
Reasoning about Safety and Progress
Using Contracts

Imene Ben-Hafaiedh, Susanne Graf, and Sophie Quinton

Université Joseph Fourier, VERIMAG

Abstract. Designing concurrent or distributed systems with complex
architectures while preserving a set of high-level requirements through
all design steps is not a trivial task. Building upon a generic notion
of contract framework which relies on a component framework and two
refinement relations: conformance and refinement under context, we pro-
vide a condition under which circular reasoning can be used for check-
ing dominance, i.e. refinement between contracts. We then propose an
instantiation of such a contract framework for safety and progress re-
quirements in component systems with data exchange. This allows us to
prove non-trivial properties of a protocol for tree-like networks.

1 Introduction

We aim at a scalable methodology for design and verification of distributed
component systems of arbitrary size with complex architectures which preserves
a set of high-level requirements through all design steps. Like in contract-based
design [1], we use contracts to constrain, reuse and replace implementations.

In this paper we formalize and extend the verification methodology intro-
duced in [2] to distributed component systems of arbitrary size and we show
its usefulness for proving safety and progress properties in networked systems.
This methodology consists in two phases: (1) define a general notion of contract
framework stating the necessary ingredients — a component framework, notions
of conformance (for ensuring global properties ϕ), satisfaction (of contracts by
implementations), and dominance (refinement between contracts). Rules for es-
tablishing dominance and validity conditions for them are provided. (2) for any
particular application, one only has to define instantiations of these generic no-
tions and check the validity conditions. Once the concrete framework has been
defined, the rules for dominance can be applied without any further proofs.

For expressing the rich, yet abstract specifications required by our example,
we propose a formalism similar to symbolic transition systems as introduced in
[3], which we extend in several ways. We define progress constraints generalizing
the usual strong and weak fairness and we decorate control states with invariants
on state variables. We also consider an explicit composition model represented
by sets of connectors. Each connector defines a set of interactions and a transfor-
mation on (non persistent) port variables, where ports name transitions of the
local components involved in the interaction. For achieving scalability, we base

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 436–451, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Reasoning about Safety and Progress Using Contracts 437

verification on an abstract semantics in which explicit values of state variables
are abstracted by the defined state invariants. Given the complexity of the spec-
ifications, not having to prove the correctness of the proof rules in this concrete
setting is very helpful.

��������

��������

��
��
��

��
��
��

����
����
����
����

��
��
��

��
��
��

��������

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

��
��
��

��
��
��

���
���
���
���

ϕ

glI

|=

I1

C1 gl1

|=

I2

C2 gl2 C3

Step (2): decomposition

G3

|=

I3

gl3

(satisfaction) Step (4): satisfaction

Step (3):

G A

gl

G1

G2

Step (1): conformance

K

K1 K2

{C1, C2, C3}

K3

w.r.t. glI

dominates C

PAi

PA

Pi

PK

� (conformance)

C

Fig. 1. Methodology steps ensuring that gl{A, glI{I1, I2, I3}} � ϕ

Methodology. Figure 1 illustrates our design and verification methodology. It
is represented in a top-down fashion in which high-level properties are pushed
progressively from the overall system into atomic components — which we call
implementations. As usual, this is just a convenient representation; in real life,
we will always achieve the final picture in several iterations alternatively going
up and down. We are interested in systems with a complex architecture which
are potentially of arbitrary size.

We suppose given a global property ϕ which the system K under construction
has to realize together with an environment on which we may have some knowl-
edge, expressed by a property A. ϕ and A are expressed w.r.t the interface PK

of K. We proceed as follows: (1) define a contract C for PK which conforms to ϕ;
(2) define K as a composition of subcomponents Ki and a contract Ci for each of
them; possibly iterate this step if needed. (3) prove that any set of implementa-
tions (components) for Ki satisfying the contracts Ci, when composed, satisfies
the top-level contract C (dominance) — and thus guarantees ϕ; (4) provide such
implementations.

The global property ϕ appears at the top of Figure 1, while the implementa-
tions Ii are at the bottom.

438 I. Ben-Hafaiedh, S. Graf, and S. Quinton

The correctness proof for a particular system is split into 3 phases: confor-
mance of the top-level contract C to ϕ, dominance between the contracts Ci and
C, satisfaction of the Ci by the implementation Ii.

To be more precise, we use the notion of context for an interface P to describe
how a component with interface P is intended to be connected to its environment
and provides a property A expected from this environment. In the sequel, we
denote composition operators by gl — standing for “glue” [4]. A context is then
of the form (gl , A). A contract for an interface P consists of a context (gl , A)
and a property G on P that the component under design must ensure in the
given context in order to satisfy this contract. Conformance relates properties
of closed systems and dominance relates contracts.

Related work. We propose here 3 improvements with respect to [2]: (a) we do
not suppose a fixed composition operator: we encompass any composition satis-
fying some basic properties; (b) we extend the definition of contract framework
to take into account port hiding which is a key ingredient for proving refinement
between specifications at different levels of granularity; (c) we provide a complex
application using an instantiation with variables and data transfer and allowing
expression of liveness properties. The proof steps are performed automatically.

Interfaces [5] have been proposed for a purpose similar to ours. However,
we are interested here in rich exogenous composition operators which allow to
represent abstractions of protocols, middleware components and orchestrations
whereas assumptions and guarantees should constrain peers at the same or at
an upper layer. These composition operators cannot be encoded into interface
automata, which are I/O based.

