
InstQL: A Query Language for Virtual Institutions
Using Answer Set Programming

Luke Hopton, Owen Cliffe�, Marina De Vos∗, and Julian Padget∗

Department of Computer Science
University of Bath, BATH BA2 7AY, UK

lch21@bath.ac.uk,{occ,mdv,jap}@cs.bath.ac.uk

Abstract. Institutions provide a mechanism to capture and reason about “cor-
rect” and “incorrect” behaviour within a social context. While institutions can
be studied in their own right, their real potential is as instruments to govern
open software architectures like multi-agent and service-oriented systems. Our
domain-specific action language for normative frameworks, InstAL aims to help
focus designers’ attention on the expression of issues such as permission, viola-
tion and power but does not help the designer in verifying or querying the model
they have specified. In this paper we present the query language InstQL which in-
cludes a number of powerful features including temporal constraints over events
and fluents that can be used in conjunction with InstAL to specify those traces
that are of interest in order to investigate and reason over the underlying nor-
mative models. The semantics of the query language is provided by translating
InstQL queries into AnsProlog, the same computational language as InstAL.
The result is a simple, high-level query and constraint language that builds on
and uses the reasoning power of ASP.

1 Introduction

Institutions [21, 23, 6], also known as normative frameworks or organisations in the lit-
erature, are a specific class of multi-agent systems where agent behaviour is governed
by social norms and regulations. Within institutions it is possible to monitor the per-
missions, empowerment and obligations of participants and to indicate violations when
norms are not followed. The change of the state over time as a result of these actions
provides participants with information about each others behaviour. The information
can also be used by the designer to query and verify normative properties, effects and
expected outcomes in an institution. The research on institutions such as electronic con-
tracts, and rules of governance over the last decade has demonstrated that they are pow-
erful mechanism to make agent interactions more effective, structured and efficient. As
with human regulatory settings, institutions become useful when it is possible to verify
that particular properties are satisfied for all possible scenarios.

Answer set programming [3, 14], a logic programming paradigm, permits, in con-
trast to related techniques like the event calculus [19] and C+[11], the specification of

� This work has been supported in part by the European Commission, project FP7-215890
(ALIVE).

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 102–121, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 103

both problem and query as an executable program, thus eliminating the gap between
specification and verification language. But perhaps more importantly, the specification
language and implementation language are identical, allowing for more straightforward
verification and validation.

In [6], we introduced a formal model for institutions, which admits reasoning about
them by mapping to AnsProlog, logic programs under answer set semantics. To make
the reasoning process more accessible to users, in [7] we developed an action language
named InstAL that allows a developer to design an institution in a more straightfor-
ward manner. InstAL is then translated into AnsProlog, resulting in the same program
as the formal description would have provided. While InstAL allowed the designer to
specify the institution, it provided little to no support for verifying the institution and
its design—indeed, as it stands queries must be written directly in AnsProlog, thereby
undoing most of the benefits of specifying in InstAL.

In this paper, we present InstQL: a query language designed to complement InstAL.
Its semantics is provided by ASP and it is used together with a description of an institu-
tion either in InstAL or AnsProlog. InstQL can be used in two ways: as a tool to select
certain transitions in the state space of the institution or to model-check a certain path.
For temporal queries we describe how queries expressed in the widely used temporal
logic LTL may be expressed (via simple transformations) in our query language. A brief
summary of the InstQL language appears in [17]. In this paper we provide an extended
account of the language, illustrations of its capabilities and applications and situate it
firmly in the context of multi-agent systems.

2 Answer Set Programming

In answer set programming ([3]) a logic program is used to describe the requirements
that must be fulfilled by the solutions of a certain problem. Answer set semantics is a
model-based semantics for normal logic programs. Following the notation of [3], we
refer to the language over which the answer set semantics is defined as AnsProlog.

An AnsProlog program consists of a set of rules of the form a : −B,not C. with a
being an atom and B, C being (possibly empty) sets of atoms. a is called the head of the
rule, while B ∪ not C is the body. The rule can be read as: “if we know all atoms in B
and we do not know any atom in C, then we must know a”. Rules with an empty body
are called facts, as the head is always considered known. An interpretation is a truth
assignment to all atoms in the program. Often only those literals that are considered
true are mentioned, as all the other are false by default (negation as failure).

The semantics of programs without negation (effectively horn clauses) are simple
and uncontroversial, the Tp (immediate consequence) operator is iterated until a fixed
point it reached. The Gelfond-Lifschitz reduct is used to deal with negation as failure.
This takes a candidate set and reduces the program by removing any rule that depends
on the negation of an atom in the set and removing all remaining negated atoms. Answer
Sets are candidate sets that are also models of the corresponding reduced programs. The
uncertain nature of negation-as-failure gives rise to several answer sets, which are all
solutions to the problem that has been modelled.

104 L. Hopton et al.

Algorithms and implementations for obtaining answer sets of logic programs are
referred to as answer set solvers. Some of the most popular and widely used solvers are
DLV [8], SMODELS [20] and CLASP [13].

3 Institutions

In this section, we give an informal description of institutions and their mapping to ASP.
A more in-depth description can be found in [6, 7].

The concept of normative systems has long been used in economics, legal theory
and political science to refer to systems of regulation which enable or assist human
interaction at a high-level. The same principles could be applied to multi-agent systems.

The model we use is based on the concept of exogenous events that describe salient
events of the physical world—“shoot somebody”—and normative events that are gen-
erated by the normative framework—“murder”—but which only have meaning within
a given social context. While exogenous events are clearly observable, normative ones
are not, so how do they come into being? Searle [18] describes the creation of a norma-
tive state of affairs through conventional generation, whereby an event in one context
counts as or generates the occurrence of another event in a second context. Taking the
physical world as the first context and by defining conditions in terms of states, nor-
mative events may be created that count as the presence of states or the occurrence of
events in the normative world.

