

Lecture Notes in Computer Science 6447
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Jin Song Dong Huibiao Zhu (Eds.)

Formal Methods and
Software Engineering

12th International Conference
on Formal Engineering Methods, ICFEM 2010
Shanghai, China, November 17-19, 2010
Proceedings

13

Volume Editors

Jin Song Dong
National University of Singapore
School of Computing, Computer Science Dept.
13 Computing Drive, Singapore 117417, Singapore
E-mail: dongjs@comp.nus.edu.sg

Huibiao Zhu
East China Normal University
Software Engineering Institute
3663 Zhongshan Road (North), Shanghai, 200062, China
E-mail: hbzhu@sei.ecnu.edu.cn

Library of Congress Control Number: 2010938033

CR Subject Classification (1998): D.2.4, D.2, D.3, F.3, C.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-16900-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16900-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Formal methods have made significant progress in recent years with success-
ful stories from Microsoft (SLAM project), Intel (i7 processor verification) and
NICTA/OK-Lab (formal verification of an OS kernel). The main focus of for-
mal engineering methods lies in how formal methods can be effectively integrated
into mainstream software engineering. Various advanced theories, techniques and
tools have been proposed, developed and applied in the specification, design and
verification of software or in the construction of software. The challenge now
is how to integrate them into engineering development processes to effectively
deal with large-scale and complex computer systems for their correct and ef-
ficient construction and maintenance. This requires us to improve the state of
the art by researching effective approaches and techniques for integration of for-
mal methods into industrial engineering practice, including new and emerging
practice.

This series, International Conferences on Formal Engineering Methods, brings
together those interested in the application of formal engineering methods
to computer systems. This volume contains the papers presented at ICFEM
2010, the 12th International Conference on Formal Engineering Methods, held
November 17–19, in Shanghai, China, in conjunction with the Third Interna-
tional Symposium on Unifying Theories of Programming (UTP 2010).

The Program Committee received 114 submissions from 29 countries and re-
gions. Each paper was reviewed by at least three program committee members.
After extensive discussion, the Program Committee decided to accept 42 pa-
pers for presentation, leaving many good-quality papers behind. We owe a great
deal to the members of Program Committee and external reviewers. The pro-
gram also included three invited talks by Matthew Dwyer from the University of
Nebraska-Lincoln, Kokichi Futatsugi from Japan Advanced Institute of Science
and Technology and Wang Yi from Uppsala University.

ICFEM 2010 was organized by the Software Engineering Institute, East
China Normal University. We would like to express our sincere thanks to the staff
members and students for their organizational assistance, in particular Geguang
Pu, Jian Guo, Min Zhang, Qin Li and Mengying Wang. The EasyChair system
was used to manage the submissions, reviewing, paper selection, and proceedings
production. We would like to thank the EasyChair team for a very useful tool.

November 2010 Jin Song Dong
Huibiao Zhu

Conference Organization

Steering Committee

Keijiro Araki
Jin Song Dong
Chris George
Jifeng He
Mike Hinchey
Shaoying Liu (Chair)
John McDermid
Tetsuo Tamai
Jim Woodcock

Conference Chair

Jifeng He

Program Chairs

Jin Song Dong
Huibiao Zhu

Program Committee

Yamine Ait Ameur
Nazareno Aguirre
Bernhard Aichernig
Keijiro Araki
Farhad Arbab
Richard Banach
Jonathan Bowen
Karin Breitman
Michael Butler
Andrew Butterfield
Ana Cavalcanti
Chunqing Chen
Mingsong Chen
Wei-Ngan Chin
Jim Davies
Zhenghua Duan
Colin Fidge

John Fitzgerald
Joaquim Gabarro
Stefania Gnesi
Mike Hinchey
Thierry Jeron
Gerwin Klein
Kim Larsen
Michael Leuschel
Xuandong Li
Zhiming Liu
Shaoying Liu
Brendan Mahony
Tom Maibaum
Tiziana Margaria
Dominique Mery
Huaikou Miao
Flemming Nielson

VIII Conference Organization

Jun Pang
Geguang Pu
Shengchao Qin
Zongyan Qiu
Anders P. Ravn
Augusto Sampaio
Marjan Sirjani
Graeme Smith
Jing Sun
Jun Sun
Kenji Taguchi

Yih-Kuen Tsay
T.H. Tse
Sergiy Vilkomir
Xu Wang
Ji Wang
Hai Wang
Heike Wehrheim
Jim Woodcock
Wang Yi
Jian Zhang

Local Organization

Jian Guo, Qin Li, Geguang Pu (Chair), Min Zhang

Webmaster

Mengying Wang

External Reviewers

Nuno Amalio
June Andronick
Thomas Bøgholm
Granville Barnett
Lei Bu
Josep Carmona
Valentin Cassano
Pablo Castro
Shengbo Chen
Yu-Fang Chen
Zhenbang Chen
Robert Clarisó
John Colley
Phan Cong-Vinh
Marcio Cornelio
Andreea Costea
Florin Craciun
Kriangsak Damchoom
Jordi Delgado
Yuxin Deng
Brijesh Dongol
Andrew Edmunds

Alessandro Fantechi
Gianluigi Ferrari
Marc Fontaine
Cristian Gherghina
Paul Gibson
Jian Guo
Henri Hansen
Ian J. Hayes
Guanhua He
Elisabeth Jöbstl
Swen Jacobs
Mohammad Mahdi Jaghoori
Ryszard Janicki
Li Jiao
Jorge Julvez
Narges Khakpour
Ramtin Khosravi
Rafal Kolanski
Willibald Krenn
Shigeru Kusakabe
Bixin Li
Jianwen Li

Conference Organization IX

Qin Li
Xiaoshan Li
Sheng Liu
Michele Loreti
Chenguang Luo
Mingsong Lv
Abdul Rahman Mat
Franco Mazzanti
Lijun Mei
Hiroshi Mochio
Charles Morisset
Alexandre Mota
Toby Murray
Benaissa Nazim
Sidney Nogueira
Ulrik Nyman
Kazuhiro Ogata
Joseph Okika
Yoichi Omori
Fernando Orejas
David Parker
Richard Payne
German Regis
Hideki Sakurada
Martin Schäf
Thomas Sewell

K.C. Shashidhar
Neeraj Singh
Jiri Srba
Kohei Suenaga
Tian Huat Tan
Claus Thrane
Ming-Hsien Tsai
Saleem Vighio
Shuling Wang
Xi Wang
Zheng Wang
Liu Wanwei
Kirsten Winter
Tobias Wrigstad
Zhongxing Xu
Shaofa Yang
Yu Yang
Fang Yu
Hongwei Zeng
Chenyi Zhang
Shaojie Zhang
Xian Zhang
Jianhua Zhao
Liang Zhao
Manchun Zheng

Table of Contents

Invited Talks

Fostering Proof Scores in CafeOBJ . 1
Kokichi Futatsugi

Exploiting Partial Success in Applying Automated Formal Methods
(Abstract) . 21

Matthew B. Dwyer

Multicore Embedded Systems: The Timing Problem and Possible
Solutions (Abstract) . 22

Wang Yi

Theorem Proving and Decision Procedures

Applying PVS Background Theories and Proof Strategies in Invariant
Based Programming . 24

Johannes Eriksson and Ralph-Johan Back

Proof Obligation Generation and Discharging for Recursive Definitions
in VDM . 40

Augusto Ribeiro and Peter Gorm Larsen

Correct-by-Construction Model Transformations from Partially
Ordered Specifications in Coq . 56

Iman Poernomo and Jeffrey Terrell

Decision Procedures for the Temporal Verification of Concurrent
Lists . 74

Alejandro Sánchez and César Sánchez

An Improved Decision Procedure for Propositional Projection Temporal
Logic . 90

Zhenhua Duan and Cong Tian

Web Services and Workflow

A Semantic Model for Service Composition with Coordination Time
Delays . 106

Natallia Kokash, Behnaz Changizi, and Farhad Arbab

Compensable WorkFlow Nets . 122
Fazle Rabbi, Hao Wang, and Wendy MacCaull

XII Table of Contents

Automatically Testing Web Services Choreography with Assertions 138
Lei Zhou, Jing Ping, Hao Xiao, Zheng Wang, Geguang Pu, and
Zuohua Ding

Applying Ordinary Differential Equations to the Performance Analysis
of Service Composition . 155

Zuohua Ding, Hui Shen, and Jing Liu

Verification I

Verifying Heap-Manipulating Programs with Unknown
Procedure Calls . 171

Shengchao Qin, Chenguang Luo, Guanhua He, Florin Craciun, and
Wei-Ngan Chin

API Conformance Verification for Java Programs . 188
Xin Li, H. James Hoover, and Piotr Rudnicki

Assume-Guarantee Reasoning with Local Specifications 204
Alessio Lomuscio, Ben Strulo, Nigel Walker, and Peng Wu

Automating Coinduction with Case Analysis . 220
Eugen-Ioan Goriac, Dorel Lucanu, and Grigore Roşu

Applications of Formal Methods

Enhanced Semantic Access to Formal Software Models 237
Hai H. Wang, Danica Damljanovic, and Jing Sun

Making Pattern- and Model-Based Software Development More
Rigorous . 253

Denis Hatebur and Maritta Heisel

Practical Parameterised Session Types . 270
Andi Bejleri

A Formal Verification Study on the Rotterdam Storm Surge Barrier 287
Ken Madlener, Sjaak Smetsers, and Marko van Eekelen

Verification II

Formalization and Correctness of the PALS Architectural Pattern for
Distributed Real-Time Systems . 303

José Meseguer and Peter Csaba Ölveczky

Automated Multiparameterised Verification by Cut-Offs 321
Antti Siirtola

Table of Contents XIII

Automating Cut-off for Multi-parameterized Systems 338
Youssef Hanna, David Samuelson, Samik Basu, and Hridesh Rajan

Method for Formal Verification of Soft-Error Tolerance Mechanisms in
Pipelined Microprocessors . 355

Miroslav N. Velev and Ping Gao

Formal Verification of Tokeneer Behaviours Modelled in fUML
Using CSP . 371

Islam Abdelhalim, James Sharp, Steve Schneider, and
Helen Treharne

Probability and Concurrency

Model Checking Hierarchical Probabilistic Systems 388
Jun Sun, Songzheng Song, and Yang Liu

Trace-Driven Verification of Multithreaded Programs 404
Zijiang Yang and Karem Sakallah

Closed Form Approximations for Steady State Probabilities of a
Controlled Fork-Join Network . 420

Jonathan Billington and Guy Edward Gallasch

Reasoning about Safety and Progress Using Contracts 436
Imene Ben-Hafaiedh, Susanne Graf, and Sophie Quinton

Program Analysis

Abstract Program Slicing: From Theory towards an Implementation 452
Isabella Mastroeni and Ðurica Nikolić

Loop Invariant Synthesis in a Combined Domain . 468
Shengchao Qin, Guanhua He, Chenguang Luo, and Wei-Ngan Chin

Software Metrics in Static Program Analysis . 485
Andreas Vogelsang, Ansgar Fehnker, Ralf Huuck, and Wolfgang Reif

A Combination of Forward and Backward Reachability Analysis
Methods . 501

Kazuhiro Ogata and Kokichi Futatsugi

Model Checking

Model Checking a Model Checker: A Code Contract Combined
Approach . 518

Jun Sun, Yang Liu, and Bin Cheng

XIV Table of Contents

On Symmetries and Spotlights – Verifying Parameterised Systems 534
Nils Timm and Heike Wehrheim

A Methodology for Automatic Diagnosability Analysis 549
Jonathan Ezekiel and Alessio Lomuscio

Making the Right Cut in Model Checking Data-Intensive Timed
Systems . 565

Rüdiger Ehlers, Michael Gerke, and Hans-Jörg Peter

Comparison of Model Checking Tools for Information Systems 581
Marc Frappier, Benoît Fraikin, Romain Chossart,
Raphaël Chane-Yack-Fa, and Mohammed Ouenzar

Object Orientation and Model Driven Engineering

A Modular Scheme for Deadlock Prevention in an Object-Oriented
Programming Model . 597

Scott West, Sebastian Nanz, and Bertrand Meyer

Model-Driven Protocol Design Based on Component Oriented
Modeling . 613

Prabhu Shankar Kaliappan, Hartmut König, and Sebastian Schmerl

Laws of Pattern Composition . 630
Hong Zhu and Ian Bayley

Dynamic Resource Reallocation between Deployment Components 646
Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte, and
Silvia Lizeth Tapia Tarifa

Specification and Verification

A Pattern System to Support Refining Informal Ideas into Formal
Expressions . 662

Xi Wang, Shaoying Liu, and Huaikou Miao

Specification Translation of State Machines from Equational Theories
into Rewrite Theories . 678

Min Zhang, Kazuhiro Ogata, and Masaki Nakamura

Alternating Interval Based Temporal Logics . 694
Cong Tian and Zhenhua Duan

Author Index . 711

Fostering Proof Scores in CafeOBJ

Kokichi Futatsugi

Graduate School of Information Science &
Research Center for Software Verification,

Japan Advanced Institute of Science and Technology (JAIST),
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

futatsugi@jaist.ac.jp

Abstract. Proof scores are instructions to a proof engine such that when
executed, if everything evaluates as expected, then a desired theorem is
proved. Proof scores hide the detailed calculations done by machines,
while revealing the proof plan created by humans. Although proof scores
are executalbe by machines, they are also for human beings to read for
proving (or verifying) desired properties on a system of interest. The tech-
nique of proof scores was brought up by the OBJ/CafeOBJ community,
and substantial developments were done after a reliable implementation
of CafeOBJ language system was available. This paper give an overview
of evolution of proof scores which have been done under the efforts of
verifying vearious kinds of formal specifications in CafeOBJ .

1 Introduction

The need of constructing specifications and verifying them in upstream of soft-
ware development is still increasing. It is because quite a few critical bugs are
caused at the level of domains, requirements, and/or designs specifications. Con-
structions of specifications are also important for the cases where no program
codes are generated but specifications are constructed, analyzed, and verified
only for justifying models of real problems.

The goal of verification in software engineering is to increase confidence in the
correctness of computer-based systems. For software verification to be genuinely
useful, careful account must be taken of the context of actual use, including the
goals of the system, the underlying hardware, and the capabilities and culture of
users. Absolute certainty is not achievable in real applications, due to the uncer-
tainties inherent in implementation and use, e.g., breakdowns in physical infras-
tructure (such as cables and computers), errors by human operators, and flaws
in connected systems (e.g., operating systems and databases). In this context
there is no “silver bullet”, but formal methods are still expected to improve the
practice of constructions/analyses/verifications of domain/requirement/design
specifications.

The term “verify” is used in a sentence like “verify a program against a spec-
ification”. The term “validate” is used in a sentence like “validate specifications
against the reality”. This suggests that there is a tradition of making distinction

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 1–20, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 K. Futatsugi

between “verification” and “validation”: verification means showing by formal
proof that some property hold against already formal descriptions, and valida-
tion means showing by empirical/experimental means that some property hold
against the real world. Following this tradition strictly, verification of domain
or requirement specifications does not make sense, for the main characteristic of
domain and requirement specifications is in describing systems in the real world
and they are difficult to be verified formally.

However, it has turned out that traditional technology of validating informal
specification against the reality by means of empirical/experimental way does
not meet the current requirement of realizing more safe and secure systems, and
a main purpose of verification with proof scores is to overcome this situation
and cope with “validation of domain/requirement/design specifications against
reality”. For making verification to be meaningful also as validation, it should
be interactive, for validation against the reality is better to be done by human
stakeholders through interactions. Proof scores in CafeOBJ target on more ef-
fective and usable interactive verification/validation of high-level (i.e., domain,
requirement, or design) specifications.

It is important to distinguish “system specifications” and “property specifica-
tions”. System specifications are specifications of systems which supposed to be
modeled, verified, and/or developed. Property specifications are specifications
of properties which is supposed to be satisfied by systems. In [46], the merit
of adopting “computational (or executable) specifications” as system specifica-
tion is advocated. Specifications in CafeOBJ are executable, and both of system
and property specifications can be written in equational specifications and exe-
cutable by interpreting equations as rewriting rules. This makes foundation for
verification with proof scores.

The rest of the paper is organized as follows. Section 2 describes development
of proof scores in CafeOBJ . Section 3 gives an overview of main features of
CafeOBJ language. Section 4 give a complete list of sound and complete proof
rules which is an important fundation of proof score constructions. Section 5
describes one of the most recent techniques of combining inference and search
in proof scores. This paper is a progress report on our activities on verifications
with proof scores, and some parts are revised and/or extended version of contents
of our preious papers [14, 15, 19] of siminlar nature.

2 Proof Scores in CafeOBJ

Fully automatic theorem provers often fail to convey an understanding of their
proofs, and they are generally unhelpful when they fail because of user errors in
specifications or goals, or due to the lack of a necessary lemma or case splitting
(both of which are very common in practice). It follows that one should seek
to make optimal use of the respective abilities of humans and computers, so
that computers do the tedious formal calculations, and humans do the high level
planning; the tradeoff between detail and comprehension should also be carefully
balanced.

Fostering Proof Scores in CafeOBJ 3

Proof scores are intended to meet these goals [14, 15, 19, 21, 27, 58]. In proof
score approach, an executable algebraic specification language (i.e. CafeOBJ in
our case) is used to specify systems and system properties, and a processor, i.e.
rewrite engine or reducer, of the language is used as a proof engine to prove
that the systems satisfy the system properties. Proof plans are coded into proof
scores, and are also written in the algebraic specification language. Proof scores
are executed by the rewrite engine, and if everything is as expected, an intended
proof has been successfully done. Logical soundness of this procedure is guaran-
teed by the fact that rewritings/reductions done by the rewrite engine is honest
to equational axioms of original specifications. Although proof scores can be used
to verify code in an imperative language (e.g., as in [33]), it generally makes more
sense to verify domain, requirement, or design rather than code.

Proof scores can be regarded as functional programs to prove that a spec-
ification satisfy some interesting property. By way of interactions during the
development of the proof scores, the quality of the original specification im-
proves profoundly,[55, 56]. The concept of proof supported by proof scores is
similar to that of LP [37]. Proof scripts written in a tactic language provided
by proof assistants such as Coq [1] and Isabel/HOL [50] have similar nature as
proof scores. However, one of unique features of proof scores is that proof scores
should constitute a complete document of proof and are supposed to be read
by human beings. Moreover, a document (i.e file) of proof scores for proof of a
property is intended to be checked its correctness as independently as possible.

Proof score techniques differ from model checking [6] in their emphasis on
re-usable domains, requirments, or designs, which may be instantiated in code
in many different ways, as well as in their ability to deal with systems that have
an infinite number of states, and their natural affinity for abstraction. Many
attempts have been done to use model checking techniques to prove designs or
algorithms which are expressed as, for example, finite state transition systems.
But they are usually expressed only using low-level data types and very close to
program code. Besides, model checking only gives “yes” or “no with counter ex-
ample”, and does not support interactive analyses or understandings of domains,
requirements, or designs.

2.1 Princiles of Proof Score Approach

The following are major principles which underlie proof score approach.

Human Computer Interaction. Since fully automatic theorem proving is
often infeasible for system verification, it is desirable to integrate the human
user in the best possible way: in particular, the proof plans or “scores” should
be as readable as possible, and helpful feedback should be provided by machines
to humans, in order to maximize their ability to contribute.

Flexible but Clear Structure. It is often desirable to arrange the parts of
a verification so as to facilitate comprehension. For example, it is often helpful

4 K. Futatsugi

to state and use a result before it is proved, or even (during proof the planning
process) before it is known to be true. Long sequences of proof parts can be
difficult to understand, especially when there is no obvious immediate connec-
tion between two adjacent parts. But such discontinuities are rather common in
published proofs, e.g., when a series of lemmas is proved before they are used in
proving a main result. This implies that both subgoals and goal/subgoal rela-
tions should be very clear. These flexible and clear structure is coded into several
human readable documents of proof scores in CafeOBJ language making uses of
its flexible semantics and powerful module facility.

Flexible Logic. It is often possible to simulate one logic within another, by
imposing a suitable discipline on how its rules are used; in fact, this is precisely
what proof scores accomplish. The choice of underlying basic logics for such a
purpose is important in at least three dimensions: its efficiency, its simplicity and
ease of use, and its ability to support other logics. We believe that equational
logic and its variants are the most suitable for this purpose: Equational logics
are relatively simple, have many decidable properties with associated efficient
algorithms, are relatively easy to read and write, and can support reasoning in
most other logics, e.g., by supplying appropriate definitions to an engine that
can apply them by as rewrite rules. By contrast, higher order logic and type
theory are much more complex, harder to read and write, harder to mechanize,
and harder to reason with, for both humans and machines.

Behavioral Logic. Distributed systems consist of abstract machines in which
states are hidden, but can be “observed” by certain “attribute” functions with
values in basic data types (such as integer or boolean). Behavioral (also called
observational) logic is a natural approach to verifying such systems. Three major
approaches in this area are: coalgebra (e.g., see the overview [39]); the “observa-
tional logic” of Bidoit and Henniker [2, 38]; and hidden algebra [8, 28], on which
our own work is based. We have found a special (but common) case of behavioral
modeling scheme in which the effects of methods (or actions) need not be con-
sidered for behavioral equivalence, i.e. for which s, s′ are behaviorally equivalent
if a(s) = a(s′) for all applicable attributes a. This is a scheme for concurrent
computation similar to unity[5], and is named as OTS (Obsevational Transition
Systems) [51]. OTS has been extended to TOTS (Timed OTS) [52], which pro-
vides a logical basis for verifying real time concurrent systems with proof scores.
OTS and TOTS provides powerful modeling scheme for verifications with proof
scores.

2.2 Development of Proof Scores

Several well polished small proof scores for data types appeared in OBJ already
in 80’s, e.g., see [29]. For example, they use reductions to prove induction steps
and bases, based on the structure of initial term algebras. Typical examples are
proofs of associativity and commutativity of addition for Peano natural numbers,
and the identity n× (n + 1) = 2× (1 + 2 + · · ·+ n) for any natural number n.

Fostering Proof Scores in CafeOBJ 5

From around 1997, the CafeOBJ group at JAIST [4] started to extend the
proof score method (1) to apply to distributed and real-time systems, such as
classical distributed (and/or real-time) algorithms, component-based software,
railway signal systems, secure protocols, etc., (2) to make the method applicable
to practical size problems, and (3) to automate the method. As a result, the
proof score method using reduction (rewriting) has become a promising way to
do serious proofs.

Many proof scores have been written in CafeOBJ [7, 14] for verifying prop-
erties of distributed systems, especially distributed algorithms, component-based
software, security protocols, e-commerce protocols, and business workflows
[10, 40, 41, 51, 56, 57, 59, 60]. Several auxiliary tools have been also been built
to support this progress, including PigNose [47, 48], Gateaux, Crème [49], and
Kumo [32].

The following give important developments in verifications with proof scores
in CafeOBJ.

From Static to Dynamic Systems. Early proof scores in CafeOBJ included
(1) equivalences of functions over natural numbers, (2) equivalences of func-
tions over lists, (3) correctness of simple compilers from expressions to machine
code for stack machines, etc. These small proof scores realized an almost ideal
combination of high level planning and mechanical reduction. However, even for
this class of problems, some non-trivial lemma discovery and/or case spliting is
required.

Dynamic systems (i.e. systems with changing states) are common in net-
work/computer based systems, but there is no established methodology in alge-
braic specification for coping with this class of problems. The CafeOBJ language
is designed for writing formal specifications of dynamic systems based on hidden
algebra [7, 14, 26]. Many specifications and proof scores for dynamic systems
have been done based on hidden algebra semantics, and OTS has been selected
as a most promising model. OTS corresponds to a restricted class of hidden al-
gebras, such that it is possible to write specifications for OTS in a fixed standard
style that facilitates the development of specifications, and also helps in writing
proof scores, since case splittings can be suggested by the specifications. The
following publications show stages in the evolution of proof scores for dynamic
systems:

– Specifying and verifying mutual exclusion algorithms by incorporating the
unity model [51].

– Introduction of a primitive version of OTS [53].
– Introduction of real-time features into OTS/CafeOBJ , and accompanying

development of proof scores methodology [23, 52].
– A proper introduction of OTS/CafeOBJ and the related proof score writing

method [54, 58].
– Examples of verifications with proof scores in OTS/CafeOBJ [55, 56, 57, 59]

(among others).

6 K. Futatsugi

From Explaining to Doing Proofs. A major factor distinguishing the stages
of evolution of proof scores is the extent of automation. This is a most important
direction of evolution for proof scores, although full automation is not a goal.
Automation by reduction is suitable for a mechanical calculation with a focused
role and a clear meaning in the context of a larger reasoning process. Early
proof scores assisted verification by doing reductions to prove necessary logical
statements for a specification. It is intended to gradually codify as many kinds
of logical statements as possible into reductions in CafeOBJ . As one extreme
case, a fully automatic verification algorithm for a subset of OTS has been devel-
oped. This algorithm is developed at syntactic level of logical formula, and not
necessary be a good help for interactive verification of high level specifications.
Recent important developments are formalization of sound and complete proof
rules and collaboration of interence and search in proof scores. The following
publications show the stages of automation of proof scores:

– Mainly used for writing formal specifications, but also for proof scores [51].
– Examples with sufficiently complete proof scores [56, 57, 59].
– An attempt for automating proof scores by PigNose (a resolution based

automatic theorem prover) [47, 48].
– A fullyautomatic (algorithmic)methodofverification for a subsetofOTS [49]1.
– Identification of several techniques to construct effective proof scores for

rewriting proof engine [61].
– Formalization of sound and complete proof rules for reachable models [25]

(this topic is explained in Section 4).
– Collaboration of interence and search in proof scores [11, 63] (this topic will

be explained in Section 5).

3 An Overview of CafeOBJ Language

This section gives an overview of CafeOBJ algebraic specification language which
has been culture medium for proof scores.

Algebraic specification technique is one of the most promising system model-
ing and specification techniques for a wide area of applications. Algebraic spec-
fication technique was introduced around 1975 as a method for modeling and
specifying so called abstract data types. The substantial research efforts were
invested to the wide range of area from the basic algebraic semantics theory to
many practical application areas. The achievements around OBJ/CafeOBJ can
be found at [13, 16, 18, 22, 24].

CafeOBJ is a modern successor of OBJ language[12, 17, 29] and incorporating
several most recent algebraic specification paradigms. Its definition is given in
[7], and its implementation is reported in [64].

1 This work used the Maude rewriting engine [42] because it provides faster associative
and commutative rewriting.

Fostering Proof Scores in CafeOBJ 7

The following are the major features of the CafeOBJ language system.

Equational Specification and Programming. This is inherited from OBJ
[12, 17, 29] and constitutes the basis of the language, the other features be-
ing somehow built on top of it. As with OBJ , CafeOBJ is executable (by term
rewriting), which gives an elegant declarative way of functional programming, of-
ten referred as algebraic programming.2 As with OBJ , CafeOBJ also permits
equational specification modulo several equational theories such as associativ-
ity, commutativity, identity, idempotence, and combinations between all these.
This feature is reflected at the execution level by term rewriting modulo such
equational theories.

Behavioral Specification. Behavioral specification [8, 28] provides a novel
generalisation of ordinary algebraic specification. Behavioral specification char-
acterises how objects (and systems) behave, not how they are implemented.
This new form of abstraction can be very powerful in the specification and ver-
ification of software systems since it naturally embeds other useful paradigms
such as concurrency, object-orientation, constraints, non determinism, etc. (see
[8, 28] for details). Behavioral abstraction is achieved by using specification with
hidden sorts and a behavioral concept of satisfaction based on the idea of indis-
tinguishability of states that are observationally the same, which also generalises
process algebra and transition systems.

In CafeOBJ a special kind of behavioral specification OTS is identified to have
a practical importance in developing proof scores. A fundamental methodological
insight behind OTS is it is better to prepare sufficient observations to avoid to
encounter true behavioral equivalence.

Rewriting Logic Specification. Rewriting logic specification in CafeOBJ is
based on a simplified version of Meseguer’s rewriting logic (RWL) [44] speci-
fication framework for concurrent systems which gives a non-trivial extension of
traditional algebraic specification towards concurrency. RWL incorporates many
different models of concurrency in a natural, simple, and elegant way, thus giv-
ing CafeOBJ a wide range of applications. Unlike Maude [43, 44], the current
CafeOBJ design does not fully support labelled RWL which permits full rea-
soning about multiple transitions between states (or system configurations), but
provides proof support for reasoning about the existence of transitions between
states (or configurations) of concurrent systems via a built-in predicate (denoted
==>) with dynamic definition encoding both the proof theory of RWL and the
user defined transitions (rules) into equational logic.

From a methodological perspective, CafeOBJ develops the use of RWL tran-
sitions for specifying and verifying the properties of declarative encoding of
algorithms (see [7]) as well as for specifying and verifying transition systems.
Transition system plays an important role in using search in proof scores (see
Section 5).
2 Although this paradigm may be used as programming, this aspect is still secondary

to its specification side.

8 K. Futatsugi

Module System. The principles of the CafeOBJ module system are inherited
from OBJ which builds on ideas first realized in the language Clear [3], most
notably institutions [30]. CafeOBJ module system features

– several kinds of imports,
– sharing for multiple imports,
– parameterised programming allowing

• multiple parameters,
• views for parameter instantiation,
• integration of CafeOBJ specifications with executable code in a lower

level language
– module expressions.

However, the theory supporting the CafeOBJ module system represents an up-
dating of the original Clear/OBJ concepts to the more sophisticated situation
of multi-paradigm systems involving theory morphisms across institution em-
beddings [9], and the concrete design of the language revise the OBJ view on
importation modes and parameters [7].

Type System and Partiality. CafeOBJ has a type system that allows subtypes
based on order sorted algebra (abbreviated OSA) [31, 36]. This provides
a mathematically rigorous form of runtime type checking and error handling,
giving CafeOBJ a syntactic flexibility comparable to that of untyped languages,
while preserving all the advantages of strong typing.

We decided to keep the concrete order sortedness formalism open at least
at the level of the language definition. Instead we formulate some basic simple
conditions which any concrete CafeOBJ order sorted formalism should obey.
These conditions come close to Meseguer’s OSAR [45] which is a revised version
of other versions of order sortedness existing in the literature, most notably
Goguen’s OSA [31].

CafeOBJ does not directly do partial operations but rather handles them by
using error sorts and a sort membership predicate in the style of membership
equational logic (abbreviated MEL) [45]. The semantics of specifications with
partial operations is given by MEL.

Logical semantics. CafeOBJ is a declarative language with firm mathemat-
ical and logical foundations in the same way as other OBJ -family languages
(OBJ, Eqlog [34], FOOPS[35], Maude [43, 44]) are. The reference paper for the
CafeOBJ mathematical foundations is [9], while [7] gives a somehow less math-
ematical easy-to-read (including many examples) presentation of the semantics
of CafeOBJ .

The mathematical semantics of CafeOBJ is based on algebraic specification
concepts and results, and is strongly based on category theory and the theory
of institutions [9, 30]. The following are the principles governing the logical and
mathematical foundations of CafeOBJ :

Fostering Proof Scores in CafeOBJ 9

P1: There is an underlying logic3 in which all basic constructs and features of
the language can be rigorously explained.

P2: Provide an integrated, cohesive, and unitary approach to the semantics of
specification in-the-small and in-the-large.

P3: Develop all ingredients (concepts, results, etc.) at the highest appropriate
level of abstraction.

4 Sound and Complete Proof Rules for Reachalbe Models

A formal specification denotes models. That is the meaning of a specification is
defined to be the set of models each element of which satisfy the specification.
A good formal specification gives clear and transparent view of the entity the
specification describes through the models which denotes. Formal proof based on
a formal specification just verifies that any model which satisfy the specification
satisfy some property of interest.

Verification or proof should be done using sufficiently powerful proof rules.
Proof rules are syntactic rules defined in a formal (i.e mathimatical) language
for describing specifications and properties.

Let Γ denotes a specifications and ρ denotes a property, then Γ |= ρ denotes
that any model which satisfy Γ satisfy ρ, and Γ � ρ denotes that rho can be
derived from Gamma using proof rules. The binary relation (�) is called
entailment relation.

Proof rules are called sound if the following holds,

Γ � ρ implies Γ |= ρ

and are called complete if the following holds.

Γ |= ρ implies Γ � ρ

We have develop sound and complete proof rules for specifications which
only denotes reachable models [25]. A reachable model is the model which only
consists of elements composed of constructor operations. Restricting models to
reachable models are quite reasonable for many practically cases, and it is a good
news that it is possible to have complete (i.e. the most powerful) proof rules for
this situation.

The following list gives sound and complete proof rules. Notice that the last
two rules are of infinite nature, and these are secret of why this list of rules
is complete. Notice also that the entailment relation (�) is defined between
two sets of equations. However, depending on context, a single equation can
be considered to be a singleton set of the equation, a set of equations can be
considered to be an equation:

3 Here “logic” should be understood in the modern relativistic sense of “institution”
which provides a mathematical definition for a logic (see [30]) rather than in the
more classical sense.

10 K. Futatsugi

〈conjunction of all the equations in the set〉 = true,

and any Boolean expression b can be considered to be an equation (b = true).
Intereted readers are advised to look into [25] or the slides for lecture 03b of [11]
for details.

EntailmentRelation. The following four rules are basics of entailment relation.

(Monotonicity)

E1 � E2
whenever E2 ⊆ E1

(Transitivity)

E1 � E2, E2 � E3

E1 � E3

(Unions)

E1 � E2, E1 � E3

E1 � E2 ∪ E3

(Translation)

E �Σ E′

ϕ(E) �Σ′ ϕ(E′)
for all signature morphisms ϕ : Σ → Σ′

Equality. The following six rules characterize the equality relation.

(Reflexivity)

∅ � t = t

(Symmetry)

t = t′ � t′ = t

(Transitivity)

{t = t′, t′ = t′′} � t = t′′

(Congruence)

{ti = t′i|i = 1, n} � σ(t1, ..., tn) = σ(t′1, ..., t′n)

(P-Congruence)

{ti = t′i|i = 1, n} ∪ {π(t1, ..., tn)} � π(t′1, ..., t′n)

Fostering Proof Scores in CafeOBJ 11

Meta and Object Implications. The following gives equivalence of mata and
object implications.

(Implications)
Γ �

∧
H ⇒ C

Γ ∪H � C
and

Γ ∪H � C

Γ �
∧

H ⇒ C

Substitution and Generalization. Rules for substitution and generalization.
Generalization is also called Theorem of Constant

(Substitutivity)

(∀x)ρ � (∀Y)ρ(x ← t)

(Generalization)

Γ �Σ (∀Z)ρ
Γ �Σ(Z) ρ

and
Γ �Σ(Z) ρ

Γ �Σ (∀Z)ρ

Infinite Rules. The following two rules are of infinite nature, and justify the
two of the important verification techniques of induction and case analysis (or
case splitting).

(C-Abstraction)

{Γ �Σ (∀Y)ρ(x ← t) | Y are loose vars, t is constructor Y -term}
Γ �Σ (∀x)ρ

(Case Analysis)

{Γ ∪ {σ(t1, . . . , tn) = t} �Σ(Y) e | Y are loose vars, t is constructor Y -term}
Γ �Σ e

5 Combining Inference and Search with Proof Scores

Verification with proof scores can be quite versatile, and realizes powerful tech-
niques of combining inference and search for proving interesting properties of
interest. This section gives an overview of an example of verifying mutual exclu-
sion property with combination of inference and search. You can find the more
detailed explanation with complete CafeOBJ codes of this example in the lecture
materials of Lecture05a and Lecture09a at the web page of [11]. You can also find
another kind of combination of inference and search with proof scores in [63].

12 K. Futatsugi

Mutual Exclusion Protocols. Mutual excusion protocols are described as
follows:

Assume that many agents (or processes) are competing for a common
equipment, but at any moment of time only one agent can use the equip-
ment. That is, the agents are mutually excluded in using the equipment.
A protocol (mechanism or algorithm) which can achieve the mutual ex-
clusion is called mutual exclusion proto that many agents (or processes)
are competing for a common equipment, but at any moment of time
only one agent can use the equipment. That is, the agents are mutu-
ally excluded in using the equipment. A protocol (mechanism or algo-
rithm) which can achieve the mutual exclusion is called mutual exclusion
protocol.
A typical mutual exclusion protocol, called QLOCK, is realized by using a

global queue as follows.

– Each of unbounded number of agents who participates the protocol behaves
as follows:
• If the agent wants to use the common equipment and its name is not in

the queue yet, put its name into the queue.
• If the agent wants to use the common equipment and its name is already

in the queue, check if its name is on the top of the queue. If its name is
on the top of the queue, start to use the common equipment. If its name
is not on the top of the queue, wait until its name is on the top of the
queue.

• If the agent finishes to use the common equipment, remove its name from
the top of the queue.

– The protocol should start from the state where the queue is empty.
– It is assumed that each agent can use the common equipment any number

of times.

QLOCK in OTS/CafeOBJ. In OTS a system is modeled as a transition sys-
tem whose state is identified as a collection of typed values given by observation
operations. A state transition of the system is modeled as an action operation
which returns next state.

QLOCK is modeled in OTS (Observational Transition System) as Fig. 1, and
Fig. 2 gives CafeOBJ signature for QLOCK in OTS .

QLOCK is modeled as OTS with two observations of pc, queue and three
actions of want, try, exit. Initial states are modeled as a constant (i.e. an
operation with no arguments) init.

Sys is sort of system space, and Pid is sort of agent names. pc returns one
of three labels of rm, wt, cs to indicate the state of each agent. queue returns a
value of the global queue.

Behavior of an OTS is specified by giving equations which define the way in
which each action changes the values of observations. For example, the specifi-
cation of the action of want of QLOCK is described in CafeOBJ as follows.

Fostering Proof Scores in CafeOBJ 13

kj i

i

k

j

is i?

is j? put

get

get

put

Queue

Label

Pid

Sys

want

try

pc

queue

exit

init

Fig. 1. Global view of QLOCK in Observational Transition System

-- state space of the system
[Sys]
-- visible sorts for observation
[Queue Pid Label]

-- observations
op pc : Sys Pid -> Label
op queue : Sys -> Queue
-- any initial state
op init : -> Sys (constr)
-- actions
op want : Sys Pid -> Sys {constr}
op try : Sys Pid -> Sys {constr}
op exit : Sys Pid -> Sys {constr}

Fig. 2. CafeOBJ signature for QLOCK in Observational Transition System

-- want
op c-want : Sys Pid -> Bool
eq c-want(S:Sys,I:Pid) = (pc(S,I) = rm).
--
ceq pc(want(S:Sys,I:Pid),J:Pid)

= (if I = J then wt else pc(S,J) fi) if c-want(S,I).
ceq queue(want(S:Sys,I:Pid)) = put(I,queue(S)) if c-want(S,I).
ceq want(S:Sys,I:pid) = S if not c-want(S,I).

rm is a label showing an agent is not in the global queue, and (pc(S,I) =
rm) indicates that the agent I is not in the global queue in the state S. c-want is

14 K. Futatsugi

a predicate (i.e. function with Boolean value) defining the condition only under
which the action want changes state (i.e. values of observations). That is, if
c-want is false then want does not change any observations. The first conditional
equation (i.e. ceq) defines the change of value of observation pc, and the second
conditional equation defines the change of value of observation queue. The third
conditional equation defines that state does not change if c-want is false.

The specifications for other two actions try, exit are given in similar ways.
Specifications of these three actions are the core part of QLOCK specification,
but it is important to notice that they are based on precise specification of the
global queue, e.g. the specification of operation put.

It is also important to notice that by the style of defining behaviors actions
of OTS using conditional equations, any.

Let a predicate mex be defined as follows, where (pc(S,I) = cs) means that
an agent I is using the common equipment at the state S. The proposition
mex(s,i,j)means that if two agents of i and j are using the common equipment
then i and j should be identical.

eq mex(S:Sys,I:Pid,J:Pid)
= (((pc(S,I) = cs) and (pc(S,J) = cs)) implies I = J) .

Let QLOCK be the module name of CafeOBJ specification which specifies
QLOCK protocol and also includes the above predicate mex. The mutual ex-
clusion property to be verified on QLOCK is expressed as follows. This formula
means that for any model which satisfies the specification QLOCK , the proposi-
tion mex(s, i, j) should be true for any s:Sys, i:Pid, j:Pid.

QLOCK |= ∀S : Sys ∀ I : Pid ∀ J : Pid . mex(S, I, J)

Verifying QLOCK with Small Number of Agents by Search. The sort
Sys of QLOCK is defined to be the set of all states which can be reached from the
initial state init via three actions of want, try, and exit. That is, Sys can be
defined as follows.

Sys
def= {init} ∪
{want(s, i) | s : Sys, i : Pid} ∪
{try(s, i) | s : Sys, i : Pid} ∪
{exit(s, i) | s : Sys, i : Pid}

If the number of agents who participate QLOCK protocol is limited to a small
number, it is feasible to search all possible states and check whether the mutual
exclusion property mex(s, i, j) holds for any state s:Sys.

In CafeOBJ , transitions can be defined and built-in search predicate provides
the facility to check whether a property holds at all reachable states via the
transitions.

Fostering Proof Scores in CafeOBJ 15

A transition system corresponding to QLOCK is described as follows in CafeOBJ,
where S is a CafeOBJ variable standing for any state and p is a CafeOBJ constant
standing for arbitrary agent.

ctrans < S > => < want(S,p) > if c-want(S,p) .
ctrans < S > => < try(S,p) > if c-try(S,p) .
ctrans < S > => < exit(S,p) > if c-exit(S,p) .

Let QLOCKpTrans denote a CafeOBJ module with above three conditional tran-
sitions which defines a transition system corresponding to QLOCK. The transition
system with two agents can be specified as follows using powerful module ex-
pression of CafeOBJ .

-- transition system with 2 agents i j
mod* QLOCKijTrans {
inc((QLOCKpTrans * {op p -> i}) +

(QLOCKpTrans * {op p -> j})) }

It is easy by the above definition of Sys to see that the Sys (the reachable
state space) of QLOCKijTrans can be spanned by six conditonal transitions of
QLOCKijTrans from the initial state init.

CafeOBJ provides the following built-in predicate, where t1 and t2 are expres-
sions to represent initial and final states, it m is a natural number which limits
number of final states to be found, n is a natural number which limits number of
transitions, pred1(t2) is a predicate on t2 specifying the final states to be found,
and pred2(S1 : State, S2 : State) is a binary predicate on the sort of t1 and
t2 specifying identity relation which is used to stop searching when encounters
identical one. m and n can be * for specifying “no limit”.

t1 = (m, n) => ∗ t2 suchThat pred1(t2)
withStateEq pred2(S1 : State, S2 : State)

Using the above built-in predicate, the mutual exclusion property of the two
agents QLOCL protocol is verified by checking that the following reduction re-
turns false. Where, Config is the sort of state space of QLOCKijTrans, and
(C1:Config =ob= C2:Config) is binary predicate over Config to check whether
two states return the same observations.

red < init > =(*,*)=>* < S:Sys >
suchThat (not mex(S,i,j))
withStateEq (C1:Config =ob= C2:Config) .

Verifying Simulation of Any Number of Agents by Two Agents. If the
behaviors of QLOCK (with any number of agents) which relate to an interested
property can be simulated by QLOCK with two agents, the property can be veri-
fied by only inspecting the behavior of the two agents QLOCK. This observation
can be formalized as follows.

16 K. Futatsugi

Let i and j denote two distinct agent names, and Sys(i, j) denote the state
space spanned only by actions caused by these two agents, that is Sys(i, j) ⊆ Sys.
Simulation4 of Sys by Sys(i, j) is defined as follows.

Proposition-A. For any reachable state s : Sys there exit a reachable state
t : Sys(i, j) which satisfy the following property.

sim(s, i, j, t) def= (pc(s, i) = pc(t, i)) and
(pc(s, j) = pc(t, j)) and
(prij(queue(s)) = queue(t))

Where prij(Q : Queue) is defined as follows.

prij(nil) = nil

prij(Q : Queue,I : Pid) =
{

(prij(Q),I) if ((I = i) or (I = j))
prij(Q) if not((I = i) or (I = j))

Where (,) is the cons(truction) operation of Queue. �
Proof scores can be developed to verify Proposition-A. It is easy to see the
following predicate hold, and proof scores can also be developed for this.

(sim(s, i, j, t) and mex(t, i, j)) implies mex(s, i, j)

We have already verified that mex(t, i, j) hold for any state t of two agents
QLOCK, and sim(s, i, j, t) means that such t exits for any state s of any number
agents QLOCK, this implies that mex(s, i, j) hold for any reachable state s of
QLOCK.

6 Conclusions

This paper gives an overview of evolution of verifications with proof scores in
CafeOBJ . Specifications in CafeOBJ can be expressed in relatively high level of
abstraction thanks to facilities of user defined data types, OTS , and powerful
module systems, etc. Proof scores enjoy the same merit and can make it possible
to verify the specifications or domains, requirements, designs in a more higher
level of abstraction than other interactive theorem provers or model checkers.
This suggests that proof score approach has a potential for providing a practical
way of verifying specifications.

There are several challenges to be attacked in the future. The following are
most important current issues of the proof score approach with CafeOBJ :

– Development of correctness checker for proof scores which can check the
correctness as independently as possible. That is, using minimal semantical
informal about the original specification.

4 This definition of simulation is deferent from that of [62], but has a similar intention.

Fostering Proof Scores in CafeOBJ 17

– Farther development of the Kumo/Tatami project (done at UCSD as a sub-
project of CAFE project [21]) to realize a web (or hypertext) based proof
score development environment.

– Serious development of practical domain and/or requirement specifications
in the application area like e-government, e-commerce, open standards for
automotive software, etc. The development should aim at a reasonable bal-
ance of informal and the formal specifications, and verify as much as mean-
ingful and important properties of the models/problems the specifications
are describing.

Acknowledgments. The achievements reported in this paper are done by many
people almost all names of whom can be found as the authors of publications
listed at the following References.

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
– Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)

2. Bidoit, M., Hennicker, R.: Behavioural theories and the proof of behavioural prop-
erties. Theoretical Computer Science 165(1), 3–55 (1996)

3. Burstall, R.M., Goguen, J.A.: Putting theories together to make specifications. In:
IJCAI, pp. 1045–1058 (1977)

4. CafeOBJ: Web page (2010), http://www.ldl.jaist.ac.jp/cafeobj/
5. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley,

Reading (1988)
6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge

(2000)
7. Diaconescu, R., Futatsugi, K.: CafeOBJ Report: The Language, Proof Techniques,

and Methodologies for Object-Oriented Algebraic Specification. AMAST Series in
Computing, vol. 6. World Scientific, Singapore (1998)

8. Diaconescu, R., Futatsugi, K.: Behavioural coherence in object-oriented algebraic
specification. Journal of Universal Computer Science 6(1), 74–96 (2000)

9. Diaconescu, R., Futatsugi, K.: Logical foundations of CafeOBJ. Theor. Comput.
Sci. 285(2), 289–318 (2002)

10. Diaconescu, R., Futatsugi, K., Iida, S.: Component-based algebraic specification
and verification in CafeOBJ. In: Wing et al. [65], pp. 1644–1663

11. FSSV 2010: Web page (March 2010),
http://www.ldl.jaist.ac.jp/jaist-fssv2010/lectureMaterials/

12. Futatsugi, K.: An overview of OBJ2. In: Fuchi, K., Nivat, M. (eds.) Programming
of Future Generation Computers, pp. 139–160. North-Holland, Amsterdam (1986);
Proc. of Franco-Japanese Symp. on Programming of Future Generation Comput-
ers, Tokyo (October 1986)

13. Futatsugi, K.: Trends in formal specification methods based on algebraic speci-
fication techniques – from abstract data types to software processes: A personal
perspective. In: Proceedings of the International Conference of Information Tech-
nology to Commemorating the 30th Anniversary of the Information Processing
Society of Japan (InfoJapan 1990), pp. 59–66. Information Processing Society of
Japan (1990) (invited talk)

http://www.ldl.jaist.ac.jp/cafeobj/
http://www.ldl.jaist.ac.jp/jaist-fssv2010/lectureMaterials/

18 K. Futatsugi

14. Futatsugi, K.: Formal methods in CafeOBJ. In: Hu, Z., Rodŕıguez-Artalejo, M.
(eds.) FLOPS 2002. LNCS, vol. 2441, pp. 1–20. Springer, Heidelberg (2002)

15. Futatsugi, K.: Verifying specifications with proof scores in CafeOBJ. In: Proc. of
21st IEEE/ACM International Conference on Automated Software Engineering
(ASE 2006), pp. 3–10. IEEE Computer Society, Los Alamitos (2006)

16. Futatsugi, K., Goguen, J., Meseguer, J. (eds.): OBJ/CafeOBJ/Maude at Formal
Methods 1999. The Theta Foundation, Bucharest (1999) ISBN 973-99097-1-X

17. Futatsugi, K., Goguen, J.A., Jouannaud, J.P., Meseguer, J.: Principles of OBJ2.
In: Conference Record of the Twelfth Annual ACM Symposium on Principles of
Programming Languages (POPL 1985), New Orleans, Louisiana, pp. 52–66. ACM,
New York (1985)

18. Futatsugi, K., Goguen, J.A., Meseguer, J., Okada, K.: Parameterized programming
in OBJ2. In: ICSE, pp. 51–60 (1987)

19. Futatsugi, K., Goguen, J.A., Ogata, K.: Verifying design with proof scores. In:
Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, Springer, Heidel-
berg (2008)

20. Futatsugi, K., Jouannaud, J.P., Meseguer, J. (eds.): Algebra, Meaning, and Com-
putation. LNCS, vol. 4060. Springer, Heidelberg (2006)

21. Futatsugi, K., Nakagawa, A.: An overview of CAFE specification environment - an
algebraic approach for creating, verifying, and maintaining formal specifications
over networks. In: Proc. of 1st International Conference on Formal Engineering
Methods (ICFEM 1997), Hiroshima, Japan, November 12-14, pp. 170–182. IEEE,
Los Alamitos (1997)

22. Futatsugi, K., Nakagawa, A., Tamai, T. (eds.): CAFE: An Industrial-Strength
Algebraic Formal Method. Elsevier Science B.V., Amsterdam (2000) ISBN 0-444-
50556-3

23. Futatsugi, K., Ogata, K.: Rewriting can verify distributed real-time systems. In:
Proc. of International Symposium on Rewriting, Proof, and Computation (PRC
2001), pp. 60–79. Tohoku Univ. (2001)

24. Futatsugi, K., Okada, K.: Specification writing as construction of hierarchically
structured clusters of operators. In: IFIP Congress, pp. 287–292 (1980)

25. Gâinâ, D., Futatsugi, K., Ogata, K.: Constructor-based institutions. In: Kurz,
A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 398–412.
Springer, Heidelberg (2009)

26. Goguen, J.: Hidden algebraic engineering. In: Nehaniv, C., Ito, M. (eds.) Algebraic
Engineering. pp. 17–36. World Scientific, Singapore (1998), papers from a confer-
ence at the University of Aizu, Japan, 24–26 March 1997; also UCSD Technical
Report CS97–569 (December 1997)

27. Goguen, J.: Theorem Proving and Algebra. [Unpublished Book] (now being
planned to be up on the web for the free use)

28. Goguen, J., Malcolm, G.: A hidden agenda. Theoretical Computer Science 245(1),
55–101 (2000)

29. Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.P.: Introducing
OBJ. In: Goguen, J., Malcolm, G. (eds.) Software Engineering with OBJ: Algebraic
Specification in Action, pp. 3–167. Kluwer, Dordrecht (2000)

30. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992)

31. Goguen, J.A., Diaconescu, R.: An oxford survey of order sorted algebra. Mathe-
matical Structures in Computer Science 4(3), 363–392 (1994)

Fostering Proof Scores in CafeOBJ 19

32. Goguen, J.A., Lin, K., Mori, A., Rosu, G., Sato, A.: Distributed cooperative formal
methods tools. In: Proc. of 1997 International Conference on Automated Software
Engineering (ASE 1997), Lake Tahoe, CA, November 02-05, pp. 55–62. IEEE, Los
Alamitos (1997)

33. Goguen, J.A., Malcolm, G.: Algebraic Semantics of Imperative Programs. MIT
Press, Cambridge (1996)

34. Goguen, J.A., Meseguer, J.: Eqlog: Equality, types, and generic modules for logic
programming. In: DeGroot, D., Lindstrom, G. (eds.) Logic Programming: Func-
tions, Relations, and Equations, pp. 295–363. Prentice-Hall, Englewood Cliffs
(1986)

35. Goguen, J.A., Meseguer, J.: Unifying functional, object-oriented and relational
programming with logical semantics. In: Shriver, B., Wegner, P. (eds.) Research
Directions in Object-Oriented Programming, pp. 417–478. MIT Press, Cambridge
(1987)

36. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: Equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theor. Comput.
Sci. 105(2), 217–273 (1992)

37. Guttag, J.V., Horning, J.J., Garland, S.J., Jones, K.D., Modet, A., Wing, J.M.:
Larch: Languages and Tools for Formal Specification. Springer, Heidelberg (1993)

38. Hennicker, R., Bidoit, M.: Observational logic. In: Haeberer, A.M. (ed.) AMAST
1998. LNCS, vol. 1548, pp. 263–277. Springer, Heidelberg (1998)

39. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bulletin of
the European Association for Theoretical Computer Science 62, 222–259 (1997)

40. Kong, W., Ogata, K., Futatsugi, K.: Algebraic approaches to formal analysis of
the mondex electronic purse system. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 393–412. Springer, Heidelberg (2007)

41. Kong, W., Ogata, K., Futatsugi, K.: Specification and verification of workflows
with Rbac mechanism and Sod constraints. International Journal of Software En-
gineering and Knowledge Engineering 17(1), 3–32 (2007)

42. Maude: Web page (2010), http://maude.cs.uiuc.edu/
43. Meseguer, J.: A logical theory of concurrent objects. In: OOPSLA/ECOOP, pp.

101–115 (1990)
44. Meseguer, J.: Conditioned rewriting logic as a united model of concurrency. Theor.

Comput. Sci. 96(1), 73–155 (1992)
45. Meseguer, J.: Membership algebra as a logical framework for equational speci-

fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

46. Meseguer, J.: From OBJ to Maude and beyond. In: Futatsugi et al. [20], pp. 252–
280

47. Mori, A., Futatsugi, K.: Verifying behavioural specifications in CafeOBJ environ-
ment. In: Wing et al. [65], pp. 1625–1643

48. Mori, A., Futatsugi, K.: CafeOBJ as a tool for behavioral system verification. In:
Okada, M., Pierce, B.C., Scedrov, A., Tokuda, H., Yonezawa, A. (eds.) ISSS 2002.
LNCS, vol. 2609, pp. 461–470. Springer, Heidelberg (2003)

49. Nakano, M., Ogata, K., Nakamura, M., Futatsugi, K.: Crème: an automatic in-
variant prover of behavioral specifications. International Journal of Software En-
gineering and Knowledge Engineering 17(6), 783–804 (2007)

50. Nipkow, T., Paulson, L.C., Wenzel, M.T. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

http://maude.cs.uiuc.edu/

20 K. Futatsugi

51. Ogata, K., Futatsugi, K.: Specification and verification of some classical mutual
exclusion algorithms with CafeOBJ. In: Futatsugi et al. [16], pp. 159–177 ISBN
973-99097-1-X

52. Ogata, K., Futatsugi, K.: Modeling and verification of distributed real-time systems
based on CafeOBJ. In: Proceedings of the 16th International Conference on Au-
tomated Software Engineering (16th ASE), pp. 185–192. IEEE Computer Society
Press, Los Alamitos (2001)

53. Ogata, K., Futatsugi, K.: Specifying and verifying a railroad crossing with
CafeOBJ. In: Proceedings of the 6th International Workshop on Formal Methods
for Parallel Programming: Theory and Applications (6th FMPPTA); Part of Pro-
ceedings of the 15th IPDPS, p. 150. IEEE Computer Society Press, Los Alamitos
(2001)

54. Ogata, K., Futatsugi, K.: Rewriting-based verification of authentication protocols.
In: 4th WRLA. ENTCS, vol. 71, pp. 189–203. Elsevier, Amsterdam (2002)

55. Ogata, K., Futatsugi, K.: Flaw and modification of the iKP electronic payment
protocols. Information Processing Letters 86(2), 57–62 (2003)

56. Ogata, K., Futatsugi, K.: Formal analysis of the iKP electronic payment protocols.
In: Okada, M., Pierce, B.C., Scedrov, A., Tokuda, H., Yonezawa, A. (eds.) ISSS
2002. LNCS, vol. 2609, pp. 441–460. Springer, Heidelberg (2003)

57. Ogata, K., Futatsugi, K.: Formal verification of the Horn-Preneel micropayment
protocol. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI
2003. LNCS, vol. 2575, pp. 238–252. Springer, Heidelberg (2002)

58. Ogata, K., Futatsugi, K.: Proof scores in the OTS/CafeOBJ method. In: Najm, E.,
Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 170–184.
Springer, Heidelberg (2003)

59. Ogata, K., Futatsugi, K.: Equational approach to formal verification of SET. In:
Proceedings of the 4th International Conference on Quality Software (4th QSIC),
pp. 50–59. IEEE Computer Society Press, Los Alamitos (2004)

60. Ogata, K., Futatsugi, K.: Equational approach to formal analysis of TLS. In: 25th
ICDCS, pp. 795–804. IEEE CS Press, Los Alamitos (2005)

61. Ogata, K., Futatsugi, K.: Some tips on writing proof scores in the OTS/CafeOBJ
method. In: Futatsugi et al. [20], pp. 596–615

62. Ogata, K., Futatsugi, K.: Simulation-based verification for invariant properties in
the ots/cafeobj ethod. Electr. Notes Theor. Comput. Sci. 201, 127–154 (2008)

63. Ogata, K., Futatsugi, K.: A combination of forward & backward reachability anal-
ysis method. In: Proc. of 12th International Conference on Formal Engineering
Methods (ICFEM 2010), Shanghai, China, November 16-19. Springer, Heidelberg
(2010) (to appear)

64. Sawada, T., Kishida, K., Futatsugi, K.: Past, present, and future of SRA imple-
mentation of CafeOBJ: Annex. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME
2003. LNCS, vol. 2805, pp. 7–17. Springer, Heidelberg (2003)

65. Wing, J.M., Woodcock, J., Davies, J. (eds.): FM 1999. LNCS, vol. 1709. Springer,
Heidelberg (1999)

Exploiting Partial Success in Applying Automated
Formal Methods

Matthew B. Dwyer

Department of Computer Science and Engineering, University of Nebraska,
Lincoln NE 68588-0115, USA
dwyer@cse.unl.edu

Abstract. The past decades have produced a wide-range of formal techniques
for developing and assessing the correctness of software systems. Techniques,
such as various forms of static analysis, automated verification, and test genera-
tion, can provide valuable information about how a system satisfies its specified
correctness properties. In practice, when applied to large modern software sys-
tems all existing automated formal methods come up short. They might produce
false error reports, exhaust available human or computational resources, or be
incapable of reasoning about some set of important properties. Whatever their
shortcoming, the goal of proving a system correct remains elusive.

Despite this somewhat dire outlook, there have been enormous gains in the
effectiveness of a range of automated formal methods. Rather than looking for
a silver bullet of a formal method, we ought to admit that no one method will
be effective for all properties on all software systems. We should embrace the
wealth of existing techniques by trying to characterize their relative strengths and
weaknesses across a range of properties and software domains.

Moreover, we should exploit the conventional wisdom that software systems
are mostly correct – systems have much more correct behavior than incorrect be-
havior. Given this we should shift from focusing on proving correctness, to devel-
oping automated formal methods that calculate the set of system behaviors that
are consistent with system specifications. Clearly if the specification-consistent
set of behaviors is the set of all behaviors, then the property is proved, but that
will rarely be the case.

It is likely, however, that methods will be able to demonstrate that large sets
of behaviors are specification-consistent. This type of partial evidence of cor-
rectness will be most valuable if evidence from multiple techniques can be com-
bined. Equipped with a rich suite of evidence-producing formal methods, where
the weakness of each method is masked by the strength of another, and a means
for combining their partial evidence we will be well positioned to target the veri-
fication and validation of modern software systems.

Acknowledgments

We thank Elena Sherman and Sebastian Elbaum for discussions related to this work.
This work was supported in part by the National Science Foundation through awards
CCF-0747009 and CCF-0915526, the National Aeronautics and Space Administration
under grant number NNX08AV20A, and the Air Force Office of Scientific Research
under award FA9550-09-1-0129.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, p. 21, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Multicore Embedded Systems:
The Timing Problem and Possible Solutions

Wang Yi

Uppsala University, Sweden

Today’s processor chips contain often multiple CPUs i.e. processor cores each
of which may support several hardware threads working in parallel. They are
known as multicore or many-core processors. As a consequence of the broad
introduction of multicore into computing, almost all software must exploit par-
allelism to make the most efficient use of on-chip resources including processor
cores, caches and memory bandwidth. For embedded applications, it is predicted
that multicores will be increasingly used in future embedded systems for high
performance and low energy consumption. The major obstacle is that due to
on-chip resource contention, the prediction of system performance, latencies,
and resource utilization in multicore systems becomes a much harder task than
that for single-core systems. With the current technology we may not predict
and provide any guarantee on real-time properties of multicore software, which
restricts seriously the use of multicores for embedded applications.

In this talk, I will give an overview on the key challenges for software develop-
ment on multicore architecture and briefly introduce the CoDeR-MP 1 project
at Uppsala to develop high-performance and predictable real-time software on
multicore platforms. I will present the multicore timing analysis problem and
our solutions proposed in a series of recent work. Technical details may be found
in [LNYY10] on combining abstract interpretation and model checking for mul-
ticore WCET analysis, [GSYY09a] dealing with shared caches, [GSYY09b] on
response time analysis for multicore systems, and [GSYY10] extending Layland
and Liu’s classical result [LL73] on rate monotonic scheduling for single-core
systems to multicore systems.

References

[GSYY09a] Guan, N., Stigge, M., Yi, W., Yu, G.: Cache-aware scheduling and anal-
ysis for multicores. In: ACM Conference on Embedded Software (EM-
SOFT), pp. 245–254 (2009)

[GSYY09b] Guan, N., Stigge, M., Yi, W., Yu, G.: New response time bounds for
fixed priority multiprocessor scheduling. In: IEEE Real-Time Systems
Symposium (RTSS), pp. 387–397 (2009)

1 CoDeR-MP: Computationally Demanding Real-Time Applications on Multicore
Platforms, www.it.uu.se/research/coder-mp, a joint research program at Uppsala
University with ABB and SAAB, supported by the Swedish Foundation for Strate-
gic Research.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 22–23, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Multicore Embedded Systems: The Timing Problem and Possible Solutions 23

[GSYY10] Guan, N., Stigge, M., Yi, W., Yu, G.: Fixed-priority multiprocessor
scheduling with liu and layland’s utilization bound. In: IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pp.
165–174 (2010)

[LL73] Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming
in a hard-real-time environment. J. ACM 20(1), 46–61 (1973)

[LNYY10] Lv, M., Nan, G., Yi, W., Yu, G.: Combining abstract interpretation with
model checking for timing analysis of multicore software. In: IEEE Real-
Time Systems Symposium, RTSS (to appear 2010)

Applying PVS Background Theories and Proof
Strategies in Invariant Based Programming

Johannes Eriksson and Ralph-Johan Back

Department of Information Technologies, Åbo Akademi University
Joukahaisenkatu 3-5 A, Turku, FI-20520, Finland

��������	
�������������

Abstract. Invariant Based Programming (IBP) is a formal method in which the
invariants are developed before the code. IBP leads to programs that are correct by
construction, provides a light formalism that is easy to learn, and supports teach-
ing formal methods. However, like other verification methods it generates a large
number of lemmas to be proved. The Socos tool provides automatic verification
of invariant based programs: it sends the proof obligations to an automatic theo-
rem prover and reports only the unproven conditions. The latter may be proved
interactively in a proof assistant.

In this paper, we describe the Socos embedding of invariant based programs
into the theorem prover PVS. The tool generates verification conditions and ap-
plies a strategy to decompose the conditions into fine grained lemmas. Each
lemma is then attacked with the SMT solver Yices. Socos supports incremen-
tal development and allows reasoning in arbitrary program domains through the
use of background theories. A background theory is a PVS theory pertaining to
a specific programming domain. We give an example of a verification in our sys-
tem, which demonstrates how background theories improve the degree of proof
automation. This work is a step towards scaling up IBP by allowing existing col-
lections of PVS theories to be used.

1 Introduction

Building correct programs is a core problem in computer science. Formal methods for
verifying with mathematical rigor that a program satisfies a specification have been
proposed to address the issue. Invariant Based Programming (IBP) is a new correct-by-
construction formal method, in which not only the pre- and postconditions, but also the
loop invariants are written before the code [1].

Tool support is key to making formal methods feasible. A program verifier gener-
ates verification conditions (VCs) and applies an automatic theorem prover (ATP) to
them. Modern ATPs, such as satisfiability modulo theories (SMT) solvers efficiently
discharge large numbers of simple conditions. IBP is supported by Socos [2], a dia-
grammatic environment connected to a VC generator and an ATP. Its core is a seman-
tics for translating invariant based programs into VCs, which are sent to an SMT solver
for simplification. The programmer needs to consider only the conditions that were not
proved automatically.

All conditions cannot be expected to be proved automatically, even for small pro-
grams. In theory, the remaining conditions could be proved interactively using a proof
assistant. In practice, proving requires considerable expertise, and is hard to integrate

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 24–39, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Applying PVS Background Theories and Proof Strategies 25

into the programming workflow as program proofs tend to be tedious and must be
rechecked whenever the program is modified. Hence interactive verification is mainly
used in safety-critical and other dependable systems. An alternative approach explored
here consists of identifying and proving the central theorems on which the correctness
of the program hinges, and then using strong automation to apply these as lemmas in
the proofs of the concrete VCs. The first activity is part of developing the background
theory—a mathematical theory pertaining to the program domain at hand. In this way
the programmer can focus on the essential conditions, and hand over the details to the
ATP. Too much detail can swamp ATPs, so proofs must be carried out at a proper level
of abstraction for efficient automation. In this paper we study the application of the PVS
theorem prover [13] and the Yices SMT solver [9] in IBP, and how automatic and inter-
active verification are combined in the Socos environment. By defining the necessary
abstractions in a PVS background theory and sending them as axioms to an SMT solver,
a high level of proof automation can be attained for programs in the domain at hand.

Invariant diagrams. IBP uses the basic building block of a situation, a collection of
constraints to describe a set of states. Situations can be nested to inherit the constraints
of outer situations. A transition is a program statement going from one situation to
another. An initial situation has no incoming transitions; a final situation has no outgo-
ing transitions. Invariant diagrams are graphs of situations and transitions: the former
are drawn as rounded boxes, the latter as arrows connecting to the edges of the boxes.
Figure 1 shows an example: a program that computes the sum of the natural numbers
up to n. In the IBP workflow, the programmer defines the situations before adding the
transitions. An added transition is consistent iff the source situation together with the
conditions and assignments on the arrow imply the target situation. A program is con-
sistent iff all transitions are consistent. A program is live if at least one transition is
enabled in each non-final situation. A program is terminating if each cycle decreases a
variant (written in the upper right hand corner of the situation) which is bounded from
below. Sound and complete proof rules for total correctness have been defined [4].

n,s,k : Z
n≥ 0

0≤ k ≤ n 0≤ n−k
s = 0+1+2+ . . . +k

k = n

k := 0 ; s := 0

[k �= n]

k := k +1 ; s := s+k

[k = n]

Fig. 1. An invariant diagram. Constraints (invariants) are written in the top left corner of situa-
tions, statements (guards and assignments) adjacent to transitions

PVS and Yices. PVS [13] is a verification system based on simply-typed higher-order
logic. It has a rich specification language and supports predicate subtypes and depen-
dent types. It includes an interactive proof system based on sequent calculus. Yices [9]
is an SMT solver that supports uninterpreted functions with equality, linear real and

26 J. Eriksson and R.-J. Back

integer arithmetic, scalar types, recursive datatypes, tuples, records, extensional arrays,
bit-vectors, and quantifiers. Yices is integrated into PVS; it can be invoked as a deci-
sion procedure with the command �������, which either proves the current goal or does
nothing.

Contribution. The paper comprises 1) a description of the Socos verification method-
ology, and 2) a case study illustrating how Socos together with PVS supports invariant
based programming. For the first part, we introduce the Socos programming language
and describe an embedding of it into PVS. The translation is based on the proof rules for
IBP and weakest precondition calculus. Socos generates the consistency, liveness and
termination conditions for a diagram, builds a proof script to decompose the conditions
into fine grained lemmas, and then applies an endgame strategy to try to discharge each
of them. For the case study, we verify an invariant based implementation of the heapsort
algorithm. Heapsort is a reasonable exercise in verification. Firstly, although the code
is small the verification involves a set of nontrivial invariants and proofs. Secondly, it is
not trivial to write a correct implementation of heapsort. In particular, there is a corner
case that is easily missed; we show how the tool aids in spotting such cases. Thirdly,
the specification of heapsort involves the notion of permutation, which is infeasible to
reason about in terms of the mathematical definition. The use of a background theory
improves automation while maintaining soundness with respect to the definition.

Related work. PVS verification of Java programs is supported by Loop [14] and the
Why/Krakatoa tool suite [10]. Several program verifiers are based on SMT solvers.
Boogie [5] is an automatic verifier of BoogiePL, a language intended as a backend for
encoding verification semantics of object oriented languages. Spec#, an extension to
C#, is based on Boogie [6]. Back and Myreen have developed an automatic checker for
invariant diagrams [3] based on the Simplify validity checker [8]. With the first author
they later developed the checker into a prototype of the Socos environment [2].

Overview of paper. The sequel is organized as follows. Section 2 introduces the Socos
language. Section 3 describes the verification methodology. Section 4 describes the
translation of Socos programs into PVS. Section 5 shows our system in action as we
build a verified implementation of heapsort. We conclude in section 6.

2 Socos Language

We introduce the Socos language in equivalent textual and diagrammatic notations us-
ing the following conventions. A production is written as P ::= S. The diagrammatic
representation of a clause is shown to the right of the production. An optional part S
of a clause is denoted S?. Angle brackets group clauses, as in 〈S T 〉?. Repetition of S
one or more times is denoted S+; repetition zero or more times is denoted S∗. If the
repeated elements are to be separated by a symbol , we write S,+ and S,∗, respectively.
Alternatives are separated with a bar, as in S | T . The nonterminal Id stands for the
subset of PVS identifiers that do not contain the underscore character.1 The nontermi-
nals Expr, TypeExpr and Const stand for the PVS expressions, type expressions, and
constant declarations, respectively. Their syntax and semantics are described in [12].

1 The underscore character is reserved for the translation into PVS.

Applying PVS Background Theories and Proof Strategies 27

Expressions are type-checked by PVS to ensure that they are well defined, and can
incur TCCs which may require theorem proving to discharge.

Contexts. The verification context is the top level program construct. It introduces a
set of constants and a set of procedures:

Context ::= Id : ������� ���	�

〈�����
	�� Id+;〉? Importing∗ 〈������� 〈Id|String〉;〉?
Const∗ Procedure∗

��
 Id

A context may extend one or more other contexts, inheriting their constants and pro-
cedures. The Importing clause is as in PVS and imports a background theory. The
������� clause defines the default proof command to be applied to the VCs. The argu-
ment is either one of the (transitively) extended contexts, in which case the strategy of
that context is inherited; or it a PVS proof command. If omitted, the strategy is inherited
from the first extended context, or, if the context is not an extension, defaults to ����	�.

Procedures. A procedure is a program unit with a signature, pre- and postcondition
specification, and implementation body:

Procedure ::= Id
Signature� : �����
���
Pre? Post?

〈�� Variant ;〉?
���	�

Const∗

Pvar∗

Body
��
 Id

Id [Signature] | Variant

Const1...

Pvar1...

Pre PostBody

The signature consists of the lists of formal constant, value-result and result parameters:

Signature ::= 〈 〈Id:TypeExpr〉,+〉?
〈����� 〈Id:TypeExpr〉,+〉?
〈������ 〈Id:TypeExpr〉,+ 〉?

Parameters have the following operational interpretations in a call. For constant param-
eters, the actuals are evaluated and bound to the corresponding formals; these bindings
remain unchanged while the procedure is executed. For value-result parameters, the
values of the actuals are copied to the formals, and when the procedure returns the fi-
nal values of the formals are copied back to the actuals. Result parameters are used
for passing a store for the result without regard to the initial value of the actual. The
specification segment consists of the pre- and postconditions and an optional variant:

Pre ::= 〈��� Expr;〉+ Expr1...
Post ::= 〈���� Expr;〉+ Expr1...

Variant ::= Expr

The precondition of the procedure is the conjunction of the given (Boolean) expressions
over the constant and value-result formals; the postcondition is the conjunction of the

28 J. Eriksson and R.-J. Back

given predicates over the formals and initial-value constants for the value-result param-
eters. An omitted pre- or postcondition defaults to ���. In diagrams, preconditions are
drawn with a thick edge, postconditions with a double edge. If either is omitted, transi-
tions are drawn to the edge of the procedure. A variant over the constant and value-result
parameters must be given for (mutually) recursive procedures. The procedure body con-
tains a set of local constants and local variables. The ��� keyword introduces one or
more program variables of the same type:

Pvar ::= ��� Id,+ : TypeExpr ;

A program variable declaration has a strictly different interpretation than a PVS ��
declaration. The former adds a component to the state vector, whereas the latter binds
a name to a type. The procedure body is an invariant diagram containing a (possible
empty) set of situations and an (optional) initial transition tree:

Body ::= Situation∗ Trs?

Situations. A situation is a possibly empty sequence of constraints, an optional variant,
a possibly empty sequence of nested situations, and an optional transition tree:

Situation ::= Id : �	���	��
���	�
〈� Expr ;〉∗
〈�� Variant ;〉?
Situation∗

Trs?

��
 Id

Id

Expr1 | Variant...

Situation1 . . .Trs

A situation declaration introduces a named predicate over the program variables. The
predicate of a top level situation is the conjunction of its sequence of constraints; the
predicate of a nested situation is the conjunction of the listed constraints and the predi-
cate of the parent.

Transition trees. A transition tree is a tree where each leaf is a ���� statement, each
inner node is either a ���	�� or an 	� command, and each edge may be labeled with a
statement S:

Trs ::= 〈S ;〉? Tail S
Tail Goto ::= ���� Id

|
�����	�� ���� Id

Id

Id

Tail ::= 〈Goto|Choice|If 〉

Choice ::= ���	��
Trs+

��
���	��

...

Trs1

Trsn

If ::= 	�
〈[Expr] ; Trs〉+

��
	�

...

[Expr1]
Trs1

[Exprn]
Trsn

A transition is described by the path from the root to a ���� statement. The keyword

�����	�� declares that a transition decreases the variant of the target situation; this
mechanism is used to define cutpoints for proving termination and is described in the
next section. In diagrams,
�����	�� is marked with a double arrowhead. ���	�� is
nondeterministic choice, while 	� is guarded command. The former nondeterministi-
cally picks one of the branches for execution, while the latter nondeterministically picks
an enabled branch for execution and fails if all guards are false.

Applying PVS Background Theories and Proof Strategies 29

Statements. The available statements are assume, assert, assignment, havoc, sequen-
tial composition and procedure call:

S ::= [Expr] | {Expr} | Id,+ := Expr,+ | Id,+ := ? | S1 ; S2 | Id(〈Expr,+〉?)
An assumption [B] is executable only from states satisfying predicate B, from which it
succeeds without effect on the state. An assertion {B} fails if B is false; otherwise it
succeeds without effect. An assignment statement V1, . . . ,Vn := E1, . . . ,En evaluates in
the current state the list of values E1, . . . ,En and assigns it to the variables V1, . . . ,Vn. A
havoc statement V1, . . . ,Vn :=? assigns nondeterministically to each Vi an arbitrary value
from the type of Vi. Sequential composition executes the first statement followed by the
second statement. Call invokes the specified procedure on the given actual parameters.2

3 Verification Methodology

An invariant diagram is correct if it is consistent, live and terminating [1]. Consistency
means that each transition does not fail, and exits in a state satisfying the target situa-
tion. Liveness means that execution of the diagram does not stop before reaching the
postcondition. Termination means that there are no infinite execution paths.

Consistency. A transition tree TrsX from situation X with predicate JX is consistent if
JX ⊆ �TrsX �, where �TrsX � denotes the consistency condition for the tree. Socos uses
weakest preconditions as basis for generating consistency conditions. For the transition
to target situation Y with predicate JY we have:

�S ; ����Y � = wp(S)(�Y)

where wp(S)(�Y) is the largest set of states from which statement S must terminate in a
state satisfying �Y . A transition tree is consistent if all branches are consistent:

�S ; ���	�� Trs1 . . .Trsn ��
���	��� = wp(S)(�Trs1�∩ . . .∩ �Trsn�)

Procedure calls are verified based on the contract of the called procedure in the standard
way.

Liveness. A procedure is live if: 1) there is an initial transition tree, and from every
situation that is reachable from the initial transition tree at least one of the postcondi-
tions is reachable; 2) for every reachable transition, each command in the transition is
able to proceed from any state in which it may be executed. Condition (1) is checked
by reachability analysis of the procedure body. Condition (2) is ensured by the absence
of assume statements.3 Lack of liveness is not necessarily an error but rather an in-
completeness in the program, so programs which are not live may still be verified for
consistency. Incompleteness may be deliberate, e.g., as a stepping stone towards a final,
live program. When liveness is desired, 	� rather than ���	�� should enclose guarded
transitions. It has the consistency condition

�S; 	� [G1];Trs1 . . . [Gn];Trsn ��
	�� = �S;{G1∨ . . .∨Gn};
���	�� [G1];Trs1 . . . [Gn];Trsn ��
���	���

and is thus consistent only if at least one guard is always enabled.

2 For each constant formal, an expression of the same type or a subtype must be supplied. For
each value-result formal, a program variable of the same type must be supplied. For each result
formal, a program variable of the same type or a supertype must be supplied.

3 All statements except assume satisfy the “excluded miracle” law: wp(S)(/0) = /0.

30 J. Eriksson and R.-J. Back

Termination. Nontermination can be due to either unbounded iteration through cycles
in the transition graph, or infinitely recursive procedure calls. Ensuring termination in
the first case requires proving that no situation can occur infinitely often; i.e., that the
transition relation is well-founded. Socos handles termination as follows. 1) The pro-
gram is decomposed into its strongly connected components. 2) For each component,
a situation X is picked such that each cycle back to X is cut by a transition marked as

�����	��; an assertion {0≤ VX < V0X}, where VX is the variant of situation X and
V0X is a ghost variable storing the value of the variant at the root of the transition tree,
is added to the end of each such transition; and an assertion {0≤ VX ≤ V0X} is added
to the end of each other transition in the cycle. 3) All transitions marked as
�����	��
are pruned, after which step (1) is applied recursively. Methodologically, termination
verification is handled similarly to liveness in that it is optional. If the program graph
cannot be reduced fully using this algorithm, Socos warns that the program may not be
terminating. Termination verification of (mutually) recursive procedures is made sim-
ple: all mutually recursive procedures must share a variant, which must be shown to
have decreased just before the recursive call.

4 Verifying Invariant Based Programs in PVS

During verification Socos generates a hierarchy of unparametrized PVS theories as fol-
lows. For each context C, a theory CtxC containing the importing and constant declara-
tions of C is generated. For each extended context C′, the theory CtxC′ , is also imported.
For each procedure P the theories SpecP and ImplP are generated. SpecP imports CtxC
and contains the signature and pre- and postconditions of P. ImplP imports SpecP and
for each called procedure P′ imports SpecP′; additionally it contains a PVS encoding of
the state vector, the situation predicates, and the VCs for all transition trees. Generated
identifiers include the underscore character to not clash with user defined names. Fig-
ure 2 shows an example translation: the left hand side shows a program consisting of
two contexts, of which one contains a mutual recursion; the right hand side shows the
generated PVS theories and the dependency (importing) relation.

C1

P1,1 P1,2
calls

calls

C2 P2,1

extends calls

background theory

CtxC1
SpecP1,1

ImplP1,1

SpecP1,2
ImplP1,2

CtxC2
SpecP2,1

ImplP2,1

Fig. 2. Example PVS translation of two contexts. Contexts and procedures are drawn as boxes,
theories as ellipses, calls and extends relations as dashed arrows, and importing relations as con-
tinuous arrows.

Applying PVS Background Theories and Proof Strategies 31

Each transition tree generates a VC consisting of two components: a lemma declara-
tion, and an associated proof script to decompose the proof into separate goals for each
constraint in the target situation of a transition and to apply the default proof strategy.
The generated pair for situation X in the context of the state vector σ is:

���X : ����� �	
��� (σ) : JX (σ) �� ��TrsX �(σ)����

�����X : �
		� ���	������ ���������������� � �� ��TrsX �(σ)���� ���

��TrsX �(σ)���� denotes the PVS rendition of the correctness condition �TrsX � applied
to σ . The second line is a ProofLite [11] script.4 The command �������� eliminates
the top level quantifier.5 The command ��������������� then flattens the sequent so that
the antecedent of the implication becomes the antecedent of the sequent; at this point
the sequent is of the form α � β , where α is the precondition and β is the consistency
condition of the transition tree. ��TrsX �(σ)���� denotes a proof script decomposing β
into a subgoal for each constraint. Both translations are defined over the structure of the
consistency condition. For a situation predicate, we have:

�JX (σ)���� = JX (σ)
�JX (σ)���� = �� ��������� defs-sexp� ��!����
��	
� strat-sexp�

The parameters strat-sexp and defs-sexp are S-expressions standing respectively for the
default strategy to be applied to the leaves of the proof tree, and a listing of the def-
initions relevant to the sequent. The proof commands are Socos specific. ��	��������
expands all situation predicates and splits the sequent into a separate branch for each
situation constraint. Consequently, each proof goal produced by ��	�������� is of the
form α1, . . . ,αn � β , where β is a situation constraint or an assertion, and each formula
αi originates from a source situation constraint, an assume statement, or an assertion.
�������	�� applies strat-sexp to each goal, and then prints the status of the proof. The
remainder of the translation is as follows:

�(Q1∩ . . .∩Qn)(σ)���� = (�Q1(σ)����)��� . . . ���(�Qn(σ)����)
�(Q1∩ . . .∩Qn)(σ)���� = �"
���! �������� n�

���!�� �Q1(σ)����� . . .��!�� �Qn(σ)�������

�wp(S1;S2)(Q)(σ)���� = �wp(S1)(wp(S2)(Q))(σ)����

�wp(S1;S2)(Q)(σ)���� = �wp(S1)(wp(S2)(Q))(σ)����

�wp([E])(Q)(σ)���� = (E)��(�Q(σ)����)
�wp([E])(Q)(σ)���� = ���������������� � �� �Q(σ)����

�wp({E})(Q)(σ)���� = (E)���(�Q(σ)����)
�wp({E})(Q)(σ)���� = �"
���! �����������
��

���!�� �� ��������� defs-sexp�
��!����
��	
� strat-sexp��

��!�� �Q(σ)�prf���
4 ProofLite is a PVS add-on by César Muñoz that allows embedding PVS proofs (as S-

expressions) in the main theory file rather than in a separate ���� file.
5 ��	����� is an adaptation of ��	���. Instead of generating new names for the Skolem con-

stants, it reuses the names from the binding expressions; this makes the VC slightly easier to
read.

32 J. Eriksson and R.-J. Back

�wp(X := E)(Q)(σ)���� = (���"�� (X) : �Q(σ)����) (E)
�wp(X := E)(Q)(σ)���� = �"��� �� �Q(σ)����

�wp(X :=?)(Q)(σ)���� = �	
��� (X) : �Q(σ)����

�wp(X :=?)(Q)(σ)���� = ���	������ �Q(σ)����

�	����� and �	��������� are Socos specific strategies. The command �	����� is an iterated
version of �	���: it splits the top-level conjunction into two branches, and then repeatedly
splits the right branch for a total of at most n− 1 iterations. Hence, a sequent of the
form Γ � α1 ∧ (α2 ∧ (α3 ∧ . . .)) is split into the goals Γ � α1,Γ � α2,Γ � α3 . . . ,. The
command �	��������� splits a sequent of the form Γ � α ∧β into the two goals Γ � α
and Γ ,α � β .

In general, any PVS proof strategy can be used as the default strategy. In our case
study we use the following to try to discharge VCs automatically:

�������� ���#��� �$	���	��� ������� �����
���� �����
	����−������ %��!�� &'��		� �	
 � �� ������ ������ %������� &�������

��!��
���	����∗�
����	−
�(
���−����)��(�*�+ ��
�����
��
���
	����−������
�*�����
��������

,-��−#��� ��
���#*, ,.��	���# /����& �����*��# ������) 010�02& 03,�

The above strategy expands all relevant definitions in the sequent, loads the supplied
lemmas into the antecedent, and invokes Yices. Yices either proves the lemma, or the
entire strategy fails. Definitions not expanded in the second step appear as uninterpreted
constants and the supplied lemmas as axioms to Yices. This mechanism allows supply-
ing specific properties in cases where reasoning in terms of the definition is infeasible;
we will use this technique in practice in the next section.

5 Heapsort: An Exercise in PVS Supported Invariant Based
Programming

Heapsort is an in-place, comparison based sorting algorithm from the class of selec-
tion sorts. It achieves O(n logn) worst and average case time complexity by the use of
a binary max-heap, which allows constant time retrieval of the maximal unsorted ele-
ment and logarithmic time restoration of the heap property. By storing the heap in the
unsorted portion of the array, heapsort uses only a small constant amount of additional
memory. The algorithm implemented here is close to the one given by Cormen et al.
in [7, Ch. 6]. It comprises two procedures. The main procedure, heapsort, first builds
a max-heap out of an unordered array, and then deconstructs the heap one element at a
time, each iteration extending the sorted portion by swapping the root of the heap with
the last element of the heap. Restoring the heap property after swapping is accomplished
by an auxiliary procedure called siftdown.

Applying PVS Background Theories and Proof Strategies 33

Background theory. In Socos the type vector is defined as a parametric record type
[# len : nat, elem : [{i : nat|i < len}->T]#], where T is the element type. For vector a we
have the abbreviations a(i) for elem(a)(i), and index(a) for the type {i : nat|i < len(a)}.
We create a new background theory called sorting (in the sequel we use sorting as a
background theory, extending it with additional definitions as needed) and introduce a
predicate sorted to express that an integer array is sorted in non-decreasing order:

�	
���#) �!�	
*
"�#��

�&"&�) ��
 ����	
4���5
�	
������)"		���	
��� ��&�)���� ����)�6�������6�����
777

To express that a sorted array preserves the elements of the original array, we introduce
a binary relation perm over vectors:

��
���&"�)"		��
� ���� ��)�"��������+����� ���&���� �"����)�	
��� ��)���� �"��)"�����������

While this notion of permutation is mathematically concise, reasoning in terms of this
definition gives little hope for automation as it requires demonstration of a bijection. In
our case it is more fruitful to consider permutation as the smallest equivalence relation
that is invariant under pairwise swapping. We add these four lemmas to the background
theory and prove them in PVS:

��
�����) ����� ��
���&"� �� �����������"�
��
��
��) ����� ��
���&��
��
���*�) ����� ��
���&"� �� ��
��"&��
��
���
�) ����� ��
���&"� ��� ��
��"&�� �� ��
���&��

The first lemma allows us to infer that permutations have equal length, whereas the
remaining three state that permutation is an equivalence relation. We also introduce a
function swap for exchanging the elements at indexes i and j, while keeping the remain-
der of the elements in the array unchanged:

�(����&��&�)���� �����) 1"�����"��������3 � � (��! 4�)�����&�)�����5

As all array manipulations will be through swap, the prover only needs to know the
effect of swap on subsequent array reads, and that swap maintains permutation. We add
and prove the following (trivial) lemmas:

�(������) ����� �	
�����&��&�&�)���� �����)
�(����&�&����� � �� �� ��� �!�� � ����� ��� �!�� � ���� � ����� �

�(�����
�) ����� �	
�����&��&�)���� �����)��
���&�(����&�&���

Finally, we add the declaration:

���	�
�(
���− ��
�&�(��

This prevents perm and swap from being expanded into their definitions, and hence
they will be handled as uninterpreted functions by Yices when the ������� strategy is
invoked.

34 J. Eriksson and R.-J. Back

The heapsort procedure. Next, we introduce a new context heapsort which imports
the background theory and applies ������� with the six properties defined so far. The
rest of the context heapsort will be the two procedures, which will be presented as
invariant diagrams.

!����	
� : �������
���	�

	
����	�� sorting;
������� ,����#���)������ ���
����� ��
��
�� ��
���*� ��
���
�

�(������ �(�����
���,8
〈 implementation of heapsort ... 〉
〈 implementation of siftdown ... 〉

��� !����	
�

The procedure heapsort, given a value-result parameter a of type vector[int], should
establish the postcondition sorted(a)∧perm(a,a0), where a0 is the value of a at the
start of the execution of the procedure. We design heapsort around the situations
BUILDHEAP and TEARHEAP. BUILDHEAP constructs the heap out of the unordered
array by moving in each iteration one element of the non-heap portion of a into its
correct place in the heap portion; TEARHEAP then sorts a by selecting in each iteration
the first (root) element from the heap portion and prepending it to the sorted portion
of the array. We use a loop variable k ranging over the interval [0..len(a)] in both
both situations. The invariant perm(a,a0) is also to be maintained throughout both
situations.

In BUILDHEAP, the heap is extended leftwards one element at a time by decreasing
k. The portion to the right of k satisfies the max-heap property: an element at index i is
greater than or equal to both the element at index 2i+1 (the left child) and the element
at index 2i + 2 (the right child). For each iteration, after k has been decremented the
new element at position k must be “sifted down” into the heap to re-establish the max-
heap property. We use a separate procedure, siftdown, for this purpose. The parameters
to siftdown are the left and right bounds of the heap, as well as the array itself. We
implement and verify siftdown in the next section.

We now formalize the heap property in the background theory. We add to the sorting
theory the functions l and r for the index of the left and right child, respectively, as
well as a predicate heap expressing that a subrange of an array satisfies the max-heap
property (note that the operators �, ��� are conditional in PVS):

���)����)�����∗���8
��)����)�����∗���

!�����&��&�)�����)"		��
�6�� ��� �6������� ���
��	
��� ��)����) �6�� ��

�����6����������������� ��� �
���6�����������
������

We then have that BUILDHEAP should maintain heap(a,k, len(a)). Upon termination
of the loop, heap(a,0, len(a)) should hold.

In the situation TEARHEAP we again iterate leftwards, this time maintaining a heap
to the left of k, and a sorted subarray to the right of k. The loop is iterated while k is
greater than one—when it is smaller than or equal to one the array is sorted. In each
iteration, k is first decremented, then the element at index k element is exchanged with

Applying PVS Background Theories and Proof Strategies 35

the element at index 0 (the root of the heap) to extend the sorted portion. Since the
leftmost portion may no longer be a heap, this is followed by a call to siftdown starting
from index 0 to restore the heap property. Additionally, to infer that the extended right
portion is sorted, we also need to know that the array is partitioned around k, i.e., that
the elements to the left of k are smaller than or equal to the elements to the right of (and
at) k.

To express the constraints of TEARHEAP we introduce two definitions; that the right-
most portion of an array is sorted, and that an array is partitioned at a given index:

�	
�����&��)���	����������)"		�� �	
�����&�)���� ����)�6�� ��� �6� �� ����6�����

��
����	�����&��)���	����������)"		�� �	
�����&�)���� ����)�6� ��� �6��������6�����

TEARHEAP should then maintain partitioned(a,k)∧ sorted(a,k)∧heap(a,0,k).
We proceed by adding the initial transition, the final transitions, and the transition

between BUILDHEAP and TEARHEAP. Figure 3 shows the diagram with these transi-
tions in place. For the initial transition one possibility is to initialize the loop counter to
len(a). However, we can do better by noting that heap(a,m,n) is true for any m and n
such that �len(a)/2� ≤m≤ n≤ len(a), i.e. the right half of the unsorted array already
satisfies the max-heap property (since its elements are leaves). We can directly try to
confirm this hypothesis by asking Socos to check the partial implementation. The tool
responds that all transitions are indeed consistent, but since the diagram is incomplete,
it also points out that the procedure may not be live. However, before adding the loop
transitions we need to actually implement and verify the �������� procedure.

!����	
� [����� �:����	
4���5]

k:���� nat

sorted(a)
perm(a,a0)

CONSTRAINTS

perm(a,a0)
k≤ len(a)

BUILDHEAP

heap(a,k, len(a))

TEARHEAP

partitioned(a,k)
sorted(a,k)
heap(a,0,k)

k)�floor(len(a)/2) [k = 0];
k)�len(a)

[k≤ 1]

Fig. 3. Partial implementation of !����	
�

The �	��
��� procedure. The parameters to the �������� procedure are the left bound
m, the right bound n, and the array a. Assuming the subrange a[m + 1..n) satisfies
the heap property, �������� should ensure upon completion that the subrange a[m..n)
satisfies the heap property, that the subranges a[0..m) and a[n..len(a)) are unchanged,
and that the updated array is a permutation of the original array. �������� achieves its

36 J. Eriksson and R.-J. Back

postcondition by moving the first element in the range downward into the heap until it
is greater than or equal to both its left and right child, or the bottom of the heap has
been reached. When either condition is true, the heap property has been restored. Each
iteration of the loop swaps the current element with the greater of its children, main-
taining the invariant that each element within the heap range, except the current one, is
greater than or equal to both its children. Consequently, the invariant must include that
the parent of the current element is greater than or equal to the children of the current
element.

The loop terminates when either the values of both children are less than or equal
the current element, or there are no more children within the range of the heap; i.e.,
when the condition n≤ r(k)∨ (a(l(k))≤ a(k)∧a(r(k))≤ a(k)) becomes true. Figure 4
shows a diagram with an intermediate situation SIFT and the entry, loop and exit transi-
tions in place. The predicate eql(a,b, i, j) is an abbreviation for the property (∀r : i≤ r <
j ⇒ a(r) = b(r)). We have used guarded commands (solid square) to enforce liveness
conditions, and we have also provided the variant n− k for situation SIFT and marked
both loop transitions as decreasing. If we try to verify the program, Socos informs us
that all transitions except the exit transition could be proved. Our tool is unable to prove
that heap(a,m,n) is established by the exit transition. By more careful inspection it is
easy to see that the condition is actually not provable due to the omission of a corner
case in the program in Figure 4. The bug is that when n = r(k), nothing is known about
the relation between a(k) and a(l(k)). This case occurs when the left child of the current
element is the last element in the heap range, and the right child falls just outside of the

�����	(� [�:���, �:��� ����� �:����	
4���5]

k : ���� nat;

m≤ n∧n≤ len(a)
heap(a,m+1,n)

heap(a,m,n)
perm(a,a0)
eql(a,a0,0,m)
eql(a,a0,n, len(a))

SIFT

perm(a,a0) |n−k
m≤ k∧k≤ n∧n≤ len(a)
eql(a,a0,0,m)
eql(a,a0,n, len(a))
∀(i:nat):m≤ i⇒

(i �= k⇒
(l(i) < n⇒ a(l(i))≤ a(i))∧
(r(i) < n⇒ a(r(i))≤ a(i)))∧

(l(i) = k∨ r(i) = k⇒
(l(k) < n⇒ a(l(k))≤ a(i))∧
(r(k) < n⇒ a(r(k))≤ a(i)))

k := m

[n≤ r(k)∨
(a(l(k))≤ a(k)∧
a(r(k))≤ a(k))]

[r(k) < n∧
(a(k) < a(l(k))∨
a(k) < a(r(k)))]

[a(r(k))≤ a(l(k))];
a := swap(a,k, l(k));
k := l(k)

[a(l(k))≤ a(r(k))];
a := swap(a,k, r(k));
k := r(k)

Fig. 4. First attempt at �����	(�

Applying PVS Background Theories and Proof Strategies 37

!����	
� [����� �:����	
4���5]

k:���� nat

sorted(a)
perm(a,a0)

CONSTRAINTS

perm(a,a0)
k≤ len(a)

BUILDHEAP

heap(a,k, len(a)) |k
TEARHEAP

partitioned(a,k) |k
sorted(a,k)
heap(a,0,k)

k)�floor(len(a)/2) [k = 0];
k)�len(a)

[k≤ 1]

[k > 0];
k)�k−1;
siftdown(k, len(a),a)

[k > 1];
k)�k−1;
a)�swap(a,0,k);
siftdown(0,k,a)

Fig. 5. Complete implementation of heapsort

heap range. To confirm this guess, we can strengthen the first disjunct of the exit guard
to n < r(k) and re-check. Now, the exit transition is proved consistent, but the liveness
assertion for the first branch from SIFT now fails since the case n = r(k) is no longer
handled. We can resolve the issue by restoring the first disjunct of the exit guard to
n≤ r(k), and instead handling the corner case in a separate branch of the exit transition
which swaps elements k and l(k) if a(k) < a(l(k)) before exiting to the postcondition.
After this correction all the VCs are discharged automatically.

Completing heapsort. Using siftdown we can now complete heapsort. Figure 5 shows
the program in Figure 4 with loop transitions, procedure calls and variants added. If we
run the program in Figure 5 through the verifier, all termination and liveness conditions
are discharged automatically. The consistency conditions are also all proved except one:

�
	����
 � 9 !����	
 � 9 & � 	 � � �
 � � � � � � � � � �
 � � � � � � 	 � �
	�
9 :��
;��� 9 �	 9 :��
;��� 9)

1−�3 < 6� � − �
1−�3 � − � 6 �
1−=3 � !��� ���� & < & � − �� �
1−>3 � ��
� ���� & �(�� � � & < & � − � � � �
1−?3 � � � � ���� & �(�� � � & < & � − �� & < & < � �
1−@3 � � � � ���� & �(�� � � & < & � − �� & � − � & � � � ���� � � �
1−A3 < 6� � − �
1−B3 � − � 6� � � � � �(�� � � & < & � − �� �
1−C3 � !��� � �(�� � � & < & � − �� & < � � & � − �� �
1−�<3 � � �
1−��3 � � � � � DE � 6� ���
1−��3 � ��
� �� & ��< � �

38 J. Eriksson and R.-J. Back

1−�=3 � 6� � � � � � �
1−�>3 � � �
 � � � � 	 � � � � � & � � �
1−�?3 � � 	
 � � � � � & � � �
1−�@3 � !��� � � & � � �

�−−−−−−−
4 � 5 � � �
 � � � � 	 � � � ���� & � − �� �

In the above a_1 denotes the value of a returned by siftdown. Here the verifier is unable
to prove that the procedure call maintains partitioned. This condition is actually true,
but hard to prove because of the way we have defined the postcondition of siftdown.
The procedure modifies the leftmost portion of the array, but the properties of perm
sent to Yices cannot be used to infer that partitioned is maintained throughout the call.
Proving the condition without modifying the specification of siftdown actually requires
two additional properties: that the root of a max-heap is the maximal element; and that
if partitioned holds for an index and an array, it also holds for a permutation of the array
where the portion to the right of the index is unchanged. We can make the conditions
explicit in the program by adding assertions to the TEARHEAP loop transition statement
as follows:

4���5 8 �)��−� 8 1�	
��� ��)���� ����)�6�� �� ����6���<�3 8
�)��(����&<&�� 8 1��
����	�����&��3 8 �����	(��<&�&��

Re-checking the program, we are now left with two (simpler) conditions: the first
assertion, and the same condition as above with the added assertions as additional as-
sumptions (the second assertion is discharged automatically). The first condition re-
quires an induction proof. Proving that partitioned(a_1,k−1) is a consequence of
partitioned(swap(a,0,k−1),k−1) is a bit more involved and requires reasoning in
terms of the definition of permutation. To finish the verification, we prove and add the
following two lemmas to the background theory:

!������) ����� �	
��� ��)����) !�����&<&�� �� �	
��� ��)����) �6� �� ����6���<�

��
����
����	���) ����� �	
��� ��&"&��)���	����������)
��
���&"� ��� ��
����	�����&�� ��� �����&"&�&�������
�� ��
����	����"&��

With the aid of these added properties, the goals are discharged automatically.

6 Conclusions

This paper presented a concrete invariant based programming language and its transla-
tion into PVS. The translation is implemented in the Socos verification tool. We have
given an example of the Socos workflow by developing a verified implementation of
heapsort. In the Socos workflow, the key lemmas are defined and proved interactively
in background theories. In our experience, striving to make background theories gen-
eral and implementation-independent enhances the verification experience and allows a
library of reusable theories to accumulate. We have also shown that the tool also helps

Applying PVS Background Theories and Proof Strategies 39

in detecting bugs when verification fails; our experience is that with some practice it
becomes easy to spot the mistakes in the program based on the unproven conditions.

IBP is a new technique and has not been applied in large scale case studies yet. PVS
is, however, a venerable player in the formal methods field. Our experience is that PVS
provides a natural, rich specification environment, and that Yices efficiently discharges
most of the simple conditions. This work is a step towards scaling up invariant based
programming by allowing large existing libraries of mathematical theories, such as the
PVS prelude and the Nasa libraries, to be used.

Acknowledgments. We would like to thank Viorel Preoteasa for useful comments on
the translation to PVS and for suggesting heapsort as a case study.

References

1. Back, R.-J.: Invariant based programming: Basic approach and teaching experience. Formal
Aspects of Computing 21(3), 227–244 (2009)

2. Back, R.-J., Eriksson, J., Myreen, M.: Testing and verifying invariant based programs in the
SOCOS environment. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp.
61–78. Springer, Heidelberg (2007)

3. Back, R.-J., Myreen, M.: Tool support for invariant based programming. In: Proc. of APSEC
2005, pp. 711–718. IEEE Computer Society, Los Alamitos (2005)

4. Back, R.-J., Preoteasa, V.: Semantics and proof rules of invariant based programs. Technical
Report 903, TUCS, Turku, Finland (July 2008)

5. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006)

6. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

7. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms. McGraw-
Hill Higher Education, New York (2001)

8. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. of
the ACM 52(3), 365–473 (2005)

9. Dutertre, B., de Moura, L.: The Yices SMT solver. Technical report, Computer Science Lab-
oratory, SRI International, Menlo Park, CA (August 2006)

10. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive program
verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 173–177.
Springer, Heidelberg (2007), �������������������������������� !�����"���#$�

11. Munõz, C.: Batch proving and proof scripting in PVS. Technical Report NASA CR-2007-
214546 / NIA 2007-03, NASA Langley Research Center and National Institute of Aerospace
(2007)

12. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Language Reference,
(Version 2.4). Computer Science Laboratory, SRI International, Menlo Park, CA (November
2001)

13. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K.: PVS: Combining specification,
proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS,
vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

14. van den Berg, J., Jacobs, B.: The LOOP compiler for Java and JML. In: Margaria, T., Yi, W.
(eds.) TACAS 2001. LNCS, vol. 2031, pp. 299–312. Springer, Heidelberg (2001)

http://dx.doi.org/10.1007/978-3-540-73368-3_21

Proof Obligation Generation and Discharging for
Recursive Definitions in VDM

Augusto Ribeiro and Peter Gorm Larsen

Aarhus School of Engineering, Aarhus University, Denmark
ari@iha.dk, pgl@iha.dk

Abstract. A proof obligation is a theorem stating that a certain property must
hold in order for a formal specification to be internally consistent. If a proof obli-
gation can be proved, then the referred part in the specification is consistent. The
generation of proof obligations to check for a specification’s internal consistency
is a concept that has been applicable in a VDM context for a long time. This work
is extending the existing proof obligation generation capabilities with proof obli-
gations for the termination of recursive functions. Those proof obligations can
then automatically be moved over to HOL and the corresponding proofs can be
carried out in that framework. Depending upon the nature of the recursion, the
discharge of these proofs can be done automatically. This paper will categorise
the different kinds of recursion.

1 Introduction

VDM contains constructs such as type invariants defined as general predicates that make
it impossible to create an automatic static check to determine whether all parts of a given
VDM model are internally consistent. For all the places which potentially could yield
inconsistencies such as a run-time errors, it is instead possible to precisely describe
the semantic property that would guarantee consistency. These properties are termed
“proof obligations” (POs) in a VDM context. The automatic production of such proof
obligations for VDM has been documented in the literature [1]. However, none of the
work in a VDM context has so far considered the proof obligations necessary to ensure
the termination of recursive functions. This has naturally been done in other formalisms
such as PVS [2] but many of these have not been able to cope with mutually recursive
definitions as it is treated in this paper.

The tool for automatic production of POs is called a Proof Obligation Generator
(POG) and this is itself developed using VDM. The POG produces POs for a variety of
consistency conditions but in this paper we focus solely on the POs for the termination
of recursive functions [3]. VDM POs can be automatically translated to HOL [4,5]
where these can be formally verified. So rather than reinventing the wheel the strategy
here is to reuse the powerful proof support in an existing theorem prover such as HOL
[6]. In this paper we solely focus on the extensions necessary to generate, transform
and subsequently prove the POs for recursive functions in VDM. VDM also contains
operations that can access state but these are not covered in this paper.

Section 2 provides the basic definitions and terminology required to understand re-
cursive definitions in the VDM context. This is followed in Section 3 by the proof obli-
gations related to the different categories of recursive functions and their termination.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 40–55, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Proof Obligation Generation and Discharging for Recursive Definitions in VDM 41

Section 4 presents extracts of the VDM model that have been made to extend the exist-
ing POG from VDMTools and Overture with POs for termination of recursive functions.
Section 5 introduces the use of a theorem prover (HOL) to prove the generated proof
obligations and the level of automation for different categories of recursive functions.
Section 6 demonstrates more details about how HOL can be used for discharging the
proof obligations generated for the different categories of termination POs. Finally Sec-
tion 7 and Section 8 provide pointers to related work, concluding remarks and further
work respectively.

2 Recursive Definitions and VDM

Recursion is an algorithmic technique where a function is defined in terms of itself
for a “smaller” part of the task at hand. Such definitions are only well-founded if the
recursion eventually reaches a base case without recursion. This is called termination
from an operational point of view and this is a desirable property that we would like to
be able to formally prove for all recursive functions that can be defined in VDM.

2.1 Termination

To prove termination of a functional program there has to be a well-founded ordering
such that the arguments in each recursive call are smaller than the corresponding inputs.
An ordering� is well founded if there exists no infinite descending chain.

x1 � x2 � . . .

Given that there are no infinite descending chains, one of the arguments of a recursive
call is guaranteed to hit a case in which it will have to stop descending and thus the
function terminates.

The set of the natural numbers, nat, forms a well-founded order under ’<’ so this is
chosen as the default well-founded ordering.

In some cases there is the need to use a lexicographic ordering in order to prove
termination. A lexicographic order is used to compare tuples.

(a, b) � (a′, b′) if and only if a � a′ or (a = a′ and b � b′)

Lexicographic orders can be extended to tuples of arbitrary length. Termination proof
of some functions requires this kind of ordering denoted in VDM by the LEXn keyword
(only used in proof obligations) where n is the number of elements in the tuple. The
following statement is an example that would be valid when using a lexicographic order.

(1,10) (LEX2 <) (2,1) (LEX2 <) (2,10)

2.2 Measure

A measure is generally a function from the parameter data type of the recursive function
to a given well founded ordering. The method for using arbitrary measures to prove ter-
mination of recursive functions was suggested in [7]. As a consequence of the chosen

42 A. Ribeiro and P.G. Larsen

order for proofs, all the measure functions in this work will have Nat as range. The mea-
sure function is needed for the generation of all POs so it will be supplied by the user
for each recursive function definition using the new keyword measure. The function
fac that computes the factorial of a number shows how this keyword is used:
fac : nat -> nat
fac(n) == if n = 0 then 1 else n*fac(n-1)
measure id

In which id, in this case, the identity function is the measure function defined as:
id : nat -> nat
id(n) == n

This example only illustrates the use of the measure keyword and id will be suitable
here since n− 1 < n will form a finite descending chain towards the base case for the
natural numbers.

Note that it is required that the measure function is that the measure itself must be a
function that terminates.

2.3 The Vienna Development Method

VDM is a well-established formal method that uses a few formal modelling languages,
each supporting different forms of system specification. VDM++ [8] extends the ISO
standardised VDM-SL [9] with features for object-oriented modelling and concurrency.
The proof work presented here supports a functional subset of VDM that is common
to both VDM-SL and VDM++ except that the proof obligations generated include POs
that are strictly not necessary according to the standard logic for VDM which is called
Logic of Partial Functions (LPF) [10]. The proof obligations generated from a tools per-
spective follow a standard left-to-right evaluation strategy [11] (known from program-
ming languages) whereas LPF does not require this. Here functions represent mathe-
matical functions and functions can be defined both implicitly and explicitly in VDM.
Explicit functions can also have pre-conditions.

VDMTools [12,13] is an industrial quality tool that supports static type checking and
the generation of POs. More recently the Overture open source initiative built on top
of Eclipse has also incorporated such features for all VDM dialects [14]. They have a
number of other features that are not important for the contents of this paper.

2.4 From VDM Models to Proved Proof Obligations

From a VDM model, one can generate the termination POs with VDMTools and Over-
ture. If the generated POs contain references to any VDM model definitions, it means
that these definitions also need to be translated to HOL in order to give meaning to those
references in HOL.

When HOL is used to prove properties about a VDM model, it is necessary to de-
fine semantically equivalent functions in HOL for which termination must be proved.
This essentially leads to redundant termination proofs because the POG for VDM also

Proof Obligation Generation and Discharging for Recursive Definitions in VDM 43

Fig. 1. From VDM models to proved POs

generates the same termination POs. This only happens if one needs to use the function
definitions in HOL. POs that contain only references to the measure do not suffer from
this problem, unless if the measure is itself recursive. Though some generated POs are
redundant when using HOL, it is not the case if the user wishes to manually prove them
or use another tool. In some cases HOL is able to prove them automatically, but manual
proofs may be needed.

3 Generating Proof Obligations for Recursive Functions

3.1 POs in VDM

The current POG for VDM used in VDMTools was originally specified in [15]. The
general form of a PO is the same as a proof rule. They contain the context information as
assumptions and some property that must be proved as conclusion. In the next examples
the POs will be presented in an ASCII representation like this:
PO: context information ==> predicate

where the context information typcally is provided as universal quantifications.

3.2 Simple Recursion

A recursive function has normally the following general form, r being the argument of
the recursive call:

f(x) = . . . f(r) . . .

The factorial is an example of this type (see section 2.2). A proof obligation is generated
using the context as assumption. The recursive call is in the else branch so the context
information for it is ’not (n=0)’. The statement that should be proved is created based
on the argument of the function and the input for recursion. The PO for fac looks like:
forall n:nat & not(n=0) ==> id(n) > id(n-1)

44 A. Ribeiro and P.G. Larsen

Meaning that the recursive call argument should be smaller than the input of the function
after the measure is applied on each of them. The PO contains an assumption that the
context of the recursive call as mentioned above.

When a function has nested recursion, the generated PO is different. The nested
recursion can have arbitrary levels but here is the most simple case where the function
has only one nested recursive call.

f(x) = ...f(f(r))...

This type of function needs a different type of approach because the condition to ensure
termination is that the argument of both calls to the function must be decreasing.

The following example demonstrates how to generate POs for a recursive nested
function called nest that is defined in VDM++ as:
nest : nat -> nat
nest(n) == if n = 0 then 0 else nest(nest(n-1))
measure id;

The PO should contain conditions about both recursive calls of the function nest. The
inner recursion yields the following PO.
forall n:nat & not(n=0) ==> id(n) > id(n-1)

For the outer recursion the PO is:
forall n:nat & not(n=0) ==> id(n) > id(nest(n-1))

These conditions state that the input for the recursive calls of nest should be decreasing
for the innermost and outermost calls. So the final PO for nest is:
forall n:nat & not(n=0) ==> id(n) > id(n-1) and

id(n) > id(nest(n-1))

3.3 Mutual Recursion

A mutual recursive function definition is characterized by two or more functions whose
algorithms are mutually dependent. This is, a function f calls another function g, which
in turn calls f creating a mutual dependency.

f(n) = ...g(n′)...
g(r) = ...f(r′)...

POs for mutual recursive definitions only differ from the ones above because they in-
volve a measure from each function present in the definition. Apart from that the process
is the same. The functions presented below are mutual recursive. The measure for them
is the presented below, one for each.
m_even : nat -> nat
m_even(n) == 2 * n + 1;

even: nat -> bool
even(n) ==

if n = 0 then true
else odd(n);

measure m_even;

Proof Obligation Generation and Discharging for Recursive Definitions in VDM 45

m_odd : nat -> nat
m_odd(n) == 2 * n;

odd : nat -> bool
odd(n) ==

if n = 0 then false
else even(n-1)

measure m_odd;

The recursion in even yields the right side of the PO conjunction and odd the left
side. They say that the input for the recursive call of odd (even respectively) should
be smaller then the input of the even (odd) function respectively.
forall n:nat & not(n=0) => m_even(n) > m_odd(n)
and
forall n:nat & not(n=0) => m_odd(n) > m_even(n-1)

If the arguments are decreasing in each of the functions then the mutual recursive defi-
nition can be said as to be terminating.

3.4 Preconditions

Proof obligations for functions with a precondition require that they are recorded as an
assumption. The relation between input and recursive argument needs to be valid only
if they fulfill the precondition. The next function fnpre illustrates this:
fnpre : nat -> nat
fnpre(x) ==

if x=3 then 3 else fnpre(x-1)
pre x >= 3
measure id;

For this function a predicate named ’pre fnpre’ is implicitly defined that computes
its precondition. This predicate will be used in the construction of the PO. The PO for
fnpre is:
forall x:nat & pre_fnpre(x) => (not(x=3) => id(x) > id(x-1))

It is only required that the recursion relation is valid for the values satisfying the pre-
condition. So functions with preconditions can be treated as every other, they just have
the precondition added to the context of each recursive case.

4 Implementation of the Proof Obligation Generator

In this section the process in which proof obligations are extracted from a VDM spec-
ification is explained. The parts of VDMTools and Overture that needed to be changed
in order to generate the proof obligations for recursive functions are also mentioned. In
figure 2 several components that take part on the process are shown and also how they
are connected.

46 A. Ribeiro and P.G. Larsen

Fig. 2. Overture proof obligation data flow

4.1 VDMTools

The first step is to use the VDM Parser on a VDM model to get it represented as an
equivalent AST (Abstract Syntax Tree). The Parser had to be changed to take into ac-
count of the new measure keyword and how it should be used in VDM. If the Parser
is able to parse the VDM specification, the result will be an abstract syntax tree that is
fed to the type checker.

It is in the Type Checker that the majority of the changes were made. It is responsible
for determining which functions are recursive and which ones of them have a defined
measure function. Here the domain data types of functions and their measures are
checked for equality. Essentially this is carried out making a transitive closure of the
function applications. Depending on the fulfillment of all the requirements, warnings
or errors may be generated and presented in VDMTools and Overture GUI. A more
thorough explanation of all warnings and errors is present in [3].

If the Type Checker completes without errors, it is possible to generate proof obliga-
tions. The information gathered during the type checking phase is reused by the Proof
Obligation Generator.

4.2 Overture

In Overture, the detection of a recursive function f is only one step. f is marked as
recursive if on any application of a function on f ’s body, the applied function matches
the name of f . The detection of mutual recursive functions is a simple improvement
that currently is in progress following the same principles used for VDMTools.

5 Proving POs for Recursive Functions in HOL

In regard to proving the proof obligations, different patterns of recursion in functions
can be distinguished. Each one of them requires a different proof approach.

5.1 Straight Forward Recursion

Functions with straightforward recursion patterns are normally simple to prove.

f(x) = ...f(r)...

Proof Obligation Generation and Discharging for Recursive Definitions in VDM 47

This is the class that HOL easily proves automatically too. The proof normally consists
of simple rewrites of the function definition and application of arithmetic rules.

5.2 Nested Recursion with Nested Function Different from the Calling One

Here we consider functions with nested recursion patterns, with calls to another recur-
sive function inside the recursive call.

f(x) = ...f(...g(r)...)...

The PO generated for this type of recursive function involves proving that the argu-
ment of the call after being transformed by the other function is still “smaller” than the
input.

The strategy presented here to tackle the termination proof of this kind of function
was first suggested in [16]. The log example will be used to ilustrate the approach to
this kind of recursion. The function half is an auxiliary to log and it is of the class
of simple recursion, and thus it is easy to prove it terminates. What is more interesting
is the way to prove that log terminates. The function log is defined below:

half : nat -> nat
half(n) ==

if (n = 0) then 0
elseif (n = 1) then 0
else 1 + half(n-2)

measure id;

log : nat -> nat
log(n) ==

if (n = 0) then 0
elseif (n = 1) then 0
else 1 + log(half(n-2) + 1)

measure id;

The generated PO for log is:

forall n:nat &
not(n=0) and not(n=1) => id(n) > id(half(n-2) + 1)

To prove the termination of log, the termination of half should be proved in ad-
vance. Being a simple function, the termination proof of half can be easily achieved.
Having proved the termination of half, the following lemma, called an induction
lemma, can be very useful in the termination proof of log.

forall n:nat. id(n) >= id(half(n))

This lemma is useful because it facilitates an almost direct proof of log termination.
Normally, induction lemmas like this can be proven by recursive induction.

48 A. Ribeiro and P.G. Larsen

Having being proven, the induction lemma can then be added to the assumptions of
the PO of log (using the mathematical syntax).

∀x : nat. x �= 0 ∧ x �= 1 =⇒ id(x) > id(half(x − 2) + 1)
⇔ { defn id}
∀x : nat. x �= 0 ∧ x �= 1 =⇒ x > half(x− 2) + 1

⇔ {defn half backwards, x �= 0 ∧ x �= 1}
∀x : nat. x �= 0 ∧ x �= 1 =⇒ x > half(x)

⇔ {induction lemma, using defn id}
true

It is not always guaranteed that the induction lemma of this kind will help in the
proof but in most cases this is convenient.

5.3 Nested Recursion over Itself

There is another type of nested recursion. When the function calls itself several times
in the nested recursion. This type can be divided furthermore as functions that do not
need their own semantics considered for termination require a different approach to the
ones whose semantics need to be considered.

Functions whose semantics are not involved in the proof. Some nested functions do
not need the nested definition to be explored in order to have their termination proved.
The well known Ackerman function can elucidate this point. This is also a typical func-
tion for which termination can only be proved by using a lexicographic order.
id2 : nat * nat -> nat * nat
id2(m,n) == mk_(m,n);

ack : nat * nat -> nat
ack(m,n) ==

if m = 0 then n + 1
else if n = 0 then ack(m-1,1)
else ack(m-1,ack(m,n-1))

measure id2;

For this function, three POs are generated, corresponding to the three recursive calls:
PO1: (forall m : nat, n : nat &

not (m = 0) => n = 0 =>
id2(m, n) (LEX2 >) id2(m - 1, 1))

PO2: (forall m : nat, n : nat &
not (m = 0) => not (n = 0) =>
id2(m, n) (LEX2 >) id2(m, n - 1))

PO3: (forall m : nat, n : nat &
not (m = 0) => not (n = 0) =>
id2(m, n) (LEX2 >) id2(m - 1, ack(m, n - 1)))

Proof Obligation Generation and Discharging for Recursive Definitions in VDM 49

In PO2 the first parameter is unchanged and thus a lexographical order is necessary.
Because of the use of the lexicographic order, PO3 becomes solvable without the second
element of the tuple needing further investigation. Thus there is no need to involve the
definition of ack in this proof. This is opposite to what happens in the example below.

Functions whose semantics are involved in the proof. This is the kind of function that
generates proof obligations that contain a reference to the function itself. They cannot
be solved by the method presented above. One example of a function of this type is
nest that is defined in subsection 3.2. The problematic proof obligation is the second
one:
forall n:nat & not(n=0) ==> id(n) > id(nest(n-1))

To be able to prove this proof obligation we have to assume that nest is well defined
and thus terminating which is the proof we want to make in the first place. So the proof
of termination of such nested functions incurs in a circular dependency between the
termination proof and its definition. This kind of function termination proof is extremely
difficult to automate since they normally need a property to be supplied that varies from
function to function. Different ways to deal with these cases are presented in [17].

To prove the validity of the second PO, the semantics of nest has to be explored.
Since this kind the proof of this kind of function changes much from function to

function, an example of proof is not included in the next section.

5.4 Mutual Recursion

As explained in Section 3.3, the generated POs fall into the same categories as shown in
previous sections, the only difference is that they need to be proved for both functions
in order to assure proper termination.

6 Examples of Proof

In this section, some of the examples provided during the paper are proved in HOL. The
translation from VDM to HOL is made with the help of the VDM to HOL translator
described in [4] and in accordance with the process shown in figure 1.

The examples show the different approach to two different kinds of proof and could
be used as recipes when tackling these kinds of proof.

6.1 Straightforward Recursion

It is shown here how simple recursive functions (like factorial) can be handled. They
are normally simple to prove valid or invalid. This is the class that HOL easily proves
automatically too. The proofs normally consist of just making rewrites of the definition
and applying arithmetic rules.

Going back to the factorial example we have the following PO that can be introduced
into the goal stack as shown below. The definitions presented were obtained using the
VDM to HOL translator directly.

50 A. Ribeiro and P.G. Larsen

Just below is shown how id is translated to HOL

- Define ‘id (id_parameter_1:num) = (let x = id_parameter_1 in x)‘;
Definition has been stored under "id_def".
> val id_def =

|- !id_parameter_1. id id_parameter_1
= (let x = id_parameter_1 in x) : thm

- BasicProvers.export_rewrites(["id_def"]);
> val it = () : unit

This last command tells the prover to use the definition of id when it is doing rewrites.
As seen above, in the process of translation, a bit of complexity is introduced in the
function due to the translator being more general but the function is semantically equiv-
alent to the one written in VDM.

Applying the VDM to HOL translator to the factorial PO, the following HOL for-
mula is generated. The g command is used in HOL to introduce a proof in the proving
mechanism in order to start the proof.

- g ‘(!uni_0_var_1
((((inv_num uni_0_var_1) /\ (?n.(n = uni_0_var_1))) /\ T) ==>
(let n = uni_0_var_1 in
((˜ (n = 0)) ==> ((id n) > (id (n - 1)))))))‘;
> ...

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!uni_0_var_1.
(inv_num uni_0_var_1 /\ ?n. n = uni_0_var_1) /\ T ==>
(let n = uni_0_var_1 in ˜(n = 0) ==> id n > id (n - 1))

After introducing the formula to be proven in the goal stack, the proof is ready to be
started. Again the translator introduces complexity, here inv num is a predicate inserted
that asserts that uni 0 var1 is a numeric type.

The HOL command e, is used to execute proof steps, in this case the chosen step
is to rewrite the formula using arithmetic adjustments, the definition of let and the
definition of the measure (id def), the latter having been added previously to be au-
tomatically used by the rewrites.

- e (RW_TAC arith_ss [boolTheory.LET_DEF]);
Ok..
...

Initial goal proved.
|- !uni_0_var_1.

(inv_num uni_0_var_1 /\ ?n. n = uni_0_var_1) /\ T ==>
(let n = uni_0_var_1 in ˜(n = 0) ==> id n > id (n - 1))

This is all that it takes to prove that factorial does indeed terminate and all these steps
can and have been automated.

Proof Obligation Generation and Discharging for Recursive Definitions in VDM 51

6.2 Nested Recursion

Recursion of this type involves proving that the argument of the call after being trans-
formed by another function is still smaller than the input (wrt. the measure function).
The example presented is the log function from section 5.2. The function half is an
auxiliary to log and it is of the class of simple recursion thus it is easy to prove that it
terminates. What is more interesting is the way to prove that log terminates.

The VDM proof obligation for log is:

forall n:nat & not(n=0) and not(n=1) => id(n) > id(half(n-2) + 1)

Which translates to HOL as the following:

Listing 1.1. PO translated using VDM to HOL translator

- g ‘(! uni_0_var_1.((((inv_num uni_0_var_1)
/\ (? n.(n = uni_0_var_1))) /\ T) ==>
(let n = uni_0_var_1 in (((˜ (n = 0)) /\ (˜ (n = 1)))
==> ((id n) > (id (1 + (half (n - 2)))))))))‘;

> ...

To prove this in HOL, first the termination of half should be proved. Since half is a
function with simple recursion, the termination proof can be easily archived. Having
proved the termination of half, the following lemma, called an induction lemma, can be
very useful in the termination proof of log.
!(n:num). id(n) >= id(half(n))

This lemma is useful because it facilitates an almost direct proof of the termination of
log. Normally, induction lemmas like this can be proven by induction. In HOL this can
be made using the tactic recInduct over the induction theorem of half. To get the induc-
tion theorem of half, the function must be defined in HOL.

- Define ‘half (half_parameter_1:num) =
(let n = half_parameter_1 in
(if (n = 0) then 0
else (if (n = 1) then 0 else ((half (n - 2)) + 1))
)

)‘;
> ...

The HOL command Define can only be used if the termination of the function in
question can be automatically proved in HOL. Otherwise it will involve defining the
function using the Hol defn command and the subsequent manual proof by the user of
the termination clause. It is only possible to extract the induction theorem for a function
after its termination is proved.

52 A. Ribeiro and P.G. Larsen

- g ‘!(n:num). id(n) >= id(half(n))‘;
> ...

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!n. id n >= id (half n)

Using recursive induction and rewrites it is normally possible to prove this kind of
property. It requires the use of several tactics but they are all basic rewrites and sim-
plifications, except for the induction command recInduct. The THEN tactic is an infix
binary operator with two tactics as arguments (T1 and T2) that applies T1 to a goal and
then T2 to the subgoal generated.

- e (rewrites... THEN
recInduct (fetch "-" "half_ind") THEN
rewrites ...)

> val it =
Initial goal proved.
|- !n. id n >= id (half n)

- val half_leq = top_thm();
> val half_leq = |- !n. id n >= id (half n) : thm

The first thing to do is to rewrite the measure function and simplify the ’let’ expressions.
Afterwards the induction lemma is applied. With a couple of additional rewrites, the
goal is proved. In the end, the theorem is given a name (in this case half leq and removed
from the goal stack using the command ’top thm’.

Since the induction theorem is now proved, it can be used as an assumption when
proving the termination of log. In HOL, an assumption can be made using the AS-
SUME TAC command. It allows an assumption to be made, based on a theorem that
has already been proved.

Now it is possible to tackle the proof obligation for log easily using the induction
lemma. The VDM proof obligation for log when translated was presented before in
listing 1.1. The tactics needed to prove this PO are:

- e (rewrites... THEN
ASSUME_TAC (Q.SPEC ‘n-2‘ half_leq) THEN
rewrites ...);

> ...
Initial goal proved.

The induction lemma theorem has to be specialized (using Q.SPEC) to the argument
that matters, in this case ’n-2’.
forall n : nat & id(n) >= id(half(n)) => id(n-2) >= id(half(n-2))

This HOL proof follows the same steps as the proof in section 5.2.
This kind of proof can be done with higher or lower degree of automation depending

on complexity of the inner function.

Proof Obligation Generation and Discharging for Recursive Definitions in VDM 53

6.3 Mutual Recursion

As explained in section 5.4, this case does not add anything new to the picture, but just
for the sake of completeness we include an example here. The POs to prove here are
presented in section 3.3. Both of the POs from Section 3.3 are added to the goal stack.
Prior to that, the definition of the measures function has been inserted in HOL. Here
both POs are added in one go, using a conjunction, in practice that would not happen
but since the tactics to apply are the same it makes the proof smaller.

- g ‘(! uni_0_var_1.((((inv_num uni_0_var_1) /\
(? n.(n = uni_0_var_1))) /\ T) ==>
(let n = uni_0_var_1 in ((˜ (n = 0))
==> (((m_even n) > (m_odd n))

/\
(! uni_1_var_1.((((inv_num uni_1_var_1) /\
(? n.(n = uni_1_var_1))) /\ T) ==>
(let n = uni_1_var_1 in ((˜ (n = 0))
==> ((m_odd n) > (m_even (n - 1))))))))))))‘;

> val it =
Proof manager status: 1 proof.

Then by applying simple rewrites, both goals are proven.

- e (RW_TAC arith_ss [boolTheory.LET_DEF,m_even_def,m_odd_def]);
OK..
> val it =

Initial goal proved.

7 Related Work

Similar work has been done before, but for VDM this is the first attempt to generate
termination proof obligations for termination of recursive functions.

The VDM to HOL translator converts VDM specifications into HOL and and pro-
vides tactics to prove generated proof obligations and is defined in [4]. It can be used to
prove static inconsistencies in VDM models. However termination inconsistencies are
not considered in this work.

The tactics to prove termination of recursive functions used on this paper, were first
suggested in [16]. Here the best way to approach the proof of termination of nested and
mutually recursive algorithms is described.

PROSPER was a Proof Engine developed in HOL98 which aimed to support formal
proofs for industry-standard languages, like VDM and VHDL, by making proofs invis-
ible to the end user [18]. A translator from VDM to HOL was defined in [19] and also
tactics to prove the generated proof obligations [20]. These documents can be found at
the www.vdmportal.org. Here termination proof obligations are also ignored.

PVS (Prototype Verification System) [21] is an environment for specification and
verification consisting of a specification language, a parser, a type checker and an

54 A. Ribeiro and P.G. Larsen

interactive theorem prover. The PVS type checker generates TCCs (Type Correctness
Conditions1) that contemplate termination of recursive functions. However PVS al-
lows less expressiveness because the modeling of mutual recursive functions is not
allowed [22].

8 Concluding Remarks and Further Work

This work has enabled the automatic generation of proof obligations ensuring the termi-
nation of recursive functions in VDM models and these have also been moved over to
HOL enabling verification of them. In the process a new measure keyword was intro-
duced in VDM. In addition it has categorised the different kinds of recursive definitions
with respect to the ability to automate their verification of their termination inside HOL.
The novelty is primarily in the treatment of mutual recursion between functions which
has been introduced. For example in PVS it is not at all possible to enable such mutual
recursion.

VDM also contains polymorphic functions and the recursion termination proof obli-
gations for these has also been completed. However, Curried functions have not yet
been taken into account so that is a part of the future work that is currently being un-
dertaken. Finally from an end-user perspective it would be convenient if it was possible
to express the status of proofs carried out in HOL at the VDM level that the user is
familiar with. This is not yet done so this also belongs in the future work category.

The features of the proof obligation generation for the termination of recursive func-
tions are available both inside VDMTools as well as in Overture.

Acknowledgments. We would like to thank Nick Battle, Luis Barbosa, Miguel Ferreira
and Hugo Macedo and the anonymous referees for feedback on the work reported in this
paper.

References

1. Aichernig, B.K., Larsen, P.G.: A Proof Obligation Generator for VDM-SL. In: Fitzgerald,
J.S., Jones, C.B., Lucas, P. (eds.) FME 1997. LNCS, vol. 1313, pp. 3–540. Springer, Heidel-
berg (1997) ISBN 3-540-63533-5

2. Owre, S., Rushby, J.M., Shankar, N.: PVS: A Prototype Verification System. In: Kapur, D.
(ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)

3. Ribeiro, A.: An Extended Proof Obligation Generator for VDM++/OML. Master’s thesis,
Minho University with exchange to Engineering College of Arhus (July 2008)

4. Vermolen, S.: Automatically Discharging VDM Proof Obligations using HOL. Master’s the-
sis, Radboud University Nijmegen, Computer Science Department (August 2007)

5. Vermolen, S., Hooman, J., Larsen, P.G.: Automating Consistency Proofs of VDM++ Models
using HOL. In: Proceedings of the 25th Symposium On Applied Computing (SAC 2010),
Sierre, Switzerland. ACM Press, New York (March 2010)

6. Gordon, M.: HOL: A Proof Generating System for Higher-Order Logic. In: Birtwistle, G.,
Subrahmanyam, P.A. (eds.) VLSI Specification, Verification, and Synthesis, Kluwer Aca-
demic Publishers, Dordrecht (1987)

1 This is just a different name for a Proof Obligation.

Proof Obligation Generation and Discharging for Recursive Definitions in VDM 55

7. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press, London (1979)
8. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs for

Object–oriented Systems. Springer, New York (2005)
9. Fitzgerald, J., Larsen, P.G.: Modelling Systems – Practical Tools and Techniques in Software

Development. Cambridge University Press, Cambridge (1998) ISBN 0-521-62348-0
10. Barringer, H., Cheng, J.H., Jones, C.B.: A Logic Covering Undefinedness in Program Proofs.

Acta Informatica 21, 251–269 (1984)
11. McCarthy, J.: A Basis for a Mathematical Theory of Computation. In: Braffort, P., Hirstberg,

D. (eds.) Western Joint Computer Conference. Then published in: Computer Programming
and Formal Systems, pp. 33–70. North Holland, Amsterdam (1961)

12. Elmstrøm, R., Larsen, P.G., Lassen, P.B.: The IFAD VDM-SL Toolbox: A Practical Ap-
proach to Formal Specifications. ACM Sigplan Notices 29(9), 77–80 (1994)

13. Fitzgerald, J., Larsen, P.G., Sahara, S.: VDMTools: Advances in Support for Formal Model-
ing in VDM. Sigplan Notices 43(2), 3–11 (2008)

14. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture
Initiative – Integrating Tools for VDM. ACM Software Engineering Notes 35(1) (January
2010)

15. Aichernig, B.: A Proof Obligation Generator for the IFAD VDM-SL Toolbox. Master’s the-
sis, Technical University Graz, Austria (March 1997)

16. Giesl, J.: Termination of nested and mutually recursive algorithms. Journal of Automated
Reasoning 19, 10–29 (1997)

17. Slind, K.: Another look at nested recursion. In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs
2000. LNCS, vol. 1869, pp. 498–518. Springer, Heidelberg (2000)

18. Dennis, L.A., Collins, G., Norrish, M., Boulton, R., Slind, K., Robinson, G., Gordon, M.,
Melham, T.: The PROSPER Toolkit. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000.
LNCS, vol. 1785, Springer, Heidelberg (2000)

19. Agerholm, S., Sunesen, K.: Formalizing a Subset of VDM-SL in HOL. Technical report,
IFAD (April 1999)

20. Agerholm, S., Sunesen, K.: Reasoning about VDM-SL Proof Obligations in HOL. Technical
report, IFAD (1999)

21. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS System Guide - Version
2.4 (2001)

22. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Language Reference -
Version 2.4 (2001)

Correct-by-Construction Model Transformations
from Partially Ordered Specifications in Coq�

Iman Poernomo and Jeffrey Terrell

Department of Computer Science, King’s College London,
Strand, London WC2R 2LS, UK

iman.poernomo@kcl.ac.uk, jeffrey.terrell@kcl.ac.uk

Abstract. This paper sketches an approach to the synthesis of provably
correct model transformations within the Coq theorem prover, an imple-
mentation of Coquand and Huet’s Calculus of Inductive Constructions.
It extends work done by Poernomo on proofs-as-model-transformations
in the related formalism of Martin-Löf predicative Constructive Type
Theory. We show how the impredicative theory of Coq, together with its
treatment of coinductive types, lends itself to the synthesis of a wider
range of model transformations than Poernomo had treated before. We
illustrate the practical benefits and potential scalability of our approach
by means of a case study taken from industry.

1 Introduction

This paper presents an approach to the synthesis of provably correct model
transformations within the Coq theorem prover, an implementation of Coquand
and Huet’s Calculus of Inductive Constructions.

Model transformations within the Model Driven Architecture (MDA)
paradigm are meant to enable designers to focus most of their time on providing
a robust, architecturally sound platform independent model. Then, given a par-
ticular platform and associated metamodel choice, a designer applies a (possibly
off-the-shelf) transformation to automatically obtain a specific, refined model.
In this way, MDA eliminates some of the effort spent on making implementation
decisions at the specification level, and, ideally, results in a better generated
platform specific model than that obtained from a manual process.

MDA is increasingly being taken up by industry and, as a consequence, trans-
formations of interest are becoming more complex and mission critical. It be-
comes essential, therefore, to have maximal levels of trust in the correctness of
model transformations. The informality of MDA as it currently stands makes the
approach untrustworthy and dangerous. If model transformations are incorrect,
the MDA process can result in software of a lower quality than that produced by
traditional software development. A small number of errors in the composition of
� This work was supported by Kennedy Carter Ltd and the Engineering and Physical

Sciences Research Council (EPSRC grant EP/G03012X/1, “Higher-Order Refine-
ment Techniques for Model Driven Architecture”).

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 56–73, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Correct-by-Construction Model Transformations 57

a number of complex transformations can easily lead to an exponential number
of errors in the code, that are difficult to trace and debug.

We solve this problem by leveraging a property of Constructive Type Theory
known as the Curry-Howard Isomorphism, where data, functions and their cor-
rectness proofs are treated as ontologically equivalent, and where a similar equiv-
alence holds for the related trinity of typing information, program specifications
and programs. A practical implication of the isomorphism is that, by proving
the logical validity of a model transformation specification, we can automatically
synthesize a model transformation that satisfies the specification. Following [7],
we call this implication the proofs-as-model-transformations paradigm.

This paper presents a significant advance over our previous work in Martin-Löf
type theory. Our previous work considered simple specifications of model trans-
formations as relationships between source and target metamodel instances, but
gave no detail on how a complex transformation might be derived if its specifica-
tion involves multiple mappings between metamodels built from a large number
of interrelated metaclasses. We now give a treatment of a subset of such specifica-
tions, which we call partially ordered specifications. In such specifications, source
and target models can take on any graph structure, with metamodels allowing,
as usual, bidirectionality and circular references. However, the transformation
specification itself is given as a series of mappings, defined over each metaclass of
the model via a partially ordered traversal of the source metamodel graph, from
an given initial metaclass, with the target model requirements also provided
according to a partially ordered traversal of the target metamodel graph. We
contend that partially ordered specifications are sufficient to define the majority
of industrially useful transformations.

We illustrate the practical benefits and potential scalability of our approach
by presenting the end results of a case study we have conducted, involving part
of a transformation used at Kennedy Carter for safety critical system develop-
ment (the domain specific properties of the case study have been obfuscated for
confidentiality reasons).

This paper assumes the reader is familiar with the UML representation of
classes, relationships and objects and has a partial familiarity with the MOF
specification document [5]. A detailed study of constructive type theory can
be found in [2] or [8] (we follow the formulation of the latter here). Section 2
presents a brief overview of how proofs and programs are related within the
type theory of Coq. Section 3 describes our approach to metamodelling and
model transformation development and Section 4 provides an example. Finally,
Section 5 contains our conclusions.

2 Proofs and Programs in Coq

This section presents a brief summary of the Calculus of Inductive Constructions
(CIC), the formalism implemented by Coq.

58 I. Poernomo and J. Terrell

2.1 Values and Types

The CIC is based on the principle that everything is a value of a particular type,
where values include constants and functions, and types range over

– ordinary inductive data types, such as the booleans bool and the natural
numbers nat;

– co-inductive types, such as the list of natural numbers starting from 10 (an
example of an infinite object);

– parametrized types, such as the list of natural numbers 1::2::3::nil;
– higher order types, such as the type of all basic types Set, and the type of

all logical propositions Prop.

If v is a value and t is its type, we write v: t. For example:

– the natural number 3 is written 3: nat1;
– the addition function plus, which takes two natural numbers and returns a

natural number, is written plus: nat -> nat -> nat;
– the logical statement “there exists a natural number greater than zero” is

written exists y: nat, ge y O: Prop;
– the logical predicate ge, which takes two natural numbers and returns a

Prop, is written ge: nat -> nat -> Prop.

2.2 Internal Programming Language (the Lambda Calculus)

Coq’s values range over a theory of predefined constants and functions (such
as the natural numbers and arithmetic functions) and a lambda calculus for
building new functions. In this calculus, which is essentially an internal functional
programming language with a syntax similar to Haskell or SML, functions can
be constructed from built-in APIs, and various constructs exist for dealing with
recursion, disjoint unions, matching by cases, record types and so on.

An important aspect of this language, as with all functional programming
languages, is its support for anonymous functions. In conventional mathematical
notation, the lambda abstraction λx : nat.x + x defines a function that inputs
x : nat and returns x+x. In Coq, this function is written fun x: nat => x + x
and its type is nat -> nat (the type of functions that take in naturals as input
and return naturals as output). Furthermore, since functions can be applied to
inputs, the application of fun x: nat => x + x to 3: nat, say, which in its
unevaluated form is written (fun x: nat => x + x) 3, is clearly a value of
type nat.

Evaluation is formalized by rules that define how terms can be converted
or reduced, into simpler terms. The transitive closure of these reduction rules
define the system’s normalization relation, providing the operational semantics
for computing the final value of any function application. A key principle of

1 The symbol 3 is an abbreviation for the expression S(S(SO)), where S is the successor
function, and O (the letter, that is) is a representation of zero.

Correct-by-Construction Model Transformations 59

Coq is strong normalization: that all possible sequences of applications of re-
duction rules are confluent and terminate. We do not admit terms that could
lead to infinite reduction sequences (for example, infinite recursion). As a result,
normalization provides a canonical, normal value for each term. The lambda cal-
culus of Coq thus forms an internal functional programming language in which
every program terminates. We may use it to define new programs from known
programs.

2.3 Internal Logic

The CIC works with a collection of logical formulae, each of type Prop, which are
built from a closure over basic propositions, predicates over terms, implication
A -> B, conjunction A /\ B, disjunction A \/ B, typed universal quantification
forall x: T, A and existential quantification exists x: T, A. The symbols
->, /\ and \/ correspond to the usual logical connectives, and the keywords
forall and exists correspond to the quantifiers ∀ and ∃.

The connectives and quantifiers allow us to define well-typed logical proposi-
tions within the calculus, and because propositions may involve predicates over
terms, we can define propositions that make statements about our lambda cal-
culus (that is, we can specify properties of programs). But, in and of themselves,
the logical formulae do not allow us to reason: we need rules to define a proof
system in order to do that. We will return to this question shortly.

2.4 Co-inductive Types

Co-inductive types merit special attention because they play an important part
in the representation of metamodels. A co-inductive type, just like any other
type, is defined by “prescribing what we have to do to construct an object of
that type” [4]. Let us start by defining a particular co-inductive type, namely

CoInductive X : Set :=
Build’X : nat -> Y -> X

with Y : Set :=
Build’Y : nat -> X -> Y.

This type definition (which actually defines the type of a pair of mutually co-
inductive types X and Y, because X refers to Y and Y refers to X) tells us that
there is only one way in which an object of type X can be constructed, and that
is to call Build’X with an object of type nat, and an object of type Y. It also
tells us something similar about Y.

Consider a specific object x1 of type X (as depicted in Fig. 1), which is con-
structed by evaluating f 1, where f is defined by

CoFixpoint f (n : nat) : X :=
Build’X n (Build’Y (S n) (f (S (S n)))).

60 I. Poernomo and J. Terrell

x1

��

x3

��

...

y1

����������
y3

����������

Fig. 1. Object x1 and its followers

Clearly, f is recursive (it appears on both sides of the definition) and x1 is infinite
because the evaluation of f 1, of which the first few terms are

Build’X 1 (Build’Y 2 (Build’X 3 (Build’Y 4 ...,

never terminates. However, this does not prevent us from reasoning about x1,
so long as we restrict ourselves to finite parts or arbitrary elements of x1. In
that way, our computations are bound to terminate. For example, let us find the
object of type nat that was used to construct the object of type X that follows a
specified object of type X. Two navigation functions and an access function are
required, namely

Definition nav’x (y : Y) : X :=
let (n, x) := y in x.

Definition nav’y (x : X) : Y :=
let (n, y) := x in y.

Definition val’x (x : X) : nat :=
let (n, y) := x in n.

nav’x navigates from an object of type Y to the following object of type X, and
nav’y does something similar. Furthermore, val’x picks off the object of type
nat that was used to construct a specified object of type X. Applying a suitable
composition of functions to x1 yields 3, the nat that was used to construct x3,
the object of type X that follows x1.

Eval compute in (val’x (nav’x (nav’y (f 1)))).
= 3 : nat

Let us now consider a slightly different example, which is more germane to
the representation of metamodels, by constructing a mutually referential pair of
co-inductive objects x1 and y2 (see Fig. 2) as follows:

CoFixpoint x1 : X :=
Build’X 1 y1

with y1 : Y :=
Build’Y 2 x1.

Starting from x1, it is clearly possible to navigate to y2 and back again, an ar-
bitrary number of times. As in the previous example, therefore, x1 is an infinite

Correct-by-Construction Model Transformations 61

x1

��

x1

��

x1

��

...

y2

��

y2

��

y2

��

Fig. 2. Mutually referential objects x1 and y2, and navigations back and forth

object. Performing a dual navigation from x1 followed by an access yields, as
expected, 1.

Eval compute in (val’x (nav’x (nav’y x1))).
= 1 : nat

What this example shows is that co-inductive types can be used to represent
mutually referential objects, of the kind that inhabit most metamodels. We shall
discuss this in more detail in Section 3.1.

2.5 Higher-Order Values

Coq implements a higher-order type theory in the sense that it contains higher-
order values that can be used to type other values.

Propositions also possess this dual status. Not only are they values of type
Prop, but they also stand as types of values. The idea is that the inhabiting values
of a proposition are the possible proofs of that proposition. If a proposition has
at least one inhabiting value, then it is said to be true (because it has a proof). In
this way, the intended meaning of the various connectives is constructive. That
is, we understand a formula F to be true only if we can construct a proof p
that supports or realises its truth, written p : F . Rules of inference are included
in a straightforward way to accommodate theories of various data types, as is
reasoning about the simply typed lambda calculus, induction and recursion. We
do not provide these rules here – the reader is referred to [8] for details.

2.6 Extracting Programs from Proofs

The Curry-Howard isomorphism supports the notion of proof-carrying code.

Theorem 1 (Program Extraction). Let forall x: T, exists y: U, P(x, y)
be a well-formed formula built from well-defined predicates and functions in Coq’s
type theory. There is a mapping extract from proof-terms to simply typed lambda
terms (terms that do not involve logical propositions) such that, if

� p: forall x: T, exists y: U, P(x, y)

is a well typed term, then

� forall x: T, P(x, extract(p) x)

is provable.

62 I. Poernomo and J. Terrell

Space does not permit us to describe the extraction mapping, but essentially it is
developed using the generic machinery of [8]. The implication of this theorem is
that, given a proof of a formula forall x: T, exists y: U, P(x,y), we can
automatically synthesize a lambda calculus program f that, given input x: T,
will correctly produce an output f x that satisfies the constraint P(x, f x).

3 Doing MDA in Coq

Our notion of proofs-as-model-transformations essentially follows from Theo-
rem 1. A model transformation can be specified as a constraint in the OCL,
over instances of an input PIM and an output PSM written in the Meta-Object
Facility (MOF) [5], or any comparable constraint and class-based metamodelling
languages. Assuming that we can develop types to represent the PIM and PSM
metamodels, and that we can write the constraint as a logical formula over
the metamodels, we can then specify the transformation as a forall exists
formula. Then, in order to synthesize a provably correct model transformation,
we can prove the formula’s truth and apply the extraction mapping according
to Theorem 1.

The main technical challenges posed by this approach are twofold. First, the
formalization of MOF-based metamodels as types (as input/output types of
transformations) is not clear. Second, a complex model transformation typically
has a complex specification that will not have a straightforward representation
or proof in Coq. Are there common patterns of specification definition and proof
(and, consequently, synthesis) that can assist us in dealing with this complexity?
These two challenges are now addressed.

3.1 Encoding Metamodels as Types

In [6], metamodel/model instantiation relationships of the MOF were treated
using terms and types within the predicative type hierarchy of a Martin-Löf Type
Theory. That work suggested a particular co-inductive encoding for bidirectional
metaclasses, which required specialized rules to be added to the type theory.
Here, we employ a variant implementation, which makes use of the co-inductive
type definition schemas built into Coq. The advantage of this new approach is
that we readily have an implementation of the metamodels-as-types idea within
a robust tool kit.

Our approach is to define a Coq type for each metamodel ModelLang, so
that � model : ModelLang is derivable if, and only if, the term model corre-
sponds to a well formed model instance of the metamodel. Model transforma-
tions can then be defined as lambda functions within the internal programming
language of Coq, typed by metamodel types.

We employ co-inductive types to represent metaclass references for both uni-
directional and bidirectional associations.2 This makes it possible to define the

2 In very special circumstances, inductive data types can also be used.

Correct-by-Construction Model Transformations 63

x_1:T_1
...
x_n:T_n

A

y_1:U_1
...
y_n:U_m

B

1 myA

* myB

Encoding:

CoInductive A : Set :=

Build_A (x_1 : T_1) ...

(x_n : T_n) (myB : list B)

with B : Set :=

Build_B (y_1 : U_1) ...

(y_m : U_m) (myA : A).

In addition: 1) a set of projection
definitions for obtaining each at-
tribute x i of A:

Definition x_i : A -> T_i :=

(fun a : A =>

match a with

Build_A x_1 ... x_n myB =>

x_i

end).

2) a definition for navigating to the
associated class object list myB:

Definition myB : A -> list B :=

(fun a : A =>

match a with

Build_A x_1 ... x_n myB => myB

end).

3) similar definitions for B.

Fig. 3. Co-inductive encoding of metaclass structures involving a bidirectional reference

graph of any metaclass diagram using the CoFixpoint operator. For exam-
ple, the two metaclasses that participate in the one-many bidirectional asso-
ciation in Fig. 3, are encoded as co-inductive types, which utilise the inductive
parametrized list type to represent multiplicities. The fact that metaclass A
has a reference to many objects of metaclass B, is represented by the constructor
of metaclass A having a list attribute myB of type list B.

With such an encoding, it is a simple matter to instantiate a model with (say)
an instance a 1 of metaclass A linked in both directions to instances b 1 and b 2
of metaclass B, as follows:

CoFixpoint a_1 : A :=
Build_A v_1 ... v_n b_1::b_2::nil

with b_1 : B :=
Build_B q_1 ... q_m a_1

with b_2 : B :=
Build_B r_1 ... r_m a_1.

The encoding of conditional one-one relationships and generalizations, which
we have omitted in this paper, can be accomplished using Coq’s option and sum
types. Please follow the link in Section 5 for further details.

3.2 Constraints

In general, a MOF metamodel consists of a metaclass structure over which a set
of OCL constraints (defining well-formedness and semantics) range. Fortunately,

64 I. Poernomo and J. Terrell

there is a straightforward mapping from OCL constraints over metamodel ele-
ments into logical propositions of type Prop in Coq. Utilizing this mapping, it is
possible to form a new subset type that represents the complete metamodel as a
higher-order type, by pairing the structural information given by the encoding
of a metamodel MM (say) with its constraints B (say), as a term {x: MM | B} of
type Set, where x: MM is a typed variable, and B: MM -> Prop is a predicate
function over MM.

The general reader may surmise the type’s intuitive meaning from ordinary
mathematical set theory, since any term aModel of type {x: MM | B} must not
only instantiate the metaclass structure of type MM, but it must also satisfy
B[aModel/x]. However, the difference in Coq is that inhabitation of this type
requires constructive evidence: that is, an element aModel of type {x: MM | B}
is necessarily a term of the form

exist (fun x: MM => B) w p,

where exist is a constructor that pairs together two important elements: a
witness w and a proof p, which provides the evidence that B[w/x] is true. In other
words, any instantiation of a metamodel type must include a proof that certifies
its conformance to the metamodel’s constraints. In this sense, our formalism
promotes certified metamodelling.

3.3 Specifications

Whether we intend to handcraft the implementation of a transformation or for-
mally synthesize it, first we need to specify what we expect of the transformation.
As we have shown in [7], a simple model transformation between instances of
metamodels M and N, can be specified as a forall exists formula of the form

forall x: M, Pre(x) -> exists y: N, Post(x, y), (1)

where Pre(x) specifies an assumed precondition over instance x of metamodel
M, and Post(x, y) prescribes the required input-output relationship between
instances x and y of metamodels M and N respectively. By Theorem 1, if we can
derive a proof of (1), then a provably correct transformation that satisfies the
pre- and post-conditions can be obtained.

In [7] we demonstrated that this approach is applicable to the development
of transformations from contractual specifications: given a contractual specifi-
cation written in a first-order language such as the OCL over the input and
output metamodel vocabularies, we can map it to a formula of the form (1).
That treatment is what might be called an unstructured, single arbitrary form of
contractual specification: one precondition and one postcondition, each poten-
tially very large, predicating over the entirety of two metamodels.

The main problem with that approach is that, in practice, a model trans-
formation is not specified as a single contract, but as a sequence of interrelated
contracts between the elements of the source and target metamodels. When using
a declarative model transformation language, if the transformation is sufficiently

Correct-by-Construction Model Transformations 65

simple, these specifications can then be taken to be the actual transformation
itself. Our approach is not used for synthesis of declarative transformations, but
of algorithmic transformations. However, even in the case of algorithmic trans-
formation languages such as Kermeta or the Executable UML toolkit of Kennedy
Carter, a specification is always divided and conquered via a modular hierarchy
of contractual specifications.

Further, from the perspective of the proofs-as-model-transformations
paradigm, a disadvantageous side-effect of beginning with an unstructured, single
arbitrary contractual specification, is that while we may have a straightforward
mapping to the form of (1), we unfortunately have no heuristics to guide us in
deriving its proof and, consequently, in extracting the correct transformation.

By focusing on how a transformation is typically given, on the common in-
terdependencies of the hierarchy of modular requirements, we can also discover
common patterns of proof implied by the corresponding structure of the speci-
fication in Coq.

3.4 Partially Ordered Specifications

We consider a particular form of complex transformation specification that we
refer to as partially ordered (PO) in this paper. For the sake of illustration, we
shall restrict ourselves to metamodels in which

– associations are one-many;
– metaclasses are associated with at least one other metaclass;
– there is at most one association between any two classes, but their ends may

be of any multiplicity;
– there are no generalizations.

However, there is nothing significant about these restrictions.

Definition 1 (Partial Order). Consider a MOF-based metamodel consisting
of a set of metaclasses Class = {C1, . . . , Cn} and a set of associations Assoc =
{R1, . . . , Rm} holding between metaclasses. Let (Ci R̂k Cj) hold if there is an
association Rk ∈ Assoc between Ci and Cj . A partial order over the metamodel
{H,≤} consists of

– a reflexive, antisymmetric and transitive relation ≤, defined over all meta-
classes in C so that Ci ≤ Cj if, and only if,

Ci R̂1 C1 R̂2 . . . R̂l Cl R̂′ Cj

for some (possibly empty) chain of associated classes C1, . . . , Cl ∈ Class and
associations R1, . . . , Rl, R′ ∈ Assoc;

– a root metaclass H ∈ Class, such that H ≤ C for all C ∈ Class.

If Ci ≤ Cj and there is an association R ∈ Assoc such that (Ci R̂ Cj) holds, then
we say that R is a PO association (an association that defines the partial order).
If an association is not a PO association, we call it an ancillary association (an
association that cannot be included in a navigation of the metamodel graph
conducted only with respect to PO associations).

66 I. Poernomo and J. Terrell

The basic idea of a PO specification is illustrated in Fig. 4, which shows a spec-
ification as a series of sub-specifications that define required mappings between
individual metaclasses in a rooted directed graph. The series of sub-specifications
is defined according to the partial order of the input metamodel and preserves
the partial order of the output metamodel, in the sense that a subspecification
over a metaclass A can only involve references to metaclasses that preceed A in
the PO, and cannot involve references to metaclasses that are greater than A in
the PO.

Definition 2 (PO Specification). Let Source be a metamodel consisting of
a set of metaclasses Source = {A1, . . . , Aw} and a partial order {A1,≤Source}
constructed from its set of associations. Let Target be a metamodel consisting
of a set of metaclasses Target = {B1, . . . , Bv} and partial order {B1,≤Target}
constructed similarly. A PO specification describes a model transformation φ :
Source→ Target via a series of OCL pre and postcondition pairs3, that is

SPEC = {(Prei(xi), Posti(xi, yi)) | i = 1, . . . , w} .

Each pair specifies how φ should operate on an assumed instance xi of Ai from
Source, to produce a corresponding instance yi of φ(Ai) from Target.

– The precondition Prei(xi) is a constraint that can predicate over any at-
tribute of xi and any aspect of (R xi), where R can be either a PO or
ancillary association.

– The postcondition Posti(xi, yi), on the other hand, is restricted to predi-
cate over any attribute of xi or yi and only navigations to, and variable
instantiations of, “preceding” associated metaclasses in the POs – that is,
it may predicate only over instance variables or navigated references x′ : X ′

of metaclasses X ′ ≤Source Ai and instance variables or navigated references
y′ : Y ′ of metaclasses Y ′ ≤Target φ(B).

The PO specification demands that φ is a surjective homomorphism from A
to B, preserving the partial orders, so that if Ai ≤Source Aj , then φ(Ai) ≤Target

φ(Aj).
The transformation φ is then specified by SPEC to be a function with the

following procedural semantics. φ is Proc(a1, 1), where Proc(e, i) is defined re-
cursively as follows.

1. Given an instance e of Ai, we add φ(e) : φ(Ai) to the output metamodel
instance, preserving Prei(e) and Posti(e, φ(e)) in the sense defined above.

2. If Ai ≤Source Aj and Ai R̂ Aj (so that R is a PO association) then, for each
instance f : Aj contained in the associated reference list (R e), we repeatedly
invoke Proc(f, j).

Remark 1. Our definition of a PO specification is essentially generic with respect
to first-order constraint language, metamodelling notation and precise definition
3 We allow free variables in our OCL constraints.

Correct-by-Construction Model Transformations 67

Fig. 4. Relational form of a PO specification. In general, m need not equal n and each
i need not equal k for each mapping from A ni to B mk.

of procedural semantics. It should be clear how similar specifications could be
provided using constraints written in, for example, OCL over MOF metamodels,
contracts over Kermeta metamodels, and even assertions over Java representa-
tions of metamodels.

Remark 2. We have shown in [6] that OCL constraints over a MOF-based meta-
model have an obvious mapping into a higher-order type theory. It is a triv-
ial extension of that work to show that we have a mapping from such OCL
constraints to formulae of type Pop in Coq, over elements of the metamodel’s
encoding. We denote this mapping in Definition 3, by changing the font of the en-
coded constraint to typewriter, and changing the format of logical connectives
as appropriate.

For the purposes of developing a guaranteed correct transformation that imple-
ments the specification, we need to represent its intended meaning as a formula
in Coq’s type theory. This is now defined.

Definition 3 (Interpretation of PO Specification in Coq). Consider
PIM and PSM metamodels Source and Target consisting of a set of metaclasses
Source = {A1, . . . , Aw} and Target = {B1, . . . , Bv}, with associated partial or-
ders {A1,≤Source} and {B1,≤Target} derived over their associations. Let

SPEC = {(Prei(xi), Posti(xi, yi)) | i = 1, . . . , w}

68 I. Poernomo and J. Terrell

be a PO specification describing a model transformation φ : Source → Target.
Furthermore, let Ai be a metaclass from Source. We define

Traverse(x : Ai) ≡
j=fi(k)∧
j=fi(1)

Traversej(x : Ai)

Traversej(x : Ai) ≡ forall xj : Aj, xj ∈ (Rj x) -> Prej(xj) ->
exists yj : φ(Aj), Postj(xj, yj) /\ Traverse(xj)

if there is a nonempty set {Afi(1), . . . , Afi(k)} of all metaclasses, constructed
so that for each l = 1, . . . , k, there is a Rfi(l) where (Ai R̂fi(1) Afi(l)) and
Ai ≤Source Afi(l), with fi forming an injection {1, . . . , k} �→ {1, . . . , w}. If there
is no such set, then

Traverse(x : Ai) ≡ True .

With these definitions, the type theoretic interpretation of the PO specification
in Coq becomes

forall x1 : A1, Pre1(x1) -> exists y1 : B1, Post1(x1, y1) -> Traverse(x1) .
(2)

We then have the following theorem.

Theorem 2 (Transformations from PO Specifications). Consider PIM
and PSM metamodels Source and Target with a PO specification SPEC as as-
sumed in Definition 3. Let P (SPEC) be the type theoretic interpretation of the
PO specification (2). If � p : P (SPEC) is a well-typed term, then there is map-
ping extract such that extract(p) : Source → Target is a model transformation
function that satisfies the procedural semantics prescribed by SPEC according
to Definition 2.

Proof. The proof follows by an extension of that given in [8] and reasoning
over the definition of the procedural semantics of PO specifications (sketched in
Definition 2).

This theorem allows us to synthesize provably correct model transformations
from PO specifications. Assuming that PO specifications are scalable to a wider
range of model transformation requirements, then this theorem suggests that
the proofs-as-model-transformations paradigm is similarly scalable.

A further implication of this theorem is that the logical structure of (2) im-
mediately simplifies the task of proof derivation (and, consequently, of synthe-
sis), because each conjunct of Traverse(x : Ai) begins with a universal quan-
tification over a variable xfi(l) : Afi(l) that both inhabits a list of instances
(Rfi(l) x) : list Afi(l) and satisfies the precondition. This suggests that each
conjunct might most easily be derived through application of list induction. The
choice of induction is generally one that a human prover must make in Coq. How-
ever, once this is done, remaining proof steps can often be automated. We have
found that a typical (2) specification can then be derived by selecting induction

Correct-by-Construction Model Transformations 69

rules systematically as suggested by the quantification clauses, in conjunction
with automated intermediate proof steps.

Remark 3. Co-induction presents the complications of a bisimular notion of
equality and of infinite co-inductive schema for reasoning over the structure
of metaclass types. In the case of PO specifications and the approach we take to
deriving proofs from them, these complications do not present a problem for our
purpose of extracting model transformations from proofs of specifications involv-
ing formal metamodel types, because the proofs are generally not made over the
structure of the metamodel types. Co-induction is only important for potentially
complex bidirectional navigations between elements of metaclass types, within
the specification and constructive content of the proof.

4 Case Study

The majority of large-scale model transformations, covering a wide range of
industrial requirements, can be defined as PO specifications. This assertion is
based on the experience of the authors in model transformation development
but, of course, requires a larger empirical study to verify.

In lieu of such a study, we consider an important fragment of a model-to-
text transformation developed at Kennedy Carter, which distributes platform-
independent UML models across multiple processes.

The input metamodel Source (the left hand side metamodel of Fig.5) is a
fragment of executable UML, in which classes have operations, operations have
statements and statements are either invocation statements or (simplifying for
the purposes of this illustration) statements of other unspecified kinds. Each class
is associated with an operating system process during system configuration, so
that its operational code will run in the context of a specific process.

The purpose of the transformation is to instantiate an output metamodel
Target (the right hand side metamodel of Fig.5), in which there is a package for
each process, and within each package, appropriate stubs and skeleton code for
each remote operation invocation.

Remote operation invocation is understood in the following sense. Let i be
an invocation statement in Source and let pi be the process that executes the
class that has the operation that contains i. Furthermore, let pj be the process
that executes the class that has the operation that i invokes. Clearly, pi =
i.R4.R3.R2.R1 and pj = i.R5.R2.R1. If pi �= pj , the invocation is said to be
remote. A remote invocation is implemented by a stub in the source process and
a skeleton in the destination process, to manage the flow of control and data
between the invoking and invoked operations.

Consider a PO {Process,≤Source} over the source metamodel that preserves
the vertical order of Fig. 5, so that A ≤Source B if class A is higher than B
in the figure, and in which all associations are PO apart R5, which is ancillary.

70 I. Poernomo and J. Terrell

Other

Skeleton
attributes

KID : N

Stub
attributes

TID : N

Package
attributes

R7_K : [Skeleton]
R6_T : [Stub]
AID : N

Process
attributes

R1_C : [Class]
PID : N

Statement
attributes

R3_O : Operation
R4 : Other + Invoke

SID : N

Invoke
attributes

R5_O : Operation
R4_S : Statement
IID : N

Operation
attributes

R5_I : [Invoke]
R3_S : [Statement]
R2_C : Class
OID : N

Class
attributes

R1_P : Process
R2_O : [Operation]

CID : N

0..*

1

has

is in

R7

0..*

1

has

is in

R6

R4

1

0..*

invokes

is invoked by

R5

0..*

1

has

is part of

R3

1

0..*

is executed by

executes

R1

0..*

1

has

operates on

R2

Fig. 5. The Source (LHS) and Target (RHS) metamodels

Similarly, consider a PO {Package,≤Target} over the target metamodel, in which
all associations are PO.

The transformation φ : Source → Target is then defined by a PO specifica-
tion, whose content can be written (in informal English, but a first-order logical
representation is straightforward) as the following sequence of pre and postcon-
ditions over metaclasses Process and Invoke (the other pre and postconditions
are nugatory and can be assumed to be “True”):

i Sourcei φ(Sourcei) Prei(x) Posti(x, y)
1 Process Package True x.PID = y.AID, where x : Process and y :

Package
6 Invoke Stub x is remote x.R5O.OID = y.T ID, where x : Invoke and y :

Stub

Correct-by-Construction Model Transformations 71

Each metaclass is encoded as a co-inductive type. For example, consider the
following fragment of the encoding of the source metamodel:4

CoInductive Process : Set :=

Build_Process (PID: nat) (R1_C: list Class)

with Class : Set :=

Build_Class (CID: nat) (R1_P : Process) (R2_O: list Operation)

with Operation : Set :=

Build_Operation (OID: nat) (R2_C: Class) (R3_S: list Statement)

(R5_I: list Invoke)

...

The PO specification of the transformation is then defined in Coq by the
following proposition:

forall lp : list Process, exists la : list Package,
forall p : Process,

p ∈ lp -> exists a : Package,
a ∈ la /\
a.AID = p.PID /\
forall c : Class,

c ∈ p.R1C -> forall o : Operation,
o ∈ c.R2O -> forall s : Statement,

s ∈ o.R3S -> equalP p i.R5O.R2C.R1P = False ->
exists t : Stub,

t ∈ a.R6T /\
t.TID = i.R5O.OID .

Note that we have simplified the form of the specification, removing references
to pre or postconditions if they are True.

The proof of the specification proceeds by induction over the lists mentioned
in the respective Traverse clauses: lp, p′.R1C , c′.R2O and o′.R3S. While the full
proof is considerable, besides the careful choice of list induction (suggested by
the form of the specification), much of the derivation is achieved automatically
in Coq. The extracted model transformation consists of a series of list recursions
(corresponding to the uses of induction in the proof) and comes quite close to
the kind of transformation a human developer might produce – but with the
advantage of being guaranteed correct.

5 Related Work and Conclusions

A number of authors have attempted to provide a formal understanding of meta-
modelling and model transformations. Ruscio et al. have made some progress
4 We omit the treatment of generalization here, treating R4 as a bidirectional relation-

ship between Statement and Invoke. In our full version, this is treated as a bidi-
rectional relationship to the disjoint union type of Other and Invoke metaclasses,
allowing us to represent the fact that two children can access the attributes of their
supertype, but have no access to each others’ attributes.

72 I. Poernomo and J. Terrell

towards formalizing the KM3 metamodelling language using the Abstract State
Machines [10]. Rivera and Vallecillo have exploited the class-based nature of
the Maude specification language to formalize metamodels written in the KM3
metamodelling language [9]. The intention was to use Maude as a means of defin-
ing dynamic behaviour of models, something that our approach also lends itself
to. Their work has the advantage of permitting simulation via rewriting rules.
A related algebraic approach is given by Boronat and Meseguer in [1]. These
formalisms are useful for metamodel verification purposes, but are currently not
amenable to the test case generation problem.

Rule-based model transformations (in contrast to procedural/functional ones
found in language such as Kermeta and Converge), have a natural formalization
in graph rewriting systems [3]. However, their approach is by definition applicable
within the rule-based paradigm: in contrast, because our tests are contractual
and based in the very generic space of constructive logic, we need not restrict
ourselves to rule-based transformations.

We believe that model transformations will never reach their full industrial
potential without some guarantee of correctness. This is in contrast to ordinary
business programming, where correctness has a benefit-cost ratio that is logarith-
mic with respect to completeness of guaranteeing proofs. However, a single error
in a transformation can have potentially drastic and untraceable effects on code.
In terms of benefit-cost ratios, model transformations, while potentially useful
throughout all sectors of development, including enterprise computing, should
be developed once and verified by experts. We believe that CIC and Coq are a
natural choice, as they permit encoding of models, metamodels, transformation
specifications and model transformations within a single language and with uni-
form semantics. For this reason, we see this work as opening up a very promising
line of research for the formal metamodelling community. Further details of the
case study can be found at

http://refine-mda.group.shef.ac.uk/sites/default/files/report.pdf .

References

1. Boronat, A., Meseguer, J.: An algebraic semantics for the MOF. In: Fiadeiro, J.L.,
Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 377–391. Springer, Heidelberg
(2008)

2. Constable, R., Mendler, N., Howe, D.: Implementing Mathematics with the Nuprl
Proof Development System. Prentice-Hall, Englewood Cliffs (1986), Updated edi-
tion available at
http://www.cs.cornell.edu/Info/Projects/NuPrl/book/doc.html

3. Königs, A., Schürr, A.: Multi-domain integration with MOF and extended triple
graph grammars. In: Bezivin, J., Heckel, R. (eds.) Language Engineering for Model-
Driven Software Development number 04101 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany (2005)

4. Martin-Löf, P.: An Intuitionstic Theory of Types: Predicate Part. In: Rose, H.E.,
Shepherdson, J.C. (eds.) Logic Colloquium. North-Holland, Oxford (1973)

http://refine-mda.group.shef.ac.uk/sites/default/files/report.pdf
http://www.cs.cornell.edu/Info/Projects/NuPrl/book/doc.html

Correct-by-Construction Model Transformations 73

5. OMG. Meta Object Facility (MOF) Core Specification, Version 2.0. Object Man-
agement Group (January 2006)

6. Poernomo, I.: A type theoretic framework for formal metamodelling. In: Reussner,
R., Stafford, J.A., Szyperski, C. (eds.) Architecting Systems with Trustworthy
Components. LNCS, vol. 3938, pp. 262–298. Springer, Heidelberg (2006)

7. Poernomo, I.: Proofs-as-model-transformations. In: Vallecillo, A., Gray, J., Pieran-
tonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 214–228. Springer, Heidelberg
(2008)

8. Poernomo, I., Crossley, J., Wirsing, M.: Adapting Proofs-as-Programs: The Curry-
Howard Protocol. Monographs in computer science. Springer, Heidelberg (2005)

9. Rivera, J., Vallecillo, A.: Adding behavioural semantics to models. In: The 11th
IEEE International EDOC Conference (EDOC 2007), Annapolis, Maryland, USA,
October 15-19, pp. 169–180. IEEE Computer Society, Los Alamitos (2007)

10. Ruscio, D.D., Jouault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending
AMMA for supporting dynamic semantics specifications of DSLs. Technical Report
06.02, Laboratoire d’Informatique de Nantes-Atlantique (LINA), Nantes, France
(April 2006)

Decision Procedures for the
Temporal Verification of Concurrent Lists

Alejandro Sánchez1 and César Sánchez1,2

1 The IMDEA Software Institute, Madrid, Spain
2 Spanish Council for Scientific Research (CSIC), Spain

{alejandro.sanchez,cesar.sanchez}@imdea.org

Abstract. This paper studies the problem of formally verifying tempo-
ral properties of concurrent datatypes. Concurrent datatypes are imple-
mentations of classical data abstractions, specially designed to exploit
the parallelism available in multiprocessor architectures. The correct-
ness of concurrent datatypes is essential for the overall correctness of the
client software. The main difficulty to reason about concurrent datatypes
is due to the simultaneous use of unstructured concurrency and dynamic
memory.

The first contribution of this paper is the use of deductive temporal
verification methods, in particular verification diagrams, enriched with
reasoning about dynamic memory. Proofs using verification diagrams are
decomposed into a finite collection of verification conditions. Our second
contribution is a decision procedure mixing memory regions, pointers and
lisp-like lists with locks, that allows the automatic verification of the
generated verification conditions. We illustrate our techniques proving
safety and liveness properties of lock-coupling concurrent lists.

1 Introduction

Concurrent data structures [5] are an efficient approach to exploit the paral-
lelism of multiprocessor architectures. In contrast with sequential implementa-
tions, concurrent datatypes allow the simultaneous access of many threads to
the memory representing the data value of the concurrent datatype. Concurrent
data structures are hard to design, difficult to implement correctly and even
more difficult to formally prove correct.

The main difficulty in reasoning about concurrent datatypes comes from the
interaction of concurrency and heap manipulation. The most popular technique
to reason about the structures in the heap is separation logic [10]. Leveraging
on this success, some researchers [6, 13] have extended this logic to deal with
concurrent programs. However, in separation logic disjoint regions are implic-
itly declared (hidden in the separation conjunction), which makes the reasoning
about unstructured concurrency more cumbersome.

In this paper, we propose a complementary approach. We start from temporal
deductive verification in the style of Manna-Pnueli [7], in particular using general
verification diagrams [4,11] to deal with concurrency. Then, inspired by regional

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 74–89, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Decision Procedures for the Temporal Verification of Concurrent Lists 75

logic [1], we enrich the state predicate language to reason about the different
regions in the heap that a program manipulates. Finally, we build decision pro-
cedures capable of checking all generated verification conditions generated during
our proofs, to aid in the automation of the verification process.

Explicit regions allow the use of a classical first-order assertion language to
reason about heaps, including mutation and disjointness of memory regions. Re-
gions correspond to finite sets of object references. Unlike separation logic, the
theory of sets [14] can be easily combined with other classical theories to build
more powerful decision procedures. Classical theories are also amenable of in-
tegration into SMT solvers [2]. Moreover, being a classical logic one can use
classical Assume-Guarantee reasoning, for example McMillan proof rules [8], for
reasoning compositionally about liveness properties. In practice, using explicit
regions requires the annotation and manipulation of ghost variables of type re-
gion, but adding these annotations is usually straightforward.

Verification diagrams can be understood as an intuitive way to abstract the
specific aspect of a program which illustrates why the program satisfies a given
temporal property We propose the following verification process to show that a
datatype satisfies a property expressed in linear temporal logic. First, we build
the most general client of the datatype, parametrized by the number of threads.
Then, we annotate the client and datatype with ghost fields and ghost code
to support the reasoning, if necessary. Second, we build a verification diagram
that serves as a witness of the proof that all possible parallel executions of the
program satisfy the given temporal formula.

The proof is checked in two phases. First, we check that all executions ab-
stracted by the diagram satisfy the property, which can be solved through a
fully-automatic finite state model checking method. Second, we must check that
the diagram does in fact abstract the program, which reduces to verifying a
collection of verification conditions, generated from the diagram. Each concur-
rent datatype maintains in memory a collection of nodes and pointers with a
particular layout. Based on this fact, we propose to use an assertion language
whose terms include predicates in specific theories for each layout. For instance,
in the case of singly linked lists, we use a decision procedure capable of rea-
soning about ideal lists as well as pointers representing lists in memory. In this
paper, we build a decision procedure extending the theory of linked lists [9] with
locks. We illustrate the whole approach to prove thread termination on a simple
implementation of concurrent lists.

Most previous approaches to verifying concurrent datatypes are restricted to
safety properties. In comparison, the method we propose can be used to prove
all liveness properties, relying on the completeness of verification diagrams.

The rest of the paper is structured as follows. Section 2 presents the running
example: lock-coupling concurrent lists. Section 3 briefly introduces verification
diagrams and explicit regions. Section 4 describes the proposed decision proce-
dure for concurrent lists. Finally, Section 5 shows how to apply our approach to
prove termination in one case of concurrent lists. Some proofs are missing due
to space limitations.

76 A. Sánchez and C. Sánchez

2 Concurrent Lock-Coupling Lists

The running example in this paper is the verification of lock-coupling concurrent
lists [5, 13]. Lock-coupling concurrent lists are ordered lists with non-repeating
elements, in which each node is protected by a lock. A thread advances through
the list acquiring the lock of the node it visits. This lock is only released after the
lock of the next node has been acquired. The List and Node structures, shown
in Fig. 1(a) are used to maintain the data of a concurrent list.

A List contains one field pointing to the Node representing the head of the
list. A Node consists of a value, a pointer to the next Node in the list and a lock.
We assume that the operating system provides the operations lock and unlock
to acquire and release a lock. Every list has two sentinel nodes, Head and Tail ,
with phantom values representing the lowest and highest possible values. For
simplicity, we assume such nodes cannot be removed or modified. Concurrent
Lock-Coupling Lists are used to implement sets, so they offer three operations:

– locate, shown in Fig. 1(d), finds an element traversing the list. This operation
returns the pair consisting of the desired node and the node that precedes
it in the list. If the element is not found the Tail node is returned as the

class List {
Node list ;

}

class Node {
Value val ;
Node next ;
Lock lock ;

}

1: while true do
2: e := NondetPickElem
3: nondet

4:

⎡⎢⎢⎢⎢⎢⎢⎣

call search(e)

or

call add(e)

or

call remove(e)

⎤⎥⎥⎥⎥⎥⎥⎦
5: end while

1: prev , curr := locate(e)
2: if curr .val = e then
3: result := true
4: else
5: result := false
6: end if
7: curr .unlock()
8: prev .unlock()
9: return result

(a) data structures (b) decide (c) search

1: prev := Head
2: prev .lock()
3: curr := prev .next
4: curr .lock()
5: while curr .val < e do
6: prev .unlock ()
7: prev := curr
8: curr := curr .next
9: curr .lock()

10: end while
11: return (prev , curr)

1: prev , curr := locate(e)
2: if curr .val �= e then
3: aux := new Node(e)
4: aux .next := curr
5: prev .next := aux
6: result := true
7: else
8: result := false
9: end if

10: prev .unlock()
11: curr .unlock()
12: return result

1: prev , curr := locate(e)
2: if curr .val = e then
3: aux := curr .next
4: prev .next := aux
5: result := true
6: else
7: result := false
8: end if
9: prev .unlock()

10: curr .unlock()
11: return result

(d) locate (e) add (f) remove

Fig. 1. Data structure and algorithms for concurrent lock-coupling list

Decision Procedures for the Temporal Verification of Concurrent Lists 77

current node. A search operation, shown in Fig. 1(c), that decides whether
an element is in the list can be easily extended from locate.

– add , shown in Fig. 1(e), inserts a new element in the list, using locate to
determine the position at which the element must be inserted. The operation
add returns true upon success, otherwise it returns false.

– remove, in Fig. 1(f), deletes a node from the list by redirecting the next
pointer of the previous node appropriately.

Fig.1(b) shows the most general client of the concurrent-list datatype: the
program decide that repeatedly chooses non-deterministically a method and its
parameters. We construct a fair transition system S[N] parametrized by the total
number of threads N , in which all threads run decide. Let ψ be the temporal
formula that describes that the thread which holds the last lock in the list
terminates. The verification problem is then casted as S[N] � ψ, for all N .

A sketch of a verification diagram is depicted in Fig. 2. We say that a thread
is the rightmost owning a lock when there is no other thread owning a lock that
protects a Node closer to the tail. Each diagram node is labeled with a predicate.
This predicate captures the set of states of the transition system that the node
abstracts. Edges represent transitions between states abstracted by the nodes.

Checking the proof represented by the verification diagram requires two ac-
tivities. First, show that all traces of the diagram satisfy the temporal formula
ψ, which can be performed by finite state model checking. Second, prove that
all computations of S[N] are traces of the verification diagram. This process
involves the verification of formulas built from several theories. For instance,
considering the execution of line 5 of program add we should verify that the
following condition holds:

at add [k]
5 ∧ IsLast(k) ∧

(
r′ = r ∪ 〈aux [k]〉 ∧
prev ′[k]

.next = aux [k]

)
→ at ′ add [k]

6 ∧ IsLast ′(k)

n2 :
Thread k gets its first lock and

k is the rightmost thread owning a lock

n3 :
Thread k is the rightmost owning a lock

and k is not blocked

n4 :
Thread k is the rightmost owning a lock

and k is about to get a new lock

n5 :
Thread k is the rightmost owning a lock

and k has reached the last line of locate

n6 :
Thread k is the rightmost owning a lock

and k has gone beyond the last line of locate

n1 :
Thread k does not own a lock or

k does not hold the rightmost lock

Fig. 2. Sketched verification diagram for S [N] � ψ

78 A. Sánchez and C. Sánchez

The predicate prev ′[k]
.next = curr [k] is in the theory of pointers, while r′ =

r ∪ 〈curr [k]〉 is in the theory of regions. Moreover, some predicates belong to
a combination of theories, like IsLast(k), which among other things establishes
that List (h, x, r) holds. List (h, x, r) expresses that in heap h, starting from
pointer x, the pointers form a list of elements following the next field, and that
all nodes in this list form precisely the region r.

The construction of a verification diagram is a manual task, but it often
follows the programmer’s intuitive explanation of why the property holds. The
activity that we want to automate is checking that the diagram indeed proofs
the property. To accomplish this automation we must build a suitable decision
procedure involving many theories, which we describe in the rest of the paper.

3 Preliminaries

We describe the temporal properties of interest in linear temporal logic, using
operators such as (always), (eventually), (next) or U (until) in con-
junction with classical logic operations. The state predicates are built from the
combination of theories that we present here.

Explicit Regions. We use explicit regions to represent the manipulation of
memory during the execution of the system. This reasoning is handled by ex-
tending the program code with ghost variables of type rgn, and ghost updates
of these variables. Variables of type rgn represent finite sets of object refer-
ences stored in the heap. Regional logic [1] provides a rich set of language con-
structs and assertions. However, it is enough for our purposes to use only a
small fragment of regional logic. The term emp denotes the empty region and
〈x〉 represents the singleton region whose only object is the one referenced by
x. Traditional set-like operators such as ∪, ∩ and \ are also provided and can
be applied to rgn variables. The assertion language allows reasoning involving
mutation and separation. Given two rgn expressions r1 and r2 we can assert
whether they are equal (r1 = r2), one is contained into the other (r1 ⊆ r2) or
they are completely disjoint (r1#r2).

Verification Diagrams. We sketch here the important notions from [4, 11].
Verification diagrams provide an intuitive way to abstract temporal proofs over
fair transition systems (fts). A fts Φ is a tuple 〈V , Θ, T ,J 〉 where V is a finite
set of variables, Θ is an initial assertion, T is a finite set of transitions and J ⊆ T
contains the fair transitions (in this paper we will not discuss strong fairness). A
state is an interpretation of V . We use S to denote the set of all possible states.
A transition τ ∈ T is a function τ : S → 2S, which is usually represented by a
first-order logic formula ρτ (s , s ′) describing the relation between the values of
the variables in a state s and in a successor state s′. Given a transition τ , the
state predicate En(τ) denotes whether there exists a successor state s′ such that
ρτ (s , s ′).

A computation of Φ is an infinite sequence of states such that (a) the first state
satisfies Θ; (b) any two consecutive states satisfy ρτ for some τ ∈ T ; (c) for each

Decision Procedures for the Temporal Verification of Concurrent Lists 79

τ ∈ J , if τ is continuously enabled after some point, then τ is taken infinitely
many times. We use L(Φ) to denote the set of computations of the fts Φ. Given
a formula ϕ, L(ϕ) denotes the set of sequences satisfying ϕ. A fts Φ satisfies a
temporal formula ϕ if all computations of Φ satisfy ϕ, i.e., L(Φ) ⊆ L(ϕ).

A verification diagram (vd) Ψ : 〈N, N0, E, μ, η,F , Δ, f〉 is a formula automa-
ton with components:

– N is a finite set of nodes.
– N0 ⊆ N is the set of initial nodes.
– E ⊆ N ×N is a set of edges.
– μ : N → F (V) is a labeling function mapping nodes to assertions over V .
– η : E → 2τ is a labeling function assigning sets of transitions to edges.
– F ⊆ 2E×E is an edge acceptance set of the form {(P1, R1) , . . . , (Pm, Rm)}.
– Δ ⊆ {δ|δ : S→ D} is a set of ranking functions from states to a well founded

domain D.
– f maps nodes into propositional formulas over atomic subformulas of ϕ.

If n ∈ N then we use next (n) to denote the set {ñ ∈ N | (n, ñ) ∈ E} and τ (n)
for {ñ ∈ next (n) |τ ∈ η (n, ñ)}. For each (Pj , Rj) ∈ F and for each n ∈ N , Δ
contains a ranking function δj,n. An infinite sequence of nodes π = n0, n1, . . . is
a path if n0 ∈ N0 and for each i > 0, (ni, ni+1) ∈ E. A path π is accepted if for
each pair (Pj , Rj) ∈ F some edges of Rj occur infinitely often in π or all edges
that occur infinitely often in π are also in Pj . An infinite path π is fair when,
for any just transition τ , if τ is enabled on all nodes that appear infinitely often
in π then τ is taken infinitely often.

Given a sequence of states σ = s0, s1, . . . of Φ, a path π = n0, n1, . . . is a
trail of σ whenever si � μ(ni) for all i ≥ 0. An infinite sequence of states σ is a
computation of Ψ whenever there exists an accepting trail of σ such that is also
fair. L(Ψ) is the set of computations of Ψ .

A verification diagram shows that Φ � ϕ via the inclusions L(Φ) ⊆ L(Ψ) ⊆
L(ϕ). The map f is used to check L(Ψ) ⊆ L(ϕ). To show L(Φ) ⊆ L(Ψ) it is
enough to prove the following verification conditions:

– Initiation: at least one initial node from N0 satisfies the initial condition of
the fair transition system Φ.

– Consecution: for every node n ∈ N and transition τ ∈ T ,

μ (n) (s) ∧ ρτ (s , s ′)→ μ(next(n))(s′).

– Acceptance: for each (Pj , Rj) ∈ F , if (n1, n2) ∈ Pj \Rj then

ρτ (s , s ′) ∧ μ (n1) (s) ∧ μ (n2) (s′)→ δj,n1 (s) � δj,n2 (s′)

and if (n1, n2) /∈ Pj ∪Rj then

ρτ (s , s ′) ∧ μ (n1) (s) ∧ μ (n2) (s′)→ δj,n1 (s) � δj,n2 (s′)

– Fairness: For each e = (n1, n2) ∈ E and τ ∈ η (e):
1. τ is guaranteed to be enabled in every μ(n1)(s).
2. Any τ -successor of a state satisfying μ (n1) satisfies the label of some

node in τ (n).

80 A. Sánchez and C. Sánchez

4 Building a Suitable Decision Procedure

The automatic check of the proof represented by a verification diagram requires
decision procedures to verify the generated verification conditions. These deci-
sion procedures must deal with formulas containing terms belonging to different
theories. In particular, for concurrent lists the decision procedure must reason
about pointer data structures with a list layout, regions and locks. To obtain a
suitable decision procedure, we extend the Theory of Linked Lists (TLL) [9], a de-
cidable theory including reachability of list-like structures. However, this theory
lacks the expressivity to describe locked lists of cells, a fundamental component
in our proofs.

We begin with a brief description of the basic notation and concepts. A signa-
ture Σ is a triple (S, F, P) where S is a set of sorts, F a set of functions and P a
set of predicates. If Σ1 = (S1, F1, P1) and Σ2 = (S2, F2, P2) are two signatures,
we define their union Σ1 ∪ Σ2 = (S1 ∪ S2, F1 ∪ F2, P1 ∪ P2). Similarly we say
that Σ1 ⊆ Σ2 when S1 ⊆ S2, F1 ⊆ F2 and P1 ⊆ P2. If t(ϕ) is a term (resp.
formula), then we denote with Vσ(t) (resp. Vσ(ϕ)) the set of variables of sort σ
occurring in t (resp. ϕ).

A Σ-interpretation is a map assigning a value to each symbol in Σ. A Σ-
structure is a Σ-interpretation over an empty set of variables. A Σ-formula over
a set X of variables is satisfiable whenever it is true in some Σ-interpretation
over X . Let Ω be an interpretation,A a Ω-interpretation over a set V of variables,
Σ ⊆ Ω and U ⊆ V . AΣ,U denotes the interpretation obtained from A restricting
it to interpret only the symbols in Σ and the variables in U . We use AΣ to denote
AΣ,∅. A Σ-theory is a pair (Σ,A) where Σ is a signature and A is a class of Σ-
structures. Given a theory T = (Σ,A), a T -interpretation is a Σ-interpretation
A such that AΣ ∈ A. Given a Σ-theory T , a Σ-formula ϕ over a set of variables
X is T -satisfiable if it is true on a T -interpretation over X .

Formally, the theory of linked lists is defined as TLL = (ΣTLL,TLL), where

ΣTLL := Σcell ∪Σmem ∪ΣReachability ∪Σset ∪ΣBridge

and TLL is the class of ΣTLL-structures satisfying the conditions shown in
Fig. 4. The sorts, functions and predicates of TLL correspond to the signatures
shown in Fig. 3. (Note that Figs. 4 and 3 contain an extended signature and
interpretation.) Informally, Σcell models cells, structures containing an element
(data), an addresses (pointer) and a lock owner, which represent a node in a
linked list. Σmem models the memory. ΣReachability models finite sequences of non-
repeating addresses, to represent paths. Σset models sets of addresses. Finally,
ΣBridge is a bridge theory containing auxiliary functions. The sort thid contains
thread identifiers. The sorts addr, elem and thid are uninterpreted, except that
� : thid is different from all others thread ids. Otherwise, Σaddr = (addr, ∅, ∅),
Σelem = (elem, ∅, ∅) and Σthid = (thid, ∅, ∅).

We extend TLL into the theory of concurrent single linked lists TLL3 :=
(ΣTLL3,TLL3), where ΣTLL3 = ΣTLL ∪Σsetth ∪ {lockid , lock , unlock ,firstlocked}.
The sorts, functions and predicates of ΣTLL3 are described in Fig. 3. TLL3 is
the class of ΣTLL3-structures satisfying the conditions listed in Fig. 4.

Decision Procedures for the Temporal Verification of Concurrent Lists 81

Signature Sorts Functions Predicates

Σcell

cell
elem
addr
thid

error : cell
mkcell : elem × addr × thid → cell
.data : cell → elem
.next : cell → addr
.lockid : cell → thid
.lock : cell → thid → cell
.unlock : cell → cell

Σmem

mem
addr
cell

null : addr
[] : mem × addr → cell
upd : mem × addr × cell → mem

ΣReachability

mem
addr
path

ε : path
[] : addr → path

append : path × path × path
reach : mem × addr × addr × path

Σset
addr
set

∅ : set
{ } : addr → set
∪,∩, \ : set × set → set

∈ : addr × set
⊆ : set × set

Σsetth
thid
setth

∅T : setth
{ }T : thid → setth
∪T ,∩T , \T : setth × setth → setth

∈T : thid × setth
⊆T : setth × setth

ΣBridge

mem
addr
set

path

path2set : path → set
addr2set : mem × addr → set
getp : mem × addr × addr → path
firstlocked : mem × path → addr

Fig. 3. The signature of the TLL3 theory

Definition 1 (Finite Model Property). Let Σ be a signature, S0 ⊆ S be a set
of sorts, and T be a Σ-theory. T has the finite model property with respect to S0 if
for every T -satisfiable quantifier-free Σ-formula ϕ there exists a T -interpretation
A satisfying ϕ such that for each sort σ ∈ S0, Aσ is finite.

TLL [9] enjoys the finite model property. We now show that TLL3 also has
the finite model property with respect to domains elem, addr and thid. Hence,
TLL3 is decidable because one can enumerate ΣTLL3-structures up to a certain
cardinality. To prove this result, we first extend the set of normalized TLL-literals.

Definition 2 (TLL3-normalized literals). A TLL3-literal is normalized if it
is a flat literal of the form:

e1 �= e2 a1 �= a2

a = null c = error
c = mkcell(e, a) c = rd(m, a) m2 = upd(m1, a, c)
s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3

p1 �= p2 p = [a] p1 = rev(p2)
s = path2set(p) append(p1, p2, p3) ¬append (p1, p2, p3)
s = addr2set(m, a) p = getp(m, a1, a2)
k1 �= k2 c = mkcell (e, a, k) a = firstlocked (m, p)

where e, e1 and e2 are elem-variables, a, a1 and a2 are addr-variables, c is a cell-
variable, m, m1 and m2 are mem-variables, p, p1, p2 and p3 are path-variables,
and k, k1 and k2 are thid-variables.

Lemma 1. Deciding the TLL3-satisfiability of a quantifier-free TLL3-formula is
equivalent to verifying the TLL3-satisfiability of the normalized TLL3-literals.

82 A. Sánchez and C. Sánchez

Interpretation of sort symbols: cell, mem, path, set and setth
Each sort σ in ΣTLL3 is mapped to a non-empty set Aσ such that:
(a) Acell = Aelem ×Aaddr ×Athid (b) Amem = AAaddr

cell
(c) Apath is the set of all finite sequences of (pairwise) (d) Aset is the power-set of Aaddr

distinct elements of Aaddr (e) Asetth is the power-set of Athid

Signature Interpretation

Σcell

– mkcell(e, a, k) = 〈e, a, k〉 for each e ∈ Aelem, a ∈ Aaddr and k ∈ Athid

– 〈e, a, t〉.dataA = e for each e ∈ Aelem, a ∈ Aaddr and t ∈ Athid

– 〈e, a, t〉.nextA = a for each e ∈ Aelem, a ∈ Aaddr and t ∈ Athid

– 〈e, a, t〉.lockidA = t for each e ∈ Aelem, a ∈ Aaddr and t ∈ Athid

– 〈e, a, t〉.lockA(t′) = 〈e, a, t′〉 for each e ∈ Aelem, a ∈ Aaddr and t, t′ ∈ Athid

– 〈e, a, t〉.unlockA = 〈e, a,�〉 for each e ∈ Aelem, a ∈ Aaddr and t ∈ Athid

– errorA.nextA = nullA

Σmem

– m[a]A = m(a) for each m ∈ Amem and a ∈ Aaddr

– updA(m,a, c) = ma �→c for each m ∈ Amem, a ∈ Aaddr and c ∈ Acell

– mA(nullA) = errorA for each m ∈ Amem

ΣReachability

– εA is the empty sequence
– [i]A is the sequence containing i ∈ Aaddr as the only element
– ([i1, . . . , in] , [j1, . . . , jm] , [i1, . . . , in, j1, . . . , jm]) ∈ appendA iff ik and jl are

all distinct
– (m, i, j, p) ∈ reachA iff i = j and p = ε, or there exist addresses i1, . . . , in ∈

Aaddr such that:
(a) p = [i1, . . . , in] (c) m(ir).nextA = ir+1, for 1 ≤ r < n

(b) i1 = i (d) m(in).nextA = j

Σset
The symbols ∅, { }, ∪, ∩, \, ∈ and ⊆ are interpreted according to their standard
interpretation over sets of addresses.

Σsetth
The symbols ∅T , { }T , ∪T , ∩T , \T , ∈T and ⊆T are interpreted according to
their standard interpretation over sets of thread identifiers.

ΣBridge

– addr2setA(m, i) =
{
j ∈ Aaddr | ∃p ∈ Apath s.t. (m, i, j, p) ∈ reach

}
– path2setA(p) = {i1, . . . , in} for p = [i1, . . . , in] ∈ Apath

– getpA(m, i, j) =

{
p if (m, i, j, p) ∈ reachA

ε otherwise
for each m ∈ Amem, p ∈ Apath and i, j ∈ Aaddr

– firstlockedA (m, [a1, . . . , an]) =

⎧⎪⎨⎪⎩
ak if there is 1 ≤ k ≤ n such that

for all 1 ≤ j < k, m[aj].lockid = �
and m[ak].lockid �= �

null otherwise
for each m ∈ Amem and a1, . . . an ∈ Aaddr

Fig. 4. Characterization of a TLL3-interpretation A

Proof. By cases on the shape of all possible TLL3-literals. ��

Consider an arbitrary TLL3-interpretation A satisfying a conjunction of normal-
ized TLL3-literals Γ . We show that if there are sets Aelem, Aaddr and Athid then
there are finite sets A′

elem, A′
addr and A′

thid with bounded cardinalities (the bound
depending on Γ). A′

elem, A′
addr and A′

thid can in turn be used to obtain a finite
interpretation A′ satisfying Γ .

Decision Procedures for the Temporal Verification of Concurrent Lists 83

Lemma 2 (Finite Model Property). Let Γ be a conjunction of normal-
ized TLL3-literals. Let ē = |Velem (Γ)|, ā = |Vaddr (Γ)|, m̄ = |Vmem (Γ)|, p̄ =
|Vpath (Γ)| and k̄ = |Vthid (Γ)|. Then the following are equivalent:

1. Γ is TLL3-satisfiable;
2. Γ is true in a TLL3 interpretation A such that

|Aelem| ≤ ē + m̄ |Aaddr|
|Aaddr| ≤ ā + 1 + m̄ ā + p̄2 + p̄3 + m̄p̄

|Athid| ≤ k̄ + m̄ |Aaddr|+ 1

Proof. (2 → 1) is immediate. (1 → 2), by case analysis on normalized TLL3
literals. ��

Lemma 2 justifies a brute force method to automatically check TLL3 satisfia-
bility of normalized TLL3-literals. However, such a method is not efficient in
practice. To find a more efficient decision procedure we decompose TLL3 into a
combination of theories, and apply a many-sorted variant of the Nelson-Oppen
combination method [12]. This method requires the theories to fulfill two con-
ditions. First, each theory must have a decision procedure. Second, all involved
theories must be stable infinite and share sorts only.

Definition 3 (stable-infiniteness). A Σ-theory T is stably infinite if for ev-
ery T -satisfiable quantifier-free Σ-formula ϕ there exists a T -interpretation A
satisfying ϕ whose domain is infinite.

All theories involved in TLL [9] are stably-infinite, so the only missing theory is
the one defining firstlocked . We define the theory TBase3 as follows:

TBase3 = Taddr ⊕ Telem ⊕ Tcell ⊕ Tmem ⊕ Tpath ⊕ Tset ⊕ Tsetth ⊕ Tthid

where Tpath extends the theory of finite sequences of addresses with the auxiliary
functions and predicates shown in Fig. 5.

The theory of finite sequences of addresses is defined by Tfseq = (Σfseq, TGen),
where Σfseq =

(
{addr, fseq}, {nil : fseq, cons : addr × fseq → fseq, hd : fseq →

addr, tl : fseq → fseq}, ∅
)

and TGen as the class of multi-sorted term-generated
structures that satisfy the axioms of Tfseq. These axioms are the standard for
a theory of lists, such as distinctness, uniqueness and generation of sequences
using the constructors cons and nil , as well as acyclicity of sequences (see, for ex-
ample [3]). Let PATH be the set of axioms of Tfseq including all in Fig. 5. Then,
we can formally define Tpath = (Σpath, ETGen) where ETGen is

{
AΣpath |AΣpath �

PATH and AΣfseq ∈ TGen
}
. Next, we extend TBase3 defining the missing func-

tions and predicates from TReachability and ΣBridge. For example:

ispath (p) ∧ firstmarked (m, p, i)↔ firstlocked (m, p) = i

84 A. Sánchez and C. Sánchez

app : fseq × fseq → fseq

app(nil , l) = l
app(cons(a, l), l′) = cons(a,app(l, l′))

fseq2set : fseq → set

fseq2set(nil) = ∅
fseq2set(cons(a, l)) = {a} ∪ fseq2set(l)

ispath : fseq

ispath(nil)
ispath(cons(a,nil))

{a} � fseq2set(l) ∧ ispath(l) → ispath(cons(a, l))

last : fseq → addr

last(cons(a,nil)) = a
l �= nil → last(cons(a, l)) = last(l)

isreachable : mem × addr × addr

isreachable(m, a, a)
m[a].next = a′ ∧ isreachable(m,a′, b) → isreachable(m, a, b)

isreachablep : mem × addr × addr × fseq

isreachablep(m,a, a,nil)
m[a].next = a′ ∧ isreachablep(m, a′, b, p) → isreachablep(m,a, b, cons(a, p))

firstmarked : mem × fseq × addr
firstmarked (m,nil ,null)

p �= nil ∧ p = cons(j, q) ∧ m[j].lockid �= � → firstmarked (m,p, j)
p �= nil ∧ p = cons(j, q) ∧ m[j].lockid = � ∧ firstmarked (m, q, i) → firstmarked (m,p, i)

Fig. 5. Functions, predicates and axioms of Tpath

Let GAP be the set of axioms that define ε, [], append , reach, path2set ,
addr2set and getp. We define T̂LL3 = (Σ

T̂LL3
, ÊTGen) where Σ

T̂LL3
is ΣTLL ∪ {

getp, append , path2set , firstlocked } and ÊTGen :=
{
AΣ

̂TLL3 |AΣ
̂TLL3 � GAP and

AΣpath ∈ ETGen
}
.

Using the definitions of GAP it is easy to prove that if Γ is a set of normal-
ized TLL3-literals, then Γ is TLL3-satisfiable iff Γ is T̂LL3-satisfiable. Therefore,
T̂LL3 can be used in place of TLL3 for satisfiability checking. We reduce T̂LL3
into TBase3 in two steps. First we do the unfolding of the definition of auxiliary
functions defined in PATH and GAP , getting rid of the extra functions, and
obtaining a formula in T̂LL3 and TBase. Then, we use the known reduction [9]
from T̂LL into TBase. All theories involved in TBase3 share only sorts symbols, are
stably-infinite and for all of them there is a decision procedure. Hence, the multi-
sorted Nelson-Oppen combination method can be applied, obtaining a decision
procedure for TLL3.

We now define some auxiliary functions and predicates using TLL3, that aid in
the reasoning about concurrent linked-lists (see Fig. 6). For example, predicate
List(h, a, r) expresses that in heap h, starting from address a there is sequence
of cells all of which form region r. Function LastMarked(h, p), on the other hand,
returns the address of the last locked node in path p on memory h. All these

Decision Procedures for the Temporal Verification of Concurrent Lists 85

List : mem × addr × set

List(h, a, r) ↔ null ∈ addr2set(h, a) ∧ r = path2set(getp(h, a,null))

fa : mem × addr → path

fa(h, n) =

⎧⎨⎩ε if n = null

getp(h, h[n].next , null) if n �= null

LastMarked : mem × path → addr

LastMarked (m, p) = firstlocked (m, rev(p))

NoMarks : mem × path

NoMarks(m, p) ↔ firstlocked (m, p) = null

SomeMark : mem × path

SomeMark(m, p) ↔ firstlocked (m,p) �= null

Fig. 6. Auxiliary functions to reason about concurrent lists

functions can be used in verification conditions. Then, using the equivalences
in Fig. 6 the predicates are removed, generating a pure T̂LL3 formula whose
satisfiability can be checked with the procedure described above.

5 Termination of Concurrent Lock-Coupling Lists

In this section we show the proof of a simple liveness property of concurrent
lock-coupling lists: termination of the leading thread.

To aid in the verification of this property we annotate the code in Fig. 1 with
ghost fields and ghost updates, as shown in Fig. 7, where the boxes represent
the annotations introduced. The predicate c.lockid = � denotes that the lock of
list node c is not taken. The predicate c.lockid = k establishes that the lock at
list node c is owned by thread k. We enrich List objects with a ghost field r of
type region that keeps track of all the nodes in the list. The code for add and
remove is extended with ghost updates to maintain r.

Tk denotes thread k. We want to prove that if a thread has acquired a lock at
node n and no other thread holds a lock ahead of n, then thread k eventually
terminates. The predicate at add [k]

n means that thread k is executing line n of
program add . Similarly, at add [k]

n1 ,...,nm
is a short for thread k is running some

of the lines n1, . . . , nm of program add . To reduce notation, τ
[k]
an , τ

[k]
rn and τ

[k]
ln

denote τ
[k]
addn

, τ
[k]
removen and τ

[k]
locaten

respectively. The instance of a local variable
v in thread k is represented by v[k]. We define DisjList as an extension of List
enriching it with the property that new nodes created during insertion are all
disjoint one from each other, including all nodes that are already part of the list:

DisjList(h, a, r) =̂ List(h, a, r) ∧ ∀j : TID.at a[j]
4 ,5 → 〈aux [j]〉#r ∧

∀i, j : TID.i �= j ∧ at a[i]
4 ,5 ∧ at a[j]

4 ,5 → 〈aux [i]〉#〈aux [j]〉#r

86 A. Sánchez and C. Sánchez

We now define the following auxiliary predicate:

IsLast(k) =̂ DisjList(h, l.list , l.r) ∧ SomeMark
(
h, getp(h, l.list ,null)

)
∧ LastMarked

(
h, getp(h, l.list ,null)

)
= a ∧ h[a].lockid = k

The formula IsLast(k) identifies whether Tk is the thread owning the last
lock in the list (i.e., the closest node towards the end of the list). Using these
predicates we define the parametrized temporal formula we want to verify as:

ψ(k) =̂
(
at locate [k]

3 ..10 ∧ IsLast(k) → IsLast(k) U at locate [k]
11

)
This temporal formula states that if thread k is running locate and it owns

the last locked node in the list, then thread Tk will still own the last locked
node until Tk reaches the last line of locate. Reachability of the last line of locate
implies termination of the invocation to the concurrent datatype because locate
is the only program containing potentially blocking operations.

We proceed with the construction of a verification diagram that proves the
parallel execution of all threads guarantee the satisfaction of formula ψ(k). Given
N , we build the transitions system S[N], in which threads T1, . . . , TN run in
parallel the program decide and show that S[N] � ψ(k). The verification diagram

class List {
Node list ;
rgn r;

}

class Node {
Value val ;

Node next ;

Lock lock ;

}
(a) data structure

1: prev := Head
2: prev .lock()
3: curr := prev .next
4: curr .lock()
5: while curr .val < e do
6: prev .unlock ()
7: prev := curr
8: curr := curr .next
9: curr .lock()

10: end while
11: return (prev , curr)

1: prev , curr := locate(e)
2: if curr .val �= e then
3: aux := new Node(e)
4: aux .next := curr
5: prev .next := aux

l.r := l.r ∪ 〈aux〉
6: result := true
7: else
8: result := false
9: end if

10: prev .unlock ()
11: curr .unlock()
12: return result

1: prev , curr := locate(e)
2: if curr .val = e then
3: aux := curr .next
4: prev .next := aux

l.r := l.r − 〈curr〉
5: result := true
6: else
7: result := false
8: end if
9: prev .unlock ()

10: curr .unlock()
11: return result

(b) locate (c) add (d) remove

Fig. 7. Concurrent lock-coupling list extended with ghost fields

Decision Procedures for the Temporal Verification of Concurrent Lists 87

˘
τ
[k]
l5

¯

n2 : IsLast(k) ∧ at l
[k]
3 ,4

n4 : IsLast(k) ∧ at l
[k]
9

˘
τ
[k]
l3

¯

˘
τ
[k]
l4

¯ ˘
τ
[k]
l5,6,7,10

¯

n5 : IsLast(k) ∧ at l
[k]
11

n6 : IsLast(k)

˘
τ
[k]
l8

¯ ˘
τ
[k]
l9

¯
n3 : IsLast(k) ∧ at l

[k]
5 ..8 ,10

n1 : ¬IsLast(k)

Fig. 8. Verification diagram Ψ for ‖j<N Tj � ψ(k)

is depicted in Fig. 8. Dashed arrows in the diagram denote transitions that
strictly decrement the ranking function δ. Formally, the verification diagram is:

– N0 = {n1}
– F = {(P, R)} where

P = {(n3, n4), (n3, n5), (n5, n6), (n6, n1)} ∪
{(n1, nj)|j ∈ 2..6} ∪ {(nj , nj)|j ∈ 1..6}

R = ∅

– δ(n, s) =

{
{a | a ∈ dom(h)} n = n1, n2

path2set
(
fa(h,LastMarked(h, getp(h, prev [k],null)))

)
otherwise

– f(n) =

⎧⎪⎪⎨⎪⎪⎩
∅ if n = n1, n6 at locate [k]

3 ,4 if n = n2

at locate [k]
5 ..8 ,10 if n = n3 at locate [k]

9 if n = n4

at locate [k]
11 if n = n5

We can now describe the verification conditions:

initialization. Trivial, since in the initial state l.list forms an empty list, and
consequently ¬IsLast(k).

consecution. We will show, for illustration purposes, transition τ
[j]
l9

on node n2

with j �= k. The verification condition is:⎛⎜⎜⎜⎜⎜⎜⎜⎝

TLL3︷ ︸︸ ︷
IsLast(k)∧

Tthid︷ ︸︸ ︷
j �= k ∧

at l [k]
3 ,4 ∧ at l [j]9 ∧

curr [j].lockid = �︸ ︷︷ ︸
TLL3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∧

TLL3︷ ︸︸ ︷
curr [j].lock (j) →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

TLL3︷ ︸︸ ︷
IsLast(k′)∧at ′ l [k

′]
3 ,4 ∧

at ′ l [j
′]

10 ∧ pres(V − curr [j]) ∧

curr ′[j′].lockid = j′︸ ︷︷ ︸
TLL3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where pres is the predicate denoting variable preservation. Note that all
fragments of such verification condition belong to theories for which we have

88 A. Sánchez and C. Sánchez

already defined a decision procedure, including propositional logic for the
(finite) locations of the program counters.

acceptance. The ranking function δ maps, at a given state, the set of list nodes
accessible from the last node with an owned lock. This set remains identical
for all transitions except τ

[k]
l4

and τ
[k]
l9

, for which the set decrements (in the
inclusion order on sets). The decision procedure presented in Section 4 proves
this automatically (using ⊂ operation and equality over sets of addresses).

fairness. Only two conditions must be verified. First, all transitions labeling
an edge are enabled since the only potentially blocking operation is τ

[k]
l9

and

IsLast(k) implies that τ
[k]
l9

is enabled. Second, for all nodes and labelled
edges, starting from a state that satisfies the predicate of the incoming node
satisfies the predicate of the outgoing node via taking the transition. Sequen-
tial progress of thread k is guaranteed by fairness, since all idling transitions
for thread k are in fact a diagram idiom to represent the expansion of such
nodes to a sequence of nodes with a single program position on each node.

satisfaction. L(Ψ) ⊆ L(ψ(k)) is automatically checkable via a finite LTL
model-checking problem.

6 Conclusion

We have presented a method for the verification of temporal properties (safety
and liveness) of an imperative implementation of concurrent lists. The verifica-
tion is performed using verification diagrams – a complete method to prove tem-
poral properties of reactive systems – and explicit reasoning of memory regions.
The verification process usually requires the aid of ghost variables. Checking
a proof is reduced to proving a finite number of verification conditions, which
requires decision procedures in the appropriate theories, including regions, point-
ers, locks and specific theories for memory layouts, in this case single linked-lists.
This paper also presents a decision procedure built as a combination of theories.

There are some key differences with other approaches in the literature. Build-
ing on the success of separation logic in proving sequential programs, the most
popular approach has been extending separation logic to concurrent programs.
These extensions require adapting techniques like rely-guarantee that cannot be
directly used with separation logic. Our decision to use explicit regions (finite sets
of addresses) allows the direct use of classical techniques like assume-guarantee
and the combination of decision procedures. Furthermore, in concurrent separa-
tion logic, it is critical to describe memory footprints of sections of code. This
description becomes very cumbersome when the code is not organized in mutual
exclusion regions, as in fine-grain synchronization algorithms. Moreover, the in-
tegration into SMT solvers is quite straightforward with classical logics, but it
is still an open question with separation logic.

The technique we propose can be seen as a method to separate the reason-
ing about concurrency (with verification diagrams) from the reasoning about
the memory (with decision procedures). The former is independent of the data
structure under consideration. We are currently extending our approach to the

Decision Procedures for the Temporal Verification of Concurrent Lists 89

verification of other pointer-based concurrent data structures like skip-lists or
concurrent hash maps. Again, the sharing of these data structures makes it very
hard to reason using separation logic. For our approach, these extensions will
require the design of suitable decision procedures. Future work also includes
building a generic VCgen for verification diagrams, implementing an ad-hoc ver-
sion of the decision procedure described here, and later integrating this decision
procedure into state-of-the-art SMT solvers.

Acknowledgment
We are grateful to the anonymous reviewers for their detailed comments and
suggestions.

References
1. Banerjee, A., Naumann, D.A., Rosenberg, S.: Regional logic for local reasoning

about global invariants. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp.
387–411. Springer, Heidelberg (2008)

2. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories.
In: Handbook of Satifiability. IOS Press, Amsterdam (2008)

3. Bradley, A.R.,Manna, Z.: The Calculus ofComputation. Springer,Heidelberg (2007)
4. Browne, A., Manna, Z., Sipma, H.B.: Generalized verification diagrams. In: Thi-

agarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 484–498. Springer, Hei-
delberg (1995)

5. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan-
Kaufmann, San Francisco (2008)

6. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separa-
tion logic. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367.
Springer, Heidelberg (2008)

7. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer, Hei-
delberg (1995)

8. McMillan, K.L.: Circular compositional reasoning about liveness. In: Pierre, L.,
Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 342–345. Springer, Heidel-
berg (1999)

9. Ranise, S., Zarba, C.G.: A theory of singly-linked lists and its extensible decision
procedure. In: Proc. of Software Engineering and Formal Methods (SEFM 2006).
IEEE Computer Society Press, Los Alamitos (2006)

10. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proc. Logic in Computer Science (LICS 2002), pp. 55–74. IEEE Computer Society
Press, Los Alamitos (2002)

11. Sipma, H.B.: Diagram-Based Verification of Discrete, Real-Time and Hybrid Sys-
tems. Ph.D. thesis, Stanford University (1999)

12. Tinelli, C., Zarba, C.G.: Combining decision procedures for sorted theories. In:
Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 641–653.
Springer, Heidelberg (2004)

13. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: Principles & Practice of Parallel Programming
(PPOPP 2006), pp. 129–136. ACM, New York (2006)

14. Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations.
In: Ghilardi, S. (ed.) FroCoS 2009. LNCS, vol. 5749, pp. 366–382. Springer, Hei-
delberg (2009)

An Improved Decision Procedure for Propositional
Projection Temporal Logic�

Zhenhua Duan and Cong Tian��

Institute of Computing Theory & Technology and ISN Laboratory
Xidian University, Xi’an, 710071, China
{zhhduan, ctian}@mail.xidian.edu.cn

Abstract. A new decision procedure for Propositional Projection Temporal
Logic (PPTL) is proposed which is an improvement to the decision procedure
given in [4]. The main contribution of the paper is as follows: (1) the relationship
between paths in the NFG of a formula R and its models is established and
proved; (2) a new Labeled NFG (LNFG) with a set of labels (propositions) is
defined; (3) given a formula R, an LNFG of R can be generated by the new deci-
sion algorithm, and all models of R can be found; (4) based on the new decision
procedure, an improved model checking algorithm is presented and implemented.

Keywords: Propositional Projection Temporal Logic, Satisfiability, Decision
Procedure, Model Checking, Verification.

1 Introduction

Propositional Projection Temporal Logic (PPTL) [3] is an extension of Propositional
Interval Temporal Logic (PITL) [2]. It is a useful logic for specification and verification
of concurrent systems. The advantages of using PPTL are in three folds: (1) PPTL has
the expressiveness of full regular expressions [12]. (2) Intervals are useful in specifying
state sensitive properties. For example, p holding at the 6th state can be described by
len(6); p, and len(10); len(6)∧�p; true means p holds between the 10th and 16th states.
It is cumbersome to specify these properties by Propositional Linear Temporal Logic
(PLTL) [11], Computation Tree Logic (CTL) [10] and their variations. (3) Chop and
projection constructs are useful in the specification of sequential and iterative behaviors
respectively. These properties cannot (or with difficulty) be described by PLTL or CTL.

Decidability of temporal logics is a fundamental issue in verification, especially
model checking. Therefore, it is important to investigate the decidability of PPTL and
PITL so that model checking PPTL and PITL can be done. Bowman and Thompson
presented a tableaux-based decision procedure for PITL over finite models in 2003 [8].
Later in [4], a decision procedure for PPTL with infinite models was given and the
complexity was proved to be non-elementary [13]. The decision procedure can easily

� This research is supported by the NSFC Grant No. 61003078, 60433010, 60873018 and
60910004, National Program on Key Basic Research Project of China (973 Program) Grant
No.2010CB328102 and SRFDP Grant 200807010012.

�� Corresponding author.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 90–105, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Improved Decision Procedure for Propositional Projection Temporal Logic 91

be implemented and also applied to PITL with minor modification. With this decision
procedure, normal form, Normal Form Graph (NFG) and Labeled NFG (LNFG) play
important roles for constructing models of a formula. Generally, given a formula P,
all models of P are contained in its NFG, and determined by its LNFG. That is, an
NFG can be treated as an automaton structure while an LNFG can be viewed as an
omega automaton with a specified accepting condition. The decision procedure works
well for most of PPTL formulas. Nevertheless, accepting conditions on LNFG was
only simply expressed in an informal way. When further implementing the decision
procedure, we found that to precisely define accepting conditions is neither a triv-
ial nor an intuitive work. What is more, only by the unprecise accepting condition,
some formulas cannot be handled in a proper way. For instance, the LNFG of formula,
q ∧ (©empty; q) ∧ �(p ∧ © © empty; q), can be constructed by the old algorithm as
depicted in Fig.1. By the accepting condition, the formula is unsatisfiable. However, in
fact, the formula is satisfiable since the finiteness of chop formula ©empty; q can be
satisfied.

q ∧ (©empty; q) ∧�(p ∧©© empty; q)

p ∧ q

F

Fig. 1. LNFG of q ∧ (©empty; q) ∧ �(p ∧©© empty; q)

The problem is caused by the case in which a circle path occurs, and the circle is
composed of nodes (formulas) involving different chop formulas but labeled by the
same mark F in the LNFG. To deal with this kind of formulas, only one label F is
not sufficient. As a result, we further give an improved decision procedure by means of
using distinguishing labels and defining formal accepting conditions in this paper. The
improvements focus on four folds: (1) chop formulas and chop components of PPTL
formulas are formally defined; (2) finite satisfactory condition, FSC Property, over infi-
nite paths in the NFG of a formula is explicitly defined to capture the essential property
dwelling in the chop construct; (3) models of a formula are precisely specified in its
NFG by applying FSC Property; (4) finally, LNFG of a formula with lk labels is con-
structed to explicitly illustrate whether or not FSC Properties are satisfied over infinite
paths. By the above improvements, an improved decision procedure for PPTL with infi-
nite models are formalized. This decision procedure enables us to handle not only basic
PPTL formulas but also extended projection star construct. Further, based on the new
decision procedure, an improved model checking algorithm to the one presented in [17]
is also proposed and implemented. A model checker based on SPIN has been developed
recently. By our experience, the decision procedure and the model checking algorithm
work well. In addition to verification, the decision procedure is also significant in the
theory concerning complementing infinite objections, which is a hard issue [15], since
complementing infinite words is implicitly involved in the decision procedure.

92 Z. Duan and C. Tian

The paper is organized as follows. The next section briefly presents the preliminar-
ies, including the syntax and semantics of the underlying logic and the definition of
normal form. In section 3, normal form graph is presented in details. Further, the en-
hanced decision procedure is illustrated in section 4. In section 5, based on the improved
decision procedure, an improved model checking algorithm is also presented. Finally,
conclusions are drawn in section 6.

2 Preliminaries

2.1 Propositional Projection Temporal Logic

Let Prop be a countable set of atomic propositions. The formula P of PPTL is given by
the following grammar:

P ::= p | ©P | ¬P | P1 ∨ P2 | (P1, ..., Pm) pr j P | (P1, ..., (Pi, ..., P j)�, ..., Pm) pr j Q

where p ∈ Prop, P1, ..., Pm, P and Q are all well-formed PPTL formulas.© (next), pr j
(projection) and pr j� (projection star) are basic temporal operators.

Following the definition of Kripke’s structure [1], we define a state s over Prop to be
a mapping from Prop to B = {true, f alse}, s : Prop −→ B. We will use s[p] to denote
the valuation of p at state s. An interval σ is a non-empty sequence of states, which can
be finite or infinite. The length, |σ|, of σ is ω if σ is infinite, and the number of states
minus 1 if σ is finite. To have a uniform notation for both finite and infinite intervals,
we will use extended integers as indices. That is, we consider set N0 of non-negative
integers and ω, Nω = N0 ∪ {ω}, and extend the comparison operators, =, <,≤, to Nω by
considering ω = ω, and for all i ∈ N0, i < ω. Moreover, we define 	 as ≤ −{(ω,ω)}.
To simplify definitions, we will denote σ by 〈s0, ..., s|σ|〉, where s|σ| is undefined if σ is
infinite. With such a notation,σ(i.. j) (0 ≤ i 	 j ≤ |σ|) denotes the sub-interval 〈si, ..., s j〉,
σ(k) (0 ≤ k 	 |σ|) denotes 〈sk, ..., s|σ|〉, i.e., kth suffix of σ, and σk (0 ≤ k 	 |σ|) denotes
〈s0, ..., sk〉, i.e., kth prefix of σ. Note that for an infinite interval σ, the ωth prefix σω and
suffix σ(ω) are undefined and denoted by ⊥. Further, the concatenation of a finite σ with
another interval (or empty string) σ′ denoted by σ · σ′ is defined as follows.

σ1 · σ2 =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1 if σ2 = ε
σ2 if σ1 = ε
〈s0, ..., si, si+1, ...〉 if σ1 = 〈s0, ..., si〉 and σ2 = 〈si+1, ...〉 and i ∈ N0

⊥ otherwise

Let σ = 〈s0, s1, . . . , s|σ|〉 be an interval and r1, . . . , rh be integers (h ≥ 1) such that
0 ≤ r1 ≤ r2 ≤ . . . ≤ rh 	 |σ|. The projection of σ onto r1, . . . , rh is the interval (namely
projected interval)

σ ↓ (r1, . . . , rh) = 〈st1 , st2 , . . . , stl 〉
where t1, . . . , tl is obtained from r1, . . . , rh by deleting all duplicates. That is, t1, . . . , tl is
the longest strictly increasing subsequence of r1, . . . , rh. For instance,

〈s0, s1, s2, s3, s4〉 ↓ (0, 0, 2, 2, 2, 3) = 〈s0, s2, s3〉

An Improved Decision Procedure for Propositional Projection Temporal Logic 93

This is convenient to define an interval obtained by taking the endpoints (rendezvous
points) of the intervals over which P1, . . . , Pm are interpreted in the projection construct.