Other formalisms for describing such rich connectors abstractly have been
proposed, e.g., the Kell calculus [6] or the connector calculus Reo [7]. Kell is,
however, mainly concerned with obtaining correctly typed connectors, and Reo
supposes independence amongst connectors and does not take into account con-
straints imposed by components. The composition operators used in our appli-
cation are defined using a subset of the rich connectors of the BIP component
framework [8] because these connectors have the required expressiveness, define
interaction with component behaviors and handle conflicting connectors.

Organization. Section 2 introduces and extends the notions from [2] of contract
framework and properties that conformance, dominance and satisfaction must
ensure in order to support this methodology. In section 3, we give an instantiation
of this framework based on symbolic transition systems and rich connectors,
which is expressive enough for the safety and progress properties we want to
prove. Finally, Section 4 applies the methodology to a resource sharing algorithm
in a networked system of arbitrary size: the actual conformance, dominance and
satisfaction proofs are automated in a tool developed for this purpose.

2 A Contract-Based Design Framework and Methodology

We develop our methodology on a generic framework that supports hierarchical
components and mechanisms to reason about composition. The following notions

Reasoning about Safety and Progress Using Contracts 439

and properties form the basis of this framework. Here, we use glue operators [4]
to generalize the operation of parallel composition found in most traditional
frameworks. The notion of component is intentionally kept very abstract to en-
compass various frameworks. It can be e.g. a labeled transition system, but it
can also have a structural part, e.g. it can be a BIP component.

Definition 1 (Component framework). A component framework is a struc-
ture of the form (K,GL, ◦,∼=) where:

– K is a set of components. Each component K ∈ K has as its interface a set
of ports, denoted PK .

– GL is a set of glue (composition) operators. A glue is a partial function
2K −→ K transforming a set of components into a new component. Each gl ∈
GL is associated with a set of ports Sgl from the original set of components
— called its support set — and a new interface Pgl for the new component
— called its exported interface. A composition K = gl({K1, . . . , Kn}) is
defined if K1, . . . , Kn ∈ K have disjoint interfaces, Sgl =

⋃n
i=1 PKi and the

interface of K is Pgl , the exported interface of gl .
– ∼=⊆ K × K is an equivalence relation. In general, this equivalence is derived

from equality or equivalence of semantic sets.
– ◦ is a partial operation on GL to hierarchically compose glues. gl ◦ gl ′ is

defined if Pgl′ ⊆ Sgl . Then, its support set is Sgl\Pgl′ ∪Sgl ′ and its interface
is Pgl (cf. Figure 2). Furthermore, ◦ must be coherent with ∼= in the sense
that gl{gl ′{K1},K2} ∼= (gl ◦ gl ′){K1 ∪ K2} for any sets of components Ki

such that all terms are defined.

To simplify the notation, we write gl{K1, . . . , Kn} instead of gl({K1, . . . , Kn}).
Figure 2 shows how hierarchical components and connectors are built from
atomic ones. Note that exported ports of internal connectors (which are not
connected) are not represented in this figure.

����
����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����
����

������

����
����
����
���� ��

��
��

��
��
��

Sgl′

Sgl

K3

gl ′{K1, K2}
K4

K1

gl{gl ′{K1, K2}, K3, K4}

K2

Fig. 2. Hierarchical components and connectors

We use the notion of context to restrict how a component may be further
composed. The set of contexts is denoted Γ .

Definition 2 (Context). A context for an interface P is a pair (E, gl) where
E ∈ K is such that P ∩ PE = ∅ and gl ∈ GL is defined on P ∪ PE.

440 I. Ben-Hafaiedh, S. Graf, and S. Quinton

We introduce two refinement relations to reason about contracts: conformance,
which we informally introduced when discussing our methodology; and refine-
ment under context, used to define satisfaction and dominance. Refinement under
context is usually considered as a derived relation and chosen as the weakest re-
lation implying conformance and ensuring compositionality, i.e., preservation by
composition. We loosen the coupling between these two refinements to obtain
stronger reasoning schemata for dominance.

Definition 3 (Contract framework). A contract framework is a tuple
(K,GL, ◦,∼=, {
c}c∈Γ , �) where:

– (K,GL, ◦,∼=) is a component framework.
– {
c}c∈Γ is a set of refinement under context relations, one for each context

in Γ . Given a context (E, gl) for an interface P,
E,gl is a preorder over
the set of components on P.

– �⊆ K × K is a conformance relation between components with the same
interface. It is a preorder such that for any K1, K2 on the same interface P
and for any context (E, gl) for P, K1
E,gl K2 =⇒ gl{K1, E} � gl{K2, E}.

Example 1. Typical notions of conformance � are trace inclusion and simulation.
For these notions of conformance, refinement under context (denoted
�) is

usually defined as the weakest preorder included in � that is compositional:

K1
�
E,gl K2 � gl{K1, E} � gl{K2, E}

Note that there are cases where a stronger notion of refinement under context
allows more powerful reasoning, e.g. circular reasoning as used later in this paper.

Definition 4 (Contract). A contract C for an interface P consists of:

– a context E = (A, gl) for P; A is called the assumption
– a component G on P called the guarantee

We write C = (A, gl , G) rather than C = ((A, gl), G). The interface of the envi-
ronment is implicitly defined by gl while A expresses a constraint on it and G a
constraint on the refinements of K. The “mirror” contract C−1 of C is (G, gl , A),
i.e. a contract for the environment.

