
Chapter 5
Fuzzy Rough Multiple Objective Decision Making

The concept of a rough set was first raised by Pawlak [340]. Then Liu [226] proposed
the fuzzy rough (Fu-Ro) variable by combining the fuzzy variable and rough variable.
Xu and Zhao [343] discussed the properties of Fu-Ro variable, and introduced the Fu-
Ro multi-objective decision making models and the ways to deal with them, some
crisp equivalent models are given and relative algorithms are proposed to solve the
problems.

In this chapter, we first introduce the Fu-Ro variable, then the arithmetic and the
properties of the Fu-Ro variable. Based on the expected value operator and chance
operator of the Fu-Ro variable, three parts are presented respectively:

(1) Fuzzy rough expected value decision-making model(Fu-Ro EVM).
(2) Fuzzy rough chance constraint decision-making model(Fu-Ro CCM).
(3) Fuzzy rough dependent chance decision-making model(Fu-Ro DCM).
Finally, an application to reuse an integrated logistics network design problem

under fuzzy rough environment is presented to show the effectiveness of the above
three models.

5.1 Integrated Logistics Problem under Fuzzy Rough
Environment

In recent years, the logistics system has been gaining importance due to the increasing
market globalization competitiveness. At first, most of the scholars just researched
forward logistics, and there are many papers on this subject. Then scholars realized
a growth of interest in transporting items that could be recycled or reused, and the
possible commercial returns and saw that reverse logistics is an important problem
requiring careful consideration.

Reverse logistics was first mentioned in the early 1990s. Two papers about re-
verse logistics from the American GLM (Council of Logistics Management) mark
the start of research into reverse logistics [81, 82]. The first paper represents the re-
search results of Stock (1992), who proposed the relevance among the fields of reverse

J. Xu and X. Zhou: Fuzzy-Like Multiple Objective Decision Making, STUDFUZZ 263, pp. 295–374.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



296 5 Fuzzy Rough Multiple Objective Decision Making

logistics, business and social. A year later, Kopicki and other scholars researched the
actual operation and rules of reverse logistics, including the factors of re-use and recy-
cling. Kostecki (1998) discussed reverse logistics as the way to extend the life cycle
of products. The same year, Stock reported in detail how to set up a reverse logis-
tics and implementation plan. Roger (1999) and Tibber-Lembke collected extensive
data on reverse logistics business operation examples, especially in the United States,
where the two researchers wrote a lot of logistics optimization management articles.
After that, many problems regarding reverse logistics were discussed. Some papers
under assumed a crisp environment, like [83, 84, 85, 86, 87], but many uncertainties
were found to exist in a reverse logistics system, so the research of uncertain reverse
logistics began, as in [88, 89].

In more recent years, forward and reverse logistics were integrated to build the inte-
grated logistics system. In 1997, Fleischmann and Jacqueline first did some research
on integrated logistics[90], wherein they integrated forward logistics and reverse lo-
gistics to construct a close-loop integrated logistics system. Hyun Jeung Ko[91] pre-
sented a mixed integer nonlinear programming model from the perspective of the third
party for the design of a dynamic integrated distribution network to account for the
integrated goals of simultaneously optimizing the forward and return network. There
was very little literature about integrated logistics. The integrated logistics system is
often applied in practice, but the theoretical study of integrated logistics has lagged
behind. It is therefore necessary for scholars to research and develop this field.

The integrated logistics system is composed of the forward logistics system and
the reverse logistics system. Forward logistics systems are usually the same, they
all deliver the new product from the first producers to the last customers. However,
there are different reverse logistics networks structures according to different kinds
of reverse goods, such as reuse, remanufacturing, recycling and commercial return.
If the purpose of the reverse logistics system is for reusing items, then the integrated
logistics can be called a reuse integrated logistics system.

In every day life, re-usable packages and containers such as glass bottles, plastic
bottles, cans, boxes and pallets are widely used in the food and chemical industries.
As more and more people realize the importance of environmental protection, more
and more producers want to reuse the recycled items to reduce resource waste. So in
this paper, we concentrate on the reuse reverse logistics system.

The process of the reuse integrated logistics network is that the re-usable packages
are gathered by collectors and processed by recyclers to then be sent to the producers
to reuse. New products which use the recycled packages are produced and again get
into the forward logistics and are finally consumed by the customers. After that, the
same process recurs. Thus, the whole integrated logistics system operates in cycles
like this and forms a closed loop system.

There are three main establishments in an integrated logistics network:
(1) Collectors: have the responsibility of collecting reusable packages that are scat-
tered around.
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(2) Recyclers or expanded distributors: receive the items from collectors, and their
work concentrates on detecting, cleaning and processing the used items to such a state
that they are undifferentiated from new items, and then these items will be delivered
to enterprises again.
(3) Disposal places: process the waste items that can no longer be used. The integrated
logistics system also can be described as in the following Figure. 5.1.

Fig. 5.1 Integrated logistics system

The integrated logistics network also includes the forward logistics network and
the reverse logistics network. In forward logistics, there are producers, distributors
and main wholesalers, and in reuse reverse logistics network there are collectors, re-
cyclers/ expanded distributors, final disposal places and producers, and the associated
transport routes.

Unfortunately, the integrated logistics network design problem is subject to many
sources of uncertainty. In a practical decision-making process, we often face a hy-
brid uncertain environment. To deal with this twofold uncertainty, the concept of the
fuzzy rough variable was proposed to depict the phenomena in which fuzziness and
roughness appear simultaneously.

In this next section, we consider the reuse integrated logistics system, items which
can be re-used after simple treatment, mainly package containers and auxiliary ma-
terials such as trays. In the integrated logistics network problem, it is hard to de-
scribe these problem parameters as known variables. For instance, since people usu-
ally drink more beer in summer and autumn, and less beer in winter and spring, that
is, the demand of beer is seasonal. When we forecast the demand in a period, we may
use the fuzzy variable to estimate, for example, we give a middle value μ , two spread
α and β . Further more, the middle value μ is usually not a certain number, because
when we design the network of the network of a reuse integrated logistics network,
the period we consider will definitely cover the whole season, so the it is appropriate
to use a rough variable to describe the middle value μ . So until now, in this situation,
we can use fuzzy rough variables to describe the demand of the beer. Because the
amount of the used packages is relevant to the consumption of the product, so it is
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natural to consider that the quantity of used packages is also a fuzzy rough variable,
just as is that of the demand for the products.

The following Figure. 5.2 describes this kind of reuse integrated logistics network.

Fig. 5.2 Conceptual model of reuse integrated logistics network

However, there is no attempt to research another mixed environment, where fuzzi-
ness and roughness both appear simultaneously. For some seasonal items (Ice cream,
Christmas trees, woolen materials), the demand may vary year to year. According
to the historical data or abundance of information or the experiences of experts, we
can know the demand in one year is a certain fuzzy variable. However, the middle
value of the fuzzy variable is vague and varies year to year. The result is that decision
makers are unable to achieve a better decision. Hence, we have to consider it as an
uncertain variable. A rough variable can be applied to depict it well if the average
sold amount is clear according to the statistical data of every year. Thus, the demand
of some seasonal items can be described as a fuzzy rough variable to help decision
makers develop better strategies.

5.2 Fu-Ro Variable

Let’s introduce the basic knowledge of Fu-Ro variables, which include the definition,
the chance measure, the expected value, and the optimistic and pessimistic value.

5.2.1 Definition of Fu-Ro Variable

Before the introduction of the concept of fuzzy rough variables, let’s recall some
definitions and properties of rough sets.

The rough sets theory introduced by Pawlak [340, 377] has often proved to be an
excellent mathematical tool for the analysis of a vague description of objects (called



5.2 Fu-Ro Variable 299

actions in decision problems). The adjective vague, referring to the quality of infor-
mation, means inconsistency or ambiguity which follows from information granula-
tion. The rough sets philosophy is based on the assumption that with every object of
the universe there is associated a certain amount of information (data, knowledge),
expressed by means of some attributes used for object description. Objects having
the same description are indiscernible (similar) with respect to the available infor-
mation. The indiscernibility relation thus generated constitutes a mathematical basis
for the rough sets theory; it induces a partition of the universe into blocks of indis-
cernible objects, called elementary sets, that can be used to build knowledge about a
real or abstract world. The use of the indiscernibility relation results in information
granulation. The rough sets theory, dealing with the representation and processing of
vague information, presents a series of intersections and complements with respect
to many other theories and mathematical techniques handling imperfect information,
like probability theory, evidence theory of DempsterShafer, fuzzy sets theory, dis-
criminant analysis and mereology [373, 374, 375, 376, 341, 378, 379, 380].

For algorithmic reasons, the information regarding the objects is supplied in the
form of a data table, whose separate rows refer to distinct objects (actions), and whose
columns refer to di.erent attributes considered. Each cell of this table indicates an
evaluation (quantitative or qualitative) of the object placed in that row by means of
the attribute in the corresponding column.

Formally, a data table is the 4-tuple S = (U,Q,V, f ), where U is a finite set of
objects (universe), Q = q1,q2, · · · ,qnis a finite set of attributes, Vq is the domain of
the attribute,V =

⋃
q∈QVq and f : U×Q→V is a total function such that f (x,q)∈Vq

for each x ∈U,q ∈Q, called information function.
Therefore, each object x of U is described by a vector (string) DesQ(x) =

( f (x,q1), f (x,q2), · · · , f (x,qm), called description of x in terms of the evaluations of
the attributes from Q; it represents the available information about x.

To every (non-empty) subset of attributes P is associated an indiscernibility rela-
tion on U , denoted by IP:

Ip = {(x,y)| ∈U×U : f (x,q) = f (y,q)∀q¶}.

If (x,y) ∈ Ip, it is said that the objects x and y are P-indiscernible. Clearly, the indis-
cernibility relation thus de.ned is an equivalence relation (reflexive, symmetric and
transitive). The family of all the equivalence classes of the relation IP is denoted by
U |IP and the equivalence class containing an element x∈U by Ip(x). The equivalence
classes of the relation IP are called P-elementary sets. If P = Q, the Q-elementary sets
are called atoms.

Let S be a data table, X a non-empty subset of U and Φ 
= P ⊆ Q. The P-lower
approximation and the P-upper approximation of X in S are defined, respectively, by:

P(X) = {x ∈U : Ip(x)⊆ X},

P̄(X) =
⋃
x∈X

IP(X).
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The elements of P(X) are all and only those objects x∈U which belong to the equiv-
alence classes generated by the indiscernibility relation IP, contained in X ; the el-
ements of P̄(X) are all and only those objects x ∈ U which belong to the equiva-
lence classes generated by the indiscernibility relation IP, containing at least one ob-
ject x belonging to X . In other words, PX is the largest union of the P-elementary
sets included in X , while P̄(X) is the smallest union of the P-elementary sets
containing X .

(1) The P-boundary of X in S, denoted by BnP(X), is BnP(X) = P̄(X)−P(X).
(2) The following relation holds: P(X)⊆ X ⊆ P̄(X).
Therefore, if an object xbelongs to P(X) , it is certainly also an element of X , while

if x belongs to P̄(X), it may belong to the set X . BnP(X) constitutes the “doubtful
region” of X : nothing can be said with certainty about the belonging of its elements
to the set X .

The following relation, called complementarity property, is satisfied: P(X) =U−
P̄(U−X).

If the P-boundary of X is empty, BnP(X) = Φ , then the set X is an ordinary (exact)
set with respect to P, that is, it may be expressed as the union of a certain number of
P-elementary sets; otherwise, if BnP(X) 
= Φ , the set X is an approximate (rough)
set with respect to P and may be characterized by means of the approximations P(X)
and P̄(X). The family of all the sets X ⊆ U having the same P-lower and P-upper
approximations is called a rough set.

The following ratio defines an accuracy of the approximation of X , X 
= Φ by
means of the attributes from P:

αP(X) =
|P(X)|
|P̄(X)| ,

where |Y | indicates the cardinality of a (finite) set Y. Obviously, 0 ≤ αP(X) ≤ 1; if
αP(X) = 1, X is an ordinary (exact) set with respect to P; if αP(X) = 1, X is a rough
(vague) set with respect to P.

Another ratio defines a quality of the approximation of X by means of the attributes
from P:

γP(X) =
|P(X)|
|X | .

The quality γP(X) represents the relative frequency of the objects correctly classified
by means of the attributes from P. Moreover, 0≤αP(X)≤ γP(X)≤ 1, and γP(X) = 0
iff αP(X) = 0, while γP(X) = 1 iff αP(X) = 1.

The definition of approximations of a subset X ⊆ U can be extended to a
classi.cation, i.e. a partition Y = {Y1,Y2, · · · ,Yn} of U . Subsets Yi, i = 1,2, · · · ,n are
disjunctive classes of Y . By P-lower (P-upper) approximation of Y in S, we mean
sets P(Y ) = {P(Y1),P(Y2), · · · ,P(Yn)} and P̄(Y ) = {P̄(Y1), P̄(Y2), · · · , P̄(Yn)}, re-
spectively. The coefficient

γP(X) =
|

n
∑

1=1
P(X)|
|U |
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is called quality of the approximation of classication Y by set of attributes P, or in
short, quality of classification. It expresses the ratio of all P-correctly classified ob-
jects to all objects in the system.

The main preoccupation of the rough sets theory is approximation of subsets or
partitions of U, representing a knowledge about U , with other sets or partitions built
up using available information about U . From the viewpoint of a particular object
x ∈U , it may be interesting, however, to use the available information to assess the
degree of its membership to a subset X of U . The subset X can be identified with
a concept of knowledge to be approximated. Using the rough set approach one can
calculate the membership function μP

X (x) (rough membership function) as

μP
X (x) =

X ∩ Ip(x)
Ip(x)

.

The value of μP
X (x) may be interpreted analogously to conditional probability and

may be understood as the degree of certainty (credibility) to which x belongs to X .
Observe that the value of the membership function is calculated from the available
data, and not subjectively assumed, as it is the case of membership functions of fuzzy
sets.

Between the rough membership function and the approximations of X the follow-
ing relationships hold (Pawlak [340]):

P(X) = {x ∈U : μP
X (x) = 1}, P̄(X) = {x ∈U : μP

X (x) > 0},

BnP(X) = {x ∈U : 0 < μP
X (x) < 1},P(U−X) = {x ∈U : μP

X (x) = 0}.
In the rough sets theory there is, therefore, a close link between vagueness (granu-
larity) connected with rough approximation of sets and uncertainty connected with
rough membership of objects to sets.

Trust theory [145] is the branch of mathematics that studies the behavior of rough
events. It is the foundation for rough programming as the probability theory for
stochastic programming as well as the possibility theory for fuzzy programming. Liu
[145] also combined trust measure with probability measure and possibility measure
to describe the two-fold uncertain events, such as random rough variable, fuzzy rough
variable, rough random variable and rough fuzzy variable. In this section, we will de-
fine the fuzzy rough variable from another perspective, i.e. the rough approximation.

After the rough set was initialized by Pawlak [340], it has been applied to many
fields to deal with the vague description of objectives. He asserted that any vague
information can be approximated by other crisp information. In this section, we will
recall these fundamental concepts and introduce its application to the statistical field
and programming problem.

Definition 5.1. (Slowinski and Vanderpooten [381]) Let U be a universe, and X a set
representing a concept. Then its lower approximation is defined by

X = {x ∈U |R−1(x)⊂ X}, (5.1)
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and the upper approximation is defined by

X =
⋃
x∈X

R(x), (5.2)

where R is the similarity relationship on U . Obviously, we have X ⊆ X ⊆ X .

Definition 5.2. (Pawlak [340]) The collection of all sets having the same lower and
upper approximations is called a rough set, denoted by (X ,X). Its boundary is defined
as follows,

BnR(X) = X −X. (5.3)

In order to know the degree of the upper and lower approximation describing the set
X , the concept of the accuracy of approximation is proposed by Greco et al. [382],

αR(X) =
|X |
|X | , (5.4)

where X 
= Φ , |X | expresses the cardinal number of the set X when X is a finite set,
otherwise it expresses the Lebesgue measure.

Another ratio defines a quality of the approximation of X by means of the attributes
from R according to Greco et al. [382],

γR(X) =
|X |
|X | . (5.5)

The quality γR(X) represents the relative frequency of the objects correctly classified
by means of the attributes from R.

Remark 5.1. For any set A we can represents its frequency of the objects correctly
approximated by (X ,X) as follows,

βR(A) =
|X ∩A|
|X ∩A| .

If X ⊆ A⊆ X , namely, A has the upper approximation X and the lower approximation
X , we have that βR(A) degenerates to the quality γR(A) of the approximation.

As we know, the quality γR(A) of the approximation describes the frequency of A,
and when γR(A) = 1, we only have |A|= |X |, namely, the set A is well approximated
by the lower approximation. If we we want to make A be a definable set, there must
be γR(A) = 1 and αR(X) = 1 both holds. Then we could make use the following
definition to combine them into together.

Definition 5.3. Let (X ,X) be a rough set under the similarity relationship R and A
be any set satisfying X ⊆ A ⊆ X . Then we define the approximation function as
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follows expressing the relative frequency of the objects of A correctly classified into
(X ,X),

ApprR(A) = 1−η(1− |A||X | ), (5.6)

where η is a predetermined by the decision maker’s preference.

From Definition 5.3, we know that |A||X | which keeps accord with γR(A) describes the

relative frequency of the objects correctly classified by R from the view of the up-
per approximation X . Obviously, ApprR(A) is a number between 0 and 1, and is in-
creasing along with the increase of |A|. The extreme case ApprR(A) = 1 means that
|A|= |X |, namely, A is completely described by X .

Lemma 5.1. Let (X ,X) be a rough set under the similarity relationship R and A be
any set satisfying X ⊆ A⊆ X. Then we have

ApprR(A) =
ηαR(A)+ (1−η)γR(A)

γR(A)
.

Proof. Since X ⊆A⊆X , it means that A has the lower approximation X and the upper
approximation X , and it follows from Greco et al. [382] that

αR(A) =
|X |
|X | , γR(A) =

|X |
|A| .

Thus,
|A|
|X | =

αR(A)
γR(A)

.

It follows that

ApprR(A) = 1−η(1− |A|
|X |)

= 1−η(1− αR(A)
γR(A) )

= ηαR(A)+(1−η)γR(A)
γR(A) .

This completes the proof. ��
Lemma 5.2. Let (X ,X) be a rough set on the finite universe under the equivalence
relationship R, A be any set satisfying X ⊆ A⊆ X and η ∈ (0,1). Then ApprR(A) = 1
holds if and only if X = A = X.

Proof. If X = A = X holds, it is obvious that ApprR(A) = 1 according to Definition
5.4. Let’s proved the necessity of the condition.

If ApprR(A) = 1 holds for any A satisfying X ⊆ A ⊆ X , it follows from Lemma
5.1 that, for 0 < η ≤ 1,

ηαR(A)+ (1−η)γR(A)
γR(A)

= 1⇒ αR(A) = γR(A)⇒ |X |= |A|.
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Since A ⊆ X and the universe is finite, we have that A = X . Because A is any set
satisfying X ⊆ A⊆ X , let A = X , then we have X = X . It follows from the property
proposed by Pawlak [340] that X = X = X . Thus, we have X = A = X . ��
Lemma 5.1 shows that the approximation function Appr inherits the accuracy and
quality of the approximation, and extends it to the relationship between any set A
and the rough set (X ,X). Lemma 5.2 shows that the approximation function is com-
plete and well describes the property in traditional rough set theory, and describe the
property only by one index.

Lemma 5.3. Let (X ,X) be a rough set on the infinite universe under the similarity
relationship R, A be any set satisfying X ⊆ A ⊆ X and η ∈ (0,1). If ApprR(A) = 1
holds, then there exist the similarity relationship R∗ such that |X |= |A|= |X |, where
| · | expresses the Lebesgue measure.

Proof. According to Lemma 5.2, we know that |A|= |X |must hold. Let X = X/∂X
under the similarity relationship R∗, where ∂X is composed by all the elements such
that |∂X |= 0, namely, the measure of ∂X is 0. Next, we will prove that X/∂X ⊆ A.

(1) If |X |= 0, then X/∂X = Φ . Thus, |X |= |A|= |X |= 0.
(2) If |X | 
= 0, we only need to prove that for any x0 ∈ X/∂X , x0 ∈ A. In fact, when

x0 ∈ X/∂X , then x0 ∈ int(X) holds, where int(X) is the internal part of X . It follows
that there exists r > 0 such that N(x0,r)⊂ int(X) and |N(x0,r)|> 0. There exist four
cases describing the relationship between A and N(x0,r).

Case 1. A∩N(x0,r) = Φ (see Figure 5.3) . Since N(x0,r)⊂ int(X)⊂ X and A⊆ X ,
we have that

|X | ≥ |N(x0,r)∪A|= |N(x0,r)|+ |A|.
This conflicts with |A|= |X |.

A N(        )0x r

Fig. 5.3 Apartment

Case 2. A∩N(x0,r) = P, where the set P includes countable points (see Figure 5.4).
Obviously, we have |P|= 0, thus |N(x0,r)/P|= |N(x0,r)|> 0. Then we have

|X | ≥ |N(x0,r)∪A|= |N(x0,r)/P|+ |A|.

This also conflicts with |A|= |X |.
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A N(        )0x r

Fig. 5.4 Tangent

Case 3. A∩N(x0,r) = P′, where P′ ⊂ N(x0,r)/{x0}. As Figure 5.5 shows, we can
divide it into three parts, namely, (N(x0,r)/P) = P′ ∪{x0}∪T , where P′, T and {x0}
don’t have the same element with each other. Then |T |> 0, it follows that

|X | ≥ |N(x0,r)∪A|= |T |+ |A|.

This also conflicts with |A|= |X |.

A

N(        )0x r

. 0x

Fig. 5.5 Intersection

Case 4. A⊃ (N(x0,r)/x0) (see Figure 5.6). This means that for any x0∈ int(A), x0 
∈A.
It follows that A∩ int(A) = Φ , then we have

|X | ≥ |int(A)∪A|= |int(A)|+ |A|.

This also conflicts with |A| = |X |. In above, we can get X/∂X ⊆ A. Thus, there ex-
ists the lower approximation X = X/∂X such that X ⊆ A ⊆ X under the similarity
relationship R∗. ��

A

),( 0 rxN

0x

Fig. 5.6 Inclusion
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Remark 5.2. In fact, we can extend Definition 5.3 to more general set. when X ⊆ A⊆
X , we have the following equivalent formula,

ApprR(A) = 1−η(1− |A|
|X | )

= |A∩X |
|X |

(
1−η

(
1− |A∩X |

|X |
))

= |A∩X |
|X | + η

( |A∩X |
|X | −

|A∩X|
|X |

)
.

Furthermore, we get the definition of the approximation function for any set A.

Definition 5.4. Let (X ,X) be the rough set generated by X under the similarity rela-
tionship R, for any set A, the approximation function of event A by (X ,X) is defined
as follows

ApprR(A) =
|A∩X |
|X | + η

( |A∩X |
|X | − |A∩X|

|X |
)

,

where η is a given parameter predetermined by the decision maker’s preference.

