.

In one direction, the claim is easy: given a k-turn covering walk W in G, it is
naturally factored into k + 1 turncost-free subwalks Wi, and each traversal of
an edge of G in a subwalk Wi corresponds in M(G) to a visit to a vertex of
V2, thus the sequence of edge transversals of Wi in G corresponds 1:1 with a
sequence (y0, ..., ym+1) of vertices of V2 in M(G). Because Wi is turncost-free,
by the definition of A5, there is an arc in D(G) from yi to yi+1 for i = 0, ..., m.
We take the set of arcs to be Si, si = y0 and ti = ym+1, giving us (1) and
(2) in a well-defined manner. It is straightforward to check that the conditions
hold. For example, the assumption that W is a covering walk in G yields the
last condition.

Conversely, suppose we have (1) and (2) in M(G). By the second condition,
each Si is walkable. By the definition of A5, a directed walk for Si in D(G)
corresponds to a turncost-free walk Wi in G. The third condition insures that
the subwalks Wi in G can be sequenced into a k-turn walk W , where the turns
occur at the vertices xi by the first condition. W is covering in G by the fourth
condition, yielding Claim 1.
Claim 2. Consider a digraph D = (V, A) equipped with distinguished vertices s
and t (allowing s = t). The property: “there exists a directed walk from s to t
that traverses (allowing repetition) every arc in A” (that is, (A, s, t) is walkable)
is expressible in MSO logic.
We first argue that (A, s, t) is walkable if and only if there is a directed path P
in D from s to t, such that every arc a ∈ A either is an arc of P , or belongs to a
strongly connected subdigraph Da that includes a vertex of P . We then argue (in
Appendix A) that this property is expressible in MSO logic in a straightforward
manner.

Given such a directed path P = (s = x0, ..., xm = t) in D, we can describe a
walk W that traverses every arc of A as follows. By the arcs of P we refer to
the set of arcs

A[P ] = {x0x1, x1x2, ..., xm−1xm}

The walk has m phases, one for each vertex xi of the path P . Partition the arcs
of A−A[P ] into m classes A0, ..., Am where for i = 1, ..., m every arc a = uv ∈ Ai
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belongs to a strongly connected subdigraph Da that includes the vertex xi. Such
a partition exists, by the supposed property of P . There is a directed path in Da

from xi to u, and from v to xi, by the strong connectivity of Da, and so there
is a directed cycle in Da that includes both a and xi. Include this cycle in W ,
starting from xi and returning to xi, for each arc a ∈ Ai. Increment i, take the
arc from xi to xi+1 and repeat this for i = 0, ..., m.

Now suppose that there is a directed walk W in D from s to t that traverses
every arc in A. If there is a vertex v that is visited more than once, then we can
find a shorter walk W ′ that, considered as a sequence of arc transversals, is a
subsequence of the sequence of arc transversals of W . Therefore, by downward
induction, there is a directed path P from s to t, with no repeated internal vertex
visits, that considered as a sequence of arc transversals, is a subsequence of the
sequence of arc transversals of W . But then, every arc a traversed in the walk W
(that is, every arc a ∈ A), that is not an arc of P , must belong to a subwalk W ′

of W that begins and ends at a vertex of P . The vertices visited by W ′ therefore
induce a strongly connected subdigraph containing a vertex of P .

The second part of the proof of Claim 2 is to argue the property we have
identified is expressible in MSO logic. The first subtask is to describe an MSO
predicate that expresses that there is a directed path P in D from s to t, quan-
tified on the sets of vertices and arcs that form the path:

dipath(s, t) = ∃U(⊆ V )∃B(⊆ A) : . . . ,

where the remainder of the predicate expresses that in the subdigraph D′ =
(U, B):
• s has outdegree 1 and indegree 0
• t has indegree 1 and outdegree 0
• every vertex of U not s or t has indegree 1 and outdegree 1
• for every partition of U into U1 and U2 such that s ∈ U1 and t ∈ U2, there

is a vertex u ∈ U1 and a vertex v ∈ U2 with an arc in B from u to v.

Being able to express that there is a directed path from s to t leads easily to
an MSO predicate for strong connectivity of a subdigraph described by a set of
vertices and a set of arcs. An MSO predicate for walkability of a set of arcs A
relative to s and t is easily (but somewhat tediously) constructed on the basis of
the structural characterization of Claim 2, using the predicates for the existence
of an s-t path, and for strongly connected subdigraphs. An MSO formula to
complete the proof of Theorem 3 is then trivial to construct by writing out
Claim 1 in the formalism.

4 Discrete Milling is Hard for Bounded Pathwidth

In this section, we see that the maximum degree restriction implicit in the pa-
rameterization for our positive result is key to tractability for this problem. In the
restricted version of the Discrete Milling problem the turncost functions are
pairing and symmetric. This is a significant assumption, but the outcome is still
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negative, and the following result very much strengthens, in the parameterized
setting, the NP-completeness result of Arkin et al. [1].

Theorem 4. Discrete Milling (with pairing and symmetric turn cost func-
tions) W [1]-hard, with respect to (k, p), where k is the number of turns and p is
a bound on pathwidth.

Proof. The fpt-reduction is from Multicolor Clique, using an edge represen-
tation strategy, such as described, for example, in [4,8].

Suppose G = (V, E) has V partitioned into color classes Ci, i = 1, ..., r. The
Multicolor Clique problem asks whether G contains a r-clique consisting of
one vertex from each color class Ci. We assume that each color class of G has
size n [4]. The color-class partition of V induces a partition of E into

(
r
2

)
classes

E{i,j}, for 1 ≤ i �= j ≤ r:

E{i,j} = {e ∈ E : ∃u ∈ Ci and ∃v ∈ Cj with e incident on u and v } .

We can also assume that all these edge-partition classes E{i,j} have the same
size m. We index the vertices and edges of G as follows:

Ci = {v(i, q) : 1 ≤ q ≤ n} for i = 1, ..., r

E{i,j} = {e({i, j}, l) : 1 ≤ l ≤ m} for 1 ≤ i �= j ≤ r.

To refer to the incidence structure of G, we define functions πi
{i,j}(l) and πj

{i,j}(l)
as follows:

πi
{i,j}(l) = q : the edge e({i, j}, l) is incident on v(i, q)

πj
{i,j}(l) = q the edge e({i, j}, l) is incident on v(j, q) ,

so the edge e({i, j}, l) is incident to v(i, πi
{i,j}(l)) and v(j, πj

{i,j}(l)).
We describe the construction of a graph G′, together with the sets Sv of turn-

free pairs of edges for the vertices v of G′. We first describe the vertices of G′,
and then specify a set of paths on these vertices. The edge set of the multi-graph
G′ is the (abstract) disjoint union of the sets of edges of these abstractly-defined
paths, and it is understood that each path is turn-free, so that (for the most
part), the sets Sv of turn-free pairs of v-incident edges for the vertices v of G′

are implicit in these generating paths of G′.
The vertex set V ′ for G′ is the union of the sets V0 ∪ V1 ∪ V2 ∪ V3 ∪ V4,

V0 = {σ, τ}
V1 = {t[i, j] : 1 ≤ i �= j ≤ r}
V2 = {s[i, j] : 1 ≤ i �= j ≤ r}
V3 = {c[i, j, u] : 1 ≤ i �= j ≤ r, 1 ≤ u ≤ n}
V4 = {p[i, j, l] : 1 ≤ i �= j ≤ r, 1 ≤ l ≤ m}.

Thus |V1| = |V2| = 2
(
r
2

)
, |V3| = 2n

(
r
2

)
and |V4| = 2m

(
r
2

)
.
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The edge set of G′ is (implicitly) described by a generating set of paths P
(two paths for each edge of G), together with a few more edges:

P = {P [i, j, e({i, j}, l)] : 1 ≤ i �= j ≤ r, 1 ≤ l ≤ m , } ,

where the path P [i, j, e({i, j}, l)] (1) starts at the vertex p[i, j, l]; (2) next visits
s[i, j]; (3) then visits the vertices c[i, j, u], except for u = πi

{i,j}(l) (the exceptional
vertex of this block), in consecutive order, meaning that the vertices are visited
by increasing index u, modified by skipping the exceptional vertex; (4) then
visits the vertex c[i, j∗, πi

{i,j}(l)], where j∗ is defined to be j +1, unless j +1 = i,
when j∗ = j + 2, or j = r and i �= 1, when j∗ = 1, or j = r and i = 1, when
j∗ = 2; and then (5) ends at the vertex t[i, j].

Intuitively, there are two paths in P corresponding to each edge of G. If we fix
i and consider that there are r − 1 blocks of vertices (each block consisting of n
vertices, corresponding to the vertices of Ci), then what a path P [i, j, e({i, j}, l)]
(corresponding to the lth edge of E{i,j}) does is “hit” every vertex of its “own”
{i, j}th block, except the vertex c[i, j∗, πi

{i,j}(l)] of the block corresponding to
the vertex of Ci to which the indexing edge of G is incident, and in the “next
block” in a circular ordering of the r − 1 blocks established by the definition of
j∗, does the complementary thing: in this “next block” it hits only the vertex
corresponding to the vertex of Ci to which the indexing edge is incident in G,
and then ends at t[i, j].

At this stage of the construction, the edges of G′ are partitioned into (turn-
free) paths that run between vertices of V1 and vertices of V4, where the latter
have degree 1 (so far) and the vertices of V1 have degree m (so far). We complete
the construction of G′ by adding a few more edges, specifying a few more turn-
free pairs as we do so.

(A) Add edges between the pairs of vertices p[i, j, l] and p[j, i, l] for all 1 ≤
i �= j ≤ r and 1 ≤ l ≤ m. After these edges are added, we have reached a stage
where all vertices in V4 have degree 2 (and they will have degree 2 in G′). For
each vertex of V4 we make the pair of incident edges a turn-free pair.

Note that for any instance of the Discrete Milling problem, the edge set is
naturally and uniquely partitioned into maximal turn-free paths. At this stage of
the construction, these paths all run between t[i, j] and t[j, i] for 1 ≤ i < j ≤ r.

(B) Add some edges between the vertices of V0 ∪ V1. Let ≤lex denote the
lexicographic order on the set (of pairs of indices) I = {[i, j] : 1 ≤ i < j ≤ r}.
Let [i, j]∗ denote the immediate successor of [i, j] in the ordering of I by ≤lex.
For [i, j] ∈ I, let rev[i, j] = [j, i]. We add the edges (using the notation u · v for
the creation of an edge between u and v):

– t[rev[i, j]] · t[[i, j]∗] for 1 ≤ i < j ≤ r and [i, j] �= [r, r − 1],
– σ · t[1, 2], and
– t[r, r − 1] · τ .

We do not specify any further turn-free pairs of vertex co-incident edges beyond
(A) or implicit by being internal to the generating paths P of G′. That completes
the description of G′.
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To complete the proof, we need to show that: (1) the graph G′ will admit a
k-turn covering walk, where k = 2

(
r
2

)
, if and only if G has a multicolor r-clique;

and (2) G′ has path-width at most 6
(
r
2

)
+4. For reasons of space, the arguments

will appear in the full version of the paper.

5 Open Problems

We have studied the parameterized complexity of (several versions of) the dis-
crete milling problem with turn costs and gave an initial classification with re-
spect to several parameterizations. We believe that there is good motivation to
study “highly structured” graph problems, that is problems involving a graph to-
gether with “other information”, since they are often able to engage applications
better than simple graph problems. Our FPT results are impractical, but can
they be improved? Our dynamic programming approach for Grid Milling is a
first step. In particular, it would be interesting to know if Discrete Milling

parameterized by (k, t, d) admits a polynomial kernel [7]. Our negative result
provides one of the very few natural examples of a parameterized graph problem
that is W [1]-hard, parameterized by pathwidth. Another notable open question
is whether Discrete Milling parameterized by (k, d), is FPT or W [1]-hard.
Our suspicion is that it is W [1]-hard, but will require an even more elaborate
reduction than the hardness result described here.
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Abstract. We consider right angle crossing (RAC) drawings of graphs

in which the edges are represented by polygonal arcs and any two edges

can cross only at a right angle. We show that if a graph with n vertices

admits a RAC drawing with at most 1 bend or 2 bends per edge, then

the number of edges is at most 6.5n and 74.2n, respectively. This is a

strengthening of a recent result of Didimo et al.

1 Introduction

The core problem in graph drawing is finding good and easily readable drawings
of graphs. Recent cognitive experiments [10,11] show that poly-line graph draw-
ings with orthogonal crossings and a small number of bends per edge are just
as readable as planar drawings. Motivated by these findings, Didimo et al. [7]
studied the class of graphs which have a polyline drawing where crossing edges
meet at a right angle. Such a drawing is called a right angle crossing drawing,
or RAC drawing, for short.

The interior vertices of a polygonal arc are called bends. We say that a planar
representation of a graph is an RACb drawing, for some b ∈ N0, if the vertices
are drawn as points, the edges are drawn as polygonal arcs with at most b bends
joining the corresponding vertices, and any two polygonal arcs cross at a right
angle (and not at a bend). Let Rb, b ∈ N0, be the class of graphs that admit a
RACb drawing. It is clear that Rb ⊆ Rb+1 for all b ∈ N0. Didimo et al. [7] showed
that every graph is in R3, hence R3 = Rb for all b ≥ 3. They proved that every
graph with n ≥ 4 vertices in R0 has at most 4n − 10 edges, and this bound is
best possible. They also showed that a graph with n vertices in the classes R1

and R2 has at most O(n4/3) and O(n7/4) edges, respectively.

Resuls. We significantly strengthen the above results, and show that every graph
with n vertices in R1 and R2 has at most O(n) edges, and that the classes R0,
R1 and R2 are pairwise distinct.
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Theorem 1. A graph G with n vertices that admits a RAC1 drawing has at
most 6.5n− 13 edges.

Theorem 2. A graph G with n vertices that admits a RAC2 drawing has less
than 74.2n edges.

We use two quite different methods to prove our main results. In Section 2,
we use the so-called discharging method to prove Theorem 1. In Section 3, we
define block graphs on the crossing edges, and use the Crossing Lemma to prove
Theorem 2. Each method gives a linear bound for the number of edges for graphs
in both R1 and R2, however, they would each give weaker constant coefficients
for the other case (i.e., for R2 and R1, respectively).

We complement our upper bounds with lower bound constructions in Section 4.
We construct graphs with n vertices in the classes R1 and R2 with 4.5n−O(

√
n)

and 7.83̇n − O(
√

n) edges, respectively. Combined with Theorems 1 and 2, they
show that R0 �= R1 and R1 �= R2.

Related Work. Angelini et al. [4] proved that every graph of maximum degree
3 admits a RAC1 drawing, and every graph of maximum degree 6 admits a RAC2

drawing. They also show that some planar directed graphs do not admit straight
line upward RAC drawings.

A natural generalization of RAC drawings with straight line edges is given by
Dujmović et al. [8]. They define α-angle crossing (αAC) drawings to be straight
line graph drawings where every pair of crossing edges intersect at an angle at
least α. In line with the results by Didimo et al. [7] on RAC drawings, they
prove upper bounds on the number of edges for αAC graphs and give lower
bound constructions. Specifically, they prove that the number of edges in an
αAC graph is at most (π/α)(3n − 6) for 0 < α < π/2 and at most 6n− 12 for
2π/5 < α < π/2. In addition, they give lower bound constructions based on the
square and hexagonal lattices for α = π/k, k = 2, 3, 4, 6. Di Giacomo et al. [6]
also generalize RAC drawings in this way and call the minimum angle of any
crossing the crossing resolution.

Preliminaries. The crossing number of a graph G, denoted cr(G), is the min-
imum number of edge crossings in a drawing of G in the plane. The Crossing
Lemma, due to Ajtai et al. [3] and Leighton [12], establishes a lower bound for
cr(G) in terms of n and m. The strongest known version is due to Pach et al. [13].

Lemma 1. [13] Let G be a graph with n vertices and m edges. If m ≥ 103
6 n ≈

17.167n, then

cr(G) ≥ c · m
3

n2
, where c =

1024
31827

≈ 0.032. (1)

Let G be a graph with n vertices and m edges, and let D be a RACb drawing of
G. If there is no confusion, we make no distinction between the vertices (edges)
of G and the corresponding points (polylines) of D.

A plane (multi-)graph is a (multi-)graph drawn in the plane without any edge
crossings. The faces of a plane (multi-)graph are the connected components of
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the complement of G. Let D be a drawing of a graph G = (V, E). A rotation
system at a vertex v ∈ V in drawing D is the (clockwise) circular order in which
the edges leave v. A wedge at a vertex v in D is an ordered pair of edges (e, e′)
incident to v that are consecutive in its rotation system. A face f in D is adjacent
to a wedge (e, e′) if e, v, and e′ are consecutive in a counterclockwise traversal
of the boundary of f . Every wedge is adjacent to a unique face in D. The size of
a face is the number of edges (counted with multiplicity) on the boundary of f .

2 RAC Drawings with One Bend per Edge

Discharging. We apply a discharging method reminiscent to that of Ackerman
and Tardos [2] to prove Theorem 1. This method was apparently introduced by
Wernicke [14], but it gained considerable attention only after it was extensively
used in the first valid proof of the famous Four Color Theorem [5]. Since then, it
was instrumental in deriving various types of results in structural graph theory,
see e.g. [9]. Dujmović et al. [8] applied the discharging method for an alternative
proof for the upper bound of 4n − 10 on the number of edges in a graph on n
vertices that admits a straight line RAC (i.e. RAC0) drawing, originally due to
Didimo et al. [7].

Proof (Theorem 1). Let G = (V, E) be a graph in R1. Fix a RAC1 drawing D of
G that minimizes the number of edge crossings. Partition G into two subgraphs
G0 = (V, E0) and G1 = (V, E1), where E0 ⊆ E is the subset of crossing free
edges and E1 ⊆ E is the subset of edges with at least one crossing. Since G0 is
planar, it has at most |E0| ≤ 3n− 6 edges.

Let C be the set of crossing points in D. We construct a plane multigraph
G′ = (V ′, E′) as follows: the vertices V ′ = V ∪ C are the vertices in V and all
crossings in C; the edges are polygonal arcs between two consecutive vertices
along the edges in E1. That is, the edges in E′ are obtained by subdividing the
edges in E1 at crossing points. Since the bends of edges in E1 are not vertices
in G′, they are bends of some edges in E′. Denote by F ′ the set of faces of G′.
A bend of an edge determines two angles: a convex and a reflex angle. We say
that face f ∈ F ′ is adjacent to a convex (resp. reflex) bend, if it has a convex
(resp. reflex) interior angle at a bend point. A bounded face of size two is called
a lens, and is adjacent to two parallel edges. A bounded face of size 3 is called
a triangle.

Lemma 2. Every lens f ∈ F ′ is adjacent to a convex bend. If it is adjacent to
exactly one convex bend, then it is incident to one vertex in C and V each, and
adjacent to one convex bend and one reflex bend.

Proof. Every lens f ∈ F ′ is drawn as a simple polygon whose vertices are the
incident vertices in V ′ and adjacent bends. Every simple polygon has at least 3
convex interior angles. A lens is incident to exactly two vertices in V ′, so it must
have a convex interior angle at an adjacent bend.
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Let f ∈ F ′ be a lens adjacent to exactly one convex bend. Since every edge
in E1 crosses some other edges, no two adjacent vertices in V ′ are in V . At
each vertex in C, the incident faces have 90◦ interior angles since D is a RAC
drawing. If both vertices of lens f are in C with 90◦ interior angles, then f must
have two convex bends. So, f is incident to one vertex in C and V each. If f has
only one bend (see Fig. 1(a)), then we can redraw the edge e ∈ E containing
this bend in D with one fewer crossings (eliminating the crossing incident to f),
which contradicts the choice of the RAC1 drawing D. So f must be adjacent to
a reflex bend (see Fig. 1(b)) as well. ��

Lemma 3. Every triangle f ∈ F ′, which is not the outerface, is adjacent to a
convex bend.

Proof. A triangle f ∈ F ′ has three vertices in V ′ = V ∪C, and each of its three
edges is a polygonal arc with 0 or 1 bends. Since every edge in E1 crosses some
other edges, no two adjacent vertices in V ′ are in V . That is, at least two vertices
of f are in C, with an inner angle of 90◦. If f is adjacent to k ∈ {0, 1, 2, 3} bends
(at most one bend per edge), then f is a simple polygon with k +3 vertices, and
so the sum of its interior angles is (k + 1)180◦. If all k bends are reflex, then the
sum of interior angles would be more than 90◦+90◦+k ·180◦ = (k+1)180◦. ��

Lemma 4. We have |E1| ≤ 4n− 8.

Proof. Assume without loss of generality that G′ = (V ′, E′) is connected. For a
face f ∈ F ′, let sf be the size of f . For a vertex v ∈ V ′ = V ∪ C, let dv denote
the degree of v in G′. We put a charge ch(v) = dv − 4 on each vertex v ∈ V ′,
and a charge ch(f) = sf − 4 on each face f ∈ F ′. By Euler’s formula the sum of
all charges is ∑

v∈V ′
ch(v) +

∑
f∈F ′

ch(f) = −8. (2)

Indeed,
∑

v∈V ′(dv − 4) +
∑

f∈F ′(sf − 4) = 2|E′| − 4|V ′|+ 2|E′| − 4|F ′| = −8.
Since the charge at a vertex v ∈ C is 0, we have∑

v∈V

ch(v) +
∑
f∈F ′

ch(f) = −8. (3)

In what follows, we redistribute the charges in G′ such that the total charge of
all vertices and faces remains the same. The redistribution is done in two steps.
In step 1, we move charges from some vertices to some faces; and in step 2 we
move charges from some faces to some other faces. Our goal is to ensure that all
faces have non-negative charges after the second step.

Step 1. For every edge e ∈ E1 with one bend, we discharge 1
2 unit from each

of the two endpoints of e to the face adjacent to the convex bend of e. The new
charge at every vertex v ∈ V is ch′(v) ≥ 1

2dv − 4. Since every face in F ′ of size
at least 4 receives a non-negative charge already at the beginning, it is enough
to take care of the triangles and lenses (bounded faces of size 3 and 2), whose
initial charge was −1 and −2, respectively.
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Fig. 1. (a) lens f that can be redrawn, (b) lens f having only one convex bend on its

boundary, (c) situation when G could be redrawn with fewer crossings, (d) its redrawing

(i=4), and (e) triangular outerface

By Lemma 3, each triangle f ∈ F ′ except the outerface is adjacent to a convex
bend, and so its charge has increased by at least 1 in step 1. Its new charge ch′(f)
is at least 0. Similarly, if a lens f ∈ F ′ is adjacent to two convex bends, then its
charge after step 1 is 0. Hence, the only possible faces whose new charge is still
negative are the outerface and the lenses adjacent to exactly one convex bend.

Step 2. In order to increase the charge of the outerface and lenses with exactly
one convex bend from −1 to 0, we perform the second discharge step. Note that
in the first step we have increased the charge of some faces of size 4 or higher
(which was unnecessary), so we can now divert the “wasted” charge to faces with
negative charge.

Let f be a lens with exactly one convex bend. By Lemma 2, f is incident to
one vertex v ∈ V and one in C, and it is adjacent to one convex bend and one
reflex bend. Let e0, e1, . . . edv−1 (see Fig 1(c)) denote the edges in E1 incident to
v listed according to the rotation system at v (clockwise) such that the wedge
(e0, e1) is adjacent to face f . We may assume without loss of generality that
e0 has a convex bend and e1 has a reflex bend adjacent to f . Let i ∈ N be
the smallest integer such that the wedge (ei, ei+1) is adjacent to the face, let us
denote it by f ′, of size at least 4. It is easy to see that i is well-defined, since
every edge in E1 participates in a crossing.

We show that f ′ is adjacent to the convex bend of edge ei. Any wedge
(ej , ej+1), 1 ≤ j ≤ i − 1, must be adjacent to a triangle bounded by parts
of the edges ej , ej+1, and e0. Since the (convex) bend of e0 is adjacent to f ,
all these triangles are adjacent to a straight line portion of e0. If any of these
triangles is adjacent to the convex bend of ej and a convex bend or no bend of
ej+1, then we can redraw edge e0 to obtain a RAC1 drawing of G with fewer
crossings, eliminating the crossing incident to f (Figs. 1(c) and 1(d)). So the
triangle at any wedge (ej , ej+1), 1 ≤ j ≤ i− 1, is adjacent to the reflex bend of
ej+1. Hence f is adjacent to the convex bend of ei.

Move 1 unit of charge (corresponding to the convex bend of ei) from f ′ to f .
This increases the charge of f to 0. Since the size of f ′ is at least 4, its charge
remains non-negative. It is also clear that the charge corresponding to the convex
bend of ei is diverted to exactly one lens from f ′.
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It remains to make sure that the outerface fo gets non-negative charge in the
end as well. If fo has a negative charge after Step 2, then it is triangle. It must
have exactly one vertex v from V , otherwise three of its vertices are crossings
each contributing 3

2π to the sum of the inner angles of the polygon which is the
complement of the interior of fo. Thus, fo would have at least four bends, which
is impossible. Moreover, fo must be adjacent to three reflex bends, i.e. it looks
like fo on Figure 1(e). Then at least one of the inner faces adjacent to bends
of fo on edges incident to v is not a lens. Let f1 denote such a face. If fi is a
triangle we define fi+1 as follows. Let fi+1 denote the face on the opposite side
of the reflex bend of fi. The definition of fi+1 is correct, since the sum of the
interior angles in the grey polygon in Figure 1(e) is 4π. Eventually some fi = f ′

has at least four vertices and one unit of charge of the bend between fi and fi−1

can be diverted to the outerface. The charge at b has not been moved in Step 2.
After the second step of redistribution, every face in D′ has a non-negative

charge. Let ch′′(v) and ch′′(f) denote the charge at each vertex v ∈ V and f ∈ F ′

after step 2. We have

|E1| − 4n =
∑
v∈V

(
1
2
dv − 4

)
≤

∑
v∈V

ch′′(v) ≤
∑
v∈V

ch′′(v) +
∑
f∈F ′

ch′′(f)

︸ ︷︷ ︸
≥0

= −8.

By reordering the terms in the above inequality, we have |E1| ≤ 4n − 8, as
required ��

At this point we have already proved that the number of edges in G is no more
than |E0|+ |E1| ≤ (3n− 6) + (4n− 8) = 7n− 14.

We can improve this bound by applying Lemma 4 independently in each face
of the plane graph G0 = (V, E0), whose edges are the crossing-free edges in E.
Notice that each edge in E1 is fully contained in exactly one face of G0. Let
F0 be the set of faces of G0, and let df denote the number of vertices of a face
f ∈ F0. By Lemma 4, each face f ∈ F0 contains at most 4df −8 edges of E1, and
it obviously contains no edges of E1 if f is a triangle (i.e., df = 3). Summing
this upper bound over all faces of G0, we have

|E1| ≤
∑

f∈F0,df >3

(4df − 8). (4)

Lemma 5. If a plane graph G0 = (V, E0) has n vertices and 3n− 6 − k edges,
then ∑

f∈F0,df >3

(4df − 8) ≤ 8k. (5)

Proof. Denote by τ(G0) the sum on the left hand side of (5). We proceed by
induction on k. For k = 0, the plane graph G0 is a triangulation and τ(G0) = 0.

Assuming that the lemma holds for k ≥ 0, we show that it holds for k′ = k+1.
Let G0 be a plane graph with n vertices and 3n−6−k′ edges. G′

0 can be obtained



Graphs that Admit Right Angle Crossing Drawings 141

by removing an edge e from a plane graph G0 with 3n− 6− k edges, for which
τ(G0) ≤ 8k by induction. If edge e is a bridge, then we have τ(G′

0) = τ(G0) ≤
8k < 8k′. Otherwise the removal of e merges two adjacent faces of G0, say f1

and f2. If none of f1 and f2 is a triangle, then 4df − 8 = 4(df1 + df2 − 2)− 8 =
(4df1 − 8) + (4df2 − 8), and so τ(G′

0) = τ(G0) ≤ 8k < 8k′. If f1 is a triangle
and f2 is a face of size more than three, then 4df − 8 = (4(df2 + 1) − 8) + 4,
and so τ(G′

0) ≤ τ(G0) + 4 ≤ 8k + 4 < 8k′. If both f1 and f2 are triangles, then
4df − 8 = 4 · 4− 8 = 8, and τ(G′

0) ≤ τ(G0) + 8 ≤ 8k + 8 = 8k′. This completes
the induction step, hence the proof of Lemma 5. ��

We have two upper bounds for m, the number of edges in G. Lemma 4 gives
m ≤ |E0| + |E1| ≤ (3n − 6 − k) + (4n − 8) = 7n − k − 14, and Lemma 5
gives m ≤ |E0| + |E1| ≤ (3n − 6 − k) + 8k = 3n + 7k − 6. Therefore, we have
m ≤ maxk∈N0 min(7n− k − 14, 3n + 7k − 6) = 6.5n− 13, which is attained for
k = n/2− 1. This completes the proof of Theorem 1. ��

3 RAC Drawings with Two Bends per Edge

Block graphs. The main tool in the proof of Theorem 2 is the block graph
of a RAC drawing and the Crossing Lemma. Let D be a RAC2 drawing of a
graph G = (V, E). Every edge is a polygonal arc that consists of line segments.
Without loss of generality, we assume that every edge has two bends so that
each edge has two end segments and one middle segment. A block of D is a
connected component in the union of pairwise parallel or orthogonal segments
in D. Formally, we define a binary relation on the segments in the polygonal
arcs in the drawing D: two segments are related if and only if they cross. The
transitive closure of this relation is an equivalence relation. We define a block of
D as the union of all segments in an equivalence class. Since the union of crossing
edges is connected, every block is a connected set in the plane. Furthermore, all
segments in a block have at most two different (and orthogonal) orientations.

Fig. 2. A RAC2 drawing

of a graph and its heavy

blocks

By Lemma 1, if m ≥ 103
6 n, then the average number

of crossings per segment is at least

2c

3
· m

2

n2
,

where c = 1024/31827 ≈ 0.032. We say a segment is
heavy if it crosses at least βcm2

n2 other segments, where
0 < β < 2/3 is the heaviness parameter specified later.
A block is heavy if it contains a heavy segment.

We define the block graph B(D) as a bipartite multi-
graph whose two vertex classes are the vertices in V
and the heavy blocks in D. The block graph has an
edge between a vertex v ∈ V and a heavy block for
every segment incident to v and contained in the heavy block (Fig. 2). Note that
if a heavy block consists entirely of middle segments, it is not adjacent to any
vertex in B(D).
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Lemma 6. If D is a RAC drawing of a graph, then the block graph B(D) is
planar.

Proof. Recall that a heavy block u is a connected set which is incident to all
vertices of G that are adjacent to u in B(D). For every heavy block u, let
Tu ⊆ u be a spanning tree of the incident vertices of G. We can construct a
planar embedding of B(D). The vertices of G are represented by the same point
as in D. Each heavy block u is represented by an arbitrary point ru in the relative
interior of Tu. If vertex v of G is adjacent to a heavy block u, then connect v
and ru by a Jordan arc that closely follows the shortest path between v and ru

in the tree Tu ⊆ u. Since shortest paths in a tree do not cross, we can draw the
edges successively without crossings. ��

Denote by H the number of heavy blocks in D. The block graph B(D) is bipartite
and planar, with H +n vertices. If it is simple, then it has at most 2(H + n)− 4
edges. However, B(D) is not necessarily simple: up to four segments of a heavy
block may be incident to a vertex v in D.

Lemma 7. The block graph B(D) has less than 2H + 5n edges.

Proof. Assume that two segments in a heavy block are incident to the same
vertex v. Since the block is connected, there is a closed curve γ passing through
v and the two segments such that all other blocks lie either in the interior or in
the exterior of γ. Hence, multiple edges cannot interleave in the rotation order of
a vertex v. Note also that segments in a block are pairwise parallel or orthogonal.
It follows that B(D) becomes a simple bipartite plane graph after removing at
most 3 duplicate edges at each vertex of D. That is, after removing up to 3n
edges, the remaining simple bipartite plane graph has at most 2(H + n) − 4
edges. ��

Let S denote the number of segments that participate in some heavy block of D.
Every heavy block contains at least one heavy segment and all other segments
it crosses. That is, a heavy block contains more than βcm2/n2 segments. Since
every segment belongs to a unique block, we have

H ≤ S

βcm2/n2
=

Sn2

βcm2
. (6)

The following lemma reformulates the Crossing Lemma for heavy segments in
RAC2 drawings. We show that if a graph G has sufficiently many edges, then
a constant fraction of them must contain a segment in some heavy blocks in a
RAC2 drawing of G.

Lemma 8. Let D be a RAC2 drawing of graph G with m ≥ 103
6

√
2/(3β)n edges.

If one can delete xm edges from D, for some 0 < x < 1, such that every remain-
ing edge segment crosses less than βcm2/n2 others, then x > 1−

√
3β/2.
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Proof. Suppose xm edges were deleted from D to obtain D′ and let G′ be the
graph associated with D′. The number of remaining edges is |E(G′)| = m−xm =
(1−x)m. If (1−x)m ≥ 103

6 n, then the Crossing Lemma gives cr(G′) ≥ c· (1−x)3m3

n2 ,
so the average number of crossings per segment in G′ is at least

2cr(G′)
3(1− x)m

≥ 2c

3
· (1− x)2m2

n2
.

Every segment in D′ crosses less than βcm2/n2 others in D′. Comparing the
upper and lower bounds for the average number of crossings per segment, we
have

2c

3
· (1− x)2m2

n2
< βc

m2

n2
⇒ (1− x)2 < 3β/2 ⇒ 1 < x +

√
3β/2.

If, however, (1 − x)m < 103
6 n but m ≥ 103

6

√
2/(3β)n, then we have again x >

1−
√

3β/2. ��

Lemma 8 immediately gives a lower bound on S, the number of segments par-
ticipating in heavy blocks.

Lemma 9. Let D be a RAC2 drawing of graph G. If m ≥ 103
6

√
2/(3β)n, then

S > (1 −
√

3β/2)m.

Proof. Let E1 be the set of edges containing a segment that participate in some
heavy block in D. Clearly, we have |E1| ≤ S. If all edges of E1 are deleted
from D, then every remaining segment crosses less than βcm2/n2 others. By
Lemma 8, we have S ≥ |E1| > (1−

√
3β/2)m. ��

Proof (Theorem 2). We set the heaviness parameter to β = 0.062. If m ≥
103
6

√
2/(3β)n > 56n, then we can use Lemmas 8 and 9, otherwise m ≤ 56n

and our proof is complete. Let D be a RAC2 drawing of G. Recall that every
edge has two end segments and one middle segment. Let αS be the number of
end segments that participate in heavy blocks, where 0 < α < 1. The number
of middle segments is m, which is a trivial upper bound on the middle segments
that participate in heavy blocks. So the total number of segments in heavy blocks
is at most S ≤ m + αS, which gives S ≤ 1

1−αm.
In each heavy block, the segments can be partitioned into two sets of pairwise

parallel segments. If we delete all edges that contain some segment in the smaller
set of each heavy block, then the remaining segments are not heavy anymore.
That is, by deleting at most S

2 ≤
1

2(1−α)m edges, we obtain a RAC2 drawing
with no heavy edge segment. By Lemma 8, we have

1
2(1− α)

> 1−
√

3β

2
⇒ 1

1−
√

3β/2
> 2(1− α),

which implies

α > 1− 1
2(1−

√
3β/2)

(7)
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The block graph B(D) has αS edges, since an edge in B(D) exists if and only if
a vertex of G is incident to an end segment in a heavy block. From Lemma 7, we
have an upper bound on the number of edges in B(D), which gives αS < 2H+5n.
Using S > (1−

√
3β/2)m from Lemma 9, the upper bound on H from (6), and

the lower bound on α from (7), we obtain

αS < 2H + 5n ⇒ αS <
2S

βc
· n2

m2
+ 5n

⇒
(

α− 2
βc
· n2

m2

)(
1−

√
3β

2

)
m < 5n

⇒ 0 <
2− 2

√
3β/2

βc
·
( n

m

)2

+ 5 ·
( n

m

)
− α

(
1−

√
3β

2

)

⇒ 0 <
2−
√

6β

βc
·
( n

m

)2

+ 5 ·
( n

m

)
−

(
1
2
−

√
3β

2

)
.

This is a quadratic inequality in n/m. Since
√

3β/2 < 1/2, the constant term is
negative, and the two roots have opposite signs. Therefore, we have

n

m
>

βc

2(2−
√

6β)

⎛⎝−5 +

√√√√25 +
4
βc

(
2−

√
6β

)(
1
2
−

√
3β

2

)⎞⎠ .

This is maximized for β = 0.062, and gives m < 74.2n. ��

4 Lower Bound Constructions

We complement the upper bounds in Theorems 1 and 2 with lower bound con-
structions. We construct an infinite family of graphs which admit RAC1 drawings
and 4.5n−O(

√
n) edges. This shows that R0 �= R1 since every graph in R0 has

at most 4n − 10 edges [7]. Let the vertices of G be points of the hexagonal
lattice clipped in a square (Fig. 3). The edges of G are the hexagon edges and
6 diagonals with a bend in each hexagon. The diagonals connect every other
vertex in the hexagon, and make a 75◦ angle with the side of the hexagon, and
so they cross in right angles. The vertex degree is 3+3 ·2 = 9 for all but at most
O(
√

n) lattice points around the bounding box. Hence the number of edges is
4.5n−O(

√
n).

We also construct an infinite family of graphs which admit RAC2 drawings
and 7.83̇n − O(

√
n) edges. This shows that R1 �= R2 since every graph in R1

has at most 6.5n− 13 edges by Theorem 1. Let the vertices of G be the vertices
of an Archimedean tiling (12,12,3) clipped in a square. Refer to Fig. 4. In the
tiling (12,12,3), we can assign two triangles to each 12-gon. The edges of G are
the edges of the tiling, a 6-regular graph of diagonals in each 12-gon, and two
edges per 12-gon that go to vertices of the two adjacent triangles. The tiling



Graphs that Admit Right Angle Crossing Drawings 145

Fig. 3. Lower bound construction for a RAC1 drawing in a hexagonal lattice

Fig. 4. Lower bound construction for a RAC2 drawing in an Archimedean tiling

(12,12,3)

and the diagonals of the 12-gons generate a vertex degree of 3 + 2 · 6 = 15 at
all but at most O(

√
n) vertices (due to the boundary effect). The additional

two edges between adjacent 12-gons and triangles increase the average degree to
15+ 2

3 −O(1/
√

n). Hence the number of edges is 47
6 n−O(

√
n) = 7.83̇n−O(

√
n).

5 Concluding Remarks

It remains an open problem to determine the maximum number of edges of a
graph with n vertices in the classes R1 and R2. Our upper bound in Theo-
rem 1 may be slightly improved by refining the bound in Lemma 4. If we could
strengthen the upper bound in Lemma 4 for small values of n, then (4) would
improve. However, we did not pursue this direction as it would not lead to sig-
nificant improvement without an extensive case analysis.

Let an αAC=
b drawing be a polyline drawing of a graph with b bends per

edge where all crossings occur at angle exactly α. It is easy to show that a
graph with n vertices and an αAC=

0 drawing has at most 9n − 18 edges. The
edges in each “block” can be partitioned into 3 sets of noncrossing edges, and
so the graph decomposes into 3 planar graphs. Every graph admits an αAC=

3

drawing, since every affine transformation deforms all crossing angles uniformly
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in the construction by Didimo et al. [7]. Very recently, Ackerman et al. [1] proved
that every graph on n vertices that admit αAC=

1 or αAC=
2 drawings have O(n)

vertices.
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9. Hlinený, P.: Discharging technique in practice, Lecture text for Spring School on

Combinatorics

10. Huang, W.: Using eye tracking to investigate graph layout effects. In: 6th Asia-

Pacific Sympos. Visualization (APVIS 2007), pp. 97–100 (2007)

11. Huang, W., Hong, S.-H., Eades, P.: Effects of crossing angles. In: Proc. IEEE Pacific

Visualization Sympos., pp. 41–46 (2008)

12. Leighton, F.T.: Complexity issues in VLSI: optimal layouts for the shuffle-exchange

graph and other networks. MIT Press, Cambridge (1983)
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Abstract. A graph is d-degenerate if its every subgraph contains a vertex of de-
gree at most d. For instance, planar graphs are 5-degenerate. Inspired by recent
work by Philip, Raman and Sikdar, who have shown the existence of a polynomial
kernel for DOMINATING SET in d-degenerate graphs, we investigate kerneliza-
tion hardness of problems that include connectivity requirement in this class of
graphs.

Our main contribution is the proof that CONNECTED DOMINATING SET does
not admit a polynomial kernel in d-degenerate graphs for d ≥ 2 unless the poly-
nomial hierarchy collapses up to the third level. We prove this using a problem
originated from bioinformatics — COLOURFUL GRAPH MOTIF — analyzed and
proved to be NP-hard by Fellows et al. This problem nicely encapsulates the hard-
ness of the connectivity requirement in kernelization. Our technique yields also
an alternative proof that, under the same complexity assumption, STEINER TREE

does not admit a polynomial kernel. The original proof, via reduction from SET

COVER, is due to Dom, Lokshtanov and Saurabh.
We extend our analysis by showing that, unless PH = Σ3

p , there do not exist
polynomial kernels for STEINER TREE, CONNECTED FEEDBACK VERTEX SET

and CONNECTED ODD CYCLE TRANSVERSAL in d-degenerate graphs for d ≥
2. On the other hand, we show a polynomial kernel for CONNECTED VERTEX

COVER in graphs that do not contain the biclique Ki,j as a subgraph.

1 Introduction

In the parameterized complexity setting, an instance comes with an integer parameter k
— formally, a parameterized problem Q is a subset of Σ∗ × N for some finite alphabet
Σ. We say that the problem is fixed parameter tractable (FPT) if there exists an algo-
rithm solving any instance (x, k) in time f(k)poly(|x|) for some (usually exponential)
computable function f . It is known that a problem is FPT iff it is kernelizable: a ker-
nelization algorithm for a problem Q takes an instance (x, k) and in time polynomial in
|x| + k produces an equivalent instance (x′, k′) (i.e., (x, k) ∈ Q iff (x′, k′) ∈ Q) such
that |x′|+ k′ ≤ g(k) for some computable function g. The function g is the size of the
kernel and if it is polynomial, we say that Q admits a polynomial kernel.
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Kernelization techniques can be viewed as polynomial time preprocessing routines
for tackling NP-hard problems. Parameterized complexity provides a formal frame-
work for the analysis of such algorithms. In particular small (i.e. polynomial) kernels
play an important role, and there are numerous positive results showing small ker-
nels for various problems, including VERTEX COVER [5] and FEEDBACK VERTEX

SET [19]. Recently, Bodlaender et al. [2] and Fortnow and Santhanam [12] came up
with a technique that allows to prove negative results in this field: their tools pro-
vide a way to show that a parameterized problem does not admit a polynomial ker-
nel unless the polynomial hierarchy collapses up to the third level. Up to this day,
the list of non-polynomially-kernelizable (unless PH = Σ3

p) FPT problems includes
LONGEST PATH, LONGEST CYCLE [2], DIRECTED MAX LEAF OUT-BRANCHING

[10], DISJOINT PATHS, DISJOINT CYCLES [4], RED-BLUE DOMINATING SET (aka
SET COVER), STEINER TREE, CONNECTED VERTEX COVER [6] and CONNECTED

FEEDBACK VERTEX SET [15].
On the other hand, many problems which are hard in general graphs — i.e. without

a polynomial kernel or even not FPT — have small kernels in restricted graph classes,
such as planar graphs, bounded genus graphs, apex-minor-free graphs or H-minor-free
graphs. Recent results include linear kernels for DOMINATING SET and CONNECTED

DOMINATING SET in apex-minor-free graphs and linear kernels for FEEDBACK VER-
TEX SET and CONNECTED VERTEX COVER in H-minor-free graphs [11].

The aforementioned results use the topological structure of the considered graph
classes. However, sometimes an even weaker assumption on the graph class leads to
significantly better algorithms and kernels than in the general case. One may, for in-
stance, consider the class of d-degenerate graphs. A graph is called d-degenerate if its
every induced subgraph contains a vertex of degree at most d. For instance, the class
of 1-degenerate graphs is the class of forests, and all planar graphs are 5-degenerate.
Moreover, every H-minor-free graph is d-degenerate, where the constant d depends on
the minor [14,17,18]. Alon and Gutner [1] followed by Golovach and Villanger [13]
proved that DOMINATING SET and CONNECTED DOMINATING SET, which are W [2]-
hard in general graphs [7], become FPT when the input graph is d-degenerate. Very
recently, Philip et al. [16] proved that DOMINATING SET is FPT and admits a polyno-
mial kernel in a larger class of graphs: graphs excluding the biclique Ki,j as a subgraph
(note that a d-degenerate graph cannot contain Kd+1,d+1 as a subgraph).

A natural question arises: does the bounded degeneracy assumption help in the ker-
nelization of other problems? In particular, the question of finding a polynomial ker-
nel for CONNECTED DOMINATING SET in d-degenerated graphs was posted on the
1st Workshop on Kernels (WORKER’09, Bergen, Norway). In this paper we provide
mostly negative answers to questions of existence of polynomial kernels for connectiv-
ity problems in graphs of bounded degeneracy. Note that this is in sharp contrast with
the existence of the linear kernel for CONNECTED DOMINATING SET in apex-minor-
free graphs [11].

The main contribution of this paper is the idea to use the COLOURFUL GRAPH MOTIF

problem, which, intuitively, encapsulates the hardness of the connectivity requirement.
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COLOURFUL GRAPH MOTIF Parameter: k.
Input: A graph G = (V, E), an integer k and a function f : V → {1, 2, . . . , k}
Question: Does there exist a connected set S ⊂ V of cardinality k, such that f |S is
bijective?

We think of the function f to be a colouring of V — each number from {1, 2, . . . , k}
corresponds to a single colour — and we ask whether it is possible to choose a con-
nected set containing exactly one vertex of each colour.

Fellows et al. [9] have shown that, surprisingly, this problem is NP-hard even in
the class of trees of maximum degree 3. We use this fact to prove that COLOURFUL

GRAPH MOTIF does not admit a polynomial kernel in 1-degenerate graphs (forests) un-
less PH = Σ3

p .1 This problem is simple enough to admit a reduction to CONNECTED

DOMINATING SET in 2-degenerate graphs. As a by-product of this analysis, we obtain
an alternative proof that STEINER TREE does not admit a polynomial kernel in arbitrary
graphs. The original proof, via reduction from RED BLUE DOMINATING SET (aka SET

COVER) is due to Dom et al. [6]. We analyze COLOURFUL GRAPH MOTIF in Section 4
and apply it to CONNECTED DOMINATING SET to show that CONNECTED DOMINAT-
ING SET does not admit a polynomial kernel in 2-degenerate graphs. In Section 4 we
also show the reduction from COLOURFUL GRAPH MOTIF to STEINER TREE.

On the positive side (in Section 5) we provide a O(k2 + (i + j)kmin(i,j))-vertex
kernel for CONNECTED VERTEX COVER in Ki,j-free graphs. In the analysis we use
arguments similar to those developed by Philip et al. [16].

Preliminaries and notation are given in Section 2. As a warmup, in Section 3 by easy
reductions and using already known results we show that STEINER TREE, CONNECTED

FEEDBACK VERTEX SET and CONNECTED ODD CYCLE TRANSVERSAL do not admit
polynomial kernels in 2-degenerate graphs. All discussed problems are parameterized
by the solution size, except for STEINER TREE, which is parameterized both by the
solution size and the size of the terminal set. Precise definitions of considered problems
can be found in appropriate sections.

2 Preliminaries and Notation

Before we start, let us introduce some notation. All problems are considered on an
undirected graph G = (V, E). The set N(v) = {u : uv ∈ E} is the neighbourhood of
v and N [v] = N(v)∪ {v} is the closed neighbourhood of v. We extend this notation to
all subsets A ⊂ V : N [A] =

⋃
v∈A N [v] and N(A) = N [A] \A. We say that a vertex v

is dominated by a vertex set A if v ∈ N [A]; a vertex set A is dominating if N [A] = V .
Whenever we speak of a parameterized problem Q, by d-deg-Q we denote the problem
Q, where the class of input graphs is restricted to d-degenerate graphs.

In this section we recall all the required definitions about kernels, and ways to prove
the non-existence of a polynomial kernel. In general, we follow the notation from [6].
Given a parameterized problem Q ⊂ Σ∗×N, its unparameterized version is a language

1 In the full version of this paper we show NP-hardness and nonexistence of a polynomial kernel
for COLOURFUL GRAPH MOTIF in comb graphs. A graph is called a comb graph if it is a tree,
all vertices are of degree at most 3 and all the vertices of degree 3 lie on a single simple path.
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Q̃ = {x#1k : (x, k) ∈ Q}, i.e., we append the parameter written in unary. Let us now
cite the main result of Bodlaender et al. [2] and Fortnow and Santhanam [12].

Definition 1 (Composition [2,6]). A composition algorithm for a parameterized prob-
lem Q ⊂ Σ∗×N is an algorithm that receives as input a sequence (x1, k), (x2, k), . . .,
(xt, k) with (xi, k) ∈ Σ∗×N for each 1 ≤ i ≤ t, uses polynomial time in

∑t
i=1 |xi|+k,

and outputs (y, k′) ∈ Σ∗ × N with (y, k′) ∈ Q iff ∃1≤i≤t(xi, k) ∈ Q and k′ is poly-
nomial in k. A parameterized problem is called compositional if there is a composition
algorithm for it.

Theorem 1 ([2,12]). Let Q be a compositional parameterized problem whose unpa-
rameterized version Q̃ is NP-complete. Then, unless PH = Σ3

p , there is no polynomial
kernel for Q.

To prove the non-existence of a polynomial kernel for some parameterized problem, it
is not necessary to go through Theorem 1. As in the case of NP-complete problems, we
can use reductions instead.

Definition 2 ([4,6]). Let P and Q be parameterized problems. We say that P is poly-
nomial parameter reducible to Q, written P ≤Ptp Q, if there exists a polynomial time
computable function f : Σ∗ × N → Σ∗ × N and a polynomial p, such that for all
(x, k) ∈ Σ∗ × N the following holds: (x, k) ∈ P iff (x′, k′) = f(x, k) ∈ Q and
k′ ≤ p(k). The function f is called a polynomial parameter transformation.

Theorem 2 ([4,6]). Let P and Q be parameterized problems and P̃ and Q̃ be the un-
parameterized versions of P and Q respectively. Suppose that P̃ is NP-hard and Q̃ is
in NP. Assume there is a polynomial parameter transformation from P to Q. Then if Q
admits a polynomial kernel, so does P .

3 Easy Cases: STEINER TREE, CONNECTED FEEDBACK VERTEX

SET and CONNECTED ODD CYCLE TRANSVERSAL

We shall begin by showing that, unless PH = Σ3
p , no polynomial kernel exists in

the connected case even for 2-degenerate graphs for three problems: STEINER TREE,
CONNECTED FEEDBACK VERTEX SET and CONNECTED ODD CYCLE TRANSVER-
SAL. We reduce them through Theorem 2 to the problems shown by other authors not
to admit a polynomial kernel. We use the results of Dom et al. [6], where the authors
show STEINER TREE and CONNECTED VERTEX COVER do not admit a polynomial
kernel in the class of all graphs. Presented constructions are adjustments of reductions
made for CONNECTED FEEDBACK VERTEX SET [15].

STEINER TREE (ST) Parameter: t := |T | and k.
Input: A graph G = (V, E), a set of terminals T ⊂ V and an integer k.
Question: Does there exist S ⊂ V , such that G[S ∪ T ] is connected and |S| ≤ k?

CONNECTED FEEDBACK VERTEX SET (CFVS) Parameter: k.
Input: A graph G = (V, E) and an integer k.
Question: Does there exist a set S ⊂ V of cardinality at most k, such that G[S] is
connected and G[V \ S] contains no cycles?
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CONNECTED ODD CYCLE TRANSVERSAL Parameter: k.
Input: A graph G = (V, E) and an integer k.
Question: Does there exist a set S ⊂ V of cardinality at most k, such that G[S] is
connected and G[V \ S] is bipartite (that is, contains no cycles of odd length)?

CONNECTED VERTEX COVER Parameter: k.
Input: A graph G = (V, E) and an integer k.
Question: Does there exist a set S ⊂ V of cardinality at most k, such that G[S] is
connected and every edge e ∈ E has at least one endpoint in S?

Now let us note the following simple observation.

Lemma 1. Assume that in a graph G every edge has an endpoint of degree at most 2.
Then G is 2-degenerate.

We now show reductions to each of the three aforementioned problems.

Proposition 1. CONNECTED VERTEX COVER ≤Ptp 2–deg–CONNECTED FEEDBACK

VERTEX SET.

Proof. Consider any instance (G, k) of CONNECTED VERTEX COVER. We create a
graph G′ = (V ′, E′). We take V ′ = V ∪E1 ∪E2 — the vertices of G′ are the vertices
of G plus two new vertices e1, e2 for each edge e of G. For each edge e = uv ∈ E we
add four edges to E′: {u, e1}, {u, e2}, {v, e1} and {v, e2}. This means we transform
each edge of G into a cycle of length 4, where the original vertices are on opposite
points of the cycle. Lemma 1 implies that G′ is 2-degenerate.

We now prove that the answer to CONNECTED FEEDBACK VERTEX SET for (G′, 2k−
1) is the same as the answer to CONNECTED VERTEX COVER for (G, k). First assume
we have a positive answer for (G, k). This means that there exists a connected vertex
cover S of G of size at most k. As S is connected, we can create a spanning tree in G[S],
this consists of at most k − 1 edges ES ⊂ E. Let E′

S = {e1 : e ∈ ES}— that is, for
each edge e ∈ ES we take into E′

S one of the two vertices in V ′ corresponding to e. We
claim G′[V ′ \ (S ∪ES)] contains no cycles. Assume C is a cycle in G′[V ′ \ (S ∪ES)].
C cannot consist only of elements of V (since V is independent in G′), thus C contains
some element ei. As degei = 2, C also has to contain both vertices from V which the
corresponding edge e ∈ E connects. This, however, means in particular that neither of
these vertices was in S, which is a contradiction with the assumption that S was a vertex
cover of G, as the edge e is not covered.

Now assume we have a connected feedback vertex set S ⊂ V ′ in G′ of cardinality
at most 2k − 1. Assume |S| ≥ 2 (the case |S| = 1 is trivial). Notice that |S ∩ V | ≤
k — if we have more than k vertices from V , they form at least k + 1 connected
components, and each vertex from E′ connects at most two of them — thus S would
not be connected. We claim S ∩ V forms a connected vertex cover of G. Consider any
edge e = uv in E and the corresponding cycle (u, e1, v, e2) in G′. As S is a feedback
vertex set in G′, at least one of these four vertices must belong to S. As |S| ≥ 2 and S
is connected, at least one of u, v is in S — and thus e is covered in G by S ∩ V .

Proposition 2. CONNECTED VERTEX COVER ≤Ptp 2–deg–CONNECTED ODD CY-
CLE TRANSVERSAL.
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Proof. We proceed as above, except we transform each edge into a cycle of length five.

Corollary 1. The problems 2-deg-CONNECTED ODD CYCLE TRANSVERSAL and 2-
deg-CONNECTED FEEDBACK VERTEX SET do not admit a polynomial kernel unless
PH = Σ3

p .

The last reduction to degenerate graphs from previously known results is for 2-deg-
STEINER TREE. The alternative proof of the kernelization hardness of 2-deg-STEINER

TREE, via reduction from COLOURFUL GRAPH MOTIF, can be found in Section 4.

Proposition 3. STEINER TREE≤Ptp 2-deg-STEINER TREE and 2-deg-STEINER TREE

does not admit a polynomial kernel unless PH = Σ3
p .

Proof. Take a general instance (G, k, T ) of STEINER TREE. Create a new graph G′ by
subdividing each edge — formally, let V ′ = V ∪ E and ve ∈ E′ if v is an endpoint of
e in G. The graph G′ is 2–degenerate by Lemma 1.

We claim that the answer for (G, k, T ) is the same as the answer for (G′, 2k + |T |−
1, T ). Assume we have a solution S of (G, k, T ). Then G[S ∪ T ] is connected. Take
any spanning tree of G[S ∪T ], let F be the set of its edges, we have |F | ≤ k + |T | − 1.
Now F ∪ S is a solution in (G′, 2k + |T | − 1, T ). In the other direction, if we have a
solution S′ in (G′, 2k + |T | − 1, T ), we consider S = S′ ∩ V . Note that S ∪ T has
cardinality at most k + |T |— since |S′ ∪ T | ≤ 2k + 2|T | − 1, S ∪ T is isolated in G′,
and adding a single vertex from E connects at most two components of the set. Thus S
has a cardinality at most k, and G[S ∪ T ] is connected (for otherwise S′ ∪ T could not
be connected in G′).

4 From COLOURFUL GRAPH MOTIF to CONNECTED DOMINATING

SET

4.1 COLOURFUL GRAPH MOTIF

The CONNECTED VERTEX COVER problem is, in a number of cases, too specific to
allow easy reductions. The COLOURFUL GRAPH MOTIF problem appeared to be very
handy in our case.

We show the problem has no polynomial kernel in the class of forests of maximum
degree 3. Fellows et al. [9] have shown that COLOURFUL GRAPH MOTIF in this class
of graphs is already NP-complete. Since trees are 1-degenerate, we use Theorem 1
and take the disjoint union of graphs and the union of functions as the composition
algorithm. Note that any feasible solution is required to induce a connected subgraph
and therefore it needs to be contained in one connected component of the input graph.
This yields the following theorem:

Theorem 3. The COLOURFUL GRAPH MOTIF problem in the class of 1-degenerate
graphs (forests) of maximum degree 3 does not admit a polynomial kernel unless PH =
Σ3

p .
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4.2 Reductions

We propose COLOURFUL GRAPH MOTIF as a simpler tool to prove that various other
problems do not admit a polynomial kernel unless PH = Σ3

p . Firstly, to give some
intuition on COLOURFUL GRAPH MOTIF, let us note that COLOURFUL GRAPH MOTIF

is a special case of GROUP STEINER TREE.

GROUP STEINER TREE Parameter: k.
Input: A graph G = (V, E), sets of vertices T1, . . . , Tk ⊂ V and an integer p.
Question: Does there exist S ⊂ V , such that G[S] is connected, |S| = p and
S ∩ Ti �= ∅ for i = 1, . . . , k?

Proposition 4. d–deg–COLOURFUL GRAPH MOTIF ≤Ptp d–deg–GROUP STEINER

TREE.

Proof. Assume we have an instance (G, k, f) of d–deg–COLOURFUL GRAPH MOTIF.
We create an instance of d–deg–GROUP STEINER TREE as follows: we keep the graph
G, we put p = k and take Ti = f−1(i). Now the the problem GROUP STEINER TREE

asks whether there exists a connected set S of cardinality p = k which has a non–
empty intersection with each Ti. As p = k, this means that the intersection with each Ti

is to contain exactly one element. This is exactly the question in COLOURFUL GRAPH

MOTIF, thus the answer to COLOURFUL GRAPH MOTIF in (G, f, k) is the same as the
answer to GROUP STEINER TREE in (G, {Ti}, p, k).

Corollary 2. COLOURFUL GRAPH MOTIF can be solved in 2knO(1) time and polyno-
mial space.