Definition 5 (Satisfaction of contract). A component K satisfies a contract
C = (A, gl , G), denoted K |= C, if and only if K
A,gl G.

In interface theories [5], a single automaton is used to represent both A and
G (gl is predefined), namely gl{A, G}. Only one pair (A, G) corresponds to an
interface, because each transition is controlled either by the component or the
environment. However, in frameworks with rendez-vous interaction, several pairs
(A, G) can correspond to the same interface, as both the component and its
environment may prevent a rendez-vous from taking place. This is why we keep
assumptions and guarantees separate.

Our notion of contract has a structural part, which makes this definition very
general by encompassing any composition framework. A more practical advan-
tage is related to system design: it allows us to separate the architecture and

Reasoning about Safety and Progress Using Contracts 441

the requirements of the system under construction, which evolve independently
during the development process. In particular, in frameworks where interaction
is rich, refinement can be ensured by relying heavily on the structure of the
system and less importantly on the behavioral properties of the environment.

Dominance is the key notion that distinguishes reasoning in a contract or
interface framework from theories based on refinement between components.
Contract C is said to dominate contract C′ if every implementation of C — i.e.,
every component satisfying C — is also an implementation of C′. Intuitively, this
is achieved by a C′ that has a stronger promise or a weaker assumption than C.

In our general setting — which does not refer to any particular composition
or component model — it is not sufficient to define dominance just on a pair
of contracts. A typical situation that we have to handle is that of a hierarchical
component depicted in Figure 1, where a set of contracts {Ci}n

i=1 is defined for
the inner components (on disjoint interfaces {Pi}n

i=1) and a contract C for the
hierarchical component whose interface is the exported interface of a composition
operator glI defined on P =

⋃n
i=1 Pi. It looks attractive to solve such a problem

by defining a contract algebra as in [9], as checking dominance boils then down to
checking whether g̃l{C1, ... , Cn} dominates C for some operator g̃l on contracts.
This is, however, not possible for arbitrary component frameworks. We thus
provide a broader dominance defined directly for a set of contracts {Ci}n

i=1 and
a contract C to be dominated w.r.t a composition operator glI .

In order to allow hiding ports of the lower-level contracts which do not ap-
pear at the interface of the top-level contract, we relax the constraints on the
composition operators by only requiring that they agree on their common ports.
For this, we need a notion of projection of a component K onto a subset P ′ of
its interface, which defines a component denoted ΠP ′(K) with interface P ′. This
notion is quite natural and must preserve some properties detailed in [10]. Hence
the following semantic definition of dominance (notations are those of Figure 1).

Definition 6 (Dominance). {Ci}n
i=1 dominates C w.r.t. glI iff:

– for every i, there exists a glue glEi
s.t. gl ◦ glI = gl i ◦ glEi

– for any components {Ki}n
i=1, (∀i, Ki |= Ci) =⇒ ΠP (gl I{K1, ... , Kn}) |= C

We present a generalization of the sufficient condition for dominance proposed
in [2] that handles port hiding. The proof is similar to that of [2] and requires
a specific property called soundness of circular reasoning. Circular reasoning is
sound if for any K, G, A, E, gl such that the terms are defined, the following
holds: K
A,gl G ∧ E
G,gl A =⇒ K
E,gl G. More details are given in [10].

Theorem 1. If circular reasoning is sound and ∀i. ∃glEi
. gl ◦ glI = gl i ◦ glEi

,
then to prove that {Ci}i=1..n dominates C w.r.t. glI , it is sufficient to prove that:

{
ΠP (glI{G1, ... , Gn}) |= C
∀i, ΠPAi

(glEi
{A, G1, ... , Gi−1, Gi+1, ... , Gn}) |= C−1

i

This shows that the proof of a dominance relation boils down to a set of
refinement checks, one for proving refinement between the guarantees, the second
for discharging individual assumptions. A proof is given in [10].

442 I. Ben-Hafaiedh, S. Graf, and S. Quinton

Methodology. We now extend our design and verification methodology to re-
cursively defined systems so that we can handle systems representing component
networks of arbitrary size defined by a component grammar as follows:

– a set of terminal symbols {A, I1, ... , Ik} representing implementations;
– a set of nonterminal symbols {S, K0, K1, ... , Kn} representing hierarchical

components; S, which defines the top-level closed system, is the axiom;
– a set of rules corresponding to design steps which define each non-terminal

either as a composition of subsystems or as an implementation:
• S −→ gl{A, K0}.
• For i ∈ [0, n], at least one rule either of the form Ki −→ Ij (j ∈ [1, k]) or

Ki −→ glΣi
{Kj}j∈Σi , where Σi a set of indices and glΣi

a composition
operator on the union of the interfaces of the Kj .

Unlike classical network grammars, we use “rich” composition operators and
are not limited to flat regular networks, as for example in [11]. We now instantiate
the methodology of Figure 1 for such component networks. The same four steps
are presented, namely conformance, decomposition, dominance and satisfaction.