From Definition 5.4, we know that ApprR(A) expresses the relationship between the
set A and the set (X ,X) generated by X , that is, the frequency of A correctly classified
into (X ,X) according to the similarity relationship R. It has the internal link with the
accuracy αR of the approximation and the quality γR of the approximation in some
extent. αR expresses the degree of the upper and lower approximation describing the
set X . γR(X) represents the relative frequency of the objects correctly classified by
means of the attributes from R. Then ApprR combines both of them together and
considers the level which A has the attributes correctly classified by (X ,X) for any
A.

Lemma 5.4. Let (X ,X) be a rough set, for any set A, we have the following
conclusion,

ApprR =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if A⊇ X

1−η(1− αR(A)
γR(A) ), if X ⊂ A⊂ X

1−η(1−αR(A))
γR(A) , if A⊆ X

0, if A∩X = Φ
|A∩X|
|X |

(
βR(A)
αR(A) + η(1− βR(A)

αR(A) )
)

, otherwise.

(5.7)

Proof. (1) If A⊇ X , we have that A∩X = X and A∩X = X . Then ApprR = 1.
(2) If X ⊆ A⊆ X , we have that A∩X = X and A∩X = A. It follows that ApprR =

1−η(1− |A|
|X | ).

(3) If A ⊂ X , we have that A∩X = A and A∩ X = A. It follows that ApprR =
1−η(1−αR(A))

γR(A) .

(4) If A∩X = Φ , we have that A∩X = Φ and A∩X = Φ . It follows that ApprR = 0.
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(5) For the others, we have

ApprR(A) = |A∩X|
|X | + η

( |A∩X|
|X | −

|A∩X |
|X |

)
= |A∩X|

|X |
( |A∩X |

|X | · |X |
|A∩X | + η

(
1− |A∩X |

|X | · |X |
|A∩X |

))
= |A∩X|

|X |
(

βR(A)
αR(A) + η(1− βR(A)

αR(A) )
)

.

This completes the proof. ��
For the different purposes, we can respectively discuss the extreme case as follows.

Remark 5.3. When η = 1, we have ApprR(A) = |A⋂X |
|X | . It means that the decision

maker only consider the level that A includes the frequency of A correctly classified
into X according to the similarity relationship R.

Remark 5.4. When η = 0, we have ApprR(A) = |A⋂X |
|X | . It means that the decision

maker only consider the level that A includes the frequency of A correctly classified
into X according to the similarity relationship R.

In fact, the rough set theory is increasingly developed by many scholars and applied
to many fields, for example, data mining, decision reduction, system analysis and so
on. Figure 5.7 shows that the rough approximation. The curves including the internal
points is X . The two thick curves including their internal points are the upper and
lower approximation.

Fig. 5.7 Rough approximation

Let’s focus on the continuous set in the one dimension real space R. There are still
some vague sets which cannot be directly fixed and need to be described by the rough
approximation. For example, set R be the universe, a similarity relation! is defined as
a! b if and only if |a−b| ≤ 10. We have that for the set [20,50], its lower approxima-
tion [20,50] = [30,40] and its upper approximation [20,50] = [10,60]. Then the up-
per and lower approximation of the set [20,50] make up a rough set ([30,40],[10,60])
which is the collection of all sets having the same lower approximation [30,40] and
upper approximation [10,60].
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Definition 5.5. A fuzzy rough variable ξ is a fuzzy variable with uncertain parameter
ρ ∈ X , where X is approximated by (X ,X) according to the similarity relation R,
namely, X ⊆ X ⊆ X .

For convenience, we usually denote ρ " (X ,X)R expressing that ρ is in some set
A which is approximated by (X ,X) according to the similarity relation R, namely,
X ⊆ A⊆ X .

Example 5.1. Let’s consider the LR fuzzy variable ξ with the following membership
function,

μξ (x) =

⎧⎨
⎩

L
(ρ−x

α
)
, if ρ−α < x < ρ

1, if x = ρ
R
( x−ρ

β
)
, if ρ < x j < ρ + β ,

(5.8)

where ρ " ([1,2], [0,3])R. Then ξ is a fuzzy rough variable.

5.2.2 Expected Value Operator of Fu-Ro Variables

Definition 5.6. Let ξ be a Fu-Ro variable with the uncertain parameter λ , where λ "
(X ,X)R, then its expected value is defined by

E[ξ ] =
∫ ∞

0
Appr{E[ξ (λ )]≥ r}dr−

∫ 0

−∞
Appr{E[ξ (λ )]≤ r}dr (5.9)

Lemma 5.5 ([220]). Assume that ξ and η are the introduction of variables with
finite expected values. Then for any real numbers a and b, we have

E[aξ + bη ] = aE[ξ ]+ bE[η ]. (5.10)

Proposition 5.1. Let ξ be a Fu-Ro variable with the membership function

μξ (x) =
{

1, if x ∈ [ā, b̄]
0, otherwise,

where ā, b̄ are rough variables defined on (Λ ,Θ ,A ,π), and ā = ([m2,m3], [m1,m4]),
0 < m1 ≤ m2 < m3 ≤ m4, b̄ = ([n2,n3], [n1,n4]),0 < n1 ≤ n2 < n3 ≤ n4.

Then the expected value of ξ is

E[ξ ] =
1
8

4

∑
i=1

(mi + ni).

Proof. Since ξ (λ ) = [ā, b̄], and according to proposition 2.1, we have

ECr[ξ (λ )] =
1
2
(ā+ b̄).
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By the rough arithmetic operators, it follows that,

ā+ b̄
2

=
1
2
{([m2,m3], [m1,m4])+ ([n2,n3], [n1,n4])}

=
(

[
m2 + n2

2
,

m3 + n3

2
], [

m1 + n1

2
,

m4 + n4

2
]
)

. (5.11)

From the definition of trust measure, we have

Appr{ξ ≥ r}=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if m4+n4
2 ≤ r

m4+n4
2 −r

m4+n4−m1−n1
, if m3+n3

2 ≤ r ≤ m4+n4
2

1
2(

m4+n4
2 −r

m4+n4−m1−n1
+

n3+m3
2 −r

m3+n3−m2−n2
), if m2+n2

2 ≤ r ≤ m3+n3
2

m4+n4
2 −r

m4+n4−m1−n1
+ 1

2 , if m1+n1
2 ≤ r ≤ m2+n2

2

1, if r ≤ m1+n1
2 .

It follows that,

E[ξ ] =
∫+∞

0 Appr{ ā+b̄
2 ≥ r}dr− ∫ 0

−∞ Appr{ ā+b̄
2 ≤ r}dr

=
∫ m1+n1

2
0 1dr +

∫ m2+n2
2

m1+n1
2

(
m4+n4

2 −r
m4+n4−m1−n1

+ 1
2 )dr

+
∫ m3+n3

2
m2+n2

2

1
2 (

m4+n4
2 −r

m4+t4−m1−n1
+

m3+n3
2 −r

m3+n3−m2−n2
)dr +

∫ m4+n4
2

m3+n3
2

m4+n4
2 −r

m4+n4−m1−n1
dr

= 1
8

4
∑

i=1
(mi + ni).

The proof is complete. ��
Proposition 5.2. Let ξ be a trapezoidal Fu-Ro variable ξ = (r̄1, r̄2, r̄3, r̄4), where
r̄1, r̄2, r̄3, r̄4 are rough variables defined on (Λ ,Θ ,A ,π), and

r̄1 = ([m2,m3], [m1,m4]),0 < m1 ≤ m2 < m3 ≤ m4,
r̄2 = ([n2,n3], [n1,n4]),0 < n1 ≤ n2 < n3 ≤ n4,
r̄3 = ([s2,s3], [s1,s4]),0 < s1 ≤ s2 < s3 ≤ s4,
r̄4 = ([t2,t3], [t1, t4]),0 < t1 ≤ t2 < t3 ≤ t4.

Then the expected value of ξ is

E[ξ ] =
1

16

4

∑
i=1

(mi + ni + si + ti).

Proof. Since ξ (λ ) = [r̄1, r̄2, r̄3, r̄4], and according to proposition 2.2, we have

ECr[ξ (λ )] =
1
4
(r̄1 + r̄2 + r̄3 + r̄4).
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By the rough arithmetic operators, it follows that,

r̄1+r̄2+r̄3+r̄4
4

= 1
4{([m2,m3], [m1,m4])+ ([n2,n3], [n1,n4])+ ([s2,s3], [s1,s4])+ ([t2, t3], [t1,t4])}

=
(
[m2+n2+s2+t2

4 , m3+n3+s3+t3
4 ], [m1+n1+s1+t1

4 , m4+n4+s4+t4
4 ]

)
.

From the definition of trust measure, we have

Appr{ξ ≥ r}=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if m4+n4+s4+t4
4 ≤ r

m4+n4+s4+t4
2 −2r

m4+n4+s4+t4−(m1+n1+s1+t1) , if m3+n3+s3+t3
4 ≤ r ≤ m4+n4+s4+t4

4

1
2 (

m4+n4+s4+t4
2 −2r

m4+n4+s4+t4−(m1+n1+s1+t1)

+
m3+n3+s3+t3

2 −2r
m3+n3+s3+t3−(m2+n2+s2+t2) ) ,

if m2+n2+s2+t2
4 ≤ r ≤ m3+n3+s3+t3

4
m4+n4+s4+t4

2 −2r
m4+n4+s4+t4−(m1+n1+s1+t1) + 1

2 , if m1+n1+s1+t1
4 ≤ r ≤ m2+n2+s2+t2

4

1, if r ≤ m1+n1+s1+t1
4 .

It follows that,

E[ξ ] =
∫ +∞

0 Appr{ r̄1+r̄2+r̄3+r̄4
4 ≥ r}dr− ∫ 0

−∞ Appr{ r̄1+r̄2+r̄3+r̄4
4 ≤ r}dr

=
∫ m1+n1+s1+t1

4
0 1dr +

∫ m2+n2+s2+t2
4

m1+n1+s1+t1
2

(
m4+n4+s4+t4

2 −2r
m4+n4+s4+t4−(m1+n1+s1+t1) + 1

2 )dr

+
∫ m3+n3+s3+t3

2
m2+n2+s2+t2

2

1
2(

m4+n4+s4+t4
2 −2r

m4+t4+s4+t4−(m1+n1+s1+t1) +
m3+n3+s3+t3

2 −2r
m3+n3+s3+t3−(m2+n2+s2+t2) )dr

+
∫ m4+n4+s4+t4

2
m3+n3+s3+t3

2

m4+n4+s4+t4
2 −2r

m4+n4+s4+t4−(m1+n1+s1+t1)dr

= 1
16

4
∑

i=1
(mi + ni + si + ti).

The proof is complete. ��
Proposition 5.3. Let ξ be a LR Fu-Ro variable with the membership function of fuzzy
variable ξ has the following form

μξ (x) =

⎧⎨
⎩

L( z̄−x
α ), z̄−α < x≤ z̄

1, x = z̄
R( x−z̄

β ), z̄ < x < z̄+ β ,
(5.12)

where z̄ is a rough variable and z̄ = ([z2,z3], [z1,z4]),α < z1 < z2 < z3 < z4. And here
we just consider the situation when the reference function L(x) = R(x) = 1− x, then
this LR fuzzy rough variable is triangular type, and the left and right spread α,β > 0.
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Then the expected value of ξ is

E[ξ ] =
1
4
(z1 + z2 + z3 + z4 + α + β ).

Proof. Since ξ (λ ) = (z̄,α,β )LR is triangular LR Fu-Ro variable, which means the
reference functions L(x) = R(x) = 1− x, according to remark 2.11, we have

ECr[ξ (λ )] = z̄+
1
4
(α + β ).

Then we have
E[ξ ] = E[z̄+ 1

4 (α + β )]
= E[z̄]+ E[ 1

4(α + β )].

It follows that
E[ξ ] = 1

4 (z1 + z2 + z3 + z4)+ 1
4 (α + β )

= z1+z2+z3+z4+α+β
4 .

The proof is complete. ��

5.2.3 Chance Operator of Fu-Ro Variables
To begin with, we give the three types of primitive chance of Fu-Ro event as follows.

Definition 5.7. Let ξ = (ξ1,ξ2, · · ·ξn) be a Fu-Ro vector defined on (Λ ,Δ ,A ,π),
and f : Rn →R is Borel measurable function. Then the primitive chance of a Fu-Ro
event characterized by f (ξ )≤ 0 is a function from (0, 1] to [0, 1], defined as

(1). Appr−Pos chance,

Ch{ f (ξ )≤ 0}(α) = sup
α∈[0,1]

{β |Appr{λ ∈Λ |Pos
{

f (ξ (λ ))≤ 0
}≥ β} ≥ α}.

(5.13)
(2). Appr−Nec Chance,

Ch{ f (ξ )≤ 0}(α) = sup
α∈[0,1]

{β |Appr{λ ∈Λ |Nec
{

f (ξ (λ ))≤ 0
}≥ β} ≥ α}.

(5.14)
(3). Appr−Cr Chance,

Ch{ f (ξ )≤ 0}(α) = sup
α∈[0,1]

{β |Appr{λ ∈Λ |Cr
{

f (ξ (λ ))≤ 0
}≥ β} ≥ α}.

(5.15)

Remark 5.5. The primitive chance of a Fu-Ro event characterized by f (ξ ) ≤ 0 de-
fined as (5.13), (5.14), (5.15) have the equivalent forms respectively.

Ch{ f (ξ )≤ 0}(α) = sup
Appr{A}≥α

inf
λ∈A

Pos{ f (ξ (λ ))≤ 0}, (5.16)

Ch{ f (ξ )≤ 0}(α) = sup
Appr{A}≥α

inf
λ∈A

Nec{ f (ξ (λ ))≤ 0}, (5.17)
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Ch{ f (ξ )≤ 0}(α) = sup
Appr{A}≥α

inf
λ∈A

Cr{ f (ξ (λ ))≤ 0}. (5.18)

Lemma 5.6. For any confidence levels α,β .
(1). Appr-Pos Chance Ch{ f (ξ )≤ 0}(α)≥ β holds if and only if

Appr{λ ∈Λ |Pos{ f (ξ (λ ))≤ 0} ≥ β} ≥ α.

(2). Appr-Nec Chance Ch{ f (ξ )≤ 0}(α)≥ β holds if and only if

Appr{λ ∈Λ |Nec{ f (ξ (λ ))≤ 0} ≥ β} ≥ α.

(3). Appr-Cr Chance Ch{ f (ξ )≤ 0}(α)≥ β holds if and only if

Appr{λ ∈Λ |Cr{ f (ξ (λ )) ≤ 0} ≥ β} ≥ α.

5.3 Fu-Ro EVM

For the multi-objective model (5.19) with Fu-Ro parameters, we cannot deal with it
directly, we should use some tools to make it have mathematical meaning, we then
can solve it. In this section, we employ the expected value operator to transform the
fuzzy rough model into Fu-Ro EVM. Consider the following multi-objective decision
making model (5.19) with fuzzy rough coefficients:

⎧⎨
⎩

max { f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )}
s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p
x ∈ X ,

(5.19)

where x is a n-dimensional decision vector, ξ = (ξ1,ξ2, · · · ,ξn) is a Fu-Ro vector,
fi(x,ξ ) are objective functions, i = 1,2, · · · ,m. Because of the existence of Fu-Ro
vector ξ , problem (5.19) is not well-defined. That is, the meaning of maximizing
fi(x,ξ ), i = 1,2, · · · ,m is not clear and constraints gr(x,ξ )≤ 0,r = 1,2, · · · , p do not
define a deterministic feasible set. In the following, we use Fu-Ro EVM to deal with
the meaningless model.

5.3.1 General Model for Fu-Ro EVM

Based on the definition of the expected value of fuzzy rough events fi and gr, the
general model for Fu-Ro EVM is proposed as follows,

⎧⎨
⎩

max E[ f1(x,ξ ), f2(x,ξ ), · · · , fm(x,ξ )]

s.t.

{
E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p
x ∈ X ,

(5.20)

where x is n-dimensional decision vector and ξ is n-dimensional fuzzy rough variable.

Definition 5.8. If x∗ is an efficient solution of problem (5.20), we call it as a fuzzy
rough expected efficient solution.
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Clearly, the problem (5.20) is a multi-objective with crisp parameters. Then we can
convert it into a single-objective programming by traditional method of weight sum.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
m
∑

i=1
wiE[ fi(x,ξ )]

s.t.

⎧⎨
⎩

E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p
x ∈ X
w1 + w2 + · · ·+ wm = 1.

(5.21)

Theorem 5.1. Problem (5.21) is equivalent to problem (5.20), i.e., the efficient so-
lution of problem (5.20) is the optimal solution of problem (5.21) and the optimal
solution of problem (5.21) is the efficient solution of problem (5.20).

Proof. The proof is the same as the proof of Theorem 3.1.

Theorem 5.2. Let ξ = (ξ1,ξ2, · · · ,ξn) be a fuzzy rough vector on the rough space
(Λ ,Δ ,A ,π), and fi and gr : A n →A be convex continuous functions with respect
to x, i = 1,2, · · · ,m;r = 1,2, · · · , p. Then the expected value programming problem
(5.21) is a convex programming.

Proof. It is similar to the proof of Theorem 3.2, and thus omit. ��
We can also formulate a fuzzy rough decision system as an expected value goal pro-
gramming (EVGP) model according to the priority structure and target levels set by
the decision-maker:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
l
∑
j=1

Pj

m
∑

i=1
(ui jd

+
i + vi jd

−
i )

s.t.

⎧⎪⎪⎨
⎪⎪⎩

E[ fi(x,ξ )]+ d−i −d+
i = bi, i = 1,2, · · · ,m

E[gr(x,ξ )]≤ 0, r = 1,2, · · · , p
d−i ,d+

i ≥ 0, i = 1,2, · · · ,m
x ∈ X ,

(5.22)

where Pj is the preemptive priority factor which expresses the relative importance
of various goals, Pj >> Pj+1, for all j, ui j is the weighting factor corresponding to
positive deviation for goal i with priority j assigned, vi j is the weighting factor cor-
responding to negative deviation for goal i with priority j assigned, d+

i is the positive
deviation from the target of goal i, defined as

d+
i = [E[ fi(x,ξ )]−bi]∨0,

d−i is the negative deviation from the target of goal i, defined as

d−i = [bi−E[ fi(x,ξ )]]∨0,

fi is a function in goal constraints, g j is a function in real constraints, bi is the tar-
get value according to goal i, l is the number of priorities, m is the number of goal
constraints, and p is the number of real constraints.
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5.3.2 Linear Fu-Ro EVM and Minimax Point Method

For the regular fuzzy rough linear programming problem, we can use the expected
value operator to handle it,

⎧⎪⎪⎨
⎪⎪⎩

max E[
n
∑
j=1

˜̄ci jx j, i = 1,2, · · · ,m]

s.t.

{
E[ ˜̄ar jx j]≥ E[ ˜̄br], r = 1,2, . . . , p
x j ≥ 0, j = 1,2, . . . ,n,

(5.23)

where ˜̄c, ˜̄a, ˜̄b are fuzzy rough variables.

5.3.2.1 Crisp Equivalent Model

In order to solve the model (5.23), we must compute the crisp expected value of ξ .
However, as we know, this process is usually a hard work at most of time. In this
section, we will consider a special cases and present their results.

⎧⎨
⎩

max [E[ ˜̄cT
1 x],E[ ˜̄cT

2 x], · · · ,E[ ˜̄cT
mx]]

s.t.

{
E[ ˜̄aT

r x]≤ E[ ˜̄br],r = 1,2, · · · , p
x≥ 0,

(5.24)

where ˜̄ci = ( ˜̄ci1, ˜̄ci1, · · · , ˜̄cin)T , ˜̄ar = ( ˜̄ar1, ˜̄ar1, · · · , ˜̄arn)T are fuzzy rough vectors, ˜̄br are
fuzzy rough variables, i = 1,2, · · · ,m,r = 1,2, · · · , p. If these fuzzy vectors, as well
as rough variables have special forms, we have the following theorem.

Theorem 5.3. If fuzzy rough variables ˜̄ci j are defined as

˜̄ci j(λ ) = (c̄i j1, c̄i j2, c̄i j3, c̄i j4), with c̄i jt " ([ci jt1,ci jt2], [ci jt3,ci jt4])

for i = 1,2, · · · ,m, j = 1,2, · · · ,n, t = 1,2,3,4, then

E[ ˜̄cT
1 x],E[ ˜̄cT

2 x], · · · ,E[ ˜̄cT
mx]

is equivalent to

1
16

n

∑
j=1

4

∑
t=1

4

∑
k=1

c1 jtkx j,
1
16

n

∑
j=1

4

∑
t=1

4

∑
k=1

c2 jtkx j, · · · , 1
16

n

∑
j=1

4

∑
t=1

4

∑
k=1

cm jtkx j.

Proof. First, we verify that E[ ˜̄ci j] = 1
16

4
∑

t=1

4
∑

k=1
ci jtk, i = 1,2, · · · ,m. In fact ∀ λ ∈Λ ,

E[ ˜̄ci j(λ )] = 1
4 (c̄i j1 + c̄i j2 + c̄i j3 + c̄i j4)

= ([ 1
4

4
∑

t=1
ci jt1,

1
4

4
∑

t=1
ci jt2], [ 1

4

4
∑

t=1
ci jt3,

1
4

4
∑

t=1
ci jt4]).
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Suppose A = 1
4

4
∑

t=1
ci jt1,B = 1

4

4
∑

t=1
ci jt2,C = 1

4

4
∑

t=1
ci jt3,D =

4
∑

t=1
ci jt4, then we have

Appr{E[ ˜̄ci j(λ )]≥ r}=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, i f D≤ r
D−r

2(D−C) , i f B≤ r ≤ D
1
2 ( D−r

D−C + B−r
B−A), i f A≤ r ≤ B

1
2 ( D−r

D−C + 1), i f C ≤ r ≤ A
1, i f r ≤C

and

Appr{E[ ˜̄ci j(λ )]≤ r}=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, i f r ≤C
r−C

2(D−C) , i f C ≤ r ≤ A
1
2 ( r−C

D−C + r−A
B−A), i f A≤ r ≤ B

1
2 ( r−C

D−C + 1), i f B≤ r ≤ D
1, i f D≤ r.

There are five cases when we compute the expected value of ξ . Let’s discuss every
case in turn.
Case 1: 0≤C ≤ A≤ B≤ D.

E[ ˜̄ci j] =
∫ +∞

0 Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≥ r}dr− ∫ 0
−∞ Appr{λ ∈Λ |E[ ˜̄ci j]≤ r}dr

=
∫C

0 1dr +
∫ A

C
1
2 ( D−r

D−C + 1)dr
+
∫ B

A
1
2( D−r

D−C + B−r
B−A)dr +

∫ D
B

D−r
2(D−C)dr

= 1
4 (A + B +C+ D).

Case 2: C ≤ 0≤ A≤ B≤ D.

E[ ˜̄ci j] =
∫ +∞

0 Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≥ r}dr− ∫ 0
−∞ Appr{λ ∈Λ |E[ ˜̄ci j]≤ r}dr

=
∫ A

0
1
2( D−r

D−C + 1)dr +
∫ B

A
1
2 ( D−r

D−C + B−r
B−A)dr

+
∫ D

B
D−r

2(D−C)dr− ∫ 0
C

r−C
2(D−C)dr

= 1
4 (A + B +C+ D).