Thus, we model an institution as a set of normative states that evolve over time
subject to the occurrence of events, where a normative state is a set of fluents that may
be held to be true at some instant. Furthermore, we may separate such fluents into
domain fluents, that depend on the institution being modelled and normative fluents
that are common to all specifications and may be classified as follows:

– Permission: A permission fluent captures the property that some event may occur
without violation. If an event occurs, and that event is not permitted, then a violation
event is generated.

– Normative Power: This represents the normative capability for an event to be
brought about meaningfully, and hence change some fluents in the normative state.
Without normative power, the event may not be brought about and has no effect;
for example, a marriage ceremony will only bring about the married state, if the
person performing the ceremony is empowered so to do.

– Obligation: Obligation fluents are modelled as the dual of permission. They state
that a particular event must occur before a given deadline event (such as a time-out)
and is associated with a specified violation. If an obligation fluent holds and the
necessary event occurs then the obligation is said to be satisfied. If the correspond-
ing deadline event occurs then the obligation is said to be violated and the specified
violation event is generated. Such a violation event can then be dealt with perhaps
by a participating agent or the normative framework itself.

Each event, being exogenous or normative, when generated could have an impact on
the next state. For example, the event could trigger a violation or it could result in
permissions being granted or retracted (e.g. once you obtain your driving licence, you
obtain the permission to drive a car, but, if you are convicted of a driving offence you
lose that permission). The effects of events are modelled by the consequence relation.

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 105

Thus we represent the normative framework by these five components: (i) the initial
state—the set of fluents which are true when the institution is created, (ii) the set of flu-
ents that capture the essential facts about the normative state, (iii) the set of events (both
exogenous and normative) that can occur, (iv) the conventional generation relation, and
(v) the consequence relation.

All state changes in a system stem from the occurrence of exactly one exogenous
event. When such an event occurs, the transitive closure of the conventional genera-
tion function computes all empowered normative events that are directly or indirectly
caused by the occurrence of the underlying event. This may include violations for un-
satisfied obligations or unpermitted events. The consequences of each of these events
with respect to the current state is computed using the consequence relationship. The
combination of added and deleted fluents results in the new normative state. The seman-
tics of this framework are defined over traces of exogenous events. Each trace induces
a sequence of normative states, called a model or scenario.

In [6], it was shown that the formal model of an institution could be translated to
AnsProlog program such that the answer sets of the program correspond exactly to
the traces of the institution. A detailed description of the mapping can be found there.

The mapping uses the following atoms: ifluent(P) to identify fluents, evtype(E, T)
to describe the type of an event, event(E) to denote the events, instant(I) for time
instances, final(I) for the last time instance in a trace, next(I1, I2) to establish time
ordering, occurred(E, I) to indicate that the event happened at time I, observed(E, I)
that the event was observed at that time, holdsat(P, I) to state that the institutional
fluent holds at I, initiated(P, I) and terminated(P, I) for fluents that are initiated
and terminated at I.

When modelling traces, we need to monitor the domain over a period of time (or
a sequence of states). We model time using instant(I) and an ordering on instances
established by next(I1, I2), with the final instance defined as final(I). Following
convention, we assume that the truth of a fluent F ∈ F at a given state instance I
is represented as holdsat(F, I), while an event or an action E ∈ E is modelled as
occurred(E, I).

In [5] we developed InstAL, an action language inspired by action languages such as
C+ and A [11]. The use of the action language makes generating the AnsProlog code
less open to human coding errors, and perhaps more importantly, easier to understand
and create by narrowing the semantic gap without losing either expressiveness or a
formal basis for the language.

Institutions specifications could give rise to a vast number of valid traces and associ-
ated histories. Often not all of them are equally useful for the task at hand and selection
criteria have to be applied. Through InstQL, we aim to offer the designer the same sort
of abstraction for queries as is provided by InstAL for the specification.

4 The Dutch Auction: A Motivating Example

4.1 The Case Study

As a case study we will look a fragment of the Dutch auction protocol with only one
round of bidding. Protocols such as this have been extensively studied in the area of

106 L. Hopton et al.

agent-mediated electronic commerce, as they are particularly suited to computer imple-
mentation and reasoning.

In this protocol a single agent is assigned to the role of auctioneer, and one or more
agents play the role of bidders. The purpose of the protocol as a whole is either to
determine a winning bidder and a valuation for a particular item on sale, or to establish
that no bidders wish to purchase the item. Consequently, conflict—where two bids are
received “simultaneously”—is treated as an in-round state which takes the process back
to the beginning. The protocol is summarised as follows:
1. Round starts: auctioneer selects a price for the item and informs each of the bidders

present of the starting price. The auctioneer then waits for a given period of time
for bidders to respond.

2. Bidding: upon receipt of the starting price, each bidder has the choice whether to
send a message indicating their desire to bid on the item at that price or not.

3. Single Bid: at the end of the prescribed period of time, if the auctioneer has received
a single bid from a given agent, then the auctioneer is obliged to inform each of the
participating agents that this agent has won the auction.

4. No bids: if no bids are received at the end of the prescribed period of time, the
auctioneer must inform each of the participants that the item has not been sold.

5. Multiple bids: if more than one bid was received then the auctioneer must inform
every agent that a conflict has occurred.

6. Termination: the protocol completes when an announcement is made indicating that
an item is sold or that no bids have been received.

7. Conflict resolution: in the case where a conflict occurs then the auctioneer must
re-open the bidding and re-start the round in order to resolve the conflict.