Proof. We reduce COLOURFUL GRAPH MOTIF to GROUP STEINER TREE as in the
proof of Proposition 4 and use 2knO(1)-time algorithm described in [15].

Our original motivation for analyzing COLOURFUL GRAPH MOTIF was the CON-
NECTED DOMINATING SET problem.

CONNECTED DOMINATING SET Parameter: k.
Input: A graph G = (V, E) and an integer k
Question: Does there exist a set S ⊂ V of cardinality at most k, such that G[S] is
connected and every vertex v ∈ V is adjacent or equal to some vertex u ∈ S?

Proposition 5. d–deg–COLOURFUL GRAPH MOTIF ≤Ptp (d + 1)–deg–CONNECTED

DOMINATING SET, and 2–deg–CONNECTED DOMINATING SET admits no polynomial
kernel unless PH = Σ3

p .

Proof. We begin with an instance (G, k, f) of d–deg–COLOURFUL GRAPH MOTIF.
Due to Corollary 2, we may assume k ≥ 2, otherwise we can solve the input instance
in polynomial time. We create a graph G′ = (V ′, E′) as follows:

– V ⊂ V ′, E ⊂ E′;
– for each colour l ∈ {1, 2, . . . , k} we add two vertices vl and v′l to V ′;
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– for each colour l ∈ {1, 2, . . . , k} we add an edge vlv
′
l to E′;

– for each vertex v ∈ V we add an edge vvf(v) to E′.

Firstly, we prove G′ is (d + 1)–degenerate. Consider any S ⊂ V ′. Then either S ⊂
V ′ \ V (but then every vertex in G′[S] is of degree at most 1) or S ∩ V is non–empty.
Then G[S ∩ V ] contains a vertex v, which had degree at most d in G, so it has degree
at most d + 1 in G′ (as we added one edge to each vertex of V ).

Now we prove the answer to COLOURFUL GRAPH MOTIF for (G, k, f) is the same
as the answer to CONNECTED DOMINATING SET for (G′, 2k). Assume k > 1. If
we have a solution S of COLOURFUL GRAPH MOTIF in G, we create a solution of
CONNECTED DOMINATING SET by putting S′ = S ∪{v1, v2, . . . , vk}. The vertices v′l
are neighbours of vls, any vertex v ∈ V is a neighbour of vf(v), which is in S′, and S′

is connected, for S was connected and each vl is adjacent to the vertex of colour l in
S. On the other hand, any solution S′ to CONNECTED DOMINATING SET in G′ has to
contain all the vertices vl (there are two ways to dominate v′l — either we take vl, or we
take v′l, but in the second case we have to take vl anyway for connectedness). To ensure
connectedness we have to take at least one neighbour ul of each vl (ul �= v′l). As the
sets of neighbours of vls are disjoint and |S′| ≤ 2k, this means exactly one neighbour
of each vl is in S′. In G′[S′] the vertices vl are of degree 1 (they are not adjacent to each
other, and are not adjacent to uj for j �= l), thus G′[S′ \ {v1, v2, . . . , vk}] is connected
as G′[S′] is connected. This means S′ \ {v1, v2, . . . , vk} is a solution to COLOURFUL

GRAPH MOTIF in G.

As a final example of the technique we show how to prove that the STEINER TREE

problem admits no polynomial kernel in 2-degenerate graphs. The problem was studied
in [6], where STEINER TREE was shown to admit no polynomial kernel in general
graphs, and a simple reduction to 2-degenerate graphs was shown in Section 3. We now
show a self–contained proof to demonstrate again the applicability of COLOURFUL

GRAPH MOTIF.

Proposition 6. d–deg–COLOURFUL GRAPH MOTIF≤Ptp (d+1)–deg–STEINER TREE

and 2–deg–STEINER TREE admits no polynomial kernel unless PH = Σ3
p .

Proof. Assume we have an instance (G, k, f) of d-deg-COLOURFUL GRAPH MO-
TIF. We create an instance (G′, T , k) of (d + 1)-deg-STEINER TREE as follows: we
keep the graph G as the set of non–terminals V \ T . Additionally for each colour
i ∈ {1, 2, . . . , k} we add a vertex ti ∈ T and edges vti for all v ∈ f−1(i). We ask
for a Steiner tree of cardinality k in T ∪ V connecting all vertices from T .

First note G′ is (d+1)-degenerate. Similarly like in the previous proof, the terminals
T form an independent set, while to each non–terminal from G we added exactly one
edge. Let S be the solution to STEINER TREE in G′. Note that S has to contain exactly
one vertex of each colour — if some colour was excluded, the corresponding terminal
could not be connected, and the number of colours is at least |S|. Moreover, S has to
be connected in G′[V ] = G, as there is only one vertex of each colour, each terminal
is a leaf in the solution, so removing a terminal does not change the connectedness of
the solution. On the other hand, it can be easily seen that any solution of COLOURFUL

GRAPH MOTIF in G gives a solution of STEINER TREE in G′.
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5 On the Positive Side: Polynomial Kernel for CONNECTED

VERTEX COVER

As a counterpoint to the results above we show that CONNECTED VERTEX COVER

in 2–degenerate graphs does admit a polynomial kernel. To show the problem is non–
trivial we have to begin by proving CONNECTED VERTEX COVER is NP–hard in this
class (otherwise finding a polynomial kernel would not be much of an achievement).
This is not surprising — the CONNECTED VERTEX COVER problem was studied ex-
tensively and shown, for instance, to be NP–hard in graphs with maximum degree 4
(although it is in P for graphs of maximum degree 3, see [8]).

Proposition 7. The unparameterized version of 2–deg–CONNECTED VERTEX COVER

is NP–hard.

Proof. We show a reduction of CNF–SAT to 2–deg–CONNECTED VERTEX COVER.
Consider an instance C1 ∧ C2 ∧ . . . ∧ Cm with variables x1, . . . , xn of CNF–SAT. Let
M be a total number of all literals in all clauses in this formula. We create a graph G as
follows:

– we create two vertices v and v′ and an edge vv′;
– for each variable x we create vertices xt and xf , an edge xtxf and edges vxt and

vxf ;
– for each clause Cj we create vertices Cj and C′

j and an edge CjC
′
j ;

– for each clause Cj if x is a literal in Cj we create vertices Lxj and L′
xj and edges

LxjL
′
xj, LxjCj and Lxjx

t. If ¬x is a literal in Cj we create the same vertices and
edges, with the exception of the last edge being Lxjx

f ;

First let us check the graph above is indeed 2–degenerate. Assume we have such a set
S ⊂ V that G[S] does not contain a vertex of degree 2. The vertices v′, L′

xj and C′
j are

of degree 1 in G, so they cannot be contained in S. The vertices Lxj are of degree 2 in
G[V \ {L′

xj}], so they cannot be contained in S. After removing all Lxjs and C′
js the

Cjs become isolated, and the degree of xts and xf s drops to 2, so S cannot contain any
of them either. We are left with a single vertex v, which is isolated in G[{v}], so S is
empty.

We now claim that a solution to CNF–SAT in C1 ∧ . . . ∧ Cm exists iff a solution
to CONNECTED VERTEX COVER exists for (G, n + m + M + 1). Assume we have a
solution φ to CNF–SAT in C1 ∧ . . . ∧Cm. We choose a set S ⊂ V as follows:

– the vertices v, Cj for all j and Lxj for all x, j for which they exist are in S;
– the vertex xt is in S if φ(x) is true, otherwise xf is in S.

It is easy to see that the set above does indeed cover all the edges of G. It is also
connected — all the xts and xf s are connected with v, for each j the vertices Cj and
Lxj are all connected, and as at least one literal of the clause Cj is set to be true by φ,
at least one of the Lxjs for each j is connected to a x? ∈ S. The solution given is of
cardinality exactly n + m + M + 1.

On the other hand consider any solution S of CONNECTED VERTEX COVER in G.
It has to contain v — to cover the edge vv′ one of v, v′ has to be in S, and if v′ ∈ S,
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Fig. 1. Part of the constructed graph illustrating vertices added for clause Cj = (α ∨ β ∨ γ) and
their interaction with vertices added for variables

then v ∈ S to assure connectedness. For identical reasons Cj ∈ S and Lxj ∈ S. We
already have m + M + 1 vertices in S, so we can use at most n to cover the remaining
edges. However the edges xfxt form a matching of cardinality n in the remaining set,
thus we have to take exactly one of {xt, xf} to belong to S.

Consider a function φ : {x1, . . . , xn} → {TRUE, FALSE}, setting φ(x) =
TRUE iff xt ∈ S. If for some clause Cj all of its literals were set to false by φ,
then removing the vertices x? corresponding to these literals would split G into two
connected components, one containing v, the other containing Cj , which would show
S cannot be connected. As S is a solution to CONNECTED VERTEX COVER, this cannot
happen, thus φ is a solution to our CNF–SAT instance.

Proposition 8. CONNECTED VERTEX COVER in the class of Ki,j–free graphs admits
a polynomial kernel for any i, j.

Proof. Consider a graph G = (V, E). We try to solve CONNECTED VERTEX COVER

for (G, k). First, let X = {v ∈ V : deg v > k}. Note that if there is a solution S for
CONNECTED VERTEX COVER in (G, k), then X ⊂ S — since if some v ∈ X \ S,
then all the neighbours of v would have to be in S, but there are more than k of them. In
particular if |X | > k, the answer is NO. Note we cannot remove X from G and analyse
the remaining graph, for we could lose connectedness.

Consider the set F of edges which are not incident to X . If |F | > k2, the answer
is NO (for each vertex from V covers at most k such edges), let Z be the set of the
endpoints of these edges, and let Y = V \ (Z ∪X). Now for each vertex x ∈ X add
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a vertex x′ and an edge xx′ (this is intended to assure that x is a part of any connected
vertex cover not only of G, but also of the graphs we reduce G to, where the degree of
x could drop). Denote the set of all vertices x′ by X ′.

If we do not know the answer yet, we have |X | = |X ′| ≤ k and |Z| ≤ 2k2 (there
are at most k2 edges of which the vertices of Z are endpoints). Moreover N(y) ⊂ X
for any y ∈ Y .

Now if we have any two vertices y1, y2 ∈ Y such that N(y1) ⊂ N(y2), then the
answer for G is the same as the answer for G[V \ {y1}]. Indeed — if S is a solution in
G[V \ {y1}], it is also a solution in G, since N(y1) ⊂ X ⊂ S, as the edges xx′ have to
be covered, and thus all the edges incident to y1 are covered by S, and of course G[S]
stays connected. On the other hand, if S is a solution in G, then either y1 �∈ S (and then
S is a solution in G[V \ {y1}]) or y1 ∈ S, and then (S ∪ {y2}) \ {y1} is a solution in
G[V \ {y1}] (since y2 connects everything that y1 connected). Thus as long as a pair of
vertices y1, y2 as above exists, we reduce G by removing y1.

To simplify notation assume i ≤ j. Now we show that after these reductions |Y | ≤
(i + j)ki. Consider any set T ⊂ X . There is at most one element y ∈ Y such that
N(y) = T after the reductions. Moreover, if |T | ≥ i, then there are at most j − 1
elements y1, . . . , yj−1 of Y such that N(yl) ⊃ T — otherwise T and the yls would
form a Ki,j subgraph in G. For any element y ∈ Y let f(y) = N(y) if |N(y)| < i

and f(y) be any J ⊂ N(y), |J | = i if |N(y)| ≥ i. There are at most
∑i−1

l=0

(
k
l

)
≤ iki

vertices y of the first type (as for such vertices each set appears at most once as the image
of f ) and at most (j−1)

(
k
i

)
≤ jki vertices of the second type (as for such vertices each

set appears at most j − 1 times as the image of f ). Thus after the reductions we have
|V | = |X |+ |X ′|+ |Z|+ |Y | ≤ k + k + 2k2 + (i + j)ki, which is a polynomial of k.

The Ki,j–free graphs form a wider class than (min{i, j} − 1)–degenerate graphs, thus
CONNECTED VERTEX COVER admits a polynomial kernel in d–degenerate graphs for
any d.

6 Conclusions and Open Problems

In this paper we investigated kernelization hardness in d-degenerate graphs for a number
of problems that included the connectivity requirement. Generally, we proved that the
bounded degeneracy assumption does not help much in existence of polynomial kernels.
The question arises: does there exist a natural class larger than H-minor-free graphs
or apex-minor-free graphs, for which CONNECTED DOMINATING SET, CONNECTED

FEEDBACK VERTEX SET or CONNECTED ODD CYCLE TRANSVERSAL admit a small
kernel?

Secondly, COLOURFUL GRAPH MOTIF appeared as a handy tool for proving ker-
nelization hardness for 2–deg–CONNECTED DOMINATING SET and 2–deg–STEINER

TREE. We believe this idea can inspire more negative results in the field of kerneliza-
tion. In particular, such techniques may lead to a negative result for the question of
existence of a polynomial kernel for PLANAR STEINER TREE, which today is a major
open problem in kernelization and is not covered by meta-kernelization theorems of
Bodlaender et al [3].
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A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351. Springer, Heidelberg (2007)

10. Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.: Kernel(s)
for problems with no kernel: On out-trees with many leaves. In: Proc. of STACS 2009, pp.
421–432 (2009)

11. Fomin, F., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In:
Proc. of SODA 2010, pp. 503–510 (2010)

12. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP.
In: Proc. of STOC 2008, pp. 133–142 (2008)

13. Golovach, P.A., Villanger, Y.: Parameterized complexity for domination problems on degen-
erate graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008.
LNCS, vol. 5344, pp. 195–205. Springer, Heidelberg (2008)

14. Kostochka, A.V.: Lower bound of the hadwiger number of graphs by their average degree.
Combinatorica 4(4), 307–316 (1984)

15. Misra, N., Philip, G., Raman, V., Saurabh, S., Sikdar, S.: FPT Algorithms for Connected
Feedback Vertex Set. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942,
pp. 269–280. Springer, Heidelberg (2010)

16. Philip, G., Raman, V., Sikdar, S.: Solving dominating set in larger classes of graphs: Fpt al-
gorithms and polynomial kernels. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757,
pp. 694–705. Springer, Heidelberg (2009)

17. Thomason, A.: An extremal function for contractions of graphs. Math. Proc. Cambridge
Philos. Soc. 95(2), 261–265 (1984)

18. Thomason, A.: The extremal function for complete minors. J. Comb. Theory, Ser. B 81(2),
318–338 (2001)
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Abstract. Boolean-width is a recently introduced graph invariant. Sim-

ilar to tree-width, it measures the structural complexity of graphs. Given

any graph G and a decomposition of G of boolean-width k, we give al-

gorithms solving a large class of vertex subset and vertex partitioning

problems in time O∗(2O(k2)). We relate the boolean-width of a graph to

its branch-width and to the boolean-width of its incidence graph. For this

we use a constructive proof method that also allows much simpler proofs

of similar results on rank-width in [S. Oum. Rank-width is less than or

equal to branch-width. Journal of Graph Theory 57(3):239–244, 2008].

For an n-vertex random graph, with a uniform edge distribution, we show

that almost surely its boolean-width is Θ(log2 n) – setting boolean-width

apart from other graph invariants – and it is easy to find a decomposition

witnessing this. Combining our results gives algorithms that on input a

random graph on n vertices will solve a large class of vertex subset and

vertex partitioning problems in quasi-polynomial time O∗(2O(log4 n)).

1 Introduction

Width parameters of graphs, like tree-width, branch-width, clique-width and
rank-width, have many applications in the field of graph algorithms and espe-
cially in Fixed Parameter Tractable (FPT) algorithmics, see e.g. Downey and
Fellows [7], Flum and Grohe [8], and Hliněný et al. [11]. When comparing width-
parameters, we should consider the values of the parameters on various graph
classes, the runtime of algorithms for finding the corresponding optimal decom-
position, the classes of problems that can be solved by dynamic programming
along such a decomposition, and the runtime of these algorithms. Recently, Bui-
Xuan et al. [2] introduced a new width parameter of graphs called boolean-width.
While rank-width is based on the number of GF(2)-sums (1 + 1 = 0) of rows
of adjacency matrices, boolean-width is based on the number of Boolean sums
(1+1 = 1) of these rows. Although is it open whether computing boolean-width
is FPT, the number of Boolean sums of rows for a matrix is easy to compute
in FPT time by an incremental approach, and surprisingly is the same for the
matrix and its transpose.
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Fig. 1. Upper bounds tying parameters tw=tree-width, bw=branch-width, cw=clique-

width, rw=rank-width and boolw=boolean-width, and runtimes achievable for Mini-

mum Dominating Set using various parameters. In the upper part of the figure, an

arrow from P to Q labelled f(k) means that any class of graphs having parameter P at

most k will have parameter Q at most f(k), and ∞ means that no such upper bound

can be shown. Except for the labels in boxes the bounds are known to be tight, mean-

ing that there is a class of graphs for which the bound is Ω(f(k)). For the two boxes

containing labels 2k and 2k+1, a Ω(2k/2) bound is known [4]. For the box containing

label k2 a Ω(k) bound is known [2]. The arrows bw → boolw and tw → boolw are

proven in Section 4 of this paper.

This paper gives new algorithmic applications of boolean-width, and new
structural properties of graphs of bounded boolean-width. It is well-known that
for any class of graphs their tree-width is bounded by a constant if and only
if their branch-width is bounded by a constant: we say the two parameters are
equivalent. Likewise, clique-width, rank-width, and boolean-width are equiva-
lent. For any graph class we have only three possibilities: either all five parame-
ters are bounded (e.g. for trees) or none of them are bounded (e.g. for grids) or
only clique-width, rank-width and boolean-width are bounded (e.g. for cliques).
Capturing known results and new insights from Section 4, we show in Figure 1
information allowing for a finer comparison. Let us say that parameter P is
polylog on a graph class C if the value of P for any graph G in C is polyloga-
rithmic in the size of G. Then if P is polylog on C any algorithm with runtime1

O∗(2poly(P )) single exponential in parameter P runs in quasi-polynomial time on
input a graph in C. From Figure 1 we see that if any of tree-width, branch-width,
clique-width or rank-width is polylog on a class of graphs then so is boolean-
width, while in Section 5 we show that the random graphs give an example of
a class where boolean-width is polylog but none of the other parameters are. A
finer comparison can be made by looking at the bounds between the parameters
in combination with the runtimes achievable for a particular problem, as done
for Minimum Dominating Set (MDS) in Figure 1. In this way, for MDS, and
in fact all problems addressed in Section 3, boolean-width compares well to the
other parameters. The paper is organized as follows.

1 We use O∗ notation that hides polynomial factors.
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In Section 2 we define branch-width, rank-width, and boolean-width in a com-
mon framework. In Section 3 we depict algorithms that given a decomposition
tree of boolean-width k of a graph, solve a large class of NP-hard vertex subset
and vertex partitioning problems, namely (σ, ρ)-problems and Dq-problems [23],
in time O∗(2O(k2)). These are monadic second order logic expressible problems
related to domination, independence and homomorphism, including Max or Min
Perfect Code, Max or Min Independent Dominating Set, Min k-Dominating Set,
Max Induced k-Regular Subgraph, Max Induced k-Bounded Degree Subgraph,
H-Coloring, H-Homomorphism, H-Covering, H-Partial Covering. From Cour-
celle’s theorem [5] they belong to FPT when parameterized by either the tree-
width, branch-width, clique-width, rank-width or boolean-width of the graph,
when an appropriate decomposition is given. Although the runtime given in
Courcelle’s theorem contains a highly exponential factor (tower of powers), the
problems behave very well for tree-width and branch-width: given a decom-
position tree of tree-width tw, they can be solved in O∗(2O(tw)) time [23]. In
particular, (σ, ρ)-problems can be solved in O∗((d(σ) + d(ρ) + 2)tw) time [22]
for some problem specific constants d(σ) and d(ρ) (see Section 3). This is not
the same situation for clique-width, where until now the best runtime contains
a O∗(22poly(cw)

) double exponential factor [10]. Having small boolean-width is
witnessed by a decomposition of the graph into cuts with few different unions
of neighborhoods across the cut. This makes the decomposition natural to guide
dynamic programming algorithms to solve problems, like Max Independent Set,
where vertex sets having the same neighborhoods can be treated as equiva-
lent [2]. Surprisingly, in this paper we extend such an observation to the much
larger class of vertex subset and vertex partitioning problems. Several new tech-
niques are introduced in order to achieve this and the runtime of these algo-
rithms is O∗(2O(boolw2)), which then can also be interpreted as O∗(2O(cw2)) and
O∗(2O(rw4)) by using the relationships in Figure 1, improving the O∗(22poly(cw)

)
runtime in [10].

In Section 4 we relate boolean-width to branch-width. We prove for every
graph G with bw(G) �= 0 that boolw(G) ≤ bw(G). For the proof we develop a
general method of constructive manipulations of the decompositions that gives
a good understanding of the connections between the graph parameters. In [20],
Oum studies the relation of rank-width and branch-width using deep results from
matroid theory. Our framework also allows to address this relation in a simpler
and direct way. Independently, Kanté [14] gave a constructive proof showing
that the rank-width of a graph is at most 4 times its tree-width plus 2. We show
constructively that (except for some trivial cases) rank-width is at most branch-
width, and also constructively that rank-width is at most tree-width plus one,
simplifying Oum’s proof and improving Kanté’s construction.

In Section 5 we show for a random graph on n vertices where the edges are drawn
with respect to a uniform distribution that almost surely2 its boolean-width is
Θ(log2 n), and it is easy to find a decomposition tree witnessing the upper bound.
This contrasts sharply with a series of negative results establishing that almost
2 We use term “almost surely” to denote events whose asymptotic probability is 1.



162 I. Adler et al.

surely a random graph on n vertices has tree-width and branch-width [16], clique-
width [13] and rank-width [18] all in Θ(n). The importance of this result is possibly
not in the random graphs themselves, but in the indication that boolean-width is
quite often much smaller than all the other parameters, and therefore potentially
very useful. Our result also implies the following: any problem solvable by dynamic
programming in time O∗(2poly(k)) given a decomposition of boolean-width k, can
be solved in quasi-polynomial time on input a random graph (where we do not need
a decomposition as part of input). Such problems include Minimum Dominating
Set and Maximum Independent Set which can be solved in time O(n(n + 23kk))
[2]. Moreover, combining our results from Sections 3 and 5 we get an algorithm
that given a random graph on n vertices, solves (σ, ρ)-problems and Dq-problems
in quasi-polynomial time O∗(2O(log4 n)).

2 Framework

We address loopless simple undirected graphs. Let G be a graph with vertex
set V (G) and edge set E(G). For a vertex v ∈ V (G) let N(v) be the set of all
neighbours of v in G. We extend this to subsets X ⊆ V (G) by letting N(X) :=⋃

v∈X N(v). For a tree T we denote the set of leaves by L(T ). A tree is subcubic
if every vertex has degree either 1 or 3.

Let A be a finite set. For a subset X ⊆ A let X := A \ X . Let f : 2A → R

be a symmetric set function, i.e. f satisfies f(X) = f(X) for all X ⊆ A. A
decomposition tree of f (on A) is a pair (T , δ), where T is a subcubic tree and
δ : L(T ) → A is a bijection. Each edge e ∈ E(T ) yields a partition Pe of A,
induced by the leaf labels of the two trees we get by removing e from T : if T1 and
T2 denote the two components of T − e, then Pe :=

(
δ(L(T1)∩L(T )), δ(L(T2)∩

L(T ))
)
. We extend the domain of f to edges e of T by letting f(e) := f(X)

for Pe = (X, X). This is well-defined because f is symmetric. The f -width of a
decomposition tree (T , δ) is f -w(T , δ) := max{f(e) | e ∈ E(T )}. The width of f
is width(f) := min{f -w(T , δ) | (T , δ) decomposition tree of f}. If |A| ≤ 1, then
f has no decomposition tree and we let width(f) := f(A).

We now define branch-width of a graph G. For any subset X ⊆ E(G) let

∂(X) := {v ∈ V (G) | v incident to both an edge from X and from X}

denote the border of X . We define cut-bwG := cut-bw : 2E(G) → N as
cut-bw(X) := |∂(X)|. Clearly, cut-bw is symmetric. The branch-width of G is
defined as bw(G) := width(cut-bw).

For subsets X, Y ⊆ V (G) let M(X,Y ) denote the X × Y -submatrix of the
adjacency matrix of G. Let Δ denote the symmetric difference of sets: AΔB =
(A \B) ∪ (B \A). We define cut-rkG := cut-rk : 2V (G) → N as

cut-rk(X) := log2

∣∣∣∣∣{B ⊆ X
∣∣ ∃A ⊆ X, B =

�

v∈A

N(v) ∩X}
∣∣∣∣∣ = rk

(
M(X,X)

)
,
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where rk
(
M(X,X)

)
denotes the GF(2)-rank of M(X,X). Then the rank-width of

G is rw(G) := width(cut-rk).
For boolean-width we define cut-boolG := cut-bool : 2V (G) → R as

cut-bool(X) := log2

∣∣{B ⊆ X
∣∣ ∃A ⊆ X with B = N(A) ∩X}

∣∣ .
Surprisingly, the function cut-bool is symmetric [15, Theorem 1.2.3]. The boolean-
width of a graph G is boolw(G) := width(cut-bool). Let us give an alternative
view on boolean-width. Let R(M(X,Y )) denote the set of all vectors spanned by
the rows of M(X,Y ) by taking Boolean sums, i.e. 1 + 1 = 1. It is easy to see that

cut-bool(X) = log2

∣∣∣R(M(X,X))
∣∣∣ .

3 Vertex Subset and Vertex Partitioning Problems

Given a graph G together with a decomposition tree of cut-bool of width boolw,
we depict algorithms with runtime O∗(2O(boolw2)) solving a large class of prob-
lems, the so-called (σ, ρ) vertex subset and Dq vertex partitioning problems as
defined in [23].

Definition 1. Let σ and ρ be finite or co-finite subsets of natural numbers. A
subset X of vertices of a graph G is a sigma-rho set, or simply (σ, ρ)-set, of G if

∀v ∈ V (G) : |N(v) ∩X | ∈
{

σ if v ∈ X ,
ρ if v ∈ V (G) \X.

The vertex subset problems consist of finding the size of a minimum or maximum
(σ,ρ)-set in G. Several NP-hard problems are expressible in this framework, e.g.,
Max Independent Set({0}, N), Min Dominating Set(N, N \ {0}), Max Strong
Stable Set({0}, {0, 1}), Max or Min Perfect Code({0}, {1}). Also if we let Mk =
{0, 1, 2, . . . k} then Min k-Dominating Set(N, N \Mk), Max Induced k-Regular
Subgraph({k}, N) (see [23] for further details and a more complete list). This
framework is extendible to problems asking for a partition of V (G) into q classes,
with each class satisfying a certain (σ, ρ)-property:

Definition 2. A degree constraint matrix Dq is a q by q matrix with entries
being finite or co-finite subsets of natural numbers. A Dq-partition in a graph
G is a partition {V1, V2, ..., Vq} of V (G) such that for 1 ≤ i, j ≤ q we have
∀v ∈ Vi : |N(v) ∩ Vj | ∈ Dq[i, j].

The vertex partitioning problems for which we give algorithms in this paper
consist of deciding if G has a Dq partition, the so-called ∃Dq problem. NP-
hard problems fitting into this framework include e.g. for any fixed graph H the
problems known as H-Coloring or H-Homomorphism (with q-Coloring being
Kq-Coloring), H-Covering, H-Partial Covering, and in general the question of
deciding if a graph has a partition into q (σ, ρ)-sets [23].

We focus on algorithms for the vertex subset problems. Let a graph G and
a decomposition tree (T , δ) of cut-bool be given as input. Our algorithm will
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follow a bottom-up dynamic programming approach: subdivide an arbitrary edge
of T to obtain a root r, and denote by Tr the resulting rooted tree. With each
node w of Tr we associate a table data structure Tabw, that will store optimal
solutions to subproblems related to Vw , the set of vertices of G mapped to the
leaves of the subtree of Tr rooted at w. Each index of the table will be associated
with a certain class of equivalent subproblems that we need to define depending
on the problem on which we are focusing.

Let d(N) = 0 and let d(∅) = 0. For every finite or co-finite set μ ⊆ N, let
d(μ) = 1 + min{maxx∈Nx : x ∈ μ, maxx∈Nx : x /∈ μ}. We denote by d(σ, ρ), or
simply by d when it appears clearly in the context that σ and ρ are involved,
the value d = d(σ, ρ) = max{d(σ), d(ρ)}. Note that when checking if a subset
A of vertices is a (σ, ρ)-set, as in Definition 1, it suffices to count the number
of neighbors up to d that a vertex has in A. This is the key to getting fast
algorithms and motivates the following equivalence relation.

Definition 3 (d-neighbor equivalence). Let G be a graph and A ⊆ V (G).
Two vertex subsets X ⊆ A and X ′ ⊆ A are d-neighbor equivalent w.r.t. A,
denoted by X ≡d

A X ′, if

∀v ∈ A, (|N(v) ∩X | = |N(v) ∩X ′|) ∨ (|N(v) ∩X | ≥ d ∧ |N(v) ∩X ′| ≥ d) .

We now depict the entries of the table data structure Tabw. Roughly, we aim
at solving the vertex subset problems using one d-neighbor equivalence class
per entry in Tabw. For this, we first define a canonical representative for every
d-neighbor equivalence class.

Lemma 1. Let G be a graph and A ⊆ V (G). Then, for every X ⊆ A, there is
R ⊆ A such that R ≡d

A X and |R| ≤ d · cut-bool(A). Moreover, the number of
equivalence classes of ≡d

A is at most 2d·cut-bool(A)2 .

We now define the canonical representative cand
Vw

(X) of every subset X ⊆ Vw,
and the canonical representative cand

Vw
(Y ) of every subset Y ⊆ Vw. For sim-

plicity we define this for Vw only, but the definition can be used for Vw as well,
since everything we say about X ⊆ Vw, cand

Vw
(X) and ≡d

Vw
will hold also for

cand
Vw

(Y ), Y ⊆ Vw and ≡d
Vw

. Canonical representatives are to be used for index-
ing the table Tabw at node w of the tree Tr. Three properties will be required.
Firstly, if X ≡d

Vw
X ′, then we must have cand

Vw
(X) = cand

Vw
(X ′). Secondly,

given (X, Y ), we should have a fast routine that outputs a pointer to the entry
Tabw[cand

Vw
(X)][cand

Vw
(Y )]. Thirdly, we should have a list whose elements can

be used as entries of the table, i.e. a list containing all canonical representatives
w.r.t. ≡d

Vw
. The following definition trivially fulfills the first requirement.

Definition 4. We assume that a total ordering of the vertices of V (G) is given.
For every X ⊆ Vw, the canonical representative cand

Vw
(X) is defined as the

lexicographically smallest set R ⊆ Vw such that: |R| is minimized and R ≡d
Vw

X .

Definition 5. Let G be a graph, A ⊆ V (G), and μ ⊆ N. For X ⊆ V (G), we
say that X μ-dominates A if ∀v ∈ A : |N(v) ∩ X | ∈ μ. For X ⊆ A, Y ⊆ A,
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we say that (X, Y ) σ, ρ-dominates A if (X ∪ Y ) σ-dominates X and (X ∪ Y )
ρ-dominates A \X .

Definition 6. Let opt stand for either function max or function min, depending
on whether we are looking for a maximum or minimum (σ, ρ)-set, respectively.
For every node w of Tr, for X ⊆ Vw and Y ⊆ Vw, let RX = cand

Vw
(X) and

RY = cand
Vw

(Y ). We define the contents of Tabw[RX ][RY ] as:

Tabw[RX ][RY ] def=

⎧⎨⎩
optS⊆Vw{|S| : S ≡d

Vw
X and (S, Y ) σ, ρ-dominates Vw},

−∞ if no such set S exists and opt = max,
+∞ if no such set S exists and opt = min.

Lemma 2. For any node w of Tr with k = cut-bool(Vw), we can compute a list
containing all canonical representatives w.r.t. ≡d

Vw
in time O(m+d ·k ·22d·k2+k).

For any subset X ⊆ Vw, a pointer to cand
Vw

(X) can be found in time O(|X | ·2k).

Note that at the root r of Tr the value of Tabr[X ][∅] (for all X ⊆ V (G)) would
be exactly equal to the size of a maximum, resp. minimum, (σ, ρ)-set of G (cf.
≡d

Vr
has only one equivalence class). For initialization, the value of every entry

of Tabw will be set to +∞ or −∞ depending on whether we are solving a min-
imization or maximization problem, respectively. For a leaf l of Tr, we perform
a brute-force update: let A = {l} and B = A, for every canonical representative
R w.r.t. ≡d

B, we set:

– If |N(l) ∩R| ∈ σ then Tabl[A][R] = 1.
– If |N(l) ∩R| ∈ ρ then Tabl[∅][R] = 0.

For a node w of Tr with children a and b, the algorithm proceeds as follows. For
every canonical representative Rw w.r.t. ≡d

Vw
, for every canonical representative

Ra w.r.t. ≡d
Va

, and for every canonical representative Rb w.r.t. ≡d
Vb

, do:

– Compute Rw = cand
Vw

(Ra∪Rb), Ra = cand
Va

(Rb∪Rw) and Rb = cand
Vb

(Ra∪
Rw)

– Update Tabw[Rw][Rw] = opt(Tabw[Rw][Rw],Taba[Ra][Ra] + Tabb[Rb][Rb]).

Lemma 3. The table at node w is updated correctly, i.e. for any canonical rep-
resentatives Rw and Rw w.r.t. ≡d

Vw
and ≡d

Vw
, if Tabw[Rw][Rw] is not ±∞ then

Tabw[Rw][Rw] = optS⊆Vw{|S| : S ≡d
Vw

Rw ∧ (S, Rw) σ, ρ-dominates Vw}.

If the value of the table is ±∞ then there is no such above set S.

Theorem 1. For every n-vertex, m-edge graph G given along with a decom-
position tree (T , δ) for cut-bool, any (σ, ρ)-vertex subset problem on G with
d = d(σ, ρ) can be solved in time
O(n(m + d · cut-bool-w(T , δ)23d·cut-bool-w(T,δ)2+cut-bool-w(T,δ))).
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Proof. Correctness follows directly from what has been said in this section. For
complexity analysis, for every node w of Tr, we basically call the first computa-
tion of Lemma 2 once, then loop through every triplet Rw, Ra, Rb of equivalence
classes, call the second computation of Lemma 2 three times, and perform the
table update. ��

The algorithms for vertex partitioning problems are similar but require some
graph-theoretic observations and several technical details. For space reasons this
has all been omitted.

Theorem 2. For every n-vertex, m-edge graph G given along with a decompo-
sition tree (T , δ) of cut-bool, any Dq-problem on G, with d = maxi,j d(Dq[i, j]),
can be solved in time
O(n(m + qd · cut-bool-w(T , δ)23qd·cut-bool-w(T,δ)2+cut-bool-w(T,δ))).

4 Boolean-Width is Less than or Equal to Branch-Width

We relate boolean-width to branch-width, and show the following

Theorem 3. Any graph G satisfies boolw(G) ≤ bw(G) (unless E(G) �= ∅ and
no two edges of G are adjacent).

In order to clarify how the decomposition trees relate to each other, we divide our
result into two steps, addressing the intermediary notion of an incidence graph
(see Lemmata 4 and 5). However, we will also show how to easily derive from
our method a direct proof without incidence graphs. Our framework not only
applies for boolean-width, but also captures other settings including rank-width.
The incidence graph I(G) of a graph G is the graph with vertex set V (G)∪̇E(G),
where x and y are adjacent in I(G) if one of x, y is a vertex of G, the other is
an edge of G and x and y are incident in G.

Lemma 4. For any graph G, boolw(I(G)) ≤ bw(G) and rw(I(G)) ≤ bw(G),
unless E(G) �= ∅ and no two edges of G are adjacent. In this case, bw(G) = 0
and rw(I(G)) = boolw(I(G)) = 1.

The proof is omitted, but let us sketch the idea. Starting with a decomposition
tree (T , δ) of cut-bwG of width k, we modify the decomposition tree in two
steps. In the first step, we replace every leaf � of T by a subcubic tree with three
leaves, and we label one of the three leaves with the edge δ(�) and we label the
other two leaves with the two vertices incident with δ(�). In a second step, for
each v ∈ V (G) we choose one leaf with label v, we keep this leaf, and delete all
other leaves that are labelled by v. In this way we obtain a decomposition tree
of cut-boolI(G) (and of cut-rkI(G)) of boolean-width and rank-width both at
most k.

Lemma 5. For any graph G,

max{boolw(G), rw(G)} ≤ min{boolw(I(G)), rw(I(G))}.
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Theorem 3 now follows immediately from Lemmata 4 and 5, as well as the fact
that rank-width is at most branch-width (except for the trivial cases). It is also
easy to give a direct proof using the proof idea of Lemma 4. The only difference
is in the first modification step. Instead of taking a subcubic tree with three
leaves, we take the subcubic tree with two leaves (since we do not need to assign
leaves to graph edges). Note that there is no bound in the converse direction: the
class of all complete graphs has unbounded branch-width and the boolean-width
is at most 1. Nevertheless, moving to incidence graphs we prove a weak converse.

Lemma 6. For any graph G, bw(G) ≤ 2 ·min{boolw(I(G)), rw(I(G))}.
Corollary 1. Any graph G satisfies boolw(G) ≤ bw(G) ≤ 2 · boolw(I(G))
(unless E(G) �= ∅ and no two edges of G are adjacent).

Corollary 2. For any graph G,

1. boolw(I(G)) ≤ bw(I(G)) ≤ 2 · boolw(I(G)) and
2. boolw(I(G)) ≤ rw(I(G)) + 1 ≤ 2 · boolw(I(G)) + 1.

Proof. Note that bw(G) = bw(I(G)), unless E(G) �= ∅ and no two edges of G are
adjacent. In this case, bw(G) = 0 and bw(I(G)) = 1. Then, the first statement
follows from Lemmata 4 and 6. The second statement follows from the first by
using a theorem from [20] stating that rw(I(G)) ∈ {bw(G),bw(G)− 1}. ��

5 Random Graphs

Let Gp be a random graph on n vertices where each edge is chosen randomly and
independently with probability p (independent of n). There has been a series of
negative results [13,16,18] establishing that almost surely Gp has rank-width,
tree-width, branch-width and clique-width Θ(n). In contrast we show in this
section the following.

Theorem 4. Almost surely, boolw(Gp) = Θ
(

ln2 n
p

)
.

We start with the upper bound and first prove the following lemma.

Lemma 7. Let Gp be a graph as above, and let kp = � 2 lnn
p �. Then, almost

surely, for all subsets of vertices S ⊂ V (G) with |S| = kp it holds that |N(S)\S| ≥
|S| − kp.

Proof. In what follows, we write simply G and k. Fix a particular S with
|S| = k. For every v ∈ S, let Xv be 1 if v �∈ N(S), and 0 otherwise. Clearly,
Xv = 1 with probability (1 − p)k, and

∑
v∈S Xv = |S \ N(S)|. Observe that

E[
∑

v �∈S Xv] = (1 − p)k(n − k) < (1 − p)kn. Call this expectation μ. By
Chernoff’s Bound (see e.g. [19], p.68),

Pr

⎡⎣∑
v∈S

Xv ≥ k

⎤⎦ <
(eμ

k

)k

<
(
(1− p)kn

)k
=

(
(1− p)2 ln n/pn

)k

< n−k ,

the last inequality due to the fact that for p ∈ (0, 1), (1− p)
1
p ≤ e−1.
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Applying the union bound, we conclude that the probability that there exists
S of size k such that |N(S)\S| < |S|−k is at most

(
n
k

)
·n−k < (k!)−1 = o(1)

and the statement follows. ��

Corollary 3. For G = Gp and k = kp as before, for all cuts
{
A, A

}
in G it

holds almost surely that cut-bool(A) = O
(

ln2 n
p

)
.

Proof. The number of distinct sets N(S) ∩ A contributed by the sets S ⊆ A

with |S| ≤ k is at most
∑k

i=0

(
n
i

)
. By the previous lemma, for all sets S ⊆ A

with |S| ≥ k, it holds almost surely that |N(S)∩A| ≥ |A|−k. Therefore, almost
surely, the sets S ⊆ A with |S| ≥ k, also contribute at most

∑k
i=0

(
n
i

)
distinct

sets N(S) ∩ A. Thus, almost surely there are at most 2
∑k

i=0

(
n
i

)
distinct sets

N(S) ∩A altogether. Taking the logarithm allows to conclude. ��
The upper bound of Theorem 4 now follows easily: for any decomposition tree of
cut-bool, all the cuts it defines will almost surely have boolean-width at most
O

(
ln2 n

p

)
. Next, we move to the lower bound of Theorem 4. For simplicity of

exposition, we restrict the discussion to the case p = 0.5. The lower bound for
that case follows from:

Lemma 8. Let
{
A, A

}
be a cut where |A| = |A| = m, and the edges are cho-

sen independently at random with probability 0.5. Then, Pr[ cut-bool(A) =
Ω(log2 m) ] ≥ 1 − 2−Ω(m1.3). More concretely, the probability that among the
neighborhoods of the subsets of A of size k = 0.25 · log2 m, there are less than
2c log2 m different ones (for a suitable constant c), is at most 2−Ω(m1.3).

To prove this lemma we need some notation and preliminary results first. Let the
(random) set Si ⊆ A, i = 1, 2, . . . , m be the neighborhood of the vertex i ∈ A,
and let SI = ∪i∈ISi. We shall only be interested in the I’s of size k as above.
Call such I bad if m−|SI | < m0.5. Call a set I of size k thick if there are at least
m0.9 indices i ∈ {1, 2, . . . , m} − I such that Si ⊆ SI . Lemma 8 can be proved
using below Corollary 4.

Claim 1. Pr
[

the number of bad I’s
(m

k ) ≥ 0.5
]

< e−Ω(m1.74) .

Claim 2. For a fixed set I of size k, the probability that I is thick conditioned
on its being good (that is, not bad), is at most e−Ω(m1.3).

Corollary 4. Pr
[
the number of thick I’s > 0.5 ·

(
m
k

) ]
< e−Ω(m1.3) .

Proof of Theorem 4: The upper bound has already been proved. For the lower
bound we restrict for simplicity of exposition to the case p = 0.5. Consider a
(1
3 , 2

3 )-balanced cut in G, that is a cut (X, X) with n
3 ≤ |X | ≤

2n
3 . Due to the

monotonicity of the cut-bool with respect to taking induced subcuts, Lemma 8
applies in this case with m = n/3. Therefore, the probability that cut-bool of
this cut is Ω(log2 n) is 1−e−Ω(n1.3). Since there at most 2n cuts in G, we conclude
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that with probability 1− e−Ω(n1.3) all balanced cuts have such cut-bool. Since
any decomposition tree of G must contain a (1

3 , 2
3 )-balanced cut, the statement

follows. ��

6 Further Research

In this paper we have seen that for random graphs boolean-width is the right
parameter to consider: any decomposition tree will have boolean-width polylog-
arithmic in n. This also hints at the existence of large classes of graphs where
boolean-width is polylogarithmic in the value of the other parameters, and raises
the question of identifying these. One such class of graphs is defined by the so-
called Hsu-grids [2], where boolean-width is Θ(log n) and rank-width, branch-
width, tree-width and clique-width are Θ(

√
n). In contrast, we know that the

boolean-width of regular graphs is Θ(n) [21], thus such an above mentioned class
should exclude regular graphs.

We believe that boolean-width should be useful for practical applications. We
have initiated research to find fast and good heuristics computing decomposi-
tions of low boolean-width [12], similar to what is done for treewidth in the
TreewidthLIB project [1].

A big open question is to decide if the boolean-width of a graph can be
computed in FPT time. The relationship between rank-width and boolean-width
is still not completely clear. Could it be that the boolean-width of any graph is
linear in its rank-width? Currently the best bound is boolw(G) ≤ 1

4rw(G)2 +
5
4rw(G) + log rw(G) [2].

The runtime of the algorithms given here for (σ, ρ)-problems and Dq-problems
have the square of the boolean-width as a factor in the exponent. For problems
where d = 1 we can in fact improve this to a factor linear in the exponent [2],
but that requires a special focus on these cases. In fact, we believe that also
for the other problems (with any constant value of d) we could get runtimes
with an exponential factor linear in boolean-width. We must then improve the
bound in Lemma 1, by showing that the number of d-neighborhood equivalence
classes is no more than the number of 1-neighborhood equivalence classes raised
to some function of d. This question can be formulated as a purely algebraic one
as follows: First generalize the concept of Boolean sums (1+1 = 1) to d-Boolean
sums (i + j = min(i + j, d)). For a Boolean matrix A let Rd(A) be the set of
vectors over {0, 1, ..., d} that arise from all possible d-Boolean sums of rows of
A. Is there a function f such that |Rd(A)| ≤ |R1(A)|f(d) log log |R1(A)|?
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11. Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width

and their applications. The Computer Journal 51(3), 326–362 (2008)

12. Hvidevold, E.: Implementation of heuristics for computing boolean-width, Master

thesis, University of Bergen (September 2010) (to appear)
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Abstract. Cluster Editing is a classical graph theoretic approach

to tackle the problem of data set clustering: it consists of modifying a

similarity graph into a disjoint union of cliques, i.e, clusters. As pointed

out in a number of recent papers, the cluster editing model is too rigid to

capture common features of real data sets. Several generalizations have

thereby been proposed. In this paper, we introduce (p, q)-cluster graphs,

where each cluster misses at most p edges to be a clique, and there are at

most q edges between a cluster and other clusters. Our generalization is

the first one that allows a large number of false positives and negatives

in total, while bounding the number of these locally for each cluster by

p and q. We show that recognizing (p, q)-cluster graphs is NP-complete

when p and q are input. On the positive side, we show that (0, q)-cluster,

(p, 1)-cluster, (p, 2)-cluster, and (1, 3)-cluster graphs can be recognized

in polynomial time.

1 Introduction

Clustering is an optimization problem having applications in many fields ranging
from bioinformatics [1,17] to image processing [20], with various algorithmic
approaches available [16]. The general idea of clustering is to partition a set of
data items into subsets, called clusters, in such a way that highly similar items
belong to the same cluster and items having low similarity belong to different
clusters. The input typically consists of similarity values between pairs of items
and in the graph-based approach to clustering the items correspond to vertices,
with two vertices being adjacent if and only if their similarity value exceeds a
fixed threshold θ [13]. In a perfect setting with no noise, an appropriate threshold
yields a similarity graph whose connected components (or clusters) are cliques.
However, in most cases there will be noise, both false positives (presence of an
edge that should not have been present) and false negatives (missing edges).
Shamir et al. [19] initiated a study of clustering in terms of graph modification
problems with a focus on the Cluster Editing problem: modify a given graph
by adding and deleting at most k edges to obtain a disjoint union of cliques.
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Cluster Editing, parameterized by the number k of false positives and neg-
atives, is FPT [3,9,10]. Furthermore, it has a polynomial-time 4-approximation
algorithm but it does not admit a PTAS unless P = NP [14]. Several drawbacks
of this model have been pointed out (see e.g. [4,6]): for low values of the pa-
rameter k, it does not capture instances with a high number of false positives
and negatives, nor does it allow overlap between clusters. As it has been ob-
served that clusters do not always represent an equivalence relation (see [8,18]),
overlapping clusters have been considered [5,7]. In addition, a weighted version
of Cluster Editing has been considered to capture the fact that the costs
of fixing false positives and of false negatives can differ [2]. Other variants to
tackle data sets containing a large number of false negatives have been proposed
[12,11]. The p-Defective Clique Editing problem is introduced by Guo et
al. [11]: modify a given graph by adding and deleting at most k edges to obtain a
disjoint union of p-defective cliques, where a p-defective clique is a graph missing
at most p edges from being a clique. An FPT algorithm, parameterized by p and
k, is given for this problem [11]. Note that for low values of the parameters the
p-Defective Clique Editing problem allows a high number of false negatives,
as long as the noise is distributed among the clusters, but it does not allow a
high number of false positives.

In this paper we present an alternative approach to graph clustering that
allows a high total number of both false negatives and false positives, but little
noise related to each cluster, by introducing what we call (p, q)-cluster graphs.

(p, q)-Cluster Graph Recognition

Input: A graph G and two integers p, q.
Question: Can the vertex set of G be partitioned into subsets with each subset
missing at most p edges from being a clique (i.e. inducing a p-defective clique)
and having at most q edges going to other subsets?

Note that (0, 0)-cluster graphs are exactly cluster graphs. A (p, q)-cluster graph
can have low values of p and q, while having a high total number of false negatives
and false positives. In that case the similarity values and threshold θ satisfy the
reasonable constraint that in each cluster C of similar items we find at most p
pairs u, v ∈ C with similarity less than θ, and at most q pairs u ∈ C, w �∈ C
with similarity higher than θ. Observe also that tuning the p and q parameters
independently is an alternative attempt of assigning different roles or importance
to false positives and false negatives [2]. Moreover the transitivity constraint
which has been criticized in Cluster Editing [8,18] is relaxed. In this way the
(p, q)-Cluster Graph Recognition problem, or its editing version, answers
most of the drawbacks present in the Cluster Editing problem. Thus, as a first
task, we want efficient algorithms for (p, q)-Cluster Graph Recognition.
Not surprisingly, (p, q)-Cluster Graph Recognition is NP-complete, as we
show in Theorem 1. However, as we summarize in Figure 1, there are various
values of p and q for which (p, q)-Cluster Graph Recognition can be solved
in polynomial time, some trivially and some by more complicated combinatorial
arguments.
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Fig. 1. The shaded area and the dot indicate p and q values for which (p, q)-cluster

graphs are polynomial-time recognizable

On the one hand, (p, 0)-Cluster Graph Recognition corresponds to the
p-Defective Clique Editing problem allowing zero edge modifications and is
therefore trivial since the answer is yes if and only if each connected component
of the input graph is a p-defective clique. On the other hand, (0, q)-Cluster

Graph Recognition is not at all simple, as there are many ways to parti-
tion the vertex set of a graph into a collection of cliques. In particular, similar
problems like partitioning the vertex set of a graph into a minimum number of
cliques (Partition Into Cliques), or into subsets of bounded size each having
a bounded number of edges to other subsets (Minimum Degree Graph Par-

tition), are both NP-hard. Hence it is surprising that (0, q)-Cluster Graph

Recognition can be solved in polynomial time, as we prove in Theorem 3. We
also show that (p, 1)-cluster and (p, 2)-cluster graphs can be recognized in poly-
nomial time. Let us emphasize that the algorithms presented in this paper are
polynomial in both p, q and the size of the graph. For example, the algorithm for
(0, q)-Cluster Graph Recognition runs in time O(n3) and by binary search
one can find the smallest q such that the input graph is a (0, q)-cluster graph.

The polynomial-time cases mentioned so far are summarized by the shaded
area of the table given in Figure 1. The first interesting case outside of the shaded
area is the recognition of (1, 3)-cluster graphs. With careful reduction rules and
a computerized case analysis we are able to show that also (1, 3)-cluster graphs
can be recognized in polynomial time (Theorem 4). Answering natural follow-up
complexity questions, Lokshtanov and Marx ([15]) showed recently that (p, q)-
cluster graphs actually can be recognized in 2O(p)nO(1) time and 2O(q)nO(1)

randomized time.

2 Preliminaries

We consider undirected finite graphs with no loops or multiple edges. For a
graph G = (V, E), we denote its vertex and edge set by V and E, respectively,
with n = |V | and m = |E|. For S ⊆ V , the subgraph of G induced by S is
denoted by G[S].
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The neighborhood of a vertex x of G is NG(x) = {v | xv ∈ E}. The closed
neighborhood of x is defined as NG[x] = NG(x) ∪ {x}. If S ⊆ V , then the
neighbors of S, denoted by NG(S), are given by

⋃
x∈S NG(x) \ S. The degree of

a vertex x in G is dG(x) = |NG(x)|. We will omit the subscripts when there is
no misunderstanding.

A clique is a set of vertices that are pairwise adjacent. A vertex x is called
simplicial if N(x) is a clique. If a vertex set C has exactly p pairs of non-adjacent
vertices, we say that C misses p edges. We will call a vertex set that misses at
most p edges a p-group. A p-group C such that there are at most q edges in G
with exactly one endpoint in C is called a (p, q)-group.

For two non-negative integers p and q, a graph G = (V, E) is a (p, q)-cluster
graph if V can be partitioned into (p, q)-groups. Note that this condition is equiva-
lent to the condition in the question of the (p, q)-Cluster Graph Recognition

problem. As deleting vertices from G cannot disturb a partition into (p, q)-groups,
(p, q)-cluster graphs are hereditary, i.e., being a (p, q)-cluster graph is preserved
under taking induced subgraphs.

Clearly, a graph is a (p, q)-cluster graph if and only if every connected compo-
nent of it is a (p, q)-cluster graph. Hence for the rest of the paper, we will assume
that the input graph is connected. If not, we can run the presented algorithms on
each connected component. As a consequence, we can also restrict ourselves to
identifying connected (p, q)-groups: a (p, q)-group C of a graph G might induce
a disconnected subgraph, but then every connected component of G[C] is also a
(p, q)-group of G.

3 (p, q)-Cluster Graph Recognition is NP-Complete

In this section we prove that, given as input a graph G and two integers p and
q, it is NP-complete to decide whether G is a (p, q)-cluster graph. We use a
reduction from the well known NP-complete problem Clique: Given a graph G
and an integer k, 0 < k < n, does G have a clique of size at least k?

Let G1 = (V1, E1) and k be input to Clique, where |V1| = n. We show how
to construct a graph G2 and integers p and q such that G1 has a clique of size
at least k if and only if G2 is a (p, q)-cluster graph. Let us first define

α = nk − k2 + 1 q = (n− k + 1)α− 1 β = q − α + 2 p = βk .

Note that α ≥ n and q ≥ 2α − 1, since 0 < k < n. We obtain G2 from G1 as
follows:

1. Add a clique A of size α to G1, and add edges between each vertex in A and
each vertex in V1. Call the resulting graph G′

1.
2. Add a clique B of size β to G′

1, and add edges between each vertex in B and
each vertex in A. Call the resulting graph G2.

Lemma 1. Let G1 = (V1, E1), G2, p, and q be as described above. Then G1 has
a clique of size at least k if and only if there is a non-empty set C ⊆ V1 such
that A ∪B ∪C is a (p, q)-group in G2.
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Proof. Let C be a subset of V1 and assume that S = A∪B ∪C is a (p, q)-group
in G2. Let � = |C| ≥ 1. The number of edges in G2 with exactly one endpoint in
S is at least (n− �)α. Since S is a (p, q)-group, (n− �)α ≤ q = (n− k + 1)α− 1,
which implies that � ≥ k. Let j be the number of edges that C misses. Then S
misses β� + j edges. But since S is a (p, q)-group, β� + j ≤ p = βk, and using
� ≥ k gives j = 0 and k = �. Thus C is a clique of size k.

For the other direction, assume that G1 has a clique of size at least k, and let
C be a clique of size exactly k in G1. Let S = A ∪ B ∪ C. The number edges
that S misses is βk = p. The number of edges with exactly one endpoint in S is
at most (n− k)(k + α).

nk − k2 = α− 1⇔ (n− k)α + nk − k2 = (n− k)α + α− 1
⇔ (n− k)(k + α) = (n− k + 1)α− 1 = q

Lemma 2. Let G1 = (V1, E1), G2, p, and q be as described above. Then G2 is
a (p, q)-cluster graph if and only if there is a non-empty set C ⊆ V1 such that
A ∪B ∪ C is a (p, q)-group in G2.

Proof. Assume first that G2 = (V2, E2) is a (p, q)-cluster graph. We have to
show that any (p, q)-group in G2 that intersects with A∪B has to contain every
vertex of A ∪ B and at least a vertex of V1. Let S ⊆ V2 be a (p, q)-group such
that S ∩ (A ∪B) �= ∅. Observe first that S cannot be a proper subset of A ∪B,
because any partition of A ∪ B into subsets results in more than q edges with
an endpoint in each of the subsets, since A ∪B is a clique of size α + β = q + 2.
Furthermore, S cannot be equal to A∪B, since the number of edges between A
and V1 is αn and q ≤ αn − 1. Consequently, S must contain whole A ∪ B and
at least a vertex of V1.

For the other direction, assume that S = A ∪ B ∪ C is a (p, q)-group for a
non-empty set C ⊆ V1. Observe that for any v ∈ V1 \ C, the set {v} is a (p, q)-
group, since the degree of v is at most n + α − 1, and q ≥ 2α− 1 ≥ n + α − 1.
Hence S and the collection of the single vertex groups for each vertex in V1 \C
define a partition of V2 into (p, q)-groups and consequently G2 is a (p, q)-cluster
graph.

Theorem 1. Given a graph G and integers p and q, it is NP-complete to decide
whether G is a (p, q)-cluster graph.

Proof. Combining Lemmas 1 and 2, we conclude that G1 has a clique of size at
least k if and only if G2 is a (p, q)-cluster graph. Since G2 can be constructed
from G1 in polynomial time, the theorem follows.

4 Polynomial-Time Recognizable (p, q)-Cluster Graphs

In this section we show that for p and q values that correspond to the shaded
area and the black dot in the table in Figure 1, (p, q)-cluster graphs can be
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recognized in polynomial time. Recall that we can assume the input graph to be
connected.

As mentioned in the introduction, recognizing (p, 0)-cluster graphs is trivial
for every integer p, as it is equivalent to checking whether the input graph misses
at most p edges.

For recognizing connected (p, 1)-cluster graphs, note that the vertex set of
such a graph is either a p-group or consists of two connected p-groups with a
single edge between them. Hence we can first check whether the input graph is
a (p, 0)-cluster graph. If not, we can check for each bridge in the graph, whether
the removal of this bridge results in two connected components each of which is
a p-group. This can clearly be done in polynomial time.

4.1 Polynomial-Time Recognition of (p, 2)-Cluster Graphs

Assume that a given connected graph G = (V, E) is a (p, 2)-cluster graph. Then
V has a partition into (p, 2)-groups V1, V2, . . . , Vk. For convenience, in this sub-
section we call a (p, 2)-group simply a group. Let us define a graph H which has
vertices v1, v2, . . . , vk and edges vivj if G has an edge with an endpoint in Vi and
an endpoint in Vj . Note that for each edge vivj of H , there can be at most one
edge with an endpoint in Vi and an endpoint in Vj in G (except the case where
the (p, 2)-partition consists of only two groups). Clearly H is a connected graph
of maximum degree 2, which means that it is a path or a cycle. Furthermore, the
removal of any two edges of H is equivalent to the removal of exactly two edges
of G (except the case where H has only two vertices). We will use this property
to decide whether a given graph G is a (p, 2)-cluster graph. For this purpose we
describe a dynamic programming algorithm.

For every pair of edges e1 = u1v1 and e2 = u2v2 of G, we check whether u1

and v1 appear in different connected components of G′ = (V, E \ {e1, e2}), and
u2 and v2 appear in different connected components of G′. If so, then we say that
{e1, e2} is a cut of G. Let L(e1, e2, u1, u2) be the disjoint union of all connected
components of G′ containing u1 or u2 considered as vertex subsets. One can
think of the cut {e1, e2} having two “sides”, L(e1, e2, u1, u2) and L(e1, e2, v1, v2)
respectively. We define a function T (e1, e2, u1, u2) that is true if and only if
{e1, e2} is a cut and L(e1, e2, u1, u2) can be partitioned into groups. Then the
following recurrence holds for T .