We need also to generalize the notation of σ ↓ (r1, ..., rh) to allow rh to be ω. For an
interval σ =< s0, s1, ..., s|σ| > and 0 ≤ r1 ≤ r2 ≤ ... ≤ rh ≤ |σ|, we define

σ ↓ (r1, ..., rh−1, rh) = σ ↓ (r1, ..., rh−1, rh) if rh is not ω
σ ↓ (r1, ..., rh−1, rh) = σ ↓ (r1, ..., rh−1) if rh is ω

For instance,
< s0, ... >↓ (0, 1, 3, 4, ω) =< s0, s1, s3, s4 >

An interpretation is a tuple I = (σ, k, j), where σ is an interval, k is an integer, and
j an integer or ω such that k 	 j ≤ |σ|. We use the notation (σ, k, j) |= P to denote
that formula P is interpreted and satisfied over the subinterval 〈sk, ..., s j〉 of σ with the
current state being sk. The satisfaction relation (|=) is inductively defined as follows:

I − prop I |= p iff sk[p] = true, for any given proposition p
I − not I |= ¬P iff I �|= P
I − or I |= P ∨ Q iff I |= P or I |= Q
I − next I |= ©P iff k < j and (σ, k + 1, j) |= P
I − prj I |= (P1, ..., Pm) pr j Q if there exist integers k = r0 ≤ r1 ≤ ... ≤ rm ≤ j

such that (σ, r0, r1) |= P1, (σ, rl−1, rl) |= Pl, 1 < l ≤ m, and
(σ′, 0, |σ′|) |= Q for one of the following σ′ :
(a) rm < j and σ′ = σ ↓ (r0, ..., rm) · σ(rm+1.. j) or
(b) rm = j and σ′ = σ ↓ (r0, ..., rh) for some 0 ≤ h ≤ m

I − prj� I |= (P1, ..., (Pi, ..., Ps)�, ..., Pm) pr j Q iff :
1 ≤ i ≤ s ≤ m and ∃n ∈ N0,I |= (P1, ..., (Pi, ..., Ps)(n), ..., Pm) pr j Q
or: s = m and there exist infinitely many integers k = r0 ≤ r1 ≤ ...
≤ rh ≤ ω, such that

(σ, rl−1, rl) |= Pl, 0 < l < i,
(σ, rl−1, rl) |= Pt, l ≥ i, t = i + ((l − i) mod (s − i + 1)),
and (σ′, 0, |σ′|) |= Q,where σ′ = σ ↓ (r0, r1, ...).

Fig.2 shows the possible semantics of (P1, P2) pr j Q. Here Q and P1 start to be inter-
preted at state t0; subsequently, P1 and P2 are interpreted sequentially; Q is interpreted
in parallel with (P1; P2) over the interval consisting of endpoints of subintervals over
which P1 and P2 are interpreted. The possible three cases are given: (a) P2 terminates
before Q; (b) Q and P2 terminate at the same state; (c) Q terminates before P2. Projec-
tion construction is useful in the specification of concurrent system.

t0 t2 t4
Q

t0 t1 t2 t3 t4

t5

P1 P2

t0 t2 t4
Q

t0 t1 t2 t3 t4

P1 P2

t0 t2
Q

t0 t1 t2 t3 t4

P1 P2

(a) (b) (c)

Fig. 2. Semantics of (P1, P2) pr j Q

94 Z. Duan and C. Tian

In order to avoid an excessive number of parentheses, the following precedence rules
are used as shown in Table 1, where 1 = highest and 5 = lowest.

Table 1. Precedence Rules

1 ¬ 2 ©, ⊙, �, � 3 ∧, ∨
4 →, ↔ 5 pr j, ;

The abbreviations true, f alse, ∧, → and ↔ are defined as usual. In particular,

true
def
= P ∨ ¬P and f alse

def
= P ∧ ¬P. Also we have the following derived formulas,

empty
def
= ¬ © true more

def
= ¬empty

©0P
def
= P ©nP

def
= ©(©n−1P)

len(0)
def
= empty len(n)

def
= ©len(n − 1), n ≥ 1

skip
def
= len(1)

⊙
P

def
= empty ∨©P

P; Q
def
= (P,Q) pr j empty �P

def
= true; P

�P
def
= ¬�¬P keep(P)

def
= �(¬empty→ P)

halt(P)
def
= �(empty↔ P) f in(P)

def
= �(empty→ P)

P∗ def
= (P�) pr j empty P+

def
= P; P∗

where n ≥ 1,
⊙

(weak next), � (always), � (sometimes), ; (chop) and + (plus) are
derived temporal operators; empty denotes an interval with zero length, and more means
the current state is not the final one over an interval; halt(P) is true over an interval if
and only P is true at the final state, f in(P) is true as long as P is true at the final state
and keep(P) is true if P is true at every state ignoring the final one.

A formula P is satisfied by an interval σ, denoted by σ |= P, if (σ, 0, |σ|) |= P. A
formula P is called satisfiable if σ |= P for some σ. A formula P is valid, denoted by
|= P, if σ |= P for all σ.

In some circumstances, an undefined interval may be involved in the interpretations.
Let Σ be the set of all intervals, and Σ⊥ = Σ ∪{⊥}, where ⊥ is an undefined interval. We
can extend the satisfaction relation to Σ⊥. For an undefined interval ⊥, and any formula
P, we define ⊥ |= P.

Theorem 1. Let P be a PPTL formula. We have,

(1) f in(P) ≡ P ∧ empty ∨© f in(P)
(2) keep(P) ≡ empty ∨ P ∧©keep(P)
(3) halt(P) ≡ P ∧ empty ∨ ¬P ∧©halt(P) �

2.2 Normal Form of PPTL

Normal form is an important notation for constructing NFGs of PPTL formulas. In the
following, we briefly give its definition and relevant concepts. The detailed explanation
can be found in [4].

An Improved Decision Procedure for Propositional Projection Temporal Logic 95

Definition 1 (Normal Form). Let Qp be the set of atomic propositions appearing in a
PPTL formula Q. The normal form of Q can be defined by,

Q ≡
n0∨

j=0

(Qe j ∧ empty) ∨
n1∨

i=0

(Qci ∧©Q′i)

where Qe j ≡ ∧m0

k=1 q̇ jk, Qci ≡ ∧m
h=1 q̇ih, q jk, qih ∈ Qp, for any r ∈ Qp, ṙ denotes r or ¬r;

Q′i is a PPTL formula without “ ∨ ” being the main operator. �

According to the definition, in a normal form, p ∧ q ∧ ©(�p ∨ q) must be written as
p ∧ q ∧ ©(�p) ∨ p ∧ q ∧ ©q since “ ∨ ” is the main operator of �p ∨ q. Implicitly,

Q′i is also not permitted to be the form of ¬ n≥2∧

k=1
Pk. Further, for convenience, we call

∨n0

j=0(Qe j ∧ empty) the terminating part whereas
∨n1

i=0(Qci ∧©Q′i) the non-terminating
part of the normal form.

Definition 2 (Complete Normal Form). Let Qp be the set of atomic propositions
appearing in a PPTL formula Q. The complete normal form of Q is defined by,

Q ≡
n0∨

j=0

(Qe j ∧ empty) ∨
n1∨

i=0

(Qci ∧©Q′i)

where like in the normal form, Qe j ≡ ∧m0

k=1 q̇ jk, Qci ≡ ∧m
h=1 q̇ih, q jk, qih ∈ Qp, for any

r ∈ Qp, ṙ denotes r or ¬r; further
∨

i Qci ≡ true and
∨

i� j(Qci ∧ Qc j) ≡ f alse; Q′i is an
arbitrary PPTL formula. �

Note that a complete normal form may be not a normal form, since “∨” is possibly the
main operator of Q′i .

Notice that if Q is transformed into complete normal form, Q ≡ ∨n0
j=0(Qe j∧empty)∨

∨n1
i=0(Qci ∧©Q′i), then ¬Q can be transformed into its normal form, ¬Q ≡ ∧n0

j=0 ¬Qe j ∧
empty ∨∨n1

i=0(Qci ∧©¬Q′i). Therefore, it is useful in transforming negation constructs
into their normal forms. An important conclusion is that any PPTL formula can be
transformed into its normal form [4].

3 Normal Form Graph

Normal Form Graph (NFG) was introduced in [4] for the purpose of obtaining models
of PPTL formulas. For convenience, here we also briefly introduce its definition. For a
PPTL formula P, NFG of P is a directed graph, G = (CL(P), EL(P), V0), where CL(P)
denotes the set of nodes, EL(P) the set of edges , and V0 ⊆ CL(P) the set of root nodes
in the graph. In CL(P), each node is specified by a formula in PPTL, while in EL(P),
each edge is a directed arc, labeled with a state formula Qe, from node Q to node R and
identified by a triple, (Q,Qe,R). Accordingly, for convenience sometimes, a node in an
NFG or LNFG is called a formula. NFG of a PPTL formula is inductively defined in
Definition 3.

96 Z. Duan and C. Tian

Definition 3 (Normal Form Graph, NFG). For a PPTL formula P, the set CL(P) of
nodes and EL(P) of edges connecting nodes in CL(P) are inductively defined as follows:

1. If P is not in the form of
∨

i Pi, P ∈ CL(P), V0 = {P}, otherwise for each i Pi ∈ V0,
Pi ∈ CL(P);

2. For all Q ∈ CL(P) \ {ε, f alse}, if Q is rewritten into its normal form
∨h

j=0(Qe j ∧
empty)∨∨k

i=0(Qci ∧©Q′i), then ε ∈ CL(P), (Q,Qe j, ε) ∈ EL(P) for each j, 1 ≤ j ≤
h; Q′i ∈ CL(P), (Q,Qci,Q′i) ∈ EL(P) for all i, 1 ≤ i ≤ k;

The NFG of formula P is the directed graph G = (CL(P), EL(P),V0). �

It is important that for any PPTL formula P, the number of CL(P) is finite [4]. An
algorithm for constructing NFGs of a formula is given in Algorithm nfg. Although the
algorithm is similar as the one given in [4], the proofs of Theorem 2, Lemma 3 and
Lemma 4 are totally new, and based on the algorithm.

In an NFG, any root node in V0 is denoted by a circle with an input edge originating
from none nodes, ε node is marked by a small black dot, and each of other nodes by
a single circle. Each edge is denoted by a directed arc connecting two nodes. A finite
path is a finite alternating sequence of nodes and edges, π = 〈n0, e0, n1, e1, ..., ε〉 from
a root node to the ε node, while an infinite path is an infinite alternating sequence of
nodes and edges, π = 〈n0, e0, n1, e1..., ni, ei..., n j, e j, ni, ei, ..., n j, e j, ...〉 departing from
the root node with some nodes, e.g. ni, ..., n j, occurring for infinitely many times. For
convenience, we use Inf(π) to denote the set of nodes which infinitely often occur in the
infinite path π. In some circumstances, in a path of NFG of formula Q, a node ni can
be replaced by a formula Qi ∈ CL(Q) and an edge ei can be replaced by a state formula
Qie ∈ EL(Q).

Intuitively, all models of a formula are implicitly contained in its NFG. For easily
expressing the relationship between models of formula Q and paths of NFG G of Q,
functions P2M(π,G) and M2P(σ,G) are formally defined bellow. Given a path π =
〈Q,Q0e,Q1,Q1e, ...〉 in G, an interval σπ can be obtained by,

σπ = P2M(π,G) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈s0, s1, ..., sn〉, for 1 ≤ i ≤ n
si[q] = true if q ∈ Qie, and si[q] = f alse if ¬q ∈ Qie,
if π = 〈Q,Q0e,Q1,Q1e, ...,Qne, ε〉 and π ∈ G

〈s0, s1, ..., (si, ..., s j)ω〉, for 1 ≤ k ≤ j
sk[q] = true if q ∈ Qke, and sk[q] = f alse if ¬q ∈ Qke,
if π = 〈Q,Q0e,Q1,Q1e, ..., (Qi,Qie, ...,Q j,Q je)ω〉 and π ∈ G

Correspondingly, for a model σ = 〈s0, s1, ...〉 |= Q, a path πσ w.r.t the NFG G of Q can
be obtained by,

πσ = M2P(σ,G) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈Q,Q0e,Q1,Q1e, ...,Qne, ε〉, for 1 ≤ i ≤ n
Qie =

∧

k q̇k, q̇k ≡ qk, if si[qk] = true,
and q̇k ≡ ¬qk, if si[qk] = f alse,Qi ∈ CL(Q)
if σ =< s0, s1, ..., sn >

〈Q,Q0e,Q1,Q1e, ..., (Qi,Qie, ...,Q j,Q je)ω〉, for 1 ≤ h ≤ j
Qhe =

∧

k q̇k, q̇k ≡ qk, if sh[qk] = true,
and q̇k ≡ ¬qk, if sh[qk] = f alse,Qh ∈ CL(Q)
if σ = 〈s0, s1, ..., (si, ..., s j)ω〉

An Improved Decision Procedure for Propositional Projection Temporal Logic 97

Although in the above an interval σπ can be defined for a given path π of the NFG of
formula Q, whether or notσπ |= Q needs to be proved (see Lemma 6 and 13). Similarly,
given a model σ of formula Q, σ |= Q, a path πσ can be constructed, however, whether
or not the path can be found in G also needs to be proved (See Lemma 7 and 9).

Theorem 2. Finite paths in the NFG of PPTL formula P precisely characterize finite
models of P.
Proof: It is a consequence of Lemma 3 and 4. �

Lemma 3. For a finite path π in the NFG G of P, σπ |= P. �

Lemma 4. For a finite interval σ |= Q, πσ can be found in the NFG G of Q. �

For infinite models, it is much more intricate because of the involvement of chop and
projection operators. In fact, not all of infinite paths in the NFG of a formula are infinite
models of the corresponding formula. We investigate the case carefully in the following.

A formula R is called a chop formula if R ≡ P∧Q and P ≡ P1; P2, where P1, P2 and
Q are any PPTL formulas. Further, P1; P2 is called a chop component of chop formula
R. Note that a chop component is also a chop formula but the reverse may be not true.
Formally, a chop formula Rc can be defined as follows

Rc ::= P; Q | Rc ∧ Rc | Rc ∧ R

where P, Q and R are any PPTL formulas.
For instance, (©p; q), (p; p∗), (©p; q) ∧ ©r are chop formulas while ©(©p; q),

¬(©p; q) and p∗ are not, where p, q, r are atomic propositions. Note that P; Q is a chop
formula but ¬(P; Q) is not. This will be formally analyzed late.

For chop construct P; Q, an infinite modelσ = 〈s0, s1, ..., sk, ...〉 |= P; Q if and only if
there exists i ∈ N0, such thatσi |= P andσ(i) |= Q. This implies that if infinite modelσ =
〈s0, s1, ..., sk, ...〉 |= P and there is no finite prefix σi |= P (i ∈ N0), it fails to satisfy P; Q.
Note that in the weak version of the chop construct, P; Q is still satisfied in the case.
For convenience, we say finiteness of P in strong chop construct P; Q (FSC Property for
short) is satisfiable over an infinite model σ, denoted by predicate fsc(σ, P; Q) = true,
if there exists i ∈ N0 such that σi |= P and σ(i) |= Q. Actually, an infinite path of the
NFG of P; Q presents an infinite model of either P; Q or P. So, FSC Property needs to
be considered if a node (formula) is a chop formula.

Correspondingly, in NFGs, when constructing NFG of P; Q, initially, P; Q is trans-
formed into its normal form,

P; Q ≡ (
∨n0

j=0 Pe j ∧ empty ∨∨n1

i=0(Pci ∧©P′i)); Q
≡ ∨n0

j=0(Pe j ∧ empty; Q) ∨∨n1

i=0 Pci ∧©(P′i ; Q)

≡ ∨n0

j=0(Pe j ∧ Q) ∨∨n1
i=0 Pci ∧©(P′i; Q)

Subsequently, the new generated formula P′i ; Q needs to be repeatedly transformed into
its normal form in the same way. Whenever a final state of P is reached, i.e. Pe ∧
empty; Q is encountered, where Pe is a state formula, FSC Property of P; Q is satisfied
over the path π departing from the root node.

Formally, let π = 〈R,R0e,R1,R1e, ...〉 be an infinite path in the NFG of formula R, and
π(k) = 〈Rk,Rke, ...〉 be the kth suffix of π. Whether or not FSC Property of R is satisfiable
over π, denoted by predicate FSC(π,R), can be defined based on fsc(π,R) as follows.

98 Z. Duan and C. Tian

Definition 4 . fsc(π,R) = true if

1. R is not a chop formula, or
2. R ≡ P; Q and there exists i ∈ N0 such that Ri ≡ Pie ∧ empty; Q, or
3. R ≡ P ∧ Q and fsc(π, P) = true and fsc(π,Q) = true, or
4. R ≡ P ∨ Q and fsc(π, P) = true or fsc(π,Q) = true

Finally, FSC(π,R) = true if fsc(π(k),Rk) = true for all k ∈ N0. �

In particular, notice that fsc(π,¬R) = true if R ≡ P; Q, since in ¬(P; Q), FSC Property
of P; Q needs not to be considered.

Lemma 5. For an infinite model, σ |= ¬(P; Q) iff ∀k ∈ Nω ∧ (σk |= ¬P ∨ σ(k) |= ¬Q).
�

For projection construct, (P1, ..., Pm) pr j Q, it is eventually treated as a chop formula
when constructing NFGs according to the following transforming rule. Suppose

P1 ≡ P1e ∧ empty ∨∨r
i=1(P1i ∧©P′1i)

P2 ≡ P2e ∧ empty ∨∨s
l=1(P2l ∧©P′2l)

Q ≡ Qe ∧ empty ∨∨k
j=1(Q j ∧©Q′j)

then,
(P1, P2) prj Q ≡ Qe ∧ P1e ∧ P2e ∧ empty

∨∨s
l=1(Qe ∧ P1e ∧ P2l ∧©P′2l)

∨∨k
j=1(P1e ∧ P2e ∧ Q j ∧©Q′j)

∨∨k
j=1
∨s

l (P1e ∧ Q j ∧ P2l ∧©(P′2l ; Q′j))
∨∨r

i=1(Qe ∧ P1i ∧©(P′1i ; P2))
∨∨r

i=1
∨k

j(Q j ∧ P1i ∧©(P′1i ; (P2 prj Q′j)))

The above explanation shows that the fitness property for projection constructs and
¬(P; Q) needs not to be considered, and only for chop formulas requires to be treated in
a special way. To do so, we need the fixed point theory and Scott’s fixed point induction.

Fixed point theory: Every monotonic function F over a complete lattice 〈A,⊆〉 has a
unique least fixed point

⋃

i Fi(⊥) and a unique greatest fixed point
⋂

i Fi(�) [14]. �

Scott’s fixed-point induction: Suppose D is a complete lattice with bottom ⊥, F :
D → D is a continuous function, and P is an inclusion subset of D. If ⊥ ∈ P and
∀x ∈ D.x ∈ P⇒ F(x) ∈ P, then f ix(F) ∈ P [14]. �

In the following, Lemma 6, 7, 8, 10 and Theorem 11 represent the relationship between
infinite models and paths in the NFG of a formula.

Lemma 6. For an infinite model σ, σ |= Q, a πσ with FSC(πσ,Q) = true can be found
in the NFG G of Q. �

Lemma 7. In the NFG of R, for an infinite path π, if there exist no chop formulas over
π, σπ |= R. �

An Improved Decision Procedure for Propositional Projection Temporal Logic 99

In the following, we further discuss the general case of path π for a given formula R.
The final conclusion is presented in Theorem 11.

Lemma 8. In the NFG G of formula R, for an infinite path π = 〈R,Re0,R1,Re1,R2, ...〉,
if σ(i)

π |= Ri, then σ(i−1)
π |= Ri−1. �

Corollary 9. In the NFG of formula R, for an infinite path π = 〈R,Re0,R1,Re1,R2, ...〉,
σπ |= R if there exists i ∈ N0 such that σ(i)

π |= Ri. �

Lemma 10. If π is an infinite path in the NFG G of formula R with FSC(π,R) = true,
and σπ = P2M(π,G), then σπ |= R. �

Theorem 11. In the NFG of PPTL formula R, an infinite path π with FSC(π,R) = true
precisely characterizes infinite models of R.

Proof: The theorem is a direct consequence of Lemma 6 and 10. �

4 Decision Procedure Based on LNFG

To explicitly display whether or not the FSC Property of a chop formula is satisfied,
extra propositions lk, k ∈ N0 and k > 0, are introduced. Let Propl = {l1, l2, ...} be the
set of extra propositions. Prop ∩ Propl = ∅. Note that these extra propositions are
merely employed to mark nodes and are not allowed to appear in a PPTL formula.
When constructing NFGs by normal forms, for any chop formula P; Q, we equivalently
rewrite it as P ∧ f in(lk); Q. Formally, we have,

P ∧ f in(lk); Q
≡ (
∨n0

j=0 Pe j ∧ empty ∨∨n1
i=0(Pci ∧©P′i)) ∧ (lk ∧ empty ∨© f in(lk)); Q

≡ (
∨n0

j=0 Pe j ∧ lk ∧ empty ∨∨n1
i=0(Pci ∧©(P′i ∧ f in(lk)))); Q

≡ ∨n0

j=0(Pe j ∧ lk ∧ empty; Q) ∨∨n1
i=0(Pci ∧©(P′i ∧ f in(lk); Q))

≡ ∨n0

j=0(Pe j ∧ lk ∧ Q) ∨∨n1

i=0(Pci ∧©(P′i ∧ f in(lk); Q))

Thus, by using f in(lk), FSC Property of P; Q is satisfied if there exists an edge where
lk holds. And f in(lk) occurring in a node P ∧ f in(lk); Q means that FSC Property of
P; Q has not been satisfied at this node. For convenience, for a node in the form of
P ∧ f in(lk); Q or

∧n
i=1 Ri with some Ri ≡ Pi ∧ f in(lk); Qi, we add an extra label l̃k in

this node to mean that the finiteness of some chop formula has not been satisfied at this
node.

Accordingly, Labeled Normal Form Graph (LNFG) is defined based on NFG with
the usage of lk propositions.

Definition 5 (Labeled Normal Form Graph, LNFG). For a PPTL formula P, its LNFG
is a tuple G = (CL(P), EL(P),V0,L = {L1, ...,Lm}), where CL(P), EL(P) and V0 are iden-
tical to the ones in NFG, while each Lk ⊆ CL(P), 1 ≤ k ≤ m, is the set of nodes with l̃k
labels. �

100 Z. Duan and C. Tian

Algorithm Lnfg: Constructing LNFG of a PPTL formula.
Function Lnfg(P)
/* precondition: P is a PPTL formula*/
/* postcondition: Lnfg(P) computes LNFG of P, G = (CL(P),EL(P),V0, L = {L1, ...,Lm})*/
begin function

case
P is
∨

i Pi: CL(P) = {Pi|Pi appears in
∨

i Pi}; Mark[Pi] = 0 for each i;
V0 = {Pi|Pi appears in

∨

i Pi};
P is not

∨

i Pi: CL(P) = {P}; Mark[P] = 0; V0 = {P};
end case
EL(P) = ∅; AddE = AddN = 0; k = 0; L = ∅;
while there exists R ∈ CL(P) \ {ε, f alse}, and mark[R] ==0

if R ≡ P; Q or R ≡ ∧n
i=1 Ri and ∃Ri ≡ Pi; Qi and no f in(k) has been added in the chop

construct
k=k+1; Rewrite R as P ∧ f in(lk); Q or

∧n
i=1 Ri with some Ri being Pi ∧ f in(lk); Qi;

Lk = {R}; L = L ∪ {Lk};
if there exist P ∧ f in(ls); Q or

∧n
i=1 R′i with some R′i ≡ P ∧ f in(ls); Q, and P ∧ f in(lx); Q

or
∧n

i=1 R′i with some R′i ≡ P ∧ f in(lx); Q, 1 ≤ l < x < k
delete the node P ∧ f in(lk); Q or

∧n
i=1 R′i with some R′i ≡ P ∧ f in(ls); Q;

re-adding the edges to P ∧ f in(ls); Q or
∧n

i=1 R′i ; continue;
Q =Nf(R); mark[R] =1; /*marking R is decomposed*/
case

Q is
∨h

j=1 Qe j ∧ empty: AddE=1; /*first part of NF needs added*/
Q is
∨k

i=1 Qi ∧ ©Q′i : AddN=1; /*second part of NF needs added*/
Q is
∨h

j=1 Qe j ∧ empty ∨∨k
i=1 Qi ∧ ©Q′i : AddE=AddN=1; /*both parts need added*/

end case
if AddE == 1 then /*add first part of NF*/

CL(P) = CL(P) ∪ {ε}; EL(P) = EL(P) ∪⋃h
j=1{(R,Qe j, ε)}; AddE=0;

if AddN == 1 then for i = 1 to k, /*add second part of NF*/
if Q′i � CL(P),CL(P) = CL(P) ∪⋃k

i=1{Q′i};
if Q′i is not f alse, mark[Q′i]=0; else mark[Q′i]=1;

EL(P) = EL(P) ∪⋃k
i=1{(R,Qi,Q′i)}; AddN=0;

end while
return G;

End function

Algorithm Lnfg based on Algorithm nfg is given by further rewriting the chop com-
ponent P; Q as P ∧ f in(lk); Q for some k ∈ N0 whenever a new chop formula is en-
countered. The algorithm uses mark[] to indicate whether or not a node needs to be
decomposed. If mark[P] = 0 (unmarked), P needs further to be decomposed, otherwise
if mark[P] = 1 (marked), P has been decomposed or needs not to be done. Function nf
is used to transform a formula into its normal form. Further, in the algorithm, two global
boolean variables AddE and AddN are employed to indicate whether or not terminating
part and non-terminating part of the normal form are encountered respectively.

Lemma 12. For an infinite path π in the LNFG, G = (CL(R), EL(R),V0, L =
{L1, ...,Lm}), of PPTL formula R, FS C(π,Q) = true iff Inf(π) � Li for any 1 ≤ i ≤ m. �

An Improved Decision Procedure for Propositional Projection Temporal Logic 101

Theorem 13. In the LNFG of a formula P, finite paths precisely characterize finite
models of P; infinite paths with Inf(π) � Li, for all 1 ≤ i ≤ m precisely characterize
infinite models of P.

Proof: For finite case, it has been proved in Theorem 2. For infinite case, it is a direct
consequence of Theorem 11 and Lemma 12. �

Consequently, a decision procedure for checking the satisfiability of a PPTL formula P
can be constructed based on the LNFG of P. In the following, a sketch of the procedure,
Algorithm Check in pseudo code, is demonstrated.

In order to use our approach, we have developed a tool in C++. With this tool, all the
algorithms introduced above have been implemented. For any PPTL formula, the tool
can automatically transform it to its normal form, and LNFG, then check whether the
formula is satisfiable or not.

Algorithm Check: Checking whether or not P is satisfiable.
Function Check(P)
/* precondition: P is a PPTL formula*/
/* postcondition: Check(P) checks whether formula P is satisfiable or not.*/
begin function

G =Lnfg(P);
if there exists ε node in CL(P),
return P is satisfiable with finite models;
if there exists infinite path π with Inf(π) � Li, for all 1 ≤ i ≤ m
return P is satisfiable with infinite models;
else return unsatisfiable;

end function

Example 1. Checking the satisfiability of formula P ≡ (p∧�© p;©�q)∧ (�r;©�q).

By Algorithm Lnfg, LNFG G = (CL(P), EL(P),V0, L = {L1, ...,Lm}) of formula (p ∧
�© p;©�q) ∧ (�r;©�q) is constructed as depicted in Fig.3, where CL(P) = {n0, n1},
EL(P) = {(n0, p∧ r, n0), (n0, p∧ r, n1), (n1, p, n1)}, V0 = {n0}, L = {L1,L2}, L1 = {n0, n1}
and L2 = {n0}. The formula is unsatisfiable since there exists no node without L̃1 label
which is reachable from n0 and n1. �

n0 : (p ∧ � © p ∧ fin(l1); ©�q)

n1 : (p ∧ � © p ∧ fin(l1); ©�q)
p ∧ r

p ∧ r p

∧(�r ∧ fin(l2); ©�q)

∧(�q)l̃1, l̃2 l̃1

n1n0

Fig. 3. LNFG of (p ∧ �© p;©�q) ∧ (�r;©�q)

Example 2. Re-checking the formula given in the introduction.

The example presented in the introduction, which cannot be handled by the old algo-
rithm can now properly be treated. The new LNFG of formula q∧ (©empty; q)∧�(p∧
©©empty; q) is illustrated in Fig.4. The formula is satisfiable since for the only infinite
path In f (π) � Li, i = 1, 2. �

102 Z. Duan and C. Tian

n0 : q ∧ (©empty ∧ fin(l1); q) ∧�(p ∧©© empty; q)

p ∧ q

l̃2

n1 : q ∧ (©empty ∧ fin(l2); q) ∧�(p ∧©© empty; q)
n0 n1

p ∧ q
l̃1

Fig. 4. LNFG of q ∧ (©empty; q) ∧ �(p ∧ ©© empty; q)

Example 3. Checking the satisfiability of formula (p ∧ skip; q ∧ skip)+ ∧ �more; r.

The formula is obviously unsatisfiable since (p ∧ skip; q ∧ skip)+ ∧ �more cannot be
satisfied with finite models. However, by the old algorithm, the LNFG of (p∧ skip; q∧
skip)+∧�more can be constructed as illustrated in Fig.5 (1) which shows the formula is
satisfiable. With the new algorithm, the LNFG is depicted in Fig.5 (2) which indicates
the formula is unsatisfiable. �

(p ∧ skip; q ∧ skip)+ ∧�more; r

p

q ∧©((p ∧ skip; q ∧ skip)+ ∧�more; r)

q

F (p ∧ skip; q ∧ skip)+ ∧�more ∧ fin(l1); r

p

q ∧©((p ∧ skip; q ∧ skip)+ ∧�more ∧ fin(l1); r)

q

l̃1

l̃1

(1) (2)

Fig. 5. LNFG of (p ∧ skip; q ∧ skip)+ ∧ �more; r

5 Model Checking PPTL

Based on the new decision procedure, the PPTL model checker based on SPIN has also
been improved. To this end, a new transformation from LNFGs to Büchi automata is
presented. We first transform an LNFG to a Generalized Büchi Automata (GBA) [16].
Factually, an LNFG contains all the information of the corresponding GBA. The set of
nodes is in fact the set of locations in the corresponding GBA; each edge (vi,Qe, v j)
forms a transition; there exists only one initial location, the root node; the set of ac-
cepting locations consists of ε node and the nodes which can appear in infinite paths
for infinitely many times. Given an LNFG G = (CL(P), EL(P),V0, L = {L1, ...,Lm}) of
formula P, an GBA, B = (Q, I, δ, F = {F1, ..., Fm}), can be constructed as follows.

– Sets of the locations Q and the initial locations I: Q = V , and I = {v0}.
– Transition δ: Let q̇k be an atomic proposition or its negation, and we define a func-

tion atom(
∧m0

k=1 q̇k) for picking up atomic propositions or their negations appearing
in
∧m0

k=1 q̇k as follows,

atom(true) = true

atom(q̇k) =

{ {qk}, if q̇k ≡ qk 1 ≤ k ≤ l
{¬qk}, otherwise

atom(
∧m0

k=1 q̇k) = atom(q̇1) ∪ atom(
∧m0

k=2 q̇k)

An Improved Decision Procedure for Propositional Projection Temporal Logic 103

For each ei = (vi,Qe, vi+1) ∈ E, there exists vi+1 ∈ δ(vi, atom(Qe)). For node ε,
δ(ε, ε) = {ε}.

– Accepting set F = {F1, ..., Fm}: It has been proved that infinite paths with Inf(π) �
Li for all 1 ≤ i ≤ m precisely characterize infinite models of P. This can be equiv-
alently expressed by “infinite paths with Inf(π) ∩ Li � ∅ for all 1 ≤ i ≤ m precisely
characterize infinite models of P”, where Li denotes CL(P) \ Li. So, Fi = Li for
each i. In addition, by employing the stutter extension rule, {ε} is also an accepting
set.

Formally, algorithm Lnfg-Gba in pseudo code is given for transforming an LNFG to
a GBA.

Algorithm Lnfg-Gba: Transforming an LNFG to a GBA.
Function Check(P)
/* precondition: G = (CL(P),EL(P),V0, L = {L1, ...,Lm}) is the LNFG of PPTL formula P*/
/* postcondition: Lnfg-Sba(G) computes an GBA B = (Q, I, δ, F = {F1, ...,Fn}) from G*/
begin function

Q = ∅; F = {F1, ...,Fm}; Fi = ∅, 1 ≤ i ≤ m; I = ∅;
for each node vi ∈ V , add a state qi to Q, Q = Q ∪ {qi}; end for
for each node vi ∈ Li, add a state qi to Fi, Fi = Fi ∪ {qi};end for
if vi is ε, F = F ∪ {qi}; δ(qi, ε) = {qi};
if q0 ∈ V0, I = I ∪ {q0};
for each edge e = (vi, Pe, vj) ∈ E, qj ∈ δ(qi, atom(Pe));end for
return B = (Q, Σ, I, δ,F)

end function

Consequently, the algorithm presented in [16] for transforming a GBA to a Büchi
automaton can be applied to further transform the GBAs to Bü chi automata.

By transforming PPTL formulas to Büchi automata which precisely characterize the
models of the corresponding formulas, an automaton based model checking algorithm
for PPTL can be formalized. The algorithm can further be implemented within the
model checker SPIN. With our model checking algorithm for PPTL, the system to be
verified is modeled as a Büchi automaton As, while the property is specified by a PPTL
formula P. To check whether the system satisfies P or not, ¬P is transformed into an
LNFG, and further a Büchi automaton Ap. The system can be verified by computing
the product automaton of As and Ap, and then checking whether the words accepted by
the product automaton is empty or not as shown in Fig. 6. If the words accepted by the
product automaton is empty, the system can satisfy the property otherwise the system
cannot satisfy the property, and a counter-example can be found.

With SPIN, a translator from PLTL to Never Claim, and a Büchi automaton in terms
of PROMELA, are realized to automatically transform a formula in linear temporal
logic to Never Claim. To implement model checking PPTL in SPIN, we also provide a
translator from PPTL formulas to Never Claims as shown in Fig. 7. We have realized
the translator in C++ according to the algorithms presented in this paper. Further, the
translator has successfully been integrated within the original SPIN.

104 Z. Duan and C. Tian

Property PSystem

Büchi automaton

LNFG of ¬P

Büchi Automaton

Model of system

check

product

yes no
(counter-example)

automaton

emptiness

of ¬P

Fig. 6. Model checking PPTL

Syntax

Guided

Simulation Verification

Promela parser
Translator

(PPTL2NC)

(negation)

Translator

(PLTL2NC)

Never Claim

Rondom

Yes

PLTL (negation)PLTL (negation)

PPTL

Never Claim

Fig. 7. The model checker SPIN with PPTL

6 Conclusion

An improved decision procedure for checking satisfiability of PPTL formulas is given
in this paper. The algorithm has been realized and a model checker based on it has
been developed recently. With our experience, the decision procedure and the model
checker are useful in practice since full regular properties can be described by PPTL. In
the future, we will further investigate the partial order model checking, symbolic model
checking, bounded model checking and compositional model checking with PPTL. Fur-
thermore, some supporting tools will also be developed to support our model checking
algorithms.

References

1. Kripke, S.A.: Semantical analysis of modal logic I: normal propositional calculi. Z. Math.
Logik Grund. Math. 9, 67–96 (1963)

2. Moszkowski, B.: Reasoning about digital circuits, Ph.D Thesis, Department of Computer
Science, Stanford University, TRSTAN-CS-83-970 (1983)

An Improved Decision Procedure for Propositional Projection Temporal Logic 105

3. Duan, Z.: An Extended Interval Temporal Logic and A Framing Technique for Temporal
Logic Programming. PhD thesis, University of Newcastle Upon Tyne (May 1996)

4. Duan, Z., Tian, C., Zhang, L.: A Decision Procedure for Propositional Projection Temporal
Logic with Infinite Models. Acta Informatica 45(1), 43–78 (2008)

5. Wang, H., Xu, Q.: Temporal logics over infinite intervals. Technical Report 158, UNU/IIST,
Macau (1999)

6. Moszkowski, B.C.: A Complete Axiomatization of Interval Temporal Logic with Infinite
Time. In: 15th Annual IEEE Symposium on Logic in Computer Science. LICS, p. 241 (2000)

7. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of duration. Information Processing
Letters 40(5), 269–275 (1991)

8. Bowman, H., Thompson, S.: A decision procedure and complete axiomatization of interval
temporal logic with projection. Journal of logic and Computation 13(2), 195–239 (2003)

9. Dutertre, B.: Complete proof systems for first order interval temporal logic. In: Proceedings
of LICS 1995, pp. 36–43 (1995)

10. Clark, M., Gremberg, O., Peled, A.: Model Checking. The MIT Press, Cambridge (2000)
11. Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symp. Found. of Comp.

Sci., pp. 46–57 (1977)
12. Tian, C., Duan, Z.: Propositional Projection Temporal Logic, Büchi Automata and ω-

Expressions. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS,
vol. 4978, pp. 47–58. Springer, Heidelberg (2008)

13. Tian, C., Duan, Z.: Complexity of Propositional Projection Temporal Logic with Star. Math-
ematical Structure in Computer Science 19(1), 73–100 (2009)

14. Winskel, G.: The Formal Semantics of Programming Languages. In: Foundations of Com-
puting. The MIT Press, Cambridge

15. Vardi, M.Y.: The Büchi Complementation Saga. In: Thomas, W., Weil, P. (eds.) STACS 2007.
LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007)

16. Katoen, J.-P.: Concepts, Algorithms, and Tools for Model Checking. Lecture Notes of the
Course Mechanised Validation of Parrel Systems (1999)

17. Tian, C., Duan, Z.: Model Checking Propositional Projection Temporal Logic Based on
SPIN. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS,
vol. 4789, pp. 246–265. Springer, Heidelberg (2007)

A Semantic Model for Service Composition with
Coordination Time Delays

Natallia Kokash, Behnaz Changizi, and Farhad Arbab�,��

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Natallia.Kokash@cwi.nl

Abstract. The correct behavior of a service composition depends on the
appropriate coordination of its services. According to the idea of channel-
based coordination, services exchange messages though channels without
any knowledge about each other. The Reo coordination language aims at
building connectors out of basic channels to implement arbitrarily com-
plex interaction protocols. The activity within a Reo connector consists
of two types of communication, each of which incurs a delay: internal
coordination and data transfer. Semantic models have been proposed
for Reo that articulate data transfer delays, but none of them explicitly
considers coordination delays. More importantly, these models implicitly
assume that (1) internal coordination and data transfer activities take
place in two separate phases, and (2) data transfer delays do not affect the
coordination phase. This assumptions prevent maximal concurrency in
data exchange and distort the evaluation of end-to-end delays in service
composition models. In this paper, we introduce a novel compositional
automata-based semantic model for Reo that explicitly represents both
internal coordination and data transfer aspects in channel-based connec-
tors. Furthermore, we map the proposed model to the process algebra
mCRL2, which allows us to generate state spaces for connectors with time
delays and analyze them automatically.

1 Introduction

Provisioning of end-to-end client-perceived Quality of Service (QoS) in concur-
rent systems is a well-renown problem that has been attracting attention of
researchers and software engineers over the past few decades. The problem ac-
quired even more attention with the advent of service-oriented computing where
systems are composed out of loosely-coupled services of different vendors to real-
ize complex value-added business processes. The quality of what a service-based
system offers is derived from the quality of its constituent parts, the quality
of the so-called “glue code” that coordinates the execution of the individual
services, and the characteristics of the underlying infrastructure such as, e.g.,
the physical location of servers and the characteristics of the communication
networks connecting them.
� Corresponding author.
�� Supported by IST COMPAS FP7-ICT-2007-1 project, contract number 215175.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 106–121, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Semantic Model for Service Composition with Coordination Time Delays 107

One of the ways to coordinate autonomous services is to use connectors.
Reo [1] is a model for coordination of software components or services wherein
complex connectors are constructed out of simple primitives called channels. By
composing basic channels, arbitrarily complex interaction protocols can be im-
plemented. A distinctive characteristic of Reo is the propagation of synchrony:
with the help of connectors composed of synchronous channels, one can define
transactional protocols where all participating services should be ready to pro-
vide or consume messages simultaneously. This facility is very useful as it enables
models that are both concise and compositional, but it also makes the problem
of describing the operational semantics of Reo a non-trivial task. The most basic
semantic model that currently exists for Reo relies on constraint automata [2].
In this model, states represent configurations of data stored in the buffers of Reo
networks, while transition labels are composed of (i) sets of channel ends where
dataflow is observed simultaneously, and (ii) data constraints necessary to trig-
ger such transitions. Constraint automata represent a theoretical basis for most
of the available validation and verification tools for Reo, which are integrated in
a framework known as the Eclipse Coordination Tools (ECT)1.

Several extensions for Reo and its initial semantics have been proposed to
capture the notions of timed, context-sensitive, probabilistic and stochastic be-
havior. However, none of these models accounts for the possible delays that the
channels need to transfer data. The existing approaches that aim at extending
Reo with QoS information [3,4] assume that delays in channels do not affect the
operational semantics of Reo connectors. Nevertheless, as we argue in this paper,
this assumption can limit the degree of concurrency in the presence of transac-
tions with different durations and lead to imprecise estimations of end-to-end
communication delays in service compositions.

To fix this problem, we introduce a more expressive semantic model for Reo,
called action constraint automata, which distinguished several actions performed
internally by each channel to manifest its behavior. By observing the start and
the end of a multiparty communication as well as the start and the end of actual
dataflow in each channel, we include more information into the model describing
the behavior of a circuit. This approach eventually helps us to compute the to-
tal delay in a circuit given the delays for each individual channel. In this paper,
we introduce the action constraint automata model, illustrate its application
to dataflow modeling in Reo, and discuss the tool support achieved by map-
ping action constraint automata into the process algebra mCRL2 as well as the
integration of the mCRL2 toolset within ECT.

The remainder of this paper is organized as follows. In Section 2, we explain
the basics of Reo. In Section 3, we give examples that motivate our work. In
Section 4, we introduce the action constraint automata-based semantic model
for Reo. In Section 5, we use this new automata to give semantics to our mo-
tivating examples. In Section 6, we discuss the translation of this model to the
process algebra mCRL2, which enables the application of the mCRL2 toolset for

1 http://reo.project.cwi.nl/

http://reo.project.cwi.nl/

108 N. Kokash, B. Changizi, and F. Arbab

the verification of Reo circuits. Finally, in Section 7, we conclude the paper and
outline our future work.

2 Background

Reo is a coordination language in which components and services are coordinated
exogenously by channel-based connectors [1]. Connectors are essentially graphs
where the edges are user-defined communication channels and the nodes imple-
ment a fixed routing policy. Channels in Reo are entities that have exactly two
ends, also referred to as ports, which can be either source or sink ends. Source
ends accept data into, and sink ends dispense data out of their channel. Although
channels can be defined by users, a set of basic Reo channels with predefined
behavior suffices to implement rather complex coordination protocols. Among
these channels are (i) the Sync channel, which is a directed channel that accepts
a data item through its source end if it can instantly dispense it through its sink
end; (ii) the LossySync channel, which always accepts a data item through its
source end and tries to instantly dispense it through the sink end. If this is not
possible, the data item is lost; (iii) the SyncDrain channel, which is a channel
with two source ends that accept data simultaneously and loses them subse-
quently; (iv) the AsyncDrain channel, which accepts data items only through one
of its two source channel ends at a moment in time and loses it; and (v) the
FIFO channel, which is an asynchronous channel with a buffer of capacity one.
Additionally, there are channels for data manipulation. For instance, the Filter
channel always accepts a data item at its source end and synchronously passes or
loses it depending on whether or not the data item matches a certain predefined
pattern or data constraint. Finally, the Transform channel applies a user-defined
function to the data item received at its source end and synchronously yields
the result at its sink end.

Channels can be joined together using nodes. A node can be a source, a sink or
a mixed node, depending on whether all of its coinciding channel ends are source
ends, sink ends or a combination of both. Source and sink nodes together form
the boundary nodes of a connector, allowing interaction with its environment.
Source nodes act as synchronous replicators, and sink nodes as non-deterministic
mergers. A mixed node combines these two behaviors by atomically consuming
a data item from one of its sink ends at the time and replicating it to all of its
source ends.

The basic set of Reo channels can be extended to enable modeling of specific
features of service communication. Apart from functional aspects, channels can
differ at the level of their non-functional characteristics. In quantitative Reo [3],
channels are characterized by a set of associated QoS parameters such as data
transfer delays or cost.

In this paper, we consider Reo channels in presence of internal coordination
and data transfer delays. Roughly, by internal coordination delay we mean the
time that it takes a channel to decide whether or not it can accept to satisfy
the I/O request at its ends. By data transfer delay we mean the time needed

A Semantic Model for Service Composition with Coordination Time Delays 109

to deliver a data item accepted by the source end of a channel to its sink end
for the Sync channels, from the channel source end to its buffer and from the
buffer to its sink end for the FIFO channels, or accept and destroy a data item
for SyncDrain, AsyncDrain and LossySync channels.

An informal description of Reo given above is rather incomplete and ambigu-
ous. The semantics of any Reo connector can be understood only in terms of a
specific semantic model and its appropriate translation into that model.

The most basic model expressing the semantics of Reo formally is constraint
automata [2]. Transitions in a constraint automaton are labeled with sets of
ports that fire synchronously, as well as with data constraints on these ports.
The constraint automata-based semantics for Reo is compositional, meaning that
the behavior of a complex Reo circuit can be obtained from the semantics of its
constituent parts using the product operator. Furthermore, the hiding operator
can be used to abstract from unnecessary details such as dataflow on the internal
ports of a connector.

Definition 1 (Constraint Automaton (CA)). A constraint automaton A =
(S,N ,→, s0) consists of a set of states S, a set of port names N , a transition
relation → ⊆ S × 2N ×DC × S, where DC is the set of data constraints over a
finite data domain Data, and an initial state s0 ∈ S.

We write q
N,g−→ p instead of (q, N, g, p) ∈→ . Table 1 shows our graphical notation

for the basic Reo channels and nodes together with their constraint automata
semantics. The behavior of any Reo circuit can be obtained by computing the
product of these automata which can be defined using the notion of a port
synchronization function [5].

Definition 2. Let A1 = (S1,N1,→1, s
1
0), A2 = (S2,N2,→2, s

2
0) be two con-

straint automata with disjoint sets of port names N1 and N2, respectively. A port
synchronization function γ : N → N1 × N2 is defined as γ(n) = (γ1(n), γ2(n))
through the pair of injective functions γ1 : N → N1 and γ2 : N → N2 that map
port names from a new set N into port names from the sets N1 and N2.

In the above definition, “new set” means N ∩ (N1 ∪ N2) = ∅. Observe that
the disjointness of N1 and N2 and the injectivity of the total functions γ1 and
γ2 confine the cardinality of N such that 0 ≤ |N | ≤ min(|N1|, |N2|). The ex-
act definition of γ1 or γ2, then, uniquely defines N . Intuitively, γ(n) = (x, y)
represents a renaming of x ∈ N1 and y ∈ N2 to the same common element
n ∈ N . In the context of the port synchronization function γ, we write N ′

1 for
N1\γ1[N] and N ′

2 for N2\γ2[N]. If, for subsets N1 ⊆ N1, N2 ⊆ N2, it holds that
γ−1
1 [N1] = γ−1

2 [N2] we write

N1 |γ N2 = (N1 ∩ N ′
1) ∪ γ−1

1 [N1] ∪ (N2 ∩ N ′
2) .

This means that N1 |γ N2 is the union N1∪N2 with the parts of N1 and N2 that
are identified via γ1 and γ2 replaced by the shared names γ−1

1 [N1] = γ−1
2 [N2].

Also, for a constraint g, we write γ(g) for the formula obtained by replacing
the port names in γ1[N] ⊆ N1 and γ2[N] ⊆ N2 by the corresponding name in N .

110 N. Kokash, B. Changizi, and F. Arbab

Table 1. Graphical notation and semantics for channels and nodes

Primitive Notation Constraint automaton

Sync A B {A, B} dA = dB

LossySync A B {A, B} dA = dB{A}

SyncDrain A B {A, B}

AsyncDrain A B {A}{B}

FIFO A B

{A} dA = 0

{B} dB = 0

{A} dA = 1

{B} dB = 1

Filter A B
{A, B} expr (dA) ∧ dA = dB{A} ¬expr (dA)

Transform A B
{A, B} dB = f(dA)

Merger C
A

B {A, C} dA = dC {B, C} dB = dC

Replicator A
B

C
{A, B, C} dA = dB = dC

Definition 3. For two constraint automata A1 = (S1,N1,→1, s
1
0) and A2 =

(S2,N2,→2, s
2
0) and the port synchronization function γ : N → N1 × N2

with γ1 : N → N1 and γ2 : N → N2, the constraint automaton A1 ��γ A2,
called the γ-synchronous product of A1 and A2, is given by A1 ��γ A2 =
(S1 × S2,N ′,→, 〈s1

0, s
2
0〉) where N ′ = N ′

1 |γ N ′
2 and the transition relation →

is determined by the following rules:

s1
N1,g1−→1 t1 N1 ⊆ N ′

1

〈s1, s2〉
N1,g1−→ 〈t1, s2〉

s2
N2,g2−→1 t2 N2 ⊆ N ′

2

〈s1, s2〉
N2,g2−→ 〈s1, t2〉

and
s1

N1,g1−→1 t1 s2
N2,g2−→1 t2 γ−1

1 (N1) = γ−1
2 (N2)

〈s1, s2〉
N1|γN2,γ(g1∧g2)−→ 〈t1, t2〉

.

In the above setting, for a port n ∈ N , the idea is that the ports x = γ1(n) ∈ N1

and y = γ2(n) ∈ N2 synchronize. Thus, either x and y both have flow or x
and y both have no flow, expressed as n having flow or no flow, respectively. The
resulting automaton, the so-called synchronized product automaton A1 ��γ A2,
follows the flow of A1 and A2, based on the first two rules for the transition
relation, but requires the flow on its ports in N to be agreed upon by both A1

and A2.
Constraint automata in their basic form are not expressive enough to capture

all interesting behavior in Reo. In particular, they cannot express the behavior

A Semantic Model for Service Composition with Coordination Time Delays 111

of so-called context dependent channels. A basic example of such a channel is a
LossySync channel that loses a data item only if the environment or subsequent
channels are not ready to consume it. Numerous models have been proposed
to overcome this and other problems. However, due to space limits we cannot
provide their detailed discussion in this paper.

The problem of expressing the behavior of Reo circuits is orthogonal to the
problem of estimating the end-to-end quality of the communication protocol
that they implement. The existing semantic models, most notably, constraint
automata, have been extended with the information to capture the QoS char-
acteristics of the channels and their composition metrics [3,4]. However, these
extensions assume that the QoS characteristics do not affect the behavior of a
circuit and simply assign QoS labels to the transitions of the basic automata
models. In the next section, we argue that data transfer delays are important
for circuit behavior and accommodating them properly requires an appropriate
formal model.

3 Motivation

As mentioned before, currently variants of constraint automata extended with
labels representing QoS characteristics are used to give formal semantics to QoS-
aware Reo. These automata are defined with the help of Q-algebra introduced
initially by Chothia and Kleijn [6]. A Q-algebra is an algebraic structure R =
(C,⊕,⊗, ||,0,1) where C is the domain of R and represents a set of QoS values.
The operation ⊕ induces a partial order on the domain of R and is used to
define a preferred value of a QoS dimension, ⊗ is an operator for the sequential
channel composition, while || is an operator for the parallel composition. For
example, the Q-algebra corresponding to the circuit execution time is defined
as follows: (R≥∪{∞}, min, +, max,∞, 0). Taking into account this definition, a
Quantitative CA (QCA) [3] is an extended CA A = (S, S0,N , E, R) where the
transition relation E is a finite subset of ∪N∈NS × {N} ×DC(N)×C × S and
R = (C,⊕,⊗, ||, 0, 1) is a labeled Q-algebra with domain C.

QCA were introduced to enable the estimation of QoS of compound circuits
given the QoS parameters of their constituent channels. However, as our example
shown in Figure 1(a) illustrates, this model does not allow us to precisely com-
pute the data transfer delays in synchronous regions. According to the definition
of the QCA and Q-algebra for the execution time, the delay for the barrier syn-
chronization connector equals max(t1, t2, t3, t4, t5) while the real data transfer
time cannot be smaller than the sum of the delays of the two pairs of Sync chan-
nels composed sequentially. Assuming that the whole transaction does not finish
before the SyncDrain channel destroys the data consumed through its source
ports, we conclude that the delay equals max(t1 +max(t2, t3), t4 +max(t3, t5)).

As shown in [4], data transfer delays in Reo circuits can be computed given the
information about its topology and the presumed dataflow semantics. However,
currently there are no automata-based semantic models for Reo that supports
such a computation in the compositional manner.

112 N. Kokash, B. Changizi, and F. Arbab

A C E

B D F

t1 t2

t3
t4 t5

{A, B, C, D, E,F}
dA = dC = dE ∧ dB = dD = dF

max(t1, t2, t3, t4, t5)

(a) Barrier synchronization

A

B

C

t1

t2

t3

{A, B}
dA = dB

t1

{C} dC = d t2

{A, B, C} dC = d ∧ dA = dB

max(t1, t2)

{B} dB = d t3

{A, B}
dA = dB

t1

(b) Delay-merge circuit

Fig. 1. Motivating examples

Another drawback of the constraint automata semantics for Reo is that it
forces the synchronization of independent concurrent transactions with differ-
ent durations. This problem arises from the fact that only one transition on
constraint automaton can be enabled at the same time. Assuming that data
transfer through a synchronous region of a circuit is not instantaneous as in the
basic Reo model, dataflow on some other parts of the circuit can be initiated
during this time. For example, the constraint automaton for the circuit shown in
Figure 1(b) implies that while the FIFO channel accepts data through the port
C, no other transition can be triggered. Imagine that the delay t2 is much bigger
than t1. This means that the circuit will not transfer data through the channel
Sync(A, B) until the port C finishes to accept data. However, the circuit should
allow data transfer through the Sync channel at any time when the port B is not
occupied. As this example illustrates, (Q)CA do not show all possible behaviors
of Reo with data transfer delays.

4 Action Constraint Automata

In this section, we introduce a new model, called action constraint automata, that
provides a valid semantic model for Reo coordination networks in the presence of
time delays This model is essentially a labeled transition system (LTS) with data
and synchronization constraints. However, in contrast to constraint automata in
their classic form, we distinguish several kinds of actions which are triggered
on channel ports to signal the state changes of the channel. Formally, an action
constraint automaton is defined as follows:

Definition 4 (Action Constraint Automaton (ACA)). An action con-
straint automaton A = (S,N ,→, s0) consists of a set of states S, a set of action
names N derived from a set of port names M and a set of admissible action
types T , a transition relation → ⊆ S × 2N × DC × S, where DC is the set of
data constraints over a finite data domain Data, and an initial state s0 ∈ S.

A Semantic Model for Service Composition with Coordination Time Delays 113

We introduce an injective function act :M×T → N to define action names for
each pair of a port name and an action type observed on the port. For example,
the function act(m, α) = α •m |m ∈ M, α ∈ T , where • is a standard lexical
concatenation operator, can be used to obtain a set of unique action names given
sets of distinctive Reo port names and types of observable actions.

Analogously to the constraint automata, we define the action synchronization
function γ : N− > N1xN2 through a pair of injective functions γ1 : N → N1,
γ2 : N → N2 from a new set of action names N into N1 and N2. Given such
function, we can define the product operator for ACA.

Definition 5 (Product of Action Constraint Automata). For two action
constraint automata A1 = (S1,N1,→1, s

1
0) and A2 = (S2,N2,→2, s

2
0) and the

action synchronization function γ : N → N1 × N2 with γ1 : N → N1 and γ2 :
N → N2, the action constraint automaton A1��γA2, called the γ-synchronization
product of A1 and A2, is given by A1 ��γ A2 = (S1 × S2,N ′

1 |γ N ′
2,→, 〈s1

0, s
2
0〉)

where the transition relation → is determined by the following rules:

s1
N1,g1−→1 t1 N1 ⊆ N ′

1

〈s1, s2〉
N1,g1−→ 〈t1, s2〉

s2
N2,g2−→1 t2 N2 ⊆ N ′

2

〈s1, s2〉
N2,g2−→ 〈s1, t2〉

and
s1

N1,g1−→1 t1 s2
N2,g2−→1 t2 γ−1

1 (N1) = γ−1
2 (N2)

〈s1, s2〉
N1|γN2,γ(g1∧g2)−→ 〈t1, t2〉

.

Transitions where the set of actions N is non-empty are called visible, while
transitions with the empty action-set are called hidden. In a hidden transition,
none of the actions is visible and the data constraints appear as unknown from
outside. We denote hidden transitions by the label τ . Such transitions can be wit-
nessed only by the change of a state in an automaton. Taking this into account,
the hiding operator on ACA is defined as follows:

Definition 6 (Action hiding). The action hiding operator takes as input an
ACA A = (S,N ,→, s0) and a non-empty set of actions K ⊆ N . The result is
an ACA hide(A, K) = (S,N\K,→, s0) where

– q
N ′,g′
−→K p iff there exists a transition q

N,g−→ p such that N\K �= ∅ and g′ =∨
δ∈DA(K) g[dA/δ.A|A ∈ K], where g[dA/δ.A|A ∈ K] denotes the syntactic

replacement of all occurrences of dA in g for A ∈ K with δ.A.
– q

τ−→K p iff there exists a transition q
N,g−→K p such that N\K = ∅.

A port hiding can be achieved by hiding of all actions observed on this port. In
turn, a node hiding is the result of the hiding of all ports coincident on the node.

Note that constraint automata represent a subclass of action constraint au-
tomata with only one action observed on each port. This action represents the
fact that the data flow through this port. The synchronization function used in the
definition of constrain automata implies a renaming of joint channel/node ports
while here it is used for renaming of actions that are observed simultaneously.

114 N. Kokash, B. Changizi, and F. Arbab

A B A B A B A B

{bA,bB}

{uA,uB}

{bA,bB}

{uA,uB}

{bA}

{uA}

{bA,bB}

{uA,uB}

{bB}

{uB}

{bA}

{uA}

A B
C

A

B
A

B

C

{bA} {uA} {bB}

{uB}

{bA,bC}

{uA,uC}

{bB,bC}

{uB,uC}

{bA,bB,bC}

{uA,uB,uC}

Fig. 2. Semantics of channels and nodes with port blocking

5 Dataflow Modeling

In this section, we introduce an ACA-based model for representing the semantics
of Reo with data transfer delays.

Since some time is required by a channel for its internal coordination and to
transfer data, it may happen that the channel is still busy while other requests
arrive at the source ports of the circuit. There is no reason why the channels that
are not busy at the moment should not process the arrived requests. However,
as our motivating examples have shown, CA do not allow such behavior. To
provide a more expressive model for Reo that fixes the aforementioned problem,
we consider two actions, namely, a ‘block’ action and its dual an ‘unblock’ action
which are used to establish port communication within a single transaction and
release channel ports involved in such a transaction, respectively.

Table 5 shows the semantics of the basic Reo channels with presumable data
transfer delays in terms of ACA for the set of action types T1 = {b, u}, where
b stands for the ‘block’ and u stands for the ‘unblock’ actions. Since our focus
is on synchronization constraints, we omit the data constraints in this figure
to simplify the presentation. In their initial states, channels do not accept or
dispense data. To show that the Sync channel with the source end A and the
sink end B is ready to accept and dispense data, ‘block’ actions bA and bB
occur simultaneously. After the data transfer is finished, the channel returns
to its initial state when both ports are released and ‘unblock’ actions uA and
uB are observed. For the LossySync channel the behavior is similar with the
exception that the data can be lost after entering the channel. In this case, only
the channel source port A is involved in the communication. For the SyncDrain
channel we require that ports are blocked and unblocked simultaneously, while
for the AsyncDrain only one of the source ends A or B can be involved in the
communication at each particular moment in time. Finally, for the empty FIFO
channel, first the data is stored in the buffer through the source port A, then
the buffer is emptied through the sink port B.

Figure 3 shows the semantics of the delay-merge circuit and the barrier syn-
chronization of Figure 1 obtained using the product and hiding operators on the
ACA with the set of action types T1. Since in our definitions of CA and ACA we

A Semantic Model for Service Composition with Coordination Time Delays 115

{bC} {uC}

{bC} {uC}

{bA, bB} {bA, bB} {bA, bB}{uA, uB} {uA, uB} {uA, uB}
{bA, bB, bC} {bA, bB, uC}

{uA, uB, bC} {uA, uB, uC}

{bB}{uB}

(a) Delay-merge circuit

{bA,bB,bC,bD,bE,bF}

{uA,uB,uC,uD,uE,uF}

(b) Barrier synchronization

Fig. 3. Semantics of the delay-merge circuit with port blocking

A D′′

C

E′′ B

D′

E′

(a) Delay-merge circuit

A H ′′ H ′ C G′ G′′ E

M ′
M ′′

N ′′
N ′

B J ′′ J ′ D K′ K′′ F

(b) Barrier synchronization

Fig. 4. Motivating examples: decomposed circuits

require all port names to be different, we apply these operators to the channels
and nodes in the decomposed versions of these circuits shown in Figure 4. Ob-
serve that after blocking the port C in the delay-merge circuit, the system can
trigger transitions defined by the actions {bA, bB} and {uA, uB}. This means
that the Sync channel can transfer data while the FIFO channel is writing data
into its buffer. Thus, our new ACA semantic model resolves the problem of
synchronization of independent concurrent transactions with different durations
manifested by the CA model.

The automaton for the barrier synchronization consists of two states that
represent the situations where all channels in the synchronous region are free
and where all channels are transferring data. The circuit can stay in the second
state for the duration of time needed to finish the data transfer through all five
synchronous channels. However, the model does not show the actual flow of data
within the circuit. Thus, we cannot use this model for computing time delays in
synchronous circuits given delays for its individual channels.

To solve this problem, in addition to the ‘block’ and ‘unblock’ actions, we in-
troduce ‘start’ and ‘finish’ actions which are used to represent the start and the
end of dataflow through a blocked channel port. Thus, we use the set of action
types T2 = {b, s, f, u}, where b stands for the ‘block’, s for the ‘start’, f for the
‘finish’ and u for the ‘unblock’ action types. The sequence of the aforementioned
four actions is observed on each Reo port. Before the start of each transition,
ports participating in this transition must be blocked. Then, the data transfer

116 N. Kokash, B. Changizi, and F. Arbab

starts. After some time t, which represents the delay in the channel, the ‘finish’
action occurs to signal that the data transfer is over. Finally, the ‘unblock’ action
releases the channel port, subsequent to which it can be coopted to perform
another communication. The time between a ‘block’ action and a subsequent
‘start’ action on the same port represents the overhead necessary for the set-up of
the internal coordination before the data transfer can happen. Analogously, the
time between a ‘finish’ and an ‘unblock’ represents the overhead of dismantling
the data transfer set-up. Table 2 shows the semantics of the basic Reo channels
with explicit modeling of internal coordination and dataflow within each channel.
After blocking actions have occurred in the Sync channel, both its ports start to
accept data. This is represented by the simultaneous occurrence of the actions
sA and sB. Similarly, after the data transfer is finished, actions fA and fB
are observed. For the SyncDrain channel, as usual, we require that its ports are
blocked and unblocked simultaneously, while the actual data transfer through
the two ports start and end independently, i.e., all interleavings of action pairs
(sA, fA) and (sB, fB) are allowed. In principle, it is also possible to consider
more restricting versions of the SyncDrain channel where both source ports must
synchronize on starting and/or finishing of their data transfer.

The semantics of the Merger and the Replicator nodes is defined in a simi-
lar way. We assume that, in contrast to channels, the data transfer through a
node is instantaneous, i.e., dataflow starts and finishes at the same time. For
the scenarios where the time for data replication is significant and cannot be
neglected, automata with two different transitions to signal the start and the
end of dataflow should be used.

By synchronizing ‘finish’ actions observed on sink ends with ‘start’ actions
observed on the source ends, we can model sequential flow of data in the syn-
chronous regions. Given two action constraint automata A1 and A2 for each pair
X ∈ M1, Y ∈ M2 of joint ports, where X is a sink port, and Y is a source port,
the following pairs of actions happen synchronously:

{(act(X, b), act(Y, b)), (act(X, u), act(Y, u)), (act(X, f), act(Y, s))}.

This approach is compliant with the two principles introduced in [4], namely,
that (i) a data-flow in a channel takes place from its input port to its output
port, and (ii) mixed nodes receive and send data instantaneously.

Figure 5 shows the ACA with the set of action types T2 for the delay-merge
circuit obtained as a product of ACA for two channels and the merge node with
an action synchronization function defined by the following set of mappings:

{(bD′′, bD′)→ bD, (uD′′, uD′) → uD, (fD′′, sD′) → fD,
(bE′′, bE′) → bE, (uE′′, uE′)→ uE, (fE′′, sE′)→ fE}.

Observe that, similarly to the previous example, in any state where port C is
occupied (blocked, started to or finished with the transfer of data, but not yet
unblocked), the Sync channel can be involved in an independent communication.

A Semantic Model for Service Composition with Coordination Time Delays 117

Table 2. Semantics of channels and nodes with explicit dataflow

Primitive Dataflow automaton

A B

{bA,bB} {sA,sB} {fA,fB}

{uA,uB}

A B

{bA,bB} {sA,sB} {fA,fB}

{uA,uB}

{bA}{sA}{fA}

{uA}

A B
{bA,bB}

{sA}
{sA,sB}

{sB}

{fA}
{sB}

{fB}
{sA}

{fA}
{fA,fB}

{fB}

{sB}

{fA,sB}

{sA}

{fB,sA}

{fB}

{fA}

{uA,uB}

A B

{bB} {sB} {fB}

{uB}

{bA}{sA}{fA}

{uA}

A B
{bA} {sA} {fA}

{uA}
{bB}{sB}{fB}

{uB}

C
A

B

{bA,bC} {sA,sC,fA,fC}

{uA,uC}

{bB,bC}{sB,sC,fB,fC}

{uB,uC}

A
B

C

{bA,bB,bC} {sA,sB,sC,fA,fB,fC}

{uA,uB,uC}

Figure 6 shows the ACA for the barrier synchronization circuit obtained using
the action synchronization function defined by the following mappings:

{(bH ′′, bH ′)→ bH, (uH ′′, uH ′)→ uH, (fH ′′, sH ′) → fH,
(bG′, bG′′)→ bG, (uG′, uG′′) → uG, (fG′, sG′′)→ sG,

(bM ′, bM ′′)→ bM, (uM ′, uM ′′)→ uM, (fM ′, sM ′′) → sM,
(bN ′, bN ′′) → bN, (uN ′, uN ′′)→ uN, (fN ′, sN ′′)→ sN,
(bJ ′′, bJ ′)→ bJ, (uJ ′′, uJ ′)→ uJ, (fJ ′′, sJ ′)→ fJ,

(bK ′, bK ′′)→ bK, (uK ′, uL′′)→ uK, (fK ′, sK ′′) → sK}

and the set of hidden actions

{fH ′, sH ′′, fG′′, sG′, sM ′, fM ′′, sN ′, fN ′′, fJ ′, sJ ′′, sK ′, fK ′′}.

In this model, after blocking all ports, the source ports A and B start to accept
data (either separately or simultaneously). Similarly, labels of further transitions
show on which ports the dataflow starts and finishes. Observe that the end

118 N. Kokash, B. Changizi, and F. Arbab

{bC} {sC} {fC} {uC}

{bC} {sC} {fC} {uC}

{bC}
{sC}

{fC}
{uC}

{bC} {sC} {fC} {uC}

{uA, uB, uD} {uA, uB, uD} {uA, uB, uD} {uA, uB, uD} {uA, uB, uD}

{sA, sD′′} {sA, sD′′} {sA, sD′′} {sA, sD′′} {sA, sD′′}

{bA, bB, bD} {bA, bB, bD} {bA, bB, bD} {bA, bB, bD} {bA, bB, bD}

{fA, sB, fB, fD, fD′}

{fA, sB, fB, fD, fD′}

{fA, sB, fB, fD, fD′}

{fA, sB, fB, fD, fD′}

{fA, sB, fB, fD, fD′}

{uA, uB, fC, uD} {uA, uB, fC, uD} {uA, uB, fC, uD} {uA, uB, fC, uD}

{sA, sD′′, bC} {sA, sD′′, bC} {sA, sD′′, bC} {sA, sD′′, bC}

{sC, fA, sB, fB, fD, fD′}
{sC, fA, sB, fB, fD, fD′}

{sC, fA, sB, fB, fD, fD′}
{sC, fA, sB, fB, fD, fD′}

{bE, bB}
{sE′′}{fE, fE′, sB, fB}

{uE, uB}

Fig. 5. Semantics of the delay-merge circuit with explicit dataflow

{sB}
{sB} {sB} {sB}

{fB, fJ, sN, sK, sF}
{fB, fJ, sN, sK, sF} {fB, fJ, sN, sK, sF} {fB, fJ, sN, sK, sF}

{fF}
{fF} {fF} {fF}

{sA}

{sA}

{sA}

{sA}

{fA, fH, sM, sG, sE}

{fA, fH, sM, sG, sE}

{fA, fH, sM, sG, sE}

{fA, fH, sM, sG, sE}

{fE}

{fE}

{fE}

{fE}

{sA, sB} {fA, fH, sM, sG, sE, sB} {sB, fE}

{fB, fJ, sN, sK, sF, sA} {fB, fJ, fA, fH, sN,
sK, sF, sM, sG, sE} {fB, fJ, fE, sN, sK, sF}

{sA, sF} {fA, fH, fF, sM, sG, sE} {fE, fF}

{bA, bB, bE, bF, bG,
bH, bJ, bK, bM, bN}

{uA, uB, uE, uF, uG,
uH,uJ, uK, uM, uN}

Fig. 6. Semantics of the barrier synchronization circuit with explicit dataflow

of dataflow on ports preceding the SyncDrain (external ports A and B, and
internal ports H and J) coincides with the start of the flow on ports following
the SyncDrain (external ports E and F , and internal ports M , N , G and K).
Thus, this model is capable of capturing the stepwise dataflow progress through
synchronous regions.

Among all the states of these automata we may be interested to locate states
in which all channels are idle and free to communicate. Formally, such states are

A Semantic Model for Service Composition with Coordination Time Delays 119

characterized by the condition ∀A ∈ M, act(A, b) ∈ N [r] ⇒ act(A, u) ∈ N [r],

where N [r] =
⋃

Ni | si
Ni,di−→ si+1 is a set of actions of some automaton run r =

s
N0,d0−→ s1

N1,d1−→ s2
N2,d2−→ s3 Such states correspond to network configurations

defined by the basic CA.

6 Model Analysis and Tool Support

The goal of the introduced semantic model for Reo is to provide a sound math-
ematical basis for the implementation of analysis tools. The set of potentially
useful tools includes but is not limited to converters that generate the automata-
based models given graphical Reo circuits, model checking tools able to verify the
validity of system properties expressed in some kind of formal logic, simulation
engines that allow us to validate and evaluate the performance of a model, and
model-based code and test generation tools. The development of such tools from
scratch is far from trivial and very time consuming. An alternative approach is
to convert our model to a format acceptable by existing analysis tools. To enable
model checking of Reo, we generally rely on the mCRL2 framework.

mCRL2 is a specification language based on the process algebra ACP. The ba-
sic notion in mCRL2 is the action. Actions represent atomic events and can be
parameterized with data. Actions in mCRL2 can be synchronized using the syn-
chronization operator |. Synchronized actions are called multiactions. Processes
are defined by process expressions, which are compositions of actions and mul-
tiactions using a number of operators. The basic operators include (i) deadlock
or inaction δ, (ii) alternative composition p+ q, (iii) sequential composition p · q,
(iv) conditional operator or if-then-else construct c → p � q where c is a boolean
expression, (v) summation Σd:D p used to quantify over a data domain D, (vi)
at operator a@t indicating that multiaction a happens at time t, (vii) parallel
composition p ‖ q yielding interleavings of the actions in p and q, (viii) encapsu-
lation ∂H(p), where H is a set of action names that are not allowed to occur,
(ix) renaming operator ρR(p), where R is a set of renamings of the form a→ b
and (x) communication operator ΓC(p), where C is a set of communications of
the form a0|...|an �→ c, which means that every group of actions a0|...|an within
a multiaction is replaced by c. Moreover, the mCRL2 language provides a number
of built-in datatypes (e.g., boolean, natural, integer) with predefined standard
arithmetic operations and a datatype definition mechanism to declare custom
types (called also sorts).

The mCRL2 toolset includes a tool for converting mCRL2 code into a linear
process specification (LPS), which is a compact symbolic representation of LTS
to speed up subsequent manipulations, a tool for generating explicit LTS from
LPS, tools for optimizing and visualizing LTS, and many other useful facilities.
For model checking, system properties are specified as formulae in a variant
of the modal μ-calculus extended with regular expressions, data and time. In
combination with an LPS such a formula is transformed into a parameterized
boolean equation system and can be solved with the appropriate tools from the
toolset. Analysis at the level of LTS, in particular, deadlock detection or checking

120 N. Kokash, B. Changizi, and F. Arbab

Table 3. mCRL2 encoding for channels and nodes

Sync = bA|bB · sA|sB · fA|fB · uA|uB · Sync
LossySync = (bA|bB · sA|sB · fA|fB · uA|uB + bA · sA · fA · uA) · LossySync
SyncDrain = bA|bB · (

sA · (sB · (fA · fB + fB · fA + fA|fB) + fA · sB · fB + sB|fA · fB)+
sB · (sA · (fA · fB + fB · fA + fA|fB) + fB · sA · fA + sA|fB · fA)+
sA|sB · (fA · fB + fB · fA + fA|fB)) · uA|uB · SyncDrain

AsyncDrain = (bA · sA · fA · uA + bB · sB · fB · uB) · AsyncDrain
FIFO = isEmpty(f) → bA · sA · fA · uA · FIFO(full)

� bB · bB · sB · fB · uB · FIFO(empty)

Merger = (bA|bC · sA|sC|fA|fC.uA|uC + bB|bC · sB|sC|fB|fC · uB|uC) · Merger
Replicator = bA|bB|bC · sA|sB|sC · fA|fC · uA|uC · Replicator

of the presence or absence of certain actions, is also possible. A detailed overview
can be found at the mCRL2 web site2.

We employed the mCRL2 toolset to generate state spaces for graphical Reo
circuits and further model check them. mCRL2 models for Reo circuits are gen-
erated in the following way [7]: observable actions (i.e., dataflow on the channel
ends in the basic CA model) are represented as atomic actions, while data items
observed at these ports are modeled as parameters of these actions. Analogously,
we introduce a process for every node and actions for all channel ends meeting
at the node. A global custom sort Data and the mCRL2 summation operator are
used to model the input data domain and iterate over it while specifying data
constraints imposed by channels.

The availability of the synchronization operator and multications in mCRL2
makes the translation of CA and ACA to the process algebra mCRL2 straight-
forward: we simply synchronize the joint ports in CA and the simultaneously
observed actions in ACA. Table 3 shows the mCRL2 encodings for the basic Reo
channels and nodes according to the semantic model introduced in this paper.
Since data support in the new translation is analogous to the case of the CA-
based translation [7], we omit its discussion here and for simplicity show only
the data-agnostic mapping. Note that the expression for the SyncDrain channel
in the table is equivalent to

SyncDrain = bA|bB · ((sA · fA)||(sB · fB)) · uA|uB · SyncDrain;

However, the use of the parallel operator in mCRL2 is restricted because of the
difficulties to linearize processes where such an operator occurs in the scope of
the sequential, alternative, summation or synchronization operators.

As in the CA approach, we construct nodes compositionally out of the Merger
and the Replicator primitives. Given process definitions for all channels and
nodes, a joint process that models the complete Reo connector is built by form-
ing a parallel composition of these processes and synchronizing the actions for
the coinciding channel/node ends. Optionally, the mCRL2 hiding operator can

2 www.mcrl2.org/

www.mcrl2.org/

A Semantic Model for Service Composition with Coordination Time Delays 121

be employed for abstracting the flow in internal nodes. Channel/node end syn-
chronization is performed using two of the mCRL2 operators: communication and
encapsulation. For minimizing intermediate state spaces while generating the
mCRL2 specification, we exploit the structure of the circuit and build the process
for the whole Reo connector in a stepwise fashion. In [5], we show that the op-
erational semantics of the mCRL2 specification obtained in this way is equivalent
to the CA semantics of the Reo connector. This result applies to ACA as well.

7 Conclusions

In this paper, we discussed the formal semantic models for the channel-based
coordination language Reo in the presence of coordination and data transfer
delays. We argued that the existing semantic models do not reflect all possible
behaviors in such circuits and are not suitable for the computation of end-to-end
time delays in Reo circuits. To fix these problems, we proposed a more expressive
model, action constraint automata, which represent the behavior of a circuit in
terms of actions observed on its ports. The new model distinguishes transactional
aspects of Reo from dataflow modeling, which is useful for the implementation
of animation and simulation tools for Reo as well as the implementation of Reo-
based service interaction protocols.

The presented work is a first step toward enabling performance analysis for
service compositions and process models specified in Reo. We are going to define
the quantitative version of the ACA and develop algorithms for computing time
delays in the circuits, which are rather straightforward, but are not discussed
here due to space limitation. We also plan to consider circuits with stochastic
delays and develop a theory of quality preserving substitutability of channel-
based connectors.

References

1. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14, 329–366 (2004)

2. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling Component Connectors in
Reo by Constraint Automata. Science of Computer Programming 61, 75–113 (2006)

3. Arbab, F., Chothia, T., Sun, M., Moon, Y.J.: Component connectors with QoS guar-
antees. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467,
pp. 286–304. Springer, Heidelberg (2007)

4. Arbab, F., Chothia, T., van der Mei, R., Sun, M., Moon, Y., Verhoef, C.: From
coordination to stochastic models of QoS. In: Field, J., Vasconcelos, V.T. (eds.)
COORDINATION 2009. LNCS, vol. 5521, pp. 268–287. Springer, Heidelberg (2009)

5. Kokash, N., Krause, C., de Vink, E.: Verification of context-dependent channel-
based service models. In: de Boer, F.S. (ed.) FMCO 2009. LNCS, vol. 6286,
pp. 21–40. Springer, Heidelberg (2010)

6. Chothia, T., Kleijn, J.: Q-automata: Modelling the resource usage of concurrent
components. In: Proc. FOCLASA 2006, pp. 79–94 (2007)

7. Kokash, N., Krause, C., de Vink, E.: Data-aware design and verification of service
composition with Reo and mCRL2. In: Proc. of SAC 2010, pp. 2406–2413. ACM
Press, New York (2010)

Compensable WorkFlow Nets

Fazle Rabbi, Hao Wang, and Wendy MacCaull�

Centre for Logic and Information
St. Francis Xavier University

{x2010mcf,hwang,wmaccaul}@stfx.ca

Abstract. In recent years, Workflow Management Systems (WfMSs)
have been studied and developed to provide automated support for defin-
ing and controlling various activities associated with business processes.
The automated support reduces costs and overall execution time for busi-
ness processes, by improving the robustness of the process and increasing
productivity and quality of service. As business organizations continue
to become more dependant on computarized systems, the demand for re-
liability has increased. The language t-calculus [8] was developed to aid
in the creation and verification of compensable systems. Motivated by
this we define Compensable WorkFlow nets (CWF-nets) and introduce a
graphical modeling language Compensable Workflow Modeling Language
(CWML). We present a case study, using CWML to model a real world
scenario, translate the resulting CWF-net into DVE (the input language
of the DiVinE model checker) and verify properties of interest.

1 Introduction

A traditional system which consists of ACID (Atomicity, Consistency, Isolation,
Durability) transactions cannot handle long lived transaction as it has only a flow
in one direction. A long lived transaction system is composed of sub-transactions
and therefore has a greater chance of partial effects remaining in the system in
the presence of some failure. These partial effects make traditional rollback op-
erations infeasible or undesirable. A compensable transaction is a type of trans-
action whose effect can be semantically undone even after it has committed [1].
A compensable transaction has two flows: a forward flow and a compensation
flow. The forward flow executes the normal business logic according to system
requirements, while the compensation flow removes all partial effects by acting
as a backward recovery mechanism in the presence of some failure.

The concept of a compensable transaction was first proposed by Garcia-Molina
and Salem [2], who called this type of long-lived transaction, a saga. A saga can
be broken into a collection of sub-transactions that can be interleaved in any
way with other sub-transactions. This allows sub-transactions to commit prior
to the completion of the whole saga. As a result, resources can be released earlier
and the possibility of deadlock is reduced. If the system needs to rollback in
case of some failure, each sub-transaction executes an associated compensation
� Three authors contributed equally to this paper.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 122–137, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Compensable WorkFlow Nets 123

to semantically undo the committed effects of its own committed transaction.
Bruni et al. worked on long running transactions and compared Sagas with CSP
[3] in the modelling of compensable flow composition [4].

In recent years, He et al. [5-8] have developed a specification for compens-
able transactions in order to provide increased system reliability. Ideally, such
compensable transactions would be used to model a larger computer system,
by composing several compensable sub-transactions to provide more complex
functionality. These transactions would provide backward recovery if an inter-
mediate error were to occur in the larger system. The result of this research was
the creation of a transactional composition language, the t -calculus [8].

Workflow management systems (WfMS) provide an important technology for
the design of computer systems which can improve information system devel-
opment in dynamic and distributed organizations. Motivated by the petri net
[9] and t -calculus [8] formalisms and the graphical representations underlying
the YAWL [11] and ADEPT2 [12] modeling languages, we define Compensable
WorkFlow nets (CWF-nets) and develop a new workflow modeling language, the
Compensable Workflow Modeling Language (CWML). In addition, we present a
verification method for CWF-nets using model checkers. Using this approach,
both requirements and behavioural dependencies of transactions (specified in a
temporal logic) can be verified efficiently. DiVinE [14], a well known distributed
model checker, is used in the case study.

Section 2 provides some background information. The CWF-nets and the
graphical modeling language, CWML, are defined in section 3. Section 4 presents
the verification method. A case study is provided in section 5, and section 6
concludes the paper.

2 Background

Petri nets [9], developed by Petri in the early 1960s, is a powerful formalism for
modeling and analyzing process.

Definition 1. A petri net is a 5-tuple, PN = (P, T, F, W, M0) where:

– P = {p1, p2,, pm} is a finite set of places,
– T = {t1, t2,, tn} is a finite set of transitions,
– F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation),
– W: F → {1,2,3,...} is a weight function,
– M0: P → {0,1,2,3,...} is the initial marking,
– P ∩ T = φ and P ∪ T �= φ.

A petri net structure N = (P, T, F, W) without any specific initial marking is
denoted by N.

Places may contain tokens and the distribution of tokens among the places of a
petri net determine its state (or marking).

The coloured petri Net [10] is an extension to the petri net, where the tokens
are valued and typed so that they can be distinguished.

124 F. Rabbi, H. Wang, and W. MacCaull

Definition 2. A coloured petri net is a 5-tuple, CPN = (P, T, C, IN, OUT)
where:

– P is a finite set of places,
– T is a finite set of transitions,
– C is a colour function such that C : P ∪ T → Non-empty sets of colours,
– IN and OUT are functions with domain (P × T) such that for all (p,t) ∈ P
× T, IN(p,t), OUT(p,t):C(p)→ [C(t)→ N]f , where [C(t)→ N]f denotes the
set of all total functions g from C(t) to N with the support a ∈ C(t):g(a) �= 0
finite.

A compensable transaction refers to a transaction with the capability to with-
draw its result after its commitment, if an error occurs. A compensable transac-
tion is described by its external state. There is a finite set of eight independent
states, called transactional states, which can be used to describe the external
state of a transaction at any time. These transactional states include idle (idl),
active (act), aborted (abt), failed (fal), successful (suc), undoing (und),
compensated (cmp), and half-compensated (hap), where idl, act, etc are the
abbreviated forms. Among the eight states, suc, abt, fal, cmp, hap are the
terminal states. The transition relations of the states are illustrated in Fig. 1.

Fig. 1. State transition diagram of compensable transaction [1]

Before activation, a compensable transaction is in the idle state. Once acti-
vated, the transaction eventually moves to one of five terminal states. A
successful transaction has the option of moving into the undoing state. If
the transaction can successfully undo all its partial effects it goes into the
compensated state, otherwise it goes into the half-compensated state. An or-
dered pair consisting of a compensable transaction and its state is called an
action. Actions are the key to describing the behavioural dependencies of com-
pensable transactions. In [1], five binary relations were proposed to define the
constraints applied to actions on compensable transactions. Informally the rela-
tions are described as follows, where both a and b are actions:

1. a < b: only a can fire b.
2. a ≺ b: b can be fired by a.
3. a � b: a is the precondition of b.
4. a ↔ b: a and b both occur or both not.
5. a � b: the occurance of one action inhibits the other.

Compensable WorkFlow Nets 125

The transactional composition language, t -calculus [8], was proposed to create
reliable systems composed of compensable transactions. In addition, it provides
flexibility and specialization, commonly required by business process manage-
ment systems, with several alternative flows to handle the exceptional cases.

The syntax of t -calculus is made up of several operators which perform com-
positions of compensable transactions. Table 1 shows eight binary operators,
where S and T represent arbitrary compensable transactions. These operators
specify how compensable transactions are coupled and how the behaviour of a
certain compensable transaction influences that of the other. The operators are
discussed in detail in [1,5,6] and described in section 3.

Table 1. t-calculus syntax

Sequential Composition S ; T Parallel Composition S || T

Internal Choice S � T Speculative Choice S ⊗ T

Alternative Forwarding S � T Backward Handling S � T

Forward Handling S � T Programmable Composition S � T

3 Workflow with Compensable Transactions

A workflow consists of steps or tasks that represent a work process. We extend
the task element with the concept of compensable transaction, and accordingly
adapt t -calculus for the composition of a compensable workflow. In this section,
first, we present the formal syntax and semantics of Compensable Workflow nets;
second, we present the graphical representation of the language, and finally, we
give formal analysis of the language.

3.1 Compensable Workflow Nets

We build a compensable workflow using a group of tasks connected with oper-
ators; a task handles a unit of work and operators indicate the nature of the
flow (forward and/or backward) relations between tasks. In particular, we de-
fine a colored petri net part for each task, therefore a CWF-net corresponds to
a complete colored petri net. We use the colored petri net because in reality, a
workflow handles several job instances (with different progress) at the same time
so that the token of each color can be used to represent a specific job instance.

An atomic task [13] is an indivisible unit of work. Atomic tasks can be ei-
ther compensable or uncompensable. We follow the general convention [13] of
assuming that if activated, an atomic uncompensable task always succeeds.

Definition 3. An atomic uncompensable task t is a tuple (s, Pt) such that:

– Pt is a petri net, as shown in Fig. 2;
– s is a set of unit states {idle, active, successful}; the unit state idle indicates

that there is no token in Pt; the unit states active and successful indicate
that there is a token in the place p act and p succ respectively;

126 F. Rabbi, H. Wang, and W. MacCaull

Fig. 2. Petri net representation of an uncompensable task

Remark that the unit states of a task are different from the state (marking) of
a petri net. In addition, the unit state of a task is token-specific, i.e., a task is
in a unit state for token(s) of a specific color and it may be in a different state
for token(s) of another color.

Definition 4. An atomic compensable task tc is a tuple (sc, Ptc) such that:

– Ptc is a petri net; as shown in Fig. 3;
– s is a set of unit states {idle, active, successful, undoing, aborted, failed}; the

unit state idle indicates that there is no token in Ptc ; the other unit states
indicate that there is a token in the relevant place;

Fig. 3. Petri net representation of a compensable task

The compensation flow is denoted by the dotted arcs. Note that an atomic
compensable task does not have the compensated and half-compensated states.
We drop these states as their semantics overlap with the aborted and failed
states. The compensated state means successful compensation, and corresponds
to aborted after successful ; the half-compensated state means error during com-
pensation, resulting in data inconsistencies (i.e., remained partial effects); it
corresponds to failed after successful.

The task tc transits to the unit state of active after getting a token in p act.
The token can move to either p succ, p abt or p fail representing unit states
successful, aborted or failed respectively. The unit state aborted indicates an error
occurred performing the task and the effects can be successfully removed. The
backward (compensation) flow is started from this point. On the other hand,
the unit state failed indicates that the error cannot be removed successfully and
the partial effect will remain in the system unless there is an exception handler.
Note that tc can transit to the unit states aborted or failed either before or after
the unit state successful.

Compensable WorkFlow Nets 127

A compensable task can be composed with other compensable tasks using
t -calculus operators.

Definition 5. A compensable task (φc) is recursively defined by the following
well-formed formula: (Adapted from [1])

φc = tc | (φc � φc)

where tc is an atomic compensable task, and � ∈ {;, ||, �, ⊗, �, �, �, � } is
a t-calculus operator defined as follows:

– φc1 ; φc2 : φc2 will be activated after the successful completion of φc1 ,
– φc1 || φc2 : φc1 and φc2 will be executed in parallel. If either of them (φc1 or φc2)

is aborted, the other one will also be aborted,
– φc1 � φc2 : either φc1 or φc2 will be activated depending on some internal choice,
– φc1 ⊗ φc2 : φc1 and φc2 will be executed in parallel. The first task that reaches

the goal will be accepted and the other one will be aborted,
– φc1 � φc2 : φc1 will be activated first to acieve the goal, if φc1 is aborted, φc2

will be executed to achieve the goal,
– φc1 � φc2 : if φc1 fails during execution, φc2 will be activated to remove

the partial effects remaining in the system. φc2 terminates the flow after
successfully removing the partial effects,

– φc1 � φc2 : if φc1 fails, φc2 will be activated to remove the partial effects. φc2

resumes the forward flow to achieve the goal,
– φc1 � φc2 : if φc1 needs to undo its effect, the compensation flow will be

redirected to φc2 to remove the effects.

Any task can be composed with uncompensable and/or compensable tasks to
create a new task.

Definition 6. A task (φ) is recursively defined by the following well-formed for-
mula:

φ = t | (φc) || (φ � φ)

where t is an atomic task, φc is a compensable task, and � ∈ {∧,∨,×, •} is a
control flow operator defined as follows:

– φ1 ∧ φ2: φ1 and φ2 will be executed in parallel,
– φ1 ∨ φ2: φ1 or φ2 or both will be executed in parallel,
– φ1 × φ2: exclusively one of the task (either φ1 or φ2) will be executed,
– φ1 • φ2: φ1 will be executed first then φ2 will be executed.

A subformula of a well-formed formulae is also called a subtask. We remark that if
T1 and T2 are compensable tasks, then T1;T2 denotes another compensable task
while T1 • T2 denotes a task consisting of two distinct compensable subtasks.
Any task which is built up using any of the operators {∧,∨,×, •} is deemed as
uncompensable.

In order for the underlying petri net to be complete, we add a pair of split and
join routing tasks for operators including ∧, ∨, ×, ||, �, ⊗, and � and we give

128 F. Rabbi, H. Wang, and W. MacCaull

their graphical representation in section 3.2. Each of these routing tasks has a
corresponding petri net representation, e.g., for the speculative choice operator
φc1 ⊗ φc2 , the split routing task will direct the forward flow to φc1 and φc2 ; the
task that performs its operation first will be accepted and the other one will be
aborted.

Now we can present the formal definition of Compensable WorkFlow nets
(CWF-nets):

Definition 7. A Compensable Workflow net (CWF-net) CN is a tuple (i, o,
T, Tc, F) such that:

– i is the input condition,
– o is the output condition,
– T is a set of tasks,
– Tc ⊆ T is a set of compensable tasks, and T \Tc is a set of uncompensable

tasks,
– F ⊆ ({i} × T) ∪ (T × T) ∪ (T × {o}) is the flow relation (for the net),
– the first atomic compensable task of a compensable task is called the initial

subtask; the backward flow from the initial subtask is directed to the output
condition,

– every node in the graph is on a directed path from i to o.

If a compensable task aborts, the system starts to compensate. After the full
compensation, the backward flow reaches the initial subtask of the compens-
able task and the flow terminates, as the backward flow of an initial task of
compensable tasks is connected with the output condition.

The reader must distinguish between the flow relation (F) of the net, as above
and the internal flows of the atomic (uncompensable and compensable) tasks.

A CWF-net such that Tc = T is called a true Compensable workflow net
(CWFt-net).

3.2 Graphical Representation of CWF-Nets

We first present graphical representation of t -calculus operators, then present the
contruction principles for modeling a compensable workflow. Fig. 4 gives graph-
ical represetation of tasks. Some of the operators are described in this section.

Sequential Composition. Two compensable tasks φc1 and φc2 can be com-
posed with sequential composition as shown in Fig. 4, which represents the
formula φc1 ; φc2 . Task φc2 will be activated only when task φc1 finishes its op-
erations successfully. For the compensation flow, when φc2 is aborted, φc1 will
be activated for compensation, i.e., to remove its partial effects.

Recall that in CWF-nets, we drop the compensated and half-compensated
states because their semantics overlap with the aborted and failed states; there-
fore, we do not consider the two states in the behavioural dependencies. The
following two basic dependencies [1] describe behaviour of sequential composi-
tion: i) (φc1 , suc) < (φc2 , act); ii) (φc2 , abt) ≺ (φc1 , und);.

Theorem 1. The above dependencies hold in the petri net representation (as in
Fig. 3) of sequential composition.

Compensable WorkFlow Nets 129

Fig. 4. Graphical Representation of Tasks

Proof: It is straight forward when we interpret the two tasks using the petri net
in Fig. 3.

Theorem 2. The above dependencies hold in the DVE code of sequential com-
position

Proof: It is straight forward when we look at the DVE code for sequential com-
position which can be found in section 4.

Parallel Composition. Compensable tasks that are composed using parallel
composition are executed in parallel. If one of the parallel tasks or branches
fails or aborts then the entire composed transaction will fail or abort, as a
composed transaction cannot reach its goal if a sub-transaction fails. The petri
net representation of parallel composition of two compensable tasks φc1 and φc2

(φc1 || φc2) is shown in Fig. 5. Furthermore, parallel composition requires that
if one branch either fails or aborts then the other branch should be stopped
to save time and resources. This is achieved by an internal mechanism called
forceful abort (not shown in Fig. 5), which forcefully aborts a transaction and
undos its partial effects. Details of forceful abort can be found from our website
[16]. To sum up, when compensating, tasks which are composed in parallel are
required to be compensate in parallel.

The related behavioural dependencies are formalized as: i) (φc1 , act) ↔
(φc2 , act); ii) (φc1 , und) ↔ (φc2 , und); iii) (φc1 , suc) ↔ (φc2 , suc). Analogous
to the dependencies of the sequential composition, these basic dependencies also

130 F. Rabbi, H. Wang, and W. MacCaull

Fig. 5. Petrinet representation of parallel composition

holds in the petri net representation and in the DVE code of the parallel com-
position.

There can be more than two compensable tasks in parallel composition; for
this composition all the branches will be activated and executed in parallel.

Alternative Forwarding. The alternative forwarding composition is used to
decide between two or more equivalent tasks with the same goals. Alternative
forwarding implies a preference between the tasks, and it does not execute all
branches in parallel. Therefore if, for example, the alternative forwarding com-
position is used to buy air tickets, one airline may be preferred to the other and
an order is first placed to the preferred airline. The other airline will be used to
place an order only if the first order fails.

In Fig. 4, we can see the two tasks φc1 and φc2 which are composed by alter-
native forwarding. It represents the formula φc1 � φc2 . In this composition, task
φc1 has higher priority and it will be executed first. Task φc2 will be activated
only when task φc1 has been aborted or failed. In other words, φc1 runs first and
φc2 is the backup of φc1 . The petri net representation of alternative forwarding
composition of two compensable tasks φc1 and φc2 is shown in Fig. 6.

The basic dependency is described by: (φc1 , abt) < (φc2 , act). Analogous to the
dependencies of the sequential composition, this basic dependency also holds in
the petri net representation and in the DVE code of the alternative forwarding
composition.

Descriptions of Internal Choice, Speculative Choice, Backward handling, For-
ward handling and Programmable Compensations can be found from our web-
site [16].

Construction Principle 1. Construction principles for the graphical repre-
sentation of tasks are as follows:

– The operators [•, ;, �, �, �] are used to connect the operand tasks sequentially.
Atomic uncompensable tasks are connected by a single forward flow. Atomic

Compensable WorkFlow Nets 131

Fig. 6. Petrinet representation of alternative forwarding composition

compensable tasks are connected by two flows- one forward and one backward
if they are connected by the sequential operator. Atomic uncompensable tasks
and atomic compensable tasks are connected by a single forward flow;

– The convention of ADEPT2 is followed in order to enable ‘Poka-Yoke Work-
flows’ [17], which supports “correctness by construction”. A pair of split and
join routing tasks are used for tasks composed by {∧, ∨, ×, ||, �, ⊗, �}.
Atomic uncompensable tasks are connected with split and join tasks by a
single forward flow. Atomic compensable tasks are connected with split and
join tasks by two flows (forward and backward). The operators and its cor-
responding split and join tasks are shown in Table 2;

– Two split and join tasks for the same operator can be merged to a single split
task (or join task) combining the branches. By this arrangement tasks can
be composed in more than two branches of a split/join pair.

– Every compensable task is covered by an exception handler (forward or back-
ward).

If these principles are followed, the resulting graph is said to be “correct by
construction”.

Table 2. Operators and their associated split and join tasks

132 F. Rabbi, H. Wang, and W. MacCaull

3.3 Analysis

We adapt the definition of soundness for CWF-net from [13]. Informally, the
soundness of CWF-net require that for any case, the underlying coloured petri
net will terminate eventually, and at the moment it terminates, there is a token
in the output condition and all other places are empty. Formally, the soundness
of CWF-net is defined as follows:

Definition 8. A CWF-net CN = (i, o, T, Tc, F) is sound (or structurally sound)
iff, considering the underlying petri net:

1. For every state (marking) M reachable from the initial state Mi, there exists
a firing sequence leading from M to the final state Mf , where Mi indicates
that there is a token in the input condition and all other places are empty
and Mf indicates that there is a token in the output condition and all other
places are empty. Formally: ∀M(Mi →∗ M)⇒ (M →∗ Mf);

2. Mf is the only state reachable from Mi with at least one token in the output
condition. Formally: ∀M (Mi →∗ M ∧M ≥ Mf) ⇒ (M = Mf);

3. There are no dead transitions inCN . Formally:∀t∈T , ∃M,M ′Mi →∗ M →t M ′.

We have the following theorem:

Theorem 3. If a CWF-net is correct by construction, it is sound.

Proof: Let CN be a CWF-net which consists of some uncompensable and com-
pensable tasks.

– Case 1, CN consists of only one atomic task (t): as t is connected to the
input condition and the output condition. t will be activated by the input
condition and will continue the forward flow to the output condition, the
flow will terminate. Therefore CN is sound.

– Case 2, CN consists of only atomic uncompensable tasks composed by op-
erators {∧,∨,×, •}: according to the construction principle, every split task
must have a same type of join task. This pair of split and join tasks provides
a safe routing of the forward flow; all the tasks of the workflow are on a path
from the input condition to the output condition, which ensures that there
is no dead task in the workflow and the flow always terminates. Therefore
CN is sound.

– Case 3, CN includes some atomic uncompensable tasks and atomic com-
pensable tasks: First let us consider that CN has one atomic compensable
task (tc). tc is activated by some atomic task or the input condition. If tc is
successful during the execution, it will activate the next task (or the output
condition) by continuing the forward flow. If tc is aborted, it will start the
compensation flow. As this is the only compensable task (it is the initial
task itself), the compensation flow is connected to the output condition. It
is easy to see that if tc is aborted, the flow also terminates. If tc fails during
execution, the error handler will be in effect and will either terminate the
flow to the output condition (backward handler) or continue the forward

Compensable WorkFlow Nets 133

flow (forward handler). Therefore CN is sound. Now let us consider there is
more than one atomic compensable task in CN . For every compensable task
there is an initial subtask and the compensation flow of the initial subtask
is connected to the output condition. If the compensable tasks do not fail,
they will continue the forward flow until the output condition is reached.
If the composition of compensable tasks is aborted, the compensation flow
will reach the initial subtask, which will direct the compensation flow to the
output condition. Therefore CN is sound.

4 Verification

Once a workflow is designed with compensable tasks, its properties can be veri-
fied by model checkers such as SPIN, SMV or DiVinE. Modeling a workflow with
the input language of a model checker is tedious and error-prone. Leyla et al.
[19] translated a number of established workflow patterns into DVE, the input
language of DiVinE model checker. Based on this translation, we proposed an
automatic translator which translates a graphical model constructed using the
YAWL editor to DVE, greatly reducing the overall effort for model checking (see
[20] and the extension involving time in [23]).

DiVinE is a distributed explicit-state Linear Temporal Logic (LTL) model
checker based on the automata-theoretic approach. In this approach, the sys-
tem properties are specified as LTL formulas. LTL is a type of temporal logic
which, in addition to classical logical operators, uses the temporal operators
such as: always (�), eventually (♦), until (�), and next time (©) [15]. In the
automata-theoretic approach, the system model and the property formula are
each associated to an automaton. The model checking problem is reduced to
detecting an accepting cycle in the product of the system model automaton and
the negation of the property automaton. DiVinE provides several model check-
ing algorithms which efficiently employ the computational power of distributed
clusters. DVE is sufficiently expressive to model general problems.

In [1] two types of verification were proposed for the verification of com-
pensable transactions: i) Acceptable Termination States (ATS), ii) Temporal
Verification. However they cannot verify the compensable transactions with the
whole workflow, and cannot handle the state space explosion problem. Our ap-
proach can verify the workflow with the compensable tasks. As we are using a
distributed model checker, we can handle the large state space of a large model.
Since LTL specification formulas can be used to verify the temporal specification
of the workflow it is possible to check the Acceptable Termination States (ATS).
Behavioural dependencies and requirement specifications both can be checked
using this approach.

In the DVE translation, workflow processes, subprocesses and activities are
mapped to DVE processes and control flows are managed using DVE variables,
guards and effects. We give one example below.

134 F. Rabbi, H. Wang, and W. MacCaull

Fig. 7. Order processing workflow

Sequential Composition. Let A and B be two compensable tasks composed
by the sequential operator (;). Each task corresponds to a process in DVE. When
process A is activated, it can transit to successful, aborted or failed. B is
activated only if A transits to successful. Once activated, B can also transit
to successful, aborted or failed. If B is aborted, it sets positive value to the
variable named B abt (represents a token in its place p abt).

int A_SUC = 0;

int A_ABT = 0;

. . . .

process A{

. . . .

tr -> tr { guard Start_SUC>0;effect Start_SUC=Start_SUC -1,A_SUC=A_SUC +1;},

tr -> tr { guard Start_SUC>0;effect Start_SUC=Start_SUC -1,A_ABT=A_ABT +1;},

tr -> tr { guard Start_SUC>0;effect Start_SUC=Start_SUC -1,A_FAIL= A_FAIL +1;},

tr -> tr { guard B_ABT > 0 ; effect B_ABT = B_ABT - 1 , A_ABT = A_ABT +1;},

tr -> tr { guard B_ABT > 0 ; effect B_ABT = B_ABT - 1 , A_FAIL = A_FAIL +1;};}

process B{

. . . .

tr -> tr { guard A_SUC > 0; effect A_SUC = A_SUC - 1, B_SUC = B_SUC + 1;},

tr -> tr { guard A_SUC > 0; effect A_SUC = A_SUC - 1, B_ABT = B_ABT + 1;},

tr -> tr { guard A_SUC > 0; effect A_SUC = A_SUC - 1, B_FAIL = B_FAIL + 1;};}

5 Case Study

In this section we provide a case study adapted from [1]. A customer’s order
processing workflow is described here with compensable transactions. Only a
registered customer can make an order to the company. If the customer is not
registered, s/he performs the registration and then signs in to the system. Once
the order is made, the system starts processing the order. The workflow is pre-
sented in Fig. 7. In the workflow Process Customer Order the process is a nested

Compensable WorkFlow Nets 135

compensable task which has been decomposed into a CWFt-net . The workflow
provides lots of flexibility and exception handling through which the system can
compensate in exceptional scenario. The Prepare Order and Contact Shipper are
processed in parallel as these are two time consuming tasks. However if either
Prepare Order or Contact Shipper aborts, the other will be aborted immediately.
In this example, the seller has two shippers (A and B). Shipper A is cheaper but
hard to book whereas Shipper B is more expensive but is always available. To
save money, Shipper A is preferred; Shipper B is booked only when Shipper A is
unavailable. The selected shipper is responsible for delivering these items. Note
that if the customer cancels the order during processing, the compensation for
completed parts will be activated. When the compensation cannot properly undo
the partial effects, the seller would ask for extra indemnities from the customer
which is transacted by backward handling. Here the backward handler is com-
posed with a nested task which will be activated if any of the compensable tasks
fails inside the CWFt-net.

5.1 Verification Results

We have developed an editor for compensable transaction which includes a trans-
lator that can translate a CWF-net model to DiVinE model checker. The process
is fully automated and the tool is available in our website [16].

Reachability: The reachability result shows that there is no deadlock state
and no error state in the system. There are a total of 27620 states and 56089
transitions in experiment. We verified five properties, due to space limits, we
only give details for Prop1: Customer cannot make order without sign in or
registration.

To verify this property we define a global integer variable in DVE named
customer sign in. The initial value of the variable is set to 0. The value is
changed to 1 when the customer is signed in, means when the process Sign in is
in successful state. We define three atomic propositions in the following way:

#define order_made (Make_Order_SUC == 1)

#define sign_in (customer_sign_in == 1)

#define registration (customer_registration == 1)

The LTL specification using these propositions for the property is:

G F !(!(sign in ‖ registration) && order made)

Other properties and the corresponding LTL formulas:

– Prop2: Shipper A and B will not be contacted at the same time.
G F !(shipper a is successful && shipper b is successful)

– Prop3: If Prepare Order is aborted, the Order Process task is compensated.
G(prepare order aborted → F(order process compensated))

– Prop4: Get Indemnity is activated if Book Shipper A fails to compensate.
G (shipper a failed → F(get indemnity for deduct money))

– Prop5: Any order is eventually delivered or compensated if no task fails.
G (order made → F (order delivered || order compensated))

136 F. Rabbi, H. Wang, and W. MacCaull

Table 3. Verification Results for the DiVinE model checker

Property Acc States Memory Time
Cycle (MB) (s)

Prop1 No 27623 166.891 0.388079
Prop2 No 27620 166.891 0.377525
Prop3 No 28176 167.012 0.370857
Prop4 No 27626 166.895 0.35127
Prop5 No 42108 170.023 0.623221

6 Conclusion and Future Work

Over the last decade, there has been increasing recognition that modeling lan-
guages should be more expressive and provide comprehensive support for the
control-flow, data, resource and exception handling perspectives. In this paper
we have shown how a workflow can be better represented by the composition of
compensable tasks. The idea of workflow with compensable task will add a new
dimension of flexibility and exception handling.

This research is part of an ambitious research and development project, Build-
ing Decision-support through Dynamic Workflow Systems for Health Care [21] in
a collaboration with Guysborough Antigonish Strait Health Authority (GASHA)
and technology industrial partner. Real world workflow processes can be highly
dynamic and complex in a health care setting. To manage the ad hoc activities
efficiently, a flexible workflow system with better exception handling mechanism
must be designed. Hao and MacCaull [22] developed several new Explicit-time
Description Methods (EDM), which enable general model checkers like DiVinE
to verify real-time models. Based on them, we are extending CWML to describe
real time information in workflow models. More importantly, our group is devel-
oping an innovative workflow modeling framework named NOVA Workflow that
is compeNsable, Ontology-driven, Verifiable and Adaptive.

Acknowledgment

This research is sponsored by Natural Sciences and Engineering Research Council
of Canada, by an Atlantic Computational Excellence Network (ACEnet) Post
Doctoral Research Fellowship and by the Atlantic Canada Opportunities Agency.
The computational facilities are provided by ACEnet.

References

1. Li, J., Zhu, H., He, J.: Specifying and verifying web transactions. In: Suzuki, K.,
Higashino, T., Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008. LNCS, vol. 5048,
pp. 149–168. Springer, Heidelberg (2008)

2. Garcia-Molina, H., Salem, K.: Sagas. SIGMOD Rec. 16(3), 249–259 (1987)
3. Butler, M., Hoare, T., Ferreira, C.: A trace semantics for long-running transactions.

In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential
Processes. LNCS, vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

Compensable WorkFlow Nets 137

4. Bruni, R., Butler, M., Ferreira, C., Hoare, T., Melgratti, H., Montanari, U.: Compar-
ing Two Approaches to Compensable Flow Composition. In: Abadi, M., de Alfaro,
L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 383–397. Springer, Heidelberg (2005)

5. He, J.: Compensable programs. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal
Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 349–363. Springer,
Heidelberg (2007)

6. He, J.: Modelling coordination and compensation. In: Leveraging Applications of
Formal Methods, Verification and Validation, vol. 17, pp. 15–36 (2009)

7. Li, J., Zhu, H., He, J.: Algebraic semantics for compensable transactions. In: Jones,
C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 306–321.
Springer, Heidelberg (2007)

8. Li, J., Zhu, H., Pu, G., He, J.: Looking into compensable transactions. In: The 31st
IEEE Software Engineering Workshop, pp. 154–166. IEEE CS press, Los Alamitos
(2007)

9. Murata, T.: Petri nets: properties, analysis, and applications. Proc. IEEE 77(4),
541–580 (1989)

10. Narahari, Y., Viswanadham, N.: On the Invariants of Coloured Petri Nets. In:Rozen-
berg, G. (ed.) APN 1985. LNCS, vol. 222, pp. 330–345. Springer, Heidelberg (1986)

11. van der Aalst, W.M.P., ter Hofstede, A.: YAWL: Yet another workflow language.
Inf. Syst. 30(4), 245–275 (2005)

12. Dadam, P., Reichert, M., Rinderle, S., et al.: ADEPT2 - Next Generation Process
Management Technology. Heidelberger Innovationsforum, Heidelberg (April 2007)

13. Van der Aalst, W.M.P., Van Hee, K.: Workflow Management: Models, Methods
and Systems. The MIT Press, Cambridge (2002)

14. DiVinE project, http://divine.fi.muni.cz/ (last accessed on August 2010)
15. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge

(1999)
16. Center for Logic and Information, St. Francis Xavier University,

http://logic.stfx.ca/ (last accessed on August 2010)
17. Reichert, M., Dadam, P., Rinderle-Ma, S., et al.: Enabling Poka-Yoke Workflows

with the AristaFlow BPM Suite. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A.
(eds.) Business Process Management. LNCS, vol. 5701. Springer, Heidelberg (2009)

18. Barkaoui, K., Ben Ayed, R., Sbai, Z.: Workflow Soundness Verification based on
Structure Theory of Petri Nets. International Journal of Computing and Informa-
tion Sciences 5(1), 51–61 (2007)

19. Leyla, N., Mashiyat, A., Wang, H., MacCaull, W.: Workflow Verification with
DiVinE. In: The 8th International Workshop on Parallel and Distributed Methods
in verification, PDMC 2009 (2009) (work in progress report)

20. Rabbi, F., Wang, H., MacCaull, W.: YAWL2DVE: An automated translator for
workflow verification. In: The 4th IEEE International Conference on Secure Soft-
ware Integration and Reliability Improvement (SSIRI 2010), pp. 53–59. IEEE CS
press, Los Alamitos (2010)

21. Miller, K., MacCaull, W.: Toward Web-based Careflow Management Systems.
Journal of Emerging Technologies in Web Intelligence (JETWI) Special Issue E-
health Interoperability 1(2009), 137–145 (2009)

22. Wang, H., MacCaull, W.: An Efficient Explicit-time Description Method for Timed
Model Checking. In: The 8th International Workshop on Parallel and Distributed
Methods in verifiCation 2009 (PDMC 2009). EPTCS, vol. 14, pp. 77–91 (2009)

23. Mashiyat, A., Rabbi, F., Wang, H., MacCaull, W.: An Automated Translator for
Model Checking Time Constrained Workflow Systems. In: FMICS 2010. LNCS,
vol. 6371, pp. 99–114. Springer, Heidelberg (2010)

http://divine.fi.muni.cz/
http://logic.stfx.ca/

Automatically Testing Web Services
Choreography with Assertions

Lei Zhou1, Jing Ping1, Hao Xiao1,
Zheng Wang1, Geguang Pu1, and Zuohua Ding2

1 Shanghai Key Laboratory of Trustworthy Computing,
Software Engineering Institute, East China Normal University,

Shanghai, 200062, China
2 Center of Math Computing and Software Engineering,

Institute of Science, Zhejiang Sci-Tech University,
Hangzhou, Zhejiang, 310018, China

xiaohao@sei.ecnu.edu.cn, ray-zhou@hotmail.com,

pingjing1988@gmail.com, wangzheng@sei.ecnu.edu.cn,

ggpu@sei.ecnu.edu.cn, zuohuading@hotmail.com

Abstract. Web Service Choreography Description Language gives a
global view on the collaborations among a collection of services involv-
ing multiple participants or organizations. Since WS-CDL is aimed at
a design specification for service composition, there are few approaches
to be proposed to test WS-CDL programs. In this paper, we present
an approach to testing WS-CDL programs automatically. The dynamic
symbolic execution technique is applied to generate test inputs and as-
sertions are treated as the test oracles. Moreover, a simulation engine for
WS-CDL is used to perform the execution of WS-CDL programs during
the process of symbolic execution. At the end of each execution, the path
conditions collected by symbolic execution are put into a SMT solver to
generate new input data that will guide the next simulation. Meanwhile,
the SMT solver is applied to decide whether the assertion predicates can
be satisfied under current path conditions for all test data which im-
proves the quality of testing further.

Keywords: Web Services, WS-CDL, Automatic Testing, Choreography,
Symbolic Execution.

1 Introduction

The Web Services paradigm promises to carry on dynamic and flexible interoper-
ability of highly heterogeneous and distributed platforms. SOAP [20], WSDL [21]
and UDDI [12] specify the fundamental standards and others proceeded by WS-
(WS-Policy, WS-Addressing, WS-Security etc. [22]) allow applications to interact
with each other to form a loosely coupled platform-independent model.

The design and implementation of Web Services-based systems require the
combination of different distributed services together to achieve the business
goal. Thus, it is essential to use the logic operators on Web Services to com-
pose and analyze the complex behaviors of the system. SOA community tries

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 138–154, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automatically Testing Web Services Choreography with Assertions 139

to meet this demand by defining Web Services compositional languages such as
WSFL [24], BPML [3], WS-BPEL [4], WS-CDL [23], and WSCI [25] etc. There
are two representative models for Web Services composition. One is orchestration
model, and the other is choreography model. The orchestration model gives a
local view from one business part to handle interactions in which a given service
can perform its internal activities as well as communicate with other services.

On the other hand, the choreography model gives a global view on the collabo-
ration among a collection of services involving multiple different organizations or
independent processes. Web Services Choreography Description Language (WS-
CDL for short) is a W3C candidate recommendation for Web Services choreo-
graph.

Fig. 1 depicts the structure the WS-CDL program. The root choreography
is the entrance of the WS-CDL program and is defined uniquely. The activity
notation defines specific logic for each choreography. In other words, both the
entrance and the behavior of the choreographies are fixed.

Root
Choreography

Information Type
Definition

Role Type
Definition

Definition
Notation

Choreography A

Choreography B

Definition
Notation

Sequence

Sequence

Parallel

Perform

Interaction

Assign

Interaction

Interaction

Assign

Executable
Block

Definitive
Block

Fig. 1. WS-CDL Program Structure

The analysis of WS-CDL programs is important for the development of sys-
tems. If bugs can be removed as early as possible, especially at the design phase,
the quality of systems can be improved while costs can be saved at the de-
ployment phase. As its intuitive name indicates, WS-CDL is not an executable
language, which makes it difficult to test, but testing for web service choreogra-
phies is an effective mechanism to ensure the qualities of system designs.

140 L. Zhou et al.

In this paper, we present a new approach to automatically testing WS-CDL
programs. The basic idea is to automate test data generation based on the pro-
gram structure according to the path coverage criteria and then use the generated
data to execute the program automatically. The dynamic symbolic execution
technique [17,7] is adopted to automate test data generation which guides the
execution of programs. An assertion statement which is a language extension to
the standard WS-CDL specification is developed to express the intention of the
program by designers. To facilitate the automated testing of WS-CDL, we de-
veloped a simulation engine [27] for WS-CDL programs. However, one difficulty
in testing WS-CDL is the parallel structure since the same test data may lead to
different behaviors of the concurrent program. To handle this issue, we propose
a practical method to test programs with parallel structures.

Choreography
Model

Choreography
Parser

Test InputInitial
Data

Simulation
Engine

Symbolic
Execution

Constraint
Collection

SMT
Solver

Generated
Solution

Assertion
Testing

Assertion
Proof

Fig. 2. Approach Outline

Fig. 2 demonstrates our approach. The WS-CDL program is firstly processed
by the parser which is developed by ourselves. Since WS-CDL has an entrance
unit, a random value is put into this unit to drive the choreography initially.
Then, the simulation engine is performed to simulate program behaviors and
record the choreography state at the same time. Meanwhile, the symbolic values
are analyzed at the end of every simulation by means of symbolic execution. The
predicates appeared in path branches are collected which make up the path con-
straint of the current program path. With a SMT solver (Z3 [29] is employed in
our implementation) which solves the path constraint by negating the last term
of the current path predicate, we can get a solution for the involved variables.
This solution is taken as new input for service choreographies to guide the next
simulation. The testing process terminates when all the paths in choreographies
are traversed by the simulation engine. The assertion is designed to test whether

Automatically Testing Web Services Choreography with Assertions 141

the current program point satisfies some property. We use two approaches to
test assertions. The first one is using the generated test data to test whether the
assertion is satisfied. However, while the current test data make the assertion
true, there may be other data which make the assertion false. To enhance the as-
sertion testing, we use the symbolic execution with a constraint solver to achieve
a proof that can decide whether the assertion is satisfied under the execution
of current path. This technique is similar to the one adopted by the bounded
model checking for software [2]. When the assertion is satisfied by all the paths
that pass it, then the assertion is proved to be true for service choreographies.

This paper is organized as follows. Section 2 describes the related work. Sec-
tion 3 presents the motivating examples for our approach. Section 4 presents
the automated test data generation approach, and some technical details are
discussed as well. Based on our approach, we implemented the tool for auto-
mated testing of service choreography with assertions, and experimental results
are introduced in Section 5. Section 6 concludes our work.

2 Related Work

The analysis of the service choreography has been studied in recent years. For
instance, Foster et al. [6] proposed a model-based approach to the analysis of obli-
gations in Web Services choreographies by means of process algebra. Pu et al. [13]
proposed an approach to validation and verification of the WS-CDL specification
with static and dynamic properties. Monakova et al. [18] proposed an approach
to translate both WS-BPEL process and business rules into logic predicates,
and then use a constraint solver to decide whether the business rules is valid un-
der the current process model. Their work is different from ours since we use a
constraint solver to generate test data instead of verification of business process.

Testing of Web Services is crucial for the practice of engineering [5,9,1,11]. For
instance, Bartolini et al. [1] introduced a WS-TAXI framework to combine the
coverage of WS operations with data-driven test generation. L. Mei et al. [11]
proposed a C-LTS model to represent choreography applications from the test-
ing perspective to address the challenges such as mismatches in message content
selection. Kathrin Kaschner and Niels Lohmann [28] suggested an approach to
automate test case generation based on the open nets [26] model of public pro-
tocol of interacting services.Yan et al. [14] applied symbolic execution to test
BPEL4WS programs. They translated the BPEL4WS programs to a XCFG and
simplified some features of BPEL4WS such as scope, exception handling. Our
basic idea is similar to theirs, while we use dynamic symbolic execution, which
can reduce the state space and support web service interactions better.

Our approach for testing WS-CDL needs a simulation engine, which has been
developed by ourselves [15]. This engine differs from [19], in which the execu-
tion of WS-CDL programs will invoke the real services. Our simulation engine
is actually a WS-CDL interpreter, which can simulate the WS-CDL language
definitions, the interfaces and data types defined in services. Based on this sim-
ulator, we can carry on symbolic executions of WS-CDL programs thoroughly
by providing all the possible data returned from services invocations.

142 L. Zhou et al.

3 Motivating Examples

In this section, two examples are presented. The first one is to demonstrate the
basic idea about automatic testing of WS-CDL program. The second one handles
the WS-CDL program with assertions.

The travel example is depicted in Fig. 3. It is a simple example about booking
flight tickets and hotels before travelling. The dynamic symbolic execution starts
with assigning random values to the program variables that affect the path selec-
tion. Variables flightAvailable and roomAvailable in this example are assigned
to integer 0. We denote them as a pair of values < 0, 0 >.

Fig. 3. Travel Example

The simulation engine of WS-CDL is firstly performed with initial input val-
ues. With the execution of the target program, the symbolic values of program
variables are collected and stored with the concrete values. When the control flow
arrives at the first workunit, the guard is not established since [flightAvailable >
0] is not satisfied. As a result, the path constraint ¬[availableF ilgit > 0] is
collected and the program terminates. To make the program traverse other
paths, the negation of the last term in current path constraint is generated,
as [availableF ilgit > 0]. Then, a constraint solver (such as SMT solver) is
called and a solution is obtained. Suppose integer 1 is returned for variable
flightAvailable, and the new value pair < 1, 0 > is generated which is put into
the target program as a new test case. The engine is performed with the new
test case, and constraint path [flightAvailable > 0] ∧ [¬(roomAvailable > 0)]
is collected with the current execution. In this case, the first workunit is satis-
fied while the second workunit fails to be true. Thus, the negation of the last
term [¬(roomAvailable > 0)] is obtained and the constraint solver generates the
new solution for the constraint [flightAvailable > 0] ∧ [roomAvailable > 0].
Suppose the new solution is < 1, 1 > which is regarded as a new data for the
next execution. As a result, the two workunits are all satisfied and the two sub-
choreographies are performed afterwards. Thus, three test cases are generated
automatically and cover all the program paths.

Automatically Testing Web Services Choreography with Assertions 143

Fig. 4. Travel Example with Assertions

In order to express the expected behaviors of service choreographies, we design
the assertion statements for WS-CDL, and the details are discussed in Section 4.
Here, one example is presented to show how the assertion mechanism works. We
add two artificial assertions into the previous example and it is depicted in Fig. 4.
The first assertion says that variable flightAvailable is less than 3 while the
second assertion decides that roomV ailable is more than 0. When the last test
case < 1, 1 > is generated and executed, it passes both of the assertions. Though
the two assertions are both passed, but the first assertion may be failed while the
second assertion is always true. For instance, if the generated data is < 4, 1 >
that still satisfies the two workunits, while it cannot pass the first assertion. By
symbolic execution, assertions are also collected with the path constraints. For
instance, when the program executes with the test data < 1, 1 > and terminates,
we obtain the following predicate formulas:

[flightAvailable > 0] ∧ [(roomAvailable > 0)]→ [flightAvailabe < 3]

[flightAvailable > 0] ∧ [(roomAvailable > 0)]→ [flightAvailabe > 0]

When the two formulas are put into the SMT solver, we can obtain that there
exists a solution that makes the first formula false while the second is always true.
Obviously, this technique can enhance the testing and the details are introduced
in Section 4.

144 L. Zhou et al.

4 Automated Test Data Generation

The simulation engine can simulate one single execution of choreography for one
test input. To automatically test choreographies, it is important to automate
the test data generation which satisfies some coverage criteria. After test data
have been generated, the simulation engine can perform WS-CDL program with
those generated test inputs one after another, thus the testing process can be
fully automated. The coverage criteria we adopt is the path coverage, and each
test case will exercise one path in the WS-CDL program. In the following we
will explain how our approach works.

4.1 Control Flow Graph (CFG)

To perform symbolic execution, both data and control flow information should
be collected from WS-CDL program under test. The Control Flow Graph [10] is
used to represent the control flow information for WS-CDL program. We formally
introduce CFG below. A choreography can be modeled as its corresponding
control flow graph.

Definition 1. CFG = (V, VB,L, l0, op, E), where

– a set of variables V , and VB ⊆ V denotes binding variables, which plays the
role as input and output variables.

– a set of control labels L and l0 ∈ L is the start label
– a mapping op from a label l ∈ L to the following basic instruments:

1. stop: termination instrument.
2. x := e: assignment instrument, where x ∈ V and e is arithmetic expres-

sion over V .
3. if e then l1 else l2: conditional instrument, where e is arithmetic expres-

sion over V and l1 ∈ L, l2 ∈ L.
4. throw(en, l1): the instrument that can throw an exception, where en is

the exception name and l1 is the label of the exceptionBlock of current
choreography.

5. catch case en1 : l1, case en2 : l2, · · · , case enn : ln, else : l0: the in-
strument that handles exceptions or passes exceptions to its immediately
enclosing choreography, where l1, · · · , ln is an list of exception names
which it take interests in and l0 is the immediately enclosing choreogra-
phy’s exceptionBlock, ln may be ”default” which means it is interested in
all exceptions.

6. finalize(fn, l1): finalize instrument where fn is the name of finalizerBlock
construct in its immediately enclosed choreography and l1 is the final-
izerBlock’s label.

7. perform(ch, id,
−→
b): perform instrument, where ch is the name of per-

formed choreography, id is the instance id of the performed choreography
and

−→
b is a mapping from variables in the performing to variables in the

performed choreography, domain(
−→
b) ⊆ V .

Automatically Testing Web Services Choreography with Assertions 145

– a set of directed edges E ⊆ L× L is defined as follows:
1. if l ∈ L and op(l) is an assignment instrument or a perform instrument,

then there is exactly one l′ ∈ L with (l, l′) ∈ E
2. if l ∈ L and op(l) is an conditional instrument if e then l1 else l2, then

(l, l1) ∈ E and (l, l2) ∈ E.

Since there are some WS-CDL constructs which are not stated above, but they
can be translated into above CFGs. The transformation follows the rules defined
below:

– assign, exchange, record elements are modeled with assignment.
– workunit is equal to if guard then {activity; while repeat∧guard do activity},

and while b do activity statement is flattened to compound if statements with
a fixed maximum repetition number of if embedded in the then branch
(if b then{activity; if b then{ activity; · · · }}}).

– The perform element in WS-CDL has an attribute block which specifies that
when set to true, the performed choreography must be processed with the
performing one concurrently.

– causeException attribute can be modeled with throw and timeout can be
translated to if e then throw(timeout, l1).

– activities parallel and perform with attribute block set to false are both re-
quired to run concurrently, there may be data racing in concurrent programs.
Parallel activities are first detected whether there are shared variables by
concurrent programs, if there is no data racing, we interleave the activities
in the order as they are defined; if there is data racing, enumerate all the
interleaves and the simulation is controlled by a scheduler to make sure these
activities run as the deterministic order.

– choice elements allow for nondeterministic choices between different alterna-
tives. In order to cover all the paths, every alternative will be scheduled to
run once. So there may be more than one path for one single test input.

Based on the above definition, the labels of a CFG correspond to choreography
elements with associated instruments, and edges correspond to control flow from
one instrument to the next. We assume that there is exactly one label lstop in a
CFG with op(lstop) = stop, which can be guaranteed by our CFG construction
step. A path is a sequence of labels l1, l2, ..., ln in the CFG, where l1 is l0 and ln
is lstop. A label l ∈ L is reachable if there is a path l0, ..., l in the CFG.

4.2 Dynamic Symbolic Execution

Dynamic symbolic execution uses the following idea: the program under test is
executed by supplying concrete values for input variables. During the concrete
execution, the symbolic program state is updated with symbolic expressions over
variables and the path constraints are collected at every conditional branch along
the path.

146 L. Zhou et al.

Semantics. We illustrated the denotational semantic for WS-CDL in [16]. Here
we present the operational semantics with a memory model that maps variables
in V to values for comprehension of symbolic execution. For a concrete memory
M , we use the notation M [x→ v] to denote the mapping from variable x to its
value v. For expression e, its value is denoted by M(e) where every variable x oc-
curring in e is replaced by value M(x). We use μ to denote the symbolic memory.
During symbolic execution, each instrument updates the symbolic memory and
the control label. Suppose that the current program symbolic state is < l, μ, s >,
where l is the current label, and s is a mapping from a choreography name to
a symbolic memory μ, which is used to manipulate the finalizer. The updating
rules are defined as follows. We omit describing the unchanged elements in the
configuration.

1. if op(l) is x := e, then l′ = l1 and μ′ = μ[x → μ(e)], where (l, l1) ∈ E.
2. if op(l) is if e then l1 else l2 and M(e) �= 0, then l′ = l1.
3. if op(l) is if e then l1 else l2 and M(e) = 0, then l′ = l2.
4. if op(l) is throw(en, l1) and M(exception) = 0, then l′ = l1 and

M ′[exception→ 1] and M ′[EN → en].
5. if op(l) is catch case en1 : l1, case en2 : l2, · · · , case enn : ln, else : l0 and

M(exception) = 1 and M(EN) = enk where 1 ≤ k ≤ n then l′ = lk,M ′ =
M [EN → null; exception→ 0].

6. if op(l) is catch case en1 : l1, case en2 : l2, · · · , case enn : ln, else : l0
and M(exception) = 1 and ln = default then l′ = ln,M ′ = M [EN →
null; exception→ 0].

7. if op(l) is catch case en1 : l1, case en2 : l2, · · · , case enn : ln, else : l0 and
M(exception) = 1 and ln �= default and ∀1 ≤ k ≤ n · M(EN) �= lk then
l′ = l0,M ′ = M .

8. if op(l) is finalize(ch, f) then l = finalizer(ch, f) and μ′ = get(s, ch).
9. if op(l) is stop

– if l is in the CFG constructed from the root choreography, then the
symbolic execution terminates.

– on the other case, assume that this choreography ch is performed by the
instrument perform(ch,

−→
b), and the performer has the symbolic state

〈lp, μp, sp〉, then l′ = l1 and μ′ = ∀x ∈ domain(
−→
b) · (μp[x → μ(

−→
b (x))]),

where (l, l1) ∈ E, and E is in the CFG constructed from the choreogra-
phy performer.

10. if op(l) is −→r := perform(ch,−→e), the current symbolic state < l, μ, s > is pre-

served and l′ = l0, μ′ =

{
μ′[x → μ(e)], x ∈ VB , e ∈ −→e
μ′[x → x], x ∈ V/VB

, s′ = put(s, 〈ch, μ〉),

where l0 and X0 are in the CFG of the performed choreograph.

Rules 1, 2 and 3 are trivial, and rules 4, 5 and 6 deal with the exception block
where there are 3 cases: case 1 donates that when the thrown exception matches
one of the defined exceptions then the activity is performed within defined within

Automatically Testing Web Services Choreography with Assertions 147

that exception workunit; case 2 donates that when there is a default handler
then uncaught exceptions will be handled by it; case 3 donates that when there
is no default exception and no matched handler then the exception is thrown
out to its enclosing choreography’s exception block. Rule 8 describes the final-
ization mechanism. The state is restored and then the specified finalizerBlock
is executed. Rules 9 and 10 handle the perform instrument. Rule 9 denotes
that when a choreography ch2 terminates, if it is not the root choreography, the
simulator should restore the context for the choreography ch1 performing ch2

and update the variable state of ch1 if there exists any variable binding between
ch1 and ch2. Rule 10 says that when a choreography ch1 performs the other
choreography ch2, the simulator must preserve the context for ch1 and initialize
ch2 with the input from ch2.

Symbolic Execution Algorithm. The symbolic execution algorithm is illus-
trated in Fig. 5. This algorithm is performed on the CFG, using both concrete
memory M and symbolic memory μ. The path constraint P collects predicates
over symbolic values of variables along the execution path.

Symbolic execution starts at label l0 in the CFG constructed from root chore-
ography. In this case, the set of binding variables VB is empty and variables
in μ are initialized to itself while the concrete memory M is set to initial test
inputs. If the choreography ch is performed by another choreography ch0, then
the binding variables in ch will be initialized by their corresponding variables in
ch0 (line 1).

For an assignment instrument, the algorithm updates both concrete and sym-
bolic memories. And the current label is updated to be the next label in the
CFG (line 5). For a conditional instrument, neither concrete nor symbolic mem-
ory is updated. The path constraint is conjunct with conditional predicate (b) or
its negation (¬b), depending on its evaluation on concrete memory. The current
label is updated to l1 if the predicate is evaluated non-zero or l2 if zero (line 7).

We introduce a function finalizer(ch, f) to specify the finalize structure. This
function returns the label of entry node in the finalizerBlock called by the
finalize structure. The symbolic memory is restored from the record s (line 19).

To represent perform instrument, we introduce an operator ⊕ over two map-
pings, which is defined as follow:

(m1 ⊕m2)(x) �
{

m1(x), x �∈ domain(m2)
m2(x), x ∈ domain(m2)

We first use recursion to execute the performed choreography symbolically, and
then merge its effect with the performer. The path constraints collected from
the performed choreography are attached to the current path constraints, and
side-effect is merged to current memory (line 21).

The recursive procedure returns when the simulator hits a stop instrument.
If the CFG is constructed from the root choreography, the execution terminates.
Otherwise, the simulator must recover the context. An operator 	 projecting a

148 L. Zhou et al.

Algorithm: SymbolicExecution(P , −→e)
Inputs:

P is CFG = (V, VB ,L, l0, op, E)constructed from a choreography.−→e is the set of input values.
Outputs:

P is the path constraint.
μB is the mapping from binding variables to their symbolic values.
MB is the mapping from binding variables to their concrete values.

1: μ =

{
μ[x → s(e)], x ∈ VB , e ∈ −→e
μ[x → x], x ∈ V/VB

, M =

{
μ[x → e], x ∈ V0, e ∈ −→e
μ[x → default], x ∈ V/V0

2: Current label l = l0, Path constraint P = TRUE
3: while op(l) �= stop do
4: switch op(l)
5: case x := e: l′ = l1,M

′ = M [x → M(e)], μ′ = μ[x → μ(e)], where (l, l1) ∈ E
6: case if e then l1 else l2:

7: P =

{
P ∧ μ(e), M(e) �= 0

P ∧ ¬μ(e), M(e) = 0
, l′ =

{
l1, M(e) �= 0

l2, M(e) = 0

8: case throw(en, l1):

9: l′ =

{
l1, M(EN) = null ∧M(exception) = 0

l, M(EN) �= null ∨M(exception) �= 0
,

10: P =

⎧⎪⎨
⎪⎩
P ∧M(EN) = null ∧M(exception) = 0, if

M(EN) = null ∧M(exception) = 0

P, M(EN) �= null ∨M(exception) �= 0

,

11: M ′ =

⎧⎪⎨
⎪⎩
M [exception → 1ifEN → en] if

M(EN) = null ∧M(exception) = 0

MifM(EN) �= null ∨M(exception) �= 0

,

12: μ′ =

{
μ[EN → en, exception → 1], M(EN) = null ∧M(exception) = 0

μ, M(EN) �= null ∨M(exception) �= 0

13: case catch case en1 : l1, case en2 : l2, · · · , case enn : ln, else : l0:

14: l′ =

{
lk, M(exception) = 1 ∧ (M(EN)enk ∨ ln = default)

l0, M(exception) = 1 ∧M(EN) �= enk ∧ ln �= default
,

15: P =

⎧⎪⎨
⎪⎩
P ∧ μ(EN) �= null ∧ μ(exception) = 1, if

M(exception) = 1 ∧ (M(EN) = enk ∨ ln = default)

P, M(exception) = 1 ∧M(EN) �= enk ∧ ln �= default

,

16: M ′ =

⎧⎪⎨
⎪⎩
M [EN → null, exception → 1], if

M(exception) = 1 ∧ (M(EN) = enk ∨ ln = default)

M, M(exception) = 1 ∧M(EN) �= enk ∧ ln �= default

,

17: μ′ =

⎧⎪⎨
⎪⎩
μ[EN → en, exception → 1], if

M(exception) = 1 ∧ (M(EN) = enk ∨ ln = default)

μ, M(exception) = 1 ∧M(EN) �= enk ∧ ln �= default

18: case finalize(ch, f):
19: μ′ = get(s, ch), l′ = finalizer(ch, f)

20: case perform(ch,
−→
b):

21: (r1, r2, r3) = SymbolicExecution(cfg(ch),
−→
b),

P = P ∧ r1,μ = μ⊕ r2, M = M ⊕ r3
22: end switch
23: end while
24: if P is constructed from a root choreography
25: return (P,φ, φ)
26: else
27: return (P,μ � VB , M � VB)
28: end if

Fig. 5. Symbolic Execution Algorithm

Automatically Testing Web Services Choreography with Assertions 149

mapping on a set of variables is introduced to represent the effect of variable
binding (line 27):

(m 	 V)(x) �
{

m(x), x ∈ V

⊥, x �∈ V

For an execution path, every assignment satisfying the path constraints P =
p1, p2, ..., pn gives an instance of test case that guarantees the concrete execu-
tion will cover this path. If we negate some pi ∈ P and make conjunctions
p1, ..., pi−1,¬pi, By solving the new path constraints through SMT solver, new
test data will be generated under which the execution will cover the path con-
straints.

4.3 Assertion

In order to express the expected outcomes of correct program executions, we de-
signed an assertion statement for WS-CDL to test whether an execution satisfies
a custom intension. The assertion is a language extension to WS-CDL. And its
XML schema is shown in Fig. 6.

Fig. 6. XML Schema of Assertion

Assertion statement acts like workunit statement without executing internal
activity notation. As the simulator encounters an assertion, it first evaluates the
guard expression with concrete values and then performs the assertion proof
process in Fig. 2. The assertion proof process starts with substituting the vari-
ables in assertions with their symbolic values to get new assertion predicate
(AP)and uses Z3 to prove or disprove that current path constraint (PC) implies
the assertion predicate (PC→ AP).

5 Implementation and Experiments

In our previous work, we developed a WS-CDL simulator ”CDLChecker” [27].
Based on this tool, we have implemented the symbolic execution framework of
WS-CDL and developed the test input generation module for WS-CDL. There
are two parts in this section. In the first sub-section, we give a brief introduc-
tion of our implementation. The effectiveness of our approach is shown through
experiments in the second sub-section.

150 L. Zhou et al.

5.1 Tool Implementation

In this section, we present the implementation of our approach based on the
”CDLChecker” tool. Figure 7 shows the architecture of the tool.

Fig. 7. Symbolic Execution Architecture of WS-CDL Checker

CDLChecker parses WS-CDL programs into Java object trees using JAXB
[8] technique, an XML access mechanism for Java. The subsequent test and
simulations are based on the Java object tree. Firstly, schema-derived classes are
generated from WS-CDL schema, and WS-CDL programs are instantiated into
object trees by these schema-derived classes. These objects are either definition
structures or executable structures.

The simulator with symbolic execution embedded in takes the object tree as
input to perform generation and collect path conditions. It transforms all defi-
nition structures into specific data structures and executes all executable struc-
tures when simulating each choreography. All integer variable instances within
the entire choreography are assigned to 0 as initial inputs for the choreography.
Assignment statements are executed both concretely and symbolically. In other
words, both concrete values and symbolic values are recorded in variabletable.
When executing workunit structures, guard conditions are evaluated by replac-
ing variables with concrete values to determine the alternatives. The conditions
are collected symbolically by replacing variables with their symbolic values and
recording boolean results. After one pass of automatic simulation, a list of path
conditions and their execution results are formed. Then we can negate the last
path condition item and put it into Z3 [29] to get a new set of values which will
guide the simulator to cover another path. Once all program paths have been
covered, this generation procedure terminates.

Figure 8 presents a sample case to illustrate the tool. The program consists
of two nested workunit elements to test whether specified variables satisfy some
conditions. The log of the generation procedure is to show the outcomes, indi-
cating that there are three possible paths within the program and three sets of
test data corresponding to each path are provided.

Automatically Testing Web Services Choreography with Assertions 151

—————————————————————–
Generation Start

1st round...
generated case:
TravelAgentRole.flightAvailable = 1:

2nd round...
generated case:
TravelAgentRole.flightAvailable = 1:
TravelAgentRole.roomAvailable = 1:

3rd round...
Generation finished.

—————————————————————–
Generation Summary:

Total 3 case(s) to 3 path(3)
case 1: 0 for each variable
case 2: TravelAgentRole.flightAvailable > 0
case 3: TravelAgentRole.rootAvailable>0 ∧ TravelAgentRole.flightAvailable>0

Fig. 8. Generated Case for A Sample Case

5.2 Preliminary Experiments

We tested five WS-CDL programs on the CDLChecker tool. The five programs
cover most of the features in WS-CDL specification. We record the following
statistics for each program in Table 1: time taken to run the program (the
Time(ms) column), the number of path existed in the WS-CDL program (the
#Existed Paths column), number of paths covered by the generated test inputs

Table 1. Experimental Results

NO #Test Time(ms) #Existed #Covered #Assertions #Violated
Case Paths Paths Assertions

1 7 109 8 6 2 1
2 4 31 4 3 1 0
3 7 131 11 5 3 0
4 4 40 11 3 3 0
5 6 75 12 3 1 1

152 L. Zhou et al.

(the #Covered Paths column), number of asserts (the #Asserts) and number of
violating asserts in testing phase(the #Violated Asserts).

The path coverage is less than 50% in the program no.3, no.4 and no5, and
it is because the number of existed paths is counted from the CFG and the
feasibility of the paths is not considered. Two assertion violations are detected
when testing program no.1 and no.5. The segment of program no.1 in Fig. 9
shows how the assertion is violated.

<?xml version="1.0" encoding="UTF-8"?>

<package name="travelAgentChoregraphy">

 ...

 <sequence>

 <choice>

 <workunit

 name="TestWU8"

 guard="cdl:getVariable('tns:flightsAvailable', 'tns:CustomerRole') <= -2">

 <assertion guard="cdl:getVariable('tns:flightsAvailable', 'tns:CustomerRole') <= -3" />

 </workunit>

 ...

 </choice>

 </sequence>

 ...

</package>

Generate input:
 flightsAvailable = -2

The guard of workunit TestWU8 is satisfied

The guard of assertion is violated.
Because flightsAvailable = -2, and the
assertion requires flightsAvailable = -3

Fig. 9. Assertion Violation

6 Conclusions

In this paper, we present an approach to automatically generating test data for
WS-CDL programs with assertion using symbolic execution technique, based
on our previous work on simulation of WS-CDL programs. Two examples are
presented to demonstrate the basic idea about automatic testing and a newly
added assertion statement in WS-CDL program. We developed a choreography
simulator to execute WS-CDL program in our previous work. On the basis of
simulation, symbolic execution is applied to collect path conditions with detect-
ing data racing in parallel situation. We use Z3 as a SMT solver to obtain the
test data from the collected and processed path conditions. Moreover we defined
an assertion statement for WS-CDL to check whether an execution of program
satisfies the intentions of the designer. Based on our work, Web Services Chore-
ography can be tested upon all possible paths, and unreachable paths can be
detected as well.

Acknowledgement

Geguang PU is partially supported by 973 Project No.2005CB321904, and the
Fundamental Research Funds for the Central Universities. Xiao HAO is partially

Automatically Testing Web Services Choreography with Assertions 153

supported by 863 Project No.2009AA010313. Lei ZHOU is partially supported by
NFSC No.90818024. Zheng WANG is partially supported by Shanghai Leading
Academic Discipline Project No.B412. Zuohua DING is partially supported by
NNSFC No.90818013.

References

1. Bartolini, C., Bertolino, A., Marchetti, E., Polini, A.: WS-TAXI: A WSCDL-based
Testing Tool for Web Services. In: ICST 2009, pp. 326–335 (2009)

2. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. In: Advances in Computers, vol. 58, pp. 118–149 (2003)

3. Business Process Modeling Language (BPML),
http://www.ebpml.org/bpml.htm

4. Business Process Execution Language for Web Services version 1.1
http://www.ibm.com/developerworks/library/specification/ws-bpel/

5. Chan, W.K., Cheung, S.C., Leung, K.R.P.H.: Towards a Metamorphic Testing
Methodology for Service-oriented Software Applications. In: QSIC 2005, pp. 470–
476 (2005)

6. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-Based Analysis of Obligations
in Web Service Choreography. In: AICT/ICIW 2006, p. 149 (2006)

7. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed Automated Random Testing.
In: PLDI 2005, pp. 213–223 (2005)

8. Java Architecture for XML Binding (JAXB), https://jaxb.dev.java.net/
9. Li, Z., Sun, W., Jiang, Z.B., Zhang, X.: BPEL4WS Unit Testing: Framework and

Implementation. In: ICWS 2005, pp. 103–110 (2005)
10. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,

Heidelberg (2004)
11. Mei, L., Chan, W.K., Tse, T.H.: Data Flow Testing of Service Choreography. In:

ESEC/FSE 2009, pp. 151–160 (2009)
12. OASIS. Universal Description Discovery and Integration (2004),

http://www.uddi.org/pubs/uddi_v3.htm

13. Pu, G., Shi, J., Wang, Z., Jin, L., Liu, J., He, J.: The Validaton and Verification
of WSCDL. In: APSEC 2007, pp. 81–88 (2007)

14. Yan, J., Li, Z., Yuan, Y., Sun, W., Zhang, J.: BPEL4WS Unit Testing: Test Case
Generation Using a Concurrent Path Analysis Approach. In: ISSRE 2006, pp. 75–
84 (2006)

15. Zhou, L., Zhang, H., Wang, T., Yang, C., Wang, Z., Sun, M., Pu, G.: Static Check
of WS-CDL Documents. In: SOSE 2008, pp. 142–147 (2008)

16. Pu, G., Zhao, Y., Wang, Z., Feng, L., Zhu, H., He, J.: A Denotational Model for
Web Services Choreography. In: Parashar, M., Aggarwal, S.K. (eds.) ICDCIT 2008.
LNCS, vol. 5375, pp. 1–12. Springer, Heidelberg (2008)

17. Sen, K., Marinov, D., Agha, G.: Cute: A Concolic Unit Testing Engine for C. In:
ESEC/FSE-13, pp. 263–272 (2005)

18. Monakova, G., Kopp, O., Leymann, F., Moser, S., Schafers, K.: Verifying Business
Rules Using an SMT Solver for BPEL Processes. In: BPSC 2009, pp. 81–94 (2009)

19. Kang, Z., Wang, H., Hung, P.C.: WS-CDL+ for web service collaboration Informa-
tion Systems Frontiers, vol. 9, pp. 375–389. Kluwer Academic Publishers, Dordrecht
(2007)

http://www.ebpml.org/bpml.htm
http://www.ibm.com/developerworks/library/specification/ws-bpel/
https://jaxb.dev.java.net/
http://www.uddi.org/pubs/uddi_v3.htm

154 L. Zhou et al.

20. W3C Note. Simple Object Access Protocol (SOAP) 1.1 (2000),
http://www.w3.org/TR/soap

21. W3C Note. Web Service Definition Language (WSDL) 1.1 (2001),
http://www.w3.org/TR/wsdl

22. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR, Englewood Cliffs
(2005)

23. Web Services Choreography Description Language (WS-CDL), Version 1.0
(November 2005), http://www.w3.org/TR/ws-cdl-10/

24. Web Services Flow Language (WSFL), http://xml.coverpages.org/wsfl.html
25. Web Service Choreography Interface (WSCI), Version 1.0 (January 2004),

http://www.w3.org/TR/2002/NOTE-wsci-20020808

26. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3), 35–43 (2005)

27. Zhou, L., Xiao, H., Ping, J., Pu, G., Zhang, H.: Simulation and Validation of Web
Services Choreography. In: SOCA 2009, Taipei, China (December 2009)

28. Kaschner, K., Lohmann, N.: Automatic Test Case Generation for Interacting Ser-
vices. In: ICSOC 2008. LNCS, vol. 5472, pp. 66–78. Springer, Heidelberg (2009)

29. Z3: An Efficient SMT Solver,
http://research.microsoft.com/en-us/um/redmond/projects/z3/

http://www.w3.org/TR/soap
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/ws-cdl-10/
http://xml.coverpages.org/wsfl.html
http://www.w3.org/TR/2002/NOTE-wsci-20020808
http://research.microsoft.com/en-us/um/redmond/projects/z3/

Applying Ordinary Differential Equations to
the Performance Analysis of Service

Composition�

Zuohua Ding1, Hui Shen1, and Jing Liu2

1 Center of Math Computing and Software Engineering
Zhejiang Sci-Tech University

Hangzhou, Zhejiang, 310018, China
2 Software Engineering Institute
East China Normal University

Shanghai, 200062, China

Abstract. Web services technology has yet to address questions such as
how can I know that the Web service will meet my performance require-
ments such as response time? In this paper, a new method is proposed
to measure the performance of service composition. Service composition
described with BPEL is modeled by a family of ordinary differential equa-
tions, where each equation describes the state change of the service com-
position. Each service state is measured by a time-dependent function
that indicates the extent to which the state can be reached in execution.
This measure information can help us to conduct performance analysis
such as estimating response time, throughput and efficiency. This method
has the following advantages: 1) it treats the system as a ’white’ box and
displays a global picture of execution state to the users, thus users know
exactly where to improve the performance; 2) it can entirely avoid state
explosion problem; 3) it is faster than SPN based performance analysis
methods.

Keywords: Service composition, BPEL, performance analysis, Petri net,
ordinary differential equation.

1 Introduction

In service-oriented computing (SOC), developers use services as fundamental el-
ements in their application-development processes. To create applications, SOC
developers use service composition. Developers can then solve complex prob-
lems by combining available basic services. Service composition thus accelerates
rapid application development, service reuse, and complex service consumma-
tion. While service composition brings us advantages, it also raises a question:

� This work is supported by the NSF under Grant No. 90818013, No.90718014, 973
Program 2009CB320702, Shanghai TCSM No. 08510700300, and Zhejiang NSF un-
der Grant No.Z1090357.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 155–170, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

156 Z. Ding, H. Shen, and J. Liu

how to evaluate the composite service? In other words, how to measure the
system performance with quantitative characteristics such as system execution
throughput?

Different approaches have been proposed in the literature for system perfor-
mance analysis. Most of them exploit analytical models whose analysis is based
on Petri net and Markov Theory. Stochastic Petri Nets (SPN) [2] are among
the most popular modeling formalisms that have been used in the past decade.
However, the state space explosion, which entails the solution of the underlying
Markov Chain with a large number of states, limits the applicability of SPN
based methods for analyzing large-scale systems even though many reduction
skills have been proposed.

This paper presents a new method for performance analysis of service com-
position. The analytical model is also based on the (discrete) Petri net which
has been used to model the service composition. Instead of developing reduc-
tion skill, we apply some relaxation skill developed by David and Alla[4] on
the Petri net. This relaxation leads to a continuous-time formalism: Continuous
Petri Net(CPN). The semantics of a continuous Petri net is defined by a set
of Ordinary Differential Equations (ODEs). Hence, a service composition can
be described by a family of ordinary differential equations, where each equation
describes a state change of the service. A state can be measured by nonnega-
tive number, called State Measure, indicating how much the state can be reached
while the service is in execution. This information can help us to do performance
analysis such as response time, throughput and efficiency.

Considering it is hard to find explicit analytic solutions for the nonlinear ordi-
nary differential equations, we turn to find numerical solutions instead. Runge-
Kutta method has been used to find the numerical solutions. The computational
error is O(h5), where h is the step size. The Complexity analysis shows that the
complexity for SPN is exponential while the complexity for CPN is linear. Thus
our method can avoid state explosion problem which may happen in SPN based
method.

There exist several proposals for service composition, such as BPEL, Se-
mantic Web (OWL-S), Web Components, Algebraic Process Composition, Petri
Nets[14]. In this paper, we choose BPEL to describe service composition. As the
example, Diagnosis Apply of Regional Health Information System (RHIS) has
been employed to illustrate our method.

This paper is organized as the following. Section 2 gives Petri net presenta-
tion for service composition. Section 3 models service composition with ordinary
differential equations. In Section 4, by comparing with the SPN based analy-
sis methods, we show how to perform analysis based on the solutions of ODEs.
Section 5 is the complexity analysis for both CPN and SPN based analysis meth-
ods. Section 6 is the case study: Diagnosis Apply of Regional Health Information
System (RHIS). Section 7 is a discussion of the related work. The last section,
Section 8 is the conclusion of the paper.

Applying Ordinary Differential Equations to the Performance Analysis 157

2 Petri Net Representation of Service Composition

Definition 1. A Petri net is a directed bipartite graph that can be written as a
tuple N = (P, T, A, M0), where P is the set of places, T is the set of transitions,
A ⊂ (P × T) ∪ (T × P) is the set of arcs, and M0 is its initial marking.

A Web service behavior is basically a partially ordered set of operations. There-
fore, it is straightforward to map it into a Petri net. Operations are modeled by
transitions and the state of the service is modeled by places. The arrows between
places and transitions are used to specify causal relations. The initial marking
indicates the start state.

BPEL is an XML language that supports service composition and can be used
to describe executable business process behaviors. BPEL process is viewed as a
series of activities which can be composed into complex activities by data flow
and control flow. The rules rules for the Petri net presentation of control flows
are similar to those in[10]. Next we slightly describe the rules for data flows.
Here are some basic data flows for BPEL: < invoke >, < receive >, < reply >.

The following is a format of invoke:

< invoke

partnerLink = ”insuranceA”

portType = ”ins : ComputeInsurancePremiumPT”

operation = ”ComputeInsurancePremium”

inputV ariable = ”InsuranceRequest”/ >

It has one method ComputeInsurancePremium with only input variable Insur-
anceRequest. This method is asynchronous. invoke also has another synchronous
format if it has input and output variables as the following:

< invoke

partnerLink = ”insuranceA”

portType = ”ins : ComputeInsurancePremiumPT”

operation = ”ComputeInsurancePremium”

inputV ariable = ”InsuranceRequest”

outputV ariable = ”InsuranceAResposne”/ >

Similarly, we can determine the communication types of other data flows. Thus in
BPEL, the communication between services are through Synchronous or Asyn-
chronous message passing. We design the Petri net representation to these data
flow as shown in Fig. 1. In the figure, (a) is for asynchronous message passing
mechanism, and (b) is for synchronous message passing mechanism, where A
and B represent two services.

After translation of both control and data flows, we get a special class of
Petri nets, called Message Passing Petri Net, or briefly MP. The following is the
definition.

158 Z. Ding, H. Shen, and J. Liu

p(i)

p1(s)

p1(e)

t1

t2

t3

p1

p2

p3

p4

A

B
p1

p2

t1
p

t2

p3

p4

A

B

(a) (b)

Fig. 1. Petri net for (a) asynchronous message passing, (b) synchronous message pass-
ing

Definition 2. A Petri net P is MP if

- P has finitely many places;
- the places of P are partitioned into two disjoint partitions C and B;
- each place from C has one or two input transitions and one or two output

transitions, but can not have two input transitions and two output transitions
at the same time; and

- each place from B has one pair of input transitions and output transition
- each transition has one input place from C and one output place from C; and
- each transition has either

1) no input places from B and no output places from B; or
2) no input places from B and one output place from B; or
3) one input place from B and no output places from B; or
4) one input place from B and one output place from B.
Here C stands for ”Internal States”, while B stands for ”Buffer”.

In a MP, the Internal States and the directly connected transitions form one
or several place/transition cycles, namely service net. Hence a MP can also be
described as service nets that interact to each other through Buffer B, so is a
BPEL process.

3 Modeling Service Composition with ODEs

3.1 Continuous Petri Net

Definition 3. A Continuous Petri Net is a tuple CPN =< P, T, A, M0, λ >,
where (P, T, A, M0) is a underlying untimed Petri net: P = {p1, p2, . . . , pn} is the
set of places, T = {t1, t2, . . . , tm} is the set of transitions, A ⊂ (P ×T)∪(T ×P)
is the set of arcs, and M0 is the initial marking. λ = {λ1, λ2, . . . , λm} is a set of
average firing rates of transitions.

In the definition, the average firing rate λt is actually the reciprocal of firing delay
of transition t, whcih can be obtained from requirements or from implementation.
In a CPN, the marking of a place is no longer an integer but a nonnegative real
number.

Applying Ordinary Differential Equations to the Performance Analysis 159

Definition 4. Let I = [0,∞) be the time interval and let mi : I → [0,∞), i =
1, 2, . . . , n be a set of mappings that associated with place pi. A marking of a
Continuous Petri Net CPN =< P, T, A, M0, λ > is a mapping

m : I → [0,∞)n,
m(τ) = (m1(τ), m2(τ), . . . , mn(τ)).

Definition 5. (State Measure) Given any time moment t ∈ [0,∞), the marking
value in a place is called the State Measure of this place, denoted as m(t). State
measures take nonnegative real numbers as their values.

A transition is enabled if all the input places have nonzero markings. Only
enabled transitions can be fired. So, if sme marking is moved into a place, we
say that the state measure in this place is increasing; if some marking is moved
out from a place, we say that the state measure in this place is decreasing. The
change rate of state measure can be calculated as the following.

Let p1 and p2 be the input places of a transition t and their markings are
m1(τ) and m2(τ), respectively. Let λt be the firing rate associated with t, then
following the definition of Continuous Petri net defined by David and Alla [4],
the marking moving out from p1 and p2 is defined by λt ×min{m1(τ), m2(τ)}.
If t has only one input p1, then marking λt ×m1(τ) will be moved out from p1.

3.2 Building Ordinary Differential Equation Model

Based on the semantics defined above, the state measure at each place can be
calculated from an ordinary differential equation. We have the following cases.

1) One place to one place. As Fig.2 shows, place p will get marking from place
p1. Let the marking at place p and p1 be m and m1, respectively. Assume that
the firing rates at transition t1 and t are d1 and d, respectively. Then the state
measure m can be represented as

m′(τ) = d1 ×m1(τ) − d×m(τ). (1)

p1

p

t1

t

m1

m

d1

d

Fig. 2. One place to one place model

2) Two place to one place. As Fig. 3 shows, place p will get marking from
place p1 and p2. Let the markings at place p1, p2 and p be m1, m2 and m,
respectively. Assume that the firing rates at transition t1 and t are d1 and d,
respectively. Then the state measure m can be represented as

m′(τ) = d1 ×min{m1(τ), m2(τ)} − d×m(τ). (2)

160 Z. Ding, H. Shen, and J. Liu

p1

p

t1

t

m1

m

d1

d

m2

p2

Fig. 3. Two places to one place model

3) One place to two places. As Fig. 4 shows, place p will get marking from place
p1, but will send some marking out together with place p2. Let the markings at
place p1, p2 and p be m1, m2 and m, respectively. Assume that the firing rates
at transition t1 and t are d1 and d, respectively. Then the state measure m can
be represented as

m′(τ) = d1 ×m1(τ) − d×min{m(τ), m2(τ)}. (3)

p1

p

t1

t

m1

m

d1

d

m2

p2

Fig. 4. One place to two places model

4) Two places to two places. As Fig. 5 shows, transition t1 has two input
places m1 and m2 and transition t has two input places m and m3. Assume the
firing rates at transition t1 and t are d1 and d, respectively. Then the marking
m can be represented as

m′(τ) = d1 ×min{m1(τ), m2(τ)} − d×min{m(τ), m3(τ)}. (4)

p1

p

t1

t

m1

m

d1

d

m3

p3

m2

p2

Fig. 5. Two places to two places model

From the differential equational model, we see that state measures are uniquely
determined by the system structure and the firing rates. In general these equations
can be classified as six types:

Applying Ordinary Differential Equations to the Performance Analysis 161

• Type 1 [Internal]. m′
i = di−1×mi−1 − di × mi. Here mi and mi−1 are the

states of the same service net.
• Type 2 [Input-before]. m′

i = di−1 ×min{mi−1, mk} − di ×mi. Here mi and
mi−1 are the states of the same service net. mk is the input to this service
net from buffer.

• Type 3 [Input-after]. m′
i = di−1 × mi−1 − di × min{mi, mk}. Here mi and

mi−1 are the states of the same service net. mk is the input to this service
net from buffer.

• Type 4 [Input-before-after]. m′
i = di−1×min{mi−1, mk}− di×min{mi, ml}.

Here mi and mi−1 are the states of the same service net. mk and ml are the
inputs to this service net from buffer.

• Type 5 [Asynchronous]. m′
k = di×mi−di′ ×min{mi′, mk}. Here mi and mi′

are the states of two different service nets respectively. mk is the message
between these two service nets.

• Type 6 [Synchronous]. m′
k = di ×min{mi, ml} − di′ ×min{mi′ , mk}. Here

mi and mi′ are the states of two different service nets respectively. mk and
ml are the messages between these two service nets, where ml is usually
indicates the request that can be calculated by Type 5 and mk is the reply.

For the existence of the solutions of the above differential equations, we refer
to[6].

4 Performance Analysis with ODEs

4.1 Performance Analysis with SPN

For the comparison, we briefly introduce the performance analysis method with
stochastic Petri net. The following definition comes from [15].

Definition 6. A continuous stochastic Petri net is a tuple SPN=(P, T, A, M0, λ),
where (P, T, A, M0) is a underlying untimed Petri net: P = {p1, p2, . . . , pn} is the
set of places, T = {t1, t2, . . . , tm} is the set of transitions, A ⊂ (P ×T)∪(T ×P)
is the set of arcs, and M0 is the initial marking. λ = {λ1, λ2, . . . , λm} is a set of
average firing rates of transitions satisfying exponential distributions:

∀t ∈ T, Ft(x) = P{Xt ≤ x} = 1− e−λtx,

where x represents time, Xt is a continuous random variable representing the time
delay for transition t, λt is the average firing rate associated with transition t.

A Markov process is a stochastic process that satisfies the Markovian property

P{X(τ) ≤ x|X(t), t ∈ [0, θ]} = P{X(τ) ≤ x|X(θ) = y},

for any τ > θ. Markov processes with a discrete state space are called Markov
chains. If the parameter t is continuous, the process is a continuous-time Markov
chain (CTMC). The time spent in states of a CTMC is a random variable with
nonnegative exponential probability density function(pdf).

162 Z. Ding, H. Shen, and J. Liu

In practice, a CTMC is described through either a state transition rate di-
agram or a transition rate matrix, denoted by Q. The state transition rate di-
agram is a labelled directed graph whose vertices are labelled with the CTMC
states, and whose arcs are labelled with the rate of the exponential distribution
associated with the transition from a state to another.

If we have the reachable graph (or coverability tree) of SPN, then replacing the
firing transition t associated with the arc by average firing rate λt (or marking
related λt), we will get the CTMC that is isomorphic to SPN. Actually we have
the following result[13].

Theorem 7. Any SPN with finite places and finite transitions is isomorphic to
a Continuous Time Markov Chain.

This result enables us to compute average numbers of tokens in places of SPN,
from which most of the performance indexes can be derived.

4.2 Numbers of Average Tokens of SPN = State Measures of CPN

Both SPN and CPN describe the events of the system, execution time of events,
and the relations between events. In both models, the average execution time
of events represent the firing rates of the corresponding transitions. The differ-
ence is that in SPN, the average number of tokens are obtained by computing
Markov chain, while in CPN, the state measures are obtained by solving ordinary
differential equations. However, we have the following result.

Theorem 8. If SPN and CPN model the same system, then the average num-
bers of tokens in places of SPN equal the state measures in places of CPN.

Proof. Our proof is on the basis of[11]. We consider three situations.

(1) Net with single input.

m(t) p

d tt

m1(t) p1

d tt

m2(t)p2

(a) (b)

Fig. 6. A transition with single input

Fig. 6(a) shows a transition with a single input. In the figure, p is the input
place of transition tt, m(t) represents the state measure of p at time t, d is the
average firing rate of tt, W is the time delay of tt. Assume that p has initial
value k1 at time t0. In SPN, a transition needs time from enabled to firing,
and this time is represented by a random variable W , which is subjected to an

Applying Ordinary Differential Equations to the Performance Analysis 163

exponential distribution function: Ftt(Δt) = P [W ≤ Δt] = 1 − e−dΔt, Δt > 0.
Assume that after Δt time, the average number of tokens of p is k′

1, then

k′
1 = E[m(p)] = k1P [W > Δt] = k1e

−dΔt.

In CPN, for this net, we have equation x′ = −dx and x(t0) = k1. Solving this
equation, we get m(t0 + Δt) = k1e

−dΔt.
Thus in this case, our result is correct.
(2) Net with two inputs. Fig. 6(b) shows a transition with two input places.

In the figure, p1 and p2 are two input places of transition tt, m1(t) and m2(t)
represent state measures of p1 and p2 at time t, respectively. d is the average
firing rate of tt, W is the delay of tt. Assume that p1 has initial value k1 at time
t0 and p2 has initial value k2 at time t0.

In SPN, let k′
1 and k′

2 be the new average numbers of tokens of p1 and p2 after
time Δt, respectively. Then

k′
1 = E[m(p1)]

= k1 −min{k1, k2}P [W ≤ Δt]
= k1 −min{k1, k2}(1− P [W > Δt])
= k1 −min{k1, k2}(1− e−dΔt).

In CPN, for this net, we have equations:

x′
1 = −d×min{x1, x2}, x′

2 = −d×min{x1, x2}

with the initial values: x1(t0) = k1, x2(t0) = k2. Since min{x1, x2} is nonde-
terministic at every time t, it is hard to give analytic solution. With numerical
solution, we may partition Δt into several small intervals Δti, such that on each
such interval, min{x1, x2} will take a fixed value. Now we solve the equations
on interval Δt1 as the follows.

i) If x1(t0) < x2(t0), or k1 < k2, then x′
1 = −dmin{x1, x2} = −dx1, and

k′
1 = x1(t0 + Δt1) = k1e

−dΔt1 .
ii) If x1(t0) ≥ x2(t0), or k1 ≥ k2, then x′

1 = −dx2, x′
2 = −dx2, then x2(t0 +

Δt1) = k2e
−dΔt1 . Since in the steady state, the output markings from p1 and p2

are equal, and the output marking from p2 is k2 − k2e
−dΔt1 = k2(1 − e−dΔt1),

so the output marking from p1 should be k2(1− e−dΔt1). Thus k′
1 = k1− k2(1−

e−dΔt1).
Combining i) and ii), we get k′

1 = k1 − min{k1, k2}(1 − e−dΔt1), which is
the same as the average marking of SPN. We will get similar results on other
intervals. Hence in this case, our result is also correct.

(3) Now consider the general cases for Fig. 2, Fig.3, Fig.4, and Fig.5. In SPN,
for ∀t ∈ T , its marking flow rate, i.e. average marking moving to the output place
in unit time, is R(t, s) = W (t, s) ×

∑
M∈E P (M) × λ, where E is the set of all

reachable markings that make t enable, λ is the average firing rate of t, W (t, s)
is the weight attached to the arc from transition t to place s. From the proof of
(1) and (2), we know that R(t, s) = d×m, or R(t, s) = d×min{m1, m2}, where
m, m1, m2 are the input places of tt, and d is the average firing rate.

164 Z. Ding, H. Shen, and J. Liu

Hence for the place m in Fig. 2, Fig.3, Fig.4, and Fig.5, at time t, the aver-
age number of markings of a place = average number of markings to this place
- average number of markings out this place, i.e.,

∫ t

0 (d1m1 − dm)dt for Fig.2;∫ t

0 (d1min{m1, m2} − dm)dt for Fig.3;
∫ t

0 (d1m1 − dmin{m2, m})dt for Fig.4;∫ t

0 (d1min{m1, m2} − dmin {m3, m})dt for Fig.5. These expressions are actu-
ally the solutions of Equation (1), Equation (2), Equation (3), and Equation (4)
in Section 3.2, respectively. Hence, the average number of tokens of m in SPN
= state measure value of min CPN.

Hence, we complete the proof.

Based on the above result, we can perform analysis of service composition using
the solutions of ordinary differential equations.

4.3 Measures of Performance

We consider four performance indexes in this paper: response time, throughput,
resource utilization rate and the maximum load of the system.

(1) Response Time. Response time is the time that cost in the process, which
is from the beginning that the patients request to the end that the system re-
sponses to the patient. Thus the response time is actually a response between
patients and a subsystem. We consider the problem to calculate response time
as a queuing theory problem, and then we could calculate it using Little Rule
and Flow Balance Principle. Thus the response time is the sum of all the aver-
age number of state measures in the subsystem (queue) divided by the average
marking flow velocity of the subsystem.

(2) Throughput: Throughput is the number of patient requests that the sub-
system can accept or deal with in a given time period.

(3) Resource Utilization Rate. Resource utilization rate is the extension of
resource utilization, which can be explained based on the state measure of CPN.
In the Petri net model, based on the state descriptions, we need to select a place
as the measuring place. Using the state measure of this place, we can analyze
the efficiency of the system.

(4) The maximum Load. System bottleneck problem is of interest to designers
and users. Especially in real-time system, compared to the average throughput
of the system, people pay more attention to the peak throughput. We can obtain
this number by increasing the loads to the subsystem, and check if the marking
stream into the subsystem is approaching to a steady value, then we can get the
maximum number of the concurrent users of the system.

5 Complexity Analysis

Generally speaking, it is hard to find explicit analytic solutions for nonlinear
ordinary differential equations, thus most of the time, we turn to find numerical
solutions instead. We may use function ode45 in Matlab to solve our equations.

Applying Ordinary Differential Equations to the Performance Analysis 165

Function ode45 is the implementation of combined fourth and fifth-order Runge-
Kutta method.

Numerical solutions may give us computational errors due to the algorithm
and the machine. In our situation, the computation error can come from two
sources: truncation error (because a truncated Taylor Series is used in the com-
putation), and rounding error (because a finite number of binary digits is used
inside the machine).

For the truncation error, the global truncation error of ode45 is O(h5) [8],
where h is the step size,. Regarding the rounding error, since implicit Runge-
Kutta method has stable area [8], and the algorithm is guaranteed to converge
in the stable area. Thus the rounding error of the perturbation can not increase
and will decrease to 0 in the iteration process [1].

For the complexity of Runge-Kutta method, if the accuracy is lower than
0.00001, then Runge-Kutta method is more efficient than Newton method. We
know that the complexity for Newton method in general is O(mn3), where n is
the number of variables and m is the iteration, which is usually O(n) and never
exceeds O(n2) [17]. Hence, the complexity for Runge-Kutta method in general
is O(n4) and never exceeds O(n5).

Thus solving the state measure needs time O(n5), which is polynomial, where
n is the number of equations. However, in SPN method, the the complexity to
find the average number of tokens in a single place is O(ap(k,n)) + O(ap(k,n)) =
2O(ap(k,n)), where k is the maximum value of the range of initial markings, and
p(k, n) is a polynomial of k and n. Hence to find average number of tokens in n
places, the complexity is n× (O(ap(k,n)) + O(ap(k,n))) = nO(ap(k,n)).

6 Case Study: Diagnosis Apply of Regional Health
Information System (RHIS)

We consider Diagnosis Apply of Regional Health Information System (RHIS) as
the example. RHIS is an online platform through which the registered patients
can reserve and apply diagnosis from doctors and experts. We build BPEL pro-
cess model by IBM WebSphere Integration Developer (WID). WID can auto-
matically generate BPEL file.

After translation, we get the MP representation as shown in Fig. 7. To illus-
trate our method, we have overlooked some details. The system has three service
nets, Patient (Inputs to the system), Controller (Processing Diagnosis Apply),
and Hospital (Patient Info Checking). The system works as following. The reg-
istered patients send the requests of remote medical care and electronic-health
records (EHR) to the control system. After the controller receives the requests
and EHR, it sends this information to the hospital to determine whether this
patient is a legally registered user. Then the hospital will check the patient and
send the result to the controller. Once the controller receives the result, it sends
a message to the patient notifying him the status of the application.

166 Z. Ding, H. Shen, and J. Liu

1 1 1

t1

m2

t2

m3

m4

m5

m6

m7

m8

m9

m10

m11

m12

m13

m14

t4

t5

t6

t7

t8

t9

t10

m1

subsystem

f1

t3

Controller HospitalPatient

Fig. 7. Petri net representation of diagnosis apply

The corresponding differential equation model is:

(∗)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m′
1 = d3 × m3 − d1 × m1

m′
2 = d1 × m1 − d2 × min(m2, m5)

m′
3 = d2 × min(m2, m5) − d3 × m3

m′
4 = d1 × m1 − d4 × min(m4, m6)

m′
5 = d6 × min(m8, m11) − d2 × min(m2, m5)

m′
6 = d7 × m9 − d4 × min(m4, m6)

m′
7 = d4 × min(m4, m6) − d5 × m7

m′
8 = d5 × m7 − d6 × min(m8, m11)

m′
9 = d6 × min(m8, m11) − d7 × m9

m′
10 = d5 × m7 − d8 × min(m10, m12)

m′
11 = d9 × m13 − d6 × min(m8, m11)

m′
12 = d10 × m14 − d8 × min(m10, m12)

m′
13 = d8 × min(m10, m12) − d9 × m13

m′
14 = d9 × m13 − d10 × m14

with the initial values: m1(0) = m6(0) = m12(0) = 1, all other are 0.
With some simulation data, we get d1 = 0.017, d2 = 0.008, d3 = 0.017, d4 =

0.033, d5 = 0.028, d6 = 0.014, d7 = 0.05, d8 = 0.022, d9 = 0.033, and d10 = 0.05.
To illuminate the meanings of di, take d1 for example. Since d1 = 0.017, it means
that about 0.017 × 60 = 1.02 ≈ 1 users sending request out per minute in the
average state. We also assume that the average number of requests from patients
is 1/minute.

With the help of Matlab, we get all the solutions of mi as shown in Fig. 8.
When t > 1000s, all the solutions are approaching to steady values, i.e. m1 ≈

0.13, m2 ≈ 0.74, m3 ≈ 0.13, m4 ≈ 0.07, m5 ≈ 0.27, m6 ≈ 0.56, m7 ≈ 0.08, m8 ≈
0.32, m9 ≈ 0.04, m10 ≈ 0.10, m11 ≈ 0.16, m12 ≈ 0.89, m13 ≈ 0.07, m14 ≈ 0.04.

Applying Ordinary Differential Equations to the Performance Analysis 167

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

m

m2
m4
m10

Fig. 8. State measures of diagnosis apply

Based on the calculation result, we give the performance analysis in the
following.

(1) Response time. We regard the controller and the hospital as the subsys-
tems. The response time is the queue length of the task divided by the average
marking velocity of the subsystem, which equals to the number of marking en-
tering the subsystem per unit time in steady state. The queue length of the task
is the sum of the average number of marking in each place in the subsystem.
Thus the response time T = (m6 + m7 + · · · + m14)/(d1m1). From Fig.9, we
find that when t > 1000s, the response time is approaching to a steady value:
T = 2.2555/(1× 0.1296) ≈ 17minutes.

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

50

t

R
es

po
ns

e
tim

e

Fig. 9. The response time of diagnosis apply

(2) Throughput. From Fig.10, we see that when t > 1000s, the throughput of
the subsystem is approaching to a steady value: 0.1296× 1 × 60 ≈ 8, it means
that the subsystem can accept 8 users per hour.

168 Z. Ding, H. Shen, and J. Liu

0 200 400 600 800 1000
0

5

10

15

20

25

30

t

T
hr

ou
gh

pu
t

Fig. 10. The throughput of diagnosis apply

(3) Resource utilization rate. State m2 stands for ’patient waiting for re-
sponse’. We may choose m2 as the measuring place. When t > 1000s, the value
of m2 is approaching to stable state, i.e. m2 ≈ 0.74, we imply that most of the
patients are waiting for the response. Thus, the system efficiency at this moment
is (1− 0.74) = 0.26 = 26%, which is bad. From Fig. 8, we find the reason is that
very little patient requests (m4 ≈ 0.07) have been sent out to the controller,
and very little patient information(m10 ≈ 0.10) has been sent to the hospital for
checking.

(4) The maximum load. Because we have assumed that the average number
of requests from patients is 1/minute, N = 1 means that 1 user logins to the
system. Increasing loads N , we analyze the peak throughput of the system. It
can be seen from Fig.11 that when N > 3, the number of marking entering the
subsystem will approach to a steady value no matter how the loads are increased.
So the system can serve 3 × 1 = 3 patients per minute to send requests at the
same time.

1 1.5 2 2.5 3 3.5 4
7

8

9

10

11

12

13

14

15

16

17

Load

T
hr

ou
gh

pu
t

Fig. 11. The load of diagnosis apply

Applying Ordinary Differential Equations to the Performance Analysis 169

7 Related Work

Many efforts have been done in the performance analysis. Even through different
analysis models have been proposed, eventually Markov theory will get involved.
So the state explosion problem is still there. Using our method, this problem can
be solved. Moreover, the analysis speed is faster. Here are some examples.

The most related work is from Tan et al. [16]. They used Stochastic Petri Net
to model web services described by WSDL. Based on numeric compression and
decomposition techniques, they developed a set of reduction techniques, which
focus on five basic structures in web service flow: sequential, parallel, conditional,
loop and mutex. As their experiment shows, the state space is reduced, however,
the state space explosion problem is still existed.

Dong et al. [7] proposed an analytical approach to predict the performance
of web service composition built on BPEL. The approach first translates web
service composition specification into Stochastic Petri Nets, then from the SPN
model and the corresponding continuous-time Markov chain, they derived the
analytical performance estimates of process-completion-time. Datla and Popsto-
janova [5] measured the performance at architectural level. They studied the
web services performance by recording the component execution events in the
application server logs and developing scripts in AWK scripting language to
automate the task of extracting response times for each component from the
application server logs. The workload is described with a Discrete Time Markov
Chain (DTMC) which characterizes the customers request patterns. Lin et al.[12]
gave performance analysis for workflow management system. The system is mod-
eled by stochastic Petri net, namely workflow model (WF-SPN), which is the
extension of WF-net. Chandrasekaran et al. [3] described Service Composition
and Execution Tool (SCET) and various methodologies that could be adopted
for evaluating the performance of a Web process.

8 Conclusion

Service composition described by BPEL can be described by a set of ordinary
differential equations, and its performance such as response time, throughput and
system efficiency can be analyzed based on the solutions of the set of equations.
Our experiments show that we may get better performance by adjusting the
firing rates. In the future work, we will give the general rules to adjust the
firing rates to get desired performance. We need to mention that although our
method is developed for service composition, this method can also be used for
the performance analysis of other time dependent systems.

References

1. Ascher, U.M., Petzold, L.R.: Computer methods for ordinary differential equations
and differential-algebraic equations. Society for Industrial & Applied Mathematis,
Philadelphia, PA, USA (1998)

2. Bause F., Kritzinger F.: Stochastic Petri Nets-An Introduction to the Theory.
Vieweg Verlag (2002)

170 Z. Ding, H. Shen, and J. Liu

3. Chandrasekaran, S., Miller, J.A., Silver, G.S., Arpinar, B., Sheth, A.P.: Perfor-
mance analysis and simulation of composite web services. Electronic Markets 13(2),
120–132 (2003)

4. David R., Alla H.: Continuous Petri nets. In: Proceedings of the 8th European
Workshop on Application and Theory of Petri nets, pp. 275–294 (1987)

5. Datla, V., Popstojanova, K.G.: Measurement-based performance analysis of e-
commerce applications with web services components. In: Proceedings of IEEE
International Conference on e-Business Engineering, pp. 305–314 (2005)

6. Ding, Z.: Static analysis of concurrent programs using ordinary differential equa-
tions (Invited Speech). In: Leucker, M., Morgan, C. (eds.) Theoretical Aspects of
Computing - ICTAC 2009. LNCS, vol. 5684, pp. 1–35. Springer, Heidelberg (2009)

7. Dong, Y., Xia, Y., Zhu, Q., Huang, Y.: A Stochastic Approach to Predict Per-
formance of Web Service Composition. In: Proceedings of The 2nd International
Symposium on Electronic Commerce and Security, pp. 460–464 (2009)

8. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equa-
tions(I)(II). In: Nonstiff Problems, 2nd edn. Springer, Heidelberg (1993)

9. Harrow, A., Hassidim, A., Lloyd, S.: Quantum algorithm for solving linear systems
of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

10. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri nets. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 220–235. Springer, Heidelberg (2005)

11. Hiraishi, K.: Performance evaluation of workflows using continuous Petri nets with
interval firing speeds. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS,
vol. 5062, pp. 231–250. Springer, Heidelberg (2008)

12. Lin, C., Qu, Y., Ren, F., Marinescu, D.C.: Performance equivalent analysis of work-
flow systems based on stochastic Petri net models. In: Han, Y., Tai, S., Wikarski,
D. (eds.) EDCIS 2002. LNCS, vol. 2480, pp. 1–64. Springer, Heidelberg (2002)

13. Molloy, M.K.: On the integration of delay and throughput measures in distributed
processing models. Ph.D. dissertation, University of California, Los Angeles (1981)

14. Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE
Internet Computing 8, 51–59 (2004)

15. Molloy, M.K.: Performance analysis using stochastic Petri nets. IEEE Transactions
on Computers C-31(9), 913–917 (1982)

16. Tan, Z., Lin, C., Yin, H., Hong, Y., Zhu, G.: Approximate performance analysis of
web services flow using stochastic Petri net. In: Jin, H., Pan, Y., Xiao, N., Sun, J.
(eds.) GCC 2004. LNCS, vol. 3251, pp. 193–200. Springer, Heidelberg (2004)

17. Teukolsky, S.A., Press, W.H., Vetterling, W.T.: Numerical Recipes in C++, 2nd
edn. Cambridge Univ. Press, Cambridge (1993)

Verifying Heap-Manipulating Programs with
Unknown Procedure Calls

Shengchao Qin1, Chenguang Luo2,�, Guanhua He2,
Florin Craciun1, and Wei-Ngan Chin3

1 Teesside University, Middlesbrough TS1 3BA, UK
2 Durham University

3 National University of Singapore

Abstract. Verification of programs with invocations to unknown pro-
cedures is a practical problem, because in many scenarios not all codes
of programs to be verified are available. Those unknown calls also pose
a challenge for their verification. This paper addresses this problem with
an attempt to verify the full functional correctness of such programs
using pointer-based data structures. Provided with a Hoare-style speci-
fication {Φpr} prog {Φpo} where program prog contains calls to some un-
known procedure unknown, we infer a specification mspecu for unknown
from the calling contexts, such that the problem of verifying prog can
be safely reduced to the problem of proving that the procedure unknown
(once its code is available) meets the derived specification mspecu. The
expected specification mspecu for the unknown procedure unknown is au-
tomatically calculated using an abduction-based shape analysis specifi-
cally designed for a combined abstract domain. We have also done some
experiments to validate the viability of our approach.

1 Introduction

While automated verification of heap-manipulating programs remains a big chal-
lenge [16], significant advances have been seen recently since the emergence
of separation logic [13]. For instance, SpaceInvader [3] can verify the pointer
safety of a large portion of the Linux kernel and many device drivers using
shared mutable data structures; THOR [10] employs additional numerical anal-
ysis to help gain better precision for data structure properties such as list length;
Hip/Sleek [11] can verify more sophisticated properties involving both shape
and numerical information, such as sortedness, height-balanced and red-black
properties. These are all successful examples of verification/analysis of heap-
manipulating programs, esp. those processing pointer-based shared mutable data
structures.

However, a recent prevalent trend of component-based software engineer-
ing [7] poses great challenge for quality assurance and verification of programs.
This methodology involves the integration of software components from both

� Now with Citigroup Inc.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 171–187, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

172 S. Qin et al.

native development and third-parties, and thus the source code of some com-
ponents/procedures might be unknown for verification. For example, some pro-
grams may have calls to third-party library procedures whose code is not accessi-
ble (e.g. in binary form). Some components may be invoked by remote procedure
calls only with a native interface such as COM/DCOM [14]. Still, some compo-
nents could be used for dynamic upgrading of running systems whose cost of
being stopped/restarted is too expensive to bear [15]. Other scenarios include
function pointers (e.g. in C), interface method invocation (e.g. in OO) and mobile
code, which all contain procedures not available for static verification.

To verify such programs, existing approaches generally do not provide elegant
solutions. For example, black-box testing [2] regards the unknown procedures as
black-boxes to test their functionality, which cannot formally prove the absence
of program bugs, therefore may not be enough for safety-critical systems. Like-
wise, specification mining [1] discovers possible specifications for the (unknown
part of the) program by observing its execution and traces, which is also dy-
namically performed and bears the same problem. For static verifiers/analysers,
SpaceInvader [3] simply assumes the program and the unknown procedure have
disjoint memory footprints so that the unknown call can be safely ignored due to
the hypothetical frame rule [12], whereas this assumption does not hold in many
cases. Some methods [4,6] try to take into account all possible implementations
for the unknown procedure; however there can be too many such candidates in
general, and hence the verification might be infeasible for large-scaled programs.
Finally, some verifiers will just stop at the first unknown procedure call and
provide an incomplete verification [11], which is obviously undesirable.

Approach and contributions. We propose a novel approach in this paper
to verifying heap-manipulating programs calling unknown procedures. Given
a specification S = {Φpr} prog {Φpo} where prog contains calls to an unknown
procedure unknown, we try to infer a specification Su for unknown based on the
calling context(s) of prog. The verification of prog against S can now be safely
reduced to the verification of unknown against the inferred specification Su, pro-
vided that the verification of the known fragments does not cause any problems.
The inferred specification is subject to a later verification when an implemen-
tation or a specification for the unknown procedure becomes available. This is
essentially an improvement of our previous work [8] by extending the program
properties to be verified from simple pointer safety to full functional correctness
of linked data structures. Such properties include structural numerical ones like
size and height, relational numerical ones like sortedness, and multi-set ones like
symbolic content. Our paper makes the following technical contributions:

– We propose a novel framework in a combined abstract domain (involving
both shape and pure properties) for the verification of full functional cor-
rectness of programs with unknown calls.

– Our approach is essentially top-down, as it can be used to infer the specifica-
tion for callee procedures based on the specification for the caller procedure.
Hence it may benefit the general software development process as a comple-
ment for current bottom-up approaches [3,11].

Verifying Heap-Manipulating Programs with Unknown Procedure Calls 173

– We have invented an abduction mechanism which can be applied in this
combined domain. It not only can infer shape-based anti-frames for an en-
tailment, but also can discover corresponding pure information (numerical
and/or multi-set) as well. We also defined a partial order as a guidance for
the quality of abduction results.

– We have conducted some initial experimental studies to test the viability and
performance of our approach. Preliminary results show that our approach
can derive expressive specifications which fully capture the behaviours of the
unknown code in many cases.

In the following we will first illustrate our approach with an illustrative example
and then describe its formal settings. Any technical details not described due to
space limit can be found in our technical report [9].

2 The Approach

We first introduce our specification mechanism, followed by an illustrative ex-
ample for the verification.

2.1 User-Defined Predicates

Separation logic [13] extends Hoare logic to support reasoning about shared
mutable data structures. It provides separation conjunction (∗) to form formulae
like p1 ∗ p2 to assert that two heaps described by p1 and p2 are domain-disjoint.
Our abstract domain is founded on a hybrid logic of both separation logic and
classical first-order logic to specify both separation and pure properties. Over
this domain we allow user-defined inductive predicates. For example, with a data
structure definition for a node in a list data node { int val; node next; }, we
can define a predicate for a list with the content stored in its nodes as
root::llB〈S〉 ≡ (root=null∧S=∅)∨(∃v,q,S1·root::node〈v, q〉∗q::llB〈S1〉∧S=S1
{v})

The parameter root for the predicate llB is the root pointer referring to the
list. Its content is denoted by the multi-set S. A uniform notation p::c〈v∗〉 is
used for either a singleton heap or a predicate. If c is a data node, the notation
represents a singleton heap, p �→c[v∗], e.g. the root::node〈v, q〉 above. If c is a
predicate name, then the data structure pointed to by p has the shape c with
parameters v∗, e.g., the q::llB〈S1〉 above.

If users want to verify a sorting algorithm, they can incorporate sortedness
property into the above predicate as follows:

sllB〈S〉 ≡ (root=null ∧ S=∅) ∨
(root::node〈v, q〉 ∗ q::sllB〈S1〉 ∧ S={v}�S1 ∧ (∀u∈S1 · v≤u))

where we use the following shortened notation: (i) default root parameter in
LHS may be omitted, (ii) unbound variables, such as q and S1, are implicitly
existentially quantified. Meanwhile, later we may still use underscore to denote
an implicitly quantified variable. Such user-supplied predicates can be used to
specify method specifications.

174 S. Qin et al.

2.2 Illustrative Example

In this section, we illustrate informally, via an example, how our approach verifies
a program by inferring the specification for the unknown procedure it invokes.

Example 1 (Motivating example). Our goal is to verify the procedure sort
against the given specification shown in Figure 1. According to the specifica-
tion, the procedure takes in a non-empty linked list x and returns a sorted list
referenced as res. The (symbolic) content of these two lists are identical (S).
Note that sort calls an unknown procedure unknown at line 4. As we do not
have available knowledge about it, the discovery of its specifications is essential
for both the verification and our understanding of the program (such that we
may find out what sorting algorithm this procedure implements).

We conduct a forward analysis on the program body starting with the precondi-
tion x::llB〈S〉 (line 0). The results of our analysis (e.g. the abstract states) are
marked as comments in the code. The analysis carries on until it reaches the
unknown procedure call at line 4.

As afore-shown, the current state before line 4 is x::llB〈S〉∧x �=null (σ at line
3a). Then we want to discover the precondition for the unknown call from it.
To do that, we split σ into two disjoint parts: the local part Φupr (line 3c) that is
depended on, and possibly mutated by, the unknown procedure; and the frame
part R0 (line 3e) that is not accessed by the unknown procedure. Intuitively, the
local part of a state w.r.t. a set of variables X is the part of the heap reachable
from variables in X; while the frame part denotes the unreachable heap part.
Thus we take Φupr (line 3c) as a crude precondition for the unknown procedure.
The frame part R0 is not touched by the unknown call and will remain in the
post-state, as shown in line 4c.

At line 4c, the abstract state after the unknown call (σ) consists of two parts:
one is the aforesaid frame R0 not accessed by the call, and the other is the pro-
cedure’s postcondition which is unfortunately not available. Our next step is to
discover the postcondition by examining the code fragment after the unknown
call (lines 4a to 8e). For this task, a traditional approach is a backward reason-
ing from the caller’s postcondition towards the unknown call’s postcondition.
However, this is proven infeasible for separation logic based shape domain by
previous works [3], and hence we employ another approach with a forward rea-
soning from the unknown call towards the caller’s postcondition, using abduction
to discover the unknown call’s postcondition.

Initially, we assume the unknown procedure having an empty heap σ′
0 as its

postcondition1, and gradually discover the missing parts of the postcondition
during the symbolic execution of the code fragment after the unknown call. To
do that, our analysis keeps track of a pair (σ, σ′) at each program point, where σ
refers to the current heap state, and σ′ denotes the expected postcondition dis-
covered so far for the unknown procedure. The notations σ′

i are used to represent
parts of the discovered postcondition.

1 Note that we introduce fresh logical variables a and resu to record the value of x
and y when unknown returns.

Verifying Heap-Manipulating Programs with Unknown Procedure Calls 175

0 node sort(node x) requires x::llB〈S〉 ensures res::sllB〈S〉

1 { // res is the value returned by the procedure

1a // Forward analysis begins with current state σ : x::llB〈S〉

2 if (x == null) return null;

2a // σ : x::llB〈S〉 ∧ x=null ∧ res=null

2b // Check whether current state meets the postcondition: σ � res::sllB〈S〉

2b // which succeeds; the verification on this branch terminates

3 else {

3a // σ : x::llB〈S〉 ∧ x�=null

3b // Unknown call is now encountered (line 4); extract its precondition from σ:

3c // Φ
u

pr := Local(σ, {x}) := x::llB〈S〉 ∧ x�=null

3d // Also distinguish the frame part not touched by unknown call:

3e // R0 := Frame(σ, {x}) := emp ∧ x�=null

4 node y = unknown(x);

4a // Immediately after the unknown call we know nothing about its effect, so

4b // we begin to discover its post-effect starting from emp (saved in σ′):

4c // σ′
0 : emp ∧ x=a ∧ y=resu σ := R0 ∗ σ

′
0 σ′ := σ′

0

4d // Next instruction (y.next) requires y be a node

4e // But the entailment checking σ � y::node〈v, p〉 fails

4f // This requirement might be part of the unknown call’s post-effect; we use

4g // abduction to find it and add it to current state and unknown call’s post:

4h // σ ∗ [σ′
1]� y::node〈v, p〉 (s.t. σ ∗ σ′

1 � y::node〈v, p〉 ∗ true)

4i // σ′
1 : y::node〈v, p〉 σ := σ ∗ σ′

1 σ′ := σ′ ∗ σ′
1

5 node z = y.next;

5a // Current state σ : y::node〈v, z〉

5b // Next instruction invokes this procedure recursively and requires its pre, but

5c // σ � z::llB〈S1〉 fails possibly due to lack of knowledge about unknown call

5d // Again we use abduction to find the missing part of unknown call’s post-effect

5e // σ ∗ [σ′
2]� z::llB〈S1〉 (s.t. σ ∗ σ′

2 � z::llB〈S1〉 ∗ true)

5f // σ′
2 : z::llB〈S1〉 σ := σ ∗ σ′

2 σ′ := σ′ ∗ σ′
2

6 node w = sort(z);

6a // Current state σ : y::node〈v, z〉 ∗w::sllB〈S1〉 (w already refers to a sorted list)

7 y.next = w;

7a // Current state σ : y::node〈v, w〉 ∗ w::sllB〈S1〉

8 return y;

8a // σ : y::node〈v, w〉 ∗ w::sllB〈S1〉 ∧ res=y; it should imply sort’s postcondition

8b // But σ � res::sllB〈S〉 still fails, suggesting more post-effect of unknown call

8c // A final abduction is conducted to find it: σ ∗ [σ′
3]� res::sllB〈S〉

8d // σ′
3 : S={v}�S1 ∧ ∀u∈S1·v≤u σ := σ ∗ σ′

3 σ′ := σ′ ∗ σ′
3

8e // All abduction results will be combined at last to form unknown call’s post

9 } }

9a // Φ
u

pr : a::llB〈S〉 ∧ a�=null (a is the unknown procedure’s formal parameter)

9b // Φ
u

po : resu::node〈v, b〉 ∗ b::llB〈S1〉 ∧ S={v}�S1 ∧ ∀u∈S1·v≤u

Fig. 1. Verification of sort which invokes an unknown procedure unknown

176 S. Qin et al.

At line 5, y.next is dereferenced, whose value is then assigned to z. Such deref-
erence causes a problem, as we have an empty heap beforehand (σ in line 4c).
However, this is not necessarily due to a program error; it might be attributed
to the fact that the unknown call’s postcondition is still unknown. Therefore,
our analysis performs an abduction (line 4h) to infer the missing part σ′

1 for
σ such that σ ∗ σ′

1 implies that y points to a node. As shown in line 4i, σ′
1 is

inferred to be y::node〈v, p〉, which is accumulated into σ′ as part of the expected
postcondition of the unknown procedure. (We will explain the details for abduc-
tion in Section 4.) Now the heap state combined with the inferred σ′

1 meets the
requirement of the dereference, and thus the forward analysis continues.

At line 6, the procedure sort is called recursively. Here the current heap state
still does not satisfy the precondition of sort (as shown in line 5c). Blaming the
lack of knowledge about the unknown call’s postcondition, we conduct another
abduction (line 5e) to infer the missing part σ′

2 for σ such that σ ∗σ′
2 entails the

precondition of sort w.r.t. some substitution [z/x]. Updated with the abduction
result z::llB〈S1〉, the program state now meets the precondition of sort, which
is later transformed to w::sllB〈S1〉 as the effect of sorting over z.

After that, line 7 links y and the sorted list w together. Then y is returned as
the procedure’s result at last. The corresponding state σ at line 8a is expected
to establish the postcondition of sort for the overall verification to succeed.
However, it does not (as shown in line 8b). Again this might be because part of
the unknown call’s postcondition is still missing. Therefore, we perform a final
abduction (line 8c) to infer the missing σ′

3 as follows:

(y::node〈v, w〉 ∗ w::sllB〈S1〉 ∧ res=y) ∗ [σ′
3] � res::sllB〈S〉

such that σ ∗σ′
3 implies the postcondition. In this case, our abductor returns σ′

3,
a sophisticated pure constraint S={v}�S1 ∧ ∀u∈S1·v≤u, as the result which is
then added into σ′, as shown in line 8d.

Finally, we generate the expected pre/post-specification for the unknown pro-
cedure (lines 9a and 9b). The precondition is obtained from the local pre-state
of the unknown call, Φupr at line 3c, by replacing all variables that are aliases of
a with the formal parameter a. The postcondition is obtained from the accumu-
lated abduction result, σ′, after performing a similar substitution (which also
involves formal parameter resu). Our discovered specification for the unknown
procedure node unknown(node a) is:

Φupr : a::llB〈S〉 ∧ a �=null
Φupo : ∃b · resu::node〈v, b〉 ∗ b::llB〈S1〉 ∧ S={v}�S1 ∧ ∀u∈S1·v≤u

This derived specification has two implications. The first is that the entire pro-
gram is verified on the condition that unknown meets such specification. The
second is an improvement of our understanding on the behaviours of both the
caller (sort) and the callee (unknown): the callee should choose the smallest
element from its input list, and its way of choice decides the type of sorting for
the caller (selection or bubble sort).

Verifying Heap-Manipulating Programs with Unknown Procedure Calls 177

Prog ::= tdecl meth munk tdecl ::= datat | spred
datat ::= data c { field } field ::= t x t ::= c | τ
meth ::= t mn ((t x); (t y)) mspec {e} τ ::= int | bool | void
munk ::= t mn ((t x); (t y)) mspec {v}
e ::= d | d[x] | x=e | e1; e2 | t x; e | if (x) e1 else e2 | while x {e} inv Δ

u ::= unk(x; y) | unk(x0; y0); e1; unk1(x1; y1); e2; ...; en−1; unkn(xn ; yn) |
if (x) v else e | if (x) e else v | if (x) v1 else v2 | while x {v} inv Δ

v ::= e1; u; e2

d ::= null | kτ | x | skip | new c(x) | mn(x; y)
d[x] ::= x.f | x.f :=z | free(x)

Fig. 2. A core (C-like) imperative language

3 Language and Abstract Domain

To simplify presentation, we focus on a strongly-typed C-like imperative lan-
guage in Figure 2. A program Prog consists of two parts: type declarations and
method declarations. The type declarations tdecl can define either data type
datat (e.g. node) or predicate spred (e.g. llB). The method declarations include
meth and munk, of which the second contains invocations to unknown procedures
while the first does not. The spred and mspec are defined in Figure 3.

Note that the language is expression-oriented, so the body of a method is an
expression composed of standard instructions and constructors of an imperative
language. e is the (recursively defined) program constructor and d and d[x] are
atom instructions. Note also that the language allows both call-by-value and call-
by-reference method parameters (which are separated with a semicolon ; where
the ones before ; are call-by-value and the ones after are call-by-reference).

To address the unknown calls, we employ unknown constructors u and v to de-
note expressions that involve invocations to the unknown procedures (unk(x,y)).
An unknown block v is defined as a sequence of normal expressions sandwiching
an unknown expression u, which can be a single unknown call, or a sequence of
unknown calls, or an if-conditional statement/while loop containing an unknown
block. Our aim is to discover the specifications for the unknown procedures in u
and v to verify the whole program.

mspec ::= requires Φpr ensures Φpo spred ::= root::c〈v〉 ≡ Φ
Δ ::= Φ | Δ1∨Δ2 | Δ∧π | Δ1∗Δ2 | ∃v·Δ
Φ ::=

∨
σ σ ::= ∃v·κ∧π

κ ::= emp | v::c〈v〉 | κ1 ∗ κ2 π ::= γ∧φ
γ ::= v1=v2 | v=null | v1 �=v2 | v �=null | true | γ1∧γ2

φ ::= ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1 =b2 a ::=s1=s2 | s1≤s2

s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2) | |B|
ϕ ::= v∈B | B1=B2 | B1�B2 | B1�B2 | ∀v∈B·φ | ∃v∈B·φ
B ::= B1
B2 | B1�B2 | B1−B2 | ∅ | {v}

Fig. 3. The specification language

178 S. Qin et al.

Our specification language (in Figure 3) allows (user-defined) shape predicates
to specify both separation and pure properties. The shape predicates spred are
constructed with disjunctive constraints Φ. We require that the predicates be
well-formed [11].

A conjunctive abstract program state σ is composed of a heap (shape) part κ
and a pure part π, where π consists of γ, φ and ϕ as aliasing, numerical and bag
information, respectively. We use SH to denote a set of such conjunctive states.
During our verification, the abstract program state at each program point will
be a disjunction of σ’s, denoted by Δ (and the set of such disjunctions PSH). An
abstract state Δ can be normalised to the Φ form [11].

The memory model of our specification formulae is adapted from the model
given for “early versions” of separation logic [13], except that we have extensions
to handle user-defined shape predicates and related pure properties. Meanwhile,
for program variables in abstract states, we use unprimed ones to denote their
initial values and primed ones for current values [9,11].

4 Abduction

As shown in Section 2, when analysing the code after an unknown call, it is possible
that the current state cannot meet the required precondition for the next instruc-
tion due to the lack of information about the unknown procedure. Therefore we
need to infer the unknown procedure’s specification with abduction (or abductive
reasoning) [3,5]. Itworks as follows: for a failed entailment checking σ1 % σ2 ∗ true,
it attempts to compute an anti-frame σ′, such that σ1 ∗ σ′ % σ2 ∗ true succeeds.
For instance, the entailment checking emp % x::llB〈S〉 fails as the antecedent con-
tains an empty heap. Then x::llB〈S〉 will be found to strengthen the antecedent
and validate the entailment emp ∗ x::llB〈S〉 % x::llB〈S〉.

An abduction σ1 ∗ [σ′] � σ2 can also be written as σ1 ∗ [σ′] � σ2 ∗ σ3, where
σ1 and σ2 are inputs, σ′ is the abduction result (the anti-frame), and σ3 is the
frame part resulted from the entailment checking σ1 ∗ σ′ % σ2.

Our abduction rules given in Figure 4 deal with four different cases. The first
rule triggers when the LHS (σ) does not imply the RHS (σ1) but the RHS implies

σ � σ1 ∗ true σ1 � σ ∗ σ′ σ ∗ σ′ � σ1 ∗ σ2

σ ∗ [σ′] � σ1 ∗ σ2

σ � σ1 ∗ true σ1 � σ ∗ true σ0 ∈ unroll(σ) data no(σ0) ≤ data no(σ1)
σ0 � σ1 ∗ σ′ or σ0 ∗ [σ′

0] � σ1 ∗ σ′ σ′′=XPure1(σ′) σ ∧ σ′′ � σ1 ∗ σ2

σ ∧ [σ′′] � σ1 ∗ σ2

σ � σ1 ∗ true σ1 � σ ∗ true σ1 ∗ [σ′
1] � σ ∗ σ′ σ′′=XPure1(σ′) σ ∧ σ′′ � σ1 ∗ σ2

σ ∧ [σ′′] � σ1 ∗ σ2

σ � σ1 ∗ true σ1 � σ ∗ true σ ∗ σ1 � false

σ ∗ [σ1] � σ1 ∗ σ2

Fig. 4. Abduction rules

Verifying Heap-Manipulating Programs with Unknown Procedure Calls 179

the LHS with some formula (σ′) as the frame. This rule is quite general and
applies in many cases, such as the state immediately after an unknown call where
we start with emp as the heap state. For the example above emp � x::llB〈S〉,
the RHS can entail the LHS with frame x::llB〈S〉. The abduction then checks
whether σ plus the frame information σ′ entails σ1 with some frame formula σ2

(emp in this example), and returns the result x::llB〈S〉.
In the case described by the second rule, neither side implies the other, e.g.

for x::sllB〈S〉 as LHS (σ) and ∃p, u, v · x::node〈u, p〉 ∗ p::node〈v, null〉 as RHS
(σ1). As the shape predicates in the antecedent σ are formed by disjunctions
according to their definitions (like sllB), its certain disjunctive branches may
imply σ1. As the rule suggests, to accomplish abduction σ ∗ [σ′′] � σ1 ∗ σ2, we
first unfold σ (σ0 ∈ unroll(σ)) and try entailment or further abduction with the
results (σ0) against σ1. If it succeeds with a frame σ′, then we first obtain a pure
approximation of σ′ with XPure [11], and confirm the abduction by ensuring
σ ∧ σ′′ % σ1 ∗ σ2, for some σ2. For the example above, the abduction returns
|S|=2 as the anti-frame σ′ and discovers the nontrivial frame S={u, v} ∧ u≤v
(σ2). Note the function data no returns the number of data nodes in a state, e.g.
it returns one for x::node〈v, p〉 ∗ p::llB〈T〉. This syntactic check is important for
the termination of the abduction. The unroll unfolds all shape predicates once in
σ, normalises the result to a disjunctive form (

∨n
i=1 σi), and returns the result

as a set of formulae ({σ1, ..., σn}). The XPure is a strengthened version of that
in [11], as it also keeps the pure part of σ′ in the result.

In the third rule, neither side entails the other, and the second rule does
not apply, for example ∃p, u, v · x::node〈u, p〉 ∗ p::node〈v, null〉 as LHS (σ) and
∃S · x::sllB〈S〉 as RHS (σ1). In this case the antecedent cannot be unfolded
as they are already data nodes. As the rule suggests, it reverses two sides of
the entailment and applies the second rule to uncover the constraints σ′

1 and
σ′. Then it checks that the LHS (σ), with σ′ added, does imply the RHS (σ1)
before it returns σ′. For the example above, the abduction returns u≤v which is
essential for the two nodes to form a sorted list (σ1).

When an abduction is conducted, the first three rules should be attempted
first; if they do not succeed in finding a solution, the last rule is invoked to
simply add the consequent to the antecedent, provided that they are consistent.
It is effective for situations like x::node〈 , 〉 � y::node〈 , 〉, where we should add
y::node〈 , 〉 to the LHS directly (as the other three rules do not apply here).

One observation on abduction is that there can be many solutions of the anti-
frame σ′ for the entailment σ1 ∗ σ′ % σ2 ∗ true to succeed. For instance, false is
always a solution but should be avoided where possible. For all possible solutions
to an abduction, we can compare their “quality” with a partial order & over SH
defined by the entailment relationship (%):

σ1 & σ2 =df σ2 % σ1 ∗ true
and the smaller (weaker) one in two abduction solutions is regarded as better.
We prefer to find solutions that are (potentially locally) minimal with respect to
& and consistent. However, such solutions are generally not easy to compute and
could incur excess cost (with additional disjunction in the analysis). Therefore,

180 S. Qin et al.

our abductive inference is designed more from a practical perspective to discover
anti-frames that should be suitable as specifications for unknown procedures, and
the partial order & is more a guidance of the decision choices of our abduction
implementation, rather than a guarantee to find the theoretically best solution.

5 Verification

This section presents our algorithms to verify programs with unknown calls.
1. Main verification algorithm. Our main verification algorithm is given in
Figure 5. It verifies an unknown block v (the third parameter) against given
specifications mspecv (the second parameter). The first parameter includes the
specifications of already available procedures which might be invoked as well as
the unknown ones in the program to be verified. Upon successful verification, this
algorithm returns specifications that should be met by the unknown procedures
in v. If the verification fails, it suggests that the current program cannot meet one
or more given specifications due to a potential program bug. The specifications
for unknown procedures will be expressed in terms of special variables a, b, etc.
as in the earlier example.

The algorithm initialises in the first two lines. It distinguishes the body of the
unknown block v (as an unknown expression u in between two normal expressions
e1 and e2), sets up the set to store discovered specifications (line 1), and finds
the program variables that are potentially accessed by v and u, respectively
(prog var in line 2). Note that x0 and x are the variables read by v and u, and
y0 and y are those mutated. For example, if v contains an assignment y = x
then x will be in x0 and y in y0.

After the initialisation, for each specification (requires Φpr ensures Φpo) to
verify against (line 3), the algorithm works in three steps. The first step is to
compute the preconditions of u (lines 4–7). It first conducts a symbolic execution
from Φpr over e1 (the program segment before u) to obtain its post-states, from
which the preconditions for u will be extracted (line 4). The symbolic execution is
essentially a forward analysis whose details are presented later. If the post-states
include false, then it means the given Φpr cannot guarantee e1’s memory safety,
and thus fail is returned (line 5). Otherwise, each post-state of e1 is processed by
function Local as a candidate precondition for u (line 7). Intuitively, it extracts
the part of each σ reachable from the variables that may be accessed by u,
namely, x and y. The function Local is defined as follows:

Local(∃z · κ ∧ π, {x}) =df ∃fv(κ∧π)∪{z} \ ReachVar(κ ∧ π, {x}) ·
ReachHeap(κ ∧ π, {x}) ∧ π

where fv(σ) stands for all free (program and logical) variables occurring in σ,
and ReachVar(κ ∧ π, {x}) is the minimal set of variables reachable from {x}:

{x} ∪ {z2 | ∃z1, π1 · z1∈ReachVar(κ∧π, {x}) ∧ π=(z1=z2 ∧ π1)} ∪ {z2 |
∃z1, κ1 · z1∈ReachVar(κ∧π, v) ∧ κ=(z1::c〈.., z2, ..〉 ∗ κ1)} ⊆ ReachVar(κ∧π, {x})

Verifying Heap-Manipulating Programs with Unknown Procedure Calls 181

Algorithm Verify(T ,mspecv, v)
1 Denote v as { e1; u; e2} ; mspecu := ∅
2 (x0, y0) := prog var(v) ; (x, y) := prog var(u)
3 foreach (requires Φpr ensures Φpo) ∈ mspecv do

4 S0 := |[e1]|T {Φpr ∧ y′
0=y0}

5 if false ∈ S0 then return fail endif

6 foreach σ ∈ S0 do

7 Φupr := Local(σ, {x, y})
8 z := fv(Φupr) \ {x, y}
9 S := |[e2]|AT {([b/y]Frame(σ, {x, y}) ∧ x=a ∧

y=b ∧ z=c, emp ∧ x=a ∧ y=b ∧ z=c)}
10 S′ := { (σ, σ′) | (σ, σ′)∈S ∧ σ � Φpo ∗ true } ∪

{ (σ ∗ σ′′, σ′ ∗ σ′′) | (σ, σ′)∈S ∧
σ � Φpo∗true ∧ σ∗[σ′′] � Φpo∗true }

11 if ∃(σ, σ′)∈S′ . fv(σ′) � ReachVar(σ, {a, b})
then return (fail, σ′) endif

12 foreach (σ, σ′) ∈ S′ do

13 Φupr := [a/x, b/y, c/z] Φupr
14 Φupo := sub alias(σ′, {a, b, c})
15 g := (fv(Φupr) ∩ fv(Φupo)) ∪ {a, b}
16 mspecu := mspecu ∪ {(requires ∃(fv(Φupr)\g) · Φupr

ensures Φupo)}
17 end foreach

18 end foreach

19 end foreach

20 Tu := CaseAnalysis(T ,mspecu, u)
21 return T �Tu
end Algorithm

Fig. 5. The main verification algorithm

That is, it is composed of aliases of x as well as variables reachable from x. And
the formula ReachHeap(κ∧π, {x}) denotes the part of κ reachable from {x} and
is formally defined as the ∗-conjunction of the following set of formulae:
{κ1 | ∃z1, z2, κ2 · z1∈ReachVar(κ∧π, {x}) ∧ κ=κ1∗κ2 ∧ κ1=z1::c〈.., z2, ..〉}
The second step is to discover the postconditions for u (lines 9–11). This

is mainly completed with another symbolic execution with abduction over e2

(line 9), whose details are also introduced later. Here we denote u’s post-state
as emp, since its knowledge is not available yet. Therefore, the initial state for
the symbolic execution of e2 is simply the frame part of state not touched by u.
The function Frame is formally defined as

Frame(∃z · κ ∧ π, {x}) =df ∃z · UnreachHeap(κ ∧ π, {x}) ∧ π

where UnreachHeap(∃z · κ ∧ π, {x}) is the formula consisting of all ∗-conjuncts
from κ which are not in ReachHeap(∃z · κ ∧ π, {x}).

The conjunctions x=a ∧ y=b ∧ z=c in line 9 are to keep track of variable
snapshot accessed by u using the special variables a, b and c. Then the symbolic

182 S. Qin et al.

execution returns a set S of pairs (σ, σ′) where σ is a possible post-state of e2

and σ′ records the discovered effect of u. However, maybe u still has some effect
that is only exposed in the expected postcondition Φpo for the whole program;
therefore we need to check whether or not σ can establish Φpo. If not, another
abduction σ∗[σ′′] � Φpo is invoked to discover further effect σ′′ which is then
added into σ′.

There can still be some complication here. Note that the effect discovered
during e2’s symbolic execution may not be attributed all over to u; it is also
possible that there is a bug in the program, or the given specification is not
sufficient. As a consequence of that, the result σ′ returned by our abduction
may contain more information than what can be expected from u, in which case
we cannot simply regard the whole σ′ as the postcondition of u. To detect such a
situation, we introduce the check in line 11. It tests whether the whole abduction
result is reachable from variables accessed by u. If not, then the unreachable part
cannot be expected from u, which indicates a possible bug in the program or
some inconsistency between the program and its specification. In such cases, the
algorithm returns an additional formula that can be used by a further analysis
to either identify the bug or strengthen the specification.

The third step (lines 12–17) is to form the derived specifications for u in terms
of variables a, b and g. Here g denotes logical variables not explicitly accessed by
u, but occurring in both pre- and postconditions (ghost variables). The formula
sub alias(σ′, {a, b, c}) is obtained from σ′ by replacing all variables with their
aliases in {a, b, c}. Finally, at line 20, the obtained specifications mspecu for
u are passed to the case analysis algorithm (given in Figure 6) to derive the
specifications of unknown procedures invoked in u.

2. Case analysis algorithm. In order to discover specifications for unknown
procedures invoked in u, the algorithm in Figure 6 conducts a case analysis
according to the structure of u. In the first case (line 2), u is simply a single
unknown call. In this situation, the algorithm returns all the pre-/postcondition
pairs from mspecu as the unknown procedure’s specifications.

In the second case (line 4), u is an if-conditional and both branches contain
an unknown block. The algorithm uses the main algorithm to verify the two
branches separately with preconditions Φpr∧x and Φpr∧¬x respectively, where
Φpr is one of the preconditions of the whole if. The results obtained from the
two branches are then combined using the ' operator:

R1 'R2 =df {(f,Refine(mspec1
f ∪mspec2

f)) | (f,mspec1
f)∈R1 ∧ (f,mspec2

f)∈R2}
where Refine is used to eliminate any specification (requires Φpr ensures Φpo)
from a set if there exists a “stronger” one (requires Φ′

pr ensures Φ′
po) such that

Φ′
pr&Φpr and Φpo&Φ′

po. It is defined as

Refine(∅) =df ∅
Refine({(requires Φpr ensures Φpo)} ∪ Spec) =df

if ∃(requires Φ′
pr ensures Φ′

po)∈Spec · Φ′
pr&Φpr ∧ Φpo&Φ′

po

then Refine(Spec) else {(requires Φpr ensures Φpo)} ∪ Refine(Spec)

and ' is to refine the union of two specification sets.

Verifying Heap-Manipulating Programs with Unknown Procedure Calls 183

Algorithm CaseAnalysis(T , mspecu, u)
1 switch u

2 case unk(x; y)
3 return { (unk(x; y),mspecu)}
4 case if (x) v1 else v2

5 mspecT := {(requires Φpr∧x ensures Φpo) |
(requires Φpr ensures Φpo) ∈ mspecu}

6 mspecF := {(requires Φpr∧¬x ensures Φpo) |
(requires Φpr ensures Φpo) ∈ mspecu}

7 R1 := Verify(T ,mspecT , v1)
8 R2 := Verify(T ,mspecF , v2)
9 return R1 � R2

10 case if (x) v else e

11 mspecT := {(requires Φpr∧x ensures Φpo) |
(requires Φpr ensures Φpo) ∈ mspecu}

12 R := Verify(T ,mspecT , v)
13 if ∃(requires Φpr ensures Φpo) ∈ mspecu, σ ∈ |[e]|T {Φpr∧¬x} ·

σ=false ∨ σ � Φpo∗true then return fail

14 else return R endif

15 case if (x) e else v (Similar to the previous case)
16 case while x { v} inv Δ

17 return Verify(T , requires Δ∧x ensures Δ, v)
18 case unk0(x0; y0) { ; ei; unki(xi; yi)}ni=1

19 return { (unki(xi ; yi), SeqUnkCalls(T , mspecu, u))}ni=0

end Algorithm

Fig. 6. The case analysis algorithm

The third and fourth cases (lines 10 and 15) are for if-conditionals which
contain only one unknown block in one of the two branches. This is handled in a
similar way as in the second case. The only difference is, for the branch without
unknown blocks, we need to verify it with the underlying semantics (line 13).

The fifth case is the while loop. As we assume its invariant is already given
for the verification, we simply verify its body with the main algorithm, regarding
the invariant as both pre- and postconditions (line 17).

In the last case (line 21), where u consists of multiple unknown procedure
calls in sequence, another algorithm SeqUnkCalls is invoked to deal with it. We
informally introduce its idea here due to space limit; its algorithm and subsequent
discussions about our solution can be found in the report [9].

Suppose we have {Φpr} {unk0(x0; y0); e; unk1(x1; y1)} {Φpo} to be verified,
where e is the only known code fragment within the block. Our current solution
finds a common specification to capture both unknown procedures’ behaviours.

The algorithm works in three steps. In the first step, it extracts the pre-
condition for the first procedure, say Φu

pr, from the given precondition Φpr by
extracting the part of heap that may be accessed by the call via x0 and y0, which

184 S. Qin et al.

is similar to the first step of the main algorithm Verify. Aiming at a general spec-
ification for both unknown calls, it then assumes that the second procedure has
a similar precondition Φu

pr. In the second step, it symbolically executes the code
fragment e with the help of the abductor, to discover a crude postcondition, say
Φu, expected from the first unknown call. This is similar to the second step of
the main algorithm Verify, except that the postcondition for e is now assumed to
be Φu

pr. In the third step, the algorithm takes Φu (with appropriate variable sub-
stitutions) as the postcondition of the second unknown call, and checks whether
or not the derived post (Φu) satisfies Φpo. If not, it invokes another abduction to
strengthen Φu to obtain the final postcondition Φu

po for the unknown procedures.
Note that this strengthening does not affect soundness: the strengthened Φu

po can
still be used as a general postcondition for both unknown procedures.
3. Abstract semantics. Our verification algorithms utilise two semantics: an
underlying semantics and an abstract semantics with abduction. They are used
to conduct the forward analysis over program body. The type of our underlying
semantics is defined as

|[e]| : AllSpec → PSH → PSH

where AllSpec contains procedure specifications (extracted from the program
Prog). For some expression e, given its precondition, the semantics will calculate
the postcondition.

The abstract semantics with abduction is of the type:

|[e]|A : AllSpec → P(SH× SH)→ P(SH× SH)

It takes a piece of program and a specification table, to map a (disjunctive) set
of pair of symbolic heaps to another such set (where the first in the pair is the
current state and the second is the accumulated postcondition for unknown call).

Formal definition of both semantics can be found in the technical report [9].
4. Soundness and termination. For soundness of our verification, we have
the following theorem:

Theorem 1 (Soundness). Our analysis is sound due to the soundness of en-
tailment checking, abduction and abstract semantics.

The proof for entailment checking is by structural induction [11]. For abduction,
as its result is always checked with entailment, its soundness follows that of
entailment checking’s. Finally, the soundness of abstract semantics is proven by
induction over program constructors.

We have also confirmed that our verification terminates:

Theorem 2 (Termination). Our verification will terminate in finite steps for
finite input of programs and specifications.

This is because our algorithms perform structural reasoning over finite input.
More details of soundness and termination can be found in our report [9].

Verifying Heap-Manipulating Programs with Unknown Procedure Calls 185

6 Experimental Results

We have implemented the verification algorithms and the abstract semantics
with Objective Caml and evaluated them over some heap-manipulating pro-
grams. The results are in Tables 1 and 2. In each table, the first and second
columns denote the programs used for evaluation and their time consumption,
respectively. During the experiments, we manually hide some instructions in the
original programs as calls to unknown procedures, whose specifications we try
to discover during the verification process. Accordingly, the third column in the
first table contain both the specifications of the programs to be verified (upper
line), and the derived specifications for the unknown procedure (lower line). For
the second table, as we used the same specification x::llB〈S〉 ∗→ res::sllB〈S〉
to verify all the sorting algorithms, the third column (from the second line on)
states the discovered specification for the unknown call only. Due to space limit,
more experimental results are available in our report [9].