Based on the protocol description above, the following agent actions are defined: the
auctioneer announces a price to a given bidder (annprice), the bidder bids on the cur-
rent item (annbid), the auctioneer announces a conflict to a given bidder (annconf)
and the auctioneer announces that the item is sold (annsold) or not sold (annunsold)
respectively. In addition to the agent actions we also include a number of time-outs in-
dicating the three external events—that are independent of agents’ actions—that affect
the protocol. For each time-out we define a corresponding protocol/institutional event
suffixed by dl indicating a deadline in the protocol. The differentiation between time-
out and deadline events allow a finer and more abstract control structure. While we do
not want or can restrict the behaviour of an external clock (time-out) we can control the
behaviour of the institution to the occurrence of the these events.
priceto, pricedl: A time-out indicating the deadline by which the auctioneer must

have announced the initial price of the item on sale to all bidders.
bidto, biddl: A time-out indicating the expiration of the waiting period for the auc-

tioneer to receive bids for the item.
decto, decdl: A time-out indicating the deadline by which the auctioneer must have

announced the decision about the auction to all bidders
When the auctioneer violates the protocol, an event badgov occurs and the auction
dissolves.

Figure 1 gives the InstAL specification of the third phase of the protocol. The
excerpt shows how internal events are generated and how fluents are initiated or

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 107

annsold(A,B) generates sold(A,B); (DAR-1)

annunsold(A,B) generates unsold(A,B); (DAR-2)

annconf(A,B) generates conf(A,B); (DAR-3)

biddl terminates pow(bid(B,A)); (DAR-4)

biddl initiates pow(sold(A,B)),pow(unsold(A,B)),

pow(conf(A,B)), pow(notified(B)),perm(notified(B)); (DAR-5)

biddl initiates perm(annunsold(A,B)),perm(unsold(A,B)),

obl(unsold(A,B),desdl,badgov) if not havebid; (DAR-6)

biddl initiates perm(annsold(A,B)),perm(sold(A,B)),

obl(sold(A,B), desdl, badgov) if havebid, not conflict; (DAR-7)

biddl initiates perm(annconf(A,B)),perm(conf(A,B)),

obl(conf(A,B), desdl, badgov) if havebid, conflict; (DAR-8)

unsold(A,B) generates notified(B); (DAR-9)

sold(A,B) generates notified(B); (DAR-10)

conf(A,B) generates notified(B); (DAR-11)

notified(B) terminates pow(unsold(A,B)), perm(unsold(A,B)),

pow(sold(A,B)), pow(conf(A,B)), pow(notified(B)),

perm(sold(A,B)), perm(conf(A,B)), perm(notified(B)),

perm(annconf(A,B)),perm(annsold(A,B)),perm(annunsold(A,B)); (DAR-12)

desdl generates finished if not conflict; (DAR-13)

desdl terminates havebid,conflict,perm(annconf(A,B)); (DAR-14)

desdl initiates pow(price(A,B)), perm(price(A,B)),

perm(annprice(A,B)), perm(pricedl),pow(pricedl),

obl(price(A,B),pricedl,badgov) if conflict; (DAR-15)

Fig. 1. A partial InstAL specification for the Dutch Auction Round Institution

terminates depending on the current state and the occurrence of events. Normative flu-
ents of power, permission and obligation are represented as pow, per) and obl re-
spectively. The full specification can be found on [5]. Figure 2 shows the translation
of the first seven InstAL specification rules of Figure 1 translated in AnsProlog and
grounded for one auctioneer and one bidding agent. The entire program contains about
1500 rules. Although the program can be written by hand, we believe that this process
is rather tiresome and error prone.

Figure 3 shows the state transition diagram for an auctioneer and a single bidder.
Every path in the graph is a valid trace.

4.2 Queries

To guide the development of our query language InstQL for institutional models written
in InstAL, five types of existing queries which were directly encoded in AnsProlog
were considered.

The first case is a simple constraint involving event occurrence. An example would
be a query to obtain those traces in which the auctioneer violates the protocol. This
query states that answer sets corresponding to traces in which the event badgov occurs
at any point should be excluded. The key part of this condition is that an event can occur
at any time.

bad ← occurred(badgov, I), instant(I).
⊥ ← bad.

(Q1)

108 L. Hopton et al.

occured(sold(a,b),I) :-
occured(annsold(a,b),I),holdsat(pow(dutch auction round,sold(a,b)),I),instant(I).

occured(unsold(a,b),I) :-
occured(annunsold(a,b),I),holdsat(pow(dutch auction round,unsold(a,b)),I),instant(I).

occured(conf(a,b),I) :-
occured(annconf(a,b),I),holdsat(pow(dutch auction round,conf(a,b)),I),instant(I).

terminated(pow(dutch auction round,bid(b,a)),I) :-
occured(biddl,I),holdsat(live(dutch auction round),I),instant(I).

initiated(pow(dutch auction round,sold(a,b,b)),I) :-
occured(biddl,I),holdsat(live(dutch auction round),I),instant(I).

initiated(pow(dutch auction round,unsold(a,b)),I) :-
occured(biddl,I),holdsat(live(dutch auction round),I),instant(I).

initiated(pow(dutch auction round,conf(a,b)),I) :-
occured(biddl,I),holdsat(live(dutch auction round),I),instant(I).

initiated(pow(dutch auction round,ntified(b)),I) :-
occured(biddl,I),holdsat(live(dutch auction round),I),instant(I).

initiated(perm(alterted(b)),I) :-
occured(biddl,I),holdsat(live(dutch auction round),I),instant(I).

initiated(perm(annunsold(a,b)),I) :-
occured(biddl,I),not holdsat(havebid,I),holdsat(live(dutch auction round),I),instant(I).

initiated(perm(unsold(a,b)),I) :-
occured(biddl,I),not holdsat(havebid,I),holdsat(live(dutch auction round),I),instant(I).

initiated(obl(unsold(a,b),desdl,badgov),I) :-
occured(biddl,I),not holdsat(havebid,I),holdsat(live(dutch auction round),I),instant(I).

initiated(perm(annconf(a,b)),I) :-
occured(biddl,I),holdsat(havebid,I),holdsat(conflict,I),
holdsat(live(dutch auction round),I),instant(I).

initiated(perm(conf(a,b)),I) :-
occured(biddl,I),holdsat(havebid,I),holdsat(conflict,I),

holdsat(live(dutch auction round),I),instant(I).
initiated(obl(conf(a,b),desdl,badgov),I) :-

occured(biddl,I),holdsat(havebid,I),holdsat(conflict,I),
holdsat(live(dutch auction round),I),instant(I).

occured(notified(b),I) :-
occured(unsold(a,b),I),holdsat(pow(dutch auction round,alterted(b)),I),instant(I).

occured(notified(b),I) :-
occured(sold(a,b,b),I),holdsat(pow(dutch auction round,notified(b)),I),instant(I).

occured(notified(b),I) :-
occured(conf(a,b),I),holdsat(pow(dutch auction round,alterted(b)),I),instant(I).