1. formulate a top-level requirement ϕ characterizing the closed system defined
by the system and its environment, define a contract C = (A, gl , G) associ-
ated with K0 and prove that gl{A, G} � ϕ

2. define for every non terminal Ki a contract CKi = (AKi , glKi
, GKi) such that

for every rule Kl −→ glΣl
{Kj}j∈Σl

having an occurrence of Ki on the right
hand side, there exists glEi

such that glKl
◦ glΣl

= glKi
◦ glEi

3. for each Ki −→ glΣi
{Kj}j∈Σi , show that {CKj}j∈Σi dominates CKi w.r.t

glΣi

4. prove that implementations satisfy their contract: Ki −→ Ij =⇒ Ij |= CKi

Theorem 2. Let G be a grammar such that all methodology steps have been
completed to guarantee a requirement ϕ. Any component system corresponding
to a word accepted by G satisfies ϕ.

The proof is a simple induction on the number of steps required for deriving
the component from S, showing that conformance is preserved from the left-
hand side to the right-hand side of a rule. If ϕ can express progress and if
dominance preserves progress, this methodology is sufficient for systems with a
unique requirement but also for multiple requirements decomposed according to
the same network grammar.

3 A Contract Framework with Data for Safety and
Progress

In this section, we define a contract framework in order to prove safety and
progress properties of distributed systems. We choose to use composition opera-
tors based on the BIP interaction model [4,12] because of their expressiveness and
their properties making them suitable for structural verification. Our framework
handles variables, guards and data transfer — which are supported by the BIP
interaction model [13] — and furthermore is adequate for loose specifications.

Reasoning about Safety and Progress Using Contracts 443

Components. A component is defined by a labeled transition system enriched
with variables. In order to allow abstract descriptions of components, we handle
predicates on variables rather than concrete values. Except for τ , which denotes
internal actions, labels are ports of the component interface. For example, a
transition t labeled by port p denotes that the component will perform the
action associated with t only if an interaction in which p is involved happens. Our
components also provide some progress properties which are described below.

A port p is sometimes represented along with its associated variables
x1, ... , xn, which is denoted p[x1, ... , xn]. Without loss of generality, we suppose
in the following that a port is associated with exactly one variable. We suppose
given a set of predicates that is closed by ∧ and ∨.

Definition 7 (Component). A component is a tuple (TS , X, Inv , g, f,Prog):

– TS = (Q, q0, P ∪{τ},−→) is a labeled transition system: Q is a set of states,
q0 ∈ Q is the initial state, P ∪{τ} is a set of labels. −→⊆ Q×P ∪{τ}×Q is a
transition relation. Elements of P are ports and τ labels internal transitions.
As usual, a transition (q, p, q′) ∈−→ is denoted q

p−→ q′;
– X is a set of variables. Some variables are associated with a (unique) port;

Xst ⊆ X contains state variables which are denoted st1, ... , sts. Relation R
relates1 variables in X to variables in Xst ;

– Inv associates with every q ∈ Q a state invariant Invq that is a predicate on
Xst ;

– g associates with every transition t a guard gt, i.e. a predicate on Xst ;
– f associates with every transition t an action ft defined as a predicate on

Xst ∪ {xγ} ∪Xst
new where xγ is the variable associated with the port labeling

t2 and Xst
new = {stnew

1 , ... , stnew
s } represents the "updated" variables;

– Prog a set of progress properties (see below).

Progress properties. When considering abstract specifications, progress prop-
erties are useful to exclude behaviors staying forever in some particular states
or loops. We adapt usual weak and strong fairness conditions to component sys-
tems: a progress property pr ∈ Prog for a component K is a pair of transition
sets (Tc, Tp), where Tc is called the condition and Tp the promise.

We define the set of progress states of Tp, denoted start(Tp), as the set of
initial states of transitions of Tp.

(Tc, Tp) is a valid progress property iff: considering an execution σ of K in
some context containing infinitely many Tc-transitions, in every state of start(Tp)
occurring infinitely often, at least one transition of Tp appears infinitely often
in σ, unless the environment forbids it. (�, Tp) denotes unconditional progress,
which means that σ cannot stay forever in start(Tp) without firing infinitely
often a transition of Tp.

Note that (Tc, Tp) is trivially satisfied if no Tc-transition can be fired in-
finitely often. When Tp is empty or not reachable from any “Tc-loop”, (Tc, Tp) is
1 Non-state variables are transient. R produces their value whenever it is necessary.
2 If there is no associated variable (t is labeled by pγ with γ ∈ Iobs or by τ), ft is a

predicate on Xst ∪ Xst
new .

444 I. Ben-Hafaiedh, S. Graf, and S. Quinton

a progress property only if no Tc-transition can be fired infinitely often. Mono-
tonicity properties w.r.t. progress which allow inferring new progress properties
from existing ones are given in [10].
Semantics. The concrete semantics of a component is the usual SOS semantics
for labeled transition systems. We do not need it in the following because we
only work with an abstract semantics of components: the latter is a labeled
transition system in which there exists a transition iff there exists a concrete
valuation of the variables for which the transition can be fired. Our semantics is
a closed semantics, because we suppose that the environment of the component
does not affect the values of the variables attached to ports labeling transitions.
This strongly motivates a design approach based on contracts, that is, on closed
systems.

Definition 8 (Abstract semantics). Let K = (TS , X, g, f, Inv ,Prog) be a
component. The abstract semantics of K is the transition system (Q, q0, P, ↪→)

where q
p[x]
↪→ q′ iff there exist a transition t = (q

p[x]−→ q′) such that the predicate
(st1, ... , sts)R x∧ Semt is satisfiable, where Semt denotes Invq ∧ gt ∧ ft ∧ Invq′ .