Case 3: C ≤ A≤ 0≤ B≤ D.

E[ ˜̄ci j] =
∫ +∞

0 Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≥ r}dr− ∫ 0
−∞ Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≤ r}dr

=
∫ B

0
1
2( D−r

D−C + B−r
B−A)dr +

∫ D
B

D−r
2(D−C)dr

−∫ A
C

r−C
2(D−C)dr− ∫ 0

A
1
2 ( r−C

D−C + r−A
B−A)dr

= 1
4 (A + B +C+ D).

Case 4: C ≤ A≤ B≤ 0≤ D.

E[ ˜̄ci j] =
∫ +∞

0 Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≥ r}dr− ∫ 0
−∞ Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≤ r}dr

=
∫ D

0
D−r

2(D−C)dr− ∫ A
C

r−C
2(D−C)dr

−∫ B
A

1
2 ( r−C

D−C + r−A
B−A)dr− ∫ 0

B
1
2 ( r−C

D−C + 1)dr
= 1

4 (A + B +C+ D).
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Case 5: C ≤ A≤ B≤ D≤ 0.

E[ ˜̄ci j] =
∫ +∞

0 Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≥ r}dr− ∫ 0
−∞ Appr{λ ∈Λ |E[ ˜̄ci j(λ )]≤ r}dr

=−∫ A
C

r−C
2(D−C)dr− ∫ B

A
1
2 ( r−C

D−C + r−A
B−A)dr

−∫ D
B

1
2 ( r−C

D−C + 1)−dr
∫ 0

D 1dr
= 1

4 (A + B +C+ D).

So we always have E[ ˜̄ci j] = 1
16

4
∑

t=1

4
∑

k=1
ci jtk, i = 1,2, · · · ,m.

It follows from the nonnegativity of x j( j = 1,2, · · · ,n) and linearity of expected
value operator that

E[ ˜̄cT
i x] = E[

n
∑
j=1

˜̄ci jx j]

=
n
∑
j=1

E[ ˜̄ci j]x j

= 1
16

n
∑
j=1

4
∑

t=1

4
∑

k=1
cr jtkx j.

Thus the theorem is proved. ��

Theorem 5.4. If fuzzy rough variables ˜̄ar j,
˜̄br are defined as follows,

˜̄ar j(λ ) = (ār j1, c̄r j2, ār j3, ār j4), with ār jt " ([ar jt1,ar jt2], [ar jt3,ar jt4]),
˜̄br(λ ) = (b̄r1, b̄r2, b̄r3, c̄r4), with b̄rt " ([brt1,brt2], [brt3,brt4]),

for r = 1,2, · · · , p, j = 1,2, · · · ,n, t = 1,2,3,4, then

E[ ˜̄aT
r x]≤ E[ ˜̄br],r = 1,2, · · · , p

is equivalent to

n

∑
j=1

4

∑
t=1

4

∑
k=1

ar jtkx j ≤
4

∑
t=1

4

∑
k=1

brtk,r = 1,2, · · · , p.

Proof. Similar to Theorem 5.4, we have

E[ ˜̄aT
i x] =

1
16

n

∑
j=1

4

∑
t=1

4

∑
k=1

ar jtkx j

and

E[ ˜̄br] =
1
16

4

∑
t=1

4

∑
k=1

brtk,

for i = 1,2, · · · ,m,r = 1,2, · · · , p.
Thus the theorem holds. ��
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According to Theorems 5.3-5.4, Model (5.24) with the Fu-Ro coefficients described
as Theorem 5.3 and Theorem 5.4 is equivalent to the conventional multi-objective
linear programming

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max

[
1
16

n
∑
j=1

4
∑

t=1

4
∑

k=1
c1 jtkx j,

1
16

n
∑
j=1

4
∑

t=1

4
∑

k=1
c2 jtkx j, · · · , 1

16

n
∑
j=1

4
∑

t=1

4
∑

k=1
cm jtkx j

]

s.t.

⎧⎨
⎩

n
∑
j=1

4
∑

t=1

4
∑

k=1
ar jtkx j ≤

4
∑

t=1

4
∑

k=1
brtk,r = 1,2, · · · , p

x j ≥ 0, j = 1,2, · · · ,n.
(5.25)

5.3.2.2 Minimax Point Method

In this section, we use the minimax point method proposed in [92] to deal with the
crisp multiobjective problem (5.26).

{
max [H1(x),H2(x), · · · ,Hm(x)]
s.t. x ∈ X .

(5.26)

To maximize the objectives, the minimax point method firstly constructing an eval-
uation function by seeking the minimal objective value after respectively com-
puting all objective functions, that is, u(H(x)) = min1≤i≤m Hi(x), where H(x) =
(H1(x),H2(x), · · · ,Hm(x))T . Then the objective function of problem (5.26) is came
down to solve the maximization problem as follows,

max
x∈X ′

u(H(x)) = max
x∈X ′

min
1≤i≤m

Hi(x). (5.27)

Sometimes, decision makers need considering the relative importance of various
goals, then the weight can be combined into the evaluation function as follows,

max
x∈X ′

u(H(x)) = max
x∈X ′

min
1≤i≤m

{ωiHi(x)}, (5.28)

where the weight ∑m
i=1 ωi = 1(ωi > 0) and is predetermined by decision makers.

Theorem 5.5. The optimal solution x∗ of problem (5.28) is the weak efficient solution
of problem (5.26).

Proof. Assume that x∗ ∈ X ′ is the optimal solution of the problem (5.28). If there
exists an x such that Hi(x)≥ Hi(x∗)(i = 1,2, · · · ,m), we have

min
1≤i≤m

{ωiHi(x∗)} ≤ ωiHi(x∗)≤ ωiHi(x), 0 < ωi < 1.

Denote δ = min1≤i≤m{ωiHi(x)}, then δ ≥ min1≤i≤m{ωiHi(x∗)}. This means that
x∗ isn’t the optimal solution of the problem (5.28). This conflict with the condition.
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Thus, there doesn’t exist x∈X ′ such that Hi(x)≥Hi(x∗), namely, x∗ is a weak efficient
solution of the problem (5.26). ��
By introducing an auxiliary variable, the minimax problem (5.28) can be converted
into a single objective problem. Let

λ = min
1≤i≤m

{ωiHi(x)},

then the problem (5.28) is converted into
⎧⎨
⎩

maxλ

s.t.

{
ωiHi(x)≥ λ , i = 1,2, · · · ,m
x ∈ X ′.

(5.29)

Theorem 5.6. The problem (5.28) is equivalent to the problem (5.29).

Proof. Assume that x∗ ∈X ′ is the optimal solution of the problem (5.28) and let λ ∗ =
min1≤i≤m{ωiHi(x∗)}, then it is apparent that Hi(x∗)≥ λ ∗. This means that (x∗,λ ∗) is
a feasible solution of the problem (5.29). Assume that (x,λ ) is any feasible solution
of the problem (5.29). Since x∗ is the optimal solution of the problem (5.28), wa have

λ ∗ = min
1≤i≤m

{ωiHi(x∗)} ≥ min
1≤i≤m

{ωiHi(x)} ≥ λ ,

namely, (x∗,λ ∗) is the optimal solution of the problem (5.29).
On the contrary, assume that (x∗,λ ∗) is an optimal solution of the problem (5.29).

Then ωiHi(x∗)≥ λ ∗ holds for any i, this means min1≤i≤m{ωiHi(x∗)}≥ λ ∗. It follows
that for any any feasible x ∈ X ′,

min
1≤i≤m

{ωiHi(x)} = λ ≤ λ ∗ ≤ min
1≤i≤m

{ωiHi(x∗)}

holds, namely, x∗ is the optimal solution of the problem (5.28). ��
In a word, the minimax point method can be summarized as follows:
Step 1. Compute the weight for each objective function by solving the two problems,
maxx∈X ′ Hi(x) and ωi = Hi(x∗)/∑m

i=1 Hi(x∗).
Step 2. Construct the auxiliary problem as follows,

⎧⎨
⎩

max λ

s.t.

{
ωiHi(x)≥ λ , i = 1,2, · · · ,m
x ∈ X ′.

Step 3. Solve the above problem to obtain the optimal solution.
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5.3.2.3 Numerical Example

Example 5.2. Let us consider the following problem.
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max 0.375x1 + 0.625x2 + 0.875x3

max E[c1ξ1x1 + c2ξ2x2 + c3ξ3x3]

s.t.

⎧⎪⎪⎨
⎪⎪⎩

x1 + x2 + x3 ≤ 250
x1 + x2 + x3 ≥ 200
ξ4x1 + ξ5x2 + ξ6x3 ≤ 600
x1 ≥ 20,x2 ≥ 20,x3 ≥ 20.

(5.30)

The following is the relevant data, ξ is fuzzy rough variable,

(c1,c2,c3) = (1.2,0.8,1.5),
ξ1 = (ρ1−2,ρ1−1,ρ1 + 1,ρ1 + 2), with ρ1 " ([0,1], [0,3]),
ξ2 = (ρ2−2,ρ2−1,ρ2 + 1,ρ2 + 2), with ρ2 " ([1,2], [0,3]),
ξ3 = (ρ3−2,ρ3−1,ρ3 + 1,ρ3 + 2), with ρ3 " ([2,3], [0,3]).
ξ4 = (ρ4−2,ρ4−1,ρ4 + 1,ρ4 + 2), with ρ1 " ([2,5], [0,9]),
ξ5 = (ρ5−2,ρ5−1,ρ5 + 1,ρ5 + 2), with ρ2 " ([10,20], [4,30]),
ξ6 = (ρ6−2,ρ6−1,ρ6 + 1,ρ6 + 2), with ρ3 " ([6,10], [4,12]).

It follows from Proposition 5.4 that problem (5.30) is equivalent to
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max F1(x) = 0.375x1 + 0.625x2 + 0.875x3

max F2(x) = 0.3x1 + 0.3x2 + 0.75x3

s.t.

⎧⎪⎪⎨
⎪⎪⎩

x1 + x2 + x3 ≤ 250
x1 + x2 + x3 ≥ 200
x1 + 2x2 + 4x3 ≤ 600
x1 ≥ 20,x2 ≥ 20,x3 ≥ 20.

(5.31)

According to the minimax point method, first we compute the weight by solving the
two single objective models,

w1 = F∗1 /(F∗1 + F∗2 ) = 166.25/(166.25 + 124.5)= 0.572,
w2 = F∗2 /(F∗1 + F∗2 ) = 0.428.

Then according to Equation (5.29) we construct the following mode (5.32),
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max λ

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w1 ∗ (0.375x1 + 0.625x2 + 0.875x3)+ w2 ∗ (0.3x1 + 0.3x2 + 0.75x3)≥ λ
x1 + x2 + x3 ≤ 250
x1 + x2 + x3 ≥ 200
x1 + 2x2 + 4x3 ≤ 600
x1 ≥ 20,x2 ≥ 20,x3 ≥ 20.

(5.32)
After solving the model (5.32), we can get a efficient solution as follows,

(x1,x2,x3) = (120,20,110).
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5.3.3 Non-linear Fu-Ro EVM and Fu-Ro Simulation-Based TS

For the non-linear Fu-Ro EVM, we use the Fu-Ro simulation 1 based TS to solve.

5.3.3.1 Fu-Ro Simulation 1 for Expected Valie

First, we introduce the procedure to simulate the expected value of a Fu-Ro variable.
Assume that ξ is an n-dimensional Fu-Ro vector defined on the rough space

(Λ ,Δ ,A ,π), and f : Rn → Rm is a measurable function. In order to calculate the
expected value E[ f (ξ )], we sample λ 1,λ 2, · · · ,λ N from Δ and λ 1,λ 2, · · · ,λ N from
Λ . For each λ n and λ n, n = 1,2, · · · ,N, ξ (λ n) and ξ (λ n) are both fuzzy variables,
and f (ξ (λ n)) and F(ξ (λ n)) are both fuzzy variables. Then we can apply the fuzzy
simulation 1 to get their expected values E[ f (ξ (λ n))] and E[ f (ξ (λ n))].

Since E[ f (ξ )] is essentially the expected value of rough variable E[ f (ξ (λ ))], and
the following (5.33) will be used to get the expected value of the rough variables.

E[ f (ξ )] = ∑N
n=1(ηE[ f (ξ (λ n))]+ (1−η)E[ f (ξ (λn))])

2N
. (5.33)

So we may combine rough simulation and fuzzy simulation to produce a fuzzy rough
simulation as follows.
Step 1. Set L = 0.
Step 2. Generate λ from Δ according to the measure.
Step 3. Generate λ from Λ according to the measure π .
Step 4. L← L+ E[ f (ξ (λ))]+ E[ f (ξ (λ ))].
Step 5. Repeat the second to fourth steps N times.
Step 6. Return L/(2N).

Example 5.3. We employ the Fu-Ro simulation 1 to calculate the expected value of
ξ1ξ2, where ξ1 and ξ2 are Fu-Ro variables defined as

ξ1 = (ρ1,ρ1 + 1,ρ1 + 2), with ρ1 = ([1,2], [0,3]),
ξ2 = (ρ2,ρ2 + 1,ρ2 + 2), with ρ1 = ([2,3], [1,4]).

After a run of Fu-Ro simulation 1 with 5000 cycles, and we get E[ξ1ξ2] = 8.93.

5.3.3.2 TS

In the following, let’s introduce the Tabu search algorithm (TS) algorithm.
Local search employs the idea that a given solution x may be improved by making

small changes. Those solutions obtained by modifying solution x are called neigh-
bors of x. The local search algorithm starts with some initial solution and moves
from neighbor to neighbor as long as possible while decreasing the objective func-
tion value. The main problem with this strategy is to escape from local minima where
the search cannot find any further neighborhood solution that decreases the objec-
tive function value. Different strategies have been proposed to solve this problem.
One of the most efficient strategies is tabu search. Tabu search allows the search to
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explore solutions that do not decrease the objective function value only in those cases
where these solutions are not forbidden. This is usually obtained by keeping track of
the last solutions in term of the action used to transform one solution to the next.
When an action is performed it is considered tabu for the next T iterations, where
T is the tabu status length. A solution is forbidden if it is obtained by applying a
tabu action to the current solution. The Tabu Search metaheuristic has been defined
by Fred Glover [385]. The basic ideas of TS have also been sketched by P. Hansen
[386]. After that, TS has achieved widespread success in solving practical optimiza-
tion problems in different domains(such as resource management, process design,
logistics and telecommunications).

A tabu list is a set of solutions determined by historical information from the last
t iterations of the algorithm, where t is fixed or is a variable that depends on the state
of the search, or a particular problem. At each iteration, given the current solution x
and its corresponding neighborhood N(x), the procedure moves to the solution in the
neighborhood N(x) that most improves the objective function. However, moves that
lead to solutions on the tabu list are forbidden, or are tabu . If there are no improving
moves, TS chooses the move which least changes the objective function value. The
tabu list avoids returning to the local optimum from which the procedure has recently
escaped. A basic element of tabu search is the aspiration criterion, which determines
when a move is admissible despite being on the tabu list. One termination criterion
for the tabu procedure is a limit in the number of consecutive moves for which no
improvement occurs. Given an objective function f (x) over a feasible domain D, a
generic tabu search for finding an approximation of the global minimum of f (x) is
given in Figure 5.8.

We introduce the detailed steps on how to apply a special TS algorithm–Enhanced
Continuous Tabu Search(ECTS) proposed by R. Chelouah and P. Siarry [323] based
on fuzzy rough simulation to solve a multi-objective expected value model with fuzzy
rough parameters.

Setting of parameters. Two of the parameters must be set before any execution of
ECTS:

(1) initialization,
(2) control parameters.
For each of these categories, some parameter values must be chosen by the user

and some parameter values must be calculated. These four subsets of parameters are
listed in Table 5.1.

Initialization. In this stage, we will list the representation of the solution. We have
resumed and adapted the method described in detail in [324]. Randomly gener-
ate a solution x and check its feasibility by the fuzzy rough simulation such that
E[gr(x,ξ )] ≤ 0(r = 1,2, · · · , p). Then generate its neighborhood by the concept of
‘ball’ defined in [324]. A ball B(x,r) is centered on x with radius r, which contains
all points x′ such that ||x′ − x|| ≤ 4(the symbol || · || denotes the Euclidean norm). To
obtain a homogeneous exploration of the space, we consider a set of balls centered
on the current solution x, with h0,h1, · · · ,hη . Hence the space is partitioned into con-
centric ’crowns’ Ci(x,hi−1,hi), such that
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Fig. 5.8 Layout of tabu search

Ci(x,hi−1,hi) = {x′|hi−1 ≤ ||x′ − x|| ≤ hi}.

The η neighbors of s are obtained by random selection of one point inside each crown
Ci, for i varying from 1 to η . Finally, we select the best neighbor of x among these η
neighbors, even if it is worse than x. In ECTS, we replace the balls by hyperrectangles
for the partition of the current solution neighborhood (see Figure 5.9), and we gener-

*
0x

*
3x

*
2x

*
1x

*
1x '

1x '
3x'

2x

Fig. 5.9 Partition of current solution neighborhood
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Table 5.1 Listing of the ECTS parameters

A. Initialization parameters chosen by the user
Search domain of each function variable
Starting point
Content of the tabu list
Content of the promising list

B. Initialization parameters calculated
Length δ of the smallest edge of the initial hyperrectangular search domain
Initial threshold for the acceptance of a promising area
Initial best point
Number η of neighbors of the current solution investigated at each iteration
Maximum number of successive iterations without any detection of a promising area
Maximum number of successive iterations without any improvement of the objective
function value
Maximum number of successive reductions of the hyperrectangular neighborhood and of the
radius of tabu balls with out any improvement
Maximum number of iterations

C. Control parameters chosen by the user
Length Nt of the tabu list
Length Np of the promising list
Parameter ρt allowing to calculate the initial radius of tabu balls
Parameter ρneigh allowing to calculate the initial size of the hyperrectangular neighborhood

D. Control parameters calculated
Initial radius εt of tabu balls
Initial radius εp of promising balls
Initial size of the hyperrectangular neighborhood

ate neighbors in the same way. The reason for using a hyperrectangularneighborhood
instead of crown ’balls’ is the following: it is mathematically much easier to select a
point inside a specified hyperrectangular zone than to select a point inside a specified
crown ball. Therefore in the first case, we only have to compare the coordinates of
the randomly selected points with the bounds that define the hyperrectangular zone
at hand.

Next, we will describe the initialization of some parameters and the tuning of the
control parameters. In other words, we give the ’definition’ of all the parameters of
ECTS. The parameters in part A of Table 5.1 are automatically built by using the
parameters fixed at the beginning. The parameters in part B of Table 5.1 are valued
in the following way:

(1) the search domain of analytical test functions is set as prescribed in the liter-
ature, the initial solution x∗ is randomly chosen and checked if it is feasible by the
fuzzy rough simulation,

(2) the tabu list is initially empty,
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(3) to complete the promising list, the algorithm randomly draws a point. This
point is accepted as the center of an initial promising ball, if it does not belong to an
already generated ball. In this way the algorithm generates Np sample points which
are uniformly dispersed in the whole space solution S,

(4) the initial threshold for the acceptance of a promising area is taken equal to the
average of the objective function values over the previous Np sample points,

(5) the best point found is taken equal to the best point among the previous Np,
(6) the number η of neighbors of the current solution investigated at each iteration

is set to twice the number of variables, if this number is equal or smaller than five,
otherwise η is set to 10;

(7) the maximum number of successive iterations without any detection of a new
promising area is equal to twice the number of variables,

(8) the maximum number of successive iterations without any improvement of the
objective function value is equal to five times the number of variables,

(9) the maximum number of successive reductions of the hyperrectangular neigh-
borhood and of the radius of tabu balls without any improvement of the objective
function value is set to twice the number of variables,

(10) the maximum number of iterations is equal to 50 times the number of
variables.

There exist two types of control parameters. Some parameters are chosen by the
user. Other ones are deduced from the chosen parameters. The fixed parameters are
the length of the tabu list (set to 7, which is the usual tuning advocated by Glover),
the length of the promising list (set to 10, like in [325]) and the parameters ρt , ρp and
ρneigh (set to 100, 50, and 5, respectively). The expressions of εt and εp are δ/ρt and
δ/ρp respectively, and the initial size of the hyperrectangular neighborhood of the
current solution (the more external hyperrectangle) is obtained by dividing δ by the
factor ρneigh.

Diversification. At this stage, the process starts with the initial solution, used as the
current one. ECTS generates a specified number of neighbors: one point is selected
inside each hyperrectangular zone around the current solution. Each neighbor is ac-
cepted only if it does not belong to the tabu list. The best of these neighbors becomes
the new current solution, even if it is worse than the previous one. A new promising
solution is detected and generated according to the procedure described above. This
promising solution defines a new promising area if it does not already belong to a
promising ball. If a new promising area is accepted, the worst area of the promis-
ing list is replaced by the newly accepted promising area. The use of the promising
and tabu lists stimulates the search for solutions far from the starting one and the
identified promising areas. The diversification process stops after a given number of
successive iterations without any detection of a new promising area. Then the algo-
rithm determines the most promising area among those present in the promising list.

Search for the most promising area. In order to determine the most promis-
ing area, we proceed in three steps. First, we calculate the average value of the
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Fig. 5.10 A standard ”backtracking”(depth first) branch-and-bound approach
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Fig. 5.11 TTS approach

objective function over all the solutions present in the promising list. Secondly, we
eliminate all the solutions for which the function value is higher than this average
value. Thirdly, we deal with the thus reduced list in the following way. We halve the
radius of the tabu balls and the size of the hyperrectangular neighborhood. For each re-
maining promising solution, we perform the generation of the neighbors and selection
of the best. We replace the promising solution by the best neighbor located, yet only
if this neighbor is better than that solution. After having scanned the whole promis-
ing list, the algorithm removes the least promising solution. This process is reiterated
after halving again the above two parameters. It stops when just one promising area
remains.
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5.3.3.3 Numerical Example

Example 5.4. Let us consider a multi-objective programming with Fu-Ro coeffi-
cients.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

maxF1(x,ξ ) = 2ξ1x2
1 +3ξ2x2−ξ3x3 +

√
(1−ξ7)2 +(3−ξ8)2 +(2−ξ9)2

maxF2(x,ξ ) = 5ξ4x2−2ξ5x1 +2ξ6x3 +
√

(5−ξ10)2 +(2−ξ11)2 +(1−ξ12)2

s.t.