Table 1. Selected experimental results (lists and trees)

Prog. Time Main spec. (Φpr ∗→Φpo) and Derived unknown spec. (Φu

pr ∗→Φu

po)

List processing programs

create

0.405
emp ∧ n≥0 ∗→ res::llB〈S〉 ∧ n=|S| ∧ ∀v∈S·1≤v≤n

emp ∧ a≥1 ∗→ res::node〈c, b〉 ∧ 1≤c≤n

1.020
emp ∧ n≥0 ∗→ res::sllB2〈S〉 ∧ n=|S| ∧ ∀v∈S·1≤v≤n

emp ∧ a≥1 ∗→ res::node〈c, b〉 ∧ a−1≤c≤a

sort

insert

0.667
x::ll〈n〉 ∧ n≥1 ∗→ x::ll〈m〉 ∧ m=n+1

a::node〈b, c〉 ∗ c::ll〈d〉 ∗→ a::node〈b, e〉 ∗ e::ll〈d+1〉

0.764
x::sll〈n,xs,xl〉 ∧ v≥xs ∗→ x::sll〈n+1,mn,mx〉 ∧ mn=xs ∧ mx=max(xl,v)
a::node〈b,c〉∗c::sll〈d,g,h〉∧b≤f≤g ∗→ a::node〈b,e〉∗e::sll〈d+1,f,h〉

delete

0.646
x::llB〈S〉 ∧ |S|≥2 ∗→ x::llB〈T〉 ∧ ∃a·S=T�{a}
a::node〈b, c〉 ∗ c::node〈d, e〉 ∗ e::llB〈E〉 ∗→ a::node〈b, e〉 ∗ e::llB〈E〉

0.916
x::sllB〈S〉 ∧ |S|≥2 ∗→ x::sllB〈T〉 ∧ ∃a·S=T�{a}
a::node〈b, c〉 ∗ c::node〈d, e〉 ∗ e::sllB〈E〉 ∧ ∀f∈E·b≤d≤f ∗→
a::node〈b, e〉 ∗ e::sllB〈E〉 ∧ ∀f∈E·b≤f

travrs

0.272
x::ll〈m〉 ∧ n≥0∧m≥n ∗→ x::ls〈p,k〉 ∗ res::ll〈r〉 ∧ p=res ∧ k=n ∧ m=n+r

a::ll〈b〉 ∗→ a::ls〈c〉 ∗ res::ll〈d〉 ∧ b=c+d ∧ c≤n

2.322
x::sllB〈S〉 ∧ n≥0∧|S|≥n ∗→

x::slsB〈p, T〉 ∗ res::sllB〈S2〉 ∧ p=res∧
|T|=n ∧ S=T�S2 ∧ ∀u∈T,v∈S2 · u≤v

a::sllB〈A〉 ∗→
a::slsB〈A1〉 ∗ res::sllB〈R〉 ∧
A=A1�R ∧ |A1|≤n ∧ ∀b∈A1,c∈R·b≤c

Binary tree, binary search tree, AVL tree and red-black tree processing programs

height 0.821
x::bt〈S, h〉 ∗→ x::bt〈T, k〉 ∧ res=h=k ∧ S=T

a::bt〈A, b〉 ∧ a�=null ∗→ a::node2〈c, d, e〉 ∗ d::bt〈D, f〉 ∗ e::bt〈E, g〉 ∧
A={c}�D�E ∧ b=max(f,g)+1 ∧ (res=d ∨ res=e)

search 1.851
x::bst〈sm, lg〉 ∗→ x::bst〈mn, mx〉 ∧ sm=mn ∧ lg=mx ∧ 0≤res≤1

a::bst〈b, c〉∧a�=null ∗→ a::node2〈d, e, f〉∗e::bst〈b, g〉∗f::h〈c〉∧g≤d≤h

avl ins 5.202
x::avl〈S, h〉 ∗→ res::avl〈T, k〉 ∧ T=S�{v} ∧ h≤k≤h+1

a::avl〈A, b〉 ∗→ a::avl〈A, b〉 ∧ res=b

rbt ins 9.093
x::rbt〈S, cl, bh〉 ∗→ res::rbt〈T, cl1, bh1〉 ∧ T=S�{v}
a::rbt〈A, b, c〉 ∗→ a::rbt〈A, b, c〉 ∧ res=b

186 S. Qin et al.

Table 2. Selected experimental results (sorting)

Prog. Time Main spec. (Φpr ∗→Φpo) or Derived unknown spec. (Φu

pr ∗→Φu

po)

Sorting (main) x::llB〈S〉 ∗→ res::sllB〈T〉 ∧ T=S

merge 4.099 a::sllB〈A〉 ∗ b::sllB〈B〉 ∗→ res::sllB〈R〉 ∧ R=A�B
quick 2.064 a::lbd〈A〉 ∗→ a::lbd〈A1〉 ∗ res::lbd〈R〉 ∧ A=A1�R ∧ ∀c∈A1, d∈R · c≤b≤d

unknown 1.824 a::llB〈A〉∧a�=null ∗→ res::node〈c, b〉∗b::llB〈B〉∧A={c}�B∧∀d∈B·c≤d

It can be seen that all programs are successfully verified, with some obliga-
tions on the unknown calls discovered. We note down two observations on the
experimental results. The first is that the discovered specifications for the un-
known procedures are usually more general than what we expect. Bear in mind
that we have replaced some instructions from those programs with unknown
calls. We have compared the inferred specifications for those unknown calls with
the original instructions. The results show that the specifications derived by our
algorithm not only fully capture the behaviours of those instructions, but also
suggest other possible implementations. A case in point is list’s travrs. Its “un-
known call” was originally an assignment x = x.next which traverses the list
towards its end by one node. We are able to infer that the unknown call may
actually traverse the list for arbitrary number of nodes, provided it does not go
beyond the list’s tail or where the user has specified as input, which allows more
implementations for the unknown procedure to be verified.

The second observation is that the precision of unknown calls’ discovered spec-
ifications depends on its caller’s given specification. As can be seen we have ver-
ified several list-processing programs where each one has various specifications.
Within these programs we want to point out that the ones with specifications
of both normal lists and sorted lists share the same code (but just with two
different specifications). Such examples include create, sort insert, delete,
and so on. For create which creates a list containing numbers from 1 to n in
descending order, we can see once incorporated with llB as specification pred-
icates, the unknown call is expected to return a node whose value c is within
1 to n. Comparatively, when verified for sortedness, c is inferred to be between
a−1 and a, as for sortedness to hold. For delete’s sorted version, we also have
the extra information that the list with one node removed is still a sorted list
(with the multi-set value constraints), whose result is stronger than the normal
list version.

7 Conclusion

It is a practical and challenging problem to verify the full functional correct-
ness of heap-manipulating imperative programs with unknown procedure calls.
Our proposed solution infers expected specifications for unknown procedures
from their calling contexts. The program is verified correct on condition that
the invoked unknown procedures meet the inferred specifications. We employ a

Verifying Heap-Manipulating Programs with Unknown Procedure Calls 187

forward program analysis over a combined domain and invent a novel abduction
for it to synthesise the specifications of the unknown procedure. As a proof of
concept, we have also implemented a prototype system to test the viability of the
proposed approach. Our main future work is to explore more general solution for
unknown calls in sequence to achieve more reasonable specifications for them.

Acknowledgement. This work was supported in part by the EPSRC projects
EP/G042322/1 and EP/E021948/1.

References

1. Ammons, G., Bodik, R., Larus, J.R.: Mining specifications. In: POPL (2002)
2. Beizer, B., Wiley, J.: Black-box testing: techniques for functional testing of software

and systems. IEEE Software 13(5) (September 1996)
3. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis

by means of bi-abduction. In: 36th POPL (January 2009)
4. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to

analysis in the presence of function pointers. In: PLDI (1994)
5. Giacobazzi, R.: Abductive analysis of modular logic programs. In: ILPS (1994)
6. Gopan, D., Reps, T.: Low-level library analysis and summarization. In: Damm, W.,

Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 68–81. Springer, Heidelberg
(2007)

7. Kozaczynski, W., Booch, G.: Component-based software engineering. IEEE Soft-
ware 15(5), 34–36 (1998)

8. Luo, C., Craciun, F., Qin, S., He, G., Chin, W.-N.: Verifying pointer safety for
programs with unknown calls. Journal of Symbolic Computation (to appear)

9. Qin, S., Luo, C., He, G., Craciun, F., Chin, W.-N.: Verifying heap-manipulating
programs with unknown calls. Research report, Teesside University (2010),
http://www.scm.tees.ac.uk/s.qin/papers/unknown.pdf

10. Magill, S., Tsai, M.-H., Lee, P., Tsay, Y.-K.: Thor: A tool for reasoning about
shape and arithmetic. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 428–432. Springer, Heidelberg (2008)

11. Nguyen, H.H., David, C., Qin, S., Chin, W.-N.: Automated verification of shape
and size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

12. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. In:
31st POPL (January 2004)

13. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
17th LICS (2002)

14. Sessions, R.: COM and DCOM: Microsoft’s vision for distributed objects. John
Wiley & Sons, Inc. New York (1998)

15. Szyperski, C.: Component technology: what, where, and how? In: ICSE (2003)
16. Woodcock, J.: Verified software grand challenge. In: Misra, J., Nipkow, T., Sek-

erinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 617–617. Springer, Heidelberg
(2006)

http://www.scm.tees.ac.uk/s.qin/papers/unknown.pdf

API Conformance Verification for Java Programs

Xin Li, H. James Hoover, and Piotr Rudnicki

Dept. of Computing Science
University of Alberta

Edmonton, Alberta, Canada T6G 2E8
{xinli,hoover,piotr}@cs.ualberta.ca

Abstract. Software components, services, or modules are used via their
application programming interface (API). For any sufficiently complex
component, there are strict rules on the order and context in which par-
ticular methods of the API can be invoked. For example, a file must be
opened before reading, and not read after closing. These constraints are
called API conformance rules. Their violation at run-time creates errors,
which are often subtle and difficult to diagnose. In general, API con-
formance rules cannot be statically checked if concurrency is involved.
We present a verification framework, called Fex, that assists in Java API
conformance verification. Fex operates as follows. The first step is to ex-
press the API conformance rules as executable specifications. Then, the
program under investigation is instrumented such that all potential ex-
ceptions can be easily raised. Next, the program is sliced to retain only
control flow and the relevant APIs. The executable API conformance
rules and sliced program are then processed by the Java Path Finder
model checker. Possible violations of the conformance rules are exhib-
ited as exceptions during model checking. We have successfully applied
our framework to the TSAFE reference air traffic control system and
identified a subtle deadlock missed by previous verification efforts.

Keywords: API conformance, verification, model checking, exception.

1 Introduction

Component-based software development is a widely used design approach in
software engineering. In general, a large system can be decomposed into several
functional components. Every component has a well-defined application pro-
gramming interface (API) which is used for communicating across the compo-
nents. The API implementers only need to focus on implementing the services
that the API promises. As a result, these components can then be reused for
other applications, thus improving development efficiency and quality.

The API of a software component declares its methods together with types of
parameters and types of results. Whether a method has been passed appropriate-
type parameters is checked at compilation time. However, a non-trivial API will
impose additional constraints on the order of calling of its methods. For example,

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 188–203, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

API Conformance Verification for Java Programs 189

a network communication application using the Socket API is expected to follow
constraints like these:

– Operations such as getInputStream or getOutputStream can only be applied
on a Socket object which has already connected to a server.

– After the operation close, there should not be any further operations per-
formed on this Socket object.

Constraints of this type are called API conformance rules. In general, such rules
cannot be checked statically if concurrency is involved. Violations of the rules
are raised as run-time exceptions.

In this paper, we present a verification framework named Fex, which combines
static analysis and model checking techniques to verify program’s API confor-
mance. The original program is instrumented with support for exploring all pos-
sible flows of control including the exceptional ones so that the back-end model
checker is then able to inspect all possible states of the modified program. To avoid
the state explosion problem, we use program slicing that attempts to preserve the
complete control flow in the face of environmental and data diversity.

In Section 2 we use a simple example to illustrate an API conformance problem
and how the Fex tool is used to verify it. In Section 3, we discuss our framework
for API conformance verification. A bigger case study is given in Section 4.

opened closed

error

close()

read()

read()

new()

undefined

close()

Fig. 1. An FSM specification of class FileInputStream

2 A Motivating Example

The event sequence constraints described by the Finite State Machine (FSM)
of Figure 1 presents a simplified API conformance specification for Java class
java.io.FileInputStream.1 We would like to statically verify that a given pro-
gram does not violate FileInputStream conformance rules. Instead of running
the actual program, we use the JPF model checker which examines all execu-
tion paths. The idea is to replace the concrete, native coded implementation

1 Note that our specification allows a close operation after the stream is closed which
is exactly what the real implementation does.

190 X. Li, H.J. Hoover, and P. Rudnicki

of FileInputStream with an executable specification of FileInputStream confor-
mance rules. This executable specification of conformance rules is a much simpler
program than the actual implementation which implicitly encodes the rules.

Figure 2 presents the executable specification of java.io.FileInputStream im-
plementing the FSM from Figure 1. The FSM state is represented by the field
status. Transition relations are coded as if statements. For example, the if

statement inside method close changes the program state from opened to closed.
When the FSM enters the error state, an exception is raised in the program,
representing a possible conformance violation.

package java.io;

public class FileInputStream extends InputStream {

private enum State {undefined, opened, closed}

public State status = State.undefined;

public final int CONSTANT_INTEGER = 2;

public FileInputStream(File file) {

if (status == State.undefined) status = State.opened;

}

public FileInputStream(String s) {

if (status == State.undefined) status = State.opened;

}

public int read() {

if (status == State.closed)

throw new Error("Conformance Error! Read after stream closed.");

if (status == State.opened) status = State.opened;

return CONSTANT_INTEGER;

}

public int read(byte[] b) {

if (status == State.closed)

throw new Error("Conformance Error! Read after stream closed.");

if (status == State.opened) status = State.opened;

return CONSTANT_INTEGER;

}

public void close() {

if (status == State.opened) status = State.closed;

}

//

}

Fig. 2. Executable specification for Class java.io.FileInputStream

We would like to verify that the very simple program in Figure 3 obeys
the conformance rules of FileInputStream. The program first calls the method
initialize which creates a FileInputStream object, named is, connected to file
named args[0], and a FileOutputStream object, named os, connected to file

API Conformance Verification for Java Programs 191

04 class Test {

05 private FileInputStream is;

06 private FileOutputStream os;

07 void initialize(String s1, String s2) {

08 try{

09 is = new FileInputStream(s1);

10 os = new FileOutputStream(s2);

11 }

12 catch (IOException e) {

13 System.out.println("Catching Exceptions, now clean up.");

14 cleanUp();

15 }

16 }

17 void copy () {

18 try{

19 int i = is.read();

20 while(i != -1) {

21 os.write(i);

22 i = is.read();

23 }

24 }

25 catch (IOException e) {

26 System.out.println("Catching Exceptions, now clean up.");

27 cleanUp();

28 }

29 }

30 void cleanUp() {

31 try{

32 if (is != null) is.close();

33 if (os != null) os.close();

34 }

35 catch (IOException e) {

36 // do something ...

37 }

38 }

39 public static void main (String[] args) {

40 Test t = new Test();

41 t.initialize(args[0], args[1]);

42 t.copy();

43 }

44 }

Fig. 3. Example program using java.io.FileInputStream

192 X. Li, H.J. Hoover, and P. Rudnicki

named args[1]. The method copy copies the contents from is to os. Method
cleanUp is called when an exception situation is raised.

The original program in Figure 3 is converted into a sliced Java program as
in Figure 4.2 We perform two actions during the conversion.

– We instrument the program so that the program can non-deterministically
raise all exceptions we want to examine.

– We slice the program in order to make the possible program states smaller.

Both actions are controlled by a configuration file that specifies what kind of
exceptions should be instrumented and which APIs are considered relevant and
should be preserved. For this example, as the corresponding configuration file
marks both FileInputStream and FileOutputStream as relevant, objects is and os

with corresponding operations are preserved. Non-relevant APIs are removed to
minimize the search space, for example the statement System.out.println. The
configuration file (see [8] for technical details) defines the abstraction function
which is used to guide the program instrumentation and slicing and is manually
prepared.

At the model checking phase, the model checker examines the sliced program
together with the executable specification for API java.io.FileInputStream (Fig-
ure 2). If there is a conformance rule violation, the program will raise an excep-
tion which is thrown by our executable specification. The back-end model checker
can catch this exception and generate a report with the stack state and step by
step execution trace leading to the conformance error.

Upon examining the execution trace (produced by JPF but not included here)
we found that an FileNotFoundException was thrown at line 12 (of the sliced
program) and was caught at line 14. Method cleanUp was called in turn at
line 14 which closed the input stream is. Then, method copy (line 45) was
executed which attempted to call operation read (line 18) on closed stream is.
This violates the API conformance rule of FileInputStream.

This error is triggered by calling the cleanUp too early inside initialize.
Usually the clean up method is called at the end of the whole action (preferably
in a finally block) so that no side effects are left. However, in this example,
trying to do the cleaning in method initialize results in referencing a closed
stream is. For this example, the proper approach would be to add a try-finally

block in method main and call cleanUp in the finally section.
This example also illustartes another API conformance error. In the state

undefined, the only legal operation is to execute a class constructor. Attempting
any other operation results in a null pointer reference. The above program can
lead to this situation. If operation new FileInputStream() on line 09 fails, variable
is is null and an IOException is raised. Continuing to execute cleanUp at line
14 is OK, but executing method copy which attempts operation read on a null
object is raises NullPointerException. Fex catches this error as well.

2 This automatically generated sliced program has been edited due to space con-
straints.

API Conformance Verification for Java Programs 193

04 class Test {

05 private FileInputStream is;

06 private FileOutputStream os;

07 void initialize(String s1, String s2) {

08 try{

09 if (Verify.getBoolean()) is = new FileInputStream((String)null);

10 else throw new FileNotFoundException();

11 if (Verify.getBoolean()) os = new FileOutputStream((String)null);

12 else throw new FileNotFoundException();

13 }

14 catch (IOException e) { this.cleanUp(); }

15 }

16 void copy() {

17 try {

18 if (Verify.getBoolean()) is.read();

19 else throw new IOException();

20 for (int JPF_index0 = 0; JPF_index0 < 2; JPF_index0++){

21 if (Verify.getBoolean()) this.os.write(2);

22 else throw new IOException();

23 if (Verify.getBoolean()) this.is.read();

24 else throw new IOException();

25 }

26 }

27 catch (IOException e) { this.cleanUp(); }

28 }

29 void cleanUp() {

30 try {

31 if (is != null) {

32 is.close();

33 if (Verify.getBoolean()) throw new IOException();

34 }

35 if (os != null) {

36 os.close();

37 if (Verify.getBoolean()) throw new IOException();

38 }

39 }

40 catch (IOException e) { }

41 }

42 public static void main(String[] args) {

43 Test t = new Test();

44 t.initialize((String)null, (String)null);

45 t.copy();

46 }

47 }

Fig. 4. Sliced program based on Figure 3

194 X. Li, H.J. Hoover, and P. Rudnicki

3 Fex: A Model Checking Framework for API
Conformance Verification

Verification of control intensive properties like API conformance is challenging
for both human effort and machine resources. Efficient static analysis techniques
only inspect the code at compile time; they are quite imprecise as they only
approximate the inter-procedural control-flow. Model checking can explore all
possible run-time behaviors, but of a greatly simplified program. In practice
these two approaches work together to increase our confidence.

3.1 Specifying Conformance Rules with Executable Specification

API conformance rules specify the order in which API methods may be called.
These rules are implicitly encoded inside the actual API implementation. Run-
time exceptions are raised when these conformance rules are violated. The de-
scription of these rules are written as comments to the API and are organized in
an informal and unstructured way. In order to do the API conformance verifica-
tion, explicit specification of these rules is required. We do so in an executable
specification.

Previous efforts [5,7,12] on formally specifying API conformance rules are
based on FSM. While FSMs are adequate to describe simple behavior inside a
single API, they are insufficient for handling complex API behaviors which might
involve potentially unbounded numbers of cases. For example, Java API class
java.util.concurrent.ReentranReadWriteLock is used to control concurrent read-
write issues. Because this lock class is re-entrant, it may involve an unbounded
number of lock/unlock operations. A FSM cannot describe nested behaviors of
ReentrantReadWriteLock such as locking an unbounded number times.

We are inspired by [11] to use executable specifications to specify the API
conformance rules. Our executable specifications are written in Java. Each API
under investigation needs to have an executable specification Java class. If the
real implementation of this API class only involves pure Java and the possible
program states are manageable, it can be used as its own executable specifica-
tion. However, for the APIs which involve native code or many possible program
states, we have to implement a new version of the API. This new implementa-
tion only partially implements the API in as much detail as required to capture
the conformance rules. For example, as java.io.FileInputStream involves native
code, we need to implement our version of java.io.FileInputStream as the exe-
cutable specification, see Figure 2. This of course means that other errors may
be introduced as a result of the partial implementation. For example, file content
might not actually be read. Executable specifications give us a chance to mimic
the essence of the API’s functionality which we want to verify.

An executable specification is more expressive than a pure FSM specification.
FSM based specification can be translated into executable specification. Further-
more, by adopting full Java as the specification language, we can specify all kinds
of API behaviors. For example, the above ReentrantReadWriteLock challenge can
be described by introducing a lock counter into the executable specification.

API Conformance Verification for Java Programs 195

3.2 Verification Process

In Fex, the verification process is divided into three steps (Figure 5): static
analysis and code instrumentation, program slicing, and model checking. Each
of these three steps is controlled by a configuration file.

Configuration
File

�
�

��

�
�

��
Original

Java Prog.
� Static

Analyzer
� Slicer � Model

Checker

�

Executable
Spec.

Fig. 5. Verification Process

Program Instrumentation. API conformance violations often arise under
situations that are not anticipated or rarely encountered. These situations are
frequently related to handling exceptional situations. Therefore, the ability to
examine all possible exceptional control flow paths is essential in API confor-
mance verification and thus our framework builds upon our exception safety
verification presented in [9].

The original Java program is instrumented such that all possible exceptions
can be raised. For each method call, the analyzer first determines if the method
source code is available. If available, the analyzer instruments the method di-
rectly. If not, the analyzer instruments the exception interface extracted from
the byte code of that method. Our static analysis is built on top of the exception
analysis tool Jex [13]. Note, that we do not need inter-procedural analysis to de-
termine the control flow graph (Jex does) since actual control flow is examined
at the model checking phase.

Expressions or statements which might throw an exception are instrumented
as follows:

if (Verify.getBoolean()) statement; else throw new ExceptionType();

Verify is a special class provided by the back-end model checker. This class is
used to model non-deterministic choice. Calling getBoolean() from class Verify

represents a branch point in the control flow. During state exploration the
method returns a boolean value non-deterministically, thus causing the model
checker to explore both paths.

The instrumentation step is guided by a configuration file that states which
exceptions are considered essential and need to be instrumented and which pro-
gram fragments are considered crucial and need to be preserved. For details
about the role of the configuration file, please see [8,9].

196 X. Li, H.J. Hoover, and P. Rudnicki

Program Slicing. Model checking of production Java programs in full detail is
impractical because of state explosion. Since we are interested in properties that
are dominated by control flow, we use rather aggressive program slicing [16] to
transform the original Java program into one with a substantially smaller state
space while hoping to preserve the interesting control flow properties.

In Fex, the instrumented program from step 1 is fed into a slicer. The sliced
program contains nothing more but control flow constructs and all components
of the API which we are verifying. For example, Figure 4 presents the sliced
program whose original program is in Figure 3.

We slice every Java program under investigation such that

1. Both branches of a conditional statement will be executed.
2. All loop constructs are replaced by a fixed loop iteration which executes each

loop at most twice, as a result some errors can be missed or introduced.
3. Variable types are divided into four categories

(a) Primary Java types (PrimType).
(b) Control-flow dependent types, e.g. the Thread class.
(c) Crucial types (PType) are types related to API conformance checking,

e.g. the API classes that are under investigation.
(d) Ignored types (LType) are types that come from the Java library or from

third party application whose source code is not available. Since we do
not know how the classes in LType behave we assume that they obey
the conformance rules. Such classes are trusted and ignored in further
verification.

Class fields of primary or ignored type are removed. Methods whose receiver’s
type is an ignored type are removed. Parameters of primary or ignored type
are replaced with a fixed value, e.g. NULL for reference types, 2 for integer,
etc.

The above slicing criteria can be described in the format of program transfor-
mation rules. We have 15 transformation rules in total covering all essential Java
program constructs. Here, we list the most interesting one. For the complete list
of rules, please see [8,9]. (The function type(expr) is used to return the type of
expr.)

[Stmt] type(E1) �∈ LType & type(expr) ∈ LType
E1.MName(expr, E∗)
E1.MName(null, E∗)

This rule states that if we invoke a method MName via an object E1 whose
type is not to be ignored, we can still eliminate the parameters that are sup-
posed to be ignored by replacing these parameters with a fixed value. This rule
preserves the method call while projecting away the parameters that are not
directly involved in API conformance check, although their values may in fact
be important.

Model checking. In the model checking phase, We use the software model
checker, Java Pathfinder (JPF) [15] as our back-end model checker. Based on

API Conformance Verification for Java Programs 197

the sliced program and the executable specification, JPF explores all possible
execution paths. As API conformance rules are expressed in executable specifi-
cations which are directly fed into JPF without any abstraction, JPF can catch
any conformance violations in the sliced program. Upon detecting a violation,
JPF dumps out an execution path leading to the error. The execution path can
help the programmer to fix the conformance violation problem. This verification
process is iterated until no further violation is reported.

4 Experimental Results

We now present the experimental results obtained by applying Fex to verify
conformance rules of Java concurrency API in a Air Traffic Control System called
TSAFE. Fex has also been successfully applied on several other case studies
whose focus were on Java Socket API, Java IO stream API, Java collection APIs
and JDBC API.

4.1 Introduction to TSAFE

The main goal of Automated Air Traffic Control (AATC) [10] is to reduce the
load on air traffic controllers as they monitor and direct aircraft. TSAFE, which
stands for The Tactical Separation Assisted Flight Environment, is the most
important component of the AATC system. It is designed to help air traffic con-
trollers in detecting and resolving short-term conflicts between aircrafts. Cur-
rently, the traffic controllers maintain the aircraft separation by monitoring the
radar data for possible conflicts and give instructions to pilots to maneuver to
avoid near-collision. Automating this conflict avoidance process is the essential
part of the whole AATC process and the result should be highly dependable,
more so than for other components.

A prototype of TSAFE was implemented at MIT [6]. Based on this origi-
nal reference implementation, researchers from the Fraunhofer Center-Maryland
(FC-MD) have developed TSAFE based testbed set[10]. This set contains several
version of TSAFE, each version contains artifacts including design documenta-
tions, program specifications, source codes and programs with seeded faults. As
part of NASA’s High Dependability Computing Project (HDCP), the purpose
of this testbed set is to provide a platform to evaluate a wide range of new
technologies for improving the dependability of mission-critical systems.

As our testbed, we use TSAFE III, a distributed client-server TSAFE version
which is provided by FC-MD. The TSAFE III implementation consists about 90
classes and 21,000 lines of Java code. The overview of the software architecture
is presented in Figure 6. The trajectories of the flights are stored in the flight
database. The database is periodically updated by the radar feed thread through
TCP/IP protocol. The computation component is used to do the flight confor-
mance checking. The client side implements GUI based display functionality. It
communicates to the server via a RMI protocol. Multiple clients are allowed to
communicate to the server at the same time.

198 X. Li, H.J. Hoover, and P. Rudnicki

 Flight
Database

<<datastore>>

 Feed
 Parser

<<Component>>

Computation

<<Component>>

 Timer

<<Component>>

 Graphical
 Client

<<Application>>

Client
side

 Server
side

Radar Feed

RMI

Fig. 6. TSAFE III Architecture

In the original TSAFE III implementation, the flight database manipulations
are coded using the Java synchronization mechanism to avoid data corruption.
All database read/write operations are synchronized so that there can only be
one database access operation at a given time. This implementation is not very
efficient because read operations cannot be done concurrently.

Betin-Can et al. [2] proposed to use a read-write lock to solve this problem. A
read-write lock guarantees that multiple readers can access the flight database
at the same time, but a writer can only access the database exclusively. They
then re-engineered the original TSAFE into a version which adopts a customized
read-write lock solution. When verifying the correct usage of the read-write lock
under TSAFE III, they decouple the behavior of the read-write lock from the
threads that use them by replacing the read-write lock with a simplified Finite
State Machine(FSM) specification.

The approach of [2] is a good first step, however it has three weaknesses:

1. Java 5 provides a new API (java.util.concurrent) to handle all concurrent
control related issues. Class java.util.concurrent.ReentrantReadWriteLock

is designed specifically for read-write lock usage. This API provides the same
functionality as the custom read-write lock. Thus it makes sense, on the
grounds of component reuse, to use this standard Java API rather than a
customized read-write lock API.

2. During the verification, a FSM specification is used to replace the real read-
write lock code. This FSM specification is not the real code but a simplified
version.

3. The original verification only handles a single threaded scenario. However,
there are many errors which only appear under a multi-threaded scenario.
For example, lock starvation scenario, where one thread holds the lock and
never releases it.

Our case study addressed these issues. We re-engineered the existing code
by replacing the custom read-write lock and associated operations with the
standard Java concurrency lock API ReentrantReadWriteLock and associated

API Conformance Verification for Java Programs 199

operations. Because the custom read-write lock API is a subset of the stan-
dard Java read-write lock API, this re-engineering process guarantees that if
there is any ReentrantReadWriteLock related API conformance error, that error
also exists in the prior implementation.

Because the implementation of the ReentrantReadWriteLock API is written in
pure Java, we use the original implementation as our executable specification.
Thus, we directly verify the real API implementation and avoid a FSM.

Finally, the aggressive program abstraction of Fex reduces the state space
sufficiently that we can then handle the multi-thread scenario.

According to Java API specification [1], the conformance rules for this reen-
trant read-write lock are:

– When using the ReentrantReadWriteLock, a lock instance should first be ini-
tialized. Then, a read lock or write lock can be acquired from this instance
and the corresponding lock/unlock operation can be conducted upon the
acquired read/write lock.

– It is legal for both readers and writers to re-acquire read or write locks,
but the write lock process can only be done exclusively. This means read
operations are not allowed until all write locks held by the writing thread
have been released.

– A lock operation should always be followed with a corresponding unlock
operation in the near future otherwise a deadlock situation may occur.

– The lock/unlock operation is re-entrant. So multiple lock operations should
be followed with the same number of unlock operations.

– A write lock can be downgraded to a read lock. That means when a write
lock is held, a read operation can be executed. However, upgrading from a
read lock to the write lock is not allowed.

4.2 Experiment Results and Discussion

As TSAFE III is based on the distributed client-server architecture and there
are several possible entry points for the application. In order to cover the whole
application, a proper test harness (collection of main programs) is needed as
JPF needs an entry point.

Our test harness contains several test cases. Each test case covers one possible
thread combination. These test cases are coded following the typical TSAFE
behavior patterns. For example, a client thread will first try to connect with a
server via RMI, and then read the information from the back-end database.

In reality, TSAFE is used in a concurrent environment, with multiple clients
and radar feed processes. But even with the aggressive slicing of Fex, we can only
verify at most three threads for the TSAFE system with the real Java read-write
lock implementation.

However, this was sufficient to expose a subtle error when model checking
the multi-thread scenario with a radar feed parser thread. Inside the ASDIParser

class, a method extractMessage from class MessageExtractor was called to extract
information from the database. This method call is protected by an instance

200 X. Li, H.J. Hoover, and P. Rudnicki

of ReentrantReadWriteLock. The programmer’s intention is to first execute the
lock operation, then the extractMessage method and finally execute the unlock

operation. At the first glance, this should work properly since the lock and
unlock operations are paired.

However, the code is flawed. When executing the extractMessage opera-
tion, there is the possibility that it throws a runtime exception. For exam-
ple, if the incoming message is damaged with corrupted latitude information,
the extractMessage procedure still invokes the getLatitude method from class
NASFields, and a NumberFormatException is raised inside getLatitude method and
propagates.

Also, for any unrecognized message, the extractMessage method itself will
respond with an RuntimeException. All these potential unhandled exceptions will
cause the program to bypass the associated unlock operation. This is actually
the case reported by Fex. Since the feed parser works as a demon thread which
updates the flight database periodically, the bypassed unlock operation may
cause the client accessing thread to deadlock.

This error is triggered by neglecting unhandled exceptions. The correct way
to do it is to always put the operations between lock and unlock into a try block
and put the unlock operation into the corresponding finally block. In that way,
under all circumstances, the unlock operation will eventually be executed. This
potential deadlock situation also exists in [2]’s implementation but because their
verification framework cannot handle multi-threaded scenarios and the possible
NumberFormatException is not in their verification scope, it was not detected.

Table 1. Running time and state space size for the experiments

Verify Falsify

Thread Info Visited States Time(sec) Visited States Time(sec)

1 CT 2696 26 - -

1 FT 3090 26 - -

1 CT, 1 FT 1011295 490 33 25

2 CT, 1 FT 38636247 19315 38 26

Table 1 demonstrates the performance of the JPF model checker while ver-
ifying the sliced TSAFE system.3 In this table, CT means Client Thread, FT
means Radar Feed Thread. The whole performance table is divided into two
parts: Falsify and Verify. Under the Falsify column, the visited states and cor-
responding execution time for finding the deadlock error are listed. Under the
Verify column, the visited states and corresponding execution time for verifying
3 All experiments were performed on a Mac Book Pro with Intel Core 2 Duo, 2.26

GHz, 2.0 GB RAM, running Mac OS X 10.5.8, Sun Java SDK build 1.5.0 24-149
and Java Pathfinder Version 3.1.2.

API Conformance Verification for Java Programs 201

a error-free TSAFE version is listed. As we can see from the table, under the one
thread scenario, we cannot detect the deadlock because it only shows up under
a multi-threaded scenario.

It is worth noting that after fixing the error, we attempted another verification
under 2 client threads and 1 radar feed thread. After running almost 6 hours and
visiting approximately 40 million program states, JPF exhausted heap memory
and further exploration terminated. Thus other errors may be present.

In order to further explore the effectiveness of the Fex tool, we have applied Fex
on 52 fault seeded TSAFE versions. Upon the construction of these fault seeded
version, we follow the idea from Betin-Can et al. [2] and compared our results
with theirs. They categorize all seeded faults into two groups. The first group is
called modified-call faults which includes adding, removing or swapping lock
related operations. The second group is called conditional-call faults which
includes adding a branch condition in front of these lock related operations.
During the verification process, batches of slight variations of the program are
generated by seeding with program faults from these categories.

Usually for each batch, only one program fault is seeded. The effectiveness of
the verification framework can be evaluated by the numbers of program faults
revealed among all batches.

In our experiment, There are in total 16 lock/unlock operations scattered
around the whole application. For modified-call faults, every related operation
will be added, removed or swapped once. For conditional-call faults, a fault
is seeded by adding a branch whose guard is based on an independent incre-
menting program variable. For example, a conditional statement in the form
of : if (i > 100) statement;. In order to exhaust all possible fault styles for
all relevant operations, we prepared 53 versions of TSAFE (one of which is an
unseeded version).

We ran the experiment in 53 batches. In each batch, a TSAFE version is
randomly picked. Without knowing the details about the seeded fault’s category
(it can also be the unseeded version as well) and the exact place of the seeded
fault, Fex is used in the verification process. Fex found all seeded faults from all
batches and identified the unseeded version. This compares favourably to Betin-
Can’s verification approach, which can resolve most of the seeded faults with the
exception of data dependent faults. These deep embedded faults are challenging
to discover as we would need to consider a very large number of program states.
Generally, these deep embedded faults cannot be model checked without some
substantial data abstraction.

5 Related Work

There are several projects that focus on API conformance verification. The
projects which are closest to our work are Fugue [5] and Plural [3,4]. Fugue
is a static software analyzer based on type-state checking. Type-states [14] spec-
ify extra abstract states of objects beyond the usual types. Operations which
change object states change their type state as well. Extra annotations are used

202 X. Li, H.J. Hoover, and P. Rudnicki

to specify API conformance protocols and aliasing information. Therefore, by
type-state checking, Fugue can detect possible conformance violations. Bierhoff
et al. [4] improves Fugue by introducing Access Permissions which extends the
type-state refinement ability and applies the updated annotation method to sup-
port more expressive specifications and eases aliasing recognition. Based on this
improvement, a static analysis tool, called Plural, has been created to conduct
Java API conformance checking. Their analysis is based on control flow graphs
and currently can only handle single thread scenarios.

Ramalingam et al. [11] use an alternative way to handle API conformance.
They specify the API conformance specification with a Java like language EASL/P.
The original Java program is translated into TVP program (a language based
on first order logic to specify operational semantics). By applying a parametric
shape analysis on the heap while checking through the program control graphs,
the checker can dig out possible conformance violations.

Betin-Can et al. [2] presents Design for Verification approach which can be
used for API conformance check. Conformance rules are described in FSM. Upon
verification, human efforts such as program simplification, program stub prepa-
ration, data dependency analysis and thread isolation are needed. So far their
approach neglects the influence of program exceptions and can only handle multi-
thread scenario by thread isolation.

6 Conclusion

We have applied the Fex tool to the TSAFE safety critical air traffic control
system and detected a subtle deadlock error missed by previous verification
efforts.

We extend upon previous work [4,2,5,7,12] in several ways.

– Our method uses real Java as the executable specification which can specify
properties that a FSM cannot express.

– To the best of our knowledge, we are the first to consider “all” exceptions.
The exceptions we want to handle are configurable and we can explicitly
ignore some of them.

– We base our analysis on the implicit program model (sliced program) rather
than on the program control flow graph.

– We can handle almost all program constructs, including global variables,
exceptions and concurrency features.

– For aliasing analysis, since we are monitoring the real VM heap, aliasing can
be handled directly without an extra annotation burden.

Acknowledgments

The authors would like to thank Dr. Mikael Lindvall for providing the source
code of TSAFE system. We also thank Dr. Aysu Betin-Can for her kind help.

API Conformance Verification for Java Programs 203

References

1. Java 2 platform api specification,
http://download-llnw.oracle.com/javase/1.5.0/docs/api/index.html

2. Betin-Can, A., Bultan, T., Lindvall, M., Lux, B., Topp, S.: Eliminating synchro-
nization faults in air traffic control software via design for verification with con-
currency controllers. Automated Software Engg. 14(2), 129–178 (2007)

3. Bierhoff, K.: Api protocol compliance in object-oriented software, PhD Thesis,
Carnegie Mellon University, School of Computer Science (2009)

4. Bierhoff, K., Beckman, N.E., Aldrich, J.: Practical api protocol checking with access
permissions. In: Drossopoulou, S. (ed.) ECOOP 2009 – Object-Oriented Program-
ming. LNCS, vol. 5653, pp. 195–219. Springer, Heidelberg (2009)

5. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004)

6. Dennis, G.: Tsafe: Building a trusted computing base for air traffic control software,
Master’s Thesis, MIT (2003)

7. Fink, S., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate verifi-
cation in the presence of aliasing. In: ISSTA (2006)

8. Li, X.: Fex: A model checking framework for event sequences, Technical report
TR08-14, University of Alberta (2008)

9. Li, X., James Hoover, H., Rudnicki, P.: Towards automatic exception safety veri-
fication. In: FM, pp. 396–411 (2006)

10. Lindvall, M., Rus, I., Shull, F., Zelkowitz, M.V., Donzelli, P., Memon, A.M., Basili,
V.R., Costa, P., Tvedt, R.T., Hochstein, L., Asgari, S., Ackermann, C., Pech,
D.: An evolutionary testbed for software technology evaluation. NASA Journal of
Innovations in Systems and Software Engineering 1(1), 3–11 (2005)

11. Ramalingam, G., Warshavsky, A., Field, J., Goyal, D., Sagiv, M.: Deriving special-
ized program analyses for certifying component-client conformance. In: PLDI, pp.
83–94 (2002)

12. Reiss, S.P.: Specifying and checking component usage. In: AADEBUG, pp. 13–22
(2005)

13. Robillard, M.P., Murphy, G.C.: Static analysis to support the evolution of exception
structure in object-oriented systems. ACM Trans. Softw. Eng. Methodol. 12(2),
191–221 (2003)

14. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhanc-
ing software reliability. IEEE Trans. Softw. Eng. 12(1), 157–171 (1986)

15. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engg. 10(2), 203–232 (2003)

16. Weiser, M.: Program slicing. IEEE Trans. Software Eng. 10(4), 352–357 (1984)

http://download-llnw.oracle.com/javase/1.5.0/docs/api/index.html

Assume-Guarantee Reasoning with Local
Specifications

Alessio Lomuscio1, Ben Strulo2, Nigel Walker2, and Peng Wu3

1 Department of Computing, Imperial College London, UK
a.lomuscio@imperial.ac.uk

2 BT Innovate, Adastral Park, UK
{ben.strulo,nigel.g.walker}@bt.com

3 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, China

wp@ios.ac.cn

Abstract. We investigate assume-guarantee reasoning for global spec-
ifications consisting of conjunctions of local specifications. We present
a sound and complete assume-guarantee rule that permits reasoning
about individual modules for local specifications and draws conclusions
on global specifications. We illustrate our approach with an example
from the field of network congestion control, where different agents are
responsible for controlling packet flow across a shared infrastructure. In
this context, we derive an assume-guarantee rule for system stability, and
show that this rule is valuable to reason about any number of agents,
any initial flow configuration, and any topology of bounded degree.

1 Introduction

Assume-Guarantee reasoning [21,12,5] is one of the key techniques to alleviate
state explosion in model checking. In a system composed of a number of reactive
modules each module can be regarded as interacting with an abstract environ-
ment representing the rest of the system. Properties are then verified with the aid
of assumptions characterising the environment of each module. General assume-
guarantee rules have been proposed for safety and liveness properties over the
last decade [11,4,7,8]. However, large assumptions can still cause scalability is-
sues. The motivation of this paper is to investigate possible ways to reduce the
size of the assumptions to be identified and to reuse them for compositional
verification.

Our starting point is the observation that a module in a system typically reacts
directly with relatively few modules in its environment. However, under general
assume-guarantee rules, the assumptions generated from a system property do
not exploit this neighbourhood dependency. Consequently, assumptions for a
module may contain redundant information about parts of the system that the
module does not directly interact with. Moreover, any new modules added to
the system can contribute with further redundancy in the assumptions.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 204–219, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Assume-Guarantee Reasoning with Local Specifications 205

In this paper we show that, for a system property that can be represented
as the conjunction of local specifications on individual modules, these scalabil-
ity issues can be resolved by generating assumptions from local specifications.
Our main contribution is a new presentation of the assume-guarantee rules to
permit reasoning about individual modules for local specifications, yet drawing
conclusions on properties of the system as a whole.

Firstly, we present a simple assume-guarantee rule R1 that we prove to be
sound for local specifications. Through a counterexample, we show that this sim-
ple rule is not complete because it exploits only the direct dependency between
modules.

We then extend rule R1 towards completeness. This leads to a bounded
assume-guarantee rule Rπ that we prove to be sound and complete for local
specifications. It explores the neighbourhood around each module up to the
depth π of the dependency closure of the system. We use this rule to propose
a bounded assume-guarantee reasoning approach, in which the dependency be-
tween modules is exploited incrementally.

We evaluate the approach through a case study of an optimisation-based
congestion control system proposed by Kelly and Voice [15]. The optimisation
approach allows a distributed solution for network congestion control. The fact
that a congestion control system is stable means that each source in the system
reaches an equilibrium flow configuration on the routes available to the source.
We analyse the stability of the system by reasoning about local stability of its
individual sources. The case study shows that an instantiation of rule Rπ for
system stability can be applied for reasoning about any number of sources, any
initial flow configuration, and any topology of bounded degree. To the best of
our knowledge, previous work on model checking of networked systems focused
on verifying network protocols under given topologies. The assume-guarantee
framework developed in this paper supports verification of network-wide objec-
tives irrespective of the underlying network topologies.

Related Work. The history of compositional verification of concurrent systems
dates back to late 70s and 80s with the pioneering works by Francez and Pnueli
[9], Jones [14] and Misra and Chandy [21]. Since then, considerable effort was
devoted to studying the soundness of circular assume-guarantee reasoning. Maier
[20] showed that compositional circular assume-guarantee rules cannot be both
sound and complete. Kupferman and Vardi [16] presented an automata-theoretic
approach to model checking assume-guarantee assertions.

More recently, Giannakopoulou, Păsăreanu et al. [11,4,7,10,24] proposed
sound and complete non-circular assume-guarantee rules for safety properties,
with support of learning based assumption generation. Nam, Alur et al. [22,23]
proposed a symbolic approach to learning-based assume-guarantee reasoning.
Farzan, Chen et al. [8] extended the assume-guarantee rules to liveness prop-
erties, based on the fact that ω-regular languages preserve the essential closure
properties of regular languages.

The idea of reasoning about local specifications has appeared in early works
on compositional verification [1,13], where sound circular assume-guarantee rules

206 A. Lomuscio et al.

were proposed for safety properties. This idea is further expanded in this paper to
reduce the size of assumptions, and hence to improve the scalability of assume-
guarantee reasoning. Moreover, the bounded rule here presented is shown to
be sound and complete and applies to liveness properties. Our approach can
also be implemented using symbolic representation, and integrated with learning
algorithms for automated assumption generation. Additionally, learning-based
methodologies can also benefit from our approach by exploiting assumptions
over local alphabets, instead of the global alphabet.

The rest of this paper is organised as follows. The simple rule R1 and the
bounded rule Rπ are presented in Section 2 and Section 3, respectively. Section
4 illustrates the case study of network congestion control, with the experimental
results reported and discussed in Section 5. The conclusions of this work are
summarised in Section 6.

2 Assume-Guarantee Reasoning

In this section we first introduce the notion of module in concurrent systems.
Then, we present a simple assume-guarantee rule R1 that permits reasoning
about individual modules for local specifications.

Modules. Technically we adopt the basic notion of reactive module [2] to rep-
resent concurrent systems that consist of multiple interacting agents. A module
is associated with two classes of variables: state variables and input variables.
The former is controlled by the module and thus defines the module’s state; the
latter is controlled by others that the module reacts directly with.

We assume a domain D of all variables. For a set X of variables, let DX be
the set of all valuation functions on X . For valuation ρ : X → D and Y ⊆ X ,
ρ�Y : Y → D is the restriction of ρ to Y , i.e., (ρ�Y)(x) = ρ(x) for any x ∈ Y .

For valuations ρ1 :X1 → D and ρ2 :X2 → D, ρ1 and ρ2 are compatible, denoted
ρ1 ∼ ρ2, if ρ1(x) = ρ2(x) for any x ∈ X1 ∩X2. For compatible valuations ρ1 and
ρ2, ρ1 ∪ρ2 is the extension of ρ1 and ρ2 to X1 ∪X2, i.e., (ρ1 ∪ρ2)(x) = ρ1(x) for
x ∈ X1\X2, (ρ1∪ρ2)(x) = ρ2(x) for x ∈ X2\X1 and (ρ1∪ρ2)(x) = ρ1(x) = ρ2(x)
for x ∈ X1 ∩X2.

Definition 1 (Module). A module is a tuple M = (X, I,Q, T, λ, q0), where

− X is a finite set of state variables controlled by M ;
− I is a finite set of input variables that module M depends on with X∩I = ∅;
− Q is a finite set of states;
− λ : Q→ DX labels each state q ∈ Q with a valuation λ(q) : X → D;
− T ⊆ Q × DI × Q is a transition relation; each transition (q, α, q′) ∈ T ,

denoted q
α−→T q′, means that the state of M evolves from q to q′ under

input α : I → D;
− q0 ∈ Q is the initial state.

An infinite trace σ of module M is an infinite sequence q0α0q1α1 . . . such that
qi

αi−→T qi+1 for any i ≥ 0. Let inf (σ) be the set of all the states that are visited
infinitely often in σ.

Assume-Guarantee Reasoning with Local Specifications 207

DX is referred to as the local alphabet of module M , where each ρ ∈ DX is
a valuation on X . An infinite word w = ρ0ρ1 . . . on the local alphabet DX is
derived by M if there exists an infinite trace q0α0q1α1 . . . of module M such
that ρi = λ(qi) for any i ≥ 0.

DI is referred to as the input alphabet of module M , where each α ∈ DI is
a valuation on I. An infinite word θ = α0α1 . . . on the input alphabet DI is
admitted by M if there exists an infinite trace q0α0q1α1 . . . such that qi ∈ Q for
any i ≥ 0. Let I(M) be the set of the input words admitted by M . We say that
module M is closed if I = ∅.

We define the composition operator for modules. We choose a notion of com-
position that explicitly supports asynchrony, because in distributed environ-
ments asynchrony typically arises externally from network communication or
scheduling.

Definition 2 (Composition). For modules M1 = (X1, I1, Q1, T1, λ1, q01) and
M2 = (X2, I2, Q2, T2, λ2, q02), the composition of M1 with M2 is a composite
module M1|M2 = (X1 ∪X2, (I1 ∪ I2)\(X1 ∪X2), Q, T, λ, q0), where

− Q ⊆ Q1 × Q2 is the maximal set such that λ1(q1) ∼ λ2(q2) for each state
(q1, q2) ∈ Q;

− λ : Q → DX1∪X2 labels each state (q1, q2) ∈ Q with the valuation λ1(q1) ∪
λ2(q2);

− T is the minimal transition relation derived by the following composition
rules:

asynL
q1

α1−→T1 q′1 q2
α2−→T2 q′2

(q1, q2)
α−→T (q′1, q2)

asynR
q1

α1−→T1 q′1 q2
α2−→T2 q′2

(q1, q2)
α−→T (q1, q′2)

syn
q1

α1−→T1 q′1 q2
α2−→T2 q′2

(q1, q2)
α−→T (q′1, q

′
2)

where λ(q1) ∼ λ(q2), λ(q′1) ∼ λ(q2), λ(q′2) ∼ λ(q1), λ(q′1) ∼ λ(q′2), λ(q2) ∼
α1, λ(q1) ∼ α2, α1 ∼ α2, and α = (α1 ∪ α2)�I .

− q0 = (q01 , q02) ∈ Q.

In rule asynL (respectively, asynR) only M1 (respectively, M2) evolves; while in
rule syn both M1 and M2 evolve simultaneously. In the presence of several mod-
ules, the composition rules above can allow only one, some, or all modules evolve
simultaneously. The notion of module and composition can be implemented by
existing reactive module languages [3,6].

For an infinite word w = ρ0ρ1 . . . derived by M1|M2, we define the notion
of stuttering projection to hide asynchronous transitions that do not affect the
variables in X1 or X2. For Z ⊆ X1 ∪ X2, a stuttering projection of w on Z,
denoted w|Z , is an infinite word ρ′0ρ

′
1 . . . , where there exists 0 = j0 < j1 < · · ·

such that ρ′i = ρji �Z= ρji+1 �Z= · · · = ρji+1−1 �Z for any i ≥ 0. Specifically,
the restriction of w on Z, denoted w �Z , is the infinite word ρ′0ρ′1 . . . , where
ρ′i = ρi �Z for any i ≥ 0.

Thus, a closed concurrent system with a finite set X of state variables can be
represented as the composition of n modules Mi = (Xi, Ii, QMi , TMi , λMi , q0Mi

),

208 A. Lomuscio et al.

where Xi ∩ Xj = ∅ for any 1 ≤ i �= j ≤ n,
n
∪

i=1
Xi = X and

n
∪

i=1
Ii ⊆ X . DX is

then referred to as the global alphabet of the system M1| · · · |Mn.
Assumptions can then be defined as extended modules with accepting states.

In this paper we focus on liveness properties; therefore, we adopt the formalism
of Büchi automaton for the definition of assumptions. However, the assume-
guarantee rules presented later also apply to safety properties (for which as-
sumptions are then defined as finite automata [4]). We do not discuss safety
properties further.

Definition 3 (Assumption). An assumption is a tuple A = (X, I,Q, T, λ,
q0, F), where X, I,Q, T, λ, q0 are as in Definition 1, and F ⊆ Q is a finite set of
accepting states.

The terminology defined for modules also applies to assumptions. So, an infinite
word ρ0ρ1 . . . on alphabet DX is accepted by A if there exists an infinite trace
σ = q0α0q1α1 . . . , referred to as an accepting trace, such that inf (σ) ∩ F �= ∅
and ρi = λ(qi) for any i ≥ 0. The language L(A) accepted by A consists of all
the infinite words accepted by A. Let coA be the complement of assumption A
accepting the complement language ΩX\L(A), where ΩX is the set of infinite
words on alphabet DX .

The notion of composition can be extended to assumptions. For module
M = (X1, I1, Q1, T1, λ1, q01) and assumption A = (X2, I2, Q2, T2, λ2, q02 , FA),
the composition of M with A is an extended module M |A = (X, I,Q, T, λ, q0, F),
where X, I,Q, T, λ, q0 are as in Definition 2 and F = {(q1, q2) ∈ Q | q2 ∈ FA}. For
extended modules coAi = (Xi, Ii, Qi, Ti, λi, q0i , Fi) (i = 1, 2), the composition of
coA1 with coA2 is an extended module coA1|coA2 = (X, I,Q, T, λ, q0, F), where
X, I,Q, T, λ, q0 are as in Definition 2 and F = {(q1, q2) ∈ Q | q1 ∈ F1, q2 ∈ F2}.

The following definition formalises the notion of guarantee in the context
above.

Definition 4 (Guarantee). For k modules Mi = (Xi, Ii, Qi, Ti, λi, q0i), 1 ≤
k ≤ n, and an assumption A = (XA, IA, QA, TA, λA, q0A , FA) such that
− Xi ∩Xj = ∅ for any 1 ≤ i �= j ≤ k;
− Mi1 , . . . ,Mik′ (1 ≤ i1, . . . , ik′ ≤ k) are all the k′ ≤ k modules such that

XA ∩XMij
�= ∅ for 1 ≤ j ≤ k′;

− XA ⊆
k′
∪

j=1
XMij

,

then M1| · · · |Mk guarantees A, denoted M1| · · · |Mk � A, if for any infinite word

w derived by M1| · · · |Mk and any stuttering projection w′ of w on
k′
∪

j=1
XMij

that

can be derived by Mi1 | · · · |Mik′ , w′ �XA is accepted by A.

Note that, if k′ = k, i.e., XA ∩Xi �= ∅ for any 1 ≤ i ≤ k, M1| · · · |Mk � A simply
means that for any infinite word w derived by M1| · · · |Mk, we have that w �XA

is accepted by A.

Simple Assume-Guarantee Rule. Consider the system M1| · · · |Mn and a
global specification ψ on X that can be represented as the conjunction of local

Assume-Guarantee Reasoning with Local Specifications 209

specifications ϕi on Xi ∪ Ii such that ψ ⇔
n
∧

i=1
ϕi. The general assume-guarantee

approach [11,4,7,8] either generates assumptions for each module from the global
specification and then checks whether these assumptions may collectively violate
it (as shown by rule sym below); or generates an assumption for some module
(e.g., M1) from the global specification and then checks whether the assumption
can be guaranteed by the rest of modules (as shown by rule asym below).

sym

∀1 ≤ i ≤ n, Mi|Ai � ψ

asym

M1|A1 � ψ
L(coA1| · · · |coAn) = ∅ M2| · · · |Mn � A1

M1| · · · |Mn � ψ M1| · · · |Mn � ψ

Thus, it is a common practice to generate assumptions from global specifica-
tions. However, in concurrent systems, each module typically control its state
variables under inputs from only a small proportion of other modules. Therefore,
in standard methodologies:

− each assumption Ai for module Mi may contain irrelevant valuations of
state variables that module Mi does not depend on. This makes the size of
assumption Ai larger than necessary.

− whenever the system is extended, each assumption Ai may have to be mod-
ified to incorporate the state variables of the additional modules. Hence,
assumptions already generated for the existing modules cannot be reused
for verifying the extended system.

We propose to avoid these issues by assigning each module Mi with the cor-
responding local specification ϕi. Inspired by rules sym and asym, we present
below rules R0 and R1, respectively. Recall that ψ ⇔

n
∧

i=1
ϕi.

R0

∀1 ≤ i ≤ n, Mi|Ai � ϕi

R1

∀1 ≤ i ≤ n,
Mi|Ai � ϕi

L(coA1| · · · |coAn) = ∅ Mi1 | · · · |Miki
� Ai

M1| · · · |Mn �
n
∧

i=1
ϕi M1| · · · |Mn �

n
∧

i=1
ϕi

In rules sym and asym assumptions Ai are all supposed to be generated from
the global specification ψ (on X); while in rules R0 and R1 each assumption
Ai is to be generated from the corresponding local specification ϕi (on Xi ∪ Ii).
In this way the size of assumption Ai can be reduced because only variables in
Xi ∪ Ii (which is a subset of X) have to be concerned with assumption Ai.

Unsound Rule R0. As a side effect in rule R0, assumption Ai may admit more
interactions with module Mi than can be admitted by the assumptions generated
from the global specification ψ. This is because the variables in X\(Xi ∪ Ii) are
not constrained by the local specification ϕi. Therefore, the tentative rule R0

above does not preserve soundness, though its completeness is not affected by the
weaker assumptions. We refer to our technical report [18] for a counterexample
where rule R0 fails.

Sound Rule R1. Modules Mi1 , . . . ,Miki
(ki ≥ 1) in rule R1 are all the ki

neighbours of module Mi that control its input variables in Ii (i.e., Ii ⊆
ki∪

j=1
Xij

210 A. Lomuscio et al.

and Ii ∩Xij �= ∅ for any 1 ≤ j ≤ ki). Theorem 1 shows the soundness of rule R1

for local specifications.

Theorem 1 (Soundness). If for any module Mi (1 ≤ i ≤ n) there exists an
assumption Ai such that Mi|Ai � ϕi and Mi1 | · · · |Miki

� Ai, then M1| · · · |Mn �
n
∧

i=1
ϕi.

Proof. By contradiction. Consider an infinite word w = ρ0ρ1 . . . on the global
alphabet (i.e., each ρi is a valuation on X) that makes the conclusion fail on some
ϕj (1 ≤ j ≤ n). Then, since the state variables in Xj are exclusively controlled
by Mj , any stuttering projection w|Xj∪Ij would not be accepted by Mj |Aj and
hence any stuttering projection w|Ij would not be accepted by Aj .

However, the variables in Xjl
(1 ≤ l ≤ kj) are exclusively controlled by Mjl

.
By the composition rules in Definition 2, there exists a stuttering projection of w

on
kj

∪
l=1

Xjl
, denoted w′, that is derived by Mj1 | · · · |Mjkj

. Since Ij ⊆
kj

∪
l=1

Xjl
and

Mj1 | · · · |Mjkj
� Aj , we have that w′ �Ij is accepted by Aj . This is a contradiction

because w′ �Ij is also a stuttering projection of w on Ij .

Unfortunately, rule R1 is not complete. In fact, for each module Mi, its neighbour
modules are isolated from the system when being examined against assumption
Ai. This ignores the impact of the rest of modules on its neighbour modules.
For example, consider a system consisting of the following four modules Mi

(1 ≤ i ≤ 4):

Mi Xi Ii Transition Function
M1 {x1} {x2, x3} x′

1 = x2 − x3

M2 {x2} {x4} x′
2 = x2 − x4

M3 {x3} {x4} x′
3 = x3 + x4

M4 {x4} {x2, x3} x′
4 =

⎧⎨⎩ 1 x2 > x3 and x4 > 0
−1 x2 < x3 and x4 < 0

0 otherwise

Let x′ be the next value of variable x. Then, for each module Mi, the CTL
formula AFAG (∧

x∈Xi∪Ii

(x′ = x)) specifies that the values of the variables in

Xi ∪ Ii will always eventually remain unchanged for ever.
With an initial state (x1, x2, x3, x4) = (u−v, u, v, 1) for any u > v ≥ 0, it can

be seen that M1|M2|M3|M4 �
4
∧

i=1
AFAG (∧

x∈Xi∪Ii

(x′ = x)). This is because x2

and x3 evolve by converging in a step of size x4, until x2 and x3 meet or just
cross over each other. Then, the system M1|M2|M3|M4 reaches a stable state
where x4 = 0.

However, by M2|M3 itself, x2 and x3 may diverge from each other. Hence,
such divergent sequence of inputs (x2, x3) cannot lead M1 to stabilising x1,
and so cannot be accepted by any assumption A1 that satisfies the premise
M1|A1 � AFAG ∧

x∈X1∪I1
(x′ = x).

Assume-Guarantee Reasoning with Local Specifications 211

3 Bounded Assume-Guarantee Reasoning

In this section we modify rule R1 to achieve completeness by exploiting the
neighbourhood dependency between modules. This results in a “bounded” rule
Rπ, which defines a bounded assume-guarantee reasoning approach.

Let D = {(M1,M2) | X2 ∩ I1 �= ∅} be the direct dependency relation between
the modules of the system M1| · · · |Mn. (M1,M2) ∈ D means that module M1

depends on the inputs from (or reacts directly with) module M2. Then, the k-
dependency relationDk is defined recursively as follows:D1 = D andDk = Dk−1∪
(Dk−1 ◦ D) for k > 1, where Dk−1 ◦ D is the composition of Dk−1 with D.

For module Mi let N k
i be the set of all the modules M except Mi such that

(Mi,M) ∈ Dk, and Ck
i be the composition of all the modules in N k

i . Then, rule
R1 can be extended further to rule Rk as follows:

Rk

∀1 ≤ i ≤ n,
Mi|Ai � ϕi

Ck
i � Ai

M1| · · · |Mn �
n
∧

i=1
ϕi

Informally, for each module Mi, rule R1 involves reasoning about its neighbour
modules only; while rule Rk checks all the modules within the range of k hops
around module Mi. Similarly, it can be proved that rule Rk is sound for any
k ≥ 1.

Theorem 2 (Soundness). Given k ≥ 1, if for any module Mi (1 ≤ i ≤
n), there exists an assumption Ai such that Mi|Ai � ϕi and Ck

i � Ai, then
M1| · · · |Mn �

n
∧

i=1
ϕi.

Proof. By contradiction. The proof is similar to that of Theorem 1.

If the modules within k hops around module Mi can together guarantee assump-
tion Ai, then such guarantee is preserved by the modules within k+1 hops. This
is because assumption Ai can already be guaranteed regardless of the interac-
tions with the additional modules. Based on this observation, Theorem 3 relates
rule Rk with rule Rk+1.

Theorem 3. Let Ai be an assumption for module Mi. Then, Ck
i � Ai implies

Ck+1
i � Ai.

Proof. By the definition of Dk, we have N k
i ⊆ N k+1

i . So, Ii ⊆ ∪
Mj∈Nk

i

Xj ⊆

∪
Mj∈Nk+1

i

Xj . For any infinite word w derived by Ck+1
i , there exists a stuttering

projection of w on ∪
Mj∈Nk

i

Xj, denoted w′, that can be derived by Ck
i . Since

Ck
i � Ai, w′ �Ii would be accepted by Ai for any such w′.

Since the system consists of a finite number of state variables, there exists a
transitive dependency closure Dπ (π ≥ 1) such that Dπ = Dπ+1. Theorem 4
shows that rule Rπ is complete for local specifications.

212 A. Lomuscio et al.

Theorem 4 (Completeness). Suppose Dπ is the transition dependency clo-
sure of the system M1| · · · |Mn. If M1| · · · |Mn �

n
∧

i=1
ϕi, then for each module

Mi, there exists an assumption Ai such that Mi|Ai � ϕi and Cπ
i � Ai.

Proof. By construction. For each module Mi, Cπ
i could be extended as such

assumption Ai by appointing all states in Cπ
i as accepting states. This is because

for any 1 ≤ j ≤ k,
n
∧

i=1
ϕi implies ϕj , and the variables in Xj are exclusively

controlled by Mj that is independent of modules not in Mj |Cπ
j .

As a corollary of theorems 2, 3 and 4, rule Rπ could be reformulated as rule Rπ

below, which is also sound and complete for local specifications.

Rπ

∀1 ≤ i ≤ n,
Mi|Ai � ϕi

∃1 ≤ di ≤ π, Cdi

i � Ai

M1| · · · |Mn �
n
∧

i=1
ϕi

Rule Rπ can be applied incrementally for compositional verification of concur-
rent systems. For the sake of generality and reusability, we opt for the weakest
assumption WAi [4,22] that admits as many as possible sequences of inputs
to module Mi without violating the local specification ϕi. For module Mi, the
weakest assumption WAi is an assumption such that
− L(WAi) ⊆ I(Mi) and Mi|WAi � ϕi;
− L(Ai) ⊆ L(WAi) for any assumption Ai such that L(Ai) ⊆ I(Mi) and

Mi|Ai � ϕi.
Then, the verification task for checking whether the system M1| · · · |Mn sat-

isfies the global specification ψ (⇔
n
∧

i=1
ϕi) can be decomposed into n parallel

sub-tasks. For each pair of module Mi and local specification ϕi, we envisage
the following procedure:

1: Generate the weakest assumption WAi from the local specification ϕi;
2: di ← 1;
3: while Cdi

i �� WAi do
4: if N di

i �= N di+1
i then

5: di ← di + 1;
6: else
7: return false;
8: return true;

The weakest assumption WAi is suitable for checking an increasing number
of modules as the while-loop continues (Line 3). Since the number of modules is
finite, this procedure will terminate: either the assumption WAi is guaranteed
(Line 8), or all the modules that Mi reacts with have been checked (Line 7).

4 Case Study

One of our motivations for investigating assume-guarantee reasoning was to
broaden the range of applications in the area of network control. We particularly

Assume-Guarantee Reasoning with Local Specifications 213

wish to reason about the overall objectives or behaviour of the control algorithm
implemented by a protocol. This section illustrates an application of rule Rπ to
verify the stability of an optimisation-based congestion control system. Both
the dynamic system and the stability property exhibit compositional structures.
We refer to our previous work [17] for more details about the system and the
property we considered.

Multi-Path Congestion Control. For tractability, we devise a discrete version
of the fluid-flow congestion control algorithm proposed by Kelly and Voice [15].

Consider a network in which a finite number of sources communicate with
a finite number of destinations. Between each pair of source and destination
a number of routes have been provisioned. Let r ∈ s denote that route r is
available to source s and s(r) be the source that transmits along route r. Each
route uses a number of links or, more generally, resources, each of which has a
finite capacity constraint. Let j ∈ r denote that resource j is used by route r.

Then, for each source s and route r available to s, the discrete trajectory in
the flow rate xr is subject to the following equation:

x′
r = xr + κrxr

⎛⎝1− 1
αs(r)

∑
j∈r

βjxj

∑
r′∈s(r)

xr′

⎞⎠+

xr

(1)

where κr is a constant, x′
r is the next value of xr and

− αs is the utility co-efficient of source s;
− βj is the price co-efficient of resource j;
− xj is the aggregate flow rate at resource j, i.e., xj =

∑
j∈r

xr;

− (z)+x = min(0, z) if x ≤ 0, otherwise (z)+x = z.

Thus, each source s adjusts the flow rate xr on route r ∈ s based on feedback
βjxj from every resource j ∈ r in the network (indicating congestion). Then, the
algorithm presented in [15] is composed of these sources acting synchronously
and collectively. The stability of this synchronous algorithm has been proved in
[15]. Herein, we analyse the fully asynchronous variant of the algorithm under
the fairness constraint that every source acts infinitely often. This asynchronous
model captures uncertain delay between distributed sources.

Stability. System stability is a key property of interest for a distributed conges-
tion control system. A system is stable if it equilibrates at certain network-wide
flow configuration, i.e., where x′

r = xr for every route r. Let si range over all
the sources. Then, the following CTL formula

AFAG ∧
si

(∧
r∈si

x′
r = xr) (2)

represents system stability, that is, the system will always eventually be stable.
Lagrangian decomposition techniques reduce system stability onto individual

modules [19]. A distributed source is stable if certain stable flow configuration

214 A. Lomuscio et al.

is reached on all the routes using the resources consumed by the source. Let
γ(si) denote the set of the routes serving or sharing resource with source si, i.e.,
γ(si) = {r | j ∈ r for any r′ ∈ si and j ∈ r′}. Then, local stability on source si

is represented by the following CTL formula

AFAG (∧
r∈γ(si)

x′
r = xr) (3)

Observe that the global specification (2) is equivalent to the conjunction of
local specifications (3) on all the sources. Therefore, we instantiate rule Rπ as
rule SS below for system stability:

SS

∀1 ≤ i ≤ n,
Mi|Ai � AFAG ∧

r∈γ(si)
x′

r = xr

∃1 ≤ di ≤ π, Cdi

i � Ai

M1| · · · |Mn � AFAG ∧
si

(∧
r∈si

x′
r = xr)

where source si is represented as module Mi.

Computing Assumptions. By rule SS, the assumption Ai for module Mi

is such that Mi|Ai satisfies the local specification (3). Thus, assumption Ai

concerns only on the variables in Xi ∪ Ii, and is meant to supply sequences
of inputs to module Mi such that Mi|Ai can eventually converge to certain
configuration on Xi ∪ Ii.

Note that under rule sym or asym, assumption Ai has to concern on all
the variables in X . A local stable state on Xi ∪ Ii would be extended to a
global stable states on X to meet the global specification (2). Since module Mi

controls only the variables in Xi, all the variables in X\(Xi∪Ii) can converge to
any possible combinations of values in domain D. Hence, for every local stable
state on Xi ∪ Ii, assumption Ai has to cover all the corresponding |D||X\(Xi∪Ii)|

global stable states. Such redundancy is avoided under rule SS by generating
assumption Ai from the local specification (3).

For module Mi = (Xi, Ii, QMi , TMi , λMi , q0Mi
), the assumption can be con-

structed as a tuple Ai = (Ii, Xi, EAi ∪ FAi , TAi, λAi , q0Ai
, FAi) where EAi , FAi ,

TAi and λAi are the minimal sets of non-accepting states, accepting states,
transitions and the labelling function derived through the following algorithm,
respectively.

1. For each valuation α on Ii, there exists one and only one state p ∈ EAi such
that λAi(p) = α.

2. For any q
α−→Mi q′ and the state p ∈ EAi such that λAi(p) = α, p

λMi
(q)

−−−−→Ai p′

for all p′ ∈ EAi .
3. For any q

α−→Mi q, there exists one and only one state pq ∈ FAi\EAi such
that λAi(pq) = α and

− pq

λMi
(q)

−−−−→Ai pq;

− p
λMi

(q)
−−−−→Ai pq, where p ∈ EAi is the state such that λAi(p) = α;

4. qAi0
is the initial state, and λ(qAi0

) is the given initial configuration on Ii.

Assume-Guarantee Reasoning with Local Specifications 215

Intuitively, step 1 logs all possible inputs to module Mi as the non-accepting
states of assumption Ai; while step 2 traces the state changes of module Mi as the
transitions of assumption Ai. Step 3 defines the accepting states of assumption
Ai to characterise all configuration on Xi ∪ Ii where Mi|Ai can possibly settle.
Each self-loop transition q

α−→Mi q contributes to an accepting state pq with
λAi(pq) = α. Apparently, module Mi at state q would remain at this state under
constantly repeated inputs α, which is exactly what the local specification (3)
expects.

Thus, we compute an assumption Ai for module Mi based on the module itself,
regardless of the underlying topology. Theorem 5 shows that the assumption is
an appropriate one for our purpose.

Theorem 5. Assumption Ai generated by the above algorithm for module Mi

is the weakest assumption with respect to the local specification (3).

Proof. By definition, it can be seen that any accepting trace of Mi|Ai will fall
into an infinite loop at some state (q, pq), where q ∈ QMi admits a self-loop tran-
sition under input λAi(pq). Correspondingly, the infinite word accepted through
such an accepting trace will terminate with an infinite loop of the valuation on
λMi(q) ∪ λAi(pq). Therefore, Mi|Ai satisfies the local specification (3).

We then prove by contradiction that assumption Ai is the weakest assumption
with respect to the local specification (3). Suppose there exists an assumption
A′

i such that L(A′
i) ⊆ I(Mi) and Mi|A′

i satisfies the local specification (3), but
there exists an infinite word θ = α0α1 · · · ∈ L(A′

i) that is not accepted by Ai.
Then, by this hypothesis and the definition of step 3, θ cannot be derived by Ai.

Assume α0 . . . αk (k ≥ 0) is the longest prefix that can be derived from Ai.
This means that, for any valuation ρ on Xi, no transition p

ρ−→Ai p′ exists such
that λAi(p) = αk and λAi(p′) = αk+1. Hence, by the definition of step 2, no
transition q

αk−−→Mi q′ exists such that for any states q, q′ ∈ QMi . This conflicts
with the hypothesis, which implies θ ∈ I(Mi).

The time complexity of this algorithm is linear to the size of module Mi. The
worst run-time is O(2|TMi |). The size of the resulting assumption Ai is also linear
to the size of module Mi. In the worst case, assumption Ai contains |D||Ii|+|TMi |
number of states and |TMi ||D||Ii| + 2|TMi | number of transitions.

By omitting step 4, this algorithm can be revised to generate a super as-
sumption with the universal set of all possible initial states, each labelled with
a valuation on Ii. The language accepted by the super assumption is then the
disjoint union of the languages accepted by the assumptions under each possible
initial valuation on Ii.

5 Experiments

This section illustrates how reduced assumptions can help improve the efficiency
and scalability of assume-guarantee reasoning. Specifically, we show how one set
of verification checks under rule SS can prove stability regardless of the number

216 A. Lomuscio et al.

of sources and their initial flow configurations, and for any topology of bounded
degree.

Consider a simple topology where each source is provisioned with two routes
and each resource is shared by two sources. Thus, each source module has two
state variables and two input variables. Let Mu,v be a source with an initial
configuration (u, v) ∈ D2 and the transitions defined by Equation (1). Then, no
matter how many sources a network may consist of, each source is of the general
form Mu,v, where u, v ∈ D.

Let Au,v be the super assumption generated by the above algorithm for mod-
ule Mu,v. We start with checking whether the composition of any two possible
neighbour modules can guarantee these assumptions. This amounts to check
whether

Mu1,v′
1
|Mu′

1,v1 � Au0,v0 (4)

for any initial configuration (u0, v0, u1, v1, u
′
1, v

′
1) ∈ D6. For the domain D =

[1, 6] this means that 66(= 46656) instances of Equation (4) need to be verified.
These checks are done through, as usual, by establishing whether any infinite
word derived by Mu1,v′

1
|Mu′

1,v1 can be accepted by coAu0,v0 , the complement of
assumption Au0,v0 .

We use the GOAL tool [25] to compute and simplify each complement
coAu0,v0 . Each assumption Au0,v0 and its complement coAu0,v0 are encoded as
Büchi automata in GOAL. Table 1 reports the size of each automaton in terms
of the number of states (in Columns #states) and the number of transitions (in
Columns #transitions), and the time usage in seconds for complementing each
assumption Au0,v0 (in Column time). Note that Mv0,u0 is equivalent to Mu0,v0

under permutation. For sake of comparison, Table 1 also reports the size of each
assumption Aψ

u0,v0
, generated from the global specification (2), and the time us-

age (in seconds) for complementing it. The symbol ‘-’ means that the tool did not
return any result within 10 hours. All experiments were ran on a Linux server
with two Intel 2.8GHz Quad Core Xeon processors and 16G memory. Observe
that GOAL is not a tool optimised for speed; faster results may possibly be
achievable.

It can be seen that assumptions for each module Mu0,v0 are greatly reduced
under rule SS. In average each assumption Au0,v0 is reduced by a factor of 36
times in the number of states and a factor of 569 in the number of transitions
compared with the corresponding assumption Aψ

u0,v0
. This is because the combi-

natorial explosion with the redundant variables in X\(Xi ∪ Ii) for each module
Mi is avoided without loss of expressiveness of the assumptions. The advantage
of using reduced assumptions is particularly apparent when computing their
complements. The tool took no more than 2.5 minutes to complement each as-
sumption Au0,v0 , but only 10 out of 21 complementation instances coAψ

u0,v0
can

be computed by the tool. Considering that it is very time-consuming to simplify
a Büchi automaton, our approach is more efficient than that of applying the
general assume-guarantee rules with simplified assumptions Aψ

u0,v0
.

Equation (4) was verified in our experiments for all the values of parameters
u0, v0, u1, v1, u

′
1, v

′
1 in domain D. As a consequence, any assumption Au0,v0 can

Assume-Guarantee Reasoning with Local Specifications 217

Table 1. Experimental Results for Computing Assumptions

u0 v0

Aψ
u0,v0 Au0,v0 coAu0,v0

#states #transitions time(s) #states #transitions time(s) #states #transitions
1 1 1332 49248 1511.0 37 108 3.3 73 2628
1 2 1332 49248 1475.1 37 108 1.9 73 2628
1 3 1332 49248 1415.8 37 108 1.7 73 2628
1 4 2016 97200 3292.9 56 180 3.5 110 3960
1 5 2268 144288 4247.5 63 228 4.9 123 4428
1 6 2304 190944 5693.8 64 264 5.0 124 4464
2 2 1332 49248 1477.2 37 108 1.6 73 2628
2 3 4752 195840 14207.2 132 400 19.3 114 4104
2 4 5760 291024 21088.4 160 524 31.5 168 6048
2 5 5796 337680 25180.2 161 560 33.1 169 6084
2 6 6084 431424 - 169 644 34.6 183 6588
3 3 8532 389736 - 237 746 77.3 174 6264
3 4 9648 531720 - 268 910 103.5 233 8388
3 5 9684 578376 - 269 946 106.4 234 8424
3 6 9756 671688 - 271 1018 105.9 236 8496
4 4 8568 436392 - 238 782 74.7 175 6300
4 5 9684 578376 - 269 946 108.1 234 8424
4 6 9684 578376 - 269 946 104.1 234 8424
5 5 10836 767016 - 301 1146 145.1 294 10584
5 6 10836 767016 - 301 1146 138.0 294 10584
6 6 10836 767016 - 301 1146 138.1 294 10584

be guaranteed by the composition of any two possible modules. Thus, our ex-
periments show the stability of such system for any number of sources and any
initial flow configuration under the given topology.

Furthermore, the experiments reported can be extended for any topology with
bounded degree (i.e., each source is sharing resources with a bounded number
of other sources). Suppose each source has at most m routes, the general form
of each module is Mu, where vector u ranges over

m
∪

k=1
Dk. This is particularly

appealing to us as previous results in the literature on verification of congestion
control models (e.g., [26,17]) apply only to fixed network topologies.

6 Conclusions

The paper presents a methodology for assume-guarantee reasoning for global
specifications consisting of conjunctions of local specifications. The rule Rπ pre-
sented is both sound and complete for local specifications, yet can be applied
to draw conclusions on global specifications. Thus, a verification task on a sys-
tem can be decomposed onto individual modules and local specifications. The
methodology is based on an incremental approach to exploit the neighbourhood
dependency between modules. Each increment explores the modules’ interactions
one step further into the neighbourhood.

We applied the rule to verify the stability of a distributed congestion control
system with any number of modules, any initial state, and any topology of

218 A. Lomuscio et al.

bound degree. We proved system stability by considering only local stability of
each individual source when interacting with its neighbours. In this way, the
technique presented could greatly extend the range of network problems that
model checking could be applied to.

References

1. Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Program-
ming Languages and Systems 17(3), 507–535 (1995)

2. Alur, R., Henzinger, T.A.: Reactive modules. In: Proc. 11th Annual IEEE Sympo-
sium on Logic in Computer Science Logic in Computer Science (LICS 1996), New
Brunswick, USA, July 27-30, pp. 207–218 (1996)

3. Alur, R., Henzinger, T.A., Mang, F., Qadeer, S., Rajamani, S.K., Tasiran, S.:
MOCHA: Modularity in model checking. In: Y. Vardi, M. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 521–525. Springer, Heidelberg (1998)

4. Barringer, H., Giannakopoulou, D., Păsăreanu, C.S.: Proof rules for automated
compositional verification through learning. In: Proc. 2003 Workshop on Specifi-
cation and Verification of Component-Based Systems (SAVCBS 2003), Helsinki,
Finland, September 1-2, pp. 14–21 (2003)

5. Berezin, S., Campos, S.V.A., Clarke, E.M.: Compositional reasoning in model
checking. In: Revisted Lectures from Proc. International Symposium on Composi-
tionality, Bad Malente, Germany, September 8-12, pp. 81–102 (1997)

6. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella., A.: NuSMV 2: An opensource tool for symbolic
model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
Springer, Heidelberg (2002)

7. Cobleigh, J., Giannakopoulou, D., Păsăreanu, C.: Learning assumptions for com-
positional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

8. Farzan, A., Chen, Y.F., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Extending auto-
mated compositional verification to the full class of omega-regular languages. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 2–17.
Springer, Heidelberg (2008)

9. Francez, N., Pnueli, A.: A proof method for cyclic programs. Acta Informatica 9(2),
133–157 (1978)

10. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008)

11. Giannakopoulou, D., Păsăreanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: Proc. 17th IEEE International Conference on
Automated Software Engineering (ASE 2002), Edinburgh, UK, September 23-27,
pp. 3–12 (2002)

12. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16(3), 843–871 (1994)

13. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: You assume, we guarantee: Method-
ology and case studies. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp.
440–451. Springer, Heidelberg (1998)

14. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Transactions on Programming Languages and Systems 5(4), 596–619
(1983)

Assume-Guarantee Reasoning with Local Specifications 219

15. Kelly, F., Voice, T.: Stability of end-to-end algorithms for joint routing and rate
control. ACM SIGCOMM Computer Communication Review 35(2), 5–12 (2005)

16. Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to modular model
checking. ACM Transactions on Programming Languages and Systems 22(1), 87–
128 (2000)

17. Lomuscio, A., Strulo, B., Walker, N., Wu, P.: Model checking optimisation-based
congestion control models. In: Proc. 2009 Workshop on Concurrency, Specification,
and Programming (CS&P 2009), Kraków-Przegorza�ly, Poland, September 28-30,
pp. 386–397 (2009)

18. Lomuscio, A., Strulo, B., Walker, N., Wu, P.: Assume-guarantee verification for
distributed systems with local specifications. Tech. Rep. RN/10/01, Department
of Computer Science, University College London (February 2010)

19. Low, S.H., Lapsley, D.E.: Optimization flow control, I: basic algorithm and con-
vergence. IEEE/ACM Transactions on Networking 7(6), 861–874 (1999)

20. Maier, P.: Compositional circular assume-guarantee rules cannot be sound and
complete. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 343–357.
Springer, Heidelberg (2003)

21. Misra, J., Chandy, K.M.: Proof of networks of processes. IEEE Transactions on
Software Engineering SE 7(4), 417–426 (1981)

22. Nam, W., Alur, R.: Learning-based symbolic assume-guarantee reasoning with au-
tomatic decomposition. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218,
pp. 170–185. Springer, Heidelberg (2006)

23. Nam, W., Madhusudan, P., Alur, R.: Automatic symbolic compositional verifica-
tion by learning assumptions. Formal Methods in System Design 32(3), 207–234
(2008)

24. Păsăreanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the L* algorithm to automate assume-
guarantee reasoning. Formal Methods in System Design 32(3), 175–205 (2008)

25. Tsay, Y.K., Chen, Y.F., Tsai, M.H., Wu, K.N., Chan, W.C.: GOAL: A graphical
tool for manipulating büchi automata and temporal formulae. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 466–471. Springer, Heidelberg
(2007)

26. Yuen, C., Tjioe, W.: Modeling and verifying a price model for congestion control in
computer networks using promela/spin. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS,
vol. 2057, pp. 272–287. Springer, Heidelberg (2001)

Automating Coinduction with Case Analysis

Eugen-Ioan Goriac1, Dorel Lucanu1, and Grigore Roşu2

1 Faculty of Computer Science,
Alexandru Ioan Cuza University, Romania

{egoriac,dlucanu}@info.uaic.ro
2 Department of Computer Science,

University of Illinois at Urbana-Champaign, USA
grosu@cs.uiuc.edu

Abstract. Coinduction is a major technique employed to prove behav-
ioral properties of systems, such as behavioral equivalence. Its automa-
tion is highly desirable, despite the fact that most behavioral problems
are Π0

2 -complete. Circular coinduction, which is at the core of the CIRC
prover, automates coinduction by systematically deriving new goals and
proving existing ones until, hopefully, all goals are proved. Motivated
by practical examples, circular coinduction and CIRC have been recently
extended with several features, such as special contexts, generalization
and simplification. Unfortunately, none of these extensions eliminates
the need for case analysis and, consequently, there are still many nat-
ural behavioral properties that CIRC cannot prove automatically. This
paper presents an extension of circular coinduction with case analysis
constructs and reasoning, as well as its implementation in CIRC. To uni-
formly prove the soundness of this extension, as well as of past and future
extensions of circular coinduction and CIRC, this paper also proposes a
general correct-extension technique based on equational interpolants.

1 Introduction

Automated theorem proving is a subject of high interest in computer science,
frequently used in industry for hardware and software verification. Coinduction
is a proof technique for properties over infinite data structures (which typically
model behaviors of reactive systems) or for behavioral properties. Since coinduc-
tion is too complex to be automated in its full generality, existing tools attempt
to implement simpler, algorithmic variants which work in many practical cases.
Such a tool is CIRC [7], which implements circular coinduction [4,10]. Circular
coinduction has been recently extended with special contexts [8], generalization
and simplification rules [6]. Many computer experiments with CIRC led us to the
necessity of introducing and automating case reasoning.

Case analysis is a fundamental algebraic/coalgebraic reasoning technique
whose importance has been early noticed and which has been partly investigated
(see, e.g., [1,5]). Automating case analysis in its full generality is a difficult task,
which would certainly lead to expensive, non-terminating procedures. In this pa-
per we investigate practical means to incorporate limited but effective support
for automatic case analysis in coinductive provers, such as CIRC.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 220–236, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automating Coinduction with Case Analysis 221

We start by discussing two motivating examples that emphasize the impor-
tance of case analysis when proving properties by coinduction.

A stream is an infinite-list data structure a1 :a2 :a3 . . . which can be used to
model infinite behaviors. Considering the stream observers hd and tl, defined by
hd(a : s) = a and tl(a : s) = s, to prove a stream equality s = s′ by coinduction
one needs to find a set of pairs R = {ui ≡ vi | i ∈ I}, which contains the pair
s ≡ s′ and which is a congruence with respect to hd and tl, i.e., u ≡ v ∈ R
implies hd(u) = hd(v) and tl(u) ≡ tl(v) ∈ R [11,10].

Example 1. We present a situation where case analysis over a term of enumerable
sort is needed. We assume that the bitwise negation operator, not, is defined over
streams of bits using the auxiliary bit-complement operation · . The function f
creates an infinite alternating bit stream, starting with a given first element:

0 = 1 1 = 0 hd(f(a)) = a

hd(not(s)) = hd(s) hd(tl(f(a))) = a

tl(not(s)) = not(tl(s)) tl(tl(f(a))) = f(a)

Above, s is a variable of sort stream and a is a variable of sort bit. Let us
prove f(a) = not(f(a)) by coinduction. Take R = {f(a) ≡ not(f(a)), tl(f(a)) ≡
tl(not(f(a)))}. For the first pair, hd(f(a)) = hd(not(f(a))) holds. This property
can only be checked by making a case analysis over a, which takes values from
{0, 1}. Further, tl(f(a)) ≡ tl(not(f(a))) is reduced to tl(f(a)) ≡ not(tl(f(a))) ∈
R. For the second pair, the reasoning is similar. When checking for congruence
w.r.t. hd , another case analysis over a is needed.

We show in this paper that, when the system knows that certain terms are of
enumerable sort, case analysis can be done automatically. Case analysis based
on enumerated sorts can be seen as a particular case of induction. However, we
prefer to treat it separately because its integration with the circular coinduction
engine is much simpler and, consequently, more efficient.

Example 2. The second example shows how to prove a property over streams of
integers. We define the operator sign which, when provided a stream of integers,
returns another stream with elements from the set {−1, 0, 1}:

hd(sign(s)) =

⎧⎨⎩
−1 if hd(s) < 0

0 if hd(s) = 0
1 if hd(s) > 0

tl(sign(s)) = sign(tl(s))

Let us prove that sign(s) = sign(sign(s)). We consider the set R = {sign(s) ≡
sign(sign(s)) | s is a stream}.

Checking that hd(sign(s)) = hd(sign(sign(s))) can only be done by making
a case analysis over hd(s). If, for instance, hd(s) < 0, then hd(sign(s)) = −1.
Therefore hd(sign(s)) < 0, so hd(sign(sign(s))) = −1. Both the left hand side
and the right hand side of the initial equation are reduced to −1 in this case.
The other two cases, hd(s) = 0 and hd(s) > 0, are handled similarly.

In the end, we need to prove that tl(sign(s)) ≡ tl(sign(sign(s))) ∈ R, which
is equivalent to sign(tl(s)) ≡ sign(sign(tl(s))) ∈ R. The property holds because

222 E.-I. Goriac, D. Lucanu, and G. Roşu

tl(s) is a stream s′ and sign(s′) ≡ sign(sign(s′)) ∈ R for any s′. By the coinduc-
tion principle, sign(s) = sign(sign(s)).

To automate case analysis for this situation, we “encapsulate” the definition
of sign in a single syntactic construct, named guarded equation. The tool is able
to extract from such equations the information it needs to perform case analysis.

The general goal of this paper is to present our approach to automating coin-
duction with case analysis, and more concretely to present our extension of
CIRC with case analysis statement constructs, to describe our automated im-
plementation of case analysis, and to prove the soundness of our technique and
implementation. A secondary but equally important goal is to propose a generic
technique to deal with extensions of coinductive proof systems1, based on what
we call equational interpolants. An equational interpolant is a new sentence of
the form 〈e, itp〉, where e is an equation and itp is a set of equations; each of the
equations involved in an interpolant can be conditional and can have its own
quantifiers, which can be different from the others’. The intuition for 〈e, itp〉 is
simple: e holds whenever itp holds. In other words, to prove E � e one can chose
to instead prove E � itp. This is somewhat similar to the homonimous notion
in Craig interpolation, though the later also imposes restrictions over the signa-
ture of the interpolant; we here only take over the intuition that the interpolant
interposes between the hypotheses and the task to prove.

Equational interpolants can be used in two ways: 1) to extend the ability of
the prover to automatically find new lemmas by preserving the initial entailment
relation, and 2) to extend the initial entailment relation in a consistent way
with the specification enriched with new constructs. All previous extensions of
circular coinduction consist of adding new types of statements together with new
proof rules for them to the proof system. Interestingly, all these can be captured
as special instances of a similar but more general process involving equational
interpolants: the specific statements can be regarded as particular interpolants
and the specific proof rules can be regarded as corresponding instances of general
interpolant rules. Case analysis is no different. We borrow the general definition
of a case statement from [5], but we here capture its semantics as a particular
case of specification with equational interpolants. An immediate advantage of
our new approach is that we can use case analysis in both ways mentioned above.

In short, the solution adopted in CIRC for automated case analysis is:

– enrich the specification syntax with new constructs, named CIRC case state-
ments, for declaring enumerated sorts and guarded equations;

– transform the new constructs above uniformly into annotated case sentences
(which can be regarded as interpolants);

– extend the coinduction proof engine with a new rule, [CaseAn]; and
– redesign the algorithm for automatic detection of special contexts.

Section 2 introduces notions and notations used throughout the paper, and
the derivation rules of CIRC. Section 3 shows how the prover may be extended
1 The technique appears to be more general, but we have not experimented with it

outside our framework discussed here.

Automating Coinduction with Case Analysis 223

with new rules associated to interpolants. Section 4 presents the formal represen-
tation of case sentences and their corresponding entailment relation. Section 5
introduces the new syntactic constructs for specifying CIRC case statements.
Subsections 5.1 and 5.2 describe how we extend the coinduction engine with a
new rule for case analysis, and, how we improve the algorithm for detecting spe-
cial contexts using case sentences, respectively. Section 5.3 shows how to write
behavioral specifications and prove properties using CIRC.

2 Behavioral Specification and Circular Coinduction

An algebraic specification is a triple E = (S,Σ,E), where S is a set of sorts, Σ
is a many-sorted signature and E is a set of conditional equations of the form
(∀X) t = t′ if cond , where cond = (

∧
i∈I ui = vi), I is a set of indexes; t, t′, ui,

and vi (i ∈ I) are Σ-terms with variables in X . If I = ∅ then the equation is
unconditional and may be written as (∀X) t = t′.

A Σ-context C is a Σ-term with one occurrence of a distinguished variable
∗:s of sort s. The context is written more explicitly as C[∗:s] instead of just C.
When Σ is understood, a Σ-context may be referred to as a context. If C[∗:s] is a
context of sort s′ and t is a term of sort s, then C[t] is the term of sort s′ obtained
by replacing t for ∗:s in C. Consider an equation e : (∀X) t = t′ if cond . By
C[e] we denote the equation (∀X ∪ Y)C[t] = C[t′] if cond , where Y is the set
of non-star variables occurring in C[∗:s].

A behavioral specification (e.g., [10]) is a triple B = (S, (Σ,Δ), E), where S,
Σ and E are the sets composing an algebraic specification E , and Δ is a set of
Σ-contexts, called derivatives. A derivative in Δ is written as δ[∗:h]. The sorts
S are split in two classes: hidden sorts, H = {h | δ[∗:h] ∈ Δ}, and visible sorts,
V = S \H . A Δ-context is inductively defined as follows: 1) each δ[∗:h] ∈ Δ is
a Δ-context; and 2) if C[∗:h′] is a Δ-context and δ[∗:h] is a term of sort h′ from
Δ, then C[δ[∗:h]] is a Δ-context. A Δ-experiment is a Δ-context of visible sort.

If δ ∈ Δ and e is an equation, then δ[e] is called a derivative of e. Given an
entailment relation � over E , the behavioral entailment relation is defined as fol-
lows: B � e iff E � C[e] for each Δ-experiment C appropriate for the equation e.
In this case, we say that B behaviorally satisfies e. For the streams defined in Sec-
tion 1, the derivatives are hd [∗:Stream] and tl [∗:Stream]. If B = (S, (Σ,Δ), E),
then we often write B � e for (S,Σ,E) � e and B ∪F for (S, (Σ,Δ), E ∪F). We
assume that � satisfies properties like reflexivity, monotonicity, transitivity, and
Δ-congruence (see [10] for more details).

Circular coinduction [4,10] is a coinductive proving technique for behavioral
properties which can be defined as a proof system (see [10]). To prevent the use
of coinductive hypotheses in contextual reasoning, circular coinduction uses a
freezing operator − : s→ Frozen , defined for each sort s; Frozen is a new sort.
A frozen equation is an equation of the form (∀X) t = t′ if cond .

CIRC implements a circular coinduction engine for the proof system given in
[10] using a set of reduction rules of the form (B,F ,G) ⇒ (B,F ′,G′), where B
represents the behavioral specification, F is the set of coinductive hypotheses

224 E.-I. Goriac, D. Lucanu, and G. Roşu

(a set of frozen equations) and G is the current set of goals. An equational goal
(proof obligation) is a conditional equation g of the form (∀X)t = t′ if cond . For
the sake of the presentation, the goals are also represented as frozen equations.

Here is a brief description of the reduction rules underlying CIRC:

[Done]: (B,F , ∅)⇒ ·
Whenever the set of goals is empty, the system terminates with success.

[Reduce]: (B,F ,G ∪ { e })⇒ (B,F ,G) if B ∪ F � e
If the current goal is a �–consequence of B ∪ F then e is dropped.

[Derive]: (B,F ,G ∪ { e })⇒ (B,F ∪ { e },G ∪ {Δ[e] })
if B ∪ F �� e ∧ e is hidden

When the current goal e is hidden and it is not a �–consequence, it is added
to the specification and its derivatives to the set of goals. Δ[e] denotes the
set { δ[e] | δ ∈ Δ}.

[Generalize]: (B,F ,G ∪ {(∀Y) θ(t) = θ(t′) })⇒ (B,F ,G ∪ {(∀Y) t = t′ })
where θ : X → TΣ(Y) is a substitution.

If the current goal can be generalized after identifying the substitution θ,
then we replace it by its generalized form.

[Fail]: (B,F ,G ∪ { e })⇒ failure if B ∪ F �� e ∧ e is visible
This rule stops the reduction process with failure whenever the current goal
e is visible and cannot be proved using �.

The entailment relation used in CIRC is ��� : E ��� (∀X)t = t′ if
∧

i∈I ui =
vi iff nf(t) = nf(t′), where nf(t), the normal form of t, is computed using an
enhanced version of the initial specification:

– the variables X of the equations are turned into fresh constants;
– the condition equalities ui = vi are added as equations to the specification;
– the equations in the specification are oriented and used as rewrite rules on t.

The rules [Done], [Reduce], and [Derive] implement the proof rules with the
same names given in [10]. The rule [Generalize] is presented in [6]. After a failing
stop signaled by [Fail], further human intervention is required in order to identify
the source of the failure. There are also some additional rules used only for
optimization purposes. An example of such a rule is [Normalize], which computes
the normal form of an equation and can be used, for instance, in combination
with the rule [Derive].

The next result is a variant of the soundness theorem given in [10].

Theorem 1 (Soundness). Let B be a behavioral specification, and � an en-
tailment relation. If (B,F0 = ∅,G0 = G) ⇒∗ (B,Fn,Gn = ∅), using [Reduce]
and [Derive], then B � G.

We use this result in the next section. The proof of correctness for the rule
[Generalize] is given in [6]; in the next section we show that it can be regarded
as a particular case of a more general technique.

Automating Coinduction with Case Analysis 225

3 Extending CIRC with Equational Interpolants

In this section we present a technique that allows us to easily extend the proof
system with new reduction rules.

Definition 1. 1) If Σ is a signature then a Σ-equational interpolant is a pair
〈e, itp〉, where e is a Σ-equation and itp is a finite set of Σ-equations.
2) A behavioral specification with interpolants B = (S, (Σ,Δ), (E, I)) is a be-
havioral specification (S, (Σ,Δ), E) together with a set I of interpolants. An
entailment relation for E is extended to (E, I) as follows: in the definition of �
E is replaced with (E, I) and a new rule is added:

(E, I) � itp
(E, I) � e

if 〈e, itp〉 ∈ I (1)

3) If � is an entailment relation for E and I is a set of interpolants, then we
say that I is �–preserving if E � itp implies E � e, for each 〈e, itp〉 ∈ I.

Theorem 2. Let B = (S, (Σ,Δ), (E, I)) and � be an entailment relation such
that I is �–preserving. If e is a Σ–equation then (S, (Σ,Δ), E) � e if and only
if (S, (Σ,Δ), (E, I)) � e.

The CIRC engine associates a rewrite rule of the form:

[itp]: (B,F ,G ∪ e) ⇒ (B,F ,G ∪ itp)

with each interpolant 〈e, itp〉 ∈ I. We write [itp] ∈ I in order to denote that the
rule [itp] is associated with an interpolant from I. The following theorem states
that if we enhance the proof system presented in [10] with interpolants, then it
remains sound w.r.t. the new entailment relation.

Theorem 3. Let B be a behavioral specification, � an entailment relation, and I
a set of interpolants. If (B,F0 = ∅,G0 = G)⇒∗ (B,Fn,Gn = ∅), using [Reduce],
[Derive] and the rules associated to I, then B � G.

A consequence of the proof of Theorem 3 is that the equational interpolants
preserve the circular coinduction principle [10]:

Corollary 1. In the hypothesis of Theorem 3, there is a set of frozen equations
F such that B ∪ F � Δ[F] .

Notice that in the conclusion of Theorem 3, � is built on the extended � (the
extension of the initial entailment to specifications with interpolants). If I is
�-preserving, then � is the behavioral extension of the initial �. Therefore there
are two ways of using interpolants within a coinductive proof:

Implicit use. In this case the equational interpolants must be �–preserving and
are used to justify why other rules are sound; the soundness of their use is given
by Theorem 2. An example of implicit using of equational interpolants is that of
the generalization rule [6]. By this rule, a concrete equation u = u′ is replaced

226 E.-I. Goriac, D. Lucanu, and G. Roşu

by a more general one t = t′. This means that there is a substitution θ such that
θ(t) = u and θ(t′) = u′. It is easy to see that [Generalize] for u = u′ and θ is
equivalent with the rule [itp] corresponding to the interpolant 〈u = u′, {t = t′}〉.
Theorem 4 in [6] becomes a direct consequence of Theorem 3.

Explicit use. The specification includes special syntactical constructs for de-
noting equational interpolants. For instance, the equational interpolants may be
explicitly included in a CIRC theory using simplification rules [6] or case sen-
tences (see Section 5). In this case the user is the one who decides whether the
equational interpolants included in the specification are �–preserving or that
they really extend �. In other words, the explicit use of equational interpolants
is a part of the specification design.

4 Specifications with Cases

In this section we recall from [5] the definitions for case sentences and we show
that their semantics can be given by means of equational interpolants.

Let (S,Σ) be an algebraic signature. A Σ-case sentence over the set of vari-
ables Y is a nonempty set {casei | i ∈ I} written as (∀Y) (

∨
i∈I casei), where

casei = (
∧

j∈Ji
ui

j = vi
j), and ui

j , v
i
j ∈ TΣ(Y), for each i ∈ I and j ∈ Ji. Hence,

cases and conditions have the same syntax. If θ : Y → TΣ(X) is a substitution,
then θ(casei) denotes the case θ(

∧
j∈Ji

ui
j = vi

j) =
∧

j∈Ji
θ(ui

j) = θ(vi
j). A speci-

fication with cases is a triple E = (S,Σ, (E, C)), where (S,Σ,E) is an algebraic
specification and C is a set of case sentences.

An entailment relation (S,Σ,E) � e can be extended to specifications with
cases (S,Σ, (E, C)) � e by means of equational interpolants. Each specification
with cases (S,Σ, (E, C)) is associated with a specification with equational in-
terpolants (S,Σ, (E, IC)), where IC is the set of pairs 〈e, itpcase,θ(e)〉 with e an
equation (∀X)t = t′ if cond, case a case sentence (∀Y)(

∨
i∈I casei) in C, θ : Y →

TΣ(X) a substitution, and itpcase,θ(e) the set {(∀X)t = t′ if cond∧θ(case i) | i ∈
I}. In other words, each triple that consists of an equation, a case sentence, and
a substitution uniquely defines an equational interpolant. The second inference
rule from Definition 1 interpreted for the interpolant defined by a case sentence
becomes similar to the one given in [5]:

(∀Y) (
∨

i∈I
casei) ∈ C,

θ : Y → TΣ(X),
(∀i ∈ I)(S,Σ, (E, C)) � (∀X) t = t′ if cond ∧ θ(casei)

(S,Σ, (E, C)) � (∀X) t = t′ if cond
(2)

However, we do not impose a “completeness” condition for case sentences,
which in our terms is equivalent to saying that the interpolants IC are �–
preserving. For instance, we may have a specification as follows:

even(0) = true f(x) = x if even(x)
even(s(0)) = false f(x) = s(x) if not even(x)
even(s(s(x))) = even(x)

Automating Coinduction with Case Analysis 227

If we consider the case sentence c given by (∀x)even(x) = true ∨ even(x) =
false and � denotes the equational deduction, then we have (S,Σ, (E, {c})) �
(∀x)even(f (x)) = true. Obviously, we cannot infer from the specification that
(S,Σ,E) � (∀x)(even(x) == true or even(x) == false) (and hence (S,Σ,E) ��
(∀x)even(f (x)) = true) because this property is an inductive consequence.
Therefore the rule (2) is a real extension of the initial entailment relation (here
the equational deduction). The explicit use of case sentences in specifications
may directly influence the definition of the entailment relation. In this way the
user has a larger freedom in using case analysis.

As it is noted in [5], the use of case analysis at this level of generality is
very expensive and finding an appropriate substitution θ is a difficult task which
cannot be easily automatized. In [4] the following method is proposed: each case
sentence comes with a pattern, usually denoted by p, which is just a Σ-term
with variables. The case analysis rule is enabled only if the pattern p matches a
subterm of t or t′, and then the substitution also comes for free. The user must
specify the pair (pattern, case sentence) to be used for a particular task.

We want to exploit the same idea but in an automated way. For this, we
introduce annotated case sentences, which are pairs of the form (p, {casei | i ∈
I}). Here, p ∈ TΣ(Y) is the pattern and (∀Y) (

∨
i∈I casei) is a case sentence.

As we said above, the case analysis is a proper component of the specification.
Therefore the solution we propose here is to include in the specification language
special syntactical constructs from which annotated case sentences can be au-
tomatically computed. Knowing the set of annotated case sentences included in
the specification, a prover can supervise the case analysis making use of proof
tactics. In the next section we introduce three such syntactical constructs.

5 Implementation in CIRC

CIRC theories extend the syntax of Full-Maude theories by allowing the user to
specify derivatives [7], special contexts [8] and simplification rules [6]. Here we
present how one can use new syntactic constructs in CIRC theories that enable
the prover to automatically use case analysis. These new syntactic constructs are
named CIRC case statements. We introduce three types of CIRC case statements:
enumerated sorts, guarded equations and annotated case sentences.

Enumerated sorts are declared using the syntax “enum s is ct1 . . . ctn .”,
where s is the name of the sort and cti, i = 1..n, are the constants that define it.
The guarded equations syntax is: “geq t = t1 if case1 [] . . . tn if casen [] .”,
where t and ti, i = 1..n are TΣ(Y)-terms and casei, i = 1..n are disjoint condi-
tions. The notation for guarded equations is inspired from Dijkstra’s command
language [3], except that the syntax of the guards is inspired from the Maude
convention for the conditional equations. Annotated case sentences are directly
declared using the syntax “cases pattern = p if case1 \/ . . . \/ casen .”.

The syntactic constructs presented above are not disjoint. For instance, the
enumerated sorts and the guarded equations can be seen as particular instances
of the annotated case sentence (see below). We found these syntactic constructs
adequate in most of the case studies we considered. We believe they are more

228 E.-I. Goriac, D. Lucanu, and G. Roşu

intuitive and familiar to a programmer than a syntactic construct that allows
the direct definition of an annotated case sentence. Moreover, the solution we
present here can easily be extended with other syntactic constructs if they are
considered to be useful in practice.

A CIRC specification with cases is a triple E = ((S, Se), Σ, (E,Eg, C)), where
S,Σ,E have similar meanings to those from the equational many sorted specifi-
cations, Se is a set of enumerated sorts, Eg is a set of guarded equations, and C
are the annotated case sentences. We associate each E = ((S, Se), Σ, (E,Eg, C))
with a “compiled” specification with cases Ẽ = (S̃, Σ̃, (Ẽ, C̃)), where:

– S̃ is S together with the names of the enumerated sorts;
– Σ̃ is Σ together with the constants of the enumerated sorts;
– Ẽ is E together with the conditional equations (∀Y)t = ti if casei, i = 1..n,

for each guarded equation in Eg;
– C̃ is the set of annotated case sentences obtained in the following manner:

• any enumerated sort “enum s is ct1 . . . ctn .” defines the annotated case
sentence (∀{y}) (y, y = ct1 ∨ · · · ∨ y = ctn), where y is of sort s;

• any guarded equation “geq t = t1 if case1 [] . . . tn if casen [] .”
defines the annotated case sentence (∀Y) (t, case1 ∨ . . . ∨ casen), where
Y is the set of the variables occurring in the guarded equation;

• any sentence “cases pattern = p if case1 \/ . . .\/ casen .” defines
the annotated sentence (∀Y) (p, case1 ∨ . . . ∨ casen), where Y is the set
of the variables occurring in the pattern p.

Example 3. For the first example presented in Section 1 we have one enumerated
sort in Se: enum Bit is 0 1 . Ẽ has the following components:

– S̃ = S ∪ {Bit};
– Ẽ = E;
– Σ̃ = Σ ∪ {op 0 : -> Bit . , op 1 : -> Bit .};
– C̃ = {(B, B = 0 ∨ B = 1)}, where B is a variable of sort Bit.

Example 4. For the second example, we have one guarded equation in Eg:
geq hd(sign(S)) =

-1 if hd(S) < 0 = true []
0 if hd(S) = 0 []
1 if hd(S) > 0 = true [] .,

where S is a variable of sort Stream . Ẽ is given by:

– S̃ = S; Σ̃ = Σ;
– Ẽ = E ∪ { ceq hd(sign(S)) = -1 if hd(S) < 0 = true . ,

ceq hd(sign(S)) = 0 if hd(S) = 0 . ,
ceq hd(sign(S)) = 1 if hd(S) > 0 = true . };

– C̃ = {(hd(sign(S)), hd(S) < 0 = true ∨ hd(S) = 0 ∨ hd(S) > 0 = true)}.

Instead of using guarded equations, one could also declare the conditional equa-
tions from Ẽ presented above and specify the case sentence by: “cases

Automating Coinduction with Case Analysis 229

pattern = hd(sign(S)) if hd(S) < 0 = true \/ hd(S) = 0 \/ hd(S) >
0 = true .”. In this way the user has the freedom to choose the syntax which
describes his/her system in the best way.

It is worth noting that if a specification with cases is used, then the entail-
ment relation is used during the proving process is that given by the associated
equational interpolants (see Section 4).

5.1 Extending the Circular Coinduction Engine

In this section we describe how we enhanced the CIRC engine with automatic
case analysis, and prove the correctness of our extension. We here only consider
a behavioral specification with general cases, B̃ = (S̃, (Σ̃,Δ), (Ẽ, C̃)); other spe-
cialized case statements can be desugared into general ones, as explained above.

We extend the coinduction proving engine with the reduction rule [CaseAn].
This rule replaces a conditional equation t = t′ if cond by a set of equations
{t = t′ if cond ∧ θ(case i) | i ∈ I} if the case sentence (∀Y)(p,

∨
i∈Icasei) is in C̃

and θ(p) is a subterm of t or t′. [CaseAn] is therefore an instance of the rule [itp]
corresponding to 〈t = t′ if cond , {t = t′ if cond ∧ θ(casei) | i ∈ I}〉:

[CaseAn] :(B̃,F ,G ∪ { t = t′ if cond})⇒
(B̃,F ,G ∪ { t = t′ if cond ∧ θ(casei) | i ∈ I}

if (∀Y)(p,
∨

i∈I
casei) is in C̃ and θ(p) is a subterm of t or t′

where F is the set of frozen axions and G ∪ { t = t′ if cond} is the current set
of goals. By Theorem 3, the extended engine is sound because [CaseAn] is a rule
associated to the interpolant defined by (2).

One of the challenges we encountered was to find the best candidate for case
analysis when more than one substitution could be applied. In our experiments,
the strategy that gave the best results was to identify a subterm of either t or
t′ with the smallest height possible where at least one of the patterns p from C̃
could provide a substitution.

5.2 Computing Special Contexts Using Cases

In this subsection we give an intuition on what special contexts are with a few ex-
amples, and present the new algorithm for detecting special contexts using case
analysis, as well as some required notions, and the result expressing the correct-
ness of the algorithm. The formal background for special contexts is presented
more in detail in [8].

We have seen in Section 2 that the frozen hypotheses cannot be used in
contextual reasoning. However, there are contexts under which it is “safe” to use
the frozen hypotheses. In [8] it is defined such a class of contexts, called special
contexts. A context γ[∗:h] is called special if, by definition, for any experiment
C for γ there is some term t such that B � C[γ[∗:h]] = t and each occurrence of
∗:h in t appears in a subterm which is an experiment of depth smaller than or
equal to that of C.

230 E.-I. Goriac, D. Lucanu, and G. Roşu

Example 5. Let us consider the operation f over streams of bits defined as:
f(0 : s) = 1 : f(s), f(1 : s) = 0 : 0 : f(f(f(s))). By making a case analysis we
deduce that f(∗:Stream) is a special context (see below). Knowing this, CIRC is
able to automatically prove that f(0∞) = 1∞ and f(1∞) = 0∞.

Not all contexts are special. Consider, for instance, the operation odd defined
by odd(a : b : s) = a : odd(s). Let s and t be specified by hd(s) = hd(t), tl(s) =
odd(s) and tl(tl(t)) = odd(t). If we wrongly assume that odd(∗:Stream) is special
then we manage to prove that odd(t) = s , which is unsound.

CIRC has been able so far to automatically detect special contexts deriving from
the operators defined using unconditional equations. Now the prover may detect
contexts that derive from operators defined using specifications with cases (and
implicitly, conditional equations). For instance, with the enhanced algorithm,
CIRC detects that sign(∗:Stream), introduced in the second motivating example,
and f(∗:Stream), defined in Example 5, are special contexts.

We next present in detail the algorithm computing special contexts for speci-
fications with case sentences and its correctness. In order to fix the terms of the
discussion, for the rest of this subsection we consider the following items:

– B = ((S, Se), (Σ,Δ), (E,Eg, C)), a fixed CIRC confluent and terminating
behavioral specification with cases;

– B̃ = (S̃, (Σ̃,Δ), (Ẽ, C̃)), the compiled behavioral specification with cases;
– any derivative δ ∈ Δ is (S̃, Σ̃, Ẽ)-irreducible;
– Ctx (Σ), the set of all Σ-contexts
– Σhidden ⊆ Σ̃, the set of operations with hidden result and at least one hidden

argument;
– Ctx ◦(Σhidden), the set of contexts f(x1, . . . , xn) with f ∈ Σhidden , xi = ∗

for exactly one hidden argument i and for j �= i, xj are variables;
– for a Δ-context C, the hidden depth of C is defined by |C|• = |C| if C is

hidden, and |C|• = |C| − 1 if C is visible;
– a fixed set Γ ⊆ Ctx◦(Σhidden)
– a generalized constant is an operation whose arguments are of visible sort

The problem of deciding if a given context is special for a given specification
is Π0

2 -complete. This complexity is due to the facts that B � C[γ[∗:h]] = t must
be tested for all Δ-experiments C and that testing C[γ[∗:h]] = t with t satisfying
the property from the definition of the special contexts is recursive enumerable.
In practice, t is the normal form of C[γ[∗:h]]. Moreover, the set of candidates for
special contexts is also infinite. So, the best we can do is to find an algorithm
which tests a property similar to the one above for a finite set of candidates and a
finite set of Δ-contexts. Regarding the candidates, we are looking for a maximal
set of minimal depth special contexts which is closed under composition: if γ1

and γ2 are special and γ1[γ2] is defined, then γ1[γ2] is special. The minimal set
of Δ-context which must be tested is Δ itself. Therefore, as described in [8], we
try to find a property Comp(C, t) and a set Γ ⊆ Ctx ◦(Σhidden) such that the
property Special (Γ), given by:

Special (Γ) def= (∀γ ∈ Γ)(∀δ ∈ Δ)Comp(δ, γ)

Automating Coinduction with Case Analysis 231

implies that each Γ -context is special. If we have an algorithm for computing the
predicate Comp(C, t), then the searching for a suitable Γ requires the evaluation
of the predicate for a small set of pairs (C, t).

First we present an axiomatic definition for the predicate Comp.

Definition 2. A Δ-compositional structure for Γ is a pair (T ,Comp), where
T is a set of terms and Comp(C, t) is a predicate defined over Δ-contexts C and
terms t ∈ T , which together satisfy the following conditions:

1. Ctx (Γ) ⊆ T
2. Comp(∗, t) = Comp(t, ∗) = true;
3. let C1 and C2 be two Δ-contexts such that C1[C2] is defined; if Comp(C2, t2)

and (∀t ∈ T)Comp(C1, t), then Comp(C1[C2], t2);
4. let γ1 and γ2 be two Γ -contexts such that γ1[γ2] is defined; if Comp(C, γ1) and

((∀D ∈ Ctx (Δ)) |D|• ≤ |C|• implies Comp(D, γ2), then Comp(C, γ1[γ2]).

The first main result of this section shows that the property Special(Γ) can
be extended to Γ -contexts and Δ-contexts for the case of a Δ-compositional
structure.

Theorem 4. Let (T ,Comp) a Δ-compositional structure for Γ . If Special(Γ),
then (∀γ ∈ Ctx(Γ))(∀C ∈ Ctx (Δ))Comp(C, γ).

A particular structure (T ,Comp) for specifications without cases is given in [8].
Here we extend that structure to specifications with cases. The definition for T
remains unchanged, namely that of (k, Γ)-composite terms; we recall it in order
to make the paper self-contained.

Definition 3. Let k be an integer number ≥ −1. A (k, Γ)-composite is defined
as follows:

1. any non-star variable and any constant is a (−1, Γ)-composite;
2. any Δ-context C is a (|C|•, Γ)-composite;
3. if f : v1 . . . vn → v is a data operator or a generalized constant and ti is a

(ki, Γ)-composite for i = 1, . . . , n, then f(t1, . . . , tn) is a (k, Γ)-composite,
where k = max{k1, . . . , kn};

4. if γ ∈ Γ and t is a (k, Γ)-composite, then γ[t] is a (k, Γ)-composite;
5. if C is a Δ-context, t a (k, Γ)-composite with k = −1 or t of the form

g(t1, . . . , tn) with g generalized constant, then C[t] is a (k, Γ)-composite.

The new definition of the predicate Comp is based on the notion of normal form
of a term computed in the presence of cases.

We first define the operation Eqn, which transforms the provided conjunction
of cases into a set of equations in the following manner:
Eqn(

∧
i∈I ui = vi) =

⋃
i∈I Eqn(ui = vi)

Eqn(ui = vi) =

{
{ui = vi}, the set variables from ui is included in that of vi

{vi = ui}, otherwise

232 E.-I. Goriac, D. Lucanu, and G. Roşu

If C̃ is a set of annotated case sentences, then the C̃-normal form of a term t
is the set nfẼ,C̃(t) of pairs 〈t′, case〉 satisfying: t′ = nfẼ∪Eqn(case) and there is no
pattern p in C̃ which is an instance of a subterm of t′. The component case is a
conjunction of cases in C̃ used in the rewriting obtaining the irreducible term t′.
An algorithm computing nfẼ,C̃ is:

nfẼ,C̃ ← 〈nfẼ(C[t]), nil〉
while (∃〈t′, case〉 ∈ nfẼ,C̃)(∃θ : Y → TΣ(X))(∃(p,

∨
i∈I casei) ∈ C̃)

such that θ(p) is a subterm of t′ do
nfẼ,C̃ ← nfẼ,C̃ − {〈t′, case〉}

∪ {〈nfẼ∪Eqn(case)∪Eqn(θ(casei))
(t′), case ∧ θ(casei)〉 | i ∈ I}

Let terms(nfẼ,C̃(t)) denote the set {t′ | 〈t′, case〉 ∈ nfẼ,C̃(t)}. We can define
now the predicate Comp:

Comp(C, t) def= (∀t′ ∈ terms(nfẼ,C̃(C[t]))) t′ is a (k′, Γ)-composite∧k′ ≤ k+ |C|•

where t is a (k, Γ)-composite, and C is a Δ-context. Since any Γ -context is a
(0, Γ)-composite, C[∗] = C and ∗[t] = t.

Theorem 5. Let B = (S, (Σ,Δ), (E, C)) be a behavioral specification with cases
and Γ a subset of Ctx◦(Σhidden) such that Special(Γ) holds. Then any Γ -context
γ is special.

Example 6. Consider the operation f defined in Example 5. The normal forms of
hd(f(s)) and tl(f(s)) are {〈1, hd(s) = 0〉, 〈0, hd(s) = 1〉} and {〈f(tl(s)), hd(s) =
0〉, 〈0 : f3(tl(s)), hd(s) = 1〉} respectively. If Γ = {f(∗:Stream)}, then it is easy
to see that Special (Γ) holds and therefore f(∗:Stream) is a special context.

Theorem 5 is the foundation for an algorithm computing a set of context Γ ⊆
Ctx◦(Σhidden), which is a basis for special contexts. The description of the al-
gorithm is the same as the one presented in [8], except that the call Comp(δ, γ)
requires the computation of the normal forms with cases for δ[γ], as presented
above. Therefore the theorem above also ensures the correctness of both versions
of the algorithm.

5.3 CIRC with Case Analysis at Work

In this section we present how CIRC theories are specified and a few com-
mands in order to automatically prove properties using case analysis. The reader
may use the web interface at http://fsl.cs.uiuc.edu/index.php/Special:
CircOnline in order to test the examples.

Let us use CIRC in order to prove that by merging two infinite sorted streams
of natural numbers we obtain a sorted stream. This is not a trivial example; even
the proof by hand requires a significant effort. The sorted property can be de-
fined by isSorted(S) = hd(S) < hd(tl(S))∧isSorted(tl(S)). The merge operation

http://fsl.cs.uiuc.edu/index.php/Special:CircOnline
http://fsl.cs.uiuc.edu/index.php/Special:CircOnline

Automating Coinduction with Case Analysis 233

is defined by hd(merge(S ,S ′)) = hd(S) if hd(S) < hd(S ′), hd(merge(S ,S ′)) =
hd(S ′) if hd(S) ≥ hd(S ′), tl(merge(S ,S ′)) = merge(tl(S),S ′) if hd(S) < hd(S ′),
tl(merge(S ,S ′)) = merge(S , tl(S ′)) if hd(S) ≥ hd(S ′) and can be specified
by two guarded equations. We further consider another operation, toBits that
transforms the provided stream of natural numbers into a stream of bits in
this manner: hd(toBits(S)) = 1 if hd(S) < hd(tl(S)), hd(toBits(S)) = 0 if
hd(S) ≥ hd(tl(S)), tl(toBits(S)) = toBits(tl(S)). The operation above can also
be specified using guarded equations or two conditional equations together with
a case sentence for the pattern hd(S). If ones denotes the stream of 1’s, then the
property above is equivalent to:

toBits(merge(S1:Stream,S2:Stream)) = ones if
isSorted(S1:Stream) = true ∧ isSorted(S2:Stream) = true

Even though merge is defined using guarded equations, the algorithm succeeds
to find that merge(∗:Stream, S:Stream) and merge(S:Stream, ∗:Stream) are spe-
cial contexts. The context toBits(∗:Stream) is not found because the definition
of toBits does not fulfill the criteria checked by the algorithm (the definition
of hd(toBits(S)) depends on a bigger experiment, hd(tl(S))); this can be seen
as a limitation of the algorithm. Recall that the problem of special contexts is
Π0

2 -complete, so there is no an algorithm able to always find all special contexts.
We present the dialog needed to prove that by merging two sorted streams

we obtain a sorted stream. After the tool and specification are loaded, three
commands are need to prove this property:

– (initialize .), which sets the initial state of the prover;
– add the property as an initial goal:

(add cgoal toBits(merge(S1:Stream,S2:Stream)) = ones
if isSorted(S1:Stream) = true /\ isSorted(S2:Stream) = true .)

– (coinduction .), which launches the circular coinduction engine.

Here is the full dialog with CIRC, where we can see that merge defines indeed
special contexts.

> (initialize .)
Initializing ...
The special contexts are:
merge(*:Stream,V#2:Stream)
merge(V#1:Stream,*:Stream)

> (add cgoal toBits(merge(S1:Stream,S2:Stream)) = ones
if isSorted(S1:Stream) = true /\ isSorted(S2:Stream) = true .)

> (coinduction .)
Proof succeeded.
Number of derived goals: 10
Number of proving steps performed: 39
Maximum number of proving steps is set to: 256

Proved properties:
toBits(merge(S1:Stream,S2:Stream)) = ones if

isSorted(S1:Stream) = true /\ isSorted(S2:Stream) = true

234 E.-I. Goriac, D. Lucanu, and G. Roşu

The full proof for our property, given as inference rules, can be checked using
the command (show proof .). We present one of the rules in which we emphasize
the application of [CaseAn]:

1. |||- [* toBits(tl(merge(S1:Stream,S2:Stream))) *] = [* ones *] if
isSorted(S1:Stream) = true /\ isSorted(S2:Stream) = true /\
hd(S1:Stream)< hd(S2:Stream) = true

2. |||- [* toBits(tl(merge(S1:Stream,S2:Stream))) *] = [* ones *] if
isSorted(S1:Stream) = true /\ isSorted(S2:Stream) = true /\
hd(S1:Stream)<= hd(S2:Stream) = false

-- [Cases]
|||- [* toBits(tl(merge(S1:Stream,S2:Stream))) *] = [* ones *] if

isSorted(S1:Stream) = true /\ isSorted(S2:Stream) = true

Another challenging example is inspired from [9] and consists of proving that
Rev3(N)(Rev3(N)(S)) = S, where

Rev3(N)(S) = Z3(T 3(N)(S), T 3(N − 1)(S), T 3(N − 2)(S)
hd(Z3(S1, S2, S3)) = hd(S1) tl(Z3(S1, S2, S3)) = Z3(S2, S3, tl(S1))

hd(T 3(N)(S)) = hd(tln mod 3(S)) tl(T 3(N)(S)) = T 3(N)(tl3(S))

with N ranging over natural numbers and S over streams. Even if the definition
of hd(T 3(N)(S)) is given by cases (because of n mod 3), is not recommended to
use guarded equations for specifying it because it is possible to obtain patterns
of the form hd(T 3(N − 1)(S)), which forces a case analysis on ”(N − 1) mod 3”;
now we have to include in the specification how to compute ”(N − 1) mod 3”
when we know ”N mod 3” and how to compute ”N mod 3” when we know ”(N−
1) mod 3” and this cannot be done using only rewriting (it is a source of non-
termination). Therefore we specified it with conditional equations and we added
the case sentence

cases pattern = N if N mod 3 = 0 ∨N mod 3 = 1 ∨N mod 3 = 2 .

Even so the proof is long and complex: 12 case analyses and 14 new lemmas
automatically discovered.

6 Conclusions

We presented a simple and efficient solution for automating coinductive reason-
ing with case analysis. The starting point was the extension of the specifications
and of the entailment relation with case sentences given in [5]. A novelty of the
approach presented here consists of giving semantics to case sentences by means
of equational interpolants, a general technique for extending coinductive provers
like CIRC introduced also here. The soundness of the use of equational inter-
polants in the coinductive proving process is shown and hence the soundness of
the reasoning with cases is obtained as a consequence.

The basic idea is to include special syntactical constructs in the specification
language. These special constructs are then processed in order to exdd tract

Automating Coinduction with Case Analysis 235

annotated case sentences. A prover can supervise the application of the case
analysis by means of proof tactics.

Using the concept of “normal form with cases”, we were able to write algo-
rithms and heuristics helping the prover. In particular, we showed that extending
the algorithm computing the special contexts with case analysis, the prover was
able to find a larger class of special contexts. Consequently, a larger class of
properties can be proved. The simpler the predicate Comp is, the faster the al-
gorithm for detecting special contexts becomes. Therefore, as future work, there
is room and motivation for improving the form of the predicate.

Case analysis based on three syntactic constructs, enumerated sorts, guarded
equations and annotated case sentences, has been implemented in CIRC and
experiments showed that the new prover is able to handle a large class of practical
examples.

A similar approach is given in [2], where the induction and a contextual simpli-
fication technique are used to prove behavioral (observational) properties. That
approach also deals with case analysis and critical contexts (which are differ-
ent from special contexts). Circular coinduction is more flexible because it is
parametric in the basic entailment relation, and consequently can prove more
coinductive properties. On the other hand, we currently do not disproof conjec-
tures (CIRC only reports failure to find a proof under specified constraints, but
not that the property is false).

Acknowledgment. The paper is supported in part by NSF grants CCF-0448501,
CNS-0509321 and CNS-0720512, by NASA contract NNL08AA23C, CNCSIS
grant PN-II-ID-393, and by ANCS 602/12516 (DAK).

References

1. Bouhoula, A., Rusinowitch, M.: Automatic case analysis in proof by induction. In:
IJCAI, pp. 88–94. Morgan Kaufmann Publishers Inc., San Francisco (1993)

2. Bouhoula, A., Rusinowitch, M.: Observational proofs by rewriting. Theor. Comput.
Sci. 275(1-2), 675–698 (2002)

3. Dijkstra, E.W.: Guarded commands, non-determinacy and formal derivation of
programs. Commun. ACM 18(8), 453–457 (1975)

4. Goguen, J., Lin, K., Roşu, G.: Circular coinductive rewriting. In: ASE 2000: Pro-
ceedings of the 15th IEEE International Conference on Automated Software Engi-
neering, pp. 123–132. IEEE, Washington (2000)

5. Goguen, J., Lin, K., Roşu, G.: Conditional circular coinductive rewriting with case
analysis. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS,
vol. 2755, pp. 216–232. Springer, Heidelberg (2003)

6. Goriac, E., Caltais, G., Lucanu, D.: Simplification and Generalization in CIRC. In:
12th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, IEEE Computer Society, Los Alamitos (2009)

7. Lucanu, D., Goriac, E.-I., Caltais, G., Roşu, G.: CIRC: A behavioral verification
tool based on circular coinduction. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.)
CALCO 2009. LNCS, vol. 5728, pp. 433–442. Springer, Heidelberg (2009)

236 E.-I. Goriac, D. Lucanu, and G. Roşu

8. Lucanu, D., Roşu, G.: Circular coinduction with special contexts. In: Breitman,
K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 639–659. Springer,
Heidelberg (2009)

9. Niqui, M., Rutten, J.J.M.M.: Sampling, splitting and merging in coinductive
stream calculus. In: Mathematics of Program Construction 2010 (MPC 2010) (to
appear, 2010); See CWI Technical report SEN-E0904 (2009) http://homepages.

cwi.nl/tilde~janr/papers/

10. Roşu, G., Lucanu, D.: Circular Coinduction – A Proof Theoretical Foundation.
In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp.
127–144. Springer, Heidelberg (2009)

11. Rutten, J.J.M.M.: A coinductive calculus of streams. Mathematical Structures in
Computer Science 15(1), 93–147 (2005)

http://homepages.cwi.nl/tilde{~}janr/papers/
http://homepages.cwi.nl/tilde{~}janr/papers/

Enhanced Semantic Access to Formal Software Models

Hai H. Wang1, Danica Damljanovic2, and Jing Sun3

1 School of Engineering and Applied Science, Aston University
H.WANG10@aston.ac.uk

2 Department of Computer Science, University of Sheffield
D.Damljanovic@dcs.shef.ac.uk

3 Department of Computer Science, The University of Auckland, New Zealand
j.sun@cs.auckland.ac.nz

Abstract. The success of the Semantic Web, as the next generation of Web tech-
nology, can have profound impact on the environment for formal software de-
velopment. It allows both the software engineers and machines to understand the
content of formal models and supports more effective software design in terms of
understanding, sharing and reusing in a distributed manner. To realise the full po-
tential of the Semantic Web in formal software development, effectively creating
proper semantic metadata for formal software models and their related software
artefacts is crucial. In this paper, a methodology with tool support is proposed
to automatically derive ontological metadata from formal software models and
semantically describe them.

Keywords: Semantic Web, OWL, Formal Methods, Z/Object-Z.

1 Introduction

Formal methods are defined as mathematically based techniques for the specification,
development and verification of software and hardware systems1. The well-defined se-
mantics and syntax of formal specification languages make them suitable for precisely
capturing and formally verifying system requirements. Many formal and semi-formal
specification techniques coexist and bring different advantages to system designers. For
a complex system, normally more than one modelling approaches are used coopera-
tively in the process of the system development. This is due to the following reasons:

– Different software specification languages distinguish between each other in terms
of the level of formality and usability.

– Different specification languages are designed for modelling different aspects of
software systems.

– Different specification languages differ from each other in terms of the expressive-
ness and the level of tool support.

– Even for the same modelling language, different models may be developed during
the life-cycle of a software system.

1 http://en.wikipedia.org/wiki/Formal_methods

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 237–252, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

238 H.H. Wang, D. Damljanovic, and J. Sun

Due to the complex mathematical nature of the formal methods and the lack of tool
support, many software engineers have found that it is difficult to understand, incorpo-
rate and use different formal models consistently in the process of software develop-
ments, especially for large and complex systems. It is highly desirable to have different
models and their related software artefacts systematically connected and collaboratively
used, rather than in isolation. For a software system, the knowledge of its application do-
main, its different models and the related software artefacts should be sharable, linked
and reusable in a consistent manner. However, the challenge is to have an open and
flexible environment to support such a cooperation.

With the advent of the World Wide Web (WWW), its wide accessibility and open dis-
tributed nature have provided an important infrastructure for a promising environment
for formal software specification and design. By using the Internet, software engineers
can share, search, reuse and collaboratively develop software models more effectively.
Formal methods such as the CafeOBJ system [9] has included an environment for sup-
porting formal specification over the Internet. Others [4, 5, 17, 18] proposed to use Web
browsers to display and navigate formal Z [16] models. Although the current Web en-
vironment has been successful in presenting information on the Internet, the lack of
content information and the overburdened use of the display tags have made the effi-
cient retrieval and exchange of information content difficult. The Semantic Web [14],
emerged as the next generation of the Web, proposed the idea of having data on the
Web defined and linked in a way that it can be understood by machines and used for
automation and integration. This is achieved primarily by annotating information on
the Web using semantic metadata. The success of the Semantic Web can have profound
impact on the Web environment for formal specifications. For example, Dong et al. [7]
proposed to use to use RDF [13] and DAML [19] to build a Semantic Web environment
for extending and integrating various formal specification languages.

By using the semantic technology, we can potentially transform the formal software
models and their domain application documentations into a conceptually organised and
semantically interlinked knowledge space that incorporates data from multiple software
artefacts produced during the process of the software development, e.g., forum posting,
requirement documents, source code, configuration files, database, etc. The semanti-
cally enriched information can then be used to add novel functionalities to web-based
documentation of the software concerned, providing the software engineers with new
and powerful ways to comprehend and reuse software models. The realisation of this
vision mainly depends on the fact whether we could effectively create proper metadata
to semantically annotate formal software models. Without a systematic methodology
and proper tool support, annotating formal software models could be a very tedious and
expensive process, which carries a definite risk of failure. There is an urgent need to
provide strategies and tools that allow the users to automatically or semi-automatically
annotate formal models.

In this paper, we present a methodology and a prototype which has been developed
in the course of the Transitioning Applications to Ontologies (TAO) project (www.
tao-project.eu) to derive ontological metadata from formal software models and
semantically describe them. Firstly, a framework that allows different formal

Enhanced Semantic Access to Formal Software Models 239

DocumentDocumentZ/OZ
models

Domain
Ontology

High-level
Ontology

Ontology
Learning service

Key Concept
Identification tool

Semantic
annotated

Z/OZ models

Knowledge
Store

users

Knowledge
finder:
QuestIO

1

2

3

4

Fig. 1. Annotation Framework

software models to be described ontologically is defined. We then propose a methodol-
ogy for interlinking the knowledge about the formal models, the application domain and
other related software artefacts by semantically annotating them. We aim to automate
the mechanical tasks during the annotating process, which can be divided into several
major phases. Figure 1 shows the main steps of our approach. The ontology learning
tool is used to derive ontologies from formal models (e.g., Z/Object-Z models) and other
documents related to the application domain being modelled (e.g., specifications, UML
diagrams, code documentations, software manuals, images, etc.). The content augment
tool (KCIT) automatically identifies the key concepts within the software models and
related documents, and annotates them using the domain ontology concepts. The dis-
tributed heterogeneous knowledge repositories are developed to efficiently index, query,
and retrieve model contents, domain ontology and semantic annotations. An Integrated
Development Environment (IDE) is developed to provide a coherent annotation support
for users. In this paper, we use the formal Z/Object-Z(OZ) notations to illustrate the ap-
proach. Z is a formal specification language based on set theory and predicate logic [20].
It has been widely used in both industry and academic research for the specification and
verification of software systems. Object-Z is an object-oriented extension of Z [8, 15].
TAO (www.tao-project.eu) is a project in the European Sixth Framework Pro-
gram, with the goal to define methods and tools for transition of legacy information
systems to semantic enabled services, enabling semantic interoperability between het-
erogeneous data resources and distributed applications.

The remainder of this paper is organised as follows. Section 2 briefly introduces
the background material in the area of the Semantic Web. Section 3 presents how to
automatically generate ontology metadata for representing the knowledge about the
formal model and its application domain. Section 4 shows how the derived ontology can
be used to create semantically augmented formal software models and related artefacts.
Section 5 concludes the paper and discusses the future work.

240 H.H. Wang, D. Damljanovic, and J. Sun

2 Semantic Web

The Semantic Web is a vision for the next generation of Web with enhanced function-
ality that requires semantic-based representation and processing of Web information.
The the World Wide Web Consortium (W3C) has proposed a series of technologies that
can be applied to achieve this vision. The Semantic Web extends the current Web by
giving the web content a well-defined meaning, better enabling computers and people
to work in cooperation. XML is aimed at delivering data to systems with pre-agreed
formats that can be understood and interpret by different programs. XML is focused
on the syntax (defined by the XML schema or DTD) of a document and it provides
essentially a mechanism to declare and use simple structured data. However there is
no means for a program to actually understand the knowledge contained in the XML
documents. Resource Description Framework (RDF) [13] is a foundation for processing
metadata; which provides interoperability between applications that exchange machine-
understandable information on the Web. RDF uses XML to exchange descriptions of
Web resources and emphasizes facilities to enable automated processing. The RDF de-
scriptions provide a simple ontology system to support the exchange of knowledge and
semantic information on the Web. RDF Schema [6] provides the basic vocabulary to de-
scribe RDF documents. RDF Schema can be used to define properties and types of the
web resources. The advent of RDF Schema represented an early attempt at an Semantic
Web ontology language based on RDF.

OWL [2] is the latest standard in ontology languages, which was developed by mem-
bers of W3C and the Description Logic (DL) community. An OWL ontology consists
of classes, properties and individuals. Classes are interpreted as sets of objects that
represent the individuals in the domain of discourse. Properties are binary relations
that link individuals, which are represented as sets of ordered pairs that are subsets
the cross product of the set of objects. OWL classes fall into two main categories –
named classes and anonymous (unnamed) classes. Anonymous (unnamed) classes are
formed from logical descriptions. They contain the individuals that satisfy the logical
description. Anonymous classes may be sub-divided into restrictions and ‘logical class
expressions’. Restrictions act along properties, describing sets of individuals in terms
of the types of relationships that the individuals participate in. For example, existential
restrictions describe the individuals that have at least (the existence of) one relationship
to individuals that are members of some other specified class. The existential restriction
∃ hasTopping PizzaTopping describes the set of individuals that have at least one
hasTopping relationship to an individual that is a member of the class PizzaTopping.
Cardinality restrictions describe sets of individuals in terms of the number of relation-
ships that the individuals must participate in for a given property. There are three types
of cardinality restriction – Minimum, Maximum and Exact. Logical classes are con-
structed from other classes using the boolean operators AND (�), OR (�) and NOT
(¬).

3 Ontology Representation of Software Models

An ontology is commonly defined as an explicit, formal specification of shared con-
ceptualisation of a domain of interest. In order to establish a framework within which

Enhanced Semantic Access to Formal Software Models 241

formal software models can be developed, annotated and shared, creating standard on-
tological metadata for the formal software development is vital. The metadata can be
divided into two categories of descriptions:

– the formal model itself and
– the application domain that the formal model specifies.

In this section we first present a Semantic Web environment for representing soft-
ware models and follow by a method to generate domain ontology automatically from
formal models and their related software artefacts. The ontology is used to interconnect
different software artefacts by semantically annotating them.

To better illustrate the idea, a formal OZ model for WSMO Amazon Associates Web
service (A2S) is used as the case study in this paper. Amazon Web services provide
developers with direct access to Amazon technology platform. By using them, exter-
nal developers and businesses can build their own applications on A2S in a reliable,
flexible, and cost-effective manner. WSMO Amazon Web Services framework allows
users to use the latest technology – Web Service Modelling Ontology (WSMO) to ac-
cess Amazon Web Services[11]. WSMO is an enabling framework for the total/partial
automation of the tasks (e.g., discovery, selection, composition, mediation, execution,
monitoring, etc.) involved in both intra- and inter-enterprise integration of Web Ser-
vices. To support the standardisation and tool usage of WSMO Amazon framework, a
formal OZ model has been developed. This OZ model provides a rigorous formal se-
mantics for WSMO and A2S, where the abstract syntax and static/dynamic semantics
for each the WSMO and Amazon A2S construct are grouped together and captured in
OZ classes; hence the language model is structural, concise and easily extensible. This
OZ specification provides an invaluable adjunct to the current documentation and spec-
ifications, and supports further development, validation and verification of WSMO and
its Amazon application as it evolves. For example, the following OZ class defines the
WSMO service element Capability , which defines the functionality of a Web service.

Capability

ServiceElement

importsOntology : P Ontology

usesMediator : P(ooMediator ∪ WGMediator)

hasNonFunctionProperty : PNonFunctionalProperty

hasSharedVariable : P Variable

hasPrecondition, hasPostcondition : P ↓ Expression

hasAssumption, hasEffect : P ↓ Expression

......

......

amazonWSCapability : Capability

......

242 H.H. Wang, D. Damljanovic, and J. Sun

A Web service capability is defined by specifying the precondition , postcondition ,
assumption , and effect , each of which is a set of expressions . A Web service capability
also declares a set of variables shared between expressions. The terms used in these
expressions must be formally defined in domain ontologies that must be imported either
directly or via ooMediators . A capability , may be linked to certain goals that can be
resolved by the Web service via special types of mediators, named wgMediators . The
amazonWSCapability models the capability of Amazon Web services. The complete
formal model can be found at the report 2.

However despite the advantages brought by this rather complicated OZ model, some
software engineers find difficulties to understand and use it. Users have to refer to var-
ious knowledge about the WSMO and Amazon A2S, which are documented at dif-
ferent parts by over 30 documents. These documents are in different formats, ranging
from plain English text, program code to XML definitions. Semantically interconnect-
ing these knowledge is highly desirable.

3.1 Ontology for Software Specification

In order to provide a standard and machine processable interchange format for software
models within the Semantic Web context, we first define an OWL ontological frame-
work for describing formal software models (OWL-M). There are many advantages to
represent formal models in the Semantic Web environment.

– There is a global naming schema – Uniform Resource Identifier (URI). The Seman-
tic Web is generally built on syntax that use URIs to present data. URI provides a
unified scheme to enable the cross-referencing and linking among different soft-
ware model and model components.

– The RDF data model is used to represent information, where the information can
be mapped directly and unambiguously to a decentralised model. Furthermore, in
RDF there is no syntax constraint on the information representation. Everything is
represented as through logical triples (i.e., Subject , Predicate, Object). Using RDF
to represent software models, the information can be manipulated and the different
model information can be combined, transferred and extracted easily. This means
that the semantic data and syntax data can be distincted.

– The rich expressiveness of OWL allows us to set up the Semantic Web environ-
ments for different kinds of specification languages and translate them interchange-
ably. OWL has formal mathematical foundations in Description Logics, which help
us to represented software models in a systematic and consistent way.

– The vision of the Semantic Web is to make the Web information computer-
interpretable, thus enabling automation of many tasks currently performed by hu-
mans. Therefore, under our Semantic Web framework, many software modelling
and design activities, like model transformation, refinement, composition etc., can
be potentially automatically or semi-automatically performed by machines.

Figure 2 presents an overview of the top level of OWL-M. The OWL class
Specification provides a reference point for a declared software model. One instance

2 http://www-users.aston.ac.uk/˜wangh10/report.pdf

Enhanced Semantic Access to Formal Software Models 243

of specification exists for each distinctly published software model. Each model in-
stance relates to a SpecificationProfile that shows what application the specification
models. It provides other meta information about the specification, and relates to a
SpecificationModel that describes the specification content. Note that the Z/OZ nota-
tions are used as the example of modelling languages to illustrate the approach.

Specification

SpecificationProfile

SpecificationModel

presents

specifies

Fig. 2. Top level of the model ontology

Specification profile. It provides basic information about a software specification. This
descriptive information may include non-functional meta-information and provenance.
The specification profile can be used for a model-seeking agent to determine whether
the specification meets its needs and also enabling software model sharing and manag-
ing. The class SpecificationProfile is a superclass of every type of high-level descrip-
tion. It is related to the class Specification by the property presents and its inverse
property presentedBy .

The following shows some of the properties defined within the specification pro-
file. We intentionally identify a set of application-domain/specification-language inde-
pendent properties only. This model could be extended if needed (by defining suitable
subclasses).

Model Name: It refers to the name of the specification model, which could be used as
an identifier of the specification model.

Model Description: It provides a text description of the system being modelled.
Model Author: Models could have single or multiple authors, which could be people

or organizations.
Service Contact Information: It contains the contact information, such as an email

address, for people or agents requiring more information about the model.
Version: It provides the version of the model and date of creation.
Creation Time: It contains a date of the release of the specification. Agents can use

it to check if a specification has been defined for the updated application require-
ments.

Specification Language: It provides the name of the specification language used for
modelling, such as Z, VDM or UML.

The following OWL definition shows the OWL-M profile definition for the OZ
model of the WSMO Amazon Web Services. AmazonOZ is defined as an in-
stance of OWLM :Specification , where OWLM is the namespace for the software
ontology proposed. It has AmazonOZProfile containing the profile information and

244 H.H. Wang, D. Damljanovic, and J. Sun

AmazonOZmodel containing the model itself (defined in the next subsection). The DL
syntax for OWL is used here.

Individual(AmazonOZ type(OWLM:Specification)
value(presents AmazonOZProfile)
value(specifies AmazonOZmodel))

Individual(AmazonOZProfile type(OWLM:SpecificationProfile)
value(hasModelName

"The Object-Z model for Amazon Web services WSMO")
value(ModelAuthor "http://www.aston.ac.uk/hwang")
value(hasSpecLanguage

"http://www-users.aston.ac.uk/wangh10/OZ#")
... ...)

Specification model. It shows the content of a specification model and is a superclass
of every software model. It is related to the class Specification by the property specify
and its inverse property specifiedBy .

The definition of SpecificationModel is open to the users. Users can define their own
Semantic Web environment for their own specification language. The user’s model will
be a subclass of the class SpecificationModel . Each model has a property useLanguage
with a reference to the specification Semantic Web scheme. This schema ontology de-
fines the Semantic Web environment for the specification language being used. Ideally
there will be a standard Semantic Web environment defined for each kind of specifica-
tion language. We demonstrate how the Semantic Web environment for Z/OZ can be
built as follows.

Semantic Web environment for Z/OZ. The specification language providers define
the Semantic Web environment for the language according to its syntax and semantics.
This definition (an OWL ontology) provides information about the interpretation of the
software model given in an RDF instance. For example, an OWL ontology for OZ can
be developed accordingly. Part of the ontology definitions (for constructing a Z schema
and OZ class) is as follows:

Namespace(Z=<http://www-users.aston.ac.uk/wangh10/Z#>)
Namespace(OZ=<http://www-users.aston.ac.uk/wangh10/OZ#>)
<!-- some definition omitted -->
Class(Z:Schemadef)
Class(Z:Schemabox partial Z:Schemadef

restriction(Z:name cardinality 1)
restriction(Z:del minCardinality 0)
restriction(Z:decl minCardinality 0)
restriction(Z:predicate minCardinality 0))

....)
Class(OZ:State partial OZ:SchemaBox

restriction(Z:name} hasValue "")
restriction(Z:decl cardinality 0))

Class(OZ:ClassDef partial
restriction(Z:name cardinality 1)

Enhanced Semantic Access to Formal Software Models 245

restriction(OZ:superclass minCardinality 0)
restriction(OZ:stateSchema cardinality 1)
restriction(OZ:stateSchema allValueFrom OZ:State)
restriction(OZ:operation} minCardinality 0)
....)

The OWL class Schemadef represents the Z schemas. The class Schemabox , a sub-
class of Schemadef , represents the Z schemas defined in the schema box form. The
class Schemabox models a type whose instance may consist of a name, a number
of declarations decl and some predicate definitions. The class ClassDef represents
the OZ classes whose instance must have a name, a stateSchema which is a sub-
class of Schemadef with empty name and without ‘delta’ declaration, and a number
of superclass and operations . The following OWL definition represents the OZ class
Capability , defined to model the functional aspects of a WSMO Web Service3.

....
Individual(Capability type(OZ:ClassDef)

value(Z:name "Capability")
value(OZ:superclass ServiceElement)
... ...)

... ...

3.2 Ontology for the Application Domain

In the previous subsection, we proposed a framework that can be used to represent
Z/OZ models in the Semantic Web environment. In order to effectively annotate formal
software models, it is also important to create proper ontology for the related applica-
tion domain. However, designing a clear and consistent ontology is not a trivial job. In
this subsection we demonstrate the usage of TAO tools to (semi-) automatically create
domain ontologies from the formal models. This can be achieved in two main steps.
Firstly, the skeleton of the domain ontology is automatically extracted from formal OZ
models. Secondly, by using TAO tools, the extracted ontology is further enriched and
refined.

Extracting the skeleton of domain ontology from the OZ model. Ontology is an
explicit specification of conceptualisation for an application domain. The formal mod-
els provide a natural basis for creating the domain ontologies. In this subsection, we
demonstrate how to automatically extract domain ontologies from OZ formal models.
The ontology for the system can be resolved readily from the static parts of OZ design
documents. A set of transformation rules from an OZ model to its corresponding OWL
ontology is developed. For example:

– The given types in the Z/OZ model are directly transformed into OWL classes.
– The transformation from functions and relations in Z/OZ, e.g. R:B↔(→, �→)C , to

OWL ontology requires several cases. The relation R is transformed into an OWL
property with B as the domain class and C as the range class. For total functions

3 http://www-users.aston.ac.uk/˜wangh10/report.pdf

246 H.H. Wang, D. Damljanovic, and J. Sun

we restrict the OWL : cardinality property to be one and for partial functions we
restrict the owl : maxCardinality property to be one.

– The translation of Z/OZ subset definition, e.g. M : P N , depends on the translation
of N . If N corresponds to an OWL class, then M is transformed into an OWL
subclass of N . If N corresponds to an OWL property, then M is transformed into
an OWL subproperty of N .

– For the Z/OZ constant, e.g. x : Y , X is transformed into an instance of Y .
– A Z/OZ state schema can be transformed into an OWL class. Its attributes are trans-

formed into OWL properties with the schema name as the domain OWL class and
the type declaration as the range OWL class.

– An OZ class can be translated into an OWL class. Its attributes defined in state
schema are translated into OWL properties with the class name as its domain and
the type declaration as its range. Other translation details are similar to the Z/OZ
state schema translation defined above.

From the OZ class Capability presented earlier, the following ontology can be ex-
tracted. This extraction process can be achieved automatically.

<!-- some definition omitted -->
Class(Expression)
Class(ServiceElement)
Class(Capability partial ServiceElement)
Property(hasPrecondition domain(Capability) range(Expression))
... ...

Individual(amazonWSCapability type(Capability))

Enrich the domain ontology with TAO tools. The ontologies extracted from Z/OZ
models in the previous subsection only contain high-level concepts of an application
domain. In order to produce effective annotations, the extracted ontology needs need to
be further enriched and refined to represent a complete knowledge about the application
domain. In this subsection, we introduce the usage of TAO tools developed by TAO
project for semi-automatic acquisition of domain ontologies, based on the state-of-the-
art ontology learning and semantic data integration. We use the ontology derived from
the previous subsection as the basis, and try to discover other concepts and relations
using all the related system artefacts in the application domain, e.g., the source code,
accompanying documentations, and external sources (such as the Web forums), based
on the TAO methodology. TAO has developed various software components to support
this methodology. All these software components are included in a prototype tool and
is available as TAO Suite.

LATINO4, a part of the TAO Suite, is used for Ontology Learning. LATINO is a
data-mining framework that joins text mining and link analysis for the purpose of
(semi-automated) ontology construction. LATINO has at least two novelties compar-
ing with existing ontology learning methods. Firstly, using LATINO, the ontologies are
constructed from the knowledge extracted from various data sources that accompany

4 http://www.tao-project.eu/researchanddevelopment/
demosanddownloads/ontology-learning-software.html

Enhanced Semantic Access to Formal Software Models 247

typical software applications. A set of important data sources related to the functionali-
ties of a software application and their inter/intro-relationships are carefully studied and
made use of during the ontology construction process. Secondly, LATINO is not only
limited to textual data sources. Additional data resources that can be used for ontology
learning include structure documents, such as database schema, UML models, existing
source code, API, etc., or textual documents, such as requirement documents, manuals,
forum discussions etc. For more information about the potential data sources that may
be related to the description of a software systems and their classification, please refer
to [1]. For the WSMO Amazon Web Service example, the ontology extracted from the
OZ model is a very important learning resource for LATINO. Furthermore, the relevant
Java source code, JavaDoc files and Amazon Web Service WSDL definitions are ob-
tained for ontology learning as well. Each of the collected documents are stored in the
TAO knowledge store, together with the URLs from which the documents were down-
loaded (docURL) and the types of the documents (docType), such as paper, forum post,
database schema, and source code.

To use TAO method and tools for ontology learning, the first question that needs
to be answered by a software engineer is – what are the text-mining instances (which
are used as graph vertices when dealing with the structure). In this particular case, i.e.,
the user need to study the data at hand and decide which data entities will play the
role of instances in the transitioning process. Some potential choices include Java/C++
classes, methods, database entities, etc. In our Amazon A2S example, we mainly use
the existing ontology entities, java classes and XML schemas as text-mining instances.

The text-mining algorithms employed by LATINO (and also by many other data-
mining tools) work with feature vectors. Therefore, once the text-mining instances have
been enriched with the textual documents we need to convert them into feature vectors5.
LATINO is able to compute the feature vectors from a document network. For the usage
of LATINO, please refer to [10].

These feature vectors are further used as an input for OntoGen6, which is a data-
driven ontology construction tool that creates suggestions for new concepts for the on-
tology automatically. OntoGen has been integrated with TAO Suite. The most important
step of ontology development is identifying the concepts in a domain. With OntoGen,
this can be achieved by using either a fully automated approach such as unsupervised
learning (e.g. clustering), or a semi-automated approach such as supervised learning
(e.g. classification).

In the unsupervised approach, the system provides suggestions for possible sub-
concepts of the selected concept. While the supervised approach is based on Support
Vector Machines (SVM) active learning method, which is a set of related supervised
learning methods used for classification and regression. The user can start this method
by submitting a query. After the user enters a query, the active learning system starts
asking questions and labelling the instances. On each step, the system asks whether
a particular instance belongs to the concept. The main advantage of the unsupervised
methods is that it requires very little input from the user. The unsupervised methods

5 The feature vectors for the Amazon case study can be found at http://www-users.
aston.ac.uk/˜wangh10/Amazon_DocSimRel.Bow.

6 http://ontogen.ijs.si/

248 H.H. Wang, D. Damljanovic, and J. Sun

provide well-balanced suggestions for sub-concepts based on the instances and are also
good for exploring the data. The supervised method on the other hand requires more
user interactions. The user has to figure out what the sub-concept is, then to describe
the sub-concept trough a query and finally go through the sequence of questions to
clarify the query. This is intended for the cases where the user has a clear idea of the
sub-concept to be added to the ontology, while as the unsupervised methods is not ca-
pable to discover it.

For the Amazon example, we have chosen the unsupervised approach. Part of the
generated concepts visualised using OntoGen is shown in Figure 3.

Fig. 3. Ontology concepts derived using OntoGen

After creating the domain ontology, we can save it into the TAO repository. Now we
are ready to augment the content of formal models (including both models and textual
explanations) and any other related software artefacts semantically.

4 Formal Model Augmentation

Formal model augmentation is a specific metadata generation task aiming at enable new
information access methods. It enriches the OZ models (or other formal models) and
related content with semantic information, linked to a given ontology, thus enabling
semantic-based search over the annotated model contents. While there has been a sig-
nificant body of research on semantic annotation of textual content (in the context of

Enhanced Semantic Access to Formal Software Models 249

knowledge management applications), only limited attention has been paid to process
software models in particular to the problem of semantic-based software engineering.
TAO has developed a tool named Key Concept Identification Tool (KCIT) to assist
users to annotate heterogeneous software artefacts, automatically (semi-automatically).
In essence, KCIT is capable of performing two tasks: (1) semantic annotation – using
Information Extraction, some parts of the document content are marked and then linked
to an ontology; (2) persistent storage and lookup of augmented content, where docu-
ment retrieval is based on relevance to a selected set of semantic annotations instead
of relevance to words (like ina keyword lookup). More information about KCIT can be
found in [3].

4.1 Semantic Annotation

KCIT identifies key concepts from software model content intelligently (more than ex-
act text match, like many other existing approaches). It can also be configured to better
adopt different use cases. For example, it can be used to annotate OZ models written
in LaTex format or ZML format (the XML-based ISO standard interchange format for
Z/OZ models [18]). Users only need to click a button and KCIT goes through the formal
models and automatically identifies the pieces of text or tag, that are related to concepts
or relations defined in the domain ontology by using NLP techniques. After the process
of automatic annotation is finished, users can validate the results by visualising them,
correcting annotations if necessary, and adding new ones by manually selecting the text
they want to link to the relevant concept from the ontology.

Figure 4 shows part of the annotation result for the WSMO Amazon Object-Z model
(in LaTex) with respected descriptions. The OZ class Capability (defined in LaTex as
begin{class}) is associated with two annotations. Firstly, KCIT identifies it is an OZ
class and annotated with the OWL individual representing the OZ class. It is defined
in the ontology for representing the OZ model, as discussed in Section 3.1. Secondly
KCIT recognises that this OZ class is related to the domain concept Capability de-
fined within the WSMO Amazon ontology which denotes the knowledge concept of a
WSMO Web service’s capability. Therefore, software engineers can easily understand
what this OZ class is about and found out its functionalities. Similarly, the respected
textual description is annotated. We can also use the domain ontology to annotate other
related software artefacts, such as the WSMO amazon library, implementation source
code that realises the OZ model, Amazon service WSDL file, etc. The output of the
semantic annotation process is a set of annotations and their features – the URL of the
ontology resource to which the term refers to, its type (e.g., an instance, a class, or a
property). These semantic annotations are merged with document metadata (docURL
and docType) and saved in a way that makes them accessible through semantic search.

4.2 Storing Implicit Annotations and Semantic-Based Access

In order to access the semantic knowledge, the produced annotation features, together
with document-level metadata are read and exported in a format which can be eas-
ily queried via a formal language such as SPARQL. More specifically, this extracted
information needs to ‘connect’ a document with different ‘mentions’ of the ontology

250 H.H. Wang, D. Damljanovic, and J. Sun

Fig. 4. Semantic Annotation over WSMO Amazon service OZ model

resources inside the documents. For example, if a model document contains mentions
of the class Capability for the Amazon A2S, the output should be modelled in a way
that preserves this information during query time (i.e., the URLs of all documents men-
tioning this class ca be found easily). For this purpose, the PROTON Knowledge Man-
agement ontology7 has been used, through which the information about the type and
address of a document, the position (the start and end offset) of a ‘mention’ within a
document can be represented in a standard way.

The extracted annotations are stored in an OWL-compatible knowledge repository
(OWLIM [12]), and accessible for querying using formal SW query languages (e.g.
SQARQL). For example, for the OZ class Capability , we can easily find out where

7 http://proton.semanticweb.org/2005/04/protonkm

Enhanced Semantic Access to Formal Software Models 251

this concept is explained in the manual documents, its corresponding WSDL definition
and the implementation source code classes, etc. In essence, the ontology is serving as
a framework that interlinks the formal models and all other software artefacts. It can
be used to guide the software development process and is very helpful for software
engineers to understand and maintain the software artefacts, especially for large and
complex systems.

5 Conclusion

This paper proposed a framework that allows users to interconnect the knowledge about
formal software models and other related documents using the semantic technology.
We developed an Semantic Web environment for representing and sharing formal Z/OZ
models. A method with prototype tool is presented to enhance semantic access to soft-
ware models and other artefacts. This has been achieved in three steps. Firstly, the on-
tologies about the software model and its application domain has been automatically
extracted and enriched. Secondly, the semantic annotations are automatically gener-
ated. Finally, the generated annotations together with document metadata are stored in
a repository in OWL format and are made accessible to users.

By creating semantical annotations, we can transform existing software documenta-
tion into a conceptually organised and semantically interlinked knowledge space that
incorporates the software models with unstructured data from multiple software arte-
facts: forum postings, manuals, structured data from source code and configuration files.
The enriched information can then be used to add novel functionality to web-based doc-
umentation of the software concerned, providing the developer with new and powerful
ways to locate and integrate components (either for reuse or for integration with new
development).

Our future work will focus on the improvement of the current interface, and the
implementation of query result clustering and summarisation.

References

1. Amardeilh, F., Vatant, B. Gibbins, N. Payne, T.R. Wang, H. H.: Sws bootstrapping
methodology. Technical Report D1.2.2, TAO Project Deliverable (2009), http://www.
tao-project.eu/resources/publicdeliverables/d1-2-2.pdf

2. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference (2004), http:
//www.w3c.org/TR/owl-ref/

3. Bontcheva, K., Damljanovic, D., Aswani, N., Agatonovic, M., Sun, J., Amardeilh, F.:
Key concept identification and clustering of similar content. Technical Report D3.1, TAO
Project Deliverable (2007), http://www.gate.ac.uk/projects/tao/webpage/
deliverables/d3-1.pdf

4. Bowen, J.P., Chippington, D.: Z on the web using java. In: Bowen, J.P., Fett, A., Hinchey,
M.G. (eds.) ZUM 1998. LNCS, vol. 1493, pp. 66–80. Springer, Heidelberg (1998)

5. Ciancarini, P., Mascolo, C., Vitali, F.: Visualizing z notation in html documents. In: Bowen,
J.P., Fett, A., Hinchey, M.G. (eds.) ZUM 1998. LNCS, vol. 1493, pp. 81–95. Springer, Hei-
delberg (1998)

252 H.H. Wang, D. Damljanovic, and J. Sun

6. D. Brickley and R.V. Guha (eds.): Resource description framework (rdf) schema specification
1.0 (February 2004), http://www.w3.org/TR/rdf-schema/

7. Dong, J.S., Sun, J., Wang, H.: Semantic web for extending and linking formalisms. In: Eriks-
son, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 587–606. Springer, Heidel-
berg (2002)

8. Duke, R., Rose, G.: Formal Object Oriented Specification Using Object-Z. In: Cornerstones
of Computing. Macmillan, Basingstoke (March 2000)

9. Futatsugi, K., Nakagawa, A.: An overview of cafe specification environment - an algebraic
approach for creating, verifying, and maintaining formal specifications over networks. In:
ICFEM 1997: Proceedings of the 1st International Conference on Formal Engineering Meth-
ods, Washington, DC, USA, p. 170. IEEE Computer Society, Los Alamitos (1997)

10. Grcar, M.: Ontology learning services library. Technical Report D2.2.2, TAO Project
Deliverable (2008), http://www.gate.ac.uk/projects/tao/webpage/
deliverables/d2-2-2.pdf

11. Jacek, K., Dumitru, R., James, S.: Wsmo use case: Amazon e-commerce service (2006)
(unpublished manuscript)

12. Kiryakov, A., Ognyanov, D., Manov, D.: Owlim a pragmatic semantic repository for owl. In:
Int. Workshop on Scalable Semantic Web Knowledge Base Systems, New York City, USA,
pp. 182–192. Springer, Heidelberg (2005)

13. Lassila, O., Swick, R.R. (eds.): Resource description framework (rdf) model
and syntax specification (February 1999), http://www.w3.org/TR/1999/
REC-rdf-syntax-19990222/

14. Lee, B.T., Hendler, J., Lassila, O.: The semantic web. Scientific American (May 2001)
15. Smith, G.: The Object-Z Specification Language. In: Advances in Formal Methods. Kluwer

Academic Publishers, Dordrecht (2000)
16. Spivey, J.M.: The Z Notation: A Reference Manual. International Series in Computer Sci-

ence. Prentice-Hall, Englewood Cliffs (1989)
17. Sun, J., Dong, J.S., Liu, J., Wang, H.: Object-Z Web Environment and Projections to UML.

In: WWW-10: 10th International World Wide Web Conference, pp. 725–734. ACM Press,
New York (May 2001)

18. Sun, J., Dong, J.S., Liu, J., Wang, H.: A formal object approach to the design of zml. Annals
of Software Engineering, an International Journal 13, 329–356 (2002)

19. van Harmelen, F., Patel-Schneider, P.F., Horrocks, I. (eds.): Reference description of the
daml+oil ontology markup language. Contributors: T. Berners-Lee, D. Brickley, D. Connolly,
M. Dean, S. Decker, P. Hayes, J. Heflin, J. Hendler, O. Lassila, D. McGuinness, L. A. Stein...
(March 2001)

20. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-Hall,
Englewood Cliffs (1996)

Making Pattern- and Model-Based Software
Development More Rigorous

Denis Hatebur1,2 and Maritta Heisel1

1 Universität Duisburg-Essen, Germany, Fakultät für Ingenieurwissenschaften
maritta.heisel@uni-due.de

2 Institut für technische Systeme GmbH, Germany
d.hatebur@itesys.de

Abstract. Pattern-based and model-based software development approaches
have a high potential to improve the quality of software. Patterns allow engineers
to re-use established and proven development knowledge. Developing software
by constructing a sequence of models provides engineers with various possibili-
ties for validation, because the different development models are not independent
of each other and hence can be checked for coherence.

We present a UML profile equipped with numerous OCL constraints that sup-
ports a pattern- and model-based software development process. The basis of the
UML profile is a representation of problem frames, which are patterns support-
ing requirements analysis. OCL constraints provide a formal underpinning of the
development process and allow one to perform semantic checks every time a new
model is set up. Our approach is supported by a tool, called UML4PF. The tool
is based on the Eclipse development environment, extended by an EMF-based
UML tool, in our case, Papyrus. In this paper, we specifically focus on ensuring
that problem frames are instantiated correctly. We illustrate our approach by the
case study of an automatic teller machine.

1 Introduction

Software development with formal methods usually starts with a formal specification.
Then, this specification is refined to code, possibly carrying out several refinement steps
that must be proven correct. Another possibility is to annotate code with formally ex-
pressed assertions and prove the correctness of the code with respect to the assertions.

Today, patterns do not play a prominent role in such formal development processes.
However, patterns are a very important means to reuse development knowledge. There-
fore, they should also be integrated in formal development processes. Patterns are de-
fined for all stages of the software development process. Requirements analysis can be
supported by problem frames [16] and analysis patterns [9]. Coarse-grained design can
make use of architectural styles [21]. Design patterns [10] are a well-known means to
perform fine-grained design. Idioms [5] support programming, and test patterns [18]
can be used in the testing phase.

Since the different artifacts of the software development process can be expressed as
models, pattern- and model-based development fit very well together. The advantage of
model-based development is that it is possible to check integrity conditions between the

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 253–269, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

254 D. Hatebur and M. Heisel

models. When such a check is performed by formal means, pattern- and model-based
development processes can be carried out in a formal way.

In this paper, we present a pattern- and model-based requirements analysis process
that is tool-supported and that allows one to check semantic integrity conditions that
are expressed in the formal language OCL1 (Object Constraint Language) [23]. We
thus contribute to the goal of combining the use of patterns with formal development.
That process is based on problem frames [16]. These are patterns that classify software
development problems.

We have defined a UML profile that extends the UML meta-model [25]. It allows
us to express the diagrams that are set up when performing requirements analysis with
problem frames in UML notation. The defined OCL conditions provide a formal se-
mantic underpinning of the problem frame approach. Automatically checking the con-
straints makes it possible to detect semantic errors in the requirements analysis process.

We have developed a tool, called UML4PF. With this tool, developers can draw dif-
ferent diagrams that have to be set up during the requirements engineering process.
The diagrams are mapped to parts of a global model, and a graphical representation of
this part. Every time a new diagram is finished, the developer may call the UML4PF
validator. This causes the defined OCL conditions to be evaluated, based on the model
information. If one of the conditions is not satisfied, a semantic error has been detected
in one of the diagrams, or integrity conditions between two or more diagrams are vio-
lated. UML4PF also points out which condition is violated in which diagram(s), thus
supporting the developer in locating and correcting the error.

Elements of the created model can be re-used in later development phases. We can
also validate that the artifacts of later development steps, such as specification and ar-
chitectural design, are consistent with the requirements engineering diagrams.

In the following, we introduce problem frames and the corresponding UML profile
in Section 2. The tool UML4PF is described in Section 3. In Section 4, we show how
to check that problem frames are correctly instantiated during a development2. Section
5 illustrates the approach by the case study of an automatic teller machine. Section 6
discusses related work. Finally, Sect. 7 concludes the paper with a summary, ongoing
work, and directions for future research.

2 UML Profile for Problem Frames

Problem frames are a means to describe software development problems. They were
introduced by Jackson [16], who describes them as follows: “A problem frame is a kind
of pattern. It defines an intuitively identifiable problem class in terms of its context and
the characteristics of its domains, interfaces and requirement.”

Figure 1 shows a problem frame called commanded behaviour in UML notation. In-
formally, there is some part of the physical world whose behaviour is to be controlled
with commands issued by an operator. The problem is to build a machine that will ac-
cept the operator’s commands and impose the control accordingly. [16]. We describe

1 We have chosen OCL because it is part of UML, which is widely used and well equipped with
tool support.

2 Many other checks are defined that are not presented in this paper.

Making Pattern- and Model-Based Software Development More Rigorous 255

Fig. 1. Commanded behaviour problem frame using UML
notation

Fig. 2. Requirement stereotype
inheritance structure

problem frames using class diagrams extended by stereotypes (see Fig. 1). All elements
of a problem frame diagram act as placeholders, which must be instantiated to repre-
sent concrete problems. Doing so, one obtains a problem description that belongs to a
specific problem class.

The class with the stereotype <<machine>> represents the software to be devel-
oped (possibly complemented by some hardware). The classes with domain stereotypes
(e.g., <<CausalDomain>> or <<BiddableDomain>>) represent problem domains
that already exist in the application environment.

In frame diagrams, interfaces connect domains, and they contain shared phenomena.
Shared phenomena may be events, operation calls, messages, and the like. They are
observable by at least two domains, but controlled by only one domain, as indicated
by an exclamation mark. For example, in Fig. 1 the notation Op!E4 means that the
phenomena in the set E4 are controlled by the domain Operator. These interfaces are
represented as associations, and the name of the associations contain the phenomena
and the domain controlling the phenomena.

The associations can be replaced by interface classes, whose operations correspond
to phenomena. The interface classes are either controlled or observed by the connected
domains, represented by dependencies with the stereotypes <<controls>> or <<ob-
serves>>. Each interface can be controlled by at most one domain. A controlled in-
terface must be observed by at least one domain, and an observed interface must be
controlled by exactly one domain.

Problem frames substantially support developers in analyzing problems to be
solved. They show what domains have to be considered, and what knowledge must be
described and reasoned about when analyzing the problem in depth. Developers must
elicit, examine, and describe the relevant properties of each domain. These descriptions
form the domain knowledge.

The domain knowledge consists of assumptions and facts. Assumptions are con-
ditions that are needed, so that the requirements are accomplishable. Usually, they

256 D. Hatebur and M. Heisel

describe required user behavior. For example, it must be assumed that a user ensures
not to be observed by a malicious user when entering a password. Facts describe fixed
properties of the problem environment, regardless of how the machine is built.

Domain knowledge and requirements are special statements. A statement is modeled
similarly to a SysML requirement [24] as a class with a stereotype. In this stereotype
a unique identifier and the statement text are contained as stereotype attributes. Fig. 2
shows the stereotype Statement that extends the metaclass Class of the UML meta-
model.

When we state a requirement, we want to change something in the world with the
machine to be developed. Therefore, each requirement constrains at least one domain.
This is expressed by a dependency from the requirement to a domain with the stereotype
<<constrains>>. Such a constrained domain is the core of any problem description,
because it has to be controlled according to the requirements. Hence, a constrained
domain triggers the need for developing a new software (the machine), which provides
the desired control.

A requirement may refer to several domains in the environment of the machine. This
is expressed by a dependency from the requirement to a domain with the stereotype
<<refersTo>>. The referred domains are also given in the requirements description.

In Fig. 1, the Controlled Domain domain is constrained, because the Control Machine
has the role to change it on behalf of user commands for achieving the required Com-
manded Behaviour.

Jackson distinguishes the domain types biddable domains that are usually people,
causal domains that comply with some physical laws, and lexical domains that are data
representations. The domain types are modeled by the stereotypes
<<BiddableDomain>> and <<CausalDomain>> being subclasses of the stereotype
<<Domain>>. A lexical domain (<<LexicalDomain>>) is modeled as a special case
of a causal domain. To describe the problem context, a connection domain between two
other domains may be necessary. Connection domains establish a connection between
other domains by means of technical devices. They are modeled as classes with the
stereotype <<ConnectionDomain>>. Connection domains are, e.g., video cameras,
sensors, or networks. This kind of modeling allows one to add further domain types,
such as <<DisplayDomain>> (introduced in [6]) being a special case of a causal do-
main. Figure 3 depicts the domain stereotypes defined in our UML Profile.

Other problem frames besides the commanded behavior frame are required
behaviour, simple workpieces, information display, and transformation [16].

Software development with problem frames proceeds as follows: first, the environ-
ment in which the machine will operate is represented by a context diagram. Like a
frame diagram, a context diagram consists of domains and interfaces. However, a con-
text diagram contains no requirements (see Fig. 5 for an example). Then, the problem is
decomposed into subproblems. If possible, the decomposition is done in such a way that
the subproblems fit to given problem frames. To fit a subproblem to a problem frame,
one must instantiate its frame diagram, i.e., provide instances for its domains, phenom-
ena, and interfaces. The instantiated frame diagram is called a problem diagram.

The different diagram types make use of the same basic notational elements. As a
result, it is necessary to explicitly state the type of diagram by appropriate stereotypes.

Making Pattern- and Model-Based Software Development More Rigorous 257

Fig. 3. Domain stereotypes in UML Profile

In our case, the stereotypes are <<ContextDiagram>>, <<ProblemDiagram>>, and
<<ProblemFrame>>. These stereotypes extend (some of them indirectly) the meta-
class Package in the UML meta-model.

Successfully fitting a problem to a given problem frame means that the concrete
problem indeed exhibits the properties that are characteristic for the problem class de-
fined by the problem frame. A problem can only be fitted to a problem frame if the
involved problem domains belong to the domain types specified in the frame diagram.
For example, the Operator domain of Fig. 1 can only be instantiated by persons, but
not for example by some physical equipment like an elevator. Thus, an advantage of
using problem frames in requirements engineering is that problems are mapped to well-
known problem classes that are practically relevant. Moreover, when using problem
frames, one can even hope for more than just a full comprehension of the problem at
hand. Since problems fitting to a problem frame share common properties, their so-
lutions will share common properties, too [2]. Thus, problem frames provide pattern-
based support not only for problem comprehension, but also for problem solving. For
each subproblem, a separate architecture can be developed as described in [2]. These
can be merged in a systematic way, see [3].

3 Tool Support

We have developed a tool called UML4PF to support the requirements engineering
process sketched in Section 2 as well as subsequent development steps, such as deriving
software architectures from problem descriptions. After the developer has drawn some

258 D. Hatebur and M. Heisel

UML Profile

Editor e.g.
Papyrus

Eclipse incl. EMF & OCL

UML4PF OCL expressions

Fig. 4. Tool Realization Overview

diagram(s) using some EMF-based editor, for example Papyrus UML [20], UML4PF
provides him or her with the following functionality:

– It checks if the developed model is valid and consistent by using our OCL con-
straints.

– It returns the location of invalid parts of the model.
– It automatically generates model elements, e.g., it generates observed and con-

trolled interfaces from association names.

Figure 4 provides an overview of the context of our tool. Gray boxes denote re-used
components, whereas white boxes describe those components that we created. Basis
is the Eclipse platform [7] together with its plug-ins EMF [8] and OCL [23]. These
plug-ins provide functions to query a model with OCL. Our UML-profile is conceived
as an Eclipse plug-in, extending the EMF meta-model. We store the data in the profile
in XMI-format. We store all our OCL constraints in one file in XML-format. They are
directly checked using the OCL executor, which is part of EMF.

The graphical representation of the different diagram types can be manipulated by
using any EMF-based editor. We selected Papyrus UML [20] as it is available as an
Eclipse plug-in, open-source, and EMF-based. UML4PF provides additional windows
in Eclipse to edit requirements and traceability links as an easy-to-use user interface.
The requirements and traceability links are directly stored in the UML model. The
graphical representation of the created UML elements is not necessary, but can be added
later. The tool is an open source tool under development and is available on demand
from the authors.

Listing 1 shows an example of an integrity condition. It formalizes the general
fact that each statement constrains (see Fig. 2) constrains at least one domain. All
classes in the model (Line 1) with the stereotype <<Statement>> (accessed by
the EMF keyword getAppliedStereotypes) or a specialized statement subtype3, e.g.,
<<Requirement>>) (Lines 2-5) are selected. For these classes, the dependencies of
class (clientDependency) (Line 6) with the stereotype <<constrains>> are collected
(Line 7). The number of ’constrains’ for each class must be bigger than or equal to
one (Line 8). In another OCL integrity condition, it is stated that all <<constrains>>
dependencies must point to domains.

3 The superclass can be accessed by the EMF keyword general. Since the keyword is not recur-
sive, we need to address each of the 3 possible hierarchy levels explicitly.

Making Pattern- and Model-Based Software Development More Rigorous 259

1 C l a s s . a l l I n s t a n c e s ()−>s e l e c t (
2 g e t A p p l i e d S t e r e o t y p e s () . name−>i n c l u d e s (’ S t a t e m e n t ’) or
3 g e t A p p l i e d S t e r e o t y p e s () . g e n e r a l . name −>

i n c l u d e s (’ S t a t e m e n t ’) or
4 g e t A p p l i e d S t e r e o t y p e s () . g e n e r a l . g e n e r a l . name −>

i n c l u d e s (’ S t a t e m e n t ’) or
5 g e t A p p l i e d S t e r e o t y p e s () . g e n e r a l . g e n e r a l . g e n e r a l . name −>

i n c l u d e s (’ S t a t e m e n t ’))
6 −>f o r A l l (c l i e n t D e p e n d e n c y−>c o l l e c t (d |
7 d . oclAsType (Dependency) . g e t A p p l i e d S t e r e o t y p e s () . name −>

i n c l u d e s (’ c o n s t r a i n s ’))
8 −>c o u n t (t r u e) >=1)

Listing 1. Statements have at least one Constrains Dependency

4 Checking the Correct Instantiation of Problem Frames

This section, we present a number of OCL constraints that can be used to check if a
given problem diagram is a correct instantiation of a given problem frame. Such checks
are very important, because a software development problem only belongs to the prob-
lem class characterized by the problem frame if it really exhibits all characteristics re-
quired by the frame. Only then can the solution approaches associated with the problem
frame by successfully applied.

We have also defined other OCL constraints (not presented in this paper) that con-
cern the relation between context diagrams and problem diagrams as well as the con-
sistency between problem diagrams and behavioral descriptions, expressed as sequence
diagrams. Another paper [13] presents constraints for describing dependability require-
ments, such as confidentiality, integrity, and reliability. In this paper, we specifically
focus on ensuring that problem frames are instantiated correctly.

For each problem diagram, we explicitly state which problem frame it instantiates
by using a dependency with the stereotype <<instanceOf>>. The OCL expression
of Listing 2 checks if the stereotype <<instanceOf>> is used correctly. To this end,
all dependencies in the model (Line 1) with the stereotype <<instanceOf>> (ac-
cessed by the EMF keyword getAppliedStereotypes) (Line 2) are selected. For these
dependencies (Line 3), the source and the target must be a package (checked by the
EMF expression oclIsTypeOf(Package) (Lines 4 and 5), the source package has the
stereotype <<ProblemDiagram>> (Line 6), and the target package has the stereotype
<<ProblemFrame>> (Line 7).

1 Dependency . a l l I n s t a n c e s ()
2 −>s e l e c t (a |

a . oclAsType (Dependency) . g e t A p p l i e d S t e r e o t y p e s () . name −>
i n c l u d e s (’ i n s t a n c e O f ’))

3 −>f o r A l l (d |
4 d . oclAsType (Dependency) . source−>f o r A l l (o c l I s T y p e O f (Package))

and

260 D. Hatebur and M. Heisel

5 d . oclAsType (Dependency) . t a r g e t −>f o r A l l (o c l I s T y p e O f (Package))
and

6 d . oclAsType (Dependency) . s o u r c e . g e t A p p l i e d S t e r e o t y p e s () . name
−> i n c l u d e s (’ ProblemDiagram ’) and

7 d . oclAsType (Dependency) . t a r g e t . g e t A p p l i e d S t e r e o t y p e s () . name
−> i n c l u d e s (’ ProblemFrame ’))

Listing 2. ’instanceOf’-Dependencies are from ProblemDiagrams to ProblemFrames

If a problem diagram correctly instantiates a problem frame, possible solutions de-
fined for the problem frame can be reused for the concrete problem. For example, cor-
responding architectural patterns [2] can be applied.

For security-related problems (see, e.g., [14]), we are not allowed to add additional
interfaces, whereas for other software development problems, additional elements are
allowed to be added to the problem diagram. Therefore, we distinguish between two
kinds of instances, namely strict and weak instances. In the OCL expressions, we only
use the predicate weak.

We now present a set of conditions that should evaluate to true if a given problem
diagram is a valid instantiation of a given problem frame. These OCL constraints are
one of the contributions of this paper. Some of them we have derived from the informal
explanations given by Jackson [16], for example conditions 1, 3, 5 and 7 given below.
With these conditions (together with the rules given in [15]), we provide the problem
frame approach with a formal semantic underpinning. Other conditions express general
rules about correctly instantiating patterns, e.g., conditions 2, 34 and 6. All conditions
are decidable, because they check semantic properties of problem descriptions that are
expressed as syntactic properties of the corresponding UML models.

Our UML profile is not an exact match of the problem frame approach, but provides
several enhancements. One of them is the distinction between weak and strict instanti-
ations. Condition 5 states how a weak instance is distinguished from a strict one.

We do not claim that the integrity conditions we have defined so far are complete. On
the contrary, it is easily possible to identify new conditions and incorporate them into
UML4PF. In any case, it is impossible to come up with a set of semantic integrity cond-
tions that is sufficient for the correctness of the defined models. However, the conditions
constitute necessary conditions for the correctness of the defined models. Therefore, a
violation of one of the conditions really indicates an error in the development.

For a given problem diagram to be a valid instantiation of a given problem frame,
the following conditions should evaluate to true:

1. The domain types of the constrained domains in the problem frame are the same as
in the problem diagram.

2. Each domain referred to by the requirement in the problem frame corresponds to a
domain in the problem diagram (same domain types).

3. Each connection in the problem frame corresponds to a connection in the problem
diagram, i.e., they connect same domain types.

4 This condition combines a general instantiation rule with a problem-frame-specific rule.

Making Pattern- and Model-Based Software Development More Rigorous 261

4. For strict (i.e., non-weak) instances, each connection in the problem diagram cor-
responds to a connection in the problem frame, i.e., they connect the same domain
types.

5. The domain types in problem diagrams and problem frames are consistent: the
number of domains of each type in the problem frame is equal to the number of this
type in the problem diagram. In case of a weak instance, the number of domains of
each type in the problem frame is smaller than or equal to the number of this type
in the problem diagram.

6. For strict instances, the direction of the interfaces (observed vs. controlled) is the
same in the problem diagram and the problem frame. We allow that interfaces are
left out.

7. Interfaces cannot be left out if they are controlled by the machine.

In the following, we present the OCL expressions checking a selection of these
conditions.

Condition 1. In the OCL expression of Listing 3, all dependencies in the model
(Line 1) with the stereotype <<instanceOf>> (Line 2) are selected. For these de-
pendencies (Line 3) the parts of the source (the problem diagram) being requirements
(Lines 4 and 5) are selected. For these requirements, the dependencies with the stereo-
type <<constrains>> are selected (Line 6). The target of these dependencies are the
constrained classes, and the bag of their stereotype names (Line 7) must be the same
(Line 8) as the bag of stereotype names of constrained domains in the problem frame
(Lines 9-13).

1 Dependency . a l l I n s t a n c e s () −>
s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name−>i n c l u d e s (’ i n s t a n c e O f ’))

2 −>f o r A l l (
3 s o u r c e . oclAsType (Package)
4 . c l i e n t D e p e n d e n c y −> s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name −>

i n c l u d e s (’ i s P a r t ’))
5 . t a r g e t −> s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name −>

i n c l u d e s (’ Requi rement ’)) . oclAsType (C l a s s)
6 . c l i e n t D e p e n d e n c y −> s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name −>

i n c l u d e s (’ c o n s t r a i n s ’)) .
7 t a r g e t . g e t A p p l i e d S t e r e o t y p e s () . name
8 =
9 t a r g e t . oclAsType (Package)

10 . c l i e n t D e p e n d e n c y −> s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name −>
i n c l u d e s (’ i s P a r t ’))

11 . t a r g e t −> s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name −>
i n c l u d e s (’ Requi rement ’)) . oclAsType (C l a s s)

12 . c l i e n t D e p e n d e n c y −> s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name −>
i n c l u d e s (’ c o n s t r a i n s ’)) .

13 t a r g e t . g e t A p p l i e d S t e r e o t y p e s () . name
14)

Listing 3. Constrained domain type in ProblemDiagrams and ProblemFrames

262 D. Hatebur and M. Heisel

Condition 2 can be checked in a similar way.

Condition 3. Line 1 in the OCL expression of Listing 4 selects all dependencies with the
stereotype <<instanceOf>>. For all such dependencies (Line 2), we select all associa-
tions (Line 3) connecting classes (Line 4) and all association whose ends (Lines 5 and 6)
are part of the problem frame the <<instanceOf>>-dependency points to (Lines 7-
12). For all such associations in the problem frame (Line 13), we select all associa-
tions (Line 14) connecting classes (Line 15) and all associations whose ends (Lines 16
and 17) are part of the problem diagram the <<instanceOf>>-dependency comes
from (Lines 18-23). We verify in Line 24 that in the selected set of problem dia-
gram associations, an association exists that connects classes with the same stereotypes
(Line 25 and 26).

1 Dependency . a l l I n s t a n c e s () −>
s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name −>
i n c l u d e s (’ i n s t a n c e O f ’))

2 −>f o r A l l (i n s t o f d e p |
3 A s s o c i a t i o n . a l l I n s t a n c e s ()
4 −>s e l e c t (endType −>f o r A l l (o c l I s T y p e O f (C l a s s)))

. oclAsType (A s s o c i a t i o n)
5 −>s e l e c t (a s s |
6 a s s . oclAsType (A s s o c i a t i o n) . endType−>f o r A l l (a s s e n d |
7 i n s t o f d e p . oclAsType (Dependency)
8 . t a r g e t . oclAsType (Package)
9 . c l i e n t D e p e n d e n c y −>

s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name −>
i n c l u d e s (’ i s P a r t ’))

10 . t a r g e t −> s e l e c t (o c l I s T y p e O f (C l a s s)) . oclAsType (C l a s s)
−> a s S e t ()

11 −> i n c l u d e s (a s s e n d . oclAsType (C l a s s))
12)
13)−>f o r A l l (a s s i n p f |
14 A s s o c i a t i o n . a l l I n s t a n c e s ()
15 −>s e l e c t (endType −>f o r A l l (o c l I s T y p e O f (C l a s s)))

. oclAsType (A s s o c i a t i o n)
16 −>s e l e c t (a s s |
17 a s s . oclAsType (A s s o c i a t i o n) . endType−>f o r A l l (a s s e n d |
18 i n s t o f d e p . oclAsType (Dependency)
19 . s o u r c e . oclAsType (Package)
20 . c l i e n t D e p e n d e n c y −> s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name

−> i n c l u d e s (’ i s P a r t ’))
21 . t a r g e t −>s e l e c t (o c l I s T y p e O f (C l a s s)) . oclAsType (C l a s s) −>

a s S e t ()
22 −>i n c l u d e s (a s s e n d . oclAsType (C l a s s))
23)
24)−>e x i s t s (a s s i n p d |
25 a s s i n p d . endType . oclAsType (C l a s s)

. g e t A p p l i e d S t e r e o t y p e s () . name

Making Pattern- and Model-Based Software Development More Rigorous 263

26 −> i n c l u d e s A l l (a s s i n p f . endType . oclAsType (C l a s s)
. g e t A p p l i e d S t e r e o t y p e s () . name)

27)
28)
29)

Listing 4. Connections in ProblemDiagrams and ProblemFrames are consistent

Condition 4 can be checked in a similar way.

Condition 5. Line 1 in the OCL expression in Listing 5 selects all dependencies with the
stereotype <<instanceOf>>. For these dependencies (Line 2), we define the boolean
variable weak as the value of the attribute weak of the dependency (Lines 3-5), we
define the bag pf domain as all domains of the problem frame the dependency points to
(Lines 6-10), and we define the bag pd domains as all domains of the problem diagram
(Lines 11-15).

1 Dependency . a l l I n s t a n c e s () −>
s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name−>i n c l u d e s (’ i n s t a n c e O f ’)
)

2 −>f o r A l l (i n s t o f d e p |
3 l e t weak : Boolean =
4 i n s t o f d e p . g e t V a l u e (i n s t o f d e p . oclAsType (Dependency)

. g e t A p p l i e d S t e r e o t y p e s ()
−>s e l e c t (name−>i n c l u d e s (’ i n s t a n c e O f ’)) −>asS equence ()
−> f i r s t () , ’ weak ’) . oclAsType (Boolean)

5 in
6 l e t p f d o m a i n s : Bag (C l a s s) =
7 i n s t o f d e p . t a r g e t . oclAsType (Package)
8 . c l i e n t D e p e n d e n c y −>

s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name−>i n c l u d e s (’ i s P a r t ’))
9 . t a r g e t −> s e l e c t (o c l I s T y p e O f (C l a s s))

−> r e j e c t (g e t A p p l i e d S t e r e o t y p e s () . name
−>i n c l u d e s (’ Requi rement ’)) . oclAsType (C l a s s)

10 in
11 l e t pd domains : Bag (C l a s s) =
12 i n s t o f d e p . s o u r c e . oclAsType (Package)
13 . c l i e n t D e p e n d e n c y −>

s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name−>i n c l u d e s (’ i s P a r t ’))
14 . t a r g e t −> s e l e c t (o c l I s T y p e O f (C l a s s))

−> r e j e c t (g e t A p p l i e d S t e r e o t y p e s () . name
−>i n c l u d e s (’ Requi rement ’)) . oclAsType (C l a s s)

15 in
16 pf domains−>f o r A l l (domains |
17 domains . g e t A p p l i e d S t e r e o t y p e s () . name −>f o r A l l (s t n |
18 (pf domains−>s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name

−>i n c l u d e s (s t n))−>s i z e () =
19 pd domains−>s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name

−>i n c l u d e s (s t n))−>s i z e ())

264 D. Hatebur and M. Heisel

20 or (weak and
21 (pf domains−>s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name

−>i n c l u d e s (s t n))−>s i z e () <=
22 pd domains−>s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name

−>i n c l u d e s (s t n))−>s i z e ())
23)
24)
25)

Listing 5. Domain Types in Problem Diagrams and Problem Frames are Consistent

Using these definitions, we validate for all stereotype names of all problem frame do-
mains (stn, Lines 16-17) that the number of problem frame domains with the stereotype
stn is equal to the number of problem diagrams domains with this stereotype name
(Lines 18-19), or for weak dependencies (Line 20) that the number of problem frame
domains with the stereotype stn is smaller than or equal to the number of problem dia-
grams domains with this stereotype name (Lines 21-22).

5 Case Study

In this section, demonstrate how checking our OCL constraints helps developers in
detecting and eliminating errors in the models they develop. As an example, we use a
simplified automatic teller machine (ATM).

Fig. 5. ATM Context Diagram

The intended environment of the ATM is described using a context diagram as de-
picted in Fig. 5. It contains the ATM as the machine to be built. In the environment,
we can find the Admin responsible for checking the logs of the ATM with the phe-
nomenon request log and for filling the MoneySupply Case with money (phenomenon
insert money). The Customers can

Making Pattern- and Model-Based Software Development More Rigorous 265

– withdraw money by inserting their banking card (insert card) into the CardReader,
– enter their PIN (enter PIN),
– request a certain amount of money (enter request),
– remove their card from the CardReader, and
– take money from the MoneySupply Case.

In some cases, it is possible that the ATM refuses a withdrawal (refuse withdrawal).
Each ATM is connected with the AccountData of at least one bank. We use multiplici-
ties to express this aspect. The different domains are annotated with appropriate stereo-
types from the <<domain>> stereotype, e.g., the Customer is biddable and the Ac-
countData is lexical. The connections are marked with specializations of the stereotype
<<connection>>, e.g., a user interface (<<ui>>) between Customer and ATM, and
a physical connection (<<physical>>) between Customer and CardReader.

We consider one subproblem, treating the requirement: The money supply case sup-
plies the banknotes as requested and retracts the banknotes if the customer does not

Fig. 6. Erroneous ATM Problem Diagram

266 D. Hatebur and M. Heisel

Fig. 7. ATM Control Card Reader Problem Diagram

take them. An initial problem diagram for this requirement is given in Fig. 6. It is stated
to be a (strict) instance of the required behaviour problem frame.

Checking the OCL constraints given in Section 4 on our ATM model shows that
the validation constraint given in Listing 2 is true and that our model also satisfies
Condition 2. Conditions 4, 5, and 6 are not satisfied, because the additional domain
Customer with its interfaces is introduced. The problem depicted in Fig. 6 is not a se-
curity problem, and the Customer should be just included in the problem diagram to
describe the relevant context completely. Therefore, we decide to state that the instance
is only weak. After this modification, conditions 1, 3, and 7 are still not satisfied. Con-
dition 1 is not true, because the problem diagram contains no constrained class with the
stereotype <<CausalDomain>>. Condition 3 is not true, because the problem frame
connects the machine with a causal domain, whereas in the problem diagram, the ma-
chine is connected to a connection domain. To fulfill Conditions 1 and 3, we replace
the stereotype <<ConnectionDomain>> with the stereotype <<CausalDomain>>.
Condition 7 is not fulfilled, because the problem diagram contains no interfaces con-
trolled by the machine. To solve this problem we add MCC!{put banknote to case,
open case, close case, retract banknotes from case} to the machine interface. The cor-
rected problem diagram is depicted in Fig. 7.

The complete case study consists of 4 problem diagram being instances of problem
frames, 12 different domains and 33 associations. More than 50 OCL constraints were
checked using our tool, which takes about 30 seconds on a standard computer. As a final
result, the ATM model has been successfully validated. Figure 6 shows a screen-shot of
a view on the ATM model in Eclipse with our plug-in.

6 Related Work

Lencastre et al. [17] define a meta-model for problem frames using UML. Their meta-
model considers Jackson’s whole software development approach based on context di-
agrams, problem frames, and problem decomposition. In contrast to our meta-model, it
only consists of a UML class model without OCL integrity constraints. Moreover, their
approach does not qualify for a meta-model in terms of MDA because, e.g., the class
Domain has subclasses Biddable and Given, but an object cannot belong to two classes
at the same time (c.f. Figs. 5 and 11 in [17]).

Making Pattern- and Model-Based Software Development More Rigorous 267

Hall et al. [12] provide a formal semantics for the problem frame approach. They
introduce a formal specification language to describe problem frames and problem dia-
grams. However, their approach does not consider integrity conditions.

Seater et al. [19] present a meta-model for problem frame instances. In addition to
the diagram elements formalized in our meta-model, they formalize requirements and
specifications. Consequently, their integrity conditions (“wellformedness predicate”)
focus on correctly deriving specifications from requirements. In contrast, our meta-
model concentrates on the structure of problem frames and the different domain and
phenomena types.

We agree with Haley [11] on adding cardinality to standard problem frames to en-
hance the detailing of shared phenomena at the interfaces. In contrast to Haley though,
we do not extend the problem frames notation by introducing a new notational element.
We adopt the means provided by UML to annotate problem frames in our meta-model
instead.

Van Lamsweerde [27] considers the relationships between problem worlds and ma-
chine solutions. He makes a distinction between different statement subtypes. In our
profile we cover a subset of these statements. Furthermore, he introduces Satisfaction
Arguments.

Charfi et al. [1] use a modeling framework called Gaspard2 to design high-perform-
ance embedded systems-on-chip. They use model transformations to move from one
level of abstraction to the next. To validate that their transformations have been correctly
performed, they use the OCL language to specify the properties that must be checked
in order to be considered as correct with respect to Gaspard2. We have been inspired by
this approach. However, we do not focus on high-performance embedded systems-on-
chip. Instead, we target general software development challenges.

Colombo et al. [4] model problem frames and problem diagrams with SysML [22].
They state that “UML is too oriented to software design; it does not support a seamless
representation of characteristics of the real world like time, phenomena sharing [...]”.
We do not agree with this statement. So far, we have been able to model all necessary
means of the requirements engineering process using UML.

Other important UML profiles are SysML [22] for system engineering and MARTE
[26] for model-driven development of Real Time and Embedded Systems (RTES). The
UML profile for MARTE (in short MARTE) provides support for specification, design,
and verification/validation stages.

7 Conclusions and Future Work

We have shown how a pattern- and model-based requirements engineering process can
be equipped with formal elements that allow developers to detect and correct errors in
their models. We achieved this by means of a UML profile that allows one to express
the different models being developed during the process in UML. The patterns (in par-
ticular, problem frames) can also be expressed with the profile. In this way, one can
state conditions that check if a problem frame has been instantiated correctly. Besides
these conditions, many other integrity conditions can be expressed in OCL. The ap-
proach is tool-supported, which is needed for its practical applicability. In particular,
our contributions include the following:

268 D. Hatebur and M. Heisel

– We have shown how formal and pattern-based software development can be com-
bined.

– We provide a formal underpinning of the problem frame approach.
– We provide tool support for the problem frame approach. This tool support con-

cerns the detection of semantic errors in the requirements engineering process.
– With the defined UML profile, we have provided a basis for a seamless model-and

pattern-based development process that covers not only requirements analysis, but
also specification and architectural design.

– The defined UML profile can easily be extended to cover not only several phases of
software development, but also the specific treatment of dependability requirements
[13] and other quality requirements.

Currently, we are augmenting our process to cover also the design phase of the software
development process. We have already augmented our profile by architectural elements,
and we have defined a number of OCL constraints checking the coherence of problem
descriptions (i.e., context and problem diagrams) and architectural diagrams. Moreover,
we have taken first steps to support software evolution. In particular, we are introducing
traceability links to trace requirements to artifacts developed later, e.g. components in
the software architecture.

In summary, our approach has the potential to make software development more
rigourous and less error-prone, because semantic integrity conditions can be checked
as soon as a new model is set up. Moreover, the use of patterns can be integrated in a
natural way.

In the future, we plan to extend our tool to support the identification of missing and
interacting requirements. In the long run, we aim to cover all phases of the software
development process.

References

1. Charfi, A., Gamatié, A., Honoré, A., Dekeyser, J.-L., Abid, M.: Validation de modèles
dans un cadre d’IDM dédié à la conception de systèmes sur puce. In: 4èmes Jounées sur
l’Ingénierie Dirigée par les Modèles (IDM 2008) (2008)

2. Choppy, C., Hatebur, D., Heisel, M.: Architectural patterns for problem frames. IEE Proceed-
ings – Software, Special Issue on Relating Software Requirements and Architectures 152(4),
198–208 (2005)

3. Choppy, C., Hatebur, D., Heisel, M.: Component composition through architectural patterns
for problem frames. In: Proc. XIII Asia Pacific Software Engineering Conference (APSEC),
pp. 27–34. IEEE, Los Alamitos (2006)

4. Colombo, P., del Bianco, V., Lavazza, L.: Towards the integration of SysML and problem
frames. In: IWAAPF 2008: Proceedings of the 3rd international workshop on Applications
and advances of problem frames, pp. 1–8. ACM, New York (2008)

5. Coplien, J.O.: Advanced C++ Programming Styles and Idioms. Addison-Wesley, Reading
(1992)

6. Côté, I., Hatebur, D., Heisel, M., Schmidt, H., Wentzlaff, I.: A systematic account of prob-
lem frames. In: Proceedings of the European Conference on Pattern Languages of Programs
(EuroPLoP 2007), Universitätsverlag Konstanz (2008)

7. Eclipse Foundation. Eclipse - An Open Development Platform (May 2008),
http://www.eclipse.org/

http://www.eclipse.org/

Making Pattern- and Model-Based Software Development More Rigorous 269

8. Eclipse Foundation. Eclipse Modeling Framework Project (EMF) (May 2008),
http://www.eclipse.org/modeling/emf/

9. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading (1997)
10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of Reusable

Object-Oriented Software. Addison Wesley, Reading (1995)
11. Haley, C.B.: Using problem frames with distributed architectures: A case for cardinality on

interfaces. In: The Second International Software Requirements to Architectures Workshop
(STRAW 2003) (May 2003)

12. Hall, J.G., Rapanotti, L., Jackson, M.: Problem frame semantics for software development.
Software and System Modeling 4(2), 189–198 (2005)

13. Hatebur, D., Heise, M.: A UML profile for requirements analysis of dependable software. In:
Schoitsch, E. (ed.) Proc. SAFECOMP 2010. LNCS, vol. 6351. Springer, Heidelberg (2010)

14. Hatebur, D., Heisel, M., Schmidt, H.: A pattern system for security requirements engineering.
In: Werner, B. (ed.) Proceedings of the International Conference on Availability, Reliability
and Security (AReS) IEEE Transactions, pp. 356–365. IEEE, Los Alamitos (2007)

15. Hatebur, D., Heisel, M., Schmidt, H.: A formal metamodel for problem frames. In: Czar-
necki, K., et al. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 68–82. Springer, Heidelberg
(2008)

16. Jackson, M.: Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley, Reading (2001)

17. Lencastre, M., Botelho, J., Clericuzzi, P., Araújo, J.: A meta-model for the problem frames
approach. In: WiSME 2005: 4th Workshop in Software Modeling Engineering (2005)

18. Meszaros, G.: XUnit Test Patterns, Refactoring Test Code. Addison-Wesley, Reading (2007)
19. Seater, R., Jackson, D., Gheyi, R.: Requirement progression in problem frames: deriving

specifications from requirements. Requirements Engineering 12(2), 77–102 (2007)
20. Gérard, S., et al.: Papyrus UML Modelling Tool (January 2010),

http://www.papyusuml.org/
21. Shaw, M., Garlan, D.: Software Architecture. Perspectives on an Emerging Discipline.

Prentice-Hall, Englewood Cliffs (1996)
22. SysML Partners. Systems Modeling Language (SysML) Specification (2005),

http://www.sysml.org
23. UML Revision Task Force. OMG Object Constraint Language: Reference (May 2006),

http://www.omg.org/docs/formal/06-05-01.pdf
24. UML Revision Task Force. OMG Systems Modeling Language (OMG SysML) (November

2008), http://www.omg.org/spec/SysML/1.1/
25. UML Revision Task Force. OMG Unified Modeling Language: Superstructure (February

2009), http://www.omg.org/docs/formal/09-02-02.pdf
26. UML Revision Task Force. UML Profile for Modeling and Analysis of Real-time and Em-

bedded Systems (MARTE) (November 2009),
http://www.omg.org/docs/formal/formal/2009-11-02.pdf

27. van Lamsweerde, A.: From worlds to machines. In: A Tribute to Michael Jackson, Lulu Press
(2009)

http://www.eclipse.org/modeling/emf/
http://www.papyusuml.org/
http://www.sysml.org
http://www.omg.org/docs/formal/06-05-01.pdf
http://www.omg.org/spec/SysML/1.1/
http://www.omg.org/docs/formal/09-02-02.pdf
http://www.omg.org/docs/formal/formal/2009-11-02.pdf

Practical Parameterised Session Types

Andi Bejleri

Department of Computing, Imperial College London

Abstract. Parameterised session types is a type theory studied in the context of mul-
tiparty session types, that addresses statically the problem of type-safe, deadlock-free
interactions in programs of an arbitrary number of processes. The previous work sup-
porting parameterised session types has several shortfalls that limit their utility in prac-
tice. We eliminate the shortfalls by introducing a programming idiom of roles and a
new type system. Roles have the same design as classes in languages such as Java and
C#, while the previous model presents an amorphous syntax without concepts on how
to incorporate parameterised session types into a mainstream language. The previous
model requires programmers to write processes types, in addition to global types, for
type-checking, while this model preserves multiparty’s lightweight type annotations and
type-checking strategy of simply global types. The previous model requires values of
parameters to range over finite sets of natural numbers, while this model allows infinite
sets of them.

1 Introduction

It is well-known that message-based communication constitutes a prime element in
the development of applications, namely web services, business protocols, parallel al-
gorithms, multi-core programming, data centers management systems. This has moti-
vated a vast amount of research into techniques, typically type-systems, for guarantee-
ing communication-safety. Among them, multiparty session types [16] is a type theory
that addresses statically the problem of type-safe, deadlock-free interactions among a
fixed number of processes. Intuitive syntax of types and efficient type-checking strategy
are the main benefits that make multiparty session types stand out from the other sys-
tems. A notion of global type is introduced through an intuitive syntax to describe the
interaction structure between the processes, that is defined by the “sending-receiving”
actions in the presence of conditionals and recursion, from a global point of view. Pro-
cesses are then efficiently validated by type-checking, through the projection of global
types onto each participant. Whereby, this theory excels when given the number of par-
ticipants. Unfortunately, in parallel algorithms and other communication-based applica-
tions the number of participants is known only at run-time; e.g. in parallel algorithms,
the number of processes assigned to compute the answer of a problem instance is in
proportion to its size.

Recently, the idea of parameterised session types [21] is studied in the context of
multiparty session types. With parameterised session types, a global type can describe
the communication pattern of an arbitrary number of participants. Communication pat-
terns describe simple and elegant structured interactions in communication based appli-
cations. They are used in many parallel computing architectures of parallel algorithms
[14], exchange protocols [4] and web-services [20]. Communication patterns, as design

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 270–286, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Practical Parameterised Session Types 271

patterns, help programmers to design more modular and more understandable system
architectures. Common communication patterns are Ring, Tree, Mesh and Hypercube.

A global type includes the R operator from Gödel’s theory T [1] to iterate over
parameterised causalities that abstract the repetitive behavior of a pattern and to com-
pose sequentially global types, where parameterised causalities are defined over param-
eterised principals. For example, in the Ring pattern,

0 �� 1 �� . . . �� n��

the causality that abstracts the communications from 0 to n is i→ i+1:〈U〉 with some
abuse of notation, where 0≤i≤n−1 and n≥1. Given the number of participants, the R
operator will iterate over the parameterised causality, and then the global type created
will be composed with the causality n→ 0 : 〈U〉 to complete an instance of the Ring.

The syntax of processes includes also the R operator to parameterise participants, to
iterate over processes that share the same behavior and to compose in parallel processes.
For example, in the Ring, there are three kinds of participants: the first one is 0 which
sends to the participant on his left (1) and then receives from the last participant (n), the
second one is i for 1≤i≤n−1 that receives from the participants on his right (i−1) and
then sends to the one on his left (i+1) and finally, the last participant n, which receives
from the participant on his right (n−1) and then sends to the first participant (0). The
R operator will iterate over i, returning on each iteration processes that share the same
behavior, and then will compose them in parallel with the processes of 0 and n.

Despite, this strong initial work, parameterised session types have several shortfalls
that limit their utility in practice. First, the syntax of processes is amorphous, with-
out concepts to design a library that supports communication of mainstream languages.
Second, the type system requires programmers to write the processes types, in addition
to the global type, for type-checking. The coherence of the process types with respect to
the global type is ensured by an equivalence relation for every value of each parameter
present in the global type. The former aspect of the type system increases the program-
ming effort and the latter diverges from the efficient typing strategy of the fundamental
work of global session types [16], where the global type is projected onto participants
to obtain the types for typechecking of processes. Third, the type system restricts the
computing power of programs, allowing values of parameters to range over finite sets
of natural numbers, e.g. parameter n:{m:nat | 0 ≤m≤ 1000} is typed by a bounded
set of natural numbers. Finite sets are necessary to provide decidability for the type
system, as termination of the equivalence algorithm depends on those sets’ cardinality.
The upper-bound of the set reflects the maximum capacity of the hardware resources
to program date, not matching the purpose of innovative dynamic computing platforms
such as clouds where hardware resources flex in response to demand.

This paper eliminates these shortfalls by introducing a programming idiom of roles
and a new type system. Contributions of this work include:

• A role defines an abstraction of communication’s end-points in mobile processes. It
is a blueprint that describes the nature of a communication pattern and the behav-
ior that all run-time processes will share. The syntactic extension is small but yet

272 A. Bejleri

provides a similar concept to classes in class-based languages and so, offers a de-
sign on how to incorporate parameterised session types into a mainstream language
such as Java and C#.

• A static type system that follows the efficient typing strategy and programming
methodology of multiparty session types: programmers first define the global type
of the intended pattern and then define each role of it; roles are validated through
projection of the global type onto the principals by type-checking. We achieve strict
global type annotations in programs and efficient type-checking by extending the
multiparty’s projection algorithm to parameterised principals.

• Values of parameters range over infinite sets of natural numbers. We use infinite
sets to provide full computation power of programs that implement parameterised
communication patterns.

• Examples that show how this system can represent various communication patterns
and control one of the main sources of programming errors in MPI (a message-
passing API to program parallel computers). We illustrate the practical utility of our
system through real-world examples from parallel algorithms and key distribution
protocol.

Section 2 discusses our syntax of roles, illustrated by the Ring example, and oper-
ational semantics1. Section 3 gives the syntax of global types for parameterised com-
munication patterns, illustrated by the Ring and Tree patterns. Section 4 defines our
typing system, and proofs of decidability and subject reduction. Section 5 describes
two real-world examples from parallel algorithms and data exchange protocols. Section
6 surveys related work and section 7 concludes with a discussion of possible future
work for this system.

2 Roles

Our system extends that of Bettini et al. [7], preserving multiparty’s programming
methodology and typing strategy. Channels are omitted from the syntax of processes
[7], serving a simpler type system than the one introduced by Honda et al. [16].

Syntax. Figure 1 provides the syntax of our calculus. A program λn.E is a function from
naturals (the number of participants) to roles composed in parallel. Roles in our calculus
are second-class constructs; they can not be computed by functions. This contrasts the
design of the previous work [21], where both functions and processes are considered as
runtime entities and of the same programming-idiom class. Each role defines a scope
that includes the subsequent behaviors. The prefix ū[p0, p1, p](y).R represents the be-
havior of the first principal in the list (possibly parameterised) of principals p0, p1, p
and the process of that role initiates a session with the acceptor processes of shape
u[p](y).R of principals p1 and p. The prefixes represent the abstract notion of session
establishment of an arbitrary number of principals in minimal syntax. The sending con-
struct c!〈p, e〉;R denotes the action of sending a value to participant p; the receiving
construct c?〈p, x〉;R denotes the action of receiving a value from p. A similar notation

1 For space reasons, we present only part of the formal model definition, related with essential
features of the system and contributions of this work. The full definition of the formal model
can be found in a companion technical report [5].

Practical Parameterised Session Types 273

E :: = λn.E | E t | R General expressions

R, S ::= Roles

| ū[p0, p1, p](y).R Multicast request

| u[p](y).R Accept

| c!〈p, e〉; R Value sending

| c?〈p, x〉; R Value reception

| c⊕ 〈p, l〉; R Selection

| c&〈p, {li : Ri}i∈I〉 Branching

| (νw)R Hiding

| 0 Inaction

| R | S Parallel

| R S λi.λX.R Primitive recursion

| X Process variable

| R t Application

| s:h Queues

u ::= x | a Identifiers
p ::= p1..pn | R p λi.λX.p′ t | X List of prin.
e ::= t | v | e op e′ Expressions
v ::= a | s[p̂] | n | true | false Values

c ::= y | s[p̂] Channels
h ::= ε |m · h Queues
m ::= (q̂,p̂,v) | (q̂,p̂,l) Msg. in transit

p̂, q̂ ::= p̂[n] | N Value principal

Fig. 1. Syntax for roles and run-time processes

is used in selection-branching of a label, c⊕〈p, l〉;R and c&〈p, {li : Ri}i∈I〉, where the
former selects one of the labels enumerated in I and sends it to the later. νw.R restricts
w to R. Parallel composition is standard.

We use the R operator from System T as in the previous work, to parameterise prin-
cipals, to iterate and compose in parallel roles. The operator composes a lambda ex-
pression, λi.λX.R, with another expression, S. The recursive operator can be used also
inside the definition of a role to iterate over a particular end-point behavior. Iteration
takes place when a natural number is applied to a primitive recursion term, R t.

The message queue s : h represents ordered messages in transit to model TCP-like
asynchronous communications. Identifiers u can be variables or shared names. A list
of principals can be constant or parameterised using the R operator. The mathematical
definition of principals list is missing from the previous work, weakening the properties
of the type system as we shall see later. Expressions include parametric mathematical
expressions (see Section 3), values and operations such as e = e′, e and e′ and not e.
Values are defined over shared names, session channels, naturals and boolean values.
Channels denote channel variables or session channels. Session channel s[p̂] denotes
the channel of the participant p̂ in the session s. Messages in queues are defined as
triples: sender, receiver and data (value or label). Messages are run-time entities, there-
fore they are defined over value principals. Value principals are the same as in the previ-
ous work, including participants (Bob, Alice, ...) or indexed principals over naturals
(W[3], W[2][4], ...).

Operational Semantics. Figure 2 gives the operational semantics via the reduction
relation −→. The interesting features of the rules are how they invoke a program, start
a session, instantiate roles, iterate over end-point behavior and exchange messages.

The rule [App] invokes a program by replacing the parameter n with the argument
n, as it instantiates roles which are parameterised only by n. Rule [Zero] returns the
behavior S and defines the last iteration of the R operator. Rule [Succ] replaces each
occurrence of the index i in R with a predecessor of n+1 and replaces X with instances
of R returned by the other iterations. When R denotes roles, [Succ] instantiates them

274 A. Bejleri

(λn.E) n −→ E{n/n} [App]

R S λi.λX.R 0 −→ S [Zero]

R S λi.λX.R (n + 1) −→ R{n/i}{R S λi.λX.R n/X} [Succ]

ā[p̂0..p̂n](y0).R0 | a[p̂1](y1).R1 | ...a[p̂n](yn).Rn

−→ (νs)(R0{s[p̂0]/y0} | ... | Rn{s[p̂n]/yn} | s : ∅) [Link]

s[p̂]!〈q̂, v〉; R | s : h −→ R | s : h · (p̂, q̂, v) [Send]

s[p̂]⊕ 〈q̂, l〉; R | s : h −→ R | s : h · (p̂, q̂, l) [Label]

s[p̂]?(q̂, x); R | s : (q̂, p̂, v) · h −→ R{v/x} | s : h [Recv]

s[p̂]&(q̂, {li : Ri}i∈I) | s : (q̂, p̂, li0) · h −→ Ri0 | s : h (i0 ∈ I) [Branch]

Fig. 2. Reduction rules

in each iteration and composes them in parallel. Otherwise R denotes an end-point
behavior that [Succ] iterates when the session has been established.

A session is established among processes via shared channels (a) that denote public
points of communication. At this point, every role has been instantiated into processes
and the computation follows over value principals. The rule [Link] invokes a session
between n peers by generating a fresh session channel s to perform a series of commu-
nications and the associated empty session queue, and substitutes the channel into the
processes scope. The identity of each principal within a session is represented by the
label p̂ in the session channel s[p̂]. The n-party synchronisation captures a handshake
among the n participants to establish a n-party link in real-world protocols. The [Send]
and [Label] rules insert a message in the tail of the session queue. The receiving rule
[Recv] removes a value message of the same sender, as the one specified in the receiv-
ing construct, from the head of the queue, and substitutes it in the process. The [Branch]
rule removes from the queue a label message of the same sender, as the ones specified
in the branching construct. The result of the rule is the process following the label.

Ring. The Ring pattern, described in the introduction, consists of n+1 workers (named
by W) where each has exactly two neighbours: the worker W[j] communicates with the
workers W[j−1] and W[j+1] (1≤j≤n−1), with the exception of W[0] who communicates
with W[n] and W[1], and W[n] with W[n−1] and W[0]. Due to the enumeration of workers in
a non-modular arithmetic, the Ring has three distinct roles: Starter, represented by W[0],
Middle, represented by W[j], and Last, represented by W[n]. To ensure the presence of all
three roles in a session, we set the number of participants to n≥2 but we do not set any
upper-bound, which would be the case in the previous work [21]. Below, we provide
the main program and roles of the Ring:

def W = R W[n] λi.λX.W[i + 2], X (n− 2)

Starter � ā[W[0], W[1], W](y).y!〈W[1], v〉; y?(W[n], z); R
Middle(i) � a[W[i + 1]](y).y?(W[i], z); y!〈W[i + 2], z〉; R′

Last � a[W[n]](y).y?(W[n− 1], z); y!〈W[0], z〉; S
Ring � λn.((R Starter | Last λi.λX.Middle(i) |X) (n− 1))

Practical Parameterised Session Types 275

where W denotes the parameterised list of principals W[2], ..., W[n] mathematically repre-
sented through the R operator, and Starter and Last are parameterised by n and Middle
by i. Middle is composed in parallel with the process variable X that is used as a place-
holder of processes generated in each iteration; in the last iteration for n=0, X will be
replaced with processes of Starter and Last.

Below, we give the implementation of the Starter role in Java. The role is naturally
implemented in a particular class and so would the other roles, avoiding the MPI style
of programming Single Program Multiple Data.

public class Starter{
public Starter(int port_l, String host_r, int port_r){

// Set up the sockets for the pattern.
ServerSocket serverSocket = null;
Socket clientSocket = null;
PrintWriter out = null;
BufferedReader in = null;
try{

serverSocket = new ServerSocket(port_l);
clientSocket = new Socket(host_r, port_r);
out = ...; // Init. the output stream on clientSocket.
in = ...; // Init. the input stream on serverSocket.
// Exchange messages with neighbors.
out.println("1");
String m = in.readline();
... // close streams and sockets, capture exceptions.

}
}

The class Starter, similarly to the role, provides a communication abstraction of the
session object that will be generated at run-time given the values for the parameters
port_l, host_r, port_r. The parameters abstract the neighbors’ address and ports,
similarly as n in the role definition. The feature that does not match the Java model with
that of our calculus is the communication abstraction. Java uses client-server sockets as
communication abstraction, while in our calculus, we use session channels s to define
communication between a group of processes, including the n-party handshake. Thus, a
Java library that supports communication over a group of processes, would provide the
proper features to model roles and session channels, therefore the proper framework to
implement parameterised session types.

3 Global Types

Global types [16] describe the interaction structure of a fixed number of processes from
a global point of view. With parameterised session types, a global type can describe the
communication pattern of an arbitrary number of participants.

3.1 Global Types for Parameterised Communication Patterns

Figure 3 gives the syntax of global types. A message of type U is exchanged between
two principals, p → p′ : 〈U〉.G, where p and p′ are respectively the sender and the

276 A. Bejleri

G ::= Global types
| p→ p′ : 〈U〉.G Message
| p→ p′ : {li : Gi}i∈I Branching
| μt.G Recursion
| t Rec. type var.

| R G λi.λx.G′ Primitive recursion
| x Primitive rec. type var.
| G t Application
| end End

p ::= p[i] | N Principals
i ::= t | i | n ∗ i | t± i Index expr.
t ::= n | n | t op n | nt Par. expr.

N ::= Alice | Worker | . . . Participants
U ::= V | T Message type
V ::= bool | nat | .. | 〈G〉 Value type

Fig. 3. Global types

receiver. Branching is defined over labels which identify the paths of a conversation,
p → p′ : {li : Gi}i∈I ; i.e. participant p internally chooses one of the labels li enumer-
ated by I and then sends it to participant p′ and the conversation follows Gi. Infinite
behavior is represented by recursively defined global types μt.G. end signifies the end
of a conversation.

The R operator is added to the syntax of global types to describe communication
patterns of an arbitrary number of principals, as in the previous work. The parameters
that abstract the number of participants are bound by the binders in the lambda expres-
sions of roles, since both global type and roles are part of the program definition. This
contrasts the design of the previous work where a special binder Π is introduced in the
global type syntax, prohibiting syntactically the relation between the number of partic-
ipants in global types and programs. Throughout the paper we will refer to primitive
recursive global types as product global types, as they abstract all instances of the pa-
rameterised global type. The infinite set of instances generated from the R operator can
be understood through the two reduction rules:

R G λi.λx.G′ 0−→G
R G λi.λx.G′ (n + 1)−→G′{n/i}{(R G λi.λx.G′ n)/x}

For each natural, we obtain a global type by applying the two rules. In each iteration,
the index variable in G′ is substituted by a predecessor of n+1 and x is replaced by
instances of the parameterised causalities present in G′, except 0 when x is replaced by
instances of G.

Principals p, p′, q, .. include primitive participantsAlice, Bob, ... and indexed prin-
cipals defined over one or multiple index expressions W[i], W[i+1][j+1], Index ex-
pressions i are represented by parametric linear functions, where n ranges over naturals,
i ranges over index variables and t ranges over parametric expressions. Parametric ex-
pressions range over variables n, naturals n, arithmetical operations (t+n, t−n, t∗n)
and exponentiation of base natural. The index expressions of the previous work [21] are
more general than in this system, including a more sophisticated mathematical defini-
tion and more than one index variable per index expression. This expressivity comes at
the cost of having values of parameters to range over finite sets of naturals in the con-
servative type system. Our design of index expressions as parametric linear functions
comes from the observation that the information flow follows a straight line, neither a
curve nor other forms of line, in the patterns/virtual-topologies we have studied so far,
namely Ring, Star, Tree and Mesh. For simplicity and without reducing the practical

Practical Parameterised Session Types 277

T ::= !〈p, U〉; T Output
| ?〈p, U〉; T Input
| ⊕〈p, {li : Ti}i∈I〉 Selection
| &〈p, {li : Ti}i∈I〉 Branching
| μt.T Recursion

| R T λi.λx.T ′ Primitive Recursion
| T t Application
| x Primitive Recursion Variable
| t Recursion Variable
| end End

Fig. 4. Role types

expressiveness of our system, we have designed index expression to have at most one
parameter n. A type U ranges over primitive (bool, nat, ...) and global types (〈G〉), and
role types (T) (see Figure 4).

3.2 Ring and Tree Communication Patterns

We illustrate how the formal model of this work can represent various communication
patterns such as Ring and Tree.

Ring pattern The global type of the Ring, described in the introduction and Section
2, is defined below. The causality W[n−j−1] → W[n − j] : 〈U〉 abstracts the repetitive
behavior of the pattern from 0 to n, while W[n]→ W[0] : 〈U〉 completes the Ring pattern.
The type specifies that the first message is sent by W[0] to W[1] for j=n−1, and the last
one is sent by W[n] back to W[0] for n=0.

R W[n]→ W[0] : 〈U〉.end
λj.λy.W[n−j−1]→ W[n− j] : 〈U〉.y n

Tree pattern. The Tree pattern consists of 2n+1−1 workers organized in a binary tree.
The global type below specifies a message exchange between a parent and its children.

0

����
��

�

		�
��

��

1

����
��

�

��

2

		�
��

��

��
3 4 5 6

.