Fig. 2. The first seven DAR-InstAL specification rules translated into AnsProlog and grounded
for one auctioneer and bidding agent

Similarly, the second query involves a fluent being true at any time during the execu-
tion. This time, only those answer sets corresponding to traces that satisfy the condition
should be included. As an example, we have a query that selects those traces in which
a conflict occurs, i.e. more than one bidder submits a timely bid.

hadconflict ← holdsat(conflict, I), instant(I).
⊥ ← not hadconflict.

(Q2)

In the third case, the query condition is for an event to occur at the same time as
a fluent holds. Again, only answer sets in which the condition is satisfied should be
included. An example of such a query would be selecting those traces in which at the
occurrence of the desdl-event we also have a conflict between two or more bidders.

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 109

live(dutch_auction_round)

desto
[desdl]
[finished]

live(dutch_auction_round)
obl(unsold(a,b),desdl,badgov)

annunsold(a,b)
[notified(b)]
[unsold(a,b)]

desto
[badgov]
[desdl]
[finished]

live(dutch_auction_round)
obl(unsold(a,b),desdl,badgov)

annsold(a,b)
[notified(b)]
[sold(a,b)]
[viol(annsold(a,b))]
[viol(sold(a,b))]

annconf(a,b)
[conf(a,b)]
[notified(b)]
[viol(annconf(a,b))]
[viol(conf(a,b))]

live(dutch_auction_round)
obl(price(a,b),pricedl,badgov)

createdar

havebid
live(dutch_auction_round)

onlybidder(b)

havebid
live(dutch_auction_round)
obl(sold(a,b),desdl,badgov)

onlybidder(b)

bidto
[biddl]

priceto
[badgov]
[pricedl]

live(dutch_auction_round)

annprice(a,b)
[price(a,b)]

havebid
live(dutch_auction_round)

onlybidder(b)

annbid(b,a)
[bid(b,a)]

live(dutch_auction_round)

priceto
[pricedl]

havebid
live(dutch_auction_round)

onlybidder(b)

desto
[desdl]
[finished]

desto
[badgov]
[desdl]
[finished]

priceto
[pricedl]

havebid
live(dutch_auction_round)
obl(sold(a,b),desdl,badgov)

onlybidder(b)

desto
[badgov]
[desdl]
[finished]

desto
[badgov]
[desdl]
[finished]

annsold(a,b)
[notified(b)]
[sold(a,b)]

annconf(a,b)
[conf(a,b)]
[notified(b)]
[viol(annconf(a,b))]
[viol(conf(a,b))]

annunsold(a,b)
[notified(b)]
[unsold(a,b)]
[viol(annunsold(a,b))]
[viol(unsold(a,b))]

bidto
[biddl]

annbid(b,a)
[bid(b,a)]

Fig. 3. States of the auction round for a single bidder

restarted ← occurred(desdl, I), holdsat(conflict, I),
instant(I).

⊥ ← not restarted.
(Q3)

The fourth case declares a parameterised condition. Whilst earlier we consid-
ered conditions that are true/false for a whole model, this case declares a condition
startstate that is true for a particular fluent. In addition, this query requires that
the fluent is true in the state after an event occurs. The use of parameterised condi-
tions is illustrated in the following statement that enumerates all the fluents that are true
when the protocol has just started, which is indicated by the occurrence of the event
createdar:

startstate(F) ← holdsat(F, I1), occurred(createdar, I0),
next(I0, I1), ifluent(F).

(Q4)

The fifth query can be used to verify the protocol. This query features the use
of previously declared conditions in subsequent conditions. (Note that one of these,
startstate(F), is the condition specified in query (Q4).) The protocol states that if
more than one bidder bids for the good, the protocol needs to restart completely. This
implies that all the fluents from the beginning of the protocol need to be reinstated and
all others have to be terminated. The query checks this has been done, but if we still
obtain a trace with this query we know something has gone wrong.

110 L. Hopton et al.

Action Language
Domain Description
(A, C, InstAL , ASP)

Instance
Description

(A, C, InstAL, ASP)

ASP Translation
(language specific) ASP Grounder/Solver

(lparse/SMODELS,
gringo/clasp,DLV)

Answer Sets

Interpretation

Query
Description

(InstQL)

Query Translation
(InstQL processor)

Fig. 4. The Data Flow of for Designing Institutions

startstate(F) ← holdsat(F, I1), occurred(createdar, I0),
next(I0, I1), ifluent(F).

restartstate(F) ← holdsat(F, I1), occurred(desdl, I0),
holdsat(conflict, I0),
next(I0, I1), ifluent(F).

missing(F) ← startstate(F), not restartstate(F), ifluent(F).
added(F) ← restartstate(F), not startstate(F), ifluent(F).
invalid ← missing(F), ifluent(F).
invalid ← added(F), ifluent(F).

⊥ ← not invalid.

(Q5)

From the above, it is clear that it is possible to express these queries in AnsProlog,
but it requires a solid knowledge of the formalism and implementation detail to get the
order of events and fluents correct. InstQL was designed to remove these difficulties and
allow designers to write queries in a language more closely related to natural language.

5 InstQL

In this section we introduce the query language, InstQL, that can either be used in
conjunction with InstAL or directly with an AnsProlog program representing the in-
stitution, whether the program is derived from the formal description or InstAL.