⎧⎪⎪⎨
⎪⎪⎩

5x1−3x2
2 +6

√
x3 ≤ 50

4
√

x1 +6x2−4.5x3 ≤ 20
x1 +x2 +x3 ≤ 15
x1,x2,x3 ≥ 0,

(5.34)

where ξi(i = 1,2, · · · ,12) are Fu-Ro variables subject to follows,

ξ1 = (1,λ1,1)LR,with λ1 " ([0.2,0.5], [0,1]),
ξ2 = (1,λ2,1)LR,with λ2 " ([0.6,0.8], [0,1]),
ξ3 = (1,λ3,1)LR,with λ3 " ([0.45,0.95], [0,1]),
ξ4 = (1,λ4,1)LR,with λ4 " ([0.4,0.5], [0,1]),
ξ5 = (1,λ5,1)LR,with λ5 " ([0.36,0.64], [0,1]),
ξ6 = (1,λ6,1)LR,with λ6 " ([0.55,0.65], [0,1]),
ξ7 = (1,λ7,1)LR,with λ7 " ([1,2], [0,4]),
ξ8 = (1,λ8,1)LR,with λ8 " ([3,4], [2,8]),
ξ9 = (1,λ9,1)LR,with λ9 " ([1,2], [0,2]),
ξ10 = (1,λ10,1)LR,with λ10 " ([2,3], [1,5]),
ξ11 = (1,λ11,1)LR,with λ11 " ([1,3], [0,4]),
ξ12 = (1,λ12,1)LR,with λ12 " ([2,4], [2,8]).

By Fu-Ro simulation, after 3000 cycles, we firstly have

E[
√

(1− ξ7)2 +(3− ξ8)2 +(2− ξ9)2] = 16.3514,

E[
√

(5− ξ10)2 +(2− ξ11)2 +(1− ξ12)2] = 7.0568.

Next, we apply the tabu search algorithm based on the Fu-Ro simulation to solve the
nonlinear programming problem (5.34) with the Fu-Ro parameters.

Step 1. Set the move step h = 0.5 and the h neighbor N(x,h) for the present point x
is defined as follows,

N(x,h) =
{

y|
√

(x1− y1)2 +(x2− y2)2 +(x3− y3)2 ≤ h

}
.

The random move of point x to point y in its h neighbor along direction s is given by

ys = xs + rh,

where r is a random number that belongs to [0,1], s = 1,2,3.
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Step 2. Denote X = {(x1,x2,x3)|5x1−3x2
2 +6

√
x3 ≤ 50;x1 +x2 +x3≤ 15;xi≥ 0, i =

1,2,3}. Give the step set H = {h1,h2, · · · ,hr} and randomly generate a feasible point
x0 ∈ X . One should empty the Tabu list T (the list of inactive steps) at the beginning.

Step 3. For each active neighbor N(x,h) of the present point x, where h ∈ H − T ,
a feasible random move that satisfies all the constraints in problem (5.34) is to be
generated.

Step 4. Construct the single objective function as follows,

f (x,ξ ) = w1

(
2ξ1x2

1 + 3ξ2x2− ξ3x3 +
√

(1− ξ7)2 +(3− ξ8)2 +(2− ξ9)2
)

+w2

(
5ξ4x2−2ξ5x1 + 2ξ6x3 +

√
(5− ξ10)2 +(2− ξ11)2 +(1− ξ12)2

)
,

where w1 + w2 = 1. Compare the f (x,ξ ) of the feasible moves with that of the cur-
rent solution by the fuzzy rough simulation. If an augmenter in new objective function
of the feasible moves exists, one should save this feasible move as the updated cur-
rent one by adding the corresponding step to the Tabu list T and go to the next step;
otherwise, go to the next step directly.

Step 5. Stop if the termination criteria are satisfied; other wise, empty T if it is full;
then go to Step 3. Here, we set the computation is determined if the better solution
doesn’t change again.

Table 5.2 Another taxonomy dimension for parallel TS algorithms

w1 w2 x1 x2 x3 f1(x) f2(x) f (x) Gen
0.1 0.9 0.217 7.861 6.721 219.496 523.976 493.528 1568
0.2 0.8 0.336 7.648 6.712 213.055 511.281 451.638 1470
0.3 0.7 11.356 2.173 1.471 2269.226 -84.484 621.629 1760
0.4 0.6 11.157 2.258 1.573 2194.900 -74.222 833.427 1633
0.5 0.5 11.257 2.151 1.444 2230.700 -84.1427 1073.279 2010
0.6 0.4 11.151 2.244 1.519 2192.769 -75.955 1285.279 1807
0.7 0.3 11.268 2.155 1.532 2234.000 -82.237 1539.189 1834
0.8 0.2 11.205 2.148 1.444 2210.736 -83.245 1752.061 2762
0.9 0.1 11.075 2.288 1.579 2164.917 -71.025 1941.315 1792

5.4 Fu-Ro CCM

Another way to tackle the multi-objective model with Fu-Ro parameters is that we
use the chance to measure the uncertainty of fuzzy rough event. In order to compare
the degree of occurrence of fuzzy rough events, several kinds of chance measure are
introduced.
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5.4.1 General Model for Fu-Ro CCM

It has been increasingly recognized that many real-world decision-making problems
involve multiple and conflicting objectives which should be considered simultane-
ously. Fuzzy programming of the multi-objective has been well developed, and as
an extension of the fuzzy multi-objective decision-making case, the Fu-Ro multi-
objective linear decision-making model is defined as a means for optimizing multiple
different objective functions subject to a number of constrains.

Let’s introduce the general Fu-Ro CCM to deal with the uncertain model (5.40)
as follows. ⎧⎪⎪⎨

⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧⎨
⎩

Ch{ fi(x,ξ )≥ fi}(γi)≥ δi, i = 1,2, · · · ,m
Ch{gr(x,ξ )≤ 0}(ηr)≥ θr, r = 1,2, · · · , p,
x ∈ X ,

where Ch is the chace measure of the fuzzy rough events, γi,δi,ηr,θr are the prede-
termined confidence level, fi and xi are the decision variables, i = 1,2, · · · ,m.

According to the definition 5.7 of the primitive chance measure:

Ch{ ˜̄eT
r x≤ ˜̄br}(ηr)≥ θr ⇔ Appr{λ |Pos{ ˜̄er(λ )Tx≤ ˜̄br(λ )} ≥ θr} ≥ ηr, (5.35)

Ch{ ˜̄cT
i x≥ fi}(γi)≥ δi ⇔ Appr{λ |Pos{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi. (5.36)

So we can get the general Fu-Ro CCM,

⎧⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧⎨
⎩

Appr{λ |Pos{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Appr{λ |Pos{ ˜̄er(λ )Tx≤ ˜̄br(λ )} ≥ θr} ≥ ηr, r = 1,2, · · · , p
x≥ 0,

(5.37)

where δi,γi,θr,ηr ∈ [0,1] are the predetermined confidence level, Pos{·} denotes the
possibility of the fuzzy events in {·}, and Appr{·} denotes the approximation degree
of the rough events in {·}.
Definition 5.9. Suppose a feasible solution x∗ of the problem (5.43) satisfies

Appr{λ |Pos{ ˜̄ci(λ )Tx∗ ≥ fi(x∗)} ≥ δi} ≥ γi, i = 1,2, · · · ,m,

where confidence levels δi,γi ∈ [0,1]. x∗ is a fuzzy rough efficient solution at δi−
Appr γi−Pos levels to the problem (5.40) if and only if there exists no other feasible
solution x such that

Appr{λ |Pos{ ˜̄ci(λ )Tx≥ fi(x)} ≥ δi} ≥ γi, i = 1,2, · · · ,m,

fi(x)≥ fi(x∗) for all i and fi0(x)≥ fi0(x
∗) for at least one i0 ∈ {1,2, · · · ,m}.
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From Definition (5.9), we know that x∗ is a fuzzy rough efficient solution at δi−Appr
γi−Pos levels to the problem (5.40) if x∗ is a Pareto optimal solution of the problem
(5.43).

Remark 5.6. If the fuzzy rough vector ˜̄ci delegates to rough vector c̃i, then c̃T
i x ≥ fi

is a rough event. For λ ∈Λ , Pos{c̃i(λ )Tx≥ fi} ≥ δi means c̃i(λ )Tx≥ fi. So,

Appr{λ |Pos{c̃i(λ )Tx≥ fi} ≥ δi} ≥ γi

is equivalent to Appr{λ |c̃i(λ )Tx≥ fi} ≥ γi, i = 1,2, · · · ,m.
If the fuzzy rough vectors ˜̄er and ˜̄br delegate to rough vectors ẽr and b̃r respectively,

then the constraint

Appr{λ |Pos{ẽr(λ )Tx≤ b̃r(λ )} ≥ θr} ≥ ηr

is equivalent to Appr{w|ẽr(λ )Tx≤ b̃r(λ )}≥ ηr, r = 1,2, · · · , p. So, the model (5.43)
can be rewritten as⎧⎪⎪⎨

⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧⎨
⎩

Appr{λ |c̃i(λ )Tx≥ fi} ≥ γi, i = 1,2, · · · ,m
Appr{λ |ẽr(λ )Tx≤ b̃r(λ )} ≥ ηr, r = 1,2, · · · , p
x≥ 0.

Remark 5.7. If the fuzzy rough vector ˜̄ci delegates to fuzzy vector c̄i, then Pos{c̄T
i x≥

fi} ≥ δi is a crisp event. In order to satisfy ti := Appr{w|Pos{c̄T
i x ≥ fi} ≥ δi} ≥ γi,

the trust ti should be 1.
So the constraint

Appr{w|Pos{c̄T
i x≥ fi} ≥ δi}= 1≥ γi,

is equivalent to Pos{c̄T
i x≥ fi} ≥ δi, i = 1,2, · · · ,m.

And similarly, When the fuzzy rough vectors ˜̄er and ˜̄br delegate to the fuzzy vector
ēr and b̄r respectively, the constraint

Appr{w|Pos{ēT
r x≤ b̄ j} ≥ θr} ≥ ηr

is equivalent to Pos{ēT
r x≤ b̄r}≥ θr, r = 1,2, · · · , p. So the model (5.43) is equivalent

to ⎧⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧⎨
⎩

Pos{c̄T
i x≥ fi} ≥ δi, i = 1,2, · · · ,m

Pos{ēT
r x≤ b̄r} ≥ θr, r = 1,2, · · · , p

x≥ 0.

This is coincident to the fuzzy programming introduced in section 2.
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Also by the definition 5.7, there are two other kinds of fuzzy rough multi-objective
chance-constrained linear decision making models (5.38, 5.38),

⎧⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧⎨
⎩

Appr{λ |Nec{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Appr{λ |Nec{ ˜̄er(λ )Tx≤ ˜̄br(λ )} ≥ θr} ≥ ηr, r = 1,2, · · · , p
x≥ 0,

(5.38)

⎧⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧⎨
⎩

Appr{λ |Cr{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Appr{λ |Cr{ ˜̄er(λ )Tx≤ ˜̄br(λ )} ≥ θr} ≥ ηr, r = 1,2, · · · , p
x≥ 0,

(5.39)

where δi,γi,θr,ηr ∈ [0,1] are the predetermined confidence levels, Nec{·} and Cr{·}
denote the necessary and the credibility of the fuzzy events in {·} respectively, and
Appr{·} denotes the approximations of the rough events in {·}.

For simpleness, the parameters δ ,γ,θ ,η can be the same confidence level, i.e.
δi = δ ,γi = γ , θr = θ ,ηr = η , i = 1,2, · · · ,m, r = 1,2, · · · , p.

5.4.2 Linear Fu-Ro CCM and Fuzzy Goal Method

So let’s consider the multi-objective linear programming problem with Fu-Ro
coefficients: ⎧⎨

⎩
max [ ˜̄cT

1 x, ˜̄cT
2 x, · · · , ˜̄cT

mx]

s.t.

{
˜̄eT
r x≤ ˜̄br, r = 1,2, · · · , p

x≥ 0.

(5.40)

According to the definition 5.7 of the primitive chance measure:

Ch{ ˜̄eT
r x≤ ˜̄br}(ηr)≥ θr ⇔ Appr{λ |Pos{ ˜̄er(λ )Tx≤ ˜̄br(λ )} ≥ θr} ≥ ηr, (5.41)

Ch{ ˜̄cT
i x≥ fi}(γi)≥ δi ⇔ Appr{λ |Pos{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi. (5.42)

So we can get linear Fu-Ro CCM,

⎧⎪⎪⎨
⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧⎨
⎩

Appr{λ |Pos{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m
Appr{λ |Pos{ ˜̄er(λ )Tx≤ ˜̄br(λ )} ≥ θr} ≥ ηr, r = 1,2, · · · , p
x≥ 0,

(5.43)

where δi,γi,θr,ηr ∈ [0,1] are the predetermined confidence levels, Pos{·} denotes
the possibility of the fuzzy events in {·}, and Appr{·} denotes the approximation
degree of the rough events in {·}.
5.4.2.1 Crisp Equivalent Model

We introduce the Appr−Pos and Appr−Nec crisp equivalent models for the chance-
constrained model, respectively.
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Appr-Pos constrained multi-objective linearity model

One way of solving the problem (5.43) is to convert it into its crisp equivalent.

Theorem 5.7. Assume that ˜̄ci j is a Fu-Ro variable, for any λ ∈Λ , the fuzzy variable
˜̄ci j(λ ) is characterized by the following membership function

μ ˜̄ci j(λ )(t) =

⎧⎨
⎩

L
(

ci j(λ )−t
αc

i j

)
, t ≤ ci j(λ ),αc

i j > 0

R
(

t−ci j(λ )
β c

i j

)
, t ≥ ci j(λ ),β c

i j > 0
λ ∈Λ , (5.44)

where αc
i j,β c

i j are positive numbers expressing the left and right spread of
˜̄ci j(λ ), reference function L,R : [0,1] → [0,1] with L(1) = R(1) = 0, and
L(0) = R(0) = 1 are non-increasing, continuous function. And (ci j(λ ))n×1 =
(ci1(λ ),ci2(λ ), · · · ,cin(λ ))T is a rough vector. It follows that ci(λ )T x = ([a,b], [c,d])
(where c ≤ a < b ≤ d) is a rough variable and characterized by the following trust
measure function,

Appr{ci(λ )T x≥ t}=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if d ≤ t
d−t

2(d−c) , if b≤ t ≤ d
1
2 ( d−t

d−c + b−t
b−a), if a≤ t < b

1
2 ( d−t

d−c + 1), if c≤ t ≤ a
1, if t ≤ c.

(5.45)

Then we have Appr{λ |Pos{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi if and only if

⎧⎪⎪⎨
⎪⎪⎩

fi ≤ d−2γi(d− c)+ R−1(δi)β cT
i x, if b≤ fi−R−1(δi)β cT

i x≤ d

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a + R−1(δi)β cT

i x, if a≤ fi−R−1(δi)β cT
i x < b

fi ≤ d− (d− c)(2γi−1)+ R−1(δi)β cT
i x, if c≤ fi−R−1(δi)β cT

i x≤ a
fi ≤ c + R−1(δi)β cT

i x, if fi−R−1(δi)β cT
i x≤ c,

(5.46)
where γi,δi ∈ [0,1] are predetermined confidence levels.

Proof. From the assumption we know that ci(λ ) = (ci1(λ ),ci2(λ ), · · · ,cin(λ ))T and
ci j(λ ) is a rough variable . Let ci j(λ ) = ([ai j,bi j], [ci j,di j]) and x = (x1,x2, · · · ,xn)T

then
x jci j(λ ) = ([x jai j,x jbi j], [x jci j,x jdi j]),

ci(λ )T x = ∑n
j=1 ci j(λ )x j = ∑n

j=1([x jai j,x jbi j], [x jci j,x jdi j])
= ([∑n

j=1 ai jx j,∑n
j=1 ai jx j], [∑n

j=1 ci jx j,∑n
j=1 di jx j]).

Therefore, ci(λ )T x is also a rough variable. Now we can assume that

a = ∑n
j=1 ai jx j, b = ∑n

j=1 ai jx j,

c = ∑n
j=1 ci jx j, d = ∑n

j=1 di jx j.

then ci(λ )T x = ([a,b], [c,d]).
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Moreover, we know that ˜̄ci j(λ ) is a fuzzy number with the membership function
μ ˜̄ci j(λ )(t) for given λ ∈Λ . It follows from the extension principle [22] that the fuzzy

number ĉi(λ )T x is characterized by the membership function in the following

μ ˜̄ci(λ )T x(r) =

⎧⎨
⎩

L( ci(λ )T−r
αcT

i x
), r ≤ ci(λ )T x

R( r−ci(λ )T x
β cT

i x
), r ≥ ci(λ )T x

i = 1,2, . . . ,m.

By Lemma 2.2, we have that

Pos{ ˜̄ci(λ )T x≥ fi} ≥ δi ⇔ ci(λ )T x + R−1(δi)β cT
i x≥ fi, i = 1,2, . . . ,m.

For the given confidence level δi ∈ [0,1], we have

Appr{λ |Pos{ ˜̄ci(λ )T x≥ fi} ≥ δi} ≥ γi

⇔ Appr{λ |ci(λ )T x≥ fi−R−1(δi)β cT
i x} ≥ γi

⇔ γi ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d− fi+R−1(δi)β cT
i x

2(d−c) , if b≤ fi−R−1(δi)β cT
i x≤ d

1
2 ( d− fi+R−1(δi)β cT

i x
d−c + b− fi+R−1(δi)β cT

i x
b−a ), if a≤ fi−R−1(δi)β cT

i x < b
1
2 ( d− fi+R−1(δi)β cT

i x
d−c + 1), if c≤ fi−R−1(δi)β cT

i x≤ a
1, if fi−R−1(δi)β cT

i x≤ c

⇔

⎧⎪⎪⎨
⎪⎪⎩

fi ≤ d−2γi(d− c)+ R−1(δi)β cT
i x, if b≤ fi−R−1(δi)β cT

i x≤ d

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a + R−1(δi)β cT

i x, if a≤ fi−R−1(δi)β cT
i x < b

fi ≤ d− (d− c)(2γi−1)+ R−1(δi)β cT
i x, if c≤ fi−R−1(δi)β cT

i x≤ a
fi ≤ c + R−1(δi)β cT

i x, if fi−R−1(δi)β cT
i x≤ c.

This completes the proof. ��

Theorem 5.8. Suppose that ˜̄er j,
˜̄br are fuzzy rough variables, for any λ ∈ Λ ,

fuzzy variables ˜̄er j(λ ), ˜̄br(λ ) are characterized by the membership function in the
following

μ ˜̄er j(λ )(t) =

⎧⎨
⎩

L( er j (λ )−t
αe

r j
), t ≤ er j(λ ),αe

r j > 0

R( t−er j(λ )
β m

r j
), t ≥ er j(λ ),β e

r j > 0
λ ∈Λ (5.47)

and

μ ˜̄br(λ )(t) =

⎧⎨
⎩

L( br(λ )−t
αb

r
), t ≤ br(λ ), αb

r > 0

R( t−br(λ )
β b

r
), t ≥ br(λ ), β b

r > 0
λ ∈Λ , (5.48)

where αe
r j,β e

r j are positive numbers expressing the left and right spread of ˜̄er j(λ ),

αb
r ,β b

r are the left and right spread of ˜̄br(λ ), and reference functions L,R :
[0,1] → [0,1] with L(1) = R(1) = 0, and L(0) = R(0) = 1 are non-increasing,
continuous functions. And (er j(λ ))n×1 = (er1(λ ),er2(λ ), · · · ,ern(λ ))T is a rough
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vector, er j(λ ),br(λ ) are rough variables, r = 1,2, · · · , p, j = 1,2, · · · ,n. By
Proposition 5.7, we have er(λ )T x,br(λ ) are rough variables, then er(λ )T x−br(λ )=
[(a,b),(c,d)](c ≤ a < b ≤ d) is also a rough variable. We assume that it is charac-
terized by the following trust measure function

Appr{er(λ )T x−br(λ )≤ t}=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if t ≤ c
t−c

2(d−c) , if c≤ t ≤ a
1
2 ( t−c

d−c + t−a
b−a), if a≤ t < b

1
2 ( t−c

d−c + 1), if b≤ t ≤ d
1, i f d ≤ t.

(5.49)

Then, we have that Appr{λ |Pos{ ˜̄er(λ )T x≤ ˜̄br(λ )} ≥ θr} ≥ ηr if and only if

⎧⎪⎪⎨
⎪⎪⎩

W ≥ c + 2(d− c)ηr, if c≤W ≤ a

W ≥ 2ηr(d−c)(b−a)+c(b−a)+a(d−c)
b−a+d−c , if a≤W < b

W ≥ (2ηr−1)(d− c)+ c, if b≤W ≤ d
W ≥ d, if d ≤W,

(5.50)

where W = R−1(θr)β b
r + L−1(θk)αeT

r x.

Proof. From the assumption, we know

Pos{ ˜̄er(λ )T x≤ ˜̄br(λ )} ≥ θr ⇔ br(λ )+ R−1(θr)β b
r ≥ er(λ )T x−L−1(θr)αeT

r x.

Since er(λ )T x−br(λ ) = [(a,b),(c,d)], for given confidence levels θr,ηr ∈ [0,1], we
have that,

Appr{λ |Pos{ ˜̄er(λ )T x≤ ˜̄br(λ )} ≥ θr} ≥ ηr

⇔ Appr{λ |er(λ )T x−br(λ )≤ R−1(θr)β b
r + L−1(θr)αeT

r x} ≥ ηr

⇔ ηr ≤

⎧⎪⎪⎨
⎪⎪⎩

W−c
2(d−c) , if c≤W ≤ a.
1
2 (W−c

d−c + W−a
b−a ), if a≤W < b

1
2 (W−c

d−c + 1), if b≤W ≤ d
1, if W ≥ d

⇔

⎧⎪⎪⎨
⎪⎪⎩

W ≥ c + 2(d− c)ηr, if c≤W ≤ a

W ≥ 2ηr(d−c)(b−a)+c(b−a)+a(d−c)
b−a+d−c , if a≤W < b

W ≥ (2ηr−1)(d− c)+ c, if b≤W ≤ d
W ≥ d, if d ≤W,

where W = R−1(θr)β b
r + L−1(θr)αeT

r x.
This completes the proof. ��

From Propositions 5.7 and 5.8, we know that the problem (5.8) is equivalent to the
following multi-objective programming problems,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi ≤ d−2γi(d− c)+ R−1(δi)β cT
i x,

if b≤ fi−R−1(δi)β cT
i x≤ d

fi ≤ d(b−a)+b(d−c)−2αi(d−c)(b−a)
d−c+b−a + R−1(δi)β cT

i x,
if a≤ fi−R−1(δi)β cT

i x < b
fi ≤ d− (d− c)(2γi−1)+ R−1(δi)β cT

i x,
if c≤ fi−R−1(δi)β cT

i x≤ a
fi ≤ c + R−1(δi)β cT

i x,
if fi−R−1(δi)β cT

i x≤ c
W ≥ c + 2(d− c)ηr, if c≤W ≤ a

W ≥ 2ηr(d−c)(b−a)+c(b−a)+a(d−c)
b−a+d−c , if a≤W < b

W ≥ (2ηr−1)(d− c)+ c, if b≤W ≤ d
W ≥ d, if d ≤W
x≥ 0,

(5.51)

where W = R−1(θr)β b
r + L−1(θr)αeT

r x.

Appr-Nec constrained multi-objective linearity model

Similar to the Appr−Pos constrained multi-objective linearity model, we assume
that ˜̄ci j, ˜̄er j and ˜̄br are fuzzy rough variables, we give the following two theorems to
transform the chance-constrained model (5.43) into its crisp model based on Appr−
Nec if the decision maker is comparatively pessimistic.