Note that a transition t = (q
p−→ q′) is not preserved in the semantics if ft is

not consistent with Invq′ — meaning that firing t leads to a state in which Invq′

cannot hold. Thus, in order to avoid deadlocks, the state invariants must respect
some consistency and completeness conditions.

Composition. We now define the composition operators that allow us to build
complex components based on atomic ones. These composition operators are
called interaction models and they are made of connectors.

From the possible synchronizations offered by the BIP framework (see [12]),
we keep only two basic types of connectors: rendez-vous connectors require all
ports to be activated in order for the interaction to take place and involve data
transfers; interactions in an observation connector can take place as soon as any
port is activated, and no data is exchanged. Adding observation connectors does
not modify the set of interactions which can be fired in a given state, so this
does not change the behavior of the system, hence their name. Two (or more)
connectors of the same type can be composed to build a hierarchical connector
simply by using the exported port of one connector as an element of the support
set of the other.

Definition 9 (Rendez-vous connector). A rendez-vous connector γ =
(p[x], P, δ) is defined by:

– p[x], the exported port and P = {p1[x1], ... , pk[xk]}, the support set of ports
– δ = (G, U , D) where:

• G is the guard, that is, a predicate on X = {x1, ... , xk}
• U is the upward update function defined as a predicate on X ∪ {x}
• For xi∈X,Dxi is a downward update function, i.e. a predicate on {x}∪
{xi}

where Dxi is the function that returns the projection of D corresponding to xi.

Reasoning about Safety and Progress Using Contracts 445

As observation connectors do not involve data transfer, they have neither guard
nor U nor D predicates. The variables attached to ports are useless and thus
hidden. Hence the following definition.
Definition 10 (Observation connector). An observation connector γ =
(p, P) is defined by an exported port p and a support set P = {p1, ... , pk}.
To avoid cyclic connectors, we require also that p /∈ P . Two connectors γ1 and
γ2 are disjoint if p1 �= p2, p1 /∈ P2 and p2 /∈ P1. Note that P1 and P2 may have
ports in common, as a port may be connected to several connectors.

We can now define our composition operators as sets of connectors.

Definition 11 (Interaction model). An interaction model I defined on a set
of ports P is a set of disjoint connectors such that P is the union of the support
sets of the rendez-vous connectors of I. We denote by Irdv the set of its rendez-
vous connectors and Iobs the set of its observation connectors.

We associate with an interaction model I an interface PI consisting of the set
of the exported ports of its connectors. This means that the interface of the
component resulting from a composition using I has only these exported ports
as labels. XI denotes the set of variables associated with the ports of PI .

Merge of connectors is the operation that takes two connectors defining to-
gether a hierarchical connector and returns a connector of a basic type. Merge is
defined for rendez-vous connectors in [13] (where it is called flattening). We re-
strict this definition so as to preserve associativity of the upward and downward
functions. Merge of observation connectors has been described in [12]. These
definitions extend naturally to our interaction models, where rendez-vous and
observation connectors are merged separately (see [10]).

We now define composition: given a set of components K1, ... , Kn and an
interaction model I, we build a compound component denoted I{K1, ... , Kn},
with PI as interface. As we do not allow sets of ports as labels of transitions,
we require that connectors of I have at most one port of the same component
in their support set. Composition is rather technical but not surprising. It does
not involve hiding of ports. Besides, a variable of I{K1, ... , Kn} is a variable of
some Ki or a variable associated with the exported port of some pγ ∈ I.

Definition 12 (Composition of components). Let {Pi}n
i=1 be a family of

pairwise disjoint interfaces and P =
⋃n

i=1 Pi. Let I be an interaction model on
P . For i ∈ [1, n], let Ki = (TS i, Xi, gi, fi, Inv i,Prog i) be a component on Pi. The
composition of K1, ... , Kn with I is a component (TS , X, g, f, Inv,Prog) such that:

– TS = (Q, q0,PI ∪ {τ},−→) with Q =
∏n

i=1 Qi, q0 = (q0
1 , ... , q0

n) and where
−→ is the least set of transitions satisfying the following rules3:

(pγ , Pγ , δγ) ∈ Irdv ∀i ∈ [1, n]. qi
Pi∩Pγ−→ i q′i

(q1, ... , qn)
pγ−→ (q′1, ... , q′n)

∃i ∈ [1, n]. qi
τ−→i q′i

(q1, ... , qn) τ−→ (q1, ... , q′i, ... , qn)

with the convention that qi
∅−→i q′i iff qi = q′i. Note that |Pi ∩ Pγ | ≤ 1.

3 The rule for connectors in Iobs is similar to the one for rendez-vous connectors except
that any subset of the support set Pγ may participate in the interaction.