R end λj.λy.W[j]→ W[2∗j+1] : 〈U〉.
W[j]→ W[2∗j+2] : 〈U〉.y (2n−1)

A tree has three kinds of nodes: root, internal and leaf. The principal running on the
root sends a message to its children; the ones on internal nodes send a message to their
children and receive a message from their parents; the ones on leaf nodes receive a
message from their parents. The three kind of nodes define three distinct roles of the
Tree. An internal or leaf node is enumerated by an even or odd number, and thus the
mathematical expressions that identify the parent and children of each of these nodes
are different. For this reason, even and odd nodes define two distinct roles in the same
kind of node, internal/leaf. Thus, we have distinguished five roles in the Tree: Root
represented by W[0], OddIn and EvenIn by W[2∗i+1] and W[2∗i+2] (0≤i≤2n−1−2), and,
OddLeaf and EvenLeaf by W[2∗i+1] and W[2∗i+2] (2n−1−1≤i≤2n−2). To ensure the
presence of all five roles in a session, we set n ≥ 2. We only provide three of the Tree’s
roles, relegating the other ones and the main program in [5]:

278 A. Bejleri

Root � ā[W[0], W[1], W](y).y!〈W[1], f(1)〉; y!〈W[2], f(2)〉; R′

OddIn(i) � a[W[2∗i+1]](y).y!〈W[4∗i+3], f(4∗i+3)〉; y!〈W[4∗i+4], f(4∗i+4)〉; y?(W[i], z); R
OddLeaf(i) � a[W[2n−1+2∗i]](y).y?(W[2n−1−1+i], z); S

where f is a function from naturals to U . It is interesting to note that index calculation
in the principals of the global type is less complex than in the ones of the roles. This is
a direct advantage of the global representation of interactions. The type system of this
work statically ensures that the principals in the role’s actions are the same to the ones
specified in the causalities of global types; e.g. for role OddIn, the type system ensures
that the first message is sent to W[4∗i+3]. The problem of index calculation in the roles
of parallel algorithms has been recognized also by the MPI community [14] as a source
of program errors.

4 Type System

This section describes our extension of multiparty’s static type system to support pa-
rameterised sessions. An essential aspect is the preservation of multiparty’s lightweight
type annotations and efficient typing strategy of simply global types.

4.1 Projection, Ordering and R-Elimination

Projection. A global type’s projection onto the principals of roles produces types (See
Figure 4) that capture the behavior of roles. The given global type is defined on well-
formed indexed principals and parametric expressions are applied only to product global
types, ensured by the kinding judgment Θ;C � G � κ (see [5]). A well-formed
principal, ensured by the judgment C � p, is either a participant or an indexed principal
where the set of values of each index expression is defined over naturals.

Definition 4.1. Given global type G, principal q, and the context C of parameter vari-
ables present in G and q, and index variables present in q, if ∅;C � G � κ and C � q
then the projection of G onto q, denoted G� q, is defined inductively on G:

p→ p′ : 〈U〉.G� q =⎧⎪⎪⎪⎨⎪⎪⎪⎩
!〈p′{p = q}, U〉(p); ?〈p{p′ = q}, U〉(p′); (G� q) if C�p=q and C�p′=q,

!〈p′{p = q}, U〉(p); (G � q) if C�p=q,

?〈p{p′ = q}, U〉(p′); (G � q) if C�p′=q,

G � q otherwise

p→ p′ : {li : Gi}i∈I� q =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊕〈p′{p = q}, {li : &〈p{p′ = q}, {li : Gi � q}i∈I〉(p′)
}i∈I〉(p) if C�p=q and C�p′=q,

⊕〈p′{p = q}, {li : Gi � q}i∈I〉 if C�p=q,

&〈p{p′ = q}, {li : Gi � q}i∈I〉 if C�p′=q,

�i∈IGi � q if C�p=q, C�p′=q

∀i, j∈I.Gi � q�	Gj � q
μt.G� q = μt.(G� q) t� q = t end� q = end

R G λi.λx.G′� q = R (G � q) λi.λx.(G′ � q) x� q = x G t� q = (G � q) t

Practical Parameterised Session Types 279

Projection is intuitive and holds some of the technical challenges of this system, which
we discuss in the following paragraphs. In the role types returned, the principal in brack-
ets attached to an action denotes the principal that performs that action, and is used to
sort actions and eliminate the R operator from role types as we shall see later. The
equality between a global type principal p and role principal q is defined as a relation
�p=q over the context C, which ensures that the set of values of p is a subset of the
set of values of q. For space’s sake, we relegate the formal definition of the relation to
[5]. The intuition underlying this design originates from the knowledge that an action
performed by every process of the same role is captured by the same causality in the
global type.

In product global types, an indexed principal can appear in both sides of a parame-
terised causality for different values of the index variable. This occurrence is covered
by the first case of projection for message exchange and branching.

The index variables of principals in global types are different from the ones in roles,
as they are bound by different binders. For this reason, we need to translate the role
types being expressed from global type indexes to role ones. The p′{p = q} operation
substitutes the index variables in p′ with expressions in terms of indexes of q, obtained
by the relation p = q where p and p′ have the same index variables.

In branching, in the case when q is not equal neither to p nor to p′, all inductive
projections of q should return an identical role type up to mergeability �	. The notion of
mergeability is introduced in [12] as an equivalence relation over role types. Intuitively,
two different & role types are mergeable if denoted by different labels; e.g. the projec-

tion of global type W[1] → W[2] :

{
true : W[2]→ W[3] : {true : G,

false : W[2]→ W[3] : {false : G′ onto W[3] returns

&〈W[2], {true :G � W[3], false:G′ � W[3]}〉, where G � W[3]�= G′� W[3].

Proposition 4.2. The relation C � p = q is decidable.

Theorem 4.3. The projection of a global type onto principals is decidable.

Proof. Straightforward from Proposition 4.2.

Ordering and R-elimination. Actions in the role types, returned by projection, are
sorted to preserve the order of appearance in all instances of a parameterised global
type. We can note from the first case of projection in the message global type, that
the order of actions is not preserved; i.e., the sending action is always placed before
the receiving one. However, the appearance order of actions is not broken only in the
projection of a causality, but also in the sequential composition of other actions returned
by projection. The reason behind this is that the order of actions depends on the order
of principals performing those actions.

Definition 4.4. The appearance order relation between two actions (order) is defined
as the appearance order of the principals performing those actions:

order(!/?2〈p1, U〉(p′1), !/?〈p2, U
′〉(p′2)) iff order(p′1, p′2)

order(⊕/&〈p1, {li:Ti}i∈I〉(p′1),⊕/&〈p2, {li:T ′
i}i∈I′〉(p′2)) iff order(p′1, p′2)

2 !/? denotes either ! or ?.

280 A. Bejleri

Definition 4.5. The appearance order between principals is defined as a lexicographi-
cal order over the index expressions that define them:

order(N [i1]...[ii]...[in],N [i′1]...[i′i]...[i
′
n]) iff order(ii, i′i) for 1 ≤ i ≤ n and

∀j.1 ≤ j ≤ i− 1. C � ij = i′j and C � ii = i′i,
where the appearance order between index expressions in their canonical form is de-
fined as:

order(t−n∗i, t′−n′∗i) iff C � t−n∗i ≥ t′−n′∗i and
order(t+n∗i, t′+n′∗i) iff C � t+n∗i ≤ t′+n′∗i.

The order of index expression is defined on the basis that the value of i decreases in each
iteration of the R global type, resulting in the increase of values for expressions t−n∗i
and the decrease for t+n∗i. Thus, in two expressions of the form t−n∗i, a value will
appear first in the bigger expression for bigger value of i and then in the smaller one for
smaller value of i. And, in two expressions of the form t+n∗i, a value will appear first
in the smaller expression for bigger value of i and then in the bigger one for smaller
value of i. No ordering can be defined for expressions of opposite monotonicity, e.g.
t−n∗i and t′+n′∗i, as some values will appear first in the former and second in latter,
whilst some others vice versa.

The R operator in global types iterates over parameterised causalities and defines
repetitive behavior for non index-parameterised principals. For these principals, we
keep the R operator and the argument applied in the role types, otherwise we elimi-
nate it by composing the two sub-types, and then later the argument. The R-elimination
function is denoted by ξ in the typing rules, formally defined in [5].

4.2 Typing Rules

Figure 5 describes the program typing rules. Γ maps shared names, process names and
type variables to types, while τ represents channel and product types, defined as:

τ ::= Δ |Πn :T.τ |Πi :I.τ Δ::= ∅ |Δ, c:T Γ ::= ∅ | Γ, u:S | Γ, X:S T | Γ, X:Δ

The rules of appealing interest are those for program and session initiation. Rule
�TFUN� augments the context C with mapping for parameter variables and ensures that
the subterm is typed. Rule �TAPPF� checks if the argument applied to the lambda ab-
straction falls in the set of values T, where min(T) represents the minimum value n.
For primitive recursion, we ensure that the sub-terms are well-typed in the augmented
contexts Γ and C. If primitive recursion specifies a repetitive behavior of a role, then
Δ 0 and Δ i+1 return the sub-role type for type-checking of the respective sub-terms.
Otherwise, Δ 0 and Δ i+1 return Δ. The definition of this rule is similar to that of
the previous work, but it does not contain index substitution, simplifying proofs of
the properties. The rule of applying a parametric expression to primitive recursion is
similar to �TAPPF�, but it also ensures that the argument applied is a successor of the
biggest index value. Roles are type-checked by the role types, returned by projection,
sorting and R-elimination. The previous work’s typechecking algorithm [21] uses the
processes types written by programmmers to type-check the processes. The coherence
of processes types with respect to global types is proved by an equivalence algorithm
that uses the sets of parameters’ values to produce instances of product global types

Practical Parameterised Session Types 281

Γ ; C, n : T � E � τ
�TFUN�

Γ ;C � λn.E � Πn :T.τ

Γ ;C � E � Πn :T.τ C � t ≥ min(T)
�TAPPF�

Γ ; C � E t � τ

Γ ; C � S � Δ 0

Γ, X : Δ i; C, i : I � R � Δ i + 1 �TPREC�
Γ ;C � R S λi.λX.R � Πi:I.Δ

C � t Γ ; C � R�
Πi:{i |0≤i≤t−1}.Δ �TAPPR�
Γ ;C � R t � Δ t

Γ � u : 〈G〉 ∅; C � G � Type

C � p0, p1, p C � pid(G) = {p0, p1, p}
Γ ; C � R � Δ, y : ξ(G � p0) �TACC�
Γ ; C � ū[p0, p1, p](y).R � Δ

∅; C � G � Type

Γ � u : 〈G〉 C � p
Γ ;C � R � Δ, y : ξ(G � p) �TREQ�

Γ ; C � u[p](y).R � Δ

Γ ; C � e � S Γ � R � Δ, c : T
�TOUT�

Γ ;C � c!〈p, e〉;R � Δ, c :!〈p, S〉; T
Γ, x : S; C � R � Δ, c : T

�TIN�
Γ ; C � c?〈p, x〉; R � Δ, c :?〈p, S〉; T

Fig. 5. Program and role typing

and processes types. Then, the instances of processes type are checked if they are the
same to the one returned from projection of the global type instance, using multiparty’s
projection algorithm [16]. All the conditions to invoke projection are ensured by �TACC�
and �TREQ�. Rule �TACC� checks also that the set of principals, present in the session,
is the same to the one of global type. The equality relation between the two sets of
principals is defined over the mathematical definition of parameterised list of principals
discussed in Section 2, missing from the previous work.

Rules �TOUT� and �TIN� ensure that the sub-terms are typed and check if the princi-
pal in the primitives is the same as the one in the role-types. Other standard rules lookup
for type variables in Γ , and type branching, hiding, inaction and parallel composition.

Properties. In this paragraph, we state type preservation for the formal system pre-
sented in this paper. The full proof is given in a companion technical report [5].

Theorem 4.6 (Type Preservation). If Γ ;C � E � τ , and E → E′, then there exists
τ ′ where τ ⇒ τ ′, such that Γ ;C � E′ � τ ′.

Proof. By induction over the derivation of E → E′. The proof relies on standard sub-
stitution lemmas. Reduction of types τ ⇒ τ ′ reflects reduction of processes in presence
of application, and sending and receiving of values/labels.

Although, we do not have a formal proof, we believe the system satisfies the standard
progress property. Indeed, our system benefits the proof of progress for well-typed pro-
cesses willing to start a session from Bettini et al. [7]. To complete the proof, we need
to ascertain that a well-typed program reduces to the above processes and that a well-
typed iterative behavior reduces further. We leave the proof of progress for future work.
The previous system provides progress for the formal model.

282 A. Bejleri

5 Real-World Examples

Jacobi Solution of the Discrete Poisson Equation [14]. Poisson’s equation is widely
used in many areas of the natural sciences. Jacobi’s method converges on a solution by
repeatedly replacing each element of the input grid by an adjusted average of its four
neighbouring values. The grid can be divided up and the algorithm is performed on each
subgrid in separate processes. Neighbouring processes must exchange their subgrid
boundary values (ghost-points) as they are updated. We illustrate a two-dimensional
(mesh) decomposition of the grid into n∗m processes, where n,m≥2. The process on
the (n,m) subgrid, top right corner, controls the termination condition for all processes
and sends the first message in the mesh. The global type for the said interactions is:

Jacobi � μt.W[n][m]→ W[n][m − 1], W[n− 1][m] : {true : iterate,false : return}.

The stopping condition is propagated in the processes following the pattern of the dia-
gram below. Next to it, the global type (iterate) for propagating the true label.

��

��

�� . . . ��

��

��

�� . . . ��

:

��

. . .

�� �� . . . ��

1. R
2. R (R ghst–pnt λk:I′.λz.W[0][k+1]→ W[0][k]:{true:z} m)
3. λi : I.λx.
4. (R W[i+1][m]→ W[i][m]:{true:x}
5. λj:I′.λy.W[i+1][j+1]→ W[i+1][j]:{true:y}
6. m)
7. n−1
8. λl:I.λw.W[n][l+1]→ W[n][l]:{true:w} (m−1)

Propagation of the label in the top row, is described in the causality of line 8, in all the
rows, except top and bottom, line 5, in the leftmost column in line 4 and in the bottom
row, line 2.

Each process maintains a copy of the boundary values of its neighbours and ex-
changes them on each iteration of the algorithm. The diagram below portrays how these
values are exchanged between the processes, followed by the global type (ghst–pnt).

��

��

 ��

��

. . . ��

��

��

��

��

��

��

��

 . . . ��

��

��

:

��

��

:

��

��

. . . :

��

��

��

��

��

��

 . . . ��

��

1. R (R conv–data λk:I′.λz.W[0][k + 1]↔ W[0][k]:〈U〉 m)
2. λi:I.λx.
3. (R W[i + 1][0]↔ W[i][0]:〈U〉.x
4. λj:I′.λy.W[i + 1][j + 1]↔ W[i][j + 1]:〈U〉.
5. W[i + 1][j + 1]↔ W[i + 1][j]:〈U〉.y
6. m)
7. n

p ↔ p′:〈U〉 is a shortcut for p → p′:〈U〉.p′ → p:〈U〉. The exchange of ghost-points in
all the rows and columns, except the leftmost column line 3 and bottom row line 1, is
described in the causalities of line 4 and 5. The full definition of the global type and
roles is given in [5].

Group Diffie-Hellman with Complete Key Authentication Protocol [4]. The Diffie-
Hellman protocol is used in password-authentication key agreement and public key
infrastructure. Every group Mi (0<i<n) generates and encrypts a random exponent,
that together with the data received from Mi−1 is then sent to Mi+1. Lastly,Mn receives

Practical Parameterised Session Types 283

the data from Mn−1, computes the group key and broadcasts it to all other parties. The
global type of the protocol is defined as:

R (R end λk : I.λz.M[n]→ M[k] : 〈key〉.z n) //Broadcasting the group key
λi : I.λx.M[n− i− 1]→ M[n− i] : 〈data〉.x n //Exchanging data on a line pattern

This protocol is modelled in a system of contracts [13]. In that model, an extra private
channel is used by the last group Mn to send the key to every other group. The private
channel is forwarded between the groups through delegation. A condition is added to
the protocol description to check whether the key is sent to every group or not.

In our model, we do not need an extra private channel to send the key, as communi-
cations between parties of a session are always defined over private channels. Also, we
do not need to add a condition that checks whether the key is sent to every group as this
is granted by the semantics of the R operator.

6 Related Work

The idea of parameterised session types originated from our previous research on inves-
tigating the expressivity of session types for parallel algorithms [6]. This idea has been
modelled recently in our work [21], which differences with this system were discussed
in the introduction and throughout the paper.

Our formal system is modelled after Bettini et al. [7], a simpler version of Honda et
al. [16], which difference was discussed at the beginning of Section 2; none of these
systems are expressive enough to model parameterised communication patterns. The R
operator used in the initial and present work was introduced by Gödel in System T [1].
The idea of using the R operator comes from Nelson’s work on adding primitive recur-
sion to the lambda calculus [17]. As a result, his system can type functions previously
untyped in ML. Our use of the R operator models parameterised sessions.

Session types were first introduced by Honda et al. [15,19] to capture the interac-
tion structure of two processes. Their type system checks whether for each “send” on
one process corresponds a “receive” on the other and vice versa. Honda et al. [16]
extended their system from two-parties to n-parties. Using an intuitive syntax, they
introduced a notion of global type to describe the interaction structure of n processes
from a global viewpoint. Multiparty session types have been studied also by Bonelli and
Compagnoni [8]. Their type system is defined over binary session types, obtained by
projecting processes local types onto principals. Session types have been used to type
service-oriented multiparty communications [9]. The calculus proposed permits com-
munications inside and outside a session to model merging of two running sessions.
Type safety and progress properties are not provided for the formal model.

Contracts [13] are another typing model of mobile processes, defined over processes
as behavioral types and not over channels as session types [7]. Consequently, they can
well-type more correct programs than session types. However, the expressiveness of
the type system comes at a practical cost. Contracts have no intuitive syntax as global
types and no iterative construct as in our system. Thus, they do not provide a practical
model to design a programming language that supports communication and elegantly
expresses parameterised communication patterns; e.g. the key exchange protocol (Sec.
5) has been augmented with additional interactions to check the end of a send-iteration.

284 A. Bejleri

The conversation calculus [11] is based on boxed ambients [10] and not in the π-
calculus as session types are. Typing is similar to the one of contracts and thus the
system carries the same disadvantages when compared to session types. The calculus
models dynamic joining and leaving of participants within a session.

Behaviors [2,18] describe the communication behaviour that captures the causal con-
strains of a concurrent program through terms of a process algebra, similarly to con-
tracts. An implementation [3] of their system for deriving behaviors is provided for
CML programs, where their notion of communication pattern, expressed using behav-
iors, is similar to our notion of role type. Behaviors have a similar typing discipline as
contracts, thus they lack the same features of session types as contracts do.

7 Conclusions and Future Work

This paper presented a practical design of parameterised session types. The idiom of
roles has the same design as classes in class-based languages, offering a practical con-
cept on how to incorporate parameterised session types into mainstream languages such
as Java and C#. This contrasts with the amorphous design of the previous work of
parameterised session types. The static type system here follows the efficient typing
strategy and programming methodology of multiparty session types: programmers first
define the global type of the intended pattern and then define each role of it; roles
are then validated through projection of the global type onto the principals by type-
checking. This contrasts with the heavyweight type annotated programs in the previous
work, where programmers write the processes types, in addition to the global type, for
type-checking. Also, the coherence of the processes types with respect to the global
type is provided through a type equivalence relation. The system here allows values of
parameters to range over infinite sets of naturals to provide full computation power of
programs that implement parameterised communication patterns. This contrasts with
the conservative system of finite sets used by the previous work. We presented a series
of examples illustrating the practical utility and effectiveness of this system, including
the control of index calculation in roles, one of the main source of errors in MPI.

The next step in developing this work is the implementation of the model as a library
of a mainstream language, where session channels can be implemented as commu-
nicators in MPI (e.g. MPI COMM WORLD)—communication abstraction for a group
of processes. We believe that a communication-safe library of parameterised sessions
would increase productivity in parallel algorithms, web-services and other distributed
applications. From a theoretical perspective, there are several ways to extend the current
system. The index expressions in principals can be extended to richer mathematical op-
erations such as congruence and a more expressive form of exponentiation, preserving
the decidability of the type system. More dynamic concepts such as joining and leaving
of participants within a session are of interest in web-services and cloud management
systems design.

Acknowledgements. I thank Nobuko Yoshida for helpful technical discussions on this
material, and Dave Clarke, Iain Phillips, Raymond Hu, Andrew Farell and the anony-
mous reviewers of Coordination and ICFEM for comments on an earlier version of this
paper.

Practical Parameterised Session Types 285

References
1. Alves, S., Fernandez, M., Florido, M., Mackie, I.: Gödel System T revisited. Theoretical

Computer Science 411(11-13), 1484–1500 (2010)
2. Amtoft, T., Nielson, F., Nielson, H.R.: Type and behaviour reconstruction for higher-order

concurrent programs. J. Funct. Program. 7(3), 321–347 (1997)
3. Amtoft, T., Nielson, H.R., Nielson, F.: Behaviour analysis for validating communication pat-

terns. Software Tools for Technology Transfer 2(1), 13–28 (1998)
4. Ateniese, G., Steiner, M., Tsudik, G.: Authenticated group key agreement and friends. In:

CCS, pp. 17–26. ACM, New York (1998)
5. Bejleri, A.: Practical Parameterised Session Types. Tech. Report DTR10-7, Imperial College

(2010), http://www.doc.ic.ac.uk/˜ab406/papers/param.pdf
6. Bejleri, A., Hu, R., Yoshida, N.: Session-based programming for parallel algorithms: Ex-

pressiveness and performance. In: PLACES 2009. EPTCS, vol. 17, pp. 17–29 (2010),
http://www.doc.ic.ac.uk/˜ab406/parallel_algorithms.html

7. Bettini, L., Coppo, M., D’Antoni, L., Luca, M.D., Dezani-Ciancaglini, M., Yoshida, N.:
Global progress in dynamically interleaved multiparty sessions. In: van Breugel, F., Chechik,
M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer, Heidelberg (2008)

8. Bonelli, E., Compagnoni, A.: Multipoint session types for a distributed calculus. In: Barthe,
G., Fournet, C. (eds.) TGC 2007 and FODO 2008. LNCS, vol. 4912, pp. 240–256. Springer,
Heidelberg (2008)

9. Bruni, R., Lanese, I., Melgratti, H., Tuosto, E.: Multiparty Sessions in SOC. In: Lea, D., Za-
vattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 67–82. Springer, Heidelberg
(2008)

10. Bugliesi, M., Castagna, G., Crafa, S.: Access control for mobile agents: The calculus of
boxed ambients. ACM Trans. Program. Lang. Syst. 26(1), 57–124 (2004)

11. Caires, L., Vieira, H.T.: Conversation types. In: Castagna, G. (ed.) ESOP 2009. LNCS,
vol. 5502, pp. 285–300. Springer, Heidelberg (2009)

12. Carbone, M., Yoshida, N., Honda, K.: Asynchronous session types: Exceptions and multi-
party interactions. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS,
vol. 5569, pp. 187–212. Springer, Heidelberg (2009)

13. Castagna, G., Padovani, L.: Contracts for mobile processes. In: Bravetti, M., Zavattaro, G.
(eds.) CONCUR 2009 - Concurrency Theory. LNCS, vol. 5710, pp. 211–228. Springer, Hei-
delberg (2009)

14. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the
Message-Passing Interface. MIT Press, Cambridge (1999)

15. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines for
structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

16. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In: POPL
2008, pp. 273–284. ACM, New York (2008)

17. Nelson, N.: Primitive recursive functionals with dependent types. In: Schmidt, D., Main,
M.G., Melton, A.C., Mislove, M.W., Brookes, S.D. (eds.) MFPS 1991. LNCS, vol. 598, pp.
125–143. Springer, Heidelberg (1991)

18. Nielson, H.R., Nielson, F.: Higher-order concurrent programs with finite communication
topology (extended abstract). In: Proceedings of the 21st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 1994, pp. 84–97. ACM, New York
(1994)

http://www.doc.ic.ac.uk/~ab406/papers/param.pdf
http://www.doc.ic.ac.uk/~ab406/parallel_algorithms.html

286 A. Bejleri

19. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing system.
In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.) PARLE 1994. LNCS,
vol. 817, pp. 398–413. Springer, Heidelberg (1994)

20. Web Services Choreography Working Group: Web Services Choreography Description
Lang., http://www.w3.org/TR/ws-cdl-10-primer/

21. Yoshida, N., Denielou, P.-M., Bejleri, A., Hu, R.: Parameterised multiparty session types. In:
Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 128–145. Springer, Heidelberg (2010)

http://www.w3.org/TR/ws-cdl-10-primer/

A Formal Verification Study on the Rotterdam
Storm Surge Barrier

Ken Madlener1, Sjaak Smetsers1, and Marko van Eekelen1,2

1 Institute for Computing and Information Sciences (iCIS),
Radboud University Nijmegen, The Netherlands

2 School of Computer Science, Open University of the Netherlands
{k.madlener,s.smetsers,m.vaneekelen}@cs.ru.nl

Abstract. This paper presents the results of the validation and verifi-
cation of a crucial component of BOS, a large safety-critical system that
decides when to close and open the Maeslantkering, a storm surge bar-
rier near the city of Rotterdam in the Netherlands. BOS was specified in
the formal language Z and model checking has been applied to some of
its subsystems during its development. A lightweight model of the C++
code and the Z specification of the component was manually developed
in the theorem prover PVS. As a result, some essential mismatches be-
tween specification and code were identified. We have also validated the
Z specification itself by the use of challenge theorems, to assess particular
design choices. Tools have been used to exhaustively search for inconsis-
tencies between the original specification and the challenge theorems,
which led to deeper issues with the specification itself.

Keywords: safety-critical systems, lightweight formal methods, PVS,
validation of specifications, Z.

1 Introduction

Humans increasingly rely on automation, the advantage being that a computer
can make unprejudiced decisions, not being influenced by mood or other condi-
tions. It is therefore often considered to be safer to let a computer be in control.
A study showed that this is the case for the Maeslantkering, a storm surge bar-
rier near the Dutch city of Rotterdam. The barrier consists of two hollow floating
walls, connected by steel arms to pivot points. Each of these arms is as large
as the Eiffel Tower. The barrier operates fully autonomously and is therefore
sometimes called the largest robot in the world.

A control system called BOS (Dutch: Beslis & Ondersteunend Systeem) makes
the decisions about closing and opening the barrier. This system was devel-
oped by Logica Nederland B.V.1 for Rijkswaterstaat (RWS) - a division of the
Dutch Ministry of Transport, Public Works and Water Management. When BOS

1 Called CMG Den Haag B.V. at the time of the development of BOS.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 287–302, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

288 K. Madlener, S. Smetsers, and M. van Eekelen

predicts that the water level will rise so high that it could flood the city of Rot-
terdam, it has the responsibility to close the barrier. This makes BOS a safety-
critical system. On the other hand, Rotterdam is a major port, so the barrier
should close only when really necessary. Unnecessarily closing the barrier costs
millions of Euros because of restricted ship traffic.

It is often loosely said that even computers make mistakes. Verification and
validation efforts must be undertaken to reduce the severity of this risk. The
IEC61508 standard [3] recommends the use of formal methods for safety-critical
systems. The BOS project adhered to the standard by using the formal language
Z [14] in combination with the ZTC type checking tool [4] for specification. Some
of its subsystems have been model checked using SPIN [1]. This level of formal
support during the development turned out to be a cost-effective approach for
the BOS project [15]. The system has been in operation since 1997 and a test
closure is performed annually. On November 11th, 2007 BOS closed the barrier
on its own for the first time because of a combination of high tide and storm.

With the advent of theorem provers and powerful decision procedures, more
rigorous approaches to formal verification come within reach, even for large soft-
ware systems such as BOS. The Nuclear Research and consultancy Group (NRG)
and RWS commissioned Radboud University Nijmegen a 3-month project to do
a case-study in applying formal verification to a part of BOS. NRG’s field of
operation is nuclear applications, where safety standards are even higher. Their
objective was to investigate if formal verification can increase confidence in the
safety of software. The conducted work is carried out on a crucial component
of BOS selected by experts at RWS and Logica of 800 lines of sequential C++
code. The code has been verified against the existing Z specification, and the
specification itself has been validated.

Given the man hours available for the actual verification and validation work
in the project (roughly 2 months, one PhD student), the task was challenging
and presented several hurdles that had to be taken. Since the code had not been
formally verified before, there was no strict correspondence between code and
specification. To make the two fit together and to isolate the selected component,
an understanding of the code that goes deeper than what is written in the formal
specification is required. The formalization has been carried out in the PVS
theorem prover [9] by means of a manually developed lightweight semantics.

The development of the BOS system is an effort linking several disciplines.
This induces the risk of interface problems caused by misunderstandings that
undermine robustness. Because a specification is the result of a translation of
the designer’s intuition into a formal language, it can not be formally verified.
We were nevertheless able to semi-systematically validate the specification with
the help of challenge theorems. A challenge theorem is a property that from the
point of view of the person performing the validation is plausible and should
hold. With our understanding of the domain we were able to formulate several
challenge theorems. PVS and its testing features enabled us to discover some
extreme situations in which the component might behave suspiciously.

A Formal Verification Study on the Rotterdam Storm Surge Barrier 289

The main contribution of this paper is an exposition demonstrating how
lightweight modeling of industrial C++ code may enable one to find mismatches
between specifications and code, based on a concrete case-study. Although we are
confident that our PVS model faithfully reflects the semantics of the source code,
future projects that verify safety-critical software may desire formal guarantees.
We sketch an approach in this paper to resolve issues regarding the connection
between the modeled semantics and the true semantics of the component as fu-
ture work. This paper also demonstrates how challenge theorems can assist one
in validating specifications.

This paper is organized as follows. Section 2 gives a description of the selected
component. The model is described in Section 3. Validation of the specifications
is discussed in Section 4. The case-study is evaluated in Section 5. Related work
is discussed in Section 6 and future work on ensuring correspondence between
model and executed code is discussed in Section 7. Section 8 concludes.

2 The Considered Component: DEW

BOS makes decisions based on water level predictions computed from hydrolog-
ical and meteorological information. When the expected water levels are consid-
ered to be too high, then it starts the procedure to close the barrier: commands
to a system that operates the valves, pumps and motors of the barrier are sent
and authorities are informed (via fax and pager). While in operation, BOS runs a
script that continuously makes calls to native functions (written in C++). These
functions can be categorized into sending out a command, a status request and
a request for a decision. The component we consider in this study, determine
excessive water level (DEW), is one of the functions that make the decisions.

A system called SOBEK, developed by Delft Hydraulics2, generates the water
level predictions. It computes model-based predictions for the next 24 hours
in steps of 10 minutes for three physical locations: Rotterdam, Dordrecht and
Spijkenisse (these are cities in the Netherlands). With each call, DEW receives a
number of parameters from the script: for each of the locations a maximum water
level and the desired evaluation interval of the predictions. To reduce the load
on SOBEK, predictions are stored in a database. DEW obtains the predictions
from SOBEK via the hydraulic-model evaluator. The model evaluator first tries
to look up the requested prediction in the database, and if it does not exist,
issues a new request to SOBEK.

DEW searches the predictions for a point in time where the maximum water
level at one of the locations is exceeded by the prediction and it raises a flag if
an excess is found. Some threshold is taken into account so that the barrier will
only close when the excess is critical. An excess is considered to be critical when
one of the maximum water levels is exceeded, and 20 minutes later the predicted
water level is at least as high. In all other cases DEW will tell the script not to
close the barrier.

2 Now called Deltares.

290 K. Madlener, S. Smetsers, and M. van Eekelen

Fig. 1. A schematic representation of the relevant BOS components

Particular about the script language is that it works with lifted values. For
example, a boolean in the script can be either true, false or undetermined.
This also goes for the three maximum water levels and evaluation period provided
by the script.

2.1 Z Specification

The Z specification of DEW, the decision component, is composed of a number of
Z schemas using the standard Z operators piping (>>) and disjunction (∨). For
presentation purposes we have translated the original Dutch names to English
and slightly simplified the formulas. The main schema consists of the following
composition:

DEW == SetEvaluationParams >> DetModelEvaluation >>
(EvaluationFailed ∨ CoreDEW)

SetEvaluationParams puts the parameters from the script into the appropriate
form. The output is passed on using the piping operator to DetModelEvaluation,
which specifies the behavior of the hydraulic-model evaluator. If DetModelEval-
uation is successful, then the schema CoreDEW is chosen, where the real work
of DEW takes place, otherwise, EvaluationFailed is chosen.

Schema CoreDEW. For reasons of space we omit some of the Z definitions of the
notions introduced below. The schema CoreDEW takes two input parameters:
LocList and Interval. LocList is a partial function from locations to a maximum
water level (it is partial because sometimes not all locations have a determined
maximum water level). The prediction data is obtained from an external schema
that represents the model evaluator. This is represented as a table of records
LocSeqs (for predictions sequences per location) in which each record consists
of a location l (which corresponds to a location in the domain of LocList), a

A Formal Verification Study on the Rotterdam Storm Surge Barrier 291

prediction vals (a function mapping time to the predicted water level), and a
point in time TBegin at which the prediction starts. Both time and water levels
are represented as natural numbers. The result of CoreDEW consists of a flag
Excess indicating whether an excess will occur, and a point in time ExpTime
corresponding to the first critical excess. Since it may be the case that such a
critical excess does not exist (even if Excess is true), this value is lifted. The
condition for the existence of an excess is defined in the design document as:

return!.Excess =
if (∃ s : LocSeqs; l : dom LocList; i : N •

i ∈ 1..(#s.vals) ∧ s.loc = l ∧ (s.vals i).val > (LocList l))
then ExDet true else ExDet false

It says that if there is an index i in the domain of s.vals which is greater than the
maximum water level at location l given by LocList l, then there is an excess,
otherwise there is no excess.

Critical excesses are excesses such that 20 minutes later the water level is
at least as high. (In the BOS documentation these are therefore called non-
decreasing excesses.) The critical excesses have to lie within the predetermined
evaluation interval. The starting time is obtained by taking the minimum of
begin times of all locations.

TStart == min {l : LocSeqs • l.TBegin}

For the sake of completeness, we also give the definition of the existence of a
critical excess. The details, however, are not important for the rest of this paper.

let ExcessTimes ==
{s : LocSeqs; l : dom LocList; i : N | i ∈ 1..(#s.vals)− 2 ∧
s.loc = l ∧ (s.vals i).val > (LocList l) ∧
(s.vals (i + 2)).val ≥ (s.vals i).val •

TStart + (i− 1) ∗ 10} ∩ Interval •
(ExcessTimes = ∅ ⇒ return!.ExpTime = EtUndet) ∧
(ExcessTimes �= ∅ ⇒ return!.ExpTime = EtDet(min ExcessTimes))

In the above, the indices i of critical excesses are mapped to absolute time
(using Z’s set comprehension notation). The resulting set is intersected with the
evaluation interval and checked to be nonempty. Recall that for an excess to be
critical, the water level has to be 20 minutes later at least as high (hence, i+2).

A careful reader might have noticed two issues with the above specification.
First of all, it might seem suspicious in the first definition the interval is not
taken into account. This is a correct observation. Secondly, TStart is chosen
to be the first TBegin time of all selected prediction sequences. In ExpTime,
TStart is then used as the same offset for every prediction sequence, even if it
has a different TBegin. Both issues have been resolved in the C++ code. In order
to be able to prove consistency between Z specification and C++ code, we have
fixed these flaws in the Z specification (see Sections 3.2 and 3.3).

292 K. Madlener, S. Smetsers, and M. van Eekelen

3 Formal Analysis

In this section we describe how a model has been created out of the code of DEW
and how it was checked and proved to be consistent with the specification. The
use of C++ in BOS is according to “safe” coding guidelines (see e.g. [2]); there was
no heavy use of object orientation, no pointer arithmetic, etc. This permitted us
to develop a lightweight PVS model of the C++ code. The PVS theorem prover
was chosen for the very practical reason of locally available expertise. There exist
theorem provers for Z such as Z/Eves [11], but our focus is on the development
of a lightweight semantics of the component’s C++ code and the Z specification
could easily be transliterated into PVS. In short, PVS is based on higher-order
logic with dependent types and predicate subtyping. We do however not make
extensive use of these distinctive features of PVS and we believe that many other
theorem provers would also suit the job.

3.1 Translation of C++ to PVS

Datatypes. BOS works with lifted types to represent the possibility of informa-
tion being undetermined. A number of subclasses are derived from the C++
class LType to represent these types. Although PVS has a standard facility to
lift types, we model these classes as records to stay close to the original code.
The names of lifted types are prefixed by L as a naming convention.

LType : type = [# fDet : bool #]
LInt : type = LType WITH [# iVal : int #]

Setting the value of a lifted integer to 5, i.e. li.Set(5), would be modeled using

LInt_Set(i : int): LInt = (# fDet := TRUE, iVal := i #)

as s WITH [somevar := LInt_Set(5)], where s is the current state. Whenever
a set-function is used, the determined-flag is automatically set to true. We model
C++ integers as unrestricted integers in PVS.

Functions. The C++ functions have been translated into separate PVS theories
carrying the same names and taking the same arguments. Arguments that are
passed on by reference are modeled by making local PVS variables (using LET
... IN) of the function arguments before the beginning of the function body
and then updating the returned variables at the end of the function body. For
example, the header of the C++ function CoreDEWC (corresponding to the Z
schema CoreDEW)

static flag CoreDEWC (
const LInt [] cLocList, // in
const Interval& cInterval, // in
flag& Excess, // out
LTime& ExpTime // out

)

A Formal Verification Study on the Rotterdam Storm Surge Barrier 293

is translated into a PVS function of type

CoreDEWC_pvs (
cLocList: [Loc → LInt],
cInterval: Interval

) : [flag, flag, LTime]

The representation of the type Interval closely follows the declaration in C++.
This works for functions have no side-effects. The functions were all annotated
with in/out flags, so these kind of conversions were straightforward (but, indeed,
not formally sound). Each function has been modeled as a separate PVS theory.

In PVS, functions are always total. If PVS is not able to deduce totality
by itself, it will generate a proof obligation. This way it is enforced that the
execution model terminates, which was not a problem for the considered code
of DEW.

For-loop. At the heart of DEW’s code lies one for-loop. This for-loop runs
through the prediction for a single location and searches for excesses within
the specified evaluation interval. It makes use of an object s which resembles the
Z defined prediction sequence (see Section 2.1). It also assumes that MaxLevel
contains the maximum water level of location s.loc (selected from the input
parameter cLocList).

for(int item = 0; !ExpTime.IsDetermined () &&
(item < s.GetSize() - 2); ++item) {
if(TLoop >= TBegin && TLoop <= TEnd) {
const int next_wl = s.vals.ElementAt(item).val;
if(next_wl > MaxLevel) {
Excess = TRUE;
// is this a critical excess?
if(s.vals.ElementAt(item + 2).val >= next_wl)
ExpTime.Set(TLoop);

}
}
TLoop += stepsize;

}

TBegin and TEnd are the boundaries of Interval. Note that the outer conditional
corresponds with the intersection in the Z definition of critical excesses. Two
variables are being set: Excess, a boolean which indicates whether an excess
occurs in the prediction, and ExpTime, the first time at which a critical excess
occurs. This for-loop has been modeled as a recursive function. A measure has
to be supplied with a recursive function, which tells PVS that the number of
iterations left at some point will be 0.

3.2 Communication with Hydraulic-Model Evaluator

To reduce the load on the prediction engine, i.e. SOBEK, previously computed
predictions are stored in a database. The hydraulic-model evaluator acts as a

294 K. Madlener, S. Smetsers, and M. van Eekelen

proxy for SOBEK and the database. Calls to the evaluator have to supply the
current evaluation time (of the synchronous script). The evaluator then checks
whether the prediction already exists in the database, and if it is up to date.
If this is the case, it returns the existing prediction. If not, it issues a request
to SOBEK to compute a new prediction. The new prediction is then stored in
the prediction database with a run-id. The prediction itself is not returned by
the evaluator, but only the run-id and a status flag. The request may fail for
several reasons: the time of the prediction requested is invalid, SOBEK is in an
error state, etc. The status flag RunStatus indicates whether the request was
successful. If this flag is true, the specification says we may assume that an entry
with the run-id exists in the database. We have used this informal information
in our PVS model.

From a functional point of view, the model evaluator, SOBEK and the
database can be considered as a single entity. Because we do not verify the
model evaluator, we treat it as something that has arbitrary output (including
its success or failure). The following C++ code obtains the predictions from the
database:

if(!DB.SelectPrediction(loc, Run.Get()))
{ <. . .> /* error */ }
else {
const LocSeq& s = DB.GetLocSeq();
<. . .>

}

The select operation points DB to the right record by changing its internal state.
The actual prediction is obtained in the code by DB.GetLocSeq()and fed into the
for-loop. The code shown above uses the location and run-id (loc, Run.Get())
as a key to return a unique prediction. In the Z specification, the database may
contain several predictions starting at various times. To avoid obvious inconsis-
tencies, we have chosen to change the Z specification so that it also contains
a unique prediction per key. This modification was made in accordance with a
system expert.

To simulate all possible outputs of the model-evaluator (and thereby also
SOBEK and the database), we use uninterpreted variables to represent suc-
cess/failure of the model evaluator and the database output. The correctness
proof has to take every possible value of the variables in account.

RunStatus : bool
Seq : type = [# n: Length, vals: [below(n) → height],

TBegin: Time #]
LocSeqs : [[Loc, nat] → Seq]

The model evaluator is started once per execution of DEW, so we let RunStatus
to be a constant. The C++ functions SelectPrediction and GetLocSeq are
represented in PVS by the the following functions:

DB_SelectPrediction : bool = RunStatus
DB_GetLocSeq(loc: Loc, RunId: nat) : Seq = LocSeqs(loc, RunId)

A Formal Verification Study on the Rotterdam Storm Surge Barrier 295

We do not have an explicit state of DB in the model, so we have to supply loc and
RunId as arguments to DB_GetLocSeq. With this way of modeling we would have
to supply the parameters that initialize a particular object with every function
call that is made on it. This is not a useful solution for code which uses many
objects with internal states, but works well for the code of DEW.

3.3 Verification

The result of a formal verification is either one or more discrepancies between
specification and code or a proof that (model of) the code implements the speci-
fied behavior. It is common that most discrepancies (if there are any) are already
found during the process of modeling. While modeling DEW we found two dis-
crepancies, and we found a third during formal verification itself.

The first problem that was found as a result of modeling is the following.
For regular excesses, the evaluation interval was not being taken into account
in the specification (see Section 2.1), but was in the implementation. This is
a design decision of the implementer which happened to be correct. However,
the fact that the specification was not updated accordingly, suggests that the
implementer was not aware that he was actually fixing something. The second
problem found during modeling had to do with the prediction database. In the
Z specification, the database may store multiple predictions per location and
run-id. In the C++ code, only one prediction per location/run-id is considered
(which is obtained from the database, see Section 3.2). An assumption that we
were not aware of might resolve this issue, but this was not obvious from the
specification nor its guiding text.

The main part of the formal verification itself requires proof of the following
lemma that equates the specification and implementation (as functions):

correctness : LEMMA
∀ (param: CoreDEWIn):

CoreDEWZ_pvs(param) = CoreDEWC_pvs(param)

Both return a triple [flag, flag, LTime] (the return flag, Excess, ExpTime,
resp.) which all have to agree under P and every possible param.

Proof approach. Instead of directly trying to prove the above lemma in PVS,
we chose to first develop a toy model in the model checker SPIN [1] to exper-
iment with. The reason is that when developing non-trivial formalizations in a
theorem prover, often a considerable amount of time is devoted to debugging
specifications and theorems. Using SPIN, we could try out candidate invariants
by putting assert commands in the model code. The number of possible inputs
was incremented until enough confidence in the correctness of the model was
obtained. This essentially comprises playing with the ranges of length, height
and the maximum water levels. While doing so, we found a flaw in the code:
the last two elements of the array containing the predictions are not being taken
into account. After fixing this issue, no other issues were found and the theorem
could be proved in the first attempt with approx. 2000 proof commands.

296 K. Madlener, S. Smetsers, and M. van Eekelen

4 Validation of the Specification

Interaction of components that are developed by engineers of several disciplines
poses the risk of problems with interfacing as a result of misunderstandings. The
standard way to validate a specification is picking different examples of system
behavior allowed by that particular specification, and see if they fit with the
intuition of the designer. This is often infeasible to do exhaustively, hence, this
method is sound, but not necessarily complete.

To assess the design choices made in the specification in a more systematic
way, we have formulated challenge theorems. A challenge theorem is a statement
that from the point of view of the person performing the validation might be
a valid consequence of the specification. By checking the consistency of a chal-
lenge theorem with the existing specification, which may be done automatically
with the help of tools, counterexamples are generated that demonstrate how the
existing specification and the challenge theorem diverge. These examples may
serve as concrete material for discussion with the experts. Accordingly, the ex-
isting specification has to be altered or the domain understanding of the person
performing the validation has to be improved.

Stating the most general system property, and focusing it gradually on DEW
forces us to identify what assumptions we make about other components. For
closing the barrier, these are based on the following general theorems:

– If there will be a flood, then the barrier will be closed in a timely manner.
– If the barrier is closed, there would have otherwise been a flood.

For DEW in particular, this means that we have to assume that the predictions
are correct and if it decides to close the barrier, then this is properly delegated
by BOS as a command to the barrier. The theorems for DEW become:

– If there is an excess in the available predictions that is critical, then DEW
will decide to close.

– If DEW has decided to close, there would otherwise have been a critical
excess.

We have verified in Section 3 that w.r.t. the existing definition of critical excess
that DEW behaves correctly. In Section 4.2 we validate the definition of critical
excess itself.

4.1 Decision Based on Incomplete Information

We have for the moment ignored the possibility of failing sensors. This makes
the actual case a bit more complicated, because if no prediction data is available
at all or is only partially available, then DEW can simply not make a sensible
decision and should (and does) therefore raise an alarm. However, when the
predictions are only partially available, it should still decide to close the barrier
if needed. With each call to DEW, for each of the three locations a maximum
water level is supplied which may be undetermined. If one of these locations is

A Formal Verification Study on the Rotterdam Storm Surge Barrier 297

undetermined, and no excesses were found on the determined locations, then
DEW would say there is no excess. Both Z and C++ agree in this, but this
behavior is obviously not safe. The experts agreed with us that this is an issue,
but the way DEW is called precludes this problem.

Another issue we found is that the evaluation period (chosen by the script)
may not necessarily be within the period of which the predictions are available. In
this case DEW would look at the intersection of the two (see the Z specification
for critical excesses in Section 2.1), which again is not safe.

4.2 Critical Excesses

In order to assess the DEW’s specified conditions to close the barrier, we have
formulated two alternative definitions of a critical excess. These variations were
motivated by real-life, but possibly rare, scenarios. Without loss of generality we
focus on predictions for one location, � say.

As an extreme example, consider a tsunami. In the predictions this would
typically look like a short but high peak. Based on this idea, we have defined our
own criterion in (1) that expresses that the “volume” (to be loosely interpreted)
exceeding the maximum water level may not surpass a predefined amount M
(here P� and max� denote the prediction and maximum water level respectively):

{i : N |
#dom P�∑

k=i

max(0,P�(k)−max�) > M} (1)

Another situation one typically wants to avoid is a possibly slight, but continuous
excess of the maximum water level:

{i : 1 . . .#dom P� − T | ∀j ∈ 1 . . . T : P�(i + j) > max�} (2)

There are obvious cases in which these two variants do not coincide. In (3) below,
the original definition for critical excess as in the Z specification (see Section 2.1)
is expressed:

{i : N | i ∈ 1 . . . length� − 2 ∧ P�(i + 2) ≥ P�(i) > max�} (3)

All three versions have been entered into PVS and lemmas (although unprov-
able) that express their equivalence were formulated. These lemmas implicitly
quantify over the PVS variable LocSeqs (see Section 3.2) and the maximum
water level. We used a random testing feature [8] in PVS that allows the user to
audit the truth of simple lemmas by trying out a number of instances.

Comparing (1), (2) and (3) gave us an example in the lines of Figure 2, where
the water level increases rapidly and then steadily decreases until it is below
the maximum water level (indicated by the dotted line). To search for different
classes of counterexamples, we added the premise that a rapid increase followed
by a slow decrease until maximum water level does not occur in the predictions of
LocSeqs. This resulted in another type of examples, where the water level first

298 K. Madlener, S. Smetsers, and M. van Eekelen

increases rapidly, drops and then increases again. It turned out that in those
cases the barriers would close too late, as shown in Figure 3. It was not clear
whether these scenarios may occur in reality or are precluded by undocumented
assumptions about behavior of water, so experts were consulted, see Section 5.

Fig. 2. No non-decreasing excess Fig. 3. At t = 2 the barrier closes ac-
cording to (2), at t = 9 it closes accord-
ing to (3), the Z-spec

5 Case-Study Evaluation

Verification. The original BOS project applied formal methods in the form of
formal specification in Z to discover bugs in an early stage of the development.
The specifications were used as a reference for implementation. The code is a
composition of Z schemas translated into blocks of C++ annotated with the cor-
responding schema name. The implementation of each schema is based on the
programmer’s own interpretations and design decisions. Hence there is no real
formal connection between C++ implementation and Z specification. We have
found three inconsistencies as a result of this. Two of them became apparent
during the formalization in PVS, but a third was missed until real verification
was applied. In the first two cases, the code seems to fix a flaw in the specifica-
tion. Whether these fixes are a deliberate decision or just “luck” is unclear. The
manual modeling of C++ code in PVS provided enough assurance about the
correspondence between source code and model for this particular case-study. In
Section 7 we discuss a complementary approach that may be viable for future
verification projects on BOS or other safety-critical software.

Validation. We have validated the specification of DEW itself by formulating
challenge theorems that focus on a particular high-level property. We considered
two aspects: safety and the condition under which DEW decides to close the
barrier. Validation of the safety aspect showed that there are two situations in
which DEW does not raise an alarm when information is missing (due to unde-
termined values or incomplete predictions). To validate the closing conditions,

A Formal Verification Study on the Rotterdam Storm Surge Barrier 299

we studied the definition of critical excess by comparing it with plausible al-
ternative definitions. In principle these definitions do not have to be complete
or correct, as the resulting counterexamples are only used as a guidance to un-
derstand the differences between the definitions and for discussion with subject
matter experts. Possibly, several iterations are required to synchronize with the
domain experts in other projects. We believe that in this case-study our unprej-
udiced abstract understanding of the domain was an advantage in finding the
issues with the specification.

Impact analysis. Based on our findings presented in a preliminary report, subject
matter experts performed an impact analysis. They agreed that the issues we
found are possible and that the system would exhibit undesirable behavior in
those situations. However, the issues found are very unlikely to do harm in
reality, because the delays caused are very small compared to the process of
detecting a storm and preparing for a closure. So the findings have no impact
on the performance of BOS required in practice.

6 Related Work

BOS was developed using what one could consider to be lightweight formal
methods. It was specified in Z to discover ambiguities in an early stage of its
development and parts of it were checked using the SPIN model checker [1].
Experiences with the development of BOS using this approach are described in
[16]. In [15], Hall’s seven myths of formal methods are revisited based on the
experiences of the BOS project.

The interface between BOS and BESW (a separate system that operates the
barrier) was studied initially by Kars [5]. The interface was specified in Promela
and model checking was applied using SPIN [1], revealing several flaws. A re-
designed and redefined version was developed by RWS and subsequently studied
by Ruys [10] again using Promela and SPIN, applying several abstraction tech-
niques to fight state space explosion. One serious timing error was found.

The emergency closing system of a different storm surge barrier, located in
the Eastern Scheld, has been a case-study of the QUEST project in the late
1990ies, which was funded by the German BSI [13]. This project focused on the
combination of formal methods in the software development process. One of the
aims was a formal verification of the correctness of the open- and close-signals
of the barrier.

The approach of a lightweight modeling of the source language semantics way
has been practiced before in [12] to verify Fiasco’s IPC implementation. John
et al. have developed a tool that generates out of MISRA-C state transition
models encoded in PVS. Due to the fact that PVS is strongly typed, possible
run-time errors in the C program result in inconsistencies in the generated PVS
specification.

300 K. Madlener, S. Smetsers, and M. van Eekelen

7 Future Work: Certified Lightweight Semantics

Industrial safety-critical software, like the decision and support system (BOS)
studied in this paper, is usually developed according to “safe” coding guidelines,
e.g. see [2]. These coding rules attempt to increase the ability to more thoroughly
check the reliability of such critical applications. In essence, the rules restrict the
use of the complete source language to a subset of that language. The advantage
of this subset is that its semantics if often much simpler than the full semantics
of the complete language. For example, the DEW component of BOS is pro-
grammed in C++, but hardly uses any of the object oriented features available
in C++. In fact, this made the simple direct translation to PVS (Section 3)
feasible.

This PVS model, however, was created manually, and may therefore not com-
pletely match the original semantics of DEW. For our project the informal jus-
tification of correctness of this model was sufficient, but for future verification
projects a stronger, preferably provable correspondence between the original code
and the derived model might be desired. In the section we discuss how such a
correspondence can be established.

Formalizing semantics of real programming languages is a very important
trend in computer science. One of the greatest achievements in this area is a
fully verified optimizing C-compiler developed in the CompCert project [7]. In
this project a large subset of C, called Clight, is compiled to PowerPC code. The
correctness of this compiler, containing various complex optimization passes, has
been proven in the Coq theorem prover. By ignoring the small differences be-
tween Clight and the subset of C++ in which DEW is specified, we can consider
DEW as a Clight program. The semantics of Clight is defined by means of an
interpreter for Cminor which is, in fact, a representation in Coq of the abstract
syntax tree created by the Clight parser. This framework can then be used to
obtain what we brand as the “official” semantics of the DEW code. On the other
hand, we can use the manually derived model presented in this paper (but now
specified in Coq rather than in PVS) as an alternative semantics, and show cor-
rectness of this model by proving in Coq that both semantics are equivalent. This
proof actually boils down to constructing the simulation relation as depicted in
the following diagram.

DEWClight
parsing (3) ��

manual modeling (1)

��

DEWCminor

interpretation (4)

��
CoqDEW

simulation equivalence (2)
DEW[[Cminor]]

A Formal Verification Study on the Rotterdam Storm Surge Barrier 301

In general, to prove a property of a Clight program, say P , there are two
possibilities:

1. By manually constructing a model (step 1 in the diagram) for P , proving
the desired property using this model, and showing the equivalence of the
model (step 2) based on the official semantics of P (which is obtained via
step 3 and 4 in the diagram).

2. By using the official semantics of P directly, i.e. both formulate and prove
the desired property directly in DEW[[Cminor]]

The main advantage of the first approach is that it provides a lightweight shallow
embedding: The program is directly translated into Coq in such a way that only
those aspects of P that are relevant to the desired property are take into account.
Proving properties using such a lightweight abstract model is usually much easier
than to use a full concrete model (a model incorporating all the aspects of the
entire language). The disadvantage is, of course, that it requires the additional
proof obligation in which correspondence between model and official semantics
is stated.

Last but certainly not least, by compiling our program with CompCert, we
obtain for free that resulting code exhibits exactly the same behavior as the
model about which the safety properties have been proved: the verified compiler
guarantees that properties proved on the (model of the) source code hold for the
executable compiled code as well.

8 Conclusions

In this paper we have verified and validated a crucial component of BOS, called
DEW. This component is responsible for deciding when the storm surge barrier
near Rotterdam should close. BOS was specified in the formal language Z, but no
real formal verification was applied during its development. We have developed
a formal model of the Z specification and the C++ code in the PVS theorem
prover by means of a manual lightweight modeling of the semantics. This enabled
us to find an error in the code, but also two flaws in the Z specification which the
code seems to fix. The challenge of verifying DEW was to make a sound model
that isolates the relevant code.

Validation of the specification itself revealed deeper issues with the specified
and implemented behavior of DEW. It does not raise an alarm when information
is missing that is mandatory for the decision being made, which is questionable
behavior in the context in which it is being used. Another issue is that the
precise conditions under which DEW decides that the barrier must close seem
to be incomplete. This last issue seemed quite serious. All issues were confirmed
by domain experts.

In future work we plan to carry out the proposed approach to ensure (formal)
correspondence between lightweight manual modeling and official semantics on
other safety-critical software.

302 K. Madlener, S. Smetsers, and M. van Eekelen

Acknowledgements. We thank Wouter Geurts from Logica Nederland B.V. for
the technical support during the project. We also thank Erik Poll and the anony-
mous reviewers for their valuable comments on a draft version of this paper.

References

1. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

2. Holzmann, G.J.: The power of 10: Rules for developing safety-critical code. IEEE
Computer 39(6), 95–97 (2006)

3. IEC: Functional safety: Safety related systems, International Standard IEC 61508,
International Electrotechnical Commission, Geneva, Switzerland (1996)

4. Jia, X.: ZTC: A Type Checker for Z – User’s Guide. Institute for Software Engineer-
ing, Department of Computer Science and Information Systems, DePaul University,
Chicago, USA (1994)

5. Kars, P.: The application of Promela and SPIN in the BOS project. In: Grégoire, J.-
C., Holzmann, G.J., Peled, D.A. (eds.) Proc. of SPIN 1996: The Second Workshop
on the SPIN Verification System. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 32. Rutgers University, New Jersey, USA (1996)

6. Kars, P.: Formal methods in the design of a storm surge barrier control system.
In: Lectures on Embedded Systems, European Educational Forum, School on Em-
bedded Systems (1996)

7. Leroy, X.: Formal verification of a realistic compiler. Communications of the
ACM 52(7), 107–115 (2009)

8. Owre, S.: Random testing in PVS. In: Workshop on Automated Formal Methods,
Seattle, USA (2006), http://fm.csl.sri.com/AFM06/papers/5-Owre.pdf

9. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992)

10. Ruys, T.: Towards Effective Model Checking. PhD thesis, University of Twente
(2001)

11. Saaltink, M.: The Z/Eves system. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.)
ZUM 1997. LNCS, vol. 1212, pp. 72–88. Springer, Heidelberg (1997)

12. Schierboom, E., Tamalet, A., Tews, H., van Eekelen, M., Smetsers, S.: Preemption
abstraction: A lightweight approach to modelling concurrency. In: Alpuente, M.,
Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 149–164. Springer,
Heidelberg (2009)

13. Slotosch, O.: Overview over the project Quest. In: Hutter, D., Traverso, P. (eds.)
FM-Trends 1998. LNCS, vol. 1641, pp. 346–350. Springer, Heidelberg (1999)

14. Spivey, J.M.: The Z notation: a reference manual. Prentice-Hall International Series
in Computer Science (1989)

15. Tretmans, J., Wijbrans, K., Chaudron, M.: Software engineering with formal meth-
ods: The development of a storm surge barrier control system revisiting seven myths
of formal methods. Formal Methods in System Design 19(2), 195–215 (2001)

16. Wijbrans, K., Buve, F., Rijkers, R., Geurts, W.: Software engineering with formal
methods: Experiences with the development of a storm surge barrier control sys-
tem. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp.
419–424. Springer, Heidelberg (2008)

http://fm.csl.sri.com/AFM06/papers/5-Owre.pdf

Formalization and Correctness
of the PALS Architectural Pattern
for Distributed Real-Time Systems

José Meseguer1 and Peter Csaba Ölveczky2

1 University of Illinois at Urbana-Champaign
2 University of Oslo

Abstract. Many Distributed Real-Time Systems (DRTS), such as in-
tegrated modular avionics systems and distributed control systems in
motor vehicles, are made up of a collection of components that commu-
nicate asynchronously and that must change their state and respond to
environment inputs within hard real-time bounds. Such systems are often
safety-critical and need to be certified; but their certification is currently
very hard due to their distributed nature. The Physically Asynchronous
Logically Synchronous (PALS) architectural pattern can greatly reduce
the design and verification complexities of achieving virtual synchrony in
a DRTS. This work presents a formal specification of PALS as a formal
model transformation that maps a synchronous design, together with
performance bounds of the underlying infrastructure, to a formal DRTS
specification that is semantically equivalent to the synchronous design.
This semantic equivalence is proved, showing that the formal verification
of temporal logic properties of the DRTS can be reduced to their verifi-
cation on the much simpler synchronous design. An avionics system case
study illustrates the usefulness of PALS for formal verification purposes.

1 Introduction

Many Distributed Real-Time Systems (DRTS), such as integrated modular avi-
onics systems and distributed control systems in motor vehicles, are made up
of a collection of components that communicate asynchronously and that must
change state and respond to environment inputs within hard real-time bounds.
Because of physical and fault tolerance requirements, such systems are asyn-
chronous, with each component having its own local clock. Yet, overall system
behavior must ensure virtual synchrony, in the sense that each cycle of interaction
of each system component with the environment and with the other components
should result in a proper state change and proper outputs being produced at each
component within hard real-time bounds. That is, the system, although asyn-
chronous, must behave as if it were synchronous, not in some fictional logical
time, but in actual physical time.

The design, verification, and implementation of such systems is a challenging
and error-prone task for several reasons. The main danger is for a DRTS of this

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 303–320, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

304 J. Meseguer and P.C. Ölveczky

nature to enter an inconsistent state due to race conditions, network delays,
and clock skews in the asynchronous communication between components that
can easily fool one component into mistakenly acting on inputs from the wrong
cycle, or sending its outputs to other components at the wrong time; that is,
the intrinsically asynchronous nature of the system makes it hard to ensure
its virtual synchrony. Furthermore, since such a system is often safety-critical,
its must undergo a stringent certification process that requires full coverage
of the verification of its design and the validation of its implementation. Such a
certification effort can be very demanding and time consuming because the state
space explosion caused by the system’s concurrency can easily make it unfeasible
to apply automatic model checking techniques to verify that its design satisfies
the required safety properties.

A useful way to meet engineering challenges such as the one described above
is to amortize the use of formal methods not on an individual design, but on a
generic family of system designs by means of a formal architectural pattern, that
is, a generic formal specification of an engineering solution to a generic design
problem that: (i) is shown to be correct by construction; (ii) comes with strong
formal guarantees; and (iii) greatly reduces system complexity, making system
verification and correct system implementation orders of magnitude simpler than
if the pattern were not used. In this paper we present a formal specification and
a proof of correctness for one such pattern, namely the Physically Asynchronous
Logically Synchronous (PALS) architectural pattern, which we have developed
in collaboration with colleagues at Rockwell-Collins and UIUC (see [10,1,14]).
This pattern provides a generic engineering solution to the problem of designing
a DRTS that must be virtually synchronous in spite of its asynchronous nature.

The PALS Formal Model in a Nutshell. The key idea of PALS is to dras-
tically reduce the effort of designing, verifying, and implementing a DRTS of
this kind by reducing its design and verification to that of its much simpler syn-
chronous version. This is achieved by assuming that the DRTS can rely on an
underlying Asynchronous Bounded Delay (ABD) Network (see [3,16]) infrastruc-
ture, so that a bound can be given for the delay of any message transmission from
any process to any other process. Similarly, it is assumed that the clock skew
between the different local clocks of the DRTS is bounded. The PALS pattern
can then be formalized as a model transformation which sends a synchronous
system design to its correct-by-construction asynchronous design. Specifically,
PALS is a formal model transformation of the form: (E , Γ) �→ A(E , Γ), where:

1. E is a synchronous system, which is formally defined as an ensemble of state
machines connected together by a wiring diagram.

2. Γ specifies the following performance bounds : (i) the clock skew of the local
asynchronous clocks for each state machine is strictly smaller than ε; (ii) the
minimum and maximum duration times 0 ≤ αmin ≤ αmax for any machine
to consume inputs, make a transition, and produce outputs; and (iii) the
minimum and maximum message transmission delays 0 ≤ μmin ≤ μmax for
communication between any two processes in the ABD network,

Formalization and Correctness of the PALS Architectural Pattern 305

and where A(E , Γ) then denotes the corresponding asynchronous design guar-
anteed to behave like E in a virtually synchronous way under the assumption
that the performance bounds Γ are met by the underlying infrastructure. As we
further discuss below, a key advantage of PALS for formal verification purposes
is that the, typically unfeasible, verification of formal requirements for A(E , Γ)
can be reduced to the much simpler verification of such requirements for E .

Main Contributions. This work complements other research on PALS such
as [10,1,14] by providing both a formal specification of the PALS architecture
and a detailed proof of its correctness that justifies why a formal verification of
the synchronous design also verifies its PALS asynchronous version. Specifically,
it presents the following contributions:

1. A formal model in rewriting logic [8] of the PALS transformation, expressed
in the Real-Time Maude formal specification language [11], including precise
requirements for the allowable synchronous designs to which PALS can be
applied and the real-time bounds of the infrastructure.

2. A precise derivation of the (smallest possible) period of the asynchronous
design A(E , Γ), and a proof of its optimality under the given assumptions.

3. A mathematical justification of a method that reduces the formal verification
of temporal logic safety and liveness properties of an asynchronous PALS
design to the model checking verification of its synchronous counterpart.

4. An avionics case study illustrating the usefulness of the PALS pattern.

The rest of this paper is organized as follows. Section 2 summarizes the basic
prerequisites about Real-Time Maude needed to define PALS. Section 3 gives a
formal definition of the synchronous models that are inputs for the PALS trans-
formation. Section 4 defines the assumptions about clock drift, network delays,
and machine execution times that are also inputs to the PALS transformation,
and gives a brief overview of PALS. Section 5 gives a formal specification in Real-
Time Maude of the resulting PALS-transformed asynchronous system. Section 6
gives a theorem that makes explicit the temporal logic properties that would
have to be verified in the asynchronous model A(E , Γ) but are reduced to the
verification of corresponding properties in E . Section 7 shows the benefit of PALS
on an avionics system. Related work is discussed in Section 8, and some final
conclusions are drawn in Section 9.

2 Real-Time Maude

A Real-Time Maude [11] timed module specifies a real-time rewrite theory of the
form (Σ,E, IR,TR), where:

– (Σ,E) is a membership equational logic [4] theory with Σ a signature1 and E
a set of confluent and terminating conditional equations. (Σ,E) specifies the
system’s states as an algebraic data type, and must contain a specification
of a sort Time modeling the (discrete or dense) time domain.

1 I.e., Σ is a set of declarations of sorts, subsorts, and function symbols.

306 J. Meseguer and P.C. Ölveczky

– IR is a set of (possibly conditional) labeled instantaneous rewrite rules spec-
ifying the system’s instantaneous (i.e., zero-time) local transitions, written
with syntax rl [l] : u => v, where l is a label. Such a rule specifies a one-
step transition from an instance of term u to the corresponding instance of
term v. The rules are applied modulo the equations E.2

– TR is a set of (usually conditional) tick rewrite rules, written with syntax
crl [l] : {u} => {v} in time τ if cond, that model time elapse. {_} is
a built-in constructor of sort GlobalSystem, and τ is a term of sort Time
that denotes the duration of the rewrite.

The initial state must be a ground term of sort GlobalSystem and must be
reducible to a term of the form {u} using the equations in the specification.

The Real-Time Maude syntax is fairly intuitive. For example, a function sym-
bol f in Σ is declared with the syntax op f : s1 . . . sn -> s, where s1 . . . sn

are the sorts of its arguments, and s is its (value) sort. Equations are written
with syntax eq u = v, and ceq u = v if cond for conditional equations. The
mathematical variables in such statements are declared with the keywords var
and vars (see [4]).

In object-oriented Real-Time Maude modules, a class declaration

class C | att1 : s1, ... , attn : sn .

declares a class C with attributes att1 to attn of sorts s1 to sn. An object of
class C is represented as a term < O : C | att1 : val1, ..., attn : valn > where
O, of sort Oid, is the object’s identifier, and where val1 to valn are the current
values of the attributes att1 to attn. In an object-oriented system, the state is
a term of sort Configuration, and has the structure of a multiset of objects
and messages, with multiset union denoted by a juxtaposition operator that is
declared associative and commutative, so that rewriting is multiset rewriting
supported in Real-Time Maude.

The dynamic behavior of concurrent object systems is axiomatized by speci-
fying each of its transition patterns by a rewrite rule. For example, the rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : O’, a3 : z > =>

< O : C | a1 : x + w, a2 : O’, a3 : z > dly(m’(O’),x) .

defines a parametrized family of transitions in which a message m, with param-
eters O and w, is read and consumed by an object O of class C. The transitions
change the attribute a1 of the object O and send a new message m’(O’) with
delay x. “Irrelevant” attributes (such as a3) need not be mentioned in a rule.

A subclass inherits all the attributes and rules of its superclasses.
A Real-Time Maude specification is executable, and the tool offers a variety

of formal analysis methods. The rewrite command simulates one fair behavior
of the system, starting with a given initial state, up to a certain duration. The
2 E is a union E′∪A, where A is a set of equational axioms such as associativity, com-

mutativity, and identity, so that deduction is performed modulo A. Operationally, a
term is reduced to its E′-normal form modulo A before any rewrite rule is applied.

Formalization and Correctness of the PALS Architectural Pattern 307

search command uses a breadth-first strategy to analyze all possible behaviors
of the system from an initial state, by checking whether a state matching a
pattern and satisfying a condition can be reached from the initial state. Real-
Time Maude also extends Maude’s linear temporal logic model checker to check
whether each behavior from an initial state, possibly up to a time bound, satisfies
a linear temporal logic formula.

3 Formal Definition of the Synchronous Model

The synchronous model of computation is a synchronous composition of a collec-
tion of nondeterministic typed machines, an environment, and a wiring diagram
that connects the machines.

Definition 1. A (nondeterministic) typed machine M = (Di, S,Do, δM) con-
sists of:

– Di, called the input set, a nonempty set of the form Di = Di1 × · · · ×Din ,
for n ≥ 1, where Di1 , . . . , Din are called the input data types.

– S, a nonempty set, called the set of states.
– Do, called the output set, a nonempty set of the form Do = Do1×· · ·×Dom,

for m ≥ 1, where Do1 , . . . , Dom are called the output data types.
– δM , called the transition relation, a total relation δM ⊆ (Di×S)× (S×Do).

M is finite iff Di, S, and Do are all finite. M is deterministic iff δM is a
function.

That is, a machine has n input ports and m output ports; an input to port k
should be an element of Dik

, and an output from port j should be an element
of Doj .

Typed machines can be “wired together” into arbitrary sequential and parallel
compositions by means of a “wiring diagram,” as the one shown in Fig. 1, where
the types are left implicit, but where it is assumed that the type in an output
wire must match any types in the input wires connected with it.

Definition 2. A (typed) machine ensemble E = (J ∪ {e}, {Mj}j∈J , E, src) has:

– J , a nonempty finite set of indices, and e �∈ J the environment index.
– {Mj}j∈J , a J-indexed family of typed machines.
– E, called a typed environment, is an ordered pair of sets E = (De

i , D
e
o),

where De
i , the environment’s input set (inputs to the environment), is a

nonempty set of the form De
i = De

i1 × · · · ×De
ine

, for ne ≥ 1, and De
o, the

environment’s output set, is a nonempty set of the form De
o = De

o1
× · · · ×

De
ome

, for me ≥ 1.
– src, a function that assigns to each input port (j, n) (the input port number

n of machine j) the corresponding output port (or “source” for that input)
src(j, n). Formally, we define the set of input ports and output ports as
follows:

308 J. Meseguer and P.C. Ölveczky

M1

M3

M2

Fig. 1. A machine ensemble

• InE = {(j, n) ∈ (J ∪ {e})× N | 1 ≤ n ≤ nj}, where Mj has nj inputs
• OutE = {(j, n) ∈ (J ∪{e})×N |1 ≤ n ≤ mj}, where Mj has mj outputs.

Then src is a surjective function src : InE → OutE assigning to each input
port the output port to which it is connected, and such that “the types match”.
In addition, we require that there are no self-loops from the environment to
itself; that is, for (e, q) ∈ InE , if src(e, q) = (k, p), then k ∈ J .

An ensemble E has a lock-step synchronous semantics, in the sense that the
transitions of all the machines are performed simultaneously, and whenever a
machine has a feedback wire to itself and/or to any other machine, then the
corresponding output becomes an input for any such machine at the next instant.
As explained below, what this means is that any ensemble E is semantically
equivalent to a single state machine, called the synchronous composition of all the
machines in the ensemble E . For example, in Fig. 1, the synchronous composition
of the typed machines M1, M2, and M3 can be seen as the single machine denoted
by the outer box, which hides the internal details of how the machine ensemble
is decomposed.

Definition 3. Given a machine ensemble E = (J ∪ {e}, {Mj}j∈J , E, src), its
synchronous composition is the typed machine ME = (DE

i , S
E , DE

o , δE) where

– DE
i = De

o (the input set of the composition is the output set of the environ-
ment)

– DE
o = De

i (the output set is the input set of the environment)
– SE = (Πj∈JSj)× (Πj∈JD

j
OF), where if Dj

o = Dj
o1
× · · ·×Dj

omj
is the output

set of Mj, then Dj
OF is the set Dj

OF = Dj
OF1

× · · · ×Dj
OFmj

, where, for 1 ≤
m ≤ mj, Dj

OFm
= Dj

om
if (j,m) = src(l, q) for some l ∈ J , and Dj

OFm
= 1

otherwise, with 1 = {∗} a one point set. Intuitively, Dj
OF stores the “feedback

outputs” of machine Mj. We then have a “ feedback output” function foutj :
Dj

o → Dj
OF , where for 1 ≤ m ≤ mj, we have πm(foutj(d1, . . . , dmj)) = dm if

(j,m) = src(l, q) for some l ∈ J , and πm(foutj(d1, . . . , dmj)) = ∗ otherwise,

Formalization and Correctness of the PALS Architectural Pattern 309

with πm the m-th projection from the Cartesian product Dj
OF . Similarly, for

each k ∈ J we have an obvious input function ink : De
o ×Πj∈JD

j
OF → Dk

i ,
where for 1 ≤ n ≤ nk, with src(k, n) = (l, q), we have πn(ink(d, {dj}j∈J)) =
if l = e then πq(d) else πq(dl) fi, where πq denotes the q-th projection from

the corresponding Cartesian product.
– The transition relation for ME is the relation δE ⊆ (DE

i ×SE) × (SE ×DE
o),

where ((d, ({sj}j∈J , {dj}j∈J)), (({s′j}j∈J , {d′
j}),d′)) ∈ δE iff, for each l ∈

J , there exists (s′l,d
′′
l) such that ((inl(d, {dj}j∈J), sl), (s′l,d

′′
l)) ∈ δMl

, and
where d′

l = foutl(d′′
l) and the output to the environment d′ is defined for

each 1 ≤ n ≤ ne with src(e, n) = (j′, r) by πn(d′) = πr(d′′
j′). Note that δE

is a total relation, since each δMl
is a total relation; therefore, some desired

(s′l,d
′′
l) always exists. Furthermore, if each machine Mi is a deterministic

typed machine, then ME is also a deterministic typed machine.

We assume an environment where the constraints on the values generated by
the environment can be defined as a satisfiable predicate ce : De

o → Bool so
that ce(de

1, . . . , d
e
ome

) is true if and only if the environment can generate output
(de

1, . . . , d
e
ome

). We can associate a transition system defining the behaviors of a
machine ensemble that operates in an environment as follows.

Definition 4. Given a machine ensemble E = (J ∪ {e}, {Mj}j∈J , E, src) with
environment constraint ce, the corresponding transition system is defined as a
pair Ece = (SE × DE

i , −→Ece
), where the transition relation −→Ece

is defined
by (s, i) −→Ece

(s′, i′) iff a machine ensemble in state s and with input i from
the environment has a transition to state s′, and the environment can generate
output i′ in the next step:

(s, i) −→Ece
(s′, i′) ⇐⇒ ∃o ((i, s), (s′,o)) ∈ δE ∧ ce(i′).

Paths(Ece)(s,i) denotes the set of all infinite sequences (s, i) −→Ece
(s′, i′) −→Ece

(s′′, i′′) −→Ece
· · · of transition steps starting in state (s, i).

Let E be a machine ensemble with environment constraint ce, AP a set of atomic
propositions, and L : SE × DE

i → P(AP) a labeling function that assigns to
each state (s, i) ∈ SE ×DE

i the set L(s, i) of atomic propositions that hold in
(s, i). Then (Ece , L) = (SE × DE

i , −→Ece
, L) is the Kripke structure associated

to (E , ce, L).

4 Overview of the PALS Asynchronous Model

This section gives an overview of the asynchronous PALS transformation of a
synchronous machine ensemble.

The type of time (discrete or dense) is a parameter of the model. For simplicity
and fullest generality, we will assume that all is done in R≥0. A basic assumption
is that a clock synchronization algorithm is executing “in the background” and
guarantees that the difference between the time of a local clock and “real” global

310 J. Meseguer and P.C. Ölveczky

time is always strictly less than a given bound ε. To reason about clock drift
in a general way, we assume a monotonic and continuous3 ε-drift clock function
cj : R≥0 → R≥0 for each machine Mj that assigns to each global instant r the
local clock value cj(r) satisfying |cj(x)− x| < ε.

The shortest, respectively longest, time required for processing input, execut-
ing a transition, and generating output is assumed to be, respectively, αmin and
αmax with 0 ≤ αmin ≤ αmax. The message transmission time is assumed to
always be greater than or equal to a minimum value μmin ≥ 0, and smaller
than or equal to some maximum time value μmax ≥ μmin. The constants
Γ = (ε, αmin, αmax, μmin, μmax) make up the performance parameters of the
PALS transformation.

Given an ensemble E and performance parameters Γ , the asynchronous system
A(E , Γ) is made up of a J-indexed family of objects and an environment object,
with each object behaving like an “asynchronous typed machine” whose inputs
and outputs are received and sent by asynchronous message passing. The system
is supposed to execute in rounds according to “ticks” of a “logical clock.” Let
T denote the period of the logical clock, and let ti = i · T . Each object j is
equipped with two timers: roundTimer is a timer that expires at each tick of the
logical clock (as perceived by cj), and outputBackoffTimer is used to ensure
that output from a machine is not sent into the network too early. The behavior
of each object can be summarized as follows:

– When roundTimer expires, input from the input buffer is read, a transition
is executed, the generated output is put in the output buffer, and the timer
is reset to T .

– When the outputBackoffTimer timer expires, the messages in the output
buffer are sent, provided that they have been generated. If the execution of
the transition generating the outgoing messages is not yet finished when the
timer expires, then the messages are sent as soon as the execution of the tran-
sition is finished. This timer is started and set to dlyout = 2 · ε monus μmin,
where monus is defined by x monus y = max(0, x − y), each time the
roundTimer expires.

The “time-line analysis” for object j in A(E , Γ) is therefore as follows:

1. At each local logical clock tick (that is, when the local clock cj shows ti), the
object gets the messages from the input buffer, executes a transition, and
puts the output messages in the output buffer. This starts somewhere in the
global time interval (ti − ε, ti + ε) for round i. This process may end at any
global time in the interval (ti − ε + αmin, ti + ε + αmax).

2. Since the messages cannot be sent into the network before the back-off timer
expires, and before the messages are “ready,” the messages from the out-
put buffers are therefore sent into the network at a global time t such that
max(ti+ε−μmin, (ti−ε)+αmin) < t < max(ti+3 ·ε−μmin, (ti+ε)+αmax).

3 PALS is defined for clock functions that are piecewise continuous (see [9]), but due
to lack of space, we present in this paper the simpler case when local clocks are
continuous.

Formalization and Correctness of the PALS Architectural Pattern 311

3. At any global time in the time interval (max(ti + ε, (ti − ε) + αmin +
μmin), max(ti + 3 · ε − μmin, (ti + ε) + αmax) + μmax), a message could
arrive at an object, at which time it is entered into the object’s input buffer.

We must ensure that messages generated for round i + 1 should be received
sometime in the global time interval (ti + ε, ti + T − ε). This implies that the
PALS period T must satisfy T ≥ μmax + 2 · ε + max(2 · ε− μmin, αmax).

Note finally that, although this paper presents the “optimal” PALS trans-
formation, all correctness results hold as long as the backoff timer is always
initialized to a value b ≥ 2 · ε monus μmin and the PALS period T ≥ μmax + 2 ·
ε + max(b, αmax), which both hold in the avionics case study in Section 7.

5 PALS Formal Model in Real-Time Maude

This section presents the formal specification of the asynchronous PALS system
A(E , Γ) as a rewrite theory in Real-Time Maude.

The state of machine j has sort Sj . For convenience, we add a supersort State
of all such states. It may take some time to compute the next local state of a
machine. During this transition computation time, the local state has the value
[s, t], where s is the next state, and t is the time remaining until the execution
of the transition is finished. Such a term [s, t] is called a delayed state and has
the sort DlyState:

sorts State DlyState . subsorts S1 ... S|J| < State < DlyState .

op [_,_] : State Time -> DlyState [ctor right id: 0] .

Likewise, during the execution of a transition generating the messages for the
next round, these messages are not yet ready to be sent, and hence the output
buffer has the value [msgs, t], which we call a delayed configuration:

sort DlyConfiguration . subsort Configuration < DlyConfiguration .

op [_,_] : Configuration Time -> DlyConfiguration [ctor] .

We also introduce a supersort Data of the sorts D1 . . .Dn of the data in the wires.
Each machine Mj, and the environment, is translated into an object instance

of a subclass C[j] (resp., Env) of the class Machine declared as follows:

class Machine | state : DlyState, clock : Time, inBuffer : MsgConfiguration,

outBuffer : DlyConfiguration, roundTimer : Time,

outputBackoffTimer : TimeInf, localWiring : LocalWiring .

class C1. ... class Ck . class Env . subclass C1 ... Ck Env < Machine.

Several typed machines, say, Mj1 , . . . ,Mjr , can be of the same type, and can
therefore belong to the same subclass, i.e., C[j1] = · · · = C[jr]. The state at-
tribute denotes the local state of the machine (the state attribute for the en-
vironment has the value *). The inBuffer attribute is the buffer of incoming
messages. outBuffer is the output message buffer. The timers roundTimer and

312 J. Meseguer and P.C. Ölveczky

outputBackoffTimer were explained in Section 4. The clock attribute shows
the value of the local clock of the object, and the localWiring attribute assigns
to each output port number the set of input ports to which this port is connected.
However, notice that here a connection is only a reference for asynchronous mes-
sage passing, and not a real “wired” connection as in the synchronous model.

Since in a real application the actual timing of inputs from the environment
may be quite unpredictable, the environment outputs must be buffered and syn-
chronized by the object wrapping it in the exact same way as all other machines.

Messages have the form to j from j′ (p, d) where j, j′ ∈ J ∪ {e}, 1 ≤
p ≤ nj , and d ∈ Dj

ip
. Therefore, p is the pth input port of the intended recipient

j, where output data d from j′ is to be received.
The following actions are modeled by instantaneous rewrite rules:

1. Receive an incoming message and put it into the inBuffer.
2. When the roundTimer expires, the inBuffer is emptied, a transition is ap-

plied, and the output is put into the outBuffer.
3. When the outputBackoffTimer expires, if the output is ready, then the

contents in the output buffer are sent into the network, with message delays.
4. Otherwise, as soon as the output is ready after the outputBackoffTimer

has expired, the generated output is sent into the network.

In the following rule, corresponding to action (1) above, a message is received
by an object and is inserted into its inBuffer:

vars j j′ : Oid . var B : MsgConfiguration . var p : Nat . var d : Data .

rl [receiveMsg] : (to j from j′ (p, d)) < j : Machine | inBuffer : B > =>

< j : Machine | inBuffer : B (to j from j′ (p, d)) > .

When the roundTimer expires, the messages B in the inBuffer are read,
and a transition is taken (action (2)). Since different classes will have different
transitions, executing transitions is modeled by a family of rewrite rules, one
for each class C[j]. The resulting state and messages are delayed by a value
αmin ≤ X-DLY ≤ αmax. In addition, the roundTimer is reset to the round time
T , and the outputBackoffTimer is set to 2 · ε monus μmin:

var X-DLY : Time . vars S NEXT-STATE : State . var W : LocalWiring .

var dj1 : Dj
o1 var djmj

: Dj
omj

.

crl [applyTrans] :

< j : C[j] | inBuffer : B, roundTimer : 0 , state : S, localWiring : W >

=>

< j : C[j] | inBuffer : none, state : [NEXT-STATE, X-DLY], roundTimer : T,

outputBackoffTimer : (2 · ε monus μmin),
outBuffer : [makeMsg(j, W, (dj1 , . . . , djmj

)), X-DLY] >

if X-DLY >= αmin and X-DLY <= αmax
/\ ((vect[j](B), S), (NEXT-STATE, (dj1 , . . . , djmj

))) ∈ δMj .

The function vect[j](B) maps B to the appropriate vector of inputs (d1, . . . , dnj).
makeMsg is the function that looks at the local wiring diagram W, takes the vector

Formalization and Correctness of the PALS Architectural Pattern 313

of output data from j, and produces the set of messages for the machines and
environment getting inputs from that wire.

Due to lack of space, we refer to [9] for the rewrite rules defining the sending
of outputs from the output buffer into the network (actions (3) and (4) above).

Since the environment class Env is a subclass of Machine, the environment
inherits the rules for receiving and sending messages. The “machine” rules for
reading the input buffer and executing a transition are replaced by one rule that
consumes the messages in the input buffer, and generates the output nondeter-
ministically, ensuring that the environment constraint ce is satisfied:

var D1 : De
o1 var DME : De

ome
.

crl [consumeInputAndGenerateOutput] :

< e : Env | inBuffer : B, roundTimer : 0, wiring : W >

=>

< e : Env | inBuffer : none, roundTimer : T,

outputBackoffTimer : (2 · ε monus μmin),
outBuffer : [makeMsg(e,W,(D1, ..., DME)), X-DLY] >

if ce(D1, ..., DME) /\ X-DLY >= αmin and X-DLY <= αmax .

Time Behavior. The global state of the system has the form {C; t}, where C
is the configuration consisting of the objects and messages in the asynchronous
system, and t is the global time. The tick rule, advancing the global time in the
system, is the following slight modification of the “usual” tick rule for object-
oriented systems [11]:

var C : Configuration . vars T T’ : Time .

crl [tick] :

{C ; T} => {delta(C, T, T’) ; T + T’} in time T’ if T’ <= mte(C, T) .

delta is the function that defines how the passage of time affects the state, and
mte is the function that defines the smallest time until a timer becomes zero. We
refer to [9] for an explanation of the definition of these functions.

Initial States. We define the initial states of the system to start at time T0 =
T−ε. At global times (i·T)+T0, for all i ∈ N, the state components are undelayed
and consistent, and all the input buffers are full. Therefore, in the initial state,
for each object j, the clock attribute is cj(T − ε), the outputBackoffTimer is
turned off, the roundTimer is initialized to T − cj(T0), the state attribute is an
initial state of the expected sort, the inBuffer is full of messages, the outBuffer
is empty, there are no messages in transit in the network, and the initial input
(de

o1
, . . . , de

ome
) from the environment satisfies the environment constraint ce.

6 Correctness and Optimality of PALS

This section establishes a precise relationship between the synchronous compo-
sition ME of an ensemble E and the asynchronous model A(Ece , Γ).

314 J. Meseguer and P.C. Ölveczky

Definition 5. A state {C;t} in A(E) is called stable iff all input buffers in C
are full, all output buffers are empty, and there is no message “in transit” in C.

A stable state corresponds to a state (s, i) in ME in the expected way (see [9]
for a more detailed definition):

Definition 6. The function sync : Stable(A(E)) → SE ×DE
i maps each stable

state of the asynchronous model to a state of the synchronous system as follows:

– The local state of each object j, given in the object’s state attribute, deter-
mines the local state in Mj. This is well defined, since in a stable state, the
state attribute is not a “delayed” value.

– The messages in the input buffers determine the state of the environment
input and feedback wires using the functions foutj , j ∈ J .

The requirement that the messages in the inBuffers in the initial states are
wiring consistent ensures that sync is well-defined for all reachable stable states.

Definition 7. For {Ci ; ti} a state in A(E) reachable from some initial state of
the form described in Section 5, a path in A(E) is an infinite or nonextensible
finite sequence

{Ci ; ti} −→ {Ci+1 ; ti+1} −→ {Ci+2 ; ti+2} −→ · · ·
of one-step rewrites in A(E). The above path is called time-diverging if and only
if for each time value t ∈ R≥0, there exists a q ∈ N such that tq ≥ t. We denote
by Paths(A(E)){C;t} the set of paths in A(E) starting in {C ; t}, and denote by
TDPaths(A(E)){C;t} the set of time-diverging paths.

Theorem 1 in [9] proves that any finite rewrite sequence from an initial state
described in Section 5 can be extended into a time-diverging path.

The following theorem states the semantic equivalence between satisfaction
of temporal logic properties in Ece and in A(E). Of course, A(E) has many
“unstable” states that do not correspond to any states in Ece. Therefore, a tem-
poral logic property ϕ ∈ CTL∗\ {©} (AP) of Ece , when evaluated in A(E) has
somehow to be restricted to the stable states in order to be meaningful. This
is accomplished by a related formula ϕstable as explained below. The Kripke
structure associated to A(E) is denoted (A(E), L′) = (TA(E)GlobalSystem ,−→1

A(E), L
′),

where TA(E)GlobalSystem is the set of E-equivalence classes of ground terms of sort
GlobalSystem for E the equations of the theory A(E), −→1

A(E) is the one-step
rewrite relation between such equivalence classes, and L′ is a labeling function
satisfying the requirements explained in the theorem below.

Theorem 1. Given a formula ϕ ∈ CTL∗ \{©}(AP), and assuming that a new
state predicate stable �∈ AP characterizing stable states has been defined, then
there is a formula ϕstable ∈ CTL∗ \ {©}(AP ∪ {stable}) defined as follows:

astable = a, for a ∈ AP
(¬ϕ)stable = ¬ (ϕstable)

(ϕ1 ∧ ϕ2)stable = ϕ1stable
∧ ϕ2stable

(ϕ1 U ϕ2)stable = (stable→ ϕ1stable
) U (stable ∧ ϕ2stable

)
(∀ ϕ)stable = ∀ ϕstable

Formalization and Correctness of the PALS Architectural Pattern 315

such that for each stable state s in A(E) reachable from initial states defined in
Section 5, we have

(A(E), L′), s |= ϕstable ⇐⇒ (Ece , L), sync(s) |= ϕ,

where CTL∗\{©}(AP∪{stable}) formulas are interpreted in (A(E), L′) under the
time-diverging path semantics, and where L′ : TA(E)GlobalSystem

→ P(AP ∪{stable})
satisfies L′(s) = L(sync(s))∪{stable} when s is a stable state, and stable �∈ L′(s)
otherwise.

Finally, we show that T = 2ε + μmax + max(αmax, 2ε − μmin) is the smallest
possible period for PALS, in the sense made precise below. Proofs are given in [9].

Proposition 1. Assume that each object reads its input buffer at its local time
t0, and at that time starts performing a transition and generating new messages.
To ensure that all such generated messages are read by all other objects at or
before their local times t0 + T , we must have T ≥ 2ε + μmax + αmax.

Proposition 1 proves optimality of T when αmax ≥ 2ε− μmin. For the converse,
and highly unlikely, case where 2ε−μmin > αmax, it is harder to claim a “general”
optimality result. PALS uses a backoff timer to avoid that messages arrive too
early. One could imagine variations of PALS where no such backoff timers are
used, but where messages are instead equipped with, e.g., sequence numbers
denoting the round in which they were generated. However, if we want to ensure
that each message arrives in the right round by using backoff timers, then the
backoff timers must be set to at least 2ε− μmin:

Proposition 2. To ensure that a message generated in round i (i.e., at local
time i ·T) does not arrive too early (i.e., is read by another object at that object’s
local time i ·T), the message must not be sent before local time i ·T +2ε−μmin.

The optimality of the period follows immediately:

Proposition 3. If each message for round i+ 1 is sent no earlier than at local
time i · T + 2ε− μmin, then we must have T ≥ 4ε + μmax − μmin to ensure that
each object has received these messages at its local time i · T + T .

7 An Avionics Case Study

To investigate the benefits of PALS for model checking, we have defined in Maude
and Real-Time Maude, respectively, a synchronous version and a simplified asyn-
chronous PALS version of an avionics system. The active standby system is in
essence a synchronous design, but must be realized as a distributed system for
fault tolerance reasons. Our models are based on an AADL model developed
by Abdullah Al-Nayeem at UIUC of a similar specification developed by Steve
Miller and Darren Cofer at Rockwell-Collins (see [10]). The executable specifi-
cations are available at http://www.ifi.uio.no/RealTimeMaude/PALS and are
described in detail in [9].

http://www.ifi.uio.no/RealTimeMaude/PALS

316 J. Meseguer and P.C. Ölveczky

The Active Standby System. In integrated modular avionics (IMA), a cabinet
is a chassis with a power supply, internal bus, and general purpose comput-
ing, I/O, and memory cards. Aircraft applications are implemented using the
resources in the cabinets. There are always two or more cabinets that are phys-
ically separated on the aircraft so that physical damage does not take out the
computer system. The active standby system considers the case of two cabinets
and focuses on the logic for deciding which side is active. The two sides receive
inputs through communication channels. Each side could fail, and a failed side
can recover after failure. In case one side fails, the non-failed side should be the
active side. In addition, the pilot can toggle the active status of these sides. The
full functionality of each side is dependent on these two sides’ perception of the
availability of other system components. Only a fully functional/available side
should be active. The paper [10] states five important properties that the system
must satisfy.

Fig. 2. The architecture of the active standby system

The architecture of the system is shown in Figure 2. The design of the active
standby system is globally synchronous: each time Environment dispatches, it
nondeterministically sends 5 Boolean values, one through each of its ports, with
the following constraints: (i) two sides cannot fail at the same time, and (ii) a
failed side cannot be fully available. Therefore, in each round, the environment
can send any one of 16 different 5-tuples. The connections between the two sides
are “delayed” connections; a message sent in one round is read by the other side
in the next round.

The Formal Models. We have defined in Maude the synchronous composition of
the three components in the active standby system, and have defined in Real-
Time Maude a much simplified PALS asynchronous model of the active standby
system. The simplifications in the PALS model include: (i) perfect and perfectly
synchronized clocks, (ii) discrete time, (iii) the execution time of a transition,
including reading from the input buffer and writing to the output buffer, and

Formalization and Correctness of the PALS Architectural Pattern 317

the minimum network delay are both 0, and (iv) the maximum network delay
is a parameter maxMsgDelay of the system. The behavior of the asynchronous
system is then:

– The length of each PALS period is maxMsgDelay+ 2.
– When a new round starts, an object reads the incoming messages from its

input buffer, performs the transition, thereby changing its internal state and
generating output messages, which are placed in the object’s output buffer.

– One time unit after the start of the PALS period, each object sends its
output messages from the output buffer into the network in one step.

– When an object receives a message, the message is stored in its input buffer.

Model Checking the Synchronous and Asynchronous Models. We have compared
the number of reachable states in our two models, as well as the execution times
for model checking analysis. We have chosen an invariant to compare the model
checking performance in the synchronous and asynchronous models, since model
checking an invariant requires exhaustive search of all reachable states and is
therefore not subject to peculiarities in the search strategy.

In the synchronous model, the number of states reachable from the initial state
is 185. Both reachability analysis and LTL model checking of the five important
properties take less than a second on a 1.86 GHz server with 8GB RAM.

With no messaging delay, we could model check the asynchronous model in
33 minutes. However, with maximal messaging delay 1, exhaustive state space
exploration of the asynchronous model was aborted by the operating system after
two hours, due to the execution using up too much memory. We have also exper-
imented with restricting the environment to 8, respectively 12, possible outputs.
The number of reachable states and the execution times for the search command
that searches for a state violating an invariant are given in the following table:

Model Max.msg.dly 8 env. possibilities 12 env. poss. 16 env. poss.
states ex.time # states ex.time # states ex.time

Synchr. n/a 47 0.04 sec. 107 0.1 sec. 185 0.2 sec.
Asynchr. 0 243,360 30 sec. 1,041,376 190 sec. 3,047,832 2000 sec.
Asynchr. 1 349,856 52 sec. 1,496,032 420 sec. aborted

The system is not particularly large: 10 messages are sent in each round; the
number of internal states of each machine is bounded by 36; the data in each
message is either a Boolean value or a number between 0 and 2; time is discrete;
executions are instantaneous; message delays are either 0 or 1; and there are
no clock skews. The main factor contributing to the state space explosion is
the great number of interleavings caused by the intrinsic concurrency of the
asynchronous system, since there are 10! different orders in which messages in
one round can be received.

8 Related Work

We first explain how this work is related to other work on PALS involving our
colleagues at Rockwell-Collins and at UIUC [10,1,14]. The PALS transformation

318 J. Meseguer and P.C. Ölveczky

itself and its optimal period, as well as the active standby example, are also
presented in [10,1,14]. The main new contributions of the work presented here
are the formal specification of PALS as a parametrized real-time rewrite theory,
the proof of correctness of such a formal model, the mathematical justification of
the method by which the verification of temporal logic properties of the DRTS
thus obtained can be reduced to the verification of such properties on the simpler
synchronous model, and the formal analyses of the Maude models of the two
versions of the active standby system.

Models of distributed computation are classified into: (i) synchronous models,
which operate in a lock-step fashion; and (ii) asynchronous ones, where there
is no a priori bound on message delays. Our ensemble notion is an automata-
theoretic synchronous model quite similar to other models, e.g., the synchronous
systems of [15], and the synchronous Mealy machine model of [17]. The PALS
pattern can be seen as part of a broader body of work on so-called synchronizers,
which allow synchronous systems to be simulated by asynchronous ones. Very
general synchronizers such as those in [2] place no a priori bounds on message
delays, so that physical time in the original synchronous system is simulated
by logical time4 in its asynchronous counterpart. More recent work has devel-
oped synchronizers for the Asynchronous Bounded Delay (ABD) Network model
[3,16], in which a bound can be given for the delay of any message transmission
from any process to any other process. PALS can be understood as a synchro-
nizer that also assumes the ABD model (plus clock synchronization) but provides
hard real-time guarantees needed for embedded systems. The main differences
between the synchronizers in [3,16] and PALS are:

1. PALS assumes that a clock synchronization algorithm with a skew bound ε
is running in the underlying infrastructure. Instead, for the synchronizers in
[3,16,15] a clock synchronization algorithm is part of the synchronizer.

2. In the synchronizers in [3,16], two nodes could be in completely different
(local) rounds at the same global physical time, and there may be no global
physical time at which all nodes are in the same round. This lack of “physical
time synchronization” is unsatisfactory for distributed embedded systems.
In contrast, in PALS, at any moment in (global) physical time, each node
is either in round i or in round i + 1, and in each round there are “stable”
states in which all components are in the same round.

3. There is also a period optimality result in [16] which has a counterpart in
the PALS’s optimal period. However, optimality in PALS ensures synchrony
in physical time while this cannot be ensured by the synchronizer in [16].

Other works relate synchronous and asynchronous models in various ways.
Work by Tripakis et al. [17] relates a synchronous Mealy machine model to a
loosely timed triggered architecture with local clocks that can advance at dif-
ferent rates with no clock synchronization. The main difference with PALS is
that it does not seem possible to give hard real time bounds for the behav-
ior of the asynchronous system realization. The Globally Synchronous Locally
4 That is, an assignment of logical clocks to processes in the style of [7], whose values

need not reflect physical time.

Formalization and Correctness of the PALS Architectural Pattern 319

Asynchronous (GALS) Architecture, e.g., [5,6,12] is aimed at a broader class of
systems than those modeled by PALS: GALS systems may be widely distributed
and it may not be possible to assume that all message communication delays are
bounded, although such delays may be bounded within a synchronous subdo-
main. The main difference between GALS and PALS is that no hard real-time
guarantees can be given for a GALS implementation.

The ABD Network model used by the synchronizers in [3,16] and by PALS
places stringent demands on an actual network design to guarantee bounded time
delivery of messages and bounded clock skew. These demands have stimulated
research on network architectures. Rushby [13] gives a detailed discussion of
several of these architectures.

9 Conclusions

This work has presented a formal specification of the PALS architectural pattern
for obtaining correct-by-construction distributed real-time systems from their
synchronous designs under given performance assumptions on the underlying
infrastructure. Using the PALS formal model we have given proofs of correctness
of PALS, and of optimality of the PALS period; and we have based on such
proofs a method to verify temporal logic properties of the DRTS so obtained
by verifying such properties on its much simpler synchronous design. We have
also illustrated this method’s usefulness by means of an avionics case study. We
believe that PALS, as a formalized architectural pattern that greatly reduces
system complexity, can substantially increase system quality and can greatly
reduce the cost of design, verification, and implementation of distributed real-
time systems; and also the cost of certifying highly critical systems of this kind.

Acknowledgments. This work is part of a broader collaboration with Steve
Miller and Darren Cofer at Rockwell-Collins and with Lui Sha, Abdullah Al-
Nayeem, and Mu Sun at UIUC on the PALS architecture. The PALS ideas have
been developed in close interaction with all these people, who have provided very
useful comments on earlier versions of this work. We also thank the anonymous
reviewers for helpful comments on an earlier version of this paper. We gratefully
acknowledge funding for this research from the Rockwell-Collins corporation.
Partial support has also been provided by the National Science Foundation under
Grants IIS 07-20482 and CNS 08-34709, by the Boeing Company under Grant
C8088-557395, and by the Research Council of Norway.

References

1. Al-Nayeem, A., Sun, M., Qiu, X., Sha, L., Miller, S.P., Cofer, D.D.: A formal
architecture pattern for real-time distributed systems. In: Proc. RTSS 2009. IEEE,
Los Alamitos (2009)

2. Awerbuch, B.: Complexity of network synchronization. J. ACM 32(4), 804–823
(1985)

320 J. Meseguer and P.C. Ölveczky

3. Chou, C.-T., Cidon, I., Gopal, I.S., Zaks, S.: Synchronizing asynchronous bounded
delay networks. IEEE Trans. Commun. 38(2), 144–147 (1990)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

5. Garavel, H., Thivolle, D.: Verification of GALS systems by combining synchronous
languages and process calculi. In: Păsăreanu, C.S. (ed.) SPIN Workshop. LNCS,
vol. 5578, pp. 241–260. Springer, Heidelberg (2009)

6. Girault, A., Ménier, C.: Automatic production of globally asynchronous locally
synchronous systems. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT
2002. LNCS, vol. 2491. Springer, Heidelberg (2002)

7. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

8. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96, 73–155 (1992)

9. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS archi-
tectural pattern for distributed real-time systems. Technical Report at CS dept.,
University of Illinosis at Urbana-Champaign (2010),
http://hdl.handle.net/2142/17089

10. Miller, S.P., Cofer, D., Sha, L., Meseguer, J., Al-Nayeem, A.: Implementing logical
synchrony in integrated modular avionics. In: Proc. 28th Digital Avionics Systems
Conference. IEEE, Los Alamitos (2009)

11. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

12. Potop-Butucaru, D., Caillaud, B.: Correct-by-construction asynchronous imple-
mentation of modular synchronous specifications. Fundam. Inform. 78(1), 131–159
(2007)

13. Rushby, J.M.: Bus architectures for safety-critical embedded systems. In: Hen-
zinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 306–323.
Springer, Heidelberg (2001)

14. Sha, L., Al-Nayeem, A., Sun, M., Meseguer, J., Ölveczky, P.C.: PALS: Physically
asynchronous logically synchronous systems. Technical report, University of Illinois
at Urbana-Champaign (2009), http://hdl.handle.net/2142/11897

15. Tel, G.: Introduction to Distributed Algorithms. U.P., Cambridge (1994)
16. Tel, G., Korach, E., Zaks, S.: Synchronizing ABD networks. IEEE Trans. Network-

ing 2(1), 66–69 (1994)
17. Tripakis, S., Pinello, C., Benveniste, A., Sangiovanni-Vincentelli, A., Caspi, P.,

DiNatale, M.: Implementing synchronous models on loosely time triggered archi-
tectures. IEEE Trans. on Computers 1 (2008)

http://hdl.handle.net/2142/17089
http://hdl.handle.net/2142/11897

Automated Multiparameterised Verification by
Cut-Offs

Antti Siirtola

University of Oulu, Department of Information Processing Science,
P.O. Box 3000, 90014 University of Oulu, Finland

antti.siirtola@oulu.fi

Abstract. We consider multiparameterised process algebraic verifica-
tion, where parameters are sets and binary relations over these sets used
to respectively denote the sets of the identities of replicated components
and the topology of a system. There is a cut-off result that enables such
a parameterised verification task to be reduced to a finite set of finite-
state ones, but no practical way to perform reduction, i.e. to compute the
parameter values up to the cut-offs. The first contribution of the paper
is an improved formalism that enables parameterised systems and speci-
fications to be expressed with fewer parameters than before. The second
one is a search-tree-based algorithm for computing the parameter values
up to the cut-offs. The algorithm detects and discards isomorphic pa-
rameter values and is equipped with a heuristic to prune a search tree.
The algorithm is implemented and the relevance of the contributions is
justified by practical computations.

Keywords: formal verification, parameterised verification, refinement,
process algebra, cut-off.

1 Introduction

Parameterised verification is important in practice, as probably all real-life sys-
tems can naturally be modelled as (multiply) parameterised finite-state ma-
chines, but also theoretically challenging, because the parameterised verification
problem (PVP) is undecidable in general [1].

We consider multiparameterised verification, where parameters are type and
relation variables used to respectively denote the sets of the identities of repli-
cated components and relationships between components, i.e. the topology of a
system. A specification and a system are given as parameterised labelled tran-
sition systems, which are constructed using parallel composition and hiding,
parameter values are obtained as the model class of a first order formula, where
terms are restricted to simple variables and predicates to relation variables, and
correctness is understood as the traces refinement. There is a cut-off result that
enables such a parameterised verification task to be reduced to a finite set of
finite-state ones without changing the answer to the problem, provided that the
specification does not involve hiding and the parameter values are specified using

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 321–337, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

322 A. Siirtola

the universal fragment of first order logic [2]. After the reduction, the verification
task can be solved using existing refinement checking tools.

There is also a simple algorithm which does the reduction basically automati-
cally, but its role is just to show the decidability of the problem [2]. The problem
is that the algorithm is based on the brute force exploration of the search space,
the size of which is exponential in the number of relation variables. Moreover,
the formalism suggested in [2] often necessitates the use of relation variables car-
rying redundant information, because the relations represented by two variables
cannot be combined without introducing a new variable.

The first contribution of the paper is an improved formalism that enables
parameterised systems and specifications to be expressed with fewer relation
variables. The second one is a search-tree-based algorithm for computing the
parameter values up to the cut-offs. The algorithm discards isomorphic param-
eter values and is equipped with a heuristic to prune a search tree.

Isomorphism rejection allows us to reduce the number of remaining compu-
tationally expensive refinement checking tasks, so it usually pays off. It is done
by converting parameter values to vertex coloured graphs first and then apply-
ing the existing algorithms and tools for graph isomorphism [3]. The pruning
heuristic, in turn, can have only a positive influence on the running time of the
algorithm but its efficiency depends on the topology of a system and the way
a modeller describes it. However, as the conditions behind the application of
the heuristic are syntactic, it should not be difficult for a modeller to specify a
topology in such a way that (s)he gets the most out of the heuristic.

We have implemented the algorithm in a prototype tool. Using the tool, three
example systems are analysed and the results show that the overhead of the
isomorphism rejection is minimal, running time increases rapidly in the num-
ber of relation variables and computation becomes quickly infeasible when the
heuristic is disabled. Hence, both the contributions are of practical relevance.

A distinctive feature of our method is that it is fully automated, allows pa-
rameterising a system topology, and guarantees successful termination on ev-
ery input. Probably the closest related work is done by Clarke et al. [4], who
study networks of homogeneous fixed-size processes communicating through to-
ken passing. Their result applies to systems of any topology but allows compo-
nents of an only one kind. Moreover, they provide an upper bound for the size of
network graphs only, no method for determining the networks up to the cut-off.

Also the behavioural fixed point method of Valmari and Tienari is worth
mentioning [5]. It can be seen as a kind of a cut-off result, where the bound
for the number of replicated components is determined by repeatedly adding
a component to a (partial) system until its behaviour converges. Although the
necessary computations can be done using existing tools, there is no clearly
defined class of systems on which the method terminates successfully.

Other approaches that enable parameterised verification by cut-offs have been
proposed for systems composed of similar fixed-size processes [6,7], systems of
a ring topology [8,9,10,11,12], and request-take-release (RTR) systems, where
identical processes compete for an access to a fixed number of shared resources

Automated Multiparameterised Verification by Cut-Offs 323

under a prioritised queue policy [13]. Most of the methods allow only a single
parameter, the number of replicated components, so they are easy to implement
[13,8,7,10,9,11,12]. The multiparameterised case is considered by Emerson and
Kahlon only, but neither does their result allow parameterising anything else
but the number of replicated components [6]. Moreover, the results concerning
the verification of the safety properties of the RTR systems [13] and the systems
with conjunctive guards [6] can be obtained with our method, too [2].

Other kinds of parameterised verification methods are based on abstract in-
terpretation or inductive reasoning, but despite few exceptions they are not fully
algorithmic or guaranteed to terminate. Moreover, the exceptions [14,15], based
on either counter abstraction [14] or infinite-state verification algorithms [15],
do not allow parameterising a system topology.

In the next section, our model of computation, an LTS, is reviewed. After that,
the improved formalism and the cut-off result are introduced. Sect. 4 presents the
new algorithm and provides empirical evidence on its performance. The paper
concludes with a brief discussion on future work.

2 Labelled Transition Systems

Our fundamental model of computation is a (finite) labelled transition system
(LTS) [16]. Intuitively, an LTS is a graph the vertices of which are called states,
the edges are labelled by actions and they are called transitions, and one of the
states is marked as the initial one. To introduce LTSs formally, we assume a
countably infinite set A of atoms. Tuples of atoms are called actions. The empty
tuple (), also denoted by τ , is called the invisible action and the rest of the
actions are visible. The set of all the visible actions is referred to by V.

Definition 1 (LTS). An LTS is a four-tuple (S,Σ,R, ŝ), where S is a finite
non-empty set of states, Σ ⊆ V is a finite set of visible actions, an alphabet,
R ⊆ S × (Σ ∪ {τ})× S is a set of transitions and ŝ ∈ S is the initial state.

In the analysis of LTSs, we are usually interested in the sequences of visible
actions reachable from the initial state. A finite alternating sequence of states
and actions, s1a1s2 . . .an−1sn, of an LTS L, is a path in L from s1, if (si, ai, si+1)
is a transition of L for every i ∈ {1, . . . , n − 1}. A finite sequence of visible
actions is a trace (of L), if there is a path in L from the initial state such that
the sequence can be obtained from the path by removing all the states and the
invisible actions. The set of all the traces of L is denoted by tr(L).

An LTS L2 is a traces refinement of an LTS L1, denoted by L1 tr L2, if L1

and L2 have the same alphabet and tr(L2) ⊆ tr(L1) [17]. The LTSs L1 and L2 are
traces equivalent, denoted by L1 =tr L2, if both of them are traces refinements
of each other. Clearly, tr is a preorder (i.e. a reflexive and transitive relation)
and =tr an equivalence relation in the set of LTSs.

In process algebraic verification, both the specification and the system are typi-
cally modelled as LTSs LSpec and LSys , respectively. If LSys is a traces refinement
of LSpec, then the system cannot do anything more than the specification does.

324 A. Siirtola

This way, it is possible to prove absence of some unwanted behaviour. Therefore,
the traces refinement is applicable in proving safety properties.

A system modelled as an LTS is typically composed of smaller LTSs repre-
senting its parts. Let Li = (Si, Σi, Ri, ŝi) be an LTS for both i ∈ {1, 2}. The
parallel composition of LTSs L1 and L2, denoted by (L1 ‖ L2), is a four-tuple
(S1×S2, Σ1∪Σ2, R‖, (ŝ1, ŝ2)), where R‖ consists of all triplets ((s1, s2), a, (s′1, s

′
2))

such that a ∈ Σ1∩Σ2 and (si,a, s′i) ∈ Ri for both i ∈ {1, 2}; or a ∈ (Σi∪{τ})\Σj ,
(si,a, s′i) ∈ Ri and sj = s′j , where i, j are different elements in {1, 2}. This defi-
nition results in Hoare type parallel composition [17]. According to it, the LTSs
can execute a common visible action a in the parallel composition if and only if
both of them agree on its execution, whereas the invisible actions and the visible
actions that are only in the alphabet of another LTS are executed individually.

Before a system LTS is compared against a specification one, the actions
irrelevant to the specification are hidden. Let L = (S,Σ,R, ŝ) be an LTS and Λ
a set of visible actions. The LTS L after hiding Λ, is a four-tuple (S,Σ\Λ,RΛ, ŝ),
denoted by (L\Λ), where RΛ consists of all tuples (s,a, s′) such that a /∈ Λ and
(s,a, s′) ∈ R; or a = τ and there is b ∈ Λ such that (s,b, s′) ∈ R. Hence, (L\Λ)
is obtained from L by changing the actions in Λ to the invisible one.

It is easy to see that the structures obtained from LTSs by parallel composition
and hiding are LTSs. Moreover, the parallel composition is commutative and
associative, which means that we can generalise the parallel composition to any
finite non-empty set of LTSs, provided we are interested in the alphabet and
traces only. Let I = {i1, i2, . . . , in} be a finite non-empty index set and Li =
(Si, Σi, Ri, ŝi) an LTS for every i ∈ I. The parallel composition of LTSs in the
set {Li}i∈I , denoted by (‖i∈I Li), can be now defined as the LTS (Li1 ‖ Li2 ‖
. . . ‖ Lin).

3 Multiparameterised Verification by Cut-Offs

The problem with LTSs is that they cannot naturally express parameterised
systems and specifications. As an example, you may consider a shared resource
system (SRS) with an arbitrary number of users competing for an access to an
arbitrary number of shared resources arranged in the form of a forest [18]. A user
gets a read (write) access to a subtree of resources after successfully requesting a
read (write) lock on the root of the subtree and a weaker read (write) intention
lock, whose purpose is to indicate the existence of the read (write) lock deeper in
the tree, on all its ancestors. A resource itself has no mechanism for concurrency
control and several users can hold a lock on a resource simultaneously only if all
of them have either intention locks or read related locks. Our goal is to formally
model the system and the specification and prove that in our construction it is
not possible for a user to access a resource if somebody else is writing to it.

3.1 Variables and Valuations

Clearly, SRS cannot be expressed as a single LTS but a different LTS is needed
for each parameter value. To overcome the problem, we allow the use of three

Automated Multiparameterised Verification by Cut-Offs 325

kinds of parameters, type, atom and relation variables, in LTSs. The sets of all
the atom, type and relation variables are denoted respectively by X, T and G,
and they are assumed to be countably infinite and disjoint. We also allow the
use of a constant relation symbol .= which represents the normal equality (the
minimal reflexive relation) in the set of atoms.

Type variables represent the disjoint, finite, non-empty sets of atoms and
they are used to denote the sets of the identities of replicated components of the
same kind. We assume that for each type variable T there are infinitely many
atoms, denoted by aT,1, aT,2, . . . and called T -atoms, used in the values of T . As
the T -atoms represent the identities of the replicated components of the type
T , it is natural to assume that the sets of T1-atoms and T2-atoms are disjoint
whenever T1 and T2 are different type variables. We may also assume that there
are infinitely many atoms that are not U -atoms for any type variable U .

Atom variables are used to refer to the identities of replicated components.
Hence, each atom variable x represents a T -atom for some type variable T , which
is specified by a function δ : X �→ T (i.e. δ(x) = T). Relation variables are used
to describe the topology of a system and relationships between the components.
Formally, a relation variable Π represents a relation over the set of T1-atoms
and T2-atoms for some type variables T1, T2, which are specified by respectively
functions δ1, δ2 : G �→ T (i.e. δ1(Π) = T1 and δ2(Π) = T2). We assume that for
all type variables U1, U2 there are infinitely many atom variables y and infinitely
many relation variables Ξ such that δ(y) = U1, δ1(Ξ) = U1 and δ2(Ξ) = U2.

The values of variables are formally represented as a valuation.

Definition 2 (Valuation). A valuation is a function φ from a finite set of
atom, type and relation variables such that

– for all type variables T ∈ dom(φ), φ(T) is a finite non-empty set of T -atoms,
– for all relation variables Π ∈ dom(φ), the type variables δ1(Π), δ2(Π) are in

dom(φ) and φ(Π) ⊆ φ(δ1(Π))× φ(δ2(Π)), and
– for all atom variables x ∈ dom(φ), the type variable δ(x) is in dom(φ) and

φ(x) ∈ φ(δ(x)).

When modelling in our formalism, you have to identify different classes of com-
ponents and their relationships (system topology) first, and then represent them
with the aid of type and relation variables. In the case of SRS, there are two
kinds of components, resources and users, so we pick type variables R and U
to represent the sets of their identities, respectively. The relationship between
resources is represented by a relation variable <R such that (r1, r2) are related
by <R if and only if r1 is a proper ancestor of r2. (Here, an ancestor of a resource
can also be the resource itself, and a proper ancestor refers to an ancestor other
than the resource itself.) Hence, <R denotes a proper ancestor relation, which is
the transitive closure of a forest.

In other words, we are interested in valuations φ with the domain R,U,<R

such that φ(R) and φ(U) are finite non-empty sets of respectively R-atoms and
U -atoms, and φ(<R) is a transitive, irreflexive and asymmetric relation over φ(R)
such that whenever (r1, r3), (r2, r3) ∈ φ(<R) and r1 �= r2 then (r1, r2) ∈ φ(<R)

326 A. Siirtola

or (r2, r1) ∈ φ(<R) (i.e. whenever r1 and r2 are different proper ancestors of r3,
then r1 is a proper ancestor of r2 or vice versa). We write ΦSrs for the set of all
such valuations.

3.2 Valuation Formulae

Valuations can be considered the interpretations of the formulae of typed (many-
sorted) first order logic where the terms are restricted to atom variables and
predicates to relation variables. Therefore, some (infinite) sets of valuations can
be obtained as the model classes of such first order formulae. Many (or probably
all) practically important system topologies (e.g. trees, rings, fully connected
ones) can be represented this way. The first order formulae of the above kind
are called valuation formulae (VFs) and defined formally as follows.

Definition 3 (Valuation formula (VF))

1. " is an (always-true) VF, and if x, y are atom variables and Π is a relation
variable or the relation symbol .=, then xΠy is an (elementary) VF.

2. If C1 and C2 are VFs and x is an atom variable, then (¬C1) is a (negated)
VF, (C1 ∧ C2) a (conjunctive) VF, and (∀x : C) an ((x-)replicated) VF.

3. Only the expressions obtained by finite application of the steps 1,2 are VFs.

We use standard abbreviations x �Π y, (C1 ∨C2), (C1 → C2) and (∀x1, . . . , xn : C)
for VFs ¬(xΠy), (¬((¬C1) ∧ (¬C2))), ((¬C1) ∨ C2) and (∀x1 : · · · : ∀xn : C),
respectively. The conjunction of VFs C1, C2, . . . , Cn is naturally defined as the
VF ((. . . ((C1 ∧ C2) ∧ C3) . . .) ∧ Cn), when n ≥ 1, and as ", in the case n = 0.

A VF C′ is a sub-VF (of a VF C), if C′ is a substructure of C. Moreover, a VF
C is called universal, if existential quantification is not used, i.e. every replicated
sub-VF occurs within an even number of negated sub-VFs in C; negation-normal,
if negations are only applied to elementary and always-true VFs, i.e. whenever
¬C′ is a sub-VF of C, then C′ is an elementary or an always-true VF; relation-
negated, if each elementary VF, which involves a relation variable, is negated,
i.e. every elementary sub-VF xΠy, where Π is a relation variable, occurs within
an odd number of negated sub-VFs in C; and unquantified, if quantification is
not used, i.e. C has no replicated sub-VF.

An atom variable x is free (in C), if there is an occurrence of x in C that
is not within an x-replicated substructure, otherwise x is bound (in C). A VF
is closed, if every atom variable is bound in it. The parameters (of C) are the
relation and free atom variables in it and the type variables which δ, δ1, δ2 assign
to the relation and atom variables in C. If φ is defined for all the parameters of
C, then [[C]]φ denotes a formula obtained from C by substituting the relation and
free atom variables in C according to φ and the normal equality relation = for
the relation symbol .=, and by letting the value of each atom variable x used to
index a replicated substructure to range over φ(δ(x)). The formula [[C]]φ is called
the instance (of C) (generated by φ) and it is evaluated in the usual way.

We say that a valuation φ satisfies (or in logical terms is a model of) a VF
C, if φ is defined for all the parameters of C and [[C]]φ is true. (Infinite) sets of

Automated Multiparameterised Verification by Cut-Offs 327

parameter values can be now expressed as the sets of valuations that satisfy a
certain VF. For example, the parameter values of SRS is the set of all valuations
φ with the domain {R,U,<R} such that φ satisfies a VF

(∀r1 : r1 �<R r1) ∧ (∀r1, r2 : (r1 �<R r2 ∨ r2 �<R r1))∧
(∀r1, r2, r3 : ((r1 <R r2 ∧ r2 <R r3) → r1 <R r3))∧
(∀r1, r2, r3 : ((r1 � .= r2 ∧ r1 <R r3 ∧ r2 <R r3)→ (r1 <R r2 ∨ r2 <R r1))) ,

denoted by CSrs , where r1, r2, r3 are atom variables mapped to R by δ. Hence,
ΦSrs is the class of the models of CSrs that are defined for precisely R,U,<R.

3.3 LTS Schemata

We express parameterised systems and specifications as structures called LTS
schemata (LTSCs). However, before we can formally define them, we need to
introduce set schemata (SSCs) used to express the parameterised sets of actions.

Definition 4 (Set schema (SSC))

1. A finite set of actions, where zero or more atom variables are used in place
of atoms, is an (elementary) SSC.

2. If S is an SSC and x an atom variable, then
⋃

x S is a (replicated) SSC.
3. Only the expressions obtained by finite application of the steps 1,2 are SSCs.

Definition 5 (LTS schema (LTSC))

1. An LTS, where zero or more atom variables are used in place of atoms, is
an (elementary) LTSC.

2. If P1 and P2 are LTSCs, C is an unquantified VF, S an SSC and x an atom
variable, then (P1 ‖ P2) is a (parallel) LTSC, (‖x P1) an ((x-)replicated)
LTSC, (C&P1) a (conditional) LTSC, and (P1 \ S) a (hiding) LTSC.

3. Only the expressions obtained by finite application of the steps 1,2 are LTSCs.

The concepts of a sub-SSC and a sub-LTSC are defined analogously to sub-
VFs, and the concepts of a free and bound atom variable, a closed structure, a
parameter and an instance (generated by a valuation) are extended to LTSCs
and SSCs as they are defined for VFs. Formally, if P is an LTSC or SSC, and φ
a valuation defined for all the parameters of P , then [[P]]φ is defined as follows.

1. The instance of an elementary LTSC (SSC) P is a structure obtained from
P by substituting φ(x) for every occurrence of each atom variable x.

2. [[
⋃

x S′]]φ =
⋃

a∈φ(δ(x))([[S′]]φ[a←x]),
where φ[a← x] denotes a valuation otherwise equal to φ but maps x to a.

3. [[(P1 ‖ P2)]]φ = [[P1]]φ ‖ [[P2]]φ.
4. [[(‖x P ′)]]φ = ‖a∈φ(δ(x))([[P ′]]φ[a←x]).

5. [[(C&P ′)]]φ =
{

[[P ′]]φ , if [[C]]φ is true,
an identity LTS Lid := ({()}, ∅, ∅, ()) , otherwise.

6. [[(P ′ \ S)]]φ = [[P ′]]φ \ [[S]]φ.

It is easy to see that the instance of an LTSC is an LTS.

328 A. Siirtola

When modelling with LTSCs, we first capture the behaviour of a system
into finitely many elementary LTSCs each of which represents the system from
the viewpoint of finitely many components. Atom variables are used to refer
to replicated components. Then, each elementary LTSC is enclosed within a
conditional LTSC that restricts the relationships of the replicated components
to those that are actually possible. Each conditional LTSC, in turn, is enclosed
within replicated LTSCs such that every atom variable becomes bound, and after
that, the replicated LTSCs are put together using parallel LTSCs. Specifications
are modelled similarly and finally, the actions irrelevant to the specification are
hidden in the system model. For the restrictions of the modelling technique, see
Prop. 7 in [2] and the related discussion.

In the case of SRS, we first capture the behaviour of a user u in an elementary
LTSC User1 from the viewpoint of reading and writing to a resource r2 based on
the lock on its ancestor r1. Here, u, r1, r2 are atom variables such that δ(u) = U
and δ(r1) = δ(r2) = R, and because r1 denotes an ancestor r2, we enclose User1

within Cr1≤r2 := (r1
.= r2 ∨ r1 <R r2). As the lock requests of a user u on

a resource and its ancestors are interdependent, we need to model u from the
viewpoint of locking a resource r2 and its proper ancestor r1, too. We capture
this behaviour in an elementary LTSC User2. As r1 now represents a proper
ancestor of r2, User2 is enclosed within Cr1<r2 := r1 <R r2. Finally, as also the
lock requests of distinct users u1, u2 on the same resource r are interdependent,
the system has to be modelled from this viewpoint as well. For that purpose,
we introduce an elementary LTSC Lock . Here, r, u1, u2 are atom variables such
that δ(r) = R and δ(u1) = δ(u2) = U , and because u1 and u2 denote different
users, Lock is put inside Cu1 �=u2 := u1 �

.= u2. The details of elementary LTSCs
can be found in [18, pp. 61–64], but in the context of this paper it is sufficient
to be aware of the structure of the system and the specification.

To build the model of SRS, denoted by PSrs , we enclose the LTSCs described
above within replicated LTSCs such that every atom variable becomes bound
and finally put the parts together using the parallel LTSC construct. Hence,
PSrs is an LTSC

(‖
u

‖
r1

‖
r2

Cr1≤r2 &User1) ‖ (‖
u

‖
r1

‖
r2

Cr1<r2 &User2) ‖(‖
r

‖
u1

‖
u2

Cu1 �=u2 &Lock) .

To formalise the specification, note that every illegal behaviour can be traced
back to two different users u1, u2 that write to a resource r3 simultaneously
based on the locks they have on respectively some ancestors r1, r2. Therefore,
we first capture the specification in an elementary LTSC Prop2 from the view-
point of u1, u2 accessing r3 based on the locks on respectively r1, r2. Here, r3 is
an atom variable such that δ(r3) = R, and because u1 and u2 denote different
users and r1, r2 ancestors of r3, we enclose Prop2 within a VF Cr1≤r3 ∧Cr2≤r3 ∧
Cu1 �=u2 . However, to correctly present the specification in the presence of a sin-
gle user only, we also introduce an elementary LTSC Prop1, which captures
the specification from the viewpoint of u1 accessing r3 based on the lock on r1.

Automated Multiparameterised Verification by Cut-Offs 329

Hence, it suffices to put Prop1 inside the VF Cr1≤r3 , and the formal specification
can be now expressed as an LTSC

QSrs := ‖
r1

‖
r2

‖
r3

‖
u1

‖
u2

((Cr1≤r3 &Prop1) ‖ (Cr1≤r3 ∧ Cr2≤r3 ∧ Cu1 �=u2 &Prop2)) .

Finally, as the actions related to locking are irrelevant to QSrs , we hide them
in the system model. The set of all the locking actions is represented by a SSC
Slock , so the system gets the form PSrs\Slock . The correctness of SRS can be now
stated as the question whether [[QSrs]]φ tr [[PSrs \ Slock]]φ for all valuations φ
with the domain {R,U,<R} such that φ satisfies CSrs . Note also that SRS cannot
be handled with the other cut-off methods because it involves both multiple and
topology-related parameters.

The formalism presented above is developed from that presented in [2]. The
main novelties are the introduction of the functions δ, δ1, δ2 that assign domains
to atom and relation variables and the introduction of a conditional LTSC, which
has made it possible to simplify a replicated LTSC. Earlier, the domains of atom
and relation variables were not fixed which expanded system descriptions. More-
over, relation variables were not restricted to binary relations and a replicated
LTSC was assigned a tuple of atom variables whose value ranged over the value
of a relation variable. Because the interdependencies in the values of atom vari-
ables can be now expressed with the aid of VFs, there is no need to do that in
replicated LTSCs. That is why it is sufficient to use simple replicated LTSCs,
where the value of a single atom variable ranges over its domain.

The introduction of a conditional LTSC has also enabled us to restrict the
domains of relation variables to binary relations. That is because we believe that
binary relations are sufficient to express all practically relevant system topologies
and, with the aid of conditional LTSCs, they can be combined to express rela-
tionships between any number of components. For example, in the case of SRS,
we have combined the relations represented by <R and .= in the VFs Cr1≤r2 ,
Cu1 �=u2 , Cr1≤r3 ∧ Cr2≤r3 ∧ Cu1 �=u2 to create new binary and ternary relations.
Actually, the problem with the earlier formalism was that you could not create
a new relation from existing ones without introducing a new relation variable.
For example, SRS modelled in the old formalism uses six relation variables [18],
all definable with the aid of the type variables U and R, the relation variable
<R and the constant relation symbol .=. Hence, the new formalism is not only
simpler but allows more natural modelling, too.

3.4 Parameterised Traces Refinement

In general, we consider the following version of PVP.

Problem 6 (Parameterised Traces Refinement (PTR)).
Instance: A closed specification LTSC Q which has no hiding sub-LTSC, a closed
system LTSC P , and a closed universal VF C.
Question: Is [[Q]]φ tr [[P]]φ for all valuations φ that satisfy C and are defined for
precisely the parameters of Q and P?

330 A. Siirtola

Focusing our attention on closed structures is not a restriction, because with-
out the loss of generality, free atom variables can be bound by introducing new
relation variables [2]. However, it is necessary to restrict our attention to uni-
versal VFs and specifications that have no hiding sub-LTSC, because otherwise
the problem becomes undecidable [2,18]. Hiding is typically needed in the sys-
tem side only, but the restriction to universal VFs means that we can study only
specification-system families that are closed under the removal of a replicated
component [2, Lemma 13]. In other words, we can only verify systems and study
properties whose behaviour can be modelled from the viewpoint of any two (or
more) components connected to each other. That is why our formalism is not (nat-
urally) applicable to systems with a linear, ring or tree topology. However, with
the aid of the behavioural fixed-point method [5] this restriction can sometimes
be overcome [19]. Nevertheless, the results in [19] bring only more systems within
the reach of our cut-off result but do not help in automating its application.

PTR is decidable because there is a cut-off result that establishes upper
bounds for (the sizes of) the values of parameters such that the system is correct
with respect to the specification for all the parameter values if and only if it is
correct for all the parameter values up to the cut-offs [2]. However, before we
can represent the result, we need to introduce some new concepts first.

Let φ and ψ be valuations, T a type variable and R an LTSC. We say that φ
and ψ are isomorphic, denoted by φ # ψ, if they have the same domain and can
be obtained from each other by a bijective mapping of atoms [2]. The T -degree
of R, denoted by degT (R), is the maximum number of the nested sub-LTSCs
(‖xR′) of R such that δ(x) = T .

We can now represent the cut-off result. It gives an explicit upper bound for
(the size of) the values of each type variable generally as the maximum of the
T -degrees of the system and the specification. The cut-offs for the values of type
variables implicitly establish upper bounds for the values of relation variables
as well and guarantee that only finitely many non-isomorphic valuations (i.e.
refinement checks) remain.

Theorem 7. Let Q,P , C be an instance of PTR. Moreover, let Φ be the set
of all valuations φ such that φ satisfies C and φ is defined for precisely the
parameters of Q and P, and let Φ′ be the set of all valuations φ ∈ Φ such that
|φ(T)| ≤ max{1, degT (Q), degT (P)} for all type variables T ∈ dom(φ). Then
any maximal set Ψ of non-isomorphic valuations in Φ′ is finite and the answer
to the instance Q,P , C of PTR is positive if and only if [[Q]]ψ tr [[P]]ψ for all
valuations ψ ∈ Ψ .

The proof of the theorem is analogous to the proof of Theorem 14 in [2].
Theorem 7 is clearly applicable to our SRS model, because QSrs , PSrs \ Slock

and CSrs are closed, QSrs has no hiding sub-LTSC and CSrs is universal. As
neither of the LTSCs has no more than two nested x-replicated sub-LTSCs such
that δ(x) = U and no more than three nested y-replicated sub-LTSCs such that
δ(y) = R, to prove the system correct for all parameter values, it is sufficient to
pick a maximal set of non-isomorphic valuations φ with the domain {U,R,<R}

Automated Multiparameterised Verification by Cut-Offs 331

such that φ satisfies CSrs , |φ(U)| ≤ 2 and |φ(R)| ≤ 3, and then check whether
the instances of the system generated by those valuations are correct.

4 Reduction Algorithm

Being aware of the structure of SRS, the representative valuations up to the
cut-offs are easy to construct. There are 14 of them and they are illustrated in
Fig. 1. The corresponding system and specification instances are straightforward
to construct and check with the aid of an existing refinement checker.

However, in general, it would be convenient to be able to apply the theorem
automatically. An obvious idea to algorithmically determine the valuations in
Fig. 1 is to go through all valuations φ with the domain {U,R,<R} such that
φ(U) = {aU.1}, {aU,1, aU,2}; φ(R) = {aR,1}, {aR,1, aR,2}, {aR,1, aR,2, aR,3} and
φ(<R) is a subset of φ(R) × φ(R). Meanwhile, we pick those valuations that
satisfy CSrs and remove isomorphs. Note that you may use any two U -atoms
and any three R-atoms in the values of respectively U and R, because the model
class of a VF is closed under isomorphism [2, Lemma 15] and the choice of atoms
for the values of type variables is insignificant.

The algorithm sketched above is actually the one presented in [2]. However,
it leaves some practically relevant questions open: namely how to generate and
check all valuations and how to identify isomorphs. Moreover, although it may
be necessary to generate all such valuations, for example in the case when the
VF is " and there is no relation variable, often only a small number of valuations
satisfy the VF and are non-isomorphic. Hence, a method for restricting a search
space would be useful, too.

A traditional approach to solve classification problems like this is based on
the recursive generation of a search tree [20]. An obvious idea is to start from
the smallest valuation and gradually enlarge valuations as we go deeper in the
tree. Moreover, as valuations that map type variables to sets of different size are
necessary non-isomorphic, a search tree can be generated for each combination
of type variable values separately.

Generating a search tree in the above way necessitates ordering valuations
from the smallest to the largest. A natural choice for the purpose is the subval-
uation order defined as follows. Let φ and ψ be valuations. The valuation ψ is
a subvaluation (of φ) and φ is a supervaluation (of ψ), denoted by ψ−�φ, if φ
and ψ have the same domain, ψ(T) = φ(T) for all type variables T ∈ dom(ψ),
ψ(Π) ⊆ φ(Π) for all relation variables Π ∈ dom(ψ) and ψ(x) = φ(x) for all
atom variables x ∈ dom(ψ).

Fig. 1. Valuations to be checked for the correctness of SRS. Black dots denote users
and white ones resources, and an edge turns to a resource from the proper ancestor.

332 A. Siirtola

We can now generate search trees using the subvaluation order −�; the root of
the search tree is a valuation that maps relation variables to the empty set, and
the children of a valuation φ are the minimal proper supervaluations φ′ of φ (i.e.
φ−�φ′, φ �= φ′ and there is no φ′′ �= φ, φ′ such that φ−�φ′′−�φ′). Although all
necessary valuations will be generated this way, a valuation may occur multiple
times in a search tree, which leads to inefficiency. Therefore, the subvaluation
order has to be strengthened.

We assume a total order 	 in the set of atoms and type, relation and atom
variables. The order is extended to tuples by generalising it to the lexicographi-
cal order, and to finite sets by considering them 	-ordered tuples. Now, 	 can
be used to order any structures obtained from atoms, type, relation and atom
variables by a recursive composition of tuples and sets. Hence, especially valua-
tions can be ordered by 	. Now, the root of a search tree is the same as earlier
but the children of a valuation φ are the minimal proper supervaluations φ′ of
φ such that φ 	 φ′. This way, each valuation will be generated precisely once.

The second problem concerns detecting and removing isomorphs. This is im-
portant as it allows us to reduce the number of remaining finite-state refinement
checks, which are often more expensive to perform than isomorphism rejection.
A typical approach to the task is to first compute a canonical form, which is the
same for all the isomorphic valuations and only them, for each valuation and
then preserve only one valuation per canonical form.

To compute the canonical form of a valuation, we can exploit existing algo-
rithms for vertex coloured graphs. That is because the vertex and edge coloured
graphs can be converted to vertex coloured ones [3], and a valuation φ can be
thought as a vertex and edge coloured graph, where the vertices and edges are
respectively the atoms and the pairs of atoms in the images of, respectively,
type and relation variables, the colour of a vertex a is the unique type variable
T ∈ dom(φ) such that a ∈ φ(T) (plus the set of atom variables x ∈ dom(φ) such
that φ(x) = a, if there are any) and the colour of an edge (a1, a2) is the set of
all relation variables Π ∈ dom(φ) such that (a1, a2) ∈ φ(Π). The canonical form
of a valuation φ can be now defined as the canonical form of the derived vertex
coloured graph and the 	-ordered domain of φ as there may be relation variables
that are mapped to the empty set and therefore do not colour any edge.

Note that isomorphs can be removed only after the search tree is generated.
Although it would be tempting to prune the search as soon as a valuation iso-
morphic to a previously generated one is detected, you cannot do so, because
the subtrees of isomorphic valuations are generally not isomorphic. Therefore,
the pruning techniques presented in [20] cannot be applied.

However, it is allowable to prune the search tree if the VF is universal and
relation-negated, and we have generated a valuation φ that does not satisfy the
VF. That is because by the following lemma, no supervaluation of φ can satisfy
the VF either.

Lemma 8. Let φ and ψ be valuations and C a universal and relation-negated
VF. If ψ−�φ and φ satisfies C, then ψ satisfies C, too.

Automated Multiparameterised Verification by Cut-Offs 333

The lemma says that the model class of a universal relation-negated VF is
downward-closed with respect to the subvaluation order. To see that it holds, first
note that it is true for negated elementary VFs and (negated) always-true VFs.
Therefore, it holds for all VFs obtained from these using standard Boolean con-
nectives, i.e. all unquantified negation-normal relation-negated ones. The claim
now follows from the fact that each universal relation-negated VF can be con-
verted into a VF ∀x1, . . . , xn : C′ with the same class of models, where C′ is
unquantified, negation-normal and relation-negated.

The idea can be extended to a pruning heuristic for any universal VF C.
Let C′ be the conjunction of all the relation-negated conjuncts of C. Here, a
conjunct is a maximal sub-VF that is not conjunctive. Now, C′ is universal and
relation-negated, and every valuation that satisfies C satisfies C′, too. Hence, if
a valuation φ does not satisfy C′, then the search can be pruned because neither
C′ and hence nor C can be satisfied by any supervaluation of φ. You should
note that the heuristic can only improve the search by making the search trees
smaller, not enlarge them and hence impair the search.

The recursive generation of search trees with the isomorphism rejection and
the pruning heuristic above is formalised as an algorithm in Fig. 2. The following
property results from the fact that the algorithm implements Theorem 7.

Theorem 9. Let Q,P , C be an instance of PTR. Then Reduce(Q,P , C) returns
a finite set Ψ of valuations such that the answer to the instance Q,P , C of PTR
is positive if and only if [[Q]]φ tr [[P]]φ for all φ ∈ Ψ .

procedure Reduce(Q,P , C)
let C′ be the conjunction of all the relation-negated conjuncts of C
let Ψ := ∅
for all valuations φ̂ defined for precisely the parameters of Q and P such that

φ̂(T) = {aT,1, . . . , aT,k}, where 1 ≤ k ≤ max{1, degT (Q), degT (P)}, for all
type variables T and φ̂(Π) = ∅ for all relation variables Π in the domain

do
let Φ := TreeSearch(φ̂, ∅, C′)
remove valuations that do not satisfy C and isomorphs from Φ
let Ψ := Ψ ∪ Φ

end do
return Ψ

subprocedure TreeSearch(φ, Φ, C′)
if φ satisfies C′ then

let Φ := Φ ∪ {φ}
let Φ′ be the set of all the minimal proper supervaluations φ′ of φ s.t. φ 	 φ′

for all φ′ ∈ Φ′ let Φ := TreeSearch(φ′, Φ, C′)
end if
return Φ

Fig. 2. Algorithm Reduce reduces the set of valuations related to an instance Q,P , C
of PTR to a finite subset Ψ without changing the answer to the verification task

334 A. Siirtola

Fig. 3. The search tree for valuations with two users and two resources: the highlighted
valuations satisfy CSrs , the leaves do not satisfy C′ nor CSrs , and one child of the root
is removed as an isomorph

When applied to SRS, the algorithm forms C′ as the conjunction of the first
two conjuncts of CSrs . Hence, the search can be pruned as soon as a valuation φ
such that φ(<R) is not irreflexive or asymmetric is encountered. After that, the
algorithm generates a total of six search trees, one for each combination of (the
sizes of) the values of (U,R) up to the cut-off (2, 3). For example, the search
tree for valuations mapping R and U to the sets of size two is shown in Fig. 3.
The algorithm generates a total of 176 valuations, computes a canonical form 40
of them, and outputs 14 valuations as expected. Using the refinement checker
FDR2, all the 14 instances were found to be correct, which by Theorem 9 implies
that SRS works as specified for any number of users and any forest of resources.

We have implemented the algorithm in a prototype tool which uses the nauty
package [3] to compute the canonical forms of valuations. With the aid of the tool
and FDR2, we have verified two structurally larger examples as well: a mutual
exclusion property called repeatable-read for taDOM2+ tree-locking protocol
used in XML databases [21,19] and a mutual exclusion property for a ring of
users that can access a shared resource in the possession of one of the two
tokens circulating in the ring. In the modelling of these systems, we have applied
the behavioural fixed point method as described in [19] in order to express the
topologies of the systems as universal VFs.

The structure of taDOM2+ is similar to SRS except that the protocol looks
different from the viewpoint of a node and its parent than from the viewpoint of
a node and its other proper ancestor. Hence, two relation variables are needed
to express the system from both the aspects. The same is true for the 2-token
system; it looks different from the viewpoint of two users directly connected to
each other than from the viewpoint of other two users. Additionally, a user that
initially has both the tokens behaves in the different way, which means that three
relation variables are needed to represent the system in a form that allows the
algorithm to be applied.

Statistics on the execution of the tool are collected in Table 1. The isomor-
phism rejection seems to perform very well. The overhead of computing canonical
forms, t−t−iso , is minimal in comparison with time trc an extra refinement check

Automated Multiparameterised Verification by Cut-Offs 335

Table 1. Statistics on the performance of the algorithm: the type variables (types) used
in the specification and system descriptions, the number of the relation variables with
their domains (relvars), the cut-off sizes for the values of the type variables (cutoff),
the size of the total search space (srch spc), the combined size of the search trees (tree
sz), the number of canonical forms computed (can), the number of valuations output
(out), time taken in seconds (t), time taken if the pruning heuristic is disabled (tall),
i.e. the whole search space is covered, time taken without the isomorphism rejection
(t−iso), and time taken to refinement check the largest instance up to the cut-offs (trc).

types relvars cutoff srch spc tree sz can out t(s) tall (s) t−iso(s) trc(s)
SRS (U,R) 1, R×R (2,3) 1060 176 40 14 0.06 0.07 0.05 91
taDOM2+ (T,N) 2, N ×N (2,3) 524808 2508 110 28 0.88 33 0.87 3830
2-token U 3, U × U 4 28 · 1014 6843269 441 29 9840 – 9750 < 0.1

may take. The exception is the last case where the instances of the system are
small. However, if the users in a ring would exhibit slightly more complicated be-
haviour, so that a refinement check would take a quarter of a second on average,
then the isomorphism rejection would pay off in this case as well.

Also the pruning heuristic looks efficient. Without it, the tool performs much
worse or is even unable to finish the computation, i.e. t < tall . Hence, the heuris-
tic seems to be useful or even vital in practical examples. However, you should
note that the efficiency of the heuristic depends on the way a modeller encodes
the system topology in a VF. Therefore, you ought to write the VF using as many
universal relation-negated conjuncts as possible. Intuitively, it means that you
should eagerly specify a topology with the aid of its complement, i.e. describe
which kinds of relationships are not possible.

Despite the use of the heuristic, the running time of the algorithm is still
exponential in the number of relation variables. Therefore, the introduction of
a conditional LTSC is of high practical relevance, because it enables systems
and specifications to be expressed with fewer relation variables than earlier. For
example, the size of the total search space of the topologically simplest example,
SRS, would have been in the scale of 1016 without the improved formalism and
therefore possibly impossible to handle.

5 Conclusions

We have provided an automated cut-off method for multiparameterised verifi-
cation. The method allows parameterising a system topology and guarantees
successful termination on every input. We are not aware of other parameterised
verification methods with these qualities. In future, we are going to extend our
prototype implementation into a complete tool and equip it with the behavioural
fixed-point method [5,19] so that also systems with a linear, ring or tree topology
could be treated without an extra modelling step.

336 A. Siirtola

Acknowledgements. The research is partly funded by the Ministry of Educa-
tion of Finland through Infotech Oulu Graduate School and supported by Oulu
University Scholarship Foundation and the Foundation of Tauno Tönning. The
author thanks Juha Kortelainen for his comments on the paper.

References

1. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

2. Siirtola, A., Kortelainen, J.: Algorithmic verification with multiple and nested pa-
rameters. In: ICFEM 2009. LNCS, vol. 5885, pp. 561–580. Springer, Heidelberg
(2009)

3. McKay, B.D.: Nauty User’s Guide (Version 2.4). Department of Computer Science,
Australian National University (2007)

4. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decompo-
sition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
276–291. Springer, Heidelberg (2004)

5. Valmari, A., Tienari, M.: An improved failures equivalence for finite-state systems
with a reduction algorithm. In: PSTV 1991, pp. 3–18. North-Holland, Amsterdam
(1991)

6. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few.
In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236–254. Springer,
Heidelberg (2000)

7. Emerson, E.A., Kahlon, V.: Exact and efficient verification of parameterized
cache coherence protocols. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS,
vol. 2860, pp. 247–262. Springer, Heidelberg (2003)

8. Emerson, E.A., Kahlon, V.: Model checking large-scale and parameterized re-
source allocation systems. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS,
vol. 2280, pp. 251–265. Springer, Heidelberg (2002)

9. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput.
Sci. 14(4), 527–550 (2003)

10. Emerson, E.A., Kahlon, V.: Parameterized model checking of ring-based mes-
sage passing systems. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS,
vol. 3210, pp. 325–339. Springer, Heidelberg (2004)

11. Li, J., Suzuki, I., Yamashita, M.: A new structural induction theorem for rings of
temporal Petri nets. IEEE Trans. Softw. Eng. 20(2), 115–126 (1994)

12. Pyssysalo, T.: An induction theorem for ring protocols of processes described with
predicate/transition nets. Research Report A37, Helsinki University of Technology
(1996)

13. Bouajjani, A., Habermehl, P., Vojnar, T.: Verification of parametric concurrent sys-
tems with prioritised FIFO resource management. Form. Method. Syst. Des. 32(2),
129–172 (2008)

14. Delzanno, G., Raskin, J.F., Begin, L.V.: Towards the automated verification of
multithreaded Java programs. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002.
LNCS, vol. 2280, pp. 173–187. Springer, Heidelberg (2002)

15. Bingham, J.D., Hu, A.J.: Empirically efficient verification for a class of infinite-
state systems. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440,
pp. 77–92. Springer, Heidelberg (2005)

Automated Multiparameterised Verification by Cut-Offs 337

16. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood
Cliffs (1997)

17. Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall, Englewood
Cliffs (1985)

18. Siirtola, A.: Algorithmic Multiparameterised Verification of Safety Properties. Pro-
cess Algebraic Approach. PhD thesis, University of Oulu (2010)

19. Siirtola, A.: Cut-offs with network invariants. In: ACSD 2010, pp. 105–114. IEEE,
Los Alamitos (2010)

20. Kaski, P., Österg̊ard, P.R.J.: Classification Algorithms for Codes and Designs. Al-
gorithms and Computation in Mathematics, vol. 15. Springer, Heidelberg (2006)

21. Haustein, M., Härder, T.: Optimizing lock protocols for native XML processing.
Data Knowl. Eng. 65(1), 147–173 (2008)

Automating Cut-off for Multi-parameterized Systems�

Youssef Hanna, David Samuelson, Samik Basu, and Hridesh Rajan

Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, IA, USA
{ywhanna,sralmai,sbasu,hridesh}@iastate.edu

Abstract. Verifying that a parameterized system satisfies certain desired proper-
ties amounts to verifying an infinite family of the system instances. This problem
is undecidable in general, and as such a number of sound and incomplete tech-
niques have been proposed to address it. Existing techniques typically focus on
parameterized systems with a single parameter, (i.e., on systems where the num-
ber of processes of exactly one type is dependent on the parameter); however,
many systems in practice are multi-parameterized, where multiple parameters
are used to specify the number of different types of processes in the system. In
this work, we present an automatic verification technique for multi-parameterized
systems, prove its soundness and show that it can be applied to systems irrespec-
tive of their communication topology. We present a prototype realization of our
technique in our tool Golok, and demonstrate its practical applicability using a
number of multi-parameterized systems.

1 Introduction

A large class of protocols described for concurrent systems, e.g., client-server proto-
cols and multi-threaded locking protocols, do not enforce any bound on the number of
processes that constitute the systems. Behavior of systems executing such protocols are
modeled as parameterized systems where the parameter specifies the number of homo-
geneous processes in the system [1]. Verification of a parameterized system, therefore,
amounts to verifying every instance of the system obtained by fixing the value of the
parameter. In short, if sys(n) is a parameterized system, where n specifies the num-
ber of homogeneous processes in the system, then verifying whether sys(n) satisfies a
certain desired property involves verifying that for all possible values of n, the system
satisfies the property. This problem is undecidable in general [2].

Driving Problem. There is a rich body of work on parameterized system verifica-
tion [3, 4, 5, 6] that focuses on providing sound and incomplete methods to verify a
singly-parameterized system. For a singly-parameterized system, the parameter speci-
fies the number of exactly one type of homogeneous processes. However, in practice,
there are many systems that are inherently multi-parameterized; examples include wire-
less sensor networks consisting of multiple types of nodes: sensors and aggregators [7]
and distributed producer-consumer based systems [8] involving multiple producers

� This work has been supported in part by the US National Science Foundation under grants
CNS-06-27354, CNS-07-09217, and CCF-08-46059.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 338–354, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Automating Cut-off for Multi-parameterized Systems 339

and consumers. On the one hand, in most cases, verification techniques for singly-
parameterized systems are either not applicable to multi-parameterized systems, or it
is not immediate how one can extend these techniques to analyze systems with mul-
tiple parameters. On the other hand, the few techniques that can indeed verify multi-
parameterized systems suffer from the drawback that they require non-trivial human
guidance to obtain the appropriate protocol specification (e.g. [9,10]) and/or work only
for systems with certain topologies (e.g. [11]).

Consider that a multi-parameterized system with t different types of processes is
described by sys(n̄t) where n̄t := n1, n2, . . . , nt and the parameter np denotes the
number of processes of type p. The objective is to verify whether the system satisfies
a given property for all possible valuations of each np in n̄t. This can be realized by
identifying a specific instance of the system: sys(k̄t) (where k̄t := k1, k2, . . . , kt) such
that sys(k̄t) satisfies the given property if and only if sys(n̄t) satisfies the same, for all
n̄t ≥ k̄t (i.e., ∀p : np ≥ kp). The parameter values in k̄t corresponding to the specific
instance of the system are referred to as the cut-off.

Our Solution. In this paper, we propose a technique, leveraging on our previous
work [12], for automatically identifying such a cut-off. The technique, unlike the ex-
isting ones, is independent of both the communication topology and the property to be
verified, and relies on simple input/output automata based representation of different
types of processes in the system.

We consider a set of behavioral automata (introduced in [12]) to describe the in-
put/output behavior of different types of processes in the system. The central theme of
our technique is to automatically

1. compute the set of maximal behavior of the system (in terms of input/output) that
can be induced by output action of each type of processes in the parameterized
system, and

2. identify the minimal instance of the parameterized system that includes all such
maximal behavior.

We prove that the parameter values corresponding to this minimal instance is the cut-
off; more precisely, for any LTL\X (Linear Temporal Logic without “next” operator)
properties which involve either actions of exactly one process or actions of two or more
directly communicating processes, the instance of the parameterized system with the
cut-off valuation for the parameters satisfies the property if and only if any other larger
(in terms of parameter values) instance satisfies the same property.

Significant extension of [12]. While the core of the technique described in this pa-
per is same as the one proposed and developed in [12], there are several important and
non-trivial issues that are addressed in the current paper. In [12], cut-off valuation is
computed for parameterized system where the parameter specifies the number of ex-
actly one type of homogeneous process. The computed maximal behavior, therefore,
is induced by one type of process. In the current paper, as there are multiple types of
processes whose number is parameterized, in Step 1, it is necessary to compute the
maximal behavior induced by all of them. We show that the collection containing the
induced maximal behavior by each type of process is equivalent to the induced maximal

340 Y. Hanna et al.

behavior by processes of all types. We further show that, it is sufficient to compute the
induced maximal behavior for only those types of processes that are capable of making
an autonomous move (without requiring external stimuli/input) from their initial states.
These two conditions reduce the complexity of identifying the induced maximal be-
havior in Step 1 and thereby, reduce the complexity of the overall technique. Finally,
for Step 2, we use a simple breadth-first strategy for incrementing parameter values to
identify system instances; such strategy was not needed in [12] as the system, under
consideration, was singly parameterized.

Contribution. The summary of contributions of our technique are:

$ To the best of our knowledge, we present the first automatic technique for verifying
multi-parameterized systems that has the following features:
1. the technique is applicable for verifying LTL\X properties over arbitrary ho-

mogeneous processes (in contrast to [11] which focuses on resource allocation
systems);

2. the technique is automatic, requires no human intervention (unlike several
methods, e.g. [9], that rely on smart representation of the system being veri-
fied);

3. the technique is independent of the communication topology (unlike [11] that
works only for systems with ring topology), which, along with automation,
broadens the scope of its application in practical settings.

$ We present the implementation of our technique in a tool, Golok and discuss several
optimizations deployed to speedup the cut-off generation process. We demonstrate
the robustness and scalability of our technique and implementation using different
canonical multi-parameterized systems.

Organization. This paper is organized as follows. Section 2 discusses related work.
Section 3 describes our technique for specifying a system using a variant of the Dining
Philosophers protocol as an illustrative example. Section 4 describes how the maximal
behavior induced by a process of some type p in the context of any environment is
generated and shows the procedure for generating the cut-off. Proof of soundness of
our technique is presented in Section 5. Section 6 describes our tool. Section 7 presents
the different case studies we used to evaluate our technique and the obtained results
from our tool and Section 8 offers final remarks.

2 Related Work

There exists a large body of sound and incomplete techniques for verifying parameter-
ized systems. Solutions proposed in [3,14] reduce the problem of parameterized system
verification to verification of a corresponding property-preserving finite-state abstrac-
tion, where instead of the state of each process, constraints on the number of processes
at a each state are considered. Several other techniques rely on smart representation of
the behavior of parameterized systems using regular grammars [4], petri-nets and graph-
grammars [5]. Another class of techniques [9,10,15,16] involves identifying the invari-
ant of a parameterized system. The invariant captures the common behavior exhibited

Automating Cut-off for Multi-parameterized Systems 341

by all instances of the parameterized system. A property is satisfied by the parameter-
ized system if the invariant conforms to the property. While techniques proposed in [10]
apply induction to generate such invariant for singly-parameterized systems, [16] em-
ploy context-free grammars to generate the invariants for multi-parameterized systems.
Most of these techniques require user guidance to obtain the grammars and/or appro-
priate abstraction mapping [17].

Emerson and Kahlon [11] were the first to develop a verification technique for multi-
parameterized systems based on computing a cut-off. They propose solutions in the con-
text of resource allocation systems where each homogeneous process has a specific be-
havior (zero or more internal transitions followed by acquire followed by zero or more
internal transitions followed by release). They provide efficient methods for obtaining
cut-offs when the system under consideration has a ring communication topology and
the properties being considered are over adjacent processes (one process relaying a to-
ken to another).

Sun et al. [18] show that appropriate counter abstraction can be used to deal with
state-space explosion without compromising fairness in model checking. The technique
has been further applied in the context of parameterized systems by considering some
pre-specified cut-off of the parameter, and any counter valuations greater than the cut-
off are abstracted in the abstract model. Note that the cut-off valuation is not computed
based on the model and/or the property under consideration; instead cut-off valuation is
selected by the user.

Unlike these existing techniques, our technique does not rely on smart representa-
tions and/or abstractions that may require user-guidance. Our technique is fully auto-
matic, applicable to any communication topology and is not developed in the context of
any specific application domain (e.g., resource allocation).

3 Multi-parameterized System

Illustrative Example. The terminology used in this paper and the salient aspects of
the proposed technique are explained using a variant of the Dining Philosophers pro-
tocol [19] (a model illustrating a classic multi-process synchronization problem). We
use a variant of this protocol referred to as the Right-Left Dining Philosophers (RLDP)
algorithm [11], where there are two types of philosophers: “Left” philosophers grab the
left fork first and “Right” philosophers grab the right fork first. In this protocol, adja-
cent philosophers are of different types; therefore, the number of “Left” and “Right”
philosophers is equal. Our technique is based on the notion of behavioral automata
introduced in [12].

3.1 Processes as Behavioral Automata

Definition 1 (Behavioral Automaton). A behavioral automaton A is a tuple (qI , qF ,
Δ,E), where qI is the initial state, qF is the final state, Δ ⊆ {E × {qI}} ∪ {{qF} ×
E} ∪ {(qI , qF)} is the transition relation, and E is a nonempty set of events (including
the empty event ε). We write qI → qF if (qI , qF) ∈ Δ, • e→ qI if (e, qI) ∈ Δ and
qF

e→ • if (qF , e) ∈ Δ.

342 Y. Hanna et al.

1 # This diner type picks up left fork first
2 process left-diner {
3 L-START: [init, epsilon] ->[neating, begin]
4 L-ASKL: [neating, begin]->[waitl, askl2]
5 L-REASKL: [waitl, ltaken] ->[waitl, askl2]
6 L-FREEL-NE:[neating, askl]->[neating, lfree2]
7 L-FREEL-WL:[waitl, askl] ->[waitl, lfree2]
8 L-BUSYL-WR:[waitr, askl] ->[waitr, ltaken2]
9 L-BUSYL-EAT:[eat, askl] ->[eat, ltaken2]

10 L-ASKR: [waitl, lfree] ->[waitr, askr2]
11 L-REASKR: [waitr, rtaken]->[waitr, askr2]
12 L-FREER-NE:[neating, askr]->[neating, rfree2]
13 L-FREER-WL: [waitl, askr] ->[waitl, rfree2]
14 L-BUSYR-WR: [waitr, askr] ->[waitr, rtaken2]
15 L-BUSYR-EAT:[eat, askr] ->[eat, rtaken2]
16 L-EAT: [waitr, rfree] ->[eat, rel-forks]
17 L-EAT-DONE:[eat, rel-forks]->[neating, begin]
18 }

(a)

1 # This diner type picks up right fork first
2 process right-diner {
3 R-START: [init, epsilon] ->[neating, begin2]
4 R-ASKR: [neating, begin2] ->[waitr, askr]
5 R-REASKR: [waitr, rtaken2]->[waitr, askr]
6 R-FREER-NE:[neating, askr2]->[neating, rfree]
7 R-FREER-WR:[waitr, askr2] ->[waitr, rfree]
8 R-FREER-WL:[waitl, askr2] ->[waitl, rfree]
9 R-BUSYR-EAT:[eat, askr2] ->[eat, rtaken]

10 R-ASKL: [waitr, rfree2] ->[waitl, askl]
11 R-REASKL:[waitl, ltaken2] ->[waitl, askl]
12 R-FREEL-NE:[neating, askl2]->[neating, lfree]
13 R-BUSYL-WL: [waitl, askl2] ->[waitl, ltaken]
14 R-BUSYL-WR: [waitr, askl2] ->[waitr, ltaken]
15 R-BUSYL-EAT:[eat, askl2] ->[eat, ltaken]
16 R-EAT: [waitl, lfree2] ->[eat, rel-forks2]
17 R-EAT-DONE:[eat, rel-forks2]->[neating, begin2]
18 }

(b)

Fig. 1. Behavioral Automata for (a) “Left” Philosophers (b) “Right” Philosophers

Figures 1(a), (b) display the behavioral automata for philosophers of both types
“Left” and “Right” of the RLDP protocol respectively. The statement of the form A:

[q,e]->[q’,e’] denotes an automaton with • e→ q, q
ε→ q′ and q′ e′

→ •.
A behavioral automaton describes the state in which a process can be, and what

action it can perform when it is in that state. Automaton L-ASKL in Figure 1(a) (Line 4)
presents the behavior of a philosopher of type “Left” who, while not eating (i.e. state
neating), receives event begin, changes its state to waitl (i.e. waiting for the left
fork) and sends the request for the left fork (event askl2). Since neighbor philosophers
are of different types, the request of the left fork requested by a “Left” philosopher
is received by a philosopher of type “Right”. Automaton R-FREEL-NE in Figure 1(b)
(Line 12) models the behavior of a “Right” philosopher who receives the request for
the left fork while not eating, and replies that the fork is free (event lfree) so that the
neighbor can take it.

An automaton with ε input event captures the behavior of a process where, if the
process is at the initial state of this automaton, it can make a move without any ex-
ternal stimuli. For instance, automaton L-START in Figure 1(a) (Line 3) states that if a
philosopher is in state init, she can generate the event beginwithout any input events.
She changes her state to neating after this action.

Definition 2 (Process and System Specification). A process specification for some
type p, denoted by Protp, is a set of behavioral automata that represents the possible
actions of a process of that type. A system specification, Prot, is the union of the process
specifications for all types present in the system. At least one automaton in at least one
process specification in Prot must have a transition of the form • ε→ q, which represents
an action without input event.

In our example, there are two process specifications; one for the “Left” philosophers
Protl defined by the automata in Figure 1(a), and the other for the “Right” philosophers
Protr defined by the automata in Figure 1(b), where the types “Left” and “Right” are
represented by the letters l and r respectively. Both types can initiate the protocol since
the specification of each one contains an automaton with transition of the form • ε→ q.

Automating Cut-off for Multi-parameterized Systems 343

Fig. 2. Part of sys(1r, 1l) for the RLDP Protocol

3.2 Behavior of Multi-parameterized System

Any system behavior is constrained by the topology that describes which processes in
the system can directly communicate with each other.

Definition 3 (Communication Topology). Given a system protocol specification
Prot =

⋃
1≤p≤t Protp, where t is the number of different types of processes and

Protp = {A1p , . . . , Alp}, a topology is a set of tuples, Topo ⊆ E× (I ×T)× (I ×T),
where E =

⋃
1≤p≤t

⋃
1≤r≤lp

{Er : Er is set of events in Arp ∈ Protp}, I ∈ N is
the domain of number of processes of any type, and T is the domain of types. A tuple
(e, ip1, jp2) ∈ Topo implies that output e from i-th process of type p1 is consumed by
the j-th process of type p2.

For our example, we enforce two such constraints on communication patterns: first
that adjacent philosophers are of different types (therefore there is an equal number of
“Left” and “Right” philosophers), and second that it is a ring topology. For instance, the
topology for the system instance containing one “Left” and one “Right” philosophers is
Topo = {(begin, 1l, 1l), (begin2, 1r, 1r), (askl2, 1l, 1r), (lfree, 1r, 1l), . . .}.

Definition 4 (Multi-Parameterized System). Given a specification Prot with t dif-
ferent types of processes, a multi-parameterized system containing np number of
processes of type p (p ∈ [1, t]) is defined as sys(n̄t) = (S, SI , T,Topo), where
n̄t := n1, n2, . . . , nt, S is the set of states, SI ⊆ S is the set of initial states and
T ⊆ S × E × E × S is the transition relation. A state in S contains

∑t
p=1 np tuples

of the form (qip , Aip , Eip); the tuple represents the configuration of the i-th process of
type p such that qip is the state of the process in the behavioral automata Aip and Eip

denotes the set of output events from the process that have not been consumed yet.

We use s
e/e′
→ s′ to denote (s, e, e′, s′) ∈ T .

1. A transition of the form 〈(qip , Aip , Eip), C〉 ε/e→ 〈(q′ip
, Aip , E ′ip

), C〉 ∈ T , if

{• ε→ qip , qip → q′ip
, q′ip

e→ •} = Δ ∈ Aip ∧ E ′ip
= Eip ∪ {e}.

In the above C represents the configurations of the remaining processes in the state.

2. A transition of the form

〈 (qip1 , Aip1 , Eip1)
(qjp2 , Ajp2 , Ejp2)

C

〉
e/e′
→

〈 (q′ip1
, A′

ip1
, E ′ip1

)
(qjp2 , Ajp2 , E ′jp2

)
C

〉
∈ T , if

{• e→ qip1 , qip1 → q′ip1
, q′ip1

e′
→ •} = Δ ∈ Aip1 ∧

E ′ip1
= Eip1 ∪ {e′} ∧ Ejp2 = E ′jp2

∪ {e} ∧ (e, jp2, ip1) ∈ Topo

344 Y. Hanna et al.

Figure 2 shows part of the system instance with one philosopher of type “Right” and
one of type “Left”, sys(1r, 1l). Each state (system configuration) contains two process
configurations for processes 1l, 1r, respectively. Two possible transitions (see Rule 1
in Definition 4) can happen from the initial configuration: the transition on ε/begin2
belongs to move done by philosopher 1r and the transition on ε/begin belongs to the
one by philosopher 1l. As these moves require no external stimuli (no input event),
we call these moves autonomous moves. The second state in the figure shows the ef-
fect of the autonomous move done by philosopher 1r on her configuration, where her
state changes and her set of output events has the produced event. The transition on
begin/askl2 in the figure illustrates a non-autonomous move (see Rule 2 in Defini-
tion 4) with intra-process communication, where the philosopher 1l consumes the event
begin that she has produced from her own previous autonomous move, and produces
the event askl2 as a result (to ask the left fork). In the figure, the last transition on
askl2/lfree illustrates a non-autonomous move with inter-process communication,
where the request ask12 for the right fork produced by philosopher 1l is received by
philosopher 1r (according to Topo). Philosopher 1r tells her neighbor that she can take
the fork by sending the event lfree.

4 Cut-off Computation for Multiple Parameters

In this section, we describe our technique for computing the cut-off value for a multi-
parameterized system. Given the specification for all process types in the system as
behavioral automata and the topology as input, our technique consists of two steps.
First, it computes the maximal behavior a process of each type can induce when it
autonomously produces an event to be consumed by the environment. Second, it finds a
multi-parameterized system instance whose behavior exhibits all the maximal behaviors
that can be induced by processes of different types (if such an instance exists). We prove
that the size of this system instance is the cut-off for the multi-parameterized system.
We proceed with the computation of the maximal behavior induced by a process.

4.1 Maximal Behavior Induced by a Process

Intuitively, the maximal behavior of a system induced by a process of type p is all
possible sequences of input/output events that can be caused by an autonomous move
done by the process. We will use π (with appropriate subscripts) to denote sequence of
input/output events.

Definition 5 (Maximal Behavior induced by type p process). Given a multi-
parameterized system sys(k̄t), the maximal behavior induced by a process of type
p ∈ [1, t], denoted by MAXp(sys(k̄t)), is

MAXp(sys(k̄t)) = {πp | ∀i ≥ 0 : πp[i] = π[hπ
p (i)] ∧ η0 ∈ S0 ∧ ∀j ≥ 0 : ηj

π[j]→ ηj+1}

In the above, hπ
p (i) = k such that

Automating Cut-off for Multi-parameterized Systems 345

1. π[k] = ε/e, ηk
π[k]→ ηk+1 is an autonomous move of type p process and

∀j ∈ [hπ
p (0), hπ

p (i− 1)] : π[hπ
p (j)] �= ε/e′.

2. π[k] = e1/e2, π[hπ
p (i− 1)] = e/e1 and ∀j ∈ [hπ

p (i− 1), k − 1] : π[j] �= e1/e
′.

For instance, for the system sys(1r, 1l) displayed in Figure 2, the set of maximal behav-
ior that can be induced by a philosopher of type “Left”, denoted as MAXl(sys(1r, 1l)),
is composed of all possible sequences of input/output events that can occur as a result
of a “Left” philosopher that autonomously makes a move. Let πl ∈ MAXl(sys(1r, 1l)).
The first input/output event in such a sequence πl belongs to a “Left” philosopher mak-
ing an autonomous move to initiate the protocol by sending event begin (i.e. πl[0] =
ε/begin). The second input/output event of is of the same philosopher receiving this
event and sending the request for left fork (i.e. πl[1] = begin/askl2). The third in-
put/output event belongs to a philosopher of type “Right” that responds to the request
of the left fork (i.e. πl[2] = askl2/lfree), and so on. Since the event ε/begin2

which belongs to the move done by a “Right” philosopher is not induced by the au-
tonomous move of the “Left” philosopher, this event does not belong to any sequence
in MAXl(sys(1r, 1l)).

Computing the Induced Maximal Behavior. The computation proceeds by chaining
of output from one behavior automata (present in the system specification) with the
input (having the same name as the output) to another behavioral automata. For com-
puting sequences in MAXp(sys(k̄t)), the first automata used in this chaining contains
the initial state of the process of type p from where the process can make an autonomous
move. We refer the result of such chaining as 1Ep and we show that 1Ep includes all
possible behavior induced by the process of type p.

Definition 6 (1Ep). Given a specification Prot = {A1, A2, . . . , Am} with t dif-
ferent types of processes, 1Ep of the process type p is defined as a tuple
(Q1Ep , QI1Ep , Δ1Ep), where Q1Ep = {(qI , A), (qF , A) | A = (qI , qF , Δ,E)},
QI1Ep = {(qI , A) | A = (qI , qF , Δ,E) ∧ • ε→ qI ∈ Δ}, and

Δ1Ep =
{

(qI , A)
e1/e2→ (qF , A) | A = (qI , qF , Δ, {e1, e2}), {•

e1→ qI , q2
e2→ •} ⊆ Δ

}
⋃{

(qF , A) τ→ (q′I , A
′) | A = (qI , qF , Δ,E), A′ = (q′I , q

′
F , Δ′, E′),

qF
e→ • ∈ Δ, • e→ q′I ∈ Δ′

}

Figure 3 presents a partial view of 1El for the “Left” philosopher processes. Automa-
ton L-START is chained to automaton L-ASKL as their corresponding output and in-
put events match (begin). Similarly, automaton L-ASKL is chained with automata
R-FREEL-NE and R-BUSYL-WR (defined in Figure 1(b), Lines 6 and 7 respectively)
due to matching output and input events (askl2).

Note that not all the behavioral automata of the philosophers of type “Left” in
Figure 1(a) will be included in 1El. For instance, automaton L-FREEL-NE (Figure 1(a),
Line 12) models the behavior of the philosopher of type “Left” that replies to a re-
quest for the left fork that comes from its neighbor (i.e., a “Right” philosopher). This

346 Y. Hanna et al.

Fig. 3. Part of 1El

automaton will be present in the automata chain used in the construction of 1Er (all
possible behavior induced by the autonomous output from a “Right” philosopher).

We prove that every sequence in MAXp(sys(k̄t)) is present as a path in 1Ep. Note
that, paths in 1Ep contains τs obtained due to chaining of automata (over same output-
input event pairs). We discard these events as they are connectors between the automata
that do not contribute to any action. Given a sequence of events (say π) obtained from
a path in 1Ep, the corresponding sequence π−τ is obtained by removing τ events from
π as follows: ∀i ≥ 0,

π−τ [i] = π[g(i)] where g(i) =
{

0 if i < 0
k otherwise; g(i− 1)≤j < k : π[j]=τ ∧ π[k] �= τ

(1)
Proceeding further, we define the set of sequences of input/output events in 1Ep =
(Q1Ep , QI1Ep , Δ1Ep) as

PATH(1Ep) = {π−τ | ζ0 = (q, Ax) ∈ QI1Ep ∧ ∀i ≥ 0 : ζi
π[i]→ ζi+1 ∈ ΔQ1Ep

}

Theorem 1. Given a protocol specification Prot with t different types of processes,
∀k̄t, ∀p ∈ [1, t] : MAXp(sys(k̄t)) ⊆ PATH(1Ep).

For ease of explanation and brevity of the proof, we introduce the following functions.

F1(π,Π) = {π′ | π′ ∈ Π ∧ π′
 π ∧ �∃ π′′ ∈ Π : (π′
 π′′
 π) ∨ (π′′ = π)} (2)

where
 denotes the strict substring relationship, i.e., π′
 π implies π′ is a substring
of π and π′ �= π. The above function computes a set of substrings π′ of π such that
there are no other substrings of π in Π that are longer than the elements in the resultant
set. We define the following function over sequences of events.

F2(π, π′) = e1/e0 such that π′
 π ∧ π[|π′|] = e1/e0 (3)

The above function identifies the event on which the sequence π diverges from π′.

Proof. Assume that ∃k̄t, ∃p ∈ [1, t] : MAXp(sys(k̄t)) �⊆ PATH(1Ep). In other words,
there exists a π such that π ∈ MAXp(sys(k̄t)) and π �∈ PATH(1Ep). From Equations 2
and 3, F1(π, PATH(1Ep)) = χ and ∀π′ ∈ χ : ∃e1/e0 : F2(π, π′) = e1/e0.

Automating Cut-off for Multi-parameterized Systems 347

There are two possible cases.

Case 1. e1 = ε. According Definition 5, the event e1/e0 is an an autonomous move of a
process of type p in sys(k̄t). Since the first transition of 1Ep models with an autonomous
move of type p process (Definition 6), this case is not possible, i.e., our assumption that
π �∈ PATH(1Ep) is false.

Case 2. e1 �= ε. The event e1/e0 must be preceded by an input/output event of the
form e2/e1 in order to allow for the event to happen in the first place (Definition 5).
I.e., if π[i] = e1/e0, π[i − 1] = e2/e1. From Equation 3, F2(π, π′) = e1/e0 and
therefore, π′[i − 1] = e2/e1 and π′[i] �= e1/e0. In order for this to be possible, we
need to conclude that there exists no behavioral automata that can consume e1 and
produce e0, as construction of 1Ep proceeds by chaining the output (e1 in this case)
of one automata with the matching input of another. If no automata can take as input
e1 and produce e0, then it is not possible to have any sequence π in MAXp(sys(k̄t))
that has π[i − 1] = e2/e1 and π[i] = e1/e0. This contradicts our assumption that
π ∈ MAXp(sys(k̄t)).

4.2 Finding the Cut-Off Value

The cut-off of parameter values for a parameterized system is such that the instance of
the parameterized system at the cut-off (cut-off instance) satisfies a property if and only
if all instances of the parameterized system larger than the cut-off instance satisfies the
same property. We will consider two types of properties in the logic of LTL\X:

$ TYPE I PROPERTY: Property that involves the states of exactly one process. For
example, if a philosopher tries to pick the left fork, she is eventually in a state where
she can eat.

$ TYPE II PROPERTY: Property involving two adjacent processes that directly com-
municate via input/output events. For example, two adjacent philosophers do not
eat at the same point of time.

We will use the standard notation [[ϕ]] to denote the semantics of an LTL\X property
ϕ; it represents the set of sequence of states that satisfy ϕ. A system sys satisfies ϕ,
denoted by sys |= ϕ, if and only if all paths starting from all start states of the system
result in a set of sequence of states such that this set is a subset of [[ϕ]]. For details of
semantics of LTL, please refer to [13].

Definition 7 (Cut-off). Given a protocol specification Prot for t different types of pro-
cesses and a topology Topo, for any LTL \X properties of Type I and Type II, de-
noted by ϕ, k̄t := k1, k2, . . . , kt is said to be cut-off if and only if the following holds:
sys(k̄t) |= ϕ⇔ ∀n̄t ≥ k̄t : sys(n̄t) |= ϕ where n̄t ≥ k̄t ⇐ ∀p ∈ [1, t] : np ≥ kp.

To automatically identify the cut-off, we iteratively compute specific instances of
the system under consideration and compute all possible sequences of input/output
events in the system-instance. Such a set of sequence in a system-instance sys(k̄t) =
(S, SI , T,Topo) is defined as PATH(sys(k̄t), S) = {π−τ | η0 = s ∈ S ∧ ∀i ≥
0 : ηi

π[i]→ ηi+1 ∈ T }. We prove that k̄t is the cut-off if ∀p ∈ [1, t] : PATH(1Ep) ⊆
PATH(sys(k̄t), Sk̄t) where Sk̄t denotes the set of states in sys(k̄t). Procedure CutOff
presents our automatic method for obtaining the cut-off.

348 Y. Hanna et al.

Procedure CutOff (Prot, t, Topo, initial system config)
Construct initial sys(k̄t) from initial system config and Topo
for all p ∈ [1, t] Compute 1Ep from Prot do

while PATH(1Ep) �⊆ PATH(sys(k̄t), Sk̄t) Increase k̄t in a breadth-first manner
end while

end for
return k̄t;

5 Proof of Soundness

We proceed by introducing definitions and propositions that will be used to prove the
soundness of Procedure CutOff.

Definition 8 (Projection on processes). Given a multi-parameterized system
sys(k̄t) = (S, SI , T, Topo) with t different types of processes and a set R ⊆ {ip | i ∈
[1, kp] ∧ p ∈ [1, t]}, the projected behavior w.r.t. R is denoted by sys(k̄t)↓R = (S,
SI , T↓R, Topo), such that labels of all transitions that do not directly involve moves of
process i′p′ ∈ R are renamed to τ . We will use π↓R to denote projection of a sequence
of events on R.

For the example of the RLDP protocol, in the projected system sys(1r, 1l)↓{1l}, both
the transitions labeled as ε/begin and the transition labeled as begin/askl2 remain
the same while all other transitions in the Figure 2 are substituted with τ transitions.

Proposition 1. For any multi-parameterized system sys(k̄t) with t different types of
processes, the following holds for all properties ϕ (in the logic of LTL\X) defined
over states of processes whose indices belong to R = {ip | i ∈ [1, kp] ∧ p ∈ [1, t]}:
sys(k̄t) |= ϕ ⇔ sys(k̄t)↓R |= ϕ.

Proposition 2. Let Φ be the set of all properties (in the logic of LTL\X) defined over
states of processes whose indices belong to R = {ip | i ∈ [1, kp] ∧ p ∈ [1, t]}. The
following holds for any two instances of multi-parameterized systems, sys(k̄t) and
sys(k̄′

t).

∀ϕ ∈ Φ :
(
sys(k̄t) |= ϕ ⇔ sys(k̄′

t) |= ϕ
)
⇒

PATH(sys(k̄t)↓R,Sk̄t

I) = PATH(sys(k̄′
t)↓R,S

k̄′
t

I)

In the above, Sk̄t

I and S
k̄′

t

I are the initial state-sets of sys(k̄t) and sys(k̄′
t), respectively.

Proof. From Proposition 1, we conclude

∀ϕ ∈ Φ :
(
sys(k̄t) |= ϕ ⇔ sys(k̄′

t) |= ϕ
)
⇒

(
sys(k̄t)↓R |= ϕ ⇔ sys(k̄′

t)↓R |= ϕ
)

If π denotes a path in a system over sequence of input/output actions, we denote the
corresponding sequence of states in the path by seq(π). Therefore,

Automating Cut-off for Multi-parameterized Systems 349

∀ϕ ∈ Φ :
(
sys(k̄t)↓R |= ϕ ⇔ sys(k̄′

t)↓R |= ϕ
)
⇒

∀π∈PATH(sys(k̄t)↓R,Sk̄t

I) : ∃π′∈PATH(sys(k̄′
t)↓R,S

k̄′
t

I) : seq(π)=seq(π′)∧
∀π′∈PATH(sys(k̄′

t)↓R,S
k̄′

t

I) : ∃π∈PATH(sys(k̄t)↓R,Sk̄t

I) : seq(π′)=seq(π)

⇒ PATH(sys(k̄t)↓R,Sk̄t

I) = PATH(sys(k̄′
t)↓R,S

k̄′
t

I)

Proposition 3. For any parameterized system with t types of processes,

∀n̄t ≥ k̄t : PATH(sys(k̄t), Sk̄t

I) ⊆ PATH(sys(n̄t), Sn̄t

I)
∀p ∈ [1, t] : PATH(1Ep) ⊆ PATH(sys(k̄t), Sk̄t)⇒ PATH(1Ep)⊆PATH(sys(n̄t), Sn̄t)

where Sk̄t , Sk̄t

I and Sn̄t , Sn̄t

I are the sets of states and initial states of sys(k̄t) and
sys(n̄t) respectively.

Theorem 2. Given a parameterized system with t different types of processes each de-
fined using a set of behavioral automata Prot, the following holds for all Type I and II
properties ϕ in the logic of LTL\X

∀p ∈ [1, t] : PATH(1Ep) ⊆ PATH(sys(k̄t), Sk̄t) ⇒
(
sys(k̄t) |= ϕ⇔ sys(n̄t) |= ϕ

)
where n̄t = n1, n2, . . . , nt, k̄t = k1, k2, . . . , kt, Sk̄t is the set of states in sys(k̄t), and

Sk̄t

I and Sn̄t

I are initial state-sets of sys(k̄t) and sys(n̄t) respectively.

Proof. Due to space constraints, we provide a proof sketch for the theorem. The full
proof is available at http://www.cs.iastate.edu/∼slede/golok/.

Using Propositions 1, 2 and 3, it is required to prove that ∀p ∈ [1, t], ∀i ≤ np, ∃j ≤
kp, PATH(sys(n̄t)↓{ip}, Sn̄t

I) = PATH(sys(k̄t)↓{jp}, Sk̄t

I).
Assume that there exists a sequence π in PATH(sys(n̄t)↓{ip}, Sn̄t

I) that is not present

in PATH(sys(k̄t) ↓ {jp}, Sk̄t

I). This implies that for every path π′ in PATH(sys(k̄t) ↓
{jp}, Sk̄t

I), there exists an input/output event (e1/e0) such that e1/e0 is present in π and
absent in π′. If e1 is equal to ε, then it can be immediately shown that PATH(sys(k̄t)↓
{jp}, Sk̄t

I) �⊆ PATH(1Ep) as ε/e0 is an autonomous move. This forms the base case
of the proof (contradiction of our assumption above). If e1 is not equal to ε then there
must be some event e2/e1 preceding e1/e0 in the path π and such ordering of events
is absent in π′. In this case, it can be shown that π′ diverges from π on event e2/e1.
The proof of the theorem (i.e., contradiction of our assumption) can be realized by
proceeding inductively (on the length of the diverging point between π and π′) and
eventually reaching the base case.

Theorem 3 (Soundness). If Procedure CutOff terminates, the return k̄t is the cut-off
as per the Definition 7.

Proof. Follows from Theorem 2.

350 Y. Hanna et al.

1 process left-diner { ... }
2 process right-diner { ... }
3
4 topology {
5
6 connectivity {
7 left-diner 0 -- right-diner 0
8 }
9

10 additionrule add-two {
11 create: left-diner x
12 create: right-diner y
13 require: right-diner z -- left-diner 0

14 remove: var z -- left-diner 0
15 add: var z -- var x
16 add: var x -- var y
17 add: var y -- left-diner 0
18 }
19 msgs {
20 (left-diner, begin, self)
21 (left-diner, askl, rpeer)
22 (right-diner, askr2, lpeer) ...
23 }
24 }
25
26 initialconfig { }

Fig. 4. Input file for the RLDP protocol

6 Golok: A Tool to Find Cut-off

We have implemented our technique in a tool, Golok1. It is written in Scheme [20]
in ∼4K lines of code. We now describe the input language to Golok using the RLDP
example and describe the several optimizations we implemented in our tool.

6.1 Front End: Input Language of Golok

The input file containing the specification for the RLDP protocol is displayed in Fig-
ure 4. The specification has three main components: (a) the process specification, (b)
the topology specification and (c) the initial configuration specification.

Process Specification. The process specifications (lines 1, 2) contain the behavioral
automata for every process type as described in Section 3 (Figures 1(a) and (b)).

Topology Specification. The topology specification serves to restrict communication
patterns between processes. It is defined using the keyword topology (lines 4 - 25)
and is composed of three parts. The first part of the topology specification (lines 6-8)
specifies the topology of the initial system instance. In RLDP, the initial system instance
has one philosopher of each type (processes are zero-indexed). The second part of the
topology specification (additionrule lines 10-18) is the addition rules that ensure
that newly generated system instances follow the communication topology of the pro-
tocol. For RLDP, the addition rule add-two (lines 10-18) states that any new system
instances will create two new philosophers of different types (lines 11-12) and that they
linked to other processes to preserve that neighbors are of different types (lines 13-17).
The final part of the topology specification (lines 19-23) is responsible for specifying
the direction of the flow of events between processes, where every tuple (d, e, s) de-
scribes the event to be received e, the type of the recipient process d and the index of
the sender process s. There are four choices for s: self (message sent and received by
the same process), rpeer (message sent by the right neighbor of d) lpeer (message
sent by the left neighbor of d) and peer (message sent by a neighbor of d)2.

Initial Configuration Specification. The initial configuration is explicitly specified if
any process needs to start from a different automaton other than the first automaton in
its process specification.

1 A cutting tool typically used in Indonesia and the Philippines.
2 lpeer, rpeer used for ring topology, peer for other topologies.

Automating Cut-off for Multi-parameterized Systems 351

6.2 System Instance Generator/Checker

The System Instance Generator/Checker (SIGC) is the main module of Golok. The
goal of SIGC is to construct a system instance sys(k̄t) (see Procedure CutOff) and
check whether for all p ∈ [1, t], PATH(1Ep) ⊆ PATH(sys(k̄t), Sk̄t). The main challenge
in implementing SIGC is to reduce the computational cost involved in checking for
path inclusion by considering all possible paths from all states. We describe several
optimizations we have implemented in Golok to help reduce the computational cost.

Simulation-base cut-off computation. Simulation relation [21] identifies pairs of
states in a transition system such that one element of the pair simulates all possible
behavior (in terms of sequence and branching of transitions) of the other. It is a stronger
relation than language inclusion. Furthermore, computing simulation relation is linear
to the state-space of the transition system as opposed to computing language inclusion
which is exponential to the state-space. As a result, it is computationally efficient to use
simulation rather than language inclusion. The results of Theorem 3 still holds. Given
a protocol specification Prot and a multi-parameterized system sys(k̄t) with t different
types of processes, a state r in sys(k̄t) is said to simulate a state s in 1Ep, denoted as
s ≺ r, if the following holds:

∀e/e′, s′ : s
τ∗e/e′
→ s′ ∈ 1Ep ⇒ ∃r′ : r

τ∗e/e′
→ r′ ∈ sys(k̄t) ∧ s′ ≺ r′

In the above, τ∗e/e′ represents zero or more τ transitions followed by an e/e′ transition.
We say that 1Ep is simulated by sys(k̄t) if and only if there exists a state r in sys(k̄t)
such that for all start states s in 1Ep, s ≺ r.

Simulation based cut-off computation may lead to additional challenges. For cer-
tain systems where there exists a cut-off that can be identified using path inclusion, a
stronger requirement for cut-off based on simulation may fail to obtain such a cut-off.
From our experimental results, we have realized that such a problem exists when in ad-
dition to parameterized components, the system also contains non-parameterized com-
ponents (ones whose number is pre-specified and fixed). For instance, in the bounded-
buffer protocol, there exists only one buffer for all instances of the systems. Similarly,
for the singly-parameterized spin lock, there is only one object in any system instance.
The problem of using simulation for such systems can be alleviated by projecting out
any actions that result from the non-parameterized components.

Reducing the number of Simulation Checks. As the size of a system instance could
be prohibitively large, performing a simulation check on every state to verify if it sim-
ulates 1Ep can still be expensive. To reduce the number of simulation checks, we con-
struct the system instances on-the-fly (i.e. states are generated when needed), perform
partial-order reduction ([22]) to ensure re-use of intermediate simulation checking re-
sults. Furthermore, for every system configuration s in sys(k̄t), the following constant-
time check is done before performing a simulation check. If the system configuration
s does not have any process that is able to make an autonomous move (a move that
does not require any external stimuli), this system configuration s is never expanded.
The reason is that, since the first transition in any 1Ep must come from an autonomous
move, then it is not possible that a system configuration s where no process is able to
make an autonomous move is the configuration that simulates 1Ep for any type p.

352 Y. Hanna et al.

Table 1. Experimental results of our tool Golok compared to existing techniques

Protocol Topology
Process Types EXISTING WORK OUR TECHNIQUE

of # of References Known Computed Time Explored States in %gain
types Params Cut-off Cut-off (k̄t) (sec) States sys(k̄t)

Dining Philosophers
Ring

1 1 [11] 4 3 0.54 33 510 93.53
[11, 19] 2 (r, l) 2 [11] 2r, 2l 3r , 3l 4.84 7,524 268,536 97.20

Bounded-Buffer [23] Star 3 (p, c) 2 X† X 2p, 1c 1.10 37 269 86.25

Spin Lock [24]
Star 2 (t) 1 [26] 3 2t 0.62 13 84 84.50

Multi-star* 2 (t, o) 2 X X 2t, 2o‡ 0.52 15 243 93.80

DME [25] Ring
1 (fc) 1 [27] 4 2fc 0.51 5 7 28.58
2 (f, c) 2 X X 1f , 1c 0.51 4 7 42.86

*Multi-star: All processes of different types are connected; †: To the best of our knowledge, no known results exist.
‡: Golok produced same cut-off value for different sizes of the buffer, displayed performance results are for the system with
buffer of size 1.
r: right philosopher, l: left philosopher; p: producer, c: consumer; t: thread, o: object; fc: dme node, f: forward dme node,
c: critical dme node.

7 Case Studies

Besides the RLDP protocol, we ran Golok on three other multi-parameterized systems
with different communication topologies to validate our technique: the Bounded Buffer
protocol [23], a variant of the Spin Lock protocol [24] and a variant of the Distributed
Mutual Exclusion Protocol [25]. All examples along with the tool, Golok, are available
at http://www.cs.iastate.edu/∼slede/golok/. All experiments were run on a
single core Pentium 4, 2.53 Ghz with 2 GB of RAM. Table 1 summarizes the experi-
mental results. First four columns presents the parameterized systems and their various
features: topology, number of process types in the system and number of types of the
process that are parameterized. The rest of the table provides typical solutions obtained
for some of the examples from the most relevant existing work and compared it with
the results obtained from our tool, Golok. To the best of our knowledge, none of the
existing techniques provide with a viable tool that can be used in practice. As a result,
we only provide execution time information for our technique.

The table shows that while parameterized systems with different communication
topology are handled by different techniques (developed primarily for the topology
under consideration), our technique is applicable uniformly to all parameterized sys-
tems (both singly- and multi-parameterized) with different communication topologies.
Note that, in some cases, Golok has identified a smaller cut-off value compared to the
ones known in the existing work (shown in bold font). This can be attributed primar-
ily to the fact that existing techniques for cut-off identification are independent of the
system behavior (only topology dependent, e.g., [27]) or rely on abstractions that are
sufficient but not necessary (e.g., [26]). As our technique is system dependent, Golok
may compute different cut-off values for different systems with the same topology.

The table also shows impact of the optimizations in our technique. For instance, the
last column shows the proportion of states that are not explored in the cut-off instance
of the parameterized system while verifying that the instance simulates the 1E for all
types of processes that are parameterized.

Automating Cut-off for Multi-parameterized Systems 353

8 Summary and Conclusion

We have presented a technique for generating cut-off values for each of the parameters
of a multi-parameterized system, proved its soundness, implemented the technique in
a tool, and demonstrated its applicability to a number of canonical case studies. As
Golok provides an automated realization of our method, the tool can be effectively used
even for cases where the system is non-parameterized. For example, consider that the
objective is to verify RLDP protocol with N pairs of “Left” and “Right” philosophers
such that N is prohibitively large and as a result, standard model checking tools fail to
provide any result due to state-space explosion. In such cases, a parameterized version
of the system can be considered in Golok and if a cut-off is returned (e.g., 3r, 3l for
RLDP protocol) then model checking the system instance with this cut-off is equivalent
to model checking the much larger system instance contains N pairs of philosophers.

Future work includes extending the expressive power of behavioral automata rep-
resentation, associated formalisms, techniques and Golok to allow for specification of
parameterized system whose behavior is constrained by the valuations of messages be-
ing exchanged and to allow broadcast.

References
1. Manna, Z., Pnueli, A.: An exercise in the verification of multi-process programs. Beauty is

our business: a birthday salute to Edsger W. Dijkstra, pp. 289–301 (1990)
2. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent systems.

Inf. Process. Lett. 22(6), 307–309 (1986)
3. Clarke, E.M., Talupur, M., Veith, H.: Proving ptolemy right: The environment abstraction

framework for model checking concurrent systems. In: Ramakrishnan, C.R., Rehof, J. (eds.)
TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidelberg (2008)

4. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson,
E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg
(2000)

5. Baldan, P., Corradini, A., König, B.: A framework for the verification of infinite-state graph
transformation systems. Inf. Comput. 206(7), 869–907 (2008)

6. Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verification of ad hoc
routing protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 18–32. Springer, Heidelberg (2008)

7. Przydatek, B., Song, D., Perrig, A.: Sia: secure information aggregation in sensor networks.
In: SenSys. (2003)

8. Byrd, G., Flynn, M.: Producer-consumer communication in distributed shared memory
multi-processors. Proceedings of the IEEE 87(3), 456–466 (1999)

9. Marelly, R., Grumberg, O.: Gormel - grammar oriented model checker. Technical Report
697, The Technion (1992)

10. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized verification with automat-
ically computed inductive assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001.
LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)

11. Emerson, E.A., Kahlon, V.: Model checking large-scale and parameterized resource alloca-
tion systems. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 251–
265. Springer, Heidelberg (2002)

12. Hanna, Y., Basu, S., Rajan, H.: Behavioral automata composition for automatic topology
independent verification of parameterized systems. In: ESEC/FSE 2009 (August 2009)

354 Y. Hanna et al.

13. Emerson, E.A.: Temporal and modal logic, pp. 995–1072 (1990)
14. Yavuz-Kahveci, T., Bultan, T.: Verification of parameterized hierarchical state machines us-

ing action language verifier. In: MEMOCODE 2005, pp. 79–88 (2005)
15. Roychoudhury, A., Ramakrishnan, I.V.: Inductively verifying invariant properties of param-

eterized systems. Automated Software Engg. 11(2), 101–139 (2004)
16. Clarke, E.M., Grumberg, O., Jha, S.: Verifying parameterized networks using abstraction

and regular languages. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp.
395–407. Springer, Heidelberg (1995)

17. Zuck, L.D., Pnueli, A.: Model checking and abstraction to the aid of parameterized systems
(a survey). Computer Languages, Systems & Structures 30(3-4), 139–169 (2004)

18. Sun, J., Liu, Y., Roychoudhury, A., Liu, S., Dong, J.S.: Fair model checking with process
counter abstraction. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
123–139. Springer, Heidelberg (2009)

19. Dijkstra, E.: Two starvation free solutions to a general exclusion problem. EWD 625,
Plataanstraat 5, 5671 AL Neunen, The Netherlands

20. Abelson, H., et al.: Revised report on the algorithmic language scheme. Higher Order Sym-
bol. Comput. 11(1), 7–105 (1998)

21. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1982)
22. Mazurkiewicz, A.W.: Basic notions of trace theory. In: de Bakker, J.W., de Roever, W.-P.,

Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in Logics and Models
for Concurrency. LNCS, vol. 354, pp. 285–363. Springer, Heidelberg (1989)

23. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. Wiley, Chichester
(2004)

24. Anderson, T.E.: The performance of spin lock alternatives for shared-memory multiproces-
sors. IEEE Trans. Parallel Distrib. Syst. 1(1), 6–16 (1990)

25. Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with network invari-
ants. In: Workshop on Automatic Verification Methods for Finite State Systems, pp. 68–80
(1990)

26. Basu, S., Ramakrishnan, C.R.: Compositional analysis for verification of parameterized sys-
tems. Theor. Comput. Sci. 354(2), 211–229 (2006)

27. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL, pp. 85–94 (1995)

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 355–370, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Method for Formal Verification of Soft-Error Tolerance
Mechanisms in Pipelined Microprocessors*

Miroslav N. Velev and Ping Gao

Aries Design Automation
miroslav.velev@aries-da.com
http://www.miroslav-velev.com

Abstract. We present techniques for design and formal verification of both
safety and liveness of pipelined/superscalar/VLIW processors with built-in
mechanisms for soft-error tolerance. The formal verification is done with the
highly automatic method of Correspondence Checking by exploiting the prop-
erty of Positive Equality and efficient translations of the correctness conditions
to equivalent Boolean formulas that are evaluated with SAT solvers. Soft errors
are caused by radiation and cross talk between devices or wires on the chip, and
will become increasingly frequent with the decreasing transistor sizes in future
technologies. Soft errors can cause catastrophic failures in safety-critical appli-
cations, such as space, avionics, weapons systems, automotive, and medical
devices. Thus, the need to design and efficiently formally verify pipelined mi-
croprocessors with mechanisms for soft-error tolerance.

1 Introduction

We present a method for design at a high level of abstraction and formal verification
of safety and liveness of pipelined/superscalar/VLIW processors with built-in mecha-
nisms for soft-error tolerance. The formal verification is done with the highly auto-
matic method of Correspondence Checking by exploiting the property of Positive
Equality and efficient translations of the correctness conditions to equivalent Boolean
formulas that are evaluated with Boolean Satisfiability (SAT) solvers, thus allowing
us to benefit from the constant stream of innovations in the extremely active research
field of SAT.

In the processors that we formally verify, the radiation-hardening is done at the mi-
croarchitectural level by using the RazorII mechanism [12], where flip-flops with a
special design are used to detect timing errors—caused by variations in the voltage,
frequency, operating temperature, manufacturing process, as well as aging of the chip,
and radiation—such that these errors are corrected by re-executing the corresponding
instruction with the replay mechanism for correcting wrong speculations in the proc-
essor, as already implemented in many processors with branch prediction, or data-
value prediction [47]. Traditionally, semiconductor companies have reduced the prob-
ability for such timing errors by introducing sufficient safety margins, such as a
higher supply voltage, resulting in increased power consumption. The RazorII

* This research was partially supported by NASA under contract NNX10CC60P.

356 M.N. Velev and P. Gao

mechanism allows a processor to self-monitor, self-analyze, and self-heal after timing
errors, regardless of their cause—and thus makes it possible to eliminate the safety
margins by operating the processor at a lower supply voltage at the point of first fail-
ure (PoFF) of a die for a given frequency, resulting in significant energy savings.

The RazorII mechanism was developed recently [12] as joint research between the
University of Michigan and ARM. It represents a state-of-the-art mechanism for cor-
recting not only radiation-induced errors, but also timing errors due to a wide variety
of causes. Thus, RazorII is a more advanced approach for radiation-hardening of mi-
croprocessors, compared with the techniques at the transistor and logic level used in
the radiation hardened flight-control computer RAD750 (e.g., see p. 6 of [11]). Intel
have adapted a variant of RazorII [28], and other authors have proposed similar
schemes [6, 25, 26]. Formally verifying processors with RazorII will be crucial for
safety critical applications, including those to be used in space, avionics, weapons
systems, automotive, and medical devices.

Every time the design of computer systems was shifted to a higher level of abstrac-
tion, productivity increased. The logic of Equality with Uninterpreted Functions and
Memories (EUFM) [9] allows us to abstract functional units and memories, while
completely modeling the control of a processor. In earlier work on applying EUFM to
formal verification of pipelined and superscalar processors, some simple restrictions
[31, 32] were imposed on the modeling style for defining processors, resulting in cor-
rectness formulas where most of the terms (abstracted word-level values) appear only
in positive equations (equality comparisons) that are called p-equations. Such terms,
called p-terms (for positive terms), can be treated as distinct constants [7], thus sig-
nificantly pruning the solution space, and resulting in orders of magnitude speedup of
the formal verification; this property is called Positive Equality. On the other hand,
equations that appear in negative polarity, or in both positive and negative polarity,
are called g-equations (for general equations), and their arguments g-terms.
G-equations can be either true or false, and can be encoded with Boolean variables
[13, 22, 37, 48] by accounting for the property of transitivity of equality [8], when
translating an EUFM correctness formula to an equivalent Boolean formula. The
modeling restrictions, together with techniques to model multicycle functional units,
exceptions, and branch prediction [33], allowed an earlier version of our tool flow
[46] to be used to formally verify a model of the M•CORE processor at Motorola
[17], and detect three bugs, as well as corner cases that were not fully implemented.

Our tool flow consists of: 1) the term-level symbolic simulator TLSim [46], used to
symbolically simulate the high-level implementation and specification processors, and
produce an EUFM correctness formula; 2) the decision procedure EVC [46] that ex-
ploits Positive Equality and other optimizations to translate the EUFM correctness
formula to a satisfiability-equivalent Boolean formula; and 3) an efficient SAT-solver.

Recent dramatic improvements in SAT-solvers [14, 19, 24]—see [18, 36] for com-
parative studies—significantly sped up the solving of Boolean formulas generated in
formal verification of microprocessors. However, as found in [36], the new efficient
SAT-solvers would not have scaled for solving these Boolean formulas if not for the
property of Positive Equality that results in at least 5 orders of magnitude speedup when
formally verifying complex dual-issue superscalar processors. Efficient translations to
CNF [38, 39, 41 – 44], exploiting the special structure of EUFM formulas produced with
the modeling restrictions, resulted in additional speedup of 2 orders of magnitude.

 Method for Formal Verification of Soft-Error Tolerance Mechanisms 357

This paper is structured as follows. Sect. 2 introduces the background of formal
verification of pipelined processors by exploiting Positive Equality, and the RazorII
mechanism for timing-error tolerance. Sect. 3 describes our method for abstracting
any mechanism for detection and correction of soft errors or timing errors, so that
pipelined processors with it can be formally verified for both safety and liveness.
Sect. 4 presents experimental results, Sect. 5 discusses related work, and Sect. 6 con-
cludes the paper.

2 Background

2.1 Formal Verification of Pipelined Processors

The formal verification is done by correspondence checking—comparing a pipelined
implementation against a non-pipelined specification, using controlled flushing [10]
to automatically compute an abstraction function, Abs, that maps an implementation
state to an equivalent specification state. The safety property (see Fig. 1) is expressed
as a formula in the logic of EUFM, and checks that one step of the implementation
corresponds to between 0 and k steps of the specification, where k is the issue width
of the implementation. FImpl is the transition function of the implementation, and
FSpec is the transition function of the specification. We will refer to the sequence of
first applying Abs and then FSpec as the specification side of the diagram in Fig. 1,
and to the sequence of first applying FImpl and then Abs as the implementation side.

Fig. 1. The safety correctness property for an implementation processor with issue width k: one
step of the implementation should correspond to between 0 and k steps of the specification,
when the implementation starts from an arbitrary initial state QImpl that is possibly restricted by
a set of invariant constraints.

358 M.N. Velev and P. Gao

The safety property is the inductive step of a proof by induction, since the initial
implementation state, QImpl, is completely arbitrary. If the implementation is correct
for all transitions that can be made for one step from an arbitrary initial state, then the
implementation will be correct for one step from the next implementation state, Q′Impl,
since that state will be a special case of an arbitrary state as used for the initial state,
and so on for any number of steps. For some processors, e.g., where the control logic
is optimized by using unreachable states as don’t-care conditions, we might have to
impose a set of invariant constraints for the initial state, QImpl, in order to exclude
unreachable states. Then, we need to prove that those constraints will be satisfied in
the implementation state after one step, Q′Impl, so that the correctness will hold by
induction for that state, and so on for all subsequent states. The reader is referred to
[1, 2] for a discussion of correctness criteria, and to [49] for a debugging methodol-
ogy for correspondence checking.

The syntax of EUFM [9] includes terms and formulas. Terms are used to abstract
word-level values of data, register identifiers, memory addresses, as well as the entire
states of memories. A term can be an Uninterpreted Function (UF) applied to a list of
argument terms, a term variable, or an ITE operator selecting between two argument
terms based on a controlling formula, such that ITE(formula, term1, term2) will evalu-
ate to term1 when formula = true, and to term2 when formula = false. The syntax
for terms can be extended to model memories by means of functions read and write
[9, 35]. Formulas are used to model the control path of a processor, as well as to
express a correctness condition. A formula can be an Uninterpreted Predicate (UP)
applied to a list of argument terms, a Boolean variable, an ITE operator selecting be-
tween two argument formulas based on a controlling formula, or an equation (equality
comparison) of two terms. Formulas can be negated and combined with Boolean con-
nectives. We will refer to both terms and formulas as expressions. If we exclude func-
tions read and write from the syntax of EUFM, we will obtain the logic of Equality
with Uninterpreted Functions (EUF).

UFs and UPs are used to abstract the implementation details of functional units by
replacing them with “black boxes” that satisfy no particular properties other than that
of functional consistency. Namely, that equal combinations of values to the inputs of
the UF (or UP) produce equal output values. Thus, we will prove a more general
problem—that the processor is correct for any functionally consistent implementation
of its functional units. However, this more general problem is easier to prove.

Function read takes two argument terms serving as memory state and address, re-
spectively, and returns a term for the data at that address in the given memory. Func-
tion write takes three argument terms serving as memory state, address, and data, and
returns a term for the new memory state. Functions read and write satisfy the for-
warding property of the memory semantics: read(write(mem, waddr, wdata), raddr) is
equivalent to ITE((raddr = waddr), wdata, read(mem, raddr)).

We classify the equations that appear negated as g-equations (for general equa-
tions), and as p-equations (for positive equations) otherwise. We classify all terms
that appear as arguments of g-equations as g-terms (for general terms), and as p-terms
(for positive terms) otherwise. We classify all applications of a given UF as g-terms if
at least one application of that UF appears as a g-term, and as p-terms otherwise.

In [31, 32], the style for modeling high-level processors was restricted in order to
increase the terms that appear only in positive equations or as arguments to UFs and

 Method for Formal Verification of Soft-Error Tolerance Mechanisms 359

UPs, and reduce the terms that appear in both positive and negated equations. First,
equations between data operands, where the result appears in both positive and ne-
gated polarity—e.g., determining whether to take a branch-on-equal instruction—are
abstracted with a new UP in both the implementation and the specification. Second,
the Data Memory is abstracted with a conservative model, where the interpreted func-
tions read and write are replaced with new UFs, DMem_read and DMem_write, re-
spectively, that do not satisfy the forwarding property. This property is not needed, if
both the implementation and the specification execute the same sequence of opera-
tions that are not stalled based on equations between addresses for that memory [35].

The property of functional consistency of UFs and UPs can be enforced by Acker-
mann constraints [3], or by nested ITEs [30]. The Ackermann scheme replaces each
UF (UP) application in the EUFM formula F with a new term (Boolean) variable and
then adds external constraints for functional consistency. For example, the UF appli-
cation g(a1, b1) will be replaced by a new term variable c1, another application of the
same UF, g(a2, b2), will be replaced by a new term variable c2. Then, the resulting
EUFM formula F′ will be extended as [(a1 = a2) ∧ (b1 = b2) ⇒ (c1 = c2)] ⇒ F′. Note
that the new formula is equivalent to (a1 = a2) ∧ (b1 = b2) ∧ ¬(c1 = c2) ∨ F′, so that
the new term variables, c1 and c2, appear in a negated equation. In the nested-ITEs
scheme, the first application of a UF will still be replaced by a new term variable c1.
However, the second will be replaced by ITE((a2 = a1) ∧ (b2 = b1), c1, c2), where c2 is
a new term variable. A third application, g(a3, b3), will be replaced by ITE((a3 = a1) ∧
(b3 = b1), c1, ITE((a3 = a2) ∧ (b3 = b2), c2, c3)), where c3 is a new term variable, and so
on. UPs are eliminated similarly, but using new Boolean variables. In the general case
of each scheme, the formulas that express equality of arguments of UF (UP) applica-
tions with k arguments, will be conjunctions of k equations, one for each pair of corre-
sponding arguments. To avoid creating circular dependencies when using the nested-
ITE scheme, UFs and UPs have to be eliminated based on their topological order,
i.e., all applications of a given UF (UP) have to be eliminated from the arguments of
another application of the same UF (UP), before that application is eliminated. Other-
wise, the equations between corresponding arguments will lead to cyclic dependency.

We can prove liveness by a modified version of the safety correctness criterion—
by symbolically simulating the implementation for a finite number of steps, n, and
proving that:

 equality1 ∨ equality2 ∨ . . . ∨ equalityn × k = true

where k is the issue width of the implementation. The formula proves that n steps of
the implementation match between 1 and n × k steps of the specification, when the
implementation starts from an arbitrary initial state that may be restricted by invariant
constraints. Note that (1) guarantees that the implementation has made at least one
step, while the safety correctness criterion allows the implementation to stay in its
initial state when formula equality0 (checking whether the implementation matches
the initial state of the specification) is true. The correctness formula is generated
automatically in the same way as the formula for safety, except that the implementa-
tion and the specification are symbolically simulated for many steps, and formula
equality0 is not included. The minimum number of steps, n, to symbolically simulate

360 M.N. Velev and P. Gao

the implementation, can be determined experimentally, by trial and error, or can be
provided by the user, based on knowledge about the stalling and squashing behavior
of the implementation. We can also prove the liveness criterion (1) indirectly [40,
45]—by first proving safety, thus inductively the implementation correctness for n
steps, and then using Positive Equality to prove that equality0 will be false after n
steps; this indirect method resulted in 4 orders of magnitude speedup when proving
liveness of complex processors.

2.2 The RazorII Mechanism for Soft-Error Tolerance

The RazorII mechanism [12] is based on the flip-flop (FF) design shown in Fig. 2. It
uses a single positive level-sensitive latch, augmented with a transition detector
(TDetector) controlled by a detection clock (DC), whose rising edge is delayed rela-
tive to the rising edge of the regular clock, CLK. Timing errors are detected by moni-
toring the internal latch node for spurious transitions. A legitimate transition occurs
when data is setup to the latch input before the rising edge of the clock. In this case,
the output Q of the latch transitions at the rising edge after a delay equal to the clock-
to-Q (CLK-Q) delay of the latch, to reflect the state of data being captured. In order to
prevent legitimate transitions being flagged as timing errors, a short negative pulse on
the detection clock is used to disable the transition detector for at least the duration of
the CLK-Q delay after the rising edge, as shown in the figure. However, if the input
data transitions after the rising clock edge, during transparency, the transition of latch
node, N, occurs when the transition detector is enabled and results in assertion of sig-
nal Error. That signal triggers the architectural replay mechanism to restore correct
state within the pipeline, as illustrated in Fig. 3. The design of the RazorII FF natu-
rally allows it to detect Single Event Upsets (SEUs) within the flip-flop and in the
combinational logic.

The authors of [12] implemented the RazorII mechanism in a 64-bit, 7-stage pipe-
lined Alpha processor in order to detect timing errors and SEUs—see Fig. 3. The
pipeline has two instruction fetch stages (IF1, IF2), instruction decode stage (ID), an
integer execution unit (EX), memory access stage (MEM), and write-back stage
(WB). All pipeline registers have RazorII protection against state corruption due to
SEUs. The error pins of all the RazorII FFs in each pipeline stage are ORed together,
and the result is propagated and ORed with that of the next stage. This allows the
composite error signal for the entire pipeline to be evaluated on a per-stage basis.

In the pipelined processor in Fig. 3, the read and write paths to the instruction and
data cache (ICACHE and DCACHE), the register file, and the program status register
are not time-critical, and so do not require RazorII protection. Error Correcting Codes
(ECCs) are used to recover from SEUs in the caches and the register file. The pro-
gram status registers are protected using Triple Module Redundancy (TMR) [29]. The
key concept of TMR is to use three blocks of logic for the same computation. Then, a
majority voting circuit selects as output the data value produced by at least two of the
three blocks. TMR allows SEU errors in the architectural state registers to be cor-
rected on-the-fly, without an extra recovery mechanism.

 Method for Formal Verification of Soft-Error Tolerance Mechanisms 361

Error in
Logic
Stage L1

Fig. 2. The RazorII fault-detecting flip-flop, and a conceptual timing diagram for its operation.
(This figure is a modified version of one from [12].)

Fig. 3. Pipelined processor with the RazorII mechanism. Since the Error signals from the Razo-
rII FFs in each pipeline stage are OR-ed together, this scheme will detect any number of SEUs
in a pipeline stage. (This figure is from [12].)

362 M.N. Velev and P. Gao

Replay is achieved by check-pointing the Program Counter (PC) register in the WB
stage of the pipeline. The PC is passed along the processor pipeline together with its
corresponding instruction. When an instruction is in the WB stage and a soft error has
occurred during the execution of that instruction, the entire pipeline is flushed and the
PC in the fetch stage is overwritten with the PC in the WB stage. Normal instruction
execution resumes from then on. The PC in the WB stage is protected from SEUs
through TMR. Since an erroneous instruction is re-executed through the pipeline dur-
ing replay, the same instruction can suffer repeated timing errors. Hence, it is neces-
sary to monitor the instruction being replayed to avoid a deadlock. When the number
of replay iterations for the same instruction reaches a certain threshold, called the re-
play limit, the clock frequency is halved for as many cycles as to allow that instruc-
tion to complete its execution. Thus, for a replay limit of 1, every timing error is ac-
companied by recovery at half the clock frequency. For a replay limit of n, an errant
instruction is replayed n – 1 times at the same frequency, if required, before the fre-
quency is halved in the nth iteration. The majority of timing errors at the PoFF are
actually caused due to transient events, such as cross-coupling noise, and so disappear
during replay [12]. Hence, it is expected that for most timing errors, replaying the
erroneous instruction just once will be sufficient for completion, without having to
reduce the clock frequency.

The authors of [12] observed from their silicon measurement results that 60% of
failing instructions were executed to completion in the first replay iteration without
reducing the clock frequency. They used an externally programmable replay limit.
Furthermore, their silicon measurements showed that when the supply voltage is low-
ered to the PoFF, the frequency of failing instructions was approximately 1 in 100
million completed instructions, thus resulting in an insignificant overhead of the re-
play [5]. Those authors tested a fabricated copy of their pipelined processor with the
RazorII mechanism in a radioactive environment. RazorII was able to detect and cor-
rect all faults, allowing the processor to compute correct results for a test sequence
with tens of millions of instructions.

3 Formal Verification of Pipelined Processors with Mechanisms
for Soft-Error Tolerance

When implementing at a high level of abstraction and formally verifying pipelined
processors with mechanisms for soft-error tolerance, our requirements were to be able
to: 1) formally verify both safety and liveness; 2) formally verify processors with dif-
ferent pipeline structure, including single-issue pipelined, VLIW, and superscalar
designs where in the latter an instruction can have many execution paths; 3) easily
apply these techniques at a high level of abstraction, in order to abstract any mecha-
nism for detection of soft errors; and 4) exploit the property of Positive Equality in
order to classify as many term variables as p-terms, hence allowing our automatic
decision procedure to treat them as distinct constants and thus achieve orders of mag-
nitude speedup.

To satisfy all these requirements, we abstracted the logic for detecting soft errors in
the execution of each instruction in every pipeline stage. We did that with a generator
of arbitrary values [33] that produces a fresh Boolean variable during every clock

 Method for Formal Verification of Soft-Error Tolerance Mechanisms 363

cycle to indicate whether a soft error has occurred during that clock cycle. We intro-
duced a different generator of arbitrary values (that will produce a unique sequence of
fresh Boolean variables) for each instruction in every pipeline stage. That is, proces-
sors that can have several instructions in execution in each pipeline stage, such as
superscalar and VLIW processors, will have as many such generators of arbitrary val-
ues in each pipeline stage as the number of instructions that can be in simultaneous
execution in that stage. This will abstract both possible outcomes of occurrence and
non-occurrence, respectively, of a soft error during the execution of each symbolic
instruction in each pipeline stage for each iteration (i.e., original execution or replay)
of the instruction, hence representing all possible execution scenarios during the sym-
bolic simulation of the implementation processor.

We also need to enforce the constraint that when the replay limit is reached for an
instruction, then the instruction will be executed without soft errors in the next itera-
tion. This is based on the assumption [12] that in the actual implementation of the
processor, the clock frequency will be halved when the replay limit is reached, and
that guarantees that the logic in every pipeline stage will become resistant to soft er-
rors, which will ensure the completion of the instruction in the next iteration. To
model this behavior, we introduce an additional set of bit-level signals that propagate
with each instruction in the high-level model of the implementation processor, and
represent a one-hot encoding (where only one of the bit-level signals is 1 and the rest
are 0s) that indicates the exact iteration of an instruction up to the given replay limit
plus one. A constraint is imposed:

(c1) for each instruction in each pipeline stage that if the replay limit has been
exceeded then there will be no soft errors, i.e., the output value of the gen-
erator of arbitrary values that abstracts the occurrence of a soft error for that
instruction in a particular pipeline stage in a given clock cycle will be false.

This constraint is imposed for every clock cycle of symbolic simulation of the imple-
mentation processor—during both regular symbolic simulation and flushing, and for
the proof of both safety and liveness.

We also imposed two invariant constraints for every instruction in every pipeline
stage:

(i1) that the above bit-level signals that represent the iteration number form a
one-hot pattern—this was done by using a condition that the disjunction of
all legitimate one-hot patterns of these bit-level signals is true; and

(i2) that if the replay limit has been exceeded then no soft errors have occurred
during the execution of this instruction in earlier pipeline stages, i.e., the bit-
level signals that propagate with the instruction and indicate whether soft er-
rors have occurred earlier are all false.

To check an invariant constraint, we impose it for the initial symbolic state of the
implementation processor, then simulate the processor symbolically for one clock
cycle, and verify that the same condition is satisfied. If so, then these constraints are
imposed for the initial implementation state when proving both safety and liveness.

The outcomes of whether a soft error has occurred in any stage of executing an
instruction are OR-ed together to form the combined outcome of a soft-error occur-
rence during the execution of that instruction. The resulting signal is used in the last

364 M.N. Velev and P. Gao

pipeline stage to squash subsequent instructions, and to control the replay of the
instruction that encountered a soft error. Namely, the condition that a soft error has
occurred is used in the first pipeline stage to control multiplexors that will select for
re-execution the instruction from the last pipeline stage. This is done by shifting the
one-hot bit pattern (that indicates the exact iteration of an instruction) by one bit and
filling the least significant bit with a 0. In the event that a soft error has not occurred,
then executed is the newly fetched instruction, such that the corresponding bit-level
pattern with a one-hot encoding is set to have a 1 in its least significant position and
0s elsewhere.

If an instruction is stalled in a given pipeline stage during a particular clock cycle,
then the signal indicating whether a soft error has occurred for that instruction in that
stage in that clock cycle is set to 0. That signal is similarly set to 0 if the instruction is
squashed, e.g., when a preceding instruction has a branch misprediction [33], a data-
value misprediction [47], a raised exception [33], or a soft error has occurred during the
execution of the instruction that is currently being completed in the last pipeline stage.

Instead of a one-hot encoding, we can use the actual bit-level pattern of the binary
representation of the number of iterations. Then, we no longer need the first invariant
constraint (i1) for a legitimate one-hot pattern, but still need the constraint (c1) and
the second invariant constraint (i2). Also, if a soft error has occurred and so the in-
struction is replayed, then we need to use an incremeter (an adder that increments a
binary value with 1) to form the next bit-level pattern for the execution iteration.

The use of a one-hot bit-level representation of the number of iterations simplifies
the resulting formulas for the invariants, the constraints, and the correctness condi-
tions for safety and liveness. We call this high-level design for formal verification.
(This concept is analogous to that of design for testability in the testing community.)
Note that the one-hot representation of the number of iterations can be replaced with
any representation of that number in the actual synthesized processor, as long as there
is a one-to-one correspondence between patterns and it is guaranteed that when the
replay limit is exceeded then the corresponding number of iterations is used to trigger
a mechanism that guarantees that there will be no soft errors in the next iteration for
that instruction, e.g., by reducing the clock frequency by half [12].

The above techniques are applied only to the high-level model of the pipe-
lined/superscalar/VLIW implementation processor. The non-pipelined specification
processor that defines the correct instruction semantics is not modified. The above
abstractions are applicable to all processor architectures: single-issue pipelined, su-
perscalar, or VLIW.

Lemma 1. The presented abstraction of the mechanism for soft-error tolerance is
sound and complete.

Sketch of the proof: The presented abstraction of the logic for detection of soft errors
represents the most general symbolic execution scenario—a soft error could occur for
every instruction in every stage in every clock cycle unless the replay limit is ex-
ceeded—and thus accounts for all possible execution scenarios that satisfy the as-
sumption that after the replay limit is exceeded then there will be no soft errors in the
next clock cycle, and so the instruction will be definitely completed then.

We abstract multicycle functional units with place holders [33], which are described
in AbsHDL, our high-level hardware description language. The place holders are

 Method for Formal Verification of Soft-Error Tolerance Mechanisms 365

constructed so that they exhibit enough of the timing characteristics of the original
functional units, such that the correctness of the abstract processor with place holders
will imply the correctness of the actual implementation with the original functional
units. For example, if a functional unit has a fixed latency of n cycles, we can abstract
it with a model that has a chain of n – 1 latches situated in the stage of the original
functional unit, as shown in Fig. 4.

1
0

Forwarding
Logic

ALUOpcode

Data
Result

RegWrite. . .
IsMCInstr

RegWrite ...

ForceStall

Stall

chain of n – 1 latches

CancelLaterMCInstructions_bar

Take_1

Take_n

Place holder for an ALU with latency of either 1 or n cycles

IsCycle_1 IsCycle_2_to_n-1

IsCycle_2_to_n

IsCycle_n SoftError

1
0

Generator
of Arbitrary

Values

N
D

_R
es

ul
t

N
D

_S
of

tE
rro

r

Fig. 4. Abstraction for a functional unit that can take either 1 or n cycles to complete a compu-
tation. ALU is the uninterpreted function that abstracts the semantics of the computation per-
formed by the functional unit, and is replaced by a memory model when a multicycle memory
is abstracted.

Signal ForceStall in Fig. 4 is used to implement Burch’s controlled flushing [10],
and helps eliminate the ambiguity in the instruction flow during flushing, thus signifi-
cantly simplifying the EUFM correctness formula. We set that signal to false during
the one cycle of regular symbolic simulation of the processor when checking safety.
However, we set signal ForceStall to true during flushing in order to force the original
signal Stall to true, thus stalling the instructions in the previous pipeline stages; this
continues until the original signal Stall is guaranteed to evaluate to false. Then, we
repeat the sequence: we set ForceStall to false for 1 clock cycle in order to allow the
instructions in the previous stages to advance, and so let a new instruction in the stage
of the multicycle functional unit; then we set signal ForceStall to true until the origi-
nal signal Stall is again guaranteed to evaluate to false, and so on.