Theorem 5.9. Assume that ˜̄ci j is a fuzzy rough variable, for any λ ∈ Λ , the fuzzy
variable ˜̄ci j(λ ) is characterized by the following membership function

μ ˜̄ci j(λ )(t) =

⎧⎨
⎩

L
(

ci j(λ )−t
αc

i j

)
, t ≤ ci j(λ ),αc

i j > 0

R
(

t−ci j(λ )
β c

i j

)
, t ≥ ci j(λ ),β c

i j > 0
λ ∈Λ , (5.52)

where αc
i j,β c

i j are positive numbers expressing the left and right spread of
˜̄ci j(λ ), reference function L,R : [0,1] → [0,1] with L(1) = R(1) = 0, and
L(0) = R(0) = 1 are non-increasing, continuous function. And (ci j(λ ))n×1 =
(ci1(λ ),ci2(λ ), · · · ,cin(λ ))T is a rough vector. It follows that ci(λ )T x = ([a,b], [c,d])
(where c ≤ a < b ≤ d) is a rough variable and characterized by the following trust
measure function,

Appr{ci(λ )T x≥ t}=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if d ≤ t
d−t

2(d−c) , if b≤ t ≤ d
1
2 ( d−t

d−c + b−t
b−a), if a≤ t < b

1
2 ( d−t

d−c + 1), if c≤ t ≤ a
1, if t ≤ c.

(5.53)
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Then we have Appr{λ |Nec{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi if and only if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi ≤ d−2γi(d− c)−L−1(1− δi)αcT
i x,

if b≤ fi + L−1(1− δi)αcT
i x≤ d

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a −L−1(1− δi)αcT

i x,
if a≤ fi + L−1(1− δi)αcT

i x < b
fi ≤ d− (d− c)(2γi−1)−L−1(1− δi)αcT

i x,
if c≤ fi + L−1(1− δi)αcT

i x≤ a
fi ≤ c−L−1(1− δi)αcT

i x,
if fi + L−1(1− δi)αcT

i x≤ c,

(5.54)

where γi,δi ∈ [0,1] are predetermined confidence levels.

Proof. From the assumption we know that ci(λ ) = (ci1(λ ),ci2(λ ), · · · ,cin(λ ))T and
ci j(λ ) is a rough variable . Let ci j(λ ) = ([ai j,bi j], [ci j,di j]) and x = (x1,x2, · · · ,xn)T

then
x jci j(λ ) = ([x jai j,x jbi j], [x jci j,x jdi j]),

ci(λ )T x = ∑n
j=1 ci j(λ )x j = ∑n

j=1([x jai j,x jbi j], [x jci j,x jdi j])
= ([∑n

j=1 ai jx j,∑n
j=1 ai jx j], [∑n

j=1 ci jx j,∑n
j=1 di jx j]).

Therefore, ci(λ )T x is also a rough variable. Now we can assume that

a = ∑n
j=1 ai jx j, b = ∑n

j=1 ai jx j,

c = ∑n
j=1 ci jx j, d = ∑n

j=1 di jx j.

then ci(λ )T x = ([a,b], [c,d]).
Moreover, we know that ˜̄ci j(λ ) is a fuzzy number with the membership function

μ ˜̄ci j(λ )(t) for given λ ∈Λ . It follows from the extension principle that the fuzzy num-

ber ĉi(λ )T x is characterized by the membership function in the following

μ ˜̄ci(λ )T x(r) =

⎧⎨
⎩

L( ci(λ )T−r
αcT

i x
), r ≤ ci(λ )T x

R( r−ci(λ )T x
β cT

i x
), r ≥ ci(λ )T x

i = 1,2, . . . ,m.

By Lemma 2.2, we have that

Nec{ ˜̄ci(λ )T x≥ fi} ≥ δi ⇔ ci(λ )T x−L−1(1− δi)αcT
i x≥ fi, i = 1,2, . . . ,m.
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For the given confidence level δi ∈ [0,1], we have

Appr{λ |Nec{ ˜̄ci(λ )T x≥ fi} ≥ δi} ≥ γi

⇔ Appr{λ |ci(λ )T x≥ fi + L−1(1− δi)αcT
i x} ≥ γi

⇔ γi ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d− fi−L−1(1−δi)αcT
i x

2(d−c) ,

if b≤ fi + L−1(1− δi)αcT
i x≤ d

1
2 ( d− fi−L−1(1−δi)αcT

i x
d−c + b− fi−L−1(1−δi)αcT

i x
b−a ),

if a≤ fi + L−1(1− δi)αcT
i x < b

1
2 ( d− fi−L−1(1−δi)αcT

i x
d−c + 1),

if c≤ fi + L−1(1− δi)αcT
i x≤ a

1,
if fi + L−1(1− δi)αcT

i x≤ c

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi ≤ d−2γi(d− c)−L−1(1− δi)αcT
i x,

if b≤ fi + L−1(1− δi)αcT
i x≤ d

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a −L−1(1− δi)αcT

i x,
if a≤ fi + L−1(1− δi)αcT

i x < b
fi ≤ d− (d− c)(2γi−1)−L−1(1− δi)αcT

i x,
if c≤ fi + L−1(1− δi)αcT

i x≤ a
fi ≤ c−L−1(1− δi)αcT

i x,
if fi + L−1(1− δi)αcT

i x≤ c.

This completes the proof. ��

Theorem 5.10. Suppose that ˜̄er j,
˜̄br are fuzzy rough variables, for any λ ∈ Λ ,

fuzzy variables ˜̄er j(λ ), ˜̄br(λ ) are characterized by the membership function in the
following

μ ˜̄er j(λ )(t) =

⎧⎨
⎩

L( er j (λ )−t
αe

r j
), t ≤ er j(λ ),αe

r j > 0

R( t−er j(λ )
β m

r j
), t ≥ er j(λ ),β e

r j > 0
λ ∈Λ (5.55)

and

μ ˜̄br(λ )(t) =

⎧⎨
⎩

L( br(λ )−t
αb

r
), t ≤ br(λ ),αb

r > 0

R( t−br(λ )
β b

r
), t ≥ br(λ ),β b

r > 0
λ ∈Λ , (5.56)

where αe
r j,β e

r j are positive numbers expressing the left and right spread of

˜̄er j(λ ), αb
r ,β b

r are the left and right spread of ˜̄br(λ ), and reference functions
L,R : [0,1] → [0,1] with L(1) = R(1) = 0, and L(0) = R(0) = 1 are non-
increasing, continuous functions. And (er j(λ ))n×1 = (er1(λ ),er2(λ ), · · · ,ern(λ ))T

is a rough vector, er j(λ ),br(λ ) are rough variables, r = 1,2, · · · , p, j = 1,2, · · · ,n.
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By Theorem 5.7, we have er(λ )T x,br(λ )are rough variables, then er(λ )T x−br(λ )=
[(a,b),(c,d)](c ≤ a < b ≤ d) is also a rough variable. We assume that it is charac-
terized by the following trust measure function

Appr{er(λ )T x−br(λ )≤ t}=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if t ≤ c
t−c

2(d−c) , if c≤ t ≤ a
1
2 ( t−c

d−c + t−a
b−a), if a≤ t < b

1
2 ( t−c

d−c + 1), if b≤ t ≤ d
1, i f d ≤ t.

(5.57)

Then, we have that Appr{λ |Nec{ ˜̄er(λ )T x≤ ˜̄br(λ )} ≥ θr} ≥ ηr if and only if

⎧⎪⎪⎨
⎪⎪⎩

W ≥ c + 2(d− c)ηr, if c≤W ≤ a

W ≥ 2ηr(d−c)(b−a)+c(b−a)+a(d−c)
b−a+d−c , if a≤W < b

W ≥ (2ηr−1)(d− c)+ c, if b≤W ≤ d
W ≥ d, if d ≤W,

(5.58)

where W =−R−1(θr)β eT
r x−L−1(1−θr)αb

r .

Proof. From the assumption, we know

Nec{ ˜̄er(λ )T x≤ ˜̄br(λ )} ≥ θr ⇔ br(λ )−L−1(1−θr)αb
r ≥ er(λ )T x + R−1(θr)β eT

r x.

Since er(λ )T x−br(λ ) = [(a,b),(c,d)], for given confidence levels θr,ηr ∈ [0,1], we
have that,

Appr{λ |Nec{ ˜̄er(λ )T x≤ ˜̄br(λ )} ≥ θr} ≥ ηr

⇔ Appr{λ |er(λ )T x−br(λ )≤−R−1(θr)β eT
r x−L−1(1−θr)αb

r } ≥ ηr

⇔ ηr ≤

⎧⎪⎪⎨
⎪⎪⎩

W−c
2(d−c) , if c≤W ≤ a
1
2 (W−c

d−c + W−a
b−a ), if a≤W < b

1
2 (W−c

d−c + 1), if b≤W ≤ d
1, if W ≥ d

⇔

⎧⎪⎪⎨
⎪⎪⎩

W ≥ c + 2(d− c)ηr, if c≤W ≤ a

W ≥ 2ηr(d−c)(b−a)+c(b−a)+a(d−c)
b−a+d−c , if a≤W < b

W ≥ (2ηr−1)(d− c)+ c, if b≤W ≤ d
W ≥ d, if d ≤W,

where W =−R−1(θr)β eT
r x−L−1(1−θr)αb

r .
This proof is completed. ��

From Propositions 5.7 and 5.8, we know that the problem (5.8) is equivalent to the
following multi-objective programming problems,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [ f1, f2, · · · , fm]

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi ≤ d−2γi(d− c)−L−1(1− δi)αcT
i x,

if b≤ fi + L−1(1− δi)αcT
i x≤ d

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a −L−1(1− δi)αcT

i x,
if a≤ fi + L−1(1− δi)αcT

i x < b
fi ≤ d− (d− c)(2γi−1)−L−1(1− δi)αcT

i x,
if c≤ fi + L−1(1− δi)αcT

i x≤ a
fi ≤ c−L−1(1− δi)αcT

i x,
if fi + L−1(1− δi)αcT

i x≤ c
W ≥ c + 2(d− c)ηr, if c≤W ≤ a

W ≥ 2ηr(d−c)(b−a)+c(b−a)+a(d−c)
b−a+d−c , if a≤W < b

W ≥ (2ηr−1)(d− c)+ c, if b≤W ≤ d
W ≥ d, if d ≤W
x≥ 0,

(5.59)

where W =−R−1(θr)β eT
r x−L−1(1−θr)αb

r .

5.4.2.2 Fuzzy Goal Method

In this section, we introduce how to use the fuzzy goal method to solve multi-objective
programming problems. As we know, the standard distribution function Φ(x) is a
nonlinear function, so it is difficult to solve using the usual technique. Here we intro-
duce the fuzzy goal method proposed by Sakawa [128] to solve this kind of nonlinear
multi-objective programming problems (5.60),

{
max[H1(x),H2(x), · · · ,Hm(x)]
s.t. x ∈ X .

(5.60)

Assume that decision makers have fixed the membership function μk(Hk(x)) and
given the goal membership function value μ̄k (k = 1,2, · · · ,m). Let’s consider the
following programming problem,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
m
∑

k=1
d−k

s.t.

⎧⎨
⎩

μk(Hk(x))+ d+
k −d−k = μ̄k,k = 1,2, · · · ,m

x ∈ X
d+

k d−k = 0,d+
k ,d−k ≥ 0,k = 1,2, · · · ,m,

(5.61)

where d+
k ,d−k is the positive and negative deviation. Then we have the following result

between the optimal solution of the problem (5.61) and the efficient solution of the
problem (5.60).

Theorem 5.11. (Sakawa [128]) (1) If x∗ is the optimal solution of the problem (5.61),
and 0 < μk(Hk(x∗))< 1, d+

k = 0(k = 1,2, · · · ,m) holds, then x∗ is an efficient solution
of the problem (5.60).
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(2) If x∗ is an efficient solution of the problem (5.60), and 0 < μk(Hk(x∗)) < 1(k =
1,2, · · · ,m), then x∗ is an efficient solution of the problem (5.61) and d+

k = 0(k =
1,2, · · · ,m) holds.

5.4.2.3 Numerical Example

Example 5.5. An industry will produce three kinds of products which are seasonal.
Because the demand amount is seasonal, the profits are fuzzy rough variables, i.e.,
the profits are fuzzy variables, but the excepted values of these fuzzy variables are
rough variables. When producing every product, the efficiency of the machinery is
also a fuzzy rough variable, but the coefficient is different. Each product is no less
than 20, and the gross amount is no less than 200 but no more than 250. The other
coefficients can be seen in Table 5.3. The problem is how many products to produce
in order to get the predetermined levels.

Table 5.3 The resource demand in producing process

product 1 2 3 possible using amount
workman amount 1 1 1 250
storage capacity 1 4 2 600

using efficiency c1
˜̄ξ4 c2

˜̄ξ5 c3
˜̄ξ6

profit ˜̄ξ1
˜̄ξ2

˜̄ξ3

Then we can get the following Appr-pos constrained multi-objective programming
problem

max{ f1, f2}

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Appr{λ |Pos{ ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 ≥ f1} ≥ δ1} ≥ γ1

Appr{λ |Pos{c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3 ≥ f2} ≥ δ2} ≥ γ2

x1 + x2 + x3 ≤ 250
x1 + x2 + x3 ≥ 200
x1 + 4x2 + 2x3 ≤ 600
x1,x2,x3 ≥ 20,

where c = (c1,c2,c3) = (1.2,0.8,1.5),

˜̄ξ1 = (ρ1,0.5,0.5)LR, with ρ1 " ([1,2], [0,3]),
˜̄ξ2 = (ρ2,2,2)LR, with ρ2 " ([2,3], [1,4]),
˜̄ξ3 = (ρ3,1,1)LR, with ρ3 " ([3,4], [2,5]),
˜̄ξ4 = (ρ4,1,1)LR, with ρ4 " ([0,1], [0,3]),
˜̄ξ5 = (ρ5,0.5,0.5)LR, with ρ5 " ([1,2], [0,3]),
˜̄ξ6 = (ρ6,0.5,0.5)LR, with ρ6 " ([2,3], [0,3]).
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According to the knowledge of fuzzy variable and rough variable, we have that

˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3

= (ρ1x1 + ρ2x2 + ρ3x3,0.5x1 + 2x2 + x3,0.5x1 + 2x2 + x3)LR,

c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3

= (ρ4c1x1 + ρ5c2x2 + ρ6c3x3,1.2x1 + 0.4x2 + 0.75x3,
1.2x1 + 0.4x2 + 0.75x3)LR.

(5.62)

and

ρ1x1 = ([x1,2x1], [0,3x1])
ρ2x2 = ([2x2,3x2], [x2,4x2])
ρ3x3 = ([3x3,4x3], [2x3,5x3])
ρ4c1x1 = ([0,c1x1], [0,3c1x1])
ρ5c2x2 = ([c2x2,2c2x2], [0,3c2x2])
ρ6c3x3 = ([2c3x3,3c3x3], [0,3c3x3]),

and

ρ1x1 + ρ2x2 + ρ3x3

= ([x1 + 2x2 + 3x3,2x1 + 3x2 + 4x3], [x2 + 2x3,3x1 + 4x2 + 5x3])
ρ4c1x1 + ρ5c2x2 + ρ6c3x3

= ([0.8x2 + 3x3,1.2x1 + 1.6x2 + 4.5x3], [0,3.6x1 + 2.4x2 + 4.5x3]).

Here we consider the case when b≤ fi−R−1(δi)β cT
i x≤ d, and readers can try another

three cases through the following method.
According to Propositions 5.7 and 5.8, the problem (5.63) is equivalent to the fol-

lowing multi-objective programming problem,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [ f1, f2]

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 ≤ 3x1 + 4x2 + 5x3−2γ1(3x1 + 3x2 + 3x3)
+R−1(δ1)(0.5x1 + 2x2 + x3)

f2 ≤ 3.6x1 + 2.4x2 + 4.5x3−2γ2(3.6x1 + 2.4x2 + 4.5x3)
+R−1(δ2)(1.2x1 + 0.4x2 + 0.75x3)

x1 + x2 + x3 ≤ 250
x1 + x2 + x3 ≥ 200
x1 + 4x2 + 2x3 ≤ 600
x1,x2,x3 ≥ 20

(5.63)

or equivalently ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max [H1(x),H2(x)]

s.t.

⎧⎪⎪⎨
⎪⎪⎩

x1 + x2 + x3 ≤ 250
x1 + x2 + x3 ≥ 200
x1 + 4x2 + 2x3 ≤ 600
x1,x2,x3 ≥ 20,

(5.64)
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where

H1(x) := 3x1 + 4x2 + 5x3−2γ1(3x1 + 3x2 + 3x3)+ R−1(δ1)(0.5x1 + 2x2 + x3),
H2(x) := 3.6x1 + 2.4x2 + 4.5x3−2γ2(3.6x1 + 2.4x2 + 4.5x3)

+R−1(δ2)(1.2x1 + 0.4x2 + 0.75x3).

When γ1 = γ2 = δ1 = δ2 = 0.9, H0
i and H1

i (i = 1,2) are calculated by solving the
two single objective model as follows:

H1
1 =−119,(x1,x2,x3) = (20,20,160),H0

2 =−656.9,
H1

2 =−455.83,(x1,x2,x3) = (53.33,126.67,20),H0
1 =−283.33.

We give the membership functions as follows,

μ1(H1(x)) = H1(x)−H0
1

H1
1−H0

1
= H1(x)+283.33

164.33 ,

μ2(H2(x)) = H2(x)−H0
2

H1
2−H0

2
= H2(x)+656.9

200.97 .

According to the fuzzy goal method, we construct the fuzzy goal programming model
(5.65) as follows, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max d−1 + d−2

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1(x)+283.33
164.33 + d+

1 + d−1 = μ̄1
H2(x)+656.9

200.97 + d+
2 + d−2 = μ̄2

x1 + x2 + x3 ≤ 250
x1 + x2 + x3 ≥ 200
x1 + 4x2 + 2x3 ≤ 600
x1,x2,x3 ≥ 20
d+

1 d−1 = 0,d+
1 ,d−1 ≥ 0

d+
2 d−2 = 0,d+

2 ,d−2 ≥ 0.

(5.65)

Set μ̄1 = μ̄2 = 0.9, and we obtain the best solution of model (5.65), this solution is
also the efficient solution of model (5.63),

(x1,x2,x3) = (210,20,20).

5.4.3 Non-linear Fu-Ro CCM and Fu-Ro Simulation-Based
Parametric TS

For the Fu-Ro CCM, we use the Fu-Ro simulation 2 based parametric TS algorithm
to solve.

5.4.3.1 Fu-Ro Simulation 2 for Critical Value

First, we use the Fu-Ro simulation 2 to obtain the critical value which is important
in CCM.
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Assume that ξ is an n-dimensional fuzzy rough vector defined on the rough space
(Λ ,Δ ,A ,π), and f : Rn → Rm is a measurable function. For any real number α ∈
(0,1], we find the maximal value f such that

Ch{ f (ξ )≥ f }(α)≥ β (5.66)

holds. That is we should compute the maximal value f such that

Appr{λ ∈Λ |Cr{ f (ξ (λ )) ≥ f} ≥ β} ≥ α. (5.67)

We sample λ 1,λ 2, · · · ,λ N from � and λ 1,λ 2, · · · ,λ N from Λ according to the
measure π . For any number v, let N(v) denote the number of λ k satisfying
Cr{ f (ξ (λ k)) ≤ v} ≥ β for k = 1,2, · · · ,N, and N(v) denote the number of λ k

satisfying
Cr{ f (ξ (λ k))≤ v} ≥ β , (5.68)

for k = 1,2, · · · ,N, whereCr{·}may be estimated by fuzzy simulation. Then we may
find the maximal value v such that

N(v)+ N(v)
2N

≥ α. (5.69)

This value is an estimation of f . The procedure is as follows:
Step 1. Generate λ 1,λ 2, · · · ,λ N from� according to the measure π .
Step 2. Generate λ 1,λ 2, · · · ,λ N from Λ according to the measure π .
Step 3. Find the maximal value v such that (5.69) holds.
Step 4. Return v.

Example 5.6. We employ Fu-Ro simulation 2 to find the maximal value f̄ such that
Ch{ξ 2

1 + ξ 2
2 ≥ f̄}(0.9)≥ 0.9, where xi1 and ξ2 are Fu-Ro variables defined as

ξ1 = (ρ1,ρ1 + 1,ρ1 + 2), with ρ1 = ([1,2], [0,3]),
ξ2 = (ρ2,ρ2 + 1,ρ2 + 2), with ρ2 = ([2,3], [1,4]).

A run of Fu-Ro simulation with 5000 cycles shows that f̄ = 6.39.

5.4.3.2 Parametric TS

Let’s recall the detail of the parametric TS introduced by F. Glover [335]. The solution
approach consists of a parametric form of tabu-search utilizing moves based on the
approach of parametric branch and bound [336]. Various levels of tabu-search can be
used to guide the foregoing processes. We begin by sketching the elements of a basic
approach and illustrate its application.

Tabu conditions. At an initial rudimentary level, we attach a tabu restriction to
an (R-DN) or (R-UP) response for a particular variable x j , thereby forbidding
the response from being executed, if the opposing response ((R-UP) or (R-DN),



5.4 Fu-Ro CCM 343

respectively) was executed for x j within the most recent TabuTenure iterations. (That
is, we forbid a move in a direction that is contrary to the direction of a move made
within the selected span of TabuTenure iterations.) To simplify the discussion, we
allow (R-DN) and (R-UP) to refer also to the responses (R-DNo) and (R-UPo). The
value of TabuTenure varies according to the variable x j concerned and the history of
the search. We represent this value as TabuTenure j(UP) and TabuTenure j(DN) ac-
cording to whether the tabu condition was launched by an (R-UP) or an (R-DN) re-
sponse. When such a response is made we use TabuTenurej(UP) or TabuTenure j(DN)
and knowledge of the current iteration, which we denote by Iter, to identify the iter-
ation TabuTenure j(UP) or TabuTenure j(DN) that marks the end of x js tabu tenure.
Specifically, when an (R-UP) response occurs, we set

TabuEnd j(DN) = Iter+ TabuTenure j(DN)

to forbid the opposing (R-DN) response from being made for the period of
TabuTenure j(DN) iterations in the future. Similarly, when an (R-DN) response oc-
curs, we set

TabuEnd j(UP) = Iter+ TabuTenure j(UP)

to forbid the opposing (R-UP) response from being made for the period of
TabuTenure j (UP) iterations in the future.

By this means, an (R-DN) response is tabu for x j as long as the (updated) current
iteration satisfies

Iter≤ TabuEnd j(DN)

and an (R-UP) response is tabu for x j as long as the current iteration satisfies

Iter≤ TabuEnd j(UP)

Initially, before any responses have been made and before associated tabu conditions
have been created, TabuEnd j(UP) and TabuEnd j(DN) are set equal to -1, causing this
value to be smaller than every value of Iter and hence assuring that no tabu restrictions
will be in effect.