– If {e1, e2} is not a cut then T (e1, e2, x, y) is False, for all x, y.
– Otherwise, if every connected component of L(e1, e2, u1, u2) is a group then

T (e1, e2, u1, u2) is True.
– Otherwise T (e1, e2, u1, u2) is True if and only if there is an edge e = uv ∈ E

with u, v ∈ L(e1, e2, u1, u2) such that
• every connected component of L(e, e1, u, u1) is a group and T (e, e2, v, u2)

is true, or
• every connected component of L(e, e2, v, u2) is a group and T (e, e1, u, u1)

is true.
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For all pairs of edges e1 and e2, we compute T (e1, e2, u1, u2), T (e1, e2, u1, v2),
T (e1, e2, v1, u2), and T (e1, e2, v1, v2), using the above formula. After all this has
been computed, we check for every pair of edges e1 and e2 whether they can be
two consecutive edges of H . To do this, we simply check whether T (e1, e2, x, y)
is true and G[V \ L(e1, e2, x, y)] is a connected group for some edges e1 and e2

and endpoints x of e1 and y of e2. If such edges e1, e2 and endpoints x, y exist
we conclude that G is a (p, 2)-cluster graph. Otherwise it is not a (p, 2)-cluster
graph. The necessary computations can be done in a straight forward way in time
O(m3). With a few extra reduction rules and more clever dynamic programming
it is possible to reduce this running time considerably.

4.2 Polynomial-Time Recognition of (0, q)-Cluster Graphs

Deciding whether a given graph G = (V, E) is a (0, q)-cluster graph is deciding
whether V can be partitioned into (0, q)-groups. This is equivalent to partitioning
V into cliques, such that each of these cliques G has at most q edges with exactly
one endpoint in that clique. Analogous to previous subsection, in this subsection
we will call a (0, q)-group simply a group. Also, we call a vertex of v of G a high
degree vertex if d(v) ≥ q + 1. We start with some observations on (0, q)-cluster
graphs, the proofs of which are given in the appendix.

Lemma 3. Let G = (V, E) be a (0, q)-cluster graph. Then there is a partition of
V into groups such that every group either consists of a single vertex or contains
a high degree vertex.

Proof. Assume that G has a partition into groups C1, C2, . . . , Ck. Let let Ci be
a group containing at least two vertices, such that every vertex of Ci has degree
at most q. In this case each vertex of Ci defines a group consisting only of itself.
Furthermore, after dividing Ci into singletons, every other set Cj with j �= i is
still a group.

Lemma 4. Let G = (V, E) be a (0, q)-cluster graph. Then there is a partition
of V into groups such that every group C with at least two vertices contains a
vertex v with N [v] = C.

Proof. By Lemma 3 we know that there is a partition such that every group C
of the partition that contains at least two vertices, contains a high degree vertex
u. If u has no neighbors outside of C, since C is a clique we have that N [u] = C,
and the proof is complete. Assume that u has at least one neighbor outside of
C. Assume that every neighbor of u in C has a neighbor outside of C. Then
together with the neighbors that u has outside of C, there are more than q edges
in G with exactly one endpoint in C, which contradicts the assumption that C
is a group. Thus u has a neighbor v in C such that v has no neighbors outside
of C. Since C is a clique, N [v] = C.

Note that Lemma 4 is equivalent to saying that C contains a simplicial vertex.
By the above observations, we can restrict our search to groups that are either
singletons or contain a simplicial vertex and a high degree vertex.
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Definition 1. A group C is a good group if C = N [v] for some simplicial vertex
v, C contains a high degree vertex, and there are at most q edges in the graph
with exactly one endpoint in C (the last condition is implicit from the definition
of group).

Lemma 5. A graph is a (0, q)-cluster graph if and only if there exists a set of
non-overlapping good groups whose union contains all high degree vertices.

Proof. Let G = (V, E) be a graph, and assume that G has a set of good groups
C1, ..., C�, such that Ci ∩Cj = ∅ for every pair i �= j between 1 and �, and every
high degree vertex of G belongs to some Ci for 1 ≤ i ≤ �. Since these good groups
do not overlap, each high degree vertex belongs to a unique good group. Each of
these groups has at most q edges leaving the group. Every vertex of G that does
not appear in one of these groups, has degree at most q and is a (0, q)-group
on its own. Let v1, ..., vt be such vertices of G. Then C1, ..., C�, {v1}, ..., {vt} is a
partition of V into clusters, and hence G is a (0, q)-cluster graph.

The other direction follows from the fact that a good group containing a high
degree vertex is of size at least 2 and Lemma 4.

For the next lemma, we say that a good group is maximal if its set of high degree
vertices is not a proper subset of the set of high degree vertices of another good
group.

Lemma 6. Let G be a graph and let C1, C2 be two maximal good groups of G,
such that C1 has a high degree vertex not in C2, and C2 has a high degree vertex
not in C1. Then C1 ∩ C2 = ∅.

Proof. Let C1 ∩C2 = X . Let v1 be a high degree vertex of C1 not in C2, and let
v2 be a high degree vertex of C2 not in C1. Hence v1, v2 /∈ X . Observe first that
|X | ≤ q because otherwise, since C2 is a clique, there would be more than q edges
from C1 to v2, contradicting that C1 is a good group. If v1 has a neighbor outside
of C1 then N [v1] �= C1, hence C1 has another vertex v′1 such that N [v′1] = C1,
and v′1 /∈ X . If v1 has no neighbor outside of C1, then since d(v1) ≥ q + 1 and
|X | ≤ q, again C1 has a vertex v′1 �= v1 such that v′1 /∈ X . Hence |C1| ≥ |X |+ 2.
With the same arguments, C2 has a vertex v′2 �= v2 such that v′2 /∈ X , and thus
also |C2| ≥ |X |+ 2.

Since d(v1) ≥ q + 1, v1 has at least q + 1− (|C1| − 1) neighbors outside of C1.
In addition, there are |X |(|C2| − |X |) edges between C1 and C2 \X . Since C1

is a good group, we must thus have: q + 1 − (|C1| − 1) + |X |(|C2| − |X |) ≤ q.
Symmetrically, and with the same arguments, we conclude that: q + 1− (|C2| −
1) + |X |(|C1| − |X |) ≤ q. Adding up these two inequalities and simplifying, we
get:

4 + (|X | − 1)|C1|+ (|X | − 1)|C2| − 2|X |2 ≤ 0

Recall that |C1| ≥ |X |+ 2 and |C2| ≥ |X |+ 2. Hence we can conclude:

4 + (|X | − 1)(|X |+ 2) + (|X | − 1)(|X |+ 2)− 2|X |2 ≤ 0

Doing the arithmetic, we see that the above inequality reduces to 2|X | ≤ 0, and
hence we can conclude that |X | = 0, which completes the proof.
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Consequently, maximal good groups with different sets of high degree vertices
do not overlap. With this, we reach the desired characterization.

Theorem 2. A graph is a (0, q)-cluster graph if and only if every high degree
vertex belongs to a good group.

Proof. Let G be a graph. If G has a high degree vertex v that does not belong
to any good group, then G is clearly not a (0, q)-cluster graph, due to Lemma 5
and since v cannot define a good group on its own due to its high degree. For the
other direction, assume that every high degree vertex of G belongs to a good group.
Repeatedly take a maximal good group containing uncovered high degree vertices,
and call C the resulting set of good groups. C covers all the high degree vertices of
G, and the good groups of C pairwise have different sets of high degree vertices.
Thus by Lemma 6, they are pairwise non-overlapping. Consequently, by Lemma
5, G is a (0, q)-cluster graph.

Theorem 3. Given a graph G and an integer q, it can be decided in polynomial
time whether G is a (0, q)-cluster graph.

Proof. Note first that finding the good groups of any graph G = (V, E) can be
done in polynomial time, as we only need to check whether N [v] is a clique,
contains a high degree vertex, and G has at most q edges with exactly one
endpoint in N [v], for each vertex v ∈ V . Now, by Theorem 2, it simply remains
to check whether every high degree vertex appears in a good group, which can be
done by the procedure described in the proof of Theorem 2. A straight forward
implementation gives a total running time of O(n3), which can probably be
improved.

4.3 Polynomial-Time Recognition of (1, 3)-Cluster Graphs

Each polynomial-time algorithm that we have given so far has corresponded to
a whole row or a whole column of the table given in Figure 1. In fact, with
the algorithms that we have given, we have now proved that (p, q)-graphs are
recognizable in polynomial time for values of p and q that correspond to the whole
shaded area in that table. From here on, we see that the first natural case to
study, with respect to NP-completeness versus polynomial-time computability,
for a single value of p and a single value of q is the recognition of (1, 3)-cluster
graphs. This corresponds to the dot in the table. In this subsection, we show
that (1, 3)-cluster graphs can be recognized in polynomial time.

Analogous to previous subsections, we will refer to a (1, 3)-group simply as a
group in this subsection. A minimal group is a group that cannot be partitioned
into smaller groups. If there is a partition of the vertex set of a graph into groups
then there is also a partition into minimal groups. A high degree vertex is now
a vertex of degree at least 4. A 1-group is a clique missing at most one edge,
according to the definitions in Section 2. (Note that a 1-group is not necessarily
a group.) A maximal 1-group is a 1-group that is not a proper subset of another
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1-group. (Note the difference from the definition of maximality in the previous
subsection.)

We start this subsection with some reduction rules given in Definition 2.
The first steps of our algorithm will be to apply these rules until they cannot
be applied anymore, to obtain a reduced graph. For these rules, we define the
concept of penalizing a vertex x as follows. Let u be a vertex of G, and let
G′ = G[V \ {u}]. Let x be a vertex of NG(u). Then dG′(x) = dG(x) − 1. When
we penalize x, we keep the degree of x unchanged. Hence, we let dG′(x) = dG(x)
and keep it artificially high.

Definition 2. We say that a graph G is reduced if the following reduction rules
cannot be applied to it:

1. If, for an edge uv, there is no group that contains both u and v, then delete
edge uv and penalize u and v.

2. If G contains a maximal 1-group C of size at least 5, then delete C and
penalize the vertices of NG(C) accordingly.

3. If Rule 2 cannot be applied and G contains a clique C of size at least 4, then
delete C and penalize the vertices of NG(C) accordingly.

4. If Rules 2 and 3 cannot be applied and G contains a 1-group C of size 4,
such that C has 3 vertices with neighbors outside of C, then delete C, and
penalize NG(C) accordingly.

The proofs of the following two lemmas are omitted due to space restrictions,
but can be found in the full version of the paper.

Lemma 7. Given a graph G, the reduced graph G′ obtained from G by applying
the reduction rules in Definition 2 can be computed in polynomial time. Moreover,
G is a (1, 3)-cluster graph if and only if G′ is a (1, 3)-cluster graph.

Consequently, from now on we can assume that our input graph G is reduced.
In particular, G has no groups of size larger than 4. We will call a group C a leaf
group if at most one vertex of C has neighbors outside of C. Since we assume G
to be connected, this is equivalent to C having exactly one vertex with neighbors
outside of C.

Lemma 8. In a reduced graph with more than 42 vertices, every high degree
vertex appears in at most 2 minimal non-leaf groups.

The above lemma enables us to show the main result of this subsection, stated
in the following theorem.

Theorem 4. (1, 3)-cluster graphs can be recognized in polynomial time.

Proof. Given a graph H , we can compute a reduced graph G in polynomial time
by Lemma 7. If G has at most 42 vertices, we can solve the problem in constant
time. Assume that G has n > 42 vertices.
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First we show that there is a polynomial time reduction from (1, 3)-Cluster

Graph Recognition to Sat. Given a reduced graph G, we describe an instance
of Sat obtained from G, as follows. For every minimal group, we make a variable
x. For every high degree vertex v, we make a clause (x1 ∨ x2 ∨ ... ∨ xt), where
x1, ..., xt are the variables corresponding to the t minimal groups containing v.
For every pair of overlapping minimal groups with corresponding variables x and
y, we make a clause (x̄∨ ȳ). Clearly, G is a (1, 3)-cluster graph if and only if the
created formula is satisfiable. By Lemma 7, the same is true for H . In G, there
are at most n4 groups, since every group is of size at most 4. Consequently, the
construction of the formula from the given graph takes polynomial time.

Due to Lemma 8, in the constructed Sat formula, every clause X contains
variables x1, ..., xt corresponding to leaf groups and at most two variables a and
b corresponding to minimal non-leaf groups. We can safely set x2, ..., xt to be
false, as we will let x1 ensure the true value of this clause. Every other clause
that contains one of x2, ..., xt, contains it in the negated form, and hence will
be true. x1 appears in at most two other clauses: (x̄1 ∨ ā) and (x̄1 ∨ b̄). Hence,
according to the truth-value of a and b, we can assign true or false to x1, and
clause X will be true. Consequently, we can remove clauses involving all leaf
groups, as they are not decisive for the satisfiability of the whole formula. The
remaining clauses all have two literals, and hence we have a 2-Sat instance that
can be solved in polynomial time.

Hence we have a polynomial-time reduction from (1, 3)-Cluster Graph

Recognition to 2-Sat, which means that (1, 3)-cluster graphs can be recog-
nized in polynomial time.

5 Concluding Remarks

We have introduced the (p, q)-Cluster Graph Recognition problem and
proved that it is NP-complete. We have shown that (p, 0)-cluster, (p, 1)-cluster,
(p, 2)-cluster, (0, q)-cluster, and (1, 3)-cluster graphs can be recognized in poly-
nomial time. In fact, with a careful implementation we believe that (p, 2)-cluster
and (1, 3)-cluster graphs can be recognized in linear time. Many interesting ques-
tions arise from these results. Some of the most obvious are: Is (p, q)-Cluster

Graph Recognition FPT when parameterized by either p or q, meaning that
there is an algorithm with running time f(p) · poly(n) or f(q) · poly(n)? Very
recently, Lokshtanov and Marx ([15]) answered both these question in the affir-
mative, by giving 2O(p)nO(1) time and 2O(q)nO(1) randomized time algorithms.

There is also a natural extension of (p, q)-Cluster Graph Recognition to
(p, q, k)-Cluster Graph Editing. Here we ask whether a (p, q)-cluster graph
can be obtained by adding or removing in total at most k edges in a given graph
(in fact, this was the original starting point for the authors). Hence (p, q, 0)-
Cluster Graph Editing is equivalent to (p, q)-Cluster Graph Recogni-

tion. The editing version of the problem opens a whole range of questions of
the above type involving k in addition.
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Abstract. The vertex colouring problem is known to be NP-comple-

te in the class of triangle-free graphs. Moreover, it remains NP-complete

even if we additionally exclude a graph F which is not a forest. We study

the computational complexity of the problem in (K3, F )-free graphs with

F being a forest. From known results it follows that for any forest F on 5

vertices the vertex colouring problem is polynomial-time solvable in

the class of (K3, F )-free graphs. In the present paper, we show that the

problem is also polynomial-time solvable in many classes of (K3, F )-free

graphs with F being a forest on 6 vertices.

Keywords: Vertex colouring; Triangle-free graphs; Polynomial-time al-

gorithm; Clique-width.

1 Introduction

A vertex colouring is an assignment of colours to the vertices of a graph G in
such a way that no edge connects two vertices of the same colour. The vertex

colouring problem consists in finding a vertex colouring with a minimum num-
ber of colours. This number is called the chromatic number of G and is denoted
by χ(G). If G admits a vertex colouring with at most k colours, we say that G
is k-colourable. The k-colourability problem consists in deciding whether a
graph is k-colourable.

From a computational point of view, vertex colouring and k-
colourability (k ≥ 3) are difficult problems, i.e. both of them are NP-
complete. Moreover, the problems remain NP-complete in many restricted graph
families. For instance, 3-colourability is NP-complete for planar graphs [8], 4-
colourability is NP-complete for graphs containing no induced path on 12 ver-
tices [28], vertex colouring is NP-complete for line graphs [11]. On the other
hand, for graphs in some special classes, the problems can be solved in polyno-
mial time. For instance, vertex colouring (and therefore, k-colourability

for any value of k) is solvable for perfect graphs, k-colourability (for any
value of k) is solvable for graphs containing no induced path on 5 vertices [10],
and 3-colourability is solvable for graphs containing no induced path on 6
vertices [26].
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Recently, much attention has been paid to the complexity of the problems
in graph classes defined by forbidden induced subgraphs. Many results of this
type have been mentioned before, some others can be found in [3, 5, 12, 13, 15–
17, 21, 23]. In [16], the authors systematically study vertex colouring on
graph classes defined by a single forbidden induced subgraph, and give a complete
characterisation of those for which the problem is polynomial-time solvable and
those for which the problem is NP-complete. In particular, the problem is NP-
complete for K3-free graphs, i.e. for triangle-free graphs. Moreover, the problem
is NP-complete for (K3, F )-free graphs for any graph F which is not a forest
[12, 16]. Here we study the computational complexity of the problem in (K3, F )-
free graphs with F being a forest. From known results it follows that for any forest
F on 5 vertices the vertex colouring problem is polynomial-time solvable in
the class of (K3, F )-free graphs. In the present paper, we show that the problem
is also polynomial-time solvable in many classes of (K3, F )-free graphs with F
being a forest on 6 vertices.

2 Preliminaries

All graphs in this paper are finite, undirected, without loops or multiple edges.
For any graph theoretical terms not defined here, the reader is referred to [9].
For a graph G, we denote by V (G) and E(G) the vertex set and the edge set
of G, respectively. If v is a vertex of G, then N(v) denotes the neighbourhood
of v (i.e. the set of vertices adjacent to v) and |N(v)| is the degree of v. The
subgraph of G induced by a set of vertices U ⊆ V (G) is denoted by G[U ]. For
disjoint sets A, B ⊆ V (G), we say that A is complete to B if every vertex in A
is adjacent to every vertex in B, and that A is anticomplete to B if every vertex
in A is non-adjacent to every vertex in B.

As usual, Pn is a chordless path, Cn is a chordless cycle, and Kn is a complete
graph on n vertices. Also, Kn,m denotes a complete bipartite graph with parts
of size n and m. By Si,j,k we denote a tree with exactly three leaves of distance
i, j and k from the only vertex of degree 3. In particular, S1,1,1 = K1,3 is known
as a claw, and S1,2,2 is sometimes denoted by E, since this graph can be drawn
as the capital letter E. Also, by H we denote the graph that can be drawn
as the capital letter H, i.e. H has vertex set {v1, v2, v3, v4, v5, v6} and edge set
{v1v2, v2v3, v2v4, v4v5, v4v6}. The graph obtained from a K1,4 by subdividing
exactly one edge exactly once is called a cross. Given two graphs G and G′,
we denote by G + G′ the disjoint union of G and G′. In particular, mG is the
disjoint union of m copies of G.

The clique-width of a graph G is the minimum number of labels needed to
construct G using the following four operations:

(i) Creation of a new vertex v with label i (denoted by i(v)).
(ii) Disjoint union of two labelled graphs G and H (denoted by G⊕H).
(iii) Joining by an edge each vertex with label i to each vertex with label j (i �= j,

denoted by ηi,j).
(iv) Renaming label i to j (denoted by ρi→j).
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Every graph can be defined by an algebraic expression using these four opera-
tions. For instance, an induced path on five consecutive vertices a, b, c, d, e has
clique-width equal to 3 and it can be defined as follows:

η3,2(3(e)⊕ ρ3→2(ρ2→1(η3,2(3(d)⊕ ρ3→2(ρ2→1(η3,2(3(c)⊕ η2,1(2(b)⊕ 1(a)))))))))

If a graph G does not contain induced subgraphs isomorphic to graphs from
a set M , we say that G is M -free. The class of all M -free graphs is denoted
by Free(M), and M is called the set of forbidden induced subgraphs for this
class. Many graph classes that are important from a practical or theoretical
point of view can be described in terms of forbidden induced subgraphs. For
instance, by definition, forests form the class of graphs without cycles, and due
to König’s Theorem, bipartite graphs are graphs without odd cycles. Bipartite
graphs are precisely the 2-colourable graphs, and recognising 2-colourable graphs
is a polynomially solvable task. However, the recognition of k-colourable graphs
is an NP-complete problem for any k ≥ 3.

In the present paper, we study the computational complexity of the vertex

colouring problem in graph classes defined by two forbidden induced sub-
graphs one of which is a triangle K3. The following theorem summarises known
results of this type.

Theorem 1. Let F be a graph. If F contains a cycle or F = K1,5, then the
vertex colouring problem is NP-complete in the class Free(K3, F ). If F
is isomorphic to S1,2,2, H, P6 or a cross, then the problem is polynomial-time
solvable in the class Free(K3, F ).

Proof. If F contains a cycle, then the NP-completeness of the problem follows
from the fact that it is NP-complete for graphs of girth at least k + 1, i.e. in
the class Free(C3, C4, . . . , Ck), for any fixed value of k (see e.g. [12, 16]). The
NP-completeness of the problem in the class of (K3, K1,5)-free graphs was shown
in [21].

In [22, 24], Randerath et al. showed that every graph in the following three
classes is 3-colourable and that a 3-colouring can be found in polynomial time:
Free(K3, H), Free(K3, S1,2,2), Free(K3, cross). Therefore vertex colouring

is polynomial-time solvable in these three classes.
The conclusion that the problem is solvable for (K3, P6)-free graphs can be

derived from three facts. First, the clique-width of graphs in this class is bounded
by a constant [4]. Second, the chromatic number of graphs in this class is bounded
by a constant (see e.g. [27]). Third, for each fixed k, the k-colourability problem
on graphs of bounded clique-width is solvable in polynomial time [6]. ��

Corollary 1. For each forest F on 5 vertices, the vertex colouring problem
in the class Free(K3, F ) is solvable in polynomial time.

Proof. If F contains no edge, then the problem is trivial in the class of
Free(K3, F ), since the size of graphs in this class is bounded by a constant (by
a Ramsey argument). If F contains at least one edge, then it is an induced sub-
graph of one of the following graphs: H , S1,2,2, cross, P6. Therefore Free(K3, F )
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is a subclass of one the classes Free(K3, H), Free(K3, S1,2,2), Free(K3, cross),
Free(K3, P6), and thus the result follows from Theorem 1. ��

3 (K3, F )-Free Graphs with F Containing an Isolated
Vertex

In this section, we study graph classes Free(K3, F ) with F being a forest on
6 vertices at least one of which is isolated. Without loss of generality we may
assume that F contains at least one edge, since otherwise there are only finitely
many graphs in the class Free(K3, F ) (by a Ramsey argument). Throughout
the section, an isolated vertex in F is denoted by v and the rest of the graph is
denoted by F0, i.e. F0 = F − v.

Lemma 1. Let F be a forest on 6 vertices with at least one edge and at least
one isolated vertex. Then the chromatic number of any graph G in the class
Free(K3, F ) is at most 4.

Proof. Suppose that F0 �= P3 + P2. Then it is not difficult to verify that F0 is
an induced subgraph of H , S1,2,2 or cross. Therefore the chromatic number of
(K3, F0)-free graphs is at most 3 (see [22, 24]). As a result, the chromatic number
of any (K3, F )-free graph is at most 4. To see this, observe that for any vertex
x, the graph G \N(x) is 3-colourable, while N(x) is an independent set.

Now assume F0 = P3+P2 and let ab be an edge in a (K3, F )-free graph G. We
will show that G0 := G− (N(a)∪N(b)) is a bipartite graph. Notice that since G
is K3-free, both N(a) and N(b) induce an independent set. We may assume that
at least one of N(a) \ {b}, N(b) \ {a} is non-empty (otherwise each connected
component of G has at most two vertices and thus G is trivially 4-colorable).
Obviously G0 is Ck-free for any odd k ≥ 7, since otherwise G contains a P3 +P2.
Therefore we may assume that G0 contains a C5 (otherwise G0 is bipartite). Let
c ∈ N(b) \ {a}. Since G is triangle-free, c either has no neighbours in the C5,
or has exactly one neighbour in the C5, or has exactly two neighbours which
are non-consecutive vertices of the C5. Thus c is non-adjacent to at least three
vertices in C5, say d, e, f , such that G[d, e, f ] is isomorphic to P2 + K1. But now
G[a, b, c, d, e, f ] is isomorphic to P3 +P2 +K1, which is a forbidden graph for G.
This contradiction shows that G0 has no odd cycles, i.e. G0 is a bipartite graph.
If V 1

0 , V 2
0 are two colour classes of G0, then N(b) ∪ {a}, N(a) ∪ {b}, V 1

0 , V 2
0 are

four colour classes of G. ��

In view of Lemma 1 and the polynomial-time solvability of 2-colourability,
all we have to do to solve the problem in the classes under consideration is to
develop a tool for deciding 3-colourability in polynomial time. For this, we use a
result from [23]. A set D ⊆ V (G) is dominating in G if every vertex x ∈ V (G)\D
has at least one neighbour in D.

Lemma 2. ([23]) For a graph G = (V, E) with a dominating set D, we can
decide 3-colourability and determine a 3-colouring in time O(3|D||E|).
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If a graph G ∈ Free(K3, F ) is F0-free, then the problem is solvable for G by
Corollary 1. If G has an induced F0, then the vertices of F0 form a dominating
set in G. Summarising the above discussion, we obtain the following result.

Theorem 2. Let F be a forest on 6 vertices with at least one isolated vertex.
Then the vertex colouring problem is polynomial-time solvable in the class
Free(K3, F ).

4 Graphs of Bounded Clique-Width

In Section 2, we mentioned that the polynomial-time solvability of the ver-

tex colouring problem in the class of (K3, P6)-free graphs follows from the
facts that the clique-width and the chromatic number of graphs in this class are
bounded by a constant. In the present section, we use that same idea to solve the
problem in the following two classes: Free(K3, S1,1,3) and Free(K3, K1,3 +K2).

It is known that if G is an F -free graph, where F is a subdivision of a star K1,n,
then the chromatic number of G is bounded by a function of its clique number
(see e.g. [27]). Therefore the chromatic number of (K3, S1,1,3)-free graphs and
(K3, K1,3 + K2)-free graphs is bounded by a constant. This means that in order
to prove polynomial-time solvability of the vertex colouring problem in the
classes Free(K3, S1,1,3) and Free(K3, K1,3 + K2), all we have to do is to show
that the clique-width of graphs in these classes is bounded. In our proofs, we use
the following helpful facts.

Fact 1: The clique-width of graphs with vertex degree at most 2 is bounded by
4 (see e.g. [7]).

Fact 2: The clique-width of S1,1,3-free bipartite graphs [18] and (K1,3 +K2)-free
bipartite graphs [20] is bounded by a constant.

Fact 3: For a constant k and a class of graphs X , let X[k] denote the class of
graphs obtained from graphs in X by deleting at most k vertices. Then
the clique-width of graphs in X is bounded if and only if the clique-width
of graphs in X[k] is bounded [19].

Fact 4: For a graph G, the subgraph complementation is the operation that
consists in complementing the edges in an induced subgraph of G. Also,
given two disjoint subsets of vertices in G, the bipartite subgraph com-
plementation is the operation which consists in complementing the edges
between the subsets. For a constant k and a class of graphs X , let X(k)

be the class of graphs obtained from graphs in X by applying at most
k subgraph complementations or bipartite subgraph complementations.
Then the clique-width of graphs in X(k) is bounded if and only if the
clique-width of graphs in X is bounded [14].

Fact 5: The clique-width of graphs in a hereditary class X is bounded if and
only if it is bounded for connected graphs in X (see e.g. [7]).

Facts 2 and 5 allow us to reduce the problem to connected non-bipartite graphs
in the classes Free(K3, S1,1,3) and Free(K3, K1,2+K2), i.e. to connected graphs
in these classes that contain an odd induced cycle of length at least five.
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Lemma 3. Let G be a connected (K3, S1,1,3)-free graph containing an odd in-
duced cycle C of length at least 7. Then G = C.

Proof. Let C = v1−v2−. . .−v2k−v2k+1−v1 be an induced cycle of length 2k+1,
k ≥ 3, in G. Suppose that there exists a vertex v ∈ V (G)\V (C), which is adjacent
to a vertex of C. Without loss of generality, we may assume that v is adjacent to
v1. We claim that v is non-adjacent to v4. Otherwise, since G is K3-free, it follows
that v is non-adjacent to v2k+1, v2, v3, v5. But now G[v, v1, v3, v4, v5, v2k+1] is
isomorphic to S1,1,3, a contradiction. Thus v is non-adjacent to v4. This implies
that v is adjacent to v3, since otherwise G[v, v1, v2, v3, v4, v2k+1] is isomorphic
to S1,1,3. Now repeating the same argument with v3 playing the role of v1, we
conclude that v is adjacent to v5. But now G[v, v1, v2, v2k+1, v4, v5] is isomorphic
to S1,1,3. This contradiction shows that G = C. ��

Lemma 4. Let G be a connected (K3, K1,3 + K2)-free graph containing an odd
induced cycle C2k+1, k ≥ 3. Then either G = C2k+1 and k ≥ 4, or |V (G)| ≤ 28
and k = 3.

Proof. Let C = v1−v2−. . .−v2k−v2k+1−v1 be an induced cycle of length 2k+1
in G. First assume that k ≥ 4. Suppose that there exists a vertex v ∈ V (G)\V (C)
which is adjacent to some vertex of C, say v is adjacent to v1. Since G is K3-
free, it follows that v is non-adjacent to v2k+1, v2. We claim that for every pair
of vertices {vi, vi+1}, with i = 4, 5, . . . , 2k−2, vertex v is adjacent to exactly one
of vi, vi+1. Clearly, since G is K3-free, v has a non-neighbour in {vi, vi+1}. If v
has no neighbours in {vi, vi+1}, then G[v2k+1, v1, v2, v, vi, vi+1] is isomorphic to
K1,3 + K2, a contradiction. Now assume that v is adjacent to v4. It follows that
v is complete to {v4, v6, . . . , v2k−2} and anticomplete to {v5, v7, . . . , v2k−1}. But
now G[v2, v3, v, v2k−3, v2k−2, v2k−1] is isomorphic to K1,3 + K2, a contradiction.
So we may assume that v is adjacent to v5. This implies that v is complete
to {v5, v7, . . . , v2k−1} and anticomplete to {v4, v6, . . . , v2k−2}. It follows that v
is non-adjacent to v2k, since G is K3-free. But now G[v4, v5, v6, v, v2k, v2k+1] is
isomorphic to K1,3 + K2. This contradiction shows that G = C.

Now assume that k = 3 and let v ∈ V (G)\V (C) be adjacent to v1. As before,
v has exactly one neighbour in {v4, v5}. By symmetry we may assume that v
is adjacent to v4. Hence, v has no neighbours in {v2, v3, v5, v7}. Finally observe
that v is non-adjacent to v6, since otherwise G[v5, v6, v7, v, v2, v3] is isomorphic
to K1,3 + K2. Therefore we conclude that each vertex v ∈ V (G) \ V (C) that
is adjacent to some vertex vi ∈ V (C), is either complete to {vi, vi+3} and an-
ticomplete to V (C) \ {vi, vi+3}, or complete to {vi, vi+4} and anticomplete to
V (C) \ {vi, vi+4} (here subscripts are taken modulo 7).

Denote by Uj the set of vertices at distance j from the cycle. We claim that

– |U1| ≤ 7. Indeed, if |U1| > 7, then there exist two vertices z, z′ ∈ U1

that are complete to {vi, vi+3} for some value of i (and thus anticomplete
to V (C) \ {vi, vi+3}). Since G is K3-free, z, z′ are non-adjacent. But now
G[vi, z, z′, vi+1, vi+4, vi+5] is isomorphic to K1,3 + K2, a contradiction.
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– each vertex of U1 has at most one neighbour in U2. Indeed, assume a vertex
x ∈ U1 has two neighbours y, z ∈ U2, and without loss of generality let x be
complete to {vi, vi+3} (and thus anticomplete to V (C)\{vi, vi+3}). Since G is
K3-free, it follows that y, z are non-adjacent. But then G[x, y, z, vi, vi+4, vi+5]
is isomorphic to K1,3 + K2, a contradiction.

– each vertex of U2 has at most one neighbour in U3, which can be proved by
analogy with the previous claim.

– for each i ≥ 4, Ui is empty. Indeed, assume without loss of generality that
U4 �= ∅ and let u4, u3, u2, u1 be a path from U4 to C with uj ∈ Uj and
u1 being adjacent to vi. Then G[vi, vi+1, vi−1, u1, u3, u4] is isomorphic to
K1,3 + K2, a contradiction.

From the above claims we conclude that V (G) = V (C) ∪ U1 ∪ U2 ∪ U3, |U3| ≤
|U2| ≤ |U1|, and therefore |V (G)| ≤ 28. ��

Thus Lemmas 3 and 4 and Fact 2 further reduce the problem to graphs containing
a C5.

Lemma 5. If G is a connected (K3, S1,1,3)-free graph containing a C5, then the
clique-width of G is bounded by a constant.

Proof. Let G be a connected (K3, S1,1,3)-free graph and let C = v1−v2−v3−v4−
v5 − v1 be an induced cycle of length five in G. If G = C then the clique-width
of G is at most 4 (Fact 1). Therefore we may assume that there exists at least
one vertex v ∈ V (G) \ V (C). Since G is K3-free, v can be adjacent to at most
two vertices of C, and if v has two neighbours on C, they are non-consecutive
vertices of the cycle. We denote the set of vertices in V (G) \ V (C) that have
exactly i neighbours on C by Ni, i ∈ {0, 1, 2}. Also, for i = 1, . . . , 5, we denote by
Vi the set of vertices in N2 adjacent to vi−1, vi+1 ∈ V (C) (throughout the proof
subscripts i are taken modulo 5). We call two different sets Vi and Vj consecutive
if vi and vj are consecutive vertices of C, and opposite otherwise. Finally, we call
Vi large if |Vi| ≥ 2, and small otherwise. The proof of the lemma will be given
through a series of claims.

(1) Each Vi is an independent set. This immediately follows from the fact that
G is K3-free.

(2) N0 is an independent set. Indeed, assume xy is an edge connecting two
vertices x, y ∈ N0, and let, without loss of generality, y be adjacent to a
vertex z ∈ N1 ∪ N2. Assume z is adjacent to vi ∈ V (C). Since G is K3-
free, z is non-adjacent to x, vi−1, vi+1. But then G[x, y, z, vi, vi+1, vi−1] is
isomorphic to S1,1,3, a contradiction.

(3) Any vertex x ∈ N1 ∪ N2 has at most one neighbour in N0. Suppose x ∈
N1 ∪ N2 is adjacent to z, z′ ∈ N0, and let vi ∈ V (C) be a neighbour of x.
Since G is K3-free, it follows that x is non-adjacent to vi−1, vi+1. Furthermore
x is adjacent to at most one of vi−2, vi+2. By symmetry we may assume that
x is non-adjacent to vi−2. But now G[x, z, z′, vi, vi−1, vi−2] is isomorphic to
S1,1,3, a contradiction.
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(4) |N1| ≤ 5. Indeed, if there are two vertices x, x′ ∈ N1 which are adjacent to
the same vertex vi ∈ V (C), then G[x, x′, vi, vi+1, vi+2, vi+3] is isomorphic to
S1,1,3, a contradiction.

(5) If Vi and Vj are opposite sets, then no vertex of Vi is adjacent to a vertex of
Vj. This immediately follows from the fact that G is K3-free.

(6) If Vi and Vj are consecutive, then every vertex x of Vi has at most one
non-neighbour in Vj. Suppose x ∈ Vi has two non-neighbours y, y′ ∈ Vj . By
symmetry we may assume that j = i+1. But now G[x, y, y′, vi−1, vi−2, vi−3]
is isomorphic to S1,1,3, a contradiction.

(7) If Vi and Vj are two opposite large sets, then no vertex in N0 has a neighbour
in Vi ∪ Vj . Assume without loss of generality that i = 1 and j = 4, and
suppose for a contradiction that a vertex x ∈ N0 has a neighbour y ∈
V1. If x is non-adjacent to some vertex z ∈ V4, then G[x, y, z, v2, v3, v4] is
isomorphic to S1,1,3, a contradiction. Therefore x is complete to V4. But now
G[x, y, v1, v2, z, z′] with z, z′ ∈ V4 is isomorphic to S1,1,3, a contradiction.

Since G is connected and N0 is an independent set, every vertex of N0 has a
neighbour in N1 ∪N2. Let us denote by V0 those vertices of N0 every neighbour
of which belongs to a large set Vi and by G0 the subgraph of G induced by V0

and the large sets. From Claims (3) and (4), it follows that at most 25 vertices of
G do not belong to G0. Therefore, by Fact 3, the clique-width of G is bounded
if and only if it is bounded for G0. We may assume that G has at least one large
set, since otherwise G0 is empty. We will show that G0 has bounded clique-width
by examining all possible combinations of large sets.

Case 1: Assume that for every large set Vi there is an opposite large set Vj . Then
it follows from Claim (7) that V0 = ∅. In order to see that G0 has bounded clique-
width, we complement the edges between every pair of consecutive large sets.
By Claim (6), the resulting graph has maximum degree at most 2. From Fact
1 it follows that this graph is of bounded clique-width, and therefore, applying
Fact 4, G0 has bounded clique-width.

Case 1 allows us to assume that G contains a large set such that the opposite
sets are small. Without loss of generality we let V1 be large, and V3 and V4 be
small. The rest of the proof is based on the analysis of the size of the sets V2

and V5.

Case 2: V2 and V5 are large. Then, by Claims (1), (2), (5) and (7), G0 is a
bipartite graph with bipartition (V1, V2 ∪ V5 ∪ V0). Therefore by Fact 2, G0 has
bounded clique-width.

Case 3: V2 and V5 are small. Then G0 is a bipartite graph with bipartition
(V1, V0), and therefore, by Fact 2, G0 has bounded clique-width.

Case 4: V2 is large and V5 is small, i.e. G0 is induced by V0 ∪V1 ∪V2. Consider a
vertex x ∈ V0 that has a neighbour y ∈ V1 and a neighbour z ∈ V2. Then y and z
are non-adjacent (since G is K3-free) and therefore, by Claim (6), y is complete
to V2 \ {z} and z is complete to V1 \ {y}. From the K3-freeness of G it follows
that x is anticomplete to (V1 ∪ V2) \ {y, z}.



192 K. Dabrowski et al.

Let us denote by V ′
0 the vertices of V0 that have neighbours both in V1 and

V2, and by V ′
i (i = 1, 2) the vertices of Vi that have neighbours in V ′

0 . Also, let
V ′′

i = Vi−V ′
i for i = 0, 1, 2, and G′

0 = G0[V ′
0 ∪V ′

1 ∪V ′
2 ], G′′

0 = G0[V ′′
0 ∪V ′′

1 ∪V ′′
2 ].

By Claim (3), V ′′
0 is anticomplete to V ′

1 ∪ V ′
2 . Also, it follows from the above

discussion that V ′
0 is anticomplete to V ′′

1 ∪ V ′′
2 , that V ′

1 is complete to V ′′
2 , and

that V ′
2 is complete to V ′′

1 . Therefore by complementing the edges between V ′
1

and V ′′
2 , and between V ′

2 and V ′′
1 , we disconnect G′

0 from G′′
0 . The graph G′′

0 is a
bipartite graph, since every vertex of V ′′

0 has neighbours either in V ′′
1 or in V ′′

2

but not in both. Thus it follows from Fact 2 that G′′
0 has bounded clique-width.

To see that G′
0 has bounded clique-width, we complement the edges between

V ′
1 and V ′

2 . This operation transforms G′
0 into a collection of disjoint triangles.

Therefore the clique-width of G′
0 is bounded. Now it follows from Fact 4 that

G0 has bounded clique-width. ��

Similarly to Lemma 5, one can prove the following result the proof of which is
omitted due to space limitation.

Lemma 6. If G is a connected (K3, K1,3+K2)-free graph containing a C5, then
the clique-width of G is bounded by a constant.

From Lemmas 3, 4, 5, and 6, we derive the main result of this section.

Theorem 3. The clique-width of (K3, S1,1,3)-free graphs and (K3, K1,3 + K2)-
free graphs is bounded by a constant and therefore the vertex colouring prob-
lem is polynomial-time solvable in these classes of graphs.

5 Further Results

In this section, we prove some results for graph classes Free(K3, F ) with F being
a forest on more than 6 vertices.

Theorem 4. For every fixed m, the vertex colouring problem is polynomial-
time solvable in the class Free(K3, mK2).

Proof. Obviously, if a graph G is k-colourable, then it admits a k-colouring in
which one of the colour classes is a maximal independent set.

It is known that for every fixed m the number of maximal independent sets
in the class Free(mK2) is bounded by a polynomial [1] and all of them can be
found in polynomial time [29]. Therefore given a mK2-free graph G, we can solve
the 3-colourability problem for G by generating all maximal independent sets
and solving 2-colourability for the remaining vertices of the graph. Then by
induction on k, we conclude that for any fixed k the k-colourability problem
can be solved in the class Free(mK2) in polynomial time. Since the chromatic
number of (K3, mK2)-free graphs is bounded by 2m−2 (see e.g. [2]), the vertex

colouring problem is polynomial-time solvable in the class Free(K3, mK2) for
any fixed m. ��
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Theorem 5. For every fixed m, the vertex colouring problem is polynomial-
time solvable in the class Free(K3, P3 + mK1).

Proof. To prove the theorem, we will show that for any fixed m, graphs in the
class Free(K3, P3 + mK1) are either bounded in size, or they are 3-colourable
and a 3-colouring can be found in polynomial time.

Let G be a (K3, P3 +mK1)-free graph, and let S be a maximum independent
set in G. Denote by R the remaining vertices of G, i.e. R = V (G) − S. Assume
that R contains an induced odd cycle C = v1−v2− . . .−vp−v1 with p ≥ 5. Since
S is a maximum independent set, each vertex of C has at least one neighbour
in S. Let us call a vertex vi ∈ V (C) strong if it has at least 2 neighbours in S
and weak otherwise. Since C is an odd cycle, it has either two consecutive weak
vertices or two consecutive strong vertices.

If C has two consecutive weak vertices, say v1, v2, then jointly they are adja-
cent to two vertices of S, say v1 is adjacent to s1, and v2 is adjacent to s2, and
therefore, they have |S| − 2 common non-neighbours in S. If |S| − 2 ≥ m, then
v1, v2, s1 together with m vertices in S \ {s1, s2} induce a subgraph isomorphic
to P3 + mK1, a contradiction. Therefore |S| ≤ m + 1. But then the number of
vertices of G is bounded by the Ramsey number R(3, m + 1).

Now assume C has two consecutive strong vertices, say v1, v2. Since the graph
is (P3 + mK1)-free, every strong vertex has at most m− 1 non-neighbours in S,
and since the graph is K3-free, consecutive vertices of C cannot have common
neighbours. Therefore each of v1 and v2 has at most m− 1 neighbours in S. But
then |S| ≤ 2m − 2 and hence the number of vertices of G is bounded by the
Ramsey number R(3, 2m− 2).

Thus, if R has an odd cycle, then the number of vertices of G is bounded
by a constant. If R has no odd cycles, then G[R] is bipartite, and hence G is
3-colourable. Finding a maximum independent set in a (P3 + mK1)-free graph
can be done in polynomial time, so any (K3, P3 + mK1)-free graph is either
bounded in size, or can be 3-coloured in this way in polynomial time. Thus
vertex colouring of (K3, P3 +mK1)-free graphs can be solved in polynomial
time. ��

6 Concluding Remarks and Open Problem

In this paper we show that the vertex colouring problem is polynomially
solvable in many classes of (K3, F )-free graphs with F being a forest on 6 vertices.
Two classes that have not been analyzed here are (K3, P4 + P2)-free graphs and
(K3, 2P3)-free graphs.

For (K3, P4 +P2)-free graphs, we managed to prove polynomial-time solvabil-
ity of the problem after the submission of the present paper and the solution
will appear in the journal version of the paper. However, finding the complexity
status of the vertex colouring problem in (K3, 2P3)-free graphs remains a
challenging open question.
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12. Kamiński, M., Lozin, V.: Coloring edges and vertices of graphs without short or

long cycles. Contributions to Discrete Mathematics 2, 61–66 (2007)
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Abstract. The pathwidth of a graph is a measure of how path-like the
graph is. Given a graph G and an integer k, the problem of finding
whether there exist at most k vertices in G whose deletion results in a
graph of pathwidth at most one is NP-complete. We initiate the study of
the parameterized complexity of this problem, parameterized by k. We
show that the problem has a quartic vertex-kernel: We show that, given
an input instance (G = (V, E), k); |V | = n, we can construct, in poly-
nomial time, an instance (G′, k′) such that (i) (G, k) is a YES instance
if and only if (G′, k′) is a YES instance, (ii) G′ has O(k4) vertices, and
(iii) k′ ≤ k. We also give a fixed parameter tractable (FPT) algorithm
for the problem that runs in O(7kk · n2) time.

1 Introduction

The treewidth of a graph is a measure of how “tree-like” the graph is. The notion
of treewidth was introduced by Robertson and Seymour in their seminal Graph
Minors series [35]. It has turned out to be very important and useful, both in
the theoretical study of the properties of graphs [6,27] and in designing graph
algorithms [7,9]. A graph has treewidth at most one if and only if it is a forest
(a collection of trees), and a set of vertices in a graph G whose removal from G
results in a forest is called a feedback vertex set (FVS) of the graph.

Given a graph G and an integer k as input, the Feedback Vertex Set
problem asks whether G has an FVS of size at most k. This is one of the first
problems that Karp showed to be NP-complete [25]. The problem and its variants
have extensively been investigated from the point of view of various algorithmic
paradigms, including approximation and parameterized algorithms. The prob-
lem is known to have a 2-factor approximation algorithm [4], and the problem
parameterized by the solution size k is fixed parameter tractable (FPT) and has
a polynomial kernel1.

The quest for fast FPT algorithms and small kernels for the parameterized
Feedback Vertex Set problem presents an illuminative case study of the
evolution of the field of fixed parameter tractability, and stands out among the
1 See Section 2 for the terminology and notation used in this paper.

D.M. Thilikos (Ed.): WG 2010, LNCS 6410, pp. 196–207, 2010.
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many success stories of this algorithmic approach towards solving hard problems.
The first FPT algorithm for the problem, with a running time of O∗(k4!), was
developed by Bodlaender [5] and by Downey and Fellows [18]. After a series of
improvements [19,24,33], a running time of the form O∗(ck) was first obtained
by Guo et.al [22], whose algorithm ran in O∗(37.7k) time. This was improved
by Dehne et.al [15] to O∗(10.6k) in 2007, and to the current best O∗(3.83k)
by Cao et.al [13] in 2010. For classes of graphs that exclude a fixed minor H
(for example, planar graphs), Dorn et.al [17] have recently obtained an FPT
algorithm for the problem with a running time of the form O∗(2O(

√
k)).

Proving polynomial bounds on the size of the kernel for different param-
eterized problems has been a significant practical aspect in the study of the
parameterized complexity of NP-hard problems, and many positive results are
known. See [23] for a survey of kernelization results. The existence of a polyno-
mial kernel for the Feedback Vertex Set problem was open for a long time.
It was settled in the affirmative by Burrage et. al [12] as recently as 2006, when
they exhibited a kernel with O(k11) vertices. This was soon improved to a cubic
vertex-kernel (O(k3) vertices) by Bodlaender [8,10]. The current smallest kernel,
on O(k2) vertices, is due to Thomassé [36].

The pathwidth of a graph is a notion closely related to treewidth, and was
also introduced by Robertson and Seymour in the Graph Minors series [34]. The
pathwidth of a graph denotes how “path-like” it is. A graph has pathwidth at
most one if and only if it is a collection of caterpillars, where a caterpillar is
a special kind of tree: it is a tree that becomes a path (called the spine of the
caterpillar) when all its pendant vertices are removed. Graphs of pathwidth at
most one are thus a very special kind of forests, and have even less structure
than forests (which are themselves very “simple” graphs). As a consequence,
some problems that are NP-hard even on forests can be solved in polynomial
time on graphs of pathwidth at most one. Examples include (Weighted) Band-
width [3,31,28], the Proper Interval Colored Graph problem, and the Proper
Colored Layout problem [1].

In contrast to the case of forests, the corresponding vertex deletion problem
for obtaining a collection of caterpillars (equivalently, a graph of pathwidth at
most one) has not received much attention in the literature. In fact, to the best
of our knowledge, the following problem has not yet been investigated at all:
Given a graph G and an integer k as input, find whether G contains a set of
at most k vertices whose removal from G results in a graph of pathwidth at
most one. We call such a set of vertices a pathwidth-one deletion set (PODS),
and the problem the Pathwidth-One Vertex Deletion problem. It follows
from a general NP-hardness result of Lewis and Yannakakis that this problem
is NP-complete.

Our results. We study the parameterized complexity of the Pathwidth-One
Vertex Deletion problem parameterized by the solution size k, and show
that (i) the problem has a vertex-kernel of size O(k4), and (ii) the problem can
be solved in O∗(7k) time (Compare with the values O(k2) and O∗(3.83k) for
FVS, respectively).
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Note that, in general, a PODS “does more” than an FVS: It “kills” all cycles
in the graph, like an FVS, and, in addition, it kills all non-caterpillar trees in the
graph. In fact, the difference in the sizes of a smallest FVS and a smallest PODS
of a graph can be arbitrarily large. For example, the treewidth of a binary tree
is one, while for any integer c there exists a binary tree Tc of pathwidth at least
c+1. Removing a single vertex from a graph will reduce the pathwidth by at most
one, and so for Tc, the difference between the two numbers is at least c. Partly
as a consequence of such differences, many of the techniques and reduction rules
that have been developed for obtaining FPT algorithms and kernels for the
Feedback Vertex Set problem do not carry over to the Pathwidth-One
Vertex Deletion problem. Instead, we use a characterization of graphs of
pathwidth at most one to obtain the FPT algorithm and the polynomial kernel.

Update. After this paper was presented at WG 2010, Cygan et. al [14] improved
both the results in the paper. Using the same general idea of our FPT algorithm
and a clever branching strategy, they obtained an O∗(4.65k) FPT algorithm for
the problem. Using some of our reduction rules and a different approach based
on the α-expansion Lemma of Thomassé [36], they obtained a quadratic (O(k2))
kernel as well.

Organization of the rest of the paper. In Section 2 we give an overview of the
notation and terminology used in the rest of the paper. In Section 3 we formally
define the Pathwidth-One Vertex Deletion problem, show that the prob-
lem is NP-complete, and sketch an FPT algorithm for the problem that runs in
O∗(7k) time. We show in Section 4 that the problem has a vertex-kernel of size
O(k4). We conclude in Section 5. Due to space constraints, many proofs have
been deferred to a full version [32] of the paper.

2 Preliminaries

In this section we state some definitions related to graph theory and param-
eterized complexity, and give an overview of the notation used in this paper;
we also formally define the Pathwidth-One Vertex Deletion problem and
show that it is NP-hard. In general we follow the graph terminology of [16]. For
a vertex v ∈ V in a graph G = (V, E), we call the set N(v) = {u ∈ V |(u, v) ∈ E}
the open neighborhood of v. The elements of N(v) are said to be the neighbors
of v, and N [v] = N(v) ∪ {v} is called the closed neighborhood of v. For a set of
vertices X ⊆ V , the open and closed neighborhoods of X are defined, respec-
tively, as N(X) =

⋃
u∈X N(u) \X and N [X ] = N(X) ∪X . For vertices u, v in

G, u is said to be a pendant vertex of v if N(u) = {v}. A caterpillar is a tree
that becomes a path (called the spine of the caterpillar) when all its pendant
vertices are removed. A nontrivial caterpillar is one that contains at least two
vertices. A T2 is the graph on seven vertices shown in Figure 1. The center of a
T2 is the one vertex of degree 3, and its leaves are the three vertices of degree 1.

The operation of contracting an edge (u, v) consists of deleting vertex u, re-
naming vertex v to uv, and adding a new edge (x, uv) for each edge (x, u); x �= v.
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Multiple edges that may possibly result from this operation are preserved. Note
that the operation is symmetric with respect to u and v. A graph H is said to be
a minor of a graph G if a graph isomorphic to H can be obtained by contracting
zero or more edges of some subgraph of G.

A graph property is a subset of the set of all graphs. Graph property Π is said
to hold for graph G if G ∈ Π . Π is said to be nontrivial if Π and its complement
are both infinite. Π is said to be hereditary if Π holds for every induced subgraph
of graph G whenever it holds for G. The membership testing problem for Π is
to test whether Π holds for a given input graph.

A tree decomposition of a graph G = (V, E) is a pair (T , χ) in which T =
(VT , ET ) is a tree and χ = {χi | i ∈ VT } is a family of subsets of V , called bags,
such that

(i)
⋃

i∈VT
χi = V ;

(ii) for each edge (u, v) ∈ E there exists an i ∈ VT such that both u and v belong
to χi; and

(iii) for all v ∈ V , the set of nodes {i ∈ VT | v ∈ χi} induces a connected
subgraph of T .

The maximum of |χi| − 1, over all i ∈ VT , is called the width of the tree de-
composition. The treewidth of a graph G is the minimum width taken over all
tree decompositions of G. A path decomposition of a graph G = (V, E) is a tree
decomposition of G where the underlying tree T is a path. The pathwidth of G
is the minimum width over all possible path decompositions of G.

To describe the running times of algorithms we sometimes use theO∗ notation.
Given f : N → N, we define O∗(f(n)) to be O(f(n) · p(n)), where p(·) is some
polynomial function. That is, the O∗ notation suppresses polynomial factors in
the expression for the running time.

A parameterized problem Π is a subset of Σ∗ ×N, where Σ is a finite alpha-
bet. An instance of a parameterized problem is a tuple (x, k), where k is called
the parameter. A central notion in parameterized complexity is fixed-parameter
tractability (FPT) which means, for a given instance (x, k), decidability in time
f(k) · p(|x|), where f is an arbitrary function of k and p is a polynomial. The
notion of kernelization is formally defined as follows.

Definition 1. [Kernelization, Kernel] [21,30] A kernelization algorithm for
a parameterized problem Π ⊆ Σ∗×N is an algorithm that, given (x, k) ∈ Σ∗×N,
outputs, in time polynomial in |x| + k, a pair (x′, k′) ∈ Σ∗ × N such that (a)
(x, k) ∈ Π if and only if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some
computable function. The output instance x′ is called the kernel, and the function
g is referred to as the size of the kernel. If g(k) = kO(1) then we say that Π admits
a polynomial kernel.

When a kernelization algorithm outputs a graph on h(k) vertices, we some-
times say that the output is an h(k) vertex-kernel.
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3 The Pathwidth-One Vertex Deletion Problem

In this section we formally define the Pathwidth-One Vertex Deletion
problem, show that it is NP-complete, and briefly sketch an O∗(7k) FPT algo-
rithm for the problem. We begin with the observation that caterpillars are the
quintessential graphs of pathwidth at most one:

Fact 1. [2] A graph G has pathwidth at most one if and only if it is a collection
of vertex-disjoint caterpillars.

A vertex set S ⊆ V of a graph G is said to be a pathwidth-one deletion set
(PODS) if G[V \S] has pathwidth at most one. In this paper we investigate the
parameterized complexity of the following problem:

Pathwidth-One Vertex Deletion (POVD)
Input: An undirected graph G = (V, E), and a positive integer k.
Parameter: k
Question: Does there exist a set S ⊆ V of at most k vertices of G such

that G[V \ S] has pathwidth at most one (i.e., S is a PODS
of G)?

The following general NP-completeness result is due to Lewis and Yannakakis:

Fact 2. [29] The following problem is NP-complete for any nontrivial hereditary
graph property Π for which the membership testing problem can be solved in
polynomial time:

Input: Graph G = (V, E), positive integer k.
Question: Is there a subset S ⊆ V, |S| ≤ k such that G[V \ S] ∈ Π?

The NP-completeness of the Pathwidth-One Vertex Deletion problem fol-
lows directly from this result:

Theorem 1. [�]2 The Pathwidth-One Vertex Deletion problem is NP-
complete.

In the rest of the paper we focus on the parameterized complexity of the
Pathwidth-One Vertex Deletion problem. We now sketch an O∗(7k) time
FPT algorithm, and in the next section we describe an O(k4) vertex-kernel for
the problem. Let (G = (V, E), k) be the input instance, where |V | = n. Let S ⊆ V
be a PODS of G of size at most k. Observe that if (G, k) is a YES instance, then
the number of edges in G is at most k(n−1)+(n−1) = (k +1)(n−1). The first
term on the left is an upper bound on the number of edges that are incident the
vertices in S; the second term is a loose upper bound on the number of edges
in G \ S. So, if G has more than (k + 1)(n− 1) edges, then we can immediately
2 Due to space constraints, proofs of results labeled with a [�] have been moved to a

full version [32] of the paper.
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Fig. 1. The set of excluded minors for graphs of pathwidth at most one

reject the input. Since each reduction rule in the sequel is sound, and no rule
increases the number of vertices or edges, from now on we assume, without loss
of generality, that the graph has at most (k + 1)(n− 1) edges.

The kernel arguments are based on Fact 1, while our starting point for the
FPT algorithm is the following characterization, in terms of excluded minors, of
graphs of pathwidth at most one:

Fact 3. [11,20] A graph G has pathwidth at most one if and only if it does not
contain K3 or T2 as a minor, where K3 and T2 are as in Figure 1.

Fact 3 is not very helpful in the given form in checking for a small PODS.
Instead, we derive and use the following alternate characterization and the two
succeeding lemmas:

Lemma 1. [�] A graph G has pathwidth at most one if and only if it does not
contain a cycle or a T2 as a subgraph.

Lemma 2. [�] Let S = {T2, K3, C4}, where C4 is a cycle of length 4. Given a
graph G = (V, E); |V | = n, we can find whether G contains a subgraph H that is
isomorphic to one of the graphs in S, and also locate such an H if it exists, in
O(kn2) time.

Lemma 3. [�] Let S = {T2, K3, C4}, where C4 is a cycle of length 4. If G is a
graph that does not contain any element of S as a subgraph, then each connected
component of G is either a tree, or a cycle with zero or more pendant vertices
(“hairs”) attached to it.

3.1 An FPT Algorithm for POVD

Let (G = (V, E), k) be the input instance, where |V | = n. We use a branching
strategy inspired by Lemmas 1 and 3. First we locate a (not necessarily induced)
subgraph T of G that is isomorphic to one of S = {T2, K3, C4}. From Lemma 2,
this can be done in O(kn2) time. At least one of the (at most seven) vertices
of T must be in any PODS of G. So we branch on the vertices of T : We pick
each one, in turn, into the minimal PODS that we are constructing, delete the
picked vertex and all its adjacent edges, and recurse on the remaining graph
after decrementing the parameter by one.

The leaves of this recursion tree correspond to graphs which do not have a sub-
graph isomorphic to any graph in S. By Lemma 3, each connected component of
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such a graph is a tree, or a cycle with zero or more pendant vertices (“hairs”) at-
tached to it. The trees can be ignored — they do not have a T2 as a subgraph —
and each cycle (with or without hairs) forces exactly one vertex into any minimal
solution. Thus the base case of the recursion can be solved in linear time.

This is a 7-way branching, where the depth of the recursion is at most k, and
where the algorithm spends O(kn2) time at each node. Hence we have

Theorem 2. The Pathwidth-One Vertex Deletion problem parameterized
by the solution size k has an FPT algorithm that runs in O(n2 · 7kk) time.

By a folklore result of parameterized complexity, it follows immediately from
Theorem 2 that the Pathwidth-One Vertex Deletion problem parameter-
ized by the solution size k has a kernel of size O(7k) (See, for example, [21]).
We now show that the kernel size can be brought down significantly from this
trivial bound.