Figure 4 shows the flow chart of the relationships between the various components.
A designer will first have to specify the institution. This can either be written directly in
AnsProlog or using InstAL by providing the domain description and the institutional
description which are then translated into AnsProlog . For verification, queries on the
traces are specified in InstQL and then translated into AnsProlog. Both programs are
then merged and passed to the grounder and solver. The returned answer sets are then
interpreted. A possible course of action might be that the description of the institution
needs to be changed or that a new query is required.

The InstQL queries act as filters on the valid traces of the institutions. Instead of
returning all traces we use the queries to return only the queries that satisfy the query,
in a similar way as, for example, SQL queries.

InstQL has two basic concepts: (i) constraint: an assertion of a property that must be
satisfied by a valid trace (for example, a restriction on which traces are considered), and
(ii) condition: a specification of properties that may hold for a given trace. Conditions

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 111

can be declared in relation to other conditions and constraints can involve declared
conditions. Table 1 summarises the syntax of the language, while the remainder of this
section discusses in detail the elements of the language and their semantics.

5.1 Syntax

InstQL provides two predicates that form the basis of all InstQL queries. The first is
happens(Event), meaning that the specified event should occur at some point during
the lifetime of the institution. The second is holds(Fluent), which means that the
specified fluent is true at any point during the lifetime of the institution. That is:

<predicate> ::= happens(<identifier>) | holds(<identifier>)

where the identifier corresponds to an event e (in the first case) or a fluent f (in the
second case).

Negation (as failure) is provided by the unary operator not:
<literal> ::= not <predicate> | <predicate>

To construct complex queries, it is often easier to break them up into sub-queries, or
in InstQL terminology, sub-conditions. For example, suppose we have defined a condi-
tion called my cond which specifies some desired property. We can then join this with
other criteria e.g. “my cond and happens(e)”. Sub-conditions may be referenced
within rules as condition literals:

<condition_literal> ::= not <identifier> | <identifier>

Note that this allows for parameterised conditions to be defined by the definition of an
identifier.

The building block of query conditions is the term:

<term> ::= <after_expr> | <condition_literal>

The after expression also allows for the simpler constructs of <literal> and
<while expr>. Terms may be grouped and connected by the connectives and and or

which provide logical conjunction and disjunction.
<conjunction> ::= <term> and <conjunction> | <term>
<disjunction> ::= <term> or <disjunction> | <term>

On its own, this does not allow us create arbitrary combinations of predicates and named
conditions and the logical operators and, or, not. To do so we need to be able to declare
conditions:

<condition_decl> ::= condition <identifier> : <disjunction>
| condition <identifier> : <conjunction>;

This construction defines a condition with the specified name to have a value equal
to the specified disjunction or conjunction. This allows the condition name to
be used as a condition literal.

Constraints specify properties of the trace that must be true:
<constraint> ::= constraint <disjunction> | <conjunction> ;

For example, consider the following InstQL query:
constraint happens(e);

This indicates that only traces in which event e occurs should be considered.

112 L. Hopton et al.

Table 1. InstQL Syntax

Expression Definition
<variable> ::= [A-Z][a-zA-Z0-9]*
<variable list> ::= <variable> , <variable list> | <variable>
<name> ::= [a-z][a-zA-Z0-9]*
<param list> ::= (<variable list>)
<identifier> ::= <name> <param list> | <name>
<predicate> ::= happens(<identifier>) | holds(<identifier>)
<literal> ::= not <predicate> | <predicate>
<while literal> ::= <literal> | <condition literal>
<while expr> ::= <while literal> while <while expr> | <while literal>
<after> ::= after(<integer>) | after
<after expr> ::= <while expr> <after> <after expr> |

<while expr>
<condition literal> ::= not <identifier> | <identifier>
<term> ::= <after expr> | <condition literal>
<conjunction> ::= <term> and <conjunction> | <term>
<disjunction> ::= <term> or <disjunction> | <term>
<condition decl> ::= condition <identifier> : <disjunction>; |

condition <identifier> : <conjunction>;
<constraint> ::= constraint <disjunction> ; |

constraint <conjunction>;

To illustrate how this language is used to form queries, consider a simple light bulb
action domain. The fluent on is true when the bulb is on. The event switch turns the
light on or off. We can require that at some point the light is on:

constraint holds(on);

We can require that the light is never on:
condition light_on: holds(on);
constraint not light_on;

There is some subtlety here in that light on is true if at any instant on is true. There-
fore, if light on is not true, there cannot be an instant at which on was true. And what
if the bulb is broken—the switch is pressed but the light never comes on? This can be
expressed as:

constraint not light_on and happens(switch);

Using condition names, we can create arbitrary logical expressions. The statement that
event e1 and either event e2 or e3 should occur can be expressed as follows:

condition disj: happens(e2) or happens(e3);
condition conj: happens(e1) and disj;

We may wish to specify queries of the form “X and Y happen at the same time”.
That is, we may wish to talk about events occurring at the same time as one or more
fluents are true, simultaneous occurrence of events or combinations of fluents being
simultaneously true (and/or false). For this situation, InstQL has the keyword while to
indicate that literals are true simultaneously. Such while expressions are only defined
over literals constructed from predicates (that is, happens and holds) or condition
literals involving condition names. A while expression is defined as follows:

<while_literal} ::= <literal> | <condition_literal>
<while_expr> ::= <literal> while <while_expr> | <literal>

The while-operator has higher precedence than and and or.
Returning to the light bulb example, we can now specify that we want only traces

where the light was turned off at some point:

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 113

constraint happens(switch) while holds(on);

Or that at some point the light was left on:
constraint holds(on) while not happens(switch);

The language allows for the expression of orderings over events. This is done with
the after keyword. This allows statements of the form:

holds(f1) while not holds(f2) after happens(e1)
after happens(e2)

This should be read as: (i) at some time instant k the event e2 occurs (ii) at some other
time instant j the event e1 occurs (iii) at some other time instant i the fluent f1 is true
but the fluent f2 is not true (iv) these time instants are ordered such that i > j > k (that
is, k is the earliest time instant). However, in some cases we need to say not only that a
given literal holds after some other literal, but that this is precisely one time instant later.
Rather than just providing the facility to specify a literal occurs/holds in the next time
instant, this is generalised to say that a literal holds n time instants after another. That
is, for a fluent that does (not) hold at time instant ti or an event that occurs between ti
and ti+1, we can talk about literals that hold at ti+n or occur between ti+n and ti+n+1.
The syntax of an after expression is:

<after> ::= after | after(<integer>)
<after_expr> ::= <while_expr> <after> <after_expr> |

<while_expr>

An after expression may contain only the after operator or the after(n) operator,
depending on how precisely the gap between the two operands is to be specified.