In Fig. 4, the latency is 1 cycle when signal Take_1 is true (i.e., RegWrite is true
and IsMCInstr is false) or n cycles when signal Take_n is true (i.e., RegWrite is true
and IsMCInstr is true). The chain of n – 1 latches is used to delay signal IsMCInstr for
n cycles when propagating through the stage of the original functional unit. Signal
Stall is used to stall the previous pipeline stages when a multicycle computation
is in cycles 1 through n – 1 of its execution. By introducing the feedback loop created
by signal CancelLaterMCInstructions, we avoid the need to impose and check the
invariant that at most one latch in the chain can have value true. Signal ForceStall is
used to implement Burch’s controlled flushing.

366 M.N. Velev and P. Gao

To abstract the detection of soft errors, we introduce a generator of arbitrary values
that produces an arbitrary Boolean variable ND_SoftError to abstract the occurrence of
a soft error in a clock cycle, and an arbitrary term ND_Result to abstract the result of
the multicycle computation if a soft error occurs—in that case any subsequent sym-
bolic instructions in execution in the same functional unit are cancelled.

4 Results

The experiments were conducted on a workstation with a 3.3-GHz six-core Intel Xeon
processor, and 24 GB of memory, running Red Hat Enterprise Linux v5.5. (Only a
single core was used for each experiment.) The symbolic simulation was done with
the term-level symbolic simulator TLSim [46]. Translation of the EUFM correctness
formula to an equivalent Boolean formula was done with the decision procedure EVC
[46]. The SAT solver rsat v3.1 [20, 21] was used for solving the CNF formulas.

Table 1. Experimental results. MSET stands for Mechanism for Soft Error Tolerance, while the
original design does not have such a mechanism

Benchmark Version CPU Time [s] to
Check Safety

CPU Time [s] to
Check Liveness

1dlx_c Original 0.06 0.52

MSET 0.07 0.65

2dlx_ca Original 0.18 2.15

MSET 0.24 2.72

2dlx_cc_mc_ex_bp Original 0.90 6.2

MSET 1.02 7.3

9vliw_bp_mc_ex_9stages_iq5 Original 612 3,243

MSET 723 4,495

The experiments were to formally verify safety and liveness of the benchmarks:

1dlx_c, a single-issue 5-stage pipelined DLX [15], modeled as described in [32];
2dlx_ca, a dual-issue superscalar DLX, with one complete and one ALU pipeline
[32]; 2dlx_cc_mc_ex_bp, a dual-issue superscalar DLX, with 2 complete pipelines,
exceptions, branch prediction, and multicycle functional units [33]; and
9vliw_bp_mc_ex_9stages_iq5, a 9-stage, 9-wide VLIW processor that imitates
the Intel Itanium [16, 27] in features such as predicated execution, register remapping,
advanced loads, branch prediction, multicycle functional units, exceptions, and a 5-
entry instruction queue (a simpler version of this processor with fewer pipeline stages
and no instruction queue was formally verified in [34, 36]). The abstraction function
was computed by controlled flushing [10], where the user provides a stalling schedule
to override the processor stall signals, thus eliminating the ambiguity of the instruc-
tion flow during flushing, and producing a simpler EUFM correctness formula.

 Method for Formal Verification of Soft-Error Tolerance Mechanisms 367

Table 1 presents the results. In the two benchmarks with multicycle functional
units, the Instruction Memory, the ALUs in the Execution stage, and the Data Mem-
ory could take either 1 or 4 clock cycles to fetch and compute a result, respectively.
Liveness was formally verified with the indirect method from [40]. As can be seen
from the table, modeling the abstracted mechanism for soft error tolerance, including
a replay mechanism and abstraction of the logic that detects soft errors, resulted in
negligible overhead when proving safety—up to about 15% at the most. The overhead
was up to about one third when formally verifying liveness, and was still acceptable.

5 Related Work

The only related work that we know of is by Alizadeh et al. [4]. They use an uninter-
preted predicate with no arguments, i.e., a Boolean variable, to abstract the occurrence
of a timing error in a pipeline stage of a DLX processor. According to that paper, they
introduce one such uninterpreted predicate per pipeline stage, which will correctly
capture the non-deterministic occurrence of a timing error in the first cycle of
symbolic simulation, but then the same variable will be reused for this purpose for all
subsequent instructions that pass through that stage, which will be incorrect. They
formally verify only safety for a 5-stage DLX comparable to our 1dlx_c, while we
presented techniques for formally verifying both safety and liveness, including of
designs with multicycle functional units. Also, we showed results for complex pipe-
lined, superscalar, and VLIW processors with exceptions, branch prediction, and mul-
ticycle functional units.

6 Conclusion

We presented techniques for design at a high level of abstraction and formal verifica-
tion of pipelined/superscalar/VLIW processors with built-in mechanisms for soft-
error and timing-error tolerance. Our requirements were to be able to: 1) formally
verify both safety and liveness; 2) formally verify processors with different pipeline
structure, including single-issue pipelined, VLIW, and superscalar designs where in
the latter an instruction can have many execution paths; 3) ease of modeling at a high
level of abstraction, applicability to different mechanisms for detection of soft errors,
and simplicity of the formal verification; and 4) exploit the property of Positive
Equality in order to classify as many term variables as p-terms, hence allowing our
automatic decision procedure to treat them as distinct constants and thus achieve or-
ders of magnitude speedup. To satisfy all these requirements, we abstracted the logic
for detecting of soft errors in the execution of an instruction after each pipeline stage
with a generator of arbitrary values. An additional set of bit-level signals representing
a one-hot encoding was used to indicate the exact iteration of an instruction up to a
given replay limit plus one, with a constraint imposed that when the replay limit is
exceeded then there will be no soft errors, based on the assumption that in the actual
implementation the clock frequency is halved when the replay limit is exceeded and
that guarantees a completion of an instruction with no soft errors [12]. We applied the
techniques to formally verify both safety and liveness of single-issue pipelined and
dual-issue superscalar processors, as well as VLIW processors that imitate the Intel
Itanium in many features.

368 M.N. Velev and P. Gao

References

[1] Aagaard, M.D., Day, N.A., Lou, M.: Relating multi-step and single-step microprocessor
correctness statements. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS,
vol. 2517. Springer, Heidelberg (2002)

[2] Aagaard, M.D., Cook, B., Day, N.A., Jones, R.B.: A framework for superscalar micro-
processor correctness statements. Software Tools for Technology Transfer (STTT) 4(3)
(May 2003)

[3] Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland, Amsterdam
(1954)

[4] Alizadeh, B., Gharehbaghi, A.M., Fujita, M.: Pipelined Microprocessors Optimization
and Debugging. In: Sirisuk, P., Morgan, F., El-Ghazawi, T., Amano, H. (eds.) Recon-
figurable Computing: Architectures, Tools and Applications. LNCS, vol. 5992, pp. 435–
444. Springer, Heidelberg (2010)

[5] Blaauw, D., Das, S.: CPU, Heal Thyself: A Fault-Monitoring Microprocessor Design Can
Save Power or Allow Overclocking. IEEE Spectrum (August 2009),

 http://spectrum.ieee.org/semiconductors/processors/
 cpu-heal-thyself/0

[6] Bouajila, A., Zeppenfeld, J., Stechele, W., Herkersdorf, A., Bernauer, A., Bringmann, O.,
Rosenstiel, W.: Organic Computing at the System on Chip Level. In: IFIP International
Conference on Very Large Scale Integration (VLSI-SoC 2006), pp. 338–341 (2006)

[7] Bryant, R.E., German, S., Velev, M.N.: Processor Verification Using Efficient Reduc-
tions of the Logic of Uninterpreted Functions to Propositional Logic. ACM Transactions
on Computational Logic 2(1) (2001)

[8] Bryant, R.E., Velev, M.N.: Boolean Satisfiability with Transitivity Constraints. ACM
Transactions on Computational Logic (TOCL) 3(4), 604–627 (2002)

[9] Burch, J.R., Dill, D.L.: Automated Verification of Pipelined Microprocessor Control. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818. Springer, Heidelberg (1994)

[10] Burch, J.R.: Techniques for Verifying Superscalar Microprocessors. In: Design Automa-
tion Conference (June 1996)

[11] Burcin, A.: RAD750, BAE Systems (December 2002), http://www.aero.org/
conferences/mrqw/2002-papers/A_Burcin.pdf

[12] Das, S., Tokunaga, C., Pant, S., Ma, W.-H., Kalaiselvan, S., Lai, K., Bull, D.M., Blaauw,
D.T.: RazorII: In Situ Error Detection and Correction for PVT and SER Tolerance. IEEE
Journal of Solid-State Circuits 44(1), 32–48 (2009)

[13] Goel, A., Sajid, K., Zhou, H., Aziz, A., Singhal, V.: BDD Based Procedures for a Theory
of Equality with Uninterpreted Functions. In: Y. Vardi, M. (ed.) CAV 1998. LNCS,
vol. 1427. Springer, Heidelberg (1998)

[14] Goldberg, E., Novikov, Y.: BerkMin: A Fast and Robust Sat-Solver. In: Design, Automa-
tion, and Test in Europe (DATE 2002), pp. 142–149 (March 2002)

[15] Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 3rd
edn. Morgan Kaufmann Publishers, San Francisco (2002)

[16] Intel Corporation: IA-64 Application Developer’s Architecture Guide (May 1999),
http://developer.intel.com/design/ia-64/architecture.htm

[17] Lahiri, S., Pixley, C., Albin, K.: Experience with Term Level Modeling and Verification
of the M·CORETM Microprocessor Core. In: International Workshop on High Level De-
sign, Validation and Test (HLDVT 2001) (2001)

 Method for Formal Verification of Soft-Error Tolerance Mechanisms 369

[18] Le Berre, D., Simon, L.: Results from the SAT 2004 SAT Solver Competition. In: Hoos,
H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 321–344. Springer, Heidelberg
(2005)

[19] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
Efficient SAT Solver. In: 38th Design Automation Conference (DAC 2001) (June 2001)

[20] Pipatsrisawat, K., Darwiche, A.: A Lightweight Component Caching Scheme for Satisfi-
ability Solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501,
pp. 294–299. Springer, Heidelberg (2007)

[21] Pipatsrisawat, K., Darwiche, A.: A New Clause Learning Scheme for Efficient Unsatisfi-
ability Proofs. In: Twenty-Third AAAI Conference on Artificial Intelligence, pp. 1481–
1484 (July 2008)

[22] Pnueli, A., Rodeh, Y., Strichman, O., Siegel, M.: The Small Model Property: How Small
Can It Be? Journal of Information and Computation 178(1) (2002)

[23] Rotenberg, E.: AR-SMT: A Microarchitectural Approach to Fault Tolerance in Micro-
processors. In: Annual International Symposium on Fault-Tolerant Computing (June
1999)

[24] Ryan, L.: Siege SAT Solver v.4, http://www.cs.sfu.ca/~loryan/personal/
[25] Su, Y.-S., Chang, P.-H., Chang, S.-C., Hwang, T.: Synthesis of a Novel Timing-Error De-

tection Architecture. Transactions on Design Automation of Electronic Systems
(TODAES) 13(1) (January 2008)

[26] Subramanian, V., Bezdek, M., Avirneni, N.D., Somani, A.: Superscalar Processor Per-
formance Enhancement Through Reliable Dynamic Clock Frequency Tuning. In: Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (2007)

[27] Sharangpani, H., Arora, K.: Itanium processor microarchitecture. IEEE Micro 20(5), 24–
43 (2000)

[28] Tschanz, J., Kim, N.S., Dighe, S., Howard, J., Ruhl, G., Vanga, S., Narendra, S.,
Hoskote, Y., Wilson, H., Lam, C., Shuman, M., Tokunaga, C., Somasekhar, D., Tang, S.,
Finan, D., Karnik, T., Borkar, N., Kurd, N., De, V.: Adaptive Frequency and Biasing
Techniques for Tolerance to Dynamic Temperature-Voltage Variations and Aging. In:
IEEE International Solid-State Circuits Conference (ISSCC 2007), pp. 292–604 (Febru-
ary 2007)

[29] Van Gils, W.J.: A Triple Modular Redundancy Technique Providing Multiple-Bit Error
Protection Without Using Extra Redundancy. IEEE Trans. Computers C-35(7), 623–631
(1986)

[30] Velev, M.N., Bryant, R.E.: Bit-Level Abstraction in the Verification of Pipelined Micro-
processors by Correspondence Checking. In: Gopalakrishnan, G.C., Windley, P. (eds.)
FMCAD 1998. LNCS, vol. 1522, pp. 18–35. Springer, Heidelberg (1998)

[31] Velev, M.N., Bryant, R.E.: Exploiting Positive Equality and Partial Non-Consistency in
the Formal Verification of Pipelined Microprocessors. In: 36th Design Automation Con-
ference (DAC 1999), pp. 397–401 (June 1999)

[32] Velev, M.N., Bryant, R.E.: Superscalar Processor Verification Using Efficient Reductions
of the Logic of Equality with Uninterpreted Functions to Propositional Logic. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 37–53. Springer, Heidelberg
(1999)

[33] Velev, M.N., Bryant, R.E.: Formal Verification of Superscalar Microprocessors with
Multicycle Functional Units, Exceptions, and Branch Prediction. In: 37th Design Automa-
tion Conference (DAC 2000), pp. 112–117 (June 2000)

370 M.N. Velev and P. Gao

[34] Velev, M.N.: Formal verification of VLIW microprocessors with speculative execution.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 296–311.
Springer, Heidelberg (2000)

[35] Velev, M.N.: Automatic Abstraction of Memories in the Formal Verification of Supersca-
lar Microprocessors. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
252–267. Springer, Heidelberg (2001)

[36] Velev, M.N., Bryant, R.E.: Effective Use of Boolean Satisfiability Procedures in the
Formal Verification of Superscalar and VLIW Microprocessors. Journal of Symbolic
Computation (JSC) 35(2), 73–106 (2003)

[37] Velev, M.N.: Automatic Abstraction of Equations in a Logic of Equality. In: Cialdea
Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS(LNAI), vol. 2796, pp. 196–213.
Springer, Heidelberg (2003)

[38] Velev, M.N.: Using Automatic Case Splits and Efficient CNF Translation to Guide a
SAT-Solver When Formally Verifying Out-of-Order Processors. In: Artificial Intelli-
gence and Mathematics (AI&MATH 2004), pp. 242–254 (January 2004)

[39] Velev, M.N.: Efficient Translation of Boolean Formulas to CNF in Formal Verification
of Microprocessors. In: Asia and South Pacific Design Automation Conference (ASP-
DAC 2004), pp. 310–315 (January 2004)

[40] Velev, M.N.: Using Positive Equality to Prove Liveness for Pipelined Microprocessors.
In: Asia and South Pacific Design Automation Conference (ASP-DAC 2004) (January
2004)

[41] Velev, M.N.: Exploiting Signal Unobservability for Efficient Translation to CNF in For-
mal Verification of Microprocessors. In: Design, Automation and Test in Europe (2004)

[42] Velev, M.N.: Encoding Global Unobservability for Efficient Translation to SAT. In: In-
ternational Conference on Theory and Applications of Satisfiability Testing (May 2004)

[43] Velev, M.N.: Comparative Study of Strategies for Formal Verification of High-Level
Processors. In: 22nd International Conference on Computer Design (ICCD 2004) (October
2004)

[44] Velev, M.N.: Comparison of Schemes for Encoding Unobservability in Translation to
SAT. In: Asia & South Pacific Design Automation Conference (ASP-DAC 2005) (Janu-
ary 2005)

[45] Velev, M.N.: Automatic Formal Verification of Liveness for Pipelined Processors with
Multicycle Functional Units. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS,
vol. 3725, pp. 97–113. Springer, Heidelberg (2005)

[46] Velev, M.N., Bryant, R.E.: TLSim and EVC: A Term-Level Symbolic Simulator and an
Efficient Decision Procedure for the Logic of Equality with Uninterpreted Functions and
Memories. International Journal of Embedded Systems 1(1/2) (2005)

[47] Velev, M.N.: Using Abstraction for Efficient Formal Verification of Pipelined Processors
with Value Prediction. In: 7th International Symposium on Quality Electronic Design
(ISQED 2006), pp. 51–56 (March 2006)

[48] Velev, M.N., Gao, P.: Exploiting Hierarchical Encodings of Equality to Design Inde-
pendent Strategies in Parallel SMT Decision Procedures for a Logic of Equality. In: IEEE
High Level Design Validation and Test Workshop (HLDVT 2009) (November 2009)

[49] Velev, M.N., Gao, P.: A Method for Debugging of Pipelined Processors in Formal Veri-
fication by Correspondence Checking. In: 15th Asia and South Pacific Design Automation
Conference (ASP-DAC 2010), pp. 619–624 (January 2010)

Formal Verification of Tokeneer Behaviours
Modelled in fUML Using CSP

Islam Abdelhalim, James Sharp, Steve Schneider, and Helen Treharne

Department of Computing, University of Surrey

Abstract. Much research work has been done on formalizing UML di-
agrams, but less has focused on using this formalization to analyze the
dynamic behaviours between formalized components. In this paper we
propose using a subset of fUML (Foundational Subset for Executable
UML) as a semi-formal language, and formalizing it to the process alge-
braic specification language CSP, to make use of FDR as a model checker.
Our formalization includes modelling the asynchronous communication
framework used within fUML. This allows different interpretations of the
communications model to be evaluated. To illustrate the approach, we
use the modelling of the Tokeneer ID Station specifications into fUML,
and formalize them in CSP to check if the model is deadlock free.

1 Introduction

The OMG (Object Management Group) has developed the fUML (Foundational
Subset for Executable UML) [1] specification with the purpose of enabling com-
pliant models to be transformed into various executable forms for verification,
integration, and deployment. The specification of the execution model incorpo-
rates a degree of genericity. This is achieved mainly by defining explicit semantic
variation points. A particular execution tool can then realize specific semantics
by providing specifications for any of those points. The semantics of inter-object
communications mechanisms is one of the semantic variation points. The choice
of the implementation of such a point may affect the execution model of the
system. We use formal model checking to evaluate an implementation of the
inter-object communications mechanism and its compatibility with an fUML
model. This, in turn, can ensure that faults within an fUML model are detected
during the early stages of software development lifecycle, which provide signifi-
cant savings in cost compared with rectifying errors after the system has been
implemented.

We formalize fUML models into the process algebraic specification language
CSP [2] with the purpose of checking deadlocks in the models, which could
happen if all objects are waiting to accept signals from each other. To check
such a property, we modelled the inter-object communications mechanism into
CSP. Then we used FDR (Failures-Divergences Refinement) [3] to handle the
model checking and report the deadlock scenarios (if found). Potentially, we

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 371–387, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

372 I. Abdelhalim et al.

can make use of this methodology to allow software engineers, who do not
have specialist mathematical knowledge, to formally check their semi-formal
(fUML) models.

Much research exists on translating a UML model to a formal model (see
Section 8) but many approaches have imposed restrictions on the UML diagrams
and notation used. Our previous work on transforming xUML (Executable UML)
[4] to CSP ‖ B [5] benefits from the fact that using xUML as a starting point
means that the restrictions are those imposed by the language itself. xUML
allows models to be executed and tools supporting xUML have meta-models [6].
In this paper we propose to examine the translation between fUML and CSP.
fUML benefits from a standardized meta-model. Moreover, the complexity of
the queuing mechanism in xUML (each object has a separate signal queue for
all the objects in the system including itself which has the highest priority) leads
to more complex CSP models, and thus more heavy processes to be analyzed by
FDR. Also the syntax of the fUML activity diagrams allowed for modelling the
internal choices, which was not possible using xUML. The fUML models yield
more abstract formal models than were possible from xUML translation.

In order to validate our approach, we modelled part of the Tokeneer ID Sta-
tion project [7] into fUML. We then developed a group of mapping rules (maps
between the fUML activity diagrams elements and CSP) to manually translate
the fUML into CSP, and checked whether the CSP model is deadlock free. If the
CSP is deadlock free it gives us confidence that the corresponding fUML model
is also deadlock free. In this paper we are focusing on a subset of the fUML
activity diagram notation, and this has been guided by the Tokeneer case study.
Formalizing fUML class diagrams is beyond the scope of this paper, as we want
to check the dynamic behaviour of the system. Also the runtime objects creation
and deletion are not covered in this work.

Overall the main novelty of this work is the proposed approach to model the
asynchronous communication between objects. Also to our knowledge, this is
the first attempt to analyze fUML models (by formalizing them into CSP) and
addressing the semantic variation points issue in the fUML standard.

We assume the reader of this paper has good background knowledge of the
UML 2 standard, CSP, and FDR.

The rest of this paper is organised as follows. In Section 2, we give a back-
ground to the fUML standard and the CSP syntax used in this paper. In Sec-
tion 3, we introduce the Tokeneer case study briefly and include part of the
used fUML diagrams. In Section 4, we describe the mapping rules we developed
to map between the fUML activity diagram elements and CSP. In Section 5,
we describe how we model the asynchronous communication between the fUML
active objects in CSP. In Section 6, we describe the CSP model for a selected
part of Tokeneer fUML activity diagram. In Section 7, we discuss the deadlock
checking for the formalized fUML model and the generated results from FDR.
Finally, we discuss related work and conclude in Sections 8 and 9 respectively.

Formal Verification of Tokeneer Behaviours Modelled in fUML 373

2 Background

2.1 fUML

fUML (Foundational Subset for Executable UML) [1] is an OMG standard act-
ing as an intermediary between “surface subsets” of UML models and platform
executable languages. The OMG defines the fUML subset by specifying the mod-
ifications to the original abstract syntax (of UML 2) of the class and activity
diagrams, which allows fUML models to be transformed to various executable
forms. These modifications are specified in clause 7 of the standard by merg-
ing/excluding some packages in the UML 2 specification [8], as well as adding
new constraints. As defined in the fUML standard, we are listing below some
modifications to UML 2 that are relevant to our Tokeneer fUML model; all of
them are related to the fUML activity diagrams since our goal is to capture the
behaviours of our model:

– Central buffer nodes are excluded from fUML because they were judged to
be unnecessary for the computational completeness of fUML.

– Variables are excluded from fUML because the passing of data between ac-
tions can be achieved using object flows.

– Exception handlers are not included in fUML because exceptions are not
included in fUML.

– Opaque actions are excluded from fUML since, being opaque, they cannot
be executed.

– Value pins are excluded from fUML because they are redundant with using
value specifications to specify values.

The operational semantics of fUML is an executable model with methods written
in Java, with a mapping to UML activity diagrams. The declarative semantics
of fUML is specified in first order logic and based on PSL (Process Specification
Language).

Inter-object Communication Mechanism in fUML
This part gives an overview of the semantics of the inter-object communica-
tion in fUML as defined by clause 8 in the standard [1]. Such communication
is conducted between active objects only. Active objects in fUML communicate
asynchronously via signals (kind of classifier). This is achieved by associating an
object activation with each object which handles the dispatching of asynchronous
communications received by its active object. Figure 1 shows the structure re-
lated to the object activation. The object activation maintains two main lists:
the first list (event pool) holds the incoming signal instances waiting to be dis-
patched, and the second list (waiting event accepters) holds the event accepters
that have been registered by the executing classifier behaviour. Event accepters
are allowable signals with respect to the current state of the active object. The
fUML standard permits the specifier (tool implementer) to define a suitable dis-
patching mechanism for signals within the event pool (semantic variation point).
The default dispatching behaviour, as described in [1], dispatches events on a
FIFO (first-in first-out) basis.

374 I. Abdelhalim et al.

Fig. 1. Object Activation Structure

2.2 CSP

CSP (Communication Sequential Processes) [2] is a modelling language that
allows the description of systems of interacting processes using a few language
primitives. Processes execute and interact by means of performing events drawn
from a universal set Σ. Some events are of the form c.v , where c represents a
channel and v represents a value being passed along that channel. We considered
the following subset of the CSP syntax:

P ::= a → P |c?x → P(x)|d !v → P |P1 � P2|P1 � P2

|P1 ‖
A B

P2|P \ A|P1; P2| if b then P1 else P2

The CSP process a → P initially allows event a to occur and then behave
subsequently as P . The input process c?x → P(x) will accept a value x along
channel c and then behave subsequently as P(x). The output process c!v → P
will output v along channel c and then behave as P . Channels can have any
number of message fields, combination of input and output values.

The choice P1 � P2 offers an external choice between processes P1 and P2

whereby the choice is made by the environment. Conversely, P1 � P2 offers an
internal choice between the two processes.

The parallel combination P1 ‖
A B

P2 executes P1 and P2 in parallel. P1 can

perform only events in A, P2 can perform only events in B , and they must
simultaneously engage in events in the intersection of A and B .

P1 \ A operation describes the case where all participants of all events in
A are described in P1. All these events are removed from the interface of the
process, since no other processes are required to engage in them.

P1; P2 initially executes P1. When P1 successfully terminates, then control
passes to P2. This composition can be replicated over a sequence of expressions
using the form ; x : s@P . Finally, the conditional choice if b then P1 else P2

behaves as P1 or P2 depending on the evaluation of the condition b.

3 Tokeneer: Case Study Introduction

The Tokeneer project [7] is one of the most interesting pilot projects forming
part of the Verified Software Initiative [9], and has been cited by the US National
Academies as exemplifying best practice in software engineering [10]. The project
was certified to Common Criteria Level 5 and in the areas of specification, design

Formal Verification of Tokeneer Behaviours Modelled in fUML 375

isOpen : boolean
isLocked : boolean

Door

User
User Panel

Door Controller

isAlarming : boolean

Alarm

controls

1

controlled by

1

provides input to

1receives input from

1..*

can activate

1

activated by 1
accesses controller1

accesses panel1

uses 1

used by 1..*

Fig. 2. TIS Class Diagram

and implementation achieving Levels 6 and 7. The Tokeneer project re-developed
one component of a Tokeneer system that was developed by the NSA (National
Security Agency) to provide protection to secure information held on a network
of workstations situated in a physically secure enclave. A survey of other projects
using formal methods has been discussed in [11].

To date, only two errors have been found in Tokeneer [7], and the entire project
archive has been released [12] for experimentation by researchers. This includes
the project specifications written in Z [13] and an open source implementation.
Woodcock and Aydal [14] have conducted several experiments using model-based
testing techniques to discover twelve anomalous scenarios which challenged the
dependability claims for Tokeneer as a security-critical system. Several of the
scenarios highlight the importance of the behaviour of the user because one
of the security objectives for Tokeneer is to prevent accidental, unauthorised
access to the enclave by a user. The user was not formally modelled in the Z
specification [12]. We also note the important of the user in our analysis.

Our motivation for using the Tokeneer project as a case study was not to
re-validate the project but rather to investigate the concurrent behaviour of the
various components of the Tokeneer ID station (TIS) subsystem in the context of
asynchronous communication. The correspondence between the Tokeneer formal
specifications [12] and our Tokeneer fUML model is not a one-one relationship.
Our Tokeneer fUML model contains more implementation details that are ab-
stracted in Tokeneer Z specifications. Therefore, our formal analysis benefits
from being able to examine the low level details of asynchronous communica-
tion. Such an analysis allows us to investigate potential deadlocks which might
occur if the formal specifications were implemented using such communication
mechanisms.

The components of interest in the TIS subsystem are represented on the class
diagram in Figure 2. We do not formalize the class diagram, and its inclusion is
just to illustrate the relationship between the system’s components.

376 I. Abdelhalim et al.

Door : This is the physical enclave’s door that the user opens to access the se-
cure enclave. It has no intelligent behaviour as it is entirely controlled by the door
controller component. The two main attributes of this component are: isOpen at-
tribute which indicates the status of the door (opened or closed), and the isLocked
attribute which indicates the status of the door’s latch (locked or unlocked).

Door Controller : This component controls the door’s latch status (isLocked)
by setting its value based on the incoming signals from the User Panel. It also
manages two timers: the first timer watches if the door is kept closed and un-
locked, and the second timer watches if the door is kept opened and locked.

User : This component models the user behaviours toward the system. He is
responsible for requesting the enclave entry, and opening the door in case it was
successfully unlocked by the User Panel. He is also responsible for closing the
door after accessing the enclave. The system may serve more than one user at
the same time. However, the results in this paper focus on a single user only.

User Panel : This component models the behaviour of the panel with which
the user interfaces to gain access to the enclave. It is responsible for deciding
whether the user is allowed to access the enclave or not.

Alarm: This component holds the status of the alarm (alarming or silent), based
on the setting/resetting by the Door Controller component to the isAlarming
attribute.

(alarmObj : Alarm, doorObj : Door, selfObj : DoorController, attachedUsers : User [1..*]) DoorControllerActivity

attachedUsers : User

alarmObj : Alarm

selfObj :

DoorController

alarmObj : Alarm

doorObj : Door

doorObj : Door

Accept (doorIsClosed,

timeOutSignal,

unlockLatchSignal)

<<iterative>>

Send

(entryAuthorizedSignal)

«addStructuralFeatureValue»

isAlarming := FALSE

«addStructuralFeatureValue»

isLocked := FALSE

«addStructuralFeatureValue»

isLocked := TRUE

«addStructuralFeatureValue»

isAlarming := FALSE

Send

(timeOutSignal)

«valueSpecification»

Value(FALSE)

«valueSpecification»

Value(FALSE)

«valueSpecification»

Value(TRUE)

«valueSpecification»

Value(FALSE)

Connected to the
rest of the
diagram

Connected to the
rest of the
diagram

latchTimeoutNotExceeded

 [timeOutSignal]

 [doorIsClosed] [unlockLatchSignal]

latchTimeoutExceeded

Fig. 3. Segment of the Door Controller Activity

Formal Verification of Tokeneer Behaviours Modelled in fUML 377

In the Tokeneer fUML model all objects (of the above classes) which have
interesting behaviour have associated activity diagrams. The Alarm object is a
simple data holder and thus no activity diagram is associated with it. Due to
the space constraints, we just focus on a segment of the Door Controller activity
(depicted in Figure 3), which includes all the described elements in Section 4. Ini-
tially, the Door Controller sets the isAlarming variable to FALSE, and isLocked
to TRUE. At this point the Door’s isOpen attribute is TRUE, which means
the door is open and its latch is locked. For that reason the Door Controller
starts a timer to watch this suspicious situation. The activity then represents
the two possible scenarios for this timer (timeOutExceeded, or timeOutNotEx-
ceeded). If the timer timeouts the Door Controller sends the timeOutSignal to
itself to fire the alarm, otherwise it continues with the normal flow. In both
cases, the activity waits for one of the following signals to arrive: closeDoorSig-
nal, timeOutSignal, or unlockLatchSignal. If the unlockLatchSignal arrives from
the User Panel, the Door Controller sets isLocked to FALSE, and then sends the
entryAuthorizedSignal to all Users’ objects in the system.

4 Modelling fUML Activity Diagrams into CSP

Table 1 shows the fUML activity diagram’s elements and the corresponding
CSP representation that reflects the semantic behaviour for each element. As
the automatic transformation (from fUML to CSP) is out of this paper’s scope,
we describe the mapping informally (mapping rules) instead of formally defining
transformation rules.

In the mapping rules, aIH and bIH represent the instance handler of the
sender and receiver objects respectively. The values rp1 and rp2 represent the
registration points on the activity diagram where the object (bIH) is waiting
to accept the signal instances sig1 and sig1, sig2, or sig3 respectively. Each
registration point is unique.

Mapping between UML activity diagrams and CSP has been addressed several
times in the literature [15,16]. The novel points of our mapping are as follows:

Rule(1) maps the fUML activity as a parent CSP process that can accept
different parameters (param1, param2, ..). Within this process we define sub-
processes, each act as a different fUML element within this activity. The within
statement defines the action (sub-process) connected to the initial node (AC1).
Rule(2) and (3) maps the SendSignalAction and AcceptEventAction to the CSP
parameterized events send and accept respectively. The registerSignals event is
used to let the object activation fill the waiting event accepters list with the
allowed signals to be accepted at this point (registration point). The value rp1 is
explicitly included in the event so that each AcceptEventAction is uniquely iden-
tified. Section 5 describes how those events synchronize with the object’s buffer
process to allow the asynchronous communication between processes
(active objects).

378 I. Abdelhalim et al.

Table 1. fUML to CSP Mapping Rules

fUML Element CSP Representation

Rule(1): Activity

(param1, param2) P_ACTIVITY

param1

param2

P ACTIVITY (param1, param2) =
let

Activity/Process Body
within AC1

Rule(2): Send Signal Action

Send (sig1)
bIH

bIH

AC1 = send !aIH !bIH !sig1 → ...

Rule(3): Accept Event Action

Accept(sig1)

AC1 = registerSignals!bIH !rp1 →
accept !bIH !sig1 → ...

Rule(4): Accept Event Action (*)

Accept(sig1, sig2, sig3)

...

......
 [sig3] [sig1]

 [sig2]

AC1 = registerSignals!bIH !rp2 → (
accept !bIH !sig1 → ...
�

accept !bIH !sig2 → ...
�

accept !bIH !sig3 → ...)

Rule(5): Add Structural Feature
Value Action

«addStructuralFeatureValue»

isOpen := FALSE

aIH

«valueSpecification»

Value(FALSE)

AC1 =
valueSpec!aIH ?value : {FALSE} →
addStFeatureValue!aIH !isOpen!value

→ ...

Rule(6): Decision/Merge Nodes

Action2Action1

 [decision2] [decision1]

DS1 = decision1 → AC1
�
decision2 → AC2

AC1 = ... → MR1
AC2 = ... → MR1
MR1 = ...

Rule(7): Expansion Region

<<iterative>>

Action1

AC1 = ER IT1(< e1, e2, e3 >)
ER IT1(<>) = AC2
ER IT1(seq) =; s : seq@Action1!s →

ER IT1(tail(seq))
AC2 = ...

Formal Verification of Tokeneer Behaviours Modelled in fUML 379

The fUML standard supports the fact that the AcceptEventAction handles
more than one signal at a time. When the control flow of the activity reaches
this action, the object waits for any of the defined signals (sig1, sig2, or sig3)
to be received. If any of those signals arrive, the object execution proceeds and
the incoming signal instance is passed to the AcceptEventAction output pin. For
that reason, in Rule(4), we connect the decision node to the action’s output
pin to branch the flow based on the incoming signal. We use the same concept
of Rule(3) followed by an external choice to represent the branching semantics.
Rules like (2),(3), and (4) are not presented in [15,16] because their focus is not
on interaction between activity diagrams.

Rule(5) maps the combination of the actions: valueSpecificationAction and
addStructuralFeatureValueAction to two events to allow (for example) the aIH
instance handler’s attribute isOpen to be set to FALSE. We represent the deci-
sion node as an internal choice (as in Rule(6)) when the incoming edge to the
decision node is a control flow. But we represent it as an external choice (as in
Rule(4)) when the incoming edge is an object flow. Having the decision nodes in
fUML standard allowed for modelling internal decisions which was not possible
using xUML. Rule(7) maps the iterative ExpansionRegion as a CSP sequential
composition which repeats the action(s) inside the region (Action1) with the
number of elements inside the sequence seq.

Our CSP representation does not include all the properties of the fUML activ-
ity diagram elements, as we just focus on the properties in the Tokeneer fUML
model. For example, the formalization of the addStructuralFeatureValueAction
considers the assignment of unordered boolean structural features only.

5 Modelling the fUML Communication Mechanism in
CSP

In Section 2.1 we described how active objects in fUML communicate with each
others asynchronously and in this section we formalize its semantics using CSP.
The model avoids depending on the sequence data structure or Haskell func-
tions, as they lead to a significant decay in FDR performance during the com-
pilation process. For that reason, this implementation uses the CSP primitives
only (parallel composition, prefix, etc.). The idea of this implementation came
from Michael Goldsmith [17]. As shown in Figure 4, the idea is built on repre-
senting the event pool as a buffer with N consecutive nodes. When an object
sends a signal to another object (perform the send event), the signal is placed
in the receiver object’s buffer (event pool) by placing it in the first node (B0),
then the signal will move down automatically until reaching the rightmost node
in the buffer. The same will be repeated for any other incoming signal filling
the buffer from right to left. When the buffer becomes full, the oldest signal in
the buffer (placed in the rightmost node) will be dropped out (drop event) and
all the signals will be shifted right by one node. Signals are moved down as a
parameter to the c1, c2, . . . , cN events.

380 I. Abdelhalim et al.

Fig. 4. The Event Pool as a Controlled Buffer

As will be outlined below, the receiver object uses the testY event (where Y
represents the current node: A,B , . . .) to check if the contained signal is member
of the object’s waiting event accepters list. If so, the signal is removed from the
event pool via the acceptY event, otherwise the rejectY event is enabled to allow
checking the next node. We represent each of those nodes as a CSP mutually
recursive process with a simple logic illustrated in Figure 5 for the first node
(B0) and the general node (B).

Figure 6 shows the parallel combination of three nodes forming the event pool
of the Door Controller instance (dIH0) which can hold three signal instances
at a time. The process BUF dcIH is defined using one B0 process and two B
processes whose parameters are instantiated appropriately.

B0(c, d , e, f , g , h) = c?x → B1(x , c, d , e, f , g , h)
B1(x , c, d , e, f , g , h) =

d !x → B0(c, d , e, f , g , h)

� g !x → (e!x → B0(c, d , e, f , g , h)

� h → B0(c, d , f , e, g , h))

� c?y → f ?z → d !x → B1(y , c, d , e, f , g , h)

B(c, d , e, g , h) = c?x → B2(x , c, d , e, g , h)
B2(x , c, d , e, g , h) = d !x → B(c, d , e, g , h)

� g !x → (e!x → B(c, d , e, g , h)

� h → B2(x , c, d , e, g , h))

Fig. 5. Buffer’s First and General Nodes

BUF dcIH = ((B0(send , c1, acceptA, drop, testA, rejectA)

‖
{|c1|}

B(c1, c2, acceptB , testB , rejectB))

‖
{|c2,drop|}

B(c2, drop, acceptC , testC , rejectC)) \ {| c1, c2, drop |}

Fig. 6. Three Nodes Controlled Buffer

Formal Verification of Tokeneer Behaviours Modelled in fUML 381

BUF CTRL dcIH ({}) = registerSignals!dcIH ?rp →
BUF CTRL dcIH (getRegisteredSignals(dcIH , rp))

BUF CTRL dcIH (EA) = testC ?x → if (member(x , EA)) then
(acceptC !x → BUF CTRL dcIH ({}))
else rejectC →

testB?x → if (member(x , EA)) then
(acceptB !x → BUF CTRL dcIH ({}))
else rejectB →

testA?x → if (member(x , EA)) then
(acceptA!x → BUF CTRL dcIH ({}))
else rejectA→ BUF CTRL dcIH (EA)

Fig. 7. The Buffer Controller Process of the Door Controller Instance

In previous attempts, we have used the default signals dispatching strategy
(FIFO) for modelling the inter-object communication. However, this revealed a
serious problem when an object receives an unexpected signal (not matched to
one of the waiting event accepters): the object dismisses it directly because it
was removed from its event pool for matching and the fUML standard does not
allow signals to be returned back to the event pool. In many cases the object
will need to accept this dismissed signal after some further actions, resulting in
a fast invalid deadlock. As the fUML standard allows for overriding the default
dispatching strategy, we implemented it by not removing any signal from the
event pool unless it is registered in its waiting event accepters list, to avoid
signals dropping. At the same time, signals are dispatched in chronological order
(i.e. remove the oldest signal from the event pool first) to maintain dispatching
signals in the same order they were sent. To meet this logic, we developed a
controller process (BUF CTRL) that checks nodes one by one from the oldest
(rightmost) to the newest (leftmost) before removing the signal from the event
pool, and if the signal exists in the waiting event accepters list, the process
allows for its acceptance (accept event) otherwise the signal is rejected (reject
event) and the next node is checked. Figure 7 shows our representation of the
buffer controller process (BUF CTRL dIH) for the Door Controller instance
(dIH). The getRegisteredSignals is a mapping function that returns the allowed
signal(s) at a certain registration point (rp). Note that registerSignals event
will synchronize with the corresponding event in the translation of the diagram
(Rule(3) and (4)).

We depend on the chase function of FDR to complete the definition. Chase
gives priority to internal (tau) transitions over external ones, and chooses one
internal transition arbitrarily when there is a choice of several. This is achieved by
reducing the state space of the labelled transition system in FDR by removing
external transitions competing with internal ones, and selecting one internal
transition where there is a choice of them. This results in a refinement of the
original process, which can only perform external events once all internal progress
has completed. Thus chase is not semantics-preserving, but it is exactly what

382 I. Abdelhalim et al.

BUF SYS dcIH = chase((BUF dcIH ‖
aSynchEvents

BUF CTRL dcIH ({})) \ aHiddenEvents)

Fig. 8. Buffer System Process of the Door Controller Instance

is required here. For more details about how chase works the reader can refer
to [18].

Figure 8 illustrates the application of chase to the parallel combination be-
tween the buffer (BUF dcIH) and the buffer controller (BUF CTRL dcIH) of
the Door Controller instance after hiding the buffer internal events (test, reject,
c, and drop) for all nodes (grouped in aHiddenEvents). Having those events
hidden (taus), FDR will follow them causing signals to be propagated along
the nodes whenever a send event happens. The set aSynchEvents contains the
synchronization events: test, reject, and accept for all nodes.

The described implementation in this section came after several attempts to
model the fUML inter-object communication (semantic variation point). The
previous attempts were suffering from various problems like: quick incorrect
dropping of signals (which leads to an invalid deadlock), heavy CSP scripts that
could not be compiled by FDR, and not maintaining the signals sending order.
Having the Tokeneer fUML model formalized in CSP allowed for evaluating those
attempts before the actual implementation of the system.

6 Corresponding CSP for Tokeneer fUML Model

Applying the mapping rules of Section 4 to the activity diagram shown in Fig-
ure 3 yields the following CSP process in Figure 9. The processes AC1, AC2,
DS1, AC7, and AC8 are direct implementation of the mapping rules and they
are not involved in the asynchronous communication between the active objects.

The process DOOR CTRL BUF represents the parallel combination be-
tween the DOOR CTRL process (represents the Door Controller active object)
and its object activation represented formally by the BUF SYS dcIH process.
When the send event happens at AC3 it synchronizes with the send event in
the BUF dcIH to push the timeOutSignal inside the Door Controller event
pool (controlled buffer). After that, the registerSignals at MR1 happens which
synchronizes with the registerSignals event in the BUF CTRL dcIH process,
which in turns fills the waiting event accepters set (EA) with the allowed sig-
nals at this point (doorIsOpenSignal, timeOutSignal, and unLockLatchSignal).
At this point, the accept event in MR1 synchronizes with the accept event in
the BUF CTRL dcIH process which will happen only if the accepted signal is
member of EA. The set aAdcIH includes all the alphabets of the Door Controller
process (DOOR CTRL). The set aBdcIH includes the accept and registerSignals
events for all signals the Door Controller accepts, plus the send events for any
other object sends a signal to the Door Controller process.

Formal Verification of Tokeneer Behaviours Modelled in fUML 383

DOOR CTRL(alarmObj , doorObj , selfObj , attachedUsers) =
let
AC1 = valueSpec!selfObj ?value : {FALSE} →

addStFeatureValue!alarmObj !isAlarming !value → AC2
AC2 = valueSpec!selfObj ?value : {TRUE} →

addStFeatureValue!doorObj !isLocked !value → DS1
DS1 = latchTimeoutExceeded → AC3 � latchTimeoutNotExceeded → MR1
AC3 = send !selfObj !selfObj !timeOutSignal → MR1
MR1 = registerSignals!selfObj !rp1 → (accept !selfObj !doorIsClosedSignal → ...

�
accept !selfObj !timeOutSignal → ...

�
accept !selfObj !unlockLatchSignal → AC7)

AC7 = valueSpec!selfObj ?value : {FALSE} →
addStFeatureValue!alarmObj !isAlarming !value → AC8

AC8 = valueSpec!selfObj ?value : {FALSE} →
addStFeatureValue!doorObj !isLocked !value → ER IT1(attachedUsers)

ER IT1(<>) = ...
ER IT1(users) = ; u : users@send !selfObj !u!entryAuthorisedSignal →

ER IT1(tail(users))
within AC1

DOOR CTRL BUF = DOOR CTRL(aIH ,dIH , dcIH , uIHS) ‖
aAdcIH aBdcIH

BUF SYS dcIH

Fig. 9. The Corresponding CSP Process for the Door Controller Activity Segment

7 Deadlock Checking

After formalizing the Tokeneer fUML model into CSP, it becomes a direct process
to check the behaviour of the model using FDR. In this paper we focus on
checking the deadlock that can happen if all the objects in the system are waiting
to accept signals from each others. FDR has the capability of checking such a
property by determining whether a process (SYSTEM) can reach a state in
which no further actions are possible, and if a deadlock is found, FDR generates
the traces (counter example) that led to this deadlock.

Our SYSTEM process includes four interacting processes (Door, Door Con-
troller, User, and User Panel), and each process has its own event pool with 10
slots. FDR managed to compile the CSP script (more than 600 lines) in less than
a second, and the model checking reported several deadlock scenarios (counter
examples). Figure 10 shows part of one of those scenarios represented visually
as a sequence diagram to simplify understanding the problem.

Eventually all the objects are waiting for each other causing deadlock. This
happens because the User takes a long time (more than the timer period) to open
the door after getting the permission to enter from the User Panel. This dead-
lock was only revealed once we had implemented the asynchronous communication

384 I. Abdelhalim et al.

 : Door Controller

Waiting for unlockLatchSignal

from the User Panel (i.e.

doorIsOpen will be kept in the

event pool forever)

Door Controller starts a

timer to watch if the door

 kept closed and

unlocked

Timer expired

 : User Panel

User Panel completed its

 job and waiting for new

user to request entry

 : User

Waiting for

entryAuthorized signal

 from the Door

Controller

 : Door

The Door is now Open and

waiting for closeDoor

signal from the User

unlockingDoorComplete 1:

lockLatch4:

doorUnlocked2:

reset3:

openDoor5:

doorIsOpen6:

Fig. 10. Sample Scenario Caused a Deadlock

mechanism of Section 5. The deadlock is not a breach of requirements [19] since no
explicit timeout is specified in the requirements document which requires a user
to enter the enclave within a specific time. However, the Door Controller should
not have to wait forever for a User to enter the enclave, therefore it performs a
lockLatch event after a timer has expired and enters a closed and locked state. In
this state the Door Controller never sends the entryAuthorized signal to the User
because it does not make sense for a User to enter when the door is locked. Conse-
quently, the User cannot evolve its behaviour. Also the unlockLatch signal is never
sent from the User Panel to the Door Controller and so the Door Controller can-
not evolve its behaviour. The deadlock highlights two issues: a näıve model of the
User and also the failure of the components to change state during this irregular
behaviour. The deadlock we have found demonstrates the importance of modelling
all the concurrent interactions that may occur and informs the specifier that im-
plementation issues could cause a deadlock. We would argue that this deadlock
was identified because we modelled concurrent behaviour of all the components
within the TIS subsystem. The Z specification was not concerned with formalizing
the concurrent interaction between components.

During experiments with more primitive communication mechanisms, artifi-
cial deadlocks arose because of the inability to process signals. We could not
execute the model sufficiently in order to reach the state of Figure 10 because
signals were being dropped incorrectly.

8 Related Work

There is a significant body of work relating transforming UML diagrams into
formal methods. Among these attempts, some of them, e.g. [20,21,22,23], focus

Formal Verification of Tokeneer Behaviours Modelled in fUML 385

on formalizing the standard UML diagrams into: Z, Promela, B, or CSP (Con-
straint Satisfaction Problem). The authors in [20,21] focus on checking consis-
tency between UML diagrams, whereas the authors in [22,24] check refinement
between UML models. Translation of UML to CSP has been included in [25,26]
which describe how to check the model dynamic behaviours and visualize the
formal language into a graphical notation. Our work is more closely compared to
[15,16] and [27] which consider the formalization of activity diagrams into CSP,
and Petri nets respectively. The authors in [27] focus on checking deadlocks in
the UML models, which is aligned to our work. However, none of them addressed
modelling the asynchronous communication between objects formally.

Formally representing the asynchronous communication between objects has
been discussed in a limited way in [28,29,5] where part of the xUML [4] was
formalized, which specify a way of communication different from fUML. On the
other hand, [30] simulated the asynchronous message passing by synchronous
communication between processes modelling objects and their message queues.

To our knowledge, our work is the first attempt to formalize the fUML stan-
dard, and formally represents the asynchronous communication between its ac-
tive objects. This formal representation provided a formal way to evaluate dif-
ferent implementations (interpretations) of the signals dispatching mechanism
(one of the semantic variation points in the fUML standard).

9 Conclusion and Future Work

An approach to model check fUML activity diagrams by representing them in
CSP has been presented in this paper. The approach allowed for modelling the
inter-object communication (fUML standard semantic variation point) in dif-
ferent ways until reaching a successful implementation. The approach has suc-
cessfully demonstrated that deadlocks can be detected automatically. Using this
approach, the analysis of Tokeneer fUML model CSP representation using FDR,
has detected several deadlock scenarios. This means that the fUML model con-
tains some errors, which need to be resolved in the view of the asynchronous
communication between objects. Our next step is to investigate this anomaly in
the Tokeneer simulator [12].

Using the implementation of the communication mechanism described in Sec-
tion 5, FDR succeeded in compiling the CSP script in less than a second for
a 10 slots event pool for each object. Also FDR did not report any dropping
of signals using this implementation. However, we do expect signal dropping if
the model gets more complicated (e.g. as a result of more than one user), which
means identifying the right event pool size is very critical to keep the system
alive. Currently we do not have a particular methodology to identify the correct
object’s event pool size.

fUML syntax allowed to model all aspects we were interested within Tokeneer.
However, we recommend that the value pin be included in the fUML subset, as
its exclusion led to a complicated model full of the valueSpecification action.

386 I. Abdelhalim et al.

Currently the transformation from fUML to CSP is done manually based on
the mapping rules. In the future, we will automate this transformation using one
of the MDA approaches. When we tried to check one of Tokeneer safety specifi-
cations we faced a state explosion problem, because FDR generates exponential
increasing states when it does the verification. For that reason we may need to
represent the fUML model into another formal language and use theorem provers
to check such properties.

Acknowledgments. Thanks to Michael Goldsmith and Philip Armstrong for
discussion about implementing the buffer in CSP. Thanks also to Ian Wilkie
for his helpful information about fUML and to the anonymous referees for their
constructive comments.

References

1. OMG: Semantics of a foundational subset for executable UML models (fUML) -
(Beta 2) (November 2009), http://www.omg.org/spec/fuml/1.0

2. Schneider, S.: Concurrent and Real-Time Systems: the CSP Approach. Wiley,
Chichester (1999)

3. Formal Systems Oxford: FDR 2.83 manual (2007)
4. Mellor, S.J., Balcer, M.J.: Executable UML, A Foundation for Model-Driven Ar-

chitecture. Addison-Wesley, Reading (2002)
5. Turner, E., Treharne, H., Schneider, S., Evans, N.: Automatic generation of CSP‖B

skeletons from xUML models. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H.
(eds.) ICTAC 2008. LNCS, vol. 5160, pp. 364–379. Springer, Heidelberg (2008)

6. Wilkie, I., King, A., Clarke, M., Weaver, C., Raistrick, C., Francis, P.: UML ASL
Reference Guide (ASL language level 2.5). Kennedy Carter Ltd. (2003)

7. Barnes, J., Chapman, R., Johnson, R., Widmaier, J., Cooper, D., Everett, B.:
Engineering the tokeneer enclave protection software. In: 1st IEEE International
Symposium on Secure Software Engineering (March 2006)

8. OMG: Unified modeling language (UML) superstructure (version 2.2) (2009)
9. Hoare, C., Misra, J., Leavens, G.T., Shankar, N.: The verified software initiative:

A manifesto. ACM Comput. Surv. 41(4), 1–8 (2009)
10. Johnson, D.: Cost effective software engineering for security. In: Misra, J., Nip-

kow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 607–611. Springer,
Heidelberg (2006)

11. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Practice
and experience. ACM Comput. Surv. 41(4), 1–36 (2009)

12. Praxis, A.: The Tokeneer Project, http://www.adacore.com/tokeneer (cited Au-
gust 2009)

13. Barnes, J., Cooper, D.: Tokeneer ID station: Formal Specification. Technical Report
S.P1229.41.2, Altran Praxis (August 2008)

14. Woodcock, J., Aydal, E.G.: A token experiment. Festschrifts in Computer Science,
the BCS FAC Series, Festschrift for Tony Hoare (2009)

15. Xu, D., Philbert, N., Liu, Z., Liu, W.: Towards formalizing UML activity diagrams
in CSP. In: ISCSCT 2008: Proceedings of the 2008 International Symposium on
Computer Science and Computational Technology, Washington, DC, USA, pp.
450–453. IEEE Computer Society, Los Alamitos (2008)

http://www.omg.org/spec/fuml/1.0
http://www.adacore.com/tokeneer

Formal Verification of Tokeneer Behaviours Modelled in fUML 387

16. Xu, D., Miao, H., Philbert, N.: Model checking UML activity diagrams in FDR. In:
ICIS 2009: Proceedings of the 2009 Eigth IEEE/ACIS International Conference on
Computer and Information Science, Washington, DC, USA, pp. 1035–1040. IEEE
Computer Society, Los Alamitos (2009)

17. Goldsmith, M., Armstrong, P.: Personal communication (February 2010)
18. Zakiuddin, I., Moffat, N., O’Halloran, C., Ryan, P.: Chasing events to certify a

critical system. Technical report, UK DERA (1998)
19. Cooper, D., Barnes, J.: Tokeneer ID station: System Requirements Specification.

Technical Report S.P1229.41.1, Altran Praxis (August 2008)
20. Amalio, N., Stepney, S., Polack, F.: Formal proof from UML models. In: Davies,

J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 418–433.
Springer, Heidelberg (2004)

21. Zhao, X., Long, Q., Qiu, Z.: Model checking dynamic UML consistency. In: Liu,
Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 440–459. Springer, Heidelberg
(2006)

22. Ammar, B.B., Bhiri, M.T., Souquières, J.: Incremental development of UML spec-
ifications using operation refinements. ISSE 4(3), 259–266 (2008)

23. Cabot, J., Clarisó, R., Riera, D.: Verifying UML/OCL operation contracts. In:
Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 40–55. Springer,
Heidelberg (2009)

24. Pons, C.: Heuristics on the definition of UML refinement patterns. In: Wiedermann,
J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS,
vol. 3831, pp. 461–470. Springer, Heidelberg (2006)

25. Ng, M.Y., Butler, M.J.: Tool support for visualizing CSP in UML. In: George,
C.W., Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 287–298. Springer, Hei-
delberg (2002)

26. Ng, M.Y., Butler, M.: Towards formalizing UML state diagrams in CSP. In: Cerone,
A., Lindsay, P. (eds.) 1st IEEE International Conference on Software Engineering
and Formal Methods, pp. 138–147. IEEE Computer Society, Los Alamitos (2003)

27. Thierry-Mieg, Y., Hillah, L.M.: UML behavioral consistency checking using instan-
tiable Petri nets. ISSE 4(3), 293–300 (2008)

28. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M., van de Pol, J.: Towards model
checking Executable UML specifications in mCRL2. ISSE, 83–90 (2010)

29. Graw, G., Herrmann, P.: Transformation and verification of Executable UML mod-
els. Electron. Notes Theor. Comput. Sci. 101, 3–24 (2004)

30. Xie, F., Levin, V., Browne, J.C.: Model checking for an executable subset of UML.
In: ASE 2001: Proceedings of the 16th IEEE International Conference on Auto-
mated Software Engineering, p. 333. IEEE Computer Society, Los Alamitos (2001)

Model Checking Hierarchical Probabilistic Systems�

Jun Sun1, Songzheng Song3, and Yang Liu2

1 Singapore University of Technology and Design
sunjun@sutd.edu.sg

2 National University of Singapore
liuyang@comp.nus.edu.sg

3 NUS Graduate School for Integrative Sciences and Engineering
songsongzheng@nus.edu.sg

Abstract. Probabilistic modeling is important for random distributed algorithms,
bio-systems or decision processes. Probabilistic model checking is a systematic
way of analyzing finite-state probabilistic models. Existing probabilistic model
checkers have been designed for simple systems without hierarchy. In this paper,
we extend the PAT toolkit to support probabilistic model checking of hierarchi-
cal complex systems. We propose to use PCSP#, a combination of Hoare’s CSP
with data and probability, to model such systems. In addition to temporal logic,
we allow complex safety properties to be specified by non-probabilistic PCSP#
model. Validity of the properties (with probability) is established by refinement
checking. Furthermore, we show that refinement checking can be applied to ver-
ify probabilistic systems against safety/co-safety temporal logic properties effi-
ciently. We demonstrate the usability and scalability of the extended PAT checker
via automated verification of benchmark systems and comparison with state-of-
art probabilistic model checkers.

1 Introduction

Probabilistic systems are common in practice, e.g., randomized algorithms, unreliable
system components, unpredictable environment, etc. Probabilistic model checking is
a systematic way of analyzing finite-state probabilistic systems. Given a finite-state
model of a probabilistic system and a property, a probabilistic model checker calculates
the (range of) probability that the model satisfies the property. It has been proven useful
in a variety of domains (see examples in [14]).

Designing and verifying probabilistic systems is becoming an increasingly difficult
task due to the widespread applications and increasing complexity of such systems.
Existing probabilistic model checkers have been designed for hierarchically simple
systems. For instance, the popular PRISM checker [14] supports a simple state-based
language, based on the Reactive Modules formalism of Alur and Henzinger [2]. The
MRMC checker supports a rather simple input language too [16]. The input language
of the LiQuor checker [10], named Probmela, is based on an extension of Promela sup-
ported by the SPIN model checker. None of the above checkers supports analysis of
hierarchical complex probabilistic systems.

� This research was partially supported by a grant “SRG ISTD 2010 001” from Singapore Uni-
versity of Technology and Design.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 388–403, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Model Checking Hierarchical Probabilistic Systems 389

In this work, we aim to develop a useful tool for verifying hierarchical complex prob-
abilistic systems. Firstly, we propose a language called PCSP# for system modeling.
PCSP# is an expressive language, combining Hoare’s CSP [15], data structures, and
probabilistic choices. It extends previous work on combining CSP with probabilistic
choice [22] or on combining CSP with data structures [30]. PCSP# combines low-level
programs, e.g., sequence programs defined in a simple imperative language or any C#
program, with high-level specifications (with process constructs like parallel, choice,
hiding, etc.), as well as probabilistic choices. It supports shared variables as well as
abstract events, making it both state-based and event-based. Its underlying semantics is
based on Markov Decision Processes (MDP) [6].

Secondly, we propose to verify complex safety properties by showing a refinement
relationship (with probability) from a PCSP# model representing a system and a non-
probabilistic model representing properties. Note that we assume that the property
model is non-probabilistic. We view probability as a necessary devil forced upon us
by the unreliability of the system or its environment. In contrast, properties which
characterizes correct system behaviors are often irrelevant of the likelihood of some
low-level failures. Refinement checking has been traditionally used to verify variants
of CSP [26,27]. It has been proven useful by the success of the FDR checker [27].
Verification of such properties are reduced to the problem of probabilistic model check-
ing against deterministic finite automata, which has been previously solved (see for
example [4]). Nonetheless, we present a slightly improved algorithm which is better
suited for our setting. Alternatively, properties can be stated in form of state/event lin-
ear temporal logic (SE-LTL) [8]. An SE-LTL formula can be built from not only atomic
state propositions but also events, making it a perfect property specification language
for PCSP#, which is both state-based and event-based. A standard method for model
checking SE-LTL formulae is the automata-based approach [4]. In this paper, we im-
prove it by safety/co-safety recognition. That is, if an LTL formula or its negation is
recognized as a safety property, then the model checking problem is reduced to a refine-
ment checking problem and solved using our refinement checking algorithm. Though
the worse-case complexity remains the same, we show that safety/co-safety recogni-
tion offers significantly memory/time saving in practice. Lastly, we extend the PAT
model checker with all the techniques so as to offer a self-contained framework for
probabilistic system modeling, simulation (using the built-in visualized simulator), and
verification. In order to demonstrate the usability/scalability of our approach, we verify
benchmark systems and compare the results with the PRISM checker [14].

Related work. This work is related to methods and tools for probabilistic system model-
ing and verification. Existing probabilistic model checkers include at least PRISM [14],
MRMC [16] and LiQuor [10]. PRISM is the most popular probabilistic model checker.
It supports a variety of probabilistic models as well as property specification languages.
The input of PRISM is a simple state-based language [2]. LiQuor is a probabilis-
tic model checker for reactive systems [10]. MRMC is a command-line based model
checker for a variety of probabilistic models and a rather simple input language. The
extended PAT checker complements the existing checkers by 1) offering a language that
is both state-based and event-based and is capable of modeling hierarchical systems;

390 J. Sun, S. Song, and Y. Liu

2) supporting both SE-LTL model checking and probabilistic refinement checking and
3) offering a user-friendly environment for not only model checking but also simulation.

The language PCSP# is related to many works on integrating probabilistic behaviors
into process algebras or programs, among which the most relevant are [22,21,9,33].
In [22], an extension of CSP is proposed to incorporate probabilistic behaviors in the
name of refinement checking. In [21], issues on integrating probability with Event-B
has been discussed. In [9], issues on integrating probability with non-determinism have
been addressed. Compared to [22,21,9,33], this work focuses on developing a practical
tool for systematic modeling and verification of probabilistic systems.

Our work on improving temporal logic model checking with safety recognition is
related to work on categorizing safety and liveness. The work presented in [1] offers
theoretical results for recognizing safety and liveness given a Büchi automaton. Others
have also considered the problem of model checking safety LTL properties. In [28], a
categorization of safety, liveness and fairness is discussed. Further, it showed that rec-
ognizing safety LTL properties is PSPACE-complete. Later, many theoretical results
and algorithms have been presented in [17], which generalizes the earlier work pre-
sented in [28]. A forward direction version of the algorithm in [17] is evidenced in [12].
In [18], the author presented a translation of safety LTL formula to a finite state au-
tomaton which detects bad prefixes. Model checking safety properties expressed using
past temporal operators has been considered in [13]. Our safety recognition is based
on [1,28]. Different from the above, we present methods/algorithms which improve
model checking of not only safety properties but also a class of liveness properties; not
only finite state systems but also probabilistic systems.

Organization. The remainder of the paper is organized as follows. Section 2 presents
relevant technical definitions. Section 3 introduces the syntax and semantics of PCSP#.
Section 4 presents probabilistic verification of PCSP# models. In particular, Section 4.1
presents a refinement checking algorithm. Section 4.2 presents our approach for veri-
fying SE-LTL formulae with safety recognition. Section 5 evaluates our methods. Sec-
tion 6 concludes the paper with future research directions.

2 Preliminaries

LTS. A labeled transition system (LTS) L is a tuple (S , init ,Act ,T) where S is a
finite set of states; and init ∈ S is an initial state; Act is an alphabet; T ⊆ S ×Act×S
is a labeled transition relation. A transition label can be either a visible event or an
invisible one (which is referred to as τ). A τ -transition is a transition labeled with τ .
For simplicity, we write s e→ s ′ to denote (s , e, s ′) ∈ T . If s e→ s ′, then we say that e
is enabled at s . Let s � s ′ to denote that s ′ can be reached from s via zero or more τ -
transitions; we write s e� s ′ to denote there exists s0 and s1 such that s � s0

e→ s1 �
s ′. A path of L is a sequence of alternating states/events π = 〈s0, e0, s1, e1, · · ·〉 such
that s0 = init and si

ei→ si+1 for all i . The set of path ofL is written as paths(L). Given
a path π, we can obtain a sequence of visible events by omitting states and τ -events.
The sequence, written as trace(π), is a trace of L. The set of traces of L is written as
traces(L) = {trace(π) | π ∈ paths(L)}. An LTS is deterministic if and only if given

Model Checking Hierarchical Probabilistic Systems 391

any s and e, there exists only one s ′ such that s e→ s ′. An LTS is non-deterministic
if and only if it is not deterministic. A non-deterministic LTS can be translated into a
trace-equivalent deterministic LTS by determinization. Furthermore, non-deterministic
LTSs containing τ -transitions can be translated into trace-equivalent deterministic LTSs
without τ -transitions. The process is known as normalization [26].

Definition 1 (Normalization). Let L = (S , init ,Act ,T) be an LTS. The normalized
LTS ofL is nl(L) = (S ′, init ′,Act ,T ′) where S ′ ⊆ 2S is a set of sets of states, init ′ =
{s | init � s} and T ′ is a transition relation satisfying the following condition:
(N , e,N ′) ∈ T ′ if and only if N ′ = {s ′ | ∃ s : N . s e� s ′}.

Normalization is to group states which can be reached via the same trace. Given two
LTSsL0 andL1, it is often useful to check whether traces(L0) is a subset of traces(L1)
(or equivalently L0 trace-refines L1). There are existing algorithms and tools for trace
inclusion check [26]. The idea is to construct the product of L0 and nl(L1) and then
search for a state of the form (s , s ′) such that s enables more visible events than s ′

does. In the worse case, this algorithm is exponential in the number of states of L1. It
is nonetheless proven to be practical for real-world systems by the success of the FDR
checker [27].

SE-LTL. LTL was introduced to specify the properties of executions of a system [24].
It is built up from a set of propositions using standard Boolean operators (¬, ∧, ∨) and
X (next), U (until), R (release), � (eventually) and � (always). It has been adopted
for specifying properties in many systems. In [8], LTL is extended to build up from not
only state propositions but also events. The extended LTL is referred to as SE-LTL. The
simplicity of writing formulas concerning events as in the above example is not purely
a matter of aesthetics. It may yield gains in time and space [8].

LTL (and SE-LTL) formulae can be categorized into either safety or liveness. In-
formally speaking, safety properties stipulate that “bad things” do not happen during
system execution. A finite execution is sufficient evidence to the violation of a safety
property. In contrast, liveness properties stipulate that “good things” do happen even-
tually. A counterexample to a liveness property is an infinite system execution (which
forms a loop if the system has finitely many states). In this paper, we adopt the def-
inition of safety and liveness in [1]. For instance, �(a ⇒ �b) and �a ⇒ �b are
safety properties; �a ⇒ �b is a liveness property, whose negation, however, is a
safety property. A liveness property whose negation is safety is referred to as co-safety,
e.g., �a is co-safety. We remark that a formula may be neither safety nor liveness,
e.g., ��a ∧ �b. It has been shown in [28] that recognizing whether an LTL formula
is safety is PSPACE-compele. A number of methods have been proposed to identify
subsets of safety. For instance, syntactic LTL safety formulae (which is constituted by
∧, ∨, �, U, X, and propositions or negations of propositions) can be recognized effi-
ciently. A number of methods have been proposed to translate safety LTL to finite state
automata [17,18].

It has been proved in [32] that for every LTL formula φ, there exists an equivalent
Büchi Automaton. There are many sophisticated algorithms on translating LTL to an
equivalent Büchi automaton [11,29]. In addition, it is possible to tell whether an LTL

392 J. Sun, S. Song, and Y. Liu

formula represents safety by examining its equivalent Büchi automaton. For instance,
it has been proved in [1] that a (reduced) Büchi automaton specifies a safety property
if and only if making all of its states accepting does not change its language. Based on
this result, a Büchi automaton representing a safety property can be viewed as an LTS
for simplicity. The reason is that all of its infinite traces must be accepting and therefore
the acceptance condition can be ignored.

3 Hierarchical Modeling

In this section, we present PCSP#, which is designed for modeling and verifying prob-
abilistic systems. We remark that the LiQuor checker, which is based on Probmela,
makes a step towards an expressive useful modeling language. Nonetheless, Probmela
is not capable of modeling fully hierarchical systems.

Syntax. PCSP# extends the CSP# language [30] with probabilistic choices. CSP# in-
tegrates low-level programs with high-level compositional specification. It is capable
of modeling systems with not only complicated data structures (which are manipulated
by the low-level programs) but also hierarchical systems with complex control flows
(which are specified by the high-level specification). Compared with PCSP [22], PCSP#
supports explicit complex data structures/operations.

A PCSP# model is a 3-tuple (Var , init ,P) where Var is a set of global variables
(with bounded domains) and channels; init is the initial values of Var ; P is a process.
A variable can be either of simple types like boolean, integer, arrays of integers or any
user-defined data type (which must be defined in an external C# library). The process
P is an extension of Hoare’s classic CSP. Part of its syntax is defined as follows.

P ::= Stop | Skip – primitives
| e → P – event prefixing
| a{program} → P – data operation prefix
| P � Q | P � Q | if b then P else Q – choices
| P ; Q – sequence
| P ‖ Q | P ||| Q – concurrency
| P \X – hiding
| Q – process referencing
| pcase {d0 : P0; d1 : P1; · · · ; dk : Pk} – probabilistic multi-choices

where P , Pi and Q range over processes, e is a simple event, a is the name of a sequen-
tial program; b is a Boolean expression, di is a rational number and d0+d1+ · · ·+dk =
1. Process Stop does nothing. Process Skip terminates. Process e → P engages in event
e first and then behaves as P . Combined with parallel composition, event e may serve
as a multi-party synchronization barrier. Process a{program} → P generates an event
a, executes a sequential program program at the same time, and then behaves as P .
External C# data operations can be invoked in program.

A variety of choices are supported, e.g., P � Q for external choice; P � for internal
non-determinism and if b then P else Q for conditional branching. Process P ; Q
behaves as P until P terminates and then behaves as Q . Parallel composition of two

Model Checking Hierarchical Probabilistic Systems 393

processes is written as P ‖ Q , where P and Q may communicate via multi-party event
synchronization. If P and Q only communicate through channels or variables, then it
is written as P ||| Q . Process P \ X hides occurrence of any event in X . Recursion
is supported through process referencing. Lastly, probabilistic choice is written in the
form of pcase {d0 : P0; d1 : P1; · · · ; dk : Pk}. Intuitively, it means that with di

probability, the system behaves as Pi . It is required that d0 + d1 + · · ·+ dk = 1.

Example 1 (Pacemaker). A pacemaker is an electronic implanted device which func-
tions to regulate the heart beat by electrically stimulating the heart to contract and
thus to pump blood throughout the body. Common pacemakers are designed to cor-
rect bradycardia, i.e., slow heart beats. A pacemaker mainly performs two functions,
i.e., sensing and pacing. Sensing is to monitor the heart’s natural electrical activity,
helping the pacemaker to gather information on the heart beats and react accordingly.
Pacing is when a pacemaker sends electrical stimuli, i.e., tiny electrical signals, to heart
through a pacing lead, which starts a heart beat. A pacemaker can operate in many dif-
ferent modes, according to the implanted patient’s heart problem. The following is a
high-level abstraction of the simplest mode of pacemaker, i.e., the AAT mode.

var count = 0;
AAT = (Heart ‖ Pacing) \ {missingPulseA,missingPulseV }
Heart = pcase {

[pA] : missingPulseA → pulseV → Heart
[pV] : pulseA→ missingPulseV → Heart
[1− pA− pV] : pulseA→ pulseV → Heart

};
Pacing = pulseA→ Pacing � pulseV → Pacing

� missingPulseA→ add{count + +} → pcase {
[99.54] : pulseB{count −−} → Pacing
[0.46] : Pacing

}
� missingPulseV → add{count + +} → pcase {

[99.54] : pulseW {count −−} → Pacing
[0.46] : Pacing

};

Variable count is an integer (with a default bound) which records the number of skipped
pulses. A (mode of the) pacemaker is typically modeled in the following form: Heart ‖
Pacing where Heart models normal or abnormal heart condition; Pacing models how
the pacemaker functions. In this particular mode, process Heart generates two events
pulseA (i.e., atrium does a pulse) and pulseV (i.e., ventricle does a pulse), periodically
for a normal heart or with one of them missing once a while for an abnormal heart. In
the latter case, event missingPulseA or missingPulseV is generated. Constant pA is
the (patient-dependent) probability of pulseA missing; pV is the probability of pulseV
missing. Process Pacing synchronizes with process Heart . If event missingPulseA
(denoting the missing of event pulseA) is monitored, variable count is incremented by
one. Notice that the event add is associated with the simple program of updating count .
In general, it can be associated with any state update function. It is in this way that state

394 J. Sun, S. Song, and Y. Liu

update is introduced in an event-based language. Ideally, the pacemaker helps the heart
to beat by generating event pulseB . Once pulseB is generated, count is decremented
by one. Similarly, it generates pulseW when pulseV is missing. Note that it has been
reported that pacemaker may malfunction for certain rate (exactly 0.46%) [20]. This is
reflected in the model again using pcase. If a pulseB or pulseW is skipped, count is
not decremented.

At the top level, the pacemaker system is a choice of different modes. Each mode
is often a parallel composition of multiple components. Each component may have
internally hierarchies due to complicated sensing and pacing behaviors. We skip the
details (refer to [5]) and remark that our modeling language is more suitable for such
systems than those supported by existing probabilistic model checkers. �

Semantics. The semantic model of CSP# (without pcase) is LTS. In this paper, we as-
sume that all variables have finite domain and the set of reachable process expressions
are finite so that the LTS has finitely states. A state in the LTS is a tuple of the form
(V ,P) where V is the valuation of the variables and P is a process expression. Given
a CSP# modelM, its LTS can be generated systematically following its structural op-
erational semantics (also known as firing rules [30]). A firing rule for CSP# is of the
form (V ,P) e→ (V ′,P ′). Based on the LTS, different semantic objects can be defined.
For instance, the traces ofM are defined to be the traces of the LTS.

The underlying semantics of PCSP# is Markov Decision Process (MDP), which is
expressive enough to capture systems with probabilistic choices as well as nondetermin-
ism and concurrency. Given a set of states S , a distribution is a function μ : S → [0, 1]
such that Σs∈S μ(s) = 1. Let Distr(S) be the set of all distributions over S . An MDP
is a 3-tuple M = (S , init ,Pr) where S is a set of system states; init ∈ S is the
initial system configuration1; Pr : S × Act × Distr(S) is a transition relation2. A
transition of the system is written as s e→ μ where μ is a distribution, or equivalently
s e→ {(s1, d1), (s2, d2), · · ·}where s ∈ S and si ∈ S for all i ; and di : [0, 1] is the prob-
ability of reaching si given the distribution. A path of M is a sequence of alternating
states, events and distributions π = 〈s0, e0, μ0, s1, e1, μ1, · · ·〉 such that s0 = init and
si

ei→ μi and μi(si+1) > 0 for all i . The probability of exhibiting π by M, denoted as
PM(π), is μ0(s1) ∗μ1(s2) ∗ · · ·. Given a path π, we define trace(π) to be the sequence
of visible events in π. Let paths(M) denote all paths ofM. In an abuse of notation, let
s ∈ π denote that π visits state s .

In the following, we assume that MDPs are deadlock-free following common prac-
tice. A deadlocking model can be made deadlock-free by adding a special self loop
to the deadlock states, without affecting the result of probabilistic verification. In-
tuitively speaking, given a system configuration, firstly an event and a distribution
is selected nondeterministically by the scheduler, and then one of successor states is
reached according to the probability distribution. A scheduler is a function decides
which event and distribution to choose based on the execution history (in the form
of a path). A Markov Chain [4] can be defined given an MDP M and a scheduler
δ, denoted as Mδ. Intuitively, a Markov Chain is an MDP where only one event and

1 This is a simplified definition. In general, there can be an initial distribution.
2 This is slightly different from the classic definition of MDP.

Model Checking Hierarchical Probabilistic Systems 395

Rule for any process constructs in CSP#:

(V ,P) e→ (V ′, P ′) is a firing rule of CSP#

(V ,P) e→ μ such that μ((V ′,P ′)) = 1

Rule for pcase

(V , pcase {d0 : P0; · · · ; dk : Pk}) τ→ μ such that μ((V ,Pi)) = di for all i

Fig. 1. Firing Rules

distribution is enabled at every state. For simplicity, we write Pδ
M(π) to denote the

probability of exhibiting a path π in M with scheduler δ. The probability of exhibit-
ing a set of path X ⊆ paths(Mδ) is the accumulated probability of each path, i.e.,
Pδ
M(X) = Σx∈XPδ

M(x). It is often useful to find out the probability of reaching a
set of states. Note that with different scheduling, the probability may be different. The
measurement of interest is thus the maximum and minimum probability. Given a set of
target states G , the maximum probability of reaching any state in G is defined as

Pmax
M (G) = supδ Prδ

M({π | ∃ s ∈ G. s ∈ π})

Note that the supremum ranges over all, potentially infinitely many, schedulers. Ac-
cordingly, the minimum is written as Pmin

M (G). Similarly, we define the maximum
probability of exhibiting a trace in a set Tr byM.

Pmax
M (Tr) = supδ Prδ

M({π | trace(π) ∈ Tr})

Accordingly, the minimum is written as Pmin
M (Tr).

Next, we define firing rules for PCSP#. Figure 1 presents all the necessary rules. The
first rule states that if by CSP# firing rules, (V ,P) e→ (V ′,P ′), then configuration
(V ,P) can perform e and result in one distribution which maps configuration (V ′,P ′)
to 1. The second rule is for pcase. The result distribution associates dk probability with
(V ,Pk) for all k . Notice that V remains unmodified during the transition. We remark
that only τ -transitions can be associated with probability other than 1. Following these
two rules, an MDP can be generated from a model systematically.

4 Probabilistic Refinement Checking

Refinement checking has been traditionally used to verify CSP [15]. Different from
temporal-logic based model checking, refinement checking works by taking a model
(often in the same language) as a property. The property is verified by showing a re-
finement relationship from the system model to the property model. There are different
refinement relationships designed for proving different properties. In the following, we
focus on trace refinement and remark that our approach can be extended to stable fail-
ures refinement or failures/divergence refinement. For instance, one way of verifying

396 J. Sun, S. Song, and Y. Liu

the pacemaker is to check whether the pacemaker model (present in Example 1) trace-
refines the following model (without variables) which models a ‘fine’ heart.

OKHrt = pulseA→ pulseV → OKHrt � pulseA→ pulseW → OKHrt �

pulseB → pulseV → OKHrt � pulseB → pulseW → OKHrt

In theory, it is possible to encode the property model as temporal logic formulae (as
temporal logic is typically more expressive than LTS) and then apply temporal-logic
based model checking to verify the property. It is, however, impractical. For instance,
LTL model checking is exponential in the size of the formulae and therefore it cannot
handle formulae which encode non-trivial property model. In short, refinement check-
ing allows users to verify a different class of properties from temporal logic formulae.

4.1 Refinement Checking PCSP#

Because of probabilistic choices, refinement checking in our setting is not simply to
verify whether traces of a PCSP# model is subset of those of another. Instead, it is
‘how likely’ the system behaves as specified by the property model (in the presence of
unreliability of system components). Because we assume the property model is non-
probabilistic, the problem is thus to calculate the probability of an MDP (i.e., the se-
mantics of PCSP# model) trace-refines an LTS (i.e., the semantics of a non-probabilistic
PCSP# model).

Definition 2 (Refinement Probability). Let M be an MDP and L be an LTS.
The maximum probability of M trace-refines L is defined by Pmax (M ' L) =
Pmax
M (traces(L)). The minimum is defined by Pmin(M ' L) = Pmin

M (traces(L)).
�

Intuitively, the probability ofM refinesL is the sum of the probability ofM exhibiting
every trace of L. The probability may vary due to different scheduling. One way of
calculating the maximum/minimum probability [4] is to (1) build a deterministic LTS
L−1 which complements L (such that traces(L−1) = Σ∗ \ traces(L)); (2) compute
the product of M and L−1; 3) calculate the maximum/minimum probability of paths
of the product.

In the following, we present a slightly improved algorithm which avoids the con-
struction of L−1. Note that for a complicated language like PCSP#, computing L−1

is highly nontrivial. The algorithm is inspired by the refinement checking algorithm in
FDR. Firstly, we normalize L using the standard powerset construction. Next, we com-
pute the synchronous product ofM and nl(L), written asM× nl(L). It can be shown
that the product is an MDP.

Definition 3 (Product MDP). LetM = (SM, initM,Act ,PrM) be an MDP andL =
(SL, initL,Act ,TL) be a deterministic LTS without τ -transitions. The product is the
MDPM×L = (SM×SL, (initM, initL),Act ,Pr) such that Pr is the least transition
relation which satisfies the following conditions.

– If sm
τ→ μ in M, then (sm , sl)

τ→ μ
′ in M × L for all sl ∈ SL such that

μ
′((s ′m , sl)) = μ(s ′m) for all s ′m ∈ SM.

Model Checking Hierarchical Probabilistic Systems 397

– If sm
e→ μ in M and sl

e→ s ′l in L, then (sm , sl)
e→ μ′ in M × L such that

μ
′((s ′m , s ′l)) = μ(s ′m) for all s ′m ∈ SM.

In the product, there are two kinds of transitions, i.e., τ -transitions from M with the
same probability or transitions labeled with a visible event with probability 1. Note that
τ -transitions are not synchronized, whereas visible events must be jointly performed
by M and L. Let G ⊆ SM × SL be the least set of states satisfying the following
condition: for every pair (s , s ′) ∈ G , s ′ = ∅. Intuitively, (s , s ′) ∈ G if and only if
a trace of M leading to s is not possible in L. The following theorem states our main
result on refinement checking.

Theorem 1. Let M be an MDP; L be an LTS; D = M× nl(L). Pmax (M ' L) =
1− Pmin

D (G) and Pmin(M' L) = 1− Pmax
D (G).

Proof. Let δ be any scheduler for M. Note that δ can be extended to be a scheduler
for D straightforwardly. For simplicity, we use δ to denote both of them. Let X ⊆
paths(M). The following shows that the equivalence holds with any scheduler.

Pδ
M ({π ∈ paths(M) | trace(π) ∈ traces(L)})
≡ 1− Pδ

M ({π ∈ paths(M) | trace(π) �∈ traces(L)}) – by def.
≡ 1− Pδ

D({π ∈ paths(D) | trace(π) �∈ traces(L)}) – (1)
≡ 1− Pδ

D(G) – (2)

(1) is true because for every path of M, there is a path of D with the same probabil-
ity (as L is non-probabilistic) and the same trace; and vice versa. (2) is true because
by [26], a path of D such that trace(π) �∈ traces(L) if and only if it visits some state in
G . It can be shown thenPmax (M' L), which is Pmax

M ({π ∈ paths(M) | trace(π) ∈
traces(L)}), is 1− Pmin

D (G) and Pmin(M' L) is 1− Pmax
D (G). �

Intuitively, the theorem holds because, with any scheduler, the probability of M not
refiningL is exactly the probability of reaching G inM×nl(L). As a result, refinement
checking is reduced to reachability probability in D. There are known approaches to
compute Pmax

M (G) and Pmin
M (G), e.g., using an iterative approximation method or by

solving linear programs [4].

4.2 SE-LTL Probabilistic Model Checking as Refinement Checking

Another way of specifying properties is through temporal logic. In this section, we
examine the problem of model checking PCSP# models against SE-LTL formulae. SE-
LTL is an effective property language for PCSP# as it can be constituted by state propo-
sitions as well as events. In the pacemaker example, an SE-LTL formula could be stated
as follows: (�count ≤ 10) ∧ �(missingPulseA ⇒ X pulseB) which states count
must be always less than 10 and event missingPulseA must lead to an occurrence of
event pulseB next. Given an MDP M and an SE-LTL formula φ, let Pmax

M (φ) (and
Pmin
M (φ)) denote the maximum (and minimum) probability ofM satisfying φ.
A standard LTL probabilistic model checking method is the automata-theoretic ap-

proach [4]. Firstly, a deterministic Rabin automaton, which is equivalent to the prop-
erty, is built. The product of the automaton and the system model is then computed.

398 J. Sun, S. Song, and Y. Liu

Generate BA from φ

Generate BA from !φ

Prob. Refinement Checking

Prob. Refinement Checking

is safety

is safety

Standard Prob. LTL Model Checking

if not

if not

Fig. 2. Workflow

Thirdly, end components (which is similar to strongly connected components) in the
product which satisfy the Rabin acceptance condition are identified. Lastly, the prob-
ability of reaching any state of the end components are calculated, which is exactly
the probability of the model satisfying the property. This method is computationally
expensive due to multiple reasons. Firstly, the construction of the deterministic Rabin
automaton is expensive. Given a Büchi automaton B, its equivalent deterministic Rabin
automaton, in the worse case, is of size 2O(n log n) where n is the size of B. Secondly,
identifying the end components is expensive. The worse case complexity is bounded by
#S × (#S + #T) where #S is the number system states and #T is the number of
the system transitions. In this section, we show that by recognizing safety properties,
we can improve probabilistic model checking of certain class of SE-LTL formulae by
avoiding constructing the Rabin automaton or computing the end components.

Given a formula φ, we check whether φ is a safety property using the following
approach. Firstly, we check whether it is a syntactic LTL safety formula [28]. If it is
not, we generate an equivalent Büchi automaton using an existing approach [11], and
then check whether all states of the Büchi automaton are accepting. If positive, by the
result proved in [1], φ is a safety property. If we cannot conclude that φ is safety, we
assume that it is not. This is a sound but not complete method for recognizing safety. In
practice, we found that it is effective in recognizing most of the commonly used safety
properties, including for example �(a ⇒ �b) and �a ⇒ �b.

Next, we adopt the workflow shown in Figure 2 to improve probabilistic model
checking. Let φ be an SE-LTL formula and B be the equivalent Büchi automaton. If
φ is a safety property, then B can be simply treated as an LTS, as discussed in Sec-
tion 2. The problem of model checking a system model M against φ is thus reduced
to calculate the probability of M refines the LTS B. If φ cannot be determined as a
safety property, then we check whether φ is a co-safety property. A Büchi automaton
B′, equivalent to ¬φ, is generated. If B′ is a safety property, the problem of model
checking φ is thus reduced to calculate the probability ofM refines the LTS B′.

Theorem 2. Let M be an MDP; φ be an SE-LTL formula; B be the Büchi automaton
equivalent to φ. Let B−1 be the Büchi automaton equivalent to ¬φ. If φ is safety, then
Pmax
M (φ) = Pmax (M ' B) and Pmin

M (φ) = Pmin(M ' B); If φ is co-safety, then
Pmax
M (φ) = 1− Pmin(M' B−1) and Pmin

M (φ) = 1− Pmax (M' B−1). �

The proof of the theorem is sketched as follows. If φ is a safety property, any trace
of B is accepting. It can be shown that any trace of M which is not a trace of B is a

Model Checking Hierarchical Probabilistic Systems 399

counterexample to φ. Therefore, the probability of M exhibiting a trace of B (i.e., the
probability of M trace-refines B) is the probability of M satisfying φ. Next, the theo-
rem states that the probability ofM not-refining B is the probability ofM executing a
finite prefix of any traces which is not possible for B. Similarly, we can prove the result
for co-safety properties.

By the theorem, probabilistic model checking of safety LTL formula or co-safety
LTL formula is reduced to probabilistic refinement checking, which is considerably
more efficient as we avoid constructing the deterministic Rabin automaton or identify-
ing end components. This is confirmed by the experiments conducted in Section 5.

5 Case Studies

Our methods have been implemented in the PAT3 model checker [31]. PAT is a self-
contained framework for system modeling, simulation and verification. It supports a
layered system design so that new modeling languages and new model checking al-
gorithms/techniques can be easily incorporated. In this paper, we extend PAT with a
module to support PCSP#, integrating the existing CSP# language with probabilistic
choices. Furthermore, we extend the library of model checking algorithms in PAT with
probabilistic refinement checking and probabilistic SE-LTL model checking with safety
recognition. We evaluate our implementation using benchmark systems. We compare
our results with PRISM version 3.3.1. In order to perform a fair comparison, we use ex-
isting PRISM models; re-model them using the extended CSP# language and re-verify
them using PAT. It should be noticed that our language is capable of specifying hierar-
chical systems which are beyond PRISM. Working with existing PRISM models, which
are not hierarchical, is not justified to show our advantage. Nonetheless, we show that
even for those systems, PCSP# offers an intuitive and compact representation and PAT
offers comparable performance. The following models are adopted for comparison.

– Model ME describes a probabilistic solution to N-process mutual exclusion prob-
lem, which is based on [25].

– Model RC is a shared coin protocol of the randomized consensus algorithm, which
is based on [3]. Note that N is the number of coins and K is a parameter used to
generate suitable probability.

– Model DP is the probabilistic N-dining philosophers under fairness, based on [19].
– Model CS is the IEEE 802.3 CSMA/CD (Carrier Sense, Multiple Access with Col-

lision Detection) protocol, which is based on [23]. Note that N is the number of
stations and K is the exponential backoff limit.

The models (and others) with configurable parameters are embedded in the latest ver-
sion of PAT. In the following, we discuss three aspects of the comparison.

Comparison on modeling. The simplicity of writing models is not purely a matter of
aesthetics. It may yield gains in time and space. Table 1 presents the size of the models
(in number lines of codes) as well as the number of global states. The size of all mod-
els are reduced. Note that with different parameters, the PRISM models vary in sizes,

3 Available at http://pat.comp.nus.edu.sg

400 J. Sun, S. Song, and Y. Liu

Table 1. Experiments on modeling

System PAT PRISM
LOC #States Deadlock Check(s) LOC #States Deadlock Check(s)

ME (N=5) 22 5489 0.351 36 308800 0.410
ME (N=8) 22 86966 7.279 39 390068480 1.203

RC (N=4, K=4) 24 6835 0.218 25 43136 0.110
RC (N=10, K=6) 24 997403 56.072 31 7598460928 3.250

DP (N=5) 20 32766 2.413 30 93068 0.156
DP (N=6) 20 260100 25.775 31 917424 0.672

CS (N=2, K=4) 115 9165 0.337 119 7958 0.266
CS (N=3, K=2) 94 49101 2.243 122 36850 0.772

whereas the size of the PAT models remain constant. The state counts for PAT models
are significantly smaller than those of the PRIMS models. The state counts are reported
by PAT and PRISM when checking deadlock-freeness of both models. One of the rea-
sons why PAT may have much less states is that global variables in the PRISM models,
which are used to track local state of each processes, are removed (and become part of
the process definition). The processes then become fully symmetric (as expected in the
original protocol), which then triggered an internal state reduction based on symmetry
reduction in PAT.

Performance of refinement checking. In general, refinement checking and temporal
logic verification are good at different classes of properties. For instance, using tempo-
ral logic formulae to capture the process OKHrt (shown in Section 4) would result in a
large formula which in turn result in in-efficient verification. Our experiments, however,
show that even for those properties designed for temporal-logic based verification, prob-
abilistic refinement checking offers comparable performance. Given any safety property
of the above mentioned models, we build a property model and verify the property by
refinement checking. Table 2 presents the experiment results. The experiment data are
obtained with Intel Core 2 Quad 9550 CPU at 2.83GHz and 2GB RAM. We use the
iterative method in calculating the probability and set termination threshold as relative
difference 1.0E-6 (exactly same as PRISM). PAT performs worse than PRISM for ME ,
comparable for RC and better for DP . The main reason that PAT outperforms PRISM
for the DP model is that PAT has less states and its refinement checking algorithm has
less computation than temporal logic-based model checking. Note that because the mod-
els are designed to satisfy the properties, the result probability is all 1.

Performance improvement using safety recognition. Lastly, we show that safety recog-
nition improves probabilistic LTL model checking and allows PAT to outperform
PRISM in many cases. Safety recognition in PAT is based on syntax analysis or simple
heuristics based on the generated Büchi automata. The computational overhead is neg-
ligible. Table 3 presents the experiment results on verifying the models against safety,
co-safety and properties which are neither. Column PAT (w) (PAT (w/o)) shows the
time taken with (without) safety recognition. If the property is neither safety or co-
safety, safety recognition becomes computational overhead. The cost is however negli-
gible as evidenced in the table. For safety or co-safety properties, PAT performs better

Model Checking Hierarchical Probabilistic Systems 401

Table 2. Experiments on refinement checking

System Property Result(Pmax) PAT (s) PRISM (s)
ME (N=5) mutual exclusion 1 0.359 0.282
ME (N=8) mutual exclusion 1 9.831 1.234
ME (N=10) mutual exclusion 1 81.192 3.127

RC (N=4,K=4) consensus 1 0.218 0.328
RC (N=6,K=6) consensus 1 2.813 2.543
RC (N=8,K=8) consensus 1 19.642 14.584

DP (N=5) once eat, never hungry 1 3.333 37.769
DP (N=6) once eat, never hungry 1 53.062 389.334

Table 3. Experiments on LTL checking

System Property Result(Pmax) PAT (w) PRISM PAT (w/o)
ME (N=5) co-safety 1 2.356 231.189 27.411
ME (N=8) co-safety 1 94.204 - 8901.295

ME (N=10) co-safety 1 1076.217 - -
RC (N=4,K=4) co-safety(1) 0.99935 0.379 21.954 12.150
RC (N=4,K=4) neither 0.54282 6.106 45.612 6.087
RC (N=4,K=4) co-safety(2) 0.15604 6.703 35.144 7.868
RC (N=6,K=6) co-safety(1) 1 5.854 1755.984 585.706
RC (N=6,K=6) neither 0.53228 457.815 - 442.008
RC (N=6,K=6) co-safety(2) 0.12493 355.027 - 453.362
RC (N=8,K=8) co-safety(1) 1 52.906 - -
RC (N=8,K=8) neither 0.52537 10179.796 - 10107.268
RC (N=8,K=8) co-safety(2) 0.10138 5923.086 - 9420.430

DP (N=5) safety 1 1.162 37.769 10.006
DP (N=6) safety 1 9.760 389.334 164.423
DP (N=5) co-safety 1 1.039 38.347 544.307
DP (N=6) co-safety 1 9.091 384.231 -

CS (N=2, K=4) co-safety(1) 1 0.615 0.921 0.736
CS (N=2, K=4) co-safety(2) 0.99902 0.933 2.314 1.034
CS (N=3, K=2) co-safety(1) 1 6.118 1.733 6.707
CS (N=3, K=2) co-safety(2) 0.85962 6.284 7.233 7.484

with safety recognition. In comparison with PRISM, PAT outperforms PRISM (for al-
most all properties) for some models, e.g., ME and RC . This is mainly because the
PAT models have much less states, because of the difference in modeling. For some
other models (e.g., DP and CS), safety recognition allows PAT to outperform PRISM.

In general, PRISM handles more states per time unit than PAT. This is suggested
by the experiment results presented in Table 1, which shows the time for verifying
deadlock-freeness. Apart from the fact that PRISM has been optimized for many years,
the main reason is the complexity in handling hierarchical models. Note that though
these models have simple structures, there is overhead for maintaining underlying data
structures designed for hierarchical systems. PRISM is based on MTBDD, whereas
PAT is based on explicit state representation currently. Symbolic methods like BDD are

402 J. Sun, S. Song, and Y. Liu

known to handle more states [7]. Applying BDD techniques to hierarchical complex
languages like PCSP# is highly non-trivial. It remains as one of our ongoing work. The
experiment results are not to be taken as the limit of PAT. The fact that PAT handles less
states per time unit does not imply that PAT is always slower than PRISM, as evidenced
in the experiments. The main reason is that 1) a system modeled using PRISM may have
more states than its model in PCSP# due to its language limitation; 2) safety/co-safety
recognition which avoid much computation in probabilistic model checking.

6 Conclusion

The main contribution of this work is the extended PAT model checker which offers
a self-contained framework for modeling and checking of hierarchical complex proba-
bilistic systems. Compared to existing probabilistic model checkers, PAT offers an ex-
pressive modeling language and an alternative way of probabilistic system verification,
i.e., refinement checking. In addition, PAT improves LTL probabilistic model checking
by supporting SE-LTL and safety recognition.

As for future research directions, we will explore methods for checking refinement
relationship between probabilistic PCSP# models. Furthermore, We are investigating
how to combine zone abstraction for real-time systems with probabilistic system be-
haviors so that we can support real-time probabilistic systems. In addition, in order
to tackle the state space explosion problem, optimization techniques like partial order
reduction and symmetry reduction will be incorporated.

References

1. Alpern, B., Schneider, F.B.: Recognizing Safety and Liveness. Distributed Computing 2(3),
117–126 (1987)

2. Alur, R., Henzinger, T.A.: Reactive Modules. Formal Methods in System Design 15(1), 7–48
(1999)

3. Aspnes, J., Herlihy, M.: Fast Randomized Consensus Using Shared Memory. Journal of Al-
gorithms 15(1), 441–460 (1990)

4. Baier, C., Katoen, J.: Principles of Model Checking. The MIT Press, Cambridge (2008)
5. Barold, S.S., Stroopbandt, R.X., Sinnaeve, A.F.: Cardiac Pacemakers Step by Step: an Illus-

trated Guide. Blackwell Publishing, Malden (2004)
6. Bellman, R.: A Markovian Decision Process. Journal of Mathematics of Mechanics 6 (1957)
7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model Check-

ing: 1020 States and Beyond. Inf. Comput. 98(2), 142–170 (1992)
8. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/Event-Based Software

Model Checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999,
pp. 128–147. Springer, Heidelberg (2004)

9. Chen, Y., Sanders, J.W.: Unifying Probability with Nondeterminism. In: Cavalcanti, A.,
Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 467–482. Springer, Heidelberg (2009)

10. Ciesinski, F., Baier, C.: LiQuor: A Tool for Qualitative and Quantitative Linear Time Anal-
ysis of Reactive Systems. In: QEST, pp. 131–132. IEEE Computer Society, Los Alamitos
(2006)

11. Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G., Comon, H.,
Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)

12. Geilen, M.: On the Construction of Monitors for Temporal Logic Properties. Electr. Notes
Theor. Comput. Sci. 55(2) (2001)

Model Checking Hierarchical Probabilistic Systems 403

13. Havelund, K., Rosu, G.: Synthesizing Monitors for Safety Properties. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002)

14. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A Tool for Automatic
Verification of Probabilistic Systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006.
LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

15. Hoare, C.: Communicating Sequential Processes. International Series in Computer Science.
Prentice-Hall, Englewood Cliffs (1985)

16. Katoen, J., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The Ins and Outs of the
Probabilistic Model Checker MRMC. In: QEST, pp. 167–176. IEEE Computer Society, Los
Alamitos (2009)

17. Kupferman, O., Vardi, M.Y.: Model Checking of Safety Properties. Formal Methods in Sys-
tem Design 19(3), 291–314 (2001)

18. Latvala, T.: Efficient Model Checking of Safety Properties. In: Ball, T., Rajamani, S.K. (eds.)
SPIN 2003. LNCS, vol. 2648, pp. 74–88. Springer, Heidelberg (2003)

19. Lehmann, D., Rabin, M.: On the Advantage of Free Choice: A Symmetric and Fully Dis-
tributed Solution to the Dining Philosophers Problem (Extended Abstract). In: POPL, pp.
133–138. ACM, New York (1981)

20. Maisel, W.H., Moynahan, M., Zuckerman, B.D., Gross, T.P., Tovar, O.H., Tillman, D.,
Schultz, D.B.: Pacemaker and ICD Generator Malfunctions. The Journal of American Med-
ical Association 295(16), 1901–1906 (2006)

21. Morgan, C., Hoang, T.S., Abrial, J.: The Challenge of Probabilistic Event B - Extended
Abstract. In: Treharne, H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS,
vol. 3455, pp. 162–171. Springer, Heidelberg (2005)

22. Morgan, C., McIver, A., Seidel, K., Sanders, J.W.: Refinement-Oriented Probability for CSP.
Formal Asp. Comput. 8(6), 617–647 (1996)

23. Nicollin, X., Sifakis, J., Yovine, S.: Compiling Real-time Specifications into Extended Au-
tomata. IEEE Transactions on Software Engineering 18(9), 794–804 (1992)

24. Pnueli, A.: The Temporal Logic of Programs. In: FOCS, pp. 46–57. IEEE, Los Alamitos
(1977)

25. Pnueli, A., Zuck, L.: Verification of Multiprocess Probabilistic Protocols. Distributed Com-
puting 1(1), 53–72 (1986)

26. Roscoe, A.W.: Model-checking CSP, pp. 353–378 (1994)
27. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M., Hulance, J.R., Jackson, D.M., Scattergood,

J.B.: Hierarchical Compression for Model-Checking CSP or How to Check 1020 Dining
Philosophers for Deadlock. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G.,
Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 133–152. Springer, Heidelberg (1995)

28. Sistla, A.P.: Safety, Liveness and Fairness in Temporal Logic. Formal Asp. Comput. 6(5),
495–512 (1994)

29. Somenzi, F., Bloem, R.: Efficient Büchi Automata from LTL Formulae. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)

30. Sun, J., Liu, Y., Dong, J.S., Chen, C.Q.: Integrating Specification and Programs for System
Modeling and Verification. In: TASE, pp. 127–135. IEEE Computer Society, Los Alamitos
(2009)

31. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness. In:
Bouajjani, A., Maler, O. (eds.) Computer Aided Verification. LNCS, vol. 5643, pp. 709–714.
Springer, Heidelberg (2009)

32. Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verifica-
tion. In: LICS, pp. 332–344. IEEE Computer Society, Los Alamitos (1986)

33. Zhu, H., Qin, S., He, J., Bowen, J.: PTSC: Probability, Time and Shared-Variable Concur-
rency. International Journal on Innovations in Systems and Software Engineering 5(4), 271–
294 (2009)

Trace-Driven Verification of Multithreaded
Programs�

Zijiang Yang1 and Karem Sakallah2

1 Western Michigan University, Kalamazoo, MI 49008, USA
2 University of Michigan, Ann Arbor, MI 48109, USA

Abstract. We present a new method that combines the efficiency of
testing with the reasoning power of satisfiability modulo theory (SMT)
solvers for the verification of multithreaded programs under a user spec-
ified test vector. Our method performs dynamic executions to obtain
both under- and over-approximations of the program, represented as
quantifier-free first order logic formulas. The formulas are then analyzed
by an SMT solver which implicitly considers all possible thread inter-
leavings. The symbolic analysis may return the following results: (1) it
reports a real bug, (2) it proves that the program has no bug under the
given input, or (3) it remains inconclusive because the analysis is based
on abstractions. In the last case, we present a refinement procedure that
uses symbolic analysis to guide further executions.

1 Introduction

One of the main challenges in testing multithreaded programs is that the absence
of bugs in a particular execution does not necessarily imply error-free operation
under that input. To completely verify program behavior for a given test input,
all executions permissible under that input must be examined. However, this is
often an infeasible task considering the exponentially large number of possible
interleavings of a typical multithreaded program. A program with n threads, each
executing k statements, can have up to (nk)!/(k!)n ≥ (n!)k thread interleavings,
a dependence that is exponential in both n and k.

In this paper we address this challenge by an approach called Trace-Driven
Verification (TDV) that combines the efficiency of testing with the reasoning
power of satisfiability modulo theory (SMT) solvers. TDV performs dynamic
executions to obtain approximations, represented as quantifier-free first order
logic (FOL) formulas, of the program under verification. The formulas are then
analyzed by an SMT solver which implicitly considers all possible thread inter-
leavings. The symbolic analysis may return one of the following results: (1) it
reports a real bug, (2) it proves that the program has no bug under the given in-
put, or (3) it remains inconclusive because the analysis is based on abstractions.
In the last case, we present a refinement procedure that uses symbolic analysis
to guide further executions. The features of TDV include:
� The work was supported by NSF Grant CCF-0811287.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 404–419, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Trace-Driven Verification of Multithreaded Programs 405

– Implicit consideration of thread interleavings. As explicit enumeration
of executions is intractable, the alternative we present is to capture thread
interleavings implicitly as a set of constraints in a satisfiability formula.
These constraints belong to the family of quantifier-free first order logic
formulas for which efficient SMT solvers are available.

– Integration of dynamic executions and symbolic analysis. At any
given time, TDV analyzes only the statements that appear in a particular
execution under a user-specified test vector. It may report a real bug, or
prove that the program behaves as expected under all thread interleavings
stimulated by the given input. In either case, TDV avoids the analysis of
statements that do not appear in an execution. However, it is also possible
that the symbolic analysis, being an abstraction of program behavior, re-
mains inconclusive. In such a case, TDV uses the symbolic analysis result to
guide future concrete executions.

– Abstraction with both under- and over-approximations. Based on
an execution, TDV infers both under- and over-approximations of the entire
program. The under-approximation is complete so that any bug detected in
the model is a real bug; while the over-approximation is sound so that it can
be used to prove the absence of bugs.

The rest of the paper is organized as follows. After giving the algorithm
overview in Section 2, we present the symbolic encoding of program traces in
Section 3. The refinement procedure is illustrated in Section 4. In Section 5 we
outline several encoding and algorithmic optimizations to improve scalability.
We discuss related work in Section 6. Finally we present experimental results in
Section 7 and conclude the paper in Section 8.

2 Algorithm Overview

Consider a multithreaded program P where threads communicate via shared
variables. Without loss of generality, we assume there is at most one shared
variable access at a program statement1. Then each statement constitutes an
atomic computational step, at which granularity the thread scheduler can switch
control between threads during the execution.

Consider the program, shown in Fig. 1, that consists of two concurrently
running threads. In a typical testing environment, even if we run the program
multiple times under the test input a = 1, b = 0, we may obtain the same exe-
cuted trace π1 = 〈1, 2, 5, 6, 7〉 where the integer values indicate the line numbers.
In general, an executed trace is an ordered sequence of program statements ex-
ecuted by the different threads. Although π1 does not cause an assertion failure

1 If there are multiple shared variable accesses in one statement, we can introduce
additional local variables and split the statement into multiple statements such that
each statement has at most one shared variable. For example, consider a statement
a = x + y with shared variables x, y and local variable a. It can be split into two
statements t = y and a = x + t with the help of a temporary local variable t.

406 Z. Yang and K. Sakallah

Thread 1:

foo (int a) {
1 y = a + 1;
2 if (y < 2)
3 complexA();
4 else
5 assert(y >= 2);
}

Thread 2:

bar (int b) {
6 if (b >= 0)
7 y = b + 1;
8 else
9 complexB();
}

Fig. 1. A program with the shared variable y and local variables a, b

on Line 5, we cannot conclude the absence of assertion failures in this program
as this input admits other interleavings of these two threads. Table 1 shows the
set Π(π1) of all 10 possible interleavings of π1. For each trace in the table, the
bottom row indicates whether the assertion on Line 5 holds (h) or fails (f). How-
ever, not all the interleavings in Π(π1) are valid executions. Closer examination
of π6 and π9 shows that they are infeasible traces, due to the violation of pro-
gram semantics. In particular, after y is updated by Thread 2 on Line 7, it is
not possible for Thread 1 to follow the Else branch on Line 2. Let ΠP (π1) be
the set of interleavings derived from π1 that are consistent with the semantics
of the program P . We have ΠP (π1) = {π1, π2, π3, π4, π5, π7, π8, π10}. We call a
trace πi ∈ ΠP (π1)\{π1} an induced trace of π1.

Table 1. Π(π1): all the thread interleavings of π1. The two interleavings marked with
an asterisk are invalid since they violate program semantics.

Step π1 π2 π3 π4 π5 π∗
6 π7 π8 π∗

9 π10

1 1 1 1 1 1 1 6 6 6 6
2 2 2 2 6 6 6 1 1 1 7
3 5 6 6 2 2 7 2 2 7 1
4 6 5 7 5 7 2 5 7 2 2
5 7 7 5 7 5 5 7 5 5 5

assert h h f h f f h f f h

In order to check for assertion failures not only in π1 but also in its induced
traces, we construct an FOL formula ϕ(π) that implicitly models all the traces
in Πp(π) (see Section 3.1 for details). A satisfying assignment to ϕ(π) indicates
a true assertion failure and can be used to identify the particular thread inter-
leaving that produces it. If ϕ(π) is unsatisfiable, however, we cannot conclude
correctness because ϕ(π) is an under-approximation of program behavior. To
understand the reason consider a statement assert(CcomplexA) inside complexA()

on Line 3 in Fig. 1. Given the executed trace π1 = 〈1, 2, 5, 6, 7〉, ϕ(π1) itself
cannot reveal any assertion failure inside complexA() since the assert(CcomplexA)

statement does not even appear in any traces of Πp(π1). On the other hand,
there exist valid executions that execute complexA() (e.g. π′ = 〈1, 6, 7, 2, 3, . . .〉).
Thus an assertion failure is still possible under the test input a = 1, b = 0.

Trace-Driven Verification of Multithreaded Programs 407

real bug

test
input

guided
execution

trace π

no bug

encode

SMT

SMT
ϕ(π)

ψ(π)
Sat

Unsat

Unsat

Satexecution

Fig. 2. Trace-driven verification flow

To insure correctness (absence of assertion failures), all execution traces per-
missible under that input must be examined. We relax, or abstract ϕ(π), by
making changes to and dropping some of its constraints (see Section 3.2 for de-
tails). This leads to ψ(π), an FOL formula that represents an over-approximation
to the program behavior under the specified input. If ψ(π) is unsatisfiable, we can
provably conclude the absence of assertion failures for all thread interleavings
under the specified input. Otherwise we need to check if the reported violation
is true or spurious. In the latter case, TDV performs refinement by modifying
the control flow in order to examine other executions of P under the same test
input.

As illustrated in Fig. 2, TDV consists of the following steps:

1. Run the program under a given user input to obtain an initial execution
trace π.

2. Using an encoding along the lines illustrated in Section 3.1, construct an
FOL formula ϕ(π).

3. Using an SMT solver, check the satisfiability of ϕ(π).
– If ϕ(π) is found to be satisfiable, a real bug is found. Based on the

solution to ϕ(π) we can report to the user the specific scheduling that
exposes the bug.

– If ϕ(π) is found to be unsatisfiable, we relax ϕ(π) to obtain ψ(π). This
allows us to examine sibling traces, i.e., traces that conform to the same
input but cover different statements.
• If ψ(π) is found to be unsatisfiable, we can conclude that the property

holds under all possible thread interleavings under the given test
input.

• If ψ(π) is found to be satisfiable, the SMT solver returns a counter-
example, which is used to guide new executions that are guaranteed
to touch new statements that have not appeared in previous execu-
tions.

3 Symbolic Encoding of Execution Traces

An executed trace is a sequence π = 〈(t1, l1.o1, Q1), . . . , (tn, ln.on, Qn)〉 that
lists the statements executed by the various threads. Each tuple (t, l.o,Q) ∈ π
is considered to be an atomic computational step where t is the thread id, l is
the line number for the statement, o is an occurrence index that distinguishes

408 Z. Yang and K. Sakallah

the different executions of the same statement, and Q is the statement type that
can be one of assign, branch, jump, fork, join or assert. In this paper we assume
all the executions eventually terminate2.

We consider three basic types of statements: assignment v = E where E is
an arithmetic expression, branch C?l.o where C is a relational expression, and
jump goto l.o. Note that C?l.o only lists the destination if C holds because
no two branches can be taken simultaneously in an executed trace3. Besides the
basic types, we also allow assert(C) for checking assertions, exit for signaling the
termination of a thread, and the synchronization primitives. fork(t) and join(t)

allow a thread to dispatch and wait for the completion of another Thread t.
Given a program written in a full-fledged programming languages like C, one can
use pre-processing [21] to simplify its executed traces into the basic statements
described above.

3.1 Under-Approximation FOL Formula ϕ(π)

The key to the TDV algorithm is the construction of appropriate FOL formulas
that can be easily checked with SMT solvers.

Let VG and VL(t) denote the set of global and local variables in Thread t,
respectively. Let the set of variables visible to t be V (t) = VG∪VL(t). In addition
to program variables, we introduce a statement location variable Lt for each
thread, whose domain includes all the possible line numbers and occurrence
indices. To model nondeterminism in the scheduler, we add a variable T whose
domain is the set of thread indices. A transition in Thread t is executed only
when T = t. At every transition step we add a fresh copy for each variable. That
is, v[i] denotes the copy of v at the i-th step. Given an executed trace π, ϕ(π)
consists of following constraints:

– Program transition constraint δπ that expresses the effect of executing
a particular statement of the program by a particular thread. For each tuple
(t, l.o,Q) except when Q is exit, we assume the next tuple to be executed by
Thread t is (t, l′.o′, Q′). Once the last tuple (t, l.o, exit) of Thread t has been
executed, we use � to indicate the end of Thread t. Let δt,l.o[i] denote the
constraints of (t, l.o,Q) ∈ π at step i. Fig. 3 shows the encoding for different
types of tuples. For example, the one for (t, l.o, v = E) states that if Thread
t executes the statement at step i, the following updates occur at step i+ 1:
1. the next statement for Thread t to execute is l′.o′;
2. the value of v at step i + 1 is E|V →V [i] with all variables in E replaced

by their corresponding versions at step i; and
3. other visible variables remain unchanged.

2 For nonterminating programs, our procedure can be used as a bounded analysis tool
to search for bugs up to a bounded number of execution steps.

3 A conditional branch such as if C then l1 : . . . else l2 : . . . results in the executed
trace C?l1 if the then branch is executed, and ¬C?l2 otherwise.

Trace-Driven Verification of Multithreaded Programs 409

The program transition constraint δπ is defined as

δπ ≡
|π|∧
i=1

∧
(t,l.o)

δt,l.o[i] (1)

assignment: (t, l.o, v = E)

T [i] = t ∧ Lt [i] = l.o→
Lt [i + 1] = l′.o′ ∧ v [i + 1] = E|V→V [i] ∧ V (t)\v[i + 1] = V (t)\v[i]

conditional branch: (t, l.o, C?l’.o’)

T [i] = t ∧ Lt [i] = l.o ∧ C|V→V [i] → Lt [i + 1] = l′.o′ ∧ V (t)[i + 1] = V (t)[i]

thread termination: (t, l.o, exit)

T [i] = t ∧ Lt [i] = l.o→ Lt [i + 1] = Δ ∧ V (t)[i + 1] = V (t)[i]

unconditional jump: (t, l.o, goto l’.o’)

T [i] = t ∧ Lt [i] = l.o→ Lt [i + 1] = l′.o′ ∧ V (t)[i + 1] = V (t)[i]

thread fork: (t, l.o, fork(t’))

T [i] = t ∧ Lt [i] = l.o→
Lt [i + 1] = l′.o′ ∧ Lt′ [i + 1] = st′ ∧ V (t)[i + 1] = V (t)[i]

thread join: (t, l.o, join(t’))(
T [i] = t ∧ Lt [i] = l.o ∧ Lt′ [i] = Δ→
Lt [i + 1] = l′.o′ ∧ V (t)[i + 1] = V (t)[i]

)
∧(

T [i] = t ∧ Lt [i] = l.o ∧ Lt′ [i] �= Δ→
Lt [i + 1] = l.o ∧ V (t)[i + 1] = V (t)[i]

)
lock: (t, l.o, lock(lk))(

T [i] = t ∧ Lt [i] = l.o ∧ ¬lk [i]→
Lt [i + 1] = l′.o′ ∧ lk[i + 1] = true ∧ V (t)\lk[i + 1] = V (t)\lk[i]

)
∧

(T [i] = t ∧ Lt [i] = l.o ∧ lk [i]→ Lt [i + 1] = l.o ∧ V (t) [i + 1] = V (t)[i])

unlock: (t, l.o, unlock(lk))

T [i] = t ∧ Lt [i] = l.o→
Lt [i + 1] = l′.o′ ∧ lk[i + 1] = false ∧ V (t)\lk[i + 1] = V (t)\lk[i]

Fig. 3. Program transition constraints. T [i] is the active thread at step i; Lt[i] (Lt[i+1])
is the statement location at step i (i + 1); E|V→V [i](C|V→V [i]) substitute all variables
in E(C) by the by their corresponding versions at step i; V (t)\v[i + 1] = V (t)\v[i]
denotes all visible variables in t keep their value except variable v.

– Initial condition constraint ιπ that specifies the starting locations for
each thread as well the initial values of program variables, including the
values set by the input vector.

410 Z. Yang and K. Sakallah

– Trace enforcement constraint επ that restricts the encoded behavior
to include only the statements appearing in an executed trace π. For each
(t, l.o, C?l′.o′) ∈ π we assume condition C holds on line l at o-th occurrence
in π. Then we have

επ ≡
|π|∧
i=1

∧
(t,l.o)

(T [i] = t ∧ L[i] = l.o→ C|V →V [i]) (2)

– Thread control constraint τπ that (1) insures that the local state of
a thread (the values of its local variables) remains unchanged when the
thread is not executing, and (2) insures that the thread cannot be selected
for execution after it has terminated. These two constraints are specified in
Equation 3.

τt,idle[i] ≡ T [i] �= t→ Lt[i + 1] = Lt[i] ∧ VL(t)[i + 1] = VL(t)[i]
τt,done[i] ≡ Lt[i] = Δ→ T [i] �= t

(3)

The thread control constraint is defined as follows:

τπ ≡
|π|∧
i=1

N∧
t=1

(τt,idle[i] ∧ τt,done[i] ∧ τother) (4)

In τother , additional optional constraints can be included to model particular
scheduling policy.

– Property constraint ρP that indicates the correctness conditions, specified
as assertions within the program in this paper, that we would like to check for
validity under all possible executions. Note that many common programming
errors can be modeled as assertions [21]. Let (t, l, assert(C)) be an assertion
on line l in Thread t. The property constraint can be specified as follows:

ρP ≡
|π|∧
i=1

∧
(t,l)

(T [i] = t ∧ L[i] = l → C|VC→VC [i]) (5)

Note that properties encoded by ρP are not necessarily the assertions ap-
pearing in π only; the assertions may appear anywhere in the program P .
This is a crucial requirement for our trace-based method to find real failures
anywhere in the program, or to prove the absence of assertion failures of the
program.

Whether the property ρP holds for all possible thread interleavings in ΠP (π)
is determined by checking the validity of the formula: ιπ ∧ δπ ∧ τπ ∧ επ → ρP ,
which is equivalent to checking the satisfiability of the formula

ϕ(π) ≡ ιπ ∧ δπ ∧ τπ ∧ επ ∧ ¬ρP (6)

Equation 6, which implicitly represents all thread interleavings of ΠP (π), is
still an under-approximation of the behavior of program P under the given test
input. Therefore, a solution to ϕ(π) reveals real errors in the program, but the
unsatisfiability of ϕ(π) does not prove the absence of errors.

Trace-Driven Verification of Multithreaded Programs 411

3.2 Over-Approximation FOL Formula ψ(π)

Let ΠP (−→v) be the set of all possible execution traces of program P under the
test input −→v . The set of interleavings considered by ϕ(π) is ΠP (π) ⊆ ΠP (−→v).

To catch assertion violations in branches not yet executed in π, or to establish
the absence of such violations in all traces, we need an over-approximation of
ΠP (−→v). The over-approximated encoding can be obtained from ϕ(π) with the
following changes:

– Remove the trace enforcement constraint επ that prohibits any trace π′ �∈
ΠP (π) from being considered in ϕ(π). In Fig. 1, for example, a trace starting
from 〈1, 6, 7, 2, 3, . . .〉 can be a valid execution according to the program.
However, the επ constraint T [i] = 1∧L[i] = 2→ y[i] ≥ 2 prohibits the trace
from being considered.

– Collapse multiple occurrences. For statements that occur more than once, we
consider only one instance in the transition constraint. Thus the occurrence
index o is no longer needed. This leads to a modified transition constraint
δo
π.

– Add control flow constraints λπ for un-executed statements. λπ keeps the
control flow logic but ignores the data logic in those statements that do not
occur in π. The purpose of λπ is to force the over-approximated behavior to at
least follow the control flow logic of program P . Here we consider assignments
and conditional branches. Given a conditional branch (t, l, C?l1 : l2) �∈ π that
executes l1 next if C is true and l2 next otherwise, we add a constraint to
λπ[i]:

T [i] = t ∧ Lt [i] = l → Lt [i + 1] = l1 ∨ Lt [i + 1] = l2. (7)

Similarly, for an assignment statement (t, l, v = E) �∈ π that executes l1 next,
the constraint added to λπ [i] is

T [i] = t ∧ Lt [i] = l→ Lt [i + 1] = l1 (8)

After the modifications above we obtain the following over-approximation:

ψ(π) ≡ ιπ ∧ δo
π ∧ τπ ∧ λπ ∧ ¬ρP (9)

Let Ω(π) be the set of interleavings considered by ψπ; then Ω(π) ⊇ ΠP (−→v)
is an over-approximation of the program behavior under the test vector −→v . In
general, the unsatisfiability of ψ(π) proves P has no assertion failures under
the test vector −→v . The downside of using ψ(π) is the inevitability of invalid
executions which need to be filtered out afterwards. In the running example in
Fig. 1, the SMT solver may report π6 in Table 1 as a satisfiable solution of ψ(π).
However, it is not a feasible trace since the behavior of the step in line 2 is
unspecified in ψ(π) when y < 2.

4 Refinement

4.1 Analysis-Guided Execution

Let CEXπ be a satisfiable assignment to all variables in ψ(π); it is called a po-
tential counterexample. In the counterexample guided abstraction refinement

412 Z. Yang and K. Sakallah

(CEGAR) framework, a decision procedure (theorem prover, SAT solver, or
BDDs) [8,2,1,27] has been used to check whether CEXπ is feasible in P , and if
not, to refine the over-approximation. Such an approach may not be scalable for
handling multithreaded software due to the program complexity and the length
of the counterexamples.

Instead, we use guided concrete execution rather than a theorem prover or a
SAT solver. Let T = ∪|π|

i=1{T [i]} be the set of thread selection variables at all
time steps, and let L = ∪|π|

i=1 ∪N
t=1 {Lt[i]} be the set of line number variables.

Given CEXπ, we first extract a thread schedule SCHπ = ∃v∈{T∪L}.CEXπ , and
organize it as a sequence

πSCH = 〈(t1, l1), (t2, l2), . . . , (t|π|, l|π|)〉 .

Note that the occurrence index is not needed as the sequence uniquely identifies
a trace (although it may be infeasible). The program is then re-executed by
trying to follow πSCH ; this is implemented by using check-point and restart
techniques as in [30]. If the re-execution can follow πSCH to completion, then
πSCH represents a real bug. Otherwise, we obtain a new executed trace

π′ = 〈(t1, l1.o1), . . . , (tk−1, lk−1.ok−1), (t′k, l
′
k.o

′
k), . . . , (t′|π′|, l

′
|π′|.o

′
|π′|)〉 .

π and π′ have the same thread ids and line numbers for the first k − 1 steps.
But starting from the k-th step π′ can no longer follow π and completes the
execution on its own.

To sum up, by performing a guided execution after analyzing the over-
approximation ψ(π), we are able to either validate the potential counterexample
CEXπ, or obtain a new execution π′ for a further analysis.

4.2 Avoid Redundant Checks

To avoid performing symbolic analysis on executed traces that have been ana-
lyzed before, we maintain a set χ of already inspected traces. Let {π1, . . . , πm}
be the set of executed traces in the first m iterations that have been analyzed. If
ψ(πm) is satisfiable, we are only interested in a solution

−→
S such that the trace

π−→
S

corresponding to
−→
S satisfies π−→

S
�∈ ΠP (πi) for all 1 ≤ i ≤ m. Such require-

ment is not only for performance, but also for the termination of the algorithm:
without χ our algorithm may analyze the same executed trace infinitely.

Let πt be a subsequence of π that is executed by Thread t. For two such sub-
sequences π1

t and π2
t from two different executed traces, if they visit the same

set of branch statements in t and have the same truth value of the conditionals
at each branch, then π1

t ≡ π2
t (same statements are visited in the same order).

Therefore, the trace enforcement constraint επt uniquely identifies a trace πt

in Thread t. As ΠP (π) is the interleavings among the traces πt1 , . . . , πtN , they
are identified by επ = επt1

∧. . .∧επtN
. In the other words, in order to find a trace

Trace-Driven Verification of Multithreaded Programs 413

not in ΠP (π), we must add the constraint ¬επ . Assume {π1, . . . , πm} are the
traces that have been executed so far, we have

χm ≡
m∧

k=1

¬επk
. (10)

The over-approximation formula at the (m + 1)-th iteration becomes

ψ(π) ≡ ιπ ∧ δo
π ∧ τπ ∧ λπ ∧ χm ∧ ¬ρP . (11)

4.3 An Illustrative Example

Fig. 4 shows a program with two methods foo and bar. At Line 0 foo creates a
new thread and invoke bar. There is a recursive call on Line 3 in foo, therefore,
multiple threads may be created depending on the input value of a. In the
program, x and y are global variables with initial value 1, while a and b are
thread local variables. We would like to check whether there can be an assertion
failure on Line 11 under the test value a = 1.

foo(int a) {
0 create a new thread t to invoke bar(1);
1 x = a;
2 if (x>0)
3 foo(a-1);
4 else
5 if (y<=1 && y! =0)
6 x = y-x;
7 else if (y > 10)
8 complexA();
9 else
10 x = x-y;
11 assert(0);
12 wait for t to complete;
}

bar(int b) {
13 y = b;
14 if (y>0)
15 x = x-y;
16 y = y-1;
17 else
18 complexB();
}

Fig. 4. A program with recursion and dynamically created threads

Assume the first executed trace is π1 =〈(1, 0.1), (1, 1.1), (1, 2.1), (1, 3), (1, 0.2),
(1, 1.2), (1, 2.2), (1, 5), (1, 6), (2, 13), (2, 14), (2, 15), (2, 16), (3, 13), (3, 14), (3, 15), (3, 16),
(1, 12.1), (1, 12.2)〉, in which Thread 1 creates Thread 2 and 3 that execute bar(1).
Note that in π1 we drop the occurrence index if a statement of a thread oc-
curs only once. An under-approximated symbolic analysis on π1 does not yield
an assertion violation, but the over-approximated symbolic analysis produces
a counter-example CEX1 = 〈(1, 0), (1, 1), (2, 13), (2, 14), (2, 15), (1, 2), (1, 5), (1, 7),
(1, 10), (1, 11)〉, which leads to an assertion failure on Line 11. An execution fol-
lowing CEX1 shows that the counterexample is spurious as it can only follow

414 Z. Yang and K. Sakallah

up to (1, 5), because the else branch on Line 5 cannot be taken. The complete
executed trace is π2 =〈(1, 0), (1, 1), (2, 13), (2, 14), (2, 15), (1, 2), (1, 5), (1, 6), (2, 16),
(1, 12)〉. There is no assertion failure in π2, but the counterexample obtained from
the over-approximated analysis is CEX2 = 〈(1, 0), (1, 1), (2, 13), (2, 14), (2, 15),
(2, 16), (1, 2), (1, 5), (1, 7), (1, 10), (1, 11)〉. A further execution is able to follow the
complete trace of CEX2 and therefore reveals a real assertion failure on line 11.

5 Optimizations

We apply peephole partial order reduction (PPOR) [29] to exploit the equivalence
of interleavings due to independent transitions. Unlike classical partial order
reduction [17,15], PPOR is able to reduce the search space symbolically in an
SMT solver.

Given an executed trace π = 〈(t1, l1.o1, Q1), . . . (tn, ln.on, Qn)〉, we add a spe-
cial scheduling constraint for every pair of tuples (tp, lp.op, Qp) and (tq, lq.oq, Qq)
such that tp �= tq and Qp and Qq are not dependent. Two statements are depen-
dent if they access the same shared variable and at least one access is a write.
For example, consider two statements Qp : a[k1] = e1 and Qq : a[k2] = e2 that
are independent if the array index expressions do not have the same value. We
add the following constraint to ϕ(π):

Lp[i] = lp.op∧Lq[i] = lq.oq∧k1|V →V [i] �= k2|V →V [i] → ¬(T [i] = q∧T [i+1] = p),
(12)

which prohibits Qp being executed immediately after Qq. Similar constraints can
be added to over-approximated satisfiability formula ψ(π).

Another optimization is a new thread-local static single assignment (TL-SSA)
form to efficiently encode the thread-local statements. TL-SSA can significantly
reduce the number of variables and the number of constraints needed in ϕ(π)
and ψ(π), which are crucial since they often directly affect the performance of an
SMT solver. Our observation is that the encoding in Section 3 may produce many
redundant variables and constraints, due to the fact that it has to assign a fresh
copy to every variable at every step. However, statements involving only local
variables do not need a fresh copy of the local variables and constraints at every
step. Furthermore, in a typical program execution, each statement writes to one
variable at a time; a vast number of constraints, in the form of v[i + 1] = v[i],
are used to keep the current values of the uninvolved variables.

In a purely sequential program, one can use Static Single Assignment (SSA)
form [9] to simplify the encoding of a SAT formula [7]. However, SSA is not
meant to be used in multithreaded programs (it remains an open problem as to
what a SSA-style IR should be for concurrent programs), since a use-define chain
for any shared variable cannot be established at compile time. Our observation
here is that, while shared global variables cannot take advantages of the SSA
form, local variables can still utilize the reduction power of SSA. The proposed
TL-SSA form exploits the fact that, in any particular execution trace, the use-
define chain of every local variable can be determined. Consider an executed trace

Trace-Driven Verification of Multithreaded Programs 415

snippet 〈. . . (y=a+1), . . ., (a=y), . . ., (y=y+a)〉, where y is a shared variable and a
is a local variables. In addition, no other statements in the trace access a. The
trace with corresponding sequence of TL-SSA statements are 〈. . . (y=a0+1),. . .,
(a1=y), . . ., (y=y+a1)〉. Instead of creating fresh copies for local variables at every
step,the TL-SSA form creates only two copies of a. In addition, there is no need
for the constraints a[i + 1] = a[i] to keep the value of a at each step where a is
not assigned.

6 Related Work

Since we are not the first in modeling high-level source code semantics using
a constraint language, it is helpful to briefly mention some of the successful
approaches that have been reported. Noting the large gap between high-level
programming languages and those of the formal logics, existing symbolic model
checking tools, including [2,7,21], often restrict their representations to the pure
Boolean domain; that is, they extract a Boolean-level model from the given
program and then apply Binary Decision Diagrams (BDDs) [4] or SAT solvers
(e.g., [11]) to perform verification. Although modeling all variables as bit-vectors
is accurate, such high-precision approaches are often not needed and may gen-
erate models that are too large. In addition, bit vectors cannot model floating
point arithmetic. In [32], sequential C programs are modeled at the word, as
opposed to the bit, level using polyhedral analysis. This approach was shown
to be very competitive for handling sequential C programs of non-trivial sizes.
Unlike [32] that uses polyhedra library Omega [26] to perform reachability com-
putation, we leverage the recently-demonstrated performance advances of SMT
solvers to perform satisfiability checking.

Approaches based on similar ideas that augment testing with formal analysis
include [20,18,6,24,28]. While Synergy [20] considers only sequential programs,
we concentrate on multithreaded programs. Concolic testing [18,6,24] runs sym-
bolic executions simultaneously with concrete executions, but the purpose is to
generate new test inputs for better path coverage. In our approach, the purpose
of symbolic analysis is to consider all related feasible thread interleavings implic-
itly, and in the event of inconclusive results, to guide the next concrete execution
to follow a different thread schedule (that obeys program control flow semantics)
under the same test vector. Predictive analysis [28] encodes a single execution
symbolically without further refinement. The approach that augments testing
with formal analysis has also been applied in other domains such as MCAPI
[13,12] and service computing [14].

Although integrated under- and over-approximations have been used in a
decision procedure [3] for bit-vector arithmetic, most previous works on hardware
and software model checking follow the paradigm of CEGAR [22,8], which is
based solely on over-approximations and uses spurious counterexamples to refine
the over-approximations. In [19], Grumberg et al. presented a software model
checking procedure based on a series of under-approximations.

416 Z. Yang and K. Sakallah

Table 2. Bounded model checking (BMC) v.s trace-driven verification (TDV) for the
multithreaded program in Fig. 4

BMC TDV
#threads mem(Mb) time(s) mem(Mb) time(s) speedup

5 21.15 1.16 20.14 1.07 1.08
10 54.29 3.18 51.92 3.15 1.01
15 129.11 66.01 100.72 7.64 8.64
20 219.34 169.84 166.81 18.69 9.09
25 317.40 215.87 250.13 44.33 4.87
30 420.54 222.85 348.18 45.83 4.86
35 538.75 140.21 461.85 42.11 3.33
40 692.62 150.66 597.55 73.69 2.04
45 - - 745.86 77.79 -
50 - - 906.9 143.27 -
55 - - 1106.1 122.93 -
60 - - 1330.5 182.53 -
65 - - 1510.4 222.87 -
70 - - 1737.5 289.86 -
75 - - 2003.6 438.82 -
80 - - 2270.1 407.07 -

There are several research projects that target concurrent program verifica-
tion directly. Inspect [30] and CHESS [25] can check multithreaded C/C++
programs by explicitly executing different interleavings using dynamic partial
order reduction [16]. However, explicitly exploring the thread interleavings does
not scale well in the presence of a large number of (equivalence classes of) inter-
leavings. The recent development in CHESS [25] also allows the tool to perform
context bounded model checking. However, it is not intuitive to ask from user
for a preset value on the number of context switches. CheckFence [5] checks all
concurrent executions of a given C program on a relaxed memory model and
verifies that they are observationally equivalent to a sequential execution, which
targets a different application than ours.

7 Experiments

We have implemented a prototype of TDV using the Yices SMT solver [10],
which is capable of deciding formulas with a combination of theories including
propositional logic, linear arithmetic, and arrays. We performed two case studies.
The first case study is on the example shown in Fig. 4 with multiple threads and
recursions, and the second case study is on a file system implementation, which
was previously used in [16]. Our experiments were conducted on a workstation
with Pentium D 2.8 GHz CPU and 4GB memory running Red Hat Linux 7.2.

Table 2 shows the results of the first case study. By changing the value of the
test variable a, we can increase the number of threads and the level of recursion.
Column 1 lists the number of threads. Columns 2 and 3 show the peak memory

Trace-Driven Verification of Multithreaded Programs 417

Table 3. Bounded model checking (BMC), trace-driven verification (TDV), and trace-
driven verification with optimizations (TDVO)

filesystem example BMC TDV TDVO
#threads depth prop mem time mem time speedup mem time speedup

2 10 sat 13.51 34.8 8.86 15.7 2.22 7.58 1.7 20.47
2 16 sat 42.72 665.0 18.14 126.0 5.28 12.82 9.4 70.74
2 22 sat 40.56 2324.6 23.44 212.5 10.94 25.37 15.9 91.63
3 21 sat 194.21 49642.3 42.77 1823.1 27.23 30.95 381.8 130.02
2 10 unsat 7.50 7.2 5.36 1.03 6.99 5.27 0.26 27.69
2 16 unsat 15.85 824.9 13.37 82.7 9.97 7.76 1.24 665.24
3 15 unsat 73.07 9488.7 11.83 122.7 77.33 9.16 8.1 1171.44

and total time usage for Bounded Model Checking (BMC) without dynamic
execution and abstraction. Columns 4 and 5 show the peak memory and total
time usage for TDV. Note that optimizations has been applied to both methods.
The last Column shows the speedup of the new method. A one-hour timeout
limit is used in all the experiments. BMC ran out of time for test cases with
more than 50 threads, while our method took only 407 seconds to complete 80
threads.

We also performed the experiments on the file system example, which is de-
rived from a synchronization idiom found in the Frangipani file system. Table 3
shows the results we obtained by comparing BMC and TDV, both without and
with optimizations. The results show that TDV gains a speedup from 1.46 to
77.33 over BMC, and the TDV with optimizations gains a speedup from 5.87 to
1171.44 over BMC, with an average speedup of 299.

8 Conclusion and Future Work

We have presented a new method to combine the efficiency of dynamic executions
with the reasoning power of an SMT solver for the verification of safety proper-
ties of multithreaded programs. The main contributions are (1) a new symbolic
encoding of executions of a multithreaded program, (2) using both under- and
over-approximations in the same trace-driven abstraction framework, where re-
finement involving the mutual guidance between concrete program execution and
symbolic analysis. For future work, we plan to investigate performance enhance-
ment techniques, such as minimal unsatisfiable core analysis [23] and dynamic
path reduction [31], to allow TDV to scale to larger programs.

References

1. Andraus, Z., Sakallah, K.: Automatic abstraction and verification of verilog models.
In: Design Automation Conference (DAC), San Diego, California, pp. 218–223
(2004)

418 Z. Yang and K. Sakallah

2. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.: Automatic predicate abstrac-
tion of c programs. In: Programming Language Design and Implementation, pp.
203–213 (2001)

3. Bryant, R., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.:
Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007)

4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35(8) (1986)

5. Burckhardt, S., Alur, R., Martin, M.M.K.: Checkfence: checking consistency of con-
current data types on relaxed memory models. In: Programming language Design
and Implementation, pp. 12–21. ACM Press, New York (2007)

6. Cadar, C., Ganesh, V., Pawlowski, P., Dill, D., Engler, D.: EXE: automatically gen-
erating inputs of death. In: ACM Conference on Computer and Communications
Security. ACM, New York (2006)

7. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

10. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

11. Een, N., Sorensson, N.: An extensible sat-solver. In: Satisfiability Workshop (2003)
12. Elwakil, M., Yang, Z.: Debugging Support Tool for MCAPI Applications. In: Work-

shop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (2010)
13. Elwakil, M., Yang, Z., Wang, L.: CRI: Symbolic Debugger for MCAPI Applications.

In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 353–358.
Springer, Heidelberg (2010)

14. Elwakil, M., Yang, Z., Wang, L., Chen, Q.: Message race detection for web services
by an smt-based analysis. In: Sadjadi, S.M. (ed.) ATC 2010. LNCS, vol. 6407,
pp. 182–194. Springer, Heidelberg (2010)

15. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Principles of Programming languages, pp. 110–121 (2005)

16. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. SIGPLAN Not. 40(1), 110–121 (2005)

17. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems.
LNCS, vol. 1032. Springer, Heidelberg (1996)

18. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In:
PLDI, pp. 213–223 (2005)

19. Grumberg, O., Lerda, F., Strichman, O., Theobald, M.: Proof-guided
underapproximation-widening for multi-process systems. SIGPLAN Notices 40(1),
122–131 (2005)

20. Gulavani, B., Henzinger, T., Kannan, Y., Nori, A., Rajamani, S.: SYNERGY: a
new algorithm for property checking. In: Foundations of Software Engineering, pp.
117–127 (2006)

Trace-Driven Verification of Multithreaded Programs 419

21. Ivančić, F., Shlyakhter, I., Gupta, A., Ganai, M., Kahlon, V., Wang, C., Yang,
Z.: Model checking C program using F-Soft. In: IEEE International Conference on
Computer Design, San Jose, CA (October 2005)

22. Kurshan, R.P.: Computer-aided verification of coordinating processes. Princeton
University Press, Princeton (1994)

23. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reason. 40(1), 1–33 (2008)

24. Majumdar, R., Sen, K.: Hybrid concolic testing. In: International Conference on
Software Engineering. IEEE, Los Alamitos (2007)

25. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. SIGPLAN Not. 42(6), 446–455 (2007)

26. Pugh, W.: The omega test: a fast and practical integer programming algorithm for
dependence analysis. In: ACM/IEEE Conference on Supercomputing, pp. 4–13.
ACM, New York (1991)

27. Wang, C., Kim, H., Gupta, A.: Hybrid CEGAR: combining variable hiding and
predicate abstraction. In: International Conference on Computer Aided Design,
pp. 310–317 (2007)

28. Wang, C., Kundu, S., Ganai, M., Gupta, A.: Symbolic predictive analysis for con-
current programs. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850,
pp. 256–272. Springer, Heidelberg (2009)

29. Wang, C., Yang, Z., Kahlon, V., Gupta, A.: Peephole partial order reduction. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 382–396.
Springer, Heidelberg (2008)

30. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Runtime model checking
of multithreaded C/C++ programs. Technical Report UUCS-07-008, School of
Computing, University of Utah (2007)

31. Yang, Z., Al-Rawi, B., Sakallah, K., Huang, X., Smolka, S., Grosu, R.: Dynamic
path reduction for software model checking. In: Leuschel, M., Wehrheim, H. (eds.)
IFM 2009. LNCS, vol. 5423. Springer, Heidelberg (2009)

32. Yang, Z., Wang, C., Gupta, A., Ivanvčić, F.: Model checking sequential software
programs via mixed symbolic analysis. ACM Transactions on Design Automation
of Electronic Systems 14(1), 1–26 (2009)

Closed Form Approximations for Steady State
Probabilities of a Controlled Fork-Join Network�

Jonathan Billington and Guy Edward Gallasch

Computer Systems Engineering Centre
School of Electrical and Information Engineering

University of South Australia
Mawson Lakes Campus, SA, 5095, Australia

{jonathan.billington,guy.gallasch}@unisa.edu.au

Abstract. Ourwork ismotivated by just-in-timemanufacturing systems,
where goods are produced on demand. We consider a class of products
made from two components each manufactured by its own production line.
The components are then assembled, requiring synchronisation of the two
lines. The production lines are coordinated to ensure that one line does not
get ahead of the other by more than a certain number of components, N ,
a parameter of the system. We assume that the statistics of the processes
follow exponential distributions, with requests to manufacture the prod-
uct arriving at a rate λ0 and the two production lines having rates λ1 and
λ2. Generalised Stochastic Petri Nets (GSPN) are used to model this sys-
tem where N is the initial marking of a control place. TimeNET is used to
calculate the stationary token distribution of the GSPN as N increases, re-
vealing convergence of the steady state probabilities. We characterise the
range of rates for which useful convergence occurs using a large number of
TimeNET runs and show how these results can be used to approximate the
steady state probabilities for arbitrarily large N , to a desired level of ac-
curacy. Further, for λ0 > min(λ1, λ2) we discover geometric progressions
in the steady state probabilities once they have converged. We use these
progressions to derive closed form approximations, the accuracies of which
increase as N increases.

Keywords: Fork-Join, Generalised Stochastic Petri Nets, Parametric
Performance Analysis, Convergence, Closed Form Approximation, Geo-
metric Progressions.

1 Introduction

We consider the computer control of a class of just in time manufacturing systems
where goods are made from two different components (C1 and C2) based on
customer demand. Everyday examples include hardware goods (e.g. hammers,
screwdrivers, rakes, potato peelers). Each component is manufactured by its own
production line, possibly by different manufacturers. The two production lines

� Supported by Australian Research Council Discovery Project DP0880928.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 420–435, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Closed Form Approximations for Steady State Probabilities 421

need to be synchronised for assembly of the goods from the two components. The
manufacturing system is driven by customer demand, so that no more goods are
produced than those requested. Importantly, production is controlled so that
each line can only be ahead of the other by a certain amount, to meet storage
capacity constraints and to mitigate risk. Further, although the two types of
components are different (e.g. a hammer’s handle and head), components of the
same type are identical, and hence the final product is made by assembling any
available C1 component with any available C2 component.

Our goal is to analyse the performance of such systems to derive measures such
as the average number of components one production line is ahead of another.
However, the modelling of parallel systems where coordination and synchronisa-
tion occur requires the use of fork-join structures [1]. This presents significant
challenges because product form solutions do not exist in general for systems with
synchronisation. Due to their importance, fork-join systems have been studied by
many authors (e.g. [2,3,4,5,1,6,7,8,9,10,11,12]). Basically these papers endeavour
to find the mean response time of a job submitted to such systems, and often
assume first come first served (FCFS) queueing disciplines. Our system is quite
different. There is no identification of jobs (components) in our system, as any
two of the different components can be assembled to form the same product.
There is also no FCFS queueing discipline required for input or output. More-
over, in these papers, there is no concept of controlling the fork-join system to
prevent one branch of the fork-join getting too far ahead of another. Our work
has some similarities with the important class of assemble to order (ATO) sys-
tems [13], where several different products can be assembled from a number of
components. However, our system is concerned with production of the compo-
nents on demand, rather than their assembly on demand, and is more akin to
(very simple) build to order (BTO) systems [14]. As far as we are aware the work
on ATO systems (see [13] for an overview) does not handle the coordination of
production lines to prevent too many of one component being produced.

We take advantage of the features of Generalised Stochastic Petri Nets
(GSPNs) [15,16] to model this class of system. The two parallel production lines
and their synchronisation are represented by a fork-join subnet. The fork-join
subnet comprises two parallel branches where each branch includes a transition
with a firing time governed by the exponential distribution. There is a further
exponential transition representing requests, that feeds the fork-join. The envi-
ronment of the fork-join ensures that one line can never be ahead of the other by
more than N components. We can then use steady state Markov analysis [15,16]
to derive performance measures for this system. Since we wish to characterise
the system’s behaviour as N is varied, we treat N as a positive integer parameter
of the system. Earlier work [17,18] was concerned with aggregating the fork-join
subnet. Unfortunately, these results are not applicable for our work, since ag-
gregation does not allow any performance measures to be calculated within the
fork-join, which is our goal.

Since finding exact closed form solutions for arbitrary N is very difficult [19]
due to the fork-join, this paper is concerned with approximate solutions. Very

422 J. Billington and G.E. Gallasch

recently [20] we calculated the steady state probabilities of the GSPN using
TimeNET [21] over a wide range of transition rates, and for N up to 50, which
revealed convergence as N increases. We denoted the value of N by which con-
vergence occurred to dp decimal places by Ncdp and showed how Ncdp varies
as a function of ratios of the rates and dp. This allowed us to approximate the
probabilities for arbitrary N > Ncdp to a certain accuracy within the useful
convergence region. In [20], we also derived a heuristic to estimate Ncdp.

This paper builds on the results in [20]. Firstly, results in this paper are more
comprehensive, incorporating values of N up to 100, and additional values of
the rates. We thus provide a better characterisation of convergence which allows
its useful range to be extended. Secondly, our previous results suffered from
rounding anomalies [20], which led to ‘bumps’ in the graphs and failures in the
heuristic (see Figs. 3 and 4 and Table 3 of [20]). This is overcome in this paper
by redefining Ncdp to be the value of N by which the probabilities are within
0.5 × 10−dp of the converged value, which is now estimated by the probability
when N = 100 (rather than 50). Thirdly, this paper provides a much better
demonstration that Ncdp increases approximately linearly with dp, and uses a
different example with two dimensional graphs to better illustrate the results.
Finally, in contrast with [20], we do not consider heuristics for determining the
value of Ncdp. Instead we concentrate on providing closed form approximate
solutions. When the rate of customer requests exceeds the minimum production
line rate, geometric progressions exist in the converged steady state probabilities.
We use these progressions to derive closed form approximate solutions for the
probabilities in terms of the rates and the capacity N . Importantly, the accuracy
of the approximation increases as N increases, allowing solutions to be obtained
for plants with very large capacities.

The structure of the paper is as follows. Section 2 presents the parametric
GSPN model, while its associated family of continuous time Markov chains is
discussed in Section 3. Section 4 characterises the convergence of the steady
state probabilities. Approximate closed form solutions are derived in Section 5,
which also discusses their accuracy. Conclusions are drawn in Section 6. Some
familiarity with GSPNs and their analysis [15,16] is assumed.

2 Parametric GSPN Model

We consider the parametric GSPN, GSPNN , shown in Fig. 1, which is essentially
the same as in [17]. GSPNN includes a fork-join subnet with 2 branches between
immediate transitions, t1 (the fork) and t2 (the join). The remaining transitions
are exponentially distributed timed transitions with their own rates, i.e. λi is
associated with Ti, i ∈ {0, 1, 2}. The left branch of the subnet (P1, T1, P3) repre-
sents the production of component C1 (stored in P3) and the right (P2, T2, P4)
the production of C2 (stored in P4). Place P0 controls the capacity of the produc-
tion lines. Initially all places are empty except for P0 which contains N tokens,
restricting the capacity of the lines to N components. T0 represents customer
requests. Each request results in 1 unit of the raw materials needed to create

Closed Form Approximations for Steady State Probabilities 423

components C1 and C2 being deposited in places P1 and P2 respectively (via
the fork). P1 and P2 represent stores for the raw material, which is not identified
nor related to a particular request. For efficiency, as soon as both components
are available they are removed immediately (transition t2) for assembly, free-
ing up capacity in the lines. This is modelled by a token being added to P0

indicating that there is now additional capacity for each component. GSPNN

ensures that the same number of components (C1 and C2) is produced as goods
requested, eliminating waste, and that they are produced on demand. It also en-
sures that no more than N C1 components can be produced in advance of a C2
component and vice versa, providing the desired level of coordination between
the production lines.

T1

P1

T2

P2

NP0

T0

P3 P4

P

t1

t2

Fig. 1. GSPNN with a Fork-Join Subnet

3 Family of Continuous Time Markov Chains

We would like to obtain steady state solutions for the probability of being in a
particular marking of the GSPN. Unfortunately, obtaining analytical solutions
for the steady state probabilities is a difficult problem for arbitrary N , due to
the lack of product form solutions. We thus turn to numerical solutions using
TimeNET [21], which can calculate the steady state probabilities directly from
the GSPN. However, to discuss the results, we firstly provide some insight into
the structure of the family of continuous time Markov chains (CTMCs) that are
associated with GSPNN , and define some notation for them.

The family of CTMCs, CTMC N , can be derived from GSPNN by generating
its reduced reachability graph [15,16]. We depict CTMC N for N = 1, 2, 3 in
Fig. 2. We can observe that the number of states in CTMC N is (N + 1)2. We
number the states from 1 to (N + 1)2 in vertical columns, from left to right and
top to bottom. The initial marking is mapped to state 1, the top right vertex is
state N2 + 1, and the bottom right vertex is state (N + 1)2. Note the symmetry
about the horizontal centre row. Finally we denote the steady state probability
of state i of CTMC N by π(N,i), 1 ≤ i ≤ (N + 1)2.

424 J. Billington and G.E. Gallasch

13

12

10

16

15

14

11

1 7

6

3

2

5

4

9

8

7

6

5

9

8

1 3

2

4

1 3

2

4

λ1

λ0

λ2

λ1

λ2

λ2
λ1

λ2
λ1

λ0

λ0

λ1

λ0

λ2

λ1

λ2

λ2
λ1

λ2
λ1

λ2
λ1

λ1

λ2

λ0

λ0

λ0

λ0

λ0

λ1

λ2

λ2
λ1

λ1

λ2

λ1

λ0

λ2

λ1

λ2

λ2
λ1

λ2
λ1

λ0

λ0

λ0

λ2

λ1

λ0

λ2

λ1

λ1

λ2

N = 3N = 2N = 1

Fig. 2. CTMCN for N = 1, 2 and 3

4 Characterising Convergence

Using TimeNET, we have performed steady state analysis of GSPNN for N
from 1 to 100 for a wide range of firing rates, which we call configurations .
Inspection of the results has identified powerful convergence trends that allow
the approximation of the steady state probabilities for arbitrary N with excellent
accuracy, based on the probabilities for moderately large N .

Because the results depend on ratios of the firing rates, and taking into account
the symmetry between λ1 and λ2, we fixed λ1 to 1 while varying λ2 and λ0. For
N from 1 to 100 we analysed 448 different configurations in which λ2 varied over
1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 2, 3, 4, 5, 8, 10, 20, 50 and 100, and λ0 over 0.01, 0.02,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 2, 3, 4,
5, 8, 10, 20, 50 and 100, a total of 44800 TimeNET runs. We chose these values
due to convergence being less rapid as the rates approach each other, (i.e. as
the ratios approach 1). Because of the dependence on ratios of firing rates, these
results can be scaled to an unbounded number of configurations that maintain
the ratios, λ0

λ1
and λ2

λ1
.

4.1 Convergence When λ0 < min(λ1, λ2)

Consider the example of λ0 = 0.2, λ1 = 1 and λ2 = 2. Tables 1 and 2 present the
steady state probabilities (to 4 decimal places) of all four states of the CTMC
when N = 1, all 9 states when N = 2, all 16 states when N = 3, and the first
16 states (i.e. the first 4 columns of the CTMC) for N from 4 to 10 and for
N = 100. Steady state probabilities increase to the left of the CTMC due to λ0

being smaller than both λ1 and λ2, and are biased toward the states in the lower
half of the CTMC (e.g. π(N,4) > π(N,2)) due to λ2 > λ1. The reverse bias would
exist if λ1 > λ2 due to the symmetry of the CTMC.

Closed Form Approximations for Steady State Probabilities 425

Table 1. Convergence of π(N,1) to π(N,9) as N increases for λ0 =0.2, λ1 =1 and λ2 =2

π(N,1) π(N,2) π(N,3) π(N,4) π(N,5) π(N,6) π(N,7) π(N,8) π(N,9)

N=1 0.8108 0.0270 0.0541 0.1081
N=2 0.7801 0.0256 0.0535 0.1048 0.0014 0.0029 0.0036 0.0094 0.0187
N=3 0.7745 0.0254 0.0531 0.1041 0.0014 0.0029 0.0037 0.0094 0.0186
N=4 0.7734 0.0254 0.0531 0.1039 0.0014 0.0029 0.0037 0.0094 0.0186
N=5 0.7732 0.0254 0.0531 0.1039 0.0014 0.0029 0.0037 0.0094 0.0186
N=6 0.7732 0.0254 0.0530 0.1039 0.0014 0.0029 0.0037 0.0094 0.0186
N=7 0.7732 0.0254 0.0530 0.1039 0.0014 0.0029 0.0037 0.0094 0.0186
N=8 0.7732 0.0254 0.0530 0.1039 0.0014 0.0029 0.0037 0.0094 0.0186
N=9 0.7732 0.0254 0.0530 0.1039 0.0014 0.0029 0.0037 0.0094 0.0186
N=10 0.7732 0.0254 0.0530 0.1039 0.0014 0.0029 0.0037 0.0094 0.0186
N=100 0.7732 0.0254 0.0530 0.1039 0.0014 0.0029 0.0037 0.0094 0.0186

Table 2. Convergence of π(N,10) to π(N,16) as N increases for λ0 = 0.2, λ1 = 1 and
λ2 =2

π(N,10) π(N,11) π(N,12) π(N,13) π(N,14) π(N,15) π(N,16)

N=1
N=2
N=3 0.0001 0.0002 0.0003 0.0002 0.0008 0.0018 0.0035
N=4 0.0001 0.0002 0.0003 0.0003 0.0008 0.0018 0.0035
N=5 0.0001 0.0002 0.0003 0.0003 0.0008 0.0018 0.0035
N=6 0.0001 0.0002 0.0003 0.0003 0.0008 0.0018 0.0035
N=7 0.0001 0.0002 0.0003 0.0003 0.0008 0.0018 0.0035
N=8 0.0001 0.0002 0.0003 0.0003 0.0008 0.0018 0.0035
N=9 0.0001 0.0002 0.0003 0.0003 0.0008 0.0018 0.0035
N=10 0.0001 0.0002 0.0003 0.0003 0.0008 0.0018 0.0035
N=100 0.0001 0.0002 0.0003 0.0003 0.0008 0.0018 0.0035

When considering convergence of these probabilities to a given number of
decimal places dp, we require that all probabilities must be within ±0.5×10−dp

of their final converged value. Taking the probabilities obtained for N = 100 as
a close approximation of their converged values, we can see from Table 1 that,
for example, π(N,1) converges to within 0.5 × 10−3 of its final value by N = 4.
For this configuration, all probabilities have converged to within 0.5 × 10−3 of
their final values by N = 4, including π(N,17) to π(N,(N+1)2) not shown in these
two tables where for 5 ≤ N ≤ 100 all additional states (that don’t exist when
N = 4) have probabilities less than 0.5 × 10−3 (effectively zero for this degree
of accuracy). Hence, for this configuration, these convergence results mean that
the steady state probabilities can be approximated to three decimal places for
arbitrary N > 4 for states 1 to 25 by π(4,1) to π(4,25) and by 0 for states 26 to
(N + 1)2.

We can now generalise this result for any number of decimal places. Let
Ncdp be the minimum value of N by which convergence has occurred to within
0.5×10−dp with all additional states for N > Ncdp having probabilities less than

426 J. Billington and G.E. Gallasch

0.5 × 10−dp. Then for arbitrary N > Ncdp the probabilities are given to within
0.5× 10−dp of their final converged values by:

1. π(N,i) = π(Ncdp,i) for 1 ≤ i ≤ (Ncdp + 1)2; and
2. π(N,i) = 0 for (Ncdp + 1)2 < i ≤ (N + 1)2.

For example, for the considered configuration, Nc3 = 4 (as described above),
Nc4 = 6 and Nc5 = 7. We discuss the practicality of this convergence result in
section 4.3.

4.2 Convergence When λ0 > min(λ1, λ2)

For this scenario, λ1 = 1 and λ2 = 2 as before, but now λ0 = 5, so that λ0

is a factor of 5 larger than min(λ1, λ2) instead of a factor of 5 smaller. In this
situation the steady state probabilities increase toward the right edge of the
CTMC due to λ0 > min(λ1, λ2), and toward the lower edge of the CTMC due
to λ2 > λ1.

Table 3 presents the steady state probabilities (to 4 decimal places) of the
states in the right-most vertical column of CTMC N , from the lower edge (state
(N + 1)2) towards the upper edge (state N2 + 1) as N increases. Tables 4 and 5
do the same for the states in the second and third vertical columns from the
right respectively. These probabilities (and those not shown in Tables 3 to 5)
converge to within 0.5 × 10−3 of their final values by Nc3 = 7. Hence it is pos-
sible to approximate the steady state probabilities for arbitrary N > 7, to 3
decimal places, using the values for Nc3 = 7, however it is not as straightforward
as it was when λ0 < min(λ1, λ2). Because probabilities increase toward the lower
right vertex of the CTMC and not the left vertex of the CTMC, the converged
probabilities are associated with states that are relative to the lower right vertex,
(N + 1)2, (rather than state 1, the left vertex) as N increases. Hence, the prob-
abilities of the lower right states of CTMCN , N > Ncdp, are approximated by
the probabilities of the states in CTMCNcdp

. For this example, π(N,(N+1)2−14)

to π(N,(N+1)2) for N > 7 can be approximated by π(7,50) to π(7,64) (from an ex-
tended Table 3), π(N,N2−12) to π(N,N2) can be approximated by π(7,37) to π(7,49)

(from an extended Table 4), π(N,(N−1)2−10) to π(N,(N−1)2) can be approximated
by π(7,26) to π(7,36)(from Table 5), π(N,(N−2)2−8) to π(N,(N−2)2) can be approxi-
mated by π(7,17) to π(7,25), π(N,(N−3)2−6) to π(N,(N−3)2) can be approximated by
π(7,10) to π(7,16), π(N,(N−4)2−4) to π(N,(N−4)2) can be approximated by π(7,5) to
π(7,9), π(N,(N−5)2−2) to π(N,(N−5)2) can be approximated by π(7,2) to π(7,4) and
π(N,(N−6)2) can be approximated by π(7,1). The remaining state probabilities are
approximated by zero. This can be generalised to the following approximation
for arbitrary N > Ncdp:

1. π(N,(N−x+1)2−y) = π(Ncdp,(Ncdp−x+1)2−y), for 0 ≤ x ≤ Ncdp and 0 ≤ y ≤
2(Ncdp − x); and

2. π(N,i) = 0 for all other states, i.e. for 1 ≤ i ≤ (N−Ncdp)2 and (N−x)2 +1 ≤
i ≤ (N − x)2 + 2(N −Ncdp) where 0 ≤ x ≤ Ncdp.

where this essentially translates the probabilities of CTMC Ncdp
to the bottom

right corner of CTMC N , with the remaining probabilities equal to zero.

Closed Form Approximations for Steady State Probabilities 427

Table 3. Convergence of π(N,(N+1)2) to π(N,N2+1) as N increases for λ0 = 5, λ1 = 1
and λ2 = 2 (A denotes (N + 1)2)

π(N,A) π(N,A−1) π(N,A−2) π(N,A−3) π(N,A−4) π(N,A−5) π(N,A−6) π(N,A−7) π(N,A−8)

N=1 0.4878 0.2439 0.1220
N=2 0.4216 0.2108 0.0937 0.0586 0.0293
N=3 0.4057 0.2029 0.0998 0.0434 0.0288 0.0153 0.0076
N=4 0.4015 0.2007 0.1001 0.0491 0.0213 0.0144 0.0078 0.0040 0.0020
N=5 0.4004 0.2002 0.1001 0.0499 0.0244 0.0106 0.0072 0.0039 0.0020
N=6 0.4001 0.2000 0.1000 0.0500 0.0249 0.0122 0.0053 0.0036 0.0020
N=7 0.4000 0.2000 0.1000 0.0500 0.0250 0.0125 0.0061 0.0026 0.0018
N=8 0.4000 0.2000 0.1000 0.0500 0.0250 0.0125 0.0062 0.0031 0.0013
N=9 0.4000 0.2000 0.1000 0.0500 0.0250 0.0125 0.0062 0.0031 0.0015
N=10 0.4000 0.2000 0.1000 0.0500 0.0250 0.0125 0.0062 0.0031 0.0016
N=100 0.4000 0.2000 0.1000 0.0500 0.0250 0.0125 0.0063 0.0031 0.0016

Table 4. Convergence of π(N,N2) to π(N,(N−1)2+1) as N increases for λ0 = 5, λ1 = 1
and λ2 = 2 (A denotes N2)

π(N,A) π(N,A−1) π(N,A−2) π(N,A−3) π(N,A−4) π(N,A−5) π(N,A−6) π(N,A−7) π(N,A−8)

N=1 0.1463
N=2 0.0890 0.0562 0.0164
N=3 0.0818 0.0425 0.0261 0.0086 0.0034
N=4 0.0804 0.0404 0.0209 0.0128 0.0044 0.0018 0.0008
N=5 0.0801 0.0401 0.0202 0.0104 0.0064 0.0022 0.0009 0.0004 0.0002
N=6 0.0800 0.0400 0.0200 0.0101 0.0052 0.0032 0.0011 0.0005 0.0002
N=7 0.0800 0.0400 0.0200 0.0100 0.0050 0.0026 0.0016 0.0006 0.0002
N=8 0.0800 0.0400 0.0200 0.0100 0.0050 0.0025 0.0013 0.0008 0.0003
N=9 0.0800 0.0400 0.0200 0.0100 0.0050 0.0025 0.0013 0.0007 0.0004
N=10 0.0800 0.0400 0.0200 0.0100 0.0050 0.0025 0.0013 0.0006 0.0003
N=100 0.0800 0.0400 0.0200 0.0100 0.0050 0.0025 0.0013 0.0006 0.0003

Table 5. Convergence of π(N,(N−1)2) to π(N,(N−2)2+1) as N increases for λ0 = 5, λ1 = 1
and λ2 = 2 (A denotes (N − 1)2)

π(N,A) π(N,A−1) π(N,A−2) π(N,A−3) π(N,A−4) π(N,A−5) π(N,A−6) π(N,A−7) π(N,A−8)

N=1
N=2 0.0244
N=3 0.0170 0.0102 0.0024
N=4 0.0162 0.0084 0.0049 0.0013 0.0004
N=5 0.0160 0.0081 0.0042 0.0024 0.0007 0.0002 0.0001
N=6 0.0160 0.0080 0.0040 0.0021 0.0012 0.0003 0.0001 0.0000 0.0000
N=7 0.0160 0.0080 0.0040 0.0020 0.0010 0.0006 0.0002 0.0001 0.0000
N=8 0.0160 0.0080 0.0040 0.0020 0.0010 0.0005 0.0003 0.0001 0.0000
N=9 0.0160 0.0080 0.0040 0.0020 0.0010 0.0005 0.0003 0.0002 0.0000
N=10 0.0160 0.0080 0.0040 0.0020 0.0010 0.0005 0.0003 0.0001 0.0001
N=100 0.0160 0.0080 0.0040 0.0020 0.0010 0.0005 0.0003 0.0001 0.0001

428 J. Billington and G.E. Gallasch

4.3 Characterisation of Convergence

The above convergence experiments have been repeated for all configurations
and for accuracies of 0.5× 10−dp, 1 ≤ dp ≤ 10. For dp = 3 the values of Nc3 are
depicted in Fig. 3 for λ2

λ1
= 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 2, 5, 10 and 100. The x-axis

of this graph uses a log scale, to depict λ0
λ1

from 0.01 to 100. λ0 = 1 is hence
positioned at the centre of the x-axis. A clear trend evident from this graph is
for convergence to slow as λ0 approaches min(λ1, λ2) = 1 from both below and
above.

When λ0
λ1

approaches 1 from below, the speed of convergence varies signifi-
cantly with λ0 but exhibits little or no variation when varying λ2 (the curves sit
almost on top of each other). However, for λ0

λ1
> 1, the value of λ2 has a signif-

icant impact. For λ2
λ1

= 100, the speed of convergence as λ0
λ1

increases from 1 to
100 follows a trend that is the mirror of the trend as λ0

λ1
decreases from 1 to 0.01.

However, for decreasing λ2
λ1

, the speed of convergence diverges from this trend at
increasingly smaller λ0

λ1
values. For example, for λ2

λ1
= 1.1, the divergence occurs

at around λ0
λ1

= 1.2. The values of Nc3 then increase from 31 (λ0
λ1

= 1.2), to 38
(λ0

λ1
= 2) before decreasing to 27 (λ0

λ1
= 20) and appearing to remain constant as

λ0
λ1

increases to 100. It is clear that the severity of the deviation increases as λ2

approaches λ1. The point at which the deviation occurs is less clear, although we
observe that it appears to roughly coincide with the point at which λ0 becomes
larger than λ2.

10
−2

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

60

λ0
λ1

N
c
3

λ2
λ1

= 1.1
λ2
λ1

= 1.2
λ2
λ1

= 1.3
λ2
λ1

= 1.4
λ2
λ1

= 1.5
λ2
λ1

= 1.7
λ2
λ1

= 2.0
λ2
λ1

= 5.0
λ2
λ1

= 10.0
λ2
λ1

= 100.0

Fig. 3. Nc3 values when varying λ0 and λ2

Closed Form Approximations for Steady State Probabilities 429

1 2 3 4 5 6 7 8 9 10
1

10

20

30

40

50

60

70

80

90

100

dp

N
c
d
p

 λ0
λ1

= 0.01
λ0
λ1

= 0.1
λ0
λ1

= 0.2
λ0
λ1

= 0.3
λ0
λ1

= 0.4
λ0
λ1

= 0.5
λ0
λ1

= 0.6
λ0
λ1

= 0.7
λ0
λ1

= 0.8
λ0
λ1

= 0.9

Fig. 4. Ncdp for varying dp from 1 to 10, and varying λ0 from 0.01 to 0.9, with λ2 = 2

The case of λ2
λ1

= 1 is not depicted in Fig. 3. When λ2
λ1

= 1 we observed that,
for λ0 < λ1, the corresponding values of Nc3 followed the same trend as all other
λ2
λ1

ratios depicted in the left half of Fig. 3. However, when λ0 > λ1, convergence
of steady state probabilities to within 0.5× 10−3 of their final converged values
did not occur for N ≤ 100.

The graph in Fig. 4 depicts Ncdp for 1 ≤ dp ≤ 10 and selected values of λ0

from 0.01 to 0.9, with λ2 = 2. We observe that Ncdp increases approximately
linearly in dp. This trend is also evident for λ0 from 1.1 to 100 (not depicted in
Fig. 4). Again, convergence slows as λ0 approaches λ1, as observed for Nc3 in
Fig. 3. This linear trend, when extrapolated, allows prediction of Ncdp for any
dp > 10.

From these observations, it is possible to characterise the ranges of ratios of
rates for which useful convergence results can be obtained:

– λ0
λ1
≤≈ 0.9 and any value of λ2

λ1
≥ 1, and

– λ0
λ1
≥≈ 1.1 and λ2

λ1
≥≈ 1.1;

where the convergence results become more accurate (i.e. can be determined for
larger dp values) as λ0 becomes increasingly smaller than λ1, or λ0 > λ1 and λ0

or λ2 become increasingly larger than λ1.

5 Closed Form Approximate Probabilities

In this section we derive closed form expressions for the steady state probabilities
based on the observation that, for λ0 > min(λ1, λ2), when the probabilities have
converged they follow geometric progressions.

430 J. Billington and G.E. Gallasch

5.1 Approximate Probabilities When λ0 > min(λ1, λ2)

From Tables 3, 4 and 5 we can see that the probabilities follow two geometric
progressions once they have converged. The first has a common ratio of λ1

λ2
from

bottom to top of each vertical column of states in each CTMC. For example,
in each of Tables 3, 4 and 5, we see that each entry from left to right in the
row for N = 100 is multiplied by λ1

λ2
= 0.5. The second geometric progression

is along the bottom boundary of the CTMC, from π(N,(N+1)2) to π(N,1), where
the common ratio is λ1

λ0
= 0.2 as can be seen in Tables 3, 4 and 5 by comparing

the corresponding entries in each table when N = 100. This is the case for all
our results when λ0 > min(λ1, λ2). Hence, once the probabilities have converged
we can express each probability in terms of π(N,(N+1)2), using these geometric
progressions. For N ≥ Ncdp, λ0 > λ1, λ2 > λ1, we have:

π(N,(x+1)2−y) =
(
λ1

λ0

)N−x (
λ1

λ2

)y

π(N,(N+1)2), 0 ≤ x ≤ N and 0 ≤ y ≤ 2x (1)

Because the sum of these probabilities equals 1, we can determine π(N,(N+1)2).
Let r10 = λ1

λ0
and r12 = λ1

λ2
in equation (1), then:

N∑
x=0

2x∑
y=0

r10
N−xr12

yπ(N,(N+1)2) = 1

⇒ π(N,(N+1)2)

N∑
x=0

r10
N−x

2x∑
y=0

r12
y = 1

⇒ π(N,(N+1)2)

N∑
x=0

r10
N−x

(
1− r12

2x+1

1− r12

)
= 1

⇒ π(N,(N+1)2)

N∑
x=0

r10
N−x(1− r12

2x+1) = 1− r12

⇒ π(N,(N+1)2) =
1− r12

Sum
(2)

where

Sum =
N∑

x=0

r10
N−x(1 − r12

2x+1)

=
N∑

x=0

r10
x − r12r10

N
N∑

x=0

(
r12

2

r10

)x

=
1− r10

N+1

1− r10
− r12r10

NSumB

Closed Form Approximations for Steady State Probabilities 431

with

SumB =
N∑

x=0

(
r12

2

r10

)x

=

⎧⎪⎨⎪⎩
N + 1, r10 = r12

2

1−
(

r12
2

r10

)N+1

1− r122
r10

, otherwise

so that

Sum =
1− r10

N+1

1− r10
−

{
r12(N + 1)r10

N , r10 = r12
2

r12

(
r10

N+1−r12
2(N+1)

r10−r122

)
, otherwise

Because we are interested in the result when the probabilities have converged,
we take the limit of Sum as N → ∞. As |r10| < 1 and |r12| < 1, r10

N+1,
r12

2(N+1) and (N + 1)r10
N all tend to 0 as N →∞, and thus

lim
N→∞

Sum =
1

1− r10
(3)

Using equation (3) in equation (2) yields

lim
N→∞

π(N,(N+1)2) = (1− r10)(1 − r12) =
(

1− λ1

λ0

)(
1− λ1

λ2

)
Thus for λ0 > λ1 and λ2 > λ1, we can approximate the steady state proba-

bilities by using this result in equation (1).

π(N,(x+1)2−y) ≈
(
λ1

λ0

)N−x (
λ1

λ2

)y (
1− λ1

λ0

)(
1− λ1

λ2

)
,

0 ≤ x ≤ N, 0 ≤ y ≤ 2x
(4)

Similarly, due to symmetry, for λ0 > λ2, λ1 > λ2, the steady state probabilities
are approximated by

π(N,(x2+1)+y) ≈
(
λ2

λ0

)N−x (
λ2

λ1

)y (
1− λ2

λ0

)(
1− λ2

λ1

)
,

0 ≤ x ≤ N, 0 ≤ y ≤ 2x
(5)

5.2 Accuracy of the Approximation

We expect that the approximation will not be particularly good for small N
but will become progressively better as N increases (i.e. as the probabilities
converge).

We firstly compare the approximation with Table 3. The first column of this
table gives the probabilities for π(N,(N+1)2) for N up to 10 and the value for
N = 100. From equation (4), π(N,(N+1)2) ≈ (1− λ1

λ0
)(1− λ1

λ2
) = (1−0.2)(1−0.5) =

0.4. This is the same as the value for N > 6 from the table. This is expected,

432 J. Billington and G.E. Gallasch

as the probabilities converge to dp = 3, by N = 7. The approximate value
for π(N,(N+1)2−1) is half that of π(N,(N+1)2), i.e. 0.2, which is again the value
for N > 6, but this time it is also a very good approximation for N = 6.
This trend is evident for the rest of the probabilities in Table 3. However, for
the probabilities in the last two columns, the approximation is not so good for
N = 7, but still within .5 × 10−3, which is expected when dp = 3. However,
for N > 9, the approximation is again excellent and accurate to 4 decimal
places. Similar trends occur in Tables 4 and 5. Note also from equation (4), that
π(N,N2) ≈ λ1

λ0
× π(N,(N+1)2) = 0.2 × 0.4 = 0.08, which is the converged value in

Table 4, as expected, and a similar result occurs when moving from Table 4 to
Table 5.

To evaluate the accuracy of the approximation more broadly, we took the
225 configurations in which λ0 > λ1 and λ2 > λ1, calculated the approximate
probabilities given by equation (4) for N from 1 to 100, and compared the
approximate values to the results obtained from TimeNET. We denote by Nadp

the smallest value of N by which all the approximate probabilities for a particular
configuration are accurate to within 0.5 × 10−dp of the TimeNET results for
1 ≤ dp ≤ 10. 49 of the configurations are shown in Table 6. A dash in the
table indicates that the required accuracy for the value of dp was not reached
by N = 100. These results show that the approximation achieves the specified
accuracy at a value of N that is the same or less than Ncdp. In some cases
the difference is quite significant. For example, when λ0 = 1.5, λ2 = 1.1 and
dp = 4, the approximation achieves the desired accuracy by N = 44, whereas
convergence does not occur until N = 61. This means that for this configuration
for an accuracy of dp = 4, that TimeNET results should be used for 1 ≤ N < 44,
whereas the approximation can be used for N ≥ 44. Further, for dp = 6, no
convergence result is available for N ≤ 100, whereas the approximation achieves
the desired accuracy by N = 92, allowing the results to be obtained for N ≥ 92
using the approximation, when no convergence result is available.

6 Conclusions

This paper has provided a major characterisation of the convergence of the
steady state probabilities of a parametric Generalised Stochastic Petri Net
(GSPN) with a fork-join subnet. This has led to the derivation of closed form ap-
proximate solutions under certain conditions. The GSPN has application to the
coordination and synchronisation of just-in-time manufacturing systems which
assemble two components (C1 and C2) into a product. C1 and C2 are manufac-
tured by different production lines with rates λ1 and λ2. The components are
produced on demand, with customer requests arriving at a rate λ0. The system
is controlled to ensure that one production line does not get ahead of another
by more than N components.

TimeNET was used to obtain the steady state probabilities of the system for
an extensive set of values of the rates, for N up to 100. Rapid convergence occurs
when the three rates are not too close to each other. We defined Ncdp to be the

Closed Form Approximations for Steady State Probabilities 433

Table 6. Comparison of Ncdp and Nadp for 1 ≤ dp ≤ 10

λ0
λ1

λ2
λ1

(Ncdp, Nadp) for
dp = 1 dp = 2 dp = 3 dp = 4 dp = 5 dp = 6 dp = 7 dp = 8 dp = 9 dp = 10

1.1 1.1 (6,6) (20,19) (42,40) (66,63) (90,87) (-,-) (-,-) (-,-) (-,-) (-,-)
1.1 1.3 (7,7) (25,21) (48,44) (72,67) (96,92) (-,-) (-,-) (-,-) (-,-) (-,-)
1.1 1.5 (8,7) (27,22) (50,44) (74,68) (98,92) (-,-) (-,-) (-,-) (-,-) (-,-)
1.1 2 (9,7) (28,23) (52,46) (76,70) (-,94) (-,-) (-,-) (-,-) (-,-) (-,-)
1.1 5 (10,8) (30,27) (54,51) (78,75) (-,99) (-,-) (-,-) (-,-) (-,-) (-,-)
1.1 10 (10,9) (30,29) (54,52) (78,76) (-,100) (-,-) (-,-) (-,-) (-,-) (-,-)
1.1 100 (10,10) (30,29) (54,53) (78,77) (-,-) (-,-) (-,-) (-,-) (-,-) (-,-)
1.3 1.1 (4,4) (13,11) (34,23) (58,45) (82,70) (99,94) (-,-) (-,-) (-,-) (-,-)
1.3 1.3 (5,5) (12,11) (20,19) (29,27) (38,36) (46,45) (55,54) (64,62) (73,71) (81,80)
1.3 1.5 (5,5) (12,11) (21,19) (30,28) (39,37) (47,45) (56,54) (65,63) (74,72) (82,81)
1.3 2 (5,4) (13,11) (22,19) (31,28) (40,37) (48,46) (57,54) (66,63) (75,72) (83,81)
1.3 5 (6,5) (14,12) (23,21) (32,30) (40,39) (49,47) (58,56) (67,65) (75,74) (84,82)
1.3 10 (6,5) (14,13) (23,21) (32,30) (40,39) (49,48) (58,57) (67,65) (75,74) (84,83)
1.3 100 (6,5) (14,13) (23,22) (32,31) (40,39) (49,48) (58,57) (67,66) (76,74) (84,83)
1.5 1.1 (4,4) (13,11) (36,22) (61,44) (85,68) (-,92) (-,-) (-,-) (-,-) (-,-)
1.5 1.3 (4,4) (9,8) (17,13) (26,20) (34,29) (43,38) (52,46) (61,55) (69,64) (78,73)
1.5 1.5 (4,4) (9,8) (14,13) (20,19) (26,24) (31,30) (37,36) (43,41) (48,47) (54,53)
1.5 2 (4,4) (9,8) (15,13) (21,19) (26,25) (32,30) (38,36) (43,42) (49,47) (55,53)
1.5 5 (4,3) (10,8) (15,14) (21,20) (27,25) (32,31) (38,37) (44,42) (49,48) (55,54)
1.5 10 (4,3) (10,9) (16,14) (21,20) (27,26) (33,31) (38,37) (44,43) (50,48) (55,54)
1.5 100 (5,4) (10,9) (16,15) (21,20) (27,26) (33,32) (38,37) (44,43) (50,49) (55,54)
2 1.1 (4,3) (13,10) (38,25) (62,49) (86,73) (-,98) (-,-) (-,-) (-,-) (-,-)
2 1.3 (3,3) (8,6) (17,13) (26,21) (35,30) (44,39) (53,48) (61,57) (70,65) (79,74)
2 1.5 (3,3) (6,5) (12,9) (18,15) (24,20) (29,26) (35,32) (41,37) (46,43) (52,49)
2 2 (3,3) (6,5) (9,8) (12,12) (16,15) (19,18) (22,21) (26,25) (29,28) (32,31)
2 5 (3,2) (6,5) (9,8) (13,11) (16,15) (19,18) (23,21) (26,25) (29,28) (33,31)
2 10 (3,2) (6,5) (9,8) (13,12) (16,15) (19,18) (23,22) (26,25) (29,28) (33,32)
2 100 (3,2) (6,5) (9,8) (13,12) (16,15) (19,18) (23,22) (26,25) (29,28) (33,32)
5 1.1 (5,2) (15,11) (34,31) (58,55) (83,79) (-,-) (-,-) (-,-) (-,-) (-,-)
5 1.3 (3,2) (7,7) (16,15) (25,24) (34,33) (43,41) (51,50) (60,59) (69,68) (78,77)
5 1.5 (3,2) (6,5) (12,11) (17,16) (23,22) (29,28) (34,33) (40,39) (46,45) (51,50)
5 2 (2,2) (4,4) (7,7) (11,10) (14,14) (17,17) (21,20) (24,24) (27,27) (31,30)
5 5 (1,1) (3,2) (4,4) (5,5) (7,6) (8,8) (10,9) (11,11) (13,12) (14,14)
5 10 (1,1) (3,2) (4,3) (5,5) (7,6) (8,8) (10,9) (11,11) (13,12) (14,13)
5 100 (1,1) (3,2) (4,3) (6,5) (7,6) (8,7) (10,9) (11,10) (13,12) (14,13)
10 1.1 (5,2) (15,8) (28,28) (53,52) (77,76) (-,100) (-,-) (-,-) (-,-) (-,-)
10 1.3 (3,1) (7,6) (14,14) (23,23) (32,31) (41,40) (49,49) (58,58) (67,66) (76,75)
10 1.5 (3,1) (5,5) (10,10) (16,16) (22,21) (27,27) (33,33) (39,38) (44,44) (50,50)
10 2 (2,1) (3,3) (7,7) (10,10) (13,13) (17,17) (20,20) (23,23) (27,26) (30,30)
10 5 (1,1) (2,2) (3,3) (5,5) (6,6) (8,8) (9,9) (11,10) (12,12) (13,13)
10 10 (1,1) (2,2) (3,3) (4,3) (5,4) (6,5) (7,6) (8,7) (9,8) (10,9)
10 100 (1,1) (2,1) (3,2) (4,3) (5,4) (6,5) (7,6) (8,7) (9,8) (10,9)
100 1.1 (5,1) (15,2) (27,10) (39,31) (55,55) (79,79) (-,-) (-,-) (-,-) (-,-)
100 1.3 (3,1) (7,2) (12,6) (16,15) (24,24) (33,33) (41,41) (50,50) (59,59) (68,68)
100 1.5 (3,1) (5,1) (8,5) (11,11) (16,16) (22,22) (28,28) (34,33) (39,39) (45,45)
100 2 (2,1) (3,1) (5,4) (7,7) (10,10) (14,14) (17,17) (20,20) (24,24) (27,27)
100 5 (1,1) (2,1) (2,2) (4,4) (5,5) (6,6) (8,8) (9,9) (11,11) (12,12)
100 10 (1,1) (1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9)
100 100 (1,1) (1,1) (1,1) (2,2) (2,2) (3,3) (3,3) (4,3) (4,4) (5,4)

434 J. Billington and G.E. Gallasch

value of N by which all the steady state probabilities are within 0.5× 10−dp of
their converged value. This allows approximate results accurate to dp decimal
places to be obtained for a GSPN with arbitrarily large N > Ncdp from the
probabilities of GSPNNcdp

.
For convergence to be useful, it must occur by a value of Ncdp that is small

enough to be calculated. Our characterisation has shown that for dp = 3 and
λ1 < λ2 useful convergence occurs when either λ0

λ1
is less than about 0.9, or both

λ0
λ1

and λ2
λ1

are greater than about 1.1. Thus the probabilities can be calculated
for arbitrary N to a good level of accuracy for the vast majority of rates. The
paper also demonstrates that Ncdp increases essentially linearly with dp for a
wide range of rates.

For situations in which λ0 > min(λ1, λ2), λ1 �= λ2, we identified two geomet-
ric progressions in the values of the converged steady state probabilities. For
example, when λ0 > λ1 and λ2 > λ1 the common ratios are: λ1

λ2
when moving

vertically from a state along the bottom edge of the CTMC to a state along
the top edge; and λ1

λ0
when moving diagonally to the initial state from the lower

right state. These progressions allowed us to derive closed form approximations
for the steady state probabilities for each state in the CTMC. The approxima-
tions produce excellent results and are as good as or better than the convergence
results once N ≥ Ncdp. This allows results to be obtained that are not possible
with tools like TimeNET, due to their computational limits.

A challenge for the future is to determine Ncdp for configurations satisfying
λ0 > min(λ1, λ2), λ1 �= λ2, without relying on tools like TimeNET. This would
make it possible to obtain the steady state probabilities of all states of CTMC N

for arbitrary N ≥ Ncdp directly from equations (4) and (5). This would also
extend our results into the region where tools cannot obtain Ncdp. Another
challenging task is to determine if similar approximations can be devised for
configurations in which λ0 ≤ min(λ1, λ2), and when λ1 = λ2. Finally a very
significant generalisation is to consider 3 or more branches. Our early results
show similar convergence trends, but they need to be fully characterised.

Acknowledgements. The authors gratefully acknowledge the constructive
comments of the reviewers.

References

1. Baccelli, F., Massey, W.A., Towsley, D.: Acyclic fork-join queuing networks. Jour-
nal of the ACM 36(3), 615–642 (1989)

2. Flatto, L., Hahn, S.: Two Parallel Queues Created by Arrivals with Two Demands
I. SIAM Journal of Applied Mathematics 44, 1041–1053 (1984)

3. Flatto, L.: Two Parallel Queues Created by Arrivals with Two Demands II. SIAM
Journal of Applied Mathematics 45, 861–878 (1985)

4. Nelson, R., Towsley, D., Tantawi, A.N.: Performance Analysis of Parallel Processing
Systems. IEEE Transactions on Software Engineering 14(4), 532–540 (1988)

5. Nelson, R., Tantawi, A.N.: Approximate Analysis of Fork/Join Synchronization in
Parallel Queues. IEEE Transactions on Computers 37(6), 739–743 (1988)

Closed Form Approximations for Steady State Probabilities 435

6. Kim, C., Agrawala, A.K.: Analysis of the Fork-Join Queue. IEEE Transactions on
Computers 38(2), 250–255 (1989)

7. Liu, Y.C., Perros, H.G.: A Decomposition Procedure for the Analysis of a Closed
Fork/Join Queueing System. IEEE Transactions on Computers 40(3), 365–370
(1991)

8. Lui, J.C.S., Muntz, R.R., Towsley, D.: Computing Performance Bounds of Fork-
Join Parallel Programs under a Multiprocessing Environment. IEEE Transactions
on Parallel and Distributed Systems 9(3), 295–311 (1998)

9. Makowski, A., Varma, S.: Interpolation Approximations for Symmetric Fork-Join
Queues. Performance Evaluation 20, 145–165 (1994)

10. Varki, E.: Mean value technique for closed fork-join networks. In: SIGMETRICS
1999: Proceedings of the 1999 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pp. 103–112 (1999)

11. Varki, E.: Response Time Analysis of Parallel Computer and Storage Systems.
IEEE Transactions on Parallel and Distributed Systems 12(11), 1146–1161 (2001)

12. Harrison, P., Zertal, S.: Queueing models of RAID systems with maxima of waiting
times. Performance Evaluation 64, 664–689 (2007)

13. Song, J.S., Zipkin, P.: Supply Chain Operations: Assemble-to-Order Systems. In:
Handbook in OR&MS. ch. 11, vol. 11, pp. 561–596. Elsevier, Amsterdam (2003)

14. Parry, G., Graves, A. (eds.): Build to Order: The Road to the 5-Day Car. Springer,
London (2008)

15. Bause, F., Kritzinger, P.S.: Stochastic Petri Nets - An Introduction to the Theory,
2nd edn. Vieweg (2002)

16. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. John Wiley and Sons, Chichester
(1995)

17. Lilith, N., Billington, J., Freiheit, J.: Approximate Closed-Form Aggregation of a
Fork-Join Structure in Generalised Stochastic Petri Nets. In: Proc. 1st Int. Con-
ference on Performance Evaluation Methodologies and Tools, Pisa, Italy, Interna-
tional Conference Proceedings Series, vol. 180, Article 32, 10 pages. ACM Press,
New York (2006)

18. Doğançay, K.: An Asymptotic Convergence Result for the Aggregation of Closed
Fork-Join Generalised Stochastic Petri Nets. In: Proc. IEEE Region 10 Conference,
TENCON 2009, Singapore, November 23-26, 6 pages (2009)

19. Billington, J., Gallasch, G.E.: Steady State Markov Analysis of a Controlled Fork-
Join Network. Technical Report CSEC-41, Computer Systems Engineering Centre,
University of South Australia (June 30, revised July 15, 2010)

20. Gallasch, G.E., Billington, J.: A Study of the Convergence of Steady State Prob-
abilities in a Closed Fork-Join Network. In: Proc. 8th International Symposium
on Automated Technology for Verification and Analysis (ATVA 2010), Singapore,
September 21-24. LNCS, vol. 6252, pp. 143–157. Springer, Heidelberg (2010)

21. University of Ilmenau: TimeNET, http://www.tu-ilmenau.de/TimeNET

http://www.tu-ilmenau.de/TimeNET

Reasoning about Safety and Progress
Using Contracts

Imene Ben-Hafaiedh, Susanne Graf, and Sophie Quinton

Université Joseph Fourier, VERIMAG

Abstract. Designing concurrent or distributed systems with complex
architectures while preserving a set of high-level requirements through
all design steps is not a trivial task. Building upon a generic notion
of contract framework which relies on a component framework and two
refinement relations: conformance and refinement under context, we pro-
vide a condition under which circular reasoning can be used for check-
ing dominance, i.e. refinement between contracts. We then propose an
instantiation of such a contract framework for safety and progress re-
quirements in component systems with data exchange. This allows us to
prove non-trivial properties of a protocol for tree-like networks.

1 Introduction

We aim at a scalable methodology for design and verification of distributed
component systems of arbitrary size with complex architectures which preserves
a set of high-level requirements through all design steps. Like in contract-based
design [1], we use contracts to constrain, reuse and replace implementations.

In this paper we formalize and extend the verification methodology intro-
duced in [2] to distributed component systems of arbitrary size and we show
its usefulness for proving safety and progress properties in networked systems.
This methodology consists in two phases: (1) define a general notion of contract
framework stating the necessary ingredients — a component framework, notions
of conformance (for ensuring global properties ϕ), satisfaction (of contracts by
implementations), and dominance (refinement between contracts). Rules for es-
tablishing dominance and validity conditions for them are provided. (2) for any
particular application, one only has to define instantiations of these generic no-
tions and check the validity conditions. Once the concrete framework has been
defined, the rules for dominance can be applied without any further proofs.

For expressing the rich, yet abstract specifications required by our example,
we propose a formalism similar to symbolic transition systems as introduced in
[3], which we extend in several ways. We define progress constraints generalizing
the usual strong and weak fairness and we decorate control states with invariants
on state variables. We also consider an explicit composition model represented
by sets of connectors. Each connector defines a set of interactions and a transfor-
mation on (non persistent) port variables, where ports name transitions of the
local components involved in the interaction. For achieving scalability, we base

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 436–451, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Reasoning about Safety and Progress Using Contracts 437

verification on an abstract semantics in which explicit values of state variables
are abstracted by the defined state invariants. Given the complexity of the spec-
ifications, not having to prove the correctness of the proof rules in this concrete
setting is very helpful.

��������

��������

��
��
��

��
��
��

����
����
����
����

��
��
��

��
��
��

��������

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

��
��
��

��
��
��

���
���
���
���

ϕ

glI

|=

I1

C1 gl1

|=

I2

C2 gl2 C3

Step (2): decomposition

G3

|=

I3

gl3

(satisfaction) Step (4): satisfaction

Step (3):

G A

gl

G1

G2

Step (1): conformance

K

K1 K2

{C1, C2, C3}

K3

w.r.t. glI

dominates C

PAi

PA

Pi

PK

� (conformance)

C

Fig. 1. Methodology steps ensuring that gl{A, glI{I1, I2, I3}} ϕ

Methodology. Figure 1 illustrates our design and verification methodology. It
is represented in a top-down fashion in which high-level properties are pushed
progressively from the overall system into atomic components — which we call
implementations. As usual, this is just a convenient representation; in real life,
we will always achieve the final picture in several iterations alternatively going
up and down. We are interested in systems with a complex architecture which
are potentially of arbitrary size.

We suppose given a global property ϕ which the system K under construction
has to realize together with an environment on which we may have some knowl-
edge, expressed by a property A. ϕ and A are expressed w.r.t the interface PK

of K. We proceed as follows: (1) define a contract C for PK which conforms to ϕ;
(2) define K as a composition of subcomponents Ki and a contract Ci for each of
them; possibly iterate this step if needed. (3) prove that any set of implementa-
tions (components) for Ki satisfying the contracts Ci, when composed, satisfies
the top-level contract C (dominance) — and thus guarantees ϕ; (4) provide such
implementations.

The global property ϕ appears at the top of Figure 1, while the implementa-
tions Ii are at the bottom.

438 I. Ben-Hafaiedh, S. Graf, and S. Quinton

The correctness proof for a particular system is split into 3 phases: confor-
mance of the top-level contract C to ϕ, dominance between the contracts Ci and
C, satisfaction of the Ci by the implementation Ii.

To be more precise, we use the notion of context for an interface P to describe
how a component with interface P is intended to be connected to its environment
and provides a property A expected from this environment. In the sequel, we
denote composition operators by gl — standing for “glue” [4]. A context is then
of the form (gl , A). A contract for an interface P consists of a context (gl , A)
and a property G on P that the component under design must ensure in the
given context in order to satisfy this contract. Conformance relates properties
of closed systems and dominance relates contracts.

Related work. We propose here 3 improvements with respect to [2]: (a) we do
not suppose a fixed composition operator: we encompass any composition satis-
fying some basic properties; (b) we extend the definition of contract framework
to take into account port hiding which is a key ingredient for proving refinement
between specifications at different levels of granularity; (c) we provide a complex
application using an instantiation with variables and data transfer and allowing
expression of liveness properties. The proof steps are performed automatically.

Interfaces [5] have been proposed for a purpose similar to ours. However,
we are interested here in rich exogenous composition operators which allow to
represent abstractions of protocols, middleware components and orchestrations
whereas assumptions and guarantees should constrain peers at the same or at
an upper layer. These composition operators cannot be encoded into interface
automata, which are I/O based.

Other formalisms for describing such rich connectors abstractly have been
proposed, e.g., the Kell calculus [6] or the connector calculus Reo [7]. Kell is,
however, mainly concerned with obtaining correctly typed connectors, and Reo
supposes independence amongst connectors and does not take into account con-
straints imposed by components. The composition operators used in our appli-
cation are defined using a subset of the rich connectors of the BIP component
framework [8] because these connectors have the required expressiveness, define
interaction with component behaviors and handle conflicting connectors.

Organization. Section 2 introduces and extends the notions from [2] of contract
framework and properties that conformance, dominance and satisfaction must
ensure in order to support this methodology. In section 3, we give an instantiation
of this framework based on symbolic transition systems and rich connectors,
which is expressive enough for the safety and progress properties we want to
prove. Finally, Section 4 applies the methodology to a resource sharing algorithm
in a networked system of arbitrary size: the actual conformance, dominance and
satisfaction proofs are automated in a tool developed for this purpose.

2 A Contract-Based Design Framework and Methodology

We develop our methodology on a generic framework that supports hierarchical
components and mechanisms to reason about composition. The following notions

Reasoning about Safety and Progress Using Contracts 439

and properties form the basis of this framework. Here, we use glue operators [4]
to generalize the operation of parallel composition found in most traditional
frameworks. The notion of component is intentionally kept very abstract to en-
compass various frameworks. It can be e.g. a labeled transition system, but it
can also have a structural part, e.g. it can be a BIP component.

Definition 1 (Component framework). A component framework is a struc-
ture of the form (K,GL, ◦,∼=) where:

– K is a set of components. Each component K ∈ K has as its interface a set
of ports, denoted PK .

– GL is a set of glue (composition) operators. A glue is a partial function
2K −→ K transforming a set of components into a new component. Each gl ∈
GL is associated with a set of ports Sgl from the original set of components
— called its support set — and a new interface Pgl for the new component
— called its exported interface. A composition K = gl({K1, . . . ,Kn}) is
defined if K1, . . . ,Kn ∈ K have disjoint interfaces, Sgl =

⋃n
i=1 PKi and the

interface of K is Pgl , the exported interface of gl .
– ∼=⊆ K × K is an equivalence relation. In general, this equivalence is derived

from equality or equivalence of semantic sets.
– ◦ is a partial operation on GL to hierarchically compose glues. gl ◦ gl ′ is

defined if Pgl′ ⊆ Sgl . Then, its support set is Sgl\Pgl′ ∪Sgl ′ and its interface
is Pgl (cf. Figure 2). Furthermore, ◦ must be coherent with ∼= in the sense
that gl{gl ′{K1},K2} ∼= (gl ◦ gl ′){K1 ∪ K2} for any sets of components Ki

such that all terms are defined.

To simplify the notation, we write gl{K1, . . . ,Kn} instead of gl({K1, . . . ,Kn}).
Figure 2 shows how hierarchical components and connectors are built from
atomic ones. Note that exported ports of internal connectors (which are not
connected) are not represented in this figure.

����
����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����
����

������

����
����
����
���� ��

��
��

��
��
��

Sgl′

Sgl

K3

gl ′{K1, K2}
K4

K1

gl{gl ′{K1, K2}, K3, K4}

K2

Fig. 2. Hierarchical components and connectors

We use the notion of context to restrict how a component may be further
composed. The set of contexts is denoted Γ .

Definition 2 (Context). A context for an interface P is a pair (E, gl) where
E ∈ K is such that P ∩ PE = ∅ and gl ∈ GL is defined on P ∪ PE.

440 I. Ben-Hafaiedh, S. Graf, and S. Quinton

We introduce two refinement relations to reason about contracts: conformance,
which we informally introduced when discussing our methodology; and refine-
ment under context, used to define satisfaction and dominance. Refinement under
context is usually considered as a derived relation and chosen as the weakest re-
lation implying conformance and ensuring compositionality, i.e., preservation by
composition. We loosen the coupling between these two refinements to obtain
stronger reasoning schemata for dominance.

Definition 3 (Contract framework). A contract framework is a tuple
(K,GL, ◦,∼=, {+c}c∈Γ ,) where:

– (K,GL, ◦,∼=) is a component framework.
– {+c}c∈Γ is a set of refinement under context relations, one for each context

in Γ . Given a context (E, gl) for an interface P, +E,gl is a preorder over
the set of components on P.

– ⊆ K × K is a conformance relation between components with the same
interface. It is a preorder such that for any K1, K2 on the same interface P
and for any context (E, gl) for P, K1 +E,gl K2 =⇒ gl{K1, E} gl{K2, E}.

Example 1. Typical notions of conformance are trace inclusion and simulation.
For these notions of conformance, refinement under context (denoted +�) is

usually defined as the weakest preorder included in that is compositional:

K1 +�
E,gl K2 � gl{K1, E} gl{K2, E}

Note that there are cases where a stronger notion of refinement under context
allows more powerful reasoning, e.g. circular reasoning as used later in this paper.

Definition 4 (Contract). A contract C for an interface P consists of:

– a context E = (A, gl) for P; A is called the assumption
– a component G on P called the guarantee

We write C = (A, gl , G) rather than C = ((A, gl), G). The interface of the envi-
ronment is implicitly defined by gl while A expresses a constraint on it and G a
constraint on the refinements of K. The “mirror” contract C−1 of C is (G, gl , A),
i.e. a contract for the environment.

Definition 5 (Satisfaction of contract). A component K satisfies a contract
C = (A, gl , G), denoted K |= C, if and only if K +A,gl G.

In interface theories [5], a single automaton is used to represent both A and
G (gl is predefined), namely gl{A,G}. Only one pair (A,G) corresponds to an
interface, because each transition is controlled either by the component or the
environment. However, in frameworks with rendez-vous interaction, several pairs
(A,G) can correspond to the same interface, as both the component and its
environment may prevent a rendez-vous from taking place. This is why we keep
assumptions and guarantees separate.

Our notion of contract has a structural part, which makes this definition very
general by encompassing any composition framework. A more practical advan-
tage is related to system design: it allows us to separate the architecture and

Reasoning about Safety and Progress Using Contracts 441

the requirements of the system under construction, which evolve independently
during the development process. In particular, in frameworks where interaction
is rich, refinement can be ensured by relying heavily on the structure of the
system and less importantly on the behavioral properties of the environment.

Dominance is the key notion that distinguishes reasoning in a contract or
interface framework from theories based on refinement between components.
Contract C is said to dominate contract C′ if every implementation of C — i.e.,
every component satisfying C — is also an implementation of C′. Intuitively, this
is achieved by a C′ that has a stronger promise or a weaker assumption than C.

In our general setting — which does not refer to any particular composition
or component model — it is not sufficient to define dominance just on a pair
of contracts. A typical situation that we have to handle is that of a hierarchical
component depicted in Figure 1, where a set of contracts {Ci}n

i=1 is defined for
the inner components (on disjoint interfaces {Pi}n

i=1) and a contract C for the
hierarchical component whose interface is the exported interface of a composition
operator glI defined on P =

⋃n
i=1 Pi. It looks attractive to solve such a problem

by defining a contract algebra as in [9], as checking dominance boils then down to
checking whether g̃l{C1, ... , Cn} dominates C for some operator g̃l on contracts.
This is, however, not possible for arbitrary component frameworks. We thus
provide a broader dominance defined directly for a set of contracts {Ci}n

i=1 and
a contract C to be dominated w.r.t a composition operator glI .

In order to allow hiding ports of the lower-level contracts which do not ap-
pear at the interface of the top-level contract, we relax the constraints on the
composition operators by only requiring that they agree on their common ports.
For this, we need a notion of projection of a component K onto a subset P ′ of
its interface, which defines a component denoted ΠP ′(K) with interface P ′. This
notion is quite natural and must preserve some properties detailed in [10]. Hence
the following semantic definition of dominance (notations are those of Figure 1).

Definition 6 (Dominance). {Ci}n
i=1 dominates C w.r.t. glI iff:

– for every i, there exists a glue glEi
s.t. gl ◦ glI = gl i ◦ glEi

– for any components {Ki}n
i=1, (∀i,Ki |= Ci) =⇒ ΠP (gl I{K1, ... ,Kn}) |= C

We present a generalization of the sufficient condition for dominance proposed
in [2] that handles port hiding. The proof is similar to that of [2] and requires
a specific property called soundness of circular reasoning. Circular reasoning is
sound if for any K,G,A,E, gl such that the terms are defined, the following
holds: K +A,gl G ∧ E +G,gl A =⇒ K +E,gl G. More details are given in [10].

Theorem 1. If circular reasoning is sound and ∀i. ∃glEi
. gl ◦ glI = gl i ◦ glEi

,
then to prove that {Ci}i=1..n dominates C w.r.t. glI , it is sufficient to prove that:{

ΠP (glI{G1, ... , Gn}) |= C
∀i,ΠPAi

(glEi
{A,G1, ... , Gi−1, Gi+1, ... , Gn}) |= C−1

i

This shows that the proof of a dominance relation boils down to a set of
refinement checks, one for proving refinement between the guarantees, the second
for discharging individual assumptions. A proof is given in [10].

442 I. Ben-Hafaiedh, S. Graf, and S. Quinton

Methodology. We now extend our design and verification methodology to re-
cursively defined systems so that we can handle systems representing component
networks of arbitrary size defined by a component grammar as follows:

– a set of terminal symbols {A, I1, ... , Ik} representing implementations;
– a set of nonterminal symbols {S,K0,K1, ... ,Kn} representing hierarchical

components; S, which defines the top-level closed system, is the axiom;
– a set of rules corresponding to design steps which define each non-terminal

either as a composition of subsystems or as an implementation:
• S −→ gl{A,K0}.
• For i ∈ [0, n], at least one rule either of the form Ki −→ Ij (j ∈ [1, k]) or

Ki −→ glΣi
{Kj}j∈Σi , where Σi a set of indices and glΣi

a composition
operator on the union of the interfaces of the Kj .

Unlike classical network grammars, we use “rich” composition operators and
are not limited to flat regular networks, as for example in [11]. We now instantiate
the methodology of Figure 1 for such component networks. The same four steps
are presented, namely conformance, decomposition, dominance and satisfaction.

1. formulate a top-level requirement ϕ characterizing the closed system defined
by the system and its environment, define a contract C = (A, gl , G) associ-
ated with K0 and prove that gl{A,G} ϕ

2. define for every non terminal Ki a contract CKi = (AKi , glKi
, GKi) such that

for every rule Kl −→ glΣl
{Kj}j∈Σl

having an occurrence of Ki on the right
hand side, there exists glEi

such that glKl
◦ glΣl

= glKi
◦ glEi

3. for each Ki −→ glΣi
{Kj}j∈Σi , show that {CKj}j∈Σi dominates CKi w.r.t

glΣi

4. prove that implementations satisfy their contract: Ki −→ Ij =⇒ Ij |= CKi

Theorem 2. Let G be a grammar such that all methodology steps have been
completed to guarantee a requirement ϕ. Any component system corresponding
to a word accepted by G satisfies ϕ.

The proof is a simple induction on the number of steps required for deriving
the component from S, showing that conformance is preserved from the left-
hand side to the right-hand side of a rule. If ϕ can express progress and if
dominance preserves progress, this methodology is sufficient for systems with a
unique requirement but also for multiple requirements decomposed according to
the same network grammar.

3 A Contract Framework with Data for Safety and
Progress

In this section, we define a contract framework in order to prove safety and
progress properties of distributed systems. We choose to use composition opera-
tors based on the BIP interaction model [4,12] because of their expressiveness and
their properties making them suitable for structural verification. Our framework
handles variables, guards and data transfer — which are supported by the BIP
interaction model [13] — and furthermore is adequate for loose specifications.

Reasoning about Safety and Progress Using Contracts 443

Components. A component is defined by a labeled transition system enriched
with variables. In order to allow abstract descriptions of components, we handle
predicates on variables rather than concrete values. Except for τ , which denotes
internal actions, labels are ports of the component interface. For example, a
transition t labeled by port p denotes that the component will perform the
action associated with t only if an interaction in which p is involved happens. Our
components also provide some progress properties which are described below.

A port p is sometimes represented along with its associated variables
x1, ... , xn, which is denoted p[x1, ... , xn]. Without loss of generality, we suppose
in the following that a port is associated with exactly one variable. We suppose
given a set of predicates that is closed by ∧ and ∨.

Definition 7 (Component). A component is a tuple (TS , X, Inv , g, f,Prog):

– TS = (Q, q0, P ∪{τ},−→) is a labeled transition system: Q is a set of states,
q0 ∈ Q is the initial state, P ∪{τ} is a set of labels. −→⊆ Q×P ∪{τ}×Q is a
transition relation. Elements of P are ports and τ labels internal transitions.
As usual, a transition (q, p, q′) ∈−→ is denoted q

p−→ q′;
– X is a set of variables. Some variables are associated with a (unique) port;

Xst ⊆ X contains state variables which are denoted st1, ... , sts. Relation R
relates1 variables in X to variables in Xst ;

– Inv associates with every q ∈ Q a state invariant Invq that is a predicate on
Xst ;

– g associates with every transition t a guard gt, i.e. a predicate on Xst ;
– f associates with every transition t an action ft defined as a predicate on

Xst ∪ {xγ} ∪Xst
new where xγ is the variable associated with the port labeling

t2 and Xst
new = {stnew

1 , ... , stnew
s } represents the "updated" variables;

– Prog a set of progress properties (see below).

Progress properties. When considering abstract specifications, progress prop-
erties are useful to exclude behaviors staying forever in some particular states
or loops. We adapt usual weak and strong fairness conditions to component sys-
tems: a progress property pr ∈ Prog for a component K is a pair of transition
sets (Tc, Tp), where Tc is called the condition and Tp the promise.

We define the set of progress states of Tp, denoted start(Tp), as the set of
initial states of transitions of Tp.

(Tc, Tp) is a valid progress property iff: considering an execution σ of K in
some context containing infinitely many Tc-transitions, in every state of start(Tp)
occurring infinitely often, at least one transition of Tp appears infinitely often
in σ, unless the environment forbids it. (", Tp) denotes unconditional progress,
which means that σ cannot stay forever in start(Tp) without firing infinitely
often a transition of Tp.

Note that (Tc, Tp) is trivially satisfied if no Tc-transition can be fired in-
finitely often. When Tp is empty or not reachable from any “Tc-loop”, (Tc, Tp) is
1 Non-state variables are transient. R produces their value whenever it is necessary.
2 If there is no associated variable (t is labeled by pγ with γ ∈ Iobs or by τ), ft is a

predicate on Xst ∪Xst
new .

444 I. Ben-Hafaiedh, S. Graf, and S. Quinton

a progress property only if no Tc-transition can be fired infinitely often. Mono-
tonicity properties w.r.t. progress which allow inferring new progress properties
from existing ones are given in [10].
Semantics. The concrete semantics of a component is the usual SOS semantics
for labeled transition systems. We do not need it in the following because we
only work with an abstract semantics of components: the latter is a labeled
transition system in which there exists a transition iff there exists a concrete
valuation of the variables for which the transition can be fired. Our semantics is
a closed semantics, because we suppose that the environment of the component
does not affect the values of the variables attached to ports labeling transitions.
This strongly motivates a design approach based on contracts, that is, on closed
systems.

Definition 8 (Abstract semantics). Let K = (TS , X, g, f, Inv ,Prog) be a
component. The abstract semantics of K is the transition system (Q, q0, P, ↪→)

where q
p[x]
↪→ q′ iff there exist a transition t = (q

p[x]−→ q′) such that the predicate
(st1, ... , sts)Rx∧ Semt is satisfiable, where Semt denotes Invq ∧ gt ∧ ft ∧ Invq′ .

Note that a transition t = (q
p−→ q′) is not preserved in the semantics if ft is

not consistent with Invq′ — meaning that firing t leads to a state in which Invq′

cannot hold. Thus, in order to avoid deadlocks, the state invariants must respect
some consistency and completeness conditions.

Composition. We now define the composition operators that allow us to build
complex components based on atomic ones. These composition operators are
called interaction models and they are made of connectors.

From the possible synchronizations offered by the BIP framework (see [12]),
we keep only two basic types of connectors: rendez-vous connectors require all
ports to be activated in order for the interaction to take place and involve data
transfers; interactions in an observation connector can take place as soon as any
port is activated, and no data is exchanged. Adding observation connectors does
not modify the set of interactions which can be fired in a given state, so this
does not change the behavior of the system, hence their name. Two (or more)
connectors of the same type can be composed to build a hierarchical connector
simply by using the exported port of one connector as an element of the support
set of the other.

Definition 9 (Rendez-vous connector). A rendez-vous connector γ =
(p[x], P, δ) is defined by:

– p[x], the exported port and P = {p1[x1], ... , pk[xk]}, the support set of ports
– δ = (G, U , D) where:

• G is the guard, that is, a predicate on X = {x1, ... , xk}
• U is the upward update function defined as a predicate on X ∪ {x}
• For xi∈X,Dxi is a downward update function, i.e. a predicate on {x}∪
{xi}

where Dxi is the function that returns the projection of D corresponding to xi.

Reasoning about Safety and Progress Using Contracts 445

As observation connectors do not involve data transfer, they have neither guard
nor U nor D predicates. The variables attached to ports are useless and thus
hidden. Hence the following definition.
Definition 10 (Observation connector). An observation connector γ =
(p, P) is defined by an exported port p and a support set P = {p1, ... , pk}.
To avoid cyclic connectors, we require also that p /∈ P . Two connectors γ1 and
γ2 are disjoint if p1 �= p2, p1 /∈ P2 and p2 /∈ P1. Note that P1 and P2 may have
ports in common, as a port may be connected to several connectors.

We can now define our composition operators as sets of connectors.

Definition 11 (Interaction model). An interaction model I defined on a set
of ports P is a set of disjoint connectors such that P is the union of the support
sets of the rendez-vous connectors of I. We denote by Irdv the set of its rendez-
vous connectors and Iobs the set of its observation connectors.

We associate with an interaction model I an interface PI consisting of the set
of the exported ports of its connectors. This means that the interface of the
component resulting from a composition using I has only these exported ports
as labels. XI denotes the set of variables associated with the ports of PI .

Merge of connectors is the operation that takes two connectors defining to-
gether a hierarchical connector and returns a connector of a basic type. Merge is
defined for rendez-vous connectors in [13] (where it is called flattening). We re-
strict this definition so as to preserve associativity of the upward and downward
functions. Merge of observation connectors has been described in [12]. These
definitions extend naturally to our interaction models, where rendez-vous and
observation connectors are merged separately (see [10]).

We now define composition: given a set of components K1, ... ,Kn and an
interaction model I, we build a compound component denoted I{K1, ... ,Kn},
with PI as interface. As we do not allow sets of ports as labels of transitions,
we require that connectors of I have at most one port of the same component
in their support set. Composition is rather technical but not surprising. It does
not involve hiding of ports. Besides, a variable of I{K1, ... ,Kn} is a variable of
some Ki or a variable associated with the exported port of some pγ ∈ I.

Definition 12 (Composition of components). Let {Pi}n
i=1 be a family of

pairwise disjoint interfaces and P =
⋃n

i=1 Pi. Let I be an interaction model on
P . For i ∈ [1, n], let Ki = (TS i, Xi, gi, fi, Inv i,Prog i) be a component on Pi. The
composition ofK1, ... ,Kn with I is a component (TS , X, g, f, Inv,Prog) such that:

– TS = (Q, q0,PI ∪ {τ},−→) with Q =
∏n

i=1 Qi, q0 = (q0
1 , ... , q

0
n) and where

−→ is the least set of transitions satisfying the following rules3:
(pγ , Pγ , δγ) ∈ Irdv ∀i ∈ [1, n]. qi

Pi∩Pγ−→ i q′i
(q1, ... , qn)

pγ−→ (q′1, ... , q′n)

∃i ∈ [1, n]. qi
τ−→i q

′
i

(q1, ... , qn) τ−→ (q1, ... , q′i, ... , qn)

with the convention that qi
∅−→i q′i iff qi = q′i. Note that |Pi ∩ Pγ | ≤ 1.

3 The rule for connectors in Iobs is similar to the one for rendez-vous connectors except
that any subset of the support set Pγ may participate in the interaction.

446 I. Ben-Hafaiedh, S. Graf, and S. Quinton

– Xst =
⋃n

i=1 Xst
i and X =

⋃n
i=1 Xi ∪XI

The relation R between variables in X and state variables is defined as:
Case 1: x ∈ Xi for some i ∈ [1, n]. xR (st1, ... , sts) iff xRi (st i

1, ... , st
i
si

),
where {st i

1, ... , st
i
si
} = Xst

i ⊆ Xst .
Case 2: x ∈ XI . Then x is associated with the exported port pγ of a rendez-
vous connector γ = (pγ , Pγ , δ) ∈ Irdv . Let k = |Pγ |. Uγ is a predicate on
{x1, ... , xk} ∪ {x}, where every xi is associated with a port of Pγ . Without
loss of generality, we suppose each xi is a variable of component Ki.
Then xR (st1, ... , sts) is defined iff:

∃v1, ... , vk. (∀i ∈ [1, k]. vi Ri (st i
1, ... , st

i
si

)) ∧ Uγ [x1/v1, ... , xk/vk]
where Uγ [x1/v1, ... , xk/vk] is the predicate on x obtained by replacing the
variables x1, ... , xk by values v1, ... , vk compatible with the local relations Ri

between the xi and the local state variables.
– For each q ∈ Q, Invq =

∧n
{i=1} Invqi

– Consider t = (q1, ... , qn)
pγ−→ (q′1, ... , q

′
n) for γ ∈ Irdv 4. W.l.o.g., we sup-

pose Pγ = {x1, ... , xk} with xi ∈ Pi for every i in [1, k]. For i ∈ [1, k],

the local transition (qi
pi[xi]−→ i q′i) corresponding to t is denoted πi(t). Again,

{st i
1, ... , st

i
si
} = Xst

i ⊆ Xst .
• gt(st1, ... , sts) holds iff the following holds:

∗ ∀i ∈ [1, k]. gti(st
i
1, ... , st

i
si

)
∗ ∃v1, ... , vk. (∀i ∈ [1, k]. vi Ri (st i

1, ... , st
i
si

)) ∧G[x1/v1, ... , xk/vk]
• ft(st1, ... , sts, xγ , stnew

1 , ... , stnew
s) holds iff ∃v1, ... , vk s.t. it holds that:

∗ D[x1/v1, ... , xk/vk], which is a predicate on xγ

∗ ∀i ∈ [1, k]. fπi(t)[xi/vi], which is a predicate on Xst
i ∪Xst

i,new

– The set Prog of progress properties is defined below (see definition 13)

We never explicitly construct all (strongest) progress properties for a composi-
tion: compositions are only built as far as needed to prove dominance. Thus,
we only give below a condition for checking that a pair of sets (Tc, Tp) is a
progress property of a composition by checking that the projections of (Tc, Tp)
onto individual components are local progress properties.

Definition 13 (Progress property in a composition). (Tc, Tp) is a progress
property of I{K1, ..., Kn} if ∀i ∈ [1, n]:

– either πi(Tp) never contains more than one joint transition of I from the
same state and then (πi(Tc), πi(Tp)) is a local progress property.

– or it does, and then we split πi(Tp) into a set of promises T i,1
p ... , T i,k

p con-
taining exactly one joint transition for each state before checking that all
pairs in {(T i

c , T
i,1
p), ... , (T i

c , T
i,k
p)} are local progress properties5.

4 For a transition labeled by pγ with γ ∈ Iobs , only the conditions on the local guard
and function of the components involved in the interaction are kept. The guard and
function of a τ -transition are the corresponding local guard and function.

5 This is necessary to avoid that different processes choose a different joint transition
in a given initial state.

Reasoning about Safety and Progress Using Contracts 447

Refinement. Refinement under context ensures that in the given context (E, I)
— and in any context refining it — safety and progress properties are preserved
from the abstract component Kabs to the refined component Kconc. Moreover,
refinement under context allows circular reasoning for the considered composition
operators (provided that the assumptions are deterministic), because enabledness
of transitions must be preserved from Kconc to Kabs . But only states reachable
in the considered context must be related. To simplify the definition, we suppose
that (a) Kabs has no internal transitions, (b) E has no transitions that it may
do alone and (c) progress is refined without taking into account the context. The
first two steps imply no loss of generality. The last simplification is sufficient for
the considered application. It could be refined by requiring from Kconc only (part
of) the progress properties of Kconc which are meaningful in (E, I).

Refinement is defined by means of two relations (1) α relating variables of
Kconc and Kabs , and (2) R relating concrete and abstract states. For preserving
progress, we project transition sets of Kabs onto Kconc — for this purpose, we
define the following auxiliary notations.

Definition 14 (Projection). Let R be a relation on (Qconc ×QE)×Qabs . We
define the projection R of R onto Qconc×Qabs by qcR qa iff ∃qE s.t. (qc, qE)R qa.
For Qa ⊆ Qabs , we denote R−1

(Qa) ⊆ Qconc the inverse image of Qa under R.
R−1

({qa
p
↪→abs q′a}) denotes the set of p-transitions of Kconc between states in

R−1
({qa}) and in R−1

({q′a}). This notation extends naturally to transition sets.
Definition 15 (Refinement under context). Given a relation α on Xconc ∪
Xabs , Kconc refines Kabs in the context of (E, I), denoted Kconc +E,I Kabs , iff:

(a) ∃R ⊆ (Qconc ×QE)×Qabs s.t. (q0
c , q

0
E)R q0

a and s.t. (qc, qE)R qa implies:
1. Invqc ∧ α(Xconc , Xabs) =⇒ Invqa

2. ∀p[x] ∈ P , the following holds (Vi denotes a valuation of Xi):
– for any value v of x: ∃tc = qc

p−→c q′c and Vc,Vnew
c satisfying Semtc im-

plies ∃q′a, ta = qa
p−→a q′a and Va,Vnew

a consistent with α and satisfying
Semta .

– ∃γ. Pγ = {p, e}∧(qc, qE)
pγ

↪→ (q′c, q
′
E) =⇒ (q′c, q

′
E)R q′a with q′a as above6.

3. qc
τ
↪→c q′c=⇒(q′c, qE)R qa: states related by τ-transitions refine the same state

(b) The inverse image under R of any progress property pr = (Tc, Tp) of Kabs ,
which is (R−1

(Tc),R
−1

(Tp)), is a progress property of Kconc.

Condition (a) ensures that refining an abstract component preserves safety prop-
erties. Condition (b) ensures preservation of progress properties. The last step
to obtain a contract framework is to define conformance.
Definition 16 (Conformance). Let K⊥ = (TS , X, Inv ,Prog) be defined as:
TS = ({q0}, q0, ∅, ∅), X = ∅, I = " and Prog = ∅. We define conformance as
refinement in the context of (K⊥, ∅) — i.e., an “empty” with no connectors.

Theorem 3. We have defined a contract framework. Furthermore, if assump-
tions are deterministic, then circular reasoning is sound. See [10] for a proof.

6 If t is independent of the context, i.e., if Pγ = {p}, we use the convention qE
∅

↪→E qE .

448 I. Ben-Hafaiedh, S. Graf, and S. Quinton

4 An Application to Resource Sharing in a Network

We apply the proposed methodology to an algorithm for sharing resources in
a network presented in [14]. The starting point is both a high-level property
and an abstract description of the behavior of an individual node. We represent
networks of arbitrary size by a grammar and associating a contract with each
node, such that the correctness proof boils down to a set of small verification
steps. We consider networks structured as binary trees defining a token ring7.

Resources shared between nodes are represented by tokens circulating in pack-
ets containing one or more tokens along the token ring (see figure 3). The value
of a packet is the number of tokens it contains. A particular token is the privilege
— denoted P — which allows nodes to accumulate tokens.

3 4

1

6

2 5
7

Node

Node

Node

Node Node Node

Node Node

Node

Network

Fig. 3. The overall structure of the application

A node may request tokens (Req indicates the numbers of tokens requested).
When it has enough tokens for satisfying its request, it is expected to use them,
and relax the privilege if it has it; when it has resources (tokens) in use, it cannot
request additional ones; it may later free them or keep them forever. A node can
rise a request only when it has no resource in use and no pending request.

Tokens (and the privilege) circulate through ports called getT (getP) and
giveT (giveP), whereas the request, usage or freeing of tokens is indicated
through observation ports req, use, free. Moreover, a Node has state variables
indicating whether it has the privilege (P), its number of tokens (Tk), requests
(Req) and some port variables used during interactions.

The network is defined by the grammar G, where {E⊥,Node} are terminals
and {Sys ,Net} nonterminals with axiom Sys . The rules are:

Sys −→ INet{E⊥,Net),Net −→ Node,Net −→ I{Node,Net ,Net}
The connectors of the composition operators I and INet are indicated in Fig-
ures 4 and 5. They handle exchange of tokens and privileges and the observation
of requested, used, respectively freed tokens.

We assume that connectivity of the network is guaranteed and tokens are
never lost. Here, this assumption is encoded in the composition operator. This
allows separating completely design and correctness proofs from the resource
sharing algorithm and the algorithm guaranteeing connectivity, which is typically
implemented in a lower layer of the overall network protocol.
7 We restrict ourselves to binary branching for simplifying the presentation.