4 A Polynomial Kernel for POVD

We turn to the main result of this paper. We describe a polynomial-time al-
gorithm (the kernelization algorithm) that, given an instance (G, k) of POVD,
returns an instance (G′, k′) (the kernel) of POVD such that (i) (G, k) is a YES
instance if and only if (G′, k′) is a YES instance, (ii) G′ has O(k4) vertices, and
(iii) k′ ≤ k. The kernelization algorithm (Algorithm 1) exhaustively applies the
reduction rules of Section 4.1 to the input instance. The resulting instance, to
which no rule applies, is said to be reduced with respect to the reduction rules.
To demonstrate a quartic vertex-kernel for the problem, it suffices to show that

1. The rules can be exhaustively applied in polynomial time;
2. Each rule is sound : the output of a rule is a YES instance if and only if its

input is a YES instance; and
3. If the input instance (G, k) is a YES instance, then the reduced instance

(G′, k′) has O(k4) vertices.

The reduction rules are based on the following idea: Suppose (G = (V, E), k)
is a YES instance of the problem that is reduced with respect to the reduction
rules. Then there is a set S ⊆ V, |S| ≤ k such that G[V \ S] is a collection of
caterpillars, and it suffices to show that |V \ S| = O(k4). We express V \ S as
the union of different kinds of vertices, and devise reduction rules that help us
bound the total number of vertices of each kind. To be more specific, we set
V \ S = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 where

1. V1 = {v ∈ (V \ S); N(v) ∩ (V \ S) = ∅ and |N(v) ∩ S| ≤ 1}
2. V2 = {v ∈ (V \ S); N(v) ∩ (V \ S) = ∅ and |N(v) ∩ S| ≥ 2}
3. V3 = {v ∈ ((V \ S) \ V1); v is on the spine of a nontrivial caterpillar in

G[V \ S]}
4. V4 = {v ∈ (V \ S); |N(v) ∩ S| = 0 and v is a pendant vertex in G[V \ S]}
5. V5 = {v ∈ (V \ S); |N(v) ∩ S| ≥ 1 and v is a pendant vertex in G[V \ S]}
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Algorithm 1. The kernelization algorithm
1: procedure Kernelize(G, k)
2: CurrentInstance← (G, k)

3: repeat
4: Apply Rules 1 to 6 and set CurrentInstance to be the output.
5: until None of the rules cause any change to CurrentInstance.
6: end procedure

It is easy to verify that these sets together exhaust V \S. We state the reduction
rules and describe their consequences in the next section; the claims of soundness
of the rules and a more formal bound on the running time and kernel size are
deferred to Section 4.2.

4.1 Reduction Rules

For each rule below, let (H = (VH , EH), k) be the instance on which the rule is
applied, and (H ′, k′) the resulting instance. Let G = (V, E) be a YES instance
of the problem that is reduced with respect to all the reduction rules, and let
S, V1, . . . , V5 be as described above. To bound the sizes of various subsets of
V \ S, we use the fact that no reduction rule applies to G.

Rule 1. If a connected component H [X ]; X ⊆ VH of H has pathwidth at most
1, then remove X from H. The resulting instance is (H ′ = H [VH \X ], k′ = k).

Rule 2. If a vertex u in H has two or more pendant neighbors, then delete
all but one of these pendant neighbors to obtain H ′. The resulting instance is
(H ′, k′ = k).

Rules 1 and 2 together ensure that every caterpillar in G[V \ S] has at least one
neighbor in S, and that |V1| ≤ k: See Lemma 5.

Rule 3. Let u be a vertex of H with at least two neighbors. If for every two
vertices {v, w} ⊆ N(u) there exist k + 2 vertices excluding u that are adjacent
to both v and w, then delete u from H. The resulting instance is (H ′ = H [VH \
{u}], k′ = k).

Rule 3 ensures that |V2| ≤
(
k
2

)
(k + 2): Set A = V2 and X = S in Lemma 6.

Rule 4. For a vertex u of H, if there is a matching M of size k + 3 in H
where (i) each edge in M has at least one end vertex in N(u), and, (ii) u is
not incident with any edge in M , then delete u and decrement k by one. The
resulting instance is (H ′ = H [V \ {u}], k′ = k − 1).

Rule 5. Let x, y be the end vertices of the spine x, v1, v2, v3 . . . , vp, y of an in-
duced caterpillar C in H such that (1) no vi; 1 ≤ i ≤ p is adjacent in H to any
vertex outside C, and (2) every pendant vertex of C is a pendant vertex in H. If
p ≥ 5, then contract the edge (v2, v3) in H to obtain the graph H ′. The resulting
instance is (H ′, k = k′).
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From Rules 1 to 5 it follows that |V3| ≤ 17k(k + 2) (Lemma 7), and that |V5| ≤
17(k + 2)2k(2k− 1) (Lemma 8). Each vertex in G can have at most one pendant
neighbor, or else Rule 2 would apply. From this we get |V4| ≤ |V3| = 17k(k + 2).
Putting all the bounds together, |V | ≤ 34k4+120k3+103k2+k, and so we have:

Rule 6. If none of the Rules 1 to 5 can be applied to the instance (H, k), and
|VH | > 34k4 +120k3 +103k2 +k , then set the resulting instance to be the trivial
NO instance (H ′, k′) where H ′ is a cycle of length 3 and k′ = 0.

In the next section we prove that these rules are sound, and that they can all
be applied exhaustively in polynomial time. Hence we get

Theorem 3. The Pathwidth-One Vertex Deletion problem parameterized
by solution size k has a polynomial vertex-kernel on O(k4) vertices.

4.2 Correctness and Running time

We now show that the reduction rules are sound. That is, we show that for
each rule, (using the notation of the previous section) (H, k) is a YES instance
if and only if (H ′, k′) is a YES instance. We also show that each rule can be
implemented in polynomial time. For discussing the rules, we reuse the notation
from the respective rule statement in Section 4.1. In each case, n is the number
of vertices in the input to the kernelization algorithm.

Claim. [�] Rule 1 is sound, and can be applied in O(kn) time.

Claim. [�] Rule 2 is sound, and can be applied in O(kn) time.

Claim. [�] Rule 3 is sound, and can be applied in O(n3) time.

Claim. [�] Rule 4 is sound, and can be applied in O(kn1.5) time.

Claim. [�] Rule 5 is sound, and can be applied in O(kn) time.

From these claims, we get

Lemma 4. On an input instance (G = (V, E), k); |V | = n of Pathwidth-One
Vertex Deletion, the kernelization algorithm (Algorithm 1) runs in O(n4)
time and outputs a kernel on O(k4) vertices.

Proof. From the above claims it follows that Rules 1 to 5 are sound, and that
each can be applied in O(n3) time. From the discussion in Section 4.1 (using
Lemmas 5 to 8 below) it follows that Rule 6 is sound, and it is easy to see that
this rule can be applied in O(n) time. Each time a rule is applied, the number
of vertices in the graph reduces by at least one (contracting an edge also reduces
the vertex count by one). Hence the loop in lines 3 to 5 of Algorithm 1 will run
at most |V | + 1 = n + 1 times. The algorithm produces its output either at a
step where Rule 6 applies, or when none of the rules applies and the remaining
instance has O(k4) vertices. Thus the algorithm runs in O(n4) time and outputs
a kernel on O(k4) vertices. ��
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We now list the lemmas used in Section 4.1 to bound the sizes of V1, . . . , V5.

Lemma 5. [�] Let (G = (V, E), k) be a YES instance of the problem that is
reduced with respect to Rules 1 and 2, and let S be a PODS of G of size at most
k. Let V1 = {v ∈ (V \ S); (N(v)∩ (V \ S)) = ∅ and |N(v)∩ S| ≤ 1}. Then every
caterpillar in G[V \ S] has at least one neighbor in S, and |V1| ≤ k.

Lemma 6. [�] Let (G, k) be a YES instance of the problem that is reduced with
respect to Rule 3. For a set X ⊆ V , if A ⊆ V \ X is such that every v ∈ A
has (i) at least two neighbors in X, and (ii) no neighbors outside X, then |A| ≤(|X|

2

)
(k + 2).

Lemma 7. [�] Let (G = (V, E), k) be an instance of the problem that is reduced
with respect to Rules 1 to 5, and let S ⊆ V be such that G[V \ S] has pathwidth
at most one. Let X ⊆ (V \ S) be the set of vertices in (V \ S) that lie on the
spines of nontrivial caterpillars in G[V \ S]. Then |X | ≤ 17k(k + 2).

Lemma 8. [�] Let (G = (V, E), k) be a YES instance of the problem that is
reduced with respect to Rules 1 to 5, and let S ⊆ V ; |S| ≤ k be such that G[V \S]
has pathwidth at most one. Let P ⊆ (V \ S) be the set of pendant vertices in
G[V \ S] that have at least one neighbor in S. Then |P | ≤ 17(k + 2)2k(2k − 1).

5 Conclusion

We defined the Pathwidth-One Vertex Deletion problem as a natural vari-
ant of the iconic Feedback Vertex Set problem, and initiated the study of its
algorithmic complexity. We established that the problem is NP-complete, and
showed that the problem parameterized by the solution size k is fixed-parameter
tractable. We gave an FPT algorithm for the problem that runs in O∗(7k) time,
and showed that the problem has a polynomial kernel on O(k4) vertices.

An immediate question is whether these bounds can be improved upon3. A
more challenging problem is to try to solve the analogous problem for larger val-
ues of pathwidth. That is, we know that for any positive integer c, the Pathwidth
c Vertex Deletion problem, defined analogously to Pathwidth-One Vertex
Deletion, is FPT parameterized by the solution size. This follows from the
Graph Minor Theorem of Robertson and Seymour because, for each fixed c, the
set of YES instances for this problem form a minor-closed class. However, for
c = 2, the number of graphs in the obstruction set is already a hundred and
ten [26], and so our approach would probably be of limited use for c ≥ 2. Thus
the interesting open problems for c ≥ 2 are: (i) Can we get an O∗(dk) FPT
algorithm for the problem for some small constant d, and (ii) Does the problem
have a polynomial kernel?

Acknowledgements. We thank our anonymous reviewers for a number of useful
comments for improving the paper.
3 After we presented our work at WG 2010, Cygan et al. [14] improved both these

bounds, to O∗(4.65k) and O(k2), respectively. See Introduction for more details.
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Abstract. In this paper we investigate the basic problem of Exploration
of a graph by a group of identical mobile computational entities, called

robots, operating autonomously and asynchronously. In particular we are

concerned with what graphs can be explored, and how, if the robots do

not remember the past and have no explicit means of communication.

This model of robots is used when the spatial universe in which the

robots operate is continuous (e.g., a curve, a polygonal region, a plane,

etc.). The case when the spatial universe is discrete (i.e., a graph) has

been also studied but only for the classes of acyclic graphs and of simple

cycles. In this paper we consider networks of arbitrary topology modeled

as connected graphs with local orientation (locally distinct edge labels).

We concentrate on class Hk of asymmetric configurations with k robots.

Our results indicate that the explorability of graphs in this class depends

on the number k of robots participating in the exploration. In particular,

exploration is impossible for k < 3 robots. When there are only k = 3

robots, only a subset of H3 can be explored; we provide a complete

characterization of the networks that can be explored. When there are

k = 4 robots, we prove that all networks in H4 can be explored. Finally,

we prove that for any odd k > 4 all networks in Hk can be explored

by presenting a general algorithm. The determination of which networks

can be explored when k > 4 is even, is still open but can be reduced to

the existence of a gathering algorithm for Hk.

1 Introduction

Consider a team (or swarm) of identical mobile robots located in a spatial uni-
verse. Each robot operates autonomously by cyclically executing three opera-
tions: Look - it observes the position of the other robots; Compute - based on
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this input, it computes a destination (a neighbouring node) or it decides not to
move, according to a predefined algorithm (the same for all robots); Move- it
then moves to its computed destination. The robots are silent: they have no di-
rect means of communication; anonymous: externally identical with no distinct
identifiers that can be used in the execution of the algorithm; asynchronous: the
time between each operation in the Look-Compute-Move cycle as well as between
successive cycles is finite but arbitrary; oblivious: the robots have no memory
of past actions and computations, and the computation is based solely on what
determined in the current cycle.

This model of robots is used when the spatial universe in which the robots
operate is continuous, e.g., a curve, a polygonal region, a plane, etc. In this set-
ting, the computational power of such robots has been investigated with respect
to a variety of problems, such as Pattern Formation, Gathering, Flocking, etc.
(e.g. see [1, 3–5, 9, 12, 13]).

Recently investigations have also considered the case when the spatial uni-
verse is discrete, e.g., when the robots operate in a network [6–8, 10, 11]. The
research has focused on two fundamental problems (extensively studied in the
past in a variety of other models): Gathering (or Rendezvous), which requires all
robots to move to the same node (whose location is a priori undetermined); and
Exploration, which requires every node of the network to be visited by at least
one robot and all robots reach a quiescent state within finite time. The results
have however been limited to two classes of graphs: rings [6, 7, 10, 11] and trees
[8] and assuming that the edges incident on a vertex are indistinguishable for the
robots. No results exist to date for the exploration of arbitrary graphs by obliv-
ious robots in the Look-Compute-Move model. Note that the latter assumption
(unlabeled edges) is atypical; indeed in standard models of networks (anonymous
or not) in distributed computing, the links incident on a node x have distinct
labels, called port numbers.

The computational study of such weak robots is a difficult task due to the
simultaneous presence of asynchrony, obliviousness, and lack of explicit com-
munication. Lack of explicit communication means that synchronization, inter-
action, and communication of information among the robots can be achieved
solely by means of observing the position of the other robots. However, because
of asynchrony a robot r may observe the position of the robots at some time
t; based on that observation, compute the destination at time t′ > t, and move
at an even later time t′′ > t′; thus it might be possible that at time t′′ some
robots are in different positions from those previously perceived by r at time t,
because in the meantime they performed their Move operations (possibly several
times). In other words, robots may compute destinations and move based on
significantly outdated perceptions, which adds to the difficulty of exploration.
Moreover, since robots are oblivious, the task of deciding the global status of
the exploration process, in particular termination detection, has to be performed
without memory and without communication.

In this paper we continue the investigation of the computational power of
such weak robots in the discrete setting, and consider the exploration problem
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in anonymous networks, that is edge-labeled graphs (G, λ) where G = (V, E) is a
connected simple graph and λ = {λv : v ∈ V } is the set of local port-numbering
functions λv. Let Ψ be the placement function describing the position of the
robots in the network, and let (G, λ, Ψ) denote the network with the placement
of the robots. In particular, we are interested in determining which networks
with what initial placements of the robots exploration is possible; that is, which
(G, λ, Ψ) can be explored and how. The study of the specific classes of graphs
investigated in absence of edge-labels, of trees and rings, becomes much simpler
with edge-labels, and a complete characterization can be found in [2].

When considering networks with at most two robots, it is easy to see that
exploration cannot be solved if the networks has at least three vertices. When
the number of robots is larger and (G, λ, Ψ) is symmetric (i.e., there exists a non-
trivial automorphism of (G, λ, Ψ) that preserves the labels and the placement
of the robots), exploration cannot be generally solved: solvability depends on
the number of equivalence classes of agents and the task is impossible when the
number of equivalence classes is less than 2.

In this paper, we consider only initial configurations (G, λ, Ψ) that are asym-
metric. We denote by Hk the class of configurations (G, λ, Ψ) with k robots
such that there is no non-trivial automorphism that preserves the labels and the
placement of the robots. Our goal is to determine which networks in this class
can be explored and how.

Our results indicate that the explorability of networks in Hk depends on the
number k of robots participating in the exploration. In particular, with one robot
(resp. two robots), only a network with one vertex (resp. two vertices) can be
explored. When there are only k = 3 robots, we prove that not all networks in
H3 can be explored. More precisely, we do provide a complete characterization of
the networks that can be explored with k = 3 robots, and present an algorithm
that performs the exploration of those networks with three robots (Section 4).
When there are k = 4 robots, we prove that all networks in H4 can be explored;
the proof is constructive, and the algorithm is (unfortunately) quite involved
(Section 5). Finally, we prove that for any odd k > 4 all networks in Hk can be
explored by presenting a general algorithm. The determination of which networks
can be explored when k > 4 is even, is still open, but it can be reduced to the
existence of a gathering algorithm for Hk.

Due to space limitations most proofs are omitted in this extended abstract
and will be presented in the journal version of our paper.

2 Model and Basics

Let G = (V, E) be an undirected connected simple graph where V is the set of
vertices and E the set of edges, with |V | = n. The vertices of G are unlabeled. We
denote by N(v) the set of neighbors of v, and by d(v), the degree of v. For each
node v, there is a bijective function λv : N(v) → {1, 2, . . .d(v)} which assigns
unique labels to the edges incident to v. Each edge uv ∈ E has two distinct
labels λu(v) and λv(u). Let λ = {λv : v ∈ V } be the global labeling function
and let (G, λ) denote the resulting edge-labeled graph. The label Λ(π) of a path
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π = (u0, u1, . . . , uk) is obtained by extending λ from edges to paths as follows:
Λ(π) = ((λu0 (u1), λu1(u0)), . . . , (λuk−1(uk), λuk

(uk−1)).
The shortest path from u to v is the minimal element we get when sorting the

paths from u to v first by length, and then lexicographically using their labels.
We say that a node u is closer from a node w than a node v if either dist(u, w) <
dist(v, w), or dist(u, w) = dist(v, w) and the label Λ(πuw) of a shortest path from
u to w is lexicographically smaller (or “weaker”) than the label Λ(πvw) of any
shortest path from v to w.

Operating in (G, λ) is a set R of k identical robots. Each robot operates in
Look-Compute-Move cycles, which are performed asynchronously for each robots.
When Looking, a robot perceives a snapshot of the labeled graph with the current
position of the robots (called a view of the graph); when Computing it decides
where to move on the basis of the snapshot; when Moving it actually moves
to the chosen neighboring node. The time between Look, Compute, and Move
operations is finite but unbounded, and is decided by the adversary for each
action of each robot. The only constraint is that moves are instantaneous, as in
[6–8, 10, 11], and hence any robot performing a Look operation sees all other
robots at nodes and not on edges. We say that there is a tower on a node if
the node is occupied by more than one robot. We call a robot free if it does not
belong to a tower. Initially all robots are free; that is there is at most one robot
in each node. During the Look operation, the robots can perceive if there is one
or more robots in a given location; this ability, called multiplicity detection is a
standard assumption in the continuous model.

Let Ψ : R → V be the placement function returning the initial position of a
given robot. Let (G, λ, Ψ) denote the edge-labeled graph with the initial place-
ment of the robots. The vertices of (G, λ) (resp., (G, λ, Ψ)) can be partitioned
according to the equivalence classes they belong to, where an equivalence class
[v0] of vertices of G is such that for each v ∈ [v0], there exists an automorphism
σ of G that preserves the labels (resp., and placement) such that σ(v) = v0. We
say that (G, λ) (resp., (G, λ, Ψ)) is symmetric if there exists a non-trivial auto-
morphism of (G, λ) (resp., (G, λ, Ψ)) that preserves the edge-labeling λ (resp.,
and the placement), asymmetric otherwise. Note that, in (G, λ) and (G, λ, Ψ) the
equivalence classes can be ordered using the fact that each identifies a different
“view” of the graph. We say that a robot a is closer from a node w than a robot
b if Ψ(a) is closer from w than Ψ(b).

Given an initial placement Ψ of k robots in (G, λ), we say that a protocol
A solves the exploration problem in (G, λ, Ψ) if in all possible executions of A
by the k robots, every node of the graph is visited by at least one robot and
all robots enter a quiescent state within finite time. We say that exploration of
(G, λ, Ψ) with k robots is impossible if no protocol solves the exploration problem
in (G, λ, Ψ). A network (G, λ) is explorable with k robots if there exists protocol
A that solves the exploration problem in (G, λ, Ψ) for any placement of Ψ of k
robots in (G, λ).

Lemma 1. For any network (G, λ), it is impossible to solve exploration with
one (resp. two) agents if |V | > 1 (resp. |V | > 2).
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In the rest of the paper we focus on asymmetric configurations, i.e. the set Hk

of all (G, λ, Ψ) with k robots where (G, λ, Ψ) is asymmetric; and we assume
multiplicity detection. Since exploration is impossible for networks in H1 and
H2 we consider k ≥ 3.

3 About Gathering and Asymmetry

3.1 Gathering Algorithms

In [2], we have studied the gathering problem: we want to gather all the robots
at a single node. In the exploration algorithms we present below, we use the
gathering algorithm of [2] as a subroutine. We describe it here briefly.

Consider a node v ∈ V ; let PATHS(v) = {Λ(π) | π is the shortest path
from v to Ψ(a) | a ∈ R}. Let SORT (PATHS(v)) be the set of labeled paths
sorted first by the length and then by lexicographic order of their associated
sequences of labels. Given two vertices v1 and v2, we define the following or-
der: v1 < v2 if SORT (PATHS(v1)) <lex SORT (PATHS(v2)), where <lex

denotes lexicographic order. Let SD(v) =
∑

a∈A dist(v, Ψ(a)) denote the sum
of the distances from a node v to all the robots and let code(v) = (SD(v),
SORT (PATHS(v))).

Consider an equivalence class [u] of (G, λ), a Minimal Weber node of [u] is
a node u′ ∈ [u] such that code(u′) = min{code(u′′) | u′′ ∈ [u]}. Note that
if (G, λ, Ψ) is asymmetric, then each class [u] of (G, λ) has a unique Minimal
Weber node, denoted by MWN [u].

Given an equivalence class [u] of (G, λ) (this class can be seen as a parameter
of the algorithm), and starting from any asymmetric configuration (G, λ, Ψ) with
k robots, the algorithm from [2] has the following properties.

– at each moment, at most one robot can move,
– if k ≥ 3 is odd, then the only robot that is allowed to move is the closest from

u′ = MWN [u] that is not on u′. After this move, we still have MWN [u] = u′,
and code(u′) has strictly decreased.

– if k = 4, the robot that is allowed to move is either the closest one from
u′ = MWN [u] that is not on u′, or the robot that is on u′. After the move,
MWN [u] can be modified, but code(MWN [u]) has strictly decreased.

Thus, we have the following theorem.

Theorem 1 ([2]). From any asymmetric configuration (G, λ, Ψ) with k agents,
and for any equivalence class [u] of (G, λ), there exists a gathering algorithm
where the gathering node belongs to [u] when k ≥ 3 is odd, or when k = 4.

3.2 Asymmetry

For Gathering, we know that if the initial configuration (G, λ, Ψ) is asymmetric,
then it is impossible to solve gathering [2]. When considering exploration, we
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don’t have such strong results. However, we want the robots to be able to detect
that they have explored the network. Since they are oblivious, they should be
able to detect from the snapshot they compute if the configuration can be an
initial configuration or not. To do so, the robots will create towers of two (or
more) robots that cannot be part of the initial configuration. If in the initial
configuration, all robots are in the same equivalence class, we know that no
tower can be created [2] and thus, it implies that exploration is impossible. It
means that when the degree of symmetry is too high, exploration is impossible.
To avoid this problem, in this paper, we only consider initial configurations that
are asymmetric. Note that, even if we do not ask the robots to stop once they
have explored all the nodes (i.e. we consider perpetual exploration), there are
still some symmetric networks that cannot be explored.

4 Exploration with k = 3 Robots

We prove that explorability of (G, λ, Ψ) ∈ H3 requires the presence of a node (or
an edge) in G whose removal creates either a graph with a Hamiltonian path, or
a graph that is spanned by two intersecting elementary paths satisfying several
conditions. This class of graphs is denoted by E3.

Definition 1. A graph G ∈ E3 if at least one of the two following conditions
hold:
(Case 1) There exists an elementary path P = (x1, . . . , xm) and two neighbors
u0, v0 both different from x1 such that:

(A1) u0 does not appear in P ,
(A2) any vertex v /∈ {u0, v0} appears in P ,
(A3) (G, λ, Ψ0) is asymmetric where Ψ0 maps a robot to x1, one to u0 and

one to v0.
(Case 2) There exists two elementary paths P1 = (x1, . . . , xm) and P2 =
(y1, . . . , y�) and two neighbors u0, v0 both different from x1 such that:

(B1) xm = y1,
(B2) either u0 = xm or u0 ∈ N(xm),
(B3) u0 �= xi, for all i ∈ [1, m− 1],
(B4) any vertex v /∈ {u0, v0} appears either in P1 or in P2,
(B5) (G, λ, Ψ0) is asymmetric where Ψ0 maps a robot to x1, one to u0 and one

to v0,
(B6) for any consecutive vertices y, y′ of P2, and for any vertex x of P1 ad-

jacent to u0, there is no automorphism of (G, λ) mapping x to y and u0 to y′.
(B7) for any distinct vertices y, y′ ∈ P2, there is no automorphism of (G, λ)

mapping y to y′.

Examples of graphs in E3 can be seen in Figure 1.

Remark 1. A graph satisfies the conditions of (Case 1) in Definition 1 if and
only if there exists u0, v0 ∈ V (G) such that either G \ {u0} or G \ {u0, v0} has a
Hamiltonian path.
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Fig. 1. On the left, a graph satisfying conditions of (Case 1) of Definition 1; on the

right, a graph satisfying conditions of (Case 2) of Definition 1

Lemma 2. If (G, λ, Ψ) ∈ H3 \ E3 exploration of (G, λ, Ψ) is impossible.

We now briefly describe the exploration algorithm for (G, λ, Ψ) ∈ E3.
The algorithm is different depending on the characteristics of the graph. Sup-

pose that the graph satisfies the conditions of (Case 1) in Definition 1 for some
vertices u0, v0 and some elementary path P = (x1, . . . , xm). The idea is to first
have the three robots place themselves on u0, v0, and x1 (this procedure is not
trivial; the details will appear in the complete version of this paper). Then the
two robots that are on u0, v0 (up to isomorphism) create a small tower on u0, and
the third robot performs the exploration following path P until it reaches the
last node xk of this path. Suppose now that (Case 1) does not apply but (Case
2) does for some vertices u0, v0 and two elementary paths P1 = (x1, . . . , xm) and
P2 = (y1, . . . , y�). Again one can show that we can have the three robots placed
on u0, v0 and x1. Then the two robots that are on u0, v0 (up to isomorphism)
create a small tower on node u0, and the third robot moves along the path P1.
Then, a big tower is created on y1 and this big tower moves along P2 until it
reaches the last node y� of this path. Note that the tower might break on the
way due to asynchrony, it will however recompose itself along the path. From
Lemma 2 and the Algorithm above we have:

Theorem 2. (G, λ, Ψ) ∈ H3 can be explored if and only if G ∈ E3.

5 Exploration with k = 4 Robots

We now turn to the case of k = 4 robots and we show that any (G, λ, Ψ) ∈ H4

can be explored. The algorithm is however slightly involved. We actually need
to describe two versions depending on the existence of structures called pseudo-
neck and neck. If there exist in G two vertices v, v′ of degree 1 with a common
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neighbor u, we say that (v, v′, u) is a pseudo-neck. A neck (n1, n2) in G consists
of two neighbors n1, n2 ∈ V (G) such that after removing them and their adjacent
edges from G the resulting graph is connected. It is easy to see that:

Lemma 3. If a graph does not contain any pseudo-neck, it contains at least a
neck.

The general idea of the algorithms is the following. Two robots uniquely identify
a pseudo-neck (or a neck if the pseudo-neck does not exist) by moving to the
leaves of a pseudo-neck (or to the vertices of the neck). Once the pseudo-neck
(or the neck) is occupied, the robots identify a unique spanning tree rooted in
the pseudo-neck (or in the neck) and an ordering f1, . . . fm of its leaves. One of
the robot that is not on the pseudo-neck (or the neck) moves to the first leaf
f1 of this spanning tree. Then, the two robots on the pseudo-neck (or the neck)
create a tower. The two free robots occupy the first two leaves of the spanning
tree, without creating symmetries and proceed with the exploration by placing
on consecutive leaves fi and fi+1, and having the robot on the smaller leaf fi

move to fi+2 until the last leaf is reached (a technique similar to the one used
in [8] for asymmetric trees).

The algorithm will be discussed in details and analyzed in the rest of this
section. Note that the algorithm will employ in some cases a preliminary step of
“partial gathering”. For such a step, we will adapt the gathering algorithm for
asymmetric (G, λ, Ψ) described in [2].

5.1 Graphs with a Pseudo-neck

We now show how to create a tower on one of the nodes of the pseudo-neck and
how to have a robot move on the first leaf of a uniquely identified spanning tree.
If there is more than one pseudo-neck in the graph, ties are broken using the
edge labels and we assume they are ordered from “weakest” to “strongest”.

Given a pseudo-neck (v, v′, u), let T (v, v′, u) be a spanning tree obtained
by a depth-first traversal starting in u. Let f1(T (v, v′, u)), f2(T (v, v′, u)), . . . ,
fm(T (v, v′, u)) be an ordering of its leaves different from v, v′. We construct
T (v, v′, u) in such a way that f1(T (v, v′, u)) = f1(T (v′, v, u)) (it is easy to see
that this can always be done).

Algorithm Form-Tower-with-pseudo-neck is described by listing six pos-
sible cases. A robot checks the cases in this order and follows the first that applies
to the observed configuration.

Algorithm. Form-Tower-with-pseudo-neck

Case 1. There is a pseudo-neck (v, v′, u) with a robot in u, a robot in v and
there is a robot in f1.
If I am the robot in u: move to v creating a tower in v.
Case 2. There is a pseudo-neck (v, v′, u) with a robot in v, a robot in v′ and
there is a robot in f1.
If I am the robot in v′: move to u.
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Case 3. There is a pseudo-neck (v, v′, u) with a robot in v, a robot in v′ and
there are no robots in f1(T (v, v′, u)) = f1(T (v′, v, u)).
Let a be the closest robot to f1(T (v, v′, u)) in G\{v, v′}. If I am a: move toward
f1(T (v, v′, u)).
Case 4. There is a pseudo-neck (v, v′, u) with a robot in v, and robot a in u.
If I am a: move to v′.
Case 5. There is a pseudo-neck (v, v′, u) with a robot in v, no robot in u nor in
v′.
Among all the necks like that, consider the weakest such that min{dist(a, u) |
Ψ(a) �= v} is minimal. Let a be the closest robot to u in G that is not in v. If I
am a: move toward u.
Case 6. Any other situation.
Apply the gathering Algorithm of [2] until the tower is formed, by considering as
candidate gathering points nodes of degree 1 which have another node of degree
1 at distance 2.

Lemma 4. Algorithm Form-Tower-with-pseudo-neck terminates and no
movement can create a symmetry during the tower formation on a pseudo-neck
with Algorithm Form-Tower-with-pseudo-neck.

Algorithm Explore-with-pseudo-neck proceeds by letting the other two
robots move sequentially. They move to f1(T (v, v′, u)) and f2(T (v, v′, u)); they
then move on the spanning tree (which is invariant to their movement) placing
on consecutive leaves fi and fi+1, and having the robot on the smaller leaf fi

move to fi+2 until the last leaf is reached. We can conclude that:

Lemma 5. Let G have a pseudo-neck. Then any (G, λ, Ψ) ∈ H4 can be explored.

5.2 Graphs with a Neck

We consider the case when a pseudo-neck does not exist; thus a neck exists. In
this case the algorithm is more complex and we describe the process of tower
creation and the one of exploration separately.

Placement on the Neck. We first introduce some notation. A block in a graph
is an inclusion-maximal 2-vertex-connected component (possibly reduced to one
edge). Two blocks of G are either disjoint or share a single vertex, that is an
articulation point. Any graph G admits a block-decomposition in the form of a
rooted tree T : each vertex of T is a block of G, pick any block B1 as a root of T ,
label it, and make it adjacent in T to all blocks intersecting it, then label that
blocks and make them adjacent to all unlabeled blocks which intersect them,
etc.

We describe how to have two robots move to occupy the neck. We identify
four situations and for each we sketch the algorithm followed by the robots.
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Algorithm. Occupy-Neck

Case 1. G is 2-connected.
In this case any edge is a neck. Consider a class [u0] of vertices of G and execute
the gathering algorithm of [2] until there is a robot a in one vertex u ∈ [u0] and
a robot b in a vertex v incident to u. Then a and b are on a neck.
Case 2. There exists a leaf B in the block-decomposition of G is of size 2.
Note that, since there does not exist any pseudo-neck, it implies that there exists
a vertex u0 of degree 1 adjacent to a vertex v0 of degree 2. In that case, execute
the gathering algorithm of [2] until there is a robot a in one vertex u ∈ [u0] and
a robot b in a vertex v incident to u. Then a and b are on a neck.
Case 3. There exists a leaf B0 in the block-decomposition of G, whose articula-
tion point is w0 such that there exists a vertex u0 ∈ B0 at distance 2 from w0 in
G.
Note that any edge (u0, v) ∈ E(G) is a neck. In this case, execute the gathering
algorithm of [2] until there is a robot a in one vertex u ∈ [u0] and a robot b in a
vertex v incident to u. Then a and b are on a neck.
Case 4. In any leaf B of the block-decomposition, the articulation point is ad-
jacent to all vertices of B.
In this case, consider a leaf B0 of the block-decomposition of size at least 3. Let
w0 be its articulation point and let u0 be a vertex of B0 distinct from u0. Execute
the gathering algorithm of [2] until there is a robot a in a vertex u ∈ [u0] and a
robot b in a vertex v incident to u. If v ∈ [w0], b can safely move to a neighbor
t /∈ [w0] of u.

Lemma 6. In Algorithm Occupy-Neck two robots move on the two nodes of
a neck without creating symmetries.

Exploration. Given a vertex u, let T (u) be a spanning tree of G obtained by
doing a depth-first traversal (DFT) starting from u. If (u, v) is a neck, let T (u, v)
be a spanning tree obtained by a DFT starting from u and using (u, v) as a first
edge, i.e., T (u, v) \ {u} is a DFT of G \ {u} starting in v. Given a spanning
tree T (u, v) of G, consider an ordering of its leafs f1, . . . , fm such that f1 is as
far as possible from u (using the labels on the paths from u to f to break the
symmetry) in G \ {u, v}.

We say that a neck (n1, n2) is symmetric if there is an automorphism σ of G
such that σ(n1) = n2, asymmetric otherwise. Exploration proceeds differently
whether the neck is symmetric or not. (Note that a pseudo-neck is by definition
never symmetric because of the edge labels). In case of symmetry, once two
robots are on a neck, we have to carefully proceed to have a robot move to the
first leaf. We now describe the two cases.

Draft of Algorithm Explore-with-symmetric-neck. Assume that the neck
is symmetric. First of all note that, due to the port numbers, there is at most
one automorphism σ of G such that σ(n1) = n2. Let T = T (n1, n2) and T ′ =
T (n2, n1). Let a and b be two robots that are not on the neck. Without loss
of generality, assume that distG\{n1,n2}(Ψ(a), f1) ≤ min {distG\{n1,n2}(Ψ(a), f ′

1),
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distG\{n1,n2}(Ψ(b), f ′
1), distG\{n1,n2}(Ψ(b), f1)} and that if there is an equality,

the label of the shortest path between Ψ(a) and f1 is “weaker” than the label
of the other shortest paths (since the situation is asymmetric, even if σ is an
automorphism). In this case, let a move towards f1 (on a node denoted Ψ ′(a))
in G \ {n1, n2} if it does not creates a symmetry. Otherwise, let b move to Ψ ′(a)
(if a symmetry appears when a move to Ψ ′(a), then one can show that Ψ(b) is
adjacent to Ψ ′(a)). Once the neck and the first leaf are occupied, the exploration
proceeds as in Section 5.1.

Lemma 7. With Algorithm Explore-with-symmetric-neck, a robot reaches
f1 without creating any symmetry.

Draft of Algorithm Explore-with-asymmetric-neck. Assume now that
the neck is asymmetric, i.e., there is no automorphism σ of G such that σ(n1) =
n2. Using an arbitrary predefined order, we assume without loss of general-
ity that n1 is “weaker” than n2. Let T = T (n1, n2) and let a and b be two
robots that are not on the neck. Again without loss of generality, assume that
distG\{n1,n2}(Ψ(a), f1) ≤ distG\{n1,n2}(Ψ(b), f1) (using labels to break the sym-
metry). In this case, let a move towards f1 (on a node denoted Ψ ′(a)) in G \
{n1, n2} if it does not creates a symmetry. Otherwise, let b move to Ψ ′(a) (if a
symmetry appears when a move to Ψ ′(a), then one can show that Ψ(b) is ad-
jacent to Ψ ′(a)). Once the neck and the first leaf are occupied, the exploration
proceeds as in Section 5.1.

Lemma 8. During the execution of Algorithm Explore-with-asymmetric-

neck, a robot reaches f1 without creating any symmetry.

From Lemmas 6, 7 and 8, we have that any (G, λ, Ψ) ∈ H4 can be explored if G
has a neck. Consequently, with Lemma 5, we have the following theorem.

Theorem 3. Any (G, λ, Ψ) ∈ H4 can be explored.

6 Exploration with k > 4 Odd

Let k > 4 be odd. In this case, the exploration algorithm is rather simple, and
is drafted below.

The robots start by applying the gathering algorithm of [2] where the gather-
ing point is chosen within an equivalence class [v] of vertices where v is not an
articulation point (it is easy to see that such a class can always be selected). The
gathering algorithm is executed until k− 3 robots have gathered in some vertex r
creating a tower. At this point, the robots can select a spanning tree T - for exam-
ple a Depth-First Spanning Tree - rooted in r and they can agree on one where r
has a single neighbor in T . Let f1, . . . , fm be the ordered leaves of T encountered
in some predefined traversal of T (for example depth-first). We let the robots move
sequentially with the following idea: the closest robot to f1 (among the three re-
maining free robots) moves to f1. The closest robot (not on f1 nor on r) now moves
to r. Once the robot reaches r, we have a tower and two free robots one of which
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is in f1. At this point the two free robots recognize the situation that signals the
beginning of the exploration and collaboratively explore the graph moving from
leaf to leaf as in Section 5. Based on the asymmetry of the initial placement, on
the uniqueness of the chosen spanning tree and on its preservation, and on the
sequentiality of the moves, is not difficult to show that the algorithm terminates
correctly and we have:

Theorem 4. Let k > 4 be odd; then any (G, λ, Ψ) ∈ Hk can be explored.

Note that if we are given an algorithm that solves gathering for even k > 4
robots in asymmetric configurations, then the previous algorithm can be used
to explore all (G, λ, Ψ) ∈ Hk.

References

1. Asahiro, Y., Fujita, S., Suzuki, I., Yamashita, M.: A self-stabilizing marching al-

gorithm for a group of oblivious robots. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.)

OPODIS 2008. LNCS, vol. 5401, pp. 125–144. Springer, Heidelberg (2008)

2. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Gathering and rendezvous by

oblivious robots in arbitrary graphs, rings, and trees, Technical Report, University

of Ottawa (2009)

3. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering

problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)

ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

4. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in

asynchronous robot systems. SIAM J. Computing 34, 1516–1528 (2005)
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Abstract. Many applications in network analysis require algorithms to
sample uniformly at random from the set of all digraphs with a prescribed
degree sequence. We present a Markov chain based approach which con-
verges to the uniform distribution of all realizations. It remains an open
challenge whether the Markov chain is rapidly mixing.

We also explain in this paper that a popular switching algorithm fails
in general to sample uniformly at random because the state graph of
the Markov chain decomposes into different isomorphic components. We
call degree sequences for which the state graph is strongly connected arc
swap sequences. To handle arbitrary degree sequences, we develop two
different solutions. The first uses an additional operation (a reorientation
of induced directed 3-cycles) which makes the state graph strongly con-
nected, the second selects randomly one of the isomorphic components
and samples inside it. Our main contribution is a precise characteriza-
tion of arc swap sequences, leading to an efficient recognition algorithm.
Finally, we point out some interesting consequences for network analysis.

1 Introduction

We consider the problem of sampling uniformly at random from the set of all
realizations of a prescribed degree sequence as simple, labeled digraphs without
loops.

Motivation. In complex network analysis, one is interested in studying certain
network properties of some observed real graph in comparison with an ensemble
of graphs with the same degree sequence to detect deviations from random-
ness [1]. For example, this is used to study the motif content of classes of net-
works [2]. To perform such an analysis, a uniform sampling from the set of all
realizations is required. A general method to sample random elements from some
set of objects is via rapidly mixing Markov chains [3,4]. Every Markov chain can
be viewed as a random walk on a directed graph, the so-called state graph. In
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. . .

Fig. 1. Example of digraphs where no 2-swap operation can be applied

our context, its vertices (the states) correspond one-to-one to the set of all real-
izations of prescribed degree sequences. For a survey on random walks, we refer
to Lovász [5].

A popular variant of the Markov chain approach to sample among such realiza-
tions is the so-called switching-algorithm. It starts with a given realization, and
then performs a sequence of 2-swaps. In the undirected case, a 2-swap replaces
two non-adjacent edges {a, b}, {c, d} either by {a, c}, {b, d} or by {a, d}, {b, c},
provided that both new edges have not been contained in the graph before the
swap operation. Likewise, in the directed case, given two arcs (a, b), (c, d) with all
vertices a, b, c, d being distinct, a 2-swap replaces these two arcs by (a, d), (c, b)
which are currently not included in the realization (the latter is crucial to avoid
parallel arcs). The switching algorithm is usually stopped heuristically after a
certain number of iterations, and then outputs the resulting realization as a
“random element”. For undirected graphs, one can prove that this switching al-
gorithm converges to a random stage. The directed case, however, turns out to
be much more difficult. The following example demonstrates that the switching
algorithm does not even converge to a random stage.

Example 1. Consider the following class of digraphs D = (V, A) with 3n ver-
tices V = {v0, v1, . . . , v3n−1}, see Figure 1. Roughly speaking, this class consists
of induced directed 3-cycles Ci formed by triples Vi = {v3i, v3i+1, v3i+2} of ver-
tices, and arcs Ai = {(v3i, v3i+1), (v3i+1, v3i+2), (v3i+2, v3i)} for i ∈ {0, . . . , n −
1}. All vertices of cycle Ci are connected to all other vertices of cycles with
larger index than i. More formally, let A′ := {(v, w)|v ∈ Vi, w ∈ Vj , i < j}. We
set A := A′ ∪ (∪n−1

i=0 Ai).
It is easy to check that no 2-swap can be applied to this digraph. However, we

can independently reorient each of the n induced 3-cycles, leading to 2n/3 many
(isomorphic) realizations of the same degree sequence. Thus, if we use a random
walk on the state graph of all realizations of this degree sequence and use only
2-swaps to define the possible transitions between realizations, this state graph
consists exactly of 2n/3 many singleton components. Hence, a “random walk”
on this graph will be stuck in a single realization although exponentially many
realizations exist.

It is interesting to note that slightly generalized 2-swap operations (the two
replaced arcs are not restricted to be non-adjacent) suffice to sample directed
graphs with loops. This has been proven by Ryser [6] in the context of square
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matrices with {0, 1}–entries which can be interpreted as node-node adjacency
matrices of digraphs with loops.

Realizability of degree sequences. In order to use a Markov chain approach one
needs at least one feasible realization. In applications from complex network
analysis, one can usually take the degree sequence of some observed real world
graph. Otherwise, one has to construct a realization.

The realization problem, i.e., characterizing the existence and finding at least
one realization, has quite a long history. In 1966, Chen [7] presented necessary
and sufficient conditions for the realizability of degree sequences as digraphs
which can be checked in linear time. The construction of a concrete realization
is equivalent to an f -factor problem on a corresponding undirected bipartite
graph. Given a simple graph G = (V, E) and a function f : V (G) �→ N0, an
f -factor is a subgraph H of G such that every vertex v ∈ V in this subgraph
H has exactly degree dH(v) = f(v). Tutte did seminal work on the f -factor
problem [8] and gave a polynomial time transformation to the perfect matching
problem. Kleitman and Wang [9] found a greedy-type algorithm generalizing
previous work by Havel [10] and Hakimi [11,12]. This approach has recently
been rediscovered by Erdős et al. [13].

Related work. Kannan et al. [14] showed how to sample bipartite undirected
graphs via Markov chains. They proved polynomial mixing time for regular and
near-regular graphs. Cooper et al. [15] extended this work to non-bipartite undi-
rected, d-regular graphs and proved a polynomial mixing time for the switching
algorithm. More precisely, they upper bounded the mixing time in these cases by
d15n8(dn log(dn)+log(ε−1)), for graphs with |V | = n. In a break-through paper,
Jerrum, Sinclair, and Vigoda [16] presented a polynomial-time almost uniform
sampling algorithm for perfect matchings in bipartite graphs. Their approach
can be used to sample arbitrary bipartite graphs and therefore also arbitrary di-
graphs with a specified degree sequence in O(n14 log4 n) via the above-mentioned
reduction due to Tutte. In the context of sampling binary contingency tables,
Bezáková et al. [17] managed to improve the running time for these sampling
problems to O(n11 log5 n), which is still far from practical.

McKay and Wormald [18,19] use a configuration model and generate ran-
dom undirected graphs with degrees bounded by o(n1/2) with uniform distri-
bution in O(m2dmax) time, where dmax denotes the maximum degree, and m
the number of edges. Steger and Wormald [20] introduced a modification of the
configuration model that leads to a fast algorithm and samples asymptotically
uniform for degrees up to o(n1/28). Kim and Vu [21] improved the analysis
of Steger and Wormald’s algorithm, proving that the output is asymptotically
uniform for degrees up to O(n1/3−ε), for any ε > 0. Bayati et al. [22] recently
presented a nearly-linear time algorithm for counting and randomly generating
almost uniformly simple undirected graphs with a given degree sequence where
the maximum degree is restricted to dmax = O(m1/4−τ ), and τ is any positive
constant.
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Random walks and Markov chains. Let us briefly review the basic notions of
random walks and their relation to Markov chains. See [4,5,23] for more details.
A random walk (Markov chain) on a digraph D = (V, A) is a sequence of vertices
v0, v1, . . . , vt, . . . where (vi, vi+1) ∈ A. Vertex v0 represents the initial state.
Denote by d+

D(v) the out-degree of vertex v ∈ V . At the tth step we move
to an arbitrary neighbor of vt with probability 1/d+

D(vt) or stay at vt with
probability (1 − ν(vt))/d+

D(vt), where ν(vt) denotes the number of neighbors of
vt. Furthermore, we define the distribution of V at time t ∈ Z+ as the function
Pt ∈ [0, 1]|V | with Pt(i) := Prob(vt = i). A well-known result [5] is that Pt

tends to the uniform stationary distribution for t → ∞, if the digraph is (1)
non-bipartite (that means aperiodic), (2) strongly connected (i.e., irreducible),
(3) symmetric, and (4) regular. A digraph D is dD-regular if all vertices have
the same in- and out-degrees dD.

In this paper, we will view all Markov chains as random walks on symmetric
dD-regular digraphs D = (V, A) whose vertices correspond to the state space V .
The transition probability on each arc (v, w) ∈ A will be the constant 1/dD.

Our contribution. Carefully looking at our Example 1, we observe that the state
graph becomes strongly connected if we add a second type of operation to trans-
form one realization into another: Simply reorient the arcs of an induced directed
3-cycle. We call this operation 3-cycle reorientation. We give a graph-theoretical
proof that 2-swaps and 3-cycle reorientations suffice not only here, but also in
general for arbitrary prescribed degree sequences. These observations allow us
to define a Markov chain, very similar to the undirected case. The difference is
that two realizations are mutually connected by arcs if and only if their sym-
metric difference is either an alternating 4-cycle or a 6-cycle on exactly three
different vertices. This digraph becomes regular by adding additional loops, see
Section 2. The transition probabilities are of order O(1/m2), and the diameter
can be bounded by O(m), where m denotes the number of arcs in the prescribed
degree sequence.

In the context of (0, 1)-matrices with given marginals (i.e., prescribed degree
sequences in our terminology), Rao et al. [24] similarly observed that switching
operations on so-called “compact alternating hexagons” are necessary. A com-
pact alternating hexagon is a 3 × 3-submatrix, which can be interpreted as the
adjacency matrix of a directed 3-cycle subgraph. They define a random walk on
a series of state graphs, starting with a non-regular one which is iteratively up-
dated towards regularity, i.e. their Markov chain converges asymptotically to the
uniform distribution. However, it is unclear how fast this process converges and
whether this is more efficient than working directly with a single regular state
graph. Since Rao et al. work directly on matrices, their transition probabilities
are of order O(1/n6), i.e., by several orders smaller than in our version. Very re-
cently, Erdős et al. [13] proposed a similar Markov chain approach using 2-swaps
and 3-swaps. The latter type of operation exchanges a simple directed 3-path or
3-cycle (v1, v2), (v2, v3), (v3, v4) (the first and last vertex may be identical) by
(v1, v3), (v3, v2), (v2, v4), but is a much larger set of operations than ours.
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Although in directed graphs 2-swaps alone do not suffice to sample uniformly
in general, the corresponding approach is still frequently used in network analysis.
One reason for the popularity of this approach — in addition to its simplicity —
might be that it empirically worked in many cases quite well [1]. In this paper,
we study under which conditions this approach can be applied and provably leads
to correct uniform sampling. We call such degree sequences arc-swap sequences,
and give a graph-theoretical characterization which can be checked in polynomial
time. More specifically, we can recognize arc-swap sequences in O(m2) time us-
ing matching techniques. Using a parallel Havel-Hakimi algorithm by LaMar [25],
originally developed to realize Euler sequences with an odd number of arcs, the
recognition problem can even be solved in linear time. This algorithm also allows
us to determine the number of induced directed 3-cycles which appear in every
realization. However, the simpler approach comes with a price: our bound on
the diameter of the state graph becomes mn and so is by one order of n worse in
comparison with using 2-swaps and 3-cycle reorientations. Since half of the di-
ameter is a trivial lower bound on the mixing time and the diameter also appears
as a factor in known upper bounds, we conjecture that the classical switching
algorithm requires a mixing time τε with an order of n more steps as the variant
with 3-cycle reorientation.

In those cases where 2-swaps do not suffice to sample uniformly, the state
graph decomposes into 2k strongly connected components, where k is the num-
ber of induced directed 3-cycles which appear in every realization. We can also
efficiently determine the number of strongly connected components of the state
graph (of course, without explicitly constructing this exponentially sized graph).
However, all these components are isomorphic. This can be exploited as follows:
For a non-arc-swap sequence, we first determine all those induced directed 3-
cycles which appear in every realization. By reducing the in- and out-degrees
for all vertices of these 3-cycles by one, we then obtain a new sequence, now
guaranteed to be an arc-swap sequence. On the latter sequence we can either
use the switching algorithm or our variant with additional 3-cycle reorientations.
Since the bound on the diameter reduces from n(m−3k) to m−3k in the second
variant, we conjecture the following.

Conjecture 1. a) Sampling with a randomly chosen component of the state
graph by (i) 2-swaps or by (ii) 2-swaps and 3-cycle reorientations has a polyno-
mially bounded mixing time.
b) Variant (ii) samples by at least one order of magnitude faster than (i).

Our results give a theoretical foundation to compute certain network charac-
teristics on unlabeled digraphs in a single component using 2-swaps only. For
example, this includes the analysis of the motif content [26]. Likewise we can
still compute the average diameter among all realizations if we work in a single
component. However, for other network characteristics, for example betweenness
centrality on edges [27], this leads in general to incorrect estimations.
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Overview. The remainder of the paper is structured as follows. In Section 2,
we introduce appropriately defined state graphs underlying our Markov chains,
and show for these graphs crucial properties like regularity and strong con-
nectivity. We also upper bound their diameter. Afterwards, in Section 3, we
characterize those degree sequences for which a simpler Markov chain based
on 2-swaps provably leads to uniform sampling of digraphs. We also describe
a few consequences and applications. Due to space restrictions, we omit the
presentation of related results for the undirected case. These results and com-
plete proofs can be obtained in the full version of the paper available from
http://arxiv.org/abs/0912.0685.

2 Sampling Digraphs

Let us start with the formal problem definition and some additional notation.
Afterwards, we introduce our Markov chain and analyze its properties.

Formal problem definition. In the directed case, we define a degree sequence S

as a sequence of 2-tuples
((

a1
b1

)
,
(
a2
b2

)
, . . . ,

(
an

bn

))
with ai, bi ∈ Z+

0 , i ∈ {1, . . . , n}
where ai > 0 or bi > 0.

Let G = (V, A) be a directed labeled graph G = (V, A) without loops and
parallel arcs and |V | = n. We define the in-degree-function d+

G : V → Z+
0 which

assigns to each vertex vi ∈ V the number of incoming arcs and the out-degree-
function d−G : V → Z+

0 which assigns to each vertex vi ∈ V the number of
outgoing arcs. We denote S as graphical sequence if and only if there exists at
least one directed labeled graph G = (V, A) without any loops or parallel arcs
which satisfies d+

G(vi) = bi and d−G(vi) = ai for all vi ∈ V and i ∈ {1, . . . , n}.
Any such graph G is called realization of S. Let H be a subdigraph of G. We say
that H = (VH , AH) is an induced subdigraph of G if every arc of A with both end
vertices in VH is also in AH . We write H = G 〈VH〉 . We define an alternating walk
P for a directed graph G = (V, A) as a sequence P := (v1, v2, . . . , vl) of vertices
vi ∈ V where either (vi, vi+1) ∈ A(G) and (vi, vi−1) /∈ A(G) or (vi, vi+1) /∈ A(G)
and (vi, vi−1) ∈ A(G) for i mod 2 = 1. Alternating here means that any two
subsequent arcs alternate with respect to their orientation and to being present
or not. We call an alternating walk C of even length alternating cycle if v1 = vl

is fulfilled. For two realizations G, G′, the symmetric difference of their arc sets
A(G) and A(G′) is denoted by GΔG′ := (A(G)\A(G′))∪(A(G′)\A(G)). Consider
for example the realizations G and G′ with A(G) := {(v1, v2), (v3, v4)} and
A(G′) := {(v1, v4), (v3, v2)} consisting of exactly two arcs. Then the symmetric
difference is the alternating 4-cycle C := (v1, v2, v3, v4, v1) where (vi, vi+1) ∈
A(G) for i ∈ {1, 3} and (vi+1, vi) ∈ A(G′) taking indices i mod 4. In general,
the symmetric difference of two realizations always decomposes into a number of
alternating cycles. Note that even a weakly connected symmetric difference can
decompose into several alternating cycles, in contrast to undirected symmetric
differences. See Figs. 2 and 3 for an example.
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Fig. 3. Decomposition of a weakly con-
nected symmetric difference GΔG′ of
Fig. 2 into a minimum number of al-
ternating cycles

The Markov chain. We denote the state graph for our random walk by Φ =
(Vφ, Aφ). Its underlying vertex set Vφ is the set of all realizations of a given
degree sequence S. For a realization G, we denote by VG the corresponding
vertex in Vφ. The arc set Aφ is defined as follows.

a) We connect two vertices VG, VG′ ∈ Vφ, G 	= G′ with arcs (VG, VG′) and
(VG′ , VG) if and only if one of the two following constraints is fulfilled
1. |GΔG′| = 4
2. |GΔG′| = 6 and GΔG′ contains exactly three different vertices.

b) We set a directed loop (VG, VG)
1. for each pair of non-adjacent arcs (vi1 , vi2 ), (vi3 , vi4 ) ∈ A(G) with ij ∈

{1, . . . , n} if and only if (vi1 , vi4 ) ∈ A(G)∨ (vi3 , vi2) ∈ A(G) in a realiza-
tion G,

2. for each directed 2-path (vi1 , vi2), (vi2 , vi3) ∈ A(G) if and only if one of
the following constraints is true for a realization G,
i) (vi2 , vi1) ∈ A(G) ∨ (vi3 , vi2) ∈ A(G) ∨ (vi1 , vi3) ∈ A(G),
ii) (vi3 , vi1) /∈ A(G),
iii) i3 < i1 ∨ i3 < i2.

3. if G contains no directed 2-path.

Lemma 1. The state graphΦ = (Vφ, Aφ) is non-bipartite, symmetric, and regular.

The next step is to show that our constructed state graph Φ is strongly connected.
This is sufficient to prove the reachability of each realization independent of the
starting realization.

Proposition 1. Let S be a graphical sequence and G and G′ be two differ-
ent realizations. If GΔG′ is exactly one weak component and |GΔG′| 	= 6 then
there exists in GΔG′ a vertex-disjoint alternating 3-walk of type P or Q, where
P = (v1, v2, v3, v4) with (v1, v2), (v3, v4) ∈ A(G) and (v3, v2) ∈ A(G′) and
Q = (w1, w2, w3, w4) with (w1, w2), (w3, w4) ∈ A(G′) and (w3, w2) ∈ A(G).

Note that the above proposition does not assert that the symmetric difference
contains P and Q. The smallest counter-example are the realizations G = (V, A)
and G′ = (V, A′) with V = {v1, v2, v3, v4} and A = {(v1, v3), (v3, v2), (v2, v4),
(v4, v1)} and A′ = {(v1, v2), (v2, v1), (v3, v4), (v4, v3)}.
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Proposition 2. Let S be a graphical sequence and G and G′ be two different
realizations. If |GΔG′| = 6, then there exist

a) realizations G0, G1, G2 with G0 := G, G2 := G′ and |GiΔGi+1| = 4 for
i ∈ {0, 1} or

b) G and G′ are different in the orientation of exactly one directed 3-cycle.

Lemma 2. Let S be a graphical sequence and G and G′ be two different real-
izations. There exist realizations G0, G1, . . . , Gk with G0 := G, Gk := G′ and

1. |GiΔGi+1| = 4 or
2. |GiΔGi+1| = 6

where k ≤ 1
2 |GΔG′| − 1. In case (2), GiΔGi+1 consists of a directed 3-cycle and

its opposite orientation.

Corollary 1. State graph Φ is a strongly connected digraph.

The properties of the state graph imply a straightforward random walk based
sampling algorithm.

Theorem 1. A random walk on state graph Φ samples uniformly at random a
directed graph G′ = (V, A) as a realization of sequence S for t → ∞.

3 Arc-Swap Sequences

In this section, we study under which conditions the simple switching algorithm
works correctly for digraphs. The Markov chain used in the switching algorithm
works on the following simpler state graph Φ = (Vφ, Aφ). We define Aφ as follows.

a) We connect two vertices VG, VG′ ∈ Vφ, G 	= G′ with arcs (VG, VG′) and
(VG′ , VG) if and only if |GΔG′| = 4 is fulfilled.

b) We set for each pair of non-adjacent arcs (vi1 , vi2), (vi3 , vi4) ∈ A(G), ij ∈
{1, . . . , n} a directed loop (VG, VG) if and only if (vi1 , vi4) ∈ A(G)∨(vi3 , vi2) ∈
A(G).

c) We set one directed loop (VG, VG) for all VG ∈ Vφ.

Lemma 3. The state graph Φ = (Vφ, Aφ) is non-bipartite, symmetric, and
regular.

3.1 Characterization of Arc-Swap Sequences

As shown in Example 1 in the Introduction, Φ decomposes into several compo-
nents, but we are able to characterize sequences S for which strong connectivity
is fulfilled in Φ. In fact, we will show that there are numerous sequences which
only require switching by 2-swaps. In the following we give necessary and suffi-
cient conditions allowing to identify such sequences in polynomial running time.



228 A. Berger and M. Müller-Hannemann

Definition 1. Let S be a graphical sequence and let G = (V, A) be an arbitrary
realization. We denote a vertex subset V ′ ⊆ V with |V ′| = 3 as an induced cycle
set V ′ if and only if for each realization G∗ = (V, A∗) the induced subdigraph
G∗ 〈V ′〉 is a directed 3-cycle.