Once again returning to the light bulb example, we can now specify a query which
requires the light to be switched twice (or more):

constraint happens(switch) after happens(switch);

Or that once that light has is on, it cannot be switched off again:
condition switch_off: happens(switch) after holds(on);
constraint not switch_off;

5.2 Semantics

The semantics of an InstQL query is defined by the translation function T which trans-
lates InstQL into AnsProlog. This function takes a fragment of InstQL and generates
a set of (partial) AnsProlog rules. Typically, this set is a singleton; only expressions
involving disjunctions generate more than one rule. The semantics of predicates are
defined as follows:

T (happens(e)) = occurred(e, I), event(e)

T (holds(f)) = holdsat(f, I), ifluent(f)

For a literal of the form not P (where P is a predicate) the semantics is:

T (not P) = not T (P)

while for a condition literal they are:

T (conditionName) = conditionName(I)

T (not conditionName) = not conditionName(I)

114 L. Hopton et al.

and a conjunction of terms is:

T (c1 and c2 and · · · and cn) = T (c1), T (c2), . . . ,T (cn)

A disjunction translates to more than one rule. However, this is defined slightly differ-
ently depending on whether it is part of a condition declaration or a constraint.

T (condition conditionName : c1 or c2 or · · · or cn;) =
{conditionName ← T (ci). | 1 ≤ i ≤ n}

T (constraint c1 or c2 or · · · or cn;) =
{newName← T (ci). | 1 ≤ i ≤ n}∪
{⊥ ← not newName.}

The AnsProlog term newName denotes any identifier that is unique within the Ans-
Prolog program that is the combination of the query and the action program. This
atom becomes true if one of the sub-queries in the disjunction becomes true. In order
to satisfy the entire query at least one the sub-queries not to be true, as expressed by
the constraint. In addition, each time instant I generated in the translation of a predi-
cate represents a name for a time instant that is unique within the InstQL query. Recall
that a condition name may be parameterised: since an InstQL variable translates to a
variable in Smodels, no additional machinery is required. For example, the condition
“condition ever(E): happens(E);” (which just defines an alias for happens) is
translated to “ever(E) ← occurred(E, I), instant(I), event(E).”.

Notice that so far only the translation of constraint and condition provide a specifi-
cation for time (instance). Because of the grammar of our language, the translation
of other terms results in a set of literals which will appear in a rule that already include
this atom.

The semantics for while is:

T (L1 while L2 while · · · while Ln) = T (L1), T (L2), . . . , T (Ln), instant(I)

We give the semantics for the binary operator after(n). This readily generalises for
sequences of after(n) operators mixed with after operators.

T (Wi after(n) Wj) = T (Wi), T (Wj), after(ti, tj, n)

Where ti and tj are the time instants generated by Wi and Wj respectively. This is
defined such that we require n > 0.

We now provide a concrete example of the translation of an after expression to
illustrate this process:

T (happens(e) while holds(f) after happens(d) after(3) holds(g)) =
occurred(e, ti), event(e), holdsat(f, ti), ifluent(f),
instant(ti), occurred(d, tj), event(d), instant(tj),
holdsat(g, tk), ifluent(g), instant(tk),
after(ti, tj), after(tj, tk, 3).

5.3 The Dutch Auction Queries

Having defined the query language InstQL, we return to the example queries for the
Dutch auction from Section 4.

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 115

For (Q1) the following InstQL query is equivalent:
condition bad: happens(badgov);
constraint not bad;

Alternatively, we could look at all the traces in which the protocol is never violated by
one of the bidders.

condition bad: happens(viol(E));
constraint not bad;

An InstQL query that is equivalent to (Q2) is:
constraint holds(conflict);

The following query is equivalent to (Q3):
constraint happens(desdl) while holds(conflict);

For (Q4), the following InstQL query is equivalent:
condition startstate(F): holds(F) after(1) happens(createdar);

For (Q5) the following InstQL query is equivalent:
condition startstate(F): holds(F) after(1) happens(createdar);
condition restartstate(F): holds(F) after(1) happens(desdl)} while holds(conflict);
condition missing(F): startstate(F) and not restartstate(F);
condition added(F): restartstate(F) and not startstate(F);
constraint missing(F) or added(F);

While queries 1-5 demonstrate the capabilities of our query language they might not be
the only queries a designer of the Dutch Auction would pose.

The following query verifies it is never the case that an agent has permission to
perform an action while not having the power. A correct protocol will return no traces.
condition permission(F): holds(perm(F)) while not holds(pow(F));
constraint permission(F);

The following query returns traces containing violations that have not been detected.
condition violation(F): not happens(badgov) after happens(viol(F));
constraint violation(F);

As a designer you also want to verify the order of the important events that need to take
place. The following query verifies that the two deadlines occur in the correct order and
that the corresponding obligations are fulfilled.
condition order: pricedl after desdl;
condition obl: not holds(obligation(E,D,V)) while

not happens(V) after holds(obligation(E,D,V));
constraint: order and not happens(badgov) and obl;

6 Reasoning

6.1 Common Reasoning Tasks

Following the description of InstQL in the preceding section, we now illustrate how it
can be used to perform three common tasks [24] in computational reasoning: prediction,
postdiction and planning.