446 I. Ben-Hafaiedh, S. Graf, and S. Quinton

– Xst =
⋃n

i=1 Xst
i and X =

⋃n
i=1 Xi ∪ XI

The relation R between variables in X and state variables is defined as:
Case 1: x ∈ Xi for some i ∈ [1, n]. xR (st1, ... , sts) iff xRi (st i

1, ... , st
i
si

),
where {st i

1, ... , st
i
si
} = Xst

i ⊆ Xst .
Case 2: x ∈ XI . Then x is associated with the exported port pγ of a rendez-
vous connector γ = (pγ , Pγ , δ) ∈ Irdv . Let k = |Pγ |. Uγ is a predicate on
{x1, ... , xk} ∪ {x}, where every xi is associated with a port of Pγ . Without
loss of generality, we suppose each xi is a variable of component Ki.
Then xR (st1, ... , sts) is defined iff:

∃v1, ... , vk. (∀i ∈ [1, k]. vi Ri (st i
1, ... , st

i
si

)) ∧ Uγ [x1/v1, ... , xk/vk]
where Uγ [x1/v1, ... , xk/vk] is the predicate on x obtained by replacing the
variables x1, ... , xk by values v1, ... , vk compatible with the local relations Ri

between the xi and the local state variables.
– For each q ∈ Q, Invq =

∧n
{i=1} Invqi

– Consider t = (q1, ... , qn)
pγ−→ (q′1, ... , q

′
n) for γ ∈ Irdv

4. W.l.o.g., we sup-
pose Pγ = {x1, ... , xk} with xi ∈ Pi for every i in [1, k]. For i ∈ [1, k],

the local transition (qi
pi[xi]−→ i q′i) corresponding to t is denoted πi(t). Again,

{st i
1, ... , st

i
si
} = Xst

i ⊆ Xst .
• gt(st1, ... , sts) holds iff the following holds:

∗ ∀i ∈ [1, k]. gti(st
i
1, ... , st

i
si

)
∗ ∃v1, ... , vk. (∀i ∈ [1, k]. vi Ri (st i

1, ... , st
i
si

)) ∧ G[x1/v1, ... , xk/vk]
• ft(st1, ... , sts, xγ , stnew

1 , ... , stnew
s) holds iff ∃v1, ... , vk s.t. it holds that:

∗ D[x1/v1, ... , xk/vk], which is a predicate on xγ

∗ ∀i ∈ [1, k]. fπi(t)[xi/vi], which is a predicate on Xst
i ∪ Xst

i,new

– The set Prog of progress properties is defined below (see definition 13)

We never explicitly construct all (strongest) progress properties for a composi-
tion: compositions are only built as far as needed to prove dominance. Thus,
we only give below a condition for checking that a pair of sets (Tc, Tp) is a
progress property of a composition by checking that the projections of (Tc, Tp)
onto individual components are local progress properties.

Definition 13 (Progress property in a composition). (Tc, Tp) is a progress
property of I{K1, ..., Kn} if ∀i ∈ [1, n]:

– either πi(Tp) never contains more than one joint transition of I from the
same state and then (πi(Tc), πi(Tp)) is a local progress property.

– or it does, and then we split πi(Tp) into a set of promises T i,1
p ... , T i,k

p con-
taining exactly one joint transition for each state before checking that all
pairs in {(T i

c , T
i,1
p), ... , (T i

c , T
i,k
p)} are local progress properties5.

4 For a transition labeled by pγ with γ ∈ Iobs , only the conditions on the local guard
and function of the components involved in the interaction are kept. The guard and
function of a τ -transition are the corresponding local guard and function.

5 This is necessary to avoid that different processes choose a different joint transition
in a given initial state.

Reasoning about Safety and Progress Using Contracts 447

Refinement. Refinement under context ensures that in the given context (E, I)
— and in any context refining it — safety and progress properties are preserved
from the abstract component Kabs to the refined component Kconc. Moreover,
refinement under context allows circular reasoning for the considered composition
operators (provided that the assumptions are deterministic), because enabledness
of transitions must be preserved from Kconc to Kabs . But only states reachable
in the considered context must be related. To simplify the definition, we suppose
that (a) Kabs has no internal transitions, (b) E has no transitions that it may
do alone and (c) progress is refined without taking into account the context. The
first two steps imply no loss of generality. The last simplification is sufficient for
the considered application. It could be refined by requiring from Kconc only (part
of) the progress properties of Kconc which are meaningful in (E, I).

Refinement is defined by means of two relations (1) α relating variables of
Kconc and Kabs , and (2) R relating concrete and abstract states. For preserving
progress, we project transition sets of Kabs onto Kconc — for this purpose, we
define the following auxiliary notations.

Definition 14 (Projection). Let R be a relation on (Qconc ×QE)×Qabs . We
define the projection R of R onto Qconc×Qabs by qc R qa iff ∃qE s.t. (qc, qE)R qa.
For Qa ⊆ Qabs , we denote R−1

(Qa) ⊆ Qconc the inverse image of Qa under R.
R−1

({qa
p

↪→abs q′a}) denotes the set of p-transitions of Kconc between states in
R−1

({qa}) and in R−1
({q′a}). This notation extends naturally to transition sets.

Definition 15 (Refinement under context). Given a relation α on Xconc ∪
Xabs , Kconc refines Kabs in the context of (E, I), denoted Kconc
E,I Kabs , iff:

(a) ∃R ⊆ (Qconc × QE) × Qabs s.t. (q0
c , q0

E)R q0
a and s.t. (qc, qE)R qa implies:

1. Invqc ∧ α(Xconc , Xabs) =⇒ Invqa

2. ∀p[x] ∈ P , the following holds (Vi denotes a valuation of Xi):
– for any value v of x: ∃tc = qc

p−→c q′c and Vc,Vnew
c satisfying Semtc im-

plies ∃q′a, ta = qa
p−→a q′a and Va,Vnew

a consistent with α and satisfying
Semta .