Definition 2. Let S be a graphical sequence and G = (V, A) an arbitrary real-
ization. We call S an arc-swap-sequence if and only if each subset V ′ ⊆ V of
vertices with |V ′| = 3 is not an induced cycle set.

This definition enables us to use our simpler state graph Φ for sampling a real-
ization G for arc-swap-sequences. In Lemma 5, we will show that in these cases
we have only to switch the ends of two non-adjacent arcs.

Before, we study how to recognize arc-swap sequences efficiently. Clearly,
we may not determine all realizations to identify a sequence as an arc-swap-
sequence. Fortunately, we are able to give a characterization allowing us to iden-
tify an arc-swap-sequence in only considering one realized digraph. We need a
further definition for a special case of symmetric differences.

Definition 3. Let S be a graphical sequence and G = (V, A) and G∗ = (V, A∗)
arbitrary realizations. We call GΔG∗ simple symmetric cycle if and only if each
vertex v ∈ V (GΔG∗) has vertex in-degree d−GΔG∗(v) ≤ 2 and vertex out-degree
d+

GΔG∗(v) ≤ 2, and if GΔG∗ is exactly one alternating cycle.

Note that the alternating cycle C1 in Fig. 3 is not a simple symmetric cycle,
because d+

C1
(4) = 4. Cycle C1 decomposes into two simple symmetric cycles

C′
1 = {v1, v2, v3, v4, v1} and C′′

1 = {v2, v3, v5, v4, v2}.

Theorem 2. A graphical sequence S is an arc-swap-sequence if and only if for
any realization G = (V, A) the following property is true: For each induced,
directed 3-cycle G 〈V ′〉 of G there exists a realization G∗ = (V, A∗) so that GΔG∗

is a simple symmetric cycle and that the induced subdigraph G∗ 〈V ′〉 is not a
directed 3-cycle.

This characterization allows us to give a simple polynomial-time algorithm to
recognize arc-swap-sequences. All we have to do is to check for each induced 3-
cycle of the given realization, if it forms an induced cycle set. Therefore, we check
for each arc (v, w) in an induced 3-cycle whether there is an alternating walk
from v to w (not using arc (v, w)) which does not include all five remaining arcs
of the 3-cycle and its reorientation. Moreover, each node on this walk has at most
in-degree 2 and at most out-degree 2. Such an alternating walk can be found in
linear time by using a reduction to an f -factor problem in a bipartite graph. In
this graph we search for an undirected alternating path by growing alternating
trees (similar to matching algorithms in bipartite graphs, no complications with
blossoms will occur), see for example [28]. The trick to ensure that not all five
arcs will appear in the alternating cycle is to iterate over these five arcs and
exclude exactly one of them from the alternating path search between v and w.
Of course, this loop stops as soon as one alternating path is found. Otherwise,
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no such alternating path exists. As mentioned in the Introduction, a linear-time
recognition is possible with a parallel Havel-Hakimi algorithm of LaMar [25].

Next, we are going to prove that Φ is strongly connected for arc-swap-sequences.

Lemma 4. Let S be a graphical arc-swap-sequence and G and G∗ be two dif-
ferent realizations. Assume that V ′ := {v1, v2, v3} ⊆ V such that G〈V ′〉 is an
induced directed 3-cycle but G∗〈V ′〉 is not an induced directed 3-cycle. More-
over, assume that GΔG∗ is a simple symmetric cycle. Then there are realizations
G0, G1, . . . , Gk with G0 := G, Gk := G∗, |GiΔGi+1| = 4 and k ≤ 1

2 |GΔG∗|.

Proposition 3. Let S be a graphical arc-swap-sequence and G and G′ be two
different realizations. If |GΔG′| = 6 and GΔG′ consists of exactly three ver-
tices V ′ := {v1, v2, v3}, then there exist realizations G0, G1, . . . , Gk with G0 :=
G, Gk := G′, |GiΔGi+1| = 4 and k ≤ 2n + 2.

Lemma 5. Let S be a graphical arc-swap-sequence, and G and G′ be two dif-
ferent realizations. Then there exist realizations G0, G1, . . . , Gk with G0 := G,
Gk := G′ and |GiΔGi+1| = 4, where k ≤

(
1
2 |GΔG′| − 1

)
· (n + 1).

Corollary 2. State graph Φ is a strongly connected directed graph if and only if
a given sequence S is an arc-swap-sequence.

An arc-swap-sequence implies the connectedness of the simple realization graph
Φ. Therefore, for such sequences we are able to make random walks on the simple
state graph Φ which can be implemented easily.

Theorem 3. A random walk on the state graph Φ uniformly samples a digraph
G′ = (V, A) as a realization of an arc-swap-sequence S for t → ∞.

3.2 Sampling within Randomly Chosen Components

As mentioned in the Introduction, many “practitioners” use the switching algo-
rithm for the purpose of network analysis, regardless whether the corresponding
degree sequence is an arc-swap-sequence or not. In this section we would like to
discuss under which circumstances this common practice can be well justified
and when it may lead to wrong conclusions. What would happen if we sample
using the state graph Φ for a sequence S which is not an arc-swap-sequence?
Clearly, we get the insight that Φ has several connected components, but as we
will see Φ consists of at most 2�

|V |
3 � isomorphic components containing exactly

the same realizations up to the orientation of directed 3-cycles each consisting
of an induced cycle set V ′. Fortunately, we can identify all induced cycle sets
using our results in Theorem 2 by only considering an arbitrary realization G.

Proposition 4. Let S be a graphical sequence which is not an arc-swap-sequence
and has at least two different induced cycle sets V ′ and V ′′. Then it follows
V ′ ∩ V ′′ = ∅.

Theorem 4. Let S be a sequence. Then the state graph Φ consists of at most
2�

|V |
3 � isomorphic components.
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We propose the following new two-stage sampling algorithm. (1) For a given
degree sequence S, first determine all induced cycle sets. For each of them in-
dependently flip a coin to decide upon the cycle orientation. Fixing all these
orientations thus means to select uniformly at random some connected com-
ponent of the state graph. (2) Reduce the in- and out-degrees of all vertices in
these cycles by one (the induced cycle sets are vertex-disjoint), and obtain a new
degree sequence S′ which must be an arc-swap sequence. In the second stage, do
a random walk on S′ using 2-swaps and 3-cycle reorientations. Finally, reinsert
into the obtained realization the arcs of the induced cycle sets determined in
step (1) with the chosen orientation. The second stage could be done without
3-cycle reorientations, but we conjecture (Conjecture 1) that the mixing time
would be at least one order of magnitude larger.

Applications in Network Analysis. Our results shed some light on claims made in
complex network analysis in recent years. In particular, the traditional switching
algorithm has been considered to be correct (see, for example [1]). We proved the
claim to be in general false. This might have been overlooked for two reasons:
On the one hand, researchers may have worked by chance on arc-swap sequences
in their experiments. On the other hand, certain network statistics lead to cor-
rect results if one samples in a single component of the state graph. Examples
where the traditional approach is feasible are network statistics like the average
diameter or the motif content over all realizations.

For other network statistics, however, the random walk on VΦ systematically
over- and under-samples the probability that an arc is present.
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Abstract. Making a graph unit interval by a minimum number of ver-

tex deletions is NP-hard. The problem is motivated by applications in

seriation and measuring indifference between data items. We present a

fixed-parameter algorithm based on the iterative compression technique

that finds in O((14k +14)k+1kn6) time a set of k vertices whose deletion

from an n-vertex graph makes it unit interval. Additionally, we show that

making a graph chordal by at most k vertex deletions is NP-complete

even on {claw,net,tent}-free graphs.

1 Introduction

Being indifferent between two objects means to prefer neither of them. The indif-
ference relation defines an undirected graph with an edge between two vertices
if and only if they are judged indifferent. In this paper, we study measuring
indifference in the context of seriation. The specific task is to put objects in a
serial order, respecting the given indifference relation as much as possible.

Indifference corresponds to “closeness” between data items [1,2]. Accordingly,
an undirected graph G = (V, E) whose vertices represent data items is called an
indifference graph if there exists a function r : V → R such that for all u, v ∈ V

{u, v} ∈ E ⇔ |r(u) − r(v)| ≤ δ,

where δ is a positive number (the “threshold”) measuring closeness. The func-
tion r induces a serial order. Informally, the above equivalence expresses that we
distinguish between u and v only if, according to r, there is sufficiently high dif-
ference between them. Empirical indifference judgments (with correspondingly
defined undirected graphs) usually do not permit such an assignment r satisfy-
ing the above equivalence. One possibility, however, is that “almost all” data
items induce an indifference graph. In other words, given a graph based on em-
pirical indifference judgments (which contain some “errors”), the task then is to
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(a) Claw (b) Net (c) Tent (d) Hole

Fig. 1. The (infinitely many) forbidden induced subgraphs for unit interval graphs.

Holes are induced cycles of length at least four.

spot as few “outlier vertices” as possible such that after the removal of these
vertices the graph becomes an indifference graph. Thus, the minimum number
of vertex deletions measures how close “empirical indifference data” is to math-
ematically defined indifference. Since indifference graphs are precisely the unit
interval graphs [3,4]1, we arrive at the central problem in this work:

Unit Interval Vertex Deletion

Input: An undirected graph G = (V, E).
Question: Is there a set S ⊆ V with |S| ≤ k and G[V \S] being unit interval?

A graph is unit interval if and only if it contains no induced claw, net, tent, or
hole (an induced cycle of length at least four) [5]. These infinitely many forbidden
induced subgraphs are illustrated in Figure 1. A general result on vertex deletion
problems implies that Unit Interval Vertex Deletion is NP-complete [6].

Related Work. Roberts [3,4] discusses indifference and seriation and explains
applications in fields such as archaeology and developmental psychology. Seri-
ation by transforming graphs into indifference graphs belongs to the field of
“seriation in the presence of errors” and can be understood as a variant of fitting
Robinson structures to distances [7,8,9]. More specifically, our setting is related
to the special case where distances are specified by symmetric 0/1-matrices; here,
the Robinson property becomes the consecutive-ones property [4,8]. Thus, the
Unit Interval Vertex Deletion problem is equivalent to making a symmet-
ric 0/1-matrix fulfill the consecutive-ones property by simultaneous2 column and
row deletions. We remark that making a 0/1-matrix fulfill the consecutive-ones
property by means of non-simultaneous column or row deletions has recently
been studied in terms of approximability and fixed-parameter tractability [10].

Our work is closely related to a result by Marx [11], who shows that Chordal

Vertex Deletion (asking whether a graph can be made chordal by k vertex
deletions) is fixed-parameter tractable parameterized by k. One can observe
that the result implies fixed-parameter tractability for Unit Interval Vertex

Deletion. However, the running time of the Chordal Vertex Deletion algo-
rithm [11] is not specified and it relies on solving Chordal Vertex Deletion

1 Unit interval graphs are also equivalent to proper interval graphs [3].
2 For an i ∈ N, column i is deleted from the matrix if and only if row i is deleted.



234 R. van Bevern et al.

on tree decompositions of worst-case-width Ω(k4). This renders the algorithm
unimplementable. Subsequently to our work, Villanger [12] presented a search-
tree based algorithm for Unit Interval Vertex Deletion, improving the
running time to O(6kkn6).

Our Results. We present a fixed-parameter algorithm for Unit Interval Ver-

tex Deletion running in O((14k + 14)k+1 · kn6) time, where k denotes the
number of allowed vertex deletions and n is the number of graph vertices. Like
Marx [11], we employ the iterative compression technique by Reed et al. [13,14].
However, we do not employ bounded-treewidth techniques and circumvent huge
hidden constants. Before that, we show that Unit Interval Vertex Dele-

tion remains NP-hard when restricted to {claw, net, tent}-free graphs, where
it is equivalent to Chordal Vertex Deletion. Due to lack of space, some
proofs are omitted [9].

Preliminaries. We only consider simple undirected graphs G = (V, E), where
V (G) := V is the set of vertices and E(G) := E is the set of edges. Throughout
this work, let n := |V | and m := |E|. The neighborhood N(v) of a vertex v ∈ V
is the set of vertices adjacent to v. A clique is a graph in which every two
distinct vertices are adjacent. For a set V ′ ⊆ V , the induced subgraph G[V ′] is
the graph with vertex set V ′ and edge set {{v, w} ∈ E | v, w ∈ V ′}. We use
G − V ′ as an abbreviation for G[V \ V ′]. A path P from vi to v� is a sequence
(v1, v2, . . . , v�) ∈ V � with {vi, vi+1} ∈ E for i ∈ {1, . . . , �−1}; it visits the vertices
v1, . . . , v�. If i �= j implies vi �= vj , then P is simple. If {vi, vj} /∈ E for |i− j| > 1,
then P is induced. An (induced) cycle is an (induced) path with {v1, v�} ∈ E,
called (induced) C�. Two vertices v, w ∈ V are connected in G if there is a path
from v to w in G. A vertex-cut between v and w in G is a set C ⊆ V such that v
and w are not connected in G−C. The graph G is F -free if G does not contain
an induced subgraph isomorphic to the graph F . A segment of a total order �
on V is a set [u, w] := {v ∈ V | u � v � w}.

2 NP-Hardness on a Restricted Graph Class

We show that Unit Interval Vertex Deletion is NP-complete even on {claw,
net, tent}-free graphs, where it is equivalent to Chordal Vertex Deletion.

Theorem 1. Chordal Vertex Deletion on {claw, net, tent}-free graphs is
NP-complete.

Proof. We only show NP-hardness and employ a reduction from the NP-complete
Vertex Cover on triangle-free graphs [15]. First, we describe the reduction,
then we prove its correctness. Let (G, k) be a Vertex Cover instance, where G
is triangle-free and we ask whether there is a set of k vertices whose deletion
makes G edgeless. We construct an instance (G′, k) for Chordal Vertex Dele-

tion as follows: let G′ := G, where the complement graph G of G has the same
vertices as G and G has an edge {v, w} if and only if G has not. Add to G′ two
disjoint cliques A and B, each containing k + 1 vertices, and make every vertex
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in A and every vertex in B adjacent to every vertex in V (G). Because claw, net,
and tent each contain a size-three independent set, the constructed graph G′ is
{claw, net, tent}-free: since G is triangle-free, G does not contain a size-three
independent set. Moreover, there is no size-three independent set in G′, since the
vertices in the cliques A and B are adjacent to every vertex in V (G). It remains
to show that (G, k) is a yes-instance for Vertex Cover if and only if (G′, k) is
a yes-instance for Chordal Vertex Deletion.

Let S be a vertex cover of size at most k for G. Since S is a vertex cover, G−S
is an edgeless graph. As a consequence, the complement of G − S is a clique C
and thus G′ − S contains three cliques A, B, and C, where every vertex of A
and B is adjacent to every vertex in C by construction of G′. The graph G′−S is
obviously chordal and S is a chordal vertex deletion set of size at most k for G′.

Let S be a chordal vertex deletion set for G′ with |S| ≤ k. Assume that S ∩
V (G) is not a vertex cover for G. Then, there is an edge {u, v} in G − S, and,
therefore, there is no edge {u, v} in G′ by construction of G′. Because A and B
each contain k+1 vertices and |S| ≤ k, there are vertices a ∈ A\S and b ∈ B \S.
The vertex set {a, u, v, b} induces a hole in G′ − S, a contradiction to S being a
chordal vertex deletion set for G′. Hence, S ∩ V (G) is a vertex cover for G. ��

3 An Outline of the Algorithm

Our algorithm employs the iterative compression technique by Reed et al. [13,14].
The rough idea of this technique is to iteratively build up the input graph by
adding vertices one by one and to compute in each iteration an optimal solution
for the current subgraph, using the solution computed for the previous subgraph.
More precisely, given an arbitrary order of the vertices from 1 to n, we start with
the empty graph and an empty solution S0 := ∅. The task of iteration i is to
compute a solution for the graph G[{v1, . . . , vi}]. Assume that the previously
computed set Si−1 is a solution of size at most k for G[{v1, . . . , vi−1}]. Then
Si−1 ∪ {vi} is a solution of size at most k + 1 for the graph G[{v1, . . . , vi}].
We apply a compression routine that either computes a size-k solution Si using
Si−1 ∪ {vi} or proves that no such solution exists. The pseudo-code of this main
loop is given in Algorithm 1.

Algorithm 1. Iterative Compression
Input: A graph G and its vertices v1, . . . , vn in an arbitrary order, k ∈ N.

Output: A unit interval vertex deletion set S for G with |S| ≤ k or “no”.

S0 ← ∅;1

for i := 1 to n do2

Si ← compress(G[{v1, . . . , vi}], Si−1 ∪ {vi}, k);3

if Si = “no” then return “no”4

return Sn5
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The central part of the algorithm is the routine compress described below. Given
an input graph G, a natural number k, and a unit interval vertex deletion set S′

with |S′| ≤ k + 1, the routine can return S′ unchanged if |S′| ≤ k. Thus, we
assume that |S′| = k + 1. We now try all possible 2k+1 partitions of S′ into two
sets X and Y , where Y is a subset of the new solution S and X∩S = ∅. For each
partition, we delete the vertex set Y from G (since the vertices of Y are assumed
to belong to the new solution). Then, the remaining task is to find a unit interval
vertex deletion set disjoint from X and smaller than X . The crucial observation
is that deleting X from G−Y results in a unit interval graph. We say that X is
a unit interval vertex deletion set for G− Y . Summarizing, we arrive at:

Disjoint Unit Interval Vertex Deletion

Input: A graph G and a unit interval vertex deletion set X for G.
Output: A unit interval vertex deletion set S with |S| < |X | and S ∩X = ∅,

or “no” if no such set exists.

Disjoint Unit Interval Vertex Deletion is NP-hard [16]. The advantage
of working with Disjoint Unit Interval Vertex Deletion is that we can
exploit G−X being a unit interval graph. In the next section, we prove:

Theorem 2. Disjoint Unit Interval Vertex Deletion can be solved in
O((14|X | − 1)|X|−1 · |X |n5) time.

Exploiting this in the routine compress of Algorithm 1 leads to the main theorem
of this work. The running time follows from the fact that compress is invoked
O(n) times and that each invocation solves Disjoint Unit Interval Vertex

Deletion for all partitions of the solution from the previous iteration.

Theorem 3. Unit Interval Vertex Deletion can be solved in O((14k +
14)k+1 · kn6) time.

4 Finding Disjoint Unit Interval Vertex Deletion Sets

For Disjoint Unit Interval Vertex Deletion, given a unit interval vertex
deletion set X for G, we search for a unit interval vertex deletion set S for G
with |S| < |X | and S∩X = ∅. Roughly, the algorithm works as follows: first, enu-
merate all minimal vertex sets of size at most |X | − 1 whose deletion transforms
G into a {claw,net,tent,C4,C5,C6}-free graph, henceforth called almost unit in-
terval graph. For each of these graphs, it remains to find a minimum-cardinality
vertex set S′ whose removal destroys all holes of length greater than six to make
the graph unit interval. We call such a set optimal. If |S′| and the number of
vertex deletions needed to transform a graph into an almost unit interval graph
add up to at most |X | − 1, then we have found a solution. Since we try all min-
imal vertex sets of size at most |X | − 1 whose deletion transforms a graph into
an almost unit interval graph, we always find a size-(|X |−1) unit interval vertex
deletion set if it exists.
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tube inner verticesjunction

G−X

X

Fig. 2. A hole visiting the maximal cliques of G −X (indicated by circles). Hatched

circles show junctions. The vertices of G−X are shown from left to right in a bicompat-

ible elimination order. A maximal set of consecutive white cliques forms a tube. Tubes

may contain vertices of junctions. For the right tube, we indicate the inner vertices.

To destroy all holes in an almost unit interval graph G, we show that each
hole can be destroyed by deleting any of at most 14|X |− 1 vertex sets, of which
at least one vertex set can be assumed to be in an optimal unit interval vertex
deletion set. This allows us to use a bounded search tree algorithm that, for
each hole H in G, branches into 14|X |− 1 possibilities to destroy H . Because at
most |X | − 1 vertices may be deleted from G to transform it into a unit interval
graph, the height of the corresponding search tree is bounded by |X | − 1. To
find these 14|X | − 1 vertex sets for each hole in G, we exploit that G − X is
a unit interval graph and thus allows for a linear-time computable bicompatible
elimination order of its vertices [17]:

Definition 1. Let G = (V, E) be a graph. A total order � on V is a bicompati-
ble elimination order for G if for each vertex v ∈ V , the sets {w ∈ N(v) | w � v}
and {w ∈ N(v) | v � w} induce cliques in G.

Without loss of generality, we assume that the vertices of a connected component
of G form a segment of �. We will see in Proposition 2 that, with respect to a
bicompatible elimination order �, G −X forms a sequence of maximal cliques
such that the vertices of each maximal clique are a segment of �. Figure 2
illustrates this together with the following classification of the maximal cliques
of G−X : a junction is a maximal clique in G−X containing neighbors of vertices
in X ; a tube is a maximal set of maximal cliques of G−X that are not junctions
and whose vertices form a segment of �. We say that a vertex is contained in a
tube T if it is contained in a maximal clique of T . A hole visits a junction (or
tube) if it contains a vertex of a junction (or tube). Vertices of a tube that are
not in junctions are inner vertices.

Now, assume that there is a hole H in an almost unit interval graph G as
illustrated in Figure 2. We show 14|X |−1 possibilities to destroy H of which one
is optimal. Each vertex of H in G−X is contained in a junction or tube (or both).
First, we show that H contains at most 12|X | vertices in junctions and that H
contains inner vertices of at most 2|X | − 1 tubes. Additionally, we show that
there is an optimal unit interval vertex deletion set that contains a vertex of H
in junctions or a polynomial-time computable vertex subset of one of the 2|X |−1
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tubes whose inner vertices are visited by H . Then, we solve Unit Interval

Vertex Deletion by repeatedly searching for a hole H in G in polynomial
time and branching into the following 14|X |−1 possibilities to destroy H : delete
one of the 12|X | vertices of H in junctions, or delete an optimal, polynomial-time
determinable vertex subset of one of the 2|X |− 1 tubes whose inner vertices are
visited by H . Using this branching, the overall search tree size is O((14|X | −
1)|X|−1), which results in the running time of Theorem 2. In the following, we
show in detail the 14|X | − 1 possibilities to destroy H of which one is optimal.

Bounding the Number of Vertices in Junctions. We now prove the following:

Lemma 1. Let X be a unit interval vertex deletion set for an almost unit in-
terval graph G. A hole in G contains at most 12|X | vertices from junctions
in G−X.

First, observe that a hole contains at most two vertices of a clique. We now
exploit that G is an almost unit interval graph. In the following, we say that a
vertex set can be covered by two cliques if it is the union of two vertex sets that
induce cliques.

Proposition 1. If a connected almost unit interval graph G contains a hole,
then the neighborhood of each vertex in G can be covered by two cliques.

Proof. If G contains a hole, then it must contain a hole with more than six
vertices, since G is {claw, net, tent, C4, C5, C6}-free. Thus, G contains an inde-
pendent set of size three. We now exploit a result due to Fouquet [18]:

In a connected claw-free graph containing an independent set of size
three, every vertex v satisfies exactly one of the following properties:

(i) N(v) can be covered by two cliques or
(ii) N(v) contains an induced C5.

Because G contains no induced C5, the proposition follows immediately. ��

From Proposition 1, one can conclude that if an almost unit interval graph G
contains a hole, then the neighborhood in V \X of a unit interval vertex deletion
set X can be covered by 2|X | cliques.

We now prove that the maximal cliques of a unit interval graph form segments
of a bicompatible elimination order and that vertices on induced paths occur in
the same (or reverse) order as in a bicompatible elimination order.

Proposition 2. Let v1 � v2 � . . . � vn be a bicompatible elimination order for
a connected unit interval graph G.
(1) If there is an induced path P = (vi, . . . , vk) with vi � vk, then each vertex vj

on P satisfies vi � vj � vk.
(2) If vi � vk and there is an edge between vi and vk, then the segment [vi, vk]

induces a clique in G. In particular, maximal cliques of G form segments.
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vj vj′ vi vj′′ vk

(a) The vertices vj � vj′ �
vj′′ form the induced path

(vj′ , vj , vj′′), in wrong order.

v1 v2 v3 v4 v5

(b) A maximal clique induced

by the non-consecutive vertices

v1, v2, v4, and v5.

Fig. 3. The vertex orderings from left to right are not bicompatible elimination orders,

as they violate Proposition 2

Proof. We prove the two statements independently. To show (1), for the purpose
of contradiction, assume that there is an induced path P = (vi, . . . , vj , . . . , vk)
with vj � vi � vk (the case vi � vk � vj can be proven analogously) such that vj

is the minimum vertex with respect to � that appears between vi and vk on P ;
this arrangement is illustrated in Figure 3a. Because there are induced subpaths
of P from vj to both vi and vk, the vertex vj has two distinct neighbors vj′

and vj′′ on P . Because vj is the minimum vertex with respect to � that appears
between vi and vk on P , it holds that vj � vj′ and vj � vj′′ . The vertices vj′

and vj′′ are adjacent by Definition 1, because both are succeeding neighbors
of vj . This contradicts P being an induced path.

Before showing (2), we show that there is an edge between a vertex vi and
its direct successor vi+1 for i ∈ {1, . . . , n− 1}. Recall that G is connected by as-
sumption. This implies that there is a shortest (and hence, induced) path from vi

to vi+1. It follows from (1) that this path can neither contain a predecessor of vi

nor a successor of vi+1. Because vi+1 directly succeeds vi in �, vi and vi+1 are
the only vertices on the shortest path from vi to vi+1, implying that they are
adjacent.

We now show (2). Let vi � vk and assume that there is an edge between vi

and vk. We have shown that vi is also adjacent to its direct successor vi+1. Be-
cause vi+1 and vk are succeeding neighbors of vi, the vertices vi, vi+1, and vk

form a clique by Definition 1. Inductively, it follows that all vertices vj with
vi � vj � vk are adjacent to vk. Because all vertices vj with vi � vj � vk are
preceding neighbors of vk in the bicompatible elimination order �, these vertices
must form a clique together with vk. A maximal clique in G forms a segment
because, with respect to �, it contains an edge from its minimum vertex to its
maximum vertex. ��

To proveLemma 1, we finally need the following definition (illustrated in Figure 4).

Definition 2. Let G be a unit interval graph with a bicompatible elimination
order � and let C be a clique of G. We define S(C) to be the set of vertices of
all maximal cliques in G that contain vertices of C.

Let cmin (and cmax) denote the minimum (or maximum, respectively) elements
of S(C) with respect to �. We define Smin(C) (and Smax(C)) to be the vertex set



240 R. van Bevern et al.

cmin cmax

S(C)

Smin(C) Smax(C)

C

Fig. 4. Illustration for Definition 2. The vertices are shown from left to right in a

bicompatible elimination order. The hatched clique is C.

of the (uniquely determined) maximal clique in G that contains cmin (or cmax,
respectively) and some vertex from C.

Using Proposition 2, one can show that S(C) is the union of Smin(C), Smax(C),
and the vertex set of any maximal clique containing C. Therefore, S(C) =
[cmin, cmax]. We have now collected the necessary observations to prove Lemma 1.

Proof (Proof of Lemma 1). Let X be a unit interval vertex deletion set for an
almost unit interval graph G. Assume that G contains a hole. By Proposition 1,
the neighborhood of X in V \ X can be covered by a set C of at most 2|X |
cliques. By Definition 2, the vertices of all junctions containing vertices of a
clique C ∈ C are in S(C). We show that a hole contains at most six vertices
from S(C) and, thus, in all junctions containing vertices of C. A hole contains
at most two vertices in the vertex set C′ of any maximal clique containing C, at
most two vertices of the clique induced by Smin(C), and at most two vertices in
the clique induced by Smax(C). Because S(C) = Smin(C)∪Smax(C)∪C′, a hole
contains at most six vertices from S(C). Finally, since |C| ≤ 2|X | and for each
C ∈ C, a hole contains at most six vertices in junctions containing vertices of C,
it follows that a hole contains at most 12|X | vertices in junctions of G−X . ��

Finding Optimal Solutions in Tubes. We now show how to find optimal solutions
in tubes. To this end, one can prove that a hole H visits inner vertices of at most
2|X | − 1 tubes in G−X . Moreover, one can show that there is an optimal unit
interval vertex deletion set containing at least one vertex of H in junctions or a
polynomial-time computable vertex subset of one of the 2|X | − 1 tubes.

Lemma 2. Let X be a unit interval vertex deletion set for an almost unit inter-
val graph G. A hole in G contains inner vertices of at most 2|X | − 1 tubes with
respect to a bicompatible elimination order � for G−X.

To state the second result (Lemma 3), we need the following concepts.

Definition 3. Let X be a unit interval vertex deletion set for a graph G and let
T be a tube in G − X with respect to a bicompatible elimination order � such
that T contains inner vertices visited by a hole H.
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(1) For two vertices vi and vk of H, we call (vi, vk) the T -boundary of H if,
with respect to �, vi is in H the preceding neighbor of H’s minimum inner
vertex in T and if vk is in H the succeeding neighbor of H’s maximum inner
vertex of T .

(2) For the T -boundary (vi, vk) of a hole H, we call a (minimum-cardinality)
vertex-cut between vi and vk in G−X a (minimum) H-T -cut.

Lemma 3. Let X be a unit interval vertex deletion set for a graph G. Let T be
the set of tubes in G−X with respect to a bicompatible elimination order � that
contain inner vertices visited by a hole H.

If a unit interval vertex deletion set S for G with S ∩X = ∅ does not contain
vertices of H in junctions of G−X, then there is a unit interval vertex deletion
set S′ with |S′| ≤ |S| and a tube T ∈ T for which S′ contains a minimum
H-T -cut.

Lemma 3 can be shown exploiting Proposition 2(1), which implies that if a hole
enters a tube at one side, it must leave the tube at the opposite side. Using this
fact, one can show the following two claims, which together imply Lemma 3.

Claim. A unit interval vertex deletion set S for G with S ∩ X = ∅ contains
vertices of H in junctions or contains an H-T -cut for some tube T ∈ T .

Claim. For a vertex set S containing a H-T -cut for a tube T ∈ T , no hole in G−S
contains vertices of the segment [vi, vk], where (vi, vk) is the T -boundary of H .

The Algorithm

Combining Lemmas 1, 2 and 3, we finally present the algorithm for Disjoint

Unit Interval Vertex Deletion, thus proving Theorem 2. The algorithm
employs the following branching rule:

Branching Rule 1. If G − S contains a forbidden induced subgraph induced
by a vertex set F with |F | ≤ 6, then branch into all possibilities of adding a
vertex v ∈ F \X to S.

Proof (Proof of Theorem 2). Given a graph G and a unit interval vertex deletion
set X for G, we search for a unit interval vertex deletion set S for G with
|S| < |X | and S ∩ X = ∅. We start with S := ∅ and apply Branching Rule 1
as long as |S| < |X | to destroy forbidden induced subgraphs with at most six
vertices. Because each such forbidden induced subgraph contains one vertex in
the unit interval vertex deletion set X , we find such a forbidden induced subgraph
in O(|X |n5) time and branch into at most five cases to add one of its vertices to S.

If |S| ≥ |X | and Branching Rule 1 is still applicable, return “no” because S is
not extensible to a unit interval vertex deletion set for G that is smaller than X
and disjoint from X . Otherwise, proceed as follows: compute a bicompatible
elimination order � for G − (S ∪ X). This works in linear time [17] because
G−(S∪X) is a unit interval graph. From this bicompatible elimination order �,
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a set C of all maximal cliques of G−(S∪X) can easily be computed in O(n2) time
by finding for each vertex v in G− (S ∪X) its last neighbor with respect to �.

Now, we find junctions and tubes. For each clique C ∈ C, check whether C
has neighbors in X . If this is the case, which can be checked in O(kn2) time
for all C ∈ C, then C is a junction. To find tubes, sort the set C such that C1

occurs before C2 if, in �, the minimum vertex of C1 occurs before the minimum
vertex of C2. Because a unit interval graph has at most n maximal cliques, this
is possible in O(n log n) time. From the sorted set C, compute a set T of all tubes
in G− (S ∪X) in O(n) time: repeatedly find the first clique C in C that is not
a junction and not yet part of a tube and add C and all succeeding cliques in C
to a new tube T until a junction is encountered.

Next, as long as |S| < |X |, repeatedly find a hole H in G − S and add at
least one vertex of H to S as follows: because G − S is an almost unit interval
graph and G− (S ∪X) is a unit interval graph, recursively branch into at most
12|X | possibilities to choose a vertex of H from a junction for inclusion in S
(Lemma 1) and into at most 2|X | − 1 possibilities to choose tube T ∈ T for
which a H-T -cut shall be included in S (Lemma 2, Lemma 3).

In each search tree node, we branch into at most 14|X |−1 cases (at most five
cases for Branching Rule 1 and at most 14|X | − 1 for a hole in G− S). In each
case, at least one vertex is added to S. As a result, the corresponding search tree
has depth at most |X | − 1 and thus at most (14|X | − 1)|X|−1 nodes.

To analyze the running time for processing each node, it remains to analyze
the running time for finding holes and minimum H-T -cuts. A hole in G−S can be
found in O(|X |(n+m)) time by breadth-first search starting at each vertex in X .
A minimum H-T -cut is computable in O(

√
nm) time [19, Theorem 9.8]. ��

5 Conclusion

It remains open to study the existence of a polynomial-size problem kernel [20,21]
for Unit Interval Vertex Deletion. Another task for future study is to
search for polynomial-time algorithms with low-degree polynomials in case of
constant k. Villanger’s algorithm [12] runs in O(6kkn6) time and thus also is
far from this goal. We remark that already Marx [11] asked for the study of the
parameterized complexity of the related Interval Vertex Deletion problem,
remaining a challenge for future research. In general, interval graphs do not allow
for bicompatible elimination orders; as our algorithm heavily relies on them, it
is not straightforward to extend it to Interval Vertex Deletion.

Acknowledgments. We thank anonymous referees for their constructive feedback.
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Abstract. We study the Arc-Preserving Subsequence (APS) prob-

lem with unlimited annotations. Given two arc-annotated sequences P
and T , this problem asks if it is possible to delete characters from T to

obtain P . Since even the unary version of APS is NP-hard, we used the

framework of parameterized complexity, focusing on a parameterization

of this problem where the parameter is the number of deletions we can

make. We present a linear-time FPT algorithm for a generalization of

APS, applying techniques originally designed to give an FPT algorithm

for Induced Subgraph Isomorphism on interval graphs [12].

1 Introduction

Many important problems in computational biology are related to pattern match-
ing in strings, since DNA, RNA, or protein molecules can be viewed as sequences
of nucleotides or amino acids. To gain information about such molecules, we often
need to compare two sequences and measure their similarity.

Given two sequences S1 and S2 over some alphabet, the task of the Longest

Common Subsequence (LCS) problem is to find the longest possible sequence
that is the subsequence of both S1 and S2. In other words, we are looking for a
sequence C that can be obtained both from S1 and from S2 by deleting charac-
ters. This problem arises in many applications, like deciding if two species are
biologically related, or whether two proteins are likely to exhibit similar function-
alities related to three-dimensional structure (protein folding). Another classical
problem, Subsequence, asks if a sequence is the subsequence of another.

If we only want to deal with character sequences, LCS can be solved efficiently
using dynamic programming. However, recent biological research suggests that
we might loose relevant information if we model DNA, RNA, or protein molecules
simply as sequences. The reason for this is that in such molecules, the shape and
hence the functionality is greatly affected by chemical bonds between elements
that might be far apart from each other in the sequence. Arc-annotated sequences
are widely used to represent such bonds. In this model, any two elements (or
bases) of a sequence can be connected to each other through an arc.
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For two arc-annotated sequences S1 and S2, the Longest Arc-Preserving

Common Subsequence or LAPCS asks for an arc-annotated sequence C of
maximum length that can be obtained both from S1 and from S2 by deleting
bases together with all arcs incident to them. Since LAPCS is NP-complete
even if the arc structures are highly restricted [5,6,10], researchers focused on
polynomial-time solvable cases and approximation algorithms [5,10,9,11].

Another direction of research is to use the parameterized complexity frame-
work [4,7]. This area deals with NP-hard problems by giving algorithms that
have an acceptable running time on many relevant instances. An algorithm is
fixed-parameter tractable (FPT) if its running time is bounded by f(k)nO(1) for
some function f , where n is the input size and k is the parameter associated
with the input. The idea behind this definition is that the running time of an
FPT algorithm remains tractable provided that the parameter has small value.

Parameterized complexity of LAPCS has already been studied, and FPT
algorithms were presented for various parameterizations [1,6]. An interesting
parameterization is where the parameter is the number of deletions we are al-
lowed to make in order to construct the common subsequence. This models a
situation where we compare two sequences which are similar. An FPT algorithm
was given in [1] with this parameter, but it only applies for a restricted case.

Unlike most previous results, we considered unlimited annotations where any
two bases of a sequence can be connected by arcs. Instead of concentrating on
LAPCS, we dealt with the more simple Arc-Preserving Subsequence prob-
lem (APS), the annotated analog of Subsequence. Given two arc-annotated
sequences P and T , the task of APS is to find out whether the pattern sequence
P can be obtained by deleting some bases of the target sequence T , together
with all the arcs incident to them. We remark that APS on its own is an in-
teresting problem in computation biology, and has been widely studied in the
literature. Its NP-hardness has been proved for numerous restricted cases [2], and
polynomial-time algorithms have been presented [8,3] for limited arc structures.

Here, we present an FPT algorithm for the unlimited APS, where the pa-
rameter is the number k of deletions allowed. Our algorithm runs in f(k)n time
for some function f depending only on k, where n is the input size. In fact, we
solve a generalization of APS where a few arcs can be deleted additionally. We
mention that APS is W[1]-hard if the parameter is the length of the pattern [5].

The ideas and techniques applied here originate from an FPT algorithm solv-
ing a seemingly unrelated problem on interval graphs [12]. This algorithm an-
swers the Induced Subgraph Isomorphism in FPT time: given two interval
graphs G and H and a parameter k, is it possible to delete k vertices from G to
obtains a graph isomorphic to H? Our work shows that research connected to
interval graphs can be useful for arc-annotated sequences as well.

2 Problem Definition and Notation

We denote {1, . . . , n} by [n]. We refer to the elements of a sequence S over an
alphabet Σ as bases. The i-th base of S is S[i], and the length of S is |S|.
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Let SP and ST be two sequences over Σ. Let |SP | = nP and |ST | = nT ,
assume nP ≤ nT . We say that SP is a subsequence of ST if SP can be obtained
by deleting bases from ST , or equivalently, if there is a bijective mapping ϕ from
[nP ] into a subset of [nT ] such that ϕ(i1) < ϕ(i2) for each 1 ≤ i1 < i2 ≤ nP , and
SP [i] = ST [ϕ(i)] for each i ∈ [nP ]. We call such a ϕ an alignment of (SP ; ST ).
We write Sdel(ϕ) to denote the set of bases that have to be deleted from ST

according to ϕ, i.e. Sdel(ϕ) = [nT ] \
⋃

i∈[nP ] ϕ(i).
An arc-annotation A of a sequence S of length n is a multiset of pairs of

integers from [n], where each pair (i1, i2) ∈ A satisfies i1 < i2. An arc-annotated
sequence (S, A) is a sequence S together with an arc-annotation A for S. We say
that an arc (i1, i2) starts at i1, ends at i2, and connects the positions i1 and i2
incident to it. We write A(i1, i2) for the multiplicity of the pair (i1, i2) in A, and
we write A+(i) and A−(i) for the set of arcs starting or ending at i, respectively.
Also, we let astart and aend to denote the starting and ending position of an arc
a. We use |(S, A)| to denote the size of (S, A) in binary encoding.

Given two arc-annotated sequences (SP , AP ) and (ST , AT ), we say that
(SP , AP ) is an arc-preserving subsequence of (ST , AT ) if it can be obtained from
(ST , AT ) by deleting bases from it, i.e. there is an alignment ϕ of (SP ; ST ) such
that AP (i, j) = AT (ϕ(i), ϕ(j)) for any 1 ≤ i < j ≤ |SP |. Such an alignment is
an arc-preserving alignment of (SP , AP ; ST , AT ). Note that by deleting a base,
we also mean the deletion of the arcs incident to it. Given two arc-annotated
sequence P and T , the Arc-Preserving Subsequence problem (APS) asks
whether P is an arc-preserving subsequence of T .

We will deal with the following generalization of APS, which we call Almost

APS or AAPS: given two arc-annotated sequences (SP , AP ) and (ST , AT ) and
some ka ∈ Z, we ask if we can delete some bases from ST (together with their
incident arcs) and at most ka arcs in addition to obtain (SP , AP ). Formally, we
have to decide if there is a set Adel of at most ka arcs in AT such that (SP , AP )
is an arc-preserving subsequence of (ST , AT \ Adel). We call ϕ a ka-alignment
for (SP , AP ; ST , AT ) if ϕ is an arc-preserving alignment of (SP , AP ; ST , AT \A∗)
for some set A∗ with |A∗| ≤ ka. Also, we let Adel(ϕ) to denote such an A∗.

Given a sequence S, let Srev denote the reverse of S. For a position i of S, we
will use irev to denote the position |S| − i + 1 of Srev corresponding to i. If A is
an arc-annotation of S, then let Arev denote the corresponding arc-annotation
of Srev, meaning Arev(i1, i2) = A(irev2 , irev1 ). We also let Xrev = {irev | i ∈ X}
for any set X of positions in S.

If ϕ is a ka-alignment for (SP , AP ; ST , AT ), then ϕrev is the corresponding
ka-alignment for (Srev

P , Arev
P ; Srev

T , Arev
T ), i.e. ϕrev(i) = (ϕ(irev))rev for each i.

Due to lack of space, we omit several proofs, see the full paper for them.

3 Fixed-Parameter Tractability of APS

In this section we present an FPT algorithm for AAPS, a generalization of
APS, with the parameterization where the parameters are the number of bases
to delete and the number of arcs that can be deleted additionally.
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Almost Arc-Preserving Subsequence

Input: Two arc-annotated sequences (SP , AP ) and (ST , AT ), and ka ∈ Z.
Parameters: ka and kb = |ST | − |SP |.
Task: decide whether (SP , AP ) can be obtained from (ST , AT ) by deleting
kb bases (together with their incident arcs) and ka arcs in addition, i.e.
whether there is a ka-alignment ϕ for (SP , AP ; ST , AT ).

Our aim is to prove the main result of the paper stated by Theorem 1.

Theorem 1. There is an algorithm that solves any instance (SP , AP ; ST , AT ; ka)
of the Almost Arc-Preserving Subsequence problem and runs in time
k

O(k3
b+kbka)

b |(ST , AT )| where kb = |ST | − |SP |.

3.1 Outline of the Algorithm

To prove Theorem 1, we present an algorithm that uses a bounded search tree
technique in order to construct a ka-alignment step by step. In certain situations,
the algorithm might branch on a bounded number of possibilities to proceed
with. Since both the number of such branchings and the possible directions of a
branching will be bounded in terms of ka and kb, the size of the resulting search
tree will be bounded by a function of ka and kb.

Actually, the algorithm described here has the following behavior: given an in-
stance of APS, consisting of the arc-annotated sequences (SP , AP ) and (ST , AT ),
and an integer ka, it tries to construct a ka-alignment ϕ for (SP , AP ; ST , AT ).
To do so, it fixes such a hypothetical solution ϕ, and looks for bases in Sdel(ϕ)
and arcs in Adel(ϕ), which we will call removable bases and removable arcs of ϕ,
resp. More precisely, our algorithm does one of the followings in linear time:

– it produces an arc-preserving alignment ψ for (SP , AP ; ST , AT ) (note
that ψ is a ka-alignment for (SP , AP ; ST , AT ) as well),

– it correctly rejects the instance, or
– it produces a removable base or a removable arc of ϕ.

In the last case, we can delete the given base or arc, and apply the algorithm to
the obtained instance. Notice that one of the parameters ka and kb = |ST |−|SP |
is decreased in the new instance. The presented algorithm will be shown to run in
f(ka, kb)|(ST , AT )| time for some functions f , which therefore implies Theorem 1
by proving that AAPS can be solved in (ka + kb)f(ka, kb)|(ST , AT )| time.

Our algorithm might branch several times before producing an output as
described above. Each such branch will be caused by guessing the answer to a
question of the following form: given some position p in SP , what is the value
of the position ϕ(p)?1 We interpret these branchings in the usual framework
of bounded search trees: a branching happens when we do not know the exact
value of a certain variable (such as the value of ϕ(p) in the above example),
and thus we have to investigate every possible value. A certain branch examines
1 In a few cases we will also need some additional branchings, described later on.
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one possible value of the variable, and it produces a correct output if the given
variable indeed has the value associated with this branch. Since the examined
cases always cover every possibilities, this implies that the output will be correct
in at least one of the branches.

Although our algorithm seems to be a straightforward application of the
bounded search tree methodology used frequently in parameterized algorithms,
we had to overcome many difficulties to avoid any possibility of using an un-
bounded number of such guesses. The presented algorithm will apply consider-
ably sophisticated methods to keep the search tree bounded.

3.2 Fragmentations and Related Concepts

Fragmentation. To describe our knowledge of the partially constructed ka-
alignment we have, we introduce a data structure called fragmentation. By it-
eratively refining the fragmentation, we can get closer and closer to actually
determine a ka-alignment. We write |SP | = nP and |ST | = nT .

Recall that ϕ is a fixed ka-alignment for (SP , AP ; ST , AT ). For some 1 ≤ i1 ≤
i2 ≤ nP , we define the block [i1, i2] in SP to be the set of positions i1, i1+1, . . . , i2,
and we define blocks in ST similarly. Given a set of f disjoint blocks {[ph

1 , ph
2 ] |

h ∈ [f ]} in SP and a set of f disjoint blocks {[th1 , th2 ] | h ∈ [f ]} in ST , we let
Fh = ([ph

1 , ph
2 ], [th1 , th2 ]). We say that {Fh | h ∈ [f ]} is a fragmentation for ϕ, if

– th1 ≤ ϕ(ph
1 ) and ϕ(ph

2 ) ≤ th2 for each h ∈ [f ], and
– ph+1

1 = ph
2 + 1 and th+1

1 = th2 + 1 for each h ∈ [f − 1].

We will call the element Fh for some h ∈ [f ] a fragment. We define σ(Fh) =
(th2 − th1 )− (ph

2 − ph
1 ) and δ(Fh) = th1 − ph

1 , which are both clearly non-negative
integers. Note that δ(Fh+1) = δ(Fh) + σ(Fh) holds for each h ∈ [f − 1]. We say
that a position i ∈ [nP ] of SP is contained in the fragment Fh, if ph

1 ≤ i ≤ ph
2 .

We will say that a fragment F is trivial if σ(F ) is zero, and non-trivial oth-
erwise. We also call a position of SP trivial (or non-trivial) in a fragmentation,
if the fragment containing it is trivial (or non-trivial, resp). Given fragmenta-
tion for ϕ and a position i in SP , we will use the notation ileft = i + δ(F ) and
iright = i + δ(F ) + σ(F ), where F is the fragment containing i. Observe that

ileft ≤ ϕ(i) ≤ iright

always holds. We will classify a position i of SP as follows:

– If ϕ(i) = ileft, then i is left-aligned.
– If ϕ(i) = iright, then i is right-aligned.
– If ϕ(i) = j such that ileft < j < iright, then i is skew.

If i is trivial, then only ϕ(i) = ileft = iright is possible. Thus, each trivial position
must be both left- and right-aligned.

Notice that each fragment F must contain exactly σ(F ) positions that are
contained in Sdel(ϕ). This implies the following bounds.
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Proposition 2. If F is a fragmentation for ϕ, then
∑

F∈F σ(F ) = kb. In par-
ticular, F can have at most kb non-trivial fragments.

A marked fragmentation for ϕ is a pair (F , M) formed by a fragmentation F for
ϕ and a set M of positions in SP such that each m ∈ M is a trivial position in
F . We say that the trivial positions contained in M are marked.

For a fragment F = ([p1, p2], [t1, t2]) we let F rev = ([prev
2 , prev

1 ], [trev2 , trev1 ]),
hence a fragmentation F for ϕ clearly yields a fragmentation F rev = {F rev|F ∈
F} for ϕrev as well. Note that if a position i of SP is left-aligned (right-aligned)
in F , then the position irev is right-aligned (left-aligned, resp.) in F rev.

Pairing arcs. Given a position i in SP , let us order the arcs c in A+
P (i) increas-

ingly according to their right endpoint cend. Similarly, we order the arcs in A−
P (i)

increasingly according their left endpoint. In both cases, we break ties arbitrarily.
Also, we order the arcs in A+

T (j) and A−
T (j) in the same way for each position j

in ST . Now, we “pair” arcs in A+
P (i) with arcs in A+

T (ileft), and also arcs in A−
P (i)

with arcs in A−
T (ileft) according to their ranking in this ordering. To this end, we

construct the sets R+
left(i) ⊆ A+

P (i)×A+
T (ileft) and R−

left(i) ⊆ A−
P (i)×A−

T (ileft) in
the following way. We put a pair (c, d) into R+

left(i), if c ∈ A+
P (i), d ∈ A+

T (ileft),
and c has the same rank (according to the above ordering) in A+

P (i) as the
rank of d in A+

T (ileft). Similarly, we put a pair (c, d) into R−
left(i), if c ∈ A−

P (i),
d ∈ A−

T (ileft), and c has the same rank in A−
P (i) as the rank of d in A−

T (ileft).
In addition, we define the sets R+

right(i) and R−
right(i) analogously, by substitut-

ing iright for ileft in the above definitions. The key properties of these sets are
summarized below.

Lemma 3. We know ϕ(cend) = dend and ϕ(cstart) = dstart in the following
cases:
(1) If (c, d) ∈ R+

left(i) and |A+
P (i)| = |A+

T (ileft)| for some left-aligned i.
(2) If (c, d) ∈ R−

left(i) and |A−
P (i)| = |A−

T (ileft)| for some left-aligned i.
(3) If (c, d) ∈ R+

right(i) and |A+
P (i)| = |A+

T (iright)| for some right-aligned i.
(4) If (c, d) ∈ R−

right(i) and |A−
P (i)| = |A−

T (iright)| for some right-aligned i.

Arcs connecting two non-trivial fragments. Given two non-trivial frag-
ments F and H of a fragmentation with F preceding H , we define three disjoint
subsets of those arcs of AP that start in a position of F and end in a posi-
tion of H . These sets will be denoted by L(F, H), R(F, H), and X (F, H), and
we construct them as follows. Suppose that c = (f, h) ∈ AP for some f and
h contained in F and H , respectively. We put c in exactly one of these three
sets, if (c, d) ∈ R−

left(h) for some arc d ∈ AT such that fleft ≤ dstart ≤ fright. If
dstart = fleft then we put c into L(F, H), if dstart = fright then we put c into
R(F, H), and if fleft < dstart < fright then we put c into X (F, H).

By Lemma 3, if the positions in H are left-aligned, then the left endpoints
of the arcs in R(F, H) must be right-aligned. Similarly, the left endpoints of
the arcs in X (F, H) must be skew in such a case. Proposition 4 states these
observations in a precise manner. Since we would like to ensure each position to
be left-aligned, we will try to get rid of the arcs in R(F, H) and X (F, H).
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Proposition 4. Let i be left-aligned, |A−
P (i)| = |A−

T (ileft)|, and c ∈ A−
P (i).

(1) If c ∈ L(F, H), then cstart is left-aligned.
(2) If c ∈ R(F, H), then cstart is right-aligned.
(3) If c ∈ X (F, H), then cstart is skew.

We say that two positions f1, f2 ∈ [nP ] are conflicting for (F, H), if f1 ≤ f2,
A+

P (f1)∩R(F, H) �= ∅ and A+
P (f2)∩L(F, H) �= ∅. In such a case, we say that any

h ≥ max{h1, h2} in H is conflict-inducing for (F, H) (and for the conflicting pair
(f1, f2)), where h1 denotes the minimal position for which (f1, h1) ∈ R(F, H),
and h2 denotes the minimal position for which (f2, h2) ∈ L(F, H). Notice that
if such a conflict-inducing h is left-aligned, then both h1 and h2 are left-aligned.
By Proposition 4, this implies that f1 is right-aligned and f2 is left-aligned. But
since f1 precedes f2, this cannot happen. This implies the following observation.

Proposition 5. If a position h is conflict-inducing for (F, H) in a given frag-
mentation, then h cannot be left-aligned.

In addition, if L(F, H) �= ∅, then let Lmax(F, H) denote the largest position f
in F for which A+

P (f) ∩ L(F, H) �= ∅. Let the L-critical position for (F, H) be
the smallest position h contained in H for which (Lmax(F, H), h) ∈ L(F, H).
Similarly, if R(F, H) �= ∅, then let Rmin(F, H) denote the smallest position f in
F for which A+

P (f)∩R(F, H) �= ∅. Also, let the R-critical position for (F, H) be
the smallest position h in H for which (Rmin(F, H), h) ∈ R(F, H).

Now, a position h in H is LR-critical for (F, H), if either h is the R-critical
position for (F, H) and L(F, H) = ∅, or h = max{hL, hR} where hL is the L-
critical and hR is the R-critical position for (F, H). Note that both cases require
R(F, H) �= ∅. Moreover, H contains an LR-critical position for (F, H), if and
only if R(F, H) �= ∅. Intuitively, if an LR-critical position in H is left-aligned,
then this implies that some position in F is right-aligned.

Note that the definitions of the sets L(F, H),R(F, H), and X (F, H) together
with the definitions connected to them as described above depend on the given
fragmentation, so whenever the fragmentation changes, these must be adjusted
appropriately as well. (In particular, arcs in L(F, H),R(F, H), and X (F, H)
must start and end in two different non-trivial fragments.)

Properties 1-9. Let (F , M) be a marked fragmentation for ϕ. Our aim is to
ensure that the properties given below hold for each position in SP . Intuitively,
these properties mirror the expectation that every position should be left-aligned.
Note that although we cannot decide whether (F , M) is a correct marked frag-
mentation without knowing the ka-alignment ϕ, we are able to check whether
these properties hold for some position i in (F , M).

Property 1: SP [i] = ST [ileft].
Property 2: If i is non-trivial, then |A+

P (i)|= |A+
T (ileft)| and |A−

P (i)|= |A−
T (ileft)|.

Property 3: If i is non-trivial, then AP (y, i) = AT (yleft, ileft) for any y < i
contained in the same fragment as i.

Property 4: If i is non-trivial, then for every (c, d) ∈ R+
left(i) such that cend = y

is non-trivial, yleft ≤ dend ≤ yright holds. Also, for every (c, d) ∈ R−
left(i) such

that cstart = y is non-trivial, yleft ≤ dstart ≤ yright holds.
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Property 5: No arc in X (F, H) for some (F, H) ends at i.
Property 6: i is not conflict-inducing for any (F, H).
Property 7: i is not LR-critical for any (F, H).
Property 8: If i is non-trivial, then for every (c, d) ∈ R+

left(i) such that cend

= y is non-trivial, dend = yleft holds. Also, for every (c, d) ∈ R−
left(i) such

that cstart = y is non-trivial, dstart = yleft holds.
Property 9: If i is non-trivial, then for each markedposition m ∈M , AP (i, m) =

AT (ileft, mleft) holds if m > i, and AP (m, i) = AT (mleft, ileft) holds if m < i.

Observe that each of these properties depend on the fragmentation F , and Prop-
erty 9 depends on the set of marked positions M as well. Also, if some property
holds for a position i in (F , M), then this does not imply that the property
holds for irev in (F rev, M rev), as most of these properties are not symmetric. For
example, ileft and iright both have a different meaning in the fragmentation F
and in F rev. We say that a position i ∈ [nP ] violates Property � (1 ≤ � ≤ 9) in
a marked fragmentation (F , M), if Property � does not hold for i in (F , M).

If the first eight properties hold for each position both in (F , M) and in
(F rev, M rev), then we say that (F , M) is 8-proper. We say that (F , M) is proper,
if it is 8-proper and Property 9 holds hold for each position of SP in (F , M). Note
that we do not care whether Property 9 holds for the positions in the reversed
instance, so (F , M) is proper even if Property 9 does not hold in (F rev, M rev).

3.3 Description of the Algorithm

We start with a marked fragmentation where M = ∅ and the fragmentation con-
tains only the unique fragment ([1, nP ], [1, nT ]), which is non-trivial if kb > 0.
Given a marked fragmentation (F , M), we do the following: if one of Proper-
ties 1, 2, . . . , 9 does not hold for some position i in (F , M) or one of the first
eight properties does not hold for some i in the reversed marked fragmentation
(F rev, M rev), then we will either reject the instance, output a removable base
of ϕ, or modify the given marked fragmentation. If the given marked fragmen-
tation is proper, the algorithm returns an output using Lemmas 9 and 10.

To do this, in each step we choose the first property violated by a position
either in (F , M) or in (F rev, M rev). Observe that we can assume w.l.o.g. that
there is an � (1 ≤ � ≤ 9) such that Properties 1, . . . , �− 1 hold for each position
both in (F , M) and in (F rev, M rev), but Property � is violated by a position in
SP in (F , M), otherwise we simply reverse the instance. (We only reverse it if
this condition is not true.)

Given �, the algorithm takes the first position i violating Property �, and
branches on choosing ϕ(i) according to ileft ≤ ϕ(i) ≤ iright. By Proposition 2,
this results in at most kb + 1 directions. Next, the algorithm handles each of
the cases in a different manner, according to whether i turns out to be left-
aligned, right-aligned, or skew. We consider these cases in a general way that is
essentially independent from �, and mainly relies on the type of i. We suppose
that i is contained in a fragment F i = ([p1, p2], [t1, t2]).
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Extremal cases. Assume that i = p1 and i is skew or right-aligned, or i = p2

and i is skew or left-aligned. In these cases, we can find at least one removable
base of ϕ. First, if i = p1 and i is skew or right-aligned, then each base ST [j]
must be deleted for each j where t1 ≤ j < ϕ(i). Second, if i = p2 and i is skew
or left-aligned, then ST [j] must be deleted for each j where ϕ(i) < j ≤ t2.

Skew position. Suppose that i > p1 and j is skew, meaning that ϕ(i) = j
for some j with ileft < j < iright. In this case, we can divide the fragment F i,
or more precisely, we can delete F i from the fragmentation F and add the new
fragments ([p1, i−1], [t1, j−1]) and ([i, p2], [j, t2]). Note that the newly introduced
fragments are non-trivial by the bounds on j. We also modify M by declaring
every trivial position of the fragmentation to be marked (no matter whether it
was marked or not before). Observe that the number of non-trivial fragments
increases in this step. By Proposition 2, this can happen at most kb − 1 times.

Left-aligned position. Lemma 6 summarizes our results that show how to
deal with the case when i is left-aligned and i < p2. The proof of this lemma is
essential in the correctness of our algorithm.

Lemma 6. Suppose that Property � (1 ≤ � ≤ 9) does not hold for some i ∈ [nP ]
in the marked fragmentation (F , M), but all the previous properties hold for each
position both in (F , M) and in (F rev, M rev). If i is left-aligned, then depending
on �, we can do one of the followings in linear time (without any branchings):

A) reject correctly,
B) output a removable arc of ϕ,
C) find that i is incident to a removable arc of ϕ (this only happens if � = 2),
D) produce a skew position i′, or
E) produce a set N of at most 2kb−1 positions in ST such that N ∩Sdel(ϕ) �= ∅.
In Case A or B, we reject or output a removable arc of ϕ.