We refer to the values TabuEnd j(UP)-Iter and TabuEnd j(DN)-Iter as residual tabu
tenures. Hence, a response will be tabu as long as its residual tabu tenure is non-
negative. (A negative residual tabu tenure accordingly indicates the response is free
from a tabu restriction.) By convention, we refer to the residual tabu tenure of a vari-
able x j by taking it to be the residual tabu tenure of the response that is selected
for this variable. We refer to the variable itself as being tabu when its associated re-
sponse is tabu. (This reference is unambiguous since each goal infeasible and poten-
tially goal infeasible variable has a single associated response.) Rules for generating
the TabuTenure j(DN) and TabuTenurej(UP) values used to determine TabuEndj(UP)
and TabuEnd j(DN) are given in the next section.
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In the application of the tabu tenures, a simple form of probabilistic tabu search
can be used that replaces TabuTenure j(DN) and TabuTenure j(UP) in the formulas
TabuEnd j(DN)=Iter
+TabuTenure j(DN) and TabuEnd j(DN)=Iter +TabuTenure j(UP) by values that are
randomly selected from an interval around the respective tabu tenure values. A fuller
use of this type of randomizing effect occurs by making such a replacement each time
the inequalities Iter-TabuEnd j(DN) and Iter-TabuEnd j(UP) are checked.

By design, tabu restrictions are prohibitions against returning to a state previously
occupied. We only create these restrictions for states that seek to enforce a goal con-
dition, hence that involve the responses (R-UP) and (R-DN) (understanding these to
include reference to the responses (R-UPo) and (R-DNo)). Moreover, we only check
tabu conditions when at least one variable is goal infeasible. In the case where no
explicit goal infeasibility exists, and hence the only responses to consider are those
applicable to unrestricted free variables, then no attention is paid to tabu restrictions.
The situation where all goal conditions are satisfied (no goal infeasibility exists) may
be viewed as meeting the requirements of a special type of aspiration criterion, which
overrules all tabu conditions. We now examine the use of criteria that operate when
goal infeasibility is present.

Aspiration criteria. As is customary in tabu-search, we allow a tabu response to
be released from a tabu restriction if the response satisfies an auxiliary aspiration
criterion that indicates the response has special merit or novelty (i.e., exhibits a fea-
ture not often encountered). A common instance of such a criterion, called aspiration
by objective, permits the response to be made if it yields a better objective function
evaluation than any response previously executed. In the present setting, we find it
convenient to additionally consider an aspiration by resistance, based on the greatest
resistance a particular response has generated in the past.

Specifically, let Aspire j(DN) and Aspire j(UP) denote the largest goal resistance
values GR j(DN) and GR j(UP) that have occurred for x j on any iteration, where x j was
selected to execute an (R-DN) or (R-UP) response, respectively. Then we disregard
the tabu restriction for an (R-DN) response (identified by Iter≤TabuEnd j(DN)) if

GR j(DN) > Aspire j(UP)

and disregard tabu restriction for an (R-UP) response (identified by
Iter≤TabuEnd j(UP)) if

GR j(UP) > Aspire j(DN)

The rationale for these aspiration criteria is that a move can be allowed if its current
resistance value, measured by GR j(DN) or GR j(UP), exceeds the greatest resistance
value previously identified for moving in the opposite direction (Aspire j(UP)
or Aspire j(DN), respectively). We initially set Aspire j(UP) and Aspire j(DN) to a
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large negative number, so that the first time a variable x j is evaluated for a poten-
tial response (R-UP) or (R-DN), the response will automatically be allowed, and it
will continue to be allowed until the opposing response is made, which establishes a
resistance to be exceeded.

We call a response admissible if it is either not tabu or else satisfies the aspira-
tion criterion, and call it inadmissible otherwise. If the unique available response
for a goal infeasible variable is inadmissible, then the variable is not permitted
to enter the sets GP and GS, even if this makes it impossible for one or both of
these sets to attain its targeted size gP or gS. The only exception to this rule is
that GP is not permitted to be empty in the case of goal infeasibility. Hence in the
extreme case where no variables would enter GP the typical aspiration by default
rule is invoked that allows GP to contain a variable with a smallest residual tabu
tenure. (Probabilistic variations of the aspiration by default rule can also be applied,
by assigning larger probabilities to selecting variables with smaller residual tabu
tenures.)

As observed earlier, GR j = GR j(DN) or GR j(UP) may be treated as a 2-element
vector, with a dominant component for an overt goal infeasibility and a secondary
GRo

j component for potential goal infeasibility. The Aspire j values are treated in the
same way, as 2-element vectors that include a secondary component Aspireo

j for po-
tential goal infeasibility. Since overt and potential goal infeasibility for a given vari-
able x j never occur simultaneously, and since overt goal infeasibility is the dominant
component, only a single component of the vector is relevant to considerłthe overt
component if it exists, and the potential component otherwise.

It is to be emphasized that Aspire j(UP) and Aspire j(DN) do not record the greatest
values of GR j(UP) and GR j(DN) encountered over the history of the search, but only
the greatest values that occurred in the instances where x j was selected as a variable
to be assigned a goal condition, and only in response to overt or potential goal infea-
sibility (i.e., not in response to integer infeasibility, which occurs only when x j is an
unrestricted fractional variable).

5.4.3.3 Numerical Example

Example 5.7. Let us consider the following problem,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [ f1, f2]

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Appr{λ |Pos{ ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 ≥ f1} ≥ δ1} ≥ γ1

Appr{λ |Pos{c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3 ≥ f2} ≥ δ2} ≥ γ2

x1 + x2 + x3 ≤ 250
x1 + x2 + x3 ≥ 200
x1 + 4x2 + 2x3 ≤ 600
x1 ≥ 20,x2 ≥ 20,x3 ≥ 20,

(5.70)
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where c = (c1,c2,c3) = (1.2,0.8,1.5),

˜̄ξ1 = (1,ρ1,1)LR, with ρ1 " ([1,2], [0,3]),
˜̄ξ2 = (1,ρ2,1)LR, with ρ2 " ([2,3], [1,4]),
˜̄ξ3 = (1,ρ3,1)LR, with ρ3 " ([3,4], [2,5]),
˜̄ξ4 = (1,ρ4,1)LR, with ρ4 " ([0,1], [0,3]),
˜̄ξ5 = (1,ρ5,1)LR, with ρ5 " ([1,2], [0,3]),
˜̄ξ6 = (1,ρ6,1)LR, with ρ6 " ([2,3], [0,3]),

and ρi(i = 1,2, · · · ,6) are rough variables. We set δi = γi = 0.9, then Φ−1(1−δi) =
−1.28, i = 1,2.

Next, we apply the parallel tabu search algorithm based on the Fu-Ro simulation
to solve the nonlinear programming problem (5.70) with the fuzzy rough parameters.

Step 1. Set the move step h = 0.5 and the h neighbor N(x,h) for the present point x
is defined as follows,

N(x,h) =
{

y|
√

(x1− y1)2 +(x2− y2)2 +(x3− y3)2 ≤ h

}
.

The random move of point x to point y in its h neighbor along direction s is given by

ys = xs + rh,

where r is a random number that belongs to [0,1], s = 1,2,3.

Step 2. Give the step set H = {h1,h2, · · · ,hr} and randomly generate a feasible point
x0 checked by the fuzzy rough simulation. One should empty the Tabu list T (the list
of inactive steps) at the beginning.

Step 3. For each active neighbor N(x,h) of the present point x, where h ∈ H − T ,
a feasible random move that satisfies all the constraints in problem (5.70) is to be
generated.

Step 4. Construct the single objective function as follows,

f (x) = w1 f1 + w2 f2

where w1 +w2 = 1 and wi(i = 1,2) is predetermined by the decision maker. Compare
the f (x) of the feasible moves with that of the current solution by the fuzzy rough
simulation. If an augmenter in new objective function of the feasible moves exists, one
should save this feasible move as the updated current one by adding the corresponding
step to the Tabu list T and go to the next step; otherwise, go to the next step directly.

Step 5. Stop if the termination criteria are satisfied; other wise, empty T if it is full;
then go to Step 3. Here, we set the computation is determined if the better solution
doesn’t change again.
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We apply compute the programming problem (5.70) by the parallel tabu search
algorithm. The table 5.4 shows the results.

Table 5.4 The result computed by parallel TS algorithm at different weights

w1 w2 x1 x2 x3 H Gen
0.1 0.9 90.68 25.19 84.13 -2304.55 270
0.2 0.8 90.25 25.08 84.66 -2287.08 240
0.3 0.7 89.82 24.99 85.19 -2269.57 256
0.4 0.6 89.39 24.89 85.72 -2252.01 269
0.5 0.5 88.99 24.79 86.25 -2234.40 294
0.6 0.4 88.53 24.70 86.78 -2216.74 291
0.7 0.3 88.10 24.60 87.30 -2199.03 268
0.8 0.2 87.67 24.50 87.83 -2181.29 281
0.9 0.1 87.24 24.40 88.36 -2163.48 276

5.5 Fu-Ro DCM

This section provides Fu-Ro DCM in which the underling philosophy is based on
selecting the decision with the maximum chance to meet the event.

5.5.1 General Model for Fu-Ro DCM

A generally uncertain dependent chance model has the following form,
⎧⎨
⎩

max [Ch{ fi(x,ξ )≤ fi}(αi), i = 1,2, · · · ,m]

s.t.

{
gr(x,ξ )≤ 0,r = 1,2, · · · , p
x ∈ X ,

(5.71)

where x is an n-dimensional decision vector, ξ is a fuzzy rough vector, the event ξ
is characterized by hk(x,ξ ) ≤ 0,k = 1,2, . . .q, and the fuzzy rough environment is
described by the fuzzy rough constraints gr(x,ξ ) ≤ 0,r = 1,2, . . . p. Here, the con-
straints are all certain. For uncertain constraints, we can deal with them by the tech-
nique of chance-constrained programming.

When the fuzzy rough variable degenerates to the single uncertain variable, we
obtain the following results.

Remark 5.8. If the fuzzy rough variable ξ degenerates to a fuzzy variable, for any
given αi,

Ch{ fi(x,ξ )≤ fi}(αi) = Cr{ fi(x,ξ )≤ fi}(αi), i = 1,2, · · · ,m.



348 5 Fuzzy Rough Multiple Objective Decision Making

Thus, the problem (5.71) is equivalent to
⎧⎨
⎩

max [Cr{ fi(x,ξ )≤ fi}(αi), i = 1,2, · · · ,m]

s.t.

{
gr(x,ξ )≤ 0,r = 1,2, · · · , p
x ∈ X ,

(5.72)

where ξ is a fuzzy variable, and this model is a standard fuzzy DCM.

Remark 5.9. If the fuzzy rough variable ξ degenerates to a rough variable, for any
given αi. This means

Ch{ fi(x,ξ )≤ fi}(αi) = Appr{ fi(x,ξ )≤ fi}(αi), i = 1,2, · · · ,m.

Thus, the problem (5.71) is converted into
⎧⎨
⎩

max [Appr{ fi(x,ξ )≤ fi}(αi), i = 1,2, · · · ,m]

s.t.

{
gr(x,ξ )≤ 0,r = 1,2, · · · , p
x ∈ X ,

(5.73)

where ξ is a rough variable, and this model is a standard rough DCM.

If there are multiple events in the fuzzy rough environment, a typical formulation of
Fu-Ro DCM is given as follows,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max

⎡
⎢⎢⎣

Ch{h1k(x,ξ )≤ 0, k = 1,2, · · · ,q1}
Ch{h2k(x,ξ )≤ 0, k = 1,2, · · · ,q2}
· · ·
Ch{hmk(x,ξ )≤ 0, k = 1,2, · · · ,qm}

⎤
⎥⎥⎦

s.t.

{
gr(x,ξ )≤ 0, r = 1,2, · · · , p
x ∈ X ,

(5.74)

where hik(x,ξ ) ≤ 0, k = 1,2, · · · ,qi represent events εi for i = 1,2, · · · ,m,
respectively.

Fuzzy rough dependent-chancegoal programming is employed to formulate fuzzy
rough decision systems according to the priority structure and target levels set by the
decision-maker,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
l
∑
j=1

Pj

m
∑

i=1
(ui jd

+
i ∨0 + vi jd

−
i ∨0)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

Ch{h1k(x,ξ )≤ 0, k = 1,2, · · · ,qi}−bi = d+
i , i = 1,2, · · · ,m

bi−Ch{h1k(x,ξ )≤ 0, k = 1,2, · · · ,qi}= d−i , i = 1,2, · · · ,m
gr(x,ξ )≤ 0, r = 1,2, · · · , p
x ∈ X ,

(5.75)

where Pj is the preemptive priority factor which expresses the relative importance
of various goals, Pj � Pj+1, for all j, ui j is the weighting factor corresponding
to positive deviation for goal i with priority j assigned, vi j is the weighting fac-
tor corresponding to negative deviation for goal i with priority jassigned, d+

i ∨0 is the
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positive deviation from the target of goal i, d−i ∨0 is the negative deviation from the
target of goal i, g j is a function in system constraints, bi is the target value according
to goal i, l is the number of priorities, m is the number of goal constraints, and p is
the number of system constraints.

5.5.2 Linear Fu-Ro DCM and ε-Constraint Method

Let’s still consider the linear model with Fu-Ro coefficients as follows,
⎧⎨
⎩

max [ ˜̄cT
1 x, ˜̄cT

2 x, · · · , ˜̄cT
mx]

s.t.

{
eT

r x≤ br, r = 1,2, · · · , p
x ∈ X ,

(5.76)

where ˜̄ci is Fu-Ro vector, i = 1,2, · · · ,m.

5.5.2.1 Crisp Equivalent Model

Appr−Pos constrained multi-objective linearity model

Because there are Fu-Ro variables in the model (5.76), so the model doesn’t have
mathematical meaning. We can use its DCM on Appr−Pos to deal with it as follows

⎧⎪⎪⎨
⎪⎪⎩

max [δ1,δ2, · · · ,δm]

s.t.

⎧⎨
⎩

Appr{λ |Pos{ ˜̄cT
i (λ )x≤ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X ,

(5.77)

where ξ = (ξ1,ξ2, · · · ,ξn)T is a fuzzy rough vector, γi is the given confidence level
and fi is the predetermined value.

We can use the following theorem to obtain the equivalent form of the crisp
dependent-chance model (5.77).

Theorem 5.12. Assume that ˜̄ci j is a Fu-Ro variable, for any λ ∈Λ , the fuzzy variable
˜̄ci j(λ ) is characterized by the following membership function

μ ˜̄ci j(λ )(t) =

⎧⎨
⎩

L
(

ci j(λ )−t
αc

i j

)
, t ≤ ci j(λ ),αc

i j > 0

R
(

t−ci j(λ )
β c

i j

)
, t ≥ ci j(λ ),β c

i j > 0
λ ∈Λ (5.78)

where αc
i j,β c

i j are positive numbers expressing the left and right spread of
˜̄ci j(λ ), reference function L,R : [0,1] → [0,1] with L(1) = R(1) = 0, and
L(0) = R(0) = 1 are non-increasing, continuous function. And (ci j(λ ))n×1 =
(ci1(λ ),ci2(λ ), · · · ,cin(λ ))T is a rough vector. It follows that ci(λ )T x = ([a,b], [c,d])
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(where c ≤ a < b ≤ d) is a rough variable and characterized by the following trust
measure function,

Appr{ci(λ )T x≥ t}=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if d ≤ t
d−t

2(d−c) , if b≤ t ≤ d
1
2 ( d−t

d−c + b−t
b−a), if a≤ t < b

1
2 ( d−t

d−c + 1), if c≤ t ≤ a
1, if t ≤ c.

(5.79)

Then we have Appr{λ |Pos{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi if and only if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R−1(δi)≥ fi−d+2(d−c)γi
β cT

i x
, if b≤ fi−R−1(δi)β cT

i x≤ d

R−1(δi)≥ (d−c+b−a) fi−d(b−a)−b(d−c)+2(d−c)(b−a)γi
β cT

i x
, if a≤ fi−R−1(δi)β cT

i x < b

R−1(δi)≥ fi−d+2(d−c)(2γi−1)
β cT

i x
, if c≤ fi−R−1(δi)β cT

i x≤ a

R−1(δi)≥ fi−c
β cT

i x
, if fi−R−1(δi)β cT

i x≤ c,

(5.80)
where γi,δi ∈ [0,1] are predetermined confidence levels.

And accordingly we can get the crisp equivalent models in every cases.

Proof. By theorem 5.7, we have

⎧⎪⎪⎨
⎪⎪⎩

fi ≤ d−2γi(d− c)+ R−1(δi)β cT
i x, if b≤ fi−R−1(δi)β cT

i x≤ d

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a + R−1(δi)β cT

i x, if a≤ fi−R−1(δi)β cT
i x < b

fi ≤ d− (d− c)(2γi−1)+ R−1(δi)β cT
i x, if c≤ fi−R−1(δi)β cT

i x≤ a
fi ≤ c + R−1(δi)β cT

i x, if fi−R−1(δi)β cT
i x≤ c.

Because γi is a given confidence level between 0 and 1, this is no optimal solution for
L≥ d. We can discuss the following four cases.

Case 1: b≤ fi−R−1(δi)β cT
i x≤ d.

From the assumption we know that (d− c) > 0, so we have

fi ≤ d−2γi(d− c)+ R−1(δi)β cT
i x

⇔ R−1(δi)≥ fi−d+2(d−c)γi
β cT

i x
.

From the assumption, the reference function R(·) is non-increasing continuous func-
tion, so max δi is equivalent to min R−1(δi), so the problem (5.77) can be transformed
into ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

max [ fi−d+2(d−c)γi
β cT

i x
]

s.t.

⎧⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X
x≥ 0.
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Case 2: a≤ fi−R−1(δi)β cT
i x < b. We have

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a + R−1(δi)β cT

i x

⇔ R−1(δi)≥ (d−c+b−a) fi−d(b−a)−b(d−c)+2(d−c)(b−a)γi

β cT
i x

,

so the problem (5.77) can be transformed into
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max [ (d−c+b−a) fi−d(b−a)−b(d−c)+2(d−c)(b−a)γi
β cT

i x
]

s.t.

⎧⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X
x≥ 0.

Case 3: c≤ fi−R−1(δi)β cT
i x≤ a. We have

fi ≤ d− (d− c)(2γi−1)+ R−1(δi)β cT
i x

⇔ R−1(δi)≥ fi−d+2(d−c)(2γi−1)
β cT

i x
,

so the problem (5.77) can be transformed into
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max [ fi−d+2(d−c)(2γi−1)
β cT

i x
]

s.t.

⎧⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X
x≥ 0.

Case 4: fi−R−1(δi)β cT
i x≤ c. We have

fi ≤ c + R−1(δi)β cT
i x⇔ R−1(δi)≥ fi− c

β cT
i x

,

so the problem (5.77) can be transformed into

⎧⎪⎪⎨
⎪⎪⎩

max [ fi−c
β cT

i x
]

s.t.

⎧⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X
x≥ 0.

This completes the proof. ��

Appr-Nec constrained multi-objective linearity model

Also we can use the DCM based on Appr−Nec to deal with model (5.76) as follows
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⎧⎪⎪⎨
⎪⎪⎩

max [δ1,δ2, · · · ,δm]

s.t.

⎧⎨
⎩

Appr{λ |Nec{ ˜̄cT
i (λ )x≤ fi} ≥ δi} ≥ γi, i = 1,2, · · · ,m

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X ,

(5.81)

where ξ = (ξ1,ξ2, · · · ,ξn)T is a fuzzy rough vector, γi is the given confidence level
and fi is the predetermined value.

We can use the following theorem to obtain the equivalent form of the crisp DCM
(5.81).

Theorem 5.13. Assume that ˜̄ci j is a fuzzy rough variable, for any λ ∈ Λ , the fuzzy
variable ˜̄ci j(λ ) is characterized by the following membership function

μ ˜̄ci j(λ )(t) =

⎧⎨
⎩

L
(

ci j(λ )−t
αc

i j

)
, t ≤ ci j(λ ),αc

i j > 0

R
(

t−ci j(λ )
β c

i j

)
, t ≥ ci j(λ ),β c

i j > 0
λ ∈Λ , (5.82)

where αc
i j,β c

i j are positive numbers expressing the left and right spread of
˜̄ci j(λ ), reference function L,R : [0,1] → [0,1] with L(1) = R(1) = 0, and
L(0) = R(0) = 1 are non-increasing, continuous function. And (ci j(λ ))n×1 =
(ci1(λ ),ci2(λ ), · · · ,cin(λ ))T is a rough vector. It follows that ci(λ )T x = ([a,b], [c,d])
(where c ≤ a < b ≤ d) is a rough variable and characterized by the following trust
measure function,

Appr{ci(λ )T x≥ t}=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if d ≤ t
d−t

2(d−c) , if b≤ t ≤ d
1
2 ( d−t

d−c + b−t
b−a), if a≤ t < b

1
2 ( d−t

d−c + 1), if c≤ t ≤ a
1, if t ≤ c.

(5.83)

Then we have Appr{λ |Nec{ ˜̄ci(λ )Tx≥ fi} ≥ δi} ≥ γi if and only if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−1(1− δi)≤ − fi+d−2(d−c)γi

αcT
i x

,

if b≤ fi + L−1(1− δi)αcT
i x≤ d

L−1(1− δi)≤ −(d−c+b−a) fi+d(b−a)−b(d−c)−2(d−c)(b−a)γi

αcT
i x

,

if a≤ fi + L−1(1− δi)αcT
i x < b

L−1(1− δi)≤ − fi+d−2(d−c)(2γi−1)
αcT

i x
,

if c≤ fi + L−1(1− δi)αcT
i x≤ a

L−1(1− δi)≥ − fi+c
αcT

i x
,

if fi + L−1(1− δi)αcT
i x≤ c,

(5.84)
where γi,δi ∈ [0,1] are predetermined confidence levels.

And accordingly we can get the crisp equivalent models in every cases.
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Proof. By theorem 5.9, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi ≤ d−2γi(d− c)−L−1(1− δi)αcT
i x,

if b≤ fi + L−1(1− δi)αcT
i x≤ d

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a −L−1(1− δi)αcT

i x,
if a≤ fi + L−1(1− δi)αcT

i x < b
fi ≤ d− (d− c)(2γi−1)−L−1(1− δi)αcT

i x,
if c≤ fi + L−1(1− δi)αcT

i x≤ a
fi ≤ c−L−1(1− δi)αcT

i x,
if fi + L−1(1− δi)αcT

i x≤ c.

Because γi is a given confidence level between 0 and 1, this is no optimal solution for
L≥ d. We can discuss the following four cases.
Case 1: b≤ fi + L−1(1− δi)αcT

i x≤ d.
From the assumption we know that αcT

i x > 0, so we have

fi ≤ d−2γi(d− c)−L−1(1− δi)αcT
i x

⇔ L−1(1− δi)≤ − fi+d−2(d−c)γi
αcT

i x
.

From the assumption, the reference function L(·) is non-increasing continuous func-
tion, so max δi is equivalent to max L−1(1−δi), so the problem (5.77) can be trans-
formed into ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

max { fi−d+2(d−c)γi
β cT

i x
}

s.t.

⎧⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X
x≥ 0.