Reasoning about Safety and Progress Using Contracts 449

A top-level requirement ϕ. We consider here one of the top-level require-
ments of the algorithm, a progress requirement ϕ stating that “as long as the
requests are reasonable, some of the nodes will be served” — use will occur —
from time to time. ϕ is represented in our formalism as depicted in Figure 4,
where the second progress property pr2 says that “it is not possible to switch
infinitely often between states S1 and S2 (that is, free occurs infinitely often)
without that a use occurs infinitely often as well”. “Reasonable” requests means
that 0 < Rx ≤ Tk where Rx is the maximal request and Tk the number of
available tokens in the system.

Methodology. Our goal is to prove that every network built according to gram-
mar G, together with an environment E⊥ giving back tokens and privilege im-
mediately, conforms to ϕ. For this purpose, we instantiate the methodology of
Section 2:

1. We define CNode = (ANode, INode, GNode) and CNet = (ANet, INet, GNet) that
are contracts for component types Net and Node.

2. We show that INet{ANet, GNet} ϕ.
3. We show that {CNode, CNet, CNet} dominates CNet w.r.t. I.
4. We prove that E⊥ satisfies C−1

Net and that Node satisfies CNode and CNet .

Note that if we want to further refine the Node component, we may start by
a contract CNode = (ANet, INet, Node). Now, let us give some details.

any Rx=0∨Tk<Rx
S1

0<Rx ≤Tk
S2

{req,free}

pr2 = ({S1
free
↪→ S2, S2

req
↪→ S1}, S2

use
↪→ ∗)

pr1 = (�, S2
use
↪→ ∗)

use req

{any\use}

get give

free
GNet

use

giveAgetA

useAreqA

ANet

freeA req

(a) (b)

Fig. 4. (a) Top-level requirement ϕ; (b) Composition INet for contract CNet

Interaction models. Figure 4(b) shows the interaction model INet relat-
ing a network — and therefore also a leaf node — to the rest of the sys-
tem. We represent by get and give respectively port sets {getT , getP } and
{giveT , giveP} for token and privilege exchange. I consists of 3 observation
connectors which export a use interaction of either the Net or its environment
as a global use interaction, and analogously for the others. There are also 4 in-
ternal connectors for exchanging tokens and privilege. For example, connector

450 I. Ben-Hafaiedh, S. Graf, and S. Quinton

{giveT [tk] | getTA[tkA], δG : [tk > 0], tkA := tk} pushes a positive number of
tokens from the Network to the environment.

Due to lack of space, we do not present the assumptions and guarantees of
the node and network contracts. They are detailed in [10].

get2 give2

free2

get1

Net1

give1

use

Node

req1 use1 free1 req2use2
reqNuseNfreeN

getN giveN

get0 give0

req free

Net2

Net 1.
ΠPNet(I{GNode, GNet, GNet})

|= CNet

2.
ΠPNode(I1{ANet, GNet, GNet})

|= C−1
Node

3.
ΠPNet(I2{ANet, GNode, GNet})

|= C−1
Net

(a) (b)

Fig. 5. (a) Structure of a network component; (b) Sufficient conditions for dominance

Figure 5(a) shows the inner structure of a network component Net. The inter-
action model I builds a tree from a (root) node8 and two networks Net1, Net2.
Interactions performed by the connectors depicted here are similar to those of
Figure 4(b), except that they also ensure that tokens circulate in the correct
order.

Experimental results. To show that {CNode, CNet, CNet} dominates CNet w.r.t.
I, it is sufficient, according to the sufficient condition of section 2, to prove the
conditions given in Figure 5(b). Dominance, conformance and satisfaction prob-
lems are reduced to refinement under context checked and discharged automat-
ically by a Java tool returning either yes or a trace leading to the violation of
refinement.

5 Discussion and Future Work

We proposed a design and verification methodology which allows design and
verification of safety and progress properties of distributed systems of arbitrary
size. This methodology has been successfully applied to an algorithm for sharing
resources in a tree-shaped network by automatically discharging the required
conformance, dominance and satisfaction checks with a prototype tool.

There are several interesting directions to be explored: (a) We have excluded
the use of contracts for assume/guarantee reasoning: we use contracts as design
constraints for implementations which are maintained throughout the develop-
ment and life cycle of the system. On the other hand, in assume/guarantee
8 Which is connected in a slightly more complex manner than the leaf node.

Reasoning about Safety and Progress Using Contracts 451

based compositional verification, assumptions are used to deduce global proper-
ties (see [15]). We could integrate this into our methodology: as an example, in
our network application, it would be enough to ensure that assumptions express
sufficient progress to show conformance of a node contract to “node progress”.
(b) We would like to extend the methodology to multiple requirements, possibly
by using a different decomposition of the system — i.e. a different grammar. (c)
We also intend to extend the component framework to more general connectors
and behaviors to express non functional properties. (d) We are currently con-
sidering building an efficient checker for different refinement relations, and then,
implement tool support for the methodology. We also consider integration into
a system design framework — such as SySML promoted by OMG.

References

1. Meyer, B.: Applying "design by contract". IEEE Computer 25(10), 40–51 (1992)
2. Quinton, S., Graf, S.: Contract-based verification of hierarchical systems of compo-

nents. In: Proc. of SEFM 2008, pp. 377–381. IEEE Computer Society, Los Alamitos
(2008)

3. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems.
Specification, vol. 1. Springer, Heidelberg (1991)

4. Sifakis, J.: A framework for component-based construction. In: Proc. of SEFM
2005, pp. 293–300. IEEE Computer Society, Los Alamitos (2005)

5. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. of ESEC/SIGSOFT
FSE 2001, pp. 109–120. ACM Press, New York (2001)

6. Bidinger, P., Stefani, J.B.: The Kell calculus: operational semantics and type sys-
tems. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS,
vol. 2884, pp. 109–123. Springer, Heidelberg (2003)

7. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Strucutres in Computer Science 14(3) (2004)

8. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: Proc. of SEFM2006, pp. 3–12. IEEE Computer Society, Los Alamitos (2006)

9. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple viewpoint contract-based specification and design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 200–225. Springer, Heidelberg (2008)

10. Ben-Hafaiedh, I., Graf, S., Quinton, S.: A contract framework for reasoning about
safety and progress. Technical Report TR-2010-11, Verimag (2010)

11. Stadler, Z., Grumberg, O.: Network grammars, communication behaviours and
automatic verification. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 68–80.
Springer, Heidelberg (1990)

12. Bliudze, S., Sifakis, J.: The algebra of connectors: structuring interaction in BIP.
In: Proc. of EMSOFT 2007, pp. 11–20. ACM Press, New York (2007)

13. Bozga, M., Jaber, M., Sifakis, J.: Source-to-source architecture transformation for
performance optimization in BIP. In: Proc. of SIES 2009, pp. 152–160 (2009)

14. Datta, A.K., Devismes, S., Horn, F., Larmore, L.L.: Self-stabilizing k-out-of-l ex-
clusion on tree network. CoRR abs/0812.1093 (2008)

15. de Roever, W.P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,
M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Non-
compositional Methods, vol. 54. Cambridge University Press, Cambridge (2001)

Abstract Program Slicing:
From Theory towards an Implementation

Isabella Mastroeni and Ðurica Nikolić

Dipartimento di Informatica, Università di Verona, Italy
isabella.mastroeni@gmail.com, durica.nikolic@univr.it

Abstract. In this paper we extend the formal framework proposed by
Binkley et al. for representing and comparing forms of program slicing.
This framework describes many well-known forms of slicing in a unique
formal structure based on (abstract) projections of state trajectories. We
use this formal framework for defining a new technique of slicing, called
abstract slicing, which aims to slice programs with respect to proper-
ties of variables. In this way we are able to extend the original work with
three forms of abstract slicing, static, dynamic and conditioned, we show
that all existing forms are instantiations of their corresponding abstract
forms and we enrich the existing slicing technique hierarchy by inserting
these abstract forms of slicing. Furthermore, we provide an algorithmic
approach for extracting abstract slices. The algorithm is split into two
modules: the simple approach, used for abstract static slicing, and the
extended approach, composed of several applications of the simple one,
which is used for abstract conditioned slicing.

Keywords: Program Slicing, Semantics, Program Analysis, Abstract
Interpretation.

1 Introduction

It is well-known that as the size of programs increases, it becomes impractical
to maintain them as monolithic structures. Indeed, splitting programs in smaller
pieces allows to construct, understand and maintain large programs much more
easily. Program slicing [3,7,14,15], is a program manipulation technique that ex-
tracts from programs statements which are relevant to a particular computation.
In particular, a program slice is an executable program whose behavior must be
identical to a specific subset of the original program’s behavior. The specifica-
tion of this behavior subset is called slicing criterion and can be expressed as
the value of some sets of variables at some set of statements and/or program
points [15]. Slicing1 can be used in debugging [15], software maintenance [9],
comprehension [4,8], re-engineering [5], etc.

Since the seminal paper introducing slicing [15], there have been many works
proposing several notions of slicing, and different algorithms to compute slices
(see [7,14] for good surveys about the existing slicing techniques). Program slic-
ing is a transformation technique that reduces the size of programs to analyze.
1 We use slicing (slice) and program slicing (program slice) as interchangeable terms.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 452–467, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Abstract Program Slicing: From Theory towards an Implementation 453

Nevertheless, the reduction obtained by means of standard slicing techniques
may be not sufficient for simplifying program analyses since it may keep more
statements than those strictly necessary for the desired analysis. Suppose we are
analyzing a program, and suppose we want a variable x to have a particular
property ϕ. If we realize that, at a fixed program point, x does not have that
property, we may want to understand which statements affect the computation
of property ϕ of x , in order to find out more easily where the computation was
wrong. In this case we are not interested in the exact value of x , hence we may
not need all the statements that a standard slicing algorithm would return. In
this situation we would need a technique that returns the minimal amount of
statements that actually affect the computation of a desired property of x .

In this paper we introduce a novel notion of slicing, called abstract slicing,
that looks for the statements affecting a fixed property (modelled in the context
of abstract interpretation [6]) of variables of interest.

Example 1. Consider the program P in Fig. 1. If we are interested in exact values
of variable d at the end of execution, program Q can be a slice of P with respect
to that criterion. But, if we are interested in the parity of d at that point, the
situation is a little bit different. The parity of d in d = 2 ∗ c + b + a − a depends
on variable b only. Therefore, program R may be an abstract slice of P w.r.t.
the specified criterion. Even in this simple case, the abstract slice gives us more
precise information about the statements affecting the property of interest.

1 a := 1;
2 b := b + 1;
3 c := c + 2;
4 e := a + b + c;
5 d := 2∗c + b + a − a;

1 a := 1;
2 b := b + 1;
3 c := c + 2;
4

5 d := 2∗c + b + a − a;

1

2 b := b + 1;
3

4

5 d := 2∗c + b + a − a;
Program P Program Q Program R

Fig. 1. Q and R are slice and abstract slice of P

Moreover, we have taken the first steps towards an implementation of this new
form of slicing and we propose two approaches that, under certain hypotheses,
extract abstract slices. We provide an example illustrating the application of the
simplest approach and which highlights some of the differences between them.
This is not the first attempt to define weakened forms of slicing, often called ab-
stract, even if it has never been formally described. Several authors focused on
the concept of abstract dependency and tried to define it formally. Mastroeni and
Zanardini [13] defined abstract slicing in terms of abstract dependency, a notion
of dependency parametric on properties of interest, and obtained as negation
of the notion of (abstract) non-interference [10]. The difference lies on the fact
that while we provide a general formal definition, which allows several forms of
abstract slicing simply by instantiating parameters, in [13] the authors consider
only standard static slicing, defining abstract slicing by means of abstract depen-
dencies. The notion of abstract slicing introduced by Hong, Lee and Sokolsky [11]

454 I. Mastroeni and Ð. Nikolić

represents an implementation of a technique of conditioned slicing [4] based on
abstract interpretation and model checking. Therefore, instead of weakening the
observation of all executions, the authors only consider a subset of all possible
executions.

2 Program Slicing

In this section we introduce different notions of program slicing and the Binkley
et al. framework [1,2] in a slightly revised way by constructing a unified notation
for slicing criteria.

Let us introduce some basic notions. We use L to denote the set of line numbers
and V to denote a set of values. Var denotes a set of memory locations. A memory
state is a function ρ ∈ M, where M

def=Var→ V. When a program is in a state
σi = 〈ni , ki , ρi〉 ∈ S

def=L×N×M, it means that it is in a memory state ρi , the
next statement to be executed is at a line number ni and ki is the number of
occurrences of ni until that point. A state trajectory σ=(n1, k1, ρ1) . . . (nl , kl , ρl)∈
Σ

def=S∗ is a sequence of states σi ∈S, i ∈ [1..l] a program goes through during the
execution. The state trajectory obtained by executing program P from input
state ρ is denoted T ρP .

The very first definition of slicing was given by Weiser [15]. Nowadays, that
technique is known as static slicing. It states that, if we execute both the original
program and its static slice from the same input, any time the point of interest is
reached in the original program, it is reached in the slice as well, and the values
of all variables of interest in both programs are equal.

A key notion in program slicing is the slicing criterion, let us define a general
characterization able to model all the forms of slicing we are going to introduce.
As far as static slicing is concerned, the slicing criterion simply specifies the
set V ⊆ Var of variables of interest, and the program point n ∈ L of interest,
namely the criterion is C = (V ,n). Korel and Laski proposed a new techinque
of slicing, called dynamic slicing [12]. It considers only one particular input, and
the dynamic slice preserves the meaning of the original program for that input
only. Let’s consider two programs P and Q . IP and IQ denote sequences of
line numbers reached during the executions of P and Q from ρ. The occurrence
of interest is the n-th element of IP . Q is a dynamic slice of P if there is an
execution position n ′ in IQ such that: 1) If we consider only first n elements of
IP , and if we eliminate all of them not appearing in Q , we obtain first n ′ elements
of IQ ; 2) For all variables v ∈V the value of v in P before executing statement
IP (n) is equal to the value of v in Q before executing statement IQ (n ′) and
3) Statements IP (n) and IQ(n ′) are equal. In order to characterize the slicing
criterion also for dynamic slicing we have to enrich the notion and to consider
a set of initial memories I⊆M. Hence the criterion is now C = (I,V ,n), where
I = M for static slicing, while I = {ρ}, with ρ ∈ M for dynamic slicing.

Finally, Canfora et al. proposed a new techinque of slicing called conditioned
slicing [4], which requires that a conditioned slice preserves the meaning of the
original program for a set of inputs satisfying one particular condition π. Let us

Abstract Program Slicing: From Theory towards an Implementation 455

denote Min the set of input states satisfying π [1], then the slicing criterion is
still C = (I,V ,n) where I = Min characterizes conditioned slicing.

Each type of slicing can have four forms: standard form - it considers one ore
more points in a program with respect to a set of variables; Korel and Laski form
(KL) - a stronger form where the program and the slice must follow identical
paths; iteration count form (IC) - requires that a program and its slice need only
agree at a particular iteration of a program point; and Korel and Laski iteration
count form (KLi) - requires that a program and its slice must follow identical
paths and need only agree at a particular iteration of a point. As far as the slicing
criterion is concerned, we have to make some more changes in the definition.
In particular, for the KL form of slicing we simply add a boolean parameter
specifying whether we are considering a KL form or not, i.e., C = (I,V ,n,L),
where L = true if we are considering a KL form of slicing, it is false otherwise.
While, in order to model the IC form we have to change the third parameter of
the criterion, in particular let k ∈ N be the iteration of the program point n ∈ L
we are interested in, then instead of n in the criterion we should have 〈n, k〉.
Hence, C = (I,V ,O,L), where O ∈ L×℘(N). Note that {n}×N represents the
fact that we are interested in all occurrences of n.

There are also some simultaneous (sim.) types of slicing that consider more
points of interest, and at each of them the slice has to preserve the values of
all variables of interest. In order to deal also with sim. forms of slicing we have
simply to extend the definition of slicing criterion by considering O a set instead
of a singleton, namely O ∈ ℘(L× ℘(N)).

The formal framework proposed in [1,2] represents different forms of slicing by
means of a pair: a syntactic preorder, a function from slicing criteria to semantic
equivalences. The preorder fixes a syntactic relation between the program and its
slices. In standard slicing, this relation represents the fact that slices are obtained
from the original program by removing zero or more statements. This preorder
is called traditional syntactic ordering, denoted �, and is defined as follows:
Q � P ⇔ F(Q) ⊆ F(P), where F(P) maps l to c if and only if program P
contains the statement c at line number l .

The function fixes the semantic constraints that a subprogram has to respect
in order to be a slice of the original program. It is worth noting that the equiv-
alence relation returned by the function is uniquely determined by the form of
slicing and by the chosen slicing criterion. In this way Binkley et al. are able to
characterize eight forms of non-sim. slicing, and twelve forms of sim. slicing.

Finally, this framework is used to formally compare notions of slicing. Given
two semantic equivalence relations ≈A and ≈B , we say that ≈A subsumes ≈B

if and only if for every two programs P and Q , P ≈B Q ⇒ P ≈A Q .
Given a binary relation on slicing criteria →, we say that a form of slicing

(�, EA) is weaker than (�, EB) w.r.t. → iff ∀CA, CB , slicing criteria such that
CA→CB , and ∀P ,Q , if Q is a slice of P w.r.t. (�, EB(CB)), then Q is a slice of
P w.r.t. (�, EA(CA)) as well, formally (�, EA)→⊆(�, EB). Following this definition
Binkley et al. show that all forms of slicing introduced in [1] are comparable in
the way shown in Fig. 2. The symbols S, C, D, SS, SC and SD represent static,

456 I. Mastroeni and Ð. Nikolić

(�,D)

(�,S)

(�,DKLi)

(�,SKLi)

(�,DKL)

(�,SKL)

(�,Di)

(�,Si)

(�, C) (�, CKLi)

(�, CKL)

(�, Ci)

(�,SD)

(�,SS)

(�,SDKLi)

(�,SSKLi)

(�,SDKL)

(�,SSKL)

(�,SDi)

(�,SSi)

(�,SC) (�,SCKLi)

(�,SCKL)

(�,SCi)

Fig. 2. Given two forms A and B , both (non-)sim., A is weaker than B if A is connected
to B by a solid line and it is below B . If A is non-sim. and B is sim., then A is weaker
than B if A is connected to B by a dotted line and it is to the left of B .

conditioned, dynamic, static sim., conditioned sim. and dynamic sim. types of
slicing respectively. The subscripts i , KL and KLi represent IC , KL and KLi
forms of slicing respectively, no subscript denotes standard forms of slicing. Fol-
lowing their structure, we enrich one of the slicing criterion comparison relations
and consequently we insert the four non-sim. forms of conditioned slicing in the
hierarchy constructed in [1], as shown in Fig. 2.

3 Abstract Program Slicing

Program slicing is used for reducing the size of programs to analyze. Neverthe-
less, sometimes this reduction is not sufficient for really improving the analyses.
Suppose that some variables at some point of execution do not have a desired
property. In order to understand where the error occurred it would be useful to
find the statements affecting the property of these variables. Standard slicing
may return too many statements, making it hard for the programmer to realize
which ones caused the error. Consider the following example.

Example 2. Let us consider a program P in Fig. 3, that reverses a linked list.
Lists are defined recursively with selectors data, storing the information, and
next , pointing to the following element. Suppose a property of well-formedness
is defined over lists. A list is well-formed if it has data =[0] in the last element. A
well-formed empty list is presented as 〈[0]〉, where square brackets indicate that
0 is not a proper element. Program P reverses a list l passed to it as argument,
so if l = 〈1, 2, 3, 4, [0]〉, the correct implementation of P should return 〈4, 3, 2, 1, [0]〉.

Abstract Program Slicing: From Theory towards an Implementation 457

1 l i s t rev (l i s t l) {
2 l i s t ∗ l a s t ;
3 l i s t ∗tmp ;
4 while (l−>next != nu l l){
5 tmp = l−>next ;
6 l−>next = l a s t ;
7 l a s t = l ;
8 l = tmp ;
9 }

10 return l a s t ;
11}

Fig. 3.

After running the program, we can realize that at line 9, list last is not well-
defined. Standard static slicing w.r.t. criterion ({last}, 9) would return the whole
program as slice, since last is affected, even if not directly, by all statements.
But if we use the property of well-formedness, and if we want to understand if
last is well-formed, a slicing based on that abstract criterion should return the
following slice: list ∗last ; return last ;, since the well-formedness property of last
is not affected by the while. In this way we are able to characterize that the error
occurred at line 2.

Let us introduce a new technique, called abstract slicing, which, regarding the
syntax, can only delete statements from programs, while, regarding the seman-
tics, compares the program and its abstract slices by considering properties in-
stead of exact values of some variables. These properties are represented as ab-
stract domains of the variable domain in the context of abstract interpretation
[6]. The abstract slicing should help us finding all the statements affecting some
particular properties of variables of interest.

First of all, we introduce the notion of abstract slicing criterion where we
specify also the property of interest. For the sake of simplicity we define the
abstract slicing criterion (Def. 1) only for non-sim. forms, i.e., O is a singleton
and not a set of occurrences (O = L×℘(N)). In order to be as general as possible,
we consider relational properties of variables and, for this reason, properties are
associated with tuples and not with single variables.

Definition 1. Let I⊆M be a set of input memories,V ⊆Var be a set of variables
of interest, O ∈ L × ℘(N) be a set of occurrences of interest, L a boolean value
determining KL forms. Let V1, . . . ,Vk be a partition of V and for each i ∈
[1..k] let ϕi be a property of interest (modelled as an uco [6]) for Vi , then the
abstract slicing criterion is CA = (I,V ,O,L,A), where V def= 〈V1, . . . ,Vk 〉 and
A def=〈ϕ1, . . . , ϕk 〉.
The extension of this definition to sim. forms is possible by considering A as a
partial function that takes the set of points/occurrences of interest, the corre-
sponding tuples of variables of interest V , and return an abstract property to
observe on V in the specified point/occurrence. For this reason in the follow-
ing we consider any form of slicing. Note that, when dealing with non-abstract
notions of slicing we have A=〈ϕId, . . . , ϕId〉 def= ID, where ϕId

def=λx .x .

458 I. Mastroeni and Ð. Nikolić

It is worth underlying that, exactly as it happens for the non-abstract forms,
we have that if I=M we have abstract static slicing, if |I |= 1 we have abstract
dynamic slicing, otherwise we have abstract conditioned slicing .

Definition 2. Let P and Q be executable programs such that Q can be obtained
from P by removing zero or more statements and let CA= (I,V ,O,L,A). Q is
an abstract slice of P w.r.t. CA if for each ρ∈I, when the execution of P from
input ρ reaches the point (or ocurrence) O, the execution of Q from ρ reaches
O as well, and for each i ∈ [1..k], Vi has the same property ϕi both in P and in
Q . Moreover, if L = true then P and Q have to follow identical paths [12].The
extraction of abstract slices is called abstract slicing.

3.1 Abstract Formal Framework

In this section we define the notion of abstract formal framework in which all
forms of slicing can be formally represented. It is an extension of a mathematical
structure introduced by Binkley et al. [1,2], that is used for representing and
comparing different forms of slicing.

Following the framework of Binkley et al., described in Sect. 2, we represent an
abstract form of slicing by a pair (�, EA), where � is the traditional syntactic
ordering and EA is a function that maps abstract slicing criteria to semantic
equivalence relations on programs. Given two programs P and Q , and an abstract
slicing criterion CA we say that Q is (�, EA)-(abstract) slice of P with respect
to CA iff Q � P and Q EA(CA) P . At this point we have to define the function
EA in the context of abstract slicing. In order to derive this equivalence we have
to define some preliminary useful notions.

Let us first define the abstract memory state which restricts the domain of a
memory state to variables of interest only, and assigns to each tuple an abstract
value determined by its abstract property of interest.

Definition 3. Let ρ∈M be a memory state, V = 〈V1, . . . ,Vk 〉 a tuple of vari-
ables and A = 〈ϕ1, . . . , ϕk 〉 the corresponding tuple of properties of interest. The
abstract memory state is ρ �α V def= A ◦ ρ(V) def= 〈ϕ1 ◦ ρ(V1), . . . , ϕk ◦ ρ(Vk)〉.
Consider the following example.

Example 3. Let Var={x1, x2, x3, x4} be a set of variables and suppose the prop-
erties of interest are the sign of x1×x2 and the parity of x3. Let us consider
ucos ϕSign = {(∅,∅), (Z+,Z−)∪ (Z−,Z+), (Z+,Z+)∪ (Z−,Z−), (Z,Z)} and ϕPar =
{∅, 2Z, 2Z + 1,Z}. ϕPar is defined on single integer variables v and represents
their parity, i.e., if the value of v is even (odd), then it is mapped to all even
(odd) numbers, 2Z (2Z + 1). ϕSign is defined on pairs of integer variables 〈v , t〉
and represents the sign of their product, i.e., if v and t are both positive or both
negative, the pair is mapped to (Z+,Z+)∪(Z−,Z−) meaning that v× t is positive,
otherwise it is mapped to (Z+,Z−)∪(Z−,Z+) meaning that v × t is negative.

Therefore, we consider V=〈{x1, x2}, {x3}〉 and A=〈ϕSign, ϕPar〉. Let
ρ=〈1, 2, 3, 4〉, then we obtain ρ �α V=A ◦ ρ(V)=〈(Z+,Z+)∪(Z−,Z−), 2Z+1〉.

Abstract Program Slicing: From Theory towards an Implementation 459

The abstract projection function modifies the state trajectory by removing all the
states that do not contain occurrences or additional points of interest. If there
is a state that contains an occurrence of interest, its memory state component is
restricted to variables of interest, and for each tuple of interest only a property
of interest is considered. We define an auxiliary function Proj ′A and the abstract
projection function, ProjA formally.

Definition 4. Given n ∈ L, k ∈ N, ρ ∈ M, and parameters V,O,L,A, where
L ⊆ L is a set of line numbers, we define a function Proj ′A as:

Proj ′α(V,O,L,A)(n, k , ρ)
def=

{ (n, ρ �α V) if (n, k)∈O,
(n, ρ �α ∅) if (n, k) /∈O ∧ n∈L

λ otherwise.

Proj ′α takes a state of a state trajectory and returns a pair or an empty string, λ.
If (n, k) is an occurrence of interest, i.e., if (n, k)∈O, it returns a pair (n, ρ �α V).
It means that at n we consider properties of interest for each tuple of interest,
and not their exact values. If (n, k) is not an occurrence of interest, but n is an
additional point of interest due to a KL form, i.e., if n∈L, Proj ′α returns a pair
(n, ρ �α ∅). It means that we require the presence of n, but we are not interested
in any property of any tuple, and therefore the domain of ρ �α is ∅.

Definition 5 (Abstract Projection). Let T =(n1, k1, ρ1) . . . (nl , kl , ρl)
def=⊕l

i=1(ni , ki , ρi) be a state trajectory, we define the notion of abstract projection
as Projα(V,O,L,A)(T) def=

⊕l
i=1 Proj ′α(V,O,L,A)(ni , ki , ρi).

The abstract projection function permits us to define all the semantic equiva-
lence relations we need for representing the abstract forms of slicing: abstract
static backward equivalence, abstract dynamic backward equivalence and abstract
conditioned backward equivalence. If we have two programs P and Q , we can
say that Q is an abstract (static, dynamic or conditioned) slice of P if Q � P
and if Q is abstract backward equivalent to P w.r.t. the corresponding semantic
equivalence relation.

3.2 Abstract Unified Equivalence

The only missing thing for completing the formal definitions of the three forms
of abstract slicing is the characterization of the functions mapping slicing cri-
teria to semantic equivalence relations. The abstract unified equivalence, UA, is
a function that takes parameters I,V,O,L,A characterizing the slicing criterion
and, therefore, the form of slicing, and returns a corresponding abstract seman-
tic equivalence relation, which has to hold between a program and each one of
its (abstract) slices. It can be used as a unified model for representing abstract
equivalence relations for all possible forms of slicing.

Definition 6 (UA). Let P and Q be executable programs, CA = (I,V,O,L,A) be
an abstract criterion, and let L be such that LL(P ,Q) = IP ∩ IQ , where IP ⊆ ℘(L)

460 I. Mastroeni and Ð. Nikolić

denotes the set of all line numbers of P , if L = true, LL(P ,Q) = ∅ otherwise2.
Then P is abstract backward equivalent to Q , denoted P UA(I,V,O, LL,A) Q,
iff ∀ρ ∈ I.Projα(V,O,LL(P,Q),A)(T

ρ
P) = Projα(V,O,LL(P,Q),A)(T

ρ
Q).

Now we are able to define the functions mapping each criterion CA to the corre-
sponding semantic equivalence relation.

EA def= λ(I,V ,O,L,A). UA(I,V ,O, LL,A)

Hence a generic form of slicing can be represented as (�, EA). These functions
can be used for the formal definitions of both abstract and non-abstract forms
of slicing in the abstract formal framework. We can therefore state that the
abstract formal framework is a generalization of the original formal framework.
The following examples show how it is possible to use these definitions in order
to check whether a program is an abstract slice of another one.

1 read (n) ;
2 read (s) ;
3 i := 1 ;
4 while (i<=n) do
5 s := s + 2∗ i ;
6 i := i +1;
7 od

1 read (n) ;
2 read (s) ;
3

4

5

6

7 end
Program P Program Q

1 read (n) ;
2 s :=0;
3 i := 1 ;
4 while (i<=n) do
5 s := s + i ;
6 i := i +1;
7 od

1 read (n) ;
2 s :=0;
3

4

5

6

7 end
Program R Program S

Fig. 4. Fig. 5.

Example 4. Let us consider programs P and Q given in Fig. 4, and let CA =
(M, 〈s〉, {7} × N, false, 〈ϕPar〉), i.e., we are interested in the parity (A = 〈ϕPar〉)
of s (V = 〈s〉) at the end of execution (O = {7} × N) for all possible inputs
(I = M). Since Q �P , in order to show that Q is an abstract static slice of P
w.r.t. CA, we have to show that P EA(CA) Q holds. Let ρ= {n← a, s← b}∈I
be an initial memory. Execution of P from ρ determines:

T ρP = . . . (51, 〈a, b, 1〉)(61, 〈a, b + 2, 1〉)(42, 〈a, b + 2, 2〉) . . .
(5a ,〈a, b + 2 + . . .+ 2(a − 1), a〉)(6a , 〈a, b + 2 + . . .+ 2a, a + 1〉)
(4a+1, 〈a, b + 2 + . . .+ 2a, a + 1〉)(71, 〈a, b + a(a + 1), a + 1〉),

where ab is the b-th occurrence of point a. Application of Projα to T ρP gives:

Projα(V,O,∅,A)(T
ρ
P)=Proj ′α(V,O,∅,A)(7

1, 〈a, b+a(a+1), a+1〉)
=(7, 〈a, b+a(a+1), a+1〉�α {〈s〉})=(7, ϕPar(〈b+a(a+1)〉))

= (7, ϕPar(b)).

Let us give some clarifications: the only state of interest is the state containing
the occurrence of the point 7, (71, 〈a, b+a(a+1), a+1〉), so we apply the function
2 When dealing with KL forms, i.e., L = true it takes the intersection of the line

numbers, otherwise it is the empty set.

Abstract Program Slicing: From Theory towards an Implementation 461

Proj ′α to that state. Since we have 71 = (7, 1) ∈ O, Proj ′α returns (7, ρ �α V) =
(7, 〈a, b+a(a+1), a+1〉�α {〈s〉}). The abstract memory state restricts the domain of
ρ to variables of interest only, so we consider only the part of ρ regarding s , i.e.,
b+a(a+1). Hence, the result of the last application is (7,A◦ρ({〈s〉})=(7, ϕPar(〈b+
a(a+1)〉)). Since the parity of b+a(a+1) depends on the parity of b only, the final
result of the application of Projα is (7, ϕPar(b)). Now, the execution of Q from ρ
gives the following state trajectory: T ρQ =(11, 〈a〉)(21, 〈a, b〉)(71, 〈a, b〉). Application
of Projα to T ρQ gives: Projα(V,O,∅,A)(T

ρ
Q) = Proj ′α(V,O,∅,A)(7

1, 〈a, b〉) = (7, 〈a, b〉 �α
{〈s〉}) = (7, ϕPar(b)), and therefore Projα(V,O,∅,A)(T

ρ
P) = Projα(V,O,∅,A)(T

ρ
Q). As ρ is

an arbitrary input, we realize that this equation holds for each ρ ∈ I, hence
P EA(CA) Q , and this implies that Q is an abstract static slice of P w.r.t. CA.

Example 5. Consider R and S in Fig. 5, and let CA=(I, 〈s〉, {7}×N, false, 〈ϕPar〉),
where I = {ρ | ρ(n)∈ 4Z}, i.e., we are interested in the parity of s at the end of
execution for all inputs that assign to n a multiple of 4. Since S�R, in order to
show that S is an abstract conditioned slice of R w.r.t. CA, we have to show that
R EA(CA) S holds. Let ρ∈I be an initial memory, and suppose ρ(n) = a = 4b.
Execution of R from ρ determines:

T ρR = . . . (51, 〈a, 0, 1〉)(61, 〈a, 1, 1〉)(42, 〈a, 1, 2〉) . . .
(5a,〈a, 1 +2+. . .+(a−1), a〉)(6a,〈a, 1+2+. . .+a, a+1〉)

(4a+1,〈a, 1
2 a(a+1), a+ 1〉)(71,〈a, 12a(a+1), a+ 1〉),

Application of Projα to T ρR gives:

Projα(V,O,∅,A)(T
ρ
R)=Proj ′α(V,O,∅,A)(7

1,〈a, 12a(a+1), a+ 1〉)
=(7,〈a, 12a(a+1), a+ 1〉�α {〈s〉})=(7, ϕPar(〈 1

2a(a+1)〉))
= (7, ϕPar(2b(4b+1))) = (7, 2Z).

Execution of S from ρ gives the state trajectory T ρS =(11, 〈a〉)(21, 〈a, 0〉)(71, 〈a, 0〉).
Application of Projα to T ρS gives: Projα(V,O,∅,A)(T

ρ
S) = Proj ′α(V,O,∅,A)(7

1, 〈a, 0〉) =
(7, 〈a, 0〉�α {〈s〉})=(7, ϕPar(0)))=(7, 2Z), and therefore we have Projα(V,O,∅,A)(T

ρ
R)=

Projα(V,O,∅,A)(T
ρ
S). As ρ is an arbitrary input from I, we realize that this equation

holds for each ρ ∈ I, hence REA(CA)S , and this implies that S is an abstract
conditioned slice of R w.r.t. CA.

4 Comparing Forms of Abstract Slicing

In this section we provide a formal theory which allows to compare the ab-
stract forms of slicing among themselves. Moreover, in the same theory we can
compare the abstract forms of slicing with the non-abstract ones. First of all,
we show under which conditions an abstract semantic equivalence relation sub-
sumes another one, and analogously we show when the form of (abstract) slicing
corresponding to the former equivalence relation subsumes the form of (abstract)
slicing corresponding to the latter one. These results are necessary for obtaining
a precise characterization of the weaker then relation (Sect. 2) involving also the
new forms of slicing.

462 I. Mastroeni and Ð. Nikolić

The abstract unified equivalence lemma (UA-lemma), shows under which con-
ditions on the parameters determined by the slicing criteria, two semantic equiv-
alence relations ≈A and ≈B are such that ≈A subsumes ≈B .

Lemma 1 (UA-lemma). Given two forms of (abstract) slicing and their cor-
responding criteria CiA = (Ii ,V i ,Oi ,Li ,Ai) , with i ∈ {1, 2}.

If I1 ⊆ I2,O1 ⊆ O2,V1 ⊆ V2,∀P ,Q .LL1(P ,Q) ⊆ LL2(P ,Q) and A2�A1, where �
denotes the approximation relation between tuples of abstractions3, then we have
that P UA(I2,V2,O2, LL2 ,A2) Q ⇒ P UA(I1,V1,O1, LL1 ,A1) Q.

This lemma tells us how it is possible to find the relationship (in the sense of
subsume) between two semantic equivalence relations determined by two forms of
(abstract) slicing. In particular, if we denote abstract notions of slicing by putting
an A, e.g., AS denotes static abstract slicing and AD denotes dynamic abstract
slicing, by using this lemma we can show that, given a slicing criterion CA, all the
abstract equivalence relations introduced in Sect. 3.2, subsume the corresponding
non-abstract equivalence relations S(CA), D(CA) and C(CA). Furthermore, by
using this lemma we can show that AD(CA) subsumes AC(CA) which subsumes
AS(CA). Hence, let us first recall an important result that we then apply in the
context of abstract slicing, showing the relationship between the different forms
of slicing.

Theorem 1. [2] Let R1 and R2 be semantic equivalence relations such that R2
subsumes R1, then ∀P ,Q we have P (�,R1) Q ⇒ P (�,R2) Q .
Hence, for instance, given two slicing criteria C′A and C′′A satisfying hypotheses
of Lemma 1, for each pair of programs P and Q :

P (�,AS(C′′A)) Q ⇒ P (�,AC(C′A)) Q P (�,AC(C′′A)) Q ⇒ P (�,AD(C′A)) Q
P (�,S(C′′A)) Q ⇒ P (�,AS(C′A)) Q P (�,D(C′′A)) Q ⇒ P (�,AD(C′A)) Q
P (�,C(C′′A)) Q ⇒ P (�,AC(C′A)) Q

Finally, in order to formally prove the weaker than relation among the consid-
ered forms of slicing we have to define the slicing criteria comparison relation as
introduced in Sect. 2. We define two slicing criterion comparison relations α1→ and
α2→. α1→ permits to compare criteria of abstract forms of slicing among themselves,
while α2→ permits to compare criteria of abstract forms of slicing with criteria of
non-abstract forms of slicing.
Definition 7. The slicing criterion comparison relation α1→ is defined by the
following rule: ∀I1, I2 ⊆ M such that I1 ⊆ I2, ∀V = 〈V1, . . . ,Vk 〉, ∀A =
〈ϕ1, . . . , ϕk 〉, ∀O ∈ L× ℘(N),L ∈ {true, false}

(I1,V,O,L,A) α1→ (I2,V,O,L,A).

For instance, this rule permits us to compare (�,AC) to (�,AS) being I ⊆M,
and (�,AD) to (�,AC) whenever ρ ∈ I.
3 We denote � the relation "more concrete than" in the lattice of abstract inter-

pretations between tuples of abstractions [6], i.e., A1�A2 iff ∀i ≤ k . ϕ1
i � ϕ2

i

and ϕ′ � ϕ′′ iff ∀x . ϕ′(x) ≤ ϕ′′(x).

Abstract Program Slicing: From Theory towards an Implementation 463

Definition 8. The slicing criteria comparison relation α2→ is defined by the fol-
lowing rule: ∀I⊆M, ∀V=〈V1, . . . ,Vk 〉, ∀A=〈ϕ1, . . . , ϕk 〉 where V =

⋃
i∈[1,k] Vi ,

∀O∈L×℘(N),L ∈ {true, false},
(I,V,O,L,A) α2→ (I,V,O,L, ID) = (I,V ,O,L).

This rules allows, for instance, to compare (�,AS) to (�,S), (�,AC) to (�, C)
and (�,AD) to (�,D).

(�,D)

(�,S)

(�,DKLi)

(�,SKLi)

(�,DKL)

(�,SKL)

(�,Di)

(�,Si)

(�, C) (�, CKLi)

(�, CKL)

(�, Ci)

(�,AS)

(�,AC)

(�,AD)

Fig. 6.

In Fig. 6 we show the non-sim. hierarchy obtained by enriching the hierarchy
in Fig. 2 with standard forms of abstract static slicing, abstract dynamic slicing
and abstract conditioned slicing. In general we can enrich this hierarchy with
any abstract form of slicing simply by using the comparison notions defined
above. Non-abstract forms are particular cases of abstract forms of slicing, as
they can be instantiated by choosing the identity property, ϕId, for each variable
of interest. Hence, non-abstract forms are the "strongest" forms, since for each
property ϕ, we have ϕId � ϕ. Moreover, if we fix the parameters I,V,O,L of an
abstract form, by abstracting the parameter A, i.e., by reducing the information
represented by the property, the abstract slicing forms we obtain become weaker.
The dotted lines in Fig. 6 represent this fact.

5 Towards an Implementation

In this section, we describe an algorithmic approach for obtaining abstract slices.
The idea is to define a notion of abstract state which observes variables of in-
terest by means of abstract properties. These states are used for analyzing the
evolution of the properties of variables of interest instead of their values. In order
to perform the evolution analysis, we construct the abstract state graph (ASG),
whose vertices are abstract states and which models program executions at some
level of abstraction. At this point, we propose a technique for pruning the ASG
in order to remove all the statements not relevant for the properties of interest.

464 I. Mastroeni and Ð. Nikolić

Abstract State

Abstract State Graph

Abstract Slicing

Simple Approach Extended Approach

Fig. 7.

In the following we consider two different approaches: simple (SA) and ex-
tended (EA). The difference between them lies in the abstract state definition,
where EA adds information about the relationship between input variables and
properties of variables of interest. Moreover, the two approaches differ also in the
pruning process. In particular, EA’s pruning consists of more than one applica-
tion of SA’s pruning. See Fig. 7 for a graphical representation of our approaches.
Note that SA can be used for extraction of abstract static slices only. Unfortu-
nately, since it does not consider the relationship between variables of interest
and input variables, it is not precise enough and cannot be applied to the problem
of abstract conditioned slicing.

The simple approach pruning is illustrated by the method pruningSA given
in Fig. 8, and we illustrate its application by the following example. Instead, the
extended approach pruning is characterized by the method pruningEA, given in
Fig. 10, and it will be only informally and intuitively described.

pruningSA(G) removeBlock(G, B) findBlocks(G)

Input: G=(V,E) - ASGS

Output: pruned G
list=findBlocks(G);
foreach B∈ list
if (absv(in(B))=absv(out(B)))
then
G=removeBlock(G, B);
E=E ∪ {(in(B), out(B))};
G=(V,E);

fi
endf
return G;

Input: G=(V,E) - ASGS ,
B⊆V - block

Output: G′ - ASGS

foreach a∈B
foreach (a, b)∈E
E=E\{(a, b)};

endf
foreach (b, a)∈E
E=E\{(b, a)};

endf
V =V \{a};

endf
return (V,E);

Input: G = (V,E) - ASGS

Output: list of blocks to be removed
list = ∅;
GSCC =(V SCC , ESCC)=tarjan(G);
foreach component Vi∈V SCC

i=0; o=0;
foreach (Vi, Vj)∈ESCCo=o+ 1; endf
foreach (Vj , Vi)∈ESCCi= i+ 1; endf
if i=1 ∧ o=1 then
list= list ∪ {Ci}

fi
endf
return list;

Fig. 8.

Example 6. Consider P in Fig. 4, and let CA=(M, 〈s〉, {7}×N, false, 〈ϕPar〉). In
the abstract states induced by α, s can have two abstract values: E, if its concrete
value is even, or O, if its concrete value is odd. In Fig. 9 we give the ASG of P
for CA, which vertices are identified by an overlined number given in the top left
corner. Consider only edges represented by a solid line. Let us consider a block
B composed of vertices 7, 9 and 11. The only input and output edges of B are
edges from 5 and towards 13 respectively. The vertices 5 and 13 assign the same
abstract value, E, to s . It means that we can remove the block B and add an

Abstract Program Slicing: From Theory towards an Implementation 465

1 3 5 7 9 11 13

2 4 6 8 10 12
14

1, E 2, E 3, E 4, E 5, E 6, E 7, E

1, O 2, O 3, O 4, O 5, O 6, O 7, O

Fig. 9.

pruningEA(G)

Input: G=[G1, . . . , Gw] - ASGE

Output: pruned G
foreach i∈ [1..w]
G′

i=pruningSA(Gi);
endf
return G=[G′

1, . . . , G
′
w];

Fig. 10.

edge from 5 to 13. Analogously, it is possible to remove a block C , composed
of vertices 8, 10 and 12, and to add an edge from 6 to 14. In a similar way we
can remove vertices 5 and 6 and add the edges from 3 to 13 and from 4 to 14.
These edges are represented by dotted lines in Fig. 9. The remaining vertices, 1,
2, 3 and 44, represented in bold in Fig 9, correspond to the statements 1 and 2,
which form the abstract slice, Q , given in Fig. 4.

Abstract slices obtained this way can be larger than they are expected to be. In
the worst case, we do not remove any instruction from the starting program P .

In order to extract abstract conditioned slices5 we refine abstract states. This
refinement permits us to construct ASGE containing more information and which
captures the relationship between input and properties of variables of interest.
At this point the extended approach pruning (Fig. 10), takes as input G, and
applies the method pruningSA (Fig. 8) to all subgraphs Gi , i ∈ [1..w] of G.
Each of these applications returns a pruned subgraph, G ′i , which permits us to
construct an abstract slice, called partial abstract slice, containing only state-
ments of P which vertices appear in G ′i . From the complexity point of view we
can note that, once we have the graph, the complexity of both the algorithms
is linear w.r.t. the dimension of the graph. Indeed, the most difficult part of
our approaches is the construction of ASG. Note that the ASGs used in our
examples are constructed manually. In order to completely automate our ap-
proaches, we should use some automatic tool for the constructions of our ASGs.
4 Vertices 13 and 14 represent the end of execution.
5 Recall that abstract dynamic slicing is a particular case of abstract conditioned

slicing.

466 I. Mastroeni and Ð. Nikolić

Yorsh et al. [16] presented a method for static program analysis that leverages
tests and concrete program executions. They introduce state abstractions which
generalize the set of program states obtained from concrete executions and de-
fine a notion of abstract graphs, similar to ours. Furthermore, they use a theorem
prover to check that the generalized set of concrete states covers all potential
executions and satisfies additional safety properties, and they use these results
to construct an approximation of their abstract graphs. The relation between [16]
and our work should be further analyzed, in order to use their method for an
automatic construction of our graphs (ASG).

6 Conclusion and Future Work

This paper introduces a notion of abstract slicing. Abstract slicing is very useful
when we want to determine which statements of original program affect some
particular properties of variables of interest. We have defined the Abstract Formal
Framework, that is an extension of a structure used for representation of all
existing forms of slicing and for their comparison [1,2]. Within our framework
it is possible to represent even the abstract forms of slicing. Furthermore, we
formally proved that the three abstract forms are weaker than the corresponding
standard forms.

Moreover, we have made the first steps towards implementation, and we intro-
duced two novel approaches (simple and extended) for the extraction of abstract
slices. We illustrated their application with an example showing the first ap-
proach, and informally explaining how this approach is used for the extended
one. The automation of these approaches deserves further research. The main
challenge is an automatic construction of ASG, and it might be done by us-
ing a theorem prover controlling whether an edge between two vertices exists
or not. Unfortunately, this construction may introduce some edges that do not
correspond to real cases, so the abstract slices may not be precise enough. We
will try to solve the problem of automatic construction of ASG by using some
sophisticated method, such as [16].

We think that the abstract slicing can be seen as a particular technique of
code obfuscation. Suppose we have a program P and we want the obfuscated
program O(P) to preserve properties of interest for some particular variables of
P , but to hide everything else. For instance, if x = 10 and y = 0 in P , O(P)
could tell us that x ≤ 20 but it should not public neither its real value nor
any information regarding y. In this case abstract slices of the original program
w.r.t. a specified criterion can be very useful. Abstract slicing would be even
more applicable to code obfuscation if we defined a notion of abstract amorphous
slicing, that would permit us even to modify statements, and not to eliminate
them only. The relationship between abstract slicing (standard or amorphous)
and code obfuscation deserves further research. Moreover, we think there is a
strong connection between non-interference and program slicing, and therefore
between abstract non-interference [10] and abstract slicing. A formalization of
this relationships may be one more object of the future work, and may lead to an
implementation of abstract non-interference certifications for program security.

Abstract Program Slicing: From Theory towards an Implementation 467

References

1. Binkley, D., Danicic, S., Gyimóthy, T., Harman, M., Kiss, Á., Korel, B.: A for-
malisation of the relationship between forms of program slicing. Sci. Comput. Pro-
gram 62(3), 228–252 (2006)

2. Binkley, D., Danicic, S., Gyimóthy, T., Harman, M., Kiss, Á., Korel, B.: Theoretical
foundations of dynamic program slicing. Theor. Comput. Sci. 360(1), 23–41 (2006)

3. Binkley, D.W., Gallagher, K.B.: Program slicing. Advances in Computers 43 (1996)
4. Canfora, G., Cinitile, A., De Lucia, A.: Conditioned program slicing. Information

and Software Tech. 40, 11–12 (1998)
5. Cimitile, A., De Lucia, A., Munro, M.: A specification driven slicing process for

identifying reusable functions. Journal of Software Maintenance 8(3), 145–178
(1996)

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. of
Conf. Record of the 4th ACM Symp. on Principles of Programming Languages
(POPL 1977), pp. 238–252. ACM Press, New York (1977)

7. De Lucia, A.: Program slicing: Methods and applications. In: IEEE International
Workshop on Source Code Analysis and Manipulation (2001)

8. Field, J., Ramalingam, G., Tip, F.: Parametric program slicing. In: POPL 1995:
Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 379–392. ACM, New York (1995)

9. Gallagher, K.B., Lyle, J.R.: Using program slicing in software maintenance. IEEE
Trans. on Software Engineering 17(8), 751–761 (1991)

10. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In: Proc. of the 31st Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL
2004), pp. 186–197. ACM-Press, New York (2004)

11. Hong, H.S., Lee, I., Sokolsky, O.: Abstract slicing: A new approach to program
slicing based on abstract interpretation and model checking. In: Proc. of the Fifth
IEEE International Workshop on Source Code Analysis and Manipulation (SCAM
2005), pp. 25–34. IEEE Comp. Soc. Press, Los Alamitos (2005)

12. Korel, B., Laski, J.: Dynamic program slicing. Information Processing Let-
ters 29(3), 155–183 (1988)

13. Mastroeni, I., Zanardini, D.: Data dependencies and program slicing: From syntax
to abstract semantics. In: Proc. of the ACM SIGPLAN Symp. on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM 2008), pp. 125–134 (2008)

14. Tip, F.: A survey of program slicing techniques. J. of Programming Languages 3,
121–189 (1995)

15. Weiser, M.: Program slicing. IEEE Trans. on Software Engineering 10(4), 352–357
(1984)

16. Yorsh, G., Ball, T., Sagiv, M.: Testing, abstraction, theorem proving: better to-
gether! In: ISSTA 2006: Proceedings of the 2006 International Symposium on Soft-
ware Testing and Analysis, pp. 145–156. ACM, New York (2006)

Loop Invariant Synthesis in a Combined Domain

Shengchao Qin1, Guanhua He2, Chenguang Luo2,�, and Wei-Ngan Chin3

1 Teesside University, Middlesbrough, TS1 3BA, UK
2 Durham University, Durham, DH1 3LE, UK

3 National University of Singapore

Abstract. Automated verification of memory safety and functional cor-
rectness for heap-manipulating programs has been a challenging task,
especially when dealing with complex data structures with strong invari-
ants involving both shape and numerical properties. Existing verification
systems usually rely on users to supply annotations, which can be tedious
and error-prone and can significantly restrict the scalability of the ver-
ification system. In this paper, we reduce the need of user annotations
by automatically inferring loop invariants over an abstract domain with
both separation and numerical information. Our loop invariant synthe-
sis is conducted automatically by a fixpoint iteration process, equipped
with newly designed abstraction mechanism, and join and widening op-
erators. Initial experiments have confirmed that we can synthesise loop
invariants with non-trivial constraints.

1 Introduction

Although research on software verification has a long and distinguished history
dating back to the 1960’s, it remains a challenging problem to automatically
verify heap manipulating programs written in mainstream imperative languages.
This is in part due to the shared mutable data structures lying in programs,
and the need to track various program properties, such as structural numerical
information (length and height) and relational numerical information (sortedness
and binary search tree properties).

Since the emergence of separation logic [14,25], dramatic advances have been
made in automated software verification, e.g. the Smallfoot tool [1] for the veri-
fication on pointer safety (i.e. shape properties asserting that pointers cannot go
wrong), the verification on termination [2], the verification for object-oriented
programs [6,22], and Dafny [18] and Hip/Sleek [5,20,21] for more general prop-
erties (both structural and numerical ones) for heap-manipulating programs.

These verification systems generally require users to provide specifications
for each method as well as invariants for each loop, which is both tedious and
error-prone. This also affects their scalability, as there can be many methods in
a program and each method may still contain several while loops.

To conquer this problem, separation logic based shape analysis techniques
are brought in, e.g., the SpaceInvader tool [3,9,27]. As a further step of Small-
foot, it automatically infers method specifications and loop invariants for pointer
� Now with Citigroup Inc.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 468–484, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Loop Invariant Synthesis in a Combined Domain 469

safety in the shape domain. Other works such as THOR [19] incorporate simple
numerical information into the shape domain to allow automated synthesis of
properties like list length. Their success proves the necessity and feasibility for
shape analysis to help automate the verification process.

However, the prior analyses focus mainly on relatively simple properties, such
as pointer safety for lists and list length information. It is difficult to apply them
in the presence of more sophisticated program properties, such as:
– More flexible user-defined data structures, such as trees;
– Relational numerical properties, like sortedness and binary search property.

These properties can be part of the full functional correctness of heap-
manipulating programs. The (aforementioned) Hip/Sleek tool aims to verify
such properties and it allows users to define their own shape predicates to express
their desired level of correctness.

In this paper, we make the first stride to improve the level of automation
for Hip/Sleek-like verification systems by discovering loop invariants automat-
ically over the combined shape and numerical domain. This proves to be a chal-
lenging problem especially since we aim towards full functional correctness that
Hip/Sleek targets at. Our approach is based on the framework of abstract in-
terpretation [7] with fixpoint computation. It makes the following contributions
in summary:
– We propose a loop invariant synthesis with novel operations for abstraction,

join and widening over a combined shape and numerical domain.
– We demonstrate that our analysis is sound w.r.t. concrete program semantics

and always terminates.
– We have integrated our solution with Hip/Sleek and conducted some initial

experiments. The experimental results confirm the viability of our solution
and show that we can effectively eliminate the need for user-provision of loop
invariants which were previously necessary in verification.

We shall next illustrate our approach informally via an example before pre-
senting the formal details.

2 The Approach

Before giving an illustrative example for the analysis, we will first introduce our
specification mechanism which follows the Hip/Sleek system.

2.1 Separation Logic and User-Defined Predicates

Separation logic [14,25] extends Hoare logic to support reasoning about shared
mutable data structures. It adds two more connectives to classical logic: separa-
tion conjunction ∗ and spatial implication −∗. The formula p1 ∗ p2 asserts that
two heaps described by the formulae p1 and p2 are domain-disjoint, while p1−∗ p2
asserts that if the current heap is extended with a disjoint heap described by
the formula p1, then the formula p2 holds in the extended heap. In this paper
we only use separation conjunction.

470 S. Qin et al.

Similar to the Hip/Sleek system, we allow user-defined inductive predicates
to specify both separation and numerical properties. For example, with a data
structure definition for a node in a list data node { int val; node next; }, we
can define a predicate for a list as

root::ll〈n〉 ≡ (root=null∧n=0)∨(∃v, q, m · root::node〈v, q〉∗q::ll〈m〉∧n=m+1)

The parameter root for the predicate ll is the root pointer referring to the list.
Its length is denoted by n. A uniform notation p::c〈v1, .., vk〉 is used for either a
singleton heap or a predicate. If c is a data node with fields f1, .., fk, the notation
represents a singleton heap, p 	→c[f1:v1, .., fk:vk], e.g. the root::node〈v, q〉 above.
If c is a predicate name, then the data structure pointed to by p has the shape
c with parameters v1, .., vk, e.g., the q::ll〈m〉 above.

We can also define a list segment as follows:

ls〈p, n〉 ≡ (root=p ∧ n=0) ∨ (root::node〈 , q〉 ∗ q::ls〈p, m〉 ∧ n=m+1)

where we use the following shortened notation: (i) default root parameter in
LHS may be omitted, (ii) unbound variables, such as q and m, are implicitly
existentially quantified, and (iii) the underscore denotes an existentially quan-
tified anonymous variable.

If the user wants to verify a sorting algorithm, they can incorporate sortedness
property into the above predicates as follows:

sll〈n, mn, mx〉 ≡ (root=null ∧ n=0 ∧ mn=mx) ∨
(root::node〈mn, q〉 ∗ q::sll〈n1, k, mx〉 ∧ mn≤k ∧ n=n1+1)

sls〈p, n, mn, mx〉 ≡ (root=p ∧ n=0 ∧ mn=mx) ∨
(root::node〈mn, q〉 ∗ q::sls〈p, n1, k, mx〉 ∧ mn≤k ∧ n=n1+1)

where mn and mx denote resp. the min and max values stored in the sorted list.
Such user-supplied predicates can be used to specify loop invariants and method
pre/post-specifications.

2.2 Illustrative Example

We now illustrate via an example our loop invariant synthesis process. The
method ins sort (Figure 1) sorts a linked list with the insertion sort algorithm.
It is implemented with two nested while loops. The outer loop traverses the
whole list x, takes out each node from it (line 7), and inserts that node into
another already sorted list r (which is empty initially before the sorting). This
insertion process makes use of the inner while loop in lines 9-11 to look for a
proper position in the already sorted list for the new node to be inserted. The
actual insertion takes place at lines 12-14.

To verify this program, we need to synthesise appropriate loop invariants for
both while loops. Our analysis follows a standard fixpoint iteration process. It
starts with the (abstract) program state immediately before the while loop (i.e.,
the initial state) and symbolically executes the loop body for several iterations,

Loop Invariant Synthesis in a Combined Domain 471

0 data node { int val;

node next; }

1 node ins_sort(node x)

2 requires x::ll〈n〉
3 ensures res::sll〈n, mn, mx〉
4 {int v;

5 node r,cur,srt,prv=null;

6 while (x != null) {

7 cur=x; x=x.next; v=cur.val;

8 srt=r; prv=null;

9 while (srt != null &&

srt.val <= v) {

10 prv=srt; srt=srt.next;

11 }

12 cur.next=srt;

13 if (prv != null) prv.next=cur;

14 else r=cur;

15 }

16 return r;

17 }

Fig. 1. Insertion sort for linked list

until the obtained states converge to a fixpoint, which is the loop invariant.1 At
the start of each iteration, the obtained state from the previous iteration is joined
with the initial state. In addition to this join operator, we have also defined an
abstraction function and a widening operator both of which will help the fixpoint
iteration to converge. The join and widening operators are specifically designed
to handle both shape and numerical information.

As for our example, due to the presence of nested loops, each iteration of the
analysis for the outer loop actually infers a loop invariant for the inner loop. We
shall now illustrate how we synthesise a loop invariant for the inner loop.

Suppose that in one iteration for the outer loop, the state at line 9 becomes

r::sll〈nr, a, b〉 ∗ cur::node〈v, x〉 ∗ x::ll〈nx〉 ∧ srt=r ∧ prv=null∧ nr+nx+1=n

Note that since the inner loop does not mutate the heap part referred to by
cur and x (i.e., cur::node〈v, x〉 ∗x::ll〈nx〉), we can ignore it during the invariant
synthesis and add it back to the program state using the frame rule of separation
logic [25]. Therefore, the initial state for loop invariant synthesis becomes

r::sll〈nr, a, b〉 ∧ srt=r ∧ prv=null ∧ nr+nx+1=n (1)

From this state, symbolically executing the loop body once yields the state:

r::node〈a, srt〉 ∗ srt::sll〈ns, c1, b〉 ∧ prv=r ∧
a≤c1 ∧ a≤v ∧ nr+1=n−nx ∧ ns+1=nr

(2)

which says that pointer srt moves towards the tail of the list for one node. Then
we join it with the initial state (1) to obtain

(r::sll〈nr, a, b〉 ∧ srt=r ∧ prv=null ∧ nr+nx+1=n)∨
(r::node〈a, srt〉 ∗ srt::sll〈ns, c1, b〉 ∧

prv=r ∧ a≤c1 ∧ a≤v ∧ nr+1=n−nx ∧ ns+1=nr)
(3)

The second iteration over the loop body starts with (3) and exhibits (also) the
case that srt runs two nodes towards tail, while prv goes one node. Its result is
then joined with pre-state (1) to become the current state:

1 The fixpoint iteration converges if one more iteration still yields the same result.

472 S. Qin et al.

(3) ∨ r::node〈a, prv〉 ∗ prv::node〈c1, srt〉 ∗ srt::sll〈ns, c2, b〉 ∧
a≤c1≤c2 ∧ c1≤v ∧ nr+1=n−nx ∧ ns+2=nr

(4)

Executing the loop body a third time returns a post-state where three nodes are
passed by srt, and two by prv, as below:

(4) ∨ r::node〈a, r0〉 ∗ r0::node〈c1, prv〉 ∗ prv::node〈c2, srt〉 ∗
srt::sll〈ns, c3, b〉 ∧ a≤c1≤c2≤c3 ∧ c2≤v ∧ nr+1=n−nx ∧ ns+3=nr

where we have an auxiliary logical variable r0. Following this trend, it is pre-
dictable that every iteration hereafter will introduce an additional logical vari-
able (referring to a list node). If we indulge in such increase in the subsequent
iterations, the analysis will never terminate. Our abstraction process prevents
this from happening by eliminating such logical variables as follows:

(4) ∨ r::sls〈prv, n1, a, c1〉 ∗ prv::node〈c2, srt〉 ∗ srt::sll〈ns, c3, b〉 ∧
a≤c1≤c2≤c3 ∧ c2≤v ∧ nr+1=n−nx ∧ ns+3=nr ∧ n1=2

Note that the heap part r::node〈a, r0〉∗r0::node〈c1, prv〉 is abstracted as a sorted
list segment r::sls〈prv, n1, a, c1〉 with n1 denoting the length of the segment and
n1=2 added into the state. This abstraction process ensures that our analysis
does not allow the shape to increase infinitely.

The fourth iteration responds with a post-state where four nodes are passed
by srt, and three by prv. Therefore an abstraction is performed to remove the
logical pointer variables. As a simplification of the presentation, we denote σ
as r::sls〈prv,n1,a,c1〉 ∗ prv::node〈c2,srt〉 ∗ srt::sll〈ns,c3,b〉 ∧ a≤c1≤c2≤c3 ∧
c2≤v ∧ nr+1=n−nx, and the abstracted result (after the fourth iteration) is

(4) ∨ (σ ∧ ns+3=nr ∧ n1=2) ∨ (σ ∧ ns+4=nr ∧ n1=3)

for which we have an observation that the last two disjunctions share the same
shape part (as in σ). This disjunction will be transferred to the numerical do-
main, as follows:

(4) ∨ (σ ∧ (ns+3=nr ∧ n1=2 ∨ ns+4=nr ∧ n1=3))

This simplifies the abstraction further. After that, our widening operation com-
pares the current state with the previous one, to look for the same (numerical)
constraints that both states imply, and to replace those numerical constraints
in the current state with the ones discovered by widening. This operation even-
tually ensures termination of our analysis. As for the example, some constraints
among ns, nr and n1 can be found to make the widened post-state become:

(4) ∨ (σ ∧ ns+n1=nr−1 ∧ n1≥2) (5)

One more iteration of symbolic execution will produce the same result as (5),
suggesting that it is already the fixpoint (and hence the loop invariant):

r::sll〈nr, a, b〉 ∧ srt=r ∧ prv=null ∧ nr+1=n−nx ∨
r::node〈a, srt〉 ∗ srt::sll〈ns, c1, b〉 ∧ prv=r ∧
a≤c1 ∧ a≤v ∧ nr+1=n−nx ∧ ns+1=nr ∨

r::node〈a, prv〉 ∗ prv::node〈c1, srt〉 ∗ srt::sll〈ns, c2, b〉 ∧
a≤c1≤c2 ∧ c1≤v ∧ nr+1=n−nx ∧ ns+2=nr ∨

r::sls〈prv, n1, a, c1〉 ∗ prv::node〈c2, srt〉 ∗ srt::sll〈ns, c3, b〉 ∧
a≤c1≤c2≤c3 ∧ c2≤v ∧ nr+1=n−nx ∧ ns+n1=nr−1 ∧ n1≥2

Loop Invariant Synthesis in a Combined Domain 473

Note that although it is possible to further join the third disjunctive branch with
the fourth, our analysis does not do so as it tries to keep the result as precise as
possible by eliminating only auxiliary pointer variables.

With the frame part cur::node〈v, x〉 ∗ x::ll〈nx〉 added back, the analysis for
the outer loop continues. Eventually, the following loop invariant is discovered
for the outer loop:

(x::ll〈nx〉 ∧ r=null ∧ nx=n) ∨ (r::node〈a, null〉 ∗ x::ll〈nx〉 ∧ n=nx+1) ∨
(r::sll〈nr, a, b〉 ∗ x::ll〈nx〉 ∧ n=nx+nr ∧ nr≥2)

which allows us to verify the whole method successfully using e.g. Hip/Sleek.

3 Language and Abstract Domain

To simplify presentation, we focus on a strongly-typed C-like imperative lan-
guage in Figure 2. The program Prog written in this language consists of dec-
larations tdecl, which can either be data type declarations datat (e.g. node in
Section 2), or predicate definitions spred (e.g. ll, ls, sll, sls in Section 2.1), as
well as method declarations meth. The definitions for spred and mspec are given
later in Figure 3. Without loss of expressiveness, we use an expression-oriented
language. So the body of a method (e) is an expression formed by standard
commands of an imperative language. Note that d and d[v] represent resp. heap-
insensitive and heap sensitive commands. The language allows both call-by-value
and call-by-reference method parameters (separated with a semicolon ;).

Prog ::= tdecl∗ meth∗ tdecl ::= datat | spred
datat ::= data c { field∗ } field ::= t v t ::= c | τ
meth ::= t mn ((t v)∗; (t v)∗) mspec {e} τ ::= int | bool | void
e ::= d | d[v] | v:=e | e1; e2 | t v; e | if v then e1 else e2 | while v {e}
d ::= null | kτ | v | new c(v∗) | mn(u∗; v∗)
d[v] ::= v.f | v.f :=w | free(v)

Fig. 2. A Core (C-like) Imperative Language

Our specification language (in Figure 3) allows (user-defined) shape predi-
cates spred to specify both shape and numerical properties. Note that spred are
constructed with disjunctive constraints Φ and numerical formulae π. We require
that the predicates be well-formed [21].

A conjunctive abstract program state, σ, is composed of a heap (shape) part
κ and a numerical part π, where π consists of γ and φ as aliasing and numerical
information, respectively. We use SH to denote the set of such conjunctive states.
During the symbolic execution, the abstract program state at each program point
will be a disjunction of σ’s, denoted by Δ (and its set is recognised as PSH). An
abstract state Δ can be normalised to the Φ form.

Using entailment [21], we define a partial order over these abstract states:

Δ Δ′ =df Δ′ � Δ ∗ R

474 S. Qin et al.

spred ::= root::c〈v∗〉 ≡ Φ Φ ::=
∨

σ∗ σ ::= ∃v∗·κ∧π
mspec ::= requires Φpr ensures Φpo

Δ ::= Φ | Δ1∨Δ2 | Δ∧π | Δ1∗Δ2 | ∃v·Δ
κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2 π ::= γ ∧ φ
γ ::= v1=v2 | v=null | v1 �=v2 | v �=null | true | γ1∧γ2

φ ::= b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1 =b2 a ::=s1=s2 | s1≤s2

s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2)

Fig. 3. The Specification Language

where R is the (computed) residue part. And we also have an induced lattice
over these states as the base of fixpoint calculation for loop invariants.

The memory model of our specification formula is similar to the model given
for separation logic [25], except that we have extensions to handle user-defined
shape predicates and related numerical properties. In our analysis, all the vari-
ables except the program ones are logical variables. We denote a program vari-
able’s initial value as unprimed and its current value as primed [21].

4 Analysis Algorithm
Our proposed analysis algorithm is given in Figure 4.

Fixpoint Computation in Combined Domain
Input: T , Δpre, while b {e}, n ;
Local: i := 0; Δi := false; Δ′

i := false;
1 repeat

2 i := i + 1;
3 Δi := widen†(Δi−1, join

†(Δpre, Δ
′
i−1));

4 Δ′
i := abs†(|[e]|T (Δi ∧ b));

5 if Δ′
i = false ∨ cp no(Δ′

i) > n
· then return fail end if

6 until Δ′
i = Δ′

i−1;
7 return Δ′

i

Fig. 4. Main analysis algorithm

The algorithm takes four input parameters: T as the program environment
with all the method specifications in the program (for potential method calls
in loop body), Δpre as the precondition of the loop’s (symbolic) execution, the
while loop itself while b {e}, and the number of upper bound of shared logical
variables we keep during the analysis n.

Our analysis is based on abstract interpretation [7] with specifically designed
operations (abs, join and widen) over this combined domain.2 At the beginning,
we initialise the iteration variable (i) and two states to begin with (Δi and Δ′

i).
The false’s here as initial values denote the top element of our defined lattice
2 Note that our analysis uses lifted versions of these operations (indicated by †), which

will be explained in more details in Section 4.2.

Loop Invariant Synthesis in a Combined Domain 475

as well as our starting point of the fixpoint iteration. Among the two states here,
the unprimed version Δi denotes the initial state before the ith execution of the
loop body, and the primed one Δ′

i represents the result state after. Each iteration
starts at line 1. Firstly we join together the precondition of the loop with the
result state Δ′

i−1 obtained in the previous iteration, and widen it against the
initial state Δi−1 of the previous iteration (line 3). Then we symbolically execute
the loop body with the abstract semantics in Section 4.1 (line 4), and apply the
abstraction operation to the obtained abstract state. If the symbolic execution
cannot continue due to a program bug, or if we find our abstraction cannot
keep the number of shared logical variables/cutpoints (counted by cp no) within
a specified bound (n), then a failure is reported (line 5). Otherwise we judge
whether a fixpoint is already reached by comparing the current abstract state
with the previous one (line 6). The fixpoint Δ′

i is returned as the loop invariant.
We will elaborate the key techniques of our analysis in what follows: the ab-

stract semantics, the abstraction function, and the join and widening operators.

4.1 Abstract Semantics

The abstract semantics is used to execute the loop body symbolically to obtain
its post-state during the loop invariant synthesis. Its type is defined as

|[e]| : AllSpec → PSH → PSH

where AllSpec contains all the specifications of all methods (extracted from the
program Prog). For some expression e, given its precondition, the semantics will
calculate the postcondition.

The foundation of the semantics is the basic transition functions from a con-
junctive abstract state to a conjunctive or disjunctive abstract state below:

rearr(x) : SH → PSH[x] Rearrangement

exec(d[x]) : AllSpec → SH[x]→ SH Heap-sensitive execution

exec(d) : AllSpec → SH → SH Heap-insensitive execution

where SH[x] denotes the set of conjunctive abstract states in which each element
has x exposed as the head of a data node (x::c〈v∗〉), and PSH[x] contains all
the (disjunctive) abstract states, each of which is composed by such conjunctive
states. Here rearr(x) rearranges the symbolic heap so that the cell referred to by
x is exposed for access by heap sensitive commands d[x] via the second transi-
tion function exec(d[x]). The third function defined for other (heap insensitive)
commands d does not require such exposure of x.

isdatat(c) σ � x::c〈v∗〉 ∗ σ′

rearr(x)σ =df σ

isspred(c) σ � x::c〈u∗〉 ∗ σ′ root::c〈v∗〉≡Φ

rearr(x)σ =df σ′ ∗ [x/root, u∗/v∗]Φ

The test isdatat(c) returns true only if c is a data node and isspred(c) returns
true only if c is a shape predicate.

The symbolic execution of heap-sensitive commands d[x] (i.e. x.fi, x.fi := w,
or free(x)) assumes that the rearrangement rearr(x) has been done in prior:

476 S. Qin et al.

isdatat(c) σ � x::c〈v1, .., vn〉 ∗ σ′

exec(x.fi)(T)σ =df σ′ ∗ x::c〈v1, .., vn〉 ∧ res=vi

isdatat(c) σ � x::c〈v1, .., vn〉 ∗ σ′

exec(x.fi := w)(T)σ =df σ′ ∗ x::c〈v1, .., vi−1, w, vi+1, .., vn〉
isdatat(c) σ � x::c〈u∗〉 ∗ σ′

exec(free(x))(T)σ =df σ′

The symbolic execution rules for heap-insensitive commands are as follows:

exec(k)(T)σ =df σ ∧ res=k exec(x)(T)σ =df σ ∧ res=x

isdatat(c)
exec(new c(v∗))(T)σ =df σ ∗ res::c〈v∗〉

t mn ((ti ui)m
i=1; (t

′
i vi)n

i=1) requires Φpr ensures Φpo ∈ T
ρ = [x′

i/ui]mi=1 ◦ [y′
i/vi]ni=1 σ � ρΦpr ∗ σ′

ρo = [ri/vi]ni=1 ◦ [x′
i/u′

i]
m
i=1 ◦ [y′

i/v′i]
n
i=1 ρl = [ri/y′

i]
n
i=1 fresh logical ri

exec(mn(x1, .., xm; y1, .., yn))(T)σ =df (ρlσ
′) ∗ (ρoΦpo)

Note that the first three rules deal with constant (k), variable (x) and data node
creation (new c(v∗)), respectively, while the last rule handles method invocation.
In the last rule, the call site is ensured to meet the precondition of mn, as signified
by σ � ρΦpr ∗ σ′. In this case, the execution succeeds and the post-state of the
method call involves mn’s postcondition as signified by ρol ◦ ρoΦpo.

A lifting function † is defined to lift rearr’s domain to PSH:

rearr†(x)
∨

σi =df

∨
(rearr(x)σi)

and this function is overloaded for exec to lift both its domain and range to PSH:

exec†(d)(T)
∨

σi =df

∨
(exec(d)(T)σi)

Based on the transition functions above, we can define the abstract semantics
for a program command e as follows:

|[d[x]]|T Δ =df exec†(d[x])(T) ◦ rearr†(x)Δ
|[d]|T Δ =df exec†(d)(T)Δ
|[e1; e2]|T Δ =df |[e2]|T ◦ |[e1]|T Δ

|[x := e]|T Δ =df [x′/x, r′/res](|[e]|T Δ) ∧ x=r′ fresh logical x′, r′

|[if v then e1 else e2]|T Δ =df (|[e1]|T (v∧Δ)) ∨ (|[e2]|T (¬v∧Δ))

which form the foundation for us to analyse the loop body.

4.2 Abstraction, Join and Widening

This section describes our specifically designed abstraction, join and widening
operations employed in our loop invariant synthesis process.
Abstraction function. During the symbolic execution, we may be confronted
with many “concrete” shapes in postconditions of the loop body. As an example

Loop Invariant Synthesis in a Combined Domain 477

of list traversal, the list may contain one node, or two nodes, or even more nodes
in the list, which the analysis cannot enumerate infinitely. The abstraction func-
tion deals with those situations by abstracting the (potentially infinite) concrete
situations into more abstract shapes. Our rationale is to keep only program vari-
ables and shared cutpoints; all other logical variables will be abstracted away.
As an instance, the first state below can be further abstracted (as shown), while
the second one cannot:

abs(x::node〈 , z0〉 ∗ z0::node〈 , null〉) = x::ll〈n〉 ∧ n=2
abs(x::node〈 , z0〉 ∗ y::node〈 , z0〉 ∗ z0::node〈 , null〉) = - (6)

where both x and y are program variables, and z0 is an existentially quantified
logical variable. In the second case z0 is a shared cutpoint referenced by both x
and y, and thus the state is not changed. As illustrated, the abstraction transi-
tion function abs eliminates unimportant cutpoints (during analysis) to ensure
termination. Its type is defined as follows:

abs : SH → SH Abstraction

which indicates that it takes in a conjunctive abstract state σ and abstracts it
as another conjunctive state σ′. Below are its rules.

abs(σ ∧ x0=e) =df σ[e/x0] abs(σ ∧ e=x0) =df σ[e/x0]
¬Reach(σ, x0)

abs(x0::c〈v∗〉 ∗ σ) =df σ ∗ true

isdatat(c1) c2〈u∗
2〉 ≡ Φ

p::c1〈v∗1〉 ∗ σ1 � p::c2〈v∗2〉 ∗ σ2 ¬Reach(p::c2〈v∗2〉 ∗ σ2, v
∗
1)

abs(p::c1〈v∗1〉 ∗ σ1) =df p::c2〈v∗2〉 ∗ σ2

The first two rules eliminate logical variables (x0) by replacing them with their
equivalent expressions (e). The third rule is used to eliminate any garbage (heap
part led by a logical variable x0 unreachable from the other part of the heap)
that may exist in the heap. As x0 is already unreachable from, and not usable
by, the program variables, it is safe to treat it as garbage true, for example the
x0 in x::node〈 , null〉 ∗ x0::node〈 , null〉 where only x is a program variable.

The last rule of abs plays the most significant role which intends to eliminate
shape formulae led by logical variables (all variables in v∗1). It tries to fold data
nodes up to a predicate node. It confirms that c1 is a data node definition and
c2 is a predicate. Meanwhile it also ensures that the latter is a sound abstraction
of the former by entailment checking, and the logical parameters of c1 are not
reachable from other part of the heap (so that the abstraction does not lose
necessary information). The predicate Reach is defined as follows:

Reach(σ, x∗) =df {x∗} ⊆
⋃

v∈fv(σ)

ReachVar(κ∧π, v) where σ ::= ∃u∗·κ∧π

saying that each variable in x∗ is reachable from some free variable in the abstract
state σ. The function ReachVar(κ ∧ π, v) returns the minimal set of variables
satisfying the relationship below:

478 S. Qin et al.

{v} ∪ {z2 | ∃z1, π1 · z1∈ReachVar(κ ∧ π, v) ∧ π=(z1=z2 ∧ π1)} ∪ {z2 |
∃z1, κ1 · z1∈ReachVar(κ∧π, v) ∧ κ=(z1::c〈.., z2, ..〉 ∗ κ1)} ⊆ ReachVar(κ∧π, v)

That is, it is composed of aliases of v and variables reachable from v. As in the
previous example: abs(x::node〈 , z0〉 ∗ z0::node〈 , null〉) � x::ll〈n0〉 ∧ n0=2.

During the analysis, we apply the above abstraction rules (following the given
order) onto the current abstract state exhaustively until it stabilises. Such con-
vergence is confirmed because the abstract shape domain is finite due to the
bounded numbers of variables and predicates, as discussed later.

Finally the lifting function is overloaded for abs to lift both its domain and
range to disjunctive abstract states PSH:

abs†
∨

σi =df

∨
abs(σi)

which allows it to be used in the analysis.
Join operator. The operator join is applied over two conjunctive abstract
states, trying to find a common shape as a sound abstraction for both:

join(σ1, σ2) =df

let σ′
1, σ

′
2 = rename(σ1, σ2) in

match σ′
1, σ′

2 with (∃x∗
1 · κ1 ∧ π1), (∃x∗

2 · κ2 ∧ π2) in
if κ1 � κ2 ∗ true then ∃x∗

1, x
∗
2 · κ2 ∧ (joinπ(π1, π2))

else if κ2 � κ1 ∗ true then ∃x∗
1, x

∗
2 · κ1 ∧ (joinπ(π1, π2))

else σ1 ∨ σ2

where the rename function prevents naming clashes among logical variables of
σ1 and σ2, by renaming logical variables of same name in the two states with
fresh names. For example it will renew x0’s name in both states ∃x0 · x0=0 and
∃x0 · x0=1 to make them ∃x0 · x0=0 and ∃x1 · x1=1. After this procedure it
judges whether σ2 is an abstraction of σ1, or the other way round. If either case
holds, it regards the shape of the weaker state as the shape of the joined states,
and performs joining for numerical formulae with joinπ(π1, π2), the convex hull
operator over numerical domain [23]. Otherwise it keeps a disjunction of the two
states (as it would be unsound to join their shapes together in this case). Then
we lift this operator for abstract state Δ as follows:

join†(Δ1, Δ2) =df match Δ1, Δ2 with (
∨

i σ1
i), (

∨
j σ2

j) in
∨

i,j join(σ1
i , σ2

j)

which essentially joins all pairs of disjunctions from the two abstract states, and
makes a disjunction of them.
Widening operator. The finiteness of the shape domain is confirmed by the
abstraction function. To ensure the termination of the whole analysis, we still
need to guarantee the convergence over the numerical domain. This task is ac-
complished by the widening operator.

The widening operator widen(σ1, σ2) is defined as

widen(σ1, σ2) =df

let σ′
1, σ

′
2 = rename(σ1, σ2) in

match σ′
1, σ′

2 with (∃x∗
1 · κ1 ∧ π1), (∃x∗

2 · κ2 ∧ π2) in
if κ1 � κ2 ∗ true then ∃x∗

1, x
∗
2 · κ2 ∧ (widenπ(π1, π2))

else σ1 ∨ σ2

Loop Invariant Synthesis in a Combined Domain 479

where the rename function has the same effect as above. Generally this operator
is analogous to join; the only difference is that we expect the second operand
σ2 is weaker than the first σ1, such that the widening reflects the trend of
such weakening from σ1 to σ2. In this case it applies the widening operation
widenπ(π1, π2) over the numerical domain [23]. Therefore, based on the widening
over conjunctive abstract states, we lift the operator over (disjunctive) abstract
states:

widen†(Δ1, Δ2) =df match Δ1, Δ2 with (
∨

i σ1
i), (

∨
j σ2

j) in
∨

i,j widen(σ1
i , σ2

j)

which is similar as its counterpart of the join operator. These three operations
provides termination guarantee while preserving soundness, as the following ex-
ample demonstrates.
Example 1 (Abstraction, join and widening). Assume we have two abstract states,
Δ0 = x::node〈 , x0〉 ∗ x0::node〈 , null〉 and Δ1 = x::node〈 , x0〉 ∗ x0::node〈 , x1〉 ∗
x1::node〈 , null〉. We would like to discover a sound approximation for both
states. Firstly we perform abstractions on both to obtain two abstract states, say,
Δ′

0 = x::ll〈n0〉 ∧ n0=2 and Δ′
1 = x::ll〈n0〉 ∧ n0=3. Then these two are joined to-

gether according to shape similarity to be Δ′′
1 = x::ll〈n0〉∧ (n0=2∨n0=3), which

transfers disjunction to numerical domain. Finally the joined state is widened
based on the first state Δ′

0, yielding a state x::ll〈n0〉 ∧ n0≥2. It is a sound ab-
straction of both Δ0 and Δ1, and finishes the analysis with one more iteration.

Soundness and termination. The soundness of our analysis is ensured by the
soundness of the following: the entailment prover [21], the abstract semantics
(w.r.t. concrete semantics), the abstraction operation over shapes, and the join
and widening operators.

Theorem 1 (Soundness). Our analysis is sound due to soundness of entail-
ment checking, abstract semantics, operations of abstraction, join and widening.

The proof for entailment checking is by structural induction [21]; for abstract
semantics is by induction over program constructors; for abstraction follows di-
rectly the first two; and for join and widening is based on entailment checking
and soundness of corresponding numerical operators.

For the termination aspect, we have the result:

Theorem 2 (Termination). The iteration of our fixpoint computation will
terminate in finite steps for finite input of program and specification.

The proof is based on two facts: the finiteness over the shape domain provided
by our restriction on cutpoints, and the termination over the numerical domain
guaranteed by our widening operator. The first can be proved by claiming the
finiteness of all possible abstract states only with the shape information: recall-
ing our analysis algorithm where we set an upper bound n for shared cutpoints
(logical variables) we keep in track of, we know that the program and logical vari-
ables preserved in our analysis are finite. Meanwhile all possible shape predicates
are limited; therefore all the shape-only abstract states are finite. The second
is proved in the abstract interpretation frameworks for numerical domains [23].
These two facts guarantee the convergence of our analysis.

480 S. Qin et al.

5 Experiments and Evaluation

We have implemented a prototype system for evaluation purpose. The prototype
system was built in Objective Caml. We used Sleek [21] as the solver for en-
tailment checking over the heap domain, and Omega constraint solver [24] and
Fixcalc solver [23] for join and widening operations in the numerical domain.
Our test platform was an Intel Core 2 CPU 2.66GHz system with 8Gb RAM.

Program Function Time

create Creates a list with given length parameter 0.452
ins sort Inner loop of Fig. 1 0.824
ins sort Outer loop of Fig. 1 4.372
delete Disposes a list 0.720
traverse Traverses a list 0.636
append Appends two lists 0.312
partition Auxiliary operation used by Quick-sort 1.497
merge Merges two sorted lists to be one sorted list 1.972

split
Divides a list into two sublists with
length difference of at most one 0.354

select Selects the smallest node of a list 0.692
select sort Outer loop of selection sort 4.892
tree insert Inserts a node into a binary search tree 1.364
tree search Finds a node in a binary search tree 1.294

Fig. 5. Selected Experimental Results

Figure 5 describes the programs with which we performed experiments. The
first column denotes the names of the programs. The second column states the
programs’ functionalities. The last column exhibits the time in second taken
by our analysis. As can be seen from their functions, these programs involve
recursive data structures such as (sorted) linked lists and binary (search) trees,
and employ loops to manipulate these data structures (and some of them even
have nested loops). Our target is to verify these programs with the help of our
analysis over the loops they invoke, such that user annotations for while loops
can be avoided. Our experiments have confirmed that Hip/Sleek can verify all
these programs successfully when supplied with loop invariants discovered by our
analysis. According to our experience, these experiments just require the bound
of shared cutpoints be a reasonably small number, say no more than twice of
the number of program variables.

We have two main observations from our experimental results. The first is
that we can handle many data structures with rich program properties they
bear. To analyse these loops, we need to deal with both the list and list segment
predicates to capture the linked list data structure, as well as their sorted version
for the sorting algorithms. We can also handle tree-like predicates such as binary
trees and binary search trees. Meanwhile these predicates also come along with
many properties such as the length of the list and size/height of the tree, and the

Loop Invariant Synthesis in a Combined Domain 481

minimum/maximum value of a sorted list/binary search tree. Based on them,
our analysis is capable of expressing the invariants of these properties in terms
of the constraints over the predicates’ parameters.

Beyond the number of predicates and properties we can process, another ob-
servation on our analysis is that we can process them rather precisely. For exam-
ple the list creation program creates a list with the same length as user input,
and list traverse does not change list’s length. Besides these, some loops provide
critical invariants for the method running them to function correctly. For ex-
ample, the quicksort algorithm partitions a list into three parts, where two are
lists and the third just one node, whose value is exactly in the middle of that of
the two other lists (partition in the table). We use a list bound predicate to
indicate that fact which is successfully inferred by our analysis. We can also infer
that the first loop of a mergesort (split in the table) can divide the list into two
whose length difference is at most one, which is unimportant for the algorithm’s
functional correctness but essential for its performance. For tree insert, we
have the result that the tree’s height is increased at most one, and the mini-
mum/maximum value of the new binary search tree will be exactly the inserted
value, if that value is out of the value bounds of the original tree. Such invariants
are sufficiently precise to prove the functional correctness of all these programs
with the given predicates.

6 Related Work and Conclusion

Related works. For heap-manipulating programs with any form of recursion
(be it loop or recursive method call), dramatic advances have been made in
synthesising their invariants/specifications. The local shape analysis [9] infers
loop invariants for list-processing programs, followed by the SpaceInvader tool
to infer full method specifications over the separation domain, so as to verify
pointer safety for larger industrial codes [3,27]. The SLAyer tool [10] implements
an inter-procedural analysis for programs with shape information. To deal with
also size information (such as number of nodes in lists/trees), THOR [19] derives
a numerical program from the original heap-processing one in a sound way,
such that the size information can be obtained with a traditional loop invariant
synthesis. A similar approach [11] combines a set domain (for shape) with its
cardinality domain (for corresponding numerical information) in a more general
framework. Compared with these works, our approach can handle data structures
with stronger invariants such as sortedness and binary search property, which
have not been addressed in the previous works.

One more work to be mentioned is the relational inductive shape analysis [4].
It employs inductive checkers to express both shape and numerical information.
Our approach has four advantages over theirs: firstly, we try to keep as many as
possible shared cutpoints (logical variables) during the analysis (within a preset
bound), whereas they do not preserve such cutpoints (which is witnessed by their
joining rules over the shape domain). Therefore our analysis is essentially more
precise than theirs, e.g. in the second scenario of (6) described in Section 4.2.

482 S. Qin et al.

Meanwhile, our approach can deal with data structures with loops in them (say
cyclic linked-lists), whereas they do not have a mechanism to handle it. An
example in point is the state x::ls〈m, y〉∗y::ls〈y, n〉∧n>0 involving both a shared
cutpoint y and a circled list y::ls〈y, n〉 ∧ n>0, neither of which can be handled
by their work (while ours is capable of that). Another advantage of our approach
over theirs is that they only demonstrate how to analyse a program with one
particular shape, such as their examples analysing programs which manipulate
binary search trees and red-black trees without changing the variety of shape in
the heap. Comparatively, we allow different predicates to appear in the analysis
of one program, like in our motivating example (thanks to our more flexible
abstraction operation). Lastly, their work is mainly from a theory perspective
as they do not employ numerical reasoners to solve the relational constraints
in their implementation; on the contrary, we discharge all the numerical and
relational constraints with automated reasoners [23,24].

There are also many other approaches that can synthesise shape-related
program invariants than those based on separation logic. The shape analysis
framework TVLA [26] is based on three-valued logic. It is capable of handling
complicated data structures and properties, such as sortedness. Guo et al. [12]
reported a global shape analysis that discover inductive structural shape invari-
ants from the code. Kuncak et al. [16] developed a role system to express and
track referencing relationships among objects, where an object’s role (type) de-
pends on, and changes according to, the mutation of its referencing. Hackett and
Rugina [13] can deal with AVL-trees but is customised to handle only tree-like
structures with height property. Compared with these works, separation logic
based approach benefits from the frame rule and hence supports local reasoning.

Classical abstract interpretation [7] and its applications such as automated as-
sertion discovery [8,15,17] mainly focus on finding numerical program properties.
Compared with their works, ours is also founded on the abstract interpretation
framework but tries to discover loop invariants with both separation and nu-
merical information. Meanwhile, we can also utilise their techniques of join and
widening to reason about the numerical domain, as we did for the work [23].

Concluding Remarks. We have reported an analysis which allows us to synthe-
sise sound and useful loop invariants over a combined separation and numerical
domain. The key components of our analysis include novel operations for ab-
straction, join and widening in the combined domain. We have built a prototype
system and the initial experimental results are encouraging.

Acknowledgement. This work was supported by EPSRC Projects
EP/G042322/1 and EP/E021948/1 and MoE Tier-2 Project R-252-000-444-112.
We thank Florin Craciun for his precious comments.

References

1. Berdine, J., Calcagno, C., O’Hearn, P.: Smallfoot: Modular automatic assertion
checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de
Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidel-
berg (2005)

Loop Invariant Synthesis in a Combined Domain 483

2. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.: Automatic termination proofs
for programs with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

3. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: 36th POPL (January 2009)

4. Chang, B., Rival, X.: Relational inductive shape analysis. In: POPL (2008)
5. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,

size and bag properties. In: 12th ICECCS (2007)
6. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Enhancing modular oo verification

with separation logic. In: POPL (January 2008)
7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

8. Cousot, P., Cousot, R.: On abstraction in software verification. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 37. Springer, Heidelberg (2002)

9. Distefano, D., O’Hearn, P., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
459–473. Springer, Heidelberg (2006)

10. Gotsman, A., Berdine, J., Cook, B.: Interprocedural shape analysis with sepa-
rated heap abstractions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 240–260.
Springer, Heidelberg (2006)

11. Gulwani, S., Lev-Ami, T., Sagiv, M.: A Combination Framework for Tracking Par-
tition Sizes. In: POPL (2009)

12. Guo, B., Vachharajani, N., August, D.: Shape analysis with inductive recursion
synthesis. In: PLDI (2007)

13. Hackett, B., Rugina, R.: Region-based shape analysis with tracked locations. In:
POPL (2005)

14. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures.
In: POPL (2001)

15. Kovács, L., Jebelean, T.: An algorithm for automated generation of invariants
for loops with conditionals. In: SYNASC (Symbolic and Numeric Algorithms for
Scientific Computing) (2005)

16. Kuncak, V., Lam, P., Rinard, M.: Role analysis. In: POPL (2002)
17. Leino, K.R.M., Logozzo, F.: Loop invariants on demand. In: Yi, K. (ed.) APLAS

2005. LNCS, vol. 3780, pp. 119–134. Springer, Heidelberg (2005)
18. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. To

appear at LPAR-16 (2010)
19. Magill, S., Tsai, M., Lee, P., Tsay, Y.: Thor: A tool for reasoning about shape

and arithmetic. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
428–432. Springer, Heidelberg (2008)

20. Nguyen, H.H., Chin, W.-N.: Enhancing program verification with lemmas. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 355–369. Springer,
Heidelberg (2008)

21. Nguyen, H.H., David, C., Qin, S., Chin, W.-N.: Automated verification of shape
and size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

22. Parkinson, M., Bierman, G.: Separation logic, abstraction and inheritance. In:
POPL (2008)

23. Popeea, C., Chin, W.-N.: Inferring disjunctive postconditions. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 331–345. Springer, Heidelberg
(2008)

484 S. Qin et al.

24. Pugh, P.: The Omega Test: a fast and practical integer programming algorithm for
dependence analysis. Communications of the ACM (1992)

25. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: 17th
LICS (2002)

26. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems 24(3), 217–298 (2002)

27. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

Software Metrics in Static Program Analysis

Andreas Vogelsang1, Ansgar Fehnker2, Ralf Huuck2, and Wolfgang Reif3

1 Fakultät für Informatik, Technische Universität München
Boltzmannstr. 3, 85748 Garching b. München, Germany

andreas.vogelsang@in.tum.de
2 National ICT Australia Ltd. (NICTA)� and University of New South Wales

Locked Bag 6016, Sydney NSW 1466, Australia
{ansgar.fehnker,ralf.huuck}@nicta.com.au

3 Lehrstuhl für Softwaretechnik und Programmiersprachen, Universität Augsburg
Universtitätsstrasse 14, 86135 Augsburg, Germany

reif@informatik.uni-augsburg.de

Abstract. Software metrics play an important role in the management
of professional software projects. Metrics are used, e.g., to track devel-
opment progress, to measure restructuring impact and to estimate code
quality. They are most beneficial if they can be computed continuously
at development time. This work presents a framework and an implemen-
tation for integrating metric computations into static program analysis.
The contributions are a language and formal semantics for user-definable
metrics, an implementation and integration in the existing static analy-
sis tool Goanna, and a user-definable visualization approach to display
metrics results. Moreover, we report our experiences on a case study of
a popular open source code base.

Keywords: software metrics, static program analysis, software quality,
software maintenance.

1 Introduction

Many experts from academia as well as from industry would agree on the fact
that most of today’s software products and their development process are of
comparatively low quality. The 2009 Standish Group CHAOS Report [15] for
example states that 24% of all software projects fail, which means they are
cancelled prior to completion or delivered and never used, while only 32% can be
considered as successful. One of the contributing factors is that modern software
is almost never completely developed from scratch, but is rather extended and
modified using existing code and often includes third party source code. This can
lead to poor overall maintainability, difficult extensibility and high complexity.
To better understand the impact of code changes and track complexity issues
as well as code quality software metrics are frequently used in the software
development life cycle.
� Funded through the Australian Government’s Backing Australia’s Ability initiative,

in part through the Australian Research Council.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 485–500, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

486 A. Vogelsang et al.

Ideally, software metrics should be computed continuously during the devel-
opment process to enable the best possible tracking. Moreover, software metrics
should be definable by development teams to not only cover general factors, but
to measure company, project or team specific goals. In this work we present an
integrated and flexible approach to metric computation by embedding it into
static program analysis. As such, metrics can be computed on demand for every
compilation even long before the software is fully developed.

In particular, we present a novel metric specification language (GMSL) that
enables software developers to quickly specify their own metrics. We further de-
fine the formal syntax and semantics for GMSL, and implemented an interpreter
that embeds the metric calculation in our existing static analyzer Goanna. On
top of this we present a generic and user-definable visualization approach that
enables quick tracking of metric results. Moreover, we report on our experiences
integrating a metric specification language into static program analysis as well
as our experiences from real world case studies.

Related to our approach are a number of tools that enable to compute metrics
or query code for programming constructs. ODASA1 is a commercial software
assets analyzer that adds all software artefact’s into a repository and provides a
query engine to search for bottlenecks or quality flaws. Coverity Architec-
ture Analysis2 is a commercial static program analyzer for C/C++ and Java
programs. It offers an architecture analysis and comes with predefined metrics
that focus on complexity. Klocwork Insight3 is another commercial source
code analysis suite that includes an Integration Build Reporting and Metrics
module for a large number of predefined metrics. NDepend4 is a Visual Studio
tool that helps the user to manage complex .NET code bases. NDepend con-
siders the code as a database and the user can query the database and display
the query results. SonarJ5 is another software architecture management tool
based on static analysis. Its main focus is to assure the consistency of the logical
architecture of a system and its actual implementation. Additionally, SonarJ
computes metrics, such as Robert Martin’s metrics [10], and provides a histogram
chart to visualize the development over time.

All of the mentioned tools can be partitioned into two different categories:
Either offering a query language that allows the user to query his code for par-
ticular constructs or computing metric values on the source code during the build
process based on pre-defined settings. None of the tools provide a mechanism
that allows the user to define his or her own metrics that are subsequently com-
puted automatically by the analysis tool in each compilation or build. Also, the
visualizations are usually specific to the predefined metrics and measures. In con-
trast, our approach enables to link user-defined metrics to generic visualizations,
which are independent from the metric’s semantics.

1 http://semmle.com/technology/how-it-works/
2 http://www.coverity.com/products/architecture-analysis.html
3 http://www.klocwork.com/products/insight/
4 http://www.ndepend.com/Metrics.aspx
5 http://www.hello2morrow.com/products/sonarj/

http://semmle.com/technology/how-it-works/
http://www.coverity.com/products/architecture-analysis.html
http://www.klocwork.com/products/insight/
http://www.ndepend.com/Metrics.aspx
http://www.hello2morrow.com/products/sonarj/

Software Metrics in Static Program Analysis 487

The next section introduces software quality metrics and static analysis, espe-
cially Goanna. Section 3, and 4 cover the metric specification language GMSL,
metric computation in Goanna, and metric visualization. Section 5 discusses
application of the tool to the Audacity code base, and its performance, while
Section 6 concludes with an outlook on future work.

2 Integrating Software Metrics

Software metrics. Software metrics measure properties of software and are loosely
defined in the IEEE 1061 standard [9] as

“A function whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to which software
possesses a given attribute that affects its quality. ”

This means that metrics make a statement about some quality attributes, are
quantitative, but will have to be interpreted by a human. In this work we focus on
so called software product metrics, which covers the aspects of size, complexity,
and quality that can be measured on the source code and its evolution over
time. Example product metrics are lines of code, cohesion, coupling or cyclomatic
complexity. We will go into detail in Section 3.

While there has been a substantial body of work on metrics definitions and
their correlation with program faults [7,13,14] or maintainability and bugs [4,5]
we will not discuss which metrics are reasonable or particularly important. Nei-
ther will we address which metric values indicate good or poor quality. Instead
we are proposing a framework that allows to define all these metrics in a flexi-
ble and concise manner and integrate them into the standard compilation and
source code analysis process.

Level of Abstraction. Metrics can be defined on various levels of abstraction.
Common metrics such as McCabe’s cyclomatic complexity [11] are defined on
the control flow graph (CFG) of a program and can be stated as

CC = e− n + 2p, (1)

where e is the number of edges, n is the number of nodes and p is the number of
strongly connected components in the CFG. Implementations, however, are typ-
ically more language specific. The tool NDepend for example defines cyclomatic
complexity as:

CC = 1 + {number of the following expressions found in a method} :
if|while|for|foreach|case|default|continue|goto|&&||||catch|?:|?? (2)

This definition enumerates the concrete code constructs that contribute to cy-
clomatic complexity. These differ from language to language and the above def-
inition is only valid for the programming language C#.

488 A. Vogelsang et al.

properties

GXSL

C/C++ parser

AST

GXSL
engine

model
builder

model
model

checker

warnings
GPSL
engine

GPSL

annotations

Fig. 1. Goanna’s model checking approach for statically analyzing C/C++ code

This work introduces an approach to define metrics on a more abstract level
such as in (1). This means, the definition is closely related to its mathematical
representation. This improves readability and maintainability of the metric def-
inition itself. However, we also provide means to associate these definitions with
elements in the abstract syntax tree (AST), such that the metric definitions can
be automatically computed for real-life source code.

Integrating Metric Computation. Metrics can be computed on their own or inte-
grated into the compiler or existing source code analysis frameworks. Integration
into existing frameworks leverages existing technology and requires fewer pro-
cess changes for software development teams. This means, metric results are an
added feature of tools that are already in frequent use.

In this work we integrate user-definable metrics in our static source code
analyzer Goanna. This tool performs deep analysis of C/C++ source code
using model-checking [3] technology. Goanna checks for bugs, memory leaks and
security vulnerabilities, is fully path-sensitive and inter-procedural, and makes
use of additional techniques such as abstract interpretation. A more detailed
overview can be found in [6].

Goanna already provides two specification languages for defining source code
checks. The first language is a tree-query language based on XPath [2] for finding
constructs and patterns of interest in the AST and is called Goanna XPath
Specification Language (GXSL). The second language is based on temporal logic
expressions over paths in the CFG and is called Goanna Property Specification
Language (GPSL). GPSL allows the embedding of GXSL expression. An example
is to query for malloc and free constructs in GXSL and then use the information
to define in GPSL that all paths in the program from a malloc should lead to
a free. Figure 1 shows how these languages feed into the static analysis. More
details can be found in [16].

Software Metrics in Static Program Analysis 489

This work uses the existing framework and introduces a metric specification
language that can reference to earlier query results, count, and compute metrics
based on arithmetic expressions. The new language will be introduced in the
next section.

3 Metric Specification Language GMSL

The Goanna Metric Specification Language (GMSL) provides a way to define
metrics on an abstract level. A prerequisite for the use of GMSL is a query engine
that returns sets of nodes of the AST for which certain syntactic properties hold.
As mentioned in Section 2, Goanna provides a language GXSL language to
define functions that select certain nodes of the AST of a program. The queries
are always evaluated on the entire AST but it is possible to pass parameters to
the queries to refer to particular node (or sub-trees) in the AST. The result of a
GXSL query is a set of AST nodes.

Most metrics are defined for a given scope, this means for a particular set
of nodes in the AST. For example, a metric might be defined for the scope
all_classes , which means that one metric value will be computed for each class.
And each class in the programm corresponds to a sub-tree in the AST. Other
metrics are defined for scopes like functions or namespaces . In GMSL the scope
of a metric is mention in its definition, and metric values will be computed for
every instance of the scope.

GMSL distinguishes between two types of variables. One ranges over nodes
(or sub-trees) of the AST, and the values are obtained by GXSL queries on the
AST or sub-trees of it. These variables will be passed as arguments to other
GSXL queries. The other type of variable represents integer and real numbers,
which either represent the cardinality of sets, results obtained from other metrics,
the result of an arithmetic expression, or the aggregated result of those. For
simplicity we assume that these numbers are reals. The actual definition of the
metric then is a mathematical expression containing variables over the reals,
queries and constants.

3.1 Syntax

The grammar of GMSL, given in Extended Backus Naur Form (EBNF), is de-
fined in Table 1. Before we introduce the semantics, we first provide a few ex-
amples for common metrics to illustrate the language. A few functions are used
in these examples, which are provided by Goanna’s AST query library. This
library can be extended by user-defined AST queries, e.g. GXSL functions, de-
fined specifically to compute metrics. The following examples also demonstrate
how to define a wide variety of metrics found in literature.

Cyclomatic Complexity. Cyclomatic Complexity of a function as defined in
NDepend is the number of branches in the control flow of a function plus one.
If we only consider one function, i.e. one strongly connected component of the
corresponding CFG, this definition is equal to McCabe’s definition [11], which

490 A. Vogelsang et al.

Table 1. GMSL Grammar in EBNF

gmsl = "METRIC" name scope [venv] definition ;
scope = ’(’ node "IN" function ’)’ ;
name = ident ;
venv = "WITH" vdecl (’,’ vdecl)* ;
vdecl = var ’=’ binding ;
definition = "DEF" expression ;
binding = function | aggregator function "OVER" setindex ;
aggregator = "SUM" | "MAX" | "MIN" | "PROD" ;
setindex = node "IN" function ;
function = ident [’(’ [ident (’,’ ident)*] ’)’] ;
expression = var | function | num | expression op expression ;
op = ’+’ | ’-’ | ’*’ | ’/’ ;
var = ’@’ ident ;
node = ident ;
num = nat | real ;
nat = (’0’ | ... | ’9’)+ ;
real = nat ’.’ nat ;
ident = (’a’ | ’b’ | ... | ’Z’ | ’_’)+ ;

defines the cyclomatic complexity as the number of linearly independent paths
in the control flow of a function:

METRIC cc_per_f (f IN all_funs)
WITH @cn = all_cond_nodes(f)
DEF 1 + @cn

The metric will be computed for all nodes f returned by the GXSL query
all_funs . It is defined as:

fun all_funs()
<<./FunDecl>>

This function returns the corresponding AST node for every function of a given
program. The metric value of f is determined by the number of conditional
nodes in f , given by the GXSL query all_cond_nodes , plus one. The query
all_cond_nodes lists all conditional nodes, similar to definition (2), for C/C++:

fun all_cond_nodes(f)
f<< .//If | .//While | .//For | .//Goto | .//Label | .//Default |

.//Op2[@op=’LogicalOr’ or @op=’LogicalAnd’] | .//Handler |

.//Op3[@op=’Cond’]>>

Afferent Coupling. Afferent Coupling of a class as defined by ARiSA6 is the
number of classes that call a certain class:
6 http://www.arisa.se/compendium/node104.html

http://www.arisa.se/compendium/node104.html

Software Metrics in Static Program Analysis 491

METRIC afferent_coupling (c IN all_classes)
WITH @ca = SUM dependency(g,c) OVER g IN all_classes
DEF @ca

The metric will be computed for all nodes c returned by the AST query
all_classes . The metric value of c is determined by the sum of dependency(g, c),
applied to all nodes g, returned by the AST query all_classes . The AST query
dependency(g, c) returns one node for class g, if there is a function call in class
g to class c.

Cohesion. Cohesion of a class as defined in [1] is a measure of how strongly-
related and focused the various tasks of a class are, depending on how many
methods of a class access common fields or call common other methods of the
same class:

METRIC cohesion (c IN all_classes)
WITH @N = methods_of_class(c),

@E = SUM directly_related(m) OVER m IN methods_of_class(c)
DEF @E /(@N * (@N-1))

The metric will be computed for all nodes c returned by the AST query
all_classes . The AST query directly_related(m) returns a node for all methods
of the same class that are directly related to method m (i.e. they both access a
certain common field or they are both calling another common method of the
class). If every method is directly related to all other methods, then the metric
value is equal to 1.

3.2 Semantics

The semantics of GMSL will be given as a denotational semantics which uses
environments to map syntax to semantics. There are four types of environments:

– ς ∈ GXSLLib is a GXSL environment which maps GXSL function names to
the actual GXSL functions.

– μ ∈ MEnv is a metric environment that maps metric names to their semantic
function.

– η ∈ NEnv is a node environment which maps node variables to their corre-
sponding AST node.

– ν ∈ VENV is a variable environment which maps counting variables to their
semantic value.

These environments and their product, which is denoted by Env are used to
define the semantics of GMSL.

The semantics are defined via a function M , which compiles a metric defini-
tion to a metric environment. All information that are necessary for applying a
metric definition to a program are contained in that metric environment.

M�−� : MDecl → GXSLLib ×MEnv → MEnv (3)
M�m�(ς, μ) = μ [name(m) 	→ S�m�(ς, μ, ∅, ∅)] (4)

492 A. Vogelsang et al.

Function S maps, given an initial environment, the environment to a function
that takes a program and maps the nodes of this program that are within the
scope of the metric to real numbers. It is defined as follows.

S�−� : MDecl → (Env → (Πp : Prog .nodes(p) ⇀ R)) (5)
S�METRIC name (scope IN f) venv definition�(ς, μ, η, ν) = (6)

λp ∈ Prog . λn ∈ G�f�(ς, η)(p) . (7)
D�definition� (updV (venv)(ς, μ, η[scope 	→ n], ν)(p)) (p) (8)

This definition reflects that a metric encompasses a scope, a declaration of
counting variables, and an arithmetic expression over variables and applications
of GMSL and GXSL functions. The set G�f�(ς, η)(p) in (7) contains all scope
instances. Function G is defined by the GXSL semantics, and returns for a given
environment a set of AST nodes. Given the variable declaration part, updV in
(8) updates ν ∈ VEnv such that it maps the counting variables to the semantics
B of the associated binding. Function D associates the metric with the semantics
E for the associated arithmetic expression. We omit the formal definition of D,
and updV for brevity; E will be defined below. The semantics of the bindings are
defined as follows:

B�−� : binding → (GXSLLib ×MEnv ×NEnv → (Prog → R)) (9)
B�f�(ς, μ, η) = λp ∈ Prog .F�f�(ς, μ, η)(p) (10)
B�SUM f OVER node IN g�(ς, μ, η) = (11)

λp ∈ Prog .
∑

n∈G�g�(ς,η)(p)

F�f�(ς, μ, η[node 	→ n])(p) (12)

The semantics of the remaining aggregators PROD, MAX, MIN are defined
analogously. A binding of a counting variable can either be a simple function or
an aggregation over a set of numbers determined by the application of a function
on the results of a node set, returned by another function. Simple functions in this
case can be GXSL query functions from the library or the name of another GMSL
metric. The semantics of a simple function f is determined by the semantic
function F . If f is a GXSL library function, F�f�(ς, μ, η)(p) in (10) or (12)
returns the cardinality of the associated set. If f is a GMSL library function, it
returns a real number representing a metric value.

F�−� : function → (GXSLLib ×MEnv ×NEnv → (Prog → R))
F�libfun(n1, . . . , nk)�(ς, μ, η) = λp ∈ Prog . |G�libfun(n1, . . . , nk)�(ς, η)(p)|
F�metric(n)�(ς, μ, η) = λp ∈ Prog . μ(metric)(p)(η(n)(p))

The arithmetic expression is the definition in semantic function S. The se-
mantics of these arithmetic expressions are defined as follows:

Software Metrics in Static Program Analysis 493

E�−� : definition → (Env → (Prog → R))
E�@v�(ς, μ, η, ν) = λp ∈ Prog . ν(@v)(p)
E�n�(ς, μ, η, ν) = λp ∈ Prog .N (n)
E�exp1 + exp2�(ς, μ, η, ν) =

λp ∈ Prog . E�exp1�(ς, μ, η, ν)(p) + E�exp2�(ς, μ, η, ν)(p)

The semantics of the remaining mathematical operators −, ∗, / are defined
analogously. An expression in a definition can either be a counting variable, a
constant number or a composition of expressions. If the expression is a counting
variable, the semantics of it is just the semantics of the binding to which it is
mapped in the counting variable environment.

Example. To illustrate the defined semantics consider the following metric
definitions:

METRIC avg_method_cc (c IN all_classes)
WITH @s = SUM cc_per_f(m) OVER m IN methods_of_class(c),

@n = methods_of_class(c)
DEF @s / @n

This metric avg_method_cc computes the average cyclomatic complexity of the
methods of a class. The functions all_classes and methods_of_class(c) re-
turn the set of all class nodes (sub-tree), or for a given class node (sub-tree) the
set of all method nodes (sub-trees). Function cc_per_f(m) is a call to another
GMSL metric that computes the cyclomatic complexity per function. This met-
ric was defined on page 489. We apply this metric definition to the following
C++ program:

class Number{
private: int n;
public: Number(int number){n=number;}

void inc();
void dec();};

void Number::inc(){ n++;}

void Number::dec(){ if (n>0) n--;}

int main(){ return 0;}

This C++ program consists of one class with two public methods and one con-
structor and a main function. Since Number :: dec() has a branching condition
its cyclomatic complexity is 2; the cyclomatic complexity of all other functions is
1. Class Number is in the set returned by the GXSL query all_classes (applied
to the program), thus within its scope.

Variable @s has value
∑

m∈G[methods_of_class(c)]M[cc_per_f](m), i.e 4. Variable
@n has value |G[methods_of_class(c)]|, i.e 3 as there are three methods. Hence,
the expression @s/@n evaluates to an average cyclomatic complexity of 1 1

3 .

494 A. Vogelsang et al.

view

GXSL

C/C++ parser

AST

GXSL
engine

GMSL
engine

GMSL
metric

db
visualisation

module
metric

Fig. 2. Goanna’s architecture for metric computation

4 Metric Module

4.1 GMSL Interpreter

The Goanna GMSL interpreter is an extension to the existing Goanna ana-
lyzer. An overview of the extended architecture can be found in Figure 2. The
metrics interpreter sits on top of the existing GXSL query engine, i.e., mostly
uses existing library functions for pattern matching constructs of interest, and
interprets the metric specification written in GMSL. Metric specifications are
written in text files and that way passed to the metric module.

From an implementation point of view it is interesting to note that some
metrics are incrementally computed during an analysis run with the help of a
database. The reason is as follows: Some metrics require more information than
what can be gathered from a local function or a single file. For instance, to
compute the number of method instances of a class or computing the number
of calling functions for a given callee typically requires to aggregate information
from the whole project. Therefore, we use a database to store partial information
where necessary and aggregate this information during the analysis of the whole
program.

4.2 Visualization Module

The previous sections covered the definition and computation of metrics. How-
ever, as mentioned in Section 2 software metrics are meant to be interpreted
by humans. To assist the judging process and help to understand the data we
define a generic visualization model. This enables a number of different views
for a given set of metric values and allows the visualization of any user-defined
metric.

To assist interpretations of the data, users of Goanna[]’s metric module can
specify information which will be used in tooltip, comments, and most impor-
tantly, to properly scale the different metrics. For the latter we implemented

Software Metrics in Static Program Analysis 495

(a) (b)

Fig. 3. (a) Histogram implementation of the time view. The histogram shows the effer-
ent coupling over time for different classes. (b)Bar chart implementation of the metric
view. Ranking of classes by cohesion.

a user-defined mapping of GMSL output to a finite number of categories. For
instance, the following ranges and categories were defined for cyclomatic
complexity:

= 1 : No Branching
1-15 : Easy
15-30 : Hard to Maintain
> 30 : Extremely Complex

These categories can be used as the visualization domain for different views, and
aid the interpretation of the results.

In the following we describe the four views for metric visualization imple-
mented in Goanna. We say S = (M, t), is a snapshot of a project, where M is
a set of GMSL metrics and t is a time stamp.

Time view: The time view is a sequence of program snapshots ordered by their
time stamps. Given a sequence of snapshots (M0, t0), . . . , (Mn, tn) the time view
will display for each time stamp all chosen metric results per scope in Mi. This
provides a good overview of how different metric values change over time. In
the visualization module this will be displayed as a stacked bar chart as seen in
Figure 3(a).

Metric view: The metric view is the summary of one metric for all elements in
one scopes at one point in time, i.e., for a single snapshot (M, t). In Goanna
the metric view is implemented by a horizontal bar chart that lists the metric
values of different elements in the scope in decreasing order. Figure 3(b) shows
an example for the ranking of classes by cohesion.

496 A. Vogelsang et al.

(a) (b)

Fig. 4. (a) Radar chart implementation of the scope view. All metric values for a
given class. (b) X-Y-Plot for the correlation view. This figure correlates the number of
methods of a class, with the cyclomatic complexity.

Scope view: The scope view is the summary of all metric values that are com-
puted for a certain instance of a scope at a certain time. The scope view is
implemented by a radar chart where every axis represents a metric. An example
for the different metric values of a given class is given in Figure 4(a).

Correlation view: The correlation view is a combination of the metric view and
the scope view. It enables the user to examine how the values of a pair of metrics
correlate over several scope instances. The correlation view is implemented in
the form of an X-Y-Plot. See Figure 4(b) for an example.

The different metric views are configurable and can be combined in a dash-
board if desired, but most importantly they are independent from a metric itself.
As such they can visualize any metric and sufficiently provide a quick overview
of the status of a software project.

5 Case Study

This section reports on the application of Goanna’s metric module to the Au-
dacity7 code base. Audacity is an open source audio editor and written in C++.
The latter was essential for testing the metrics defined for classes. With about
90,000 lines of code it has a reasonable size, and is, with around 70 million to-
tal downloads on sourceforge.net, also quite popular. The tests were performed
on a desktop PC with 4 GB RAM and an Intel Core 2 Quad CPU @ 2.66
Mhz. The results for an implementation of the metric module based on Goanna
version 1.1.
7 http://audacity.sourceforge.net/

http://audacity.sourceforge.net/

Software Metrics in Static Program Analysis 497

Fig. 5. Runtimes of Goanna version 1.1 in different modes on the Audacity code base

The original build process of Audacity uses Gcc to compile and link the
source code. This build process takes 1:10 minutes to complete. The runtime
of the metric module will be composed of: this compile time (because Goanna
also compiles the code), the time to extract the AST of the source files, the
parsing of the metric definitions, and the metric computation itself. To separate
the computation from the parsing steps, the module was run with an empty
metric definition. Compiling the source code and extracting the AST took 03:04
minutes.

To measure and profile the performance of the metric computation, we set
up six different test cases. These test runs are combinations of using one local
metric, one non-local metric, and twelve miscellaneous metrics. Moreover, each
of these cases were run in single file mode (sfm) and multiple file mode (mfm).
A local metric is a metric that uses only queries that can be evaluated directly
on the local scope instance. For instance, the metric number_of_methods is a
local metric. A non-local metric, in contrast, iterates over sets of nodes that span
multiple files. Metric avg_method_cc is an example, since it iterates over the
set of methods of a class, which may be distributed over multiple files.

Among the twelve metric we measured were: Cyclomatic complexity, Afferent
coupling, Efferent coupling, and Instability [8] of classes and functions, and Lack
of cohesion in methods of a class (LCOM).

498 A. Vogelsang et al.

The runtimes of these tests as well as the above mentioned runtimes for Gcc
and the Goanna’s bug detection (goannac++) are shown in Figure 5.

One immediate observation is that the runtimes heavily depend on the num-
ber, kind, and complexity of the GXSL functions used. As shown by the difference
in runtime between the computation of a local metric and a non local metric,
the use of aggregations takes significantly longer. This is due to the iteration
over node sets, which may result in quadratic runtime, instead of linear in terms
of node instances. On the other hand the evaluation of GXSL queries, especially
on large ASTs, took the biggest proportion of time.

Another observation is that when running Goanna in multiple file mode
(mfm) for one metric the runtime only increased by around 15-30% in comparison
to the single file mode (sfm), the runtime for 12 metrics roughly doubled. This
overhead can be explained by three reasons: Firstly, in multiple file mode all
query results are stored in a database. Hence, every application of a query causes
some additional database operations. Secondly, an aggregation in multiple file
mode can be more expensive, because the aggregation set is typically larger. The
third reason for the overhead had to do with slow string operations that were
used for the communication with the database.

Some of the performance issues have been addressed in later versions of
Goanna, but we like to point out that the current implementation is a pro-
totype and has a lot of room for improvement. What is more important is that
we were able to easily specify metrics and experimentally confirm some of the
arguments brought forward in the literature as we see next.

Notable Results. The results we obtained were compared to some claims made
by other authors. For instance, McConnell [12] classifies modules that handle all
I/O routines as logical cohesive. In his system of seven cohesion classes logical
cohesion is the second worst. Audacity has two I/O classes, named AudioIO
and FileIO. The results obtained by the metric module confirm McConnell’s
conjecture: The cohesion computed by Goanna according to Badri’s [1] formula
resulted in 0.28 for FileIO and 0.3 for AudioIO, which is on the low end of
the spectrum. The highest value of cohesion of the entire project had a class
called WrappedType, which can be identified as functional cohesive. According
to McConnell’s classification, functional cohesion is the best category.

The correlation view of some values also revealed some expected connection
between the metrics. As Figure 4(b) showed, there is a linear correlation between
cyclomatic complexity of a class with an increasing number of methods in the
Audacity code base. Of course, one simple contributing factor is that the addi-
tion of a method to a class will increase its cyclomatic complexity by at least
one. Another observation is the correlation between cohesion and LCOM, which
indicates the lack of cohesion of methods. As one might expect, an increasing
cohesion value results in a decreasing lack of cohesion. The correlation view of
these values for the Audacity code base is shown in Figure 6.

Software Metrics in Static Program Analysis 499

Fig. 6. Correlation of metric values of cohesion and LCOM (lack of cohesion of meth-
ods) on the Audacity code base

6 Conclusions

In this work we presented an approach to user-defined software metrics and
a seamless integration into static program analysis. Unlike existing approaches
the metrics are not hard coded, but interpreted at analysis time from a textual
description that can be defined by software developers and teams themselves.
The specification language GMSL is based on a formal syntax and semantics.
While we chose to integrate the interpreter in our own tool there is in principle
no restriction for using the same approach in, e.g., the standard compiler.

On top of the metric specification language we built the proof of concept of
a generic metric visualization module. This module enables the mapping of any
metric to different views and the automatic user-defined mapping of values to
abstract categories. In practice, this has been proven useful to quickly assess the
state of a software project.

Future work has to address some of the current implementation issues, such as
relatively slow database access and optimizing the query interpretation. More-
over, some work has to go into scaling the used visualization techniques to large
software projects. Once the user is confronted with dozens of metrics and thou-
sands of files it is important to have some automated visual abstraction to avoid
confusion and overload.

References

1. Badri, L., Badri, M.: A proposal of a new class cohesion criterion: An empirical
study. Journal of Object Technology 3(4), 145–159 (2004)

2. Clark, J., DeRose, S.: XML Path Language 1.0 (XPath). W3C (1999),
http://www.w3.org/TR/xpath

http://www.w3.org/TR/xpath

500 A. Vogelsang et al.

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

4. Curtis, B., Sheppard, S.B., Milliman, P.: Third time charm: Stronger prediction
of programmer performance by software complexity metrics. In: Proceedings of
the Fourth International Conference on Software Engineering, pp. 356–360. IEEE
Computer Society Press, Los Alamitos (1979)

5. Elshoff, J.: An analysis of some commercial PL/I programs. IEEE Transactions on
Software Engineering SE-5(2), 113–120 (1976)

6. Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M., Rauch, F.: Model Checking
Software at Compile Time. In: Proceedings of the 1st International Symposium on
Theoretical Aspects of Software Engineering, Shanghai, China (2007)

7. Ferzund, J., Ahsan, S.N., Wotawa, F.: Empirical evaluation of hunk metrics as
bug predictors. In: Abran, A., Braungarten, R., Dumke, R.R., Cuadrado-Gallego,
J.J., Brunekreef, J. (eds.) IWSM 2009. LNCS, vol. 5891, pp. 242–254. Springer,
Heidelberg (2009)

8. IBM: In pursuit of code quality: Code quality for software architects, Web-
site http://www.ibm.com/developerworks/java/library/j-cq04256/ (visited on
February 3, 2010)

9. IEEE: IEEE Standard for a Software Quality Metrics Methodology. Institute of
Electrical and Electronics Engineers (1061)

10. Martin, R.C.: Agile software development: principles, patterns, and practices. Alan
Apt series. Prentice-Hall, Englewood Cliffs (2003)

11. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineer-
ing 2(4), 308–320 (1976)

12. McConnell, S.: Code Complete: A Practical Handbook of Software Construction.
Microsoft Press, Redmond (1993)

13. Misra, S.C., Bhavsar, V.C.: Relationships between selected software measures and
latent bug-density: Guidelines for improving quality. In: Kumar, V., Gavrilova,
M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 724–732.
Springer, Heidelberg (2003)

14. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures.
In: ICSE 2006: Proceedings of the 28th International Conference on Software En-
gineering, pp. 452–461. ACM, New York (2006)

15. The Standish Group: Chaos report (2009), Website
http://www1.standishgroup.com/newsroom/chaos_2009.php (visited on Febru-
ary 25, 2010)

16. Vistein, M., Ortmeier, F., Reif, W., Huuck, R., Fehnker, A.: An abstract specifica-
tion language for static program analysis. Electr. Notes Theor. Comput. Sci. 254,
181–197 (2009)

http://www.ibm.com/developerworks/java/library/j-cq04256/
http://www1.standishgroup.com/newsroom/chaos_2009.php

A Combination of Forward and Backward
Reachability Analysis Methods

Kazuhiro Ogata and Kokichi Futatsugi

School of Information Science, JAIST
{ogata,kokichi}@jaist.ac.jp

Abstract. Induction-guided falsification (IGF) is a combination of
bounded model checking (BMC) and structural induction, which can be
used for falsification of invariants. IGF can also be regarded as a com-
bination of forward and backward reachability analysis methods. This is
because BMC is a forward reachability analysis method and structural
induction can be regarded as a backward reachability analysis method.
We report on a case study in which a variant of IGF has been used to
systematically find a counterexample showing that NSPK does not enjoy
the agreement property.

Keywords: agreement property, CafeOBJ, bounded model checking,
falsification, NSPK, structural induction, Maude.

1 Introduction

Bounded model checking (BMC)[1] has been used to discover a counterexample
showing that a hardware or software system does not enjoy a safety property.
It (or its concept) has been adopted by some software analysis tools such as
Alloy[2]. Basically it starts with some initial states of a system and exhaustively
traverses the state space reachable from the initial states up to some specific
depth. Therefore, BMC is a forward reachability analysis method.

A backward reachability analysis method starts with some states of a system
such that a safety property is broken and traverses the state space reachable in
a backward sense from the states. If it reaches an initial state of the system, the
system does not enjoy the safety property. If the entire state space reachable
in a backward sense from such an arbitrary state does not contain any initial
states, the system enjoys the safety property. Among tools adopting a backward
reachability analysis method is Maude-NPA[3].

We have proposed a combination of BMC and structural induction called
induction-guided falsification (IGF)[4]. IGF uses as BMC the search functionality
provided by CafeOBJ[5] and Maude[6]. In IGF, structural induction is conducted
by human users by writing what are called proof scores in CafeOBJ. IGF can
also be regarded as a combination of forward and backward reachability analysis
methods. This is because structural induction can also be regarded as a backward
reachability analysis method.

In this paper, we review IGF and report on a case study in which a variant of
IGF, where non-necessary lemmas may be used, has been used to systematically

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 501–517, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

502 K. Ogata and K. Futatsugi

discover a counterexample showing that NSPK[7] does not enjoy the agree-
ment property. Many case studies have been reported, systematically discov-
ering a counterexample showing that NSPK does not enjoy the nonce secrecy
property[8,9,3]. To our best knowledge, however, few case studies have been
reported for the agreement property.

The rest of the paper is organized as follows. §2 describes the OTS/CafeOBJ
method[10] for specification and verification of systems. A simple example is
used to describe the method and demonstrate that (structural) induction can be
used to falsify that a system enjoys a property. §3 describes the search function-
ality. §4 describes a viewpoint that regards (structural) induction as a backward
reachability analysis method, reviews IGF, and introduces a variant of IGF. §5
reports on the case study. §6 mentions some related work. §7 concludes the paper.

2 The OTS/CafeOBJ Method

2.1 Observational Transition Systems

We suppose that there exists a universal state space denoted by Υ and that each
data type used in OTSs is provided. The data types include Bool for Boolean
values. A data type is denoted by D with a subscript such as Do1 and Do.

Definition 1 (OTSs). An observational transition system (OTS) consists of

– O : A set of observers. Each observer is a function o : Υ Do1 . . . Dom → Do.
The equivalence between two states υ1, υ2 (denoted as υ1 =S υ2) is defined
with respect to (wrt) values returned by the observers.

– I : The set of initial states such that I ⊆ Υ .
– T : A set of transitions. Each transition is a function t : Υ Dt1 . . . Dtn → Υ .

Each transition t, together with any other parameters y1, . . . , yn, preserves
the equivalence between two states. Each t has the effective condition c-t :
Υ Dt1 . . .Dtn → Bool. If ¬c-t(υ, y1, . . . , yn), then t(υ1, y1, . . . , yn) =S υ.

Given an OTS S and a state υ, t(υ, y1, . . . , yn) is called a successor state of υ
wrt S for any y1, . . . , yn. We may omit “wrt S” if it is clear from the context.

Definition 2 (Reachable States). Given an OTS S and a set U of states,
the reachable states from U wrt S are inductively defined as follows:

– Each state in U is reachable from U.
– If a state υ ∈ Υ is reachable from U, so is t(υ, y1, . . . , yn) for each t ∈ T

and any other parameters y1, . . . , yn.

We may omit “wrt S” and write “υ is reachable from U” if S is clear from the
context. When U is I, we may omit “from I” and write “υ is reachable wrt S”
or “υ is reachable”.

Let RS,U be the set of all states reachable from U wrt S. RS,U may be
called the state space reachable from U. Let RS be RS,I . RS may be called
the reachable state space. When U is a singleton, say {u}, we may write RS,u,
υ ∈ RS,u is called reachable from u and u is called backward-reachable from

A Combination of Forward and Backward Reachability Analysis Methods 503

υ ∈ RS,u. Given an OTS S and two states υ1, υ2 ∈ Υ , the depth from υ1 to υ2

wrt S (depthS(υ1, υ2)) is 0 if υ2 =S υ1 and d + 1 if depthS(υ1, υ3) = d and υ2 is
a successor state of υ3. If υ2 is not reachable from υ1, depthS(υ1, υ2) is ∞. Let
R≤d

S,u be {υ ∈ RS,u | depthS(u, υ) ≤ d}.

Definition 3 (Invariants). Given an OTS S, a state predicate p : Υ → Bool
is an invariant wrt S if (∀υ ∈ RS) p(υ).

We may omit “wrt S” and write “p is an invariant” if S is clear from the context.
CafeOBJ, an algebraic specification language, is used to specify OTSs. Υ is

denoted by a sort, say Sys. Each o ∈ O is denoted by an operator (called
an observation operator) declared as follows: “op o : Sys Do1 ... Dom -> Do”,
where each D∗ is a sort corresponding to D∗.

An arbitrary initial state in I is denoted by an operator declared as fol-
lows: “op init : -> Sys {constr}”. Operators with no arguments such as
init are called constants. For each o ∈ O, declared is an equation “eq
o(init,X1,...,Xm) = f(X1,...,Xm) .”, where each X∗ is a CafeOBJ vari-
able of sort D∗ and f(X1,...,Xm) is a term denoting the value returned by
o, together with any other parameters, in an arbitrary initial state. Note that
each CafeOBJ variable occurring in an equation (or a transition rule; see §3) is
universally quantified and its scope is in the equation (or the transition rule).

Each t ∈ T is denoted by an operator (called a transition operator) de-
clared as follows: “op t : Sys Dt1 ... Dtn -> Sys {constr}”. For each o and
t, a conditional equation is declared: “ceq o(t(S,Y1,...,Yn),X1,...,Xm) =
o-t(S,Y1,...,Yn,X1,...,Xm) if c-t(S,Y1,...,Yn) .”, where c-t(S,...)
corresponds to c-t(υ, . . .) and o-t(S,...) does not use any transition opera-
tors. The equation says how t changes the value observed by o if the effective
condition holds. If o-t(S,...) is always the same as o(S,X1,...,Xm), the con-
dition may be omitted.

For each t, one more conditional equation is declared: “ceq t(S,Y1,...,Yn)
= S if not c-t(S,Y1,...,Yn) .”, which says that t changes nothing if the
effective condition does not hold.

As indicated by {constr}, init and each t are constructors of sort Sys1.
They construct RS .

A simple example is used to describe OTSs. The example used is a flawed
mutual exclusion protocol.

Example 1 (Flawed Mutex Protocol). Multiple processes share a Boolean variable
locked whose initial value is false. Each process executes the pseudo-program:

Loop: “Remainder Section”
rs: wait until locked = false;
es: locked := true;

“Critical Section”
cs: locked := false;

1 Sort Sys denotes RS but not Υ if the constructor-based logic[11] is adopted, which
is the current underlined logic of the OTS/CafeOBJ method.

504 K. Ogata and K. Futatsugi

Initially each process is in Remainder Section (RS). If a process wants to enter
Critical Section (CS), it waits at label rs until locked becomes false and then sets
locked to true at label es before entering CS. When it leaves CS, it sets locked
to false at label cs and then goes back to RS.

How to specify an OTS SFMP formalizing the protocol is described. Two ob-
servers are used. The corresponding observation operators are as follows: “op
locked : Sys -> Bool” and “op pc : Sys Pid -> Label”, where sort Pid
denotes process identifiers (IDs) and sort Label denotes the labels rs, es and cs.
locked returns the value of locked in a given state, and pc returns the label at
which a given process is in a given state.

In the rest of this section, let S, I and J be CafeOBJ variables of sorts Sys,
Pid and Pid, respectively. The values returned by the two observers in an arbi-
trary initial state denoted by init are specified as follows: “eq locked(init)
= false .” and “eq pc(init,I) = rs .”.

Three transitions are used. The corresponding transition operators are as fol-
lows: “ops try enter exit : Sys Pid -> Sys {constr}”. try, enter, and
exit correspond to one iteration of the loop at label rs, the assignment at label
es, and the assignment at label cs, respectively.

The set of equations specifying how try changes the values observed by the
two observers is as follows:

eq locked(try(S,I)) = locked(S) .
ceq pc(try(S,I),J)
= (if I = J then es else pc(S,J) fi) if c-try(S,I) .
ceq try(S,I) = S if not c-try(S,I) .

where c-try(S,I) is defined as pc(S,I) = rs and not locked(S). enter and
exit are defined likewise. Let MUTEX be a module in which SFMP is specified.

2.2 Falsification by Structural Induction

Verification of invariants is conducted by writing proof scores in CafeOBJ and
executing them with the CafeOBJ system. Verification that a state predicate
is an invariant wrt SFMP is used as an example to describe how to write proof
scores in CafeOBJ. The state predicate used is (∀I, J : Pid) inv1(S,I,J), where
inv1(S,I,J) is pc(S,I) = cs and pc(S,J) = cs implies I = J. The pred-
icate formalizes what is called the mutual exclusion property. Let MUTEX-PREDS
be a module in which MUTEX is imported (namely that it is available) and state
predicates to verify such as inv1 are specified.

Verification starts with use of the structural induction onRSFMP (or sort Sys).
Then, we have four CafeOBJ code fragments because there are the four construc-
tors. Two out of the four CafeOBJ code fragments enclosed with commands open
and close are as follows:

open MUTEX-BASE open MUTEX-ISTEP
red inv1(init,i,j) . eq s’ = enter(s,k) . red istep1 .

close close

A Combination of Forward and Backward Reachability Analysis Methods 505

MUTEX-BASE is a module in which MUTEX-PREDS is imported. s, s’, i, j
and k are constants declared in MUTEX-BASE. s is used to denote an arbi-
trary state, s’ an arbitrary successor state of s, and i, j and k arbitrary
process identifiers. MUTEX-ISTEP is a module in which MUTEX-BASE is im-
ported. istep1 is a constant declared in MUTEX-ISTEP. istep1 is defined as
inv1(s,i,j) implies inv1(s’,i,j). inv1(s’,i,j) is the formula to prove
in each induction case and inv1(s,i,j) is an instance of the induction hypoth-
esis (∀I, J : Pid) inv1(s,I,J). Command open makes a temporary module in
which a given module is imported, and command close destroys such a tem-
porary module. Command red reduces a given term by regarding equations as
left-to-right rewrite rules. The four CafeOBJ code fragments are the proof score
in progress of inv1. CafeOBJ code fragments in proof scores (in progress as well)
are called proof passages. The proof passage for init is for the base case, while
the remaining three ones for the induction step, or the three induction cases.

If CafeOBJ returns true for a proof passage, the proof passage is discharged.
If CafeOBJ returns true for each proof passage in the proof score of a predicate
and all lemmas used in the proof score have been proved, the predicate has been
proved, namely that it is an invariant wrt an OTS concerned.

CafeOBJ returns true for the proof passage for init and then the base case
is discharged. Since CafeOBJ does not return true for the remaining three,
however, we need to transform the proof passages with case splitting and lemma
conjecture/use.

Let us take the induction case for enter. The proof passage is first trans-
formed into two proof passages with case splitting based on the effective con-
dition of enter. The two proof passages correspond to the two cases: (1)
c-enter(s,k) = false, and (2) c-enter(s,k) = true. CafeOBJ returns true
for the first case but not for the second case. Since c-enter(s,k) = true is
equivalent to pc(s,k) = es, the latter can be used instead of the former. Even
if so, CafeOBJ does not return true for the second case.

The proof passage is next transformed into four proof passages with case split-
ting based on the two propositions i = k and j = k found in the result returned
by CafeOBJ. The four proof passages correspond to the four cases: (1) i = k,
j = k, (2) (i = k) = false, (j = k) = false, (3) i = k, (j = k) = false,
and (4) (i = k) = false, j = k. CafeOBJ returns true for the first two cases
but not for the remaining two cases. Let us take the third case.

The corresponding proof passage is then transformed into two proof pas-
sages with case splitting based on the proposition pc(s,j) = cs. The two proof
passages correspond to the two cases: (1) (pc(s,j) = cs) = false, and (2)
pc(s,j) = cs. CafeOBJ returns true for the first case but false for the sec-
ond case.

The proof passage corresponding to the second case is as follows:

open MUTEX-ISTEP
eq pc(s,k) = es . eq i = k . eq (j = k) = false .
eq pc(s,j) = cs . eq s’ = enter(s,k) . red istep1 .
close

506 K. Ogata and K. Futatsugi

If inv1 holds for SFMP, then an arbitrary state s characterized by the first
four equations in the proof passage is unreachable wrt SFMP. Therefore, we can
conjecture a lemma from the four equations to discharge the proof passage. If one
of such equations such as i = k has a fresh constant as one side and CafeOBJ
still returns false even after replacing all the occurrences of the fresh constant
with the other side in the proof passage and deleting the equation, then we can
use the remaining equations to conjecture a lemma.

For this proof passage, a lemma can be conjectured from the following three
equations by basically conjoining the equations with conjunctions, negating the
obtained formula, and replacing fresh constants with appropriate variables: eq
pc(s,i) = es ., eq (j = i) = false ., and eq pc(s,j) = cs . The lemma
is not(pc(S,I) = es and pc(S,J) = cs and not(I = J)), which is referred
as inv2(S,I,J). This lemmas has the property that if inv1 holds for SFMP, so
does inv2. Or in contrapositive form, if inv2 does not hold for SFMP, neither
does inv1. Lemmas that have this property are called necessary lemmas of the
original predicates[4]. inv2 is a necessary lemma of inv1 and only the lemma
needed to discharge the proof score of inv1.

In the verification of inv2, we conjecture the two lemmas not(pc(S,I) = rs
and pc(S,J) = cs and not(I = J) and not(locked(S))) and not(pc(S,I)
= es and pc(S,J) = es and not(I = J)), which are referred as inv3(S,I,J)
and inv4(S,I,J), respectively. Both inv3 and inv4 are necessary lemmas of
inv2.

We only need inv1 as a lemma to discharge the proof score of inv3, but
conjecture the following lemma for inv4: not(pc(S,I) = es and pc(S,J) =
rs and not(I = J) and not(locked(S))), which is referred as inv5(S,I,J).
inv5 is a necessary lemma of inv4.

In the verification that inv5 holds for SFMP, the following lemma
is conjectured: not(pc(S,I) = rs and pc(S,J) = rs and not(I = J) and
not(locked(S))), which is referred as inv6(S,I,J). inv6 is a necessary lemma
of inv5.

inv6(init,i,j) reduces to false if i is different from j, from which we
can conclude that inv1 does not hold for SFMP because every lemma used is
a necessary lemma of its original predicate. This example demonstrates that
structural induction can also be used to falsify that a system enjoys an invariant.

3 Bounded Model Checking (BMC) of OTSs

Instead of a set of equations, a transition rule can also be used to specify each
transition t ∈ T of an OTS S. If so, the search functionality can be used. The
search functionality is in the form:

red init =(n,d)=>* pattern suchThat cond .

where init is a ground term, pattern a state pattern, cond a Boolean term, and n
and d natural numbers or * denoting the infinity. “suchThat cond” is an option.
The search functionality exhaustively traversesR≤d

S,init in a breadth-first manner

A Combination of Forward and Backward Reachability Analysis Methods 507

so as to find at most n states such that they match pattern and satisfy cond .
When init is an initial state of S and the negation of a state predicate concerned
is expressed in pattern and cond , the search functionality conducts BMC of an
invariant, namely that it exhaustively traverses R≤d

S,init to find a counterexample
showing that the state predicate is not an invariant.
SFMP is used as an example to describe how to specify transitions in transi-

tion rules. To specify transitions in transition rules, it is necessary to design the
configuration of states. Associative-commutative collections of values observed
by observers can be used as the configuration. For the configuration, the fol-
lowing are declared: “op void : -> Sys {constr}” and “op __: Sys Sys ->
Sys {constr assoc comm id: void}”. Sys is the sort denoting states, which
are constructed with void and the juxtaposition operator. The juxtaposition
operator is associative, commutative, and has void as its identity.

Since SFMP has two observers, the following two operators that hold two
kinds of values observed by the two observers are declared: “op (pc[_]:_) :
Pid Label -> Obs {constr}” and “op locked:_: Bool -> Obs {constr}”.
Obs is a subsort of Sys. Therefore, a collection of terms whose sorts are Obs
denotes a state.

If two processes p1 and p2 participate in the protocol, the initial state (de-
noted by init) is expressed as follows: “eq init = (pc[p1]: rs) (pc[p2]:
rs) (locked: false) .”.

Let S, I, J, L1, L2 and B be CafeOBJ variables of sorts Sys, Pid, Pid, Label,
Label and Bool, respectively, in the rest of the section. The three transitions
are specified in transition rules as follows:

trans [try] : (pc[I]: rs) (locked: false)
=> (pc[I]: es) (locked: false) .

trans [enter] : (pc[I]: es) (locked: B)
=> (pc[I]: cs) (locked: true) .

trans [exit] : (pc[I]: cs) (locked: B)
=> (pc[I]: rs) (locked: false) .

where try, enter and exit enclosed with “[” and “]” are the labels (names) of
the three transition rules, respectively.

The following command (the search functionality) can be used to try to
find a counterexample showing that SFMP does not enjoy the mutual exclu-
sion property: “red init =(1,*)=>* (pc[I]: L1) (pc[J]: L2) S suchThat
(not (L1 == cs and L2 == cs implies I == J)) .”. The command can be
equivalently transformed into “red init =(1,*)=>* (pc[I]: cs) (pc[J]:
cs) S .”. Each of the commands can find a counterexample showing that SFMP

does not enjoy the mutual exclusion property.
Since a state in which inv1 does not hold is located at depth 4 from the

initial state, the following command does not find the counterexample: “red
init =(1,3)=>* (pc[I]: cs) (pc[J]: cs) S .”.

508 K. Ogata and K. Futatsugi

depth d

init

not G

not L

transition t

forward
analysis

backward
analysis

Fig. 1. Forward & backward reachabil-
ity analysis

a transition t
with y1,...,yn

υ

υ’

G(υ)

not G(υ’)

Fig. 2. A situation requesting
a lemma in induction

4 Forward & Backward Reachability Analysis

Our primary goal is to discover a counterexample showing that a state predicate
is not an invariant wrt an OTS S.

4.1 Forward Reachability Analysis

Forward reachability analysis is to start with initial states and traverse the
reachable state space to find some states in which some conditions hold (see Fig-
ure 1). Model checking, especially BMC, is a typical forward reachability analysis
method. The search functionality is also a forward reachability analysis method.
The method is fascinating as well as powerful in that it can fully automatically
discover a counterexample showing that a state predicate is not an invariant.
This is how we have found a counterexample showing that SFMP does not enjoy
the mutual exclusion property in §3.

4.2 Backward Reachability Analysis

Backward reachability analysis method is to start with some states υ1, . . . , υn

(which may or may not be reachable) such that a state predicate does not hold
and traverse the state space backward-reachable from υ1, . . . , υn to check if an
initial state of S is backward-reachable from υi for some i ∈ {1, . . . , n} (see Fig-
ure 1). If an initial state of S is backward-reachable from υi, then υi is reachable
and then the predicate is not an invariant. If any initial state is not backward-
reachable from an arbitrary state in which the predicate does not hold, we can
conclude that the predicate is an invariant.

Structural induction can be regarded as a backward reachability analysis
method. Let us consider an induction case for a transition t, together with
y1, . . . , yn. Let υ′ be t(υ, y1, . . . , yn) for an arbitrary state υ and G be a state
predicate concerned. If G(υ) and ¬G(υ′) (see Figure 2), then all we are con-
cerned with is whether υ is reachable. If it is, G is not an invariant. Otherwise,

A Combination of Forward and Backward Reachability Analysis Methods 509

this induction case is discharged. To this end, what we can do is to conjecture a
lemma. Although we do not know depthS(init , υ) for some initial state init nor
whether υ is reachable, it is true that υ is backward-reachable from υ′. That is to
say, one step is taken back from a state such that G does not hold by structural
induction. This is how we have found a counterexample showing that SFMP does
not enjoy the mutual exclusion property in §2.2.

4.3 Combination

Both forward and backward reachability analysis methods have the pros and
cons. The search functionality can fully automatically discover a counterexample
showing that a state predicate is not an invariant. This is, however, only the case
when a state in which the predicate does not hold is located at a position that is
not far from a given initial state init . The distance to a state υ from init is not
simply depthS(init , υ). Let d be depthS(init , υ) and then the distance crucially
depends on the number of states in R≤d

S,init .
If the reachable state space is huge or unbounded, there exists an upper bound

d such thatR≤d
S,init can be exhaustively traversed butR≤d+1

S,init cannot. If that is the
case, the search functionality may not discover any counterexamples even though
there exist some (see Figure 1). This is due to the notorious state explosion
problem. If R≤4

SFMP,init was too large, the search functionality would not find a
counterexample showing that the protocol does not enjoy the mutual exclusion
property.

As described in §2.2, structural induction can be used to find a counterexample
showing that a state predicate is not an invariant wrt an OTS S. Generally,
however, we need to conjecture a lot of necessary lemmas to have one such
that it does not hold for some initial states. It also costs more than the search
functionality.

But, structural induction may alleviate the state explosion problem, which
bothers the search functionality. If R≤4

SFMP,init was too large, we could try to
find a counterexample for inv2, which is a necessary lemma of inv1. The fol-
lowing command finds a counterexample: “red init =(1,3)=>* (pc[I]: es)
(pc[J]: cs) S .”. The command lets us know the reachable state (pc[p2]:
es) (pc[p1]: cs) (locked: true) in which inv2 does not hold. Conse-
quently, inv1 is not an invariant wrt SFMP, either.

This is how we have come up with one possible way to complement each
other, which is called induction-guided falsification (IGF)[4]. IGF is a combina-
tion of the search functionality (or BMC) and structural induction, but can be
regarded as a combination of forward and backward reachability analysis meth-
ods because structural induction can be regarded as a backward reachability
analysis method. If we exactly obey IGF, namely that every lemma conjectured
is a necessary lemma, then once you find a counterexample for a lemma, you
can quickly conclude that the original state predicate is not invariant. Even if
non-necessary lemmas are used, the basic concept behind IGF, namely a com-
bination of forward and backward reachability analysis methods, can be used.
Non-necessary lemmas are less complicated than necessary lemmas.

510 K. Ogata and K. Futatsugi

Given an OTS S and a state predicate p, let LS,p be a set of lemmas that
can discharge the proof score that p is an invariant wrt S. A variant of IGF is
as follows:

Input: an OTS S, a state predicate p, a natural number d;
Output: Verified or Falsified that p is an invariant wrt S;
1. P := enqueue(empty-queue, p) and Q := ∅.
2. Repeat the following until P = empty-queue.
3. q := top(P) and P := dequeue(P).
4. Search R≤d

S for a state υ such that ¬q(υ).
If such a state is not found, go to 8.

5. Search R≤d
S,υ for a state such that ¬p(υ).

If such a state is found, terminate and return Falsified.
6. Search R≤d

S,υ for a state υ such that ¬mainq(υ), where mainq is a state
predicate in Q, for which q is used as a lemma.
If such a state is found, q := mainq, delete q and the state predicates
that are used as lemmas only for q from P and Q and go to 5.

7. Find a lemma q′ of mainq such that q ⇒ q′ and q′ is not equivalent to q,
q := q′ and go to 4.

8. Compute LS,q by structural induction on RS .
9. Q := Q∪ {q} and enqueue each in LS,q − (Q∪ q2s(P)) into P , where

q2s(P) is the set that consists of the elements of P .
10. Terminate and return Verified.

For example, if inv2 was not a necessary lemma of inv1, the following com-
mand would find a counterexample for inv1: “red (pc[p2]: es) (pc[p1]:
cs) (locked: true) =(1,3)=>* (pc[I]: cs) (pc[J]: cs) S .”.

5 Application of the Variant of IGF to NSPK

5.1 NSPK and Agreement Property

NSPK[7] can be described as the three message exchanges:

Init: p → q {np, p}k(q)

Resp: q → p {np, nq}k(p)

Ack: p → q {nq}k(q)

Each principal such as p and q is given a pair of keys (public and private keys).
{m}k(x) is the ciphertext obtained by encrypting m with the principal x’s public
key. nx is a nonce generated by a principal x.

The agreement property is as follows. Whenever a protocol run has been
successfully completed by p and q,

AP1 the principal that p is communicating with is really q, and
AP2 the principal that q is communicating with is really p.

A Combination of Forward and Backward Reachability Analysis Methods 511

5.2 Specification for Structural Induction

We use the standard assumptions for protocol verification. Among them are
that the cryptsystem used is perfect and the behaviors of malicious principals
are formalized by the Dolev-Yao intruder[12]. Since we are only interested in
invariants, it is not necessary to consider blocking of messages by the intruder.

A nonce generated by p for sending it to q is denoted by a term n(p, q, r)
whose sort is Nonce, where r is a random number making the nonce unguessable
and unique. Our formalism of NSPK allows a principal to participate in multiple
sessions simultaneously. For each session, a principal needs to generate a fresh
nonce.

Ciphertexts {np, p}k(q), {np, nq}k(p) and {nq}k(q) used in Init, Resp and Ack
messages, respectively, are denoted by terms enc1(q, np, p), enc2(p, np, nq) and
enc3(q, nq), respectively. Their sorts are Cipheri for i = 1, 2, 3, respectively.

Init, Resp and Ack messages are denoted by terms mi(p?, p, q, ei) for i =
1, 2, 3, respectively. Their sorts are Messagei for i = 1, 2, 3, respectively. The
first argument p? is a creator (an actual sender) of the message, the second
argument p a seeming sender, the third argument q a receiver and the fourth
argument ei a ciphertext. The first argument is meta-information in that when
q receives mi(p?, p, q, ei), q cannot loot at p?. If p? is different from p, then p? is
the intruder and the message has been faked by the intruder.

The network is formalized as an associative-commutative collection of mes-
sages whose sort is Network. Associative-commutative collections may be called
just collections. A constant empty and a juxtaposition operator are the construc-
tors of collections of not only messages but also the others such as nonces. We
suppose that once a message mi(p?, p, q, ei) is put into the network, it will be
never deleted, and if there exists such a message in the network, q can receive
it. When q has received it, q thinks that it originates in p.

We formalize the behaviors of NSPK as an OTS SNSPK. We use three
observers that are denoted by the observation operators: “op network :
System -> Network”, “op rands : System -> RandSoup”, and “op nonces
: System -> NonceSoup”, where System is a sort denoting the (reachable) state
space, RandSoup a sort denoting collections of random numbers, and NonceSoup
a sort denoting collections of nonces. Given a state s, network(s) returns the
network, the collections of messages that haven been sent up to s, rands(s) the
collection of (old) random numbers that have been used up to s, and nonces(s)
the collection of nonces that have been gleaned by the intruder up to s.

An arbitrary initial state is denoted by a constant init whose sort is System.
init is a constructor of System. The three observation operators return empty
for init.

Three transitions are used to formalize sending Init, Resp and Ack messages
exactly obeying the protocol, respectively. The corresponding transition op-
erators are as follows: “op sdm1 : System Principal Principal Random ->
System {constr}”, “op sdm2 : System Principal Principal Principal
Random Nonce -> System {constr}”, and “op sdm3 : System Principal
Principal Principal Nonce Nonce -> System {constr}”.

512 K. Ogata and K. Futatsugi

The set of equations defining sdm2 is as follows:

ceq network(sdm2(S,Q?,P,Q,R,N)) = m2(P,P,Q,enc2(Q,N,n(P,Q,R)))
network(S) if c-sdm2(S,Q?,P,Q,R,N) .
ceq rands(sdm2(S,Q?,P,Q,R,N)) = R rands(S) if c-sdm1(S,P,Q,R) .
ceq nonces(sdm2(S,Q?,P,Q,R,N)) = (if Q = intruder then N n(P,Q,R)
nonces(S) else nonces(S) fi) if c-sdm2(S,Q?,P,Q,R,N) .
ceq sdm2(S,Q?,P,Q,R,N) = S if not c-sdm2(S,Q?,P,Q,R,N) .

where c-sdm2(S,Q?,P,Q,R,N) is m1(Q?,Q,P,enc1(P,N,Q)) \in network(S)
and not(R \in rands(S)).

The remaining two transition operators can be defined likewise. Symbols that
appear in terms and are composed of capitals, numerals and ? are CafeOBJ
variables in this section. Among them are S, Q? and RS2. Theirs sorts can be
understood from the context.

c-sdm2(S,Q?,P,Q,R,N) says that there exists an Init message that seems to
have been sent to Q by P in the network and R is a fresh random number. If
that is the case, Q can receive the message and finds that the message obeys the
protocol. Then, the Resp message m2(P,P,Q,...) is put into the network as the
reply to the Init message. Since R is used in m2(P,P,Q,...), it is put into the
collection of old random numbers. If Q is the intruder, the intruder can decrypt
the ciphertext in m2(P,P,Q,...) and obtain the two nonces in it, which are put
into the collection of nonces. Otherwise, the collection of nonces does not change.
If c-sdm2(S,Q?,P,Q,R,N) does not hold. nothing changes. Receiving messages
are implicitly formalized in transition operators.

Two kinds of values can be used to fake messages: messages and nonces.
Since there are three kinds of messages, we use six transitions to formalize fak-
ing messages based on the gleaned information by the intruder. Due to the
space limitation, we only describe two transitions faking Resp messages based
on messages and nonces, respectively. The corresponding transition operators are
as follows: “op fkm21 : System Principal Principal Message2 -> System
{constr}” and “op fkm22 : System Principal Principal Nonce Nonce ->
System {constr}.

The remaining four transition operators can be declared likewise.
The set of equations defining fkm22 is as follows:

ceq network(fkm22(S,P,Q,N1,N2)) = m2(intruder,P,Q,enc2(Q,N1,N2))
network(S) if c-fkm22(S,P,Q,N1,N2) .

eq rands(fkm22(S,P,Q,N1,N2)) = rands(S) .
eq nonces(fkm22(S,P,Q,N1,N2)) = nonces(S) .
ceq fkm22(S,P,Q,N1,N2) = S if not c-fkm22(S,P,Q,N1,N2) .

where c-fkm22(S,P,Q,N1,N2) is N1 \in nonces(S) and N2 \in nonces(S)
and not(N1 = N2). c-fkm22(S,P,Q,N1,N2) says that the intruder has gleaned
two different nonces. If that is the case, the intruder can fake a Resp mes-
sage m2(intruder,P,Q,...), which is put into the network. Otherwise, nothing
changes.

fkm21 and the remaining four transition operators can be defined likewise.

A Combination of Forward and Backward Reachability Analysis Methods 513

5.3 Specification for Search

Since there are the three observers, the following three operators are used to hold
the values observed by them: “op network:_: Network -> Obs {constr}”,
“op rands:_: RandSoup -> Obs {constr}”, and “op nonces:_: NonceSoup
-> Obs {constr}”. In addition to them, two more operators are used to hold
two values: “op prins:_: PrinSoup -> Obs {constr}” and “op rands2:_:
RandSoup -> Obs {constr}”, where PrinSoup is a sort denoting collections of
principals. The first operator holds a collection of principals participating in the
protocol and the second a collection of fresh random numbers that can be used
in the protocol. The two values are not modified by any transitions.

We suppose that three principals including the intruder participate in the
protocol and two fresh random numbers are available. Then, the initial state de-
noted by init is expressed as “(network: empty) (rands: empty) (nonces:
empty) (prins: (p q intruder)) (rands2: (r1 r2))”.

The transition denoted by sdm2 is specified in the following transition rule:

ctrans [sdm2] : (network: (m1(Q?,Q,P,enc1(P,N,Q)) NW))
(rands: RS) (nonces: NS) (rands2: (R RS2))
=> (network: (m2(P,P,Q,enc2(Q,N,n(P,Q,R)))

m1(Q?,Q,P,enc1(P,N,Q)) NW))
(rands: (R RS))
(nonces: (if Q == intruder then N n(P,Q,R) NS else NS fi))
(rands2: (R RS2)) if not(R \in RS) .

The transition denoted by fkm22 is specified in the following transition rule:

trans [fkm22] :
(network: NW) (nonces: (N1 N2 NS)) (prins: (P Q PS))
=> (network: (m2(intruder,P,Q,enc2(Q,N1,N2)) NW))
(nonces: (N1 N2 NS)) (prins: (P Q PS)) .

The remaining seven transitions can be specified likewise.

5.4 Falsification

AP2 is formalized in terms of the following state predicate inv2:

eq inv2(S,P,Q,P?,R,N) = (not(Q = intruder) and
m2(Q,Q,P,enc2(P,N,n(Q,P,R))) \in network(S) and
m3(P?,P,Q,enc3(Q,n(Q,P,R))) \in network(S)
implies m3(P,P,Q,enc3(Q,n(Q,P,R))) \in network(S)) .

AP1 can also be formalized likewise.
What we did first is to find an upper bound d such that R≤d

SNSPK,init can
be exhaustively traversed as follows: “red init =(1,5)=>* S suchThat false
.”. On a laptop with 2.33GH CPU and 3GB RAM, 5 was the upper bound2.
2 Since the implementation of the CafeOBJ search functionality was not matured

enough, Maude was used to conduct the experiment described in this section.

514 K. Ogata and K. Futatsugi

In R≤5
SNSPK,init, no counterexample was discovered for inv1 and inv2. The

following command tries to find a counterexample for inv2:

red init =(1,5)=>* (network: (m2(Q,Q,P,enc2(P,N,n(Q,P,R)))
m3(P?,P,Q,enc3(Q,n(Q,P,R))) NW)) S
suchThat (not(not(Q == intruder) implies
m3(P,P,Q,enc3(Q,n(Q,P,R))) \in m3(P?,P,Q,enc3(Q,n(Q,P,R))) NW)) .

Then, we conjectured lemmas to discharge the proof scores of inv1 and inv2.
Five lemmas were conjectured. Two out of them are as follows:

eq inv4(S,P,Q,N,R,M2) = (not(P = intruder) and not(Q = intruder)
and m1(P,P,Q,enc1(Q,n(P,Q,R),P)) \in network(S) and
M2 \in network(S) and cipher2(M2) = enc2(P,n(P,Q,R),N)
implies m2(Q,Q,P,enc2(P,n(P,Q,R),N)) \in network(S)) .

eq inv5(S,N) = (N \in nonces(S)
implies creator(N) = intruder or forwhom(N) = intruder) .

Each of the five lemmas is a necessary one of neither inv1 not inv2.
No counterexample was found in R≤5

SNSPK,init for the four lemmas including
inv4. But, a counterexample was found for inv5, which formalizes what is called
the nonce secrecy property. Hence, NSPK does not enjoy the nonce secrecy
property. Since inv5 is a necessary lemma of neither inv1 nor inv2, however, we
cannot immediately conclude that NSPK does not enjoy the agreement property.

The state in which inv5 does not hold is as follows:

eq s115890 = (nonces: (n(q,p,r2) n(p,intruder,r1)))
(network: (m1(intruder,p,q,enc1(q,n(p,intruder,r1),p))
m1(p,p,intruder,enc1(intruder,n(p,intruder,r1),p))
m2(intruder,intruder,p,enc2(p,n(p,intruder,r1),n(q,p,r2)))
m2(q,q,p,enc2(p,n(p,intruder,r1),n(q,p,r2)))
m3(p,p,intruder,enc3(intruder,n(q,p,r2)))))

(rands: (r1 r2)) (prins: (intruder p q)) (rands2: (r1 r2)) .

The state, which is reachable, is reported by the search functionality. This is the
115890th state that the search functionality has visited from init.

Instead ofR≤5
SNSPK,init, we can then traverseR≤5

SNSPK,s115890 to find a counterex-
ample for inv1 and inv2. But, R≤5

SNSPK,s115890 was too large to be exhaustively
traversed. Therefore, we traversed R≤4

SNSPK,s115890 to find a counterexample for
inv1 and inv2. The command to find a counterexample for inv2 is as follows:

red s115890 =(1,4)=>* (network: (m2(Q,Q,P,enc2(P,N,n(Q,P,R)))
m3(P?,P,Q,enc3(Q,n(Q,P,R))) NW)) S
suchThat (not(not(Q == intruder) implies
m3(P,P,Q,enc3(Q,n(Q,P,R))) \in m3(P?,P,Q,enc3(Q,n(Q,P,R))) NW)) .

No counterexample was found for inv1 but a counterexample was found for
inv2. The counterexample found is the same as that was found by Lowe[13].

A Combination of Forward and Backward Reachability Analysis Methods 515

6 Related Work

Another possible combination of BMC and structural induction has been pro-
posed: k-induction[14]. It has been implemented in SAL[15], which is a toolkit
for analyzing state machines. The primary purpose of k-induction is verification.
k-induction can be used to verify that a system (formalized as a state machine)
enjoys an invariant. It is, however, necessary to fix the number of entities (such
as processes) participating in a system. Since standard structural induction is
used in (the variant of) IGF, only one step is taken back from a state in which
a state predicate concerned does not hold. k-induction allows to take more than
one step back from such a state. Hence, it may make (the variant of) IGF more
powerful to adopt k-induction, which is one piece of our future work.

Maude-NPA[3] has been implemented in Maude[6], relying on the narrow-
ing search functionality. While the term init should be ground in the ordinary
search functionality, it can contain variables in the narrowing search function-
ality. Hence, init can express an arbitrary state in which a state predicate con-
cerned does not hold. The (ordinary and narrowing) search functionality can
conduct a backward reachability analysis by reversing the transition rule speci-
fying each transition. This is how Maude-NPA conducts a backward reachability
analysis. The backward reachability analysis method used by Maude-NPA may
be used for (the variant of) IGF. If so, we only need to have one type of spec-
ifications in which transitions are specified in transition rules. This is another
piece of our future work. The narrowing search functionality may be used to
implement more general k-induction such that it is not necessary to fix number
of entities participating in a system. This is yet another piece of our future work.

7 Conclusion

The primary purpose of (the variant of) IGF is to falsify that a system enjoys
a property. The mainly used technique for this purpose is testing, which can be
roughly classified into exhaustive and non-exhaustive testing. (Bounded) Model
checking can be used for the former. Daniel Jackson, who is the main designer of
Alloy[2], has formed the small scope hypothesis, which says that most errors can
be found by testing a program for all test inputs within some small scope[16].
This implies that it is more beneficial to exhaustively test a program within some
small scope than to test it for some randomly generated test cases within larger
scope. This is why Alloy has adopted a SAT-based bounded model checker.

The state in which AP2 (inv2) does not hold has not been found within
the small scope such that the search functionality can exhaustively traverse the
scope. Some may suggest that the nonce secrecy property should be taken into
account instead of the agreement property because the former is more fundamen-
tal than the latter for authentication protocols. This is why almost all analyzes
of NSPK have taken into account the nonce secrecy property[8,9,3]. Generally,
however, we do not know in advance what is more fundamental than a property
concerned such as the agreement property for a system such as NSPK. There-
fore, we need to extend the scope that can be exhaustively traversed so as to find

516 K. Ogata and K. Futatsugi

more errors. This is why (the variant of) IGF has been proposed and a backup
case study has been conducted.

One piece of our future work is to design and implement a tool supporting (the
variant of) IGF. We may use the translator[17] from state machine specifications
in CafeOBJ into those in Maude and the technique to discover lemmas used in
Crème[18], an automatic invariant prover for state machine specifications in
CafeOBJ.

References

1. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

2. Jackson, D.: Alloy: A lightweight object modeling notation. ACM TOSEM 11,
256–290 (2002)

3. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the
NRL protocol analyser and its meta-logical properties. TCS 367, 162–202 (2006)

4. Ogata, K., Nakano, M., Kong, W., Futatsugi, K.: Induction-guided falsification.
In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 114–131. Springer,
Heidelberg (2006)

5. Diaconescu, R., Futatsugi, K.: CafeOBJ report. AMAST Series in Computing,
vol. 6. World Scientific, Singapore (1998)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework: How to Spec-
ify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer,
Heidelberg (2007)

7. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. CACM 21, 993–999 (1978)

8. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996)

9. Denker, G., Meseguer, J., Talcott, C.: Protocol specification and analysis in Maude.
In: Workshop on Formal Methods and Security Protocols (1998)

10. Ogata, K., Futatsugi, K.: Some tips on writing proof scores in the OTS/CafeOBJ
method. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning,
and Computation. LNCS, vol. 4060, pp. 596–615. Springer, Heidelberg (2006)

11. Gâinâ, D., Futatsugi, K., Ogata, K.: Constructor-based institutions. In: Kurz,
A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 398–412.
Springer, Heidelberg (2009)

12. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE TIT IT-29,
198–208 (1983)

13. Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol.
IPL 56, 131–133 (1995)

14. de Moura, L., Rueß, H., Sorea, M.: Bounded model checking and induction: From
refutation to verification. In: CAV 2003. LNCS, vol. 2392, pp. 14–26. Springer,
Heidelberg (2003)

A Combination of Forward and Backward Reachability Analysis Methods 517

15. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:
SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500.
Springer, Heidelberg (2004)

16. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

17. Zhang, M., Ogata, K., Nakamura, M.: Specification translation of state machines
from equational theories into rewrite theories. In: Zhu, H. (ed.) ICFEM 2010.
LNCS, vol. 6447, pp. 678–693. Springer, Heidelberg (2010)

18. Nakano, M., Ogata, K., Nakamura, M., Futatsugi, K.: Crème: An automatic in-
variant prover of behavioral specifications. IJSEKE 17, 783–804 (2007)

Model Checking a Model Checker: A Code Contract
Combined Approach�

Jun Sun1, Yang Liu2, and Bin Cheng2

1 Singapore University of Technology and Design
sunjun@sutd.edu.sg

2 School of Computing, National University of Singapore
{liuyang,chenbing}@comp.nus.edu.sg

Abstract. Model checkers, like any complex software, are subject to bugs. Un-
like ordinary software, model checkers are often used to verify safety critical
systems. Their correctness is thus vital. Verifying model checkers is extremely
challenging because they are always complicated in logic and highly optimized.
In this work, we propose a code contract combined approach for checking model
checkers and apply it to a home-grown model checker PAT. In this approach,
we firstly embed programming contracts (i.e., pre/post-conditions and invariants)
into its source code, which can capture correctness of model checking algorithms,
underlying data structures, consistency between different model checking param-
eters, etc. Then, interface models of complicated data structures and graphical
user interfaces (GUI) are built and model checked. By linking the interface mod-
els with actual source codes and exhausting all execution sequences of interface
models using PAT, we model check PAT using itself ! Our experience shows that
the approach is effective in identifying common bugs or subtle flaws that result
from extremely improbable events.

1 Introduction

After two decades of development, model checking [8] has emerged as an effective
method for verification of critical systems. It has established as a system validation
method complementing standard techniques like simulation and testing. There have
been a number of recent successful stories. The static driver verifier which uses the
SLAM verification engine has been reported to find many driver model violations [1].
In 2009, it was reported that model checking has been used to replace testing in Intel
CoreTM i7 processor (with millions of registers) execution engine validation [17].

Model checkers, like any non-trivial software, are subject to bugs. This is evidenced
by the bug collection for established model checkers like SPIN [14] and NuSMV [7].
Model checkers are, nonetheless, distinguished from ordinary software due to their very
nature. Firstly, they are always complicated in computational logic. Many complicated
model checking algorithms, in the name of efficiency, have been proposed to verify a
variety of system properties. Furthermore, sophisticated state reduction techniques are

� This research was partially supported by a grant “SRG ISTD 2010 001” from Singapore Uni-
versity of Technology and Design.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 518–533, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Model Checking a Model Checker: A Code Contract Combined Approach 519

often applied, for instance, partial order reduction [22], symmetric reduction [10], data
abstraction [2], or their combinations. Secondly, because efficiency is essential, model
checkers are often highly optimized, which implies that they may not be designed for
rigorous system maintenance or testing. Lastly, because model checking techniques are
developing rapidly, model checkers are often updated frequently. This is evidenced by
the update history of popular model checkers like SPIN, Uppaal, and so on.

Model checkers are often applied to safety critical systems. If a property is falsified,
correctness of the model checker can be validated by checking whether the counterex-
ample is a real one. It is when a property is claimed true - which is often the last act of
formal verification, the correctness of the model checker must be assumed in order to
trust the verification result. Given the importance of model checkers, it is essential to
verify them formally or at least develop ways to systematically improve their quality.

There are multiple candidate approaches. First, theorem proving can be used to prove
the correctness of model checking algorithms. It is, however, unpractical in verifying
model checkers. The second candidate is push-button software verification technique
like model checking. Still, completely verifying model checkers is beyond the capa-
bility of state-of-art model checking solutions. One important factor is their size. For
instance, NuSMV has about 180 KLOC and SPIN has more than 30 KLOC. The cur-
rent software verification tools can handle programs (often from constrained scenarios)
up to tens of KLOC and often require manual simplifications of the code under anal-
ysis [21]. Furthermore, state-of-art software verification (e.g., the SLAM project [1])
relies on building an abstract finite state model from a program using predicate abstrac-
tion, which is highly non-trivial and expensive. Given that model checkers are often
updated frequently, this approach is unpractical.

Contribution. In this work, we take the challenge of systematically validating a real-
world model checker PAT [27]. PAT is a self-contained framework for system modeling,
simulation and verification. After years of development, PAT has more than 600 KLOC,
thousands of test cases as well as a list of discovered bugs. In order to systematically
improve PAT’s quality, we propose an approach which combines code contracts with
model checking techniques. The contracts serve a correctness specification and model
checking is used as an effective technique to search for contract violations as well as
violations of additional critical properties. Formally developing and validating a formal
verification system itself is the fundamental approach to increase user’s confidence in
the formal tools like model checkers. Though we cannot completely verify PAT, the
approach is effective and scalable.

Approach. After evaluating our options, the following approach is developed. Firstly,
given that PAT is developed using C# in .NET, we make use of the code contracts
project [4] and systematically express coding assumptions in the source codes. The code
contracts take the form of object invariants, method precondition and post-conditions.
They are used to improve testing via runtime checking as well as enable static contract
verification. In our approach, the contracts serve as a partial correctness specification
of PAT. All test cases are then executed to make sure that code contract violation is
absent. We highlight that code contracts are not only used to capture coding assump-
tions on data structures or model checking algorithms but also assumptions on GUI.

520 J. Sun, Y. Liu, and B. Cheng

Like any model checker, PAT supports many options to apply model checking in dif-
ferent settings, for instance, whether to use Depth-First-Search (for memory saving) or
Breadth-First-Search (for shortest counterexamples); whether to apply partial order re-
duction; whether to apply fairness consumption while verifying liveness properties; etc.
The options may conflict with each other. For instance, fairness is irrelevant when the
property is safety; partial order reduction is not sound when strong fairness is assumed.
The options are carefully controlled through complicated logic on user interfaces, which
can be specified by code contracts.

In order to achieve another level of assurance, we develop interface models (in PAT’s
input language) to capture all possible scenarios in which PAT or part of it is executed.
For instance, for any complicated underlying data structure, we develop an interface
model which subsumes all possible ways that PAT interacts it. Models can also be de-
veloped to capture all possible ways of users interacting with PAT through GUI. The
models allow us to systematically generate test cases and, better, apply model checking
techniques. PAT is firstly extended to support user defined C# library, i.e., an object or
method defined the C# library can be invoked as part of a model. This creates a way
of linking events of the interface models with actual codes of PAT. A transition of the
model is thus the result of executing certain code fragments of PAT. For instance, the
event of clicking certain button in the model for user behaviors generates an actual but-
ton clicking event. The models are then model checked using PAT - so that all possible
sequences of executing PAT codes are verified against the embedded code contracts
and, in addition, properties of entire system execution history. Notice that in order to
model checking the interface model for a data structure, because a data structure may
often take infinite different value, empirical studies are applied to discover reasonable
bounds for the values. Interface models can be developed and verified for any part of
PAT, which makes this approach compositional.

We remark that the interface models may contain concurrency, which makes model
checking meaningful as well as challenging. Firstly, PAT supports parallel model check-
ing [20], which makes use of multiple CPUs to explore different parts of a system
concurrently. As a result, the underlying data structure may be accessed concurrently.
Secondly, PAT supports multi-threaded graphic user interface and therefore multiple
simulators and model checkers can be opened simultaneously, which leads to concur-
rent executions. By model checking the interface models, contract violations which are
the result of unlikely event sequences can be discovered systematically. For instance,
bugs on GUI which are the result of a particular sequence of button clicking on multi-
ple PAT windows have been discovered. Even though this paper is focusing on model
checking the model checker itself, the approach of combining code contracts with the
model checker is much more general and this approach can be applicable for checking
many C# software systems.

2 PAT Background

PAT (Process Analysis Toolkit) [27] is developed as a self-contained environment to
support system modeling, simulation and verification. It has user friendly model edi-
tor, animated simulator as well as fully automated model checking facility. PAT offers

Model Checking a Model Checker: A Code Contract Combined Approach 521

Fig. 1. PAT Architecture

a library of various model checking techniques for checking deadlock-freeness, lin-
ear temporal logics (with a variety of fairness), and refinement checking. Advanced
state reduction techniques have been implemented, e.g., partial order reduction, process
counter abstraction, parallel model checking. PAT has been used to model and verify a
variety of systems. Previously unknown bugs have been discovered [19].

As shown in Fig. 1, PAT adopts a layered design to support analysis of different do-
mains. For each supported domain (e.g., distributed systems, real-time systems, service
oriented computing and so on), a dedicated module is created in PAT, which identi-
fies the specialized language syntax, well-formness rules as well as formal operational
semantics. The operational semantics translates a model into LTS (Labeled Transition
Systems)1 at runtime. LTS serves as a shared implicitly internal representation of the
models, which can be automatically explored by the verification algorithms or used for
simulation. To perform model checking on LTSs, the number of states in the LTSs must
be finite. For systems with infinite states (e.g., with real time clocks or infinite number
of processes), abstraction techniques are needed. Example abstraction techniques which
have been realized include process counter abstraction, clock zone abstraction, environ-
ment abstraction, etc. Depending the property to verify, a proper verification algorithm
is invoked. The algorithm performs on-the-fly exploration of an LTS. If a counterexam-
ple is identified during the exploration, it can be animated in the simulator. This design
allows new modules to be easily plugged in and out, without recompiling the core sys-
tem. This design achieves extensible architecture as well as module encapsulation.

Notice that the library of model checking algorithms as well as the GUI are shared
by all modules. Their correctness are thus vital. The algorithms heavily reply on mul-
tiple highly complicated data structures, i.e., the one for system configuration; the one
for compact representation of the system transition relation; the one for constraints on
system clocks; etc. Not only the data structures must function correctly but also they
must function efficiently. They are highly optimized, which implies that they may not
be designed for rigorous system maintenance. For instance, having object orientation
and recursion may not be feasible. The logic for controlling GUI is highly nontrivial as
well. This is because the GUI controls different options for invoking the model check-
ing algorithms. Different modules may employ different abstraction techniques which

1 To be precise, it is a Markov Decision Process when probabilistic choices are involved.

522 J. Sun, Y. Liu, and B. Cheng

conflict with certain group of model checking algorithms. For instance, over approxi-
mation of system graph conflicts with valid result for deadlock-freeness checking, i.e.,
an over approximated state graph is deadlock-free does not imply anything about the
ordinary state graph. In such a case, if an abstraction which results in over approxi-
mation (e.g., predicate abstraction) is detected, verification result for deadlock-freeness
checking must be modified properly.

PAT has been heavily tested with thousands of black-box test cases, and used daily by
research and industry users. Nonetheless, bugs are still reported from time to time. Main
reason for these bugs is that PAT is constantly under revision. As coding assumptions
are often made in order to gain efficiency, code modification or function extension in
one part of PAT often leads to coding assumption breaking in other parts, which results
in new bugs. Currently, PAT has more than 600 KLOC, more than 1300 classes, 6 mod-
ules and more than 10K builds. PAT has attracted more than 800 registered users from
more than 180 organizations. In summary, after years of development, PAT becomes a
huge software package which requires systematically quality control.

3 Embedding Code Contracts

Code contracts [4] take the form of object invariants, preconditions, post-conditions and
assertions. In a systematic way, it offers programming by design. Code contracts can be
integrated into existing coding projects seamlessly, which makes them more attractive
than approaches like SPEC#. Contracts are validated at run-time2. In the PAT project,
coding assumptions are everywhere. One reason is that assumptions often make it pos-
sible to significantly simplify codes, which leads to faster model checking. Code con-
tracts are used to capture coding assumptions on operational language semantics, model
checking algorithms, underlying data structures, GUI, static model analysis functions,
etc. In the following, we illustrate how code contracts are embedded systematically in
PAT using two examples, one for a complex data structure which is essential to model
checking real-time systems and the other for a user interface. Embedding code con-
tracts is the first and the most essential step in our approach. They serve partially as a
correctness specification of PAT.

Example 1 (Contracts for the DBM Class). Practical systems which interacts with the
physical environment are often subject to quantitative timing constraints. For instance,
a pacemaker must react to an abnormal heart condition within a critical time frame.
Model checking real-time systems often involves manipulating constraints on multiple
real-valued clocks. A timing constraint in PAT is the conjunction of multiple simple
constraints. A simple constraint is of the form c ∼ d where c is a clock; d is a rational
number;∼ is a binary operator like ≥, ≤, etc. Multiple simple constraints may conflict
with each other and thus make their conjunction unsatisfiable. For instance, the con-
junction of c1 ≥ 5 and c2 ≤ 1.5 is unsatisfiable if c2 is started within 3 seconds after
c1 is started (so that c1 − c2 ≥ 3). During system exploration, the constraints must be
stored, updated and solved efficiently. In PAT, this is achieved by techniques based on
Difference Bound Matrix (DBM [9]).

2 Contracts supports static analysis as well, which is helpful but largely irrelevant to this work.

Model Checking a Model Checker: A Code Contract Combined Approach 523

public sealed class DBM {
1. private List〈List〈int〉〉 Matrix ; //the matrix itself

2. private bool IsCanonicalForm = true; //a boolean flag

3. private List〈int〉 Clocks; //a list of clocks

4. //Contract Invariant Method

5. protected void ObjectInvariant() {
6. Contract.Invariant(!IsCanonicalForm || (IsCanonicalForm && isCF()));

7. }
8. //methods

9. public void AddClock(byte cID) { · · ·} //add a new clock

10. public void ResetClock(byte cID){ · · ·} //reset an existing clock

11. private void GetCanonicalForm() { · · ·} //Floyd-Warshall algorithm

12. public void AddConstraint(byte cID, OperationType op, int constant){ · · ·}
13. public void Delay(){ · · ·} //let arbitrary time pass

14. public bool IsSatisfiable(){ · · ·} //check satisfiability

15. public DBM RemoveClocks(List〈byte〉 activeClocks) { //remove clocks

16. Contracts.Requires(IsCanonicalForm, “precon, failed.”);

17. Contracts.Requires(Clocks.containsAll(activeClocks), “precon. failed.”);

18. Contracts.Ensures(Matrix .Count == Clocks.Count && · · ·&&

19. IsCanonicalForm, “postcondition failed.”);

20. · · ·
21. }
22. · · ·
23.}

Fig. 2. DBM Contracts

Given n clocks c1, c2, · · · , cn , a DBM contains n + 1 rows, each of which contains
n + 1 elements. Let d i

j represent entry at i-th row and j -th column in the matrix. d i
j

represents the difference between clock ci and cj . A DBM represents the following
constraint: ∀ i : 0 . . n. ∀ j : 0 . . n. ci − cj ≤ d i

j where c0 is set to be 0 all the time.
The most important property of DBM is that there is a relatively efficient procedure to
compute the tightest bound on each clock difference, which can be used to tell whether
the constraint represented by the DBM is satisfiable or not. If the clocks are viewed as
vertices in a weighted graph and the clock difference as the label on the edge connecting
two clocks, the tightest clock difference is the shortest path between the respective ver-
tices. The Floyd-Warshall algorithm [11] thus can be used to compute the tightest clock
differences. A DBM which contains only tightest bounds is said to be in its canonical
form. Given a DBM in canonical form, checking whether the constraint is satisfiable or
not is as easy as checking if entry d0

0 is positive.
DBM is implemented as a stand alone class of 1.5 KLOC. It makes use of some

other simple data structures. Fig. 2 shows partially the signature of the DBM class, i.e.,
public methods and three relevant variables. Matrix is a two dimensional array storing
the matrix itself; IsCanonicalForm is boolean flag to indicate whether the matrix is in
its canonical form; Clocks maintains a list of active clocks. Sample code contracts are
presented and underlined in Fig. 2. The invariant (line 5 to 7) states that either the DBM

524 J. Sun, Y. Liu, and B. Cheng

is not in its canonical form or if it is, then applying an alternative method for calculating
the tightest bounds (which is implemented as method isCF ()) makes no change.

Many of the methods require that the DBM must be in its canonical form before
their execution. One example is RemoveClocks which removes in-active clocks and
together with constraints on them. If the DBM is not in its canonical form, removing
clocks might weaken the constraint. For instance, if the constraint is c1 ≥ 3 and c2 ≤ 6
and c1 − c2 ≤ 1 (which implies c1 ≥ 5), removing c2 results in a weaker constraint
c1 ≥ 3. Fig. 2 shows how the pre-condition (line 16 and 17) as well as post-condition
is coded as contracts (line 18 and 19). The precondition states that the DBM must be
in its canonical form and the clocks to remove must be present, while the simplified
postcondition states that only the clocks in activeClocks remain and the DBM remains
in its canonical form. Notice that the postcondition is incomplete.

Efficiency is essential to any model checker. Keeping a DBM always in its canonical
form (by calling method GetCanonicalForm every time the matrix is modified by
AddClock , AddConstraint , etc.) is infeasible given that the Floyd-Warshall algorithm
is cubic in the number of clocks. Preferably, method GetCanonicalForm shall only be
invoked when necessary, i.e., in method IsSatisfiable. The pre-condition of the methods
thus must be ensured by invoking the methods in particular orders. The assumptions on
orders of method invocation can be referred as class interface contracts. To the best
of our knowledge, such contracts are not supported by the code contracts project. It is
supported, recently by the SPEC explorer project for model-based testing [3]. In the
next section, we show that we can build an interface model to capture class interface
contracts, and then not only generate test cases from the model but also verify the
models against meaningful properties. �

Example 2 (Contracts for GUI). There are dozens of windows that users can interact
with PAT, e.g., a featured editor which has many advanced editing functions; a simula-
tor which allows user to perform different simulation functions; and a model checking
window which controls all options for applying model checking. Given that PAT sup-
ports a library of model checking algorithms as well as optimization techniques, there
could be a large combinations of options to choose from when a specific model check-
ing problem is presented. For instance, whether it should be LTL model checking or
refinement checking; or whether to apply nested DFS or SCC-based search for LTL
model checking; or whether the LTL model checking should be based on generating
Büchi automata. There are more than 5 options for generating Büchi automata from
LTL alone [12]! The options are all controlled by enabling/disabling GUI components,
which as a result has a complicated and error-prone control logic. The constraints are
naturally captured using object invariants associated with the GUI components.

Fig. 3 illustrates the idea with one invariant associated with one checkbox in the
model checking window. The checkbox, once checked, requires the model checking
algorithm to produce one shortest witness trace (often as a counterexample). If the
selected property is a safety property (e.g., a reachability condition, deadlock-freeness,
refinement relationship), breadth-first-search based reachability analysis or refinement
checking is applied. If the selected property is a liveness property, the checkbox must
be unchecked and disabled. This is because a counterexample to a liveness property
must be an infinite trace (which forms a loop in finite state systems). Instead, other GUI

Model Checking a Model Checker: A Code Contract Combined Approach 525

1. protected void ObjectInvariant() {
2. Contract.Invariant(checkBox ShortestTrace Invariant());

3. · · · ;
4. }
5. private bool checkBox ShortestTrace Invariant() {
6. if (Label SelectedAssertion ! = null)

8. if ((AssertionType)cb item.Tag == AssertionType.Liveness) {
9. return !CheckBox ShortestTrace.Checked

&& !CheckBox ShortestTrace.Enabled;

10. } else { return CheckBox ShortestTrace.Enabled; }
14. return true;

15.}

Fig. 3. GUI Contracts

components like a dropdown list for fairness options, which only makes sense with
liveness properties, must be enabled for selection.

In this example, the invariant states that if an assertion has been selected (from a ta-
ble, which triggers update of a label Label SelectedAssertion to reflect user’s choice),
and the selected property is a liveness property, then the checkbox must be disabled.
Notice that this invariant is relaxed during the process of GUI updating. �

The contracts serve partly as a specification of the program. Once the code contracts
are embedded, we firstly re-run all the test cases checking for contract violations. Our
experience suggests that it is indeed possible that a test case is successful (i.e., causes
no exception and produces correct output) but triggers violation of contracts during
execution. One of the reasons is that the pre-condition may be irrelevant to the cor-
rectness of the output in certain cases. Detecting such cases are nevertheless useful as
it helps to either find bugs or refine the specification (e.g., weakening the contract for
pre-condition).

Because PAT is frequently updated, relevant code contracts must be updated as well.
Coding assumptions may often change when a system evolves. Coding them explicitly
as part of the system allows us to quickly detect bugs which are due to changing coding
assumptions (refer to an example in Section 5).

4 Model Checking PAT

While code contracts are good at capturing intra-class coding assumptions, they are not
good at capturing class level or even inter-class coding assumptions. For instance, the
DBM class in PAT is designed to function correctly only under the assumption that its
methods shall only be invoked in certain orders. In general, making such assumptions
may not be reasonable. It is, however, common to model checkers as the assumptions
may often be useful for the sake of efficiency. To test classes with implicit assumptions,
all meaningful test cases must obey the assumptions. Otherwise, contract violation or
even exceptions that are irrelevant to the correctness of the system may be reported. An
interface model thus can capture all class-level or inter-class coding assumptions.

526 J. Sun, Y. Liu, and B. Cheng

Delay()

AddClock(x) AddConstraint(y)

IsSatisfiable()

Clone()

ResetClock(m)

RemovesClocks(n)

Fig. 4. DBM Model

Interface Modeling. In the following, we develop interface models to capture all valid
ways of interacting with certain components of PAT or PAT as a whole. We illustrate
the idea using two interface models.

Example 3 (Interface Model for DBM). Fig. 4 presents an interface model for the DBM
class. The model takes the form of a finite state machine, possibly with auxiliary vari-
ables. The transitions are labeled with public methods of the DBM class. The model in
Fig. 4 captures multiple class level assumptions.

For instance, method RemoveClocks is always be invoked after IsSatisfiable (and
a method for collecting all active clocks defined in a separate class, which is omitted
for the sake of space). Method IsSatisfiable invokes GetCanonicalForm internally
and therefore it is unnecessary in method RemoveClocks to apply the Floyd-Warshall
algorithm or even check whether variable IsCanonocal is true or not - it is always
true. Similarly, this is also the case for ResetClock . Notice that this model is open to
environmental inputs on the method parameters. �

Example 4 (Interface Model for GUI). The following presents an interface model for
any user interface class. Let com be any GUI component (e.g.,any button), which users
can interact with.

[com.Visible && com.Enabled]com.Click()

The model states that as long as com is visible and enabled, users can interact with
it. Informally speaking, it means that no coding assumptions shall be placed upon the
users and all user behaviors must be properly handled! Notice that this model can be
generated automatically from the signature of any GUI class.

Users can interact with multiple user interfaces simultaneously. Therefore, the in-
terface model for PAT contains the parallel composition of multiple interface models.
Furthermore, the interface models may communicate with each other. �

Once we have the model, the task of verifying this part of the system breaks into two
sub-tasks. Firstly, we need to guarantee that in the real system, interactions with the ob-
jects (of the class or classes) are permitted by the model. In this project, this is achieved
with the expert knowledge of the PAT developers. In general, techniques like program
slicing [29] may help, or a run-time monitor program, much like the monitor for code
contracts, can be used to detect violation of class interface violation. Secondly, we
need to guarantee that the system functions correctly given any behavior allowed by
the model. One way of checking that is to systematically generate test cases from the

Model Checking a Model Checker: A Code Contract Combined Approach 527

models and execute the test cases while looking for exceptions or code contracts vio-
lation [3]. Alternatively, we can model checking the models! By model checking, code
contracts which are related to the entire system execution history (e.g., liveness proper-
ties) can be stated as a property and then formally verified. The models can be captured
as PAT models and, hence, we can model check the models using PAT itself!

Supporting Runtime C#. In order to verify actual source codes, firstly we extend PAT
to support dynamic loading of C# code inside a model. Our approach is to compile a
C# program into a dynamic-link library (DLL) and use it during system exploration
via reflection. By following pre-defined API, any C# class can be invoked dynamically
in an interface model in PAT. Furthermore, the C# class may contain code contracts.
PAT provides a contracts compilation option to automatically compile the code using
contracts rewriter compiler. Any contract violation or run-time exception is presented as
a runtime error to the users during model checking. In other words, ordinary PAT codes,
with coding assumptions, can now become part of a PAT model with little modification.

Checking PAT. The following approach is adopted to model check PAT. Firstly, an
interface model of a PAT component is written as a PAT model; the relevant C# source
codes, with code contracts embedded, are compiled into an external DLL and then PAT
is used to enumerate all possible behaviors of the model. If any event sequence triggers
a violation of code contracts or exceptions, then a possible bug is detected. Because it
is the actual code which is being executed during model checking, a discovered bug
corresponds to an actual bug.

Like testing, this approach is incremental - a self-contained class can be firstly mod-
eled and checked and then classes which rely on it can be modeled and checked. If the
states searching in the model checking is viewed as simply a systematic way of gener-
ating test cases, this approach is closely related to work on model-based testing. It is,
however, more than testing. For model checking, meaningful properties, which are im-
plied from the correctness of system and cannot be validated by testing, can be verified.
In general, this approach is as challenging as verification software. Many challenges
like infinite data value and asynchronous thread execution must be dealt with. In the
following, we use the two examples to illustrate relevant issues and our remedies.

Example 5 (Model Checking the DBM Class). A model may be open to environmental
inputs. For instance, given the model for DBM class presented in Fig. 4, a clock must be
supplied when an event linked to method AddClock is invoked; or a simple constraint
must be supplied when invoking method AddConstraint . In order to model check the
model, it must be closed by supplying an environment. In general, there are infinite
possible clocks or constraints. This problem is solved by applying empirical studies to
discover reasonable bounds for the values.

Given the DBM model, we need to fix a finite set of clocks (so that x ,m,n in Fig. 4
have finite values) as well as a finite set of constants for forming clock constraints
(so that y has finite values). It is discovered that for most of the real-world real-time
systems verified by PAT, the number of clocks are often limited to a small number
(e.g., 10 or less). This is not surprising as PAT is optimized to minimize the number of
clocks [28] - recall that Floyd-Warshall algorithm is cubic in the number of clocks. PAT

528 J. Sun, Y. Liu, and B. Cheng

Table 1. Experiments: Reachability/deadlock-freeness

#DBM #Clocks #Constants Reachability/deadlock Every clock is bounded
#States Time (s) #States Time (s)

1 1 6 7375 1.55 63641 31.4
1 1 7 12947 3.12 127362 74.1
1 1 8 21235 5.88 234254 157
1 1 9 33007 10.3 403274 310
1 2 6 473328 168 5918993 5036
1 2 7 1104560 449 15783113 15831
1 3 3 222903 64.1 2016851 1264
1 3 4 1532935 572 17659797 15431
2 1 3 511225 172 ? ?

only introduces a clock whenever necessary; a clock is shared as much as possible and
a clock is removed as soon as possible. Furthermore, there are only a relatively small
number of constants for forming clock constraints in most cases. Once we fix the clocks
and constants, we have a finite model which is subject to model checking.

Because PAT supports parallel model checking, any data structure used by the model
checking algorithms may be accessed in parallel by multiple threads. This may create
problems like race condition. Even if the objects are not shared by the threads, static
variables or references which are accessed by the objects directly or indirectly are al-
ways shared. Static variables allow quick access of information. They, however, must
been properly locked and unlocked if accessed concurrently. We thus extend the model
to capture concurrent accessing of data objects, e.g., the DBM, by composing multiple
copies of the interface models in parallel. Furthermore, the exact locking mechanism
used in PAT has been modeled and reflected in the model as well. Different properties
can be formulated and model checked against the interface models. In general, a prop-
erty is necessary condition of the correctness of the PAT. By verifying that the properties
are true, we gain confidence in the system’s correctness.

In the following, we illustrate three important properties of DBM and use PAT to
model check the respective model. Firstly, an unsatisfiable reachability condition is
model checked, which triggers exploration of the complete state space. This allows us
to verify that the embedded code contracts are satisfied in all system configurations. In
addition, we verify that the DBM model is deadlock-free. This is particularly interest-
ing with more than one DBM objects - it should not be that two DBM objects are both
waiting to access a shared object. The experiment results are summarized in column
“Reachability/deadlock” of Table 1. The results are obtained on a PC with Intel Xeon
4-Core CPU*2, 32 GB memory, with fixed number of DBM objects, number of clocks
and number of constants. This property is verified using an on-the-fly reachability anal-
ysis algorithm in PAT. After correcting serval bugs, the result is eventually all false, as
expected. Secondly, a property stating that every clock is bounded is verified to confirm
a fundamental theorem that every clock can take only finite different ranges (which is
known as zones [27]). The theorem is one of two necessary conditions to guarantee
that model checking of real-time systems in PAT is always terminating. It is an impor-
tant property of DBM which can be proved from the formal semantics of the real-time

Model Checking a Model Checker: A Code Contract Combined Approach 529

Table 2. Experiment C: Every clock always eventually expires

#DBM #Clocks #Constants #States Result Fairness Time (s)
1 2 3 58234 false no fair 26.7
1 3 3 1445821 false no fair 2229
1 1 3 1676 false weak fair 0.575
1 2 3 12372 false weak fair 26.7
1 3 3 1445821 false weak fair 2223
1 1 3 1676 false strong fair 0.643
1 2 3 58234 false strong fair 29.7
1 3 3 1445821 false strong fair 2348
1 1 3 5020 true global fair 2.19
1 2 3 148860 true global fair 353
1 3 3 3462673 true global fair 244733

system modeling language supported in PAT [27]. The experiment results are summa-
rized in column “Every clock is bounded” of Table 1, where a question mark means
out of memory. Lastly, Table 2 summarizes our experiments on verifying the other nec-
essary condition, which too can be proved from the semantics model. Intuitively, the
property states that every clock always eventually expires. We highlight this is a live-
ness property which cannot be validated by testing. It is captured as an LTL formula
and verified using the automata-based verification algorithm in PAT. Furthermore, this
property is valid only under certain fairness constraint [27], which intuitively says that
there are only finitely many system actions within one time unit. Notice that verifying
LTL properties with strong fairness is a unique feature of PAT.

If a counterexample is generated, a unit test case is generated from the counterexam-
ple straightforwardly (since the counterexample is a sequence of method calls with input
values) so as to locate the bug. As expected, the experiments show that model check-
ing suffers from the state space explosion problem, e.g., parallel execution of multiple
DBM objects results in huge number of system configurations. Furthermore, because of
the bounds, only part of all possible behaviors are examined. Nonetheless, large number
of system executions are examined systematically (with blind cases) against complex
properties, which greatly increase our confidence in system correctness. Furthermore,
because of the empirical studies, we focus on common cases and therefore reduce the
probability of producing wrong results in common practice of PAT. �

Example 6 (Model Checking the GUI). In order to model check PAT as a whole, we
build a model to capture all possible ways of users interacting with PAT. The model is
composed of each and every user interface model in the order which users can interact
with them. Each event in the model is linked to an actual GUI event which triggers
execution of PAT. Model checking is then applied to enumerate all event sequences and
validate them against the embedded contracts, including those which are hard to create
in practice. For instance, the following scenario is found to lead to contract violation. A
user firstly clicks one button to initiate a thread for state graph generation in one simu-
lation window, which triggers an attempt to lock shared (static) variables. The user then
clicks the same button in another simulation window. If two models happen to share

530 J. Sun, Y. Liu, and B. Cheng

common process definitions and two models are not identical, then the first simulation
window may behave wrongly because an indirectly accessed variable is changed when
the user clicks the second button.

The GUI model essentially creates a “robot” which controls PAT, which allows users
to manipulate PAT arbitrarily. We can then easily create and verify complicated prop-
erties which may require multiple execution of multiple model checking algorithms.
For instance, one interesting theory is that if a model satisfies a property under weak
fairness, then it must satisfy the property under stronger fairness constraints like strong
fairness or strong global fairness [27]; if a counterexample is produced when a property
is verified under strong fairness, then a counterexample must be produced when the
property is verified under weak fairness. In order to check this is indeed true, a simple
GUI model is created to load one built-in case study at a time, perform model checking
under weak fairness, perform model checking under strong fairness and then compare
whether the results are as expected. Many theorems implied from the correctness of
PAT can be checked in this way.

One difficulty in checking GUI models is that different GUI components may run as
different threads. Multiple threads may execute simultaneously. For instance, one oc-
currence of the event for clicking the verification button triggers the creation of a thread
for model checking. Before the model checking completes, the user can click another
button to trigger another thread. The threads are scheduled by the system scheduler.
Different executing of the same event sequence of the model may result in different
system configuration due to different run-time scheduling. This is a known problem to
GUI testing or testing of concurrent programs in general. A common remedy is to run
a test case sufficient number of times (or with inserted random thread sleep) so as to
exhaust all possible scheduling. Notice that because the model checking of the GUI
model largely depends on the size of the input model, we omit the statistics.

5 Discussion

In this section, we discuss the limitation of our approach and related works.

Limitations. Firstly, we cannot completely verify PAT. Compromises have been made
in order to deliver a useful technique handling PAT. For instance, the code contracts
only capture part of the correctness specification; we can only verify part of the be-
haviors of an interface model, etc. Secondly, when model checking a component of the
system, assumptions on the rest of the system are often necessary. For instance, the in-
put to method RemoveClocks is assumed to be a set of clocks, which assumes that the
method for obtaining the clocks removes any redundancy. Systematically verifying the
assumptions are highly non-trivial. This is a known problem which has been discussed
in [6]. Lastly, generating properties to be model checked needs expert knowledge on
the underlying theories of the system.

The infamous state-space explosion problem still exists. For instance, given a DBM
object with N clocks, there are 2N different inputs to method RemoveClocks . This
problem is known to be best solved by methods like data abstraction [2], which currently
remains as one of our future work. But still, model checking remains useful even if only

Model Checking a Model Checker: A Code Contract Combined Approach 531

part of the system behaviors are explored. It explores all possible behaviors of a model,
including corner cases which are unlikely for real-world applications. Compared to
model-based testing, the additional properties are often useful in gaining confidence
of the implementation or the theorems which lead to the properties. Our experience
is that given all model checking algorithms have multiple theorems behind (e.g., for
soundness, completeness and termination), many properties can be deduced naturally.

Related Work. To our best of knowledge, this work is the first attempt on using ad-
vanced system analysis techniques (e.g., code contracts and model checking) to sys-
tematically validate a model checker. Our approach is related to numerous work on
software verification, testing and debugging.

Our approach relies on programming by contracts. In particular, the code contracts
project essentially makes it possible [4]. There are other methods for embedding spec-
ification into programs. Noticeable examples are SPEC# for C# and JML for Java. We
remark that as long as there is a way of run-time checking the specification, any method
would work in our approach. We choose code project simply because it is the option
which requires minimum modification to our programs.

Our approach can be categorized as combining programming by contracts with
model checking. It is closed related to work on combining programming by contracts
with model-based testing. The tool SPEC explorer supports model-based testing in ad-
dition to contract embedding [3]. Similar to our approach, SPEC explorer uses a model
checker so it can enumerate all possible sequences of method invocations that do not vi-
olate precondition or invariant of the system’s contracts. Furthermore, users are allowed
to specify a set of testing properties, which plays a similar role as our interface model.
Our approach is different from model-based testing [16] in the following ways. Firstly,
we perform model checking instead of model-based testing. The difference is that be-
sides exception-freeness and no violation of contracts, additional properties regarding
to interface models can be verified. The properties may not be validated by testing. The
properties are often implied from the underlying theorems. By model checking them,
not only we gain confidence on PAT but also the theorems. In addition, our work targets
at validating a model checker. We use the model checker to check the interface models
as a way to verify itself.

This work is related to work on software verification [1,26]. Apart from very con-
strained scenarios (e.g., verification of device drivers), the software verification tools
are not widely used in general software development process. The main reason is that
they do not scale. For instance, the SLAM project is based on data abstraction, which
is a complicated and computationally expensive process. In contrast, our approach is
scalable. Even partial code contracts are useful. Like testing, our approach is composi-
tional in the sense that each time part of PAT can be checked and then their composition.
Furthermore, it is compatible with rapidly evolving programs. Once a few relevant con-
tracts need to be updated every time system evolves. As a reasonable price to pay, we
can not verify PAT altogether. Nonetheless, our approach helps to significantly improve
stability and reliability.

The work is related to work on specification and verification of object inter-
faces [15,5]. The main difference is that we combine code contracts. This work is related
to work on combining testing with model checking [13,18,23]. In [18], a tool named

532 J. Sun, Y. Liu, and B. Cheng

UnitCheck is present which allows creation, execution and evaluation of testing cases
using the Java Pathfinder model checker. Unlike [18] where models are automatically
extracted from programs, interface models are provided by PAT developers as an ad-
ditional code contracts. In addition, this work is remotely related to work on testing of
concurrent software [24,25], GUI testing and testing of evolving programs.

6 Conclusion

Model checkers are specialized software whose correctness are vital. In this work, we
propose the combination of code contracts and model checking as a way to systemat-
ically improve their quality. The combination is effective in combating the complexity
of software. Three levels of system specification are handled using the proposed ap-
proach. First is the specification of a method or a single class, captured in the form
of pre/post-condition or class invariants and validated using run-time checking facility
from the code contract project. Second is safety properties of a single class or a group
of coupled classes, captured using interface models. It can be verified by model-based
testing or reachability analysis. Lastly, specification of the entire system execution are
verified against the models by model checking techniques.

We experiment the approach in checking the correctness of the PAT model checker.
Through the experiments, we discovered multiple bugs, and gained more confidence of
PAT. One of our future is to combine data abstraction (e.g., predicate abstraction) in
model checking the interface models.

References

1. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier: Technology
Transfer of Formal Methods inside Microsoft. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.)
IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg (2004)

2. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian abstraction for model checking
C programs. STTT 5(1), 49–58 (2003)

3. Barnett, M., DeLine, R., Fähndrich, M., Jacobs, B., Leino, K.R.M., Schulte, W., Venter, H.:
The SPEC# Programming System: Challenges and Directions. In: Meyer, B., Woodcock, J.
(eds.) VSTTE 2005. LNCS, vol. 4171, pp. 144–152. Springer, Heidelberg (2008)

4. Barnett, M., Fähndrich, M., de Halleux, P., Logozzo, F., Tillmann, N.: Exploiting the Syn-
ergy between Automated-test-generation and Programming-by-contract. In: ICSE Compan-
ion 2009, pp. 401–402. IEEE, Los Alamitos (2009)

5. Bierhoff, K., Aldrich, J.: Lightweight Object Specification with Yypestates. In:
ESEC/SIGSOFT FSE 2005, pp. 217–226. ACM, New York (2005)

6. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Jurdzinski, M., Mang, F.Y.C.: Interface Com-
patibility Checking for Software Modules. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002.
LNCS, vol. 2404, pp. 428–441. Springer, Heidelberg (2002)

7. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer,
Heidelberg (2002)

8. Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS,
vol. 131, pp. 52–71. Springer, Heidelberg (1981)

Model Checking a Model Checker: A Code Contract Combined Approach 533

9. Dill, D.L.: Timing Assumptions and Verification of Finite-State Concurrent Systems. In:
Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)

10. Emerson, E.A., Wahl, T.: Dynamic Symmetry Reduction. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 382–396. Springer, Heidelberg (2005)

11. Floyd, R.W.: Algorithm 97: Shortest Path. Commun. ACM 5(6), 345 (1962)
12. Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G., Comon, H.,

Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)
13. Gunter, E.L., Peled, D.: Model checking, Testing and Verification Working Together. Formal

Asp. Comput. 17(2), 201–221 (2005)
14. Holzmann, G.J.: The Model Checker SPIN. IEEE Trans. Software Eng. 23(5), 279–295

(1997)
15. Hughes, G., Bultan, T.: Interface Grammars for Modular Software Model Checking. In: IS-

STA 2007, pp. 39–49. ACM, New York (2007)
16. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-Based Software Testing and Analy-

sis with C#. Cambridge University Press, Cambridge (2008)
17. Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav, S., Slobodová,

A., Taylor, C., Frolov, V., Reeber, E., Naik, A.: Replacing Testing with Formal Verification in
Intel CoreTM i7 Processor Execution Engine Validation. In: Bouajjani, A., Maler, O. (eds.)
Computer Aided Verification. LNCS, vol. 5643, pp. 414–429. Springer, Heidelberg (2009)

18. Kebrt, M., Sery, O.: UnitCheck: Unit Testing and Model Checking Combined. In: Liu, Z.,
Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 97–103. Springer, Heidelberg (2009)

19. Liu, Y., Pang, J., Sun, J., Zhao, J.: Verification of Population Ring Protocols in PAT. In: TASE
2009, pp. 81–89. IEEE Computer Society, Los Alamitos (2009)

20. Liu, Y., Sun, J., Dong, J.S.: Scalable Multi-core Model Checking Fairness Enhanced Sys-
tems. In: ICFEM 2009. LNCS, vol. 5885, pp. 426–445. Springer, Heidelberg (2009)

21. Mühlberg, J.T., Lüttgen, G.: Blasting Linux Code. In: Brim, L., Haverkort, B.R., Leucker,
M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346, pp. 211–226.
Springer, Heidelberg (2007)

22. Peled, D.: Combining Partial Order Reductions with On-the-fly Model-Checking. In: Dill,
D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg (1994)

23. Peled, D.: Model Checking and Testing Combined. In: Baeten, J.C.M., Lenstra, J.K., Parrow,
J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 47–63. Springer, Heidelberg
(2003)

24. Sen, K., Marinov, D., Agha, G.: CUTE: a Concolic Unit Testing Engine for C. In:
ESEC/SIGSOFT FSE 2005, pp. 263–272. ACM, New York (2005)

25. Sherman, E., Dwyer, M.B., Elbaum, S.G.: Saturation-based Testing of Concurrent Programs.
In: ESEC/SIGSOFT FSE 2009, pp. 53–62. ACM, New York (2009)

26. Siegel, S.F., Mironova, A., Avrunin, G.S., Clarke, L.A.: Combining Symbolic Execution
with Model Checking to Verify Parallel Numerical Programs. ACM Trans. Softw. Eng.
Methodol. 17(2) (2008)

27. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness. In:
Bouajjani, A., Maler, O. (eds.) Computer Aided Verification. LNCS, vol. 5643, pp. 709–714.
Springer, Heidelberg (2009)

28. Sun, J., Liu, Y., Dong, J.S., Zhang, X.: Verifying Stateful Timed CSP Using Implicit Clocks
and Zone Abstraction. In: ICFEM 2009. LNCS, vol. 5885, pp. 581–600. Springer, Heidelberg
(2009)

29. Weiser, M.: Program Slicing. In: ICSE, pp. 439–449 (1981)

On Symmetries and Spotlights –
Verifying Parameterised Systems

Nils Timm and Heike Wehrheim

Department of Computer Science, University of Paderborn
D-33098 Paderborn, Germany

{timm84,wehrheim}@uni-paderborn.de

Abstract. Parameterised model checking is concerned with verifying
properties of arbitrary numbers of homogeneous processes composed in
parallel. The problem is known to be undecidable in general. Neverthe-
less, a number of approaches have developed verification techniques for
certain classes of parameterised systems. Here, we present an approach
combining symmetry arguments with spotlight abstractions. The tech-
nique determines (the size of) a particular instantiation of the parame-
terised system from the given temporal logic formula, and feds this into
an abstracting model checker. The degree of abstraction with respect to
processes occurring during model checking determines whether the ob-
tained result is also valid for all other instantiations. This enables us
to prove safety as well as liveness properties (specified in full CTL) of
parameterised systems on very small instantiations.

Keywords: symmetry reduction, spotlight abstraction, parameterised
verification, model checking.

1 Introduction

Parameterised systems consist of an arbitrary number of homogeneous processes
usually composed in parallel. The objective in verifying parameterised systems is
to show certain correctness properties regardless of the number of processes in-
volved. Examples can be found in all sorts of distributed algorithms, like mutual
exclusion, leader election or cache coherence. Verifying parameterised systems is
undecidable in general [3]. Model checking can of course prove properties for par-
ticular instantiations by fixing the number of processes, however, this is limited
to reasonably sized numbers.

Nevertheless, a lot of approaches have been developed which verify particular
classes of parameterised systems, or which devise methods that are sound but
not complete. These include techniques which apply regular model checking [2],
induction [15] or decision procedures for second order logics [4] to the verification
of parameterised systems. Regular model checking represents sets of states by
regular expressions and performs a reachability analysis by means of transduc-
ers. This technique is quite costly as it involves a number of automata theoretic
constructions. In [1] a more efficient method has been proposed which however

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 534–548, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Symmetries and Spotlights – Verifying Parameterised Systems 535

can only treat safety properties. The approach in [4] models parameterised sys-
tems in the logic WS1S and computes an abstraction of it on which properties
can be shown. This technique requires to manually define abstraction relations.
The invisible invariants technique of [15] computes inductive invariants on small
instantiations by model checking and uses theorem proving for showing these to
be inductive on the parameterised system as well. The method of [7] also uses
model checking on small instances, where the number of instances (the cutoff) is
computed from the description of the parameterised system, given this satisfies
a particular format.

In this paper, we base our method on symmetry arguments. Symmetry and
symmetry reductions [8,10] have long been proposed to reduce the state space
in model checking. The general idea is to consider symmetric states, which only
differ in permutations of values, as equivalent. Instead of constructing the whole
state space, only equivalence classes (orbits) are built. These symmetries may
refer to data values as well as process names. Parametric systems are inherently
symmetric: usually either all processes are similar, or they can at least be divided
into (a finite number of) classes of similar processes. The symmetry idea is
applied in [7] to compute cutoffs, and in a sense also in [16], which counts the
number of (symmetric) processes being in particular states.

Similar to [7] we will compute the size of an instance of the parameterised
system. However, this size is not determined from the system description but
straightforwardly from the temporal logic formula used to specify the correctness
property. The size is simply 1 plus the number of different process variables
occurring in the formula. If we for instance want to show a mutual exclusion
property over a parameterised system, specified as

∀ i , j , i �= j : AG¬(i@crit ∧ j@crit)

(no processes i and j can ever be at their critical sections at the same time), the
size is three (one process in addition to those mentioned). The parameterised sys-
tem is instantiated with this number and the instantiation is fed into the model
checker 3Spot [17]. 3Spot is our three-valued model checker [17] which employs
both predicate abstraction and spotlight abstraction [18]. The third value “don’t
know” is used to represent unknowns which may arise due to the abstraction.
Since we use a three-valued logic both true and false results can be transferred
to the unabstracted system, only an unknown result necessitates abstraction
refinement.

It is however the principle of spotlight abstraction which helps us towards our
goal of proving (or disproving) the property not only for the particular instance
but for the parameterised system as a whole. Spotlight abstractions completely
abstract away the processes whose behaviour is irrelevant for the property to
be checked. If the additional process in the instantiation is not drawn into the
spotlight during the model checking run (i.e. completely abstracted away), the
obtained result is valid for the parameterised system as well. Thus, it is the
degree of abstraction occurring during the model checking run which tells us
whether we can transfer our result to any number of processes. Since we employ

536 N. Timm and H. Wehrheim

a three-valued model checker this holds for “true” and “false” results. Only in
case that the additional process is moved into the spotlight, the result tells us
nothing about the parameterised system.

The method currently works for completely symmetric systems (all processes
the same, statements do not depend on process identifiers) as well as systems
in which the processes can be divided into classes of similar programs. It allows
for communication via shared variables. We exemplify the technique on a simple
mutual exclusion and a readers/writers algorithm. The technique can be clas-
sified as being completely automatic, usually carrying out checks on very small
instances (since the properties usually refer to a very limited number of different
processes, most often just two) and thus being fast, and being sound but not
complete.

2 Definitions

We look at systems of the following form (called fully symmetric systems):

global u1 : type, . . . , ul : type where ϕginit

‖n

i=1
Pi ::

[
local v1 : type, . . . , vh : type where ϕlinit

some program text

]
where u1, u2 . . . are global variables from some set Vg , v1, v2 . . . are local vari-
ables from a set Vl and P1 to Pn are identical processes. For both local and
global variables an initialisation is given in terms of a formula ϕ (ϕlinit , ϕginit ,
respectively). We assume this to give us a unique initial value for all variables
(initialisation predicates are deterministic). We furthermore implicitly assume
the set of local variables to contain a dedicated variable pc, a program counter.
The numbers 1 to n act as process identifiers, from a set PID = [1..n]. Within
a process Pi , its process id cannot be referred to, and the local state of Pi is
not accessible by Pj , i �= j . The processes are completely symmetric, i.e. each
process Pi executes exactly the same code. For convenience we sometimes just
write P =||ni=1 Pi .

The following example of a mutual exclusion algorithm by means of a sema-
phore serves for illustrating our technique for fully symmetric systems (written
in a language similar to SPL [13]):

global y : sem where y = 1

‖n

i=1
Pi ::

⎡⎢⎢⎢⎢⎣
loop forever do⎡⎢⎢⎣

0 : Non-Critical
1 : request y;
2 : Critical
3 : release y;

⎤⎥⎥⎦
⎤⎥⎥⎥⎥⎦

A state of such a system consists of a valuation of the global variables Vg and -
for every process - valuations of the local variables, with values taken from some

On Symmetries and Spotlights – Verifying Parameterised Systems 537

domain D . We define V = Vg ∪ (Vl × PID) to be the overall set of variables
and hence a state is a mapping s : V → D . We refrain from explicitly defining
types and type-preserving assignments. We assume to have - amongst others - a
domain for locations called Loc, and the variable pc is assigned to values of Loc
only. The valuation of a global variable v ∈ Vg in a state s is denoted by s(v),
the valuation of a local variable v ∈ Vl of a process Pi in s is denoted by s(v , i).
The set Vi = Vg ∪Vl is the set of variables of a single process Pi , and we write
s [i] to describe the local view of Pi on a state s : for v ∈ Vg , s [i](v) = s(v), and
for v ∈ Vl , s [i](v) = s(v , i).

Transitions in such systems are caused by some local process Pi executing
its next statement (if enabled). The transitions of process Pi are described by a
predicate Ri on primed and unprimed global and local variables. The predicate
Ri is derived from the program text, and consequently in our setting of fully
symmetric systems predicates Ri are the same for all i ∈ PID . The predicate Ri

for the mutual exclusion example is

(pc = 0 ∧ pc′ = 1 ∧ y ′ = y)
∨ (pc = 1 ∧ y = 1 ∧ pc′ = 2 ∧ y ′ = 0)
∨ (pc = 2 ∧ pc′ = 3 ∧ y ′ = y)
∨ (pc = 3 ∧ y = 0 ∧ y ′ = 1 ∧ pc′ = 0)

We write Ri(s [i], s ′[i]) to describe the case when the predicate Ri is true for the
local views: (s [i], s ′[i]) |= Ri .

As a computational model for our systems we use Kripke structures.

Definition 1. A Kripke structure over a set of atomic propositions AP is a
4-tuple K = (S , s0,R,L) where

– S is a set of states,
– s0 ∈ S is the initial state,
– R : S × S → {true, false} is a transition function,
– L : S ×AP → {true, false} is a function labelling states with atomic propo-

sitions.

A path τ of a Kripke structure K is an infinite sequence of states s0s1s2... with
R(si , si+1) = true; τi denotes the i-th state of τ and Ts denotes the set of all
paths starting in s ∈ S .

As atomic propositions we use the following: (v = d) for global variables
v ∈ Vg and data values d ∈ D , (i@l) for a process id i and a location l , and
(v@i = d) for a local variable v ∈ Vl , a process id i and a data value d . For a
symmetric system P =||ni=1 Pi , we define its Kripke structure K = (S , s0,R,L)
as follows:

– States: S := V → D (the set of type-preserving valuations to variables),

– Initial state: s0 := s ∈ S with s � Vg |= ϕginit ∧ ∀ i ∈ PID : s [i] |= ϕlinit

(due to the initialisation predicates being deterministic, this gives us the
same initial values for the local variables in all processes),

538 N. Timm and H. Wehrheim

– Transition relation:

R(s , s ′) := ∃ i ∈ [1..n] : Ri(s [i], s ′[i])
∧ ∀ j �= i , ∀ v ∈ Vl : s [j](v) = s ′[j](v),

– Labelling function:

L(s , p) :=

⎧⎨⎩
s(v) = d for p =̂ (v = d)
s(pc, i) = l for p =̂ (i@l)
s(v , i) = d for p =̂ (v@i = d).

For specifying properties of Kripke structures we use the computational tree
logic (CTL). In the next section we will see that CTL is the base logic only,
the properties we actually like to show about parameterised systems are a little
more complicated since we wish to quantify over processes.

Definition 2. Let AP be a set of atomic propositions and p ∈ AP. The syntax
of CTL is given by

ψ ::= p | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | EXψ | AXψ | EFψ |
AFψ | EGψ | AGψ | E [ψUψ] | A[ψUψ].

The validity of a CTL formula ψ on a Kripke structure K is denoted by K , s0 |= ψ.

Definition 3. Let K = (S , s0,R,L) be a Kripke structure over AP, p ∈ AP and
ψ ∈ CTL. Then the evaluation of ψ in a state s of K , K , s |= ψ, is inductively
defined as follows

K , s |= p := L(s , p)
K , s |= ¬ψ := ¬(K , s |= ψ)
K , s |= ψ ∨ ψ′ := K , s |= ψ ∨ K , s |= ψ′

K , s |= EXψ :=
∨

s′∈S R(s , s ′) ∧K , s ′ |= ψ
K , s |= EGψ :=

∨
τ∈Ts

∧
i∈N(K , τi |= ψ)

K , s |= E [ψUψ′] :=
∨

τ∈Ts

∨
i∈N((K , τi |= ψ′) ∧

∧
0≤j<i(K , τj |= ψ))

(The remaining CTL operators can be derived by the usual dualities.)

3 Symmetries

Here, we look at Kripke structures representing parameterised systems P =||ni=1

Pi . We like to show properties of such systems for all the processes in it, thus
our property formulae take the following form:

∀ i1, . . . , id , (il �= ij)1≤l,j≤d,l �=j : ψ(i1, . . . , id)

where i1 to id are variables for process identifiers and ψ ∈ CTL. The number
d of process variables appearing in a formula F is called the process diameter

On Symmetries and Spotlights – Verifying Parameterised Systems 539

of F . The following two formulae express properties we would like to show for
our mutual exclusion algorithm: F1 : ∀ i , j , i �= j : AG¬(i@2 ∧ j@2) (a safety
property about mutual exclusion, process diameter 2) and F2 : ∀ i , j , i �= j :
AG((i@2 ∧ j@1) ⇒ AF (j@2)) (a liveness property about starvation freedom,
process diameter 2).

The ultimate goal is to show such properties F (i1, . . . , id) for any number of
processes running in parallel, i.e. show that ∀N > d : K , s0 |= F (i1, . . . , id)
where K is the Kripke structure representing ||Ni=1 Pi .

For the verification we want to exploit the symmetry in such systems and there-
fore use a technique inspired by symmetry reductions [8]. The symmetries con-
cern process ids only, i.e. we permute processes, but no data variables.

Definition 4. A process permutation is a bijective function π : PID → PID.

Process permutations can be lifted to states: for a state s we define π(s) as fol-
lows: π(s)(v) = s(v) in case of global variables v ∈ Vg , and π(s)(v , i) is s(v , π(i))
in case of local variables including the program counters. Process permutations
can also be applied to atomic propositions: π(v = d) = (v = d), π(i@l) =
(π(i)@l) and π(v@i = d) = (v@π(i) = d).
For using process permutations for verification, they should in some sense pre-
serve the semantics of systems:

Definition 5. A process permutation π is a symmetry for a Kripke structure
K = (S , s0,R,L) if the following conditions are met

1. R(s , s ′)⇔ R(π(s), π(s ′)),
2. for all atomic propositions p ∈ AP:

L(s , p) ⇔ L(π(s), π(p)),
3. π(s0) = s0.

Note that in contrary to permutations used in classical symmetry reduction, we
apply the permutation on the atomic propositions as well, i.e. we do not require
L(s , p) ⇔ L(π(s), p).

Proposition 1. On fully symmetric systems all process permutations are sym-
metries.

Proof. First, we look at the transition relation. We only show the ’⇒’-direction.
The ’⇐’-direction is proved analogously.

R(s , s ′)⇒ ∃ i ∈ [1..n] : Ri(s [i], s ′[i])
∧ ∀ j �= i , ∀ v ∈ Vl : s [j](v) = s ′[j](v)

⇒ ∃ h = π(i) : Rπ(i)(π(s [i]), π(s ′[i]))
∧ ∀ j �= h, ∀ v ∈ Vl : π(s [j])(v) = π(s ′[j])(v)

⇒ R(π(s), π(s ′))

540 N. Timm and H. Wehrheim

Second, the labelling function. Here, we have to distinguish three cases:

1. p =̂ (v = d):
L(s , (v = d))
⇔ s(v) = d
⇔ π(s)(v) = d
⇔ L(π(s), (v = d))
⇔ L(π(s), π(v = d))

2. p =̂ (i@l):
L(s , (i@l))
⇔ s(pc, i) = l
⇔ π(s)(pc, π(i)) = l
⇔ L(π(s), π(i)@l)
⇔ L(π(s), π(i@l))

3. p =̂ (v@i = d):
L(s , (v@i = d))
⇔ s(v , i) = d
⇔ π(s)(v , π(i)) = d
⇔ L(π(s), π(v@i = d)) �

If a process permutation is a symmetry, then we can also permute paths in the
Kripke structure, thereby again getting valid paths.