In Case C, we put the non-trivial position i in a set W , which will only
store positions in ST that are incident to a removable arc of ϕ. (We set W = ∅
initially.) Whenever Case C happens, we examine whether |W | ≤ 2ka. If not,
then we reject the input. This is correct, since there can be at most ka removable
arcs of ϕ, and each such arc is incident to two bases.

If |W | ≤ 2ka holds, then we modify the given fragmentation, replacing F i

by new fragments F1 = ([p1, i], [t1, ileft]) and F2 = ([i + 1, p2], [ileft + 1, t2]). By
ϕ(i) = ileft, this yields a fragmentation for ϕ. Note that F1 is trivial and F2 is
non-trivial. We mark each position of F2, putting them into M . We refer to this
operation as a left split at i. Since i becomes trivial in F1, each position can
be placed into W at most once. Thus, Case C can happen at most 2ka times
without rejecting.

In Cases D and E, we might branch into a bounded number of additional
branches. In Case D, we branch on those choices of ϕ(i′) where i′ is indeed skew,
which means σ(F i)−1 ≤ kb−1 directions, and we handle each branch according
to the way described above (dividing one fragment at the skew position i′). In
Case E, we branch into at most 2kb − 1 directions on choosing a removable
base of ϕ from N and outputting it.
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Note that Case D or E can happen at most kb times, by our observation that
a skew position can only be found at most kb − 1 times.

We remark that if i is trivial, then we treat it as left-aligned.

Right-aligned position. Suppose that i > p1 and i is right-aligned. In this
case, we replace F i by new fragments F1 = ([p1, i− 1], [t1, iright − 1]) and F2 =
([i, p2], [iright, t2]). This yields a fragmentation where F1 is non-trivial and F2 is
trivial. We refer to this operation as performing a right split at j. If this happens
because i violated Property � for some � ≤ 8, then we mark every trivial position
(including those contained in F2), by putting them into M . If � = 9, then we do
not modify M , so the trivial positions of F2 will not be marked.

The above process either produces a removable base of ϕ, rejects correctly,
or ends by providing a marked fragmentation that is proper. In the remaining
steps of the algorithm, the set M will never be modified, and the only possible
modification of the actual fragmentation will be to perform a right split.

Given a proper marked fragmentation (F , M), we make use of Lemma 9 below.
This lemma gives sufficient conditions to do one of the followings.

– Find out that some non-trivial position i is right-aligned. In this case, we
perform a right split at i in the actual fragmentation.

– Find a removable arc of ϕ.
– Reject correctly.

Our algorithm applies Lemma 9 repeatedly, until it either stops (by rejecting or
outputting a removable arc of ϕ), or finds that none of the conditions of Lemma 9
apply. Before stating this lemma, we need two more important observations.
First, Lemma 7 shows that the repeated application of Lemma 9 results in a
proper fragmentation. Second, Lemma 8 states some useful invariants that hold
for each fragmentation obtained by us after a proper fragmentation is achieved.

Lemma 7. If (F , M) is proper and F ′ is obtained by applying an arbitrary
number of right splits to F , then (F ′, M) is proper as well.

Lemma 8. Let (F , M) be a 8-proper marked fragmentation whose trivial posi-
tions are all marked. Suppose that F ′ is obtained by applying an arbitrary number
of right splits to the fragmentation F .
(1) For each i that is not marked (i ∈ [nP ] \M), both A+

P (i) = A+
T (iright) and

A−
P (i) = A−

T (iright) hold in (F ′, M).
(2) Suppose that neither i nor j is marked (i, j ∈ [nP ] \M) and c = (i, j) ∈ AP .
If (c, d) ∈ R+

right(i) for some d ∈ A+
T (iright), then dend = jright. Similarly, if

(c, d) ∈ R−
right(j) for some d ∈ A−

T (jright), then dstart = iright.

Now, we can state Lemma 9.

Lemma 9. Let (F , M) be a proper marked fragmentation for ϕ obtained by our
algorithm, and let a, b ∈ [nP ].
(i) Suppose that a is trivial but not marked and b is non-trivial. If (a, b) ∈ AP

or (b, a) ∈ AP , then b is right-aligned.
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(ii) If a and b are trivial, a < b and AP (a, b) �= AT (aleft, bleft), then we can either
reject or output a removable arc of ϕ.

After applying Lemma 9 repeatedly, the algorithm either stops by rejecting or
outputting a removable arc of ϕ, or it finds that neither of the conditions (i) and
(ii) of Lemma 9 holds. Let (F , M) be the final marked fragmentation obtained.
Note that the algorithm does not modify the set M of marked trivial positions
when applying Lemma 9, and it can only modify the actual fragmentation by
performing a right split. Hence, Lemma 7 yields that (F , M) is proper.

Using (F , M), Lemma 10 claims that we can find an arc-preserving align-
ment for (SP , AP ; ST , AT ) in linear time. Hence, the final step of our algorithm,
finishing its description, is to output this arc-preserving alignment.

Lemma 10. Let (F , M) be a proper marked fragmentation for ϕ obtained by
the algorithm. If none of the conditions of Lemma 9 holds, then we can produce
an arc-preserving alignment ψ for (SP , AP ; ST , AT ) in linear time.

Proof. We show that defining ψ(i) = ileft for each position i ∈ [nP ] fulfills
the requirements. For this, we have to prove SP [i] = ST [ileft] for each position
i ∈ [nP ], and AP (i, j) = AT (ileft, jleft) for each two positions i �= j ∈ [nP ].

First, as Property 1 holds for each position in F , we know SP [i] = ST [ileft] for
each i ∈ [nP ]. It remains to show AP (i, j) = AT (ileft, jleft) for each i �= j ∈ [nP ].
If both i and j are trivial positions, then this is true because the conditions of
(ii) in Lemma 9 do not apply. If both i and j are non-trivial, then AP (i, j) =
AT (ileft, jleft) again holds, by Properties 2 and 8 for j. Now, if i is non-trivial
but j is trivial and marked (or vice versa), then Property 9 implies the required
equality. Finally, if one of i and j is non-trivial and the other one is trivial but
not marked, then AP (i, j) = 0 holds, since (i) of Lemma 9 is not applicable. ��

3.4 Analysis of the Algorithm

In this section, we give some hints how to analyse the running time of the
presented algorithm. The following lemma, stating the key properties of the our
algorithm, proves Theorem 1.

Lemma 11. Let (SP , AP , ST , AT , ka) be the given instance of APS. The pre-
sented algorithm branches into at most f(ka, kb) directions in total for some
function f such that in each branch it does one of the followings (supposing that
the conditions of the given branch do hold):

– it gives an arc-preserving alignment ψ of (SP , AP ; ST , AT ),
– it correctly rejects the instance, or
– it outputs a removable base or a removable arc of ϕ.

Moreover, each branch takes linear time in the size of the input.

Although we do not prove Lemma 11 due to lack of space, we give the most
important definitions used in the proof.
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Given a fragmentation F for ϕ, a fragment F ∈ F , and some � (1 ≤ � ≤ 8),
let π(F , F, �) be 1 if Property � holds for each position i in F , and 0 otherwise.
Let N(F) denote the set of non-trivial fragments in F . We define the measure
μ(F) of a given fragmentation F for ϕ as follows:

μ(F) =
∑

1≤�≤8

( ∑
F∈N(F)

π(F , F, �) +
∑

F∈N(Frev)

π(F rev, F, �)
)

.

Note that μ(F) = μ(F rev) is trivial, so reversing a fragmentation does not change
its measure. The importance of this definition is shown by Lemma 12.

Lemma 12. Let F1, . . . ,Ft,Ft+1 be a series a fragmentations such that for each
i ∈ [t] the algorithm obtains Fi+1 from Fi by applying a left or a right split at
a position ji violating Property �i in Fi. Then (1) μ(Fi+1) ≥ μ(Fi) for each
i ∈ [t], and (2) if μ(F1) = μ(Ft), then t ≤ kb holds.
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Abstract. We present a linear time algorithm to greedily orient the

edges of a path graph model to obtain a directed path graph model

(when possible). Moreover we extend this algorithm to find an odd sun

when the method fails. This algorithm has several interesting conse-

quences concerning the relationship between path graphs and directed

path graphs. One is that for a directed path graph, path graph mod-

els and directed path graph models are the same. Another consequence

concerns the difference between path graphs and directed path graphs

in terms of forbidden induced subgraphs. This can be used to deduce

the forbidden induced subgraph characterization of directed path graphs

from the forbidden induced subgraph characterization of path graphs.

The last consequence is algorithmic and shows that the recognition of

directed path graphs is not more difficult than the recognition of path

graphs.

1 Introduction

A hole is a chordless cycle of length at least four. A graph is a chordal graph
if it contains no hole as an induced subgraph. Gavril [3] proved that a graph is
chordal if and only if it is the intersection graph of a family of subtrees of a tree.
In this paper, whenever we talk about the intersection of subgraphs of a graph
we mean that the vertex sets of the subgraphs intersect. A graph is an interval
graph if it is the intersection graph of a family of intervals on the real line; or
equivalently, the intersection graph of a family of subpaths of a path. The class
of path graphs lies between interval graphs and chordal graphs. A graph is a path
graph if it is the intersection graph of a family of subpaths of a tree. Two variants
of path graphs have been defined when the tree is a directed graph. A directed
tree is a directed graph whose underlying undirected graph is a tree. A directed
subpath of a directed tree is a subpath whose edges are all oriented in the same
way. A graph is a directed path graph if it is the intersection graph of a family of
directed subpaths of a directed tree. A rooted tree is a directed tree in which the
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path from a particular vertex r to every other vertex is a directed path; vertex
r is called the root. A graph is a rooted path graph if it is the intersection graph
of a family of directed subpaths of a rooted tree.

The following inclusions hold by definition:

interval ⊂ rooted path ⊂ directed path ⊂ path ⊂ chordal

and these inclusions are strict.
In Section 4, we present a method to greedily orient the edges of a tree T that is

a path graph model to obtain a directed path graph model (when possible). The
idea is very simple: Pick any non oriented edge e of T and orient it arbitrarily.
Orient every edge of T that is forced by e. Repeat the process until all edges of T
are oriented. In fact, to ensure that the algorithm runs in linear time the formal
description of the algorithm is more complex and uses a particular order obtained
by an algorithm presented in Section 3. Moreover, we extend this method to find
an odd sun when the greedy path forcing fails. A sun is a graph with vertices
C = {c0, . . . , cr}, and S = {s0, . . . , sr}, r ≥ 2, where C is a clique, S is a stable
set and for 0 ≤ i ≤ r, N(si) ∩ C = {ci−1, ci} (subscripts are modulo r + 1). An
odd sun is a sun where |S| is odd. Finding an odd sun is interesting as it certifies
that the input graph is not a path graph.

This algorithm has several interesting consequences concerning the relation-
ship between path graphs and directed path graphs presented in Section 5. One
is that for a directed path graph, every path graph model has a corresponding di-
rected path graph model. Another consequence concerns the difference between
path graphs and directed path graphs in terms of forbidden induced subgraphs.
This can be used to deduce the forbidden induced subgraph characterization of
directed path graphs from the forbidden induced subgraph characterization of
path graphs. The last consequence is algorithmic and shows that the recognition
of directed path graph is not more difficult than the recognition of path graphs.

2 Definitions and Background

In a graph G, a clique is a set of pairwise adjacent vertices. Let C(G) be the set
of all (inclusionwise) maximal cliques of G. For any vertex v ∈ V , let Cv(G) =
{C ∈ C(G) : v ∈ C}. When there is no ambiguity we write C and Cv instead of
C(G) and Cv(G). Given a set X of vertices, let G[X ] denote the subgraph of G
induced by the vertices of X .

A clique tree T of a graph G is a tree whose vertices are the members of C
and, for each vertex v of G, the induced subgraph T [Cv] is a tree. A classical
result of Gavril [3] states that a graph is chordal if and only if it has a clique
tree. A clique path tree T of G is a clique tree of G such that, for each vertex v of
G, the subtree T [Cv] is a path. Gavril [4] proved that a graph is a path graph if
and only if it has a clique path tree. A clique directed path tree T of G is a clique
path tree of G such that edges of the tree T are directed and for each vertex v
of G, the subpath T [Cv] is a directed path. A clique rooted path tree T of G is a
clique directed path tree of G such that T is a rooted tree. Monma and Wei [9]
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proved that a graph is a directed path graph if and only if it has a clique directed
path tree, and that a graph is a rooted path graph if and only if it has a clique
rooted path tree. These results allow us to restrict our attention to intersection
models that are clique trees when studying the properties of these graph classes.

For more information about clique trees and chordal graphs, see [5,8].

3 Maximum Cardinality Clique Search

First, we need an algorithm (see Algorithm 1) that provides the vertex order used
to accomplish the greedy path forcing algorithm (see Algorithm 2). In particular,
we order the vertices of a given graph G starting from an arbitrary vertex and
selecting the next vertex vi such that the number of maximal cliques vi shares
with v0, ..., vi−1 is as large as possible.

Algorithm 1. Maximum Cardinality Clique Search

Input: A graph G and the sets Cv for every vertex v.
Output: An ordering σ on the vertices of G such that for every vertex

v the cardinality of Cv ∩ (∪σ(u)<σ(v)Cu) is maximum.
1 All vertices and maximal cliques of G are non-marked.
2 Let label(v) = 0 for every vertex v.
3 for i = 1 to n do
4 Choose a non-marked vertex v with maximum label.
5 Mark v and let σ(v) = i.
6 foreach non-marked clique C ∈ Cv do
7 Mark C.
8 foreach u ∈ C \ {v} do
9 label(u) = label(u) + 1.

10 return σ.

Notice that the above algorithm runs in linear time with respect to its input,
i.e. O(Σv∈V |Cv|). In particular, this is the same as the number of ones in the
vertex to maximal clique incidence matrix of the input graph G. Furthermore,
we have the following result by Fulkerson and Gross [6]:

Theorem 1 ([6]). For a chordal graph, the number of non-zero entries in the
vertex to maximal clique incidence matrix is O(n + m).

Therefore Algorithm 1 runs in time O(n+m) for a chordal graph with n vertices
and m edges.

4 Greedy Path Forcing

We now provide a linear time algorithm that for any path graph G and any clique
path tree T of G, returns either an orientation of T that is a clique directed path
tree of G or an induced subgraph of G that is an odd-sun.
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Algorithm 2 considers all the vertices of G one by one, using the order obtained
by Algorithm 1, and orients their corresponding subpath in T to form a directed
path without modifying already oriented edges. If the method fails, there is a
subpath that cannot be oriented. This subpath cannot be oriented because it
has two consecutive edges e, f which are already oriented in opposite directions.
By following the sequence of vertices that leads from the orientation of e to f , it
is possible to find an odd sun whose central clique corresponds to the common
extremity of e and f .

The following theorem shows the correctness of Algorithm 2:

Theorem 2. For any path graph G and any clique path tree T of G, Algorithm 2
returns in time O(n + m), either an orientation of T that is a clique directed
path tree of G or an induced subgraph of G that is an odd-sun.

Algorithm 2. Greedy Path Forcing

Input: A path graph G and a clique path tree T of G
Output: An orientation of T that is a clique directed path tree of G or an

induced subgraph of G that is an odd-sun.

1 Extract the sets Cv from the clique path tree T .

2 Let σ(vi) = i, 1 ≤ i ≤ n, obtained by applying Algorithm 1 on G and sets Cv.

3 for i = 1 to n do
4 if T [Cvi ∩ (∪σ(u)<iCu)] is a directed path (maybe empty) then
5 Orient the edges of T [Cvi ] that are not already oriented such that

T [Cvi ] forms a directed path.

6 else /* find an odd sun */
7 Let Cstart, Ccentre, Cstop be three consecutive cliques of

T [Cvi ∩ (∪σ(u)<iCu)] such that T [Cstart, Ccentre, Cstop] is not a

directed path.

8 Mark all vertices v with σ(v) ≥ i (all other vertices are non-marked).

9 Mark Cstart (all other cliques are non-marked).

10 Let f(Cstart) = vi and g(vi) be a vertex of Cstart \ Ccentre.

11 while Cstop is not marked do
12 Choose a non marked vertex v of a marked clique Cparent.

13 Mark v.

14 Let h(v) = f(Cparent).

15 if there exists a non marked clique C ∈ Cv ∩N(Ccentre) then
16 Mark C.

17 Let f(C) = v and g(v) be a vertex of C \ Ccentre.

18 Let u0 = f(Cstop) and uj = hj(u0), 1 ≤ j ≤ r, with ur = vi.

19 return G[u0, . . . , ur, g(u0), . . . , g(ur)].

20 Orient all not already oriented edges of T with an arbitrary direction.

21 return T with its orientation.
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Proof. To distinguish between marked elements of Algorithm 1 and 2, we say
that a clique or a vertex is marked 1 if it corresponds to the marking of Algo-
rithm 1 and marked 2 if it corresponds to the marking of Algorithm 2. Similarly
we distinguish between lines of the two algorithms by using 1.x and 2.x.

Let G be any path graph and T be any clique path tree of G. We prove that
Algorithm 2 applied on G and T , returns a clique directed path tree when every
test of line 2.4 is satisfied, and returns an odd sun when one such test is false
(i.e., the algorithm executes lines 2.6 to 2.18 and returns an odd sun at line 2.19).

Case 1: Every test of line 2.4 is true. Every vertex is considered one by
one and its corresponding subpath in T is oriented to form a directed path
without modifying already oriented edges. At the end, there may still be some
non-oriented edges (when G is disconnected), that are oriented arbitrarily at
line 2.20. Clearly, at line 2.21, the algorithm returns an orientation of T that is
a clique directed path tree of G.

In this case, the complexity of the algorithm is O(Σv∈V |Cv|) and thus O(n+m)
by Theorem 1.

Case 2: At least one test of line 2.4 is false. Let i be the first time such that
the test of line 2.4 is false for vi. Also, consider the point when Algorithm 2 enters
the else due to vertex vi. In fact, there is only one time that this test can be false
since the algorithm will return (at line 2.19) before leaving the scope of this else
block. Let U = {v ∈ V such that σ(v) < i}. The subgraph T [Cvi ∩ (∪σ(u)<iCu)]
is connected by the choice of σ and thus the three cliques Cstart, Ccentre, Cstop

exists at line 2.7. The set Cstart∩Cstop ∩U = ∅ as T [Cstart, Ccentre, Cstop] is not
a directed path (line 2.7). First, we prove that the clique Cstop will be marked 2
during the while loop at line 2.11 (i.e., the algorithm ends).

Claim. While Cstop is not marked 2, there exists a non marked 2 vertex v of
an already marked 2 clique and a non marked 2 clique C ∈ Cv ∩ N(Ccentre)
(corresponding to lines 2.12 and 2.15).

Proof. Suppose on the contrary that at one point of the loop of line 2.11 these
v and C do not exist. Let M be the set of already marked 2 cliques. Note that
M ⊆ N(Ccentre) as all marked 2 cliques (at line 2.9 or 2.16) are adjacent to
Ccentre. Let N = N(Ccentre) \ M. Note that Cstart ∈ M and Cstop ∈ N . Let
A = U ∩ Ccentre ∩ (∪C∈MC) and B = U ∩ Ccentre ∩ (∪C∈NC). The set A ∩ B
is empty, otherwise there exists v ∈ A ∩ B and C ∈ Cv ∩ N that can play the
role of v and C as in the claim. Edges CstartCcentre and CstopCcentre are already
oriented, so the sets Cstart ∩Ccentre ∩U and Cstop ∩Ccentre ∩U are non empty.
So A and B are non empty. Let x (resp. y) be the minimum vertex for σ in
A (resp. in B). We have x /∈ B and y /∈ A. Let Cx be a clique of Cx ∩ M.
Let t0 = f(Cx) and tj = hj(t0), 1 ≤ j ≤ s, with ts = vi. We distinguish two
cases corresponding to the relation between x and y for the order σ obtained by
applying Algorithm 1 at line 2.2.

Case σ(x) < σ(y). Consider the point of Algorithm 1 when y is chosen at
line 1.4. Note that x is already marked 1, so Ccentre and Cx are already marked 1.
Vertex y is the first vertex of B chosen by Algorithm 1. So, when y is chosen, the
only marked 1 clique in Cy is Ccentre and so label(y) = 1 (otherwise, y ∈ A∩B).
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We claim that σ(tj) < σ(y) for 0 ≤ j ≤ s. Suppose the contrary and let k
be minimal such that σ(tk) > σ(y). If k = 0, then Cx and Ccentre are already
marked 1 cliques of Ct0 , so label(t0) ≥ 2, a contradiction to the choice of y.
If 1 ≤ k ≤ s, then tk−1 is already marked 1, so f−1(tk) is already marked 1.
Then f−1(tk) and Ccentre are already marked 1 cliques of Ctk

, so label(tk) ≥ 2, a
contradiction to the choice of y. Thus σ(vi) = σ(ts) < σ(y), contradicting y ∈ U .

Case σ(y) < σ(x). Consider the point of Algorithm 1 when x is chosen at
line 1.4. Note that y is already marked 1, so Ccentre is already marked 1. Vertex
x is the first chosen vertex of A in Algorithm 1. So when it is chosen, the only
marked 1 clique in Cx is Ccentre and so label(x) = 1 (otherwise, x ∈ A ∩B).

Suppose there exists z ∈ B with σ(x) < σ(z) and let z be minimal with
this property. Clearly label(z) ≤ label(x) when x is chosen, so label(z) = 1 as
Ccentre ∈ Cz. Vertex z is the first vertex of B chosen after x, so its label remains
the same until it is marked. Consider (temporarily) the point of Algorithm 1
when z is chosen at line 1.4. Note that x is already marked 1, so Cx is already
marked 1. We claim that all tj , 0 ≤ j ≤ s, satisfy σ(tj) < σ(z). Suppose the
contrary and let k minimal such that σ(tk) > σ(z). If k = 0, then Cx and Ccentre

are already marked 1 cliques of Ct0 , so label(t0) ≥ 2, a contradiction to the choice
of z. If 1 ≤ k ≤ s, then tk−1 is already marked 1, so f−1(tk) is already marked 1.
Then f−1(tk) and Ccentre are already marked 1 cliques of Ctk

, so label(tk) ≥ 2, a
contradiction to the choice of z. Thus σ(vi) = σ(ts) < σ(z), contradicting z ∈ U .
So there are no vertices in B with σ(x) < σ(z).

Let z be a vertex of Cstop∩Ccentre∩U , thus z ∈ B. By the preceding paragraph
σ(z) < σ(x). We consider again the point of Algorithm 1 when x is chosen at
line 1.4 with label(x) = 1. Cliques Cstop and Ccentre are already marked 1 cliques
of Cvi , so label(vi) ≥ 2, a contradiction to the choice of x. ��

By the claim, a new clique will always be marked 2 at line 2.15 until Cstop is
marked. So the while loop of line 2.11 ends and so the algorithm ends. Let uj ,
0 ≤ j ≤ r, be as defined at line 2.18. For 0 ≤ j ≤ r, let zj = g(uj). At line 2.19,
the graph G′ induced by u0, . . . , ur, z0, . . . , zr is returned. We now prove that G′

is an odd sun.
For 0 ≤ j ≤ r, let Cj = f−1(uj). Note that C0 = Cstop and Cr = Cstart. All of

the cliques Ci are distinct and adjacent to Ccentre so the tree T [Ccentre, C0, . . . , Cr]
is a star centred at Ccentre. Thus u0, . . . , ur is a clique Q and z0, . . . , zr is a stable
set with N(zj)∩Q = {uj−1, uj}, for 0 ≤ j ≤ r and subscripts modulo r+1. So G′

is a sun. The tree T [Ccentre, C0, . . . , Cr] is already oriented and T [C0, Ccentre, Cr]
is not directed by the choice of Cstart, Ccentre, Cstop of line 2.7. So C0Ccentre and
CcentreCr are not directed in the same way. Suppose, by symmetry, that C0 →
Ccentre and Cr → Ccentre (where a→ b means there is a edge oriented from a to
b). Vertices C0, Ccentre, C1 appear in this order along T [Cu0 ] and C0 → Ccentre,
so Ccentre → C1. Vertices C1, Ccentre, C2 appear in this order along T [Cu1] and
Ccentre → C1, so C2 → Ccentre. Propagating this forward, for 2 ≤ j < r, vertices
Cj , Ccentre, Cj+1 appear in this order along T [Cuj ], so Cj+1 → Ccentre when j is
odd and Ccentre → Cj+1 when j is even. Thus r is even as Cr → Ccentre and G′

is an odd sun.
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Vertices and maximal cliques are marked at most once in the while loop of
line 2.11, so the complexity of the else part is O(|V | + |C|). Thus the total
complexity of the algorithm is O(n + m). ��

5 Consequences

Theorem 2 has several consequences concerning the relationship between path
graphs and directed path graphs.

First, we need the following lemma that is part of the work of Panda [10].
We give a short proof of this lemma here. One consequence of this lemma,
Theorem 2, and [7] is a new proof of the main result of [10] (i.e., the forbidden
induced subgraph characterization of directed path graphs).

Lemma 1 ([10]). Odd suns are minimally not directed path graphs.

Proof. Let G be an odd sun. Let C = {c0, . . . , c2k}, S = {s0, . . . , s2k}, k ≥ 1,
be the vertices of G where C is a clique, S is a stable set and for 0 ≤ i ≤ 2k,
N(si) ∩ C = {ci−1, ci} (subscripts are modulo 2k + 1).

Suppose that G is a directed path graph and let T be a clique directed path
tree of G. The maximal cliques of G are C and Ci = {si, ci−1, ci} for 0 ≤ i ≤ 2k.
For 0 ≤ i ≤ 2k, the clique C is between Ci and Ci+1 in T as otherwise ci−1 is
adjacent to si+1 or ci+1 is adjacent to si. Thus the subtree T [Cci] is the path
Ci, C, Ci+1. Suppose, by symmetry, that C0 → C. Vertices C0, C, C1 appear in
this order along T [Cc0] and C0 → C, so C → C1. Vertices C1, C, C2 appear in
this order along T [Cc1] and C → C1, so C2 → C. Propagating this forward,
for 2 ≤ i ≤ 2k, vertices Ci, C, Ci+1 appear in this order along T [Cci], where
Ci+1 → C when i is odd and C → Ci+1 when i is even. So for i = 2k, we have
C → C2k+1 and C2k+1 = C0, contradicting C0 → C. So G is not a directed path
graph.

We now prove that G is minimally not directed path graph, that is for any
vertex w of G, the graph G \ w is a directed path graph. If w ∈ S, then we can
assume that w = s0. Thus the tree on vertices C, Ci, 1 ≤ i ≤ 2k and edges
Ci → C when i is odd and C → Ci when i is even is a clique directed path tree
of G \ w. If w ∈ C, then we can assume that w = c2k. Thus the tree on vertices
C′ = C \ {w}, C′

0 = C0 \ {w}, C′
2k = C2k \ {w}, C′

i = Ci, 1 ≤ i ≤ 2k − 1 and
edges C′

i → C′ when i is odd and C′ → C′
i when i is even is a clique directed

path tree of G \ w. ��

A consequence of Theorem 2 and Lemma 1 is that, for a directed path graph,
clique path trees and clique directed path trees are the same. More precisely:

Theorem 3. For any directed path graph G and any clique path tree T of G,
the edges of T can be oriented to obtain a clique directed path tree of G.

Note that there is no analogous of Theorem 3 for rooted path graph. In fact,
there exists rooted path graphs having clique (directed) path tree that cannot
be oriented to obtain a clique rooted path tree (see Figure 1 for an example).
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Fig. 1. A rooted path graph with a clique path tree that cannot be rooted to obtain a

clique rooted path tree

Thus, there is no algorithm that can return a clique rooted path tree of a rooted
path graph G by simply orienting the edges of any clique path tree of G.

Another consequence of Theorem 2 and Lemma 1 concerns the difference
between path graphs and directed path graphs in terms of forbidden induced
subgraphs:

Theorem 4. A path graph is a directed path graph if and only if it does not
contain an odd sun as an induced subgraph.

Theorem 4 can be used to deduce the forbidden induced subgraph characteriza-
tion of directed path graphs from the forbidden induced subgraph characteriza-
tion of path graphs. The forbidden induced subgraph characterization of path
graphs was obtained by Lévêque, Maffray and Preissmann [7] (see Figure 2) (an
independent proof has been obtained by Tondato [12]):

Theorem 5 ([7]). A graph is a path graph if and only if it does not contain any
of F0(n)n≥4, F1, F2, F3, F4, F5(n)n≥7, F6, F7, F8, F9, F10(n)n≥8, F11(4k)k≥2,
F12(4k)k≥2, F13(4k + 1)k≥2, F14(4k + 1)k≥2, F15(4k + 2)k≥2, F16(4k + 3)k≥2 as
an induced subgraph.

Form the list of minimal forbidden induced subgraphs of path graphs of The-
orem 5, if we remove every graph that contains an odd sun, namely F2, F8,
F11(4k)k≥2, F12(4k)k≥2, F14(4k + 1)k≥2, and add the odd suns to the list, we
obtain the list of minimal forbidden induced subgraphs of directed path graphs
(see Figure 3):

Theorem 6 ([10]). A graph is a directed path graph if and only if it contains
no F0(n)n≥4, F1, F3, F4, F5(n)n≥7, F6, F7, F9, F10(n)n≥8, F13(4k + 1)k≥2,
F15(4k + 2)k≥2, F16(4k + 3)k≥2, F17(4k + 2)k≥1 as an induced subgraph.

Theorem 6 has already been proven by Panda [10] with the use of the Separator
Theorem of Monma and Wei [9] and a technical case analysis. Here we obtain
an independent proof using [7]. This new proof does not rely on the Separator
Theorem as it is not used in the proof of Theorem 5 in [7].
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F0(n)n≥4

F1 F2 F3 F4 F5(n)n≥7

F6 F7 F8 F9 F10(n)n≥8

F11(4k)k≥2 F12(4k)k≥2 F13(4k + 1)k≥2 F14(4k + 1)k≥2 F15(4k + 2)k≥2 F16(4k + 3)k≥2

Fig. 2. Minimal forbidden induced subgraphs for path graphs (the vertices in the cycle

marked by bold edges form a clique)

F0(n)n≥4

F1 F3 F4 F5(n)n≥7

F6 F7 F9 F10(n)n≥8

F13(4k + 1)k≥2 F15(4k + 2)k≥2 F16(4k + 3)k≥2 F17(4k + 2)k≥1

Fig. 3. Minimal forbidden induced subgraphs for directed path graphs (the vertices in

the cycle marked by bold edges form a clique)
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The algorithmic consequence of Theorem 2 and Lemma 1 is the following:

Theorem 7. If there exists a polynomial algorithm that tests if a graph G is a
path graph and returns a clique path tree of G when the answer is “yes.” Then,
there exists an algorithm with the same complexity to test if a graph is a directed
path graph.

Some efficient recognition algorithms for path graphs were given by Gavril [4],
Schäffer [11] and Chaplick [1], whose complexity is respectively O(n4), O(nm)
and O(nm) for graphs with n vertices and m edges. Another algorithm was
proposed in [2] and claimed to run in O(n + m) time, but it has only appeared
as an extended abstract and is not considered to be complete or correct (see
comments in [1, Section 2.1.4]). All of these algorithms can be extended to
recognize directed path graphs with the use of Algorithm 2 without increasing the
time complexity. Thus, the fastest recognition algorithm of directed path graphs
with this method has complexity O(nm). This is the fastest known algorithm
to recognize directed path graphs. Previously, the fastest known algorithm to
recognize directed path graphs was from Monma and Wei [9] and has complexity
O(n2m).
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Abstract. Θk-graphs are geometric graphs that appear in the context

of graph navigation. The shortest-path metric of these graphs is known

to approximate the Euclidean complete graph up to a factor depending

on the cone number k and the dimension of the space.

TD-Delaunay graphs, a.k.a. triangular-distance Delaunay triangula-

tions, introduced by Chew, have been shown to be plane 2-spanners of

the 2D Euclidean complete graph, i.e., the distance in the TD-Delaunay
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Orthogonal surfaces are geometric objects defined from independent

sets of points of the Euclidean space. Orthogonal surfaces are well studied

in combinatorics (orders, integer programming) and in algebra. From

orthogonal surfaces, geometric graphs, called geodesic embeddings can

be built.

In this paper, we introduce a specific subgraph of the Θ6-graph de-

fined in the 2D Euclidean space, namely the half-Θ6-graph, composed of
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connected to the geodesic embeddings of orthogonal surfaces of coplanar

points in the 3D Euclidean space.

Using these new bridges between these three fields, we establish:

– Every Θ6-graph is the union of two spanning TD-Delaunay graphs.

In particular, Θ6-graphs are 2-spanners of the Euclidean graph, and

the bound of 2 on the stretch factor is the best possible. It was

not known that Θ6-graphs are t-spanners for some constant t, and

Θ7-graphs were only known to be t-spanners for t ≈ 7.562.

– Every plane triangulation is TD-Delaunay realizable, i.e., every com-

binatorial plane graph for which all its interior faces are triangles is

the TD-Delaunay graph of some point set in the plane. Such real-
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1 Introduction

A geometric graph is a weighted graph whose vertex set is a set of points of Rd,
and whose edge set consists of line segments joining two vertices. The weight
of any edge is the Euclidean distance (L2-norm) between its endpoints. The
Euclidean complete graph is the complete geometric graph, in which all pairs of
distinct vertices are connected by an edge.

Although geometric graphs are in theory specific weighted graphs, they natu-
rally model many practical problems and in various fields of Computer Science,
from Networking to Computational Geometry. Delaunay triangulations, Yao
graphs, theta-graphs, β-skeleton graphs, Nearest-Neighborhood graphs, Gabriel
graphs are just some of them [17]. A companion concept of geometric graphs is
the graph spanner. A t-spanner of a graph G is a spanning subgraph H such
that for each pair u, v of vertices the distance in H between u and v is at most t
times the distance in G between u and v. The value t is called the stretch factor
of the spanner.

Spanners have been independently introduced in Computational Geometry by
Chew [7] for the complete Euclidean graph, and in the fields of Networking and
Distributed Computing by Peleg and Ulman [31] for arbitrary graphs. Literature
in connection with spanners is vast and applications are numerous. We refer to
Peleg’s book [30], and Narasimhan and Smid’s book [28] for a comprehensive
introduction to the topic.

1.1 Orthogonal Surfaces

With a point set M of Rd it is possible to associate other geometric objects.
Assuming that M consists only of pairwise incomparable1 points, the orthogonal
surface of M is the geometric boundary of the set of points of Rd greater to at
least one point of M (see Fig. 2 for d = 3).

Orthogonal surfaces are rich mathematical objects with connections to various
fields, including order dimension, integer programming, and monomial ideals.
Schnyder woods and orthogonal surfaces of coplanar points of R3 have been
established by Miller [27], and Felsner and Zickfeld [15]. As a side effect, they
gave an intuitive proof of a restricted version of the Brightwell-Trotter Theorem,
which is an extension to multigraphs of Schnyder’s characterization of planar
graphs in terms of dimension of their incidence order [33].

The geodesic embedding of a point set S ⊂ R2 is a geometric graph with vertex
set S. To define its edges, one considers a specific embedding φ : S → R3 such
that the points of φ(S) are coplanar (see Section 2). There is an edge between
the points p, q ∈ S if the join point φ(p)∨φ(q) belongs to the orthogonal surface
of φ(S), the join point being the point with maximum coordinates between φ(p)
and φ(q) in each dimension.

1 A point v is greater than u if, for each dimension i, v’s ith coordinate is greater than

u’s ith coordinate.
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1.2 Delaunay-Graphs

In his seminal paper [7], Chew has constructed plane spanners of the 2D Eu-
clidean graph, namely planar subgraphs whose stretch factor is at most

√
10 ≈

3.162. His construction is based on the L1-Delaunay graph, i.e., the dual of the
Voronoi diagram for the Manhattan distance (L1-norm). He conjectured that
L2-Delaunay graphs, i.e., classical Delaunay triangulations, are t-spanners for
some constant t. This conjecture has been proved in [12], and the current best
bounds on the stretch factor t of L2-Delaunay graphs are 1.584 < t < 2.419,
proved respectively in [5] and [23]. Determining the exact stretch factor of this
important class of geometric graphs is a challenging and open question. We refer
to the recent survey [6].

More generally, for any given convex set Γ in the plane2, one can define the
Γ -Delaunay graphs as the dual of the Voronoi diagram of a set of points with
respect to the convex distance function defined by Γ . Bose et al. [2] have shown
that Γ -Delaunay graphs are plane t-spanners for some stretch factor t depending
on the shape of Γ .

A natural question, widely open, is to determine whether L2-Delaunay graphs
are the “best” plane spanners in terms of stretch factor. It is known [13] that
there are point sets for which no plane t-spanner can exist if t < (1+10−11)π/2 ≈
1.570. On the upper bound side, Chew introduced in [7] the triangular distance-
Delaunay graphs, TD-Delaunay graphs for short, whose convex distance function
is defined from an equilateral triangle. He proved that TD-Delaunay graphs are
plane 2-spanners. The stretch 2 is optimal with respect to the triangular distance
because of some 3-gons.

1.3 Delaunay Realizability

Searching for the “best” plane spanner should be done, a priori, in the set of all
planar graphs. Indeed, there is no advantage to limit the search to any restricted
subclass, except maybe to plane triangulations. By plane triangulation, we mean
a combinatorial plane graph in which all interior faces are triangles3. However,
there are notorious plane triangulations that cannot be obtained from any L2-
Delaunay graphs, e.g., a K4 for which a degree-3 vertex is added in each of
its three interior faces [11,25]. This leads to the question of realizability of plane
triangulations by L2-Delaunay graphs, and more generally by Γ -Delaunay graphs
for a convex distance function Γ . More formally, a plane triangulation G is Γ -
Delaunay realizable if there exists a point set S such that the Γ -Delaunay graph
of S is isomorphic to G.

Every triangulation of any polygon, i.e., every maximal outerplane graph,
can be realized by a L2-Delaunay graph [11]. Based on 3D hyperbolic geometry,
Hodgson et al. [19] gave a combinatorial characterization of the graphs that
2 To be more precise, Γ must be a compact and convex set with non-empty interior

that contains its origin.
3 Note that the outer face may not be necessarily a triangle nor the convex hull of the

point set, see Figure 1(b).
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are L2-Delaunay realizable, leading to a polynomial-time recognition algorithm
by the use of integer programming. The algorithm has been simplified later
in [18,26]. Other connections between toughness, polyhedra of inscribable type,
and L2-Delaunay graphs have been developed in [10]. For an arbitrary convex
distance function Γ , the Γ -Delaunay realizability has not yet been studied.

1.4 Theta-Graphs

Theta-graphs [9,22] and Yao graphs [34] are very popular geometric graphs that
appear in the context of navigating graphs. Adjacency is defined as follows: the
space around each point p is decomposed into k � 2 regular cones, each with
apex p, and a point q �= p of a given cone C is linked to p if, from p, q is the
“nearest” point in C. When the points are in general positions, the out-degree
is at most k, and the points form a non-plane graph in general whenever k > 6.

Theta-graphs and Yao graphs differ in the way the nearest neighbor is defined.
We focus on the 2D Euclidean space, so that each cone forms an angle of Θk =
2π/k. For Yao graphs (Yk-graphs for short), the nearest neighbor of p in the cone
C is simply a point q �= p minimizing the L2-distance between p and q. Whereas
for theta-graphs (Θk-graphs for short), the nearest neighbor of p is the point
whose orthogonal projection onto the bisector of C minimizes the L2-distance.

Both graphs are known to be efficient spanners. The stretch factor of Θk-
graphs and Yk-graphs, proved respectively in [32] and in [34], is at most 1/(1−
2 sin(π/k)) for every k > 6. Very little is known for k � 6. For instance, it was
known that Y4-graphs are connected [16] and recently it has been shown that
they are 8(29 + 23

√
2)-spanners4 [4]. A very recent result [29] states that Y6-

graphs are 20.4-spanners. For k = 7, we observe that the current upper bound
on the stretch of these graphs is larger than 7.562, and the upper bound drops
under 2 only from k � 13.

Our main result relies on a specific subgraph of the Θk-graph, namely the
half-Θk-graph, taking only half the edges, those belonging to non-consecutive
cones in the counter-clockwise order (see Section 2 for a more formal definition).
For even k, every Θk-graph is the union of two spanning half-Θk-graphs.

1.5 Our Results

Our main contribution is an unexpected connection between theta-graphs, TD-
Delaunay graphs, and orthogonal surfaces. We stress that these objects come
from rather different domains and can lead to new results. We show that (see
Section 3 for a more precise statement):

For every point set S ⊂ R2 in general position, the half-Θ6-graph of S,
the TD-Delaunay graph of S, and the geodesic embedding of S are equal.

Half-Θ6-graph turns out to be a key ingredient of our result. This unification
result implies that each of these objects can directly inherit of all the known
properties from the others. In particular, we exhibit two important corollaries:
4 This number is greater than 492.
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1. Every Θ6-graph is the union of two spanning TD-Delaunay graphs.
In particular, Θ6-graphs are 2-spanners of the 2D Euclidean graph, because

they contain a TD-Delaunay graph as spanning subgraph, which is a 2-spanner
from [7]. Since the bound of 2 is optimal (by considering the apices of a quasi-
equilateral triangle), we have therefore determined the stretch factor of Θ6-
graphs. Up to now, Θ6-graphs were not known to be t-spanners for any constant
t, and the best known bound on the stretch factor for Θ7-graphs was larger than
7.562. Before this current paper, only Θk-graphs for k � 13 were known to be
2-spanners (see the previous best general upper bound [32]).

The other important consequence is:
2. Every plane triangulation is TD-Delaunay realizable.
We also show that the plane triangulation of K4 is not L1-Delaunay realizable,

so that, to the best of our knowledge, the equilateral triangle is the only regular
convex distance function Γ that is known to have the property that every plane
triangulation is Γ -Delaunay realizable.

The paper is organized as follows. In Section 2 we precisely define all the
objects we need, and in Section 3 we prove our main result. The corollaries are
proved in Section 4. Due to space limitations, proofs are omitted.

2 Definitions

2.1 Half-Θ6-Graph

A cone is the region in the plane between two rays that emanate from the
same point, its apex. For each cone C, let �C be the bisector ray of C, and for
each point p, let Cp = {x + p : x ∈ C}. Let us consider the rays obtained by a
counter-clockwise rotation around the origin of the positive x-axis by angles of
2iπ/k with integer i. Each pair of successive rays 2(i− 1)π/k and 2iπ/k defines
a cone, denoted by Ai, whose apex is the origin. Let Ak = {A1, . . . , Ak}.

The directed Θk-graph of a point set S ⊂ R2, denoted by
−→
Θk(S), is defined

as follows: (1) the vertex set of
−→
Θk(S) is S; and (2) (p, r) is an arc of

−→
Θk(S) if

and only if there is a cone Ai ∈ Ak such that r ∈ Ap
i \ {p} whose orthogonal

projection onto �p
C is the closest to p.

This definition makes no assumptions on relative positions of points of S. In
particular, it may happen that in

−→
Θk(S) several arcs of a given cone have the

same length (and the out-degree is larger than k), or some arc lie on the border
of a cone. The notion of “general position” is discussed in Section 3. We now
introduce a new graph, called half-Θk-graph, defined as follows:

Definition 1. The directed half-Θk-graph of a point set S ⊂ R2, denoted by
1
2

−→
Θk(S), is the digraph induced by all the arcs (p, r) of

−→
Θk(S) such that r ∈ Ap

i

for some even number i.

Whenever k ≡ 2 (mod 4), we denote by Ci the cone A2i, and by Ci the opposite
cone of Ci, i.e., Ci = A2i+k/2 mod 6 (observe that 2i + k/2 is odd). An arc (p, r)
such that r ∈ Cp

i is said to be colored i.
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Fig. 1. (a) Illustration of notations for half-Θ6-graphs. (b) An example of a directed

half-Θ6-graph.

In this paper, we focus on the half-Θ6-graph. So, in counter-clockwise order
starting from the positive x-axis, the six cones of A6 are encountered in the order
C2, C1, C3, C2, C1, C3 (see Fig. 1(a)). Fig. 1(b) shows an example of a directed
half-Θ6-graph on 8 points.

The set of points S is said to be degenerate if there exist two points p and q

in S such that both (p, q) and (q, p) are arcs of 1
2

−→
Θk(S). The set S is said to be

non-degenerate otherwise.

2.2 Geodesic Embeddings

Let P be a plane equipped with the standard basis (ex, ey), and let S be a finite
set of points in the plane P .

The following definitions are extracted from [27]. (Similar definitions can also
be found in Felsner’s book [14].) Let (e1, e2, e3) be the standard basis of R3.
The plane P is now embedded in P ′ ⊂ R3 where P ′ is the plane containing
the origin of R3 with basis (e′x, e′y) where e′x = (0,−1/

√
2, 1/
√

2) and e′y =
(
√

2/3,−1/
√

6,−1/
√

6). Observe that e1 + e2 + e3 is a normal vector5 of P ′.
Any point p = (px, py) ∈ R2 is mapped to p′ ∈ P ′ with p′ = pxe′x + pye′y.

Consider the dominance order on R3: p � q if and only if pi � qi for each
i ∈ {1, 2, 3}. Note that any two different points of P ′ are incomparable. The
filter generated by a set of points S of P is the set

〈S〉 =
{
α ∈ R3 : α � v for some v ∈ S

}
.

The boundary SS of 〈S〉 is the coplanar orthogonal surface generated by S.
Notice that in [27,15], the authors also consider orthogonal surfaces, a more
general case where elements of S are pairwise incomparable but not necessarily
5 I.e., ∀p′ = (p′

1, p
′
2, p

′
3) ∈ P ′, p′

1e1 + p′
2e2 + p′

3e3 = 0.
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e3e2

e1

Fig. 2. A coplanar orthogonal surface with its geodesic embedding

in the same plane of normal vector e1 + e2 + e3. Fig. 2 shows an example of a
coplanar orthogonal surface.

We denote by p∨q the point (max{p1, q1}, max{p2, q2}, max{p3, q3}). If p, q ∈
S and p∨ q ∈ SS , then SS contains the union of the two line segments joining p
and q to p ∨ q. These lines are called elbow geodesics of SS . The orthogonal arc
of p ∈ S in direction of the standard vector ei is the piece of ray p + λei, λ � 0,
which follows a crease of SS . If p∨ q is equal to p + λei, for some λ � 0, we say
that it is an elbow of type i. The corresponding elbow geodesic is also said to be
of type i. Observe that p ∨ q shares two coordinates (on the basis (e1, e2, e3))
with at least one (and perhaps both) of p and q. We say that a geodesic elbow is
uni-directed if its corresponding elbow p ∨ q shares two of its coordinates either
with p or with q (but not with both).

An orthogonal surface SS is uni-directed if all the geodesic elbows are
uni-directed.

Definition 2. Let S be a set of points on P such that the orthogonal surface
SS is uni-directed. The geodesic embedding of S is the directed graph

−−→
Geo(S)

defined as follows:

– the vertices of
−−→
Geo(S) are the points of S.

– there is an arc from p to q colored i if and only if p∨ q is an elbow of type i.

2.3 TD-Delaunay Triangulation

We recall here the definition of TD-Delaunay graphs introduced in [7].
Let T (resp. T̃ ) be the equilateral triangle of side length 1 whose barycenter

is the origin and one of its vertices is on the positive (resp. negative) y-axis . A
homothet of T is obtained by scaling T with respect to the origin, followed by
a translation: p + λT = {p + λz : z ∈ T }. The triangular distance between two
points p and q is defined as follows:

dT (p, q) = min {λ : λ � 0 and q ∈ p + λT }
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Notice that in general dT (p, q) �= dT (q, p).
Let S be a set of points in the plane P . For each p ∈ S, we define the TD-

Voronoi cell of p as:

VT (p) = {x ∈ P : for all q ∈ S, dT (p, x) � dT (q, x)} .

Fig. 3(a) shows an example of a set of TD-Voronoi cells, also called TD-Voronoi di-
agram. Observe that the intersection of two TD-Voronoi cells may have a positive
area. For instance, consider the following set S =

{
u = (−

√
3, 1), v = (

√
3, 1)

}
(see Fig. 3(b)). The intersection VT (u)∩ VT (v) contains the part of the plane be-
low the two lines (o, u) and (o, v) where o = (0, 0).
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Fig. 3. (a) TD-Voronoi diagram. (b) λ1 < λ2 < λ3 stand for three triangular distances.

The set {u, v} is an ambiguous point set, however {u, v, w} is non-ambiguous.

We say that a set of points S is non-ambiguous if the intersection of any two
TD-Voronoi cells of S is of null area6.

Definition 3. Let S be a non-ambiguous set of points of P. The TD-Delaunay
graph of S, denoted by TDDel(S), is defined as follows:

– the vertex set of TDDel(S) is S; and
– (p, q) is an edge of TDDel(S) if and only if VT (p) ∩ VT (q) �= ∅.

3 Unification of the Concepts

We will now prove that the three objects defined in Section 2 are essentially the
same. Note that Fig. 1(b), 2, and 3(a) are based on the same set of points.

Given two points p and q ∈ Cp
i , we denote by Ti(p, q) the set of points of P

in Cp
i \ {p} whose orthogonal projection onto �Cp

i
is strictly closer to p than the

6 For ambiguous set of points S, it is possible to have a partition of the plane by the

interior of Voronoi cells plus the union of all boundaries, by ordering the elements

of S to break ties. See for example [2].
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orthogonal projection onto �Cp
i

of q. Note that the boundary of Ti(p, q) is an
equilateral triangle. The interior of Ti(p, q) is denoted by T ◦

i (p, q). Differently
speaking, T ◦

i (p, q) is the set of points Ti(p, q) deprived of the points lying on the
axes of the cone Cp

i .

Lemma 1. Let S be a set of points in the plane P, and let p and q be two
distinct points in this set. There is an arc (p, q) colored i in 1

2

−→
Θ6(S) if and only

if q ∈ Cp
i and Ti(p, q) ∩ S = ∅.

Lemma 2. Let S be a set of points in the plane P, and let p and q be two
distinct points in this set. p ∨ q is an elbow of type i if and only if q ∈ Cp

i and
T ◦

i (p, q) ∩ S = ∅.

Lemma 3. Let S be a set of points in the plane P, and let p and q be two distinct
points in this set. The Voronoi cells VT (p) and VT (q) share at least a point if
and only if there exists i ∈ {1, 2, 3} such that q ∈ Cp

i and T ◦
i (p, q) ∩ S = ∅, or

p ∈ Cq
i and T ◦

i (q, p) ∩ S = ∅.

Thanks to these technical lemmas, we first show the links existing between the
different notions of “general position” corresponding to the three objects into
consideration, and we then prove our main equivalence theorem.

Theorem 1. Let S be a set of points in the plane P.
1. S is non-degenerate if and only if SS is uni-directed.
2. If S is non-degenerate, then S is non-ambiguous.

Theorem 2. Let S be a non-degenerate point set in the plane P. Let Geo(S),
resp. 1

2Θ6(S), be the underlying undirected uncolored graph of
−−→
Geo(S), resp.

1
2

−→
Θ6(S). We have

1
2
Θ6(S) = Geo(S) = TDDel(S) .

Moreover,
−−→
Geo(S) =

1
2
−→
Θ6(S) .

4 Applications

4.1 Spanner

In [7] it is shown that TD-Delaunay triangulations are plane 2-spanners. From
Theorem 2, while observing that the Θ6-graph is the union of two half-Θ6-graphs
(one using odd cones and the other even cones) we directly get the following
corollary:

Corollary 1. Every half-Θ6-graph (and also Θ6-graph) is a 2-spanner. More-
over the edges of the Θ6-graph can be partitioned into two planar graphs.

We observe that the bound of 2 is the best possible stretch for Θ6-graphs and
half-Θ6-graphs. Indeed, the Θ6-graph, and the half-Θ6-graph as well, of some 3-
gons (the apex of a quasi-equilateral triangle) has stretch arbitrarily close to 2.
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4.2 Delaunay Realizability

Using the face counting algorithm introduced by Schnyder [33], Felsner and
Zickfeld [15, Theorem 10] showed that for every plane triangulation G, a point set
S such that Geo(S) = G can be computed in linear time7. Using the equivalence
between geodesic embeddings and TD-Delaunay triangulations (Theorem 2) we
directly get the following result (see Section 1.3 for the definition of realizability):

Corollary 2. Every plane triangulation is TD-Delaunay realizable.

This raises the following natural question: is there another distance function Γ
such that every triangulation is Γ -Delaunay realizable? The first natural dis-
tance to be considered is the L1-norm. The next theorem shows that not all
triangulations are L1-Delaunay realizable.

Theorem 3. The plane triangulation of K4 is not L1-Delaunay realizable.

To conclude on realizability, let us mention, that there are graphs that are re-
alizable for a certain distance function and not for another and vice versa. For
instance, Theorem 3 shows that K4 is not L1-Delaunay realizable but it is L2-
Delaunay realizable. On the other hand, there also exist graphs that are L1-
Delaunay realizable but not L2-Delaunay realizable [11, Fig. 4].

5 Final Remarks

A Voronoi diagram is sometimes interpreted as a view from the top of a collection
of cones whose apices lie on a plane and whose axes are oriented downward (see,
e.g., [20]). Coplanar orthogonal surfaces are the exact generalisation of this idea
for TD-Voronoi diagrams: the only difference lies on the shape of the base of the
cones: circular (L2-norm), square (L1- and L∞-norm) or triangular (triangular
distance). Hence the TD-Voronoi cell of a point p of S is exactly the orthogonal
projection on P of the points of SS dominated by p (see Fig. 2 and 3).

Among various generalizations of Voronoi diagrams, Additively Weighted
Voronoi Diagrams have been widely studied (see, for example, [3,24,21]). In
such a diagram, the point set is replaced by a set of weighted points S =
{(p1, w1), . . . , (pn, wn)}. The distance between an element (pi, wi) of S and point
x of the plane P is dAW ((pi, wi), x) = d(pi, x) − wi. The AW-Vonoroi cell of a
weighted point (pi, wi) ∈ S is naturally defined as follows:

VAW (pi, wi) = {x ∈ P : ∀(pj , qj) ∈ S, i �= j, dAW ((pi, wi), x) � dAW ((pj , wj), x)}

An AW-Voronoi diagram can be interpreted as a view from the top of a col-
lection of cones where the altitude of the apex of a cone is the weight of the
corresponding element of S.

7 Note that that this result holds also for 3-connected plane maps, but in this case the

orthogonal surface is not uni-directed.
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In our context we can define the Additively Weighted Triangular Distance
Voronoi Diagram (or simply AWTD-Voronoi diagram) using the notion of dis-
tance: dAWTD((pi, wi), x) = dT (pi, x)−wi. From the previous remarks, one can
see orthogonal surfaces (not necessarily coplanar) as AWTD-Voronoi diagrams.

The Yao graph [34] is very similar to the Θ-graph: in each cone of apex p,
the selected neighbor of p is the nearest one in the cone instead of being the one
with the nearest projection on �C . Half-Y6-graphs can be defined as we did for
half-Θ6-graphs considering only 3 of the six cones. Unfortunately, half-Y6-graphs
do not have as nice structural properties. For instance, a half-Y6-graph is not a
plane graph in general.

Algorithms that compute Θ-graphs, geodesic embeddings and TD-Delaunay
triangulations have been respectively proposed in [28,15,8]. It appears that the
three proposed algorithms have the same time complexity of O(n log n) and
are all essentially based on the “plane-sweep” algorithm. Hence, our connections
between these objects do not give immediately a new insight from the algorithmic
point of view.

Finally, the results in this paper have been recently used to construct a plane
spanner of maximum degree 6 and stretch factor 6 of any Euclidean graph [1].
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Abstract. We consider broadcasting in random power law graphs by

using a simple modification of the so-called random phone call model in-

troduced by Karp, Schindelhauer, Shenker, and Vöcking (FOCS 2000).

In the phone call model, every time step each node calls on a randomly

chosen neighbor, and establishes a communication channel to this node.

The communication channels can then be used to transmit messages in

both directions. We show that if we allow every node to choose ρ neigh-
bors instead of one, where ρ is some constant, then the average number of

message transmissions per node decreases exponentially in certain ran-

dom power law graphs. Formally, we present an algorithm that completes

broadcasting in time O(log n) and uses O(n log log n) transmissions per

message, with probability 1−n−Ω(1), where n is the size of the underly-

ing network.

Keywords: Broadcasting, Power Law Graphs.

1 Introduction

Information dissemination is one of the fundamental tasks in distributed com-
puting. In this paper we consider the broadcasting problem, where a piece of
information placed initially on a certain node in a network has to be dissem-
inated to all nodes by using local communication only. Efficient broadcasting
algorithms are very useful in various fields such as computer science, statistical
physics, and sociology. As an example, consider the maintenance of replicated
databases, in which every update on some data item has to be propagated to all
nodes of the network deployed by the database. Another well-known application
arises in the analysis of epidemic diseases. There, the question of interest is how
fast the disease infects the whole population where contacts between individ-
uals are modeled by the edges of the corresponding social network. However,
in contrast to the broadcasting problem considered in this paper, spreaders are
only active in a certain time window, and one is interested whether on networks
modeling social contacts an epidemic outbreak occurs.
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There is a huge amount of work focusing on the (experimental and theoretical)
analysis of the broadcasting problem in different communication models. In this
paper we only consider randomized broadcasting on so called power law graphs.
In e.g. [17] it has been observed that many real world networks such as the
Internet, World-Wide-Web, as well as various social and biological networks
have a so called power law degree distribution, i.e., the fraction of vertices with
degree d is proportional to d−α, where α is a constant.

A huge amount of work concentrates on the design of random graph models
which are well suited to describe the power law property observed in the net-
works mentioned above. Probably the most simple model is a generalization of
the well-known Erdős-Rényi graphs. For a sequence d = (d1, . . . , dn) let G(d) be
the graph in which an edge is drawn between vertices i and j with probability
didj/

∑n
k=1 dk, independently. If d has a power law distribution, then the result-

ing graph is a power law graph, whp1. However, if the smallest degree is o(log n)
(which is the case in most real world networks), then the graphs obtained by
this model are not connected.

Another simple model generalizes the so called pairing or configuration model,
which is often used to generate random regular graphs of small degree [17]. In
this model, we start with an empty graph consisting of n nodes, where node
i has di stubs. The graph is constructed in

∑n
k=1 dk/2 steps, and in each step

we choose two unmatched stubs independently and uniformly at random. Then,
these stubs are matched with each other, and an edge is created between the
corresponding vertices.

In this paper we consider random graphs with power law degree distribution,
in which the smallest degree is at least δ(log log n)2 with δ being a large constant.
Using the techniques of this paper, our results can be generalized to the case
when dmin ≥ δ log log n. However, the proofs would require an elaborate case
analysis and therefore we omit this case in the conference version of our paper.

We should mention that the real world networks mentioned above also have
some other properties which are not fulfilled by random graphs. Nevertheless,
overlays for peer-to-peer (P2P) networks are often constructed by using certain
random graphs, e.g., Gnutella [1] or JXTA of Sun Microsystems [3], and it is
worth noting that Gnutella obeys the power law degree distribution as pointed
out in, e.g., [15]. Clearly, the broadcasting problem is one of the most funda-
mental questions in P2P systems.