Prediction is the problem of ascertaining the resulting state for a given (partial)
sequence of events/actions and initial state. That is, suppose some transition system
is in state s ∈ S with S the set of all possible states of the system and a sequence
A = a1, . . . , an of actions/events occurs. Then the prediction problem (s, A) is
to decide the set of states {S′ ⊆ S} which may result. Postdiction is the converse
problem: if a system is in state s′ and we know that A = a1, . . . , an have occurred, then
the problem (A, s′) is to decide the set {S ⊆ S} of states that could have held before

116 L. Hopton et al.

A. The planning problem (s, s′) is to decide which sequence(s) of actions, {A′ ⊆ A},
with A all possible sequences of actions/events, will bring about state s′ from state s.

Identifying States: A state is described by the set of fluents that are true
s = {f1, . . . , fn} where fi are the fluents. States containing or not containing given
fluents may be identified in InstQL using the while operator:

holds(f_1) while ... while holds(f_n) while
not holds(g_1) while ... while not holds(g_k)

where f1...k are fluents which must hold in the matched state and g1...k are those fluents
that do not.

Describing Event Ordering: A sequence of events E = e1, . . . , en may be encoded as
an after expression. If we have complete information, then we know that e1 occurred,
then e2 at the next time instant and so on up to en with no other events occurring in
between. In this case, we can express E as follows:

happens(e_n) after(1) ... after(1) happens(e_1)

This can be generalised to the case where ei+1 occurs after ei with some known number
k ≥ 0 of events happening in between:

happens(e_i+1) after(1) ... after(k+1) happens(e_i)

Alternatively if we do not know k (that is, we know that ei+1 happens later than ei but
zero or more events occur in between) we can express this as:

happens(e_i+1) after happens(e_i)

We can combine these cases throughout the formulation of E to represent the amount
of information available.

The Prediction Problem: Given an initial state s and a sequence of events E, the
prediction problem (s, E) can be expressed in InstQL as:

constraint E after(1) s;

This query limits traces to those in which at some point s holds after which the events
of E occur in sequence. The answer sets that satisfy this query will then contain the
states {S′ ⊆ S}.

The Postdiction Problem: Given a sequence of events E and a resulting state s′, the
postdiction problem (E, s′) can be expressed as:

constraint s’ after(1) E;

This requires s′ to hold in the next instant following the final event of E.

The Planning Problem: Given a pair of states s and s′ the planning problem (s, s′)
can be expressed in InstQL as:

constraint s’ after s;

This allows any non-empty sequence of events to bring about the transition from s to
s′. If we want to consider plans of length k (i.e. E = e1, . . . , ek) then we express this:

constraint s’ after(k) s;

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 117

Reasoning with institutions: There are two distinct types of reasoning about institu-
tions. The first is the verification and exploration of normative properties. After specify-
ing an institutions, queries can be used to determine that desired properties of the model
are present or to elicit emergent properties that were perhaps not intended. The second
kind is for the participants/agents within that institution to use the available information
in their decision processes. The participants could, using the current state and the speci-
fication apply prediction to determine previous actions of other participants, postdiction
to evaluate possible effects of their actions or planning to determine the actions neces-
sary to achieve certain goals. Using AnsProlog as the underlying formalism, designers
and institutional participants can use partial information to reason about the institution
itself of other participants.

6.2 Modelling Linear Temporal Logic

LTL [22] is a commonly used temporal logic used for model checking transitions sys-
tems. In this section we show that LTL style reasoning can also modelled using our
InstQL. We opted for LTL since it shares the same linear time structure as our model
and also allows complex expressions of temporal properties between states. Traditional
LTL syntax is often considered difficult to write and we believe that InstQL would be
a valuable alternative, especially if one wants to reason about events and fluents at the
same time.

Linear Temporal Logic: (LTL) [22] provides us with a formalism for reasoning about
paths of state transition systems. In LTL, we have a set AP of atomic propositions. The
syntax of LTL [10] is defined as follows: (i) p ∈ AP is a formula of LTL (ii) ¬f is a
formula if f is a formula (iii) f ∨ g is a formula if f and g are formulae (iv) f ∧ g is a
formula if f and g are formulae (v) �f is a formula if f is a formula (“sometimes f”)
(vi) fUg is a formula if f and g are formulae (“f until g”). We abbreviate ¬�¬f by
�f (“always f”).

The semantics of LTL is given with respect to a structure M = (S,X,L) and a
path of state transitions. M contains a non-empty set of states, X a non-empty set of
paths and L : S → P(AP) a labelling function which assigns to each state a set of
propositions true in that state. A path is a non-empty sequence of states x = s0s1s2
We denote by xk the suffix of path x starting with the kth state. In addition, we use
first(x) to denote the first state in path x.

The semantics of LTL is defined inductively in terms of interpretations (paths) over
a linear structure (time) by the relation |= [10, 9, 25, 16, 4]. Without loss of generality
we use the natural numbers N as our structure. An interpretation is a function π : N →
P(AP), which assigns a truth value to each element of AP at every instant i ∈ N .

Let M be a structure and x ∈ X, then:

π, i |= p ∈ AP ⇐⇒ p ∈ π(i)
π, i |= ¬f ⇐⇒ p, i 	|= f
π, i |= f ∨ g ⇐⇒ π, i |= f or π, i |= g
π, i |= f ∧ g ⇐⇒ π, i |= f and π, i |= g
π, i |= �f ⇐⇒ ∃j ≥ i · π, j |= f
π, i |= fUg ⇐⇒ ∃j ≥ i · π, j |= g ∧ (∀i ≤ k < j · π, k |= f)

Where the structure is understood, we will omit it from the relation and write x |= f .