– ∃γ. Pγ = {p, e}∧(qc, qE)
pγ

↪→ (q′c, q
′
E) =⇒ (q′c, q

′
E)R q′a with q′a as above6.

3. qc
τ
↪→c q′c=⇒(q′c, qE)R qa: states related by τ-transitions refine the same state

(b) The inverse image under R of any progress property pr = (Tc, Tp) of Kabs ,
which is (R−1

(Tc),R−1
(Tp)), is a progress property of Kconc.

Condition (a) ensures that refining an abstract component preserves safety prop-
erties. Condition (b) ensures preservation of progress properties. The last step
to obtain a contract framework is to define conformance.
Definition 16 (Conformance). Let K⊥ = (TS , X, Inv ,Prog) be defined as:
TS = ({q0}, q0, ∅, ∅), X = ∅, I = � and Prog = ∅. We define conformance as
refinement in the context of (K⊥, ∅) — i.e., an “empty” with no connectors.

Theorem 3. We have defined a contract framework. Furthermore, if assump-
tions are deterministic, then circular reasoning is sound. See [10] for a proof.

6 If t is independent of the context, i.e., if Pγ = {p}, we use the convention qE
∅

↪→E qE .

448 I. Ben-Hafaiedh, S. Graf, and S. Quinton

4 An Application to Resource Sharing in a Network

We apply the proposed methodology to an algorithm for sharing resources in
a network presented in [14]. The starting point is both a high-level property
and an abstract description of the behavior of an individual node. We represent
networks of arbitrary size by a grammar and associating a contract with each
node, such that the correctness proof boils down to a set of small verification
steps. We consider networks structured as binary trees defining a token ring7.

Resources shared between nodes are represented by tokens circulating in pack-
ets containing one or more tokens along the token ring (see figure 3). The value
of a packet is the number of tokens it contains. A particular token is the privilege
— denoted P — which allows nodes to accumulate tokens.

3 4

1

6

2 5
7

Node

Node

Node

Node Node Node

Node Node

Node

Network

Fig. 3. The overall structure of the application

A node may request tokens (Req indicates the numbers of tokens requested).
When it has enough tokens for satisfying its request, it is expected to use them,
and relax the privilege if it has it; when it has resources (tokens) in use, it cannot
request additional ones; it may later free them or keep them forever. A node can
rise a request only when it has no resource in use and no pending request.

Tokens (and the privilege) circulate through ports called getT (getP) and
giveT (giveP), whereas the request, usage or freeing of tokens is indicated
through observation ports req, use, free. Moreover, a Node has state variables
indicating whether it has the privilege (P), its number of tokens (Tk), requests
(Req) and some port variables used during interactions.

The network is defined by the grammar G, where {E⊥,Node} are terminals
and {Sys ,Net} nonterminals with axiom Sys . The rules are:

Sys −→ INet{E⊥,Net),Net −→ Node,Net −→ I{Node,Net ,Net}
The connectors of the composition operators I and INet are indicated in Fig-
ures 4 and 5. They handle exchange of tokens and privileges and the observation
of requested, used, respectively freed tokens.

We assume that connectivity of the network is guaranteed and tokens are
never lost. Here, this assumption is encoded in the composition operator. This
allows separating completely design and correctness proofs from the resource
sharing algorithm and the algorithm guaranteeing connectivity, which is typically
implemented in a lower layer of the overall network protocol.
7 We restrict ourselves to binary branching for simplifying the presentation.

Reasoning about Safety and Progress Using Contracts 449

A top-level requirement ϕ. We consider here one of the top-level require-
ments of the algorithm, a progress requirement ϕ stating that “as long as the
requests are reasonable, some of the nodes will be served” — use will occur —
from time to time. ϕ is represented in our formalism as depicted in Figure 4,
where the second progress property pr2 says that “it is not possible to switch
infinitely often between states S1 and S2 (that is, free occurs infinitely often)
without that a use occurs infinitely often as well”. “Reasonable” requests means
that 0 < Rx ≤ Tk where Rx is the maximal request and Tk the number of
available tokens in the system.

Methodology. Our goal is to prove that every network built according to gram-
mar G, together with an environment E⊥ giving back tokens and privilege im-
mediately, conforms to ϕ. For this purpose, we instantiate the methodology of
Section 2:

1. We define CNode = (ANode, INode, GNode) and CNet = (ANet, INet, GNet) that
are contracts for component types Net and Node.

2. We show that INet{ANet, GNet} � ϕ.
3. We show that {CNode, CNet, CNet} dominates CNet w.r.t. I.
4. We prove that E⊥ satisfies C−1

Net and that Node satisfies CNode and CNet .

Note that if we want to further refine the Node component, we may start by
a contract CNode = (ANet, INet, Node). Now, let us give some details.

any Rx=0∨Tk<Rx
S1

0<Rx ≤Tk
S2

{req,free}

pr2 = ({S1
free
↪→ S2, S2

req
↪→ S1}, S2

use
↪→ ∗)

pr1 = (�, S2
use
↪→ ∗)

use req

{any\use}

get give

free
GNet

use

giveAgetA

useAreqA

ANet

freeA req

(a) (b)

Fig. 4. (a) Top-level requirement ϕ; (b) Composition INet for contract CNet

Interaction models. Figure 4(b) shows the interaction model INet relat-
ing a network — and therefore also a leaf node — to the rest of the sys-
tem. We represent by get and give respectively port sets {getT , getP } and
{giveT , giveP} for token and privilege exchange. I consists of 3 observation
connectors which export a use interaction of either the Net or its environment
as a global use interaction, and analogously for the others. There are also 4 in-
ternal connectors for exchanging tokens and privilege. For example, connector

450 I. Ben-Hafaiedh, S. Graf, and S. Quinton

{giveT [tk] | getTA[tkA], δG : [tk > 0], tkA := tk} pushes a positive number of
tokens from the Network to the environment.