In this paper, we are interested in the runtime and communication overhead
produced by randomized broadcasting. One of the most simple and efficient
communication models is the random phone call model introduced by Karp,
Schindelhauer, Shenker, and Vöcking [16]. Given a graph, in each step every node
opens a communication channel to a randomly chosen neighbor. The channels
can then be used for bi-directional communication in this step, i.e, each node is
able to send messages over every open channel incident to that node. At the end
of each step, the open channels are closed. The phone call model is especially
of interest in cases when plenty of different messages have to be spread in each

1 With high probability or whp means with probability 1− n−Ω(1).
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communication step. Then, the nodes establish communication channels in each
step anyway, and they decide which messages to transmit over the open channels,
without knowing anything about the nodes at the other end of the channel. Thus,
the cost of establishing communication channels amortizes over all transmissions,
and we can consider the cost of each message separately (cf. [16]).

In the phone call model we distinguish between push and pull transmissions. If
the message is forwarded over an open channel from the node which established
the communication channel, then the transmission is called push. If the message
is sent from the node to which the channel was opened, then we call it pull
transmission. We consider randomized broadcasting protocols which can easily
deal with certain kinds of edge/node failures in the network’s topology [8]. We
show that a simple modification of the random phone call model introduced in
[9] leads to logarithmic runtime and (nearly) optimal communication overhead
in the graphs described above.

1.1 Related Work

There is a huge amount of work considering epidemic type (broadcasting) algo-
rithms on proper graph models for real world networks. Due to space constraints,
we can only describe here the results which focus on the analytical study of
push&pull algorithms.

Runtime. Most papers on randomized broadcasting analyze the runtime of algo-
rithms where only push transmissions are allowed. For complete graphs of size
n, Frieze and Grimmett [13] present an algorithm that broadcasts a message in
time log2(n) + ln(n) + o(log n) with a probability of 1− o(1). Later, Pittel [18]
shows that (with probability 1 − o(1)) it is possible to broadcast a message in
time log2(n) + ln(n) + f(n), where f(n) can be any slow growing function. In
[12], Feige et al. determine asymptotically optimal upper bounds for the runtime
of the push algorithm on G(n, p) graphs (i.e., traditional Erdös-Rényi random
graphs [10,11]), bounded degree graphs, and Hypercubes. Boyd et al. consider
the combined push&pull model in arbitrary graphs of size n, and show that the
running time is asymptotically bounded by the mixing time of a corresponding
Markov chain plus an O(log n) value [4]. Sauerwald shows that the same result
also holds if only the push algorithm is considered [19].

Number of transmissions. Karp et al. [16] note that in complete graphs the pull
approach is inferior to the push approach, until roughly n/2 nodes receive the
message, and then the pull approach becomes superior. They present a push&pull
algorithm, together with a termination mechanism, which reduces the number
of total transmissions to O(n log log n) (w.h.p.), and show that this result is
asymptotically optimal. They also consider communication failures and analyse
the performance of their method in cases where the connections are established
using arbitrary probability distributions.

For sparser graphs it is not possible to get O(n log log n) message transmissions
together with a broadcast time of O(log n) in the standard phone call model.
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In [7] Elsässer considers random G(n, p) graphs, and shows a lower bound of
Ω(n log n/ log(pn)) message transmissions for broadcast algorithms with a run-
time of O(log n). On the positive side, for p > log2 n/n he develops an algorithm
that broadcasts in time O(log n) using O(n · (log log n + log n/ log(pn))) trans-
missions, w.h.p. In [6] he generalizes these results to random power law graphs
in which the smallest degree is bounded by Ω(log3 n).

In [9] Elsässer and Sauerwald consider a simple modification of the standard
phone call model. In this model every node is allowed to open a channel to four
different randomly chosen neighbors in every time step. For G(n, p) graphs with
p > log2 n/n, they show that this modification results in a reduction of the
number of message transmissions down to O(n log log n). In [2] Berenbrink et
al. show similar results for random d-regular graphs with d = O(log n).

1.2 Our Results

In this paper we consider a simple modification of the random phone call model
on random power law graphs. Our graphs are chosen uniformly at random from
the space of all (simple) graphs with power law degree distribution, where the
smallest degree is t ≥ δ(log log n)2 with δ being a constant. Formally, if t denotes
the smallest degree, then the number of nodes with degree d > t is proportional
to (d − t)−α, where α > 3. Additionally, we assume that the largest degree in
the network is n1/α + t. That is, every node which is assigned some degree larger
than n1/α + t (according to the distribution above) will have degree n1/α + t.

In each step, every node is allowed to call on ρ different neighbors chosen
uniformly at random, and to establish communication channels to these nodes.
The channels can be used for bi-directional communication, i.e., each node is
allowed to send messages over the channels incident to it. At the end of each step,
the channels are closed. We show that in this communication model there is an
algorithm which completes broadcasting in time O(log n) by using O(n log log n)
transmissions of the message, whp. That is, by allowing each node to call on a
constant number of different neighbors instead of one, the average number of
message transmissions decreases exponentially compared to the random phone
call model (cf. [6]).

To obtain the result described above, we adapt the techniques of [9] and [2] to
our graphs. However, in the case of regular graphs, as considered in the papers
above, one could use the fact that every node has the same behavior w.r.t. the
broadcasting process in the underlying graph. In the case of power law graphs,
the nodes have different degrees, and we cannot rely on similarities between
nodes as in the regular case. Therefore, the main difficulty in our proofs is to
cope with the different degrees during the execution of the broadcasting process.

2 Model and Annotation

In this section we describe our model, give an overview about the resulting net-
work structure and introduce our broadcasting algorithm. The network contains
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n nodes and every node v ∈ V chooses his degree, defined as deg(v), inde-
pendently. The probability for a node degree d > t is proportional to 1

[d−t]α ,
with α > 3, t ≥ δ(log log n)2, and δ a large constant. In our proofs we assume
that t = logo(1) n, however, our results also hold in the more general case when
t = no(1). If a node is assigned some node degree d > n1/α + t according to the
distribution above, then the degree of this node is set to n1/α +t. Every node has
an estimation of n which is accurate to within a constant factor and all nodes
have access to a global clock and work synchronously.

Before we state the results of this section, we need a few definitions. Let the
set (or group) Gj contain all nodes with degree 2jt to 2j+1t−1, where j ≥ 0. We
assume for simplicity that n1/α + t can be written as 2kt for some k, and the last
group only contains the nodes of degree n1/α + t. Therefore, in total we obtain
less than log n different groups. The highest degree in a set Gj is defined by
deg(Gj). As we will see in the following subsections, it holds that the higher the
node degree (of the nodes contained in a specific group), the lower the expected
group size. We distinguish between the set of already informed nodes I(i) before
a specific round (or step) i, and its counterpart, the set of uninformed nodes H(i).
Furthermore, I+(i) is the set of nodes, which become informed in step i− 1 for
the first time. IGk

(i) is the set of informed nodes of Gk before step i and HGk
(i)

is the corresponding set of uninformed nodes. The set of uninformed nodes with
at least l neighbors in H(i) is given by Hl(i) := {v ∈ H(i) | |ΓH(i)| ≥ l} where
ΓH(v) := {u ∈ H(i) | (v, u) ∈ E}.

In the following, we do not distinguish between a set and its size in our
notations. That is, we always write S instead of |S| in our analysis.

2.1 The Network Structure

Now we are going to provide some information about the resulting network
structure. Due to space limitations some proofs are omitted.

Lemma 1. The size of group Gj , j ≥ 1, is O
(

n
(2j+1t)α−1 + log n

)
, whp.

Next, we obtain an estimation on the number of nodes with degree O(t).

Lemma 2. The number of nodes with degree smaller than 2t is n(1−o(1)), whp.

This lemma implies that the vast majority of all nodes are contained in the first
group and have the minimum node degree up to a constant factor. We now state
a lemma, which gives us an estimation on the average node degree of all nodes
with degree higher then 2t.

Lemma 3. Let deg(Gk) be the maximum node degree within Gk. Then, the av-
erage node degree among the nodes with degree ≥ 2t is bounded by t2, whp.

At this point we have an estimation of the resulting network structure. However,
in our analysis we will consider the so called pairing (or configuration) model
to construct a random graph with a certain degree distribution [17]. Thus, our
results depend basically on random pairing decisions according to that model,
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which may lead to a multigraph. Our goal is to provide an efficient broadcasting
algorithm for realistic networks, which are usually simple. Therefore, we will now
state the probability for which a graph generated by the pairing model remains
simple. Although the probability to achieve a simple graph may be small, it
will be large enough to conclude that the results of this paper hold with high
probability.

Theorem 1. Let G be a random graph constructed according to the pairing
model, and let the node degree follow a power law distribution with exponent
α > 3. Furthermore, let n denote the size of the graph and let t be the smallest
degree. Then, G is a simple graph with probability 1

eO(t2) .

Proof. Durrett [5, Theorem 3.1.2] showed that the number of self-loops and
multiple edges are asymptotically independent Poisson random variables, which
implies the statement of the theorem. ��

2.2 The Broadcasting Model

The communication model used in this paper is based on the random phone call
model introduced by Karp et al. [16]. In the phone call model, each node calls
in every step on a neighbor chosen uniformly at random, and opens a commu-
nication channel to this node. Then, every channel can be used for bidirectional
communication in this step. In our model, in each step every node calls on ρ
different neighbors, and establishes communication channels to these nodes. If a
channel is established between a pair of nodes, both of them are allowed to send
messages over the channel. Then, the nodes have to decide which of the estab-
lished channels they will use, and which messages they will send over the channel.
We assume that the size of the messages exchange between a pair of nodes is not
limited. However, if a specific message is really transmitted over an open chan-
nel, only then it will be counted in the communication overhead produced by
that message. That is, establishing a communication channel is not taken into
consideration when the total number of message transmissions are considered
(cf. Introduction). The algorithm presented in this paper is distributed, i.e., the
nodes use only local knowledge to make the decisions whether to send a message
over an open channel or not. This local information can be, e.g., the age and
number of broadcast messages, the time they arrived, or their own identifier.
The algorithm we use is a simple modification of so called address-oblivious al-
gorithms. An algorithm is called address-oblivious if decisions do not depend on
the ID’s of the nodes to which they were connected via an open channel in some
previous step. That is, nodes are not allowed to remember with which nodes
they communicated in the steps before (see [16]). In the following, we define
some procedures which are frequently used by the nodes of the graph.

open choose ρ different neighbors, uniformly at random, and establish commu-
nication channels to them. These channels are called outgoing in the follow-
ing. The procedure also establishes communication channels with all nodes
which call on this node. These channels are called incoming.
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push(M) send message M over all outgoing channels.
pull(M) send message M over all incoming channels.
receive receive and store all messages coming over open channels (if any).
close close all channels opened in the current round.

In each step i, any node v ∈ V executes the procedure given in Algorithm
1 below. The algorithm will be run for every message. The nodes decide if a
message has to be transmitted via push or pull, depending on the time the
message has been generated. When several messages are to be considered, the
node combines all messages which should be transmitted via push (pull) to a
single message and forwards it over all open outgoing (incoming) channels. In
the following we state the algorithm w.l.o.g. for one fixed message M and we
assume that the message is created in time step 0. Hence, the age of the message
is the same as the current time step i.

Algorithm 1 (i : step)

1 open
2 i f i ≤ �β log n� then {Phase 1}
3 i f the message i s c r ea ted or r e c e i v ed f o r the f i r s t

time in the prev ious s t ep then push (M) over a l l
(ρ) outgo ing channe ls

4 i f �β log n�+ 1 ≤ i ≤ �β(log n+ log log n)� then {Phase 2}
5 i f the node i s informed ( has M) then push (M) over

a l l (ρ) outgo ing channe l s
6 i f �β(log n+ log log n)� ≤ i ≤ �β log n+ 2β log log n� then {Phase 3}
7 i f the node i s informed then pu l l (M) over a l l

incoming channe l s
8 r e c e i v e
9 c l o s e

In Algorithm 1, β is a large constant. The algorithm has 3 different phases, and
each of these phases consists of several steps. In the first phase every informed
node transmits the message exactly ρ times in a dedicated step. In the second
phase the informed nodes perform push transmissions in all steps of this phase.
In the third phase the informed nodes perform pull transmissions, i.e., send the
message over all incoming channels in every step of this phase.

3 Analysis of the Algorithm

In this section, we analyze the behavior of Algorithm 1. For our analysis, we
start with n nodes, and assign each node a certain number of stubs according to
the power law distribution (as described in the introduction). At the beginning,
the stubs are not paired with each other. In the first step (of the broadcasing
algorithm), we consider ρ different stubs of the node on which the message is
generated, and pair these stubs with unpaird stubs from the graph, according to



286 R. Elsässer and A. Ogierman

the pairing model. To obtain a proper pairing, we divide the step into ρ substeps.
In substep j ≤ ρ, we choose (uniformly at random) a stub from the set of stubs of
the first informed node, except the stubs chosen in substeps 1, . . . , j−1, and pair
it with some unpaired stub from the graph. In some step i of the broadcasting
algorithm, let Ṽ (i) = {1, . . . , k} be the set of nodes which are required to choose
ρ different neighbors, and open communication channels to these nodes. The
step is subdivided into ρ ·k substeps. In substep j node �(j−1)/ρ�+1 chooses a
stub, uniformly at random, from the set of its stubs not considered so far in this
step. If this stub is already paired, then it executes the procedure described in
Algorithm 1 over the corresponding edge. Otherwise, it pairs this stub with an
unpaired stub from the graph, and then it executes the procedure described in
Algorithm 1. The process described above implies that in every step each node
may generate up to ρ new edges in the network.

The analysis will start with one node generating the message. In Phase 1 the
message is spread via push transmissions, and we obtain a wide fundament for
the remaining process.

Lemma 4. (Phase 1.) Let G be a random network with n nodes and let the node
degree follow a power law distribution with exponent α > 3, where the smallest
degree t ≥ δ(log log n)2. Then, Algorithm 1 informs at least n

2 nodes in O(log n)
rounds, whp., by using O(n log log n) message transmissions.

Due to space limitations and the similarity of this proof to the ones presented in
[2], the proof is omitted. Unfortunately the same proof techniques as in Lemma
4 will not work to obtain H(i) ≤ n

logO(1) n
. The next lemma points out that at

least a constant fraction of the uninformed nodes will have at least a constant
fraction of their connections in the informed group. Additionally we modify the
spreading process. Obviously, a node with a high degree has a higher probability
to get informed by push transmissions than a node with a low degree. This
implies that the nodes in Gk will become faster informed with rising k. If now
for a group Gk it holds that |HGk

(i)| < H(i)
n · Gk in a step i, then we choose

some nodes from this group and let them be uninformed, so that afterwards we
obtain |HGk

(i)| = H(i)
n ·Gk.

Lemma 5. (Phase 2.) Let G be a random graph with n nodes and let the
node degree follow the power law distribution with exponent α > 3. Further-
more, let the smallest degree t be at least δ(log log n)2. Then, within additional
O(log log n) rounds there are at most n

log9+Ω(1) n
nodes uninformed, whp. More-

over, the number of message transmissions produced by the algorithm in these
steps is O(n log log n).

The proof is omitted due to space limitations. Until this point we only used push
transmissions to spread the message. This implies that according to the process
described at the beginning of this section, the stubs of the uninformed nodes are
not paired yet. The next lemma considers the structure of the uninformed nodes
at step s, which denotes the first time step right after Phase 2. This structural
information will be used in Theorem 2.
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Lemma 6. Let G be a random network with n nodes and let the node degree
follow the power law distribution with exponent α > 3, where t ≥ δ(log log n)2.
Furthermore, let the number of uninformed nodes before step s be n

logc n , where

c = 9+Θ(1). Then, it holds that Ω
(

H(s)t
logc n

)
= H1(s) = O

(
H(s)

logq−1 n

)
and Hρ(s+

1) = O
(

H(s)
(

1
logc−2 n

)ρ/2
)

, whp., where 2q < c.

Proof. Now we make an additional grouping of the nodes to achieve the desired
result. There will be three groups. The first group is formed by nodes of degree
between t and logq n, where 2q < c is a constant to be specified later. The second
group contains the nodes of degree at least logq n up to logc+1 n. If v is such a
node, then log n

deg(v) > H(s)
n . The last group is the set of nodes having degree at

least logc+1 n. If v is such a node, then log n
deg(v) < H(s)

n . The groups are called
H(1)(s), H(2)(s), and H(3)(s), respectively. This grouping leads to three cases.

In the first group we know that the nodes are incident to less than δ log n
edges with both ends in H(s), with probability at least 1−n−2. These edges are
called inner edges in the following. Thus, with high probability it holds that

H1(s) ≤ H(s)

[
1−

(
1− H(s)δ log n

nt(1− o(1))

)logq n
]

+ H(2)(s) + H(3)(s)

≤ H(s)
[
1− e1/(logc−1−q n t)

]
+ H(2)(s) + H(3)(s)

≤ H(s)
logc−1−q n

+ H(2)(s) + H(3)(s).

In order to have an upper bound on H1(s), we need an estimate on H(2)(s) +
H(3)(s). Since the number of uninformed nodes in some group Gj is proportional

to H(s)/n, we obtain that H(2)(s) + H(3)(s) = O
(

H(s)
(logq n)α−1

)
. Thus, for a

properly chosen q with 2q < c and q(α − 1) > c, we obtain the desired upper
bound on H1(s). On the other hand, the lower bound is given by

H1(s) ≥ H(s)

[
1−

(
1− H(s)t

nt

)t
]
≥ H(s)

[
1− et/ logc n

]
≥ H(s)t

logc n
.

For the second part we consider the same grouping. We know that in H(3)(s),
each node is incident to at most H1(s) log n/nt ≤ H(s)/n inner edges. In H(2)(s),
the nodes are incident to at most log n inner edges. In H(1)(s), a node is inci-

dent to ρ inner edges with probability at most
(

logq n
ρ

)(
H1(s) log n
nt(1−o(1))

)ρ

. Thus, the
expected number of nodes in Hρ(s + 1) is bounded by

H(3)
(s)

(
H(s) log n

n

)ρ

+ H(2)
(s) · log−(q−1)ρ n + H(1)

(s)

(
logq n

ρ

)(
H1(s) log n

nt(1− o(1))

)ρ

.

Applying standard Martingale techniques, we obtain the second statement. ��
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)(iH)(1 iH)(iH)(iI

Fig. 1. Layout of the structure of the uninformed nodes at step i

Now we know how the structure of the uninformed nodes will be in step s + 1
and we are ready to analyze the remaining part.

Theorem 2. Let G be a random network with n nodes and let the node degree
follow the power law distribution with exponent α > 3. Furthermore, let the
smallest degree t be at least δ(log log n)2, where δ is a (large) constant. Then,
Algorithm 1 informs all nodes of G within O(log n) steps by using O(n log log n)
message transmissions, whp.

Proof. By Lemma 4, Algorithm 1 informs at least n
2 different nodes in O(log n)

rounds by using O(n log log n) message transmissions. After a few additional
rounds and message transmissions we obtain H(s) ≤ n

log9+Ω(1) n
(Lemma 5). The

current situation is visualized in Figure 1. Here we have to keep in mind that
the vast majority of nodes in H(s) only has connections to nodes in I(s). Thus,
there is only a very small number of nodes in H(s), which have at least one
inner connection to some node of H(s). Now, most these nodes will also become
informed, since a node must have at least ρ stubs paired with nodes in H(s)
to have a chance to remain uninformed. With this in mind we continue our
analysis. We will show that H(s+i+2)

H(s+i+1) = o
(

H(s+i+1)2

H(s+i)2

)
for i ≥ 0 by induction,

unless H(i + 1) ≤ logq n for a (large) constant q.
For the further analysis we use a specific grouping. For each i, the nodes are

divided into two sets H ′(s + i) =
{
v ∈ H(s + i) | 1

deg(v) < H(s+i)
n

}
and H ′′(s +

i) =
{

v ∈ H(s + i) | 1
deg(v) ≥

H(s+i)
n

}
. Then, the following claim holds.

Claim. Each node of H ′′(s + i) is incident to at most O(log n) inner edges,
whp., and each node of H ′(s+ i) has at most a fraction of O

(
H(s+i) log n

n

)
of its

neighbors in H(s + i), whp.

This claim follows from a simple application of standard Chernoff bounds. We
omit the proof due to space limitations. Then, for i = 0, we have

H(s + 2) ≤ O
(

H ′(s + 1)
(

H(s + 1) log n

n

)ρ)
+ H ′′(s + 1)

(
H(s + 1) logn

H1(s)

)ρ
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which equals o

((
H(s+1)

H(s)

)2
)

, for ρ large enough. Now we estimate the expected

number of nodes in H1(s + i). Let c be defined as in Lemma 6. Then,

E[H1(s + i)] ≥ H ′′(s + i)
H(s + i)

O(log n) ·H1(s + i− 1)

≥ Ω

(
H(s + i)

H(s + i) logc−1 n

H(s + i− 1)

)
.

Now we derive a similar upper bound on E[H1(s+i)] and obtain that E[H1(s+i)]
equalsO

(
H ′′(s + i)H(s+i) log2 n

H1(s+i−1)

)
+H ′(s+i). However, since any node v ∈ H ′(s+

i) has degree at least n/H(s + i), we obtain

E[H1(s + i)] = O
(
H(s + i)H(s+i) log2 n

H1(s+i−1)

)
= O

(
H(s + i)Hρ(s+i−1) log2 n

H1(s+i−1)

)
.

By using Martingale techniques, we obtain that H1(s+i) = E[H1(s+i)](1±o(1)),
whp. Now, Hρ(s + i + 1) denotes here the set of nodes in H ′′(s + i + 1), which
are incident to at least ρ inner edges. Then,

E[Hρ(s + i + 1)] ≤ H(s + i + 1)
(

H(s + i + 1)O(log n)
H1(s + i)

)ρ

(IH)

≤ H(s + i + 1)
(

H(s + i)
H(s + i− 1)

O(1)
logc−2 n (1− o(1))

)ρ

≤ H(s + i + 1)o
(

H(s + i + 1)2

H(s + i)2

)
,

whenever ρ ≥ 4. As before, we may conclude that Hρ(s+ i+1) equals E[Hρ(s+
i + 1)](1± o(1)) with high probability, and the invariant follows.

Now we show that as soon as |H(j)| ≤ logq n for some j, then all nodes
become informed within O(log log n) additional rounds, with high probability.
For this, we are going to prove that a constant fraction of the uninformed nodes
has less than ρ inner neighbors with a very high probability.

We assume that each node in H(j) has degree n1/α. We consider a random
subset S of size |H(j)|. A node has at least ρ neighbors in S with probability

p =
(
n1/α

ρ

) (
logq n n1/α

Θ(nt)

)ρ

≤ O
((

logq n
n1−2/αt

)ρ)
≤︸︷︷︸

with ρ large enough

1
n100 .

Now, let A be defined as the event that more then 7
8S nodes in S have more then

ρ inner connections. Then it follows that

Pr(A) =
u∑

k= 7
8 u

(
u
k

)
pk(1− p)u−k ≤

(
p

7/8

) 7
8 u (

1−p
1/8

) 1
8

u < 1
n50u .
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The first inequality follows by [14]. Since this probability only holds for a random
set S, we need to adapt this to our situation. We know that the set S has to
be chosen very clumsy in order to let event A happen. However, since there are(

n
S

)
different sets of size S and

(
n
S

)
1

n50S ≤ 1
n25S , there is no set S in which event

A occurs with probability 1− n−25. ��
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Abstract. Motivated by questions in computer vision and sensor networks, Alpert
et al. [3] introduced the following definitions. Given a graph G, an obstacle repre-
sentation of G is a set of points in the plane representing the vertices of G, together
with a set of connected obstacles such that two vertices of G are joined by an edge
if an only if the corresponding points can be connected by a segment which avoids
all obstacles. The obstacle number of G is the minimum number of obstacles in
an obstacle representation of G. It was shown in [3] that there exist graphs of n
vertices with obstacle number at least Ω(

√
logn). We use extremal graph theo-

retic tools to show that (1) there exist graphs of n vertices with obstacle number at
least Ω(n/log2 n), and (2) the total number of graphs on n vertices with bounded
obstacle number is at most 2o(n2). Better results are proved if we are allowed to
use only convex obstacles or polygonal obstacles with a small number of sides.

1 Introduction

Consider a set P of points in the plane and a set of closed polygonal obstacles whose
vertices together with the points in P are in general position, that is, no three of them
are on a line. The corresponding visibility graph has P as its vertex set, two points
p,q ∈ P being connected by an edge if and only if the segment pq does not meet any
of the obstacles. Visibility graphs are extensively studied and used in computational
geometry, robot motion planning, computer vision, sensor networks, etc.; see [5], [15],
[20], [21], [31].

Recently, Alpert, Koch, and Laison [3] introduced an interesting new parameter of
graphs, closely related to visibility graphs. Given a graph G, we say that a set of points
and a set of polygonal obstacles as above constitute an obstacle representation of G, if
the corresponding visibility graph is isomorphic to G. A representation with h obstacles
is also called an h-obstacle representation. The smallest number of obstacles in an obsta-
cle representation of G is called the obstacle number of G and is denoted by obs(G). If

	 Research supported by NSA grant 47149-00 01, NSF grant CCF-08-30272, and grants from
BSF, OTKA, SNF.
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we are allowed to use only convex obstacles, then the corresponding parameter obsc(G)
is called the convex obstacle number of G. Of course, we have obs(G) ≤ obsc(G) for
every G, but the two parameters can be very far apart.

A special instance of the obstacle problem has received a lot of attention, due to
its connection to the Szemerédi-Trotter theorem on incidences between points and
lines [28], [27], and other classical problems in incidence geometry [23]. It is an ex-
citing open problem to decide whether the obstacle number of Kn, the empty graph
on n vertices, is O(n) if the obstacles must be points. The best known upper bound is
n2O(

√
logn); see Pach [22], Dumitrescu et al. [7], Matoušek [18], and Aloupis et al. [2].

Alpert et al. [3] constructed a bipartite graph G1 and a split graph (a graph consisting
of a clique and an independent set with possible edges between them) G2 with obstacle
number at least two. In Section 4, we complement their examples with a third one:

Theorem 1. There is a graph G3 that consists of two cliques with edges between them
and satisfies obs(G3)≥ 2.

Consequently, no graph of obstacle number one has an induced subgraph isomorphic to
G1, G2, or G3. The choice of these forbidden graphs may appear somewhat capricious
at first glance. In Section 2, we will see that this set of graphs allows us to utilize
some extremal graph theoretic tools developed by Erdős, Kleitman, Rothschild, Frankl,
Rödl, Prömel, Steger, Bollobás, Thomason and others. They yield that the number of
graphs with n vertices and bounded obstacle number is very small, compared to the total

number of labeled graphs, which is 2(n
2). More precisely, we obtain

Corollary 1. For any fixed positive integer h, the number of graphs on n (labeled)
vertices with obstacle number at most h is at most 2o(n2).

Alpert et al. [3] raised the question whether there exist bipartite graphs with arbitrarily
large obstacle number? Since the number of bipartite graphs with n labeled vertices is
Ω(2n2/4), it follows directly from Corollary 1 that the answer is yes.

Corollary 2. For any fixed positive integer h, there exist bipartite graphs with obstacle
number at least h.

For every sufficiently large n, Alpert et al. constructed a graph with n vertices with
obstacle number at least Ω

(√
logn

)
. We also show in Section 2 how Theorem 1, com-

bined with a result by Erdős and Hajnal [8], implies the existence of graphs with much
larger obstacle numbers.

Corollary 3. For every ε > 0, there exists an integer n0 = n0(ε) such that for all n≥ n0,
there are graphs G on n vertices such that their obstacle numbers satisfy

obs(G)≥Ω
(
n1−ε) .

It turns out that for the proof of Corollary 3, in the place of Theorem 1 we can use
the much simpler fact that there are graphs with obstacle number greater than one. In
Section 3, we improve on the last two corollaries, using some estimates on the number
of different order types of n points in the Euclidean plane, discovered by Goodman and
Pollack [16], [17] (see also Alon [1]). We establish the following results.
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Theorem 2. For any fixed positive integer h, the number of graphs on n (labeled) ver-
tices with obstacle number at most h is at most

2O(hn log2 n).

Theorem 3. For every n, there exist graphs G on n vertices with obstacle numbers

obs(G)≥Ω
(
n/log2 n

)
.

Note that Theorem 3 directly follows from Theorem 2. Indeed, since the total number
of (labeled) graphs with n vertices is 2Ω(n2), as long as 2O(hn log2 n) is smaller than this
quantity, there is a graph with obstacle number larger than h.

We prove a slightly better bound for convex obstacle numbers.

Theorem 4. For every n, there exist graphs G on n vertices with convex obstacle
numbers

obsc(G)≥Ω (n/logn) .

If we only allow segment obstacles, we get an even better bound. Following Alpert et
al., we define the segment obstacle number obss(G) of a graph G as the minimal number
of obstacles in an obstacle representation of G, in which each obstacle is a straight-line
segment.

Theorem 5. For every n, there exist graphs G on n vertices with segment obstacle
numbers

obss(G)≥Ω
(
n2/logn

)
.

In Section 4, we prove Theorem 1.
In the last section, we make some concluding remarks. In particular, we answer a

question of Alpert et al. [3] by showing that for every positive integer h, there exists
a graph with obstacle number precisely h. We also discuss possible extensions of the
above notions to higher dimensions.

Given any placement (embedding) of the vertices of G in general position in the
plane, a drawing of G consists of the image of the embedding and the set of open
segments connecting all pairs of points that correspond to the edges of G. If there is
no danger of confusion, we make no notational difference between the vertices of G
and the corresponding points, and between the pairs uv and the corresponding open
segments. The complement of the set of all points that correspond to a vertex or belong
to at least one edge of G falls into connected components. These components are called
the faces of the drawing. Notice that if G has an obstacle representation with a particular
placement of its vertex set, then

(1) each obstacle must lie entirely in one face of the drawing, and
(2) each non-edge of G must be blocked by at least one of the obstacles.

2 Hereditary Properties, Universal Graphs, and Applications

The aim of this section is to review some results in extremal graph theory and then to
apply them to establish Corollaries 1 and 3.
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In 1985, Erdős, Kleitman, and Rothschild [11] proved that, as n tends to infinity,
the number of all K
-free graphs on n vertices is asymptotically equal to the number
of (
− 1)-partite graphs with n vertices with as equal vertex classes as possible. This
result was soon generalized to graphs that do not contain some fixed (not necessarily
induced) subgraph H [10].

Analogous questions based on the induced subgraph relation were investigated in
[24], [26], and [25]. If a graph G does not contain an induced subgraph isomorphic
to a fixed graph H, then the same is true for every induced subgraph of G. Therefore,
this property is called hereditary. In order to formulate an Erdős-Kleitman-Rothschild
type theorem valid for any hereditary graph property, we need some definitions and
notations.

In notation, we do not distinguish between a graph property P and the set of all
graphs that satisfy this property. In the same spirit, the set of all graphs on n labeled
vertices, which satisfy property P , is denoted by Pn.

A graph is (r,s)-colorable if its vertex set can be partitioned into r blocks out of
which s are cliques and every remaining block is an independent set. Let C (r,s) denote
the set of all (r,s)-colorable graphs. A graph property which holds for all graphs is
called trivial. Given any nontrivial hereditary graph property P , define its coloring
number as

r(P) = max{r | ∃s : C (r,s)⊆P}.

Since r(P) is bounded from above by the number of vertices of any graph that does
not satisfy P , the parameter r(P) exists and it is at least 1.

Theorem 6 (Bollobás, Thomason [6]). For any nontrivial hereditary graph property
P , we have

|Pn|= 2
(

1− 1
r(P) +o(1)

)
(n

2).

Notice that if for some value r there is no s such that C (r,s)⊆P , then for every r′ > r
there is no s for which C (r′,s) ⊆P . If there are (2,0)-colorable, (2,1)-colorable, and
(2,2)-colorable graphs none of which is in P , then by the preceding observations,
r(P) = 1. In that case, by Theorem 6, we have |Pn|= 2o(n2).

The familiar term for a (2,0)-colorable graph is bipartite. A (2,1)-colorable graph
consists of a clique and an independent set, possibly with edges running between them;
such a graph is often called a split graph [13], [30]. A (2,2)-colorable graph consists
of two cliques, possibly with edges running between them—its complement is bipartite.

Proof of Corollary 1. We apply Theorem 6 to the hereditary property that a graph admits
a 1-obstacle representation. The graphs G1, G2, and G3 defined in the Introduction are
(2,0)-, (2,1)-, and (2,2)-colorable. Thus, in view of the fact that, according to Alpert
et al. and Theorem 1, none of them admits a 1-obstacle representation, we can conclude
that the number of all graphs on n (labeled) vertices with obstacle number at most 1 is
2o(n2). In other words, Corollary 1 holds for h = 1.

For every fixed h > 1, consider a graph G on the vertex set [n], which permits an h-
obstacle representation on an n-element point set P in general position, with obstacles
O1, . . . ,Oh. Obviously, E(G), the edge set of G, can be obtained as ∩h

i=1E(Gi), for
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suitable graphs Gi with obstacle number 1. Indeed, we can choose Gi to be the visibility
graph of P in the presence of a single obstacle Oi (i = 1, . . . ,h). Therefore, the total
number of labeled graphs on [n] with obstacle number h can be bounded from above
by the h-th power of the number of graphs with obstacle number 1. This completes the
proof of Corollary 1. ��

Let G be a graph on n vertices and let k be a positive integer. We say that G is k-
universal if it contains every graph on k vertices as an induced subgraph. Let hom(G)
denote the maximum of the size of the largest independent set of vertices and the size
of the largest complete subgraph in G. According to the quantitative form of Ramsey’s
theorem, due to Erdős and Szekeres [12], hom(G) is at least roughly 1

2 logn. (In the
sequel, all logarithms are taken modulo 2.)

In order to prove Corollary 3, we need the following result, which shows that if
G avoids at least one induced subgraph with k vertices, for some k � logn, then the
Erdős-Szekeres bound on hom(G) can be substantially improved.

Theorem 7 (Erdős, Hajnal [8]). For any fixed positive integer t, there is an n0 = n0(t)
with the following property. Given any graph G on n > n0 vertices and any integer
k < 2c

√
logn/t , either G is t-universal or we have hom(G)≥ k. (Here c > 0 is a suitable

constant.)

Proof of Corollary 3. For the sake of clarity of the presentation, we systematically omit
all floor and ceiling functions wherever they are not essential. Let H be a graph of t
vertices that does not admit a 1-obstacle representation. Fix any 0 < ε < 1, and choose
an integer N ≥ n0, that satisfies the inequality

2c
√

ε logN/t > 2logN, (1)

where c,n0 are constants that appear in the previous theorem.
For any n≥ N, we set m = n1−ε . According to a theorem of Erdős [9], there exists a

graph G with n vertices such that

hom(G) < 2logn < 2c
√

log(n/m)/t .

Consider an obstacle representation of G with the smallest number h of obstacles. Sup-
pose without loss of generality that in our coordinate system all points of G have dif-
ferent x-coordinates. By vertical lines, partition the plane into m strips, each containing
n/m points. Let Gi denote the subgraph of G induced by the vertices lying in the i-th
strip (1≤ i≤ m).

Obviously, we have

hom(Gi)≤ hom(G) < 2c
√

log(n/m)/t ,

for every i. Hence, applying Theorem 7 to each Gi separately, we conclude that each
must be t-universal. In particular, each Gi contains an induced subgraph isomorphic to
H. That is, we have obs(Gi) > 1 for every i, which means that each Gi requires at least
two obstacles.
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As was explained at the end of the Introduction, each obstacle must be contained in
an interior or in the exterior face of the graph. Therefore, in an h-obstacle representation
of G, each Gi must have at least one internal face that contains an obstacle, and there
must be at least one additional obstacle (which may possibly contained in the interior
face of every Gi). At any rate, we have h > m = n1−ε , as required. ��

3 Encoding Graphs of Low Obstacle Number

The aim of this section is to prove Theorems 2–5. The idea is to find a short encoding
of the obstacle representations of graphs, and to use this to give an upper bound on the
number of graphs with low obstacle number.

We need to review some simple facts from combinatorial geometry. Two sets of
points, P1 and P2, in general position in the plane are said to have the same order type
if there is a one to one correspondence between them with the property that the orien-
tation of any triple in P1 is the same as the orientation of the corresponding triple in P2.
Counting the number of different order types is a classical task, see e.g.

Theorem 8 (Goodman, Pollack [16]). The number of different order types of n points
in general position in the plane is 2O(n logn).

Observe that the same upper bound holds for the number of different order types of n la-
beled points, because the number of different permutations of n points is n! = 2O(n logn).

In a graph drawing, the complexity of a face is the number of line segment sides
bordering it. The following result was proved by Arkin, Halperin, Kedem, Mitchell,
and Naor (see Matoušek, Valtr [19] for its sharpness).

Theorem 9 (Arkin et al. [4]). The complexity of a single face in a drawing of a graph
with n vertices is at most O(n logn).

Note that this bound does not depend of the number of edges of the graph.

Proof of Theorem 2. For any graph G with n vertices that admits an h-obstacle repre-
sentation, fix such a representation. Consider the visibility graph G of the vertices in
this representation. As explained at the end of the Introduction, every obstacle belongs
to a single face in this drawing. In view of Theorem 9, the complexity of every face is
O(n logn). Replacing each obstacle by a slightly shrunken copy of the face containing
it, we can achieve that every obstacle is a polygonal region with O(n logn) sides.

Let S be the point sequence starting with the vertices of G, followed by the vertices
of every obstacle in cyclic order, one entire obstacle after another. Let I be the set of the
starting positions of the h obstacles in S. G is completely determined by the (labeled)
order type of S, together with I. To see this, first observe that I tells us which pairs
in S are pairs graph vertices and which correspond to a side of some polygon. Now,
notice that a given segment uv among graph vertices is blocked if and only if it meets
some side ab of some polygon, for which a necessary and sufficient condition is that
the ordered triples uav, avb, vbu, and bua have the same orientation.

If the length of S is N, then the number of possibilities for I is at most
(N

h

)
≤ Nh.

Since N ≤ n + c1hn logn for some absolute constant c1 > 0, according to Theorem 8
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and our comment that follows it, the number of graphs with obstacle number at most h
is at most

Nh ·2O(N logN) = 2O(N logN) < 2chn log2 n,

for a suitable constant c > 0. This is a generous upper bound due to overcounting, and
also because most pairs (S, I) do not encode obstacle representations. ��

If the average number of sides an obstacle can have is small, then we obtain

Theorem 10. The number of graphs admitting an obstacle representation with at most
h obstacles, having a total of at most hs sides, is at most

2O(n logn+hs log(hs)).

In particular, for segment obstacles (s = 2), Theorem 10 immediately implies Theo-

rem 5. Indeed, as long as the bound in Theorem 10 is smaller than 2(n
2), the total number

of graphs on n labeled vertices, we can argue that there is a graph with segment obstacle
number larger than h.

1

2

3

(a) Empty

1

2

3

(b) 2+

1

2

3

(c) 2+1−

1

2

3

(d) 2+1−2−

1

2

3

(e) 2+1−2−3+

1

2

3

(f) 2+1−2−3+1+

1

2

3

(g) 2+1−2−3+1+3−

1

2

3

(h) 2+1−2−3+1+3−

Fig. 1. Parts (a) to (g) show the construction of the sequence and (h) shows the visibilities. The
arrow on the tangent line indicates the direction from the point of tangency in which we assign
+ as a label to the vertex. The additional arrow in (a) indicates that the tangent line is rotated
clockwise around the obstacle.

Proof of Theorem 4. As before, it is enough to bound the number of graphs that admit
an obstacle representation with at most h convex obstacles. Let us fix such a graph G,
together with a representation. Let V be the set of points representing the vertices, and
let O1, . . . ,Oh be the convex obstacles. For any obstacle Oi, rotate an oriented tangent
line 
 along its boundary in the clockwise direction. We can assume without loss of
generality that 
 never passes through two points of V . Let us record the sequence
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of points met by 
. If v ∈ V is met at the right side of 
, we add the symbol v+ to
the sequence, otherwise we add v− (Fig. 1). When 
 returns to its initial position, we
stop. The resulting sequence consists of 2n characters. From this sequence, it is easy
to reconstruct which pairs of vertices are visible in the presence of the single obstacle
Oi. Observe that Oi blocks uv if and only if the subsequence induced on u and v has
no consecutive pair with the same superscript. Hence, knowing these sequences for
every obstacle Oi, completely determines the visibility graph G. The number of distinct
sequences assigned to a single obstacle is at most (2n)!, so that the number of graphs
with convex obstacle number at most h cannot exceed ((2n)!)h/h! < (2n)2hn. As long

as this number is smaller than 2(n
2), there is a graph with convex obstacle number larger

than h. ��

4 Proof of Theorem 1

Let the graph G3 consist of a clique of blue vertices B = {bi | i ∈ [4]}, a clique of red
vertices R = {rA | A⊆ [4]}, and additional edges between every bi and every rA with
i ∈ A. We say that a polygon is solid if all its edges are edges in G3. For three distinct
points p, q, and r, we denote by � pqr the union of the rays −→qp and −→qr. For a point set
P, we denote by conv(P) the convex hull of P (the smallest convex set containing P).

Assume for contradiction that we are given a 1-obstacle representation of G3. For a
red vertex rA, if there are points p and q such that � prAq strictly separates {bi | i ∈ A}
from the remaining blue vertices, we say that rA is innocent. If some red vertex rA is not
innocent, two obstacles will be required due to {rA}∪B, a contradiction.

Case 1: B is not in convex position. Without loss of generality, b4 is inside triangle
Δb1b2b3.

Subcase 1a: The obstacle is in conv(B). Without loss of generality, the obstacle is
inside Δb1b4b3. Then r{1,4} is inside Δb1b4b3, for the obstacle to block b2r{1,4} and
b3r{1,4}. Similarly, r{3,4} is inside Δb1b4b3. For r{1,4} and r{3,4} to be innocent, the line
through b2 and b4 separates b1r{3,4} from b3r{1,4}. Without loss of generality, r{1,4} is
inside Δb4r{3,4}b3. Since b1r{3,4} and b3r{1,4} are separated by the solid Δb4r{3,4}b3,
two obstacles are needed, a contradiction.

Subcase 1b: The obstacle is outside of conv(B). Hence r{1,2,3} is outside of conv(B),
and without loss of generality, in conv(� b1b4b3). Therefore, the obstacle is inside the
convex quadrilateral Q = b1b4b3r{1,2,3}. For b1r4 and b3r4 to be blocked, r4 is inside
Q. Then � b4r4r{1,2,3} separates conv(Q) into two regions with solid boundaries that
respectively contain b1r4 and b3r4. Therefore, two obstacles are needed, a contradiction.

Case 2: B is in convex position. Without loss of generality, the bounding polygon of
B is b1b2b3b4. In order for r{1,3} and r{2,4} to be innocent,

– r{1,3} and r{2,4} are outside of conv(B);
– for r{1,3}: either b1,b3 ∈ conv(� b2r{1,3}b4) or b2,b4 ∈ conv(� b1r{1,3}b3); and
– for r{2,4}: either b1,b3 ∈ conv(� b2r{2,4}b4) or b2,b4 ∈ conv(� b1r{2,4}b3).

Subcase 2a: b1,b3 ∈ conv(� b2r{1,3}b4) and b2,b4 ∈ conv(� b1r{2,4}b3). Without loss
of generality, the quadrilateral b4b1b2r{1,3} is convex and has b3 inside, and without
loss of generality, the quadrilateral b3b4b1r{2,4} is convex and has b2 inside. Hence,
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b2b3r{1,3}r{2,4} is a solid convex quadrilateral with b1r{2,4} outside and b3r{2,4} inside.
Therefore, two obstacles are required, a contradiction.

Subcase 2b: b2,b4 ∈ conv(� b1r{1,3}b3) or b1,b3 ∈ conv(� b2r{2,4}b4). Due to sym-
metry, we proceed assuming the former. Without loss of generality, Q = b3b4b1r{1,3}
is a convex quadrilateral. The obstacle is inside Q due to r{1,3}b4. In order for b1r{2,4}
and b3r{2,4} to be blocked, r{2,4} is inside Q. Hence, � r{1,3}r{2,4}b4 partitions conv(Q)
into two regions with solid boundaries that respectively contain b1r{2,4} and r{2,4}b3.
Therefore, two obstacles are required, a contradiction.

This completes the proof of Theorem 1. ��

5 Concluding Remarks

A. First we answer a question from [3].

Proposition 1. For every h, there exists a graph with obstacle number exactly h.

Proof. Pick a graph G with obstacle number h′ > h. (The existence of such a graph
follows, e.g., from Corollary 1.) Let n denote the number of vertices of G. Consider a
complete graph Kn on V (G). Its obstacle number is zero, and G can be obtained from
Kn by successively deleting edges. Observe that as we delete an edge from a graph G′,
its obstacle number cannot increase by more than one. This follows from the fact that
by blocking the deleted edge with an additional small obstacle that does not intersect
any other edge of G′, we obtain a valid obstacle representation of the new graph. (Of
course, the obstacle number of a graph can also decrease by the removal of an edge.)
Since at the beginning of the process, Kn has obstacle number zero, at the end G has
obstacle number h′ > h, and whenever it increases, the increase is one, we can conclude
that at some stage we obtain a graph with obstacle number precisely h. ��

The same argument applies to the convex obstacle number, to the segment obstacle
number, and many similar parameters.

B. Let H be a fixed graph. According to a classical conjecture of Erdős and Hajnal [8],
any graph with n vertices that does not have an induced subgraph isomorphic to H con-
tains an independent set or a complete subgraph of size at least nε(H), for some positive
constant ε(H). It follows that for any hereditary graph property there exists a constant
ε > 0 such that every graph G on n vertices with this property satisfies hom(G)≥ nε .

Here we show that the last statement holds for the property that the graph has bounded
obstacle number.

Proposition 2. For any fixed integer h > 0, every graph on n vertices with obsc(G)≤ h

satisfies hom(G)≥ 1
2 n

1
h+1 .

Proof. We proceed by induction on h. For h = 1, Alpert et al. [3] showed that all graphs
with convex obstacle number one are so-called “circular interval graphs” (intersection
graphs of a collection of arcs along the circle). It is known that all such graphs G whose
maximum complete subgraph is of size x has an independent set of size at least n

2x ; see
[29]. Setting x =

√
n/2, it follows that hom(G)≥ 1

2

√
n.
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Let h > 1, and assume that the statement has already been verified for all graphs
with convex obstacle number smaller than h. Let G be a graph that requires h convex
obstacles, and consider one of its representations. Then we have G = ∩iGi, where Gi

denotes the visibility graph of the same set of points after the removal of all but the i-th
obstacle.

If the size of the largest independent set in G1 is at least 1
2 n

1
h+1 , then the statement

holds, because this set is also an independent set in G. If this is not the case, then, by
the above property of circular arc graphs, G must have a complete subgraph K of size

at least n
h

h+1 . Consider now the subgraph of ∩h
i=2Gi induced by the vertices of K. This

graph requires only h− 1 obstacles. Thus, we can apply the induction hypothesis to

obtain that it has a complete subgraph or an independent set of size at least 1
2 (n

h
h+1 )

1
h =

1
2 n

1
h+1 . ��

It is easy to see that every graph G on n vertices with convex obstacle number at most
h has the following stronger property, which implies that they satisfy the Erdős-Hajnal
conjecture: There exists a constant ε = ε(h) such that G contains a complete subgraph
of size at least εn or two sets of size at least εn such that no edges between them belongs
to G (cf. [14]).

C. Finally, we comment on higher dimensional representations. In three dimensions,
every graph can be represented with one obstacle that is a polygonal chain.

Proposition 3. In three dimensions, every planar graph can be represented with one
convex obstacle.

Proof. Given a planar graph G, triangulate a planar embedding of it to obtain the graph
T . Now take a convex polyhedron C (no four vertices coplanar) with graph T . Let O
be the convex hull of the set of midpoints of all pairs in V (C) that do not correspond
to edges in G. Clearly, V (C) together with O (which can be perturbed to attain general
position) constitute a 1-convex obstacle representation of G in three dimensions. ��

Proposition 4. In dimensions d = 4 and higher, every graph can be represented with
one convex obstacle.

Proof. Let G be a graph with n vertices. Consider the moment curve

{(t, t2,t3,t4) : t ∈ IR}.

Pick n points vi = (ti,ti2,ti3,ti4) on this curve, i = 1, . . . ,n. The convex hull of these
points is a cyclic polytope Pn. The vertex set of Pn is {v1, . . . ,vn}, and any segment
connecting a pair of vertices of Pn is an edge of Pn (lying on its boundary). Denote the
midpoint of the edge viv j by vi j, and let O be the convex hull of the set of all midpoint
vi j, for which vi and v j are not connected by an edge in G. Obviously, the points vi and
the obstacle O (or its small perturbation, if we wish to attain general position) show that
G admits a representation with a single convex obstacle. ��
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Abstract. In this note we consider the problem of deciding whether

a given r-uniform hypergraph H with minimum vertex degree at least

c
(|V (H)|−1

r−1

)
, has a vertex 2-coloring and a strong vertex k-coloring. Moti-

vated by an old result of Edwards for graphs, we summarize what can be

deduced from his method about the complexity of these problems for hy-

pergraphs. We obtain the first optimal dichotomy results for 2-colorings

of 3- and 4-uniform hypergraphs according to the value of c. In addi-

tion, we determine the computational complexity of strong k-colorings

of 3-uniform hypergraphs for some c, leaving a gap which vanishes as

k →∞.

1 Introduction

A hypergraph H = (V, E) is a finite set of vertices V together with a family E
of distinct, nonempty subsets of vertices called edges. In this paper we consider
r-uniform hypergraphs (r-graphs) in which, for a fixed r ≥ 2, each edge is of
size r.

For an r-graph, the graph minimum degree δ(G) can be replaced by the min-
imum (l-wise) degree denoted by δl(H), for 1 ≤ l ≤ r − 1, which is the largest
integer d such that every l-element set of vertices of H is contained in at least d
edges of H . One natural case is the minimum vertex degree, δ1(H).

A k-coloring of a hypergraph H = (V, E) is a function assigning colors from
{1, 2, . . . , k} to vertices of H in such a way that no edge is monochromatic. The
minimum number k such that H admits a k-coloring is called the chromatic
number of H, denoted by χ(H).

We are studying the following decision problem.

Definition 1. For fixed integers r, 1 ≤ l ≤ r − 1, and k, and a real number
0 ≤ c ≤ 1, define the problem Πr,l(k, c) as follows:

Input: r-uniform hypergraph H = (V, E) with |V (H)| = n and δl(H) ≥ c
(
n−l
r−l

)
Output: Is H k-colorable (χ(H) ≤ k)?

� Research supported by grant N206 017 32/2452.

D.M. Thilikos (Ed.): WG 2010, LNCS 6410, pp. 304–314, 2010.
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In particular, if we disregard the minimum degree condition, setting c = 0, we get
Π2,1(2, 0), the classical problem which is asking whether a given graph admits
a 2-coloring, or, in other words, is bipartite. The problem becomes hard when
more colors are allowed and it was shown by Lovász [10] that for every k ≥ 3
Π2,1(k, 0) is NP-complete.

In [6], Edwards considered the problem Π2,1(k, c) and found a deterministic
polynomial time algorithm for the problem when c > k−3

k−2 . His result is best
possible in the sense that for k ≥ 3 and 0 ≤ c ≤ k−3

k−2 he also showed that
Π2,1(k, c) is NP-complete.

We are extending this result to hypergraphs and determine the threshold
value of the constant c for which 3- and 4-graphs are 2-colorable(bipartite). The
hypergraph which is bipartite is also said to have Property B. The following
theorems are the main results of this paper.

Theorem 2. Π3,1(2, c) is

{
NP-complete for c < 1

2 ,

in P for c > 1
2 .

Theorem 3. Π4,1(2, c) is

{
NP-complete for c < 3

4 ,

in P for c > 3
4 .

In the case of hypergraphs yet another version of coloring is being considered. A
given k-coloring of H is called strong if for every edge of H , each color appears
at most once in it. Analogously, the minimum number k such that H admits a
strong k-coloring is called the strong chromatic number of H, denoted by χs(H).
Notice that χ(H) ≤ χs(H). The related decision problem is formulated below.

Definition 4. For fixed integers r, 1 ≤ l ≤ r − 1, and k, and a real number
0 ≤ c ≤ 1, define the problem Πr,l

s (k, c) as follows:
Input: r-uniform hypergraph H = (V, E) with |V (H)| = n and δl(H) ≥ c

(
n−l
r−l

)
Output: Is H k-strong colorable (χs(H) ≤ k)?

This problem reduces to a graph coloring problem in the following sense.

Remark 1. Strong coloring of an r-graph can be viewed as a vertex coloring of
the clique graph Gr(H) of the r-graph H , defined on the same set of vertices,
with edge set E(Gr(H)) = {{u, v} : u, v ∈ e for some e ∈ E(H)}. In this way,
χs(H) = χ(Gr(H)), the ordinary chromatic number of the clique graph.

Using the above relation we apply Edwards’ graph result to the problem
Π3,1

s (k, c) for k ≥ 3 and complement it with the proof of NP-completeness for
k ≥ 5.

Theorem 5. For k ≥ 5 we have Π3,1
s (k, c) is

⎧⎨
⎩

NP-complete for c ≤ (k−3)(k−4)
(k−2)2 ,

in P for c >
(

k−3
k−2

)2

[6].

Moreover, we present an independent proof for k = 4 colors (Fact 15), where
Π3,1

s (4, c) turns out to be polynomial for every c > 0.
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Remark 2. For k ≥ 3, r ≥ 3 and l ≥ 2 the problem Πr,l
s (k, c) is trivial for any

c > 0. This is because in such a case the condition δl(H) ≥ c
(
n−l
r−l

)
implies that

every set of l vertices belongs to a hyperedge and all l vertices must have different
colors, which imposes χs(H) = n.

In what follows we will mainly consider the case of l = 1, and use a shorthand
notation Πr(k, c) := Πr,1(k, c) and Πr

s (k, c) := Πr,1
s (k, c).

In the next section we give an overview of previous results. Section 3 contains
the general framework of all proofs presented in this paper. The complexity results
about the PropertyB in 3- and 4-graphs are presented in Sect. 4. Section 5 concerns
the strong coloring problem of 3-graphs. The paper is concluded with some open
problems.

2 Related Works

In the last ten years a series of papers appeared (see, e.g. [12], [13],[14]) where
the structural properties of dense hypergraphs, satisfying the so called Dirac-
condition were studied. They triggered further investigation of the computational
aspects of such problems as matching, Hamilton cycle and packing (see e.g. [15],
[8], [9]), which turned out to be polynomial under the restricted minimum degree
condition.

The complexity of the hypergraph 2-coloring problem in dense hypergraphs
was first addressed by Chen and Frieze in [5]. They showed, using the idea of
Edwards, that every bipartite 3-uniform hypergraph with δ2(H) > αn can be
2-colored in nO(1/α) time using a randomized algorithm. Their result, as stated
there, relies on the assumption, that the input hypergraph is, indeed, 2-colorable.
We eliminate this assumption by taking into account δ1(H), i.e. the degree of a
single vertex instead of a pair.

An expected polynomial time algorithm for coloring 2-colorable random 3-
graphs was recently given in [11]. Other results concerning the inapproximability
of 2-coloring bipartite hypergraphs were given by Guruswami, Dinur and others.

Strong colorings of general hypegraphs were studied by Agnarsson and Hall-
dorssón in [1]. Their main motivation was to unify various coloring problems as
strong colorings of appropriate hypergraphs and their results contain approxima-
tion offline and online algorithms for strong colorings of arbitrary hypergraphs
in terms of the size of a largest hyperedge and the number of hyperedges.

3 Preliminaries

3.1 General Framework

For all results presented in Sect. 4 we first show the NP-completeness of a prob-
lem and this is followed by a polynomial time algorithm for the problem above
the threshold. We will extensively use the notion of a link of a hypergraph. Sup-
pose H is an r-graph and v ∈ V (H). The link (neighbourhood) graph of v is an
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(r − 1)-graph G(v) = {{x1, . . . , xr−1} : {x1, . . . , xr−1, v} ∈ H}. If r = 3, then
the link graph of every vertex in V (H) is a graph.

All coloring algorithms given in this note share the following general framework.

1. Choose a suitable (r− 1)-graph F and find in H a O(log n)-size core K, i.e.
a union of copies of F such that every vertex of H contains at least one copy
of F in its link.

2. Check if H [V (K)] is k-colorable.
3. For every admissible k-coloring of the core, check if it can be extended to

V (H)− V (K) (using properties of F and possibly 2-SAT).

The reduction to 2-SAT is possible if a coloring of the core leaves at most two
colors available to every vertex outside it and if the constraints for hyperedges
outside the core can be expressed by a 2-SAT formula.

The construction of the core relies on the following property of a bipartite
graph.

Lemma 1. For every bipartite graph B = (X ∪ Y, F ) such that |X | = n and
dB(v) ≥ β|Y | for all v ∈ X there exists a set of vertices D ⊆ Y of size O(log n)
which dominates every vertex in X. Moreover, D can be constructed in O(log n)
steps, each of them being polynomial in n.

Proof. We will construct D by sequentially adding to it vertices of large degree.
Since the degree of every vertex v in X is at least β|Y |, there exists a vertex
w ∈ Y such that dB(w) ≥ β|X | and we add it to D. Observe that w covers at
least β|X | vertices of X, which we remove from X while w is removed from Y.
In the remaining graph, every vertex in X will still have a degree of at least
β|Y | and the same argument can be repeated until all vertices in X are covered
which happens after O(log n) steps. As a result, every vertex in X has a neighbor
in D. ��

After appropriately defining the auxiliary bipartite graph, the set D will corre-
spond to the core. In order to guarantee its existence the degree condition must
be satisfied. This, in turn, will follow from the minimum degree bound of H and
Turán numbers of certain subgraphs of link graphs. In the next subsection we
will review some facts on Turán numbers for graphs and hypergraphs.

3.2 Turán Numbers for Graphs and Hypergraphs

Given an r-graph F, let tr(n, F ), the Turán number of F, be the maximum
number of edges in an n-vertex r-graph with no copy of F. The limit dr(F ) =
limn→∞

tr(n,F )

(n
r)

is referred to as the Turán density. In the case in which F is

a complete graph on q vertices, F = Kq, we will denote the Turán density by
d2(q). It is known that d2(3) = 1

2 and, in general, for q ≥ 3 we have

d2(q) = q−2
q−1 . (1)
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We will recall a useful fact from [2, p.307], known as a supersaturation property,
saying that graphs which exceed Turán density for a given subgraph contain
already many copies of the subgraph.

Fact 6. For all q ≥ 3, and α > 1, there exists γ = γ(α, q) such that a graph of
order n with at least αd2(q)

(
n
2

)
edges contains at least γnq cliques of size q.

Not much is known about Turán numbers for hypergraphs. One special case
which we will use here is a 3-graph called Fano plane. The Fano plane F is
the projective plane over the field with 2 elements. It has 7 vertices, which
can be identified with the binary non-zero vectors of length 3. It has 7 edges,
corresponding to the lines of the plane. A triple xyz is an edge if x+ y = z. The
Fano plane requires 3 colors for a proper coloring and therefore no 2-colorable
hypergraph can contain it as a subgraph.

By the result of De Caen and Füredi [4] it is known that the Turán density
of the Fano plane is 3/4. On the other hand, from the supersaturation result
by Erdős and Simonovits [3] we know that the next fact, similar to Fact 6 for
graphs, is true.