Proposition 2. Let π be a symmetry for a Kripke structure K = (S , s0,R,L)
and τ = s0s1s2 . . . a path in K . Then π(τ) = π(s0)π(s1)π(s2) . . . is a path in K
as well with L(si , p) = L(π(si), π(p)) for all atomic propositions p ∈ AP and
i ∈ N.

This is a key property for our symmetry argument since it lets us prove proper-
ties about certain subsets of processes which will then also hold for other subsets
gained by permutation. In general our approach to verifying properties about
symmetric systems works as follows. For a formula ∀ i1, . . . , id : ψ(i1, . . . , id) we
first of all only consider the temporal logic part, i.e. ψ(i1, . . . , id). For deter-
mining its validity for a symmetric system, we instantiate the process variables
ij with concrete values pj ∈ PID (pairwise different) and look at the formula
ψ(p1, . . . , pd). Our first theorem states that the application of a permutation
does not change the validity of such properties.

Theorem 1. Let ||ni=1 Pi be a fully symmetric system, K = (S , s0,R,L) the
corresponding Kripke structure over AP and π a process permutation which is a
symmetry for K . Moreover, let ψ be a CTL formula and s ∈ S. Then

K , s |= ψ(p1, . . . , pd) ⇔ K , π(s) |= ψ(π(p1), . . . , π(pd)) .

Proof. Induction on the structure of ψ. The argumentation is based on Defini-
tion 5 and Proposition 2. For short we write ψ for ψ(p1, . . . , pk) and π(ψ) for
ψ(π(p1), . . . , π(pk)).

On Symmetries and Spotlights – Verifying Parameterised Systems 541

– ψ = p, p ∈ AP :
K , s |= p
⇔ L(s , p)
⇔ L(π(s), π(p))
⇔ K , π(s) |= π(p)

– ψ = ¬ψ1:
K , s |= ψ
⇔ K , s /|= ψ1

⇔ K , π(s) /|= π(ψ1)
⇔ K , π(s) |= π(ψ)

– ψ = ψ1 ∨ ψ2:
K , s |= ψ
⇔ K , s |= ψ1 ∨K , s |= ψ2

⇔ K , π(s) |= π(ψ1) ∨K , π(s) |= π(ψ2)
⇔ K , π(s) |= π(ψ)

– ψ = EXψ1:
K , s |= ψ
⇔

∨
s′∈S R(s , s ′) ∧K , s ′ |= ψ1

⇔
∨

π(s′)∈S R(π(s), π(s ′)) ∧K , π(s ′) |= π(ψ1)
⇔ K , π(s) |= π(ψ)

– ψ = EGψ1:
K , s |= ψ
⇔

∨
τ∈Ts

∧
i∈N(K , τi |= ψ1)

⇔
∨

π(τ)∈Tπ(s)

∧
i∈N(K , π(τi) |= π(ψ1))

⇔ K , π(s) |= π(ψ)

– ψ = E [ψ1Uψ2]:
K , s |= ψ
⇔

∨
τ∈Ts

∨
i∈N((K , τi |= ψ2) ∧

∧
0≤j<i(K , τj |= ψ1))

⇔
∨

π(τ)∈Tπ(s)

∨
i∈N((K , π(τi) |= π(ψ2)) ∧

∧
0≤j<i(K , π(τj) |= π(ψ1)))

⇔ K , π(s) |= π(ψ) �

This is all we need with respect to symmetries: for symmetric systems a property
is true if and only if its permutation is true. Up to here, we however have no
means of dealing with the ∀N > d in our formulae. For parameterisation we
next combine this technique with spotlight abstractions.

4 Spotlights

By having instantiated our formula with concrete process ids, we have obtained
a local property, referring to only some of the processes in PID . Instantiations
of F1 and F2 could be AG¬(1@2 ∧ 2@2) and AG((1@2 ∧ 2@1) ⇒ AF (2@2)),
respectively. Local properties of parallel processes can be checked using spotlight

542 N. Timm and H. Wehrheim

abstractions and the tool 3Spot. 3Spot is a verification tool based on the concept
of predicate abstraction and abstraction refinement [17], which - however - does
not only apply predicate abstraction to the code of processes in a parallel com-
position but also abstracts away complete processes. Those processes that are
referred to in the property to be checked are taken into the spotlight whereas all
others are kept in the shade. On the processes in the spotlight we apply ordinary
predicate abstraction. The processes in the shade are automatically abstracted
into one approximative process P⊥. This process only coarsely reflects the be-
haviour of the shade processes. In particular, P⊥ neglects the original control
flow of the processes in the shade. Instead it approximates operations on global
variables occurring in shade processes by continuously modifying predicates over
those variables. Due to the approximative character of P⊥ and the inherent loss
of information about the shade processes, predicates might be set to unknown.
“Unknown” is in fact a valid value as we operate with three-valued logics (Kleene
logic [9]), where predicates can be true, false or unknown.

Spotlight abstraction now works as follows:

1. We start with a spotlight which only contains those processes the property
formula speaks about. For the verification, we construct a predicate abstrac-
tion of these processes and combine this in parallel with the approximative
process representing all processes in the shade.

2. On this abstraction the formula is checked. If the check returns true or false,
we are done. The result also holds for the non-abstracted, original system.

3. If the check returns “unknown”, the abstraction needs to be refined. We
either add a new predicate, or take one process out of the shade into the
spotlight. Then we proceed with step 2.

Note that P⊥ only modifies predicates about global variables. Thus, any set of
shade processes which share the same operations on global variables Vg will
give us the same approximative process PVg

⊥ . For our semaphore example and
the predicate (y = 1) an arbitrary number of processes in the shade would be
automatically abstracted into

P{y}
⊥ ::

⎡⎣loop forever do

(y = 1) :=
{

false if (y = 1) = false
unknown else

⎤⎦
approximating the possible operations request and release on the global sema-
phore variable y.

For employing 3Spot in our verification procedure for parametric systems, we do
not only have to instantiate process variables in the formula, but we also have
to fix the number n of processes in ||ni=1 Pi . This number is set to d + 1, i.e. one
more than the process diameter of the formula, in the case of formula F1 thus
to 3. Now we check the following property with 3Spot

P1 || P2 || P3 |= AG¬(1@2 ∧ 2@2) ?

On Symmetries and Spotlights – Verifying Parameterised Systems 543

Since the property is only referring to processes 1 and 2, the abstraction starts
with 1 and 2 in the spotlight. It turns out that throughout the whole model
checking procedure process 3 is kept in the shade and the verification succeeds
with a definite answer (yes) without ever considering process 3. More specifically,
3Spot shows the following to be true:

P1 || P2 || P{y}
⊥ |= AG¬(1@2 ∧ 2@2)

Here, P{y}
⊥ is the abstraction of process 3. As explained above this is also the

abstraction of any number of parallel processes performing request and release
operations on the global variable y. The correctness result for spotlight abstrac-
tion now lets us transfer this result to the original parallel system.

Theorem 2. Let (||di=1 Pi) || PVg

⊥ be a spotlight abstraction of a symmetric
system for which checking property ψ(1, . . . , d) yields true. Then for any N > d
we get

||Ni=1 Pi |= ψ(1, . . . , d) .

Proof: In [17] we have shown that if (||di=1 Pi) || PVg

⊥ is a spotlight abstraction
of a parallel system with a fixed number of processes and ψ(1, . . . , d) yields true
for (||di=1 Pi) || PVg

⊥ then we can transfer this result to the unabstracted system.
Here, we consider symmetric systems of an arbitrary size. Due to symmetry, the
approximative process PVg

⊥ and therefore the entire spotlight abstraction is the
same for any number N > d of processes. �

In the next step, we need to transfer the result for particular process identities to
arbitrary process variables. Theorem 1 exactly allows us to do this: verification
results for (1, . . . , d) also hold for all permutations of (1, . . . , d). Since all possible
instantiations of process variables i1 to id can be obtained this way (note that
we required all variable values to be pairwise different), the verification result
also holds in general.

Corollary 1. Let (||di=1 Pi) || PVg

⊥ be a spotlight abstraction of a symmetric
system for which checking property ψ(1, , . . . , d) yields true. Then the following
holds:

∀N > d : ||Ni=1 Pi |= ∀ i1, . . . , id , (il �= ij)1≤l,j≤d,l �=j : ψ(i1, . . . , id)

An analogue result is achieved for negative outcomes of the model checking runs:
outcome “false” can also be transferred to the full system. In summary, we have
the following verification steps: For a symmetric parameterised system ||ni=1 Pi

and a formula F execute the following steps for checking ∀N :||Ni=1 Pi |= F :

1. Determine the process diameter d of F .
2. Instantiate F with process identities 1 to d for i1 to id : ψ(1, . . . , d).
3. Check P1 || . . . || Pd || Pd+1 |= ψ(1, . . . , d).
4. If the result is “yes”/“no” and Pd+1 is not in the spotlight in the final

abstraction, return true/false. Else return unknown.

544 N. Timm and H. Wehrheim

The obtained result is by symmetry then a valid result for the parameterised
system. In this manner we can also disprove the liveness property F2 by having
only two processes in the spotlight.

3Spot might take the process Pd+1 into the spotlight. In this case a defi-
nite outcome cannot be transferred to the full system because then there is no
approximative process representing an arbitrary number of additional process
instances. Hence, it is unknown whether ψ holds for all instantiations of the
parameterised system. So this approach gives us a fully automatic, sound but
not complete procedure for reasoning about parameterised, symmetric systems.

5 Generalisation

Our approach can be generalised to classwise symmetric systems. Such systems
are not fully symmetric, but they consist of classes of symmetric processes. An
example for a system consisting of two classes is the following solution to the
readers/writers problem:

global y : sem where y = nRd

‖
i∈PIDRd

Readeri ::

⎡⎢⎢⎢⎢⎣
loop forever do⎡⎢⎢⎣

0 : Non-Critical
1 : request (y, 1);
2 : Critical-Write
3 : release (y, 1);

⎤⎥⎥⎦
⎤⎥⎥⎥⎥⎦

‖

‖
j∈PIDWrt

Writerj ::

⎡⎢⎢⎢⎢⎣
loop forever do⎡⎢⎢⎣

0 : Non-Critical
1 : request (y,nRd);
2 : Critical-Write
3 : release (y,nRd);

⎤⎥⎥⎦
⎤⎥⎥⎥⎥⎦

Here, we have two classes of processes, readers and writers. Furthermore, nRd

is a parameter associated with the number of reader processes. The semantics
of the semaphore statements request (y, c) and release (y, c) are given by
〈await y ≥ c; y := y − c〉 and 〈y := y + c〉, respectively. Thus, the generalised
semaphore y ensures that multiple (up to nRd) readers can enter the critical
section at the same time, whereas if one writer is modifying data, no other
process has access to the critical section. All readers and all writers execute the
same program code. More generally, a classwise symmetric system consisting
of k classes is defined as P =||km=1 Pm where Pm =||i∈PIDm Pi is a parallel
composition of fully symmetric processes of a class m with process identifiers
from a set PIDm . All sets PIDm , where m ∈ [1..k], are pairwise disjoint. Thus,

On Symmetries and Spotlights – Verifying Parameterised Systems 545

every process in a classwise symmetric system has a unique id. All classes share
a set of global variables Vg whereas each class has a distinct set of local variables
V m

l with ∀m1,m2 ∈ [1..k] : V m1
l ,V m2

l pairwise disjoint. Furthermore, each V m
l

contains a dedicated program counter pcm . The overall set of variables of P is
V = Vg ∪

⋃k
m=1(V

m
l × PIDm).

Given this setting, we can define the semantics in a way similar to fully sym-
metric systems. States of a classwise symmetric system are defined as mappings
s : V → D . The local view of a process Pi in a state s is again denoted by s [i],
referring to its unique identifier i . Transitions in such a system caused by the
execution of a statement in some process Pi are described by a predicate Ri on
the primed and unprimed local views of Pi . Due to the symmetry of processes
in a class m, predicates Ri are the same for all i ∈ PIDm .

Classwise symmetric systems can be represented as Kripke structures as well.
As atomic propositions we use the same as before: (v = d), (i@l) and (v@i = d).
For a system P =||km=1 Pm with Pm =||i∈PIDm Pi the corresponding Kripke
Structure K = (S , s0,R,L) is defined as follows:

– States: S := V → D ,

– Initial state: s0 := s ∈ S with s � Vg |= ϕginit ∧ ∀m ∈ [1..k], ∀ i ∈ PIDm :
s [i] |= ϕlinitm ,

– Transition function:

R(s , s ′) := ∃m ∈ [1..k], ∃ i ∈ PIDm : Ri(s [i], s ′[i])
∧ ∀ i2 ∈ PIDm , i2 �= i , ∀ v ∈ V m

l : s [i2](v) = s ′[i2](v)
∧ ∀m2 �= m, ∀ j ∈ PIDm2 , ∀ v ∈ V m2

l : s [j](v) = s ′[j](v),

– Labelling function:

L(s , p) :=

⎧⎨⎩ s(v) = d for p =̂ (v = d)
s(pcm , i) = l for p =̂ (i@l), i ∈ PIDm

s(v , i) = d for p =̂ (v@i = d), i ∈ PIDm , v ∈ V m

For classwise symmetric systems P =||km=1 Pm we like to show properties that
refer to distinct classes but arbitrary processes in each class. More precisely, a
property formula takes the following form:

F = ∀ i11 , . . . , i1d1
, . . . , ∀ ik1 , . . . , ikdk

: ψ(i11 , . . . , i1d1
, . . . , ik1 , . . . , ikdk

)

where ψ ∈ CTL and im1 to imdm
with m ∈ [1..k] are pairwise different variables

for process identifiers in PIDm . Thus, for every class m referred in F there is
a distinct process diameter dm . For our readers/writers example we have two
classes of symmetric processes: readers with the corresponding set of process
identifiers PIDRd and writers with PIDWrt . A safety property about mutual
exclusion (no reading and writing at the same time, and no writing concurrently)
can be formalised as: F3 : ∀ i ∈ PIDRd , ∀ j1, j2 ∈ PIDWrt : AG¬(i@2 ∧ j2@2) ∧
AG¬(j1@2∧ j2@2) where the process diameter is 1 for readers and 2 for writers.

546 N. Timm and H. Wehrheim

Since we like to show such properties for an arbitrary number of processes
from each class running in parallel, we want exploit the symmetry again. As the
considered systems are not fully but classwise symmetric, we need a new notion
of process permutations.

Definition 6. A class-sensitive process permutation is a bijective function π :⋃k
m=1 PIDm →

⋃k
m=1 PIDm with i ∈ PIDm ⇔ π(i) ∈ PIDm for all m ∈ [1..k]

and i ∈ PIDm .

Class-sensitive permutations preserve the class affiliation of process identifiers.
Hence, on classwise symmetric systems all class-sensitive process permutations
are symmetries. Alike the fully symmetric case, we get the following result:

Theorem 3. Let ||km=1 Pm be a classwise symmetric system, K = (S , s0,R,L)
the corresponding Kripke structure over AP and π a class-sensitive process
permutation which is a symmetry for K . Moreover, let s ∈ S and ψ be a
CTL formula referring to concrete process identifiers pm

j ∈ PIDm , j ∈ [1..dm],
m ∈ [1..k]. Then

K , s |= ψ(p1
1 , . . . , p1

d1
, . . . , pk

1 , . . . , pk
dk

)
⇔ K , π(s) |= ψ(π(p1

1), . . . , π(p1
d1

), . . . , π(pk
1), . . . , π(pk

dk
)) .

Thus, applying class-sensitive permutations preserves the validity of CTL prop-
erties referring to particular processes of a classwise symmetric system. Via the
spotlight technique we can extend this result to formulas referring to arbitrary
processes. The process PVg

⊥ now approximates all operations on global variables
occurring in any class of the considered system. Here, PIDm

dm
denotes an arbi-

trary subset of PIDm with dm elements.

Theorem 4. Let (||km=1||i∈PIDm
dm

Pi) || PVg

⊥ be a spotlight abstraction of a class-
wise symmetric system for which checking property ψ(p1

1 , ..., p1
d1

, ..., pk
1 , ..., pk

dk
)

yields true. Then the following holds:

∀N1 > d1, ...,Nk > dk :
||km=1||i∈PIDm

Nm
Pi |= ∀ i11 , ..., i1d1

, ...,∀ ik1 , ..., ikdk
: ψ(i11 , ..., i1d1

, ..., ik1 , ..., ikdk
)

As before, negative outcomes can be transferred to the original system as well.
This result lets us exploit once again symmetries to verify parameterised sys-
tems by using spotlight abstractions; now for a generalised notion of symmetric
systems, called classwise symmetric systems. For our readers/writers example
we can prove the safety property F3 via 3Spot by taking just one reader process
and two writer processes into the spotlight. The verification was performed in
0.83s (on a 2.40GHz Core 2 Duo Windows system with 3GB memory).

6 Conclusion

In this paper we have proposed a verification technique for parameterised systems.
It provides for a sound proof technique for full CTL properties by a combination

On Symmetries and Spotlights – Verifying Parameterised Systems 547

of symmetry reduction and spotlight abstraction. In case that the spotlight ab-
straction draws too many processes into the spotlight, the validity of properties
for the parameterised system is however left open. In the future we therefore intend
to investigate whether this technique can give us more results when we use larger
instantiations, i.e. larger than ”1 plus process diameter”. This might be essential
for reasoning about several liveness properties: the formula F4 : ∀ i : AG(i@1 ⇒
AF (i@2)) refers to a single process only. Thus, the process diameter is one. How-
ever, for proving or disproving starvation freedom it is obviously necessary to have
at least one ”adversary” process in the spotlight and therefore an instantiation
larger than d +1. Further investigation might allow us to find appropriate instan-
tiation sizes for distinct types of temporal logic formulae. Moreover, our approach
could be easily modified to an iterative but possibly infinitely running procedure:
We gradually add processes Pd+2,Pd+3, . . . to the instantiation until we get a def-
inite answer without having all process instances in the spotlight. This might not
terminate in all cases (e.g. when the property cannot be proven on a finite-state
abstraction). Anyway, the formula F4 can be disproved for the mutual exclusion
example in this way within two iterations and 0.25s .

Related work. The generally undecidable problem of parameterised verification
has received a lot of attention in research. Several approaches (e.g. [8,5,7,14])
try to bypass this problem by summarising the considered system by a finite in-
stantiation, based on symmetry arguments. From Clarke et al. [5] we have taken
the idea of exploiting symmetry under permutations. In our work permutations
are furthermore applied to atomic propositions which is also done in [11]. The
work most closely related to ours is that of Emerson and Kahlon [7] who reduce
reasoning for parameterised systems of an arbitrary size to systems of a small
cutoff size. Contrary to the process diameter in our technique the cutoff size
does not depend on the property but on the description of the system. More-
over, their method is complete but restricted to processes of a certain structure
and properties in a fragment of CTL∗\X. Similar to [7], Namjoshi [14] proposes
a cutoff-based verification technique for parameterised systems with less restric-
tions to the structure of the processes but limited to safety properties.

The principle of spotlight abstraction was first introduced by Wachter and
Westphal [18] and later enriched with three-valued semantics in our previous
work [17]. To the best of our knowledge, we are the first to combine symmetry
reduction and spotlight abstraction in parameterised model checking. In former
approaches symmetry reduction has been used in combination with partial order
reduction [6] and heuristic search [12].

Acknowledgement. We thank Daniel Wonisch for help with extending 3Spot.

References

1. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Monotonic abstraction: on
efficient verification of parameterized systems. Int. J. Found. Comput. Sci. 20(5),
779–801 (2009)

548 N. Timm and H. Wehrheim

2. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
35–48. Springer, Heidelberg (2004)

3. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

4. Baukus, K., Lakhnech, Y., Stahl, K.: Parameterized verification of a cache co-
herence protocol: Safety and liveness. In: Cortesi, A. (ed.) VMCAI 2002. LNCS,
vol. 2294, pp. 317–330. Springer, Heidelberg (2002)

5. Clarke, E.M., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design 9(1/2), 77–104 (1996)

6. Emerson, E., Jha, S., Peled, D.: Combining partial order and symmetry reduc-
tions. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 19–34. Springer,
Heidelberg (1997)

7. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few.
In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236–254. Springer,
Heidelberg (2000)

8. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. In: Courcoubetis, C.
(ed.) CAV 1993. LNCS, vol. 697, pp. 463–478. Springer, Heidelberg (1993)

9. Fitting, M.: Kleene’s three valued logics and their children. Fundamenta Informat-
icae 20(1-3), 113–131 (1994)

10. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in
System Design 9(1/2), 41–75 (1996)

11. Leuschel, M., Butler, M.J., Spermann, C., Turner, E.: Symmetry reduction for b
by permutation flooding. In: B, pp. 79–93 (2007)

12. Lluch-Lafuente, A.: Symmetry reduction and heuristic search for error detection in
model checking. In: 2nd Workshop on Model Checking and Artificial Intelligence
(MoChArt), pp. 77–86 (2003)

13. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
New York (1995)

14. Namjoshi, K.S.: Symmetry and completeness in the analysis of parameterized sys-
tems. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 299–313.
Springer, Heidelberg (2007)

15. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible
invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
82–97. Springer, Heidelberg (2001)

16. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1, infinity)-counter abstraction.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122.
Springer, Heidelberg (2002)

17. Schrieb, J., Wehrheim, H., Wonisch, D.: Three-valued spotlight abstractions. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 106–122.
Springer, Heidelberg (2009)

18. Wachter, B., Westphal, B.: The spotlight principle. In: Cook, B., Podelski, A. (eds.)
VMCAI 2007. LNCS, vol. 4349, pp. 182–198. Springer, Heidelberg (2007)

A Methodology for Automatic Diagnosability
Analysis

Jonathan Ezekiel and Alessio Lomuscio

Department of Computing, Imperial College London, UK
{jezekiel,alessio}@doc.ic.ac.uk

Abstract. We present an algorithm based on temporal-epistemic model
checking combined with fault injection to analyse automatically the di-
agnosability of faults by agents in the system. We describe an imple-
mentation built on the multi-agent systems model checker MCMAS and
a dedicated compiler for injecting faults into an MCMAS program. A
diagnosability report is generated by the implementation which can be
utilised at an early stage of fault tolerant multi-agent system design to
ensure accurate fault diagnosis. We demonstrate the practical usefulness
of the algorithm by performing automatic diagnosability analysis on a
model of the IEEE 802.5 token ring LAN protocol which employs fault
diagnosis mechanisms to achieve fault tolerance.

1 Introduction

Distributed fault tolerant systems are notoriously difficult to understand and
design due to their high level of complexity [10]. A potential way to manage
this complexity is offered by the multi-agent systems (MAS) paradigm [25] in
which agents, representing processes of a distributed system, autonomously in-
teract with one another, engaging in communication, co-ordination, negotiation,
etc. Moreover, a number of fault tolerant MAS architectures have been designed
which utilise strategies such as agents diagnosing faults so that they can com-
municate and co-ordinate to recover from them (see e.g., [18]).

As a design paradigm, MAS has many applications including, but not limited
to distributed control systems (DCS) (see e.g., [20]). Within the general area
of DCS it is known that safe design is a major industrial concern since DCS
are becoming increasingly complex and involved in many safety-critical applica-
tions [6]. However, practical approaches towards verifying fault tolerant MAS are
required to certify that they conform to the stringent requirement of operating
correctly under degraded conditions [1].

Recently, an approach combining fault injection [16] with model checking [8]
has been used to verify the correctness of fault tolerance mechanisms in reactive
systems [2, 4, 5, 17] and MAS [12, 13]. In contrast to ad-hoc modelling of faulty
behaviour, in this approach faults can be automatically injected into a model of a
correctly behaving system to create a mutated model which exhibits both correct
and faulty behaviour. Temporal-epistemic specifications [14] can then be verified
to analyse the correct and faulty behaviour of agents in the mutated model, as

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 549–564, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

550 J. Ezekiel and A. Lomuscio

well as the knowledge that agents have about the behaviour. This allows for
the verification of fault tolerance, recovery from faults, and diagnosability, i.e.,
whether an unobservable fault can be accurately diagnosed from the observable
events of the system [22].

The high level of usability offered by the automatic nature of both the fault
injection and the model checking process makes the approach particularly at-
tractive to non-experts in verification [4]. Another advantage is the ability to use
the model checker to generate automatically artifacts that analyse the impact of
the injected faults such as fault trees [23]. To date, these artifacts have been gen-
erated by using temporal formulas to describe which component failures occur as
a result of the injected faults [3, 4]. However, artifacts relating to diagnosability
have yet to be suggested in the literature.

In this paper we show how a diagnosability artifact can be generated from
a combined fault injection and temporal-epistemic model checking [15, 19, 21]
approach by presenting a methodology for automatic diagnosability analysis.
The analysis is used to provide the user with a report on the diagnosis of each
injected fault by every agent in the system. We consider this to be part of a
practical approach towards verifying fault tolerant MAS that can be used at
an early stage of system design to ensure that agents in the system accurately
diagnose faults.

We implement these ideas by integrating the algorithm we propose with the
model checker MCMAS [19] and an existing fault injection compiler that injects
automatically faults into a model for input into MCMAS [12, 13]. We describe
a framework in which powerful modules which generate fault analysis artifacts
for fault tolerant MAS can be integrated with MCMAS and the fault injection
compiler. To highlight the practical usefulness of the algorithm from a user per-
spective we use the implementation to perform automatic diagnosability analysis
on a model of the IEEE 802.5 token ring LAN protocol from [13] which utilises
distributed diagnosis mechanisms to achieve fault tolerance.

The rest of the paper is structured as follows. In Section 2 we provide the back-
ground on model checking, interpreted systems, MCMAS, fault injection, and ar-
tifact generation. In Section 3 we present the algorithm for diagnosability anal-
ysis. In Section 4 we describe a framework for integrating fault analysis modules
with MCMAS and the fault injection compiler, which we use to implement the al-
gorithm for diagnosability analysis. In Section 5 we show how the diagnosability
analysis module is applied to the token ring protocol. In Section 6 we discuss the
related work and in Section 7 we conclude and put forward future work.

2 Background

Model checking [8] is a widely adopted technique for systems verification. The
system considered for verification S is represented by a logical model MS which
encodes the behaviour of the system as computational traces. A specification
of a property P is expressed by means of a logical formula ϕP . The model
checker establishes whether or not MS satisfies ϕP (formally, M � ϕP). The

A Methodology for Automatic Diagnosability Analysis 551

satisfaction relation is implemented as an automatic decision procedure, mak-
ing model checking attractive for the purpose of verification [8]. In the case of
MAS ϕP is often expressed by using a number of rich modal logics including
temporal, ATL, and epistemic logics [25]. Particularly relevant to diagnosability
is temporal-epistemic logic, which can be used to reason about the knowledge of
the agents over time.

2.1 Interpreted Systems and MCMAS

We summarise the key points of the formalism used by following the presentation
given in [12]. Interpreted systems [14] are a popular semantics for temporal-
epistemic logic. Each agent i ∈ {1, . . . , n} in the system is characterised by
a finite set of local states Li and by a finite set of actions Acti. Actions are
performed in compliance with a protocol Pi : Li → 2Acti , specifying which
actions may be performed in a given state. In this formalism the environment in
which agents live may be modelled by means of a special agent E. Associated
with E are a set of local states LE , a set of actions ActE , and a protocol PE .
A tuple g = (l1, . . . , ln, lE) ∈ L1 × . . . × Ln × LE where li ∈ Li for each i and
lE ∈ LE , is a global state describing the system at a particular instant of time.

The evolution of the agents’ local states is described by a function ti :
Li × LE × Act1 × · · · × Actn × · · ·ActE → Li, which returns a local state (the
next local state) for agent i given the current local state of the agent, the current
local state of the environment and all the agents’ actions. Similarly the evolution
of the environment’s local states is described by a function tE : LE×Act1×
· · · × Actn × · · ·ActE → LE . It is assumed that in every state agents evolve
simultaneously. The evolution of the global states of the system is described by
a function t : S × Act → S, where S ⊆ L1 × · · · × Ln × LE , and Act ⊆ Act1 ×
· · ·×Actn×ActE . The function t is defined by t(g,a) = g′ iff for all i, ti(li(g), a)
= li(g′) and tE(lE(g), a) = lE(g′), where li(g) denotes the i-th component of a
global state g (corresponding to the local state of agent i). Given a set I ⊆ S of
possible initial global states, a set G ⊆ S of reachable global states is generated
by all possible runs of the system. Finally, the definition includes a set of atomic
propositions AP together with a valuation function V : S → 2AP . We define an
interpreted system as the tuple:

IS = 〈(Li, Acti, Pi, ti)i∈{1,...,n}, (LE , ActE , PE , tE), I, V 〉
The syntactical constructs and the semantic model that are presented in [19]

are adopted for the interpretation of temporal-epistemic formulae in interpreted
systems. Specifically, we consider the following syntax defining our specification
language:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | AGϕ | E(ϕUϕ) | Kiϕ

In the grammar above p ∈ AP is an atomic proposition; EX is a temporal
operator expressing that there exists a next state in which ϕ holds; AG is a
temporal operator expressing that in all runs ϕ holds globally; E(ϕUψ) is a
temporal operator expressing that there exists a run in which ϕ holds until ψ
holds; Kiϕ expresses that agent i knows ϕ [14].

552 J. Ezekiel and A. Lomuscio

IS is associated with a model MIS = (W, Rt,∼1, . . . ,∼n, L) that can be used
to interpret any formula ϕ. The set of possible worlds W is the set G of reachable
global states. The temporal relation Rt ⊆ W ×W relating two worlds (i.e., two
global states) is defined by considering the temporal transition t. Two worlds w
and w′ are such that Rt(w, w′) iff there exists a joint action a ∈ Act such that
t(w, a) = w′, where t is the transition relation of IS. The epistemic accessibility
relations ∼i⊆ W ×W are defined by considering the equality of the local compo-
nents of the global states. Two worlds w,w′ ∈W are such that w ∼i w′ iff li(w) =
li(w′) (i.e., two worlds w and w′ are related via the epistemic relation∼i when the
local states of agent i in global states w and w′ are the same [14]). The labelling
relation L ⊆ AP ×W can easily be defined in terms of the valuation relation V .

Formulae can be interpreted in MIS in a standard way [14] as follows. Let
π = (w0, w1, · · ·) be an infinite sequence of global states such that for all i,
Rt(wi, wi+1), and let π(i) denote the i-th world of the sequence (notice that,
following standard conventions we assume that the temporal relation is serial
and thus all computation paths are infinite). We write (M, w) � ϕ to represent
that a formula ϕ is true at a world w in a Kripke model M , associated with an
interpreted system IS. Satisfaction is defined as follows.
(M, w) � p iff (p, w) ∈ L;
(M, w) � ¬ϕ iff it is not the case that M � ϕ;
(M, w) � ϕ1 ∨ ϕ2 iff either M � ϕ1 or M � ϕ2;
(M, w) � EXϕ iff there exists a path π such that π(0) = w, and

(M, π(1)) � ϕ;
(M, w) � AGϕ iff for all paths π such that π(0) = w we have that

(M, π(i)) � ϕ, for all i ≥ 0;
(M, w) � E(ϕUψ) iff there exists a path π such that π(0) = w, and there

exists k ≥ 0 such that (M, π(k)) � ψ and
(M, π(j)) � ϕ for all 0 ≤ j < k;

(M, w) � Kiϕ iff for all w′ ∈ W , w ∼i w′ implies (M, w′) � ϕ.

We say that a formula ϕ is true in the model, and we write M � ϕ, if (M, w) �
ϕ for all w ∈W . Similarly to [14], we say that a formula ϕ is true in an interpreted
system IS, and we write IS � ϕ, if MIS � ϕ. A formula is true in an interpreted
system if it is true in the associated Kripke model.

MCMAS [19] provides ISPL as an input language for modelling a MAS and
expressing (amongst others) temporal and epistemic formulas as specifications
of the system. ISPL programs are closely related to interpreted systems; specif-
ically each ISPL program describes an interpreted system. MCMAS supports
the verification for all formulas in the language above. The structure of an ISPL
program allows the local states to be defined using boolean, bounded integer, and
enumeration variables.

2.2 Fault Injection into MAS Programs

The first step of a combined fault injection and model checking approach [2, 4,
5, 13, 17] involves mutating a model of correct system behaviour by injecting

A Methodology for Automatic Diagnosability Analysis 553

faulty behaviour into it. The output of the mutation step is a model containing
correct and faulty behaviour.

We summarise the mutation technique for interpreted systems defined in
[12, 13]. Any agent A of the system can be mutated into a faulty agent AF∗

which includes the faulty behaviour that results from a fault occurring. For each
fault an additional fault injection agent FI implements the timing characteristics
of the fault. The faulty behaviour is triggered in the faulty agent whenever an
inject action is performed by FI. Conversely, the correct behaviour is preserved
in the faulty agent whenever the inject action is not performed by FI.

The faulty behaviour in the faulty agent AF∗ is introduced using a number
of mutation rules which determine how the evolution function tA is mutated
to tAF∗ . A variable value replace fault defines that the value of a variable var
is updated with a value v2 in tAF∗ whenever the value of var is updated to a
value v1 in tA. This fault is useful for defining faulty conditions where some of
the correct agent behaviour is skipped. A stuck at select fault defines that the
value v1 of a variable var persists if the current value of var is v1. If in tA the
variable var is updated to a value vx �= v1 when var = v1, the faulty behaviour
in tAF∗ preserves var = v1. This fault can be used to define behaviour in which
a component becomes stuck in particular state. Further rules are defined in [12].

The occurrence of the inject action is determined by the behaviour of the
fault injection agent FI. A number of timing options can be selected for FI:
injecting constantly, randomly, after a random start, until a random stop, and
after and until an action has occurred [12]. The local states, actions, protocol,
and evolution function of the fault injection agent are defined according to these
options, which can be combined to create complex timing characteristics of the
fault. A mutated set of initial states IF∗ stipulates that the local state of FI is
set to either notfaulty which persists throughout the system run, or to a state
in which faults may be injected into the system by FI in the future according
to the timing options.

A mutated valuation function V F∗ relates atomic propositions to the local
states of each fault injection agent. This can be used to reason about the correct
and faulty behaviours of the mutated interpreted system ISF∗. For each fault
j ∈ {1, . . . , m} the mutated set of atomic propositions APF∗ extends with the
propositions faultyj, injectedj, injectingj, stoppedj . faultyj represents that a
fault can be injected during the system run; injectedj expresses that a fault is
injected at the current tick of the clock (i.e., a global state describing the system
at a particular instant of time); injectingj denotes that a fault can be injected
at the current tick of the clock; stoppedj describes that a fault has been injected
but can no longer be injected at the current tick of the clock. The extended
faulty system is defined as:

ISF∗ = 〈(LF∗
i, ActF∗

i, P
F∗

i, t
F∗

i)i∈{1,...,n+m}, (LE , ActE , PE , tE), IF∗, V F∗〉
Once a mutated model ISF∗ has been obtained, both the correct and faulty

behaviours of the system can be analysed. A library of specification patterns
pertaining to fault tolerance, recoverability, and diagnosability defined in [12, 13]
can be used to reason about properties of the system in relation to the taxonomy

554 J. Ezekiel and A. Lomuscio

of dependable computing given in in [1]. Such properties include whether the
fault becomes an error that is propagated internally amongst the agents of the
system, whether it can be diagnosed, recovered from, or further propagated to
the service interface to cause a failure. In this case, the system boundary is the
shared actions between the agents of the system and the environment. Thus, we
can verify properties of the system that affect the system boundary under faulty
behaviour to determine whether the fault becomes a failure.

We highlight two specification patterns that are relevant to this paper. To
reason about fault tolerance for a property φ we can analyse [13]:

AG((¬faultyj ∧ faultyk)→ φ) (1)

This formula states that φ always holds whenever fault j is never injected into
the model and fault k may be injected into the model. The formula specifies the
ability of the system to tolerate faults, in this instance, fault k.

Usually diagnosability is informally defined by saying that a fault is diagnos-
able if some observations after the occurrence of the fault can correctly identify
it [22]. A fault is diagnosable if any agent of the system knows about it at some
point after its occurrence. We can express this as [12]:

¬E(¬injectedj U (injectedj ∧ ¬AF (Ki(injectingj ∨ stoppedj)))) (2)

This formula states that there is no path in which at some point fault j is injected
and from that time it is not true that at some point in the future agent i knows
fault j can be or has been injected. In other words the formula specifies the
ability of agent i to diagnose fault j correctly after j has first been injected.

2.3 Generating Fault Analysis Artifacts

A particular advantage of using an approach based on model checking and fault
injection is the ability to generate automatically artifacts such as fault trees [23].
A fault tree is a graphical representation which is constructed by identifying a
minimal cut set of events that can cause a system malfunction to occur. This
malfunction is also known as a top level event (TLE). The fault tree displays
these events connected by logic gates to highlight their relation to each other.

The process of identifying this minimal cut set can be automated by combining
fault injection and model checking [3]. The function h : {f,¬f, ε}m → {T, F}
represents the cut set for m injected faults where f corresponds to the fault being
injected, ¬f corresponds to the fault not being injected, and ε corresponds to
the fault being either injected or not injected. For example, h({f1, ε,¬f3}) = T
represents that the TLE occurs when: fault 1 is injected, fault 2 may or may not
be injected, and fault 3 is not injected. In other words a TLE occurs when fault
1 is injected and fault 3 is not irrespective of fault 2. The cut set can be created
automatically by using a model checker to verify a number of specifications
against a mutated model in order to determine whether a TLE occurs for each
fault injection combination of the cut set. Formula 1 is an example of a suitable
formula that can be used to define specifications that create the cut set.

A Methodology for Automatic Diagnosability Analysis 555

Once the cut set has been created the prime implicants of the cut set, i.e., the
minimal set of events relevant to the occurrence of the TLE can be determined.
For example, a cut set f1 ∨ (f1 ∧ f3) describes that when fault 1 is injected, or
when fault 1 is injected and fault 3 is injected, the TLE occurs. In this cut set
f1 is a prime implicant representing the minimal cut set, since f1 is sufficient for
all occurrences of the TLE. To identify a minimal cut set, many prime implicant
algorithms exist, for further discussion see [3].

Fault trees are useful for studying the impact of faults, however, they provide
limited insight into the cause of system malfunctions. At an early stage of design
it is desirable to analyse diagnosability so that system malfunctions do not occur
as a result of fault tolerance mechanisms diagnosing faults inaccurately.

3 Diagnosability Analysis

In this section we apply the general ideas for artifact generation presented in the
previous section in order to analyse diagnosability. We achieve this by employ-
ing a diagnosability formula to generate a diagnosability cut set and by defining
an algorithm to identity a minimal cut set. Unlike fault trees which communi-
cate the impact of faults, there are no pre-defined graphical representations of
diagnosability. Thus, any diagnosability specification pattern used for analysis
must be carefully selected in order to generate a cut set of meaningful events.
As a starting point for producing diagnosability artifacts we choose Formula 2.
The formula is used to determine the diagnosis of faults by each of the non
fault-injection agents in the system.

In the following we define the diagnosability cut set. For each non fault-
injection agent i ∈ {1, . . . , n} and each fault j ∈ {1, . . . , m}, given a diagnosis
group, i.e., a group of faults for diagnosis DG ∈ 2{1,...,m}, the cut set which
determines that a diagnosis group can be diagnosed by an agent after a
fault has first been injected into the system is described by the function
D : {1, . . . , n} × {1, . . . , m} × 2{1,...,m} → {T, F}, where T indicates that the
diagnosis can be made. For example D(i, j, {j, k}) represents whether agent i di-
agnoses that either fault j or fault k has occurred after fault j is first injected into
the system. We can define this function where ijstk = (injectingk ∨ stoppedk)
using Formula 2 as follows:

D(i, j, DG) = T iff j ∈ DG and
ISF∗ � ¬E(¬injectedj U (injectedj ∧ ¬AF (Ki(

∨
k∈DG ijstk))))

In other words the diagnosability cut set function evaluates to true if fault j is
in the diagnosis group DG and the mutated interpreted system ISF∗ is satisfied
by a formula describing that agent i diagnoses the faults in DG after j has first
been injected.

Due to the way that the mutated initial states are defined in ISF∗ there is
at least one path in ISF∗ in which at some point fault j is injected and along
that path any fault k ∈ {1, . . . , m} \ {j} is never injected. Agent i cannot know
about fault k along a path in which k is never injected. Thus if:

556 J. Ezekiel and A. Lomuscio

ISF∗ � ¬E(¬injectedj U (injectedj ∧ ¬AF (Ki(
∨

k∈DG ijstk))))

it follows that:

ISF∗ � ¬E(¬injectedj U (injectedj ∧ ¬AF (Ki(
∨

k∈DG ijstk) ∧
¬Ki(

∨
k∈DG\{j} ijstk))))

The formula above specifies in addition to Formula 2 that agent i does not know
that any of the faults in DG other than j can be or has been injected into the
system. Given that this specification is implied by Formula 2 it is implicitly
included in the definition of the diagnosability cut set function.

For each fault injected into the system the minimal cut set must contain the
most specific diagnosis of that fault by each of the agents, i.e., if an agent can
diagnose a fault that has been injected into the system, then it is meaningful to
identify the smallest set of faults that the injected fault is part of, that can be
diagnosed by the agent. For example, in a network protocol it may be necessary
to diagnose a specific severe fault in order to reconfigure a router to bypass
a workstation. Conversely, it may suffice to diagnose that any of a number of
possible intermittent faults have occurred so that a message can be resent.

The diagnosability cut set function D does not determine the most specific
diagnosis. This is because if DG can be diagnosed by an agent, then according
to the conjunction of faults in the definition of Formula 2, DG∪DH ∈ 2{1,...,m}

can be diagnosed by the agent. For example, given three faults j, k, and l, if
D(i, j, {j, k}) = T , then D(i, j, {j, k, l}) = T , but only {j, k} should be included
in the minimal cut set. Thus, we wish to identify a minimal cut set
MCSij ⊂ 2{1,...,m} containing the most specific diagnosis of fault j by agent i.
To identify the minimal cut set we only need to consider conjunctions. Instead
of employing a prime implicant algorithm that considers disjunctions we define
a restriction to the minimal cut set as follows:

DH ∈ 2{1,...,m} /∈MCSij iff D(i, j, DG ∈ 2{1,...,m}) = T and DG ⊂ DH

In other words for every diagnosis group in the minimal cut set there can not be
any subsets of that diagnosis group in the minimal cut set.

If we apply this restriction to the minimal cut set then for every diagno-
sis group DY ∈ MCSij we have that for every diagnosis group DZ ⊂ DY ,
D(i, j, DZ) = F . It follows that:

ISF∗ � ¬E(¬injectedj U (injectedj ∧ ¬AF (
DY∨
DZ

Ki(
∨

k∈DZ ijstk))))

ISF∗ � ¬E(¬injectedj U (injectedj ∧ ¬AF (
DY∧
DZ

¬Ki(
∨

k∈DZ ijstk))))

hence:

ISF∗ � ¬E(¬injectedj U (injectedj ∧ ¬AF (Ki(
∨

k∈DY ijstk)
DY∧
DZ

¬Ki(
∨

k∈DZ ijstk))))

A Methodology for Automatic Diagnosability Analysis 557

IdentifyMCS(in i:agentid , j:faultid , m:int) out MCS ⊂ 2{1,...,m}

Identify and return a minimal cut set MCS for agent i and fault j given m faults.

X = 2{1,...,m}

DG ⊂ 2{1,...,m}

l: int

1. for l = 1 to m do
2. for each DG ∈ X where (j ∈ DG and |DG| = l) do
3. if (NotSubsetInMCS(DG, MCS) = true and D(i, j, DG) = T)
4. MCS = MCS ∪DG
5. return MCS

NotSubsetInMCS (in DG ⊂ 2{1,...,m}, MCS ⊂ 2{1,...,m}) out bool

Return true if any element of MCS is a subset of DG otherwise return false.

DY ⊂ 2{1,...,m}

1. for each DY ∈MCS do
2. if DY ⊂ DG
3. return false
4. return true

Fig. 1. Psuedo-code for the diagnosability analysis algorithm

where
DY∧
DZ

and
DY∨
DZ

are the conjunctions and disjunctions of all subsets of indices

DZ ⊂ DY respectively. The restriction defined for the minimal cut set deter-
mines that every diagnosis group in the minimal cut set is verified by the strong
specification above. This specifies, in addition to Formula 2, that agent i does
not know that any combination of the faults in every diagnosis group DZ ⊂ DY
other than j can be or has been injected into the system.

Based on the cut set function D and the minimal cut set restriction, we
defined a sequential algorithm that performs diagnosability analysis to identify
a minimal cut set for each agent as shown in Figure 1. A description for both
the functions in the algorithm is as follows:

IdentifyMCS: identifies a minimal cut set for agent i and fault j which are
passed as arguments to IdentifyMCS. Lines 1-2 define the iteration through
all the possible diagnosis groups that include fault j, in ascending order of size.
The iteration order ensures that the restriction function only needs to be applied
once to each diagnosis group. Line 3 checks that a diagnosis group DG does not
have any subsets in the minimal cut set and whether the faults in DG can be
diagnosed for agent i and fault j. If both these conditions are met then the
diagnosis group is added to the minimal cut set. Line 6 returns the minimal cut
set for agent i and fault j.

NotSubsetInMCS: applies the restriction to the minimal cut set by checking
to see whether any subsets of a diagnosis group DG passed as an argument to
NotSubsetInMCS are subsets of any diagnosis groups in the minimal cut set
MCS passed as an argument to NotSubsetInMCS. Lines 1-3 iterate through
all the diagnosis groups DY in MCS and NotSubsetInMCS returns false if any

558 J. Ezekiel and A. Lomuscio

diagnosis group DY is a subset of DG. Line 4 is reached if no diagnosis group
DY in MCS is a subset of DG, at which point NotSubsetInMCS returns true.

Example: Given a system with four faults j, k, l, and m, in which agent i diag-
noses that either faults j or k have occurred, or faults j or l or m have occurred,
after fault j has been injected, a call to IdentifyMCS(i, j, 4) performs four it-
erations of the for loop in line 2. Iteration 1 : Diagnosis groups containing one
element that include fault j: {j}. Since MCS is empty NotSubsetInMCS al-
ways returns true. The function D(i, j, {j}) returns false and {j} is not added to
MCS. MCS = ∅. Iteration 2 : Diagnosis groups which contain two elements that
include fault j: {j, k}, {j, l}, {j, m}. Since MCS is empty NotSubsetInMCS
always returns true. D(i, j, {j, k}) returns true and {j, k} is added to MCS.
D(i, j, {j, l}) and D(i, j, {j, m}) return false. MCS = {{j, k}}. Iteration 3 : Diag-
nosis groups which contain three elements that include fault j: {j, k, l}, {j, k, m},
{j, l, m}. Since MCS = {{j, k}}NotSubsetInMCS returns false for {j, k, l} and
{j, k, m}. D(i, j, {j, l, m}) returns true and {j, l, m} is added to MCS. MCS =
{{j, k}, {j, l, m}}. Iteration 4 : Diagnosis groups containing four elements that
include fault j: {j, k, l, m}. Since MCS = {{j, k}, {j, l, m}} NotSubsetInMCS
returns false for {j, k, l, m}. MCS = {{j, k}, {j, l, m}}.

The algorithm is suitable for systems in which faults are resolved after they
are diagnosed and future occurrences of the fault have no further impact on
the system. Repeating faults can be analysed by substituting Formula 2 with
a formula that reasons about the diagnosability of a fault after each injection
of the fault. A more dynamic analysis would consider the case where one agent
may diagnose faults if another agent is not available for diagnosis, i.e., the dis-
junction of agents diagnosing the disjunction of faults. Another case to consider
is the conjunction of faults, for situations in which different faults injected into
the system are diagnosed as a single fault. Other diagnosability specification
patterns from [12] can also be applied to reason about possible diagnosis, group
diagnosis, and the propagation of the knowledge of faults through the system.
These extensions seem feasible but would require a different definition of the cut
set function and minimal cut set restriction.

The implementation of the diagnosability analysis algorithm requires an in-
terface to a temporal-epistemic logic model checker, the definitions of faults and
agents, and the mutated interpreted system model. In particular, function D
must use the model checker to verify specifications on the mutated model. We
describe how these requirements are met by a fault analysis module interface
which is defined as part of a framework for implementing fault analysis algo-
rithms as modules in the next section.

4 A Framework for Integrating Fault Analysis Modules

As part of a practical approach towards verifying fault tolerant MAS we con-
structed a framework for integrating fault analysis modules with the model
checker MCMAS and a compiler for injecting automatically faults into a MC-
MAS program [12]. Doing so provides a manner in which powerful fault analysis

A Methodology for Automatic Diagnosability Analysis 559

File

Input

ISPL

File

Mutated

ISPL

InputUsesCreates

input

verification

mutation

creates

creates
parsing

input

Definitions

input

input
Agents

Diagnosability

FTA Module

Fault Injection

Compiler
MCMAS

InterfaceInterface

Analysis Module Interface

creates

analysis
User Interface

creates

Faults
Definitions

input input

input

Cut Set
Minimal

Analysis Module

Fig. 2. Integrating fault analysis modules using the analysis module interface

modules based on algorithms such as the one presented in Section 3 can be
implemented. The high level of automation achieved by fault analysis modules
makes them particularly usable for non-experts in verification who are working
on the design of fault tolerant MAS.

We outline the framework in Figure 2. Any analysis module can be inserted
into the framework via the analysis module interface which provides the module
with an interface from which it is invoked by the user, the definitions of the agents
and faults which can be used to construct formulas to be used for analysis, an
interface to MCMAS to verify formulas on a mutated ISPL program, and a
method to display to the user a minimal cut set in a graphical or report format.
We further describe the framework as follows.

User interaction: the user interface allows the user to define the faults which
are to be injected into an ISPL program; save a file containing the mutated
ISPL program which includes the injected faults; and analyse automatically the
behaviour of the model defined by the mutated ISPL program by using any avail-
able fault analysis module. The process of defining faults includes their name,
mutation rules, timing options, etc. If automatic analysis of faults is required
then the compiler interface is used to create a file containing the mutated ISPL
program for analysis, and the fault analysis module selected by the user is ini-
tiated though the analysis module interface to create a minimal cut set which
is passed back from the analysis module interface to be displayed in either a
graphical or report format.

MCMAS: the MCMAS interface is used to perform the parsing of an ISPL file
and perform the verification of specifications against a mutated ISPL program.
The parsing procedure results in the creation of agents definitions including

560 J. Ezekiel and A. Lomuscio

their name, protocol, transition relation, actions, etc. Passing a formula to the
MCMAS interface instructs MCMAS to perform verification of the specification
against the mutated ISPL program and the result of the verification is passed
back through the MCMAS interface.
Fault injection compiler: the compiler interface is used to request the muta-
tion of an ISPL program. MCMAS is used to parse the file in which the ISPL
program containing correct behaviour is defined in order to create the agents
definitions. The agents definitions and faults definitions are utilised by the com-
piler to save a file consisting of the mutated ISPL program which contains both
correct and faulty behaviour including the injected faults.
Automatic fault analysis: the analysis module interface is used to invoke any
available fault analysis module to perform analysis on a mutated ISPL program
that has been created using the agents definitions and faults definitions. The
module identifies a minimal cut set as a result of the analysis. The agents def-
initions and faults definitions are utilised to construct the formulas which are
used for the analysis. MCMAS is used to verify these specifications against the
mutated ISPL program. The minimal cut set identified as a result of the analysis
is passed back through the interface so that it can be displayed to the user.

The framework is implemented in C++ (for linux operating systems) so that
modules can be easily integrated into the framework in an object oriented man-
ner. We implemented into the framework an FTA module which displays fault
trees in a graphical format, and a diagnosability analysis module based on the
algorithm in Section 3 which displays a report on the diagnosability of faults by
agents in the system. The framework and these modules are included as part of
the fault injection compiler which is available for public use [11].

5 Automatic Diagnosability Analysis of the IEEE 802.5
Token Ring Protocol

The IEEE 802.5 token ring protocol is a widely used local area network (LAN)
protocol in which network nodes are logically organised in a ring. The data
circulates in one direction around the ring via a token passed from node to
node. The network is logically defined as a ring topology and physically defined
as a star topology. Fault tolerance is achieved by physically disconnecting faulty
nodes and re-establishing the logical ring to bypass them. The protocol employs
a distributed diagnosis mechanism to diagnose faulty nodes for disconnection.

Tokens containing fault information are sent around the ring when a fault
occurs, which allows nodes to diagnose faults. One node on the ring is designated
as an active monitor which diagnoses and resolves soft faults, i.e., faults that can
be resolved without requiring a node to be disconnected. The other nodes are
designated as standby monitors which diagnose hard faults on themselves and
their nearest upstream neighbour i.e., faults that are resolved by disconnecting
and bypassing nodes. Once a fault is diagnosed, information can be propagated
around the ring to inform nodes that a fault has been diagnosed.

A Methodology for Automatic Diagnosability Analysis 561

Fig. 3. A diagnosability analysis report on the token ring model

To illustrate the practical application of our diagnosability analysis module
we use the implementation of the token ring protocol in ISPL from [12], which
we refer the reader to for in-depth details of the implementation and the faults
we injected into the model. The model contains 6 nodes labelled N1, . . . , N6
with Node 1 designated as the active monitor; the token circulates clockwise
from N1 to N6. Several different faults were chosen to be injected into different
nodes of the model so that the diagnosability of the active and standby monitors
could be analysed. Once a fault has been resolved it has no further impact on the
protocol. We used the variable value replace and stuck at select mutation rules
combined with various timing options to define the following faults for injection:

sN2ns: node 2 stops sending tokens (soft fault).
hN3ns: node 3 stops sending tokens (hard fault).
hN4nr: node 4 stops receiving tokens (hard fault).
hN6ns: node 6 stops sending tokens (hard fault).
Once the faults had been defined for injection, automatic diagnosability anal-

ysis was selected to be performed on the mutated token ring model containing
correct and faulty behaviour. The diagnosability analysis took approximately
22 minutes to complete on an Intel Pentium 2.5GHz Dual Core E5200 proces-
sor using approximately 57MB of memory. The number of reachable states was
approximately 2.3 × 105 out of a possible 1.4 × 1013.

The diagnosability report displayed to the user which shows the results from
the analysis is illustrated in Figure 3. The report displays the minimal cut sets
identified for each injected fault and agent combination. For each injected fault
a list is shown of the most specific diagnosis of that fault (under the heading
Fault Diagnosis) that each agent can make.

562 J. Ezekiel and A. Lomuscio

The report allows us to determine a number of diagnosability properties of
the token ring protocol as follows; Firstly, when the soft fault sN2ns is injected
it is diagnosed by the active monitor as a possible soft or hard fault, thus,
the active monitor uses the same mechanism to diagnose all faults; Secondly,
only the active monitor can diagnose a soft fault; Thirdly, when a hard fault
is injected, all monitors can diagnose the occurrence of a hard fault that has
affected themselves or their nearest upstream neighbour; Finally, all monitors
can diagnose the occurrence of a hard fault on the ring.

The diagnosability properties we described are critical to achieving fault tol-
erance in the token ring protocol. Soft faults need to be diagnosed by the active
monitor for resolution, hard faults are resolved by the standby monitor if the
fault has occurred on itself or its nearest upstream neighbours, and all other
monitors need to know that a hard fault has occurred so that they can propa-
gate information about the fault around the ring.

Without having to write any specifications, and in the absence of reasoning
about fault resolution mechanisms, we have demonstrated that the token ring pro-
tocol accurately diagnoses faults. This illustrates how automatic diagnosability
analysis can be usefully applied during the early design stages of fault tolerant
MAS.

6 Related Work

The majority of the previous work on combining fault injection with model
checking [2, 3, 4, 5, 17] is limited to temporal logic model checking. Moreover,
the approaches are primarily concerned with verifying properties of fault toler-
ance and do not analyse diagnosability. A platform in which analysis artifacts
including an FTA module are integrated with an automatic fault injection tool
and a temporal logic model checker is described in [4]. The general approach to
producing fault analysis artifacts in our paper is similar to the implementation
of the automatic FTA algorithm in [3].

The earlier work on combining fault injection with temporal-epistemic model
checking [12, 13] implements a compiler for injecting faults automatically into
an ISPL model, and defines a number of formulas for verifying fault tolerance,
recoverability, and diagnosability. Specifications are hand written to analyse di-
agnosability and automatic diagnosability analysis is not considered.

The previous work on analysing diagnosability [7, 9, 22, 24] considers discrete
event systems [22, 24], and model based diagnosis systems [7, 9]. The main focus
of the work in [9, 22, 24] is the formalisation of the diagnosability problem and
less attention is given to the practicality of the proposed algorithms for analy-
sis. A practical approach to verifying diagnosability using temporal logic model
checking is given in [7]. In this approach, a coupled twin model of the diagnosis
system must be constructed so that diagnosability can be expressed as a temporal
specification. This implies that the modelling component of the technique is signif-
icantly more difficult in comparison to injecting automatically faulty behaviour.
The practicality of this approach is not examined for distributed systems.

A Methodology for Automatic Diagnosability Analysis 563

7 Conclusions

In this paper we presented a methodology for automatic diagnosability analy-
sis based on fault injection and temporal-epistemic model checking. We imple-
mented an algorithm to analyse automatically the diagnosability of faults by
agents in a system. As part of the implementation we defined a framework for
integrating fault analysis modules with the model checker MCMAS and a fault
injection compiler. We demonstrated the practical usefulness of our approach
by analysing automatically diagnosability in a model of the token ring protocol
which utilises distributed diagnosis to achieve fault tolerance.

We regard our methodology as an important step in the development of prac-
tical tools for verifying fault tolerant MAS. Our framework can be used to build
powerful automatic fault analysis modules which are user friendly. These are
particularly useful for non-experts in verification who are working on the design
of fault tolerant MAS. The analysis can be employed at an early stage of design
with a high level of automation. These aspects of our work encourage a unified
design and verification approach for fault tolerant MAS.

In future work we intend to implement diagnosability analysis modules that
analyse group diagnosis, and the propagation of the knowledge of faults through
the system. Our analysis modules will be applied to autonomous vehicle control
systems and we aim to provide a powerful analysis tool for engineers working on
the design of these systems.

Acknowledgement

The research described in this paper is partly supported by EPSRC funded
project EP/E02727X/1.

References

[1] Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.E.: Basic concepts and tax-
onomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing 1(1), 11–33 (2004)

[2] Bernardeschi, C., Fantechi, A., Gnesi, S.: Model checking fault tolerant systems.
Software Testing, Verification and Reliability 12(4), 251–275 (2002)

[3] Bozzano, M., Villafiorita, A.: Integrating fault tree analysis with event ordering
information. In: Proceedings of ESREL 2003, pp. 247–254. Swets & Zeitlinger,
Lisse (2003)

[4] Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA safety analysis platform.
Software Tools for Technology Transfer 9(1), 5–24 (2007)

[5] Bruns, G., Sutherland, I.: Model checking and fault tolerance. In: Johnson, M.
(ed.) AMAST 1997. LNCS, vol. 1349, pp. 45–59. Springer, Heidelberg (1997)

[6] Caspi, P., Mazuet, C., Paligot, N.R.: About the design of distributed control
systems: The quasi-synchronous approach. In: Voges, U. (ed.) SAFECOMP 2001.
LNCS, vol. 2187, pp. 215–226. Springer, Heidelberg (2001)

564 J. Ezekiel and A. Lomuscio

[7] Cimatti, A., Pecheur, C., Cavada, R.: Formal verification of diagnosability via
symbolic model checking. In: Proceedings of IJCAI 2003, pp. 363–369. Morgan
Kaufmann, San Francisco (2003)

[8] Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

[9] Console, L., Picardi, C., Ribaudo, M.: Diagnosis and diagnosability analysis using
PEPA. In: Proceedings of ECAI 2000, pp. 131–135. IOS Press, Amsterdam (2000)

[10] Cristian, F.: Understanding fault-tolerant distributed systems. Commun.
ACM 34(2), 56–78 (1991)

[11] Ezekiel, J., Lomuscio, A.: MCMAS fault injection compiler project page,
http://www.doc.ic.ac.uk/~jezekiel/ficompiler.html

[12] Ezekiel, J., Lomuscio, A.: An automated approach to verifying diagnosability in
multi-agent systems. In: Proceedings of SEFM 2009, pp. 51–60. IEEE, Los Alami-
tos (2009)

[13] Ezekiel, J., Lomuscio, A.: Combining fault injection and model checking to verify
fault tolerance in multi-agent systems. In: Proceedings of AAMAS 2009, pp. 113–
120. IFAAMAS (2009)

[14] Fagin, R., Halpern, J.Y., Vardi, M.Y., Moses, Y.: Reasoning about knowledge.
MIT Press, Cambridge (1995)

[15] Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004)

[16] Iyer, R.: Experimental evaluation. In: Proceedings of FTCS-25, pp. 115–132.
IEEE, Los Alamitos (1995)

[17] Joshi, A., Heimdahl, M.P.E.: Model-based safety analysis of Simulink models using
SCADE design verifier. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP
2005. LNCS, vol. 3688, pp. 122–135. Springer, Heidelberg (2005)

[18] Kalech, M., Kaminka, G.A.: On the design of social diagnosis algorithms for multi-
agent teams. In: Proceedings of IJCAI 2003, pp. 370–375. Morgan Kaufmann, San
Francisco (2003)

[19] Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verifica-
tion of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) Computer Aided
Verification. LNCS, vol. 5643, pp. 682–688. Springer, Heidelberg (2009)

[20] Mannor, S., Shamma, J.S.: Multi-agent learning for engineers. Artificial Intelli-
gence 171(7), 417–422 (2007)

[21] Niewiadomski, A., Penczek, W., Szreter, M.: Verics 2004: A model checker for
real time and multi-agent systems. In: Proceedings of CS&P 2004, Informatik-
Berichte, pp. 88–99 (2004)

[22] Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.:
Diagnosability of discrete-event systems. IEEE Transactions on Automatic Con-
trol 40(9), 1555–1575 (1995)

[23] Vesley, W., Goldberg, F., Roberts, N., Haasl, D.: Fault tree handbook. Technical
Report NUREG-0492, Systems and Reliability Research Office of Nuclear Regu-
latory Research U.S. Nuclear Regulatory Comission (1981)

[24] Wang, Y., Yoo, T.-S., Lafortune, S.: Diagnosis of discrete event systems using de-
centralized architectures. Discrete Event Dynamic Systems 17(2), 233–263 (2007)

[25] Wooldridge, M.J.: Reasoning about Rational Agents. MIT Press, Cambridge
(2000)

http://www.doc.ic.ac.uk/~jezekiel/ficompiler.html

Making the Right Cut in Model Checking
Data-Intensive Timed Systems

Rüdiger Ehlers, Michael Gerke, and Hans-Jörg Peter

Reactive Systems Group
Saarland University

66123 Saarbrücken, Germany
{ehlers,gerke,peter}@cs.uni-saarland.de

Abstract. The success of industrial-scale model checkers such as Up-
paal [3] or NuSMV [12] relies on the efficiency of their respective symbo-
lic state space representations. While difference bound matrices (DBMs)
are effective for representing sets of clock values, binary decision dia-
grams (BDDs) can efficiently represent huge discrete state sets. In this
paper, we introduce a simple general framework for combining both data
structures, enabling a joint symbolic representation of the timed state
sets in the reachability fixed point construction. In contrast to other
approaches, our technique is robust against intricate interdependencies
between clock constraints and the location information. Especially in
the analysis of models with only few clocks, large constants, and a huge
discrete state space (such as, e.g., data-intensive communication proto-
cols), our technique turns out to be highly effective. Additionally, our
framework allows to employ existing highly-optimized implementations
for DBMs and BDDs without modifications. Using a prototype imple-
mentation, we are able to verify a central correctness property of the
physical layer protocol of the FlexRay communication protocol [15] tak-
ing an unreliable physical layer into account.

1 Introduction

The verification of asynchronous protocols or globally asynchronous locally syn-
chronous (GALS) hardware is a challenging task as it often requires dealing with
intricate timing dependencies and huge state spaces at the same time. Manual
correctness proofs are relatively hard to perform as special timing cases can be
overlooked more easily than in the purely synchronous setting. Consequently,
working with automated correctness provers, in particular by performing model
checking, is the predominant approach carried out in this field. For keeping track
of the timing correctly, a rich theory of timed automata [1] has been developed,
which forms the theoretical foundation for model checking tools such as Uppaal
[3], Kronos [23], or RED [21].

State-of-the-art model checking approaches for timed systems can broadly be
classified into two categories: semi-symbolic approaches and fully symbolic ap-
proaches [19]. In semi-symbolic approaches, on the one hand, the discrete part of

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 565–580, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

566 R. Ehlers, M. Gerke, and H.-J. Peter

the system under consideration is represented explicitly while clock valuations
are lumped together into clock zones. These techniques are well-suited for sys-
tems with a small discrete state space. Fully symbolic approaches, on the other
hand, represent both parts of the system in a symbolic way to lower the effect of
state space explosion. For settings with a predominant control structure (such
as, e.g., data-intensive communication protocols), this is broadly considered to
be the more promising way to go as the discrete state space is often too large to
be represented explicitly even with modern computers.

Fully symbolic timed model checking is a challenging problem that attracted a
lot of interest during the last decade [9,16,4,21,6,19,22]. Some approaches rely on
restricting the type of timing of the system in a way that it can be discretized
more efficiently [6] or approximating the precise clock values to discrete time
steps [9]. In both cases, reduced ordered binary decision diagrams (BDDs) [10,11]
have been used as the uniform data structure for both time and the discrete part
of the system. For such settings, it has been observed that the BDDs can blow-
up significantly due to interdependencies in the timing behavior of the system
[9], rendering this approach problematic.

Basically, this leaves us with two ways of solving this problem. The first one
builds on using a different symbolic data structure like and-inverter graphs [17]
or conjunctive normal form clause sets, thus avoiding this blow-up. Here, canon-
icity of the representation is renounced, rendering the application of the basic
reachability fixed point algorithm difficult. The second way is based on keeping
the data structures for clock zones and discrete state sets separate. One promis-
ing approach in this direction is to combine difference bound matrices (DBMs)
[13] and BDDs. So far, to the best of our knowledge, this combination has only
been used for approximating the set of reachable states [22].

In this paper, we recall the idea of decoupling the clock zone from the discrete
state set representation. We use sets of pairs of DBMs and BDDs to represent
reachable states in the classical fixed point computation. A timed state is con-
tained in a state set if the set contains a DBM/BDD pair such that the state’s
clock valuation satisfies the DBM and the discrete part satisfies the BDD. To
the best of our knowledge, this is the first application of this data structure with
the standard fixed point algorithm.

Especially in the verification of asynchronous communication protocols, where
the timing behavior is usually complicated but the number of distinct arising
clock zones is small, our approach turns out to be very efficient since we benefit
from the well-suitedness of DBMs for representing intricate timing constraints
without cluttering the BDDs with timing dependencies. As the new approach
allows the usage of the standard fixed point construction for finding the set of
reachable states, it is simpler than the aforementioned techniques. The drawback
of having some timed state potentially being present in more than one such pair
is easily compensated by the additional possibility to perform a mixed breadth-
first and depth-first search in this setting: by preferring discrete steps, we can
forward the progress in exploring the discrete state space of the system in one

Making the Right Cut in Model Checking Data-Intensive Timed Systems 567

clock zone to successor clock zones, leading to faster termination of the model
checking process.

As a proof of concept, we demonstrate the applicability of our technique by
verifying the physical layer protocol of the FlexRay communication protocol [15]
which follows the GALS paradigm: the setting can be described using only two
clocks, each modeling the local pulsing in the discrete circuits of the sender and
the receiver. Our approach is thus ideally suited for this interesting verification
task as it exploits the model’s restricted timing behavior, which enables the use
of BDDs to tackle the huge arising discrete state space.

In Sect. 2, we begin our presentation with some preliminary definitions. Sec-
tion 3 then describes the general approach, followed in Sect. 4 by an explanation
of how example traces certifying the satisfaction of a reachability property are
generated. Afterwards, we describe our FlexRay model which is then used for
an experimental evaluation of the approach in Sect. 5. Finally, Sect. 6 concludes
with an outlook on the possible evolution of this approach.

Related work. Developing fully symbolic timed state space representations
has been an active field of research in the last decade. Møller et al. introduced
difference decision diagrams (DDDs) [16], a BDD-like data structure in which
each diagram node is labeled with a difference constraint. Here, the Boolean
constraints, represented as special differences, are interleaved with the clock
constraints in the diagram structure. Unfortunately, there is no implementation
of their prototype model checker available. Based on DDDs, Behrmann et al.
proposed clock difference diagrams (CDDs) [4] featuring deterministic interval-
based branching at each node level. However, a combination of CDDs with BDDs
enabling a fully symbolic state space exploration was only briefly discussed but
has not been thoroughly investigated yet. As a further extension, Wang proposed
clock restriction diagrams (CRDs) [21] where the branching decision depends on
overlapping upper bounds and unrestricted constraints are omitted. Experiments
with the CRD-based model checker RED suggest that the approach works well
on standard timed automata benchmarks having many clocks and causing only
a moderate discrete blow-up. However, in our experiments, RED runs out of
memory on the FlexRay case study.

Based on closed timed automata, a restricted form of classical timed automata
where only nonstrict clock constraints are allowed, Beyer introduced an integer
semantics where clock values and location configurations can be represented
jointly in a single BDD [6]. Similarly, Bozga et al. approximated the precise
clock values to discrete time steps, also resulting in a pure discrete semantics
allowing a state space representation using a single BDD [9]. Besides the loss of
expressivity in the modeling of timed systems, in both approaches, it has been
observed that the BDDs can blow-up significantly due to interdependencies in
the timing behavior of the system.

Seshia and Bryant solved the TCTL model checking problem by representing
sets of states by difference logic formulas which are, in turn, represented as BDDs
using a binary encoding [19]. The clock differences that need to be tracked in
the fixed-point computation are encoded in so-called transitivity constraints,

568 R. Ehlers, M. Gerke, and H.-J. Peter

which are added on-the-fly during the model checking process. Even though they
added some specialized optimizations for this case, the experimental results are
inconclusive.

The idea of combining DBMs and BDDs was independently developed by Ya-
mane and Nakamura [22] for implementing an abstraction technique proposed by
Dill and Wong-Toi [14]. Our approach, however, uses DBM/BDD combinations
for a fully symbolic state space representation in the precise computation of the
reachable states of a timed system.

Previous correctness proofs of the physical layer protocol of the FlexRay com-
munication protocol [15] were obtained in a deductive way. In this line of re-
search, a fully reliable physical layer without any bit flips is assumed [7]. Our
correctness proof, which is obtained via model checking, bases upon a more
realistic setting taking an unreliable physical layer into account.

2 Preliminaries

2.1 Timed Systems

Timed Automata. The components of a timed system are represented by
timed automata. A timed automaton [1] is a tuple A = (L, l0, I, Σ, Δ, X), where
L is a finite set of (control) locations, l0 ∈ L is the initial location, I : L→ C(X)
maps each location to an invariant, Σ is a finite set of actions, Δ ⊆ (L × Σ ×
C(X) × 2X × L) is a transition relation, X is a finite set of real valued clocks,
and C(X) is the set of clock constraints over X . A clock constraint ϕ ∈ C(X) is
of the form

ϕ = true | x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2,

where x is a clock in X and c is a constant in N0. We say that a timed automaton
is invariant-free if I(l) = true for all locations l ∈ L. A clock valuation t : X →
R≥0 assigns a nonnegative value to each clock and can also be represented by
a |X |-dimensional vector t ∈ R, where R = RX

≥0 denotes the set of all clock
valuations.

The states of a timed automaton are pairs (l, t) of locations and clock valu-
ations. Timed automata have two types of transitions: timed transitions, where
only time passes and the location remains unchanged, and discrete transitions.
In a timed transition, denoted by (l, t) a−→ (l, t + a · 1), the same nonnegative
value a ∈ R≥0 is added to all clocks such that, for each 0 ≤ d ≤ a, t + d satisfies
the location invariant I(l). A discrete transition, denoted by (l, t) a−→ (l′, t′) for
some a ∈ Σ, is a transition δ = 〈l, a, ϕ, λ, l′〉 of Δ such that t satisfies the clock
constraint ϕ of δ, and t′ = t[λ := 0] is obtained from t by setting the clocks in
λ to 0 and satisfies the location invariant I(l′).

We say that a finite sequence a1 . . . an ∈ (Σ ∪ R≥0)∗ of transitions is in the
language of A (a1 . . . an ∈ L(A)) if there is a path s0

a1−→ s1 . . . sn−1
an−−→ sn such

that for all 1 ≤ i ≤ n, the individual si = (li, ti) are states of the automaton, s0

is an initial state (that is, l0 is the initial location and t0 = 0 is the zero vector),

Making the Right Cut in Model Checking Data-Intensive Timed Systems 569

and si−1
ai−→ si are transitions of A. We write s0 −→∗ sn for the existence of a

finite sequence a1 . . . an ∈ (Σ∪R≥0)∗ of transitions with s0
a1−→ s1

a2−→ . . .
an−−→ sn,

and call a state s reachable iff there is an initial state s0 with s0 −→∗ s.

Composition. Timed automata can be composed to networks, in which the
automata run in parallel and synchronize on shared actions. For two timed au-
tomataA = (L1, l

1
0, I1, Σ1, Δ1, X1) andA′ = (L2, l

2
0, I2, Σ2, Δ2, X2) with disjoint

clock sets X1 ∩X2 = ∅, the parallel composition A1‖A2 is the timed automaton
(L1 × L2, (l10, l20), I, Σ1 ∪Σ2, Δ, X1 ∪X2), where I(l1, l2) = I1(l1) ∧ I2(l2) for all
l1 ∈ L1 and l2 ∈ L2, and Δ is the smallest set that contains

– for a ∈ Σ1 ∩Σ2, 〈(l1, l2), a, ϕ1 ∧ ϕ2, λ1 ∪ λ2, (l′1, l
′
2)〉 if 〈l1, a, ϕ1, λ1, l

′
1〉 ∈ Δ1

and 〈l2, a, ϕ2, λ2, l
′
2〉 ∈ Δ2,

– for a ∈ Σ1 \Σ2, 〈(l1, l2), a, ϕ1, λ1, (l′1, l2)〉 if 〈l1, a, ϕ1, λ1, l
′
1〉 ∈ Δ1, and

– for a ∈ Σ2 \Σ1, 〈(l1, l2), a, ϕ2, λ2, (l1, l′2)〉 if 〈l2, a, ϕ2, λ2, l
′
2〉 ∈ Δ2.

In the following, we only consider the global timed automaton that is obtained from
the composition of the system’s component automata. Note that control-related
concepts such as synchronization, parallel composition, or integer variables are
just technicalities in the construction of the symbolic discrete transition relation;
they do not have to be considered in the actual model checking procedure.

Finite Semantics. The decidability of the reachability problem of timed au-
tomata relies on the existence of the region equivalence relation [1] on R which
has a finite index.

For a timed automaton A = (L, l0, I, Σ, Δ, X), we call the value of a clock
x ∈ X maximal if it is strictly greater than the highest constant cmax any clock
is compared to.1 We say that two clock valuations t1, t2 ∈ R are in the same
clock region, denoted t1 ∼R t2, if

– the set of clocks with maximal value is the same in t1 and in t2 (∀x ∈ X :
t1(x) > cmax ⇔ t2(x) > cmax), and

– t1 and t2 agree (1) on the integer parts of the clock values, (2) on the relative
order of the noninteger parts of the clock values, and (3) on the equality
of the noninteger parts of the clock values with 0. That is, for all clocks
x and y with nonmaximal value, it holds that (1) �t1(x)� = �t2(x)�, (2)
t̂1(x) ≤ t̂1(y) ⇔ t̂2(x) ≤ t̂2(y), and (3) t̂1(x) = 0 if, and only if, t̂2(x) = 0,
where t̂i(x) = ti(x)− �ti(x)� for i ∈ {1, 2}.

We denote with [t]R = {t′ ∈ R | t ∼R t′} the clock region t belongs to. We say
that two states s1 = (l1, t1) and s2 = (l2, t2) of A are region-equivalent, denoted
by s1 ∼R s2, if their locations are the same (l1 = l2) and the clock valuations are
in the same clock region (t1 ∼R t2), and denote with [(l, t)]R = {(l, t′) ∈ L×R |
t ∼R t′} the equivalence class of region-equivalent states that (l, t) belongs to.

Regions are a suitable semantics for the abstraction of timed automata be-
cause they essentially preserve the language: if there is a discrete transition
s

a−→ s′ from a state s to a state s′ of a timed automaton, then there is, for all
1 cmax is sometimes called the clock ceiling.

570 R. Ehlers, M. Gerke, and H.-J. Peter

states r with r ∼R s, a state r′ with r′ ∼R s′ such that r
a−→ r′ is a discrete

transition with the same label. For timed transitions, a slightly weaker property
holds: if there is a timed transition s

t−→ s′ from a state s to a state s′, then there
is, for all states r with r ∼R s, a state r′ with r′ ∼R s′ such that there is a timed

transition r
t′−→ r′ (but possibly with t′ �= t).

The finite semantics of a timed automaton A = (L, l0, I, Σ, Δ, X) is the finite
graph �A� = (S, s0, T) where

– the symbolic state set S = {[(l, t)]R | (l, t) ∈ L × R} of �A� is the set of
equivalence classes of region-equivalent states of A, with

– the initial state s0 = [(l0, t0)]R, and
– the set T = {(s, s′) ∈ S × S | ∃r ∈ s, r′ ∈ s′, a ∈ Σ ∪ R≥0. r

a−→ r′} of
transitions.

The finite semantics is reachability-preserving:

Lemma 1. [1] For a timed automaton A = (L, l0, I, Σ, Δ, X) there is a finite
path from a state (l, t) to a state (l′, t′) if, and only if, there is a finite path from[
(l, t)

]
R

to
[
(l′, t′)

]
R

in �A�.

Clock Zones. A coarser finite representation of R can be obtained by con-
sidering clock zones. A clock zone z is represented by a conjunction of clock
difference constraints of the form x − y ≺x,y cx,y, where x, y ∈ X ∪ {x0}, for
an x0 /∈ X , ≺x,y∈ {≤, <}, and cx,y ∈ Z ∪ {∞}. A clock valuation t satisfies z,
written as t ∈ z, if t′ = t ∪ {x0 	→ 0} satisfies each constraint x − y ≺x,y cx,y

from z: t′(x)− t′(y) ≺x,y cx,y. We define Z as the set of all clock zones.
A data structure for representing clock zones are difference bound matrices

(DBMs) [13], which allow, for two clock zones z, z′ ∈ Z, an efficient implemen-
tation of the operations (1) intersection z ∧ z′, (2) clock reset z[λ := 0], and
(3) elapsing of time z⇑ (see [5] for an overview). Note that, in order to ensure
termination of the forward analysis, we implicitly apply a maximal constant ex-
trapolation after executing a time elapse. We denote z0 as the clock zone that
only comprises the initial clock valuation 0.

2.2 Binary Decision Diagrams

For representing sets of locations symbolically we use reduced ordered binary
decision diagrams (BDDs) [10,11], which represent functions f : 2V → � for
some finite set of variables V . Since they are well-established in the context
of formal verification, we do not describe their details here but rather treat
them on an abstract level and only state the important operations (see [11]
for an overview). Given two BDDs (or more generally, two binary functions,
abbreviated as BF) f and f ′, we define their conjunction and disjunction as
(f ∧ f ′)(x) = f(x) ∧ f ′(x) and (f ∨ f ′)(x) = f(x) ∨ f ′(x) for all x ⊆ V . The
negation of a BF is defined similarly. Given some set of variables V ′ ⊆ V and a
BF f , we define ∃V ′.f as the function that maps all x ⊆ V to true for which
there exists some x′ ⊆ V ′ such that f(x′ ∪ (x \ V ′)) = true.

Making the Right Cut in Model Checking Data-Intensive Timed Systems 571

Algorithm 1. Least fixed point construction for computing the set of reachable
states R.

R0 := {initial states}
i := 0
repeat

i := i + 1
Ri := Ri−1 ∪ post(Ri−1)

until Ri = Ri−1

R := Ri

2.3 Reachability Model Checking

Model checking reachability properties is carried out by computing the set of
reachable states and testing whether some goal state is contained in this set.
In this paper, w.l.o.g., we only consider properties of the form ∃♦φ, that is, “is
there an execution of the system such that φ is eventually reached”, where φ
is a Boolean state predicate defining the goal states. The classical fixed point
construction for this task is given in Algorithm 1. It relies on the existence of
an efficiently computable post operator for computing all successor states of a
given set of states.

When using BDDs for storing state sets in this algorithm, usually it is benefi-
cial to pre-compute a Boolean encoding of the transition relation of the system
for usage in the post operator. It contains precisely the pairs of states (s, s′) for
which there exists a transition from s to s′. For a comprehensive overview of
building such a relation and using it in the post operator, see [2].

3 Fully Symbolic Real-Time Model Checking

In this section, we present the basic building blocks of our approach, namely
the timed state set representation that is used and how the basic fixed point
algorithm for computing the set of reachable states can be extended in order
to be applicable to this representation. For a clear separation of concerns, we
describe our representation in a general way and abstract from the actual choices
of data structures for representing clock zones (CZ) and discrete location sets
(LS). While for our actual implementation of the approach (as described in
Sect. 5), DBMs and BDDs are used, the general idea is applicable to all suitable
data structure types (such as, e.g., CDDs [4]). Thus, future alternatives for
storing clock zones and location sets can also be used with our approach.

We start with a presentation for invariant-free timed automata and demon-
strate the application of our algorithm on an example network. We then show
how to extend the idea to include support for invariants. The section closes with
some remarks on optimizations to the algorithm.

The starting point for our approach are sets of CZ/LS pairs which permit rep-
resenting the timed and discrete parts of sets of states separately. That means,

572 R. Ehlers, M. Gerke, and H.-J. Peter

sets of states S in the fixed point computations are defined as partial functions
S : Z ⇀ 2L. For such a so-called clock zone map (CZM), a state (l, t) is contained
in S if for some z ∈ Z, t ∈ z and l ∈ S(z). Note that we do not require the
choice of z to be unique.

3.1 Computing the Reachable States Using CZMs

In the following, we describe how to adapt the basic fixed point construction for
computing the set of reachable states given in Algorithm 1 to work with CZMs.
The first step is to partition the overall transition relation of the system: for
each combination of clock guards and resets that occurs along some transition,
we build a separate transition relation containing all transitions corresponding
to the guard/reset pair. This step separates timing concerns from the discrete
transitions of the system and makes it easy to compute successor clock zones
from a given source clock zone and some guard/reset pair. Note that, when
using BDDs for representing location sets, it is not necessary to enumerate the
product locations in the global timed automaton explicitly if the system is given
as a network of timed automata, as the synchronization between the components
can be encoded symbolically.

After building the transition relations, the usual fixed point computation is
performed, with the small modification of iterating over all such guard/reset
pairs in every step. After each discrete transition, we also compute the set of
possible timed transitions that can follow in order to obtain the successor clock
zone. Algorithm 2 shows the details of these steps.

In each round, the algorithm iterates over the set of reachable states contained
in the respective previous pre-fixed point (stored in R). For every clock zone in
the domain of R, it computes successor locations L and clock zones z′ for each
guard/reset pair (ϕ, λ) in the transition relation. Then, we check if the new
CZ/LS pair (z′, L) is already contained in the pre-fixed point. If this is not the
case, it is added to the next pre-fixed point R′. For a more efficient computation,
we furthermore track changes in the CZM in a special waiting set W in order
to avoid re-considering CZ/LS pairs which have not changed since the previous
round of the algorithm. The computational burden of the added inner loop in
which all guard/reset pairs are iterated over is also weakened by the fact that
unlike for models checkers keeping the discrete part of the system explicit, this
setting allows the computation of timed successor zones for many locations at
the same time.

Since the algorithm presented is essentially equivalent to the classical reach-
ability fixed point algorithm, its correctness is guaranteed. Indeed, for every
n ∈ IN and timed state (l, t) that is reachable from the initial state in n discrete
steps, the set R contains this state after at most n iterations of computing the
pre-fixed points. Note that the termination of this algorithm is also guaranteed
as clock regions are never split and the number of sets of these is finite.

Making the Right Cut in Model Checking Data-Intensive Timed Systems 573

Algorithm 2. Computing the set of reachable states R represented as a CZM.
The post operator is parametrized by the transition relation used.
1: for all guard/reset pairs (ϕ, λ) in the system do
2: compute the transition relation T [ϕ, λ]
3: end for
4: R :=

{
z⇑
0 �→ {l0}

}
5: W := {z⇑

0 }
6: R′ := R
7: repeat
8: R := R′

9: W ′ := ∅
10: for all z ∈ W do
11: for all guard/reset pairs (ϕ, λ) do
12: L := postT [ϕ,λ](R[z])
13: z′ := (z ∧ ϕ)[λ := 0]⇑

14: if R′[z′] � L then
15: R′[z′] := R′[z′] ∪ L
16: W ′ := W ′ ∪ {z′}
17: end if
18: end for
19: end for
20: W := W ′

21: until R = R′

p q

a, y := 0

b

r

a, x ≥ 5

b, x := 0||
Fig. 1. An example network of timed automata

3.2 An Example

Consider the parallel composition of the timed automata depicted in Figure 1.
The product automaton has two locations pr and qr, and two clocks x and
y. There are three guard/reset pairs (true, ∅), (x ≥ 5, {y}), and (true, {x}),
leading to three transition relations

– T [true, ∅] = {(qr, qr), (pr, pr)},
– T [x ≥ 5, {y}] = {(pr, qr)}, and
– T [true, {x}] = {(qr, pr)}.

When running the algorithm on this example, we initialize R = {(x = y =
0)⇑ 	→ {pr}} = {(x = y) 	→ {pr}} and W = {(x = y)}. Then, in the fixed point
computation, we iterate over the transition relations and obtain R = {{(x =
y) 	→ {pr}, (x ≥ 5 ∧ y ≤ x − 5) 	→ {qr}} and W = {(x ≥ 5 ∧ y ≤ x − 5)}. In

574 R. Ehlers, M. Gerke, and H.-J. Peter

Algorithm 3. Replacement for lines 13–17 to the inner loop of Algorithm 2 to
allow handling invariants.
1: for all i ∈ I do
2: L′ := L ∩ C(i)
3: z′ :=

(
(z ∧ ϕ)[λ := 0] ∧ i

)⇑ ∧ i
4: if R′[z′] � L′ then
5: R′[z′] := R′[z′] ∪ L′

6: W ′ := W ′ ∪ {z′}
7: end if
8: end for

the second round, we add (x ≤ y) 	→ {pr} to R and obtain W = {(x ≤ y)}.
The algorithm then terminates in the following round, leaving us with R ={
{(x = y) 	→ {pr}, (x ≥ 5 ∧ y ≤ x − 5) 	→ {qr}, (x ≤ y) 	→ {pr}

}
as the CZM

representation of the set of reachable states in the system.

3.3 Handling Invariants in CZMs

To incorporate invariants in our fixed point construction, it is necessary to infer
them from the location information. Here, we exploit the fact that in our models,
the number of clocks and the number of distinct invariants is small. Hence, it is
feasible to enumerate all possible invariants of the product timed automaton as
a precomputational step.

Let I be the set of all invariants appearing in the product automaton of a
timed system. We assume that each invariant is given in minimal form. For
example, if precisely the invariants x ≤ 3, x ≤ 4, and y ≤ 2 are associated to
some (but not all) locations of three different components of the input network,
we obtain I = {true, x ≤ 3, x ≤ 4, y ≤ 2, x ≤ 3 ∧ y ≤ 2, x ≤ 4 ∧ y ≤ 2}.
Furthermore, we also introduce a function C : I → 2L that maps each invariant
onto the set of locations in which precisely the given invariant must hold. Note
that one can easily compute I and C in a preprocessing step without constructing
the product automaton.

Now, in our fixed point construction, we need to split the computed successor
locations according to the mapped locations in C and compute the successor
clock zones taking into account the respective invariants. Algorithm 3 contains
the necessary changes to Algorithm 2. If the initial location has an active in-
variant, it also needs to be taken into account when computing the initial zone.
Hence, we also change line 4 of Algorithm 2 to R :=

{
z⇑0 ∧ I(l0) 	→ {l0}

}
and

line 5 to W := {z⇑0 ∧ I(l0)}.

3.4 Improving the Performance of the Approach

As an optimization of the presented technique, we propose to deviate from the
strict rule of computing one pre-fixed point after the other. By storing all newly

Making the Right Cut in Model Checking Data-Intensive Timed Systems 575

encountered CZ/LS pairs (z, l) directly into the pre-fixed point R in the algo-
rithm instead of R′ (which is copied to R after all elements from the waiting
set have been processed), computation time is saved in the case that z is in the
waiting set W but not yet processed in the respective round of the fixed point
computation. This can easily be seen from that fact that in such a case, the con-
sideration of the newly reachable timed states in not delayed to the next round,
resulting in a lower number of steps in total until the fixed point is reached.

Note that this also allows us to use a waiting queue instead of a list. Then,
in line 10 of Algorithm 2, we pop zones (i.e., we remove every zone from W
that was picked). Additionally, we modify the waiting queue such that clock
zones are drawn from it prioritized by their first appearance in R. This way, the
exploration of new clock zones is delayed such that the progress in computing
the reachable discrete states for zones encountered earlier can be forwarded to
successor zones more efficiently.

4 Guided Counter-Example Generation

The algorithm depicted so far is only capable of computing the set of reachable
states. As checking if it contains some given goal state is trivial after it has been
computed, this suffices to make the approach presented suitable for a typical
verification task for timed systems: checking that no error state is reachable.

For cases in which some error state is reachable, however, obtaining a sequence
of transitions from the initial state to some error state is desired as it helps the
designer of a timed system to improve the model. Therefore, most modern model
checking tools can generate such counter-examples. This is also possible with the
improved version (see Sect. 3.4) of our fixed point construction as we explain in
the following.

Suppose that our improved fixed point construction terminates early with a
set of forward reachable states R comprising some error states E. Then, we
execute a nonimproved fixed point construction to compute a sequence of pre-
fixed points F0, . . . , Fn, where each Fi is restricted to R and Ef = Fn ∩ E �= ∅.
Note that for all 0 ≤ i ≤ n, the set Fi contains only states that are reachable
after exactly i steps.

Now, we can compute a counter-example using a backward nonimproved fixed
point construction producing a sequence of backward reachable sets of states
Bn, . . . , B0 with Bn = Ef . For each 0 < j ≤ n, we compute Bj−1 by picking
one particular semi-symbolic state (i.e., a zone and one concrete location) from
Bj , compute its predecessors, and restrict them to Fj−1. After each iteration j,
we pick some transition connecting a state in Bj−1 and Bj , and add it to the
counter-example. Note that the computation of the predecessors can be done
in a symbolic way using our technique (the adaption to the backward case is
straight-forward).

576 R. Ehlers, M. Gerke, and H.-J. Peter

5 Experimental Results

5.1 Prototype Implementation

We implemented our approach in a prototype model checker using the Uppaal-
DBM library [5] for representing DBMs and the Cudd library [20] for repre-
senting BDDs. To allow a fair comparison with Uppaal [3] and RED [21], our
tool reads automata-based specifications as input. The first step in its execution
is to call the tool Nova from the SIS toolset [18] as a back-end for finding ef-
ficient assignments of control locations to BDD variable valuations. Then, the
guard/reset pairs of the given timed system are collected and, for each pair,
the BDD representing the symbolic transition relation over the discrete control
structure is computed (using the assignments obtained in the first step). In the
last step of the preparation phase, the possible invariant combinations are col-
lected and, for each combination, the BDD representing the associated locations
is computed.

The actual fixed point computation of the reachable states is implemented as
described in Sect. 3. For the state space representation, we use a hash map that
maps DBMs to BDDs. We do not provide a fixed BDD variable ordering a priori
or use any other insight into the model to optimize the BDD representation.
Instead, our implementation only relies on the automatic on-the-fly reordering
heuristics implemented in the Cudd library.

5.2 The FlexRay Communication Protocol

The emergence of drive-by-wire and the need for high bandwidths in the design
of automotive electronics calls for a communication protocol that is both fast and
highly reliable. The recently developed FlexRay protocol [15] represents a state-
of-the-art industrial X-by-wire communication protocol that is used in many
modern cars. Its purpose is to enable reliable communication between the various
electronic control units (ECUs) that are connected by a bus. In our case study,
we investigate the critical physical layer protocol of the FlexRay protocol, where
a message is transmitted during a so-called static segment from a sending ECU
to a receiving ECU. As a crucial correctness property, it is required that there
is no deviation of the message received from the message sent. In the following,
we explain the important details of [15] which are reflected in our model.

Clocks. Since the receiving and sending ECU are running asynchronously, we
introduce two clocks to model the timing behavior. The length of a clock cycle
may deviate by at most 0.15 % from the standard rate.

Bit Stream Format. The actual payload of a transmission between two ECUs
has a maximal length of 262 bytes. It is embedded into a structured bit stream
that consists of (1) the initial transmission start sequence (TSS), (2) the frame
start sequence (FSS), (3) the individual bytes of the payload, each prepended
with a byte start sequence (BSS), and finally (4) the frame end sequence (FES).
Thus, the maximal bit stream length is 2638 bits.

Making the Right Cut in Model Checking Data-Intensive Timed Systems 577

Redundancy and Error Model. Each bit of the bit stream is fed to the bus
in 8 consecutive clock cycles. As a reasonable error model, we assume that in
any sequence of 5 consecutive bits on the bus, 1 bit might be flipped.

Voting. In order to compensate for the flipped bits, the receiver determines
the voted value over the last 5 received bits (i.e., high for 3 or more high bits,
low otherwise).

Strobing and Bit Clock Alignment. In order to compensate for the clock
drifts, the receiver uses a counter to strobe the 5th out of 8 voted values. The
received stream consists of the sequence of strobed values. The strobe counter is
realigned at the start of the TSS or during a BSS.

5.3 Model Checking FlexRay

We modeled the physical layer protocol of the FlexRay protocol [15] as a network
of timed automata2 for usage with Uppaal3 [3], RED4 [21], and our prototype
model checker. As a safety property, we check the reachability of a dedicated
error location which the receiver enters upon an uncompensatable deviation of
the received from the sent bit stream. Table 1 shows the results of our evaluation.
Unfortunately, for every payload length, RED runs out of memory (e.g., for the
smallest instance it hits the 4 GB limit after 18 minutes).

The most striking observation is that our prototype overall needs much less
memory than Uppaal or RED, which allows us to verify the full payload length
of 262 bytes. In fact, while our model checker’s memory consumption always
stays below 1 GB, Uppaal’s memory and time consumption increases linearly
in the length of the payload, resulting in running out of memory with a payload
length of 34 bytes or more. It is also noteworthy that in most of the cases
our approach also outperforms Uppaal w.r.t. the running time. An oscillation
effect can be observed in the running times and space consumptions of our
implementation which is caused by the variable reordering and caching heuristics
of the Cudd library. This BDD-related phenomenon is also observable in other
contexts (see, e.g., [8]). Nevertheless, the number of symbolic exploration steps
increases linearly in the length of the payload and the set of encountered clock
zones reaches its fixed point at a payload length of 24.

5.4 Model Checking Fischer

In addition to the FlexRay case study from Sect. 5.3, we also considered the
Fischer mutual exclusion protocol, a standard benchmark from the timed model
checking domain with a small discrete state space and one clock per compo-
nent. Table 2 shows that the existing model checking techniques implemented
in Uppaal and RED perform better than our prototype on this benchmark.

2 The models are available at http://www.avacs.org/Benchmarks/Open/flexray.tgz
3 Version 4.0.11, running with aggressive space optimization – option -S2.
4 Version 8.100511.

http://www.avacs.org/Benchmarks/Open/flexray.tgz

578 R. Ehlers, M. Gerke, and H.-J. Peter

Table 1. Comparison of our prototype with Uppaal on the FlexRay physical layer
protocol case study. The first column shows the length of the payload in bytes. The
second column states the obtained verification result. The next four columns show the
number of symbolic steps (i.e., applications of the post operator) until the reachability
fixed point is reached, the number of distinct clock zones encountered, the running
time, and the memory consumption of our prototype model checker. The last two
columns show the running time and space consumption of Uppaal. All benchmarks
were executed on an AMD Opteron processor with 2.6 GHz and 4 GB RAM.

CZM model checker Uppaal

Payload Correct Steps Zones Time Memory Time Memory
1 Yes 6566 1858 86 s 252 MB 23 s 88 MB
2 Yes 8606 2498 2 min 251 MB 69 s 205 MB
3 Yes 10423 3142 7 min 527 MB 2 min 325 MB
4 Yes 12143 3782 2 min 251 MB 3 min 436 MB
5 Yes 13863 4422 4 min 312 MB 4 min 563 MB
20 Yes 45029 14038 5 min 261 MB 18 min 2 GB
21 Yes 46750 14678 6 min 259 MB 18 min 2 GB
22 Yes 48470 15318 5 min 262 MB 19 min 2 GB
23 Yes 50190 15958 4 min 259 MB 20 min 3 GB
24 Yes 51991 16024 7 min 264 MB 22 min 3 GB
25 Yes 52629 16024 5 min 314 MB 22 min 3 GB
31 Yes 54309 16024 16 min 415 MB 29 min 4 GB
32 Yes 54589 16024 6 min 313 MB 31 min 4 GB
33 Yes 54869 16024 28 min 955 MB 31 min 4 GB
34 Yes 55149 16024 13 min 313 MB MEMOUT
60 Yes 66230 16024 18 min 520 MB MEMOUT
100 Yes 90230 16024 57 min 941 MB MEMOUT
150 Yes 120230 16024 30 min 406 MB MEMOUT
200 Yes 150230 16024 72 min 938 MB MEMOUT
262 Yes 187430 16024 28 min 413 MB MEMOUT

Table 2. Comparison of our prototype with Uppaal and RED on the (timing-
intensive) Fischer protocol benchmark.

CZM model checker Uppaal RED

Benchmark Steps Zones Time Memory Time Memory Steps Time Mem
Fischer 5 3156 1496 1 s 108 MB 0 s 37 MB 5 0 s 21 MB
Fischer 6 42528 17426 32 s 156 MB 0 s 37 MB 5 1 s 45 MB
Fischer 7 612531 227522 17 min 302 MB 1 s 37 MB 5 1 s 66 MB
Fischer 8 TIMEOUT 3 s 38 MB 5 3 s 105 MB
Fischer 9 TIMEOUT 15 s 42 MB 5 8 s 174 MB

This is however not surprising as the Fischer protocol does not fall into the
class of systems whose verification our approach aims at. We presented a spe-
cialized technique for timed systems with a large discrete state space but only a
few clocks, an important class of models that comprise, e.g., data-intensive asyn-
chronous communication protocols. The Fischer protocol model, on the other

Making the Right Cut in Model Checking Data-Intensive Timed Systems 579

hand, has a large number of clocks (one per component), but only few locations,
thus the standard semi-symbolic state space representation used in Uppaal is
already quite effective here. Also, RED’s symmetry reduction is beneficial for
this particular protocol.

6 Conclusion and Outlook

DBMs and BDDs impressively demonstrate their effectiveness in model checkers
such as Uppaal and NuSMV. However, since NuSMV can only handle pure
discrete models and Uppaal does not have a symbolic representation for the
discrete part of the state space, both tools fail in verifying timed systems with
large discrete control structures.

This paper presented a fully symbolic approach to timed model checking that
combines DBMs with BDDs. In contrast to other approaches, our technique
neither suffers from a loss of modeling precision (we remain in the classical
timed automata framework) nor leads to blow-ups in the BDDs (we avoid the
encoding of timing interdependencies in the BDDs).

Inspired by the encouraging experimental results, in future work, we plan to
extend the scope of our approach to arbitrary timed systems. A promising direc-
tion is to investigate efficient representations of sets of pairs of DBMs and BDDs.
So far, our prototype uses a simple hash map for assigning complete DBMs to
BDDs. However, for many problem instances, considering partial DBMs might be
more appropriate as it gives more flexibility in finding efficient representations.

Acknowledgment. This work was supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative Research Center “Au-
tomatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS).

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

4. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reach-
ability analysis using clock difference diagrams. In: Halbwachs, N., Peled, D.A.
(eds.) CAV 1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)

5. Bengtsson, J.: Clocks, DBM, and States in Timed Systems. PhD thesis, Uppsala
University (2002)

6. Beyer, D.: Improvements in BDD-based reachability analysis of timed automata.
In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 318–343.
Springer, Heidelberg (2001)

7. Beyer, S., Böhm, P., Gerke, M., Hillebrand, M.A., der Rieden, T.I., Knapp, S.,
Leinenbach, D., Paul, W.J.: Towards the formal verification of lower system lay-
ers in automotive systems. In: ICCD, pp. 317–326. IEEE Computer Society, Los
Alamitos (2005)

580 R. Ehlers, M. Gerke, and H.-J. Peter

8. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: Hardware from psl. Electr. Notes Theor. Comput. Sci. 190(4),
3–16 (2007)

9. Bozga, M., Maler, O., Pnueli, A., Yovine, S.: Some progress in the symbolic veri-
fication of timed automata. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254,
pp. 179–190. Springer, Heidelberg (1997)

10. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

11. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

12. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic
model checker. STTT 2(4), 410–425 (2000)

13. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990)

14. Dill, D.L., Wong-Toi, H.: Verification of real-time systems by successive over and
under approximation. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 409–422.
Springer, Heidelberg (1995)

15. FlexRay Consortium: FlexRay Communications System Protocol Specification
Version 2.1 Revision A (2005)

16. Møller, J.B., Lichtenberg, J., Andersen, H.R., Hulgaard, H.: Fully symbolic model
checking of timed systems using difference decision diagrams. Electr. Notes Theor.
Comput. Sci. 23(2) (1999)

17. Pigorsch, F., Scholl, C., Disch, S.: Advanced unbounded model checking based on
AIGs, BDD sweeping, and quantifier scheduling. In: FMCAD, pp. 89–96. IEEE
Computer Society, Los Alamitos (2006)

18. Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj,
H., Stephan, P., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: SIS: A system for
sequential circuit synthesis. Technical Report UCB/ERL M92/41, EECS Depart-
ment, University of California, Berkeley (1992)

19. Seshia, S.A., Bryant, R.E.: Unbounded, fully symbolic model checking of timed
automata using boolean methods. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 154–166. Springer, Heidelberg (2003)

20. Somenzi, F.: CUDD: CU Decision Diagram package release 2.4.2 (2009)
21. Wang, F.: Efficient verification of timed automata with BDD-like data structures.

STTT 6(1), 77–97 (2004)
22. Yamane, S., Nakamura, K.: Development and evaluation of symbolic model

checker based on approximation for real-time systems. Systems and Computers
in Japan 35(10), 83–101 (2004)

23. Yovine, S.: Kronos: A verification tool for real-time systems. STTT 1(1-2), 123–133
(1997)

Comparison of Model Checking Tools for Information
Systems

Marc Frappier, Benoı̂t Fraikin, Romain Chossart,
Raphaël Chane-Yack-Fa, and Mohammed Ouenzar

GRIL, Université de Sherbrooke, Québec, Canada
benoit.fraikin@usherbrooke.ca

Abstract. This paper compares six model checkers (ALLOY, CADP, FDR2,
NUSMV, PROB, SPIN) for the validation of information system specifications.
The same case study (a library system) is specified using each model checker.
Fifteen properties of various types are checked using temporal logics (CTL and
LTL), first-order logic and failure-divergence (FDR2). Three characteristics are
evaluated: ease of specifying information system i) behavior, ii) properties, and
iii) the number of IS entity instances that can be checked. The paper then iden-
tifies the most suitable features required to validate information systems using a
model checker.

1 Introduction

Information systems (IS) now play a prominent role in our society to support busi-
ness processes and share organisational data. Yet, even if they are one of the early
application domains of computing, their development relies mostly upon a manual and
informal process. The problem addressed in this paper is the formal validation of IS
specifications using model checking. Model checking is an interesting technique for IS
specification validation for several reasons: it provides broader coverage than simula-
tion or testing, it requires less human interaction than theorem proving, and it has the
ability to easily deal with both safety and liveness properties.

The validation of IS specification is of particular interest in model-driven engineering
(MDE) and generative programming, which aim at synthesizing an implementation of a
system from models (i.e., specifications). Hence, if the synthesis algorithms are correct,
one only needs to validate the models to produce correct systems. IS MDE specifica-
tion languages usually do not have any dedicated model checker. Since developing a
model checker is a long process and since several model checkers already exist, it is
simpler to choose an existing tool that is maintained by a team specialized in the model
checking field. In this paper, we compare six model checkers: SPIN [11], NUSMV [4],
FDR2 [18], CADP [10], ALLOY [12] and PROB [13], which are representative of the
main classes of model checkers: explicit state, symbolic, bounded and constraint satis-
faction. The comparison is based on a single case study which is representative of IS
structure and properties. Our comparison aims at answering the following questions.

1. Is the modeling language of the model checker adapted for the specification of IS
models? This is especially important in the context of MDE IS, since it must be

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 581–596, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

582 M. Frappier et al.

straightforward to automatically translate an IS MDE specification into the lan-
guage of the model checker.

2. Is the property specification language adapted to specify IS properties?
3. Is the model checker capable of checking a sufficient number of instances of IS

entities?

Our case study focuses on the control part of an IS, which determines the sequences of
actions that the IS must accept. Validation of input-output behavior (data queries) and
user interactions with graphical user interface are omitted.

This paper is structured as follows. Section 2 presents a synthesis of related work on
model checking of IS. Section 3 presents a description of the case study, a library IS.
Section 4 provides an overview of the model checkers, comparing relevant points. The
modeling and verification process of the IS for each tool is provided in Sect. 5. Then,
the analysis of processes and the model checking results for the case study are presented
in Sect. 6. Finally, we conclude in Sect. 5.

2 Related Work

There is an extensive literature on model checking. This section focuses on compar-
ative studies of model checkers related to IS. Model checking has been extensively
applied to business process modelling. Yeung [20] proposes a framework to analyse
suspendible business transactions modelling with statecharts and CSP [18]. It is applied
to a library specification similar to the one studied in this paper. However, the paper
does not actually experiment with model checkers to check business process. In [2], a
travel agency business process has been modelled with SPIN and PROMELA, and CIA
and CSP (LP). Safety properties and deadlocks have been successfully verified with
both model checkers; reachability properties have not been tested. The authors propose
an extension of CSP with notion of “compensation” (a behavior to compensate a pro-
cess failure). In [16], business processes are converted from BPEL to automata, but
also to Petri nets and CSP and LOTOS [5]. It concludes that process algebras are suit-
able for verification of the reliability of IS, in the particular case of business process.
In [8], the authors study the verification of data-driven applications in the particular
case of web-based systems using an ASM-like [19] specification language. The study
focuses particularly on reachability properties, but any type of property can be used for
modelling. The modelling process is complex and demands significant expertise. Both
modelling techniques give an insight on what can be done with these subclasses of IS.
In [3], four state-based model modeling techniques with their model checkers (USE,
Alloy, ZLive and ProZ) are compared along four criteria: animation, generation of pre
and postconditions, execution analysis and expertise. The study mostly checks invariant
properties.

Each of these studies provides partial answers to our questions, for a subset of model
checkers, using different case studies and properties. This makes it difficult to compare
model checkers and identify the one best suited for IS validation.

Comparison of Model Checking Tools for Information Systems 583

3 Presentation of the Case Study

This section presents the user requirements of a library system which is used for the
formal verification of properties. In order to avoid any confusion, key concepts are
first defined. Lending a book means that a user borrows a book without reserving it
beforehand. Taking a book means borrowing a book after having reserved it. Borrowing
a book denotes either taking or lending it. In the requirements list, a member is a person
who has joined (and still not left) library membership.

member

memberId : MEMBERID

Join

Leave loan

Lend

Renew

Return

reservation

Reserve

Take

Cancel book

bookId : BOOKID

Acquire

Discard

**

**

0..0 11

Fig. 1. Requirement class diagram of the library system

The requirement class diagram corresponding to the model is given in Fig. 1. Entity
attributes are listed in the upper part of each class, while entity actions are listed in
the lower part. The library system only contains two entity types: books and mem-
bers. Members can Join and then Leave library membership whereas books can
be Acquired and then Discarded. Members can Lend, Renew several times and
Return a book. They can also Reserve a book under certain conditions (e.g. if it
cannot be lent at that moment), and then, either Cancel the reservation or Take the
book. Hence the library system contains 10 actions.

The following list describes the properties that we verify using the model checkers.

1. A book can always be acquired by the library when it is not currently acquired.
2. A book cannot be acquired by the library if it is already acquired.
3. An acquired book can be discarded only if it is neither borrowed nor reserved.
4. A person must be a member of the library in order to borrow a book.
5. A book can be reserved only if it has been borrowed or already reserved by another

member.
6. A book cannot be reserved by the member who is borrowing it.
7. A book cannot be reserved by a member who is reserving it.
8. A book cannot be lent to a member if it is reserved.
9. A member cannot renew a loan if the book is reserved.

10. A member is allowed to take a reserved book only if he owns the oldest reservation.
11. A book can be taken only if it is not borrowed.
12. A member who has reserved a book can cancel the reservation at anytime before he

takes it.

584 M. Frappier et al.

13. A member can relinquish library membership only when all his loans have been
returned and all his reservations have either been used or canceled.

14. Ultimately, there is always a procedure that enables a member to leave the library.
15. A member cannot borrow more than the loan limit defined at the system level for

all users.

In the context of IS, one usually distinguishes two types of properties. The first one
is called a liveness property. It represents the fact that the system is still alive, i.e. not
stuck in a deadlock (the system is blocked in a single state) or a livelock (the system
loops in a subset of states considered as non-evolving). They can also express the fact
that an action implies a reaction from the system; the latter is however rarely used
in information systems, where actions are human-driven (one cannot force a user to
trigger specific actions). Properties 1, 12 and 14 are liveness properties. In IS, liveness
properties usually describe sufficient conditions to enable an action (immediately or
sometime in the future). For instance, Property 1 states that the library has the right to
acquire the book (under certain conditions). In other terms, it forces the IS to allow the
action, but the user is not forced to invoke this action. The other properties are called
safety properties. They usually describe necessary conditions to enable an action, or
what a user is not allowed to do with the system at a given point. The remaining
properties are safety properties. A third type of properties is usually distinguished from
these two. These are fairness properties, but as IS users cannot be forced to do some
action, they seldom occur in IS specifications. Fairness is not considered in this study.

4 An Overview of the Model Checkers

Four large families of model checkers are considered. Explicit state model checkers,
like CADP, SPIN and FDR2, use an explicit representation of the transition system asso-
ciated to a model specification. This transition system is either computed prior to prop-
erty verification, as in CADP and FDR2, or on-the-fly while checking a property, as in
SPIN (also possible in some cases with CADP and FDR2). Symbolic model checkers, like
NUSMV, represent the transition system as a Boolean formula. Bounded model check-
ers, like NUSMV and ALLOY (indirectly), consider traces, of a maximal length k, of the
transition system and represent them using a Boolean formula. Constraint satisfaction
model checkers, like PROB, use logic programming to verify formula. SPIN, CADP,
NUSMV and PROB support temporal languages (LTL [17], CTL [7] and XTL [14])
for property specification. ALLOY and FDR2 use the same language for both model
specification and property specification (first-order logic and CSP, respectively).

4.1 SPIN

SPIN was one the first model checker developed, starting in 1980. It introduced the
classical approach for on-the-fly LTL model checking. Specifications are written in
Promela and properties in LTL. An LTL property is compiled in a Promela never
claim, i.e. a Büchi automaton. SPIN generates the C source code of an on-the-fly
verifier. Once compiled, this verifier checks if the property is satisfied by the model.

Comparison of Model Checking Tools for Information Systems 585

Working on-the-fly means that SPIN avoids the construction of a global state transition
graph. However, it implies that transitions are (re-)computed for each property to verify.
Hence, if there are n properties to verify, a transition is potentially computed n times,
depending on optimizations.

PROMELA, the model specification language of SPIN, is inspired from C. Hence, it is
an imperative language, with constructs to handle concurrent processes. State variables
can be global and accessed by any process. PROMELA offers basic types like char,
bit, int and arrays of these types. Processes can communicate by writing and reading
over a channel, either synchronously using a channel of length 0, or asynchronously, us-
ing a channel of length greater than 0. Operator atomic allows a compound statement
to be considered as a single atomic transition, except when this compound contains a
blocking statement, such as a guard or a blocking write or read over a channel, in which
case the execution of the atomic construct can be interrupted and control transferred
to another process. Statements can be labeled and these labels can be used in LTL
formulae.

SPIN uses propositional LTL, with its traditional operators always, eventually and
until. The latter is sometimes referred as the “strong until” operator, as opposed to the
“weak until” operator. The next operator is not allowed to ensure that partial order re-
duction can be used during the model checking. An LTL formula can refer to labels and
state variable values of a PROMELA specification. SPIN only considers states; there is
no notion of an event on a transition. An LTL formula holds for a PROMELA specifi-
cation if and only if it holds for every possible run of the PROMELA model. A run is an
execution trace consisting of the sequence of states visited during execution. It can be
infinite.

4.2 NUSMV

NUSMV is a model checker based on the SMV (Symbolic Model Verifier) software,
which was the first implementation of the methodology called Symbolic Model Check-
ing described in [15]. This class of model checkers verifies temporal logic properties in
finite state systems with “implicit” techniques. NUSMV uses a symbolic representation
of the specification in order to check a model against a property. Originally, SMV was
a tool for checking CTL properties on a symbolic model. But NUSMV is also able to
deal with LTL (+Past) formulae and SAT-based Bounded Model Checking. The model
checker allows to write properties specification both in CTL or LTL and to choose
between BDD-based symbolic model checking and bounded model checking.

NUSMV uses the SMV decription language to specify finite state machines. A
specification consists of module declarations and each module may include variable
declarations and constraints. System transitions are modelled by assignment contraints
or transition constraints, which define next values for declared variables in a module.
An assignment gives explicitly a value for a variable in the next step, while a transition
constraint, given by a boolean formula, restricts the set of potential next values. Each
module can be instantiated by another one, for example by the main module, as a local
variable. In fact, each instance of a module is by default processed synchronously with
the others during an execution. But NUSMV can also model interleaving concurrency
by using the “process” keyword in module instantiation. To get different instances

586 M. Frappier et al.

of a module, instantiations can be parameterized. However, the description language
is quite low-level. All assignments, parameters or array indexes have to be constant.
Thus, specifications may be longer than in PROMELA, because each case has to be
explicitly written. As NUSMV modules can declare state variables and input variables,
an SMV specification can be both state or event oriented. Input variables are used
to label incoming transitions and their values can only be determined by specifying
transition constraints.

CTL properties can only refer to state variables; LTL properties can refer to both
state variables and input variables. Moreover, NUSMV can also check invariant prop-
erties, which can be written in a temporal manner as Always p where p is a boolean
formula. Invariant specifications are checked by a specialized algorithm during reacha-
bility analysis, that gives a result faster than CTL or LTL algorithms.

4.3 FDR2

FDR2 is an explicit state model checker for CSP, the well known process algebra. FDR2
can check refinement, deadlocks, livelocks and determinacy of process expressions.
It gradually builds the state-transition graph, compressing it using state-space reduc-
tion techniques, while checking properties, which also makes it an implicit state model
checker.

Models are described using a variant of CSP, called CSPM . It supports classical
process algebra operators like prefix, choice, parallel composition with synchronisation,
sequential composition and guards. Quantified versions of choice, parallel composition
and sequential are supported. FDR2 supports basic data types like integer, boolean,
tuples, sets and sequences. Lambda terms can be used to define functions on these
types. Expressions are dynamically typed (except for actions, called channels in CSP,
which are declared and typed). CSP does not support state variables; however, they can
be simulated to some extent by using a recursive process with parameters.

Properties are expressed as CSP processes. They are checked using process refine-
ment. FDR2 supports three refinement relations: �T (trace refinement), �F (stable-
failure refinement) and �FD (stable-failure-divergence refinement). We say that P �T Q
iff the traces of Q are included in the traces of P. A trace of a process P is a sequence of
visible events that P can execute. We say that P �F Q iff the failures of Q are included
in the failures of Q. A failure (t� S) of a process P denotes the set of events S that P can
refuse after executing trace t. Trace refinement is used to check safety properties, while
stable failure is used to check liveness (or reachability) properties. Failure-divergence
refinement is used to check livelocks (infinite loops on internal actions), which are not
relevant for our case study.

4.4 CADP

CADP is a rich and modular toolbox. We have selected LOTOS-NT to specify models
and XTL to specify properties. The XTL model checker takes as input a labelled
transition system (LTS), encoded in the BCG (Binary Coded Graph) format. LOTOS-
NT is a variant of LOTOS that supports local states variables. A LOTOS-NT specification
is translated into into a LTS using Caesar. This LTS is minimized into a trace equivalent

Comparison of Model Checking Tools for Information Systems 587

LTS. Finally, properties written in XTL are checked against this LTS using the XTL
model checker.

LOTOS-NT is inspired from LOTOS. A LOTOS-NT specification is divided into two
complementary parts: an algebraic specification of the abstract data types and a pro-
cess expression. LOTOS-NT offers traditional process algebra operators like sequence,
choice, loops, guard and parallel synchronization. It supports state variables, which are
local to a process and cannot be referred by another process. Assignment statements
can be freely mixed with other process expression constructs.

XTL, the property specification language of CADP, is used to express temporal logic
properties. XTL provides low-level operators which can be used to implement various
temporal logics like HML, CTL, ACTL, LTAC, as well as the modal mu-calculus. XTL
formulae are evaluated on a LTS. XTL allows one to refer to transitions (events) and
values of their parameters. No LTL library is currently provided. In this paper, the
CTL and HML libraries are used.

Since the LTS does not contain any state variable, the difficult part in writing XTL
properties for LOTOS-NT models is to characterize states. Indeed, the specifier can
only use action labels to define particular states. The HML library, with its two handy
operators Dia and Box, is used for this purpose. Box(a� p) holds in a given state if and
only if every action matching action pattern a leads to a state matching state pattern p.
On the other hand, Dia(a� p) holds for a given state if and only if there exists at least
one action matching action pattern a leading to a state matching state pattern p. An
XTL formula holds for a LTS if and only if it holds for all states of the LTS.

4.5 ALLOY

ALLOY is a symbolic model checker. Its modeling language is first-order logic with
relations as the only type of terms. Basic sets and relations are defined using “signa-
tures”, a construct similar to classes in object-oriented programming languages, which
supports inheritance. ALLOY uses SAT-solvers to verify the satisfiability of axioms
defined in a model and to find counterexamples for properties (theorems) which should
follow from these axioms.

An ALLOY specification consists of a set of signatures, noted (sig), which basically
define sets and relations. Constraints, noted fact, are formulae which condition the
values of sets and relations. The declaration sig X {r : X -> Y} declares a set X
and a ternary relation rwhich is a subset of the Cartesian product X�X�Y. ALLOY sup-
ports usual operations on relations, like union, intersection, difference, join, transitive
closure, domain and range restriction. Integer is the only predefined type. Cardinality
constraints can be defined on relations (e.g., injections and bijections). Properties are
simply written as first-order formulae.

4.6 PROB

PROB is a model checking and an animation tool designed for the B Method [1]. Cur-
rently it also supports CSPM , Z, and Event-B. This study uses the B Method and the B
language.

588 M. Frappier et al.

B specifications are organized into abstract machines (similar to classes and mod-
ules). Each machine encapsulates state variables, an invariant constraining the state
variables, and operations on the state variables. The invariant is a predicate in a simpli-
fied version of the ZF-set theory, enriched by many relational operators. In an abstract
machine, it is possible to declare abstract sets by giving their name without further
details. This allows the actual definition of types to be deferred to implementation.
Operations are specified in the Generalized Substitution Language, which is a general-
ization of Dijkstra’s guarded command notation. Hence, operations are defined using
substitutions, which are like assignment statements. A substitution provides the means
for identifying which variables are modified by the operation, while avoiding mention-
ing those that are not. The generalization allows the definition of non-deterministic and
preconditioning substitutions. The preconditioning substitution is of the form PRE P
THEN S END, where P is a predicate and S a substitution. When P holds, the sub-
stitution is executed; otherwise, the result is undetermined and the substitution may
abort.

Properties in PROB can be written in LTL, past LTL or CTL, hence combining the
strengths of each language. In addition, PROB allows for the inclusion of first-order
formulae in temporal formulae. It also offers two convenient operators for LTL. The
first one, denoted by e(A), checks if the action A is executable in a given state of a
sequence. The second one, denoted by [A] checks if A is the next operation in the
sequence. Consequently PROB can express properties on either states or events.

5 Specifying the Model and the Properties

This section describes how the IS model and properties are specified with each model
checker. For sake of conciseness, specifications are omitted. They are available in [6].

5.1 SPIN

Two styles have been considered for the SPIN specification. In the first style, there
is only one process which loops over a choice between all actions. It was quickly
abandoned, because it blows up quite rapidly in terms of number of states. In the second
style, there is one process for each instance of each entity and each association. The
process describes the entity (or the association) life cycle. Therefore, the PROMELA

specification of the case study contains four process definitions, one for each entity
(book and member) and one for each association (loan and reservation). Each process
definition is instantiated ni times to model ni instances of entity i, and ni � n j times to
model an association between entity i and j.

We use a producer-modifier-consumer pattern as the basis of a life cycle for an entity
and an association. It can be represented by the following regular expression P�M��C
where P is the producer (for example Acquire), M is a modifier and C is a consumer
(for example Discard). The concatenation operator “.” of regular expressions can be
represented by a semi-colon “;”, the sequential composition operator of PROMELA, or
an arrow “->” that denotes the same operator. Some events have a precondition which
is not represented in the regular expression. For example, a book cannot be discarded if
it is still borrowed. Consequently the execution of an event is guarded by a precondition.

Comparison of Model Checking Tools for Information Systems 589

When a member takes a book he has reserved, two associations are involved: the loan
association and the reservation association. This leads to ensure that both processes
execute the take event in an atomic step. It is not obvious and straightforward. To
achieve an atomic step, the take event is split into two events: one in the reservation
association process (as a consumer) and one in the loan reservation (as a producer).
A channel with an empty capacity is used to ensure the handshake. This is a classic
strategy in PROMELA. Nevertheless, the handshake cannot be made within an atomic
instruction. This could break the local atomicity in the sender. But it could be used at
the end of an atomic and at the beginning of another. In this way, no other process
can be interleaved with the handshake of the two processes. The result is a pattern
described in [6], in which an event is simultaneously the consumer of an association
and the producer of another one.

In SPIN, the properties are expressed using LTL. Reachability properties are difficult
to express in LTL. Fortunately, since event preconditions are explicitly written via labels
in the specification, expressing a property like “a book can be acquired” is straightfor-
ward. Consequently, when a property asserts the possibility of an event execution, it
is represented by a propositional formula in the LTL formula that uses a label of the
process and, sometimes, the precondition of this event. For example, “the book b0 can
be acquired” is expressed as “process book b0 is at the discarded label”.

Property 14 is not expressible in LTL, since it is equivalent to a reset property. The
reset property is known to be expressible in CTL only. LTL and CTL are complemen-
tary languages. The semantics of LTL formulae is defined on traces of the transition
system, while the semantics of CTL formulae is defined on the transition system itself,
which allows one to refer to the branching structure of the execution. Some proper-
ties can only be expressed in either LTL or CTL. For instance, a reset property, which
states that it is always possible to go back to some desired state, cannot be expressed
in LTL, since this transition to reset does not have to occur in each possible run of the
system. Since an LTL formula holds if and only if it holds for every possible run of the
system, an LTL property would force this reset transition to occur in every run. Dually,
a property of the form “eventually p always holds” cannot be expressed in CTL [9],
due to the branching nature of the logic.

Two simple patterns can express almost 70 % of the requirements. In LTL and with
the state-oriented paradigm, these patterns are expressed as “if action A can be executed
then the state verifies P” or “if P holds then action A can be executed” where P is only
true between actions B and C. Therefore the two main patterns are �

�
can A � P

�
or

�

�
P � can A

�
. Inexpressible properties cannot simply be considered as negligible.

This is an important weakness of SPIN that cannot be overcome.

5.2 NUSMV

To model the library system example in an SMV specification, we use a systematic
method based on the structure of the class diagram. Each class, that represents an object
and has attributes, is encoded into a module containing variables and parameterized by
a key to identify entities. Then, for each kind of action defined in the system, a new
module is created, parameterized by class modules involved in that action. Action

590 M. Frappier et al.

modules check that a given precondition is satisfied. Then, if the precondition holds,
they modify variables of entities to apply postconditions using assignment constraints.

Properties of the library system can be expressed by CTL formulae on state vari-
ables, or by using LTL formulae with state variables or input variables. Specifications
on state variables are close to Promela specifications, except that NUSMV can check
CTL and LTL properties. This allows to easily express all requirements. Specifica-
tions on input variables are event-oriented. However, only LTL can be used to write
event-oriented specifications in NUSMV.

Property 1 is a sufficient condition to enable an event. It is easily expressed as fol-
lows: AG (!book1.is acquired -� EX book1.is acquired). Property
12 is specified in a similar manner, except that it must be repeated for each position in
the array representing the reservation queue. Hence, the text of properties may linearly
grow with the number of entity instances, an unfortunate limitation due to the restriction
to constants in accessing array positions. Property 14 is also very similar to 1, except
that EF is used instead of EX. Properties expressing necessary conditions (2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 13) can be expressed in two different forms (state, event). For instance,
property 2 is expressed using events, saying that a discard must always occur between
two acquires:
G acquire1.do ->

X((!acquire1.do U discard1.do) | G !acquire1.do)

5.3 FDR2

CSP is quite handy to explicitly represent IS entities life cycles. We use a nominal/con-
troller pattern to specify the library case study. Each entity E is represented by a quan-
tified interleave of the form E � �k : T @ E(k), where E(k) models the life cycle of an
instance k of entity E. The associations to which an entity E participates are represented
in a similar manner, and called within E(k). The global behavior is obtained by com-
posing the entities in parallel: Nominal � E1 � � � � � En. Since CSPM does not directly
implement Hoare’s parallel operator �, we use CSPM’s operator �

X, where X denotes
the association actions on which entities must synchronize. Some ordering constraints
are represented using recursive processes to simulate state variables. The relevant state
variables v of an entity E are represented by a recursive process CE (k� v) which offers a
choice [] between actions to control, in the form []i G & ai � CE(k� e(v)), where “&”
denotes a guard operator with condition G which tests the values of v. These control
processes are composed in parallel with Nominal, synchronizing on ai.

Safety properties are checked by trace refinement and are relatively easy to specify.
Suppose that property p only involves actions ai. One writes a process P that represents
the traces on ai satisfying p, and checks that the system Q, restricted to actions ai, trace
refines P as follows: P �T Q � (� � 	ai
), where � is the hiding operator of CSPM and
� denotes all actions of the specification and “�” is set difference.

Reachability properties 1, 12 and 14 are checked using stable-failure refinement, and
are a bit more tricky to specify. For instance, property 1 states that a book can always
be acquired, if it is not currently in the library. This is typically specified in CSP as
follows: P � CHAOS (bi
) �F Q � 	ci
. Process P recursively loops over acquire and
discard events: acquire(b)�discard(b)� P(b). Essentially, P states that discard can

Comparison of Model Checking Tools for Information Systems 591

never be refused after an acquire, and an acquire can never be refused after a discard.
Hidden actions 	ci
 are those that unavoidably can occur between acquire and discard,
ie, association actions. The interleave with CHAOS (bi
) states that other actions can
occur before or after, but we do not really care about their order. Unfortunately, hiding
association actions introduces unstable states, which weakens the specification of the
property under stable-failure refinement. To make a short explanation, infinite internal
action loops are introduced by hiding; hence some errors in the behavior of association
actions are not detected by this form of property specification. To overcome this, we
have to check each association in isolation, disabling events from the other associa-
tions, which is weaker than property 1. These are very subtle issues which are difficult
to master. Reachability properties of IS specifications are far from trivial to specify
in CSP.

5.4 CADP

The LOTOS-NT specification of the library system is similar in structure to the CSP spec-
ification already described. Since there is no quantified interleave operator in LOTOS-
NT, one has to hardcode entities and associations interleaves, which means that the
number of interleaves to hard code in the specification text grows exponentially with
the number of entities, making verification experiments a bit cumbersome.

Safety properties of the case study are defined using two patterns. The first states
that an action A should not happen between two actions B and C. For example, a mem-
ber should not leave the library if he has reserved a book (i.e. between a Reserve
and a Take or Cancel). The second pattern expresses the prohibition of an action A
outside a sequence delimited by two actions B and C; it is illustrated by the fact that a
member should not renew a book if he has not borrowed it yet (i.e. outside a Lend or
Take and a Return). In XTL, one can represent these patterns using macros. They
are defined using a weak until operator, defined by macro AW A B. These two patterns,
respectively called no A between B and C for and no A outside B and C, are
used for properties (2,3,6,7,8,9,11,13) and 4, respectively. Liveness properties are writ-
ten directly with classic ACTL and HML operators, like properties 1, 12 and 14. No
correct formulation has been found for properties 5 and 10. For property 5, one must
characterize using events the states where a book is not borrowed nor reserved. Prop-
erty 10 involves a queue, which is as hard to describe using events.

5.5 ALLOY

Each IS entity E is represented by a signature E, which models the set of possible
entity instances. System states are represented by a signature sig S { e1 : E1,
..., en : En, a1 : Ei -> Ej, ...}, where ei models the active
instances of Ei in a state, and ai models the instances of association Ai. Each action is
represented by a predicate P[s : S � s� : S � p : T] relating a before-state s to an after-
state s� for input parameters p. We have systematically followed a pattern for these
predicates, which is a conjunction of a precondition, a postcondition and a “nochange”
predicate that determines which attributes are unchanged by the action.

592 M. Frappier et al.

A property of the form “when condition C holds, action a must be executable” (e.g.,
Property 1) is written as follows: �s : S � p : T � C � preA[s� p], where preA[s� p]
is the precondition of action a(p). Similarly, if C is the result of executing an ac-
tion b(p) that should enable an action a(p) (e.g., Property 12), it can be written as
�s� s�� p : T : S � b[s� s�� p] � preA[s�� p]. A property of the form “action a is ex-
ecutable only when condition C holds” (e.g., Properties 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
13) is written as: �s : S � preA[s� p] � C. These three patterns are approximations
of the property, because an action can be executed when its precondition holds and
when s� : S � postA[s� s�� p] holds. In other words, the precondition must hold and the
postcondition must be feasible. However, checking such an existential formula over IS
states in ALLOY is usually not possible, unless the system model is small enough to fit
within memory bounds; if the bounds provided for the check command do not include
the full state space, then ALLOY can always find a small model where the desired state
s� is not included. Luckily, the feasibility of postconditions is rarely an issue. Hence,
we safely approximate the executability of an action to its precondition only. Invariant
properties I for some action a (e.g., Property 15) are easily expressed as a formula of the
form �s� s� : S � p : T � I[s]�a[s� s�� p] � I[s�]. Properties expressing the reachability of
a state from a condition C (e.g., Property 14) are more tricky to express. We first tried
to find a trace in the transition system, but that reveals to be impossible to check due
to memory limitations. We then resorted to show the existence of a trace by describing
how it can be computed. For property 14, the predicate describing such a trace states
that an iteration over actions return, cancel and leave ultimately leads to a state
where the member does not exist. If the property fails, it is either because the bound
given for the length of the trace is too small (i.e., the last state of the trace satisfies the
precondition of a return, a cancel or a leave) or because the property is false
in the model. By looking at the counterexample found, we can determine which case
holds and increase accordingly the bounds for the trace and the number of library states.
An additional difficulty is to determine the valid library states where C holds. These
can be either characterized by a fact, which is error-prone to specify, but more efficient
to check, or by executing entity and association producers from the initial state of the
system to automatically construct valid library states satisfying C, which is simple to
specify, but significantly less efficient to check.

5.6 PROB

Each action is specified as an operation defined as a precondition and a postcondition.
Therefore, the main difficulty is to translate the ordering constraints (like, for example,
“a book must be acquired in order to borrow it”) in a precondition and find appropriate
updates of state variables, as in SMV and ALLOY.

As already mentioned, most of the requirement can be categorized in two patterns:
� (can A � P) and � (P � can A). In general, a requirement that looks like “A can
be executed only if P is true” (the first template) can be seen as an indication that the
precondition of A implies P. On the other hand, “A can be executed if P is true” (the
second one) means that P implies the precondition of A. In PROB, can A is expressed
with the executability operator e(A). However, it denotes the exact condition under
which A is executable; it is not an approximation as we have done in ALLOY.

Comparison of Model Checking Tools for Information Systems 593

Specifying properties is straightforward using LTL and CTL. All properties are ex-
pressed in LTL, except 14, expressed in CTL. Property 12 is slightly more difficult to
express. It denotes an ordering constraint that depends on both the current state (the
book has been reserved by the member) and the previous action (once a Take is exe-
cuted, the executability of the Cancel is not needed anymore). Thus, the executability
operator, the next action operator and the LTL release operator are needed. This prop-
erty does not not fit in the two described patterns.

Since PROB uses the B notation, it can be used in conjunction with Atelier B. This
means that some proofs can be done prior or after using PROB. These tools can work
together. For example, Property 15 is defined as an invariant. Atelier B generates proof
obligations for invariants. But when the proof fails, PROB is quite useful to find where
the problem is located. On the other hand, most temporal properties are generally not
provable in Atelier B because they cannot be easily expressed as an invariant.

6 Analysis of the Case Study

In this section, we analyse the results of our case study along several aspects of IS
specications which distinguish the salient features of each model checker.

Model specification language: abstraction over entity instances. This feature
enables the specifier to parameterize the number of instances for each entity and asso-
ciation (e.g., the number of books). If it is lacking, then the size of the specification text
grows exponentially. All model checkers, except NUSMV and LOTOS-NT support this
feature. It is worse in NUSMV, where each transition must be hardcoded for a given
member and book. In LOTOS-NT, quantification for interleave is missing.

Model specification language: representation of entity and association struc-
tures. This is reasonably well supported by all model checkers. Modeling actions that
involve several associations, like take, is not trivial in SPIN.

Model specification language: representation of IS scenarios. This is also rea-
sonably well supported by all model checkers. IS requirements are often described as
scenarios on events, from which event ordering constraints are deduced. These order-
ing constraints are more explicitly represented in event-based languages like CADP and
SPIN. They are encoded as preconditions in state-based languages like SPIN, NUSMV,
PROB and ALLOY, which are a little bit more cryptic.

Property specification language: abstraction over entity instances. Similarly,
this feature enables the specifier to abstract from entity instances by using quantification
on variables. If it is lacking, either the number of properties grows exponentially with
the number of instances to check, or, as we did in this case study, a property is hardcoded
for a particular instance of each entity, assuming that each entity behaves in a similar
fashion (which may not hold in practice). NUSMV, LOTOS-NT and SPIN lack this
feature, since it is generally not supported in LTL, CTL and XTL. PROB does not
suffer from this limitation in CTL and LTL, because it evaluates properties for all
elements of abstract sets when necessary. Hence, only PROB, FDR2 and ALLOY fully
support this feature.

IS property specification. We have identified the following classes of properties
for IS:

594 M. Frappier et al.

1. SCE: Sufficient state condition to enable an event (e.g., case study properties 1
and 12). These are relatively easy to specify in state-based languages like NUSMV,
PROB and SPIN. All of these properties must be approximated in ALLOY, other-
wise they require a too large number of atoms to be completely checked. The valid-
ity of the approximation relies on the hypothesis that the postcondition of an action
is satisfiable when the precondition holds. FDR2 can also handle these properties
using stable failure refinement, but sometimes by approximation (property 1).

2. NCE: Necessary state condition to enable an event (e.g., case study properties
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13). These are also relatively easy to specify in state-
based languages like NUSMV, PROB and SPIN, and with some approximations
for ALLOY (similar to SCE). Properties 5 and 10 have not been specified in XTL
for CADP, because the states where too difficult to characterize using events only.
There were no problem to specify these using trace refinement in FDR2. However,
we suspect that there may be cases where characterizing states using only events
may be difficult.

3. SCEF: Sufficient state condition to enable an event on some execution path
(e.g., property 14.) This is easy to specify in NUSMV and PROB, thanks to CTL.
It is also possible for CADP and FDR2, when the state condition is easy to charac-
terize using events. It can be specified in ALLOY by providing the path of events
leading to the desired event, when such a path does not exceed the number of atoms
available. It is not possible to specify these properties in SPIN, since they are not
supported by LTL.

4. INV: Invariant state property (e.g., property 15). All model checkers can handle
these without particular problems.

Property specification language: access to states and events. Since most of the
properties use both states and events, model checkers that support both, like PROB
and ALLOY, are simpler to use, since they can represent properties more explicitly
(or directly) than the others. CADP and FDR2 being event oriented, handling states is
sometimes cumbersome. SPIN offers limited supported for events and we have used it
extensively, similarly in NUSMV, but to a lesser extent.

Execution time and number of entity instances. Figure 2 shows the execution for
the number of instances (number of books and number of members). The average time
per property is also provided, since not every model checker can handle all properties.
Overall, CADP, NUSMV, PROB and FDR2 cannot check, within reasonable bounds
of time and memory, more than 3 instances for each entity for at least one property,
although for some properties they can check a few more instances. SPIN can handle
up to 5 entity instances. ALLOY is the most efficient model checker for IS for large
number of entity instances. FDR2 is the most efficient for 3 instances; it fails due to
memory limitations for more than 3 instances per entity. ALLOY can handle up to 98
instances for all properties except 14 in less than a minute, because it only needs to
cover a small subset of the state space to check these properties. Property 14 is checked
for 8 members and 8 books in a few minutes. With the library case study, 3 instances
is a minimum to check reservation queues of length greater than 1. Note that the latest
release of PROB fails for 3 properties, due to some defects which have been reported to
authors. This is why we only include the results of 12 properties in Fig. 2.

Comparison of Model Checking Tools for Information Systems 595

Step SPIN NUSMV FDR2 CADP ALLOY PROB
Nb of Books/Members 3 / 3 5 / 5 3 / 3 3 / 3 3 / 3 3 / 3 8 / 8 3 / 3

Check Time 772.52 8645.6 3844.5 77.08 970.19 221.08 288.59 1094.4

Number of properties 14 14 15 15 13 15 15 12
Average (per property) 55.18 617.54 256.3 5.14 74.63 14.74 19.24 91.19

Fig. 2. Model checking duration in seconds for the properties of the library specification

Tools support Simulators are available in each method, which is very handy to dis-
cover specification errors. The simulator in NUSMV is not straightforward to use,
because it is sometimes difficult to select the transition to execute.

7 Conclusion

We have presented a comparison of six model checkers for the verification of IS. The
comparison is based on a case study of a typical IS. The study reveals that a good
IS model checker has to be very polyvalent. To conveniently specify IS models and
properties, it should support both states and events. Process algebraic operators are
desirable to easily expressed IS scenarios, while state variables are handy to streamline
specification of properties. CTL seems sufficient to handle most common properties.
LTL is useful, but insufficient (e.g., SCEF properties). A pure first-order logic like
ALLOY is sufficient, but less intuitive in the case of SCEF properties. Given these
characteristics, PROB seems to be the most polyvalent model checker for IS.

Since these conclusions are drawn from a single example, they must be further vali-
dated with additional examples. However, the library case study is sufficiently complex
to exhibit a good number of characteristics found in most IS. It only contains two enti-
ties and two associations; large IS typically have hundred of entities and associations,
but it seems quite reasonable to suppose that the verification of a property can be re-
stricted to the entities and attributes involved. Hence, the properties checked in this case
study are representative of typical IS properties.

Additional case studies would certainly find other limitations of these model check-
ers. For instance, our case study only addresses the sequence of actions that an IS must
accept. It does not cover output delivery (e.g., queries) and user interface interactions.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
Cambridge (1996)

2. Augusto, J.C., Ferreira, C., Gravell, A.M., Leuschel, M., Ng, K.M.Y.: The benefits of rapid
modelling for e-business system development. In: ER Workshops, pp. 17–28 (2003)

3. Aydal, E.G., Utting, M., Woodcock, J.: A comparison of state-based modelling tools for
model validation. In: TOOLS-Europe 2008, Switzerland. LNBIP, vol. 11, pp. 278–296
(2008)

596 M. Frappier et al.

4. Biere, A., Clarke, E.M., Cimatti, A., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

5. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS. In: van
Eijk, P.H.J., Vissers, C.A., Diaz, M. (eds.) The Formal Description Technique LOTOS, pp.
23–73. Elsevier Science Publishers B.V., Amsterdam (1989)

6. Chane-Yack-Fa, R., Fraikin, B., Frappier, M., Chossard, R., Ouenzar, M.: Comparison
of model checking tools for information systems. Tech. Rep. 29, Universit de Sherbrooke
(2010), http://pages.usherbrooke.ca/gril/TR/TR-GRIL-1006-29.pdf

7. Clarke, E.M., Emerson, E.A.: Synthesis of synchronization skeletons for branching time
temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131. Springer,
Heidelberg (1981)

8. Deutsch, A., Sui, L., Vianu, V.: Specification and verification of data-driven web applica-
tions. Journal of Computer and System Sciences 73(3), 442–474 (2007)

9. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” revisited: On branching versus
linear time temporal logic. J. ACM 33(1), 151–178 (1986)

10. Garavel, H.: Compilation et vrification de programmes LOTOS. Ph.D. thesis, Universit
Joseph Fourier, Grenoble (November 1989)

11. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley,
Reading (2004)

12. Jackson, D.: Software Abstractions. MIT Press, Cambridge (2006)
13. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S., Mandrioli,

D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003)
14. Mateescu, R., Garavel, H.: XTL: A meta-language and tool for temporal logic model-

checking. In: Proceedings of the International Workshop on Software Tools for Technology
Transfer STTT 1998, Aalborg, Denmark, p. 10 (July 1998)

15. McMillan, K.L.: Symbolic Model Checking. Ph.D. thesis, Carnegie Mellon University
(1993)

16. Morimoto, S.: A survey of formal verification for business process modeling. In: Bubak, M.,
van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part II. LNCS, vol. 5102,
pp. 514–524. Springer, Heidelberg (2008)

17. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of
Computer Science, pp. 46–57 (1977)

18. Roscoe, B.A.W.: The Theory and Practice of Concurrency, 3rd edn. Prentice Hall PTR,
Englewood Cliffs (1998) (amended 2005)

19. Spielmann, M.: Abstract state machines: Verification problems and complexity. Ph.D. thesis,
Bibliothek der RWTH Aachen (2000)

20. Yeung, W.L., Leung, K.R.P.H., Wang, J., Dong, W.: Modelling and model checking sus-
pendible business processes via statechart diagrams and CSP. Science of Computer Pro-
gramming 65(1), 14–29 (2007)

http://pages.usherbrooke.ca/gril/TR/TR-GRIL-1006-29.pdf

A Modular Scheme for Deadlock Prevention in
an Object-Oriented Programming Model

Scott West, Sebastian Nanz, and Bertrand Meyer

ETH Zurich
firstname.lastname@inf.ethz.ch

Abstract. Despite the advancements of concurrency theory in the past
decades, practical concurrent programming has remained a challenging
activity. Fundamental problems such as data races and deadlocks still
persist for programmers since available detection and prevention tools
are unsound or have otherwise not been well adopted. In an alternative
approach, programming models that exclude certain classes of errors by
design can address concurrency problems at a language level. In this
paper we review SCOOP, an existing race-free programming model for
concurrent object-oriented programming, and extend it with a scheme
for deadlock prevention based on locking orders. The scheme facilitates
modular reasoning about deadlocks by associating annotations with the
interfaces of routines. We prove deadlock-freedom of well-formed pro-
grams using a rigorous formalization of the locking semantics of the pro-
gramming model. The scheme has been implemented and we demonstrate
its usefulness by applying it to the example of a simple web server.

1 Introduction

Concurrent programming has remained a difficult task even for expert program-
mers, in spite of steady progress in the theory of concurrency. One possible reason
is that concurrency is typically added to a language as a secondary concern, via
thread libraries. These offer little support for a structured use of synchronization
primitives, making it difficult for programmers to reason about their programs.
Concurrency research has provided a set of tools, e.g. [13,18,6,3], for addressing
the data races and deadlocks that arise from incorrect use of synchronization,
but these do not tackle the source of the problem.

Another line of research therefore attempts to create languages that raise the
level of abstraction for expressing concurrency and synchronization and hence
to make programmers produce better code. Resulting programming models can
also exclude certain classes of errors by construction, for example data races [8,1],
usually accepting a penalty in performance or programming flexibility for the
sake of program correctness.

One such programming model is SCOOP (Simple Concurrent Object-Oriented
Programming) [15,16]. The model allows objects to be declared of a special
type indicated by the keyword separate. Calls to routines (methods) on such
separate objects are executed asynchronously, i.e. they will be spawned off to

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 597–612, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

598 S. West, S. Nanz, and B. Meyer

class DEADLOCK
create set
feature
x, y : separate S

f
do g (x) end

g (a : separate S)
do h (y) end

h (b : separate S)
do end

set (a_x, a_y : separate S)
do
x := a_x
y := a_y

end
end

class MAIN
feature
x, y : separate S

run (d1, d2 : separate DEADLOCK)
do d1.f; d2.f end

make
local
d1, d2 : separate DEADLOCK

do
create x
create y
create d1.set (x, y)
create d2.set (y, x)

run (d1, d2)
end

end

Program 1: SCOOP deadlock example

a thread separate from the current one. SCOOP then preserves freedom from
object-level data races by requiring that separate objects be controlled before
features can be invoked on them. Control is obtained by having such an object
passed as an argument to a routine: within the scope of the routine, all separate
objects that are its actual arguments are automatically locked. In Program 1, x
is locked by the call to g in the body of f.

This locking behavior simplifies reasoning about concurrent programs for the
programmer, as groups of concurrent objects are protected within the body of
a routine and thus “sequential thinking” can be applied in this context. On the
other hand, SCOOP offers no protection against deadlocks, a flaw shared with
practically all concurrent programming languages.

In this paper, we extend SCOOP with a scheme for deadlock prevention, ad-
dressing a critical open problem of this programming model (indeed, Program 1
may deadlock). The scheme is based on establishing an order in which resources
can be locked, hence preventing the formation of cyclical locking patterns. As
the structure of locking in SCOOP is reflected in the call stack, annotations indi-
cating the locking order are associated with the interfaces of routines, providing
modularity at the routine level. We formalize the locking behavior of SCOOP
using a structural operational semantics, providing the basis for the deadlock-
freedom proof. We provide a technique for statically checking that programs are
well-formed according to a well-formedness predicate, and prove that well-formed
programs never deadlock. The technique has been implemented and applied to
a simple web server programmed in SCOOP.

Other work in this area such as deadlock freedom for active objects in Java [11]
provides less versatile structures (trees vs. orders). Techniques of similar power
[3], however, are not grounded in an underlying language that is designed to make
concurrent programming easier. Lastly, other partial operational semantics [17]
only consider liveness properties in the light of model checking.

A Modular Scheme for Deadlock Prevention 599

The remainder of this paper is structured as follows. In Section 2 we give
an overview of SCOOP and reason on how deadlock can be detected both
dynamically and statically. Section 3 provides a formalization of SCOOP’s lock-
ing semantics. In Section 4 we describe our deadlock prevention scheme and
prove that well-formed programs cannot deadlock. We describe related work in
Section 5 and conclude in Section 6.

2 SCOOP Programs and Their Locking Semantics

SCOOP [15,16] is a programming model for concurrency, which can be imple-
mented on top of any object-oriented language. Implementations are currently
available for Eiffel [16,9] (the syntax we use in this paper) and Java [19]. In
this section we first provide a short overview of the model, give a description
of how deadlock may be identified, and finally show an annotation language for
establishing a locking order among resources.

2.1 Overview of the Model

Asynchronous calls. The central idea of SCOOP is that every object is asso-
ciated for its lifetime with a processor, an abstract notion denoting a site for
computation: just as threads may be assigned to cores on a multi-core system,
processors may be assigned to cores, or even to more remote processing units.
The (unique) processor associated with a certain object is called its handler.
Processors may handle multiple objects. A processor can be identified using its
processor tag.

Processors are an abstraction, allowing the model to be mapped to multi-
threaded systems, distributed systems, or other concurrent architectures alike.
For example in multithreaded systems every processor simply corresponds to one
thread on the system, and the processor tag is the thread identifier. Whenever
a new processor is created, a new thread is spawned.

Calls on an object are only executed by its handler. For example, if a processor
p encounters a call x.f, and the object attached to x is handled by a processor
q then p asks q to evaluate x.f on its behalf. If x.f does not return a result,
processor p can continue executing concurrently with the computation taking
place at q. If x.f returns a result, the runtime system makes sure that p waits
for q to return the result before proceeding.

Type annotations. To make it clear for programmers which calls are executed
asynchronously (invoked on objects residing on separate processors) and which
calls are synchronous (invoked on objects residing on the current processor),
the type system of SCOOP provides a special type indicated by the keyword
separate: if a variable x is declared of separate type

x : separate X

then at creation of x with the statement

600 S. West, S. Nanz, and B. Meyer

create x

a new processor p is created in addition to an object o of type X, and the
handler of o is set to p. The type system also allows that the processor tags can
be explicitly specified as in

x : separate <p> X
y : separate <p> Y

which at creation time would place objects x and y on the same processor p.
These processor annotations have the scope of a class if applied to attributes of
the class, and of the routine’s body if applied to local variables of a routine.

Locking behavior. In order to prevent object-level data races in SCOOP, pro-
cessors that are needed for the execution of a routine are automatically locked
by the runtime system before entering the body of the routine; the locks are
released upon the completion of the execution of the body. Thus all handlers of
separate objects that occur in the body need be locked. The model prescribes
that these separate objects need to be controlled (passed as arguments to the
routine). At routine invocation the runtime system tries to lock the separate
arguments’ handlers: if the locking succeeds, the execution proceeds into the
body of the routine; if it fails because one or more of the handlers are locked
by other processors, the runtime system schedules the call to be retried later. In
Program 1 the body of the feature f contains the command g(x), the locking
behaviour described above would be seen here, as this call is invoked, requesting
and locking the object x.

2.2 Deadlock in SCOOP

Knowing how locks and requests appear in the SCOOP model, we can now
describe how a deadlock state may be detected. A deadlock state, based on
waiting for resource availability as in [5], can be identified

– dynamically: construct a “waits-for” relation; if an element is related to
itself in the transitive closure of such a relation, then the system is in a
deadlock state. In the setting of SCOOP, the “waits-for” relation contains
an association between between processors p and q iff some other processor
has a lock on p and is requesting q.

– statically (conservative): arrange the processor tags into a partial order.
When the text of the program indicates a lock is taken, verify that it is
less than all the other locks that could have been taken at this point. The
program text may require some annotations establishing which locks have
already been taken.

These two schemes can be applied to Program 1. Reasoning using the dynamic
scheme, we see that an instance of class DEADLOCK will lock its attributes x and
y in some order when its routine f is called. In class MAIN, two instances d1
and d2 of DEADLOCK are initialized with two separate objects x and y, however

A Modular Scheme for Deadlock Prevention 601

their order is reversed between the two instances. By executing run, the routine
calls d1.f and d2.f are executed asynchronously, according to the semantics
of calls on separate objects d1 and d2 outlined above.

As a result of executing d1.f, the call g(x) is invoked. As x is an argument
to the routine g, the runtime locks x for the duration of the call, as prescribed
by the semantics for controlled objects outlined above. In particular, x will still
be locked when the call h(y) is invoked, requesting a lock on y. The concurrent
execution of d2.f has an analogous locking behavior, but since d1 and d2 have
opposite views of x and y, the locking order is reversed. Hence the calls may
ultimately form a cyclical locking pattern, resulting in a deadlock.

To reason statically about the same sequence of calls, one notices that the
order of calls can be conservatively approximated by examining the program
text, and observing which routines subsequently call other routines. In the case of
Program 1, we always know that calling the feature f will (for a general routine,
may) require that the processor of x is locked, followed by y. This information
can be used statically at the call sites of d1.f and d2.f to determine that their
concurrent execution could lead to a deadlock state.

We have chosen to develop a static technique, as we believe that static tech-
niques encourage the active construction of correct programs, whereas dynamic
techniques cater more to a reactive development style.

3 A Formal Model of SCOOP Locking

Our approach uses a static detection scheme, requiring that the interfaces of a
program be annotated. This includes routines and types of variables, where the
annotations for variables follow the SCOOP-style very closely.

3.1 Annotation Language

At the class level, annotations of the following form are allowed:

class header ::= class ident
∣∣ class ident <p(, p)∗>

A class can thus be parameterized with the processor tags it is using. Consider
Program 2 for example, an entity d based on class DEADLOCK uses processors
with tags p and q for the roles of xp and yp. An instance is declared as follows:

d : DEADLOCK <p, q>

The preconditions of routines represent the required orderings of processors,
expressed using the following syntax (note that we replace the non-strict ordering
symbol by a strict ordering symbol in the program text to make it easier to type,
however the interpretation should remain non-strict in all cases)

req ::= ε
∣∣ require p < p(, p < p)∗

602 S. West, S. Nanz, and B. Meyer

class DEADLOCK <xp,yp>

feature
x : separate <xp> S

5 y : separate <yp> S

f
require yp < xp
lock xp

10 do
g (x)

end

15 g (a : separate <xp> S)
require yp < xp
do h (y) end

h (b : separate <yp> S)
20 do end

set (a_x : separate <xp> S;
a_y : separate <yp> S)

do
25 x := a_x

y := a_y
end

end

Program 2: Annotated DEADLOCK class

For example, in line 16 the routine g is annotated to express that the processor
yp, which will be locked as a result of the execution of the body of g, is below
processor xp, which is locked by calling g.

In the interface of a routine we state the set of locks that may be taken
temporarily during the execution of the routine body.

ens ::= ε
∣∣ lock p(, p)∗

For example; in line 9 we state that a lock on x’s processor xp may be taken by
executing the body of f, as the call g(x) will lock this processor. Note that small
changes to the program (re-nesting function calls, for instance) may require the
ordering specifications to be modified accordingly.

In Program 2 we require that yp < xp in feature g. Due to the construction
of the two deadlock variables d1 and d2 in Program 1, we know that the two
classes are instantiated with conflicting requirements: one requires that yp < xp
and the other will then necessitate xp < yp. Since these cannot be mutually
satisfied, it is impossible to annotate MAIN from Program 1 such that it can
satisfy the well-formedness predicate.

3.2 SCOOP Program Model

Complementing the program annotations, we provide a formalization of SCOOP
programs based on the computational model described in Section 2.1. We focus
on routines as the basic units of programs, as it is at routine invocation that
locks are taken, and at routine return where lock reservations are given up.
We disregard classes and class-level processor annotations as they introduce
unnecessary complexity in the representation; the formalization could however
be extended to include them.

Assume to have a set of (routine) names Name. We consider a program P to
be a mapping of names to routines

P ∈ Program = Name → Routine

where an (unnamed) routine rtn is of the form

rtn ∈ Routine = ℘(Tag × Tag)× Tag∗ ×℘(Tag)× Tag × Expr

A Modular Scheme for Deadlock Prevention 603

and we refer to its components using the following notation:

rtn = (rtn≤, rtnargs, rtn locks, rtnres, rtnbody)

The component rtn≤, corresponding to programmer provided require annota-
tions as in Section 3.1, is a relation on processor tags, describing the partial order
on processors required by the routine. The component rtnargs is the sequence of
formal arguments of the routine. The set of locks that may be taken as the re-
sult of executing the body of the routine is given by rtn locks, corresponding to
lock; this is the other programmer-provided annotation. The component rtnres

specifies whether the routine returns a result or not, and rtnbody is the body of
the routine (an expression).

An expression e is constructed from the following syntax

e ::= [p]
∣∣ skip

∣∣ create(p)
∣∣ e · f(ẽ)

∣∣ e; e
∣∣ waitfor(p)

∣∣ unlock

where p ∈ Tag is a processor tag and f ∈ Name is a name. We write ẽ to
abbreviate a sequence of expressions e1, . . . , en, and similarly p̃ for a sequence of
processors. We sometimes treat these sequences as sets, i.e. ẽ =

⋃
i=1,...,n{ei}.

We assume that processor tags can be inferred from an expression e using a
mapping tagP : Expr → Tag ; we use tagsP on sequences of expressions.

The syntax elements have the following intuitive meaning. A value on a pro-
cessor p is represented as [p], abstracting away the actual value. Since the actual
value is discarded, assignments in a program text are transformed into only the
right-hand side, as it may contain some call (and thus locking). If in a sequence
ẽ = e1, . . . , en all expressions are fully evaluated (i.e. ei = [pi] for i = 1, . . . , n),
we use the notation [ẽ]. The expression skip has no effect. A new processor with
tag p is created using create(p). Calling a routine f on a target t, with a list of
arguments ã is represented by t · f(ã). Sequencing of expressions is written as
e1; e2. The remaining two syntax elements waitfor(p) and unlock do not represent
program syntax, but are required for the purpose of modeling the waiting and
locking behavior of the runtime system. Waiting on a processor with tag p is
expressed as waitfor(p). The expression unlock represents unlocking of the set of
processors that has been taken as a result of the matching routine call.

3.3 Locking Semantics

Given the formalization of SCOOP programs, we can proceed to formally defin-
ing the part of the program semantics that is critical for reasoning about dead-
lock. Rather than enabling us to reason about full program correctness, the
following rewrite rules embody the behavior of requesting, taking and releasing
locks in a SCOOP program.

At runtime, a program P gives rise to a process P which is described by the
following syntax:

P ::= p :: e
∣∣ P | P

A process is therefore either an expression e located at a processor with tag p,
or a parallel composition of processes. The idea is that a program starts with

604 S. West, S. Nanz, and B. Meyer

the initial call f0 on an initial processor p0 as p0 :: f0, and will give rise to more
parallel threads (as the result of create) as execution proceeds. A structural
equivalence ≡ over processes specifies the commutativity and associativity of
the | operator; the formal definition of ≡ is standard and omitted from this
presentation. We assume that processor tags are unique within processes, i.e.
there cannot be a process P ≡ p :: e | q :: e′ | Q such that p = q. This property
is preserved by process creation.

Processes are operating on a state representing locks and requests only. For-
mally, we define a lock state L as a pair of mappings (Ll, Lr) of the following
type:

L ∈ LockState = (Tag → (℘(Tag))∗)× (Tag → ℘(Tag))

Here, Ll is a mapping from a processor (tag) to a stack of sets of processors,
representing the processors it currently locks. Although a set of locks would
suffice here, having a stack of sets allows for a greater correspondence with the
intuition that lock-taking in SCOOP closely follows the call-stack. We define
the domain of L as the union of the domains of its components, dom(L) =
dom(Ll) ∪ dom(Lr). We use the notation Ll[p 	→ T] for updates, such that
the resulting mapping returns T at point p of its domain and is unchanged
otherwise. We write T : lcks for a stack obtained by pushing a set of processor
tags T on a stack lcks. We write

⋃
lcks for flattening the stack into one set, i.e.

if lcks = T1, . . . , Tn then
⋃

lcks =
⋃

i=1,...,n Ti. Lr is a mapping from a processor
to the set of processors it requests locks for. The requested processors are tracked
to align our model with the Coffman treatment of when deadlock occurs.

The locking semantics specifies rewrite rules over processes and lock states in
the style of a structural operational semantics with transitions of the form:

P � (P, L) → (P ′, L′)

This means that, given a programP which provides meaning to names of routines
occurring in processes, the process P evolves in one step to P ′ and transforms
locking state L to L′.

With this information, we can now look to the rules contained in Table 1 for
the definition of the locking semantics. The creation of a new processor q by a
processor p gives rise to a new parallel process located at q. If the processor al-
ready exists, then this has no effect. These behaviours can be see in the create1

and create2 rules.
The rule seq allows one step to be performed on the left side of a sequential

composition, and skip carries its intuitive meaning. For routine target and ar-
gument evaluation: eval-trg and eval-arg enforce that targets are fully eval-
uated before arguments are evaluated. In eval-arg, the arrow � represents
performing a single rewrite step on a sequence of expressions. To reorder the
constituent processes of a program during rewriting, the equiv rule is available.

Once the target and arguments of a call are both fully evaluated, the call
can be invoked. In the case where the call has no result, call-nores moves
the call to the target processor, to be executed after the current tasks of the
target processor; the caller proceeds without waiting. Recall that we use the

A Modular Scheme for Deadlock Prevention 605

Table 1. SCOOP Rewrite Rules

create1
p �= q Q �≡ q :: e | Q′

P � (p :: create(q) | Q, L) →
(p :: skip | q :: skip | Q, L)

create2
p = q ∨ Q ≡ q :: e | Q′

P � (p :: create(q) | Q, L) →
(p :: skip | Q, L)

eval-trg
P � (p :: t | Q, L) →

(p :: t′ | Q′, L′)
P � (p :: t · f(ã) | Q, L) →

(p :: t′ · f(ã) | Q′, L′)

eval-arg
P � (p :: ã | Q, L) �

(p :: ã′ | Q′, L′)
P � (p :: [q] · f(ã) | Q, L) →

(p :: [q] · f(ã′) | Q′, L′)

skip

P � (p :: skip; e | Q, L) →
(p :: e | Q, L)

seq
P � (p :: e1 | Q, L) →

(p :: e′
1 | Q′, L′)

P � (p :: e1; e2 | Q, L) →
(p :: e′

1; e2 | Q′, L′)

equiv
P ≡ Q Q′ ≡ P ′

P � (Q, L) → (Q′, L′)
P � (P, L) →

(P ′, L′)

call-nores
P(f)result = None

Q ≡ q :: e | Q′ q ∈ ⋃
Ll(p)

P � (p :: [q] · f([ã]) | Q, L) →
(p :: skip | q :: e; [q] · f([ã]) | Q′, L)

call-res
P(f)result = Some(v)

Q ≡ q :: e | Q′ q ∈ ⋃
Ll(p)

P � (p :: [q] · f([ã]) | Q, L) →
(p :: waitfor(q) | q :: e; [q] · f([ã]) | Q′, L)

req-lck
need = ã − (

⋃
Ll(p) ∪ {p})

L′
r = Lr[p �→ need] L′

l = Ll

P � (p :: [p] · f([ã]) | Q, L) →
(p :: [p] · f([ã]) | Q, L′)

lock
L′

r = Lr[p �→ ∅] ã′ = P(f)arg(⋃
x∈dom(L)

⋃
Ll(x)

)
∩ Lr(p) = ∅

L′
l = Ll[p �→ Lr(p) : Ll(p)]

P � (p :: [p] · f([ã]) | Q, L) →
(p :: P(f)body [ã/ã′]; unlock | Q′, L′)

ret
Q �≡ q :: waitfor(p) | Q′ L′

r = Lr

Ll(p) = T : lcks L′
l = Ll[p �→ lcks]

P � (p :: [v]; unlock | Q, L) →
(p :: [v] | Q, L′)

ret-wait
Q ≡ q :: waitfor(p) | Q′ L′

r = Lr

Ll(p) = T : lcks L′
l = Ll[p �→ lcks]

P � (p :: [v]; unlock | Q, L) →
(p :: skip | q :: [v] | Q′, L′)

unlock
Ll(p) = T : lcks L′

r = Lr

L′
l = Ll[p �→ lcks]

P � (p :: unlock | Q, L) →
(p :: skip | Q, L′)

notation [ã] to describe a fully evaluated sequence of expressions, and
⋃

Ll(p)
for flattening the stack of locks Ll(p). To make a call on a separate target, we
require the processor p to hold a lock on the target processor q with the condition
q ∈

⋃
Ll(p). When the call has a result, the dispatching processor must wait on

the result from the target processor, as in call-res.
Upon a call arriving on its target processor, the required locks must be re-

quested, specified in req-lck. We only request the locks we do not already hold,
which are collected in the set need; the local processor is never needed. Once
the requests have been made, they are transferred to the lock set (lock) of the
processor when no other processor has any of the locks. Then the body of the
routine is scheduled for evaluation, followed by a request to unlock all initially
requested locks after the execution of the body has been completed. Here we use
the notation P(f)body[ã/ã′] to substitute the sequence of actual arguments ã for
the formal arguments ã′ = P(f)arg within the body P(f)body of routine f . In
the previous two rules, the sequence of values [ã] = [p1], . . . , [pn] is reinterpreted
in set computations as a set of processors, i.e. ã =

⋃
i=1,...,n{pi}.

The waitfor primitive allows a value that has been computed on a target
processor q to be transferred to the processor p that is waiting for it (compare

606 S. West, S. Nanz, and B. Meyer

rule call-res). As the returning of the value also completes a call, the locks that
have been taken as a result of the call are also released (L′

l is obtained from Ll

by popping one element off the stack). Two rules are required to return values to
callers (ret and ret-wait), one which would be the result of a non-separate call
(no waitfor), and one which has an accompanying waitfor on another processor:

For the case where a call has been completed but no result is returned (com-
pare rule call-nores) there may be no value [v] sitting before the unlock, so
an analogous rule for unlocking is needed with unlock.

Example 1. To illustrate the use of the rewrite rules, we apply them to Pro-
gram 1. System execution starts with a call make on an initial processor p. We
show an execution step of the body of make, demonstrating an application of
rule create1 on the instruction create x:

(p :: create(q); e | Q, L)→ (p :: e | q :: skip | Q, L)

Here we assume that the processor tag of the local variable x is q and can be
obtained with a mapping tag : Name → Tag .

The other create-statements will give rise to more concurrent processes. Fi-
nally, the routine run is called, and we assume that tag(d1) = r1 and tag(d2) =
r2 to get the following derivation.

(p :: [p] · run([r1], [r2]); e′ | r2 :: skip | r1 :: skip | Q′, L)→
(p :: [p] · run([r1], [r2]); e′ | Q′′, (Ll, Lr[p 	→ {r1, r2}]))→
(p :: [r1] · f; [r2] · f; unlock | Q′′, (Ll[p 	→ {r1, r2} : Ll(p)], L′

r[p 	→ ∅]))→
(p :: [r2] · f; unlock | r2 :: skip | r1 :: skip; [r1] · f | Q′, L′′)

Here, the first step is due to rule req-lck and shows that the processors of d1
and d2 are added to the request set of p. The second step is then according
to rule take-lck, and shows that the requested locks (which are available) are
taken by pushing them on p’s stack of locks. The last step is an application
of rule call-nores and shows how an asynchronous call is transferred to its
handling processor. Applications of rules skip and seq are omitted for brevity.

4 Deadlock Prevention Scheme

In this section we present a scheme for deadlock prevention, based on annotations
in Section 3.1. We define well-formedness of annotated programs. We prove that
well-formed programs cannot deadlock, based on our formalization of the locking
semantics in Section 3.3.

4.1 Well-Formed Programs

The scheme for ensuring that a program is well-formed ensures that there exists,
for each routine, a consistent processor ordering (through rtn≤). Additionally, it
ensures that locks are declared (rtn locks) properly, and within the scope of these

A Modular Scheme for Deadlock Prevention 607

declared locks the callee’s locks (rtn′
locks instantiated by its arguments) do not

lose any of the knowledge that the declared locks are held. The well-formedness
property of a program can be formally stated as a predicate:

wfProgramP = ∀rtn ∈ range(P). wfRoutineP(rtn)

A well-formed routine must ensure that it’s interface is well-formed (first clause)
and also that the routine body is consistent with the interface (second clause):

wfRoutineP (rtn) = isOrder(rtn≤) ∧ wfExprP(rtn≤, rtn locks, rtnbody)

The definition of a well formed expression allows neither waitfor nor unlock in
the program text, these are only inserted at runtime by the rewrite process. The
well-formedness of expressions is thus given by the following definition:

wfExprP(≤, lks, [p]) = True
wfExprP(≤, lks, skip) = True
wfExprP(≤, lks, create(p)) = True
wfExprP(≤, lks, e1; e2) = wfExprP(≤, lks, e1) ∧ wfExprP(≤, lks, e2)
wfExprP(≤, lks, t · f(ã)) = inst≤ ⊆ ≤ ∧wfLevelsP(≤, inst, lks, ã) ∧

∀a ∈ ã. tagP(a) ≤ tagP(t) ∧wfExprP(≤, lks, a)
where inst = P(f)[ã/P(f)args]

We treat the cases of values, skip, create, and sequencing with less detail here:
they are either immediately well-formed or are well-formed based on a trivial
recursion. The first clause of the call-case of wfExpr states that the instantiated
routine interface must have its order consistent with the context-order (≤). The
second clause states that the lock-level is respected. The third clause states that
each argument is a well-formed expression, and its processor is less than the
target of the call.

wfLevelsP(≤, inst, lks, ã) = ((instlocks ×lks) ⊆≤) ∧ (tagsP(ã) ⊆ instlocks)

The first clause of wfLevels has all associations between the declared locks of the
call and the context locks being also in the order relation. In other words, this
states that each declared lock of a call must be less than all of the context-locks,
so that we only lock “down” the partial order. Since a routine may have no
arguments and still lock some processors in its body we compare context-locks
against the lock clause, and not the arguments. The second clause states that
if a routine does have arguments, then these arguments must be a subset of the
lock clause, for consistency.

Example 2. For the Program 2, we show the evaluation the predicate wfExpr
on the call of the routine g in the body of routine f. To make the example
more varied, assume that the argument [xp] and the corresponding lock of g are
replaced by [zp].

608 S. West, S. Nanz, and B. Meyer

We let ord = {(yp, xp), (xp, t), (xp, xp), (yp, yp), (t, t)}. As (xp, t) ∈ ord and
inst≤ = ord, the predicate is satisfied:

wfExpr(ord, {xp}, [t] · g([xp])) = (∀a ∈ [xp]. (tagP(a), t) ∈ ord∧
wfExprP(ord, {xp}, [xp]))

∧ inst≤ ⊆ ord
∧ wfLevels({(yp, xp), (xp, t)}, inst, {xp}, {xp})

Here we use that

P(g) = ({(yp, zp), (zp, t), (zp, zp), (yp, yp), (t, t)}, [zp], {zp}, None)
inst = P(g)[[xp]/[zp]] = (ord, [xp], {xp}, None)

and that the predicate wfLevels is satisfied because values are well-formed, and
(xp, xp) is in the order (reflexivity).

wfLevels(ord, inst, {xp}, [xp]) = ({xp} × {xp}) ⊆ ord ∧ tagsP([xp]) ⊆ {xp}

4.2 Deadlock Freedom

Intuitively, our scheme ensures that there exists a global ordering for every well-
formed program, and also that during execution of this program each processor
obeys an order in which to take locks. Deadlock-freedom follows from the fact
that the acyclicity of the locking state is preserved under any execution step.

To formalize these ideas, we build on notion of a locking graph from [5]. We
do not directly show that the rewriting of the operational semantics can not get
“stuck” due to lock requests, although this property follows from the locking
graph formalization. Translated to our setting, a locking graph has processors
(resources) as nodes. There is an edge (p, q) in the graph if some process has
locked processor p while requesting processor q. A locking-state L induces a
locking-graph relation graph(L) as follows, where Iddom(L) is the identity relation
on processors in the domain of L:

graph(L) = Iddom(L) ∪
(⋃

p∈dom(L) Ll(p)× Lr(p)
)

The information provided by the lock state L, and associated locking-graph,
is not rich enough to prove the properties that will be needed. We therefore
introduce two new concepts: a lock-barrier Lb : Tag → (℘(Tag))∗ and a runtime
ordering L≤ ∈ ℘(Tag×Tag). The lock barrier represents the set of upper bounds
on the locks we are allowed to request. The runtime ordering is the ordering which
is built up during execution. For the sake of the proof, the locking semantics has
to be instrumented with these concepts. The minimal additions to the semantics
are shown in Table 2. For our approach, all locks taken have to stay below the
current locking barrier at any time, and the runtime ordering is the order that
is built at runtime as a result of the order annotations.

A Modular Scheme for Deadlock Prevention 609

Table 2. Instrumented rules

lock
L′

b(p) = (flocks[ã/ã′]) : Lb(p) L′
≤ = (L≤ ∪ (f≤[ã/ã′]))∗ . . .

. . .

ret
Lb(p) = b : L′

b(p) . . .
. . .

ret-wait
Lb(p) = b : L′

b(p) . . .
. . .

unlock
Lb(p) = b : L′

b(p) . . .
. . .

We prove that the following predicate, sound, is invariant under execution.
The predicate states that the runtime ordering L≤ is indeed a partial order, that
the locking barrier is respected, and that the locking graph is acyclic.

sound(L) = isOrder(L≤) (1)
∧ ∀p ∈ dom(L). top(Lb(p))×

⋃
Ll(p) ⊆ L≤ (2)

∧ graph(L) ⊆ L−1
≤ (3)

Here, L−1
≤ denotes the converse of the relation L≤, and top denotes the first

element of a sequence.

Theorem 1. Given a well-formed program P and an instrumented rewrite rule
P � (P, L) → (P ′, L′), sound(L) implies sound(L′).

Briefly, the third clause is of primary concern; if the locking-graph (graph(L)) is
a subset of an order, then it must be acyclic. Since L≤ is an order, thus acyclic,
so is its inverse.

The initial two clauses support this goal, with the first establishing that as
the program executes the relation that is specified piece-wise in the routine
annotations is indeed an order. This fact follows from the definition of wfRoutine
and the instantiation of the routines in the first clause of the call-case of wfExpr.

The second clause of sound states that the new upper-bound on locks is below
all other locks that have already been acquired by the processor p. The proof of
this property is garnered from the Cartesian product in the wfLevels predicate,
which imposes that when locks are taken, they are statically less than every
lock taken by the surrounding procedure. When function calls are nested, these
transitively combine to ensure that locks requested by a processor p are less
than all other locks currently held by that processor. Since we know that the
locking scheme preserves the order relation, it must also preserve the inverse
order relation, which is the essential property desired to prove the third clause.

4.3 Usage and Tool Support

We have implemented the static checking of our scheme in a prototype tool,
written in Haskell [9]. Using this tool we successfully verified that a simple web
server is deadlock-free, a portion of which can be seen in Program 3.

To reduce the annotation burden, we have also implemented a simple an-
notation inference algorithm. The annotations shown in Program 2 can be au-
tomatically inferred using the tool. The simple inference scheme automatically
identifies separate class attributes with processor tags and lifts the tags to the

610 S. West, S. Nanz, and B. Meyer

db : separate <d> DATABASE

req (sock : separate <s> NET_SOCK)
require d < s

5 local
last : STRING
http_req : HTTP_REQUEST

do
create http_req.make ()

10

from read_line (sock)
until last.is_equal (cr)
loop
http_req.add_field (last)

15 read_line (sock)
end
update_database (db, http_req)
process_request (http_req)

end

Program 3: HTTP request processing

class header. It also propagates lock and require clauses appropriately, based
on calls within the body of a routine. For example, at a call-site, the require
clause of the call would be automatically appended to the containing routine’s
require clause; a similar approach is taken for the lock clause. This typically
makes the manual annotation burden light.

5 Related Work

The problem of describing, detecting, and preventing deadlocks in concurrent
systems has spawned research based on a variety of approaches. Necessary con-
ditions for a deadlock to occur have been described in a seminal work by Coffman
et al. [5]. Dynamic techniques can be used to detect deadlocks, e.g. using tech-
niques such as those presented by Bensalem et al. [2]. The fundamental approach
in this work is to instrument the program and use this runtime locking infor-
mation to detect locking cycles. The benefit is that this technique can be less
conservative than our approach, but it is based on actual program traces, and
the results are, therefore, not sound.

Static techniques rely on programmer annotations to indicate a partial order
among the program’s locks, and statically check whether this order is abided
by; this general idea is also the basis of our approach. Korty [13] proposed a
Lint-like tool for detecting deadlocks in programs with semaphores, however
without soundness guarantees. Extended static checking for Modula-3 [6] and
Java [7] uses program specifications in the style of Eiffel [15], from which verifi-
cation conditions are generated and checked with an automatic theorem prover.
Warnings are provided for various program errors, including deadlock. Being
based on Eiffel-style specifications, annotations in this approach are similar to
our scheme. However, no soundness guarantees are given whereas we guaran-
tee deadlock-freedom for well-formed programs. Jacobs et al. [10] also generate
verification conditions for annotated programs, and guarantee deadlock-freedom
for programs verified with a static checker. In contrast to our work, they use a
programming model for Java-like languages which is very different from SCOOP,
and do not provide a rigorous formal locking semantics.

A number of static approaches to deadlock prevention are based on type sys-
tems, in particular using ownership types [4]. Boyapati et al. [3] have introduced
the ability, as in our approach, to create a directed acyclic graph, well-order, or

A Modular Scheme for Deadlock Prevention 611

tree to represent the underlying partial order. In contrast to this approach, our
scheme makes it possible to declare locking orders in a routine-local manner,
which allows for a finer-grained modularity.

Our work is distinguished from the above approaches in that it has a higher-
level concurrency model, not based on traditional threads, and thus has a coarser-
grained locking model.

Using a model similar to SCOOP, Kerfoot et al. [11] use types to ensure
deadlock freedom for active objects [14]. Ownership types impose a hierarchy
on active objects, but the variety of ownership-structures that are permitted
are limited. Only trees are allowed, where our approach can support a general
directed acyclic graph. Ostroff et al. [17] develop a partial operational semantics
for SCOOP, and consider liveness properties of programs in the context of model
checking. While the approach can detect deadlocks, it is not modular, thus does
not scale to large programs. Kobayashi [12] gives π-calculus a type system that is
able to infer and verify deadlock properties about a program. It gives a versatile
approach that is even able to reason about recursive processes. However, our
work targets a new model of computation that is more immediately amenable
to traditional imperative programming.

6 Conclusion

In this paper we have presented a static technique for deadlock prevention in
SCOOP, an object-oriented programming model for concurrency. We found that
the model supports well reasoning about deadlock, as lock acquisition and release
are related to routine invocation and return. This allows the annotations to be
attached to the interface of routines, facilitating modular (per-routine) proofs
of correctness. This aspect is essential in practice as it is easier to reason about
deadlock when it is assured that local changes will not affect the overall result.
An implementation of the scheme is available, and has been successfully applied
to the example of a web server written in SCOOP.

Adding a deadlock prevention technique for SCOOP removes a critical defi-
ciency of this particular model, but the results also provide important general
lessons learned. While sound and scalable programming models for concurrency
are overdue, the divide between formally driven language developments (such
as process calculi) and concurrent programming language design still seems to
be large. This work showcases how one may bridge this gap by using formal
reasoning to derive techniques that can be applied to practical programming
languages.

In future work we will investigate the possibility of statically avoiding dead-
lock by creating some objects on the same processor when not rejected by other
constraints, expanding on the annotation inference techniques. Work on the se-
mantic foundations of the programming model provides also many avenues for
future research. The distributed nature apparent in the semantics can give im-
portant insights into extending the programming model for distribution. Also,
variants of the semantics can be studied, for example to provide insights about
possible performance improvements.

612 S. West, S. Nanz, and B. Meyer

Acknowledgments. This work is part of the SCOOP project at ETH Zurich,
which has benefitted from grants from the Hasler Foundation, the Swiss National
Foundation, Microsoft (Multicore award) and ETH (ETHIIRA).

References

1. Bacon, D.F., Strom, R.E., Tarafdar, A.: Guava: a dialect of Java without data
races. In: Proc. OOPSLA 2000, pp. 382–400. ACM, New York (2000)

2. Bensalem, S., Fernandez, J., Havelund, K., Mounier, L.: Confirmation of deadlock
potentials detected by runtime analysis. In: PADTAD 2006, pp. 41–50. ACM, New
York (2006)

3. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: prevent-
ing data races and deadlocks. In: Proc. OOPSLA 2002, pp. 211–230. ACM, New
York (2002)

4. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
ACM SIGPLAN Notices 33(10), 48–64 (1998)

5. Coffman, E.G., Elphick, M., Shoshani, A.: System deadlocks. ACM Computing
Surveys 3(2), 67–78 (1971)

6. Detlefs, D.L., Leino, R., Nelson, G., Saxe, J.B.: Extended static checking. Technical
Report 159, Compaq SRC (1998)

7. Flanagan, C., Leino, R., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for Java. In: Proc. PLDI 2002, pp. 234–245. ACM, New York (2002)

8. Hoare, C.A.R.: Monitors: an operating system structuring concept. Communica-
tions of the ACM 17(10), 549–557 (1974)

9. SCOOP homepage (2010), http://scoop.origo.ethz.ch/
10. Jacobs, B., Smans, J., Piessens, F., Schulte, W.: A statically verifiable programming

model for concurrent object-oriented programs. In: Liu, Z., He, J. (eds.) ICFEM
2006. LNCS, vol. 4260, pp. 420–439. Springer, Heidelberg (2006)

11. Kerfoot, E., McKeever, S., Torshizi, F.: Deadlock freedom through object owner-
ship. In: Proc. IWACO 2009, pp. 1–8. ACM, New York (2009)

12. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Her-
manns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidel-
berg (2006)

13. Korty, J.A.: Sema: A lint-like tool for analyzing semaphore usage in a multithreaded
UNIX kernel. In: USENIX Winter Technical Conference (1989)

14. Lavender, R.G., Schmidt, D.C.: Active object: an object behavioral pattern for
concurrent programming. In: Pattern Languages of Program Design, pp. 483–499.
Addison-Wesley, Reading (1996)

15. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1997)

16. Nienaltowski, P.: Practical framework for contract-based concurrent object-
oriented programming. PhD thesis, ETH Zurich (2007)

17. Ostroff, J.S., Torshizi, F., Huang, H.F., Schoeller, B.: Beyond contracts for con-
currency. Formal Aspects of Computing 21(4), 319–346 (2009)

18. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a dy-
namic data race detector for multithreaded programs. ACM Transactions on Com-
puter Systems 15(4), 391–411 (1997)

19. Torshizi, F., Ostroff, J.S., Paige, R.F., Chechik, M.: The SCOOP concurrency
model in Java-like languages. In: Proc. CPA 2009. IOS Press, Amsterdam (2009)

http://scoop.origo.ethz.ch/

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 613–629, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Model-Driven Protocol Design Based on Component
Oriented Modeling

Prabhu Shankar Kaliappan, Hartmut König, and Sebastian Schmerl

Department of Computer Science
Brandenburg University of Technology Cottbus

P.O. Box 10 13 44, 03013 Cottbus, Germany
{psk,koenig,sbs}@informatik.tu-cottbus.de

Abstract. Due to new emerging areas in the communication field there is a con-
stant need for the design of novel communication protocols. This demands tech-
niques for a rapid and efficient protocol design and development. Systematic
protocol designs using formal description techniques (FDTs), such as SDL,
LOTOS, etc., have proven a successful way to develop correct protocols. FDTs
enforce, however, a semantic-oriented description which makes it difficult to
reuse parts of the specification of other FDTs. A general-purpose modeling
language like the UML may help to easily bridge between different description
techniques. In contrast to the standardized FDTs, UML lacks a formal seman-
tics. A model-driven protocol design, which aims at supporting the reuse of
designs, makes only sense, when the designs of basic protocol mechanisms fit
in reusable design patterns or components with a formally defined semantics. In
this paper, we propose a component based protocol development approach with
UML. Typical structures and behaviors of protocols are pre-defined as compo-
nents using UML diagrams. The semantics of the UML diagrams is formally
defined using the compositional Temporal Logic of Actions (cTLA). Based on
this formalization, transformation into other presentations, e.g. PROMELA for
verification, are supported. We demonstrate the approach for an example
transfer protocol.

Keywords: communications protocols, UML based protocol development,
component based design, formal semantics.

1 Motivation

Reducing the development time and increasing the quality of a product are crucial
factors in software development. Many techniques and approaches have been
introduced in day-to-day life for the development of a product, but selecting the ap-
propriate technique for a given problem is decisive for the quality and efficacy of the
development. This also applies to the development of communication protocols.
There is a constant need for the design of new protocols, since new areas emerge in
the communication field. The development of protocols from scratch is usually a
lengthy process, error-prone, and time-consuming. On the other hand, protocols often

614 P.S. Kaliappan, H. König, and S. Schmerl

apply similar basic mechanisms, such as flow control, error control, connection
maintenance, etc. The protocol development can be considerably accelerated by the
reuse of such mechanisms.

There has been a long tradition in systematic protocol developments using formal
description techniques (FDTs), such as the Specification and Description Language
(SDL) [1] or the Language of Temporal Ordering Specification (LOTOS) [2], etc.
The deployment of formal description techniques has proven a successful way to
design, verify, and test protocols because of their formal semantics basis. FDTs en-
force, however, a semantic-oriented description, e.g. an agent-oriented description in
SDL or a process oriented specification in LOTOS. The FDT based protocol
development assumes a familiarity of the protocol engineer with the applied descrip-
tion technique. In practice, the use of FDTs is limited and mostly users specialize on
one language. Verification and test case generation also relate to the applied descrip-
tion technique. Moreover, the various FDTs support due to their defined semantics
only in part typically intuitive protocol modeling concepts, such as a representation
of the message exchange between entities. This can be overridden by introducing
Unified Modeling Language (UML) into the protocol design and deployment
process. UML provides all means for the modeling of communication protocols and
services. In contrast to the FDTs, UML supports with its various diagrams multiple
views to describe (visualize) the different aspects of the protocol behavior during de-
sign, thus enabling a model-driven protocol development. Besides, UML has found a
wide acceptance in academia and industries, much broader than the FDTs did.
However, UML has not widely applied in the protocol area because it lacks a formal
semantics.

A model-driven protocol design, which aims at supporting the reuse of designs,
makes only sense if the designs of basic protocol mechanisms fit in reusable design
patterns or components which can be composed with other components to a new de-
sign. Thus, intuitive protocol modeling patterns or components can be used as a basis
for transformations into other presentations, e.g. other FDTs, executable code, or auto-
mata presentations for test case generation. Therefore, a component approach is only
applicable if a formal semantics is allocated to these components. The correctness of
the components and their composition has to be proved formally based on the given
formal semantics. If this is given, UML based design components can be used for the
design of new protocols, and can serve as basis for transformations into other presenta-
tions. In this paper, we present an approach for a component oriented protocol design
and development process using UML with a formal semantics basis. Typical protocol
procedures are pre-defined in UML diagrams for the reuse in various designs. The
semantics of the UML diagrams is formally defined using the compositional Temporal
Logic of Actions (cTLA) [8]. Based on this formalization, transformations into various
representations, e.g. for verification and code generation, are supported. Thus, we are
able to set up a similar development process as with standardized FDTs.

The remainder of the paper is organized as follows. In Section 2, we discuss related
approaches. Thereafter in Section 3, we introduce the core of our component
approach and its formal semantics definition. In Section 4, we present the component

 Model-Driven Protocol Design Based on Component Oriented Modeling 615

compositions through an example data transfer protocol. We conclude the paper with
a short summary and address next research steps.

2 Related Work

The use of design patterns and components has already been proposed and applied in
various approaches for protocol and service design [3, 4], also in the context with for-
mal description techniques. So Gotzhein et al. [5, 6] developed an approach for deve-
loping protocol specification in SDL using SDL design patterns. For the design, the
requirements are captured by means of UML object diagrams as an analysis model. It
is used as communication service architecture to identify the service users and the
provider including the relations between them. The collaboration between the identi-
fied systems or objects is described in a Message Sequence Chart (MSC). The SDL
design pattern approach is illustrated for the Initiator-Responder (InRes) protocol as
case study. The approach uses several heuristic steps to derive the patterns. Hence, the
protocol development is restricted within these steps for an unskilled protocol devel-
oper. The verification of independent SDL design patterns is not illustrated. Instead,
the design is verified after composition, but not incrementally.

Byun et al. [7] propose with a pattern based development methodology for com-
munication protocols, a similar approach as the SDL design patterns. They specify the
patterns through communicating extended finite state machines (CEFSM) and exploit
SDL as an implementation language. CEFSM applies a similar notation as used for
state charts. The protocol is developed by applying only patterns, i.e. a pattern for
connection, a pattern for data transfer and a merge pattern for combining various
patterns. The verification is performed by mapping individual patterns onto the
Process Meta Language (PROMELA) for SPIN model checking [14]. Here, the consis-
tency among the used patterns and the SDL specification is not verified.

Herrmann et al. [8] introduced a framework for modeling transfer protocols using
the specification technique compositional Temporal Logic of Actions (cTLA) as spe-
cification patterns. cTLA supports a modular definition of generic process types and
the composition of process systems. Similarly to the FDT LOTOS, the processes of a
cTLA system interact via joint synchronous actions. The cTLA patterns are pre-de-
fined and specified as cTLA theorems, where they specify desired protocol behavior
by means of safety and liveness properties. cTLA supports the compositional design
of protocol procedures based on existing cTLA components. The correctness of these
designs can be formally verified based on the theorems defined for each cTLA pat-
tern. The applicability of the approach has been demonstrated for the design of trans-
fer protocols, but it requires a profound experience in cTLA and its semantic rules
from the protocol engineer, which is typically not given in practice. Besides, a graphi-
cal support for modeling protocols is not given.

Kraemer et al. [16, 17] apply a component based design approach to service design.
The developed approach, called SPACE, aims at a rapid service engineering using
UML collaboration and activity diagrams. The UML collaborations describe the ser-
vice structure, the activity diagram the service behavior. Based on this, external state
machines (ESM) are developed to identify the environment sequences like object and
control flow of the system service. This approach is well suited for service engineering,

616 P.S. Kaliappan, H. König, and S. Schmerl

but it is not quite efficient for protocol design because it does not take such features as
entity behaviors, concurrency, and so on into account.

3 On the Modeling of Protocol Design Components

UML as an object-oriented design language promotes the systematic development of
systems through 14 types of diagrams [10] which support due to their different and
supplementing presentations understandability, extensibility, reusability, and main-
tainability of the design. In protocol design diagrams like sequence, activity, and state
chart diagrams are preferably applied [11, 12]. The UML sequence diagram can be
used to visualize the message exchange between two systems through sequence
charts, while the UML activity diagram provides the features to design the internal
behavior of the entities. For that reason, we apply both diagrams in a protocol design
component. However, a component is only valid if a concrete abstraction is enclosed
on it. This is addressed in this section.

3.1 Protocol Design Components

Communication protocols define the rules how systems in a network communicate
with each other. They often apply similar mechanisms and procedures, such as the
connection establishment, acknowledged data transfer, flow control, error control,
connection release, and others. Such frequently applied mechanisms and procedures
can be defined as design components for reuse in various protocol designs. In proto-
col specifications two approaches are usually applied: the communication- and the
behavior- oriented description. The former describes the interaction between the enti-
ties, i.e. the foreseen message exchange, whereas the latter defines how this message
transfer is accomplished within the entities. Both views are complementary.

To assemble the communication and behavior-oriented descriptions, we introduce
two perspectives: the communication and the behavior perspective, respectively. The
communication perspective is to act as a design aid, which is often preferred by
designers to intuitively design a protocol. It represents a front-end design. The be-
havior perspective precisely defines
the respective protocol procedures as
an abstract implementation model, i.e.
as back-end design. A designer has
the possibility to choose the behavior-
oriented description for protocol de-
sign, but in order to have a
standardized framework we realize the
assumption made above.

To provide a concrete abstraction
to the component structure we define
a template to describe its features. The
protocol design component is parti-
tioned into three parts (see Figure 1):
identification, visualization, and attri-
butes. The identification part, or tag, Fig. 1. Template of a protocol component

 Model-Driven Protocol Design Based on Component Oriented Modeling 617

contains the component name, the type (communication and behavior-oriented des-
cription), the use in service or protocol level design, the component triggers (events),
and pre-post conditions as parameter constraints. In the visualization part, the compo-
nent behavior is described in UML sequence and activity diagrams. Both presen-
tations are tightly coupled. They describe the same behavior and must be consistent.
The partitions A and B indicate the communicating entities. The attribute part speci-
fies the expected behavioral properties in linear temporal logics (LTL) the component
has to fulfill, e.g. Data → ◊Ack for an acknowledged data transfer. The attribute part
is used to support the verification.

Communication Oriented Description. The presentation is not restricted to point-to-
point communication, but it can also include one-to-many or many-to-one relation-
ships. Figure 2 shows an example of UML sequence diagram of a protocol
component for a successful connection establishment. The communication-oriented
description consists of four lifelines (initiator, responder, entity A, and entity B). The
lifelines represent protocol entities and/or service users. In our example initiator and
responder represent the lifelines of the service users; entities A and B accordingly the
lifelines of the protocol entities. Likewise, other protocol components can be mod-
eled. The service and protocol design components are developed independently and
stored in a repository. The semantics to the communication-oriented description is the
UML 2.x sequence diagram semantics from [10] in natural English language.

Fig. 2. Communication-oriented description: Successful connection establishment

Behavior Oriented Description. Unlike the communication-oriented description that
represents the interaction between entities, the behavior part describes each entity
separately. Figure 3.a shows as an example the behavioral description of the entities A
and B through activity diagrams. Figure 3.b gives the identification tag for entity A.
The identification tag is enclosed within the description as a note. The activities in the
behavioral components are composed of nodes like accept event actions, send signal
actions, accept wait timers, actions, objects and data flows, decision-makings, forks
for concurrent operations, etc.

618 P.S. Kaliappan, H. König, and S. Schmerl

 a) Successful connection establishment b) Identification tag of entity A

Fig. 3. Behavior-oriented description

The components can be developed through any UML 2.x supported tool based on
the various protocol functions. Some typical functions that are frequently used in a
protocol design are listed in Table 1 as example. Thereafter, the modeled components
are stored in a repository, called protocol component prototypes, in an XML format
for reuse in any standardized UML supported tool.

Table 1. Typical protocol functions and possible reusable components

Protocol functions Reusable components
Explicit connection establishment Connection establishment
Implicit connection establishment
Stream-based data transfer Data Transfer
Datagram-based data transfer
Go back N Error Control
Selected repeat

….. …..
Explicit connection release Connection release
Abrupt connection release

Since we establish two types of descriptions, there is a need for a model synchroni-

zation to maintain design consistency between the two descriptions. For brevity, we
just explain the logic here. It applies a pre-defined set of mapping rules. They provide
a syntactical rule to describe the UML sequence and activity diagrams, extracted from
the UML document [10]. Thereafter, an algorithm is realized to parse the activity and
sequence diagram, and their consistency is evaluated. This corresponds to an UML
diagram interchange.

3.2 Formalizing the Semantics of Protocol Design Components

In order to support well-defined protocol compositions as well as automated model
transformations into other representations, the semantics of the component has to be
defined exactly. This is done by using the compositional Temporal Logic of Actions

 Model-Driven Protocol Design Based on Component Oriented Modeling 619

(cTLA) [8]. cTLA is a formal specification language developed by Herrmann et al.
[8] for the specification of transfer protocols. It is based on Lamport’s [9] Temporal
Logic of Actions. cTLA distinguishes two type of processes: simple and composi-
tional processes. The simple cTLA process is used to model single system resources,
while the compositional cTLA process is used to model systems and sub-systems as
compositions of simple cTLA processes that cooperate by means of synchronously
executed process actions. An example is shown in Figure 4. It has a program-like
structure with process as main function, constants and variables as declarations, init
as initial process state, processes as sub-functions with an index, and actions to define
the process behaviors.

The simple cTLA process shown in this example describes the logical operation
NOT. There are two possible results: 0 or 1; hence, they are assigned to a constant
variable const_value under CONSTANTS. To determine the current state of the proc-
ess a transitory variable var_i is declared and initialized to ‘0’. Now, a simple cTLA
process is triggered through an action execute(var_i: param). Here, param is an input
assigned to var_i. Based on the given input var_i, the result is placed by its
complementary value. This determines the process next state, denoted by var_i’.

Similarly a compositional cTLA process is defined in Figure 4 which comprises the
logical operations NOT, AND, and OR. Each operation is independently defined as
simple cTLA process and imported in PROCESSES by declaring an index pointer p1:
processLogicalNOT(param: Value) (see line 6). It is executed by the action execute
(var_1: param) along with an index pointer p1 as shown in line 6 of the compositional
cTLA process definition. The control flow transfers from the compositional to simple
cTLA process. This corresponds to a subroutine call in programming languages.

Fig. 4. A simple and a compositional cTLA process

The reasons for using cTLA to formalizing the semantics of UML activity dia-
grams are the following. (i) The formal semantics enables an exact interpretation of
the system design specification. (ii) As a temporal event based system, it is possible to

620 P.S. Kaliappan, H. König, and S. Schmerl

rewrite cTLA processes in a canonical form. This form can be used to verify the
system behaviors by introducing an appropriate verification mechanism, e.g. model
checking. It is also possible to formulate time-ordering events as properties to prove
whether it holds in the cTLA process or not. (iii) Due to its standard structure, it is
appropriate for model transformations into other formal description techniques, such
as Lotos, and into verification languages like PROMELA. The approaches from [8,18]
also addressed the importance of using cTLA for protocol verification. By consid-
ering the above advantages, we favor cTLA as semantics definition for UML activity
diagrams. The formalization of the semantics is confined to the activity diagrams in
the following. The communication-oriented description serves as an interface
description to promote an intuitive protocol design. With the selection and adaptation
of the components, the behavior-oriented description is automatically generated. It
forms the basis for the further protocol development.

3.3 Operational and Functional Semantics

Two different types of semantics are applied in our approach: an operational and a
functional semantics. An operational semantics is a way to give meaning to a design
/program language in a rigorous way. It describes how a language can be interpreted.
In contrast to the operational semantics, the functional semantics is based on syntactic
transformations of the design/program and simple operations on discrete data [20].
Likewise, we apply the operational semantics to give a valid meaning for simple
operations of the UML activity nodes that are specified in the UML document [10].
The functional semantics is used to unify the simple operations and to obtain a
formalized specification. Defining such kind of semantics has the following benefits.
Now, the designer is free to model the system in any standardized UML supported
tool. Thereafter, the designer can employ functional semantics to generate a formal
specification of his/her specification.

3.3.1 Simple cTLA Processes as Operational Semantics
Simple cTLA processes are used to define single system resources. Likewise, we
apply simple cTLA processes to define the operational semantics of the activity nodes
assigning to each activity node a pre-defined simple cTLA process. The definitions
can be re-used in different system designs just by updating the activity data. We
formalize a subset of UML activity nodes, such as init, final, fork, join, merge, deci-
sion, send signal, accept wait, accept event, control edges, and action nodes, which
are often used in protocol design. According to the UML document [10], the activities
have a Petri net like semantics, i.e. the semantics is based on a token flow. Hence, an
activity describes a state chart with the token movements as transitions, and the pla-
cement of tokens in the graph as states. In cTLA, the token movement and tokens can
be represented by means of process parameters. The activity token (AT) is assumed as
a set of triggering tokens for the activities. These tokens represent the data flow
among activities. Due to lack of space, we show the semantics definition only for the
accept event action here.

The accept event action is a receiving node from an activity diagram/partition
(parttion refers to the participants, e.g. entity B). The data received from another
activity partition is modeled through the action trigger accept. A variable rec (receive)

 Model-Driven Protocol Design Based on Component Oriented Modeling 621

is used to store the data for the action trigger. It is an auxiliary token for the entire
activity. The parameter rd is the receivable data and mapped to the token rec’, as a
next state.

Activity node: Accept event action

3.3.2 Compositional cTLA Process as Functional Semantics
The objective of the functional semantics is to formalize the entire design specified in
an activity diagram based on the simple cTLA processes defined for the independent
activity nodes. At this point, the behavior of an activity diagram is unknown, i.e. the
activity data and the execution sequence are unidentified. By lacking this feature, it is
not possible to check whether the design specifications are semantically valid or not.
For this, an automated mechanism, called Activity to cTLA (A2cTLA) process
generator [19], was developed as a tool to map the activity diagrams onto cTLA.
There may exist various ways to construct a compositional cTLA process, but we
intend to use the semantics definition as a base during the model transformations.
Hence, we realize the compositional cTLA process generation similarly to a com-
piling process. Given an activity diagram in an XML format and the simple cTLA
processes of the activity nodes, the tool generates its equivalent compositional cTLA
process. . Due to the space limitation, technical details of the transformation cannot be
given here. They are described in detail in [19]. We confine here to an example (see
Figure 5) the compositional cTLA that corresponds to the activity diagram of entity A
in Figure 3.a.

Fig. 5. cTLA process for the connection establishment component

PROCESS AcceptEvent(AT: Any)
VARIABLES rec;
INIT Δ rec = NULL;

ACTIONS
 accept(rd: AT) Δ rec’=rd ∧ rec ≠NULL;

END

622 P.S. Kaliappan, H. König, and S. Schmerl

4 Modeling a Protocol Design Specification

In order to assemble the components for a protocol design specification we use a
presentation interface that is based on UML interaction overview (IO) diagrams [10].
It is a combination of the sequence and activity diagrams. It has the feature to design
multiple sequence diagrams in a single window which can be linked together through
the activity nodes. It allows the protocol designer to use both the communication and
the behavior perspective in one presentation when assembling the components.

4.1 Communication Perspective

The presentation interface consists of two functions namely: (i) extract and build -
various service or protocol components are extracted from the component repository
and reassembled through the control lines, (ii) refinement – for adapting.

(i) Extract and build. Before illustrating the principle of this step, we describe cer-
tain constraints that should be considered while assembling the protocol components.
The constraints are used to model and interpret the protocol design in a standard way.

1. An initial node should be placed at the beginning of protocol design to ensure that
the design has a starting point.

2. A final node should be placed at the end of the protocol design to ensure that the
design has an end point. This does not apply to cyclic protocols.

3. Activity node constraints [10] that are used to design an activity diagram should
be followed.

First, the components are extracted from the protocol component prototypes reposi-
tory and placed on the presentation interface, i.e., with a group of sequence diagrams.
An initial node is placed in the beginning of the presentation interface. Later the
designer reorders the components accordingly
to the protocol requirements (see Figure 6).
The communication flow among the extracted
components is modeled using the activity
connection nodes like object flows, and con-
trol flows. The protocol features can be
further modeled with the help of forks for
concurrent operations, joins for concatenating
concurrent operations, decisions for
conditions, merge for combining multiple
control flows. For design information, several
comment nodes can be introduced to indicate
the usage of component adaptations. On a
component assembly, at last a final node is
placed and linked with the component’s con-
trol flow to indicate the end of protocol
specification.

Fig. 6. Communication Perspective

 Model-Driven Protocol Design Based on Component Oriented Modeling 623

(ii) Refinement. The service or protocol design components or specification may
need some differentiation regarding their default names. Each designer uses own
names and notations to describe the protocol or service primitives. There exists one
rule to accomplish this task. The notions can be changed, but not the values. For
instance, the component in Figure 3.a has a notion SRequ_1. This can be changed into
ServiceRequest_1, ServiceIndication_1 etc. The value followed by the underscore is
considered as a sequence number. This is to represent a standard notion for the service
and protocol primitives. Apart from the naming convention, there might be a
situation, where a component does not fit in the compositions. For example, a
protocol specification may require additional features in the data transfer component,
e.g. a pause. This feature may not be available in the extracted component. For this,
the designer has an option to add this feature to the data transfer component.

4.2 Behavior Perspective

Whenever a communication description of a design component is extracted from the
repository its corresponding behavior-oriented description is extracted and placed in
the behavior perspective as basis for the further protocol development. For example,
the behavior descriptions of entities A and B in Figure 7 are generated with the com-
munication-oriented description of Figure 6. This generation is carried out simulta-
neously during the protocol design.

There is another problem which has to be taken into account during design. Proto-
cols are divided in symmetric or asymmetric protocols regarding the behavior of the
protocol entities. In symmetric protocols the entities show the same behavior, while in
asymmetric ones it is different. In a symmetric protocol design, the designer can
therefore use the same control flow in both entities. Thus the behavior description can
be automatically derived. In an asymmetric protocol design this cannot be done. For
instance, consider the asymmetric protocol design specification shown in Figure 6.
There exist four components: connect, ack handler, data transfer, and disconnect.
Here, the ack handler component should only exist in entity A. If a designer uses the
same control flow for the communication and behavior perspective adaptations, one
could obtain a
wrong protocol
design for entity B
because the ack
handler component
does not exist here.
To overcome this
situation we define
a textual constraint
near to the control
flow during the
communication de-
scription adap-
tations. The con-
straints are visible
to the designer Fig. 7. Behavior Perspective

624 P.S. Kaliappan, H. König, and S. Schmerl

through an identification tag as shown in Figure 6 and Figure 3.b. Based on this con-
straint, the components are differentiated and adapted in the behavior perspective (see
Figure 7), i.e. whether it belongs to entity A or B. To sum up the presentation inter-
face has a support of UML sequence, activity, and interaction overview diagrams.

4.3 Evaluation Example

To illustrate the workflow of our method, we use an example case study of the eX-
ample Data Transfer (XDT) protocol [13] which is being used as teaching protocol.
XDT works on a distributed environment to transfer large files over an unreliable me-
dia using the go back N principle (retransmission of messages, when some messages
are not successfully transferred). The protocol description consists of a service and a
protocol specification, which both include a data format specification. The XDT pro-
tocol functionalities are shown in Figure 8. The sender makes an initiative for data
transmission to the receiver by means of an XDATrequ service primitive. The new
connection is indicated by an XDATind primitive. The protocol indicates the success-
ful connection set up to the sender by
XDATconf. After this, the data are
transferred by means of a DT message.
However in certain cases, the service
provider may not preserve the order of the
data units. In this case, the ABO message is
initialized to abort the connection. This is
indicated to the users by a XABORTind
primitive. XBREAKind is initialized to stop
the acceptance of data flow from the user
for a certain period, if the go back N
message buffer is full.

The end of transmission is indicated by setting the parameter eom in the final data
unit of XDATrequ and XDATind primitives. The connection is released implicitly,
indicated by an XDISind primitive at both sides after successfully transmitting the last
data unit. The further explanation of the XDT protocol can be found in [13].

In principle, the service and protocol components are stored together in the reposi-
tory. Whenever the designer models the protocol design components, its corre-
sponding services are also specified concurrently. However, it is also possible that the
designer can model the service and protocol separately. In the following, we demon-
strate the service and protocol design in parallel. According to the XDT protocol
requirements; there is a need for components for connection set up, message transfer,
acknowledgement handler, connection abort, go_back_N, and connection release.
At first, we look for appropriate components in the repository to fulfill the above
requirements.

Communication Perspective. We assume that the following components connect
(C1), transfer (C2), acknowledgment confirmation (C3), abort_entity A (C4), abort_
entity B (C5), go back N (C6), and disconnect (C7) exist in the protocol component
repository and may fit to the XDT protocol design. Hence, these seven components are
extracted and placed on the communication perspective (see C1 to C7 in Figure 9).

Fig. 8. XDT service and protocol

 Model-Driven Protocol Design Based on Component Oriented Modeling 625

Fig. 9. XDT protocol specification: Communication-oriented description

626 P.S. Kaliappan, H. König, and S. Schmerl

An initial node is placed at the top of the extracted components to indicate the start
state of the XDT protocol design specification. Next, we assemble the components
through the control flows. A control flow is used to link the initial node and the con-
nect component. The connect component consists of two different outputs: connected
and abort (see identification tag in Figure 9). We introduce therefore a decision node
(D1) to validate them. The connect component is linked with the decision node (D1)
using another control flow. There exist two parallel parts in the XDT protocol: the
data transfer and the acknowledge handler. The data transfer part is responsible to
send and receive messages as well as to validate whether the sent data is the end of
message or not. The acknowledgement handler is used to check the message sequen-
ce, to trigger message retransfer, connection abort, and to handle time-out events. To
specify the two parallel parts we introduce a fork node and link it with the decision
node (D1).

For brevity, we consider the acknowledgment handler and its adaptations.
Adapting the four events, such as sequence validation, message retransfer, connection
abort, and time-out, from the fork node may lead a design overload. The reason is the
following. The four events execute repeatedly based on a global timer and receivable
messages like ACK (acknowledgement), and ABO (abort) from entity B. For
example, if an acknowledgment is not received for a certain time the handler assumes
that the message is not successfully transferred. In this case, the go_back_N
mechanism is activated and the messages from Nth one are retransmitted. If an abort
signal is received from entity B then an abort is triggered. Likewise, the time-out also
leads to an abort. Hence, instead of specifying four events in four loops they can be
capsulated into a single activity. For this, we model a new component (see dashed
rectangle in Figure 9), called the timeHandler, using two timers t1 (to receive data), t2
(for go_back_n) and a loop activity as shown in Figure 9 (see C8). Now, the timeHan-
dler component possesses the following output parameters, i.e. ACK_N, go_back_N,
ABO, and time-out. In most cases, ABO and time-out in the XDT protocol result in
an exception condition. Hence, we consider the ABO and timeout to be a single
output parameter.

Next, we continue the component adaptations. To validate the timeHandler para-
meters, another decision node (D3) is placed near to the timeHandler component
and linked with a control flow. In the following, we explain the ACK_N parameter
adaptation.

ACK_N, if an acknowledgment is received from entity B then a control flow is
used to link the decision node (D3) and ackConfirmation (C3) component. Next, a
decision node (D4) is introduced to validate the outputs, such as connected and eom
from the ackConfirmation component. If it is connected a control flow is used to link
the decision node (D4) and the timeHandler (C8) component. This is to specify that
the data transfer between the two entities will be accomplished. In the other case, i.e.
eom, a control flow is used to link the decision node (D4) and the disconnect compo-
nent to specify the connection release. Likewise, other parameters are evaluated and
linked appropriately. Finally, a control flow from the join node and to the connect
(C1) component is linked to provide the next service in the XDT protocol.

 Model-Driven Protocol Design Based on Component Oriented Modeling 627

Behavior Perspective. Now
we consider the behavior of the
communication entities, i.e. the
specification has to be
partitioned into two parts, for
entities A and B. For instance,
Figure 10.a depicts the
behavioral design for entity A
that corresponds to Figure 9.
For brevity, we show only
some few components in
Figure 10. The control flows
for the partitioned components
are independently visualized
here. For instance, consider the
timeHandler component in
Figure 9 that should exist only
in entity A. The control flow
for the timeHandler (T1)
component of entity A in the
behavior perspective is
straightforward, i.e. the
designer can use the same
control flow.

Since, the XDT protocol is
asymmetric, the timeHandler
component in entity B does not
exist, i.e., there is no need of a
fork node. The corresponding
control flows are discarded
automatically. Besides, there
exist only one output parameter
from the connect component
(see B1 in Figure 10.b) in
entity B, and hence the decision
node is discarded. These two
facts are clearly visible in
Figure 10.b. Likewise, the
other components are linked
together with respect to the constraints specified in the communication -oriented
design. For the XDT protocol design, seven components are reused from
the repository, while one component is newly introduced, i.e., timeHandler (see
Figure 9). This considerably shortens the development time. As result we get a
communication and a behavior-oriented XDT specification. Besides, the refactoring
of the protocol design is simple too. If the designer wants to change a given
specification, e.g. using selected repeat instead of go_back_N, he/she has simply to

Fig. 10. XDT protocol specification:
Behavior-oriented description

628 P.S. Kaliappan, H. König, and S. Schmerl

replace the component C6 by the selected repeat component from the repository and
use the existing control flows to link the components.

5 Final Remarks

We have presented a component-oriented approach for a UML based design and de-
velopment of communication protocols. The use of UML in the protocol development
has several advantages compared to the traditional FDT based approaches. Unlike
FDTs which enforce a semantic-oriented description UML better supports an intuitive
modeling of the protocols and the related services which allows in particular a reuse
of the designs. In contrast to FDTs however, UML does not possess a formal
semantics which is needed for a unique interpretation of the specifications and the
transformation in other representations. For that reason, we first introduced a formal
semantics for activity diagrams using the compositional Temporal Logic of Actions
(cTLA). The formalization is done in two steps. First we introduce an operational
semantics for the activity diagram nodes using simple cTLA processes. The func-
tional semantics of the specification is derived by mapping the activity diagrams into
a compositional cTLA process. Based on this formal definition we introduced a com-
ponent based design approach. It applies two perspectives: a communication perspec-
tive using sequence diagrams and a behavior perspective using activity diagrams.
Both views are complementary and synchronized with each other. The communica-
tion perspective supports the intuitive design by representing the interactions between
the protocol entities. The behavior perspective describes how these interactions are
“implemented” in the entities. The activity diagram specifications form the basis for
the further development steps. We have demonstrated with an example how the
components can be used to set up a protocol design specification and how adaptations
to the context have to be taken into account. Moreover, we use the UML 2.x com-
patible format, i.e. XML, which helps the design to be interoperable between multiple
UML tool vendors.

The protocol design specification is dependable only if they are proved for correct-
ness properties, such as deadlock freedom, livelock freedom, etc. Illustrating an ap-
proach to design verification goes out of the scope to this paper. Here we only outline
the principle. Each component possesses a concrete abstraction and should be verified
for design errors by applying an appropriate verification mechanism. At the same
time, the component adaptations should be verified to check whether the components
hold desired behavior or not. For this, we favor incremental verification that helps to
detect the design errors concurrently, by tracking the component adaptations. The
inclusion of the property specifications in the attribute part assists this verification.
The component is transformed into PROMELA for formally proving the correctness of
the properties with the help of the model checker SPIN [14]. Currently, we are
developing the protocol design components and implementing the approach using a
visual paradigm suite [15]. Next, it is planned to implement the design and
verification process under single window system using the eclipse environment.

 Model-Driven Protocol Design Based on Component Oriented Modeling 629

References

1. ITU-T Recommendation Z.100.: Specification and Description Language SDL (2002)
2. ISO: Information Processing Systems - Open Systems Interconnection - LOTOS - A

Formal Description Technique Based on the Temporal Ordering of Observational
Behaviour, IS 8807 (2006)

3. Jaragh, M., Saleh, K.A.: Protocols Modeling Using the Unified Modeling Language. In:
Proceedings of IEEE Region 10 International Conference, Singapore (2001)

4. Pärssinen, J.: Turunen.M.: Patterns for Protocol System Architecture. In: Proceedings of
the 7th Conference on Pattern Languages of Programs, Illinois, USA (2000)

5. Gotzhein, R.: Consolidating and Applying the SDL-pattern approach: A Detailed Case
Study. In: Information and Software Technology, vol. 45 -11. Elsevier Sciences,
Amsterdam (2003)

6. Geppert, B., Rößler, F.: The SDL pattern approach – A Reuse-Driven SDL Design
Methodology. Computer Networks 35(6), 627–645 (2001)

7. Byun, Y., Sanders, B.A.: A Pattern Based Development Methodology for Communication
Protocols. In: Proc. of the ACM Symposium on Applied Computing, New York (2005)

8. Herrmann, P., Krumm, H.: A Framework for Modeling Transfer Protocols. Computer
Networks 34 (2000)

9. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and
Software. Pearson Education, Inc., London (2002)

10. Object Management Group.: UML Superstructure - Specification Standard Document.
OMG Unified Modeling Language (OMG UML) (February 2009)

11. Thramboulidis, K., Mikroyannidis, A.: Using UML for the Design of Communication
Protocols: The TCP case study. In: IEEE International Conference on Software,
Telecommunications and Computer Networks, Dubrovnic, Croatia (2003)

12. Patel, D.: Object-Oriented Design of an Embedded Communication Protocol in UML. A
Technical Report, Design of Embedded Systems, University of California, Berkeley
(1999)

13. eXample Data Transfer Protocol,
http://www.protocol-engineering.tu-cottbus.de/

14. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley, Reading (2006)
15. Visual Paradigm UML Suite,

http://www.visual-paradigm.com/product/vpuml/
16. Kraemer, F.A., Herrmann, P.: Service Specification by Composition of Collaborations -

An Example. In: Proceedings of the WI-IAT Workshops, Hong Kong, P.R. China (2006)
17. Kraemer, F.A., Slåtten, V., Herrmann, P.: Model-Driven Construction of Embedded

Applications based on Reusable Building blocks. In: Reed, R., Bilgic, A., Gotzhein, R.
(eds.) SDL 2009: Design for Motes and Mobiles. LNCS, vol. 5719, pp. 1–18. Springer,
Heidelberg (2009)

18. Graw, G., Herrmann, P., Krumm, H.: Verification of UML-Based Real-Time System
Designs by Means of cTLA. In: Proceedings of the Third IEEE international Symposium
on Object-Oriented Real-Time Distributed Computing. IEEE Computer Society, Los
Alamitos (2000)

19. Kaliappan, P.S., König, H., Schmerl, S.: Formal Methods Integration to UML-based
Design Specification. Submitted to SLE 2010, Eindhoven, The Netherlands (2010)

20. Plotkin, G.D.: A Structural Approach to Operational Semantic. Journal of Logic and
Programming in Structural Operational Semantics 60-61 (December 2004)

Laws of Pattern Composition

Hong Zhu and Ian Bayley

Oxford Brookes University, Wheatley Campus,
Wheatley, Oxfordshire OX33 1HX, UK

hzhu@brookes.ac.uk, ibayley@brookes.ac.uk

Abstract. Design patterns are rarely used on their own. They are almost always
to be found composed with each other in real applications. So it is crucial that we
can reason about their compositions. In our previous work, we defined a set of
operators on patterns so that pattern compositions can be represented as expres-
sions on patterns. In this paper, we investigate the algebraic properties of these
operators, prove a set of algebraic laws that they obey, and use the laws to show
the equivalence of pattern compositions.

Keywords: Design patterns, Pattern composition, Formal methods, Algebraic
laws, First order logic.

1 Introduction

Design patterns are codified reusable solutions to recurring design problems [9,1].
Many such patterns have been identified, documented, catalogued [6] and included in
software tools [11,16,14]. Although each is specified separately, they are usually to be
found composed with each other with overlaps except in trivial cases [17]. However,
while the importance of pattern compositions has been widely recognised, it has not
been studied intensively. This is perhaps partly because the patterns have been docu-
mented informally.

In the past few years, significant progress has been made by several researchers in
the formalisation of design patterns. Several approaches have been advanced in the lit-
erature [15,13,19,7,10,5]. In spite of the differences in the formalisms used by these
approaches, the basic ideas underlying them are similar. In particular, a specification of
a pattern usually consists of statements on the common structural features and, some-
times, behavioural features of its instances. The structural features of a pattern are typ-
ically specified by assertions on the existence of certain types of components in the
pattern. The configuration of the elements is also described, in terms of the static rela-
tionship between them. The behavioural features are normally defined by assertions on
the temporal orders of the messages exchanged between the components as manifested
in the designs of systems. This formalisation lays a foundation for systematically and
formally investigating the composition of design patterns.

However, very few authors have investigated composition formally. In [18], Taibi
illustrated the concept of pattern composition in his framework of pattern formalisation
with an example. In [3], we formally defined a universal pattern composition opera-
tor. In [22], we extended and revised the work, but took a radically different approach.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 630–645, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Laws of Pattern Composition 631

We replaced the single operator with a set of simpler operators that express compo-
sition when used together. A case study was also reported there to demonstrate the
expressiveness of the operators. In this paper, we continue the work in this direction
by investigating how to reason about pattern compositions, such as how to determine
whether two pattern compositions are equivalent. We will prove a set of algebraic laws
that these operators obey and demonstrate, with an example, how to prove equivalence
of pattern compositions by equational reasoning.

The particular formalism that we will use in this paper to define operators and to
prove their algebraic laws is that advanced in our previous work. This uses the first-
order logic induced from the abstract syntax of UML defined in GEBNF [20,21] to
define both the structural and behavioural features of design patterns. In this way, we
have already formally specified the 23 patterns in the classic Gang of Four (hereafter
referred to as GoF) book [9], and we have specified variants too [2,4,5]. We have also
constructed a prototype software tool to check whether a design represented in UML
conforms to a pattern [23,24]. It is worth noting that the definitions of the operations
and the algebraic laws proved in this paper are independent of the formalism and thus
can equally well be applied to others such as OCL [8], temporal logic [18], and so on,
but the results may be less readable. In particular OCL would need to be applied at the
meta-level to assert the existence of the required classes and methods.

The remainder of the paper is organised as follows. Section 2 reviews our approach
to formalisation and lays the theoretical foundation for our proofs. Section 3 outlines
the set of operations on design patterns. Section 4 presents the algebraic laws that they
obey. Section 5 outlines the use of laws in equational reasoning about the equivalence of
pattern compositions with an example. Section 6 concludes the paper with a discussion
of related works and future work. For the sake of readability and space, the proofs of
the algebraic laws are removed from the body of the paper and some are given in the
appendix.

2 Background

This section briefly reviews our approach to the formal specification of design pat-
terns. It is based on meta-modelling in the sense that each pattern is a subset of the
design models having certain structural and behavioral features. Readers are referred to
[2,4,23,5] for details.

2.1 Meta-modelling in GEBNF

Our approach starts by defining the domain of all models with an abstract syntax written
in the meta-notation Graphic Extension of BNF (GEBNF) [20]. GEBNF extends the
traditional BNF notation with a ‘reference’ facility to define the graphical structure of
diagrams. In addition, each syntactic element in the definition of a language construct
is assigned an identifier (called a field name) so that a first-order language (FOL) can
be induced from the abstract syntax definition [21].

632 H. Zhu and I. Bayley

For example, the following are some example syntax rules in GEBNF for the UML
modelling language.