Due to lack of space, we do not present the assumptions and guarantees of
the node and network contracts. They are detailed in [10].

get2 give2

free2

get1

Net1

give1

use

Node

req1 use1 free1 req2use2
reqNuseNfreeN

getN giveN

get0 give0

req free

Net2

Net 1.
ΠPNet(I{GNode, GNet, GNet})

|= CNet

2.
ΠPNode(I1{ANet, GNet, GNet})

|= C−1
Node

3.
ΠPNet(I2{ANet, GNode, GNet})

|= C−1
Net

(a) (b)

Fig. 5. (a) Structure of a network component; (b) Sufficient conditions for dominance

Figure 5(a) shows the inner structure of a network component Net. The inter-
action model I builds a tree from a (root) node8 and two networks Net1, Net2.
Interactions performed by the connectors depicted here are similar to those of
Figure 4(b), except that they also ensure that tokens circulate in the correct
order.

Experimental results. To show that {CNode, CNet, CNet} dominates CNet w.r.t.
I, it is sufficient, according to the sufficient condition of section 2, to prove the
conditions given in Figure 5(b). Dominance, conformance and satisfaction prob-
lems are reduced to refinement under context checked and discharged automat-
ically by a Java tool returning either yes or a trace leading to the violation of
refinement.

5 Discussion and Future Work

We proposed a design and verification methodology which allows design and
verification of safety and progress properties of distributed systems of arbitrary
size. This methodology has been successfully applied to an algorithm for sharing
resources in a tree-shaped network by automatically discharging the required
conformance, dominance and satisfaction checks with a prototype tool.

There are several interesting directions to be explored: (a) We have excluded
the use of contracts for assume/guarantee reasoning: we use contracts as design
constraints for implementations which are maintained throughout the develop-
ment and life cycle of the system. On the other hand, in assume/guarantee
8 Which is connected in a slightly more complex manner than the leaf node.

Reasoning about Safety and Progress Using Contracts 451

based compositional verification, assumptions are used to deduce global proper-
ties (see [15]). We could integrate this into our methodology: as an example, in
our network application, it would be enough to ensure that assumptions express
sufficient progress to show conformance of a node contract to “node progress”.
(b) We would like to extend the methodology to multiple requirements, possibly
by using a different decomposition of the system — i.e. a different grammar. (c)
We also intend to extend the component framework to more general connectors
and behaviors to express non functional properties. (d) We are currently con-
sidering building an efficient checker for different refinement relations, and then,
implement tool support for the methodology. We also consider integration into
a system design framework — such as SySML promoted by OMG.

References

1. Meyer, B.: Applying "design by contract". IEEE Computer 25(10), 40–51 (1992)
2. Quinton, S., Graf, S.: Contract-based verification of hierarchical systems of compo-

nents. In: Proc. of SEFM 2008, pp. 377–381. IEEE Computer Society, Los Alamitos
(2008)

3. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems.
Specification, vol. 1. Springer, Heidelberg (1991)

4. Sifakis, J.: A framework for component-based construction. In: Proc. of SEFM
2005, pp. 293–300. IEEE Computer Society, Los Alamitos (2005)

5. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. of ESEC/SIGSOFT
FSE 2001, pp. 109–120. ACM Press, New York (2001)

6. Bidinger, P., Stefani, J.B.: The Kell calculus: operational semantics and type sys-
tems. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS,
vol. 2884, pp. 109–123. Springer, Heidelberg (2003)

7. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Strucutres in Computer Science 14(3) (2004)

8. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: Proc. of SEFM2006, pp. 3–12. IEEE Computer Society, Los Alamitos (2006)

9. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple viewpoint contract-based specification and design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 200–225. Springer, Heidelberg (2008)

10. Ben-Hafaiedh, I., Graf, S., Quinton, S.: A contract framework for reasoning about
safety and progress. Technical Report TR-2010-11, Verimag (2010)

11. Stadler, Z., Grumberg, O.: Network grammars, communication behaviours and
automatic verification. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 68–80.
Springer, Heidelberg (1990)

12. Bliudze, S., Sifakis, J.: The algebra of connectors: structuring interaction in BIP.
In: Proc. of EMSOFT 2007, pp. 11–20. ACM Press, New York (2007)

13. Bozga, M., Jaber, M., Sifakis, J.: Source-to-source architecture transformation for
performance optimization in BIP. In: Proc. of SIES 2009, pp. 152–160 (2009)

14. Datta, A.K., Devismes, S., Horn, F., Larmore, L.L.: Self-stabilizing k-out-of-l ex-
clusion on tree network. CoRR abs/0812.1093 (2008)

15. de Roever, W.P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,
M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Non-
compositional Methods, vol. 54. Cambridge University Press, Cambridge (2001)

	Reasoning about Safety and Progress Using Contracts
	Introduction
	A Contract-Based Design Framework and Methodology
	A Contract Framework with Data for Safety and Progress
	An Application to Resource Sharing in a Network
	Discussion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