Fact 7. Let H be a 3-graph on n ≥ n0 vertices and F be the Fano plane. For
every ε > 0 there exists ξ > 0 such that if H contains at least (3

4 + ε)
(
n
3

)
edges

then H contains at least ξn7 copies of F.

4 Property B

Here we prove Theorems 2 and 3. The following two facts imply Theorem 2.

Fact 8. For every c < 1
2 the problem Π3(2, c) is NP-complete.

Proof. Tosee theNP-completeness, consider the following reduction fromΠ3(2, 0).
Let H = (V, E) be a 3-graph on |V | = n vertices. We fix ε > 0 and construct a 3-
graph H ′ = (V ′, E′) in such a way that V ′ = V ∪ V1 ∪ V2, where |Vi| = N > n

ε for
i = 1, 2 and E′ = E ∪ E1 ∪ E2, where

E1 = {xyz : x ∈ V, y ∈ V1, z ∈ V2}

and
E2 = {xyz : x ∈ V1, y ∈ V2, z ∈ V2 or x ∈ V1, y ∈ V1, z ∈ V2}.

Notice that |V ′| = 2N + n and

δ1(H ′) = min
{

N2 + δ1(H), nN + N(N − 1) +
(

N

2

)}
≥ N2.

Also, for every ε > 0, the following inequality is true

N2 > (1
2 − ε)

(
2N + n

2

)
,
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whenever N > n
ε . Now, if χ(H) ≤ 2, i.e. H is 2-colorable, say in red and blue,

then H ′ can be 2-colored by assigning blue to all vertices in V1 and red to all
vertices in V2. On the other hand, if H ′ admits a 2-coloring, then, trivially, H
has a 2-coloring. ��

Fact 9. For every c > 1
2 the problem Π3(2, c) is in P.

Proof. We will describe the polynomial time algorithm for the problem in the
case in which c > 1

2 . If δ1(H) ≥ (1
2 + ε)

(
n−1

2

)
, then for every v ∈ V, its link

graph G(v) contains at least (1
2 + ε)

(
n−1

2

)
edges. Since the Turán density for

triangles d2(3) = 1
2 , by Fact 6, G(v) has enough edges to guarantee γn3 triangles

for some γ > 0. Thus, using Lemma 1 we can find a set K of O(log n) triangles
constituting a core-like structure in H. To see this, consider an auxiliary bipartite
graph B = (X ∪ Y, F ) with X = V (H) and Y corresponding to all triangles in
the complete graph on n vertices. There is an edge e = vT in F for v ∈ X and
a triangle T in Y whenever T is a subgraph of G(v). By Fact 6 and Eq. (1),
every vertex has many triangles in its link and therefore its degree satisfies the
assertion of Lemma 1. Let K :=

⋃
T∈D T be the set of triangles in the dominating

set D.
Consequently, after constructing the core K, every vertex in V (H)−V (K) has

at least one triangle of K in its link. Next we sequentially consider all possible
assignments of two colors to the vertices of K and for each of them check if it is
a 2-coloring of the subhypergraph H [V (K)]. If none of them gives a bipartition
of H [V (K)] then it is not 2-colorable and so is H. Otherwise, we verify if a
proper 2-coloring of H [V (K)] can be extended to the vertices outside K. We
can do this verification efficiently in this case because for every 2-coloring of the
vertices of K there is one monochromatic edge in every K3 ⊆ K. This leaves at
most one color available for every vertex v ∈ V (H)−V (K). If, after considering
all triangles of the core, no color is available to a vertex or a hyperedge outside
H [V (K)] is monochromatic then we turn to the next 2-coloring of H [V (K)].
Otherwise, we return YES. ��

Facts 10 and 11 below yield Theorem 3.

Fact 10. For every c < 3
4 , the problem Π4(2, c) is NP-complete.

Proof. Fix ε > 0 and for a 4-graph H = (V, E) with |V | = n construct a 4-graph
H ′ = (V ′, E′) such that V ′ = V ∪ V1 ∪ V2, |Vi| = N > n

ε for i = 1, 2 and
E′ = E ∪ E1 ∪ E2 ∪ E12, where

E1 = {xyzt : x, y ∈ V, z ∈ V1, t ∈ V2}

and

E2 = {xyzt : x ∈ V, y, z ∈ V1, t ∈ V2 or x ∈ V, y ∈ V1, z, t ∈ V2},
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whereas E12 contains all quadruples intersecting only both V1 and V2. Observe
that

δ1(H ′) =

min
{

2
(

N

2

)
N + (n− 1)N2 + δ1(H),(

n

2

)
N + (N − 1)Nn + n

(
N

2

)
+ (N − 1)

(
N

2

)
+
(

N

3

)
+
(

N − 1
2

)
N

}
≥ N3 + o(N3)

and for every ε > 0,

N3 > (3
4 − ε)

(
2N + n

3

)
whenever N > n

ε .
Thus, we have

δ1(H ′) > (3
4 − ε)

(
|V ′|
3

)
.

If H is 2-colorable then, again, coloring V1 red and V2 blue results in a proper
2-coloring of H ′. Conversely, if H is not 2-colorable, then there is no way to color
H ′ with two colors. ��

Fact 11. For every c > 3
4 , the problem Π4(2, c) is in P.

Proof. The main idea is similar to that used in the proof of Fact 9, but this time
the argument relies on the Turán density of the Fano plane (see Sect. 3.2).

First we will construct a core in H using an auxiliary bipartite graph B =
(X ∪Y, F ). Again X = V (H), but Y will correspond this time to all Fano planes
in the complete 3-graph on the vertices from H.

To construct a core using Lemma 1 we need to make a few observations first.
By the degree assumption δ1(H) ≥ (3

4 + ε)
(
n−1

3

)
, for every v ∈ V, its link graph

G(v) is a 3-graph such that |E(G(v))| > (3
4 + ε)

(
n−1

3

)
. By Fact 7, for every

v ∈ V (H) we are guaranteed at least ξn7 copies of a Fano plane in its link graph
G(v) for some ξ > 0. Applying Lemma 1 to the graph B with β = ξ we are able
to find a O(log n)-size subset D of Y which dominates every vertex in V (H).
This further implies that for every vertex v ∈ V (H) there is at least one Fano
plane in its link belonging to the core.

We will now proceed by sequentially considering 2-colorings of the subhyper-
graph induced by the vertices of the core K :=

⋃
F∈D F. If no proper 2-coloring

can be found then H is not 2-colorable. Otherwise, if a proper 2-coloring of
H [V (K)] is encountered we will check if it can be extended to the vertices out-
side V (K). Notice that for every 2-coloring of a Fano plane there is at least
one monochromatic edge. In consequence, by our construction, every vertex in
V (H)− V (K) will have at most one color available. This implies that it can be
verified in polynomial time if every proper coloring of the core with two colors
can be extended to the remaining vertices and the fact follows. ��
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Remark 3. Since for all c > 0, δl(H) ≥ c
(
n−l
r−l

)
implies δl−1(H) ≥ c

(
n−l+1
r−l+1

)
, the

results in Facts 9 and 11 carry over to l ≥ 2. It is not clear what kind of an
(r − 1)-graph would need to replace the Fano plane to get a similar result for
r ≥ 5.

5 Strong Coloring

In this section we prove Thereom 5. As mentioned in the Introduction (see
Remark 1), a strong coloring of an r-graph can be seen as a proper coloring of
the clique graph Gr(H) obtained from H = (V, E) by replacing each hyperedge
with an r-clique. There is a relation stated below between the minimum vertex
degree in a 3-graph H and the minimum vertex degree in its clique graph G3(H).

Fact 12. For every c > 0 and a 3-graph H = (V, E), if δ1(H) ≥ c
(
n−1

2

)
then

δ(G3(H)) ≥
√

c(n− 1).

Proof. Let v be a vertex in V (H) of the minimum degree δ1(H) and let i be the
number of isolated vertices in its link graph G(v). Then dG3(H)(v) = n−1−i := x

and the smallest value of x satisfying c
(
n−1

2

)
≤
(
x
2

)
gives us a bound on the

minimum degree in G3(H). Since x−1
n−2 ≤

x
n−1 , we have x2 ≥ c(n− 1)2 and hence

δ(G3(H)) ≥
√

c(n− 1). ��

In addition to Fact 12, we will need the following result of Edwards for graphs.

Theorem 13 (Th. 2.5,[6]). For k ≥ 3 we have

Π2(k, c) is

{
NP-complete for c ≤ k−3

k−2 ,

in P for c > k−3
k−2 .

The statement below is directly implied by Theorem 13 and Fact 12.

Corollary 14. For k ≥ 3 and c >
(

k−3
k−2

)2

the problem Π3
s (k, c) is in P.

Notice that if k = 3, then Π3
s (3, c) is in P for all c > 0. In the case of k = 4,

Corollary 14 guarantees a polynomial algorithm for Π3
s (4, c) when c > 1

4 . We
improve this and get the same result for all values of c > 0.

Fact 15. For every c > 0, the problem Π3
s (4, c) is in P.

Proof. We will follow the idea of the proof by Edwards [6] again. This time, in
addition, we will reduce the problem Π3

s (4, c) for c > 0 to 2-SAT in polynomial
time. Given a fixed strong 4-coloring f of the vertices of K we construct a 2-
SAT formula φ(f) as follows. For every vertex v ∈ V (H)−V (K) let S(v) be the
set of admissible colors for v. Observe that as a consequence of Lemma 1 and
δ1(H) ≥ c

(
n−1

2

)
, there is at least one edge in the link of every vertex of V (H) and

thus two colors are already used, so |S(v)| ≤ 2. Let V (H)−V (K) = {v1, . . . , vm}
and assign a variable xij to represent the fact that ”vertex vi has color j” for
every 1 ≤ i ≤ m, 1 ≤ j ≤ 4. Now, φ(f) will contain the following variables and
clauses:
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– {xij | j ∈ S(vi)} for 1 ≤ i ≤ m
– xij ∨ xih for 1 ≤ i ≤ m, 1 ≤ j < h ≤ 4
– xij ∨ xhj, xij ∨ xlj , xhj ∨ xlj for {vi, vh, vl} ∈ H and 1 ≤ j ≤ 4.

The pseudo-code of the algorithm is below.

Algorithm StrongColor

In: k = 4, a 3-graph H with δ1(H) ≥ c
(
n−1

2

)
, where 0 < c ≤ 1.

Out: YES, if H has a strong 4−coloring ; NO, otherwise

1. Build an auxiliary bipartite graph B = (X ∪ Y, F ), where X = V (H) and
Y corresponds to all edges T = K2 of a complete graph on n vertices. For
every v ∈ X and edge T ∈ Y we add an edge vT ∈ F if T ⊆ G(v). (Note
that for every v ∈ X, dB(v) ≥ c|Y |.)

2. Using Lemma 1 find a subset D ⊆ Y which dominates every vertex in X.
Let K =

⋃
T∈D T.

3. For every function f : V (K)→ {1, 2, 3, 4} do
(a) If f is a strong 4-coloring of H [V (K)] then check if f can be extended

on V (H)− V (K), i.e. construct an instance φ(f) of 2-SAT on the set of
vertices V (H)− V (K).

(b) If φ(f) is satisfiable then return YES (and present the final strong 4-
coloring).

4. If no strong 4-coloring found, return NO.

Observe that Steps 2 and 3 can be performed in polynomial time. Also, it is well
known that 2-SAT is in P (see [7]). ��

It is worth noticing here that the above result does not necessarily imply that
the problem of coloring clique graphs of hypergraphs with 4 colors is always
polynomial.

On the hardness side, we have another, more general result.

Fact 16. For k ≥ 5 and c ≤ (k−3)(k−4)
(k−2)2 , the problem Π3

s (k, c) is NP-complete.

Proof. It is clear that Π3
s (k, c) is in NP. Now we will show that it is NP-complete

for c = (k−3)(k−4)
(k−2)2 . The proof will use a reduction from 3-colorability, it is from

Π3
s (3, 0), which is NP-complete.
For this, given a 3-graph H = (V, E), where |V (H)| = n we construct a 3-

graph H ′ = (V ′, E′) in the following way. For V ′ put V0 = V and add disjoint
sets V1, . . . , Vk−3 of new vertices such that |Vi| = n for i = 1, . . . , k−3. Include E
into E′ and add an edge for every triple of vertices {x, y, z}, such that x ∈ Vi, y ∈
Vj , z ∈ Vk, where i, j, k are different indices from {0, 1, . . . , k− 3}. Observe that
N = |V ′| = (k − 2)n and the minimum degree

δ1(H ′) = (k−3)(k−4)n2

2 ≥ (k−3)(k−4)
(k−2)2

(
N

2

)
.
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If H is 3-colorable in the strong sense then, since V1, . . . , Vk−3 are strongly
independent sets in H ′, we can color each of them with a different color and
hence H ′ admits a strong k-coloring this way. On the other hand, if H ′ can be
colored using k colors, in a strong way, then the colors used for V1, . . . , Vk−3

must be all distinct. Therefore, only at most the same 3 colors are available for
all vertices in V0 and thus H is strongly 3-colorable. ��

Fact 16 and Corollary 14 together yield Theorem 5.

Concluding Remarks and Open Problems

Recently the author extended the results presented in this paper to Πr,2(2, c) and
described polynomial time algorithms in the cases r = 4, 5 for c < 1

2 and c < 3
4 ,

respectively. The computational complexity of the general problem Πr,l(k, c)
with 1 ≤ l ≤ r − 1 and r > 5 remains open. Moreover, it would be interesting
to see what is the complexity of the strong coloring problem Π3

s (k, c) in the

remaining interval for c ∈
[

(k−3)(k−4)
(k−2)2 ,

(
k−3
k−2

)2
]

.
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Abstract. We prove that for sufficiently large n, there exist unit disk

graphs on n vertices such that for every representation with disks in the

plane at least c
√

n bits are needed to write down the coordinates of the

centers of the disks, for some c > 1. We also show that dn bits always

suffice, for some d > 1.

1 Introduction and Statement of Results

A unit disk graph is the intersection graph of equal sized disks in the plane. That
is, we can represent the vertices by disks D1, . . . , Dn ⊆ R2 of equal radius in
such a way that ij ∈ E if and only if Di∩Dj �= ∅. Equivalently, we can represent
G by a sequence of points V = (z1, . . . , zn) in the plane such that ij ∈ E(G) if
and only if ‖zi − zj‖ ≤ 1. We say that such a V realizes G.

Over the past 20 years or so, unit disk graphs have been the subject of a
sustained research effort by many different authors. Partly because of their rel-
evance for practical applications one of the main foci is the design of (efficient)
algorithms for them.

One can of course store the unit disk graph G in a computer as an adjacency
matrix or a list of edges, but for many purposes (algorithms) it is useful to
actually store a representation as points in the plane. In this article we will
study the number of bits that are needed to store such a representation. There
are of course infinitely many realizations, but we will focus on a realization whose
coordinates have the smallest possible bit size. Here we shall use the convention
that a rational number is stored as a pair of integers (the denominator and
numerator) that are relatively prime and those integers are stored in the binary
number format (see for instance [7]).

We will denote the bit size of a rational number q ∈ Q by size(q). The bit size
of a point z ∈ Q2 will be the sum of the bit sizes of its coordinates size(z) :=
size(zx)+size(zy), and the bit size of a realization V = (z1, . . . , zn) of a unit disk
graph G will be size(V) :=

∑n
i=1 size(zi). We are thus interested in the following

quantity for G a unit disk graph:
� Research partially supported by a VENI grant from Netherlands Organisation for

Scientific Research (NWO).
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size(G) := min
V realizes G

size(V).

Our main result in this paper is the following:

Theorem 1. There exists a γ > 1 such that for each n, there exists a unit disk
graph on n vertices with size(G) > γ

√
n.

Theorem 1 answers a question of Spinrad [8]. This question was also studied by
Van Leeuwen and Van Leeuwen [6], who dubbed it the Polynomial Represen-
tation Hypothesis (PRH) for unit disk graphs. The PRH for unit disk graphs
states that a unit disk graph can always be realized by points whose bit sizes are
bounded by some polynomial in the number of vertices n. Theorem 1 above thus
shows that this hypothesis is false. It is known that unit disk graph recognition is
NP-hard [1], but membership in NP is still an open problem. Had the PRH been
true, then this would have proved membership in NP, but as it is this remains
an open problem.

Theorem 1 could be seen as bad news for those wishing to design algorithms
for unit disk graphs. On the slightly positive side we offer the following upper
bound:

Theorem 2. There exists a constant γ such that for each n, each unit disk
graph G on n vertices has size(G) ≤ γn.

Our results also hold for disk graphs (intersection graphs of disks not all of the
same radius), but the proofs are more involved. We therefore postpone these
proofs to the journal version of this paper.

2 Proofs

A line arrangement is a family L = (
1, . . . , 
m) of lines in the plane. A line
arrangement is simple if every two lines intersect (there are no parallel lines),
and there is no point on three lines.

l4

l3

l2

l1

Fig. 1. A simple line arrangement
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A segment is the portion of a line between two intersections with other lines.
The size of a line arrangement L is the quotient of the length of a longest segment
and a shortest segment.

The combinatorial description D of a line arrangement L is obtained as fol-
lows. We assume without loss of generality that no line other than l0 is ver-
tical. We add an auxiliary vertical line 
0 to the left of all intersection points
of the lines and we store the order in which each line 
0, . . . , 
k intersects the
others from left to right (top to bottom for 
0). For instance, the combinato-
rial description of the line arrangement in figure 1 is given by the sequences
(1, 2, 3, 4), (0, 3, 2, 4), (0, 3, 1, 4), (0, 2, 1, 4), (0, 1, 2, 3). If the line arrangement L
has combinatorial description D then we say that L realizes D.

We shall make use of the following impressive result of Kratochvil and Ma-
tousek [5] and independently Goodman, Pollack and Sturmfels [2].

Theorem 3 ([5],[2]). For every k, there exists a combinatorial description of
a simple line arrangement on O(k) lines such that every realization of it has size
at least 22k

.

Here it should be mentioned that Kratochvil and Matousek’s proof of Theorem 3
can only be found in the technical report version [4]. The following proposition
allows us to encode a combinatorial description of a simple line arrangement into
a unit disk graph.

Lemma 1. Let D be a combinatorial description of a simple line arrangement
on k lines. There exists a unit disk graph G on O(k2) vertices such that for
every realization V = (z0, . . . , zm) of it, up to isometry, the line arrangement
L = {
1, . . . , 
k} where


i := {z : ‖z − z2i‖ = ‖z − z2i+1‖}, i = 1, . . . , k,

is a realization of D. Moreover, all the segments defined by L will have length at
most one.

Proof. Let L be a realization of D, and let 
0 be a vertical line to the left of all
intersection points. We will call a connected component of R2 \ (

⋃k
i=0 
i) a cell.

Let c denote the number of cells and put m = 2k + 1 + c. It is easily seen that
c = 1 + 1 + 2 + 3 + · · · + k = 1 +

(
k+1
2

)
. So in particular m = O(k2). Let us

arbitrarily label the cells as C1, . . . , Cc. For i = 1, . . . , c, we place a point p2k+1+i

in the interior of Ci (we shall define points p0, . . . , p2k+1 shortly).
Since none of the pjs that have been defined until now lie on the line li, for

any sufficiently large radius R, we can place disks D0
i (R) and D1

i (R) of radius
R on either side of 
i such that all the pjs are contained in one of D0

i (R) and
D1

i (R) (see figure 2). We now choose R big enough so that D0
i (R), D1

i (R)s can
be constructed with this property for all i = 0, . . . , k and moreover we make sure
that R is bigger than the distance between any of the pjs that have been defined
until now. We let p2i be the center of D0

i (R) and p2i+1 the center of D1
i (R)

for i = 0, . . . , k. To finish our construction, we set zi := 1
Rpi for i = 0, . . . , m
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D1
i (R)

li

D0
i (R)

Fig. 2. The construction of D1
i (R), D2

i (R)

and V := (z0, . . . , zm), and we let G be the corresponding unit disk graph on
vertex set {0, . . . , m}. To avoid confusion, let us stress that we use the second
definition of a unit disk graph given in the introduction, i.e. ij ∈ E(G) if and
only if ‖zi − zj‖ ≤ 1. This corresponds to the intersection graph of disks of
radius 1

2 centered on the zis (or disks of radius R
2 centered on the pis). Let us

observe that the set of vertices C = {2k + 2, . . . , m} forms a clique in G, and
the neighbourhoods N(2i), N(2i + 1) partition C into two non-empty parts for
all i = 0, . . . , k.

We claim that G is as required. To this end, let V ′ := (z′0, . . . , z
′
m) be an

arbitrary realization of G. For i = 0, . . . , k we set


′i := {z : ‖z − z′2i‖ = ‖z − z′2i+1‖}.

One of p0, p1 was to the left of 
0 in our original construction, without loss of
generality assume it was p0. By applying a suitable isometry if needed, we can
assume that 
′0 is vertical, and z′0 lies to the left of l′0 (and z′1 to its right).

Now consider an arbitrary line 
i for some i ∈ {0, . . . , k}. In the original
arrangement L, the line 
i intersects the other lines in some order (i1, i2, . . . , ik)
from left to right (top to bottom if i = 0 – in the next few paragraphs “left”
should be replaced by “top” and “right” by “bottom” in case i = 0). We wish
to show that 
′i intersects the other 
′js in the same order.

Let us relabel the points in the cells that are neighbouring 
i as t0, . . . , tk and
b0, . . . , bk where the tjs lie in the cells above 
i and the bj lie in the cells below

i, and t0, b0 lie in the leftmost cells, t1, b1 in the second leftmost cells and so on
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�j5
�j4

�j3
�j2�j1

�0

�i

t0

b0

t1

b1

t2

b2

t3

b3

t4

b4

t5

b5

t6

b6

Fig. 3. The intersections of �i with the other lines

(see figure 3). For r = 0, . . . , k, let t′r denote the point of V ′ corresponding to tr
and let b′r denote the point corresponding to br (by “corresponding to” we mean
that both represent the same vertex of G).

We say that a line 
 separates two sets A, B ⊆ R2 if A and B lie on different
sides of 
. For j = 1, . . . , k let us set Aj := {tr, br : r ≤ j}, Bj := {tr, br : r > j}
and A′

j := {t′r, b′r : r ≤ j}, B′
j := {t′r, b′r : r > j}. By our choice of p0, . . . , pm

above, all points in Aj have distance < R from p2ij and distance > R from
p2ij+1, and these inequalities are reversed for the points in Bj (swapping the
labels of p2ij , p2ij+1 if necessary). By construction of G, we must then also have
that all the points in A′

j have distance ≤ 1 to z′2ij
and distance > 1 to z′2ij+1 and

these inequalities are reversed for the points in B′
j . Thus, 
′ij

:= {z : ‖z−z′2ij
‖ =

‖z−z′2ij+1‖} separates A′
j from B′

j for all j = 1, . . . , k. For r = 0, . . . , k, let u′
r be

the intersection point of the segment [t′r, b
′
r] with 
′i and let v′r be the intersection

point of 
′jr
with 
′i (see figure 4). We must have that on 
′i the points {u′

0, . . . , u
′
j}

b′r+1

u′
r+1

t′r+1

v′
r

b′r

u′
r

t′r

�′i

�′jr

Fig. 4. The definition of u′
r and v′

r

and {u′
j+1, . . . , u

′
k} lie on different sides of v′j (here we use that the line segment

[t′r, b
′
r] stays on the same side of 
′ij

that t′r, b
′
r are on). From this last observation

it now follows that the order of the u′
js and v′js on 
′i from left to right is either

(u′
0, v

′
1, u

′
1, v

′
2, . . . , v

′
k, u′

k) or the reverse order (u′
k, v′k, u′

k−1, vk−1, . . . , v
′
1, u

′
0).
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Fig. 5. An intersection point lies in the convex hull of the cell-points

Suppose that i > 0. In this case we must have that i1 = 0, because the line 
0

lies to the left of all intersection points between other lines in the original line
arrangement L. Note that t′0, b′0 and hence also u′

0 lie to the left of l′0, since t′0, b′0
have distance ≤ 1 to z′0 and distance > 1 to z′1 and we have made sure that
z′0 lies to the left of l′0 and z′1 to the right. From this it follows that u′

0 is the
leftmost point among the u′

js, which in turn shows that 
i intersects the other
lines in the desired order.

Suppose that i = 0. We have seen that 
′0 intersects the other lines from top
to bottom either in the correct order, or in the reverse of the correct order. In
this last case we can reflect our point set (z′0, . . . , z

′
m) through the x-axis (notice

this does not change the left-to-right orders on other lines) to fix it.
This proves that indeed, after applying a suitable isometry, L′ has combina-

torial description D.
It remains to check that all the segments of the line arrangement L′ have

length at most 1. To this end, let p′ be the intersection point of two lines 
′i and

′j. Each of the four connected components of R2 \ (
′i ∪ 
′j) must contain at least
one element of C′ := {z′2k+2, . . . , z

′
m}. This is because the points of C′ inside

each of these regions corresponds with one of the non-empty sets of vertices
C ∩N(2i)∩N(2j), C ∩N(2i+1)∩N(2j), C∩N(2i)∩N(2j +1), C ∩N(2i+1)∩
N(2j+1) in G, where C = {2k+2, . . . , m} and N(j) denotes the neighbourhood
of j in G as before. It follows that p′ lies in the convex hull conv(C′) of C′ (see
figure 5). Finally notice that, as C is a clique in G, the distance between any
two points of C′ is at most 1. Thus, if p′, q′ are two intersection points of the
lines, then

‖p′ − q′‖ ≤ diam(conv(C′)) = diam(C′) ≤ 1.

This concludes the proof of Lemma 1 ��
The last ingredient for the proof of Theorem 1 is the following elementary ob-
servation. For completeness we provide a proof in the appendix.

Lemma 2. Let a, b ∈ Q be two rational numbers with bit sizes size(a), size(b) ≤
B. Then size(a + b), size(a− b), size(ab), size(a/b) ≤ 4B. ��
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Proof of Theorem 1. For an arbitrary k ∈ N, let D be the combinatorial descrip-
tion from theorem 3, and let G be the unit disk graph that Lemma 1 constructs
from it. It suffices to show that any realization of G has bit size at least Ω(2k).

To this end, let V = (z0, . . . , zm) be an arbitrary realization of G, and let B
be such that each coordinate of each zi is stored using at most B bits. Note that
we can also write li as

li = {z : (z2i+1 − z2i)T z = (z2i+1 − z2i)T (z2i+1 + z2i)/2}.

This shows that the intersection point between two lines is the solution to a
2 × 2 linear system Az = b where each entry of A and b can be obtained by
applying a bounded number of arithmetic operations (i.e. addition, substraction,
multiplication, division) to the coordinates of a bounded number of zjs. By
Lemma 2, the entries of A and b thus all have bit size O(B). From the familiar
formula (

a11 a12

a21 a22

)−1

=
( a22

a11a22−a12a21

−a12
a11a22−a12a21−a21

a11a22−a12a21

a11
a11a22−a12a21

)
,

we see that the intersection point z = A−1b can be obtained by a bounded num-
ber of arithmetic operations from the entries of A and b. By another application
of Lemma 2 we thus have that all intersection points have bit size O(B).

By construction of G, there are two intersection points v, w with 0 < ‖v−w‖ ≤
1/22k

(the longest segment has length at most 1 and the ratio of the longest to
the smallest segment is at least 22k

). Let sx := |vx−wx|, sy := |vy−wy|. At least
one of these numbers must be positive, assume without loss of generality it is
sx. Recall that rational numbers are stored as a pair (denominator, numerator)
of integers. We see from 0 < sx ≤ 1/22k

that its numerator must be at least
22k

, which gives size(sx) ≥ 2k. On the other hand, we have already seen that
size(sx) = O(B). Hence B = Ω(2k), which concludes the proof. ��
Theorem 2 is a straightforward consequence of a result of Grigor’ev and Vorob-
jov. The following is a reformulation of Lemma 10 in [3]:

Lemma 3 ([3]). For each d ∈ N there exists a constant C = C(d) such that
the following hold. Suppose that h1, . . . , hk are polynomials in n variables with
integer coefficients, and degrees deg(hi) < d. Suppose further that the bit sizes of
the all coefficients are less than B. If there exists a solution (x1, . . . , xn) ∈ Rn of
the system {h1 ≥ 0, . . . , hk ≥ 0}, then there also exists one with |x1|, . . . , |xn| ≤
exp[(B + ln k)Cn].

Proof of Theorem 2. Let G be a unit disk graph on n vertices. Consider the set
of all (x1, y1, . . . , xn, yn, R) ∈ R2n+1 that satisfy:
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(xi − xj)2 + (yi − yj)2 ≤ (R− 10)2, for all ij ∈ E(G),
(xi − xj)2 + (yi − yj)2 ≥ (R + 10)2, for all ij �∈ E(G),
R ≥ 100.

This is a system of 1+
(
n
2

)
polynomial inequalities of degree less than 3 in 2n+1

variables, with all coefficients small integers. It follows from the fact that any
unit disk graph has a realization with all distances different from 1 (see for
instance Proposition 1 of [6]) that the system has a solution, by “inflating” such
a realization. Hence, by lemma 3 there exists a solution to this system with all
numbers less than exp[γn] in absolute value for some γ (we absorb the factor
ln(1 +

(
n
2

)
) +O(1) by taking γ > C). Let us now round down all numbers to the

next integer. It is easily checked that we get a (x′
1, y

′
1, . . . , x

′
n, y′

n, R′) ∈ Z2n+1

that satisfies

(x′
i − x′

j)
2 + (y′

i − y′
j)

2 ≤ (R′)2, for ij ∈ E(G),
(x′

i − x′
j)

2 + (y′
i − y′

j)
2 > (R′)2, for ij �∈ E(G).

Hence, if we divide the x′
i, y

′
i by R′ we get a realization of G that uses O(γn)

bits per coordinate. ��
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A The Proof of Lemma 2

Proof of Lemma 2. Let a, b ∈ Q be arbitrary with size(a), size(b) ≤ B. Let us
write a = p1/q1, b = p2/q2 with pi, qi relatively prime integers for i = 1, 2. Note
that an integer n ∈ Z has bit size

size(n) = 1 + �log2(|n|+ 1)�, (1)

(the extra one is for the sign). From (1) it follows that for two integers n, m ∈ Z:

size(nm) ≤ size(n) + size(m),
size(n + m) ≤ 1 + max(size(n), size(m)). (2)

From ab = p1p2/q1q2 and (2), we see that

size(ab) ≤ size(p1p2) + size(q1q2)
≤ size(p1) + size(p2) + size(q1) + size(q2)
= size(a) + size(b)
≤ 2B.

Completely analogously, size(a/b) ≤ 2B.
From a + b = (p1q2 + p2q1)/q1q2 and (2) we see that

size(a + b) ≤ size(p1q2 + p2q1) + size(q1q2)
≤ 1 + max(size(p1) + size(q2), size(p2) + size(q1))

+ size(q1) + size(q2)
≤ 1 + 3B
≤ 4B.

Completely analogously, size(a− b) ≤ 4B. ��
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Abstract. We show that the left/right relation on the set of s-t-paths

of a plane graph [9] induces a so-called “submodular” lattice. If the em-

bedding of the graph is s-t-planar, this lattice is even consecutive. This

implies that Ford and Fulkerson’s uppermost path algorithm for maxi-

mum flow in such graphs [4] is indeed a special case of a two-phase greedy

algorithm on lattice polyhedra [2]. We also show that the properties sub-

modularity and consecutivity cannot be achieved simultaneously by any

partial order on the paths if the graph is planar but not s-t-planar, thus

providing a characterization of this class of graphs.

1 Introduction and Preliminaries

The special case of flows in planar graphs has always played a significant role in
network flow theory. The predecessor of Ford and Fulkerson’s well-known path
augmenting algorithm – and actually the first combinatorial flow algorithm at
all – was a special version for s-t-planar networks, i.e., those networks where s
and t can be embedded adjacent to the infinite face [4]. The basic idea of this
uppermost path algorithm is to iteratively augment flow along the “uppermost”
non-saturated s-t-path in the planar embedding of the network. In 2006, Bor-
radaile and Klein [1] established an intuitive generalization of this algorithm to
arbitrary planar graphs, which relies on a partial order on the set of s-t-paths
in the graph, called the left/right relation.

Another area of combinatorial optimization, which has so far been unrelated
to planar flow computations, is the optimization on lattice structures. In 1978,
Hoffman and Schwartz introduced the notion of lattice polyhedra [6], a gener-
alization of Edmond’s polymatroids based on lattices, and proved total dual
integrality of the corresponding inequality systems if certain additional proper-
ties hold. Later, several variants of two-phase greedy algorithms were developed,
e.g., by Kornblum [10], Frank [5], and Faigle and Peis [2], to solve quite general
classes of linear programs on these polyhedra efficiently.
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Our results. In this paper, we connect these two fields of research by showing
that the left/right relation induces a lattice on the set of simple s-t-paths in a
planar graph. If the network is s-t-planar, this lattice fulfills the two main prop-
erties required in Hoffman and Schwartz’ framework, called submodularity and
consecutivity. Our result implies that the uppermost path algorithm of Ford and
Fulkerson is a special case of the two-phase greedy algorithm on lattice polyhe-
dra, which, even more, can solve a variant of the flow problem with supermodular
and monotone weights on the paths. However, the case of general planar graphs,
i.e., not necessarily s-t-planar graphs turns out to be much more involved. In
fact, we will characterize s-t-planar graphs as the only class of planar graphs
that can be equipped with a lattice on the set of paths that is consecutive and
submodular at the same time.

Outline. In the remainder of this section we will define lattice polyhedra
(Subsection 1.1) and introduce the basic notions of graph structures (Subsec-
tion 1.2) and the left/right relation (Subsection 1.3) we need to present our
results. We then will discuss the left/right relation in s-t-planar graphs and pro-
vide an intuitive characterization for the relation in this class of graphs, which
leads to the insight that the relation induces a submodular and consecutive lat-
tice on such graphs (Section 2). In Section 3, we discuss the case of general
planar graphs and outline a considerably more involved proof to show that the
left/right relation induces a submodular lattice in the general case. Finally, in
Section 4 we show that consecutivity and submodularity cannot be achieved at
the same time by any partial order in the non-s-t-planar case.

All proofs omitted in this paper due to space constraints can be found [12].

1.1 Lattice Polyhedra

Our interest in lattices is motivated by a two-phase greedy algorithm that
can solve a primal/dual pair of very general linear programming problems on
so-called lattice polyhedra, which have first been introduced by Hoffman and
Schwartz [6]. More precisely, we are given a finite set E, a set system L ⊆ 2E ,
and two vectors c ∈ RE , r ∈ RL, and consider the covering problem

(C) min

{∑
e∈E

c(e)x(e) : x ∈ RE
+,

∑
e∈S

x(e) ≥ r(S) ∀S ∈ L
}

and its dual, the packing problem

(P ) max

{∑
S∈L

r(S)y(S) : y ∈ RL
+,

∑
S∈L:e∈S

y(S) ≤ c(e) ∀e ∈ E

}
.

Observe that the packing problem (P ) corresponds to an ordinary max flow
problem if L is the set of s-t-paths of a given network and r ≡ 1. Before we can
state Hoffman and Schwartz’ main result, we need to introduce some definitions.
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Definition 1 (Lattices, submodularity, consecutivity). Let E be a finite
set, L ⊆ 2E and � be a partial order on L. The pair (L,�) is a lattice if for all
S, T ∈ L the following two conditions are fulfilled.

– {L ∈ L : L � S, L � T } has a unique maximum element S ∧ T , called meet.
– {U ∈ L : U � S, U � T } has a unique minimum element S ∨ T , called join.

A function r : L → R is submodular if r(S ∧T )+ r(S∨T ) ≤ r(S)+ r(T ) for all
S, T ∈ L. It is supermodular, if r(S∧T )+r(S∨T ) ≥ r(S)+r(T ) for all S, T ∈ L.
A lattice L is submodular, if (S∧T )∩(S∨T ) ⊆ S∩T and (S∧T )∪(S∨T ) ⊆ S∪T
for all S, T ∈ L.1 It is consecutive if S ∩ U ⊆ T for all S, T, U ∈ L with
S � T � U .

Theorem 1 (Hoffman and Schwartz [6]). If L is a submodular and consec-
utive lattice and r is supermodular, then the inequality system defining (C) is
totally dual integral. In this case, the corresponding polyhedron is called lattice
polyhedron.

Note that even if all requirements of Theorem 1 are fulfilled, no general algorithm
is known that solves problems (C) and (P ) in time polynomial in the cardinal-
ity of the ground set E. However, if we additionally require r to be monotone
increasing w.r.t. � and assume that both r and the lattice are polynomially
computable in the sense that the maximum element of any restricted sublattice
of L can be found, an optimal and – in case of integral input – integral solution
can be computed efficiently. The corresponding two-phase greedy algorithm goes
back to Frank [5]. The following paragraph gives a brief sketch based on a refined
presentation by Faigle and Peis [2].

The two-phase greedy algorithm. The first phase constructs a feasible solution to
the dual problem (P ). In each iteration, the maximum element M of the current
lattice is obtained by an oracle call. From this set, a bottleneck element e with
minumum residual capacity is chosen. Now the dual variable corresponding to
M is increased as much as possible until the capacity of e is completely used
up. The bottleneck element is removed from the ground set, and the lattice is
restricted to the sublattice of sets not containing the removed elements. This
procedure is re-iterated until the the remaining restricted lattice is empty and
the first phase ends. In the second phase, the primal variables corresponding to
the bottleneck elements are iteratively set in such a way that complementary
slackness is fulfilled.

In a later section of this paper, we will show that ordering the set of s-t-
paths in an s-t-plane graph “from top to bottom” yields a lattice that fulfills
all requirements stated above. In this case, the first phase of the two-phase
greedy algorithm corresponds to iteratively saturating the uppermost path of
the network and erasing a corresponding bottleneck edge. This exactly coincides
1 Submodularity of lattices is connected to submodularity of functions in the following

way: A lattice is submodular if and only if all functions of the type f(S) :=
∑

e∈S x(e)

for some vector x ∈ RE
+ are submodular.
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with Ford and Fulkerson’s uppermost path algorithm, even solving the problem
for supermodular and monotone increasing weights on the paths.

1.2 Graphs

For the representation of graphs we will use a similar notation as used in [1].
Our results in Sections 2 and 3 will be valid for both directed and undirected
graphs. We will assume that we are given a directed graph G = (V, E) (if the
graph is undirected, we can direct it arbitrarily), but we will allow paths to use
all edges in arbitrary direction.2 For this purpose equip every edge e ∈ E with
two antiparallel darts, a forward dart −→e := (e, 1) pointing in the same direction
as the edge and a backward dart←−e := (e,−1) pointing in the opposite direction.

Definition 2. We define
←→
E := E×{1,−1} to be the set of all darts. For a dart

(e, i) we use rev((e, i)) := (e,−i) to refer to its reverse. For e = (v, w), we let
tail(−→e ) = v = head(←−e ) and head(−→e ) = w = tail(←−e ). For D ⊆ ←→E , we define
E(D) := {e ∈ E : −→e ∈ D or ←−e ∈ D}. We use G[Ẽ] to refer to the subgraph
that only contains the edges Ẽ ⊆ E.

The basic notions of paths, cycles, and cuts are defined in the natural way except
that all of these objects consist of darts rather than edges.

Definition 3 (Walk, path, cycle). A simple x-y-path is a non-empty se-
quence of darts d1, . . . , dk such that head(di) = tail(di+1) for i ∈ {1, . . . , k − 1}
and x = tail(d1) and y = head(dk). If for all darts of an x-y-walk the underlying
edges are pairwise distinct, then the walk is called x-y-path for x �= y or cycle if
x = y. A path or cycle is called simple if the heads of all its darts are pairwise
distinct.

A planar graph is a graph that can be drawn on (or embedded in) the plane
without any two edges intersecting. A graph together with such an embedding
is called plane graph. The embedding partitions the plane into regions that are
bordered by the edges. These regions are called faces and can be used to define
the dual graph G∗ as follows. The vertex set V ∗ of G∗ is the set of all faces.
For every edge in G, we introduce a corresponding edge in G∗ that connects the
faces that are separated by this primal edge, going from right to left. We refer
to the faces left and right of a dart d ∈ ←→E by left(d) and right(d), respectively.
The face surrounding the drawing is called the infinite face f∞.

1.3 The Left/Right Relation

Assumption. For the rest of this paper, let G = (V, E) be a connected, planar
graph, s, t ∈ V , with an embedding such that t is adjacent to f∞. Furthermore,
let P be the set of all simple s-t-paths in G.
2 This helps to streamline the proofs, the resulting lattice can be restricted to directed

paths later on by removing all paths that use backward darts. Note that removing

elements from the ground set preserves submodular lattice structures.
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In order to define a partial order on P , we consider the vector space that is
spanned by the edges of the graph and the subspace spanned by all cycles. It is
well-known that the (clockwise) boundaries of the non-infinite faces comprise a
basis of this cycle space.

Definition 4. For a path or cycle P ⊂ ←→
E we define the vector δP ∈ RE by

δP (e) := 1 if −→e ∈ P , δP (e) := −1 if ←−e ∈ P and δP (e) := 0 otherwise. For a
face f ∈ V ∗ we define δf to be the vector corresponding to the set of darts in
the clockwise boundary of f (with antiparallel darts canceling out). For a vector
δ ∈ RE, we let δ(−→e ) := δ(e), δ(←−e ) := −δ(e).

Definition 5. The subspace Scycle(G) := span{δC : C is a cycle in G} is called
cycle space. Its elements are called circulations. The set {δf : f ∈ V ∗\{f∞}} is a
basis of Scycle(G). In particular, there is a unique linear mapping Φ : Scycle(G) →
RV ∗

, such that Φ(δ)(f∞) = 0 and δ =
∑

f∈V ∗ Φ(δ)(f)δf for all δ ∈ Scycle(G).
The vector Φ(δ) is called the face potential of δ.

The left/right relation goes back to an order on circulations in planar graphs by
Khuller et al. [8] that was generalized to flows by Weihe [13] and later specified
for s-t-paths by Klein [9]. It yields useful applications for shortest path and
maximum flow computations in planar graphs (cf. [9] and [1], respectively) and
is based on the face potentials introduced above. Intuitively, the definition states
that P � Q if and only if the circulation consisting of P and the reverse of Q is
clockwise (as positive face potentials correspond to clockwise circulations).

Definition 6 (Left/right relation). Let P, Q ∈ P. If Φ(δP − δQ) ≥ 0, we say
that P is left of Q and write P � Q. If Φ(δP − δQ) ≤ 0, we say that P is right
of Q and write P � Q.

Khuller et al. [8] showed that the left/right relation induces a lattice on the set of
circulations in a planar graph corresponding to a min/max lattice on the space
of face potentials. We will show that the relation also induces a lattice on the
set of simple s-t-paths.

2 Uppermost Paths and the Path Lattice of an s-t-Plane
Graph

Intuitively speaking, the uppermost path of an s-t-plane graph, is the s-t-path
forming its “upper” boundary in a drawing where s is on the very left and t is on
the very right of the drawing. The idea goes back to Ford and Fulkerson, who used
it to introduce the uppermost path algorithm for the maximum flow problem in s-
t-planar graphs [4], which iteratively saturates the uppermost residual path. We
will give a definition of the uppermost path in combinatorial terms and use it to
characterize the left/right relation in s-t-plane graphs. This yields all the desired
lattice properties of the partial order and thus shows that the uppermost path
algorithm corresponds to the two-phase greedy algorithm, which also saturates
the maximum (w.r.t. �) “residual” element of the lattice in each iteration [2].
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s t

e1 e3

e2 e4

e5

P1

P2 P3

P4

(P ,�)G = (V, E)

P1 P2 P3 P4

Fig. 1. An s-t-plane graph and the set of its simple s-t-paths ordered w.r.t. the

left/right relation

Assumption. Throughout Section 2, we assume that the embedding of G is
s-t-planar.

Theorem 2 (Uppermost and lowermost path). There is a unique path
U ∈ P such that left(d) = f∞ for all d ∈ U . It is called uppermost path of G.
There also is a unique path L ∈ P such that right(d) = f∞ for all d ∈ L. This
path is called lowermost path of G.

Clearly, if U is the uppermost path of G, then U is also the uppermost path of
any subgraph of G containing all edges of U . We will the following two helpful
observations that are direct implications of the duality of cycles and cuts in
planar graphs [14].

Lemma 1 (Orientation lemma). Let U be the uppermost path of G and P
any path of G. If d ∈ U then rev(d) /∈ P .

Lemma 2 (Bridge lemma). Let d ∈ ←→E . If left(d) = right(d), then d is either
contained in all simple s-t-paths or in none.

This suffices to characterize the left/right relation in an s-t-plane graph in terms
of the uppermost path property.

Theorem 3. Let P, Q ∈ P. Then the following statements are equivalent.

1. P is the uppermost path in G[E(P ∪Q)].
2. Q is the lowermost path in G[E(P ∪Q)].
3. P is left of Q.

Proof. Without loss of generality, we can identify φ := Φ(δP − δQ) with a poten-
tial function in G[E(P ∪Q)], as edges not in P or Q do not affect the potentials.

(1) ⇔ (2) : Suppose P is the uppermost path of G[E(P ∪ Q)]. Let L be the
lowermost path of G[E(P ∪Q)]. Let d ∈ L. If d belongs to an edge of E(P ),
the orientation lemma ensures that d ∈ P . Consequently, d ∈ P ∩ L, and
thus leftG[E(P∪Q)](d) = f∞ = rightG[E(P∪Q)](d), implying d ∈ Q by the
bridge lemma. Hence E(L) ⊆ E(Q), and as the two paths are simple, they
are equal. The converse follows by symmetry.
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(2) ⇒ (3) : Suppose Q is the lowermost path of G[E(P ∪Q)] and thus P is its
uppermost path. Let f be a face of G[E(P ∪Q]) and let d be a dart of that
graph with right(d) = f . If rev(d) ∈ P or d ∈ Q, then f = right(d) = f∞,
implying φ(f) = 0. Otherwise, d ∈ P or rev(d) ∈ Q, implying left(d) = f∞
and φ(f) = φ(f∞) + δP (d) − δQ(d) ≥ 0. Thus, φ ≥ 0.

(3) ⇒ (1) : Suppose φ ≥ 0. Let U be the uppermost path of G[E(P ∪Q)] and
d ∈ U . By the orientation lemma, d ∈ P or d ∈ Q. But d ∈ Q \ P is not
possible, as δP (d)−δQ(d) = φ(right(d))−φ(f∞) ≥ 0. So d ∈ P for all d ∈ U ,
i.e., U = P . ��

Thus, the left/right order in s-t-plane graphs is in fact an uppermost/lower-
most path order. Before we can show that this indeed yields a lattice, we need a
final auxiliary result, which states that we can add a path to a subgraph without
changing its uppermost path, as long as there already is a path above the path we
add. This follows by simple elementary arguments using the orientation lemma
and the bridge lemma.

Lemma 3. Let Ē ⊆ E be an edge set such that G[Ē] is connected and let Q ∈ P.
If there is an s-t-path P in G[Ē] with P � Q, then the uppermost path of
G[Ē ∪ E(Q)] is equal to the uppermost path of G[Ē].

Finally, we can show the existence of a consecutive and submodular path lattice
in an s-t-plane graph. We even get a nice characterization of meet and join of
this lattice as the lowermost and uppermost path of G[E(P ∪Q)].

Theorem 4. (P ,�) is a consecutive and submodular lattice with P ∧ Q being
the lowermost path in G[E(P ∪ Q)] and P ∨ Q being the uppermost path in
G[E(P ∪Q)].

Proof. Let P, Q, R ∈ P .

Meet and join: Let U be the uppermost path in G[E(P ∪Q)]. Then P, Q � U .
Let U ′ ∈ P with P, Q � U ′. Then U ′ is the uppermost path of G[E(P ∪U ′)∪
E(Q)] by Lemma 3. As U is contained in this graph, U � U ′. Thus, U is
the least upper bound on P and Q with respect to �. The characterization
of the meet follows by symmetry.

Consecutivity: Suppose P � Q � R. Then P is the lowermost path and R
is the uppermost path of G′ := G[E(P ∪ R) ∪ E(Q)] by Lemma 3. Thus,
rightG′(d) = f∞ = leftG′(d) for all d ∈ P ∩ R. By the bridge lemma, this
implies d ∈ Q.

Submodularity: As we have proven consecutivity, it suffices to show P ∧Q, P ∨
Q ⊆ P ∪ Q. This immediately follows from the definition of P ∧ Q and
P ∨Q as lowermost and uppermost path of G[E(P ∪Q)] and the orientation
lemma. ��

An example of a graph and its path lattice is depicted in Figure 1. Our result
implies total dual integrality of the maximum flow problem in s-t-planar graphs,
even when we introduce supermodular weights on the paths. Applying the two-
phase greedy algorithm on the lattice yields an implementation of the uppermost
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P

rev(Q)

φ(f)

s t-1

0

10

least common

upper bound

largest common

lower bound
leftmost path rightmost path

Fig. 2. This example shows that the rightmost path of G[E(P∪Q)] is not necessarily the

largest common lower bound of the two paths in non-s-t-planar embeddings. However,

subtracting the “positive” part of the circulation from P yields P ∧Q.

path algorithm by Ford and Fulkerson that solves the maximum flow problem
on s-t-planar graphs, also for the case of supermodular and monotone increasing
path weights (cf. [12] for more details).

Running time. It can be shown that the general two-phase greedy algorithm
can be implemented to run in time O(|E| log(|E|) + TL + Tr) where TL and Tr

is the total time for computing the sequence of consecutive maximum elements
of the lattice restrictions and the corresponding values of r, respectively. In the
special case of the path lattice in s-t-planar graphs, successive uppermost paths
occurring throughout the course of the algorithm can be computed in amortized
constant time, yielding an overall running time of O(|V | log(|V |)), the same
time that was shown by Itai and Shiloach [7] for the uppermost path algorithm.
Details on this implementation of the two-phase greedy algorithm in general and
the uppermost path algoritm in particular can be found in [12].

3 The Path Lattice of a General Plane Graph

We will now show that the left/right relation also defines a lattice in general
plane graphs. However, the proof will require significantly more effort this time.
In contrast to the s-t-planar case, meet and join of two paths P, Q ∈ P are not
always the minimum (rightmost) and maximum (leftmost) path in G[E(P∪Q)] in
the general case (cf. Figure 2 for an example). The intuitive idea for constructing
the meet is the following: We subtract the “positive part” of the circulation
δP − δQ (i.e., those faces that prevent P from being right of Q) from the path
P . In this way we obtain a set of darts DP∧Q ⊆ P ∪Q that contains the meet
P ∧Q, as we shall see later. We formalize this idea in the following lemma.
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Lemma 4. Let P, Q ∈ P and φ := Φ(δP − δQ).

– Let S+ := {f ∈ V ∗ : φ(f) > 0} and δP∧Q := δP −
∑

f∈S+ φ(f)δf . Then

δP∧Q ∈ {−1, 0, 1}E and DP∧Q := {d ∈ ←→E : δP∧Q(d) = 1} ⊆ P ∪Q.
– Let S− := {f ∈ V ∗ : φ(f) < 0} and δP∨Q := δP −

∑
f∈S− φ(f)δf . Then

δP∨Q ∈ {−1, 0, 1}E and DP∨Q := {d ∈ ←→E : δP∨Q(d) = 1} ⊆ P ∪Q.

It is straightforward to check that if P � Q, then P = DP∧Q and Q = DP∨Q.
Unfortunately, DP∧Q and DP∨Q are not s-t-paths in general. However, it can
be shown that each of these sets consists of a unique simple s-t-path and some
cycles and that these paths are meet and join of P and Q, respectively. The proof
of Lemma 4 can be obtained by a simple case distinction, and, as a by-product,
leads to the following additional result.

Lemma 5. Let R be a simple path and C be a simple cycle in DP∧Q or DP∨Q,
respectively. If R∩C = ∅, then R does not cross C, i.e., all darts of R are either
in the interior of C or none of them is.

The following lemma is the key insight on our way to proving the desired result.
Its proof, however, is rather lengthy and involves many minor details. The key
idea is that such a cycle must consist of edges of P and Q and that these paths
can only enter or leave the cycle from or to the left, i.e., from or towards its
interior, thus being “trapped” inside the cycle.

Lemma 6. There are no counterclockwise simple cycles in DP∧Q. There are no
clockwise cycles in DP∨Q.

Theorem 5. (P ,�) is a submodular lattice with P ∧Q being the unique simple
s-t-path contained in DP∧Q and P ∨Q being the unique simple s-t-path contained
in DP∨Q.

Proof. As δP∧Q ∈ {−1, 0, 1}E is the sum of δP and some circulations, δP∧Q is a
unit s-t-flow of value 1. Thus, there is a flow decomposition δR+

∑k
i=1 δCi = δP∧Q

for a simple s-t-path R ⊆ DP∧Q and some – by Lemma 6 clockwise – simple
cycles C1, . . . , Ck ⊆ DP∧Q with E(R), E(C1), . . . , E(Ck) pairwise disjoint.

By linearity of Φ, we deduce that Φ(δP − δR) = Φ(δP − δP∧Q) +
∑k

i=1 Φ(δCi)
and Φ(δP − δR) = Φ(δQ − δP∧Q) +

∑k
i=1 Φ(δCi). Since Φ(δP − δP∧Q) ≥ 0 and

Φ(δQ − δP∧Q) ≥ 0 by construction of δP∧Q and Φ(δCi) ≥ 0 for the clockwise
cycles Ci, this implies R � P and R � Q.

Now let S ∈ P be a path with S � P and S � Q. We show S � R. First, we
consider only faces incident to R. So let f̄ ∈ {left(d) : d ∈ R}∪{right(d) : d ∈ R}.
By Lemma 5, R cannot cross any of the cycles Ci, and, as t is on the exterior of
any such cycle, R cannot have any darts in the interior of a cycle. This implies
that f̄ is not in the interior of any of the cycles Ci and Φ(δCi)(f̄) = 0. Thus,
Φ(δR − δS)

(
f̄
)

is equal to Φ(δP − δS)
(
f̄
)

if f̄ /∈ S+ and equal to Φ(δQ − δS)
(
f̄
)

if f̄ ∈ S+. In both cases Φ(δR − δS)
(
f̄
)

is non-negative.
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Now let f̂ ∈ V ∗ be any face. As S does not contain a cycle in the primal
graph, it does not contain a cut in the dual graph. Thus, there is a path in the
dual that leads from f̂ to some face f̄ incident to R and does not intersect S
or R, i.e., the potential does not change along the path. Thus Φ(δR − δS)(f̂) =
Φ(δR − δS)(f̄) ≥ 0. Consequently, S � R.

We thus have shown that R is the meet of P and Q (R is unique by anti-
symmetry). Likewise, we can show that DP∨Q contains a unique s-t-path that
is the least common upper bound of P and Q. Thus, (P ,�) is a lattice with
meet and join as described above. Submodularity follows from the same case
distinction that can be used to prove Lemma 4. ��

Complete versions of the proofs in this section can be found in [12].

4 A Characterization of s-t-Planar Graphs

It is easy to observe that the path lattice induced by the left/right relation in
general planar (but non-s-t-planar) graphs is not necessarily consecutive (cf. the
paths P1, P2, P4 in Figure 3). Of course one might ask whether this property can
be achieved by a different partial order on the paths. Indeed, one can show that
no partial order in any planar but not s-t-planar graph can induce a lattice that
is submodular and consecutive at the same time.

The central idea to proving this negative result is to show it for two graphs
that comprise the s-t-planar equivalent to the famous Kuratowski graphs K3,3

and K5 [11]. So let Ks−t
3,3 and Ks−t

5 be the graphs that arise from the respective
Kuratowski graphs by deleting the edge connecting s and t (Ks−t

3,3 is depicted in
Figure 3).

Lemma 7. Let P, Q ∈ P such that the subgraph G[E(P ∪Q)] contains only the
two paths P and Q. If � is a partial order that induces a submodular lattice,
then P � Q or P � Q.

s
e
2

e1

e5

e
4

e3

t

e
7

e8

e6 P1 P2

P3 P4

Fig. 3. The graph Ks−t
3,3 and four of its s-t-paths, which suffice for showing that there is

no partial order that induces a submodular and consecutive lattice on the set of paths
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Proof. By submodularity, P∨Q ⊆ P∪Q and thus P∨Q is a path in G[E(P∪Q)].
This implies P ∨Q = P or P ∨Q = Q. ��

Lemma 8. The set of s-t-paths in Ks−t
3,3 or Ks−t

5 (or a subdivision of these
graphs) cannot be equipped with a partial order �, such that (P ,�) is a consec-
utive and submodular lattice.

Proof. Assume by contradiction � is defined such that (P ,�) is a consecutive
and submodular lattice with meet ∧ and join ∨ on the set of s-t-paths in Ks−t

3,3 .
Consider the four paths P1, P2, P3, P4 depicted in Figure 3. It can easily be
checked that Pi and Pj are the only two s-t-paths in G[E(Pi ∪ Pj)] for i �= j.
Thus, by Lemma 7, the paths form a chain w.r.t. �. Since P1 and P2 are the
only two of the paths sharing −→e7 as common dart, and P2 and P3 are the only
two of the paths sharing −→e1 , and P3 and P4 are the only two of the paths
sharing −→e8 , consecutivity demands that either P1  P2  P3  P4 or
P1 ≺ P2 ≺ P3 ≺ P4. In both cases −→e2 ∈ P1 ∩P4 \P2 yields a contradiction to
consecutivity. Note that all arguments used in this proof are invariant under the
operation of subdividing edges. The result for Ks−t

5 can be derived by a similar
line of argumentation. ��

Theorem 6. A graph is s-t-planar if and only if it is planar and there is a
partial order on the set of its s-t-paths that induces a consecutive and submodular
lattice.

Proof. Necessity follows from Theorem 5. For sufficiency, let G be a graph that
is planar but not s-t-planar. Let G′ be the graph that is obtained from G by
adding an edge e from s to t. As G is not s-t-planar, G′ is not planar and thus,
by Kuratowski’s theorem, it contains a subdivision K ′ of K3,3 or K5. As G
is planar, one of the subdivided edges in K ′ must contain e. Let s′ and t′ be
the endpoints that are connected by this subdivided edge. Clearly, G contains
a subdivision K of Ks′−t′

3,3 or Ks′−t′
5 , respectively. By Lemma 8, there is a set

of s′-t′-paths in K (and thus in G) that cannot be equipped with any partial
order that induces a consecutive and submodular lattice. These paths can all be
extended to s-t-paths in G by using the s-s′-path and the t′-t-path contained in
the subdivided edge connecting s′ and t′ in K. Thus G contains a set of s-t-paths
that cannot be equipped with a partial order of a consecutive and submodular
lattice. ��

5 Conclusion and Outlook

We have established a connection between optimization on lattice polyhedra and
planar network flow theory by showing that the structure exploited by two im-
portant flow algorithms corresponds to a submodular lattice. For the s-t-planar
case, this implies that the uppermost path algorithm of Ford and Fulkerson is
a special case of a more general two-phase greedy algorithm, which allows for
certain types of weights on the lattice sets. Thus, a closer study of the weighted
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maximum flow problem is of obvious interest. First results in this direction can
be found in [12]. Future research could also deal with the question in how far
the structural result presented here lead to new insights for existing or new pla-
nar graph algorithms. Finally, it might be interesting to investigate whether the
path lattice is distributive and our results extend a line of distributive lattices
in planar graph structures connected to the left/right relation [3].
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