ClassDiag ::= classes : Class+, assocs, inherits, compag : Rel∗

Class ::= name : String, [attrs : Property∗], [opers : Operation∗]
Rel ::= [name : String], source : End, end : End
End ::= node : Class, [name : String], [mult : Multiplicity]

The first line defines a class diagram as consisting of a non-empty set of classes and
a collection of three relations on the set. Here classes, assocs, inherits and compag
are field names. Each field name is a function. For example, classes is a function from
a ClassDiag to the set of class nodes in the model. Functions assocs, inherits and
compag are mappings from a class diagram to the sets of association, inheritance and
composite/aggregate relations in the model. The non-terminal Class in the definition
of End is a reference occurrence. This means that the node at the end of a relation
must be an existing class node in the diagram, not a newly introduced class node. The
definitions of the class diagrams and sequence diagrams of UML in GEBNF can be
found in [5]. Table 1 gives the functions used in this paper that are induced from these
definitions as well as those that are based on them. A formal more detailed treatment of
this can be found in [5].

Table 1. Some Functions Induced from GEBNF Syntax Definition of UML

ID Domain Function

Functions directly induced from GEBNF syntax definition of UML
classes Class diagram The set of class nodes in the class diagram
assocs Class diagram The set of association relations in the class diagram
inherits Class diagram The set of inheritance relations in the class diagram
compag Class diagram The set of composite and aggregate relations in the class diagram
name Class node The name of the class
attr Class node The attributes contained in the class node
opers Class node The operations contained in the class node
sig Message The signature of the message
Functions defined based on induced functions
X −−�+ Y Class Class X inherits class Y directly or indirectly
X −→+ Y Class There is an association from class X to class Y directly or indirectly
X �−→+ Y Class There is an composite or aggregate relation from X to Y directly or indirectly
isInterface(X) Class Class X is an interface
CDR(X) Class No messages are send to a subclass of X from outside directly
subs(X) Class The set of class nodes that are subclasses of X
calls(x, y) Operation Operation x calls operation y
isAbstract(op) Operation Operation op is abstract
fromClass(m) Message The class of the object that message m is sent from
toClass(m) Message The class of the object that message m is sent to
X ≈ Y Operation Operations X and Y share the same name

2.2 Formal Specification of Patterns

Given a formal definition of the domain of models, we can for each pattern, define a
predicate in first-order logic to constrain the models such that each model that satisfies
the predicates is an instance of the pattern.

Laws of Pattern Composition 633

Definition 1. (Formal specification of DPs)
A formal specification of a design pattern is a triple P = 〈V, Prs, P rd〉, where Prs and
Prd are predicates on the domain of UML static class diagrams and dynamic sequence
diagrams, respectively, and V is a set of declarations of the variables that are free in
the predicates Prs and Prd. Let V = {v1 : T1, · · · , vn : Tn}. The semantics of the
specification is the closed formula in the following form.

∃v1 : T1 · · · ∃vn : Tn · (Prs ∧ Prd) (1)

In the sequel, we write Spec(P) to denote the predicate (1) above, V ars(P) for the set
of variables declared in V , and Pred(P) for the predicate Prs ∧ Prd.

For example, Fig. 1 shows the specification of the Object Adapter design pattern.
The class diagram from the GoF book has been included for the sake of readability.

Specification 1 (Object Adapter Pattern)
Components

1. Target,Adapter,Adaptee ∈ classes,
2. requests ⊆ Target.opers,
3. specreqs ⊆ Adaptee.opers

Static Conditions

1. Adapter−−�+ Target, Adapter −→+ Adaptee,
2. CDR(Target)

Dynamic Conditions

1. ∀o ∈ requests · ∃o′ ∈ specreqs · (calls(o, o′))

Fig. 1. Specification of Object Adapter Pattern

Fig. 2 gives the specification of the Composite pattern. Both patterns will be used
throughout the paper.

2.3 Reasoning about Patterns

We often want to show that a concrete design really conforms to a design pattern. This
is a far from trivial task for some other formalisation approaches. For us though, the

634 H. Zhu and I. Bayley

Specification 2 (Composite)
Components

1. Component, Composite ∈ classes,
2. Leaves ⊆ classes,
3. ops ⊆ Component.opers

Static Conditions

1. ops �= ∅
2. ∀o ∈ ops.isAbstract(o),
3. ∀l ∈ Leaves · (l −−�+ Component ∧ ¬(l �−→+ Component))
4. isInterface(Component)
5. Composite−−�∗ Component
6. Composite �−→+ Component
7. CDR(Component)

Dynamic Conditions

1. any call to Composite causes follow-up calls

∀m ∈ messages · ∃o ∈ ops · (toClass(m) = Composite ∧m.sig ≈ o⇒
∃m′ ∈ messages . calls(m, m′) ∧m′.sig ≈ m.sig)

2. any call to a leaf does not

∀m ∈ messages · ∃o ∈ ops · toClass(m) ∈ Leaves ∧m.sig ≈ o⇒
¬∃m′ ∈ messages . calls(m, m′) ∧m′.sig ≈ m.sig)

Fig. 2. Specification of the Composite Pattern

use of predicate logic makes it easy and we formally define the conformance relation as
follows.

Let m be a model and pr be a predicate. We write m |= pr to denote that predicate
pr is true in model m. Readers are referred to [21] for the formal definition of m |= pr.

Definition 2. (Conformance of a design to a pattern)
Let m be a model and P =< V, Prs, P rd > be a formal specification of a design
pattern. The model m conforms to the design pattern as specified by P if and only if
m |= Spec(P). !"

To prove such a conformance we just need to give an assignment α of variables in V to
elements in m and evaluate Pred(P) in the context of α. If the result is true, then the
model satisfies the specification. This is formalised in the following lemma.

Lemma 1. (Validity of conformance proofs)
A model m conforms to a design pattern specified by predicate P if and only if there is
an assignment α from V ars(P) to the elements in m such that Evaα(m, Pred(P)) =
true. !"

A software tool has been developed that employs the first order logic theorem prover
SPASS. With it, proofs of conformance can be performed automatically [23,24].

Laws of Pattern Composition 635

Given a formal specification of a pattern P , we can infer the properties of any system
that conforms to it. Using the inference rules of first-order logic, we can deduce that
Spec(P) ⇒ q where q is a formula denoting a property of the model. Intuitively, we
expect that all models that conform to the specification should have this property and
the following lemma formalises this intuition.

Lemma 2. (Validity of property proofs)
Let P be a formal specification of a design pattern. � Spec(P)⇒ q implies that for all
models m such that m |= Spec(P) we have that m |= q. !"

In other words, every logical consequence of a formal specification is a property of all
the models that conform to the pattern specified.

There are several different kinds of relationships between patterns. Many of them
can be defined as logical relations and proved in first-order logic. Specialisation and
equivalence are examples of them.

Definition 3. (Specialisation relation between patterns)
Let P and Q be design patterns. Pattern P is a specialisation of Q, written P Q, if
for all models m, whenever m conforms to P , then, m also conforms to Q. !"

Definition 4. (Equivalence relation between patterns)
Let P and Q be design patterns. Pattern P is equivalent to Q, written P = Q, if P Q
and Q P . !"
By Lemma 1, we can use inference in first-order logic to show specialisation.

Lemma 3. (Validity of proofs of specialisation relation)
Let P and Q be two design patterns. Then, we have that

1. P Q, if Spec(P)⇒ Spec(Q), and
2. P = Q, if Spec(P)⇔ Spec(Q). !"

Furthermore, by Definition 1 and Lemma 3, we can prove specialisation and equiva-
lence relations between patterns by inference on the predicate parts alone if their vari-
able sets are equal.

Lemma 4. (Validity of proofs of predicate relation)
Let P and Q be two design patterns with V ars(P) = V ars(Q). Then P Q if
Pred(P) ⇒ Pred(Q), and P = Q if Pred(P) ⇔ Pred(Q). !"
Specialisation is a pre-order with bottom FALSE and top TRUE defined as follows.

Definition 5. (TRUE and FALSE patterns)
Pattern TRUE is the pattern such that for all models m, m |= TRUE. Pattern
FALSE is the pattern such that for no model m, m |= FALSE. !"

In summary, therefore, and letting P , Q and R be any given patterns, we have the
following.

P P (2)

(P Q) ∧ (Q R)⇒ (P R) (3)

FALSE P TRUE (4)

636 H. Zhu and I. Bayley

3 Operators on Design Patterns

In this section, we review the set of operators on patterns defined in [22]. The restriction
operator was first introduced in [3], where it was called the specialisation operator.

Definition 6. (Restriction operator)
Let P be a given pattern and c be a predicate defined on the components of P . A restric-
tion of P with constraint c, written P [c], is the pattern obtained from P by imposing
the predicate c as an additional condition of the pattern. Formally,

1. V ars(P [c]) = V ars(P),
2. Pred(P [c]) = (Pred(P) ∧ c). !"

For example, the pattern Composite1 is the variant of the Composite pattern that has
only one leaf:

Composite1 = Composite[#Leaves = 1].

Many more examples are given in the case studies reported in [22]. A frequently
occuring use is in expressions of the form P [u = v] for pattern P and variables u and
v of the same type. This is the pattern obtained from P by unifying components u and
v and making them the same element.

The restriction operator does not introduce any new components into the structure of
a pattern, but the following operators do.

Definition 7. (Superposition operator)
Let P and Q be two patterns. Assume that the component variables of P and Q are
disjoint, i.e. V ars(P) ∩ V ars(Q) = ∅. The superposition of P and Q, written P ∗Q,
is defined as follows.

1. V ars(P ∗Q) = V ars(P) ∪ V ars(Q);
2. Pred(P ∗Q) = Pred(P) ∧ Pred(Q). !"

Informally, P ∗ Q is the minimal pattern (i.e. that with the fewest components and
weakest conditions) containing both P and Q without overlap. The definition has the
requirement that component variables be disjoint, but we can always systematically
rename the variables to make them disjoint and the notation with which we will do so
is as follows. Let x ∈ V ars(P) be a component of pattern P and x′ /∈ V ars(P). The
systematic renaming of x to x′ is written as P [x′ := x]. Obviously, for all models m,
we have that m |= P ⇔ m |= P [x′ := x] because Spec(P) is a closed formula. In the
sequel, we assume that renaming is made implicitly before two patterns are superposed
when there is a naming conflict between them.

Definition 8. (Extension operator)
Let P be a pattern, V be a set of variable declarations that are disjoint with P ’s
component variables (i.e. V ars(P) ∩ V = ∅), and c be a predicate with variables
in V ars(P)∪V . The extension of pattern P with components V and linkage condition
c, written as P#(V • c), is defined as follows.

1. V ars(P#(V • c)) = V ars(P) ∪ V ;

Laws of Pattern Composition 637

2. Pred(P#(V • c)) = Pred(P) ∧ c. !"

For any predicate p, let p[x\e] denote the result of replacing all free occurrences of x in
p with expression e.

Now we can define the flatten operator as follows.

Definition 9. (Flatten Operator)
Let P be a pattern, xs : P(T) be a variable in V ars(P) and x : T be a variable not
in V ars(P). Then the flattening of P on variable x, written P ⇓ xs\x, is defined as
follows.

1. V ars(P ⇓ xs\x) = (V ars(P)− {xs : P(T)}) ∪ {x : T },
2. Pred(P ⇓ xs\x) = Pred(P)[xs\{x}]. !"

Note that P(T) is the power set of T , and thus, xs : P(T) means that variable xs is a
set of elements of type T . For example, Leaves ⊆ classes in the specification of the
Composite pattern is the same as Leaves : P(classes). Applying the flatten operator
on Leaves, the Composite1 pattern can be equivalently expressed as follows.

Composite ⇓ Leaves\Leaf

As an immediate consequence of this definition, we have the following property. For
x1 �= x2 and x′

1 �= x′
2,

(P ⇓ x1\x′
1) ⇓ x2\x′

2 = (P ⇓ x2\x′
2) ⇓ x1\x′

1. (5)

Therefore, we can overload the ⇓ operator to a set of component variables. Let
X be a subset of P ’s component variables all of power set type, i.e. X = {x1 :
P(T1), · · · , xn : P(Tn)} ⊆ V ars(P), n ≥ 1 and X ′ = {x′

1 : T1, · · · , x′
n : Tn}

such that X ′ ∩ V ars(P) = ∅. Then we write P ⇓ X\X ′ to denote P ⇓ x1\x′
1 ⇓ · · · ⇓

xn\x′
n.

Note that our pattern specifications are closed formulae, containing no free variables.
Although the names given to component variables greatly improve readability, they
have no effect on semantics so, in the sequel, we will often omit new variable names
and write simply P ⇓ x to represent P ⇓ x\x′. Also, we will use plural forms for
the names of lifted variables, e.g. xs for the lifted form of x, and similarly for sets of
variables, e.g. XS for the lifted form of X .

Definition 10. (Generalisation operator)
Let P be a pattern, x : T be a variable in V ars(P) and xs : P(T) be a variable not in
V ars(P). Then the generalisation of P on variable x, written P ⇑ x\xs, is defined as
follows.

1. V ars(P ⇑ x\xs) = (V ars(P)− {x : T }) ∪ {xs : P(T)},
2. Pred(P ⇑ x\xs) = ∀x ∈ xs · Pred(P). !"

We will use the same syntactic sugar for ⇑ as we do for ⇓. In other words, we will often
omit the new variable name and write P ⇑ x, and thanks to an analogue of Equation 5,
we can and will promote the operator ⇑ to sets.

638 H. Zhu and I. Bayley

For example, by applying the generalisation operator to Composite1 on the compo-
nent Leaf , we can obtain the pattern Composite. Formally,

Composite = Composite1 ⇑ Leaf\Leaves.

The lift operator was first introduced in our previous work [3], but in [22] it is revised
so that it only allows lifting class components. Let CV ars(P) be the set of variables
of patterns P that range over classes, and OPred(P) be the predicate obtained from
Pred(P) by the existentially quantifying at the outermost the remaining variables not
in CV ars(P), i.e. those in V ars(P) − CV ars(P), which are the declarations of the
operations. Then, we can define lifting as follows.

Definition 11. (Lift Operator)
Let P be a pattern and CV ars(P) = {x1 : T1, · · · , xn : Tn}, n > 0. Let X =
{x1, · · · , xk}, 1 ≤ k < n, be a subset of the variables in the pattern. The lifting of P
with X as the key, written P ↑ X , is the pattern defined as follows.

1. V ars(P ↑ X) = {xs1 : PT1, · · · , xsn : PTn},
2. Pred(P ↑ X) = ∀x1 ∈ xs1 · · · ∀xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn ·

OPred(P). !"

When the key set is singleton, we omit the set brackets for simplicity, so we write P ↑ x
instead of P ↑ {x}.

For example, Adapter ↑ Target is the following pattern.

V ars(Adapter ↑ Target) = {Targets, Adapters, Adaptees ⊆ classes}
Pred(Adapter ↑ Target) = ∀Target ∈ Targets · ∃Adapter ∈ Adapter ·

∃Adaptee ∈ Adaptees ·OPred(Adapter).

Fig. 3 spells out the components and predicates of the pattern.

Specification 3 (Lifted Object Adapters Pattern)
Components

1. Targets,Adapters,Adaptees ⊆ classes,

Conditions

1. ∀Adaptee ∈ Adaptees · ∃specreqs ∈ Adaptee.opers,
2. ∀Target ∈ Targets · ∃requests ∈ Target.opers,
3. ∀Target ∈ Targets · CDR(Target),
4. ∀Target ∈ Targets · ∃Adapter ∈ Adapters,Adaptee ∈ Adaptees·

(a) Adapter−−� Target,
(b) Adapter −→ Adaptee,
(c) ∀o ∈ Target.requests · ∃o′ ∈ Adaptee.specreqs · (calls(o, o′)))

Fig. 3. Specification of Lifted Object Adapter Pattern

Informally, lifting a pattern P results in a pattern P ′ that contains a number of in-
stances of P . For example, Adapter ↑ Target is the pattern that contains a number of

Laws of Pattern Composition 639

Targets of adapted classes. Each of these has a dependent Adapter and Adaptee class
configured as in the original Adapter pattern. In other words, the component Target
in the lifted pattern plays a role similar to the primary key in a relational database.

4 Algebraic Laws of the Operations

This section studies the algebraic laws that the operators obey. For the sake of space,
we only give some proofs in the appendix.

4.1 Laws of Restriction

Let vars(p) denote the set of free variables in a predicate p. For all predicates c, c1, c2

such that vars(c), vars(c1) and vars(c2) ⊆ V ars(P), the following equalities hold.

P [c1] P [c2], if c1 ⇒ c2 (6)

P [c] P [true] (7)

P [c][c] = P [c] (8)

P [c1][c2] = P [c2][c1] (9)

P [c1][c2] = P [c1 ∧ c2] (10)

P [true] = P (11)

P [false] = FALSE (12)

4.2 Laws of Superposition

For all patterns P and Q, we have the following equations.

P ∗Q P (13)

Q P ⇒ P ∗Q = Q (14)

From this and reflexivity of , it follows that superposition is idempotent.

P ∗ P = P (15)

It also follows from (14) that TRUE is the unit of superposition since it is the top in
. Similarly, FALSE is the zero of superposition since it is the bottom in .

P ∗ TRUE = TRUE ∗ P = P (16)

P ∗ FALSE = FALSE ∗ P = FALSE (17)

Superposition is also commutative and associative.

P ∗Q = Q ∗ P (18)

(P ∗Q) ∗R = P ∗ (Q ∗R) (19)

640 H. Zhu and I. Bayley

4.3 Laws of Extension

The extension operation has the following properties.
Let U be any set of component variables that is disjoint to V ars(P), and c1, c2

be any given predicates such that vars(ci) ⊆ V ars(P) ∪ U , i = 1, 2. We have the
following inequalities.

P#(U • c1) P#(U • c2), if c1 ⇒ c2 (20)

P#(U • c1) P (21)

Let U and V be any sets of component variables that are disjoint to V ars(P) and to
each other, c1 and c2 be any given predicates such that vars(c1) ⊆ V ars(P) ∪ U and
vars(c2) ⊆ V ars(P) ∪ V . We have equalities.

P#(U • c1)#(V • c2) = P#(U ∪ V • c1 ∧ c2) (22)

P#(U • c1)#(V • c2) = P#(V • c2)#(U • c1) (23)

4.4 Laws of Flattening and Generalisation

Let X, Y ⊆ V ars(P) and X ∩ Y = ∅.

(P ⇓ X) ⇓ Y = P ⇓ (X ∪ Y) (24)

(P ⇑ X) ⇑ Y = P ⇑ (X ∪ Y) (25)

4.5 Laws Connecting Several Operators

For all predicates c such that vars(c) ⊆ V ars(P), we have that

P [c] ∗Q = (P ∗Q)[c]. (26)

For all X ⊆ V ars(P), we have that

(P ⇑ X) ∗Q = (P ∗Q) ⇑ X, (27)

(P ⇓ X) ∗Q = (P ∗Q) ⇓ X. (28)

Let X ⊆ V ars(P) ∪ V ars(Q). From (24), (27) and (28), we can prove that

(P ∗Q) ⇑ X = (P ⇑ XP) ∗ (Q ⇑ XQ), (29)

(P ∗Q) ⇓ X = (P ⇓ XP) ∗ (Q ⇓ XQ), (30)

where XP = X ∩ V ars(P), XQ = X ∩ V ars(Q).
For all sets of variables X such that X ∩ vars(P) = ∅ and all predicates c such that

V ars(c) ⊆ (V ars(P) ∪X), we have that

P#(X • c) = P#(X • True)[c]. (31)

P#(X • c) = P [∃X · c], (32)

where ∃X · c = ∃x1 : T1 · · · ∃xk : Tk · c, if X = {x1 : T1, · · · , xk : Tk}.

Laws of Pattern Composition 641

For all x ∈ V ars(P) such that x : P(T), we have that

P ⇓ (x\x′) = P#({x′ : T } • (x = {x′}). (33)

For all X ⊆ V ars(P) and X ′ ∩ V ars(P) = ∅, we have that

P ⇑ X\X ′ = (P ↑ X\X ′) ⇓ (V −X ′), (34)

(P ⇑ X\X ′) ⇓ (X ′\X) = P. (35)

where V = V ars(P ↑ X).
From (34) and (35), we can prove that for all x ∈ V ars(P),

(P ↑ x) ⇓ V = P, (36)

where V = V ars(P ↑ x).
Let X ⊆ V ars(P), we have that

(P ↑ X) ∗Q = ((P ∗Q) ↑ X) ⇓ V ars(Q). (37)

Let c be a predicate that vars(c) ⊆ X ∪ V ⊆ V ars(P), we have that

((P [c] ↑ X) ⇓ V S) = ((P ↑ X) ⇓ V S)[c′], (38)

where c′ = ∀x1 : xs1, · · · , ∀xk : xsk · c, {x1, · · · , xk} = vars(c) ∩X .

5 Examples

In this section, we demonstrate the uses of the laws to prove the equivalence of pattern
compositions.

We first consider the composition of Composite and Adapter in such a way that
one of the Leaves in the Composite pattern is the Target in the Adapter pattern.
This leaf is renamed as the AdaptedLeaf . The definition for the composition using the
operators is as follows:

OneAdaptedLeaf �
(Adapter ∗ Composite)[Target ∈ Leaves][AdaptedLeaf := Target]

Then, we lifted the adapted leaf to enable several of these Leaves to be adapted. That
is, we lift the OneAdaptedLeaf pattern with AdaptedLeaf as the key and then flat-
ten those components in the composite part of the pattern (i.e. the components in the
Composite pattern remain unchanged). Formally, this is defined as follows.

(OneAdaptedLeaf ↑ (AdaptedLeaf\AdaptedLeaves))
⇓ {Composites, Components, Leaveses} (39)

By the definitions of the operators, we derive the predicates of the pattern in Specifica-
tion 4 after some simplification in the first order logic.

642 H. Zhu and I. Bayley

Specification 4 (ManyAdaptedLeaves)
Components

1. Component, Composite ∈ classes,
2. Leaves,AdaptedLeaves,Adapters,Adaptees ⊆ classes,
3. ops ⊆ Component.opers

Static Conditions

1. ops �= ∅
2. ∀o ∈ ops.isAbstract(o),
3. ∀l ∈ Leaves.(l−−�+ Component ∧ ¬(l �−→+ Component))
4. ∀l ∈ AdaptedLeaves.(l−−�+ Component ∧ ¬(l �−→+ Component))
5. isInterface(Component),
6. Composite−−�+ Component
7. Composite �−→∗ Component
8. CDR(Component)
9. ∀Adaptee ∈ Adaptees · (∃specreqs ∈ Adaptee.opers,

10. ∀AdLeaf ∈ AdaptedLeaves · ∃requests ∈ AdLeaf.opers,

Dynamic Conditions

1. any call to Composite causes follow-up calls

∀m ∈ messages · ∃o ∈ ops · (toClass(m) = Composite ∧m.sig ≈ o⇒
∃m′ ∈ messages . calls(m,m′) ∧m′.sig ≈ m.sig)

2. any call to a leaf or an adapted leaf does not

∀m ∈ messages · (∃o ∈ ops · (toClass(m) ∈ Leaves ∪ AdaptedLeaves∧
m.sig ≈ o)⇒ ¬∃m′ ∈ messages . calls(m, m′) ∧m′.sig ≈ m.sig))

3. ∀AdLeaf ∈ AdaptedLeaves · ∃Adapter ∈ Adapters,Adaptee ∈ Adaptees·
(a) Adapter−−� AdLeaf ,
(b) Adapter −→ Adaptee,
(c) ∀o ∈ AdLeaf.requests · ∃o′ ∈ Adaptee.specreqs · (calls(o, o′)))

An alternative way of expressing the composition is first to lift the Adapter with
target as the key and then to superposition it to the Composite patterns so that many
leaves can be adapted. Formally,

ManyAdaptedLeaves �
(((Adapter ↑ (Target\Targets)) ∗ Composite)[Targets ⊆ Leaves]

[AdaptedLeaves := Targets]

We now apply the algebraic laws to prove that expression Equ. (39) is equivalent to the
definition of ManyAdaptedLeaves.

First, by (37), we can rewrite ManyAdaptedLeaves to the following expression,
where VC = {Composites, Components, Leaveses}.

((Adapter ∗ Composite) ↑ (Target\Targets) ⇓ VC

[Targets ⊆ Leaves] [Adaptedleaves := Targets] (40)

Laws of Pattern Composition 643

Because Leavses is in VC and Targets ⊆ Leaves is equivalent to

∀Target ∈ Targets · (Target ∈ Leaves),

by (38), we have that

((Adapter ∗ Composite) ↑ (Target\Targets) ⇓ VC) [Targets ⊆ Leaves] (41)

= ((Adapter ∗ Composite)[Target ∈ Leaves]) ↑ (Target\Targets) ⇓ VC

Now, renaming Target to AdaptedLeaf and Targets to AdaptedLeaves in ex-
pression on the right-hand-side of (41), we have the following.

((Adapter ∗ Composite)[Target ∈ Leaves][AdaptedLeaf := Target])
↑ (AdaptedLeaf\AdaptedLeaves) ⇓ VC (42)

By substituting the definition of OneAdaptedLeaf into Equ. (42), we obtain (39).

6 Conclusion

In this paper, we proved a set of algebraic laws that the operators on design patterns
obey and we demonstrated their use in proving the equivalence of pattern compositions.
These operators and algebraic laws form a formal calculus of design patterns that enable
us to reasoning about pattern compositions. Although the calculus is developed in our
own formalisation framework, we believe that they can be easily adapted to others,
such as that of Eden’s approach, which also uses first-order logic but no specification
of behavioural features [10], that of Taibi’s approach, which is a mixture of first-order
logic and temporal logic [19], and that of [12], etc. as well as the approaches based on
graphic meta-modelling languages, such as RBML [8] and DPML [14]. However, the
definitions of the operators and proofs of the laws are more concise and readable in our
formalism.

For future work, we are investigating the uses of theorem provers for automated
reasoning about the compositions of design patterns based on the theory developed in
this paper. We are also investigating the completeness of the algebraic laws.

References

1. Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies, 2nd
edn. Prentice Hall, Englewood Cliffs (2003)

2. Bayley, I., Zhu, H.: Formalising design patterns in predicate logic. In: Proc. of SEFM 2007,
pp. 25–36. IEEE Computer Society, Los Alamitos (2007)

3. Bayley, I., Zhu, H.: On the composition of design patterns. In: Proc. of QSIC 2008, pp. 27–
36. IEEE Computer Society, Los Alamitos (2008)

4. Bayley, I., Zhu, H.: Specifying behavioural features of design patterns in first order logic. In:
Proc. of COMPSAC 2008, pp. 203–210. IEEE Computer Society, Los Alamitos (2008)

5. Bayley, I., Zhu, H.: Formal specification of the variants and behavioural features of design
patterns. Journal of Systems and Software 83(2), 209–221 (2010)

6. Buschmann, F., Henney, K., Schmidt, D.C.: Past, present, and future trends in software pat-
terns. IEEE Software 24(4), 31–37 (2007)

644 H. Zhu and I. Bayley

7. Eden, A.H.: Formal specification of object-oriented design. In: International Conference on
Multidisciplinary Design in Engineering, Montreal, Canada (November 2001)

8. France, R.B., Kim, D.K., Ghosh, S., Song, E.: A UML-based pattern specification technique.
IEEE Trans. Softw. Eng. 30(3), 193–206 (2004)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

10. Gasparis, E., Nicholson, J., Eden, A.H.: LePUS3: An object-oriented design description lan-
guage. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223,
pp. 364–367. Springer, Heidelberg (2008)

11. Hou, D., Hoover, H.J.: Using SCL to specify and check design intent in source code. IEEE
Trans. Softw. Eng. 32(6), 404–423 (2006)

12. Lano, K., Bicarregui, J.C., Goldsack, S.: Formalising design patterns. In: BCS-FACS North-
ern Formal Methods Workshop, Ilkley, UK (September 1996)

13. Lauder, A., Kent, S.: Precise visual specification of design patterns. In: Jul, E. (ed.) ECOOP
1998. LNCS, vol. 1445, pp. 114–134. Springer, Heidelberg (1998)

14. Mapelsden, D., Hosking, J., Grundy, J.: Design pattern modelling and instantiation using
DPML. In: Proc. of CRPIT 2002, pp. 3–11. Australian Computer Society, Inc. (2002)

15. Mikkonen, T.: Formalizing design patterns. In: Proc. of ICSE 1998, pp. 115–124. IEEE CS,
Los Alamitos (April 1998)

16. Nija Shi, N., Olsson, R.: Reverse engineering of design patterns from Java source code. In:
Proc. of ASE 2006, pp. 123–134 (September 2006)

17. Riehle, D.: Composite design patterns. In: Proc. of OOPSLA 1997, pp. 218–228 (1997)
18. Taibi, T.: Formalising design patterns composition. Software, IEE Proceedings 153(3), 126–

153 (2006)
19. Taibi, T., Check, D., Ngo, L.: Formal specification of design patterns-a balanced approach.

Journal of Object Technology 2(4) (July-August 2003)
20. Zhu, H., Shan, L.: Well-formedness, consistency and completeness of graphic models. In:

Proc. of UKSIM 2006, pp. 47–53 (April 2006)
21. Zhu, H.: On the theoretical foundation of meta-modelling in graphically extended BNF and

first order logic. In: Proc. of TASE 2010. IEEE CS Press, Taipei (August 2010)
22. Zhu, H., Bayley, I.: A formal language of pattern composition. In: Proc. of PATTERNS 2010,

Lisbon, Portugal (November 2010) (in Press)
23. Zhu, H., Bayley, I., Shan, L., Amphlett, R.: Tool support for design pattern recognition at

model level. In: Proc. of COMPSAC 2009, pp. 228–233. IEEE CS, Los Alamitos (July 2009)
24. Zhu, H., Shan, L., Bayley, I., Amphlett, R.: A formal descriptive semantics of UML and its

applications. In: Lano, K. (ed.) UML 2 Semantics and Applications. John Wiley & Sons,
Inc., Chichester (November 2009)

Appendix: Proofs of the Algebraic Laws

In this appendix, we give some proofs of the algebraic laws.
Proof of Laws of Restriction:

For Law (6), let P be any given pattern, and c1, c2 be any predicates such that
vars(ci) ⊆ V ars(P), i = 1, 2. By Definition 6, we have V ars(P [ci]) = V ars(P),
and Pred(P [ci]) = Pred(P) ∧ ci, for i = 1, 2. Assume that c1 ⇒ c2. Then, we have
that Pred(P [c1]) = Pred(P) ∧ c1 ⇒ Pred(P) ∧ c2 ≡ Pred(P [c2]). So by Lemma
4, we have that P [c1] P [c2].

Similarly, we can prove that Pred(P [true]) ≡ Pred(P) and Pred(P [c1][c2]) ≡
Pred(P [c1 ∧ c2], thus, Law (10) and (11) are true by Lemma 4.

Laws of Pattern Composition 645

Law (7) is the special case of (6) where c2 is true. For (8), we have that c ∧ c ≡ c.
Thus, it follows from (10).

Law (12) holds because Pred(P [false]) cannot be satisfied by any models. !"
For the majority of laws, the variable sets on the two sides of the law can be proven
to be equal. Therefore, by Lemma 4, the proof of the law reduces to the proof of the
equivalence or implication between the predicates. However, for some laws, these vari-
able sets are not equal. In such cases, we use Lemma 3. The following is an example of
such a proof.

Proof of Law (13)
Let P and Q be patterns with

V ars(P) = {x1, . . . , xm}, V ars(Q) = {y1, . . . , yn}.

Assume that
V ars(P) ∩ V ars(Q) = ∅. (43)

Spec(P ∗Q)
= ∃x1, . . . xm, y1 . . . yn · Pred(P) ∧ Pred(Q), < Def. 1 >
≡ ∃x1, . . . , xm · Pred(P) ∧ ∃y1 . . . yn · Pred(Q), < (43) >
⇒ ∃x1, . . . , xm · Pred(P), < FOL >
= Spec(P), < Def. 1 >

Thus, by Lemma 3, we have that (P ∗Q) P . !"
The following of the proof of Law (38), which involves three operators.

Proof of Law (38):
First, we prove that the variable sets on the two sides of the equation are equal.
Let Y = V ars(P) − (X ∪ V). Then, we have that V ars(P) = X ∪ Y ∪ V . By

definition of the operators, it is easy to see that

V ars(lhs) = (((XS ∪ Y S ∪ V S)− V S) ∪ V) = (XS ∪ Y S ∪ V) = V ars(rhs).

Thus, we only need to prove the predicates of the two sides are equivalent. Let X =
{x1, · · · , xk}, Y = {y1, · · · , yn} and V = {v1, · · · , vm}.

By the definitions of the operators, we have that Pred(lhs) is

∀x1 ∈ xs1 . . . xk ∈ xsk · ∃y1 ∈ ys1 . . . yn ∈ ysn ·
∃v1 ∈ vs1 . . . vm ∈ vsm · (Pred(P) ∧ c)[vs1\{v1}] . . . [vsm\{vm}]

≡ ∀x1 ∈ xs1 . . . xk ∈ xsk · ∃y1 ∈ ys1 . . . yn ∈ ysn ·
∃v1 ∈ vs1 . . . vm ∈ vsm · (Pred(P)[vs1\{v1}] . . . [vsm\{vm}]
∧ c[vs1\{v1}] . . . [vsm\{vm}])

≡ ∀x1 ∈ xs1 . . . xk ∈ xsk · ∃y1 ∈ ys1 . . . yn ∈ ysn · (Pred(P) ∧ c)

Because vars(c) ∩ Y = ∅, the above is equivalent to the following.

∀x1 ∈ xs1 . . . xk ∈ xsk · ∃y1 ∈ ys1 . . . yn ∈ ysn · Pred(P)
∧ ∀x1 ∈ xs1 . . . xk ∈ xsk · c

This is Pred(rhs). By Lemma 4, the law holds. !"

Dynamic Resource Reallocation
between Deployment Components�

Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte, and Silvia Lizeth Tapia Tarifa

Department of Informatics, University of Oslo, Norway
{einarj,olaf,rudi,sltarifa}@ifi.uio.no

Abstract. Today’s software systems are becoming increasingly config-
urable and designed for deployment on a plethora of architectures, rang-
ing from sequential machines via multicore and distributed architectures
to the cloud. Examples of such systems are found in, e.g., software prod-
uct lines, service-oriented computing, information systems, embedded
systems, operating systems, and telephony. To model and analyze sys-
tems without a fixed architecture, the models need to naturally cap-
ture and range over relevant deployment scenarios. For this purpose,
it is interesting to lift aspects of low-level deployment concerns to the
abstraction level of the modeling language. In this paper, the object-
oriented modeling language Creol is extended with a notion of dynamic
deployment components with parametric processing resources, such that
processor resources may be explicitly reallocated. The approach is com-
positional in the sense that functional models and reallocation strategies
are both expressed in Creol, and functional models can be run alone or in
combination with different reallocation strategies. The formal semantics
of deployment components is given in rewriting logic, extending the se-
mantics of Creol, and executes on Maude, which allows simulations and
test suites to be applied to models which vary in their available resources
as well as in their resource reallocation strategies.

1 Introduction

Software systems today are increasingly being developed to be highly config-
urable, not only with respect to the functionality provided by a specific instance
of the system but also with respect to the targeted deployment architecture. An
example of a development method which attempts to systematize this variability,
is software product line engineering [23]; in a product line, different software sys-
tems (or products) may be instantiated with different features and for different
architectures. Deployment variability may be found in operating systems, which
can be adapted to specific hardware and even to different numbers of available
kernels; web shops, which are deployed on a varying number of servers and may
even dynamically perform load balancing between these servers; and information
systems within, e.g., healthcare or finance, which may run on a single computer,
� Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-

worthy Software using Formal Methods (http://www.hats-project.eu).

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 646–661, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Dynamic Resource Reallocation between Deployment Components 647

in a distributed set-up, or even in the cloud. Software product lines raise new
challenges for the performance analysis of component-based applications [27].
In this paper, we consider the performance analysis of object-oriented compo-
nent or system models in deployment scenarios where the amount of processing
resources available to a component may vary over time.

Our work is based on Creol [10,17], a modeling language for concurrent objects
communicating by asynchronous method calls. Creol has an operational seman-
tics in rewriting logic [21] which is executable on Maude [9]. Concurrent objects
resemble Actors [2] and Erlang [4] processes: Objects are inherently concurrent,
conceptually each object has a dedicated processor, and there is at most one ac-
tivity in an object at any time. This concurrency model is attracting attention as
an alternative to multi-thread concurrency in object-orientation (e.g., [6]), and
been integrated with, e.g., Java [26] and Scala [13]. Concurrent objects support
compositional verification of concurrent software [3, 10], in contrast to multi-
threading [1]. A distinguishing feature of Creol is its cooperative scheduling of
method activations inside concurrent objects. Recently, Creol’s notion of coop-
erative scheduling and asynchronous method calls has been integrated in Java
by means of concurrent object groups [24].

This paper generalizes the idea of concurrent object groups to dynamic de-
ployment components which are parametric in the amount of concurrent activity
they allow within a time interval, and between which resources may be reallo-
cated. Creol is extended with notions of timed execution and deployment compo-
nents, which are integrated into Creol’s operational semantics. This integration
is non-trivial in that it must capture parametric concurrent activities within time
intervals in terms of an interleaving concurrency semantics in order to execute
the models on Maude. Deployment scenarios varying in the resources available
to the deployment components, may be validated by means of test suites, ex-
ecuted on Maude. This allows the timed behavior of concurrent object models
under restricted concurrency assumptions, as well as load balancing and process
migration strategies between components, to be validated and compared.

Paper overview. Sect. 2 presents a timed version of Creol and Sect. 3 the dy-
namic deployment components. Sect. 4 illustrates this extension by the modeling
and simulation of an example. Sect. 5 explains the operational semantics of the
extended language and Sect. 6 discusses related work, and Sect. 7 concludes.

2 Concurrent Objects in Creol

Creol is an abstract behavioral modeling language for distributed active ob-
jects, based on asynchronous method calls and processor release points. In Creol,
objects conceptually have dedicated processors and live in a distributed environ-
ment with asynchronous and unordered communication between objects. Com-
munication is between named objects by means of asynchronous method calls;
these may be seen as triggers of concurrent activity, resulting in new activities
(so-called processes) in the called object. This section briefly introduces Creol
(for further details see, e.g., [10,17]). Objects are dynamically created instances of

648 E.B. Johnsen et al.

Syntactic categories.
C, I, m in Names
g in Guard
s in Stmt
x in Var
e in Expr
b in BoolExpr

Definitions.
IF ::= interface I { [Sg] }
CL ::= classC [(I x)] [implements I] { [I x;] M}
Sg ::= I m ([I x])
M ::= Sg == [I x;] { s }
g ::= b | x? | g ∧ g
s ::= s; s | x := rhs | release | await g | return e
| if b then { s } [else { s }] | while b { s } | skip

e ::= x | b | this | now | null
rhs ::= e | new C (e) | [e]!m(e) | [e.]m(e) | x.get

Fig. 1. The syntax of core Timed Creol. Terms such as e and x denote lists over the
corresponding syntactic categories, square brackets [] denote optional elements. Ex-
pressions e and guards g are side-effect free; Boolean expressions b include comparison
by means of equality, greater- and less-than operators. Expressions on other datatypes
(strings, numbers) are written in the usual way and not contained in this figure.

classes, declared attributes are initialized to some arbitrary type-correct values.
An optional init method may be used to redefine the attributes. Active behav-
ior, triggered by an optional run method, is interleaved with passive behavior,
triggered by method calls. Thus, an object has a set of processes to be executed,
which stem from method activations. Among these, at most one process is ac-
tive and the others are suspended on a process queue. Process scheduling is by
default non-deterministic, but controlled by processor release points in a coop-
erative way. Creol is strongly typed: for well-typed programs, invoked methods
are supported by the called object (when not null), such that formal and actual
parameters match. This paper assumes that programs are well-typed.

Figure 1 gives the syntax for a core subset of Timed Creol (omitting, e.g.,
inheritance). A program consists of interface and class definitions and a main
method to configure the initial state. IF defines an interface with name I and
method signatures Sg. A class implements a list I of interfaces, specifying types
for its instances. CL defines a class with name C, interfaces I, class parameters
and state variables x (of type I), and methods M . (The attributes of the class
are both its parameters and state variables.) A method signature Sg declares
the return type I of a method with name m and formal parameters x of types
I. M defines a method with signature Sg, a list of local variable declarations x
of types I, and a statement s. Statements may access class attributes, locally
defined variables, and the method’s formal parameters.

Statements. Assignment x := rhs, sequential composition s1; s2, and if,
skip, while, and return constructs are standard. The statement release
unconditionally releases the processor by suspending the active process. In con-
trast, the guard g controls processor release in the statement await g, and
consists of Boolean conditions b and return tests x? (see below). If g evaluates
to false, the current process is suspended and the execution thread becomes
idle. When the execution thread is idle, any enabled process from the pool of
suspended processes may be scheduled. Explicit signaling is therefore redundant.

Dynamic Resource Reallocation between Deployment Components 649

Expressions rhs include declared variables x, object identifiers o, Boolean
expressions b, and object creation new C(e) and null. The specially reserved
read-only variable this refers to the identifier of the object and now refers to the
current clock value (explained below). Note that pure expressions are denoted by
e and that remote access to attributes is not allowed. (The full language includes
a functional expression language with standard operators for data types such as
strings integers lists, sets, maps, and tuples. These are omitted in the core syntax,
and explained when used in the examples.)

Communication in Creol is based on asynchronous method calls, denoted
o!m(e), and future variables. (Local calls are written !m(e).) After making an
asynchronous call x := o!m(e), the caller may proceed with its execution without
blocking on the call. Here x is a future variable, o is an object expression, and e
are (data value or object) expressions. A future variable x refers to a return value
which has yet to be computed. There are two operations on future variables, con-
trolling external synchronization in Creol. First, the guard await x? suspends
the active process unless a return to the call associated with x has arrived (allow-
ing other processes in the object to be scheduled). Second, the return value is re-
trieved by the expression x.get, which blocks all execution in the object until the
return value is available. The statement sequence x := o!m(e); v := x.get en-
codes a blocking call, abbreviated v := o.m(e) (often referred to as a synchronous
call), whereas the statement sequence x := o!m(e); await x?; v := x.get en-
codes a non-blocking, preemptable call.

Time. We consider a discrete time model, comparable to a system clock which
updates every n milliseconds. With this granularity of time, an object which ex-
ecutes a statement may, but need not observe that time has advanced. The
expression now returns the present time, i.e., the global clock’s value in the
current state. Time values are totally ordered by the less-than operator; com-
paring two time values result in a Boolean value which may be used as a guard
in await statements. From an object’s local perspective the passage of time is
indirectly observable; time can advance by either evaluating statements, block-
ing, or simply awaiting the passage of time. This model of time combined with
Creol’s blocking and non-blocking synchronization semantics, is powerful enough
to express both process- and object-wide progress statements.

3 Dynamic Deployment Components

Creol’s object model is inherently concurrent, which means that for the actual
deployment of a program it is necessary to map the logical concurrency of the
model to physical computing resources. For this purpose, we introduce a notion
of deployment component into the modeling language, which abstracts from the
number and speed of the physical processors available to the component by a
notion of concurrent resource. The granularity of the global time model defines
the points in time when the executing system is observable. Concurrent resources
may be consumed in parallel or in sequential order, which reflects the number
of processors and their speeds relative to the granularity of the time intervals

650 E.B. Johnsen et al.

s ::= . . . | transfer(e, e)
e ::= . . . | mycomp | available | load(e)

rhs ::= . . . | component(r) | new C (e) in e

Fig. 2. Extension of the syntax for deployment components (r in Resources) in Fig. 1

of the model. Thus, the logical concurrency model of the concurrent objects is
controlled by their associated deployment component. A deployment component
is parametric in the computational resources it offers to a group of dynamically
created objects, which allows easy configuration of concurrent resources.

The execution inside a deployment component can be understood as follows.
Let n be a natural number. Resources are modeled by a data type Resource
which extends the natural numbers with an “unlimited resource” ω, such that
resource consumption is captured by subtraction, where ω−n = ω. Within a time
interval, a deployment component with r concurrent resources may execute up
to n execution steps in parallel, where n ≤ r. Consider a deployment component
D instantiated with r resources and let G be the set of concurrent objects which
currently reside in the deployment component. Let A ⊆ G be a subset of the
concurrent objects on the component, such that objects in A are able to perform
an execution step in their current state. Provided |A| ≤ r, every object in A may
consume a resource, leaving r′ = r − |A| resources available on the component.
If there are remaining resources (i.e., r′ > 0) , another set of execution steps is
performed if possible within the same time interval by repeating this procedure.

In the modeling language, an object exists in the context of a deployment
component with a given amount of resources, and may have variables x of type
Component which refer to deployment components. A new deployment com-
ponent is created by the statement x:=component(r), which allocates a given
quantity of concurrent resources r to the component x (capturing the actual pro-
cessing capacity of x) by correspondingly reducing the resources of the current
deployment component. The set of concurrent objects residing on the compo-
nents, representing the logically concurrent activities, may grow dynamically.
When objects are created, they must reside inside a deployment component.
The syntax for object creation is extended with an optional clause to specify
the targeted deployment component in the expression new C(e) in x. This
expresses that the new C object will reside in the component x. Objects gener-
ated by a parent object residing in a component x will also reside in x unless
otherwise specified by an in clause. Thus the behavior of a Creol model which
does not statically declare additional deployment components can be captured
by a root deployment component with ω resources.

In the context of a given deployment component dc, the expression mycomp
returns dc, available returns the number of resources currently allocated to
dc, and load(e) returns the average number of used resources in dc during the
last e time intervals. The statement transfer(x, r) reallocates r resources from
dc to a component x. The language extension is summarized in Fig. 2.

Dynamic Resource Reallocation between Deployment Components 651

4 Example: Phone Services during New Year’s Eve

At midnight on new year’s eve the behavior of cellphone users briefly changes
from normal usage (i.e., a fairly low number of calls and messages) to sending
large numbers of SMS messages. We use this phenomenon to motivate and illus-
trate resource reallocation by means of two cooperating deployment components.
The model consists of two services, TelephoneService and SMSService,
and a number of handset clients interacting with either the telephony or

1 interface TelephoneService { Void call(Int duration); }
2

3 interface SMSService { Void sendSMS(); }
4

5 class TelephoneService implements TelephoneService {
6 Void call(Int duration) {
7 Time t; t := now;
8 await now >= t + duration;
9 }

10 }
11 class SMSService implements SMSService {
12 Void sendSMS() { skip; }
13 }

Fig. 3. Creol interfaces and classes for the telephony and SMS services

1 class Handset (Int cycle, TelephoneService ts, SMSService smss) {
2 Time created := now;
3 Bool call := false;
4

5 Void normalBehavior() {
6 Time t := now;
7 if (now > created + 50 ∧ now < created + 70) {
8 !midnightWindow();
9 } else {

10 if (call) ts.call(1;) else smss!sendSMS()
11 call := ¬ call;
12 await now >= t + cycle;
13 !normalBehavior(); } }
14

15 Void midnightWindow() {
16 Time t := now;
17 Int i := 0;
18 if (now > created + 70) {
19 !normalBehavior();
20 } else {
21 while (i < 10) { smss!sendSMS(); i := i+1; }
22 await now > t;
23 !midnightWindow(); } }
24

25 op run() { !normalBehavior(); }
26 }

Fig. 4. The Handset class, implementing “Happy New Year” behavior. Before and after
midnight, users alternate between short calls and sending single messages. During the
midnight window (50 ≤ t ≤ 70), ten SMS per interval are sent.

652 E.B. Johnsen et al.

1 interface Balancer { Void setPartner(Balancer p);
Void request(Component comp); }

2

3 class Balancer {
4 Balancer partner := null;
5 Void run () {
6 Time t := now;
7 await now > t;
8 if (partner 	= null ∧ available<load(1)*0.9) {
9 partner.request(mycomp);}

10 !run(); }
11 Void request(Component comp) {
12 if (load(1)< available−10) {transfer(comp,available/2);} }
13 Void setPartner(Balancer p) { partner := p; }
14 }
15

16 Void main() {
17 Component smscomp := component(50);
18 Component telcomp := component(50);
19 SMSService sms := new SMSService() in smscomp;
20 TelephoneService tel := new TelephoneService() in telcomp;
21 Balancer smsb := new Balancer in smscomp;
22 Balancer telb := new Balancer in telcomp;
23 smsb.setPartner(telb); telb.setPartner(smsb);
24 Client c := new Handset(1,tel,sms); c := new Handset(1,tel,sms);
25 c := new Handset(1,tel,sms); c := new Handset(1,tel,sms);
26 }

Fig. 5. A resource reallocation strategy and deployment configuration. Lines 21-23
initiate resource balancing; without these lines, the model runs with no functional
changes but it has a different timing behavior due to overload in the SMS deployment
component. Since Handset objects are active, references to them are not needed.

messaging service. The interfaces and implementations of the two services are
given in Fig. 3. The method call will be called synchronously; as a parameter
the client provides a duration for the call. The method sendSMS will be called
asynchronously. Note that this model abstracts from many details (e.g. data
model, bandwidth, server internals), which can be added as needed. The model
of the handset clients interoperating with the services is given in Fig. 4. Client
behavior is regulated by a parameter cycle, which determines the frequency of
phone calls and messages of the handset. Between time t = 50 and 70, Handset
objects change behavior and send SMS messages in a rapid pace.

Simulating this model in a scenario with ω resources leads to a purely behav-
ioral model, in which each object acts according to its specification (as in normal
Creol). Placing the SMS service in an environment with restricted resources will
lead to observable overload during the midnight window, given sufficient clients
to consume all its resources. (Recall that the load history of a deployment com-
ponent over time can be extracted from a simulation run via its Load attribute.)

The proposed resource-related language constructs (i.e., available, load,
and transfer) allow different load balancing schemes to be expressed. In Fig. 5
the main method defines an example scenario where each service runs in its own
deployment component, created with 50 resources, and three client objects run

Dynamic Resource Reallocation between Deployment Components 653

Fig. 6. Simulation of New Year’s Eve behavior (SMS load spike between t=50 and
t=70), with (top) and without resource balancing (bottom). The strategy of Fig. 5
distributes resources as needed between SMS component and telephony component.

in the unrestricted root component. Dynamic load balancing is captured by
the Balancer class, an instance of which runs in parallel with the service in
each component. This class implements a simple balancing strategy, transfer-
ring resources to its partner deployment component when receiving a request
message (Line 12), and monitoring its own load and requesting assistance when
needed (Line 9). Different, more involved or hierarchical, schemes for distributing
resources among deployment components can be implemented similarly.

Figure 6 presents simulation results for this example scenario and for a sce-
nario without load balancing, which shows that the available resources are suffi-
cient for normal client behavior. In the load balancing scenario, the SMS service
is overloaded between t = 50 and 53, at which time enough resources have been
transfered from the telephony service to process the increased workload. After
the load peak, the telephony service operates at capacity for one interval before
receiving resources back from the SMS service. In the scenario without load bal-
ancing, the SMS service is overloaded during the whole load peak and another
12 time intervals while catching up with the backlog of delayed messages. Note
that the functional part of the model was not changed between the two scenarios,
and that more elaborate load balancing strategies can be added in similar ways.

5 Operational Semantics

The semantics of Creol is defined in rewriting logic (RL) [21], and Creol models
can be analyzed using the rewrite tool Maude [9]. In a rewrite theory (Σ, E, L, R),

654 E.B. Johnsen et al.

the signature Σ defines the ground terms, E defines equations between terms,
L is a set of labels, and R a set of labeled rewrite rules. Rewrite rules ap-
ply to terms of given sorts, specified in (membership) equational logic (Σ, E).
When modeling computational systems, different system components are typi-
cally modeled by terms of suitable sorts and the global state configuration is a
set of these terms. RL extends algebraic specification techniques with transition
rules which capture the dynamic behavior of a system. A conditional rewrite
rule crl [name] : t −→ t′ if cond transforms an instance of the pattern t to
evolve into the corresponding instance of the pattern t′, where the condition
cond is a conjunction of rewrites and equations that must hold for the main
rule to apply (the name identifies the rule). When auxiliary functions are needed,
these can be defined in equational logic, and thus evaluated in between the state
transitions [21]. In a conditional equation ceq t = t′ if cond the condition
must similarly hold for the equation to apply. Unconditional rewrite rules and
equations are denoted by the keywords rl and eq, respectively. Given an ini-
tial configuration, Maude supports simulation and breadth-first search through
reachable states and model checking of finite reachable states for desired prop-
erties. In this paper, Maude is used as an interpreter for Creol’s operational
semantics to simulate and test Creol models.
The States. Following Maude conventions runtime objects are represented by
terms 〈o : C| . . . , Atti: xi, . . .〉, where o is the identifier, C the class, and the
object contains a set of attributes such that Atti is the name and xi the current
value of the i’th attribute. Variables are slanted, whereas constant parts of a
term’s syntax are in typewriter style. As before, t denotes a collection of
terms t, either a list or a set depending on the context. Let Emp be the empty
list and ∅ the empty set. In the rules below, all numbers are natural numbers
(e.g., for time) except resources which are of sort Resource.

A state configuration is a set which consists of a global clock, deployment
components, objects, classes, invocation messages, and futures. The associative
and commutative union operator on configurations is denoted by whitespace
and the empty configuration by none. The entire configuration lives inside curly
brackets; thus, in the term {cn} the variable cn captures the entire configuration.
The global clock is a term 〈 t : Clock | limit : l 〉 where t is the current time
and l the time limit considered in an execution. A deployment component is a
term 〈 dc : Comp | Free : r,Limit : max, Next : next, Load : m 〉 where dc is the
identifier of the component, r the (non-negative) number of available computing
resources, max the maximum number of resources which can be consumed before
time advances, next the maximum for the next time interval, and m the history
of resource consumption over past time intervals.

An object is a term 〈 o : C | Att : a, Pr : {l | s}, PrQ : w, Lcnt : f 〉 where o is
the identifier and C the object’s class, its state is given by the attribute mapping
a (i.e., a single binding a binds a value to a declared variable), a process {l |s}
consists of a mapping l of local variable bindings and a list s of statements. The
set w of (suspended) processes represents the process queue and the attribute

Dynamic Resource Reallocation between Deployment Components 655

f is used to ensure that futures created by the object have unique identifiers
(next(f) provides a new fresh value).

A class is a term 〈C : Class | Prm : x, Att : a, Mtds : M, Ocnt : g 〉 where C
is the identifier, x the list of formal parameters, a maps declared attributes to
default values, and M is the set of method definitions of the form 〈m : Mtd |
Prm : x, Att : l, Code : s 〉. Here, m is the method name, x the formal parameter
list, l the mapping of local variables to initial (default) values, and s a sequence
of statements. The attribute g is used to create objects with unique identifiers.

An invocation message is a term invoc(o, n, m, d) where o is the callee, n
the future to which the call’s result is returned, m the method name, and d the
call’s actual parameter values. A future is a term 〈n : Fut | Done : b, Value : d 〉
where n is the identifier, b a Boolean flag indicating whether the future’s reply
value has been received, and d the reply value.

Evaluating Expressions. Given a substitution σ, a time t and a configuration cn,
we denote by [[e]]cn

σ,t a confluent and terminating reduction system which reduces
an expression e to a data value. Let [[now]]cnσ,t = t, [[mycomp]]cnσ,t = σ[mycomp], the
equations below define availability and resource load:

ceq [[available]]cn<dc :Comp|Limit: r>
σ,t = r if dc = σ[mycomp]

ceq [[load(n)]]cn<dc :Comp|Load: m>
σ,t = avg(m, n) if dc = σ[mycomp]

eq avg(emp,n) = 0
eq avg(m ◦m, n) = if n > 0 then avg(m, n− 1) + m/min(n, length(m))

else 0 fi

where avg(m, n) calculates the average number of used resources during the last
n time intervals (or the average of m if its length is shorter than n). Let [[x?]]cn

σ,t =
true if [[x]]cn

σ,t = n and there is a future 〈n : Fut | Done : true, Value : d 〉 in cn
(for some value d), otherwise [[x?]]cn

σ,t = false. The remaining cases of [[e]]cn
σ,t are

fairly straightforward, looking up values for declared variables in σ. Expressions
are always reduced inside an object in a given state configuration. Thus, σ =
a ◦ l, the composition of the object state a and the local variable bindings l,
the time t is the current global time, and the configuration cn is the current
global configuration (ignoring the object itself). This ensures that now, mycomp,
available, and load(n), as well as reply guards and declared variables, are
evaluated correctly in the state of the program.

Transitions. Rewrite rules transform state configurations into new configura-
tions, and are given in Fig. 7. In the presentation of a rule, we follow the con-
vention of Full Maude [9] and hide attributes in runtime objects unless they are
needed for that specific rule. Rule skip consumes a skip in the active process
and a resource in its deployment component. Rule assign evaluates an expression
e and assigns the value to a variable x in the local state l or in the attributes a,
as appropriate, consuming a resource in its deployment component. (The rules
for if and while statements are omitted from the presentation.)

656 E.B. Johnsen et al.

crl [skip] : 〈 o : C | Pr : {l | skip;s} 〉 〈 dc : Comp | Free : r 〉
−→ 〈 o : C | Pr : {l | s} 〉 〈 dc : Comp | Free : r − 1 〉 if dc = a[mycomp] .

crl [assign] : 〈 o : C | Att : a, Pr : {l | x:=e;s} 〉 〈 t : Clock |〉 〈 dc : Comp | Free : r 〉
−→ if x ∈ dom(l) then 〈 o : C | Att : a, Pr : {l[x �→ [[e]]none

(a◦l),t] | s} 〉
else 〈 o : C | Att : a[x �→ [[e]]none

(a◦l),t], Pr : {l | s} 〉 fi
〈 t : Clock |〉 〈 dc : Comp | Free : r − 1 〉 if dc = a[mycomp].

crl [return] : 〈 o : C | Att : a, Pr : {l | return(e);s} 〉 〈 t : Clock |〉
〈n : Fut | Done : false, Value : ⊥ 〉 〈 dc : Comp | Free : r 〉
−→ 〈 o : C | Att : a, Pr : {l | s} 〉 〈n : Fut | Done : true, Value : [[e]]none

(a◦l),t 〉
〈 t : Clock |〉 〈 dc : Comp | Free : r − 1 〉 if n = l(destiny) ∧ dc = a[mycomp] .

rl [release] : 〈 o : C | Pr : {l | release;s}, PrQ : w 〉
−→ 〈 o : C | Pr : idle, PrQ : enqueue({l | s}, w) 〉 .

crl [await1] : {〈 o : C | Att : a, Pr : {l | await e;s} 〉 cn 〈 t : Clock |〉 }
−→ {〈 o : C | Att : a, Pr : {l | s} 〉 cn 〈 t : Clock |〉 } if [[e]]cn

(a◦l),t
.

crl [await2] : {〈 o : C | Att : a, Pr : {l | await e;s} 〉 cn 〈 t : Clock |〉 }
−→ {〈 o : C | Att : a, Pr : {l | release;await e;s} 〉 cn 〈 t : Clock |〉 } if ¬[[e]]cn

(a◦l),t
.

crl [activate] : {〈 o : C | Att : a, Pr : idle, PrQ : w ∪{{l | s}} 〉 cn 〈 t : Clock |〉 }
−→ {〈 o : C | Att : a, Pr : p, PrQ : dequeue(w, p)〉cn 〈 t : Clock |〉}
if p = select(w, a, cn, t) .

crl [async-call] : 〈 o : C | Att : a, Pr : {l | x:=e!m(e);s}, Lcnt : f 〉 〈 t : Clock |〉
〈 dc : Comp | Free : r 〉
−→ 〈 o : C | Att : a, Pr : {l[x �→ n] | s}, Lcnt : next(f) 〉 〈 dc : Comp | Free : r − 1 〉
invoc([[e]]none

(a◦l),t,n,m,[[e]]none
(a◦l),t) 〈n : Fut | Done : false, Value : ⊥ 〉 〈 t : Clock |〉

if n = label(o, f)∧ o �= [[e]]none
(a◦l),t ∧ dc = a[mycomp] .

rl [bind-method] : invoc(o,n,m,d) 〈 o : C | PrQ : w 〉
〈C : Class | Mtds : (M ∪{〈m : Mtd | Prm : x, Att : l, Code : s 〉 })〉
−→ 〈 o : C | PrQ : w ∪{{l[destiny�→ n,x �→ d] | s}} 〉
〈C : Class | Mtds : (M ∪{〈m : Mtd | Prm : x, Att : l, Code : s 〉 })〉 .

crl [receive-comp] : 〈 o : C | Att : a, Pr : {l | x:=e.get;s} 〉
〈n : Fut | Done : true, Value : d 〉 〈 dc : Comp | Free : r 〉
−→ 〈 o : C | Att : a, Pr : {l | x:=d; s} 〉 〈 n : Fut | Done : true, Value : d 〉
〈 dc : Comp | Free : r − 1 〉 if n = [[e]]none

(a◦l),t∧ dc = a[mycomp] .

crl [object-creation] : 〈 o : C | Att : a, Pr : {l | x:=new B(e);s} 〉 〈 t : Clock |〉
〈 dc : Comp | Free : r 〉 〈B : Class | Prm : x, Att : a1,

Mtds : M ∪{〈 init : Mtd | Prm : Emp, Att : ∅, Code : s1 〉 }, Ocnt : g 〉
−→ 〈 o : C | Att : a, Pr : {l | x:=newId(B, g);s} 〉 〈B : Class | Prm : x, Att : a1,

Mtds : M ∪{〈 init : Mtd | Prm : Emp, Att : ∅, Code : s1 〉 }, Ocnt : next(g) 〉
〈 newId(B, g) : B | Att : a1[mycomp�→ dc, this �→newId(B,g),x �→ [[e]]none

a◦l,t
],

Pr : {∅ | s1}, PrQ : ∅, Lcnt : 0 〉 〈 t : Clock |〉 〈 dc : Comp | Free : r − 1 〉
if dc = a[mycomp] .

Fig. 7. A timed rewriting logic semantics for Creol. In the rewrite rules, the variable r
ranges over non-zero natural numbers to ensure that resource values are non-negative.
The rules for the if and while statements are standard and not shown in this figure.

Dynamic Resource Reallocation between Deployment Components 657

Process suspension and activation. Three operations are used to manipulate
the process queue w: enqueue(p, w) adds a process p to w, select(w, a, cn, t) se-
lects a process from w (if w is empty or no process is ready [17], this is the idle
process), and dequeue(w, p) removes the process p from w. The actual defini-
tions of enqueue and select are left undefined; different definitions correspond
to different scheduling policies for processes and can be used to locally express,
e.g., priority or fairness. Rule release suspends the active process to the process
queue. We denote by idle the idle process. Rule await1 consumes the await
statement if the guard evaluates to true in the current state, rule await2 adds
a release statement in order to suspend the process if the guard evaluates to
false. Rule activate selects a process from the process queue for execution if this
process is ready to execute, i.e., if it would not directly be resuspended or block
the processor [17].

Communication and object creation. Rule async-call sends an invocation mes-
sage to a callee with the actual method parameters and the identity of a future
in which to place the method’s return value. The caller creates the future asso-
ciated with the call, with a unique identity label(o, f) constructed from the
caller’s own identity o and the local attribute f . The future’s Done attribute
is initially false and the return value is undefined (i.e., ⊥). This operation
consumes a resource. Rule bind-method transforms a method invocation into a
corresponding process, placed in the process queue of the callee. The reserved
local variable destiny stores the identity of the call’s future. Rule return puts
the return value into the future associated with the call (the destiny-variable
refers to the appropriate future) and sets the future’s done attribute to true.
This operation consumes a resource. Rule receive-comp dereferences the future
variable n in the case where the future’s Done attribute is true. Note that
if this attribute is false the reduction in this object is blocked. This opera-
tion consumes a resource. Finally, object-creation creates a new object with a
unique identifier newId(B, g) constructed from the class identifier B and the
local attribute g. The object’s state is generated from default values for state
attributes, extended with the actual values for this and the class parameters.
The init method is loaded (we assume that this method reduces to skip if
unspecified and that it asynchronously calls run if the latter is specified). This
operation consumes a resource. Note that the new object inherits the deployment
component of its creator. The rule for object creation in a named deployment
component differs from object-creation only on this point, and is not presented.

Advancing time. We define a run-to-completion semantics for execution with the
resource bounds of deployment components: objects must execute when possi-
ble if resources are available. To capture timed concurrent execution with an
interleaving semantics, time cannot advance freely but is restricted as follows:

– For simplicity, we assume that invocation messages do not take time. There-
fore, time may not advance while a message is on its way.

– If a deployment component has run out of resources, none of its objects may
proceed, and time can advance.

658 E.B. Johnsen et al.

eq canAdv(cn′,t) = true . //cn’ contains no objects or messages
eq canAdv(msg cn,t) = false . //messages are instantaneous
eq canAdv(〈 o : C | 〉 〈 dc : Comp | Free : 0 〉 cn,t) //no more resources

= canAdv(〈 dc : Comp | Free : 0 〉 cn,t).

eq canAdv(〈 o : C | Pr : {l | n.get;s)}〉 //o is blocked, value not available
〈 n : Fut | Done : false 〉 cn,t) = canAdv(〈n : Fut | Done : false 〉 cn,t).

ceq canAdv(〈 o : C | Att : a,Pr : idle,PrQ : w 〉 cn,t) //no ready processes
= canAdv(cn,t) if select(w, a, cn, t) = idle.

eq canAdv(〈 o : C | 〉 cn,t) = false [owise] .

eq Adv(〈 dc : Comp | Free : r,Limit : max, Next : next, Load : m 〉 cn) =
〈 dc : Comp | Free : next,Limit : next, Next : next, Load : m ◦ max − r 〉 Adv(cn).
eq Adv(cn) = cn [owise] .

crl [progress] : {cn 〈 t : Clock | limit : l 〉} −→ {Adv(cn) 〈 t + 1: Clock | limit : l 〉}
if canAdv(cn,t)∧ t < l .

crl [resource-transfer] : 〈 o : C | Att : a, Pr : {l | transfer(e,e1);s} 〉
〈 dc1 : Comp | Next : nl 〉 〈 dc2 : Comp | Next : nl1 〉 cn 〈 t : Clock |〉
−→ 〈 o : C | Att : a, Pr : {l | s} 〉 cn 〈 t : Clock |〉 〈 dc1 : Comp | Next : nl − d 〉
〈 dc2 : Comp | Next : nl1 + d 〉 if [[e]]cn

a◦l,t
= dc2 ∧ [[e1]]cn

a◦l,t
= d ∧ nl ≥ d ∧ dc1 = a[mycomp] .

Fig. 8. Advancing time and transferring resources. The variable msg denotes a message,
r a non-zero natural number, and cn’ a message- and object-free configuration.

– If a deployment component has remaining resources and one of the compo-
nent’s objects o may execute, time may not advance. There are three cases:
1. The active process in o is blocked, but the value has become available.
2. The active process in o is idle, but a suspended process can be activated.
3. The active process in o is not blocked.

A predicate canAdv, defined recursively over configurations (see Fig. 8), for-
malizes these restrictions on time advance in an interleaving semantics for timed
concurrent execution. Time may not advance if some object can execute, ex-
pressed by the owise equation for canAdv. (The keyword owise in Maude
expresses that an equation is chosen only when no other equation applies.) Fi-
nally time may advance if no object can execute and there are no messages,
which is captured by the first equation for canAdv. Once time advances, the
global clock is updated and the deployment components get their resources re-
freshed for the next time interval. This is done by an auxiliary function Adv
defined in Fig. 8, which updates a configuration by resetting the free resources
of each deployment component to the limit specified by next and extending the
load history of the components. (Here, m ◦m appends m to the sequence m.)

The advancement of time is captured by the rewrite rule progress in Fig. 8.
Observe that for simplicity time advances with a single unit. It would be straight-
forward to allow larger increments. In order to ensure termination of model exe-
cution, a limit has been added to the global clock and we only consider execution
sequences up to this limit in time.

6 Related Work

Concurrent objects and Actors, in which software units with encapsulated pro-
cessors communicate asynchronously, increasingly attract attention due to an

Dynamic Resource Reallocation between Deployment Components 659

intuitive and compositional concurrency model [2, 4, 6, 26, 13, 10, 3]. Creol pro-
poses cooperative scheduling between asynchronously called methods [17], which
allows active and reactive behavior to be combined within objects as well as
compositional verification of partial correctness properties [10,3]. This model of
cooperative scheduling has recently been generalized to concurrent object groups
in Java [24]. This paper further generalizes concurrent object groups to resource-
constrained deployment components, where group activity per time interval is
parametric in concurrent resources, using a time model which simplifies previ-
ous work [18]. The approach abstractly models the effect of deploying concurrent
object groups on deployment components which vary in processing capacity.

Techniques and methodologies for predictions or analysis of non-functional
properties are based on either measurement or modeling. Measurement-based
approaches apply to existing implementations, using dedicated profiling or trac-
ing tools like, e.g., JMeter or LoadRunner. Model-based approaches allow ab-
straction from specific system intricacies, but depend on parameters provided by
domain experts [11]. A survey of model-based performance analysis techniques is
given in [5]. Formal approaches using process algebra, Petri Nets, game theory,
and timed automata (e.g., [7,8,12,15,19,20]) have been applied in the embedded
software domain, but also to the schedulability of tasks in concurrent objects [16].
That work complements ours as it does not consider resource restrictions on the
concurrency model, but associates deadlines with method calls.

Work on modeling object-oriented systems with resource constraints is more
scarce. Using the UML SPT profile for schedulability, performance and time,
Petriu and Woodside [22] informally define the Core Scenario Model (CSM) to
solve questions that arise in performance model building. CSM has a notion
of resource context, which reflects the set of resources used by an operation.
CSM aims to bridge the gap between UML specifications and techniques to
generate performance models [5]. UML models with stochastic annotations for
performance prediction have been proposed for components [14]. Closer to our
work is M. Verhoef’s extension of VDM++ for simulation of embedded real-
time systems [25], in which architectures are explicitly modeled using CPUs and
buses, and resources are statically bound to the CPUs. Our work extends these
ideas with dynamic load balancing strategies expressed in the modeling language
and running in parallel with the behavioral parts of the model.

7 Conclusions and Future Work

We present a modeling framework which formalizes a high-level understanding
of deployment concerns, reflecting the execution capabilities of underlying archi-
tectures. This framework is based on an abstract notion of execution resource,
such that each component has an associated amount of available resources which
can be used within a time interval. The framework is given as an extension of
the object-oriented language Creol, allowing the dynamic creation of deployment
components and the dynamic reallocation of resources, such that redistribution
strategies can be expressed in terms of the load and the available resources of

660 E.B. Johnsen et al.

components. Resources and deployment components have been naturally inte-
grated as first-class values at the abstraction level of the modeling language,
including constructs to transfer resources, create deployment components and
place new objects in given deployment components, as well as to check the cur-
rent load of a component and its available resources. The extended language has
been formalized by a timed operational semantics in rewriting logic. Rewriting
logic semantics are directly executable in Maude, which allows the tool-supported
simulation and analysis of models directly based on the operational semantics.

As shown by an example, the approach is compositional in the sense that
the software controlling allocation and reallocation of resources can (but need
not) be completely separated from the rest of the code. Classes express particular
reallocation strategies, and one strategy object is created in each component that
should be controlled by that strategy. It is easy to replace a strategy by another,
to reuse strategies, and to apply different strategies to different components. This
flexibility is valuable for software development with high needs for deployment
configurability; for example in software product lines, variability in resources and
reallocation strategies allow products to be deployed on different architectures
while maintaining, e.g., response time requirements.

The proposed notions of resource and time stem from the need for abstract
models which do not assume a fixed deployment scenario, yet support tool-based
formal analysis and model exploration. However, our approach may be extended
with more fine-grained notions of resources and resource consumption; e.g., using
resource profiles for specific deployment scenarios. In future work, we plan to de-
velop case studies using reallocation strategies based on gossiping, peer-to-peer,
and hierarchical structures, as well as object migration. Furthermore, it is inter-
esting to combine the simulation-based approach with concrete values in Maude
with symbolic execution techniques for resource consumption and reallocation.

References
1. Ábrahám-Mumm, E., de Boer, F.S., de Roever, W.-P., Steffen, M.: Verification

for Java’s reentrant multithreading concept. In: Nielsen, M., Engberg, U. (eds.)
FOSSACS 2002. LNCS, vol. 2303, pp. 5–20. Springer, Heidelberg (2002)

2. Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. The MIT Press, Cambridge (1986)

3. Ahrendt, W., Dylla, M.: A verification system for distributed objects with asyn-
chronous method calls. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS,
vol. 5885, pp. 387–406. Springer, Heidelberg (2009)

4. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

5. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE Trans. on Software Engineer-
ing 30(5), 295–310 (2004)

6. Caromel, D., Henrio, L.: A Theory of Distributed Object. Springer, Heidelberg
(2005)

7. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces.
In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003)

Dynamic Resource Reallocation between Deployment Components 661

8. Chen, X., Hsieh, H., Balarin, F.: Verification approach of metropolis design frame-
work for embedded systems. Intl. J. Parallel Programming 34(1), 3–27 (2006)

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: Specification and programming in rewriting logic. Theoretical
Computer Science 285, 187–243 (2002)

10. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

11. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time
parameter adaptation. In: Proc. ICSE 2009, pp. 111–121. IEEE, Los Alamitos (2009)

12. Fersman, E., Krcál, P., Pettersson, P., Yi, W.: Task automata: Schedulability, de-
cidability and undecidability. Inf. and Comp. 205(8), 1149–1172 (2007)

13. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(2-3), 202–220 (2009)

14. Happe, J., Koziolek, H., Reussner, R.: Parametric performance contracts for soft-
ware components with concurrent behaviour. In: Proc. 3rd Intl. Workshop on Formal
Aspects of Component Software (FACS 2006). ENTCS, vol. 182, pp. 91–106 (2007)

15. Hennessy, M., Riely, J.: Information flow vs. resource access in the asynchronous
pi-calculus. ACM Trans. on Prog. Languages and Systems 24(5), 566–591 (2002)

16. Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asyn-
chronous real-time concurrent objects. Journal of Logic and Algebraic Program-
ming 78(5), 402–416 (2009)

17. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

18. Johnsen, E.B., Owe, O., Bjørk, J., Kyas, M.: An object-oriented component model
for heterogeneous nets. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever,
W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 257–279. Springer, Heidelberg
(2008)

19. Katelman, M., Meseguer, J., Hou, J.C.: Redesign of the lmst wireless sensor pro-
tocol through formal modeling and statistical model checking. In: Barthe, G., de
Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 150–169. Springer, Heidel-
berg (2008)

20. Katoen, J.-P., Baier, C., Latella, D.: Metric semantics for true concurrent real time.
Theoretical Computer Science 254(1-2), 501–542 (2001)

21. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96, 73–155 (1992)

22. Petriu, D.B., Woodside, C.M.: An intermediate metamodel with scenarios and re-
sources for generating performance models from UML designs. Software and Sys-
tem Modeling 6(2), 163–184 (2007)

23. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

24. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010 – Object-Oriented Programming.
LNCS, vol. 6183, pp. 275–299. Springer, Heidelberg (2010)

25. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and validating distributed em-
bedded real-time systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E.
(eds.) FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006)

26. Welc, A., Jagannathan, S., Hosking, A.: Safe futures for Java. In: Proc. OOPSLA
2005, pp. 439–453. ACM, New York (2005)

27. Yacoub, S.M.: Performance analysis of component-based applications. In: Chastek,
G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 299–315. Springer, Heidelberg (2002)

A Pattern System to Support Refining Informal
Ideas into Formal Expressions�

Xi Wang1, Shaoying Liu1, and Huaikou Miao2

1 Department of Computer Science, Hosei University, Japan
2 Department of Computer Science, Shanghai University, China

Abstract. Refining informal ideas into appropriate formal expressions
is an essential and skillful activity in writing pre-post style formal specifi-
cations. This activity usually involves decisions to be made by the writer
and can be error-prone. Experience shows that this activity is also a
challenge to many practitioners, and a big hurdle for introducing formal
specification techniques into industry. This paper describes a pattern sys-
tem approach to deal with this problem. The pattern system is composed
of a set of inter-related patterns, and each pattern provides a framework
for constructing certain kind of formal expression with some common
properties. Unlike the way conventional design patterns are used, our
pattern system is expected to support a systematic and automated for-
malization of informal ideas, with the characteristic that the writer only
needs to work on the informal level while an appropriate formal expres-
sion will be efficiently derived. We focus on discussions of the issues such
as pattern definition, pattern classification, the structure of pattern sys-
tem, and mechanism to use the pattern system.

1 Introduction

In spite of the successful stories reported in the latest survey on industrial use
of formal methods by Woodcock et al. [14], applications of formal methods to
real projects in industrial are still rare [10]. Experience shows that industrial
practitioners are interested in using formal methods to solve their problems
occurring in exercising conventional software engineering techniques, but only a
few of them with courage actually take actions [11,6]; most of them turn away
from the techniques after they learn or try them for the first time, because they
face insurmountable challenges and complexity, even they may understand the
potential benefits of successful application of formal methods.

One of the major challenges is to formalize informal requirements into pre-post
style formal specifications. It is often the case that the writer of a formal specifi-
cation, who can be an analyst or designer, understands what he or she wants to
say, but does not know exactly what formal expression can be used to properly
� This work is supported in part by NII Collaborative Research Program. Shaoying

Liu is also supported by the NSFC Grant (No. 60910004) and 973 Program of China
Grant (No. 2010CB328102). This work is also supported by Science and Technology
Commission of Shanghai Municipality under Grant No. 10510704900 and Shanghai
Leading Academic Discipline Project(Project Number: J50103).

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 662–677, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Pattern System to Support Refining Informal Ideas 663

express his or her informal idea. This difficulty may attribute to the writer lack-
ing sufficient ability or experience in using formal notation, but because of this
hurdle many beginners would stop continuing to learn the techniques in training
courses and to use them in real projects [8].

In fact, refining informal ideas into formal expressions is an essential and skill-
ful activity in constructing pre-post style formal specifications, and this activity
usually involves decisions to be made by the specification writer in order to clar-
ify ambiguities. An “idea” describes a fact or an intention; it may be expressed
informally or formally. For example, “John Smith belongs to Hosei University”
is an informal expression of an idea. How to refine it into an appropriate formal
expression will depend on what we mean by “John Smith” and “Hosei Univer-
sity”. If “John Smith” is treated as a person and “Hosei University” as a set of
persons, a membership expression (e.g., John Smith in set Hosei University in
VDM [13]) can be an appropriate formal expression. But if the data structure of
“Hosei University” is declared as a set of faculties and each faculty is a composite
type of several fields, for example, “teachers”, “students”, and “administrators”,
and each field is declared as a set of persons, the formal expression of the above
idea will be more complex. Experience shows that this refining process can be
error-prone and challenging to many practitioners. Without effectively attacking
this problem, introducing formal specification techniques to ordinary practition-
ers in industry would be extremely difficult.

In this paper, we put forward a pattern system approach to tackle this prob-
lem. The pattern system is composed of a set of inter-related patterns, each pro-
viding a framework for constructing certain kind of formal expression with some
common properties. The concept of pattern was initially proposed by Alexander
who is an expert in the area of architecture rather than software engineering [1].
He designed each pattern to handle certain reoccurring problems with concrete
solutions in certain context. The idea was later adopted by software engineers in
software design[3] and many other fields including formal specification. Although
patterns offer great convenience to practitioners, they are often complained of
hard to be applied, because they are so general that users have to read them
carefully and make a good understanding of them to select appropriate ones and
apply them to specific problems. This situation may be exacerbated when the
number and varieties of patterns become greater [2]. Unlike the way conventional
patterns are used, our pattern system is expected to support a systematic and
automated formalization of informal ideas with the characteristic that the writer
only needs to work on the informal level while an appropriate formal expression
will be efficiently derived. This will allow the writer to concentrate only on the
ideas, while manipulation of formal notation to form the most appropriate formal
expressions can leave to the machine. Consequently, the formalization process
would become easier and mistakes would be reduced significantly.

Our contribution in this paper concentrates only on the theoretical discus-
sion of the pattern system, including patter definition, pattern classification,
the structure of pattern system, and mechanism to use the pattern system. The
purpose is to set up a foundation for developing an automated tool support

664 X. Wang, S. Liu, and H. Miao

in the future. The essential idea of our patter system is language independent;
it can be applied to any model-based formal specification languages that use
the notion of pre- and post-conditions for operation specifications. Since our
research is required to directly support the Structured Object-Oriented Formal
Language (SOFL) [7], an extension of VDM-SL [13] by integrating the essen-
tial concept of pre- and post-conditions into the conventional requirements and
design techniques (e.g., data flow diagrams, object-oriented methods) for indus-
trial application, we use SOFL as the “working language” for discussions in this
paper.

The remainder of this paper is organized as follows. Section 2 describes the re-
lated work. Section 3 discusses the pattern system in two aspects: static structure
of the system and mechanism for using the system. Section 4 gives an example
to illustrate the proposed pattern system. Finally, in Section 5 we conclude the
paper and point out future research directions.

2 Related Work

In contrast to design patterns [3], formal specification pattern is a relatively new
area, and only a few researches have been reported in the literature. Stepney et
al. proposed patterns for notation Z and classified them into six types for solv-
ing different kinds of problems [12]. Those patterns mainly concentrate on the
structure of various kinds of Z schemas. Lars Grunske presented a specification
pattern system of common probabilistic properties for probabilistic verification
[4]. Ding et al. gave an approach for specification construction through property-
preserving refinement patterns [5]. Matthew et al. applied patterns to presen-
tation, codification and reuse of property specification in a range of common
formalisms [9].

In comparison with the above related work, our pattern system, presented in
this paper, concentrates only on the support of refining informal ideas into formal
expressions in writing pre- and post-conditions, and aims to take a different
approach to support the use of patterns. In our approach, the pattern system is
applied by algorithms on the computer to provide effective guidance to the writer
and to help him or her, in an interactive manner, gradually refine informal ideas
into formal expressions. Thus, the writer neither needs to study the patterns
defined in the pattern system, nor needs to select a specific one from a mass of
patterns for use; what the writer needs to do is only to answer questions raised
by the potential tool built based on the pattern system. This interactive process
helps the writer clarify ambiguities and possibly discover new ideas.

3 Pattern System

This section presents the pattern system in four aspects: pattern definition,
pattern classification, structure of the pattern system, and the mechanism for
applying the system. It should be noted that types and variables play important
roles in formal specifications, but since this paper focuses on the construction

A Pattern System to Support Refining Informal Ideas 665

process of formal descriptions, we assume that all the types and variables are
already defined properly.

3.1 Pattern Definition

Our pattern system is composed of single patterns, each of which is intended to
support refinement of a kind of informal idea. We define an individual pattern
as the following structure:

name The name of the pattern
explanation Situations or functions that the pattern can describe
constituents A set of elements necessary for applying the pattern

syntax Grammatical rule for writing expressions using the pattern
solution Method for the generation of the formal expression

Serving as a unique identity, name is used to invoke the corresponding pattern;
explanation provides a brief introduction to the pattern in natural language.

Item constituents contains the elements that have to be specified when ap-
plying the pattern. For example, in the pattern belongTo, as shown in Fig 1,
the constituents owns two elements element and container which stand for a
member and its belonging collection respectively. To apply such pattern, these
two elements are required to be specified, that is, to designate a value to each
of them through defined variables. But elements would become too complex to
be presented in this way, we therefore classify them from three perspectives:
concrete or abstract, value or choice, static or dynamic.

name: belongTo
explanation: This pattern can be used to describe that an element is part of certain object
constituents: element, container
syntax: belongTo(element,container)
solution :

(dataType(element), dataType(container)) formal expression
(T, set of T) → "element inset container"

(set of T, set of T) → "subset(element, container)"
(T, seq of T) → "element inset elems(container)"

(seq of T, set of T) → "exists[i, j: nat0] element = container(i, j)"
(T, map T to T’) → "element inset dom(container)"

Fig. 1. Parts of the pattern “belongTo”

Concrete element must be directly specified while abstract element, which
is a combination of children elements including abstract elements and concrete
elements, is specified by specifying all its children elements. Concrete element
is further divided into two kinds because of their different meanings: value ele-
ment and choice element. Value element requires to be designated with values
such as the above element and container. By contrast, choice element denotes
a choice item that is specified by selecting it or not. To distinguish these two

666 X. Wang, S. Liu, and H. Miao

elements, we set ”&” as the prefix of choice element. For abstract element, sev-
eral symbols are introduced to formally present the relation between children
elements. Expression “e : e1 ∧ e2 ∧ ... ∧ en” indicates that e1, e2, ..., en are chil-
dren elements that must be specified for the abstract element e to be specified.
Suppose each ei is given a value vi, the value of e can then be presented as a
tuple: (v1, v2, ..., vn). Expression “e : e1 ∨ e2 ∨ ... ∨ en” denotes that at least one
children element ei must be specified and the value of e will appear as a tuple
(item1, item2, ..., itemm) where m ≤ n and each itemi is the value of a value
element or a selected choice element. The use of “‖” is similar to “∨” with the
difference that only one children element connected by “‖” needs to be given a
value or selected and the value of e is an item itemi instead of a tuple.

Elements in the constituents are pre-defined, however, they are not always
asked for clarification at a time, because children elements of some abstract
elements, as well as the contents of some basic elements, vary with different values
of other elements. These dynamically determined elements are called dynamic
elements and those which stay the same under all conditions are static elements.
Instead of simply listing these two kinds of elements in an ad hoc manner, we
define them by pairs and mappings.

Let’s take the pattern alter as an example, part of which is given in Fig 2
where dataType() indicates the data type of a given variable and constraints()
denotes certain feature of a given object. It contains three elements in con-
stituents, including object, specifier and operation where object stands for
the variable to be altered; specifier depicts the specific data items to be al-
tered within the variable; operation demonstrates the new value, denoted as
newV alue, for replacing the original one, and the way to obtain it denoted as
operationType. There are three pairs (object, specifier), (specifier, operation)
and (operationType, newV alue) with detailed rules given right below each of
them. The first pair means that the definition of specifier depends on the value
the user designates to object. For instance, a map-type object will lead to a
specifier that identifies the specific maplets to be altered by addressing con-
straints on domain, range or relations between domain and range, and specifies
the target parts to be altered in these specific maplets by choosing from their
domain, range or both; the second pair reveals that for each item in the value
of specifier, there must be a corresponding item in operation; the last pair il-
lustrates that the value of operationType determines whether newV alue needs
to be given a value. Thus, object and operationType are static elements while
specifier, operation and newV alue are dynamic ones.

The fourth item syntax in a pattern contains a standard expression consisting
of the pattern name and the elements of constituents in order. It is designed
for being recognizable to the potential tool in the case that all the elements in
constituents are available so that the pattern can be applied automatically.

The last item solution indicates the rules mapping from a kind of feature
of given elements to a result that is either a suggested formal fragment or an

A Pattern System to Support Refining Informal Ideas 667

name: alter
explanation: common modification on a system variable or certain parts of a system variable
constituents : object, specifier , operation
(object, specifier)
dataType(object) = map

specifier : (constraints1(dom) constraints1(rng) constraints1(dom, rng)) (&dom &rng)

(constraintsn(dom) constraintsn(rng) constraintsn(dom, rng)) (&dom &rng)

composed of
field 1: T1

dataType(object) = … specifier : &field1 … &field n

field n: Tn

…
(specifier , operation)

specifier = (item1, …, itemi,…)
operation : (operationType1 newValue1) … (operationTypei newValuei) …

operationType : &customize &update &retrieve &recreate
(operationType, newValue)
operationType = customize newValue: !Null

operationType = update newValue: Null
operationType = retrieval newValue: Null

operationType = recreation newValue: Null
syntax: alter (object, specifier , operation)
solution :

constraints (object, specifier , operation) formal expression
dataType(object) = map, specifier = (((dom = v), rng)), operation = ((update, Null))

“override (~object, {v recreation (~object(v))})”
specifier = fieldi, operation = ((customize , nv))

“ field i nv”
specifier = fieldi, operation = ((update, Null))

“ field i recreation (~object)”
dataType(object) = composite, specifier = (fieldi), operation = ((customize , nv))

“modify (~object, fieldi nv)”
dataType(object) = composite, specifier = (fieldi), operation = ((update, Null))

“modify (~object, fieldi recreation (~object.fieldi))”
dataType(object) = composite, specifier = (fieldi, fieldj, …),

operation = ((operationType i, newValuei), (operationTypej, newValuej),)
“modify (~object, alter(object, fieldi, (operationTypei, newValuei)),

alter (object, fieldj, (operationTypej, newValuej)), …)”

Fig. 2. Parts of the pattern “alter”

intermediate one. In the pattern alter, for example, the result is determined by
the features of the three elements in constituents item. And except for formal
notations, other kinds of expressions are also included in some results, such as
“recreation()”, as well as “alter()” which involves the pattern alter itself. These
are actually reflecting the mechanism of reusing patterns which will be discussed
in section 3.4.

Nevertheless, there exists a special pattern named retrieve that owns a differ-
ent solution item because it is not able to build any expression-like intermediate
result with the elements initially provided. It has only one element in the con-
stituent item and needs to repeatedly obtain more information according to
current situation and given rules until it is enough for the target expression
generation. Because of this dynamic property, the content of the pattern is illus-
trated through its application process which will be presented in section 3.4.

668 X. Wang, S. Liu, and H. Miao

3.2 Pattern Classification

Due to the inherent complexity of software, the number of patterns will be so
large that the selection process becomes a hard task for users and the manage-
ment would be difficult. To this end, we divide them into distinct categories.

With the experiences from many typical formal specifications, we found that
almost all of them describe functions resulting from a combination of three kinds
of basic functions: comparison between objects, acquisition of information and
updating of existing data. Based on this consideration, patterns are classified
into three categories: relation, retrieval and recreation.

Patterns of relation category provide a framework for describing relationships
between objects. They are further classified into peer and non-peer ones. The
former is used for depicting relations between objects of the same scope or kind
while the latter is intended to present hierarchical relations. For example, the
concept “bigger” is a possible relation between two integers or two sets of in-
tegers, but the description of a “bigger” relation between an integer and a set
of integer makes no sense. Therefore, bigger is a peer relation pattern and a
possible relation between an integer and a set of integer, such as belongTo, is
identified as non-peer relation pattern.

There is only one pattern “retrieve” in the retrieval category. It is designed
to help construct formal expressions denoting system variables. Although some
of the system variables are already defined in formal specifications, but vast ma-
jority of them need to be represented by combinations of defined variables, such
as the balance of one’s account in a banking system. And the pattern retrieve
is used to figure out such combinations to describe information acquisition.

Patterns of recreation deal with depicting system updating by presenting up-
dates of system variables in formal notations. There are two kinds of updating
described by different patterns, one is common update that updates data items
of the intended variable, such as adding new data items, altering or deleting
existing data items. The other is specific update that re-organizes or re-arranges
data items of the intended variable by a given rule, such as sorting a set of data
items into a sequence.

3.3 Structure of the Pattern System

In order to treat patterns as knowledge for our potential tool, they are organized
into a pattern system preserving the classification strategy. Fig 3 shows the
structure of the pattern system where texts in rectangles stand for category
names while those in ellipse are referring to patterns. The semantics of this
structure is the classification of the functions in real world explained in the
previous section.

It should be noted that the given initial structure may be modified and ex-
panded both in width and depth along with the design of new patterns and new
mechanisms of the pattern system.

A Pattern System to Support Refining Informal Ideas 669

Pattern System

Relation Recreation

peer
relation

non -peer
relation

belongTo … bigger …

specific
update

sort …

retrieve

add alter delete …

common
update

Retrieval

Fig. 3. The structure of the pattern system

3.4 Mechanism for the Application of the Pattern System

The pattern system can be used manually, but as we explained previously, to
avoid the difficulties in studying, selecting and applying patterns by humans, we
advocate an automated mechanism for the application of the pattern system.
In this mechanism, patterns are selected based on the structure of the pattern
system and each pattern is treated as a piece of knowledge that is used directly
by computer to provide guidance for the user to efficiently apply it. Since the
pattern retrieve is designed differently from patterns of relation and recreation,
we discuss methods of applying them separately.

Pattern selection. When users need to express informal ideas in formal nota-
tions, they would have to first clarify the general intention. This task is fulfilled
by selecting an appropriate pattern which can be guided along the hierarchical
structure of the pattern system on the semantic level. Distinct identification of
each category and pattern simplifies decision making and explanation item of
each pattern help confirm the correctness of the selection.

Application of patterns of relation and recreation. Applying patterns
of relation and recreation largely depends on their structures and is therefore
straightforward. Once a pattern is selected, the user will be asked to provide ele-
ments according to the constituents item, and then a suggested formal fragment
will be generated based on the given elements and the solution item. Besides,
these patterns can also be invoked by expressions written consistent with the
syntax item. The expression will be analyzed to check whether the provided el-
ements are all choice elements or represented by defined variables, and whether
each required element is available. If this is true, a suggested formal fragment
can be given, otherwise, complement or revision is needed.

But in most cases, obtaining a formal description can not be done in one step.
Regarding the maintainability and the generation of effective guidance as our
goals, the reuse mechanism is introduced which was mentioned in the previous

670 X. Wang, S. Liu, and H. Miao

section. It occurs during the application of patterns that involve names of reused
patterns or categories in certain mapped results of their solution items. Each
reused pattern name indicates the application of the pattern and each category
name denotes the application of the pattern selected within the category under
guidance, which refines these intermediate results. The final formal fragment
can then be derived by repeating the above process until no reused pattern or
category is involved. For example, in the solution item of the pattern alter,
the word “alter” refers to the reuse of the pattern alter itself, and the word
“recreation” indicates that the user will be guided to select a specific pattern of
recreation category to apply it. Whether such reuse will occur depends on how
the element operationType is specified which is composed of four children choice
elements. If customize has been chosen, which means that the user would like to
provide a concrete value as the updated one, newV alue will be designated as the
given value without reusing any pattern. Selection on one of the other children
elements, however, tells that the retrieval of the new value needs help resulting
in application of other patterns. Choice element retrieve is used to activate
the pattern retrieve while recreation and update indicate applying recreation
patterns on another variable and the original value respectively.

Often, reused patterns or categories appear in solution items are associated
with element information. For patterns the information is the elements required
in its constituents item written consistent with syntax. Reused categories can also
temporarily hold the information for the later selected pattern to use, such as
the included “recreation(˜object(v))” in the solution item of the pattern alter.
It demonstrates that when a specific pattern p belonging to recreation category
is chosen under guidance, ˜object(v) will be transferred to p as the value of the
first element according to its syntax.

Application of the pattern retrieve. Supporting to describe system
variables in formal expressions, the pattern retrieve owns only one element
initialT ype in the constituent item and holds a different application method
with others because of its special solution item. Rather than mappings from
features to formal fragments, the solution item of the pattern retrieve gives a
process for deriving the target formal expression with the given initialT ype. The
main strategy is to construct a tree structure to collect necessary information
from users and generate a formal expression based on the tree.

As the essential of the approach, the tree uses left and right subtrees to present
constraints on the intended variable represented by the root node. In such struc-
ture, each node is identified as a defined type while each branch branchi is
represented as a transition (s, l, s′) where s′ is a child node of s, l is the label of
the branch. Branches are divided into two kinds. If s′ is a subtype of s, i.e., the
definition of s relies on the definition of s′(denoted as Dep(s, s′)), branchi is a
downward branch where s′ is a left child of s. If Dep(s′, s) establishes, branchi

is a upward branch where s′ is a right child of s. Downward branches use con-
straints on s′ as their labels while upward branches take constraints on s as their
labels. For example, suppose an informal idea is to retrieve a system variable obj
that satisfies two conditions: the data type of obj is real ∗ int and obj(2) = 5. It

A Pattern System to Support Refining Informal Ideas 671

Fig. 4. Pseudo node for special situations

can be represented as a downward branch (real∗ int, l1, int) where l1 is set to be
“5” as the constraint on node int. In the case that the intended variable obj is
an element of a set declared as set of int that satisfies obj > 5, we should use a
upward branch (int, l2, set of int) where l2 is set to be “> 5” as the constraint
on node int.

Nodes of the left subtree can only own downward branches while that of
the right subtree are able to own both kinds of branches. And the rightmost leaf
node of the right subtree corresponds to a defined variable serving as the basis of
the target formal expression. Let’s take the previous upward branch (int, l2, set
of int) as an example, assume that node set of int corresponds to a defined
variable v, obj can then be presented as (obj inset v) ∧ (obj > 5).

Besides, pseudo node is introduced to handle special situations. One situation
is that certain node corresponds to more than one system variable. In the pre-
vious example, there might be a set of obji satisfying obji(2) = 5. Furthermore,
the user may want to present a condition that the nodes of upper levels should
satisfy by giving constraints on this set. For example, the intended variable be-
comes a sequence of product containing 2 obji where obji(2) = 5. To enable such
kind of description in the tree structure, we create a pseudo node set of real∗int
as shown in Fig 4(a). But if the root node happens to be in such situation, it will
be turned into a pseudo node without creating a new one. The other situation
is that some constraints have to be defined by composite values. For example, a
node s identified as T → T ′ may be required to satisfy that one of the elements e
in dom(s) maps to the element e′ in rng(s). To express such meaning, a pseudo
node s′ will be created as shown in Fig 4(b).

Based on the above concepts, the construction method of the tree can be given
which only requires users’ decisions on the semantic level and is therefore easy.
During this process, developing branches is a critical operation that needs to be
presented first. For a node s, its downward branches branchD(s) are developed
by setting selected subtypes of s as left child nodes and attaching given con-
straints on these subtypes as labels. By contrast, its upward branch branchU(s)
is only one new branch (s, l, t) where t is the selected type that takes s as its
subtype, l is the given constraints on s. If s encounters special situations, pseudo
nodes will be created following the instructions mentioned above.

672 X. Wang, S. Liu, and H. Miao

The construction process starts from the root node s0 which stands for the
value of element initialT ype meaning the data type of the intended variable. By
generating downward branches for each node s that has been currently extended
to, the left subtree will be built. In case that s0 cannot develop downward branch,
the left subtree will be empty. However, the right subtree can always be built by
the following algorithm.

1. Generate branchU(s0) and set the current leaf node as the current node cn.
2. If cn is a right child node of the right subtree and there exists a defined

variable v of type cn confirmed and accepted by the user, then quit with v.
3. If cn needs to be identified by constraints from its subtypes, then extend the

left subtree of cn using the proposed method for left subtree generation.
4. If cn is not a left child of certain node of the right subtree, then generate

branchU(cn).
5. Set each current leaf nodes as the current node and repeat 2 – 5 respectively.

With a complete tree, the target formal expression exp is generated by treating
the left and right subtree separately. The expression lExp standing for the left
subtree is obtained through the following algorithm, which can be skipped for
the trees with empty left subtrees:

create a stack currentNodes;
currentNodes.push(s0);
while(currentNodes is not empty){
currentNode = currentNodes.pop();
lExp = merge(Null, lExp, branchD(currentNode));

for each child childi of currentNode
{currentNodes.push(childi); }}

And the algorithm to form the expression rExp standing for the right subtree
is as follows where rLeaf denotes the leaf node of the right subtree:

currentNode = rLeaf.parentNode;
rExp = v;
while(currentNode! = s0){

tempExp = Null;
if(currentNode has left subtree){

create a stack temps;
temps.push(currentNode);
temp = currentNode;
while(temps is not empty){
currentNode = temps.pop();
tempExp = merge(Null, tempExp, branchD(currentNode));
for each child tempChildi of currentNode
{temps.push(tempChildi); }}}

rExp = merge(rExp, tempExp, {branchU(temp)});
currentNode = temp.parentNode; }}

A Pattern System to Support Refining Informal Ideas 673

Left subtrees are dealt with in a top-down manner while the right subtrees
are transformed by a bottom-up method with the critical variable v as the start
point. Finally after combining two expressions through the root node, the final
formal expression is achieved as:

exp = merge(rExp, lExp, {branchU(s0)})
Along the whole transformation process, function merge plays an important

role which is defined as:
merge : rExp ∗ lExp∗ set of branch → exp

where rExp is a string denoting an expression transformed from a right subtree,
lExp is a string denoting an expression transformed from a left subtree, and exp
is a string denoting the expression generated by combining rExp, lExp and a set
of branches. It is designed for constructing expressions under various situations,
but the detailed rules are not further discussed for the sake of space.

4 Case Study

We apply the proposed pattern system to a banking system for accounts man-
agement. Each account is owned by one customer with a unique pair of account
number and password, containing information of balance and transactions. Bal-
ance is a set of maplets from a currency type to its current amount and transac-
tions is a sequence of transaction, each recording the time, type, currency type

type
AccountNo= seq of nat0;
Password = string;
CustomerInf = composed of

accountNo: AccountNo
password: Password
end;

CurrencyType = {<USD>, <JPY >, <CNY>};
Amount = real;
Balance = map CurrencyType to Amount
Year = nat0;
Month = nat0;
Day = nat0;
Date = Year*Month*Day;
OperationType= {<deposit>, <withdraw>}
Transaction = composed of

date: Date
operationType: OperationType
currencyType: CurrencyType
amount: Amount
end;

Transactions = seq of Transaction;
AccountInf = composed of

balance: Balance
transactions: Transactions

end;
AccountFile= map CustomerInf to AccountInf;
var
ext #account_store: AccountFile

Fig. 5. Definitions of types and variables of the example specification

674 X. Wang, S. Liu, and H. Miao

Fig. 6. The tree structure for the example display function

let accountInfSet = {itemAccountInf | itemAccountInf : rng(account_store)

& let transactionSeq = [itemTransaction |

itemTransaction : Transaction

& exists[i : int] | itemAccountInf.transactions(i) = itemTransaction

and itemTransaction.date(2) = 7 and itemTransaction.date(3) = 3]

in len(transactionSeq) > 3

and itemAccountInf.balance(USD) = 500

and itemAccountInf.balance(JPY) >= 1000}

in let TransactionsSet = {itemTransactions | itemTransactions :Transactions

& exists[itemAccountInf : accountInfSet] |

itemAccountInf.transactions = itemTransactions}

in output = {itemTransaction | itemTransaction : Transaction

& exists[itemTransactions : TransactionsSet , j: int] |

itemTransactions(j) = itemTransaction}

and itemTransaction.date(2) = 7 and itemTransaction.date(3) = 3

Fig. 7. The formal expression of the example display function

and amount of certain operation. All of the information mentioned above is kept
in an external store defined as account store. Accordingly, we assume that the
type and var parts of the specification are defined as in Fig 5.

Main functions of this example banking system includes customer authenti-
cation, information display, deposit and withdraw. Considering that deposit has
the same nature with withdraw, we use withdraw to illustrate both of them.

Customer authentication checks whether the given customer information, de-
noted as customerInf , belongs to the authorized data store. This is apparently

A Pattern System to Support Refining Informal Ideas 675

name: add
constituents : object, addend
(object, addend)

dataType(object) = set of T: composed of
field1: T1

…
fieldn: Tn

addend : v1 … vn

…
syntax: add(object, addend)
solution:
constraints (object, addend) formal expression

dataType(object) = set of T: composed of
field1: T1

…
fieldn: Tn

addend = (v1, v2, vn)
conc(object, mk_T(v1, v2, vn))

name: delete
constituents : object, minuend
(object, minuend)
dataType(object) = real

minuend : v
dataType(object) = set of T: composed of

field 1: T1

…
field n: Tn

minuend : field1 … field n

…
syntax: delete(object, minuend)
solution :
constraints (object, minuend) formal expression

dataType(object) = real
minuend = v object - v

Fig. 8. Parts of the pattern “add” and “delete”

override (~account_store, {inf recreate (~account_store(inf))})

object = account_store, specifier = (((dom = inf), rng)),
operation = ((update , Null))

pattern “alter”

modify(~account_store(inf), balance
recreate (~account_store(inf).balance), transactions recreate (~account_store(inf).transactions))

pattern “alter” object = ~account_store(inf), specifier = (balance , transactions),
operation = ((update , Null), (update , Null))

pattern “alter”
obje ct = ~account_store(inf).balance ,
specifier = (((dom = cy), rng)),
operation = ((update , Null)) pattern “add”

objec t =
~account_store(inf).transactions

addend = (today, withdraw, cy, m)

override (~account_store(inf).balance ,
{cy recreate (~account_store(inf).balance (cy))})

conc(~account_store(inf).transactions ,
mk_transaction(today, withdraw, cy, m))

pattern “delete”

~account_store(inf).balance (cy) - m

object = ~account_store(inf).balance (cy)
minuend = (m)

Fig. 9. Generation process of the formal expression representing the updated data store
in the example function “withdraw” using pattern “alter”

an issue about relation, which leads to the selection of relation category in the
top level of the pattern system structure. Through deeper explorations in the
structure, pattern belongTo becomes the most suitable one. According to its

676 X. Wang, S. Liu, and H. Miao

definition, two elements element and container must be specified. In our case,
they should be designated as customerInf and account store respectively. These
two variables will be automatically analyzed in the context of the solution item,
which results in a formal expression “customerInf inset dom(account store)”
to describe the relation.

Information display obtains data required by customers, which falls into the
scope of the pattern retrieve. To better demonstrate the application of the
pattern, we complicate the function on purpose. Consider describing displaying
the July 3rd’s transactions of accounts that have more than 3 transaction records
on July 3rd, 500 US dollars and more than 1000 Japanese Yen. By applying the
pattern retrieve, a tree structure(shown in Fig 6) can be constructed. Using
the proposed transformation method, we will get the result formal expression as
shown in Fig 7 where output : set of T ransaction denotes the output variable.

The core of the withdraw function is the updating of the external data store
account store which needs the pattern alter to help describe. Suppose a cus-
tomer with information inf has withdrawn certain amount m of certain kind of
currency cy, through the process shown in Fig 9, the expression representing the
updated data store is generated as follows(Due to the reuse of pattern add and
delete, parts of them are presented in Fig 8 as a reference):

.override(˜account store,
{inf → modify(˜account store(inf),
balance→ override(˜account store(inf).balance,

{cy → ˜account store(inf).balance(cy)−m}),
transactions→ conc(˜account store(inf).transactions,

mk transaction(today, withdraw, cy, m))})

5 Conclusion

This paper describes a pattern system to support refining informal ideas into
formal expressions. The pattern system organizes patterns into a hierarchical
structure according to different properties of individual patterns, which greatly
facilitates pattern selection. Moreover, users will be explicitly guided by appli-
cation methods of the pattern system without the need of understanding it.

In the future, we are interested in exploring more patterns for type and state
variable declarations, predicate expression construction, and specification archi-
tecture construction. Another important research will be building a software tool
to support the pattern system presented in this paper.

References

1. Silverstein, M., Alexander, C., Ishikawa, S.: A Pattern Language: Towns, Buildings,
Construction. Oxford University Press, Oxford (1977)

2. Miller, A., Manolescu, D., Kozaczynski, W.: The growing divide in the patterns
world. IEEE Software 24(4), 61–67 (2007)

3. Johnson, R., Gamma, E., Helm, R.: Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional, Reading (1994)

A Pattern System to Support Refining Informal Ideas 677

4. Grunske, L.: Specification Patterns For Probabilistic Quality Properties. In: Pro-
ceedings of the 30th International Conference on Software Engineering, pp. 31–40
(2008)

5. He, X., Ding, J., Mo, L.: An approach for specification construction using property-
preserving refinement patterns. In: 23th Annual ACM Symposium on Applied
Computing, pp. 797–803. ACM, New York (2008)

6. Kurita, T., Nakatsugawa, Y., Ohta, Y.: Applying Formal Specification Method in
the Development of an Embedded Mobile FeliCa IC Chip. In: Proceedings of the
2005 Software Symposium, Japan, pp. 73–80 (June 2005) (in Japanese)

7. Liu, S.: Formal Engineering for Industrial Software Development. Springer, Hei-
delberg (2004)

8. Liu, S., Takahashi, K., Hayashi, T., Nakayama, T.: Teaching Formal Methods in
the Context of Software Engineering. In SIGCSE Bulletin 41(2), 17–23 (2009)

9. Corbett, J.C., Dwyer, M.B., Avrunin, G.S.: Pattern in property specifications for
finite-state verification. In: 21th International Conference on Software Engineering,
pp. 411–420. ACM, New York (1999)

10. Parnas, D.L.: Really Rethinking Formal Methods. Computer 43(1), 28–34 (2010)
11. Sahara, S.: An Experience of Applying Formal Method on a Large Business Appli-

cation. In: Proceedings of 2004 Symposium of Science and Technology on System
Verification, Osaka, Japan, February 4-6, pp. 93–100. National Institute of Ad-
vanced Industrial Science and Technology (AIST) (2004) (in Japanese)

12. Stepney, S., Polack, F., Toyn, I.: An outline pattern language for Z: five illustrations
and two tables. In: Bert, D., Bowen, J.P., King, S. (eds.) ZB 2003. LNCS, vol. 2651,
pp. 2–19. Springer, Heidelberg (2003)

13. The VDM-SL Tool Group: Users Manual for the IFAD VDM-SL tools. Technical
Report IFAD-VDM-4, The Institute of Applied Computer Science (IFAD) (De-
cember 1994)

14. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal Methods: Prac-
tice and Experience. ACM Computing Surveys 41(4) (2009)

Specification Translation of State Machines from
Equational Theories into Rewrite Theories

Min Zhang1, Kazuhiro Ogata1, and Masaki Nakamura2

1 School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)

{zhangmin,ogata}@jaist.ac.jp
2 School of Electrical and Computer Engineering

Kanazawa University
masaki-n@is.t.kanazawa-u.ac.jp

Abstract. Specifications of state machines in CafeOBJ are called equa-
tional theory specifications (EQT Specs) which are based on equational
logic, and in Maude are called rewrite theory specifications (RWT Specs)
which are based on rewriting logic. The translation from EQT Specs to
RWT Specs achieves the collaboration between CafeOBJ’s theorem prov-
ing facilities and Maude’s model checking facilities. However, translated
specifications by existing strategies are of inefficiency and rarely used for
model checking in practice. This paper defines a specific class of EQT
Specs called EADS Specs, and proposes a strategy for the translation
from EADS Specs to RWT Specs. It is proved that translated specifica-
tions by the strategy are more efficient than those by existing strategies.

Keywords: Algebraic specification, automatic translation, rewrite the-
ory, equational theory, CafeOBJ, Maude.

1 Introduction

Specification translation is a traditional way of achieving the collaboration be-
tween different verification tools, with duplicate effort reduced at the specifica-
tion level. Translations between different formalisms have been widely studied.
For instance, the translation from Z into B [1] integrates the tool PROZ for Z
specifications into PROB; safe Petri Nets are translated into statecharts to en-
able the automated exchange of models between Petri net and statechart tools
[2]; and Raise Specification Language (RSL) is translated into CSPM so that
LTL formulae in RAISE can be model checked by the model checker FDR [3].

CafeOBJ [4] and Maude [5] are two state-of-the-art verification systems based
on algebraic approaches. CafeOBJ is equipped with theorem proving facilities
[6], while Maude with model checking facilities. Whenever a property fails to
be proved in CafeOBJ, a counterexample is desired. In this situation, Maude is
a better alternative than other model checking tools for the following reasons:
(1) it is a sister language of CafeOBJ and has similar syntax, which reduces
duplicate effort at specification level, and (2) the efficiency of Maude model
checking facilities is comparable to those of other prevalent tools like SPIN [7].

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 678–693, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Specification Translation of State Machines 679

Specifications of state machines in CafeOBJ are equational theory specifica-
tions (EQT Specs), and in Maude are rewrite theory specifications (RWT Specs).
There are multiple styles of equational theory or rewrite theory specifications of
state machines. EQT Specs in this paper only refer to a class of specifications
that are developed in OTS/CafeOBJ method [8], and RWT Specs to a sub-class
of rewrite theory specifications where states are represented by sets of observ-
able components and action components (see Section 2.3 for details). Automatic
translation from EQT Specs to RWT Specs is much more preferable because
manually developing an RWT Spec for the state machine that is specified by
an EQT Spec is not only effort-consuming, but at risk of causing inconsistencies
between the EQT Spec and the RWT Spec. Recently, studies on the specification
translation of state machines between the two formalisms have been conducted.
Three strategies have been proposed so far to automate the translation and
translators have been developed [9,10,11]. However, specifications generated by
these strategies are rarely used in practice for model checking due to the low
efficiency of the translated specifications.

This paper proposes a translation strategy for a specific sub-class of EQT
Specs, aiming at generating more efficient model checkable RWT Specs. We
argue that not all EQT Specs can be translated into RWT Specs, and hence
introduce a specific class of EQT Specs called EADS Specs from a practical point
of view. EADS Specs are mainly used to specify a class of asynchronous systems
called Extended Asynchronous Distributed Systems (EADS). We compare the
efficiencies of translated specifications that are obtained in different strategies
with two concrete examples. The experimental result indicates that the efficiency
of translated specifications is significantly improved. The contributions of this
work are manifold: (1) a specific class (EADS Specs) of EQT Specs that are used
for practical verifications are discovered; (2) a translation strategy is proposed
to automate the translation from EADS Specs into RWT Specs; and (3) the
efficiency of translated specifications is significantly improved so that they can
be used by Maude for practical model checking.

The rest of this paper is organized as follows: Section 2 introduces state ma-
chines, EQT Specs and RWT Specs. Section 3 introduces EADS Specs and ex-
plains the reason why EADS Specs are selected. Section 4 describes a strategy
for the translation from EADS Specs into RWT Specs. The efficiency of the
specifications generated by our strategy is evaluated through comparing with
those generated by three existing strategies in Section 5. Section 6 concludes
this paper and mentions ongoing work.

2 Preliminaries

2.1 State Machines

A state machine consists of (1) a set U of states, (2) the set I(I ⊆ U) of
initial states, and a set T of transitions. Each u ∈ U is a (possibly infinite)
record {l1 = d1, l2 = d2, . . .} of type {l1 : D1, l2 : D2, . . .}, where D with a
subscript such as Di is a type for data. For convenience, we let li(u) denote li’s

680 M. Zhang, K. Ogata, and M. Nakamura

corresponding value di in state u. Each transition t ∈ T is a binary relation over
states.

Let us consider a mutual exclusion protocol called Qlock to show how to model
dynamic systems with state machines. Multiple processes participate in Qlock
and each process p executes the following program:

Loop
rs: enqueue(queue,p);
ws: repeat until top(queue) = p;

critical section;
cs: dequeue(queue);

The queue records the processes that are requesting to enter the critical section
according to the request order. Initially, all processes are at label rs, and the
shared queue is empty. A process p puts its process identifier at the bottom of
the queue and then waits to enter the critical section. It is allowed to enter the
critical section whenever its identifier is at the top of the queue and it is at the
label ws. The process executes the dequeue operation on the shared queue when
it leaves the critical section.

Let Queue, Label and Pid be types respectively for queues of process identi-
fiers, labels (rs, ws and cs) and process identifiers (p1, p2, . . .). A state machine
MQlock modeling Qlock is as follows:

– UQlock � {u|u : {queue : Queue, pc1 : Label, pc2 : Label, . . .}};
– IQlock � {u0 ∈ UQlock|queue(u0)=empty, pci(u0) = rs for each process pi};
– TQlock � {want1, want2, . . .} ∪ {try1, try2, . . .} ∪ {exit1, exit2, . . .}.

• (u, u′) ∈ wanti iff pci(u) = rs, pci(u′) = ws, queue(u′) = (pi|queue(u))
and pcj(u′) = pcj(u) for each process pj s.t. pj �= pi;

• (u, u′) ∈ tryi iff pci(u) = ws, top(queue(u))=k, pci(u′) = cs, queue(u) =
queue(u′) and pcj(u′) = pcj(u) for each pj �= pi;

• (u, u′) ∈ exiti iff pci(u) = cs, queue(u′) = dequeue(queue(u)), pci(u′) =
rs and pcj(u′) = pcj(u) for each pj �= pi.

Fig. 1 shows a part of state transitions in MQlock. An arrow labelled by a
transition t from a state u to u′ denotes (u, u′) ∈ t. Elements in queues are
concatenated by |. The rightmost element is taken as the top one in the queue.

2.2 EQT Specs

EQT Specs are based on equational logic in the sense that transitions are speci-
fied with a set of equations. Let Υ be a sort for states. An EQT Spec consists of
(1) a finite set O of observers, (2) a constant init of Υ , representing an arbitrary
initial state, (3) a finite set A of actions, and (4) a family E of sets of equations.
Each observer o is a function symbol whose rank is Υ Do1 . . .Dom → Do. An
observer corresponds to a (possibly infinite) set of data fields in a state in state
machines. Each action a is a function symbol whose rank is Υ Da1 . . . Dan → Υ .
An action a represents a (possibly infinite) set of transitions in state machines.

Specification Translation of State Machines 681

u0

u1 u2

u3 u4

u5

want2want1

try1 want2

exit1

exit1

u0 = {queue = empty, pc1 = rs, pc2 = rs, . . .}

want2 try1

u1 = {queue = p1, pc1 = ws, pc2 = rs, . . .}
u2 = {queue = p2, pc1 = rs, pc2 = ws, . . .}
u3 = {queue = p1, pc1 = cs, pc2 = rs, . . .}
u4 = {queue = p2|p1, pc1 = ws, pc2 = ws, . . .}
u5 = {queue = p2|p1, pc1 = cs, pc2 = ws, . . .}

Fig. 1. State transitions in the state machine of Qlock

Each action a is given a function symbol c-a with the same arity of a and Bool
as its coarity, denoting the condition under which a transition represented by
action a takes place. E consists of a set Einit of equations which init must sat-
isfy, and a set Ea of equations for each action a which can be interpreted as the
definition of a set of transitions denoted by a.

We take an EQT Spec SQlock for MQlock as an example. Let Pid, Queue,
and Label be sorts for process identifiers, queues and labels1. Function symbols
enqueue, dequeue and top correspond to basic functions enqueue, dequeue and
top on type Queue. Constants rs, ws and cs are of sort Label, corresponding
to labels rs, ws and cs, respectively.

OQlock � {pc : Υ Pid→ Label, queue : Υ→ Queue};
AQlock � {want : Υ Pid→ Υ, try : Υ Pid→ Υ, exit : Υ Pid→ Υ};
EQlock � {Einit, Ewant, Etry, Eexit}, where:

Einit � {pc(init, x) = rs, queue(init) = empty}
Ewant � {c-want(υ, y) = pc(υ, y)

.
= rs

SQlock

pc(want(υ, y), x) = (if x
.
= y then ws else pc(υ, x) fi) if c-want(υ, y)

queue(want(υ, y)) = (y|queue(υ)) if c-want(υ, y)
want(υ, y) = υ if ¬c-want(υ, y)}

Etry � {c-try(υ, y) = pc(υ, y)
.
= ws ∧ top(queue(υ))

.
= y

pc(try(υ, y), x) = (if x
.
= y then cs else pc(υ, x) fi) if c-try(υ, y)

queue(try(υ, y)) = queue(υ) if c-try(υ, y),
try(υ, y) = υ if ¬c-try(υ, y)}

Eexit � {c-exit(υ, y) = pc(υ, y)
.
= cs

pc(exit(υ, y), x) = (if x
.
= y then rs else pc(υ, x) fi) if c-exit(υ, y)

queue(exit(υ, y)) = dequeue(queue(υ)) if c-exit(υ, y)
exit(υ, y) = υ if ¬c-exit(υ, y)}

where υ is a variable of Υ , and x, y are of Pid. Symbol .= denotes equivalence
relations over data types. Every variable in an equation (or a rewriting rule) is
universally quantified and its scope is in the equation (or the rewriting rule).
The observer queue specifies the field queue : Queue in the record type in

1 By convention, symbols like sorts, constants and function symbols at specification
level are differentiated from those at mathematical level by using typewriter font.

682 M. Zhang, K. Ogata, and M. Nakamura

MQlock, and pc specifies an infinite set of fields {pc1 : Label, pc2 : Label, . . .}.
Constant init together with Einit specifies IQlock. Action want corresponds to
an infinite set {want1, want2, . . .} of transitions. The set Ewant of equations can
be interpreted as the definition of the set of transitions. Actions try and exit
together with Etry and Eexit specify the sets of transitions {try1, try2, . . . , } and
{exit1, exit2, . . . , }. Term want(υ, y) represents a successor of the state denoted
by υ if c-want(υ, y) holds. Otherwise, want(υ, y) is considered equivalent to υ.

States in MQlock are represented by terms of Υ . For example, states u0, u1,
and u4 as shown in Fig. 1 are represented by terms init, want(init, p1), and
want(want(init, p1), p2), respectively. Taking u1 for instance, we have pc1(u1) =
ws. Term pc(want(init, p1), p1) equals ws for the following reasons. According
to the second equation in Ewant with υ being init, x and y being p1, we have

pc(want(init, p1), p1) = (if p1
.= p1 then ws else pc(init, p1) fi)

if c-want(init, p1)

According to the first equation in Einit, pc(init, p1) is equivalent to rs, which
indicates c-want(init, p1) holds. Because p1

.= p1 holds, the right-hand side
(RHS) of the equation above equals ws, namely that pc(want(init, p1), p1)
equals ws. Similarly, we have pc(want(init, p1), pi) equals rs for pi(i > 1) and
queue(want(init, p1)) equals p1.

2.3 RWT Specs

RWT Specs are based on rewriting logic in the sense that transitions are specified
by rewriting rules. A state is represented as a set of components denoted by sort
State. Components in a state can be divided into two kinds, namely action
components and observable components whose sorts are AComp and OComp as
subsorts of State. Each action component corresponds to a set of transitions in
state machines, and each observable component to a data field in a state.

An RWT Spec consists of (1) a finite set OC of observable component con-
structors, (2) a finite set AC of action component constructors, (3) a set F of
function symbols for the representation of initial states, with a set EF of equa-
tions for the function symbols in F , and (4) a finite setR of rewriting rules. Each
observable component constructor o[, . . . ,]: is a function symbol whose rank
is Do1 . . . Dom Do → OComp. We adopt mixfix operators in CafeOBJ and Maude.
An underscore indicates the place where an argument is put. An observable com-
ponent constructor corresponds to a (possibly infinite) set of fields of record type
(i.e. the type of states) in a state machine. An observable component is expressed
by a term whose top is o[, . . . ,]: . Each action component constructor ac is a
function symbol whose rank is SetDt1 . . . SetDtn → AComp, where SetDti is a
sort for sets of elements of Dti

2. An action component is expressed by a term
2 Basic operations on SetDtk follow the definition of basic set in [5, chap. 5]. Whites-

pace character is defined as concatenation operation which is associative and com-
mutative. Therefore, variable yk of Dtk can be any element of Dtk in a pattern
(yk ysk), where variable ysk is of SetDtk.

Specification Translation of State Machines 683

whose top is ac, corresponding to a set of transitions in state machines. One
rewriting rule in R specifies a (possibly infinite) set of transitions. For instance,
the following rewriting rule specifies all transitions in {want1, want2, . . .}

want((y ys)) (queue: q) (pc[y]: l)⇒
want((y ys)) (queue: (y|q)) (pc[y]: ws) if l

.= rs,

where, q is a variable of sort Queue and l of Label. A state containing the fields
queue = q′ and pci = rs is partially denoted by want(pi ys)(queue: q)(pc[y]: l).
The term is rewritten into want(pi ys)(queue: (pi|q′))(pc[pi]: ws), which means
that the two corresponding data fields in a state are changed into queue = (pi|q′)
and pci = ws. The rewriting rule says that if there is a process y whose label is rs
and a queue is q in a state, there is a successor state where the label of process y
becomes ws and the queue (y|q).

An RWT Spec SQlock that specifies the state machine MQlock is as follows:

OCQlock � {pc[_]:_: Pid Label→ OComp, queue:_: Queue→ OComp};
ACQlock � {want: SetPid→ TComp, try: SetPid→ TComp, exit: SetPid→ TComp};
FQlock � {init: SetPid→ State, mk-pc: SetPid→ State};
EFQlock

� {init(ys) = want(ys) try(ys) exit(ys) (queue: empty) mk-pc(ys),
mk-pc(empty-set) = empty-state,
mk-pc(y ys) = (pc[y]: rs) mk-pc(ys)}

RQlock � {rwwant, rwtry, rwexit}, where:
rwwant � want((y ys))(pc[y]: l)(queue: q)⇒

want((y ys))(pc[y]: ws)(queue: (y|q)) if l
.
= rs,

rwtry � try((y ys))(pc[y]: l)(queue: q)⇒
try((y ys))(pc[y]: cs)(queue: q) if l

.
= ws and top(q)

.
= y,

rwexit � exit((y ys))(pc[y]: l)(queue: q)⇒
exit((y ys))(pc[y]: rs)(queue: dequeue(q)) if l

.
= cs

SQlock

The sort SetPid denotes sets of process identifiers. Given a term ps denoting
a set of process identifiers, init(ps) denotes the initial state when the pro-
cesses participate in Qlock. Three rewriting rules rwwant, rwtry and rwexit in
RQlock specify three sets of transitions {want1, want2, . . .}, {try1, try2, . . .}, and
{exit1, exit2, . . .} in MQlock.

3 State Machines Specifiable in RWT Specs

In RWT Specs, segments of states used in rewriting rules consist of one action
component, and a finite collection of observable components. When a rewriting
rule is applied to a state, only a segment of the state that matches the LHS
can be changed and the rest keeps unchanged. Since one observable component
corresponds to an element in a state in state machines, the number of values
that are changed by a rewriting rule must be finite. Hence, if a rewriting rule
can be declared for a transition (u, u′) ∈ t in a state machine, the number of
data fields in u that are different from their corresponding data fields in u′ must

684 M. Zhang, K. Ogata, and M. Nakamura

be finite, and the changes of these data fields from u to u′ depends on a finite
number of data fields in u.

However, the condition is not sufficient. Let us consider a state machine where
states are of type {l0 : N, l1 : N, . . .}. The initial state is {l0 = 0, l1 = 0, l2 =
0, l3 = 0, . . .}. There is only one transition inc s.t. (u, u′) ∈ inc iff for each i : N
if i ≤ l0(s) then li(u′) = li(u) + 1, otherwise, li(u′) = li(u). The transition chain
from the initial state is like:

{l0 = 0, l1 = 0, l2 = 0, l3 = 0, . . .} inc−→ {l0 = 1, l1 = 0, l2 = 0, l3 = 0, . . .} inc−→
{l0 = 2, l1 = 1, l2 = 0, l3 = 0, . . .} inc−→ {l0 = 3, l1 = 2, l2 = 1, l3 = 0, . . .} inc−→ . . .

The transition inc cannot be specified in the way of RWT Specs, because the
numbers of changed natural numbers from u to u′ vary for all (u, u′) ∈ inc,
although inc can be specified in equational theories. After each transition, the
number of changed natural numbers is increased and unbounded. Hence, for
each transition t ∈ T in a state machine which is specifiable in an RWT Spec,
there must be only a bounded number of elements changed from u to u′ for each
(u, u′) ∈ t. Moreover, each changed value in u′ must depend upon a bounded
number of elements in u. We call the state machines that satisfy the condition
are double bounded, and corresponding EQT Specs double bounded EQT Specs.
Any state machines that can be specified in RWT Specs are double bounded.

To automatically generate an RWT Spec from an EQT Spec, we first need
to check if the EQT Spec, namely the state machine denoted by it, is double
bounded. However, it is not decidable for all EQT Specs whether they are double
bounded. We have such a concrete EQT Spec which cannot be decided to be
double bounded or not.

Let us consider an EQT Spec SPCP that specifies a state machine of finding
solutions to Post’s Correspondence Problem (PCP)[12]. Let pcp-instance be an
arbitrary instance of PCP on the alphabet {a, b}, and Seq be a sort for sequences
of natural numbers.

– OPCP � {isSolution : Υ Seq→ Bool}
– TPCP � {solve : Υ → Υ}
– EPCP � {Einit, Esolve}

• Einit � {isSolution(init, sq) = false}
• Esolve � {isSolution(solve(υ), sq) = check(pcp-instance, sq)}

where, isSolution(υ, sq) denotes if sq is a solution to pcp-instance in υ, and
solve(υ) denotes a successor of υ. The function symbol check denotes a func-
tion that checks if sq is a solution to pcp-instance. Since it is undecidable if
pcp-instance has solutions according to the undecidability of PCP, it is also
undecidable if the number of values observed by isSolution and changed from
υ to its successor state solve(υ) is bounded.

To automate the translation from EQT Specs into RWT Specs, some con-
straints need to be imposed on EQT Specs. We focus on a specific class of
double bounded EQT Specs called EADS Specs. Without loss of generality, we
suppose that a special sort Pid is predefined for the processes (or principals) in

Specification Translation of State Machines 685

dynamic systems. All EADS Specs must conform to the following syntax-level
constraints:

1. Each o ∈ O should be declared in the form of o : Υ → Do or o : Υ Pid→ Do;
2. If there exists o ∈ O s.t. o : Υ Pid → Do, the declaration of each a ∈ A

should be one of the following two forms:
(a) a : Υ {Da1 . . . Dan} → Υ , where each Dai cannot be Pid3;
(b) a : Υ Pid {Da2 . . .Dan} → Υ ;
Otherwise, there is no restriction on the declaration of each a ∈ A;

3. If there exists o ∈ O s.t. o : Υ Pid→ Do, equations declared for t w.r.t o are
in one of the following forms:
(a) for o : Υ → Do and a : Υ {Da1 . . .Dan} → Υ (Dai cannot be Pid):

o(a(υ{, y1, . . . , yn})) = Toa if c-a(υ{, y1, . . . , yn});
(b) for o : Υ Pid→ Do and a : Υ {Da1 . . . Dan} → Υ (Dai cannot be Pid):

o(a(υ{, y1, . . . , yn}), y) = o(υ, y);
(c) for o : Υ → Do and a : Υ Pid {Da2 . . . Dan} → Υ :

o(a(υ, y1{, y2, . . . , yn})) = Toa if c-a(υ, y1{, y2, . . . , yn});
(d) for o : Υ Pid→ Do and a : Υ Pid {Da2 . . . Dan} → Υ :

o(a(υ, y1{, y2, . . . , yn}), y) = (if y
.= y1 then Toa else o(υ, y) fi) if

c-a(υ, y1{, y2, . . . , yn});
where, Toa is a term which represents the result into which the value observed
by o is changed by action a. If all observers o ∈ O are in the form of o :
Υ → Do, equations must be in form of (3a), but each Dai can be any sort
for data elements.

4. All observers o′ ∈ O (can be o) in Toa and c-a(υ, y1{, y2, . . . , yn}) must be
used in the form of o′(υ{, y1});

5. Only observers, actions and the function symbol c-a associated to each action
a can have Υ in their arity;

6. No actions are used in oa(υ, y1, {y2, . . . , yn}) and c-a(υ, y1{, y2, . . . , yn}).

Assume an EADS Spec specifies a state machine M. Constraint 1 indicates that
there are only two kinds of data fields inM. One is called system-level data field
which is denoted by o : Υ → Do and the other is process-level data field denoted
by o : Υ Pid → Do. Constraint 2 indicates whenever there are process-level
data fields in M, only two kinds of transitions are allowed in M. One is called
system-level transition represented by a : Υ {Da1 . . . Dan} → Υ and the other is
process-level transition represented by a : Υ Pid {Da2 . . .Dan} → Υ . Constraint
3 assures that only a bounded number of values in data fields in a state are
changed by a transition. Equations 3a and 3b indicate that in the dynamic
system only system-level values can be changed by system-level transitions, and
equations 3c and 3d indicate a process-level transition can only change system-
level values and the process’s own values. Constraint 4 indicates a process-level
transition executed by a process can only access the system-level data fields and
the process-level data fields owned by the process. Constraint 5 guarantees that
the number of terms representing data fields in Toa is bounded and the result
3 Contents in { and } may or may not occur.

686 M. Zhang, K. Ogata, and M. Nakamura

of Toa depends on only these terms, namely that the change of each data field
depends upon a bounded number of data fields, so does each condition for each
action. Constraint 6 assures that each action can be interpreted as a transition.

EADS Specs specify a class of asynchronous distributed systems such as com-
munication protocols and distributed mutual exclusion protocols, and some class
of asynchronous shared-memory systems such as Qlock. These systems are char-
acterized by the two main features: (1) A system consists of multiple processes
(or principals, etc.) and some shared resources, and (2) Each process (or princi-
pal) has only bounded number of components, and each process is only allowed
to access and modify its own components, besides shared resources.

4 Translation Strategy

The translation from an EADS Spec to an RWT Spec consists of two phases.
The first phase is to construct observable component constructors OC and action
component constructors AC from O and A, and to generate rewriting rules R
from E . The second phase includes optimizations of translated RWT Specs and
the construction of initial states for the optimized RWT Specs.

4.1 Generation of OC and AC
Observable component constructors OC and action component constructors AC
can be directly generated from the declarations of observers O and actions A.
Fig. 2 shows the translation from the declarations of observers and actions to
declarations of both observable and action component constructors.

o : Υ→ Do

o : Υ Pid→ Do

a : Υ Da1 . . . Dan → Υ

o: : Do → OComp

o[]: : Pid Do → OComp

a : SetDa1 . . . SetDan → AComp

O&A OC&AC

Fig. 2. The translation from O and A into OC and AC

4.2 Generation of R
For each action a ∈ A in an EADS Spec S, we construct a rewriting rule to
specify the same set of transitions that are denoted by a in a state machine.

For a ∈ A s.t. a : Υ Da1 . . . Dan → Υ (n ≥ 0), a denotes a set of system-level
transitions, by which only system-level data fields can be accessed. Therefore,
we only need to consider those observers that denote system-level data fields in a
state υ. For o ∈ O s.t. o : Υ → Do, o(υ) denotes the value of a system-level data
field in υ. According to the equation 3a, o(υ) is changed into Toa↓S4 when c-a(υ)
holds. We introduce a fresh variable do of Do denoting the value denoted by o(υ)
in a data field. We assume there are m(m ≥ 1) observers s.t. O = {o1, . . . , om}.
A rewriting rule that is constructed from a and Ea is as follow:
4 Toa↓S represents the canonical form of Toa in context S .

Specification Translation of State Machines 687

pc : Υ Pid→ Label

queue : Υ→ Queue

want : Υ Pid→ Υ

try : Υ Pid→ Υ

pc[]: : Pid Label→ OComp

queue: : Queue→ OComp

want : SetPid→ TComp

try : SetPid→ TComp

OQlock&AQlock OCQlock&ACQlock

exit : Υ Pid→ Υ exit : SetPid→ TComp

Fig. 3. The translation from OQlock and AQlock into OCQlock and ACQlock

a((y1 ys1), . . . , (yn, ysn))(o1: o1(υ)) . . . (om: om(υ)) ⇒ a(y1 ys1), . . . , (yn, ysn))
(o1: To1a↓S) . . . (om: Toma↓S) if c-t(υ)↓S ,

with terms o1(υ), . . . , om(υ) substituted by do1 , . . . , dom respectively. In the
rewriting rule, each component at LHS has a corresponding successor at RHS.
The action component (if there is) keeps unchanged. The change of observable
components like from (o : o(υ)) to (o: Toa↓S) exactly denotes the one from o(υ)
to Toa↓S in the original EQT Spec. Note that Toa↓S can be o(υ), which means
that corresponding shared resource is not changed. If o(υ) is also not used by
other observable component, it can be removed from the rewriting rule. This step
is called optimization (see Subsection 4.3 for details). Moreover, if all observers
o ∈ O are declared like o : Υ → Do, Dai in the declaration of a can be any sort,
otherwise, Dai cannot be Pid, according to Constraint 2.

For a ∈ A s.t. a : Υ Pid Da2 . . .Dan → Υ (n ≥ 0), a denotes a process-level
transition. Besides system-level data fields, a process-level transition can access
process-level data fields in the process where the transition takes place. Let y1

be a variable of Pid and y2, . . . , yn be variables of Da2, . . . , Dan respectively.
We consider a process-level transition denoted by a w.r.t. y1 and parameters
y2, . . . , yn. For each o ∈ O s.t. o : Υ → Do, we deal with it similarly like in
the construction of rewriting rules for system-level transitions. For each o ∈ O
s.t. o : Υ Pid → Do, among process-level data fields denoted by o, only those
owned by y1 can be accessed. In the state denoted by υ, the value in a process-
level data field of the process y1 w.r.t. o is denoted by o(υ, y1). According to the
equation 3d, it is changed into Toa↓S in the successor a(υ, y1, y2, . . . , yn) under the
condition that c-a(υ, y1, y2, . . . , yn) holds. We introduce a fresh variable do of Do

corresponding to o(υ, y1). We assume that the first k observers are in the form of
o : Υ → Do and rest of o : Υ Pid→ Do in m observers {o1, . . . , ok, ok+1, . . . , om}.
A rewriting rule specifying a set of system-level transitions denoted by action a
and Ea w.r.t. y1, y2, . . . , yn is as follow:

a((y1 ys1), (y2 ys2), . . . , (yn ysn)) (o1: o1(υ)) (ok: ok(υ))(ok+1[y1]:
ok+1(υ, y1)) . . . (om[y1]: om(υ, y1)) ⇒ a((y1 ps1), (y2 ys2), . . . , (yn ysn))
(o1: To1a↓S) . . . (ok: Toka↓S)(ok+1[y1]: Tok+1a↓S) . . . (om[y1]: Toma↓S)
if c-t(υ, y1, y2, . . . , yn)↓S ,

with terms o1(υ), . . . , ok(υ), ok+1(υ, y1), . . . , om(υ, y1) substituted by variables
do1 , . . . , dok

, dok+1 , . . . , dom , respectively.

688 M. Zhang, K. Ogata, and M. Nakamura

For instance, SQlock is an EADS Spec, according to the four restrictions. Fig. 3
shows the translation of the declarations of observers and actions in SQlock into
the declarations of observable component constructors and action component
constructors in SQlock. According to Ewant in SQlock, we construct the following
rewriting rule to specify the set of transitions denoted by the action want:

want((y ys))(pc[y]: pc(υ, y)) (queue: queue(υ)) ⇒ want((y ys))(pc[y]:
pc(want(υ, y), y)↓SQlock) (queue: queue(want(υ, y))↓SQlock if c-want(υ, y)↓SQlock .

According to Ewant, pc(want(υ, y), y) is reduced to ws, queue(want(υ, y)) to
(y|queue(υ)) and c-want(υ, y) to pc(υ, y) .= rs. Consequently, we obtain the
following rewriting rule:

want((y ys))(pc[y]: pc(υ, y)) (queue: queue(υ))⇒ want((y ys))(pc[y]: ws)
(queue: (q|queue(υ))) if pc(υ, y) .= rs.

Further, we substitute l for pc(υ, y) and q for queue(υ), then we obtain the
rewriting rule rwwant:

want((y ys))(pc[y]: l) (queue: q)⇒ want((y ys))(pc[y]: ws) (queue: (y|q))
if l

.= rs.

Similarly, we can construct the rewriting rules rwtry and rwexit for the actions
try and exit in SQlock.

4.3 Optimization of RWT Specs

Generated RWT Specs need to be optimized so that they can be efficiently model
checked in Maude. In Maude, rewriting with both equations and rules takes place
by matching an LHS against a subject term and evaluating the corresponding
condition [5, chap. 1]. Hence, the less complex the LHS and the condition of a
rewriting rule are, the less time it takes to match a term to the LHS and to
evaluate the condition, respectively.

A general way of optimizing rewriting rules is deleting redundant terms. In
an RWT Spec, action components are not changed in rewriting rules. From the
program point of view, it provides necessary variables that guarantee the rewrit-
ing rule is executable, because Maude generally requires variables that occur in
the RHS or condition must occur in the LHS to make rewriting rules executable
[5, chap. 6]. However, some variables in an action component may be also used
by some observable components at the LHS in rewriting rules. In this situation,
these variables in the action component become redundant. We take the rewriting
rule rwwant in SQlock for instance. The variable y in want((y ys)) is also used in
(pc[y]: l). Since there is only one parameter taken by the action component con-
structor want, deleting x means that we can delete the whole action component.
After deleting want((y ys)), we obtain a simpler rewriting rule, as follow:

(pc[y]: l)(queue: q)⇒ (pc[y]: ws)(queue: (y|q)) if l
.= rs.

Another case is that when a parameter yk, k ∈ {1, . . . , n} in an action compo-
nent of a occurs in some observable components at LHS of a rewriting rule or yk

occurs neither in any observable components at RHS nor in condition, we can

Specification Translation of State Machines 689

remove the kth parameter of a, and consequently revise the declaration of a in
AC. If all parameters of a are removed, the action component can be removed.

Redundant observable components in rewriting rules can also be deleted. An
observable component is redundant when the value in it is neither changed by
the transition, nor used by other components or in conditions. A redundant
observable component can be deleted directly from both the sides of rewriting
rules, without changing the meaning of the rewriting rules.

Another optimization is to simplify or delete the condition of a rewriting
rule. The optimization is achieved by equivalent replacement. We assume that
the condition is a conjunction. If a conjunct in the condition is an equivalence
relation in the form of x

.= T and x occurs in neither T nor the other part of the
condition, where x is a variable and T is a term, we can replace x that occurs
in the both sides of the rewriting rule with T and delete the conjunct from the
condition. For instance, the rewriting rule can be further simplified to be the
following one:

(pc[y]: rs)(queue: q)⇒ (pc[y]: ws)(queue: (q|y)).

An optimized RWT Spec of Qlock is as follow:

OC′Qlock � {pc[_]:_: Pid Label→ OComp, queue:_: Queue→ OComp};

F ′
Qlock � {init: SetPid→ State, mk-pc: SetPid→ State};
E ′F ′

Qlock
� {init(ys) = (queue: empty) mk-pc(ys),

mk-pc(empty-set) = empty-state,
mk-pc(y ys) = (pc[y]: rs) mk-pc(ys).}

R′
Qlock � {rwwant, rwtry, rwexit}, where:
rwwant � (pc[y]: rs)(queue: q)⇒ (pc[y]: ws)(queue: (y|q));
rwtry � (pc[y]: ws)(queue: q)⇒ (pc[y]: cs)(queue: q) if top(q)

.
= y;

rwexit � (pc[y]: cs)(queue: q)⇒ (pc[y]: rs)(queue: dequeue(q)).

S′
Qlock

AC′Qlock � ∅;

4.4 Generation of F and EF

The last step is to construct a set F of function symbols and a set of equations EF
for F to specify initial states in an RWT Spec S, according to the specification
of the initial states denoted by init in the original EQT Spec S.

For each o ∈ O in S s.t. o : Υ → Do, the value of the data field corresponding
to o in initial states is o(init)↓S . Consequently, an observable component (o :
o(init)↓S) in S can be constructed to correspond to the data field. For each
observer o ∈ O s.t. o : Υ Pid → Do, the value of the data field corresponding
to o with a process y in initial states is denoted by o(init, y)↓S . Hence, the data
field can be denoted by the observable component (o[y] : o(init, y)↓S). Given a
set of processes, to construct a set of observable components that represent all
data fields corresponding to o in the initial states, we define an auxiliary function
which is denoted by mk-o : PidSet → State. The following two equations are
declared for mk-o:

690 M. Zhang, K. Ogata, and M. Nakamura

mk-o(empty-set) = empty-state,
mk-o(y ys) = (o[y] : o(init, y)↓S) make-o(ys),

where y is a variable of Pid and ys of SetPid. Let sai(1 ≤ i ≤ n) denote
a set of elements of SetDai that are used in the specified system. The action
component of a in the initial states can be constructed as a(sa1, . . . , san), for
each a : SetDa1 . . . SetDan → TComp.

We suppose OC consists of m observable component constructors, where the
first k constructors are declared as oi: : Doi → OComp for i = 1, . . . , k, and
the rest as oi[]: : Pid Doi → OComp for i = k + 1, . . . , m. We also suppose
OA consists of n action component constructors a1, . . . , an and each aj takes lj
parameters for j = 1, . . . , n. Let {SetD1, . . . , SetDn′} be the set of all sorts that
are taken by at least one component constructor in AC. We declare a function
symbol init s.t. init : SetPid SetD1 . . . SetDn′ → State, and declare the
following equation for init:

init(ys, sd1, . . . , sdn′) = (o1 : o1(init)↓S) . . . (ok : ok(init)↓S) mk-ok+1(ys) . . .
mk-om(ys) a1(sd11, . . . , sd1l1) . . . an(sdn1, . . . , sdnln),

where each sdi(1 ≤ i ≤ n′) is a variable of SetDi, and each sdjw(1 ≤ j ≤ n, 1 ≤
w ≤ lj) is one of sd1, . . . , sdn′ . Consequently, we obtain a set of function symbols
F = {init, mk-ok+1, . . . , mk-om}, and a set EF of equations that are declared
for init and mk-ok+1, . . . , mk-on.

We take the construction of F ′
Qlock and E ′F ′

Qlock
for S′

Qlock as an example.
Since AC′Qlock is empty, we only need to consider OC′Qlock. Sort Pid is taken as
a parameter sort, therefore init is declared as init : PidSet → State, and
we have init(ys) = (queue: queue(init)↓SQlock) mk-pc(ys). That is init(ys) =
(queue:empty) mk-pc(ys), and the equations declared for mk-pc : PidSet →
State are as follows:

mk-pc(empty-set) = empty-state
mk-pc(y ys) = (pc[y]: rs) mk-pc(ys).

4.5 Principles of Defining EADS Specs for Efficient RWT Specs

Given an extended asynchronous distributed system, we can develop one or more
EADS Specs, which consequently correspond to different RWT Specs generated
by the proposed strategy. The efficiency of RWT Specs varies according to the
complexity of rewriting rules. Some principles should be followed to develop
EADS Specs from which efficient RWT Specs can be generated: (1) condition
should be in conjunction form if possible, and (2) each conjunct should be in the
form of o(υ{, x1}) .= T if possible, where T is a term.

We take rwtry in SQlock for instance. To be able to remove the condition
top(q) .= y, we need to revise the condition c-try(υ, y) in SQlock, according to
the two principles. The condition top(q) .= y corresponds to top(queue(υ)) = y
in SQlock which means that y is at the top of the shared queue in state υ. An
equivalent condition is queue(υ) .= (y | q). Consequently, we need to revise the
declaration of try and Etry, like:

Specification Translation of State Machines 691

try : Υ Pid Queue → Υ , and
Etry � {c-try(υ, y, q) = pc(υ, y) .= ws ∧ queue(υ) .= (y | q),

pc(try(υ, y, q), x) = if x
.= y then cs else pc(υ, x) fi if c-try(υ, y, q),

queue(try(υ, y, q)) = queue(υ) if c-try(υ, y, q),
try(υ, y, q) = υ if ¬c-try(υ, y, q)}

The translated rewriting rule of the modified Etry is:

try((y ys), (q1 qs))(pc[y]: l)(queue: q)⇒ try((y ys), (q1 qs))
(pc[y]: cs)(queue: q) if l

.= ws and q
.= (y | q1),

where q1 is a variable of Queue and qs1 of SetQueue. After the optimization, we
obtain a much simpler rewriting rule rwtry:

(pc[y]: ws)(queue: (y | q1))⇒ (pc[y]: cs)(queue: (y | q1))

5 Experimental Results

To the best of our knowledge, three strategies for the translation of specifications
of state machines from CafeOBJ to Maude have been proposed. An implemen-
tation of the most straightforward strategy (called TS1) is described in [11].
Another strategy (called TS2) is proposed and its implementation is described
in [9]. Yet another strategy (called TS3) is proposed in [10] and its implementa-
tion is described in [11]. We take Qlock and NSPK as examples to evaluate the
efficiency of the specifications translated by our proposed strategy by comparing
with the three strategies. The efficiency is measured by the number of states in
the state space from initial states with the same depth and the time that Maude
takes to finish searching these states. We use S†, S‡, S� and S� to denote spec-
ifications generated by TS1, TS2, TS3 and the proposed one in this paper. S∗

denotes manually developed specifications. The experiment has been conducted
on Ubuntu in a laptop with 2x1.20GHz Duo Core processor and 4GB memory.

Table 1 shows that the number of states increases with the increase of depth,
which consequently causes time on model checking to increase. Except in S†

Qlock,
the number of states in other specifications is the same with the same depth. This
is because states in S†

Qlock are implicitly represented like in EQT Specs, while
states in other specifications are explicitly represented by a set of components.
The time spent in S�

Qlock is the least and is the same as the one in S∗
Qlock,

indicating that the efficiency of S�
Qlock is higher than other translated ones, and

equal to the manually developed one. Searching fails when the depth is 9 in
both S‡

Qlock and S�
Qlock in a reasonable time, but successfully finishes in S�

Qlock,
although the number of the states in the three specifications are the same. This
is because the efficiency of a specification depends upon not only the state space,
but the forms of rewriting rules in the specification, as explained in Section 4.3.

NSPK is a security protocol to achieve mutual authentication between two
principals over network [13]. To generate a rewrite theory specification from the
corresponding equational theory specification of NSPK, the existing translation
strategies require a fixed number of nonces and messages. Hence, we need to fix

692 M. Zhang, K. Ogata, and M. Nakamura

Table 1. Times (ms) taken by Maude for checking the mutual exclusion property of
Qlock with 9 processes, and the number of states traversed in different depths

(a) Time on model checking

S†
Qlock S‡

Qlock S�Qlock S�
Qlock S∗

Qlock

1 0 0 0 0 0
3 116 64 20 8 8
5 20361 2596 764 268 268
7 – 33458 16373 5336 5336
9 – – – 42072 42072

(b) The number of states traversed

S†
Qlock S‡

Qlock S�Qlock S�
Qlock S∗

Qlock

1 10 10 10 10 10
3 748 667 667 667 667
5 36262 22339 22339 22339 22339
7 – 339859 339859 339859 339859
9 – – – 1609939 1609939

both of the numbers of random numbers and principals. However, the number
of messages are huge, which consequently makes the terms representing states
huge. For instance, 3 principals and 2 random numbers lead to 18 nonces and
32076 different messages. Moreover, the huge number of messages drastically
increases the number of rewriting rules in the target specifications, and hence it
becomes impossible to reasonably model check the generated specifications. In
our approach, we do not need to fix the number of nonces and messages thanks
to the optimization, to generate an RWT Spec of NSPK. The generated Maude
specification is denoted by S�

NSPK and the manually developed one by S∗
NSPK.

Table 2 shows that the time that is spent on searching in S�
NSPK is more than in

S∗
NSPK , although the number of states in S�

NSPK is the same as the one in S∗
NSPK

with the same depth. It indicates a translated specification by the proposed
strategy may not be the most optimized one because some optimizations cannot
be automatically done. For example, if a condition in a rewriting rule is in the
form of ¬(x .= u), we cannot automatically transform the rewriting rule into an
unconditional one. It takes some more time on pattern matching. However, both
of the specifications are comparably efficiently model checked.

Table 2. Times (ms) taken by Maude to model check the secrecy property for NSPK
with 3 principals, and the number of states traversed in different depths

(a) Time on model checking

1 2 3 4 5
S∗

NSPK 0 4 36 716 24617
S�

NSPK 0 4 44 1104 47654

(b) The number of states traversed

1 2 3 4 5
S∗

NSPK 7 105 1745 33901 710899
S�

NSPK 7 105 1745 33901 710899

6 Conclusion and Future Work

We have proposed a specific class of EQT Specs called EADS Specs, and pro-
posed a strategy for the translation from EADS Specs into RWT Specs. Case
studies have been conducted to show the efficiency of translated specifications is
significantly improved. Although the strategy can only deal with EADS Specs,
most of EQT Specs that are developed for practical verifications belong to this
class based on our experience of theorem proving in CafeOBJ.

Specification Translation of State Machines 693

Regarding the correctness of the translation, we argue that a counterexam-
ple in the generated RWT Spec by the strategy S of an EADS Spec S is also
a counterexample in S. We can prove it by show that for any state transition
chain in S, there is a corresponding chain in S. First, we show that for an ar-
bitrary initial state denoted by t0 in S, there exists a term (which is actually
init) in S, corresponding to t0. Then we assume two arbitrary states denoted
by ti and ti+1 in S and an arbitrary state denoted by υi in S such that ti+1

denotes a successor state of the one by ti and υi corresponds to ti. We can show
there exists a state denoted by υi+1 in S such that υi+1 corresponds to ti+1, and
υi+1 denotes a successor state of υi. Hence, we can claim that S simulates S,
which indicating the correctness of the proposed translation strategy. A detailed
proof in theory for the correctness of the translation is one piece of our future
work. Moreover, A prototype of the present translation strategy has been imple-
mented and successfully applied to Qlock and NSPK. We will further improve
the translator, especially the optimization part, for practical applications.

References

1. Plagge, D., Leuschel, M.: Validating Z specifications using the ProB animator and
model checker. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp.
480–500. Springer, Heidelberg (2007)

2. Eshuis, R.: Translating safe Petri nets to statecharts in a structure-preserving way.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 239–255.
Springer, Heidelberg (2009)

3. Vargas, P., et al.: Model Checking LTL Formulae in RAISE with FDR. In: Leuschel,
M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 231–245. Springer,
Heidelberg (2009)

4. Diaconescu, R., Futatsugi, K.: CafeOBJ Report. World Scientific, Singapore (1998)
5. Clavel, M., Durán, F., et al.: All about Maude. LNCS, vol. 4350. Springer, Heidel-

berg (2007)
6. Diaconescu, R., Futatsugi, K., Ogata, K.: CafeOBJ: Logical foundations and

methodologies. Computing and Informatics 22, 257–283 (2003)
7. Holzmann, G.: The SPIN model checker. Addison-Wesley, Reading (2004)
8. Ogata, K., Futatsugi, K.: Some tips on writing proof scores in the OTS/CafeOBJ

method. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning,
and Computation. LNCS, vol. 4060, pp. 596–615. Springer, Heidelberg (2006)

9. Kong, W., Ogata, K., et al.: A Lightweight Integration of Theorem Proving and
Model Checking for System Verification. In: 12th APSEC, pp. 59–66 (2005)

10. Nakamura, M., Kong, W., et al.: A Specification Translation from Behavioral Spec-
ifications to Rewrite Specifications. IEICE Transactions 91-D, 1492–1503 (2008)

11. Zhang, M., Ogata, K.: Modular implementation of a translator from behavioral
specifications to rewrite theory specifications. In: 9th QSIC, pp. 406–411 (2009)

12. Sipser, M.: Introduction to the Theory of Computation. PWS Pub. Co. (1996)
13. Needham, R., Schroeder, M.: Using encryption for authentication in large networks

of computers. CACM 21, 993–999 (1978)

Alternating Interval Based Temporal Logics�

Cong Tian and Zhenhua Duan��

Institute of Computing Theory and Technology and ISN Laboratory
Xidian University, Xi’an, 710071, P.R. China
{ctian,zhhduan}@mail.xidian.edu.cn

Abstract. To specify properties of open systems with interval based temporal
logics, alternating interval based temporal logics are proposed by introducing
Concurrent Game Structures (CGS) to Propositional Projection Temporal Logic
(PPTL) and Propositional Interval Temporal Logic (PITL). Further, examples are
given to show how properties of open systems can be specified by APTL and
AITL formulas. Moreover, to establish the automata based model theory for the
new proposed logics, Generalized alternating Büchi automata over Concurrent
Game structures (GBCGs) are defined. And a transformation from APTL formu-
las to GBCGs is presented. In addition, a decision procedure for checking the
satisfiability of APTL formulas, and a model checking approach for APTL with
Concurrent Game Structures (CGSs) models are presented.

Keywords: Temporal Logic; Open Systems; Model Checking; Concurrent Game
Structures; Automata.

1 Introduction

With the development of Internet, open systems [7] have pervaded into our daily life.
For a closed system, the behavior is completely determined by its internal components,
and cannot be influenced by the environment. In contrast, for an open system, the behav-
ior is jointly determined by the internal components, and the inputs received from the
environment. The widely used distributed systems such as composite Web services and
P2P networks, as well as embedded systems and control systems are all open systems.

To verify safety critical systems, the traditional closed systems are often modeled in
terms of transition systems or Kripke structures consisting of a set of system states and
a set of transitions among the states. For open systems, transition systems and Kripke
structures are generalized by games to express the interaction between the system and
its environment, or the interaction among several different agents or players that work
concurrently [8]. Practically, two-player (or agent) games are often used to model the
interaction between the system and its environment, while n-player games are conve-
nient for expressing the interaction among different concurrent components. As a result,
Concurrent Game Structure (CGS) [1] is one of the most frequently used models for the
modeling and verifying of open systems.

� This research is supported by the NSFC Grant No. 61003078, 60433010, 60873018 and
60910004, National Program on Key Basic Research Project of China (973 Program) Grant
No.2010CB328102 and SRFDP Grant 200807010012.

�� Corresponding author.

J.S. Dong and H. Zhu (Eds.): ICFEM 2010, LNCS 6447, pp. 694–709, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Alternating Interval Based Temporal Logics 695

Primitively, for model checking [6] purpose of open systems, temporal logic syntaxes
developed for specifying closed systems are applied to reformulate the new semantical
conditions of open systems. Due to this, alternating properties of interactions among
different concurrent agents cannot be well captured. To overcome this disadvantage,
enriched temporal logics [1] such as Alternating Temporal Logic (ATL), ATL* and
Alternating Mu-Calculus (AMC) are introduced by extending Computing Tree Logic
(CTL), CTL* [9,10] and Mu-calculus [11] with the set of agents respectively. In stead
of transition systems and Kripke structures, these logics are interpreted over concurrent
game structures. Further, to capture composite properties of open systems, instead of
two-player games between the system and its environment, the more general setting
of n-player games, with a set of players that represent different concurrent agents are
considered.

Within the community of temporal logics, interval based temporal logics (IBTL)
simplify the formulation of certain correctness properties [12], and are useful in spec-
ification and verification of concurrent systems. Among the interval based temporal
logics, Interval Temporal Logic (ITL) [13] and Projection Temporal Logic (PTL) [14]
have been widely investigated and several tools have been developed for supporting the
verification with ITL and PTL [4,16]. Compared to LTL, CTL, CTL* and Mu-Calculus,
ITL and PTL have several merits: (1) Propositional PTL (PPTL) is more powerful since
it has the expressiveness of full regular expressions [17]. In contrast, PLTL, CTL and
CTL* are less expressive than full regular expressions. Even though Mu-calculus has
the same expressive power as PITL and PPTL, however, it is inconvenient to spec-
ify properties with Mu-calculus. (2) Intervals are convenient to specify state sensitive
properties. For example, to specify “p holds between the 10th and 16th states, a formula
len(10); len(6) ∧ �p; true in PITL and PPTL works. However, it is somewhat hard to
specify this property in PLTL and any other temporal logics. (3) Chop and projection
constructs are useful for specifying properties of sequential and iterative behaviors re-
spectively. And these properties cannot (or with difficulty) be described by LTL, CTL,
CTL* or Mu-Calculus.

With this motivation, we extend PPTL and PITL to Alternating Projection Temporal
Logic (APTL) and Alternating Interval Temporal Logic (AITL). Further, as an exam-
ple, a train packing problem is employed to show how properties of open systems can
be specified by APTL and AITL formulas. Moreover, to establish the automata based
model theory for the new proposed logics, Generalized alternating Büchi automata over
Concurrent Game structures (GBCGs) are defined. Moreover, a transformation from
APTL formulas to GBCGs is presented. To make the transformation efficient, Normal
Forms (NFs) and Complete Normal Forms (CNFs) are defined; further, Normal Form
Graphs (NFGs) and Labeled NFGs (LNFGs) are constructed for APTL formulas. Ac-
cordingly, an automata based approach for checking the satisfiability of APTL formulas
and model checking APTL are obtained.

The paper is organized as follows. The next section briefly presents CGSs and au-
tomata over CGSs. In Section 3, the syntax and semantics of APTL and AITL are
given; further, how properties can be specified by these logics is illustrated. In Section
4, normal forms and complete normal forms as well as NFGs and LNFGs are defined
for APTL formulas; accordingly, a transformation from APTL formulas to GBCGs is

696 C. Tian and Z. Duan

achieved. In Section 5, an approach for checking the satisfiability of APTL formulas and
an algorithm for model checking APTL are obtained. Finally, conclusions are drawn in
Section 6.

2 Concurrent Game Structures

2.1 Concurrent Game Structures

Concurrent game structures (CGS) [1,18,19] generalize labeled transition systems (or
pointed Kripke structures) with a set of agents. Here we generalize the notation of CGS
for using interval based temporal logics.

Definition 1. A Concurrent Game Structure (CGS) is defined by C = (P,A, S , s0, l,
Δ, τ), where

– P is a finite nonempty set of atomic propositions;
– A is a finite set of agents;
– S is a finite nonempty set of states, with a designated initial state s0 ∈ S ;
– l : S → 2P is a labeling function that decorates each state with a subset of the

atomic propositions;
– Δa(s) is a nonempty set of possible decisions for an agent a ∈ A at state s; ΔA(s) =
Δa1 (s) × ... × Δak (s) is a nonempty set of decision vectors for the set of agents
A = {a1, ..., ak} ∈ 2A at state s; accordingly, ΔA(s) simplified as Δ(s) denotes the
decisions of all agents inA; and for a decision d ∈ Δ(s), da denotes the decision of
agent a within d, and dA denotes the decision of the set of agents A ⊆ A within d;

– For each state s ∈ S , and d ∈ Δ(s), a state τ(s, d) ∈ S maps s and a decision d of the
agents in A to a new state in S . Note that in a CGS, for a state s, each transition is
made by the decision, d ∈ Δ(s), of all agents inA. In some cases, if we just concern
with the decisions of A ⊆ A without caring about the ones of other agents, notation
dA is used, particularly, if A is a singleton, da is adopted. �

For two states s and s′ in S , we say s′ is a successor of s if s′ = τ(s, d) with d ∈ Δ(s).
Thus, s′ is a successor of s iff whenever the game is in state s, the agents inA can make
decisions so that s′ is the next state. Note that here the concurrent games structures are
not total. That is there may exist some state s without any successors. For convenience,
a state s without any successors is called a dead state denoted by τ(s, d) = ⊥.

A computation of C is a finite or an infinite sequence λ = s0, s1, s2, ... of states such
that for i ≥ 0, si+1 is a successor of si if si is not a dead state. The length of λ , |λ|, is ω if
λ is infinite, and the number of states minus 1 if λ is finite. To have a uniform notation
for both finite and infinite computations, we will use extended integers as indices. That
is, we consider the set N0 of non-negative integers and ω, Nω = N0∪{ω}, and extend the
comparison operators, =, <,≤, to Nω by considering ω = ω, and for all i ∈ N0, i < ω.
Moreover, we define 	 as ≤ −{(ω,ω)}. Let Γ denote the set of all computations. For
a λ ∈ Γ, we refer to a sub-computation starting at state s over λ as an s-computation,
denoted by λ(s). Note that λ(s) ∈ Γ is also a computation. For any computation λ ∈ Γ
and indexes 0 ≤ i ≤ j 	 |λ|, we use λ[i], λ[0, i], λ[i, |λ|], and λ[i, j] to denote the i-th

Alternating Interval Based Temporal Logics 697

state in λ, the finite prefix s0, s1,...,si of λ, the suffix si, si+1, ... of λ, and an interval si,...,
s j of λ respectively.

We now define the notion of strategies over concurrent game structures. A strategy
for an agent a ∈ A is a function fa that maps a nonempty finite state sequence λ ∈ S +

to a state in S by fa(λ) = τ(s, da) if the last state s in λ is not a dead state. Thus the
strategy fa for agent a induces a set of computations that a can enforce from the initial
state s0 in a CGS C. We define the outcomes of fa from state s to be the set out(s, fa) of
s-computations that agent a enforces when it follows the strategy fa. Similarly, Given a
set A ⊆ A of agents, a strategy for the agents in A is a function fA that maps a nonempty
finite state sequence λ ∈ S + to a state in S by fA(λ) = τ(s, dA) if the last state s in λ is not
a dead state. Thus the strategy fA for the set of agents A induces a set of computations
that the agents in A can enforce from the initial state s0 in a CGS C. We define the
outcomes of fA from state s to be the set out(s, fA) of s-computations that the set of
agents A enforce collaboratively when they follow the strategy fA.

Example 1. We now show how the train packing problem can be modeled by a con-
current game structure.

The train packing problem can be described as follows and depicted as shown in Fig.1
(1). Suppose A1, A2 and A3 are respectively sets of three kinds of different goods g1, g2

and g3. For each piece of goods gi, 1 ≤ i ≤ 3, the weight of gi is ai and the number of
gi is ni. Also we have a train consisting of a sequence of carriages C1, C2, C3, ... with
capacity c1, c2, c3, · · · respectively. Further, three workers P1, P2 and P3 are employed
to load the train but Pi is required to only carry goods gi from Ai into any carriages from
head to tail one with the priority of near head first in order to bite off the extra carriages.
Thus, the nearer to the head the carriage is, the earlier installed it is.

Let Ci.A j, 1 ≤ i ≤ n, 1 ≤ j ≤ 3, denote the weight of a piece of goods from A j in
carriage Ci, and A = {P1, P2, P3} be the set of workers (agents). For each worker Pi,
at each state, Pi can make a decision in ΔPi = {1, 0} to carry a piece of goods from Ai

into the carriage C j (C j.Ai := C j.Ai + ai) or do nothing. Accordingly, the train packing
problem with n = 3 is modeled by the CGS as shown in Fig.1 (2), where a tuple, for
instance (1, 1, 0), means that P1 carried one g1 and P2 carried one g2 from A1 and A2

C1 C2 C3 C4 C5 C6 · · ·

A1 A2 A3

a1 ∗ n1 a2 ∗ n2 a3 ∗ n3

c1 c2 c3 c4 c5 c6

P1 P2 P3

C1.A1 + C1.A2 + C1.A3

≤ c1

C2.A1 + C2.A2 + C2.A3

≤ c2

C3.A1 + C3.A2 + C3.A3

≤ c3

(0, 0, 0)
(0, 0, 1)
(0, 1, 0)
(1, 0, 0)
(0, 1, 1)
(1, 1, 0)
(1, 0, 1)
(1, 1, 1)

(0, 0, 0)
(0, 0, 1)
(0, 1, 0)
(1, 0, 0)
(0, 1, 1)
(1, 1, 0)
(1, 0, 1)
(1, 1, 1)

(0, 0, 0)
(0, 0, 1)
(0, 1, 0)
(1, 0, 0)
(0, 1, 1)
(1, 1, 0)
(1, 0, 1)
(1, 1, 1)

(0, 0, 0)
(0, 0, 1)
(0, 1, 0)
(1, 0, 0)
(0, 1, 1)
(1, 1, 0)
(1, 0, 1)
(1, 1, 1)

(0, 0, 0)
(0, 0, 1)
(0, 1, 0)
(1, 0, 0)
(0, 1, 1)
(1, 1, 0)
(1, 0, 1)
(1, 1, 1)

(1) (2)

Fig. 1. Train packing problem

698 C. Tian and Z. Duan

respectively into the train concurrently while P3 did nothing during the time. When the
first carriage is full (cannot be loaded further), the goods will be carried into the second
carriage, and so on. �

2.2 Automata over Concurrent Game Structures

Automata over Concurrent Game structures (ACGs) are introduced in [18,19] for au-
tomata theoretic frameworks of AMC and ATL*. The ACGs are built by extending sym-
metric automata [2] with sets of agents where the accepting runs are defined by parity
and Co-Büchi conditions for AMC and ATL* respectively. In this section, we introduce
alternating Büchi automata over Concurrent Game structures (BCGs) by generalizing
alternating Büchi automata [20] with sets of agents.

With traditional automata theory, nondeterminism gives a computing device the
power of existential choice. Its dual gives a computing device the power of univer-
sal choice. Motivated by this, alternating automata where both existential choice and
universal choice permitted are proposed in [22,23]. To introduce alternation transitions
into automata, positive Boolean formulas built from the set of states are useful. For a
given set X of states, B+(X) means the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements in X using ∧ and ∨). We say that Y ⊆ X satisfies
a formula θ ∈ B+(X) if the truth assignment that assigns true to the members of Y and
f alse to the members of X −Y satisfies θ. For example, suppose X = {q1, q2, q3, q4}, the
set {q1, q2} and {q3, q4} both satisfy the formula q1 ∧ q2 ∨ q3 ∧ q4, while the set {q1, q4}
does not. Accordingly, alternating Büchi automata are formally defined below [20].

Definition 2. An Alternating Büchi Automaton (ABA) is a tuple A = (P,Q, q0, δ, F),
where P is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, F ∈ 2Q

is a set of final states, and δ : Q × P → B+(Q) is a transition function that maps a state
and an input letter to a positive boolean combination of states. �

Because of the universal choice in alternating transitions, a run of an alternating au-
tomaton is an infinite tree rather than an infinite sequence.

Let N be the set of positive integers and a variable, say x, denote an element of N∗. A
tree [24] is a finite or infinite nonempty set T ⊆ N∗, such that if x.i ∈ T , where x ∈ N∗
and i ∈ N, then x ∈ T , and further if i > 1 then x.(i − 1) ∈ T . The elements of T are
called nodes. We often omit ‘.’ if it is clear in the context. If x and xi are nodes of T ,
then x is the parent of xi and xi is the child of x. The node x is a leaf if it has no children.
By the definition, the empty sequence ε is a member of every tree and called the root of
a tree. A branch (really path) of T is a subset π ⊆ T such that ε ∈ π and for each x ∈ π
either x is a leaf or there is a unique i such that x · i ∈ π. For instance, as depicted in
Fig.2 (1), T = {ε, 1, 2, 3, 1.1, 1.2, 1.3, 3.1, 3.2, 3.3} is a tree and π = {ε, 3, 3.2} is a branch
of T .

Further, for a finite alphabet Q, a Q-labeled tree is a pair < T, r > where T is a tree
and r : T → Q maps each node of T to an element in Q. For convenience, for a node
x ∈ T , r(x) is called Q label of x. Similarly, for two finite alphabets Q and S , a (Q, S)-
labeled tree is a pair < T, r > where T is a tree and r : T → Q× S maps each node of T
to an element (q, s) ∈ Q× S . In this case, for convenience, we use r(x)[1] and r(x)[2] to

Alternating Interval Based Temporal Logics 699

ε

1 2 3

1.1 1.2 1.3 3.1 3.2 3.3

ε

1 2 3

1.1 1.2 3.2 3.3

(q0, s0)

(q1, s2)

(q2, s1)
(q1, s3)

(q3, s1)(q2, s1) (q2, s2)(q3, s2)

(1) (2)

Fig. 2. Tree and (Q, S)-labeled tree

denote the Q and S label of node x ∈ T respectively. A (Q, S)-labeled tree is illustrated
in Fig.2 (2).

A run of an ABA A on an infinite word w = w0,w1,w2, ... is a Q-labeled tree < T, r >
such that r(ε) = q0, and for each i, if |x| = i, r(x) = q, and δ(q,wi) = θ, then x has k
children x1, ..., xk, for some k ≤ |Q|, and {r(x1), ..., r(xk)} satisfies θ. For example, if
δ(q0,w0) = q1 ∧ q2 ∨ q3 ∧ q4, then the possible runs of A on w have a root labeled q0,
and two nodes in level one labeled q1 and q2 or q3 and q4 respectively.

A run tree is accepted iff all branches (paths) in the run tree satisfy the Büchi condi-
tion that there exist infinitely many positions on the branch labeled with the final state.
A word w is accepted iff there exists an accepting run on it.

ABAs are built based on Kripke structures or Transitions systems. To well charac-
terize open systems, we further generalize ABAs to concurrent game structures, named
alternating Büchi automata over Concurrent Game structures (BCGs).

Definition 3. An alternating Büchi automaton over Concurrent Game structure (BCG)
is a tuple B = (P,A,Q, q0, δ, F), where P is a finite alphabet;A is a finite set of agents;
Q is a finite set of states; q0 ∈ Q is the initial state; F ∈ 2Q is a set of final states; and
δ : Q × P × 2A → B+(Q) is a transition function that maps a state, an input letter and a
set of agents to a positive boolean combination of states. �

Let λ = s0, s1, s2, ... with si+1 = τ(si, d) for each i be an infinite computation in CGS
C = (P,A, S , s0, l, Δ, τ). A run of a BCG B on λ is an (Q, S)-labeled tree < T, r > such
that:

– r(ε) = (q0, s0), and
– for each i, if |x| = i, r(x) = (qi, si), and δ(qi, l(si), A) = θ, then x has k children

x1, ..., xk, for some k ≤ |Q|, {r(x1)[1], ..., r(xk)[1]} satisfies θ and r(x1)[2] = ... =
r(xk)[2] = si+1, and there exists dA ∈ Δ(si) such that τ(si, dA) = si+1.

A run tree is accepted iff all branches in the tree satisfy the Büchi condition. A
computation λ is accepted if there exists a run tree on λ which is acceptable in B.
Accordingly, a BCG can accept a CGS, if all computations in the CGS are acceptable
by the BCG; and a BCG is empty if no run trees in the BCG are acceptable.

Generalized Büchi Automata (GBA) are often immediate results of the transforma-
tions from temporal logics to automata [21]. We also present its alternating version over
concurrent game structures which will be used later.

Definition 4. A Generalized alternating Büchi automaton over Concurrent Game struc-
ture (GBCG) is a tuple GB = (P,A,Q, q0, δ, F = {F1, ..., Fn}), where P, A, Q, q0 and
δ are the same as the ones in BCGs; F is a set of accepting sets {F1, ..., Fn}, n ≥ 0, and
Fi ⊆ Q for each 0 ≤ i ≤ n. �

700 C. Tian and Z. Duan

The run trees of GBCGs are the same as the ones for BCGs. However, the accepting
conditions are different. A run tree of a GBCG GB is accepted iff for any acceptance
set Fi ∈ F, on each path of the tree, at least one state in Fi appears infinitely often.
A computation λ is accepted if there exists a run tree on λ which is acceptable in GB.
Accordingly, a GBCG can accept a CGS, if all computations in the CGS are acceptable;
and a GBCG is empty if no run trees in the GBCG are acceptable. An example for
GBCG can be found later on.

3 Alternating Interval Based Temporal Logics

Alternating interval based temporal logics extend propositional interval based temporal
logics with modal operators that express an agent or a coalition of agents to have a
strategy to accomplish a goal.

3.1 Alternating Interval Temporal Logic

Alternating Interval Temporal Logic (AITL) formulas can be defined by the following
grammar:

P ::= p | ¬P | P ∨ Q | ©〈A〉P | P;〈A〉 Q

where p ∈ P is an atomic proposition and A ⊆ A is a subset of agents.©〈A〉 and ;〈A〉 are
basic temporal operators with path quantifier 〈〉.

AITL formulas are interpreted over CGSs C = (P,A, S , s0, l, Δ, τ). A computation
λ(s) starting from a state s in a concurrent game structure C satisfies the AITL formula
P, denoted by λ(s) |= P. The satisfaction relation (|=) is inductively defined as follows:

– λ(s) |= p for propositions p ∈ P, iff p ∈ l(s)
– λ(s) |= ¬P, iff λ(s) �|= P
– λ(s) |= P ∨ Q, iff λ(s) |= P or λ(s) |= Q
– λ(s) |= ©〈A〉P, iff |λ(s)| ≥ 2, and there exists a strategy fA for the agents in A, such

that λ(s) ∈ out(s, fA), and λ(s)[1, |λ|] |= P
– λ(s) |= P;〈A〉 Q, iff there exists a strategy fA for the agents in A, we have λ(s) ∈

out(s, fA), and there exists 0 ≤ i 	 |λ(s)|, such that λ(s)[0, i] |= P and λ(s)[i, |λ(s)|]
|= Q

Note that AITL is an extension of PITL with path quantifiers. As special cases, 〈Σ〉
and 〈∅〉 corresponds to existential ∃ and universal ∀ path quantification, respectively.
When A = ∅, the formulas are in fact PITL formulas. As the dual of 〈〉, we use [],

defined by []
def
= 〈Σ \ A〉.

The abbreviations true, f alse, ∧, → and↔ are defined as usual. Also, some useful
derived constructs such as

⊙

〈A〉 (weak next), �〈A〉 (always), �〈A〉 (sometimes), empty
(a computation with zero length), more (the current state is not the final one over a
finite computation), halt(p) (holds over a finite computation if and only if p is true at
the final state), f in(p) (holds as long as p is true at the final state), and keep(p) (holds
over a finite computation as long as p holds at all states ignoring the last one) can also
be defined.

Alternating Interval Based Temporal Logics 701

3.2 Alternating Projection Temporal Logic

To describe some interesting properties, we also extend Propositional Projection Tem-
poral Logic (PPTL) to Alternating Projection Temporal Logic (APTL) which can be
obtained by including a projection construct to AITL.

P ::= p | ¬P | P ∨ Q | ©〈A〉P | (P1, ..., Pm)pr j〈A〉 Q

To define the semantics of the projection operator we need an auxiliary operator for
computations. Let λ = s0, s1, ... be a computation, and r1, ..., rh be integers (h ≥ 1)
such that 0 = r1 ≤ ... ≤ rh 	 |λ|. The projection of λ onto r1, ..., rh is the computation,
λ ↓ (r1, ..., rh) = st1 , st2 , ..., stl where t1, ..., tl are obtained from r1, ..., rh by deleting all
duplicates. That is, t1, ..., tl is the longest strictly increasing subsequence of r1, ..., rh.
For example, s0, s1, s2, s3, s4 ↓ (0, 0, 2, 2, 2, 3) = s0, s2, s3.

Accordingly, the semantics of pr j〈A〉 operator is defined, as before, relative to a com-
putation starting from s, λ(s):

– λ(s) |= (P1, ..., Pm)pr j〈A〉 Q, iff there exists a strategy fA for the agents in A,
and λ(s) ∈ out(s, fA), and integers 0 = r0 ≤ r1 ≤ ... ≤ rm ≤ |λ(s)| such that
λ(s)[ri−1, ri] |= Pi, 0 < i ≤ m and λ |= Q for one of the following λ:
(a) rm < |λ(s)| and λ = λ(s) ↓ (r0, ..., rm) · λ(s)[rm + 1, ..., j] or
(b) rm = j and λ = λ(s) ↓ (r0, ..., rm) for sone 0 ≤ h ≤ m

Note that in APTL, ;〈A〉 can be derived from pr j〈A〉 by P;〈A〉 Q
def
= (P,Q)pr j〈A〉 empty. So,

APTL is an extension of AITL. Fig.3 shows the possible semantics of (P1, P2) pr j〈A〉 Q.
Here Q and P1 start to be interpreted at state s0; subsequently, P1 and P2 are interpreted
sequentially; Q is interpreted in parallel with P1;〈A〉 P2 over the interval consisting of
endpoints of subintervals over which P1 and P2 are interpreted. Three possible cases
are as follows: (a) P2 terminates before Q; (b) Q and P2 terminate at the same state; (c)
Q terminates before P2.

s0 s2 s4

Q

s0 s1 s2 s3 s4

s5

P1 P2

s0 s2 s4

Q

s0 s1 s2 s3 s4

P1 P2

s0 s2

Q

s0 s1 s2 s3 s4

P1 P2

(a) (b) (c)

Fig. 3. Semantics of (P1, P2) pr j〈A〉 Q

In order to avoid an excessive number of parentheses, the following precedence rules
for AITL and APTL are used where 1 = highest and 5 = lowest.

1 ¬
2 ©〈A〉, ©[A] ,

⊙

〈A〉,
⊙

[A], �〈A〉, �[A] , �〈A〉, �[A]

3 ∧, ∨
4 →, ↔
5 ;〈A〉, ;[A], pr j〈A〉, pr j[A]

702 C. Tian and Z. Duan

3.3 Specification with AITL and APTL

Now we show how properties of the train packing problem can be specified by AITL
and APTL formulas. Let A be the set {P1, P2, P3} of the workers (agents or players). For
clarity, some useful propositions are defined as follows. NOi = Ci.A1+Ci.A2+Ci.A3 ≤ ci

denotes carriage Ci, 1 ≤ i ≤ n, is not overloaded; Fi =
∧

1≤k≤3(ci − (Ci.A1 + Ci.A2 +

Ci.A3) < ak) indicates Ci, 1 ≤ i ≤ n, cannot be further loaded; Li = C1.Ai + ...+Cn.Ai =

ni × ai for 1 ≤ i ≤ 3, means all goods in Ai have been loaded into the train while
L =
∧

1≤k≤3 Lk tells us that all goods have been carried into the train. Accordingly, the
following properties can be specified by AITL formulas:

1. All goods in A1, A2 and A3 have been sequentially carried into the first n carriages
with each carriage being not overloaded.

(�〈A〉NO1;〈A〉 ...;〈A〉 �〈A〉NOn) ∧ f in(L)
2. All goods in A1, A2 and A3 have been sequentially carried into the first n carriages

with each carriage being not overloaded and no goods can be further carried into.
(�〈A〉NO1, ...,�〈A〉NOn)pr j〈A〉(len(1) ∧ f in(F1);〈A〉 len(1) ∧ f in(F2);〈A〉 ...;〈A〉

len(1) ∧ f in(Fn−1);〈A〉 len(1) ∧ f in(L))
3. Without considering other goods, all goods in A1 are eventually carried into the n

carriages and each carriage is not overloaded.
(�〈P1〉NO1;〈P1〉 ...;〈P1〉 �〈P1〉NOn) ∧ f in(L1)

4. Without considering other goods, all goods in A1 are eventually carried onto the n
carriages with each carriage being not overloaded and no goods can be carried into.

(�〈P1〉NO1, ...,�〈P1〉NOn)pr j〈P1〉(len(1) ∧ f in(F1);〈P1〉 len(1) ∧ f in(F2);〈P1〉 ...;〈P1〉
len(1) ∧ f in(Fn−1);〈P1〉 len(1) ∧ f in(L1))

4 Transformation from APTL to GBCGs

In this section, a transformation from APTL formulas to GBCGs is presented. For sim-
plicity, only the formulas with basic temporal operators, named standard formulas, are
considered. Other formulas with derived temporal operators can be equivalently trans-
formed to the standard formulas in advance.

4.1 Normal Forms

For the efficient transformation from APTL formulas to GBCGs, normal forms are de-
fined below.

Definition 5. (Normal Form) Let Qp be the set of atomic propositions appearing in the

APTL formula Q. Normal form of Q can be defined by, Q ≡ m∨

i=0
(Qei∧empty)∨ n∨

j=0
(Qc j∧

©〈A〉Q j) where Qei, Qc j ≡ ∧l
k=1 q̇k, qk ∈ Qp, q̇k denotes qk or ¬qk, and Qci � Qc j if i � j;

each Q j is an arbitrary APTL formula. �

Definition 6. (Complete Normal Form, CNF) Let Qp be the set of atomic proposi-
tions appearing in an APTL formula Q. The complete normal form of Q is defined by,

Alternating Interval Based Temporal Logics 703

Q ≡ m∨

i=0
(Qei∧empty)∨ n∨

j=0
(Qc j∧©〈A〉Q j) where Qci, Qc j ≡ ∧l

k=1 q̇k, qk ∈ Qp, q̇k denotes

qk or ¬qk, and
∨n

j=0 Qc j ≡ true and
∨

i� j(Qci ∧ Qc j) ≡ f alse; each Q j is an arbitrary
APTL formula. �

Note that a complete normal form is also a normal form, but a normal form may not be a
complete normal form since the conditions for complete normal form are stronger than
the ones for normal form. Complete normal forms are useful in transforming negation
constructs into normal forms.

Moreover, any APTL formula in normal form can be further transformed to its com-
plete normal form. This is formalized and proved in Lemma 1.

Lemma 1. If a formula Q has been transformed to its normal form, then Q can be
further transformed to its complete normal form.

The proof also illustrates an constructive algorithm for transforming a normal form into
its complete normal form. The following is an example for transforming a normal form
into its complete normal form.

Example 2. Transform normal form p ∧©〈A1〉P′ ∨ q ∧©〈A2〉Q′ to its CNF.
p ∧©〈A1〉P′ ∨ q ∧©〈A2〉Q′ ≡ (p ∧ q) ∧ (©〈A1〉P′ ∨ ©〈A2〉Q′) ∨ (p ∧ ¬q) ∧©〈A1〉P′

∨(¬p ∧ q) ∧©〈A2〉Q′ ∨ (¬p ∧ ¬q) ∧©〈∅〉 f alse �

Further, if Q is transformed into complete normal form, then ¬Q can be transformed
into its normal form. This is proved in Lemma 2.

Lemma 2. If Q is transformed into complete normal form, Q ≡ m∨

i=0
(Qei ∧ empty) ∨

2n−1∨

j=0
(Qc j ∧©〈A〉Q j) then ¬Q can be transformed into its normal form. �

Lemma 3. Let R ≡ (P1, ..., Pm)pr j〈A〉Q. Suppose P1, ..., Pm and Q have been trans-
formed to their normal forms, then R can be rewritten to its normal form. �

Further, Theorem 4 shows that any APTL formula can be transformed into it normal
form.

Theorem 4. Any APTL formula can be transformed into its normal form. �

Basically, Lemma 2, Lemma 3, and Theorem 4 are concerned with how a formula can
be transformed into its normal form.

4.2 From APTL to Normal Form Graphs

Roughly speaking, Normal Form Graph (NFG) of an APTL formula is constructed
by repeatedly decomposing the APTL formula and the new generated formulas to the
current and next states according to normal forms. The general idea for constructing
NFGs is as follows. To construct NFG of Q, initially, a root node Q is created. Then we
transform Q to its normal form. Suppose Q ≡ r ∧ empty∨ p ∧ r ∧©〈A1〉(P′ ∨ Q′) ∨ q∧

704 C. Tian and Z. Duan

Q

ε

p ∧ r

r

p ∧ r

q

Q′
P ′

R′

q

S′
〈∅〉

〈A1〉 〈A2〉
〈A1〉

〈A2〉

Fig. 4. Constructing NFGs

©〈A2〉(R′ ∧ S ′). As illustrated in Fig.4, five new nodes: ε, P′, Q′, R′ and S ′ are created;
and also the following relations between the new created nodes and the old ones are
produced: δ(Q, r, 〈∅〉) = ε, δ(Q, p ∧ r, 〈A1〉) = P′ ∨ Q′, δ(Q, q, , 〈A2〉) = R′ ∧ S ′. Note
that ε is a node without successors (named dead node).

Thus, to construct the whole NFG, P′, Q′, R′ and S ′ need to be treated in a similar
way. Note that when creating a node P, the new node will be added if node P does not
already exist, otherwise only an edge back to the existing node P is added. The formal
definition of NFG is given below. Note that, for an APTL formula R, D(R) = {R1, ...,Rn}
if R ≡ R1 ‡ ... ‡ Rn with ‡ being ∨ or ∧.

Definition 7. (Normal Form Graph, NFG) For an APTL formula P, NFG of P is a
directed graph, G = (Q, q0,A, Σ, δ, e), where Q denotes a non-empty finite set of nodes
with q0 ∈ Q being the initial node; A is the set of all agents; Σ = {∧k q̇k | qk ∈ Qp};
δ : (Q, Σ, 2A) → B+(Q) is a transition function; e ∈ Q is an ε node without successors.
Further, the set of nodes Q and the transition function δ over the nodes are inductively
defined as follows:

1. q0 = {P} and Q = {P}
2. For each R ∈ Q \ {e}, if R has not been decomposed, transform R into its normal

form: R ≡ m∨

i=0
(Rei ∧ empty) ∨ n∨

j=0
(Rc j ∧ ©〈A j〉R j). Then Q = Q ∪ {ε} ∪⋃n

j=0 D(Rj);

e = ε; also we have transition relations δ(R,
∨m

i=0 Rei, ∅) = ε and δ(R,Rc j, A j) = R j

for each j. �

Let λ = s0, s1, s2, ... with si+1 = τ(si, d) for each i be an infinite computation in CGS
C = (P,A, S , s0, l, Δ, τ). A run of a NFG G on λ is an (Q, S)-labeled tree < T, r > such
that:

– r(ε) = (q0, s0), and
– for each i, if |x| = i, r(x) = (qi, si), and δ(qi, l(si), A) = θ, then x has k children

x1, ..., xk, for some k ≤ |Q|, {r(x1)[1], ..., r(xk)[1]} satisfies θ and r(x1)[2] = ... =
r(xk)[2] = si+1, and there exists dA ∈ Δ(si) such that τ(si, dA) = si+1.

Theorem 5 convinces us that for any APTL formula Q, the number of nodes in the
NFG of P is finite. This guarantees the termination of the procedure for constructing
NFGs of APTL formulas.

Alternating Interval Based Temporal Logics 705

Theorem 5. For any APTL formula P, the set of nodes in the NFG of P is finite.

Proof: Similar to the proof for the finiteness of NFGs of PPTL formulas in [4], the proof
can be done by induction on the structures of APTL formulas. �

Further, based on the definition of NFG, Algorithm nfg in pseudocode for con-
structing NFGs of APTL formulas is presented. The algorithm uses mark[] to indicate
whether or not a formula needs to be decomposed. If mark[R] = 0 (unmarked), then
R needs further to be decomposed, otherwise mark[R] = 1 (marked), thus R has been
decomposed or needs not to be done.

Algorithm nfg: Constructing NFGs for APTL formulas
Function nfg(P)
/* precondition: P is an APTL formula*/
/* postcondition: nfg(P) computes NFG of P, G = (Q, q0,A, δ, e)*/
begin function

Q = {P}; q0 = P; mark[P] ==0;
while there exists R ∈ S , and mark[R] ==0

mark[R] =1; rewrite R to its NF, R ≡ ∨m
i=0(Rei ∧ empty) ∨∨n

j=0(Rc j ∧ ©〈Aj 〉Rj);

Q = Q ∪ {ε} ∪ n⋃

j=0
D(Rj); e = ε;

mark[ε] ==1; for each X ∈ D(Rj), mark[X] ==0;
for each i, δ(R,Rei, ∅) = ε; for each j, δ(R,Rc j, Aj) = Rj;

end while
return G;

End function

Example 3. Constructing the NFG of formula �〈A1〉p;〈A2〉 �〈A3〉q.

By Algorithm nfg, NFG G = (Q, q0,A, δ, e) of formula �〈A1〉p;〈A2〉 �〈A3〉q can be con-
structed as shown in Fig.5(1). �

4.3 From NFGs to GBCGs

By the construction of NFGs, a node will be a literal in the disjunction normal form of
APTL formulas. According to the semantics of chop construct P;〈A〉 Q, to make P;〈A〉 Q
satisfiable, P needs to be satisfied by a finite prefix of a computation and Q needs to be
satisfied over the suffix. In this case, we call P;〈A〉 Q is fulfilled. Thus, a run resulting
from the NFG of an APTL formula P precisely characterizes a model of P iff any chop
formulas occurring in the run are fulfilled.

To explicitly indicate whether or not a node (with chop formula) is fulfilled, extra
propositions ls, s ∈ N0 and s > 0, are needed. Let Pl = {l1, l2, ...} be the set of extra
propositions with P ∩ Pl = ∅. Note that these extra propositions are merely employed
to mark nodes and are not allowed to appear in an APTL formula. When constructing
NFGs by using current and future normal forms, for any chop formula P;〈A〉 Q, we
equivalently write it as P ∧ f in(ls);〈A〉 Q. Formally, we have,

706 C. Tian and Z. Duan

P ∧ f in(ls);〈A〉 Q
≡ (
∨m

i=0(Pei ∧ empty) ∨∨n
j=0(Pc j ∧©〈A〉P j)) ∧ (ls ∧ empty ∨©∅ f in(ls));〈A〉 Q

≡ (
∨m

i=0(Pei ∧ empty) ∨∨n
j=0(Pc j ∧©〈A〉P j)) ∧ (ls ∧ empty ∨©∅ f in(ls));〈A〉 Q

≡ ∨m
i=0(Pei ∧ ls ∧ Q) ∨∨n

j=0(Pc j ∧©〈A〉(P j ∧ f in(ls);〈A〉 Q))
≡ ∨m

i=0(Pei ∧ ls ∧ (
∨m

i=0(Qei ∧ empty) ∨∨n
j=0(Qc j ∧©〈A〉Q j)))

∨∨n
j=0(Pc j ∧©〈A〉(P j ∧ f in(ls);〈A〉 Q))

≡ ∨m
i=0
∨m

i=0(Pei ∧ Qei ∧ ls ∧ empty) ∨∨m
i=0
∨n

j=0(Pei ∧ ls ∧ Qc j ∧©〈A〉Q j)
∨∨n

j=0(Pc j ∧©〈A〉(P j ∧ f in(ls);〈A〉 Q))

Thus, by using f in(ls), P;〈A〉 Q is fulfilled if there exists an edge with ls. And f in(ls)
occurring in a node P∧ f in(ls); Q means that P;〈A〉 Q has not been fulfilled at this node.
For convenience, for a node in the form of P ∧ f in(ls); Q, we add an extra label l̃s in
this node to mean that some chop formula has not been fulfilled at this node. Accord-
ingly, Labeled Normal Form Graph (LNFG) can be defined based on NFG using ls
propositions.

Definition 8. (Labeled Normal Form Graph, LNFG) For an APTL formula P, its
LNFG is a tuple G = (Q, q0,A, δ, e,L = {L1, ...,Lm}), where Q, q0, A, δ and e are
identical to the ones in NFG, while each Ls ⊆ S , 1 ≤ s ≤ m, is the set of nodes with l̃s
labels. �

Algorithm Lnfg: Constructing LNFGs for APTL formulas
Function Lnfg(P)
/* precondition: P is an APTL formula*/
/* postcondition: Lnfg(P) computes LNFG of P, G = (Q, q0,A, δ, e,L = {L1, ...,Lm})*/
begin function

Q = {P}; q0 = P; mark[P] ==0; s = 0; L = ∅; L = L ∪ Ls;
while there exists R ∈ Q, and mark[R] ==0

mark[R] =1;
If R is in the form of P1;〈A〉 P2,

s = s + 1; rewrite R as P1 ∧ f in(ls);〈A〉 P2; Ls = {R};
rewrite R to its NF,
R ≡ ∨m

i=0(Rei ∧ empty) ∨∨n
j=0(Rc j ∧©〈Aj 〉Rj);

Q = Q ∪ {ε} ∪ n⋃

j=0
D(Rj); e = ε;

mark[ε] ==1; for each X ∈ D(Rj), mark[X] ==0;
for each i, δ(R,Rei, ∅) = ε; for each j, δ(R,Rc j, Aj) = Rj;
If X ∈ D(Rj) is in the form of P1 ∧ f in(ls);〈A〉 P2,
Ls = Ls ∪ {X};

end while
return G;

End function

Algorithm Lnfg based on Algorithm nfg is given by further rewriting the chop for-
mulas P;〈A〉 Q as P ∧ f in(ls);〈A〉 Q for some s ∈ N0 whenever a new chop formula is
encountered.

A run of an LNFG G on an infinite computation λ = s0, s1, s2, ... in a CGS C is the
same as the one of an NFG. A run tree is accepted if for each acceptance set Ls ∈ L,

Alternating Interval Based Temporal Logics 707

there exists at least a state that is not in Ls and appears in each branch (path) of the run
tree infinitely often. A computation λ is accepted if there exists a run tree on λ which
is acceptable in G. Accordingly, an LNFG can accept a CGS, if all computations in the
CGS are acceptable; and an LNFG is empty if no run trees in the LNFG are acceptable.

Example 4. Constructing LNFG of the APTL formula �〈A1〉p;〈A2〉 �〈A3〉q.

��〈A1〉p;〈A2〉 �〈A3〉q�

〈∅〉

�ε�

〈∅〉

��〈A3〉q�
〈A3〉 〈A1〉

p ∧ q

p ∧ q

p

pq

��〈A1〉p;〈A2〉 �〈A3〉q�

q

p ∧ q

p ∧ q

��〈A1〉p ∧ fin(l1);〈A2〉 �〈A3〉q�

〈∅〉

�ε�

〈∅〉

��〈A3〉q�
〈A3〉 〈A1〉

p ∧ q

p ∧ q

p

pq
q

p ∧ q

p ∧ q

��〈A1〉p ∧ fin(l1);〈A2〉 �〈A3〉q�

l̃1

l̃1

(1) NFG of �〈A1〉p;〈A2〉 �〈A3〉q (2) LNFG of �〈A1〉p;〈A2〉 �〈A3〉q

Fig. 5. NFG and LNFG of �〈A1〉p;〈A2〉 �〈A3〉q

By Algorithm Lnfg, the LNFG of formula�〈A1〉p;〈A2〉 �〈A3〉q can be constructed as shown
in Fig.5 (2). �

Obviously, an LNFG G = (Q, q0,A, δ, e,L = {L1, ...,Lm}) coincides with the accept-
ing condition of the GBCG GA = (Q, q0,A, δ, F = {F1, ..., Fn}). Given an LFNG
G = (Q, q0,A, δ, e,L = {L1, ...,Lm}), an equivalent GBCG GA = (Q′, q′0,A′, δ′, F ={F1, ..., Fn}) can be obtained by: Q′ = Q, q′0 = q0, A′ = A, δ′ = δ ∪ δ(d, ε) = (〈∅〉, d)
and F = {L̃1, ..., L̃m}.

The correctness of the transformation is proved in Theorem 6.

Theorem 6. A computation λ = s0, s1, s2, ... accepted by the GBCG obtained from
APTL formula R precisely characterizes a model of R. �

Example 5. Constructing GBCG of the APTL formula �〈A1〉p;〈A2〉 �〈A3〉q.

By the transformation from LNFGs to GBCGs, the GBCG of formula �〈A1〉p;〈A2〉 �〈A3〉q
can be constructed as shown in Fig.6 with F = {{�〈A3〉q, ε}}. �

��〈A1〉p ∧ fin(l1);〈A2〉 �〈A3〉q�

〈∅〉

�ε�

〈∅〉

��〈A3〉q�

〈A1〉

p ∧ q

p ∧ q

p

pq
q

p ∧ q

p ∧ q

��〈A1〉p ∧ fin(l1);〈A2〉 �〈A3〉q�

l̃1

l̃1

ε
〈∅〉

〈∅〉

〈A3〉

〈A3〉

〈A3〉

〈A1〉

Fig. 6. GBCG of �〈A1〉p;〈A2〉 �〈A3〉q

708 C. Tian and Z. Duan

5 Satisfiability and Model Checking APTL Formulas

Since APTL formulas can be transformed to GBGSs, an approach for checking the sat-
isfiability of an APTL formula Q is achieved by further checking the emptiness of GB of
Q. If no runs of a concurrent game structure can be accepted by GB, Q is unsatisfiable,
otherwise, Q is satisfiable.

The decision procedure for checking the satisfiability of an APTL formula is pre-
sented in Algorithm Check. With this procedure, for a given formula Q, we first con-
struct the GBGS GB of Q, and then we check the emptiness of GB. If no runs can be
accepted by GB, Q is unsatisfiable, otherwise, Q is satisfiable.

Further, given an open system modeled by a CGS C, and a desired property specified
by an APTL formula P, to check whether or not the system satisfies the desired prop-
erty is mounting to checking whether or not all computations of C can be accepted by
the GBCS of Q. Thus, an automata based model checking approach for APTL is also
obtained.

Function Check(P)
/* precondition: P is an APTL formula*/
/* postcondition: Check(P) checks whether or not formula P is satisfiable.*/
begin function

G =Lnfg(P);
GB = T r(G); /* T r(G) transforms G to a GBGS.*/
check the emptiness of GB;
if L(GB) = ∅, return P is unsatisfiable;
else return P is satisfiable;

end function

6 Conclusion

For the specification and verification of open systems, alternating interval based tempo-
ral logics AITL and APTL are presented in this paper. Further, automata based model
theory is built for APTL formulas. Based on this, an approach for checking the satisfi-
ability of APTL formulas, and a model checking approach with APTL are proposed.

In the near future, the algorithm for checking the emptiness of a GBCG as well as
the algorithm for computing the product of two GBCGs will be investigated. Further,
the complexity of the proposed algorithms will be analyzed, and supporting tools will
also be developed. In addition, transformation from APTL to GBCGs will be studied
for the purpose of verification with APTL.

References

1. Alur, R., Hzenzinger, T.A., Kupferman, O.: Alternating-Time Temporal Logic. Journal of the
ACM 49, 672–713 (2002)

2. Wilke, T.: Alternating Tree Automata, Parity Games, and μ-calculus. Bull. Soc. Math.
Belg. 8(2) (May 2001)

3. Moszkowski, B.: Reasoning about digital circuits, Ph.D Thesis, Department of Computer
Science, Stanford University, TRSTAN-CS-83-970 (1983)

Alternating Interval Based Temporal Logics 709

4. Duan, Z., Tian, C., Zhang, L.: A Decision Procedure for Propositional Projection Temporal
Logic with Infinite Models. Acta Informatica 45(1), 43–78 (2008)

5. Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symp. Found. of Comp.
Sci., pp. 46–57 (1977)

6. Clark, M., Gremberg, O., Peled, A.: Model Checking. The MIT Press, Cambridge (2000)
7. Vardi, M.Y.: Verification of Open Systems. In: Ramesh, S., Sivakumar, G. (eds.) FST TCS

1997. LNCS, vol. 1346, pp. 250–266. Springer, Heidelberg (1997)
8. de Alfaro, L.: Game Models for Open Systems. In: Dershowitz, N. (ed.) Verification: Theory

and Practice. LNCS, vol. 2772, pp. 269–289. Springer, Heidelberg (2004)
9. Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. Acta Informat-

ica 20, 207–226 (1983)
10. Clarke, E.M., Emerson, E.A.: Desigh and syntesis of synchronization skeletons using branch-

ing time temporal logic. In: Kozen, D. (ed.) LP 1981. LNCS, vol. 131. Springer, Heidelberg
(1981)

11. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science 27, 333–
354 (1983)

12. Emerson, E.A.: Temporal and Modal Logic. Computer Science Department, University of
Texas at Austin, USA (1995)

13. Moszkowski, B.: Reasoning about digital circuits. Ph.D Thesis, Department of Computer
Science, Stanford University. TRSTAN-CS-83-970 (1983)

14. Duan, Z.: An Extended Interval Temporal Logic and A Framing Technique for Temporal
Logic Programming. PhD thesis, University of Newcastle Upon Tyne (May 1996)

15. Duan, Z., Tian, C.: A Unified Model checking Approach with Projection Temporal Logic.
In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 167–186.
Springer, Heidelberg (2008)

16. Tian, C., Duan, Z.: Model Checking Propositional Projection Temporal Logic Based on
SPIN. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS,
vol. 4789, pp. 246–265. Springer, Heidelberg (2007)

17. Tian, C., Duan£, Z.: Propositional projection temporal logic, buchi automata and omega-
regular expressions. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS,
vol. 4978, pp. 47–58. Springer, Heidelberg (2008)

18. Schewe, S., Finkbeiner, B.: Satisfiability and Finite Model Property for the Alternating-Time
mu-Calculus. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 591–605. Springer, Heidel-
berg (2006)

19. Schewe, S.: ATL* Satisfiability Is 2EXPTIME-Complete. ICALP (2), 373–385 (2008)
20. Vardi, M.Y.: Alternating Automata and Program Verification. In: van Leeuwen, J. (ed.) Com-

puter Science Today. LNCS, vol. 1000, pp. 471–485. Springer, Heidelberg (1995)
21. Katoen, J.-P.: Concepts, Algorithms, and Tools for Model Checking. Lecture Notes of the

Course Mechanised Validation of Parallel Systems (1999)
22. Brzozowski, J.A., Leiss, E.: Finite automata, and sequential networks. Theoretical Computer

Science 10, 19–35 (1980)
23. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the Association for

Computing Machinery 28(1), 114–133 (1981)
24. Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M., Mitchell, J.C.

(eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Heidelberg (1994)

Author Index

Abdelhalim, Islam 371
Arbab, Farhad 106

Back, Ralph-Johan 24
Basu, Samik 338
Bayley, Ian 630
Bejleri, Andi 270
Ben-Hafaiedh, Imene 436
Billington, Jonathan 420

Chane-Yack-Fa, Raphaël 581
Changizi, Behnaz 106
Cheng, Bin 518
Chin, Wei-Ngan 171, 468
Chossart, Romain 581
Craciun, Florin 171

Damljanovic, Danica 237
Ding, Zuohua 138, 155
Duan, Zhenhua 90, 694
Dwyer, Matthew B. 21

Ehlers, Rüdiger 565
Eriksson, Johannes 24
Ezekiel, Jonathan 549

Fehnker, Ansgar 485
Fraikin, Benoît 581
Frappier, Marc 581
Futatsugi, Kokichi 1, 501

Gallasch, Guy Edward 420
Gao, Ping 355
Gerke, Michael 565
Goriac, Eugen-Ioan 220
Graf, Susanne 436

Hanna, Youssef 338
Hatebur, Denis 253
He, Guanhua 171, 468
Heisel, Maritta 253
Hoover, H. James 188
Huuck, Ralf 485

Johnsen, Einar Broch 646

Kaliappan, Prabhu Shankar 613
Kokash, Natallia 106
König, Hartmut 613

Larsen, Peter Gorm 40
Li, Xin 188
Liu, Jing 155
Liu, Shaoying 662
Liu, Yang 388, 518
Lomuscio, Alessio 204, 549
Lucanu, Dorel 220
Luo, Chenguang 171, 468

MacCaull, Wendy 122
Madlener, Ken 287
Mastroeni, Isabella 452
Meseguer, José 303
Meyer, Bertrand 597
Miao, Huaikou 662

Nakamura, Masaki 678
Nanz, Sebastian 597
Nikolić, Ðurica 452

Ogata, Kazuhiro 501, 678
Ölveczky, Peter Csaba 303
Ouenzar, Mohammed 581
Owe, Olaf 646

Peter, Hans-Jörg 565
Ping, Jing 138
Poernomo, Iman 56
Pu, Geguang 138

Qin, Shengchao 171, 468
Quinton, Sophie 436

Rabbi, Fazle 122
Rajan, Hridesh 338
Reif, Wolfgang 485
Ribeiro, Augusto 40
Roşu, Grigore 220
Rudnicki, Piotr 188

712 Author Index

Sakallah, Karem 404
Samuelson, David 338
Sánchez, Alejandro 74
Sánchez, César 74
Schlatte, Rudolf 646
Schmerl, Sebastian 613
Schneider, Steve 371
Sharp, James 371
Shen, Hui 155
Siirtola, Antti 321
Smetsers, Sjaak 287
Song, Songzheng 388
Strulo, Ben 204
Sun, Jing 237
Sun, Jun 388, 518

Tapia Tarifa, Silvia Lizeth 646
Terrell, Jeffrey 56
Tian, Cong 90, 694
Timm, Nils 534
Treharne, Helen 371

van Eekelen, Marko 287
Velev, Miroslav N. 355
Vogelsang, Andreas 485

Walker, Nigel 204
Wang, Hai H. 237
Wang, Hao 122
Wang, Xi 662
Wang, Zheng 138
Wehrheim, Heike 534
West, Scott 597
Wu, Peng 204

Xiao, Hao 138

Yang, Zijiang 404
Yi, Wang 22

Zhang, Min 678
Zhou, Lei 138
Zhu, Hong 630

	Title
	Preface
	Organization
	Table of Contents
	Invited Talks
	Fostering Proof Scores in \cafeobj
	Introduction
	Proof Scores in \cafeobj
	Princiles of Proof Score Approach
	Development of Proof Scores

	An Overview of \cafeobj Language
	Sound and Complete Proof Rules for Reachalbe Models
	Combining Inference and Search with Proof Scores
	Conclusions
	References

	Exploiting Partial Success in Applying Automated Formal Methods
	Multicore Embedded Systems: The Timing Problem and Possible Solutions
	References

	Theorem Proving and Decision Procedures
	Applying PVS Background Theories and Proof Strategies in Invariant Based Programming
	Introduction
	Socos Language
	Verification Methodology
	Verifying Invariant Based Programs in PVS
	Heapsort: An Exercise in PVS Supported Invariant Based Programming
	Conclusions
	References

	Proof Obligation Generation and Discharging for Recursive Definitions in VDM
	Introduction
	Recursive Definitions and VDM
	Termination
	Measure
	The Vienna Development Method
	From VDM Models to Proved Proof Obligations

	Generating Proof Obligations for Recursive Functions
	POs in VDM
	Simple Recursion
	Mutual Recursion
	Preconditions

	Implementation of the Proof Obligation Generator
	VDMTools
	Overture

	Proving POs for Recursive Functions in HOL
	Straight Forward Recursion
	Nested Recursion with Nested Function Different from the Calling One
	Nested Recursion over Itself
	Mutual Recursion

	Examples of Proof
	Straightforward Recursion
	Nested Recursion
	Mutual Recursion

	Related Work
	Concluding Remarks and Further Work
	References

	Correct-by-Construction Model Transformations from Partially Ordered Specifications in Coq
	Introduction
	Proofs and Programs in Coq
	Values and Types
	Internal Programming Language (the Lambda Calculus)
	Internal Logic
	Co-inductive Types
	Higher-Order Values
	Extracting Programs from Proofs

	Doing MDA in Coq
	Encoding Metamodels as Types
	Constraints
	Specifications
	Partially Ordered Specifications

	Case Study
	Related Work and Conclusions
	References

	Decision Procedures for the Temporal Verification of Concurrent Lists
	Introduction
	Concurrent Lock-Coupling Lists
	Preliminaries
	Building a Suitable Decision Procedure
	Termination of Concurrent Lock-Coupling Lists
	Conclusion
	References

	An Improved Decision Procedure for Propositional Projection Temporal Logic
	Introduction
	Preliminaries
	Propositional Projection Temporal Logic
	Normal Form of PPTL

	Normal Form Graph
	Decision Procedure Based on LNFG
	Model Checking PPTL
	Conclusion
	References

	Web Services and Workflow
	A Semantic Model for Service Composition with Coordination Time Delays
	Introduction
	Background
	Motivation
	Action Constraint Automata
	Dataflow Modeling
	Model Analysis and Tool Support
	Conclusions
	References

	Compensable WorkFlow Nets
	Introduction
	Background
	Workflow with Compensable Transactions
	Compensable Workflow Nets
	Graphical Representation of CWF-Nets
	Analysis

	Verification
	Case Study
	Verification Results

	Conclusion and Future Work
	References

	Automatically Testing Web Services Choreography with Assertions
	Introduction
	Related Work
	Motivating Examples
	Automated Test Data Generation
	Control Flow Graph (CFG)
	Dynamic Symbolic Execution
	Assertion

	Implementation and Experiments
	Tool Implementation
	Preliminary Experiments

	Conclusions
	References

	Applying Ordinary Differential Equations to the Performance Analysis of Service Composition
	Introduction
	Petri Net Representation of Service Composition
	Modeling Service Composition with ODEs
	Continuous Petri Net
	Building Ordinary Differential Equation Model

	Performance Analysis with ODEs
	Performance Analysis with SPN
	Numbers of Average Tokens of SPN = State Measures of CPN
	Measures of Performance

	Complexity Analysis
	Case Study: Diagnosis Apply of Regional Health Information System (RHIS)
	Related Work
	Conclusion
	References

	Verification I
	Verifying Heap-Manipulating Programs with Unknown Procedure Calls
	Introduction
	The Approach
	User-Defined Predicates
	Illustrative Example

	Language and Abstract Domain
	Abduction
	Verification
	Experimental Results
	Conclusion
	References

	API Conformance Verification for Java Programs
	Introduction
	A Motivating Example
	Fex: A Model Checking Framework for API Conformance Verification
	Specifying Conformance Rules with Executable Specification
	Verification Process

	Experimental Results
	Introduction to TSAFE
	Experiment Results and Discussion

	Related Work
	Conclusion
	References

	Assume-Guarantee Reasoning with Local Specifications
	Introduction
	Assume-Guarantee Reasoning
	Bounded Assume-Guarantee Reasoning
	Case Study
	Experiments
	Conclusions
	References

	Automating Coinduction with Case Analysis
	Introduction
	Behavioral Specification and Circular Coinduction
	Extending CIRC with Equational Interpolants
	Specifications with Cases
	Implementation in CIRC
	Extending the Circular Coinduction Engine
	Computing Special Contexts Using Cases
	CIRC with Case Analysis at Work

	Conclusions
	References

	Applications of Formal Methods
	Enhanced Semantic Access to Formal Software Models
	Introduction
	Semantic Web
	Ontology Representation of Software Models
	Ontology for Software Specification
	Ontology for the Application Domain

	Formal Model Augmentation
	Semantic Annotation
	Storing Implicit Annotations and Semantic-Based Access

	Conclusion
	References

	Making Pattern- and Model-Based Software Development More Rigorous
	Introduction
	UML Profile for Problem Frames
	Tool Support
	Checking the Correct Instantiation of Problem Frames
	Case Study
	Related Work
	Conclusions and Future Work
	References

	Practical Parameterised Session Types
	Introduction
	Roles
	Global Types
	Global Types for Parameterised Communication Patterns
	Ring and Tree Communication Patterns

	Type System
	Projection, Ordering and R-Elimination
	Typing Rules

	Real-World Examples
	Related Work
	Conclusions and Future Work
	References

	A Formal Verification Study on the Rotterdam Storm Surge Barrier
	Introduction
	The Considered Component: DEW
	Z Specification

	FormalAnalysis
	Translation of C++ to PVS
	Communication with Hydraulic-Model Evaluator
	Verification

	Validation of the Specification
	Decision Based on Incomplete Information
	Critical Excesses

	Case-Study Evaluation
	Related Work
	Future Work: Certified Lightweight Semantics
	Conclusions
	References

	Verification II
	Formalization and Correctness of the PALS Architectural Pattern for Distributed Real-Time Systems
	Introduction
	Real-Time Maude
	Formal Definition of the Synchronous Model
	Overview of the PALS Asynchronous Model
	PALS Formal Model in Real-Time Maude
	Correctness and Optimality of PALS
	An Avionics Case Study
	Related Work
	Conclusions
	References

	Automated Multiparameterised Verification by Cut-Offs
	Introduction
	Labelled Transition Systems
	Multiparameterised Verification by Cut-Offs
	Variables and Valuations
	Valuation Formulae
	LTS Schemata
	Parameterised Traces Refinement

	Reduction Algorithm
	Conclusions
	References

	Automating Cut-off for Multi-parameterized Systems
	Introduction
	Related Work
	Multi-parameterized System
	Processes as Behavioral Automata
	Behavior of Multi-parameterized System

	Cut-off Computation for Multiple Parameters
	Maximal Behavior Induced by a Process
	Finding the Cut-Off Value

	Proof of Soundness
	Golok: A Tool to Find Cut-off
	Front End: Input Language of Golok
	System Instance Generator/Checker

	Case Studies
	Summary and Conclusion
	References

	Method for Formal Verification of Soft-Error Tolerance Mechanisms in Pipelined Microprocessors
	Introduction
	Background
	Formal Verification of Pipelined Processors
	The RazorII Mechanism for Soft-Error Tolerance

	Formal Verification of Pipelined Processors with Mechanisms for Soft-Error Tolerance
	Results
	Related Work
	Conclusion
	References

	Formal Verification of Tokeneer Behaviours Modelled in fUML Using CSP
	Introduction
	Background
	fUML
	CSP

	Tokeneer: Case Study Introduction
	Modelling fUML Activity Diagrams into CSP
	Modelling the fUML Communication Mechanism in CSP
	Corresponding CSP for Tokeneer fUML Model
	Deadlock Checking
	Related Work
	Conclusion and Future Work
	References

	Probability and Concurrency
	Model Checking Hierarchical Probabilistic Systems
	Introduction
	Preliminaries
	Hierarchical Modeling
	Probabilistic Refinement Checking
	Refinement Checking PCSP#
	SE-LTL Probabilistic Model Checking as Refinement Checking

	Case Studies
	Conclusion
	References

	Trace-Driven Verification of Multithreaded Programs
	Introduction
	Algorithm Overview
	Symbolic Encoding of Execution Traces
	Under-Approximation FOL Formula $\varphi(\pi)$
	Over-Approximation FOL Formula $\psi(\pi)$

	Refinement
	Analysis-Guided Execution
	Avoid Redundant Checks
	An Illustrative Example

	Optimizations
	Related Work
	Experiments
	Conclusion and Future Work
	References

	Closed Form Approximations for Steady State Probabilities of a Controlled Fork-Join Network
	Introduction
	Parametric GSPN Model
	Family of Continuous Time Markov Chains
	Characterising Convergence
	Convergence When $\boldsymbol{\lambda_0 <}$
	Convergence When $\boldsymbol{\lambda_0 >}$
	Characterisation of Convergence

	Closed Form Approximate Probabilities
	Approximate Probabilities When $\lambda_0 >$
	Accuracy of the Approximation

	Conclusions
	References

	Reasoning about Safety and Progress Using Contracts
	Introduction
	A Contract-Based Design Framework and Methodology
	A Contract Framework with Data for Safety and Progress
	An Application to Resource Sharing in a Network
	Discussion and Future Work
	References

	Program Analysis
	Abstract Program Slicing: From Theory towards an Implementation
	Introduction
	Program Slicing
	Abstract Program Slicing
	Abstract Formal Framework
	Abstract Unified Equivalence

	Comparing Forms of Abstract Slicing
	Towards an Implementation
	Conclusion and Future Work
	References

	Loop Invariant Synthesis in a Combined Domain
	Introduction
	The Approach
	Separation Logic and User-Defined Predicates
	Illustrative Example

	Language and Abstract Domain
	Analysis Algorithm
	Abstract Semantics
	Abstraction, Join and Widening

	Experiments and Evaluation
	Related Work and Conclusion
	References

	Software Metrics in Static Program Analysis
	Introduction
	Integrating Software Metrics
	Metric Specification Language GMSL
	Syntax
	Semantics

	Metric Module
	GMSL Interpreter
	Visualization Module

	Case Study
	Conclusions
	References

	A Combination of Forward and Backward Reachability Analysis Methods
	Introduction
	The OTS/CafeOBJ Method
	Observational Transition Systems
	Falsification by Structural Induction

	Bounded Model Checking (BMC) of OTSs
	Forward & Backward Reachability Analysis
	Forward Reachability Analysis
	Backward Reachability Analysis
	Combination

	Application of the Variant of IGF to NSPK
	NSPK and Agreement Property
	Specification for Structural Induction
	Specification for Search
	Falsification

	Related Work
	Conclusion
	References

	Model Checking
	Model Checking a Model Checker: A Code Contract Combined Approach
	Introduction
	PAT Background
	Embedding Code Contracts
	Model Checking PAT
	Discussion
	Conclusion
	References

	On Symmetries and Spotlights – Verifying Parameterised Systems
	Introduction
	Definitions
	Symmetries
	Spotlights
	Generalisation
	Conclusion
	References

	A Methodology for Automatic Diagnosability Analysis
	Introduction
	Background
	Interpreted Systems and MCMAS
	Fault Injection into MAS Programs
	Generating Fault Analysis Artifacts

	Diagnosability Analysis
	A Framework for Integrating Fault Analysis Modules
	Automatic Diagnosability Analysis of the IEEE 802.5 Token Ring Protocol
	Related Work
	Conclusions
	References

	Making the Right Cut in Model Checking Data-Intensive Timed Systems
	Introduction
	Preliminaries
	Timed Systems
	Binary Decision Diagrams
	Reachability Model Checking

	Fully Symbolic Real-Time Model Checking
	Computing the Reachable States Using CZMs
	An Example
	Handling Invariants in CZMs
	Improving the Performance of the Approach

	Guided Counter-Example Generation
	Experimental Results
	Prototype Implementation
	The FlexRay Communication Protocol
	Model Checking FlexRay
	Model Checking Fischer

	Conclusion and Outlook
	References

	Comparison of Model Checking Tools for Information Systems
	Introduction
	Related Work
	Presentation of the Case Study
	An Overview of the Model Checkers
	\SPIN
	\NUSMV
	\FDR
	\CADP
	\ALLOY
	\PROB

	Specifying the Model and the Properties
	\SPIN
	\NUSMV
	\FDR
	\CADP
	\ALLOY
	\PROB

	Analysis of the Case Study
	Conclusion
	References

	Object Orientation and Model Driven Engineering
	A Modular Scheme for Deadlock Prevention in an Object-Oriented Programming Model
	Introduction
	SCOOP Programs and Their Locking Semantics
	Overview of the Model
	Deadlock in SCOOP

	A Formal Model of SCOOP Locking
	Annotation Language
	SCOOP Program Model
	Locking Semantics

	Deadlock Prevention Scheme
	Well-Formed Programs
	Deadlock Freedom
	Usage and Tool Support

	Related Work
	Conclusion
	References

	Model-Driven Protocol Design Based on Component Oriented Modeling
	Motivation
	Related Work
	On the Modeling of Protocol Design Components
	Protocol Design Components
	Formalizing the Semantics of Protocol Design Components
	Operational and Functional Semantics

	Modeling a Protocol Design Specification
	Communication Perspective
	Behavior Perspective
	Evaluation Example

	Final Remarks
	References

	Laws of Pattern Composition
	Introduction
	Background
	Meta-modelling in GEBNF
	Formal Specification of Patterns
	Reasoning about Patterns

	Operators on Design Patterns
	Algebraic Laws of the Operations
	Laws of Restriction
	Laws of Superposition
	Laws of Extension
	Laws of Flattening and Generalisation
	Laws Connecting Several Operators

	Examples
	Conclusion
	References

	Dynamic Resource Reallocation between Deployment Components
	Introduction
	Concurrent Objects in Creol
	Dynamic Deployment Components
	Example: Phone Services during New Year’s Eve
	OperationalSemantics
	Related Work
	Conclusions and Future Work
	References

	Specification and Verification
	A Pattern System to Support Refining Informal Ideas into Formal Expressions
	Introduction
	Related Work
	Pattern System
	Pattern Definition
	Pattern Classification
	Structure of the Pattern System
	Mechanism for the Application of the Pattern System

	Case Study
	Conclusion
	References

	Specification Translation of State Machines from Equational Theories into Rewrite Theories
	Introduction
	Preliminaries
	State Machines
	EQT Specs
	RWT Specs

	State Machines Specifiable in RWT Specs
	Translation Strategy
	Generation of OC and AC
	Generation of R
	Optimization of RWT Specs
	Generation of F and EF
	Principles of Defining EADS Specs for Efficient RWT Specs

	Experimental Results
	Conclusion and Future Work
	References

	Alternating Interval Based Temporal Logics
	Introduction
	Concurrent Game Structures
	Concurrent Game Structures
	Automata over Concurrent Game Structures

	Alternating Interval Based Temporal Logics
	Alternating Interval Temporal Logic
	Alternating Projection Temporal Logic
	Specification with AITL and APTL

	Transformation from APTL to GBCGs
	Normal Forms
	From APTL to Normal Form Graphs
	From NFGs to GBCGs

	Satisfiability and Model Checking APTL Formulas
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