Case 2: a≤ fi + L−1(1− δi)αcT
i x < b. We have

fi ≤ d(b−a)+b(d−c)−2γi(d−c)(b−a)
d−c+b−a −L−1(1− δi)αcT

i x

⇔ L−1(1− δi)≤ −(d−c+b−a) fi+d(b−a)−b(d−c)−2(d−c)(b−a)γi
αcT

i x
,

so the problem (5.81) can be transformed into
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max [−(d−c+b−a) fi+d(b−a)−b(d−c)−2(d−c)(b−a)γi

αcT
i x

]

s.t.

⎧⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X
x≥ 0.

Case 3: c≤ fi + L−1(1− δi)αcT
i x≤ a. We have

fi ≤ d− (d− c)(2γi−1)−L−1(1− δi)αcT
i x

⇔ L−1(1− δi)≤ − fi+d−2(d−c)(2γi−1)
αcT

i x
,
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so the problem (5.77) can be transformed into
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max [− fi+d−2(d−c)(2γi−1)
αcT

i x
]

s.t.

⎧⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X
x≥ 0.

Case 4: fi + L−1(1− δi)αcT
i x≤ c. We have

fi ≤ c−L−1(1− δi)αcT
i x⇔ L−1(1− δi)≥ − fi + c

αcT
i x

,

so the problem (5.77) can be transformed into

⎧⎪⎪⎨
⎪⎪⎩

max [− fi+c
αcT

i x
]

s.t.

⎧⎨
⎩

eT
r x≤ br, r = 1,2, · · · , p

x ∈ X
x≥ 0.

This completes the proof. ��

5.5.2.2 ε-Constraint Method

ε-constraint method was proposed by Haimes[5, 6] in 1971. The idea of this method
is that we choose a main referenced objective fi0, put the other objective functions
into the constraints.

Let’s consider the following multi-objective model:
{

min [ fi(x), i = 1,2, · · · ,m]
s.t. x ∈ X .

(5.85)

So we use the ε-constraint method, we can get the single objective model (5.86):
⎧⎨
⎩

min fi0(x)

s.t.

{
fi(x)≤ εi, i = 1,2, · · · ,m, i 
= i0
c ∈ X ,

(5.86)

where the parameter εi is predetermined by the decision maker, it denote the threshold
value that the decision maker will accept, we denote the feasible domain of model
(5.86) as X1.

Theorem 5.14. If x̄ is the optimal solution of model (5.86), then x̄ is a weak efficient
solution of model (5.85).
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Proof. Let x̄ be the optimal solution of model (5.86), but it is not a weak efficient
solution of model (5.85), then there exists x′ ∈ X , such that for ∀ i ∈ {1,2, · · · ,m},
fi(x′) < fi(x̄) holds. Since x̄ ∈ X1, fi(x̄)≤ εi (i = 1,2, · · · ,m, i 
= i0), So we have

fi(x′) < fi(x̄)≤ εi, i = 1,2, · · · ,m, i 
= i0. (5.87)

We can obtain from (5.87) that x′ ∈ X1, and fi0(x
′) < fi0(x̄). This conflicts with that

x̄ is the optimal solution. ��
Theorem 5.15. Let x̄ be a efficient solution of model (5.85), then there exists a pa-
rameter εi(i = 1,2, · · · ,m, i 
= i0), such that x̄ is the optimal solution of model (5.86).

Proof. Take εi = fi(x̄) (i = 1,2, · · · ,m, i 
= i0), by the definition of efficient solution,
x̄ is a optimal solution of model (5.86).

So the advantage of the ε-constraint method is that:
(1). Every efficient solution of model (5.85) can be get by properly choosing param-
eter εi(i = 1,2, · · · ,m, i 
= i0).
(2). The i0th objective are mainly guaranteed, and the other objectives are considered
meanwhile.

It is worth for us noticing that the parameter εi is important, we should carefully
choose it. If the value of every εi is too small, then it is possible that the model (5.86)
will have no solutions; otherwise, is the value of εi is too large, then besides the main
objective, the other objective will lose more with higher possibility. Commonly, we
can offer the decision maker f 0

i = min
x∈X

fi(x) (i = 1,2, · · · ,m) and the objective value

( f1(x), f2(x), · · · , fm(x))T of a certain feasible solution x. And then the decision maker
can decide εi. For more details, the readers can refer to Chankong [4].

5.5.2.3 Numerical Example

Example 5.8. Let’s still consider the Example 5.5. This time we use fuzzy rough de-
pendent chance constrained model to deal with.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max
[
Ch{ f1(x,

˜̄ξ )≥ f̄1}(γ1),Ch{ f2(x,
˜̄ξ )≥ f̄2}(γ2)

]

s.t.

⎧⎪⎪⎨
⎪⎪⎩

x1 + x2 + x3 ≤ 250
x1 + x2 + x3 ≥ 200
x1 + 4x2 + 2x3 ≤ 600
x1 ≥ 20,x2 ≥ 20,x3 ≥ 20,

f1 = ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 and f2 = c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3,

where ˜̄ξ are Fu-Ro vectors, Ch{·} is the chance of the Fu-Ro event, γi, i = 1,2 is the
predetermined confidence level, f̄i, i = 1,2 are the ideal levels of every objectives.

Model (5.88) can be written as the following equivalent form (5.88) by introducing
δi, i = 1,2.
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max [δ1,δ2]

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ch{ ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 ≥ f̄1}(γ1)≥ δ1

Ch{c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3 ≥ f̄2}(γ2)≥ δ2

x1 + x2 + x3 ≤ 250
x1 + x2 + x3 ≥ 200
x1 + 4x2 + 2x3 ≤ 600
x1 ≥ 20,x2 ≥ 20,x3 ≥ 20.

When we use the Appr− pos chance measure, model (5.88) and (5.88) can also be
written as (5.88).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [δ1,δ2]

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

App{λ |Pos{ ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 ≥ f̄1} ≥ δ1} ≥ γ1

Appr{λ |Pos{c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3 ≥ f̄2} ≥ δ2} ≥ γ2

x1 + x2 + x3 ≤ 250
x1 + x2 + x3 ≥ 200
x1 + 4x2 + 2x3 ≤ 600
x1 ≥ 20,x2 ≥ 20,x3 ≥ 20.

The following is the relevant data:

c = (c1,c2,c3) = (1.2,0.8,1.5),
˜̄ξ1 = (ρ1,0.5,0.5)LR, with ρ1 " ([1,2], [0,3]),
˜̄ξ2 = (ρ2,2,2)LR, with ρ2 " ([2,3], [1,4]),
˜̄ξ3 = (ρ3,1,1)LR, with ρ3 " ([3,4], [2,5]),
˜̄ξ4 = (ρ4,1,1)LR, with ρ4 " ([0,1], [0,3]),
˜̄ξ5 = (ρ5,0.5,0.5)LR, with ρ5 " ([1,2], [0,3]),
˜̄ξ6 = (ρ6,0.5,0.5)LR, with ρ6 " ([2,3], [0,3]).

According to the knowledge of fuzzy variable and rough variable, we have that

˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3

= (ρ1x1 + ρ2x2 + ρ3x3,0.5x1 + 2x2 + x3,0.5x1 + 2x2 + x3)LR,

c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3

= (ρ4c1x1 + ρ5c2x2 + ρ6c3x3,1.2x1 + 0.4x2 + 0.75x3,
1.2x1 + 0.4x2 + 0.75x3)LR.

(5.88)
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and

ρ1x1 = ([x1,2x1], [0,3x1]),
ρ2x2 = ([2x2,3x2], [x2,4x2]),
ρ3x3 = ([3x3,4x3], [2x3,5x3]),
ρ4c1x1 = ([0,c1x1], [0,3c1x1]),
ρ5c2x2 = ([c2x2,2c2x2], [0,3c2x2]),
ρ6c3x3 = ([2c3x3,3c3x3], [0,3c3x3]),

and

ρ1x1 + ρ2x2 + ρ3x3

= ([x1 + 2x2 + 3x3,2x1 + 3x2 + 4x3], [x2 + 2x3,3x1 + 4x2 + 5x3])
ρ4c1x1 + ρ5c2x2 + ρ6c3x3

= ([0.8x2 + 3x3,1.2x1 + 1.6x2 + 4.5x3], [0,3.6x1 + 2.4x2 + 4.5x3]).

Here we consider the case when b≤ fi−R−1(δi)β cT
i x≤ d, and readers can try another

three cases through the following method.
According to Propositions 5.7 and 5.8, the problem (5.63) is equivalent to the fol-

lowing multi-objective programming problem,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max [δ1,δ2]

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R−1(δ1)≤ − f̄1+3x1+4x2+5x3−2γ1(3x1+3x2+3x3)
0.5x1+2x2+x3

R−1(δ2)≤ − f̄2+3.6x1+2.4x2+4.5x3−2γ2(3.6x1+2.4x2+4.5x3)
1.2x1+0.4x2+0.75x3

x1 + x2 + x3 ≤ 250
x1 + x2 + x3 ≥ 200
x1 + 4x2 + 2x3 ≤ 600
x1,x2,x3 ≥ 0.

(5.89)

Since reference function R(·) is non-increasing continuous function, so maxδi is
equal to minR−1(δi), and it is equal to min−R−1(δi) or model (5.90),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max [F1(x),F2(x)]

s.t.

⎧⎪⎪⎨
⎪⎪⎩

x1 + x2 + x3 ≤ 250
x1 + x2 + x3 ≥ 200
x1 + 4x2 + 2x3 ≤ 600
x1,x2,x3 ≥ 0,

(5.90)

where
F1(x) := − f̄1+3x1+4x2+5x3−2γ1(3x1+3x2+3x3)

0.5x1+2x2+x3
,

F2(x) := − f̄2+3.6x1+2.4x2+4.5x3−2γ2(3.6x1+2.4x2+4.5x3)
1.2x1+0.4x2+0.75x3

.

H0
i and H1

i (i = 1,2) are calculated as follows:

H1
1 =−599.91, H0

1 =−850.83, H1
2 =−751.47, H0

2 =−1126.83.
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Then we can use the ε-constraint method to solve it. We suppose that the first objective
F1 is the main objective, and we set ε2 = 4, f̄1 =−800, f̄2 =−1000, and γ1 = γ2 = 0.9.
We can get the following model (5.91),

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max F1(x)

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F2(x)≥ ε2

x1 + x2 + x3 ≤ 250
x1 + x2 + x3 ≥ 200
x1 + 4x2 + 2x3 ≤ 600
x1,x2,x3 ≥ 0.

(5.91)

After calculating the model (5.91), we obtain the follow efficient solution

(x1,x2,x3) = (26.09,113.04,60.87).

5.5.3 Non-linear Fu-Ro DCM and Fu-Ro Simulation Based
Parallel TS

For the Fu-Ro DCM, we adopted the Fu-Ro simulation 3 based parallel TS to solve.

5.5.3.1 Fu-Ro Simulation 3 for Chance

First we introduce the simulation for α-chance of Fu-Ro variables which is very im-
portant in Fu-Ro DCM.

Suppose that ξ is an n-dimensional fuzzy rough vector defined on the rough
space (Λ ,Δ ,A ,π), and f : Rn →Rm is a measurable function. For any real number
α ∈ (0,1], we design a fuzzy rough simulation to compute the α-chance Ch{ f (ξ )≤
0}(α). That is, we should find the supremum β̄ such that

Appr{λ ∈Λ |Cr{ f (ξ (λ )) ≤ 0} ≥ β̄} ≥ α. (5.92)

We sample λ 1,λ 2, · · · ,λ N from� and λ 1,λ 2, · · · ,λ N from Λ according to the mea-
sure π . For any number v, let N(v) denote the number of λk satisfyingCr{ f (ξ (λ k))≤
0} ≥ v for k = 1,2, · · · ,N, and N(v) denote the number of λ k satisfying

Cr{ f (ξ (λ k))≤ 0} ≥ v, (5.93)

for k = 1,2, · · · ,N, whereCr{·}may be estimated by fuzzy simulation. Then we may
find the maximal value v such that

N(v)+ N(v)
2N

≥ α. (5.94)

This value is an estimation of β̄ .
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The procedure is as follows:
Step 1. Generate λ 1,λ 2, · · · ,λ N from� according to the measure π .
Step 2. Generate λ 1,λ 2, · · · ,λ N from Λ according to the measure π .
Step 3. Find the maximal value v such that (5.94) holds.
Step 4. Return v.

Example 5.9. Suppose the Fu-Ro variables ξ1 and ξ2 are defined as follows:

ξ1 = (ρ1,ρ1 + 1,ρ1 + 2), with ρ1 = ([1,2], [0,3]),
ξ1 = (ρ2,ρ2 + 1,ρ2 + 2), with ρ1 = ([2,3], [1,4]).

After a run of Fu-Ro simulation 3 with 5000 cycles, we get that

Ch{ξ1 + ξ2}(0.9) = 0.72.

5.5.3.2 Parallel TS

We introduce the parallel tabu search algorithm to solve the multi-objective
problem.

TS is an efficient tool to solve the multi-objective problems. However, as the prob-
lem size gets larger, TS has some drawbacks:

(a) TS needs to compute the objective function for solution candidates in the neigh-
borhood around a solution at each iteration. The calculation is very time consuming in
large-scale problems. The large size problem often gives a large neighborhood even
though the neighborhood is defined as a set of solution candidates with the Hamming
distance equal to 1.

(b) The complicated non-linear optimal problem has many local minima in large
scale problems. That implies that one-point search does not give satisfactory solu-
tions due to the huge search space. Complicated optimal problems require solution
diversity.

In this section, the decomposition of the neighborhood accommodates drawback.
The neighborhood is decomposed into several sub-neighborhoods. A processor may
be assigned to each sub-neighborhood so that the best solution candidate is selected
independently in each sub-neighborhood. After selecting the best solution in each
sub-neighborhood, the best solution is eventually selected from the best solutions in
the sub-neighborhood. Also, the multiple Tabu lengths is proposed to deal with the
multi-objective problem with fuzzy rough parameters. TS itself has only one Tabu
length. Moreover, it is important to find out better solutions from different directions
rather than from only one direction for a longer period. Namely it is effective to make
the solution search process more diverse.

Many classifications of parallel TS algorithms have been proposed [326, 327].
They are based on many criteria: number of initial solutions, identical or different
parameter settings, control and communications strategies. We have identified two
main categories (Figure 5.12).
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Parallel TS algorithms

Domain decomposition Multiple TS tasks

Decomposition of the
search space

Decomposition of the
neighborhood

Independent Cooperative

same or different parameter setting
(initial solution, tabu list size, ...)

Fig. 5.12 Hierarchical classification of parallel TS strategies.

Domain decomposition: Parallelism in this class of algorithms relies exclusively on:

(1) The decomposition of the search space: the main problem is decomposed into
a number of smaller subproblems, each subproblem being solved by a different TS
algorithm [328].

(2)The decomposition of the neighborhood: the search for the best neighbor at each
iteration is performed in parallel, and each task evaluates a different subset of the
partitioned neighborhood [329, 330].

A high degree of synchronisation is required to implement this class of
algorithms.

Multiple tabu search tasks: This class of algorithms consists in executing multiple TS
algorithms in parallel. The di.erent TS tasks start with the same or di.erent parameter
values (initial solution, tabu list size, maximum number of iterations, etc.). Tabu tasks
may be independent (without communication)[331, 332] or cooperative. A coopera-
tive algorithm has been proposed in [327], where each task performs a given number
of iterations, then broadcasts the best solution. The best of all solutions becomes the
initial solution for the next phase.

Parallelizing the exploration of the search space or the neighborhood is problem-
dependent. This assumption is strong and is met only for few problems. The second
class of algorithms is less restrictive and then more general. A parallel algorithm that
combines the two approaches (two-level parallel organization) has been proposed in
[333].

We can extend this classification by introducing a new taxonomy dimension: the
way scheduling of tasks over processors is done. Parallel TS algorithms fall into three
categories depending on whether the number and/or the location of work (tasks, data)
depend or not on the load state of the parallel machine (Table 5.5):

Non-adaptive: This category represents parallel TS in which both the number of
tasks of the application and the location of work (tasks or data) are generated at
compile time (static scheduling). The allocation of processors to tasks (or data)
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Table 5.5 Another taxonomy dimension for parallel TS algorithms

Tasks or Data
Number Location

Non-adaptive Static Static
Semi-adaptive Static Dynamic

Adaptive Dynamic Dynamic

remains unchanged during the execution of the application regardless of the current
state of the parallel machine. Most of the proposed algorithms belong to this class.

An example of such an approach is presented in [334]. The neighborhood is parti-
tioned in equal size partitions depending on the number of workers, which is equal to
the number of processors of the parallel machine. In [330], the number of tasks gen-
erated depends on the size of the problem and is equal to n2, where n is the problem
size.

When there are noticeable load or power differences between processors, the
search time of the non-adaptive approach presented is derived by the maximum exe-
cution time over all processors (highly loaded processor or the least powerful proces-
sor). A significant number of tasks are often idle waiting for other tasks to complete
their work.

Semi-adaptive: To improve the performance of the parallel non adaptive TS algo-
rithms, dynamic load balancing must be introduced [333, 334]. This class represents
applications for which the number of tasks is fixed at compile-time, but the locations
of work (tasks, data) are determined and/or changed at run-time (as seen in Table 5.5).
Load balancing requirements are met in [334] by a dynamic redistribution of work
between processors. During the search, each time a task finishes its work, it proceeds
to a work-demand. Dynamic load balancing through partition of the neighborhood is
done by migrating data.

However, the parallelism degree in this class of algorithms is not related to load
variation in the parallel system: when the number of tasks exceeds the number of idle
nodes, multiple tasks are assigned to the same node. Moreover, when there are more
idle nodes than tasks, some of them will not be used.

Adaptive: A parallel adaptive program refers to a parallel computation with a dynam-
ically changing set of tasks. Tasks may be created or killed function of the load state
of the parallel machine. Di.erent types of load state dessimination schemes may be
used [337]. A task is created automatically when a processor becomes idle. When a
processor becomes busy, the task is killed. Next, let’s introduce the design about the
parallel adaptive TS introduced by Talbi [338].

The programming style used is the master/workers paradigm. The master task gen-
erates work to be processed by the workers. Each worker task receives a work from
the master, computes a result and sends it back to the master. The master/ workers
paradigm works well in adaptive dynamic environments because:
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(1) when a new node becomes available, a worker task can be started there,
(2) when a node becomes busy, the master task gets back the pending work which

was being computed on this node, to be computed on the next available node.
The master implements a central memory through which passes all communica-

tion, and that captures the global knowledge acquired during the search. The number
of workers created initially by the master is equal to the number of idle nodes in the
parallel platform. Each worker implements a sequential TS task. The initial solution
is generated randomly and the tabu list is empty. The parallel adaptive TS algorithm
reacts to two events (Figure 5.13):

Worker task 1
Worker task i Transition of the load state:

Idle to Busy

Fold

Master

Central memory

Best global solution
Intermediate solutions
(Short and long term
memory + iterations)

Central memory

Intermediate solution

Short-term and long-term memory + number of iterations

Best local solution

Worker task j

Local memory

Initial solution (randomly generated or intermediate solution)

Eventually (Short-term and long-term memory + number of iterations)

Best global solution

Unfold

Transition of the load
state: Busy to Idle

Local memory

Best local solution
Short and long memories
Number + Iterations

Flow of information

Event (load state transition)

Fig. 5.13 Architecture of the parallel adaptive TS.

Appransition of the load state of a node from idle to busy: If a node hosting a worker
becomes loaded, the master folds up the application by withdrawing the worker. The
concerned worker puts back all pending work to the master and dies. The pending
work is composed of the current solution, the best local solution found, the short-term
memory, the long-term memory and the number of iterations done without improving
the best solution. The master updates the best global solution if it’s worst than the best
local solution received.

Appransition of the load state of a node from busy to idle: When a node becomes
available, the master unfolds the application by starting a new worker on it. Before
starting a sequential TS, the worker task gets the values of the different parameters
from the master: the best global solution and an initial solution which may be an
intermediate solution found by a folded TS task, which constitutes a “good” initial
solution. In this case, the worker receives also the state of the short-term memory,
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the long-term memory and the number of iterations done without improving the best
solution.

The local memory of each TS task which defines the pending work is composed of
(Figure 5.13): the best solution found by the task, the number of iterations applied, the
intermediate solution and the adaptive memory of the search (short-term and long-
term memories). The central memory in the master is then composed of (Figure 5.13):
the best global solution found by all TS tasks, the dierent intermediate solutions with
the associated number of iterations and adaptive memory.

5.5.3.3 Numerical Example

Example 5.10. Consider the following problem,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max f1(x) = Ch{ ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 ≥ f1}(α)

max f2(x) = Ch{
√

c1
˜̄ξ4x1 + c2

˜̄ξ5x2 + c3
˜̄ξ6x3 ≥ f2}(β )

s.t.

⎧⎪⎪⎨
⎪⎪⎩

x1 + x2 + x3 ≤ 250
x1 + x2 + x3 ≥ 200
x1 + 4x2 + 2x3 ≤ 600
x1 ≥ 20,x2 ≥ 20,x3 ≥ 20,

where c = (c1,c2,c3) = (1.2,0.8,1.5),

˜̄ξ1 = (ρ1,1,1), with ρ1 " ([1,2], [0,3]),
˜̄ξ2 = (ρ2,1,1), with ρ2 " ([2,3], [1,4]),
˜̄ξ3 = (ρ3,1,1), with ρ3 " ([3,4], [2,5]),
˜̄ξ4 = (ρ4,1,1), with ρ4 " ([0,1], [0,3]),
˜̄ξ5 = (ρ5,1,1), with ρ5 " ([1,2], [0,3]),
˜̄ξ6 = (ρ6,1,1), with ρ6 " ([2,3], [0,3]),

and ˜̄ξi(i = 1,2, · · · ,6) are Fu-Ro variables. We set α = β = 0.9, f1 = 1500, and
f2 = 1300.

Next, we apply the tabu search algorithm based on the fuzzy rough simulation to
solve the nonlinear programming problem (5.10) with the fuzzy rough parameters.

Step 1. Set the move step h = 0.5 and the h neighbor N(x,h) for the present point x
is defined as follows,

N(x,h) =
{

y|
√

(x1− y1)2 +(x2− y2)2 +(x3− y3)2 ≤ h

}
.

The random move of point x to point y in its h neighbor along direction s is given by

ys = xs + rh,

where r is a random number that belongs to [0,1], s = 1,2,3.
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Step 2. Give the step set H = {h1,h2, · · · ,hr} and randomly generate a feasible point
x0 ∈ X . One should empty the Tabu list T (the list of inactive steps) at the beginning.

Step 3. For each active neighbor N(x,h) of the present point x, where h ∈ H − T ,
a feasible random move that satisfies all the constraints in problem (5.10) is to be
generated.

Step 4. Construct the single objective function as follows,

f (x,ξ ) = w1Ch{ ˜̄ξ1x1 + ˜̄ξ2x2 + ˜̄ξ3x3 ≥ f1}(α)
+w2Ch{c1

˜̄ξ4x1 + c2
˜̄ξ5x2 + c3

˜̄ξ6x3 ≥ f2}(β ),

where w1 + w2 = 1. Compare the f (x,ξ ) of the feasible moves with that of the cur-
rent solution by the fuzzy rough simulation. If an augmenter in new objective function
of the feasible moves exists, one should save this feasible move as the updated cur-
rent one by adding the corresponding step to the Tabu list T and go to the next step;
otherwise, go to the next step directly.

Step 5. Stop if the termination criteria are satisfied; other wise, empty T if it is full;
then go to Step 3. Here, we set the computation is determined if the better solution
doesn’t change again.

Table 5.6 The result computed by parametric TS algorithm

ω1 ω2 ω3 ω4 ω5 x1 x2 x3 x4 x5

0.40 0.15 0.15 0.15 0.15 50.48 59.14 80.17 50.12 60.00
0.15 0.40 0.15 0.15 0.15 50.47 59.15 80.17 50.12 60.00
0.15 0.15 0.40 0.15 0.15 50.47 59.14 80.18 50.12 60.00
0.15 0.15 0.15 0.40 0.15 50.47 59.14 80.17 50.13 60.00
0.15 0.15 0.15 0.15 0.40 50.48 59.14 80.17 50.12 60.00

5.6 Application to Integrated Logistics Network Design Problem

Here we consider the problem proposed in section 5.1, and we consider the demand
and the amount of the collected recycling packages as triangular fuzzy variables (ξ−
l,ξ ,ξ + r) from the view point of credibility theory, in which the value of ξ is a
rough variable ([a,b], [c,d]), and l,r are the left spread and the right spread of the
triangular fuzzy variable. Therefore, a logistics network design problem with fuzzy
rough parameters appears. In this case, a fuzzy rough variable can be used to deal with
this kind of combined uncertainty of fuzziness and roughness. Building the model and
solving the problem of logistics network design in a fuzzy rough environment is a new
area of research interest.
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5.6.1 Modelling for Integrated Reuse Logistics Network under
Fuzzy Rough Environment

In the following text of this section, we present the details of modelling for the reuse
integrated logistics network.

5.6.1.1 Notation

The symbols of the proposed model are defined as follows:
(1) Indices:

i: the location of producers (i = 1,2, · · · , I),
j: the location of distributors (i = 1,2, · · · , I),
k: the location of collectors/wholesalers (i = 1,2, · · · , I),
t: the alternative place of recyclers (i = 1,2, · · · , I).

(2) Variables:
xPD

i j : the quantity of products from producer i to distributor j,
xDC

jk : the quantity of products from distributor j to wholesaler k,

xCR
kt : the quantity of packages from collector k to recycler t,

xCD
k j : the quantity of packages from collector k to distributor j,

xRP
ti : the quantity of packages from recycler t to producer i,

xDP
ji : the quantity of packages from distributor j to producer i,

xi: the quantity of new packages bought by producer i,
yR

t : 0-1 variable, whether the alternative recycler t will be chosen or not, 0 denotes
we don’t choose, 1 denotes we choose it,
yD

j : 0-1 variable, whether the distributor j will be expanded or not, 0 denotes we don’t
expand, 1 denotes we expand it,
yDC

jk : 0-1 variable, whether the distributor j will send products to wholesaler k, 0 de-
notes will not send, 1 denotes will send.

(3) Fu-Ro parameters:
¯̃Dk denote the demand of wholesaler K,
¯̃Rk denote the quantity of the recycling packages collected by collector k,
¯̃T Lim
k : the time limit of wholesaler k.

(4) Certain parameters:
Cab: the unit transport cost from a to b (a and b could denote producer, distributor,
recycling center or wholesaler),
Tab: the transport time from a to b,
V R

t : the variable cost of recycler t processing unit package,
V D

j : the variable cost of expanded distributor j processing unit package,
T R

t : the time of recycler t processing unit package,
T D

j : the time of expanded distributor j processing unit package. FR
t : the fixed cost of

building a recycler t,
FD

j : the fixed cost of expanding a distributor j,
QR

t : the capacity of recycler t processing packages,
QD

j : the capacity of expanded distributor j processing packages,
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αR
t : the discard proportion after recycler t processing packages,

αD
j : the discard proportion after expanded distributor j processing packages,

NR: the ceiling number of recyclers,
ND: the ceiling number of expanded distributors,
Ul

k: the unit default cost when the demand of wholesaler k are not met,
Ue

k : the processing cost when the supply to wholesaler k are excessive,
Pi: the variable cost of producer i buying unit package,
UD

k : the disposal cost when the time limits are not satisfied.

5.6.1.2 Modelling

We built the following mathematical model according to the conceptual model.
The first objective is minimizing total costs. After analysis, we conclude that there

are six parts which should be included in this objective, as follows: The first part of
the objective is the total transportation cost,

[∑
i∈I

∑
j∈J

xPD
i j

¯̃Ci j + ∑
j∈J

∑
k∈K

xDC
jk

¯̃Cjk + ∑
k∈K

∑
t∈T

xCR
kt

¯̃Ckt

+ ∑
t∈T

∑
i∈I

xRP
ti

¯̃Cti + ∑
k∈K

∑
j∈J

xCD
k j

¯̃Ck j + ∑
j∈J

∑
i∈I

xDP
ji

¯̃Cji]1.

The second part is the total fixed cost of building recycling centers and expanding the
distribution centers,

[∑
t∈T

yR
t FR

t + ∑
j∈J

yD
j FD

j ]2.

The third part is the total variable cost of processing packages,

[∑
k∈K

∑
t∈T

xCR
kt V R

t + ∑
k∈K

∑
j∈J

xCD
k j V D

j ]3.

The fourth part is the cost of buying new packages,

[∑
j∈J

xiPi]4.

The fifth part is the cost when there exists an imbalance between supply and demand,
when the supply is less than the demand, there will occur default costs, or when the
supply is more than the demand, the redundant products will be processed at a cost,

[∑
k∈K

Ul
k max( ¯̃Dk−∑

j∈J
xDC

jk ,0)+ ∑
k∈K

Ue
k max(∑

j∈J
xDC

jk − ¯̃Dk,0)]5.

The sixth part is the cost of disposing of the un-useable packages,

[ ∑
k∈K

∑
t∈T

xCR
kt αR

t UP + ∑
k∈K

∑
j∈J

xCD
k j αD

j UP]6.
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However, minimizing total costs is not the only objective of a logistics company.
Shortening the time taken in the distribution and recycling is also required. Hence
the second objective is to minimize total time.

TotalTime = ∑
t∈T

∑
k∈K

¯̃TktyR
t + ∑

t∈T
(T R

t ∑
k∈K

xCR
kt )+ ∑

i∈I
∑

t∈T

¯̃TtiyR
t

∑
j∈J

∑
k∈K

¯̃Tk jyD
j + ∑

j∈J
(T D

j ∑
k∈K

xCD
k j )+ ∑

i∈I
∑
j∈J

¯̃TjiyD
j .

Now we can obtain the objectives function as shown in (5.95):

minC =
∑
i∈I

∑
j∈J

xPD
i j

¯̃Ci j + ∑
j∈J

∑
k∈K

xDC
jk

¯̃Cjk + ∑
k∈K

∑
t∈T

xCR
kt

¯̃Ckt + ∑
t∈T

∑
i∈I

xRP
ti

¯̃Cti

+ ∑
k∈K

∑
j∈J

xCD
k j

¯̃Ck j + ∑
j∈J

∑
i∈I

xDP
ji

¯̃Cji + ∑
t∈T

yR
t FR

t + ∑
j∈J

yD
j FD

j + ∑
k∈K

∑
t∈T

xCR
kt V R

t

+ ∑
k∈K

∑
j∈J

xCD
k j V D

j + ∑
j∈J

xiPi + ∑
k∈K

Ul
k max( ¯̃Dk− ∑

j∈J
xDC

jk ,0)

+ ∑
k∈K

Ue
k max( ∑

j∈J
xDC

jk − ¯̃Dk,0)+ ∑
k∈K

∑
t∈T

xCR
kt αR

t UP + ∑
k∈K

∑
j∈J

xCD
k j αD

j UP,

minT =
∑

t∈T
∑

k∈K

¯̃TktyR
t + ∑

t∈T
(T R

t ∑
k∈K

xCR
kt )+ ∑

i∈I
∑

t∈T

¯̃TtiyR
t

∑
j∈J

∑
k∈K

¯̃Tk jyD
j + ∑

j∈J
(T D

j ∑
k∈K

xCD
k j )+ ∑

i∈I
∑
j∈J

¯̃TjiyD
j .

(5.95)

These two objectives are subject to the following constraints.
(1) Balance constraints:

For every node in Figure 2, the inflow and the outflow must be balanced, such that
the total recycling quantity of the recycling centers and expanded distribution centers
should be less than or equal to the quantity of used package collected by the collec-
tors. Also the quantity discarded from the recycling center (expanded distribution
center) to the disposal place should be less than or equal to the quantity discarded of
the recycling center (expanded distribution center), and the total quantity of bottles
including recycled bottles and new bottles should be used to produce new products.
For one distribution center, the inflow should be equal to the outflow, so we have the
following (5.96-5.100) constraints,

∑
t∈T

xCR
kt + ∑

j∈J
xCD

k j ≤ ¯̃Rk,k ∈ K, (5.96)

∑
i∈I

xRP
ti ≤ (1−αR

t ) ∑
k∈K

xCR
kt , t ∈ T, (5.97)

∑
i∈I

xDP
ji ≤ (1−αD

j ) ∑
k∈K

xCD
k j , j ∈ J, (5.98)

∑
t∈T

xRP
ti + ∑

j∈J
xDP

ji + xi = ∑
j∈J

xPD
i j , i ∈ I, (5.99)
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∑
j∈J

xPD
i j = ∑

k∈K

xDC
jk , j ∈ J. (5.100)

(2) Capacity constraints:
There are some limits on capacity of the recycling centers and the expanded distri-
bution centers, so we have constraint (5.101) and (5.102),

∑
k∈K

xCR
kt ≤ yR

t QR
t , t ∈ T, (5.101)

∑
k∈K

xCD
k j ≤ yD

j QD
j , j ∈ J. (5.102)

(3) Number constraints:
Before setting up a network, because of capital or other reasons, the decision maker
will give the numbers of recycling centers and expanded distribution centers, so we
have the following (5.103) and (5.104) constraints,

∑
t∈T

yR
t ≤ NR, (5.103)

∑
j∈J

yD
j ≤ ND. (5.104)

(4) Time constraints:
For every wholesaler, the total transport time is required to be under a time limit, so
we have constraint (5.105),

∑
j∈J

¯̃TjkyDC
jk ≤ T Lim

k ,k ∈ K. (5.105)

(5) Logical constraints:
In order to describe some non-negative variables and 0-1 variables in the model, we
present constraint (5.106) and (5.107),

xPD
i j ,xDC

jk ,xCR
kt ,xCD

k j ,xRP
ti ,xDP

ji ,xi ≥ 0, i ∈ I, j ∈ J,k ∈ K, t ∈ T, (5.106)

yR
t ,yD

j ,yDC
jk = {0,1}, j ∈ J,k ∈ K, t ∈ T. (5.107)

5.6.2 Uncertain Linear Multi-objective Model

It’s obvious that the above model is non-linear, because the fifth and the seventh part
exist in the first objective function. In order to simplify it, we changed it to an uncertain
linear multi-objective model by adding the constraints (5.108)-(5.110).

e−k = ¯̃Dk−∑
j∈J

xDC
jk ,k ∈ K, (5.108)
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e+
k = ∑

j∈J
xDC

jk − ¯̃Dk,k ∈ K, (5.109)

e−k ,e+
k ≥ 0. (5.110)

We proposed the Fu-Ro linear multi-objective model for integrated logistics as
follows:

minC =
∑
i∈I

∑
j∈J

xPD
i j

¯̃Ci j + ∑
j∈J

∑
k∈K

xDC
jk

¯̃Cjk + ∑
k∈K

∑
t∈T

xCR
kt

¯̃Ckt + ∑
t∈T

∑
i∈I

xRP
ti

¯̃Cti + ∑
k∈K

∑
j∈J

xCD
k j

¯̃Ck j

+ ∑
j∈J

∑
i∈I

xDP
ji

¯̃Cji + ∑
t∈T

yR
t FR

t + ∑
j∈J

yD
j FD

j + ∑
k∈K

∑
t∈T

xCR
kt V R

t + ∑
k∈K

∑
j∈J

xCD
k j V D

j + ∑
j∈J

xiPi

+ ∑
k∈K

Ul
ke−k + ∑

k∈K
Ue

k e+
k + ∑

k∈K
∑

t∈T
xCR

kt αR
t UP + ∑

k∈K
∑
j∈J

xCD
k j αD

j UP

minT =
∑

t∈T
∑

k∈K

¯̃Tkt yR
t + ∑

t∈T
(T R

t ∑
k∈K

xCR
kt )+ ∑

i∈I
∑

t∈T

¯̃TtiyR
t + ∑

j∈J
∑

k∈K

¯̃Tk jyD
j + ∑

j∈J
(T D

j ∑
k∈K

xCD
k j )

+ ∑
i∈I

∑
j∈J

¯̃TjiyD
j

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
t∈T

xCR
kt + ∑

j∈J
xCD

k j ≤ ¯̃Rk,k ∈ K

∑
i∈I

xRP
ti ≤ (1−αR

t ) ∑
k∈K

xCR
kt , t ∈ T

∑
i∈I

xDP
ji ≤ (1−αD

j ) ∑
k∈K

xCD
k j , j ∈ J

∑
t∈T

xRP
ti + ∑

j∈J
xDP

ji + xi = ∑
j∈J

xPD
i j , i ∈ I

∑
j∈J

xPD
i j = ∑

k∈K
xDC

jk , j ∈ J

∑
k∈K

xCR
kt ≤ yR

t QR
t ,t ∈ T

∑
k∈K

xCD
k j ≤ yD

j QD
j , j ∈ J

∑
t∈T

yR
t ≤ NR

∑
j∈J

yD
j ≤ ND

∑
j∈J

¯̃TjkyDC
jk ≤ T Lim

k ,k ∈ K

e−k = ¯̃Dk− ∑
j∈J

xDC
jk ,k ∈ K

e+
k = ∑

j∈J
xDC

jk − ¯̃Dk,k ∈ K

xPD
i j ,xDC

jk ,xCR
kt ,xCD

k j ,xRP
ti ,xDP

ji ,xi,e
−
k ,e+

k ≥ 0, i ∈ I, j ∈ J,k ∈ K, t ∈ T
yR

t ,yD
j ,yDC

jk = {0,1}, j ∈ J,k ∈ K, t ∈ T.

(5.111)
The model we proposed is actually a Fu-Ro two-objective linear model, and both
of the two objectives are needed for optimization. These two objectives are un-
comparable, and there exists inconsistency between them. When we want to re-
duce the transportation time, but have a large number of recycling centers, we could
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reduce the number of recycling centers, so it will reduce the cost of building these
centers, but the transportation time will inevitably rise.

Since the model (5.111) is including Fu-Ro variables, we need to use the Fu-Ro ex-
pected value operator to handle the objective functions and Fu-Ro chance-constrained
operator to deal with the constraints.

5.6.3 Application to Beer Company

The beer company Lan Ma was set up in the year 2000 and is located in Xi’an in
China’s Shanxi province and it has developed successfully for the years of its opera-
tion. This enterprise has 2 production plants in Xian Yang and 3 distribution centers,
each with the responsibility for a section of Shanxi - Guan Zhong, Shan Bei and Shan
Nan. There are 5 main wholesalers and they are located in Wei Nan, Shang Luo, Han
Zhong, An Kang and Yan An.

This company wants to establish integrated logistics through building up
recycling centers or expanding the existing distribution centers, and integrate the for-
ward logistics and reverse logistics to a loop logistics network which has the abilities
of production, distribution, recycle and reuse. So we used this model to help the com-
pany to program an integrated logistics network.

At present, according to the survey results, there are four options which could
be used to establish new recycling centers, and all three existing distribution cen-
ters could be expanded. The alternative locations are Zhou Zhi, Pu Cheng, Zha
Shui and Hua Xian. The largest processing capacities of these 4 places are 20000,
23000, 15000, and 27000. The fixed construction costs are 12.5, 16.5, 10 and
19.5(*10000RMB). We suppose the discard proportions are all 0.2 and they want to
build 3 recycling centers at the most. We also could expand the 3 distribution centers to
process the recycled packages, the expanding costs are 6.6, 5.4 and 7(*10000RMB),
their capacities are 11000, 9000, and 12000, the discard proportions are all 0.2. The
company has requested that we expand 2 at the most. The price of a new bottle is
0.7(RMB). The other data are as follows.

Table 5.7 Amount of recycling and demand

Wholesaler Recycling amount Demand
Wein (ξ1,100,100)LR , (ξ6,100,100)LR ,

ξ1 "([8000,10000],[8500,9500]) ξ6 "([10000,12000],[10500,11500])
Shangl (ξ2,50,50)LR, (ξ7,100,100)LR ,

ξ2 "([6000,7000],[6250,6750]) ξ7 "([7000,8000],[7250,7750])
Hanzh (ξ3,100,100)LR , (ξ8,100,100)LR ,

ξ3 "([12000,14000],[12500,13500]) ξ8 "([14000,16000],[14500,15500])
Ank (ξ4,50,50)LR, (ξ9,100,100)LR ,

ξ4 "([10000,11000],[10250,10750]) ξ9 "([11000,13000],[11500,12500])
Yan an (ξ5,100,100)LR , (ξ10,100,100)LR ,

ξ5 "([16000,18000],[16500,17500]) ξ10 "([18000,20000],[18500,19500])
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Transport cost, and time are triangular fuzzy numbers with the left and the right
spread 0.02 and 0.1, the middle value of the triangular fuzzy variable are rough vari-
ables which shown in following Table. 5.9

We introduced the above data of the company into the proposed model, and got
the integrated logistics network model for this Lan Ma beer company. After solv-
ing it, we can provide some advice to help the leader make strategic decisions about
constructing the integrated logistics network system.

Table 5.8 Default processing cost and time limit (h) of every wholesaler

Wholesaler Wein Shangl Hanzh Ank Yan an

Cost of short supply 1.2 1 1.1 1 1.5

Cost of excessive supply 1.8 1.9 1.6 1.3 1.5

Time limit 4 4 3.5 4 3.5

Default cost 3000 3500 4000 3000 4500

Table 5.9 The expected value of transport cost, and time (h) from collectors to recyclers

Wein Shangl Hanzh Ank Yan an

Zhouzh 0.1 0.12 0.1 0.05 0.12
2.2 3.8 4.2 2.7 2.9

Puch 0.13 0.15 0.06 0.11 .08
2.9 3.0 4.0 4.5 3.3

Zhash 0.11 0.15 0.08 0.13 0.2
3.5 4.5 2.5 5.0 2.9

Huax 0.12 0.1 0.19 0.1 0.11
2.8 3.2 4.5 4.0 3.0

Table 5.10 The expected value of transport cost, and time (h) from collectors to distributors
(recycled bottles)

Wein Shangl Hanzh Ank Yan an

Guanzh 0.08 0.15 0.06 0.12 0.10
3.5 4.0 2.5 2.0 4.5

Shanb 0.10 0.08 0.10 0.12 0.08
2.5 2.0 4.5 3.5 5.0

Shann 0.11 0.10 0.08 0.13 0.11
4.0 2.5 3.0 3.5 3
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Table 5.11 The expected value of transport cost, and time (h) from distributors to wholesalers
(products)

Wein Shangl Hanzh Ank Yan an

Guanzh 0.23 0.31 0.15 0.17 0.3
3.5 4.0 2.5 2.0 4.5

Shanb 0.17 0.2 0.15 0.18 0.27
2.5 2.0 4.5 3.5 5.0

Shann 0.13 0.25 0.22 0.18 0.26
4.0 2.5 3.0 3.5 3

Table 5.12 Transport cost and time from producers to distributors (recycled bottles)

Guanzh Shanb Shann

Plant 1 0.1 0.08 0.15
2.5 1.0 2.0

Plant 2 0.15 0.2 0.08
2.0 2.5 1.5

Table 5.13 Transport cost and time from distributors to producers (products)

Guanzh Shanb Shann

Plant 1 0.3 0.25 0.35
2.5 1.0 2.0

Plant 2 0.35 0.4 0.2
2.0 2.5 1.5

Table 5.14 The expected value of transport cost from recyclers to producers

Zhouzh Puch Zhash Huax

Plant 1 0.17 0.13 0.12 0.15
1.5 2.0 2.5 1.5

Plant 2 0.1 0.16 0.11 0.08
2.5 1.0 2.0 2.5
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Table 5.15 Processing cost, processing time (s) and disposal cost of recyclers

Zhouzh Puch Zhash Huax

Processing cost 0.25 0.2 0.23 0.18

Processing time 3.0 2.5 3.5 2.0

Disposal cost 0.2 0.15 0.18 0.13

Table 5.16 The expected value of processing cost, time (s) and disposal cost of distributors

Guanzh Shanb Shann

Processing cost 0.28 0.22 0.25

Processing time 5.0 6.0 4.0

Disposal cost 0.2 0.15 0.18

We use the expected value operator and the chance operator to tackle the fuzzy
rough objectives and the fuzzy rough constraint, and used the Fu-Ro simulation-
based GA to solve this problem under the predetermined confidence level (0.8, 0.8);
the corresponding parameters are 100 genetic generation iteration, the population of
every generation is 10, the crossover rate 0.3 and the mutation rate is 0.2.

After a run of a genetic algorithm computer program, we obtained the follow-
ing satisfactory solution: the optimal value of the objective function is Z*=456253
(RMB), T*=2200.3 (hour) and the value of the corresponding location variables are
in Table. 5.17.

Table 5.17 Location decision

Zhouzh Puch Zhash Huax Guanzh Shanb Shann

0 1 1 0 1 1 0

Then we could do some sensitivity analysis: we adjusted the weights of these two
objectives, and the solutions of the integrated logistics network problem are shown
in Table. 5.18.

It shows that small changes in the weights do not significantly influence the lo-
cation results, and the result is satisfactory to the decision maker of this company.
On all accounts, we offered this strategy for Lan Ma beer company - establish the
recycling centers in Pu Cheng and Zha Shui, and expand the Guan Zhong and Shan
Bei distribution centers. If we consider a given budget, with regard to the number of
recycling centers built and the distribution centers expanded, we make the following
observations. First, when the location cost factor increases, i.e., the recycling center
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Table 5.18 The results of TS (Appr=0.8, Pos=0.8)

wC wT C∗ T ∗ Zhouzh Puch Zhash Huax Guanzh Shanb Shann

0.7 0.3 455353 2289.5 0 1 1 0 1 1 0
0.6 0.4 456253 2200.3 0 1 1 0 1 1 0
0.5 0.5 456696 2186.3 0 1 1 0 1 1 0

location costs increase relative to other costs, the number of opened recycling cen-
ters decreases. Second, when the transportation costs between facilities increase, the
number of opened recycling centers also decreases. However, since the total cost and
time are often conflicting, the handling of multi-objective programming is dependent
on the decision-maker’s objective. Generally, the solution to this problem often is a
balance of multiple objectives.
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