118 L. Hopton et al.

In principle LTL (originally) only refers to states, and as a general observation, the
merging of actions and fluents inside LTL is non-trivial as you are merging state-relative
and transition-relative concepts. With institutions we want to reason about both fluents
and events, so AP = E ∪ F .

Expressing LTL in InstQL : There is an important difference between LTL and
InstQL in the sense that InstQL is not designed for model checking but for model gen-
eration. Given a query, it will generate those paths that satisfy the criteria. If π is the
path given to LTL for verification, InstQL will return all traces that satisfy the query
which may or may not include the path given for verification. To solve this problem one
can provide the path itself as a constraint to the InstQL query. This can be easily done
using a combination of while and after in the same way as be defined event ordering
above. This will restrict the search space to those traces in which the path is satisfied. If
the path itself is invalid (e.g. two observed events during the same time, fluents that are
in a state while they should not be), then the query will automatically not be satisfied.

The LTL query itself can then be expressed in InstQL. We will briefly describe how
the various formulae may be expressed as conditions in InstQL. Each sub-formula S of
the formula F that is to be checked is translated as a condition with a unique name
cond-S. To make a formula F effective (i.e. only compute traces for which F is
true) we add a constraint to the query that specifies the condition for F must hold:
“constraint cond-F;”. Atomic elements a of AP and their negation simply be-
come conditions with happens(a) or holds(a) or their negation depending on the
type of a. Consequently, LTL disjunction can be handled be handled as a disjunction
in InstQL. Conjunction is LTL is like our InstQL while as all sub-formulas need to be
evaluated over the same time instant.

For formulae of the form “�F ” we define the conditions:

condition diamond-F: cond-F;

Although it might seem similar to the encoding of atomic elements, this encoding
guarantees a possible different time instance.

Defining until (FUG) is more subtle. Naı̈vely, we could define “F until G” as:

condition false_before(cond-F,cond-G): cond-F after not cond-G;
condition cond-FUG: & not false_before(cond-F, cond-G);

However, translating this into AnsProlog we see that the condition is too strong. To
make the example easier assume that F is a fluent and G an event and that we skip the
encoding for the sub-formula:

false before(F, E) ← occurred(E, I), event(E), instant(I),

not holdsat(F, J), ifluent(F), instant(J), after(I, J).

until(F, E) ← not false before(F, E).

We can satisfy false before(f, e) if we can find time instants ti and tj such that
tj < ti, e happens at ti and at tj f is false. That is, f cannot be false before any
occurrence of e. The correct semantics of until is that f cannot be false before the first
occurrence of e [16].

In order to achieve the correct semantics, we need to introduce new fluents
happened(e) to the domain for each event e ∈ E to indicate that e occurred for

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 119

the first time. This is done automatically when we translate InstQL to AnsProlog to
indicate when an event has happened at any time in the past during the current trace.

holdsat(happened(E), I) ← occurred(E, I), event(E), instant(I).

holdsat(happened(E), I) ← occurred(E, J), after(I, J),

event(E), instant(I), instant(J).

To allow for this we need for each event E that is part of the query and the until
statement the condition condition con-E: holds(happened(E));.

This allows us to then specify FUG as follows:
condition fb(cond-F, cond-G): not cond-F while not cond_G;

condition cond-FUG: not fb(cond-F, cond-G) and cond-E
and cond-F;

6.3 Institutional Designer and Reasoning Tools: InstSuite

Both InstQL and InstAL were designed and implemented to make representing and
reasoning about institutions more intuitive and effective. While they were designed
to work together they can be used independently from each other. InstAL and
InstQL specifications can be written in any text processor and then translated into an
answer set program and passed on to an answer set solver that computes the requested
traces and models. To provide normative designer more support, we have developed an
integrated development environment InstEdit with syntax highlighting. Together they
are referred to as InstSuite , which source code, a combination of Java and perl, can be
obtained from http://agents.cs.bath.ac.uk/InstSuite/

7 Discussion

Previous work in [2, 1] (using the action language C+ [11]), has shown that action
languages are particularly suited to modelling normative domains, where actions in the
language are equated with institutional events. In [7] we extend this approach with the
language InstAL which incorporates normative properties directly into the syntax of
the language and operates by translating institutional specifications into AnsProlog.
In this case we are able to directly leverage the reasoning capabilities inherent in the
underlying logic programming platform to query properties of models. By building
InstQL upon this model we are able to offer an equivalent level of abstraction to InstAL
while at the same time remaining independent of the action language itself InstAL.

InstQL was designed for institutions, but it can be used a general query language for
action domains, provided their descriptions can be mapped to AnsProlog. Compared
to existing query languages for action domains, InstQL allows for simultaneous actions
and the definition of conditions which can then be used to create more complex queries.

In [15], the authors present four query languages: P ,Q,Qn,R. Queries expressed
in those languages can also be expressed using InstQL. The action query language
P has only two constructs : now L and necessarily F after A1, ..., An,
where L refers to a fluent or its negation, F is a fluent and where Ai are actions.
These queries can be encoded in InstQL using the techniques discussed in Section 6.
now L can be written as constraint happens(An) after(1) ... after(1)

 http://agents.cs.bath.ac.uk/InstSuite/

120 L. Hopton et al.

happens(A1) after(1) holds(L) while necessarily F after A1, ..., An

is expressed as holds(F) after(1) happens(An) after(1) ... after(1)

happens(A1). Similar techniques can be used for the query languages Q, Qn and
R. Given the action ordering technique used, we can assign specific times to each of
the fluents. InstQL can express all the same kinds of queries as the query languages
above, but in addition InstQL is capable of modelling simultaneous actions and fluents,
which permits the expression of complex queries using disjunctions and conjunctions
of conditions and, above all, allows reasoning with incomplete information, thus fully
exploiting the reasoning power of answer set programming.

The Causal Calculator (CCALC) [12] is a versatile tool for modelling action do-
mains. While queries are possible in CCALC, InstQL has been designed specifically as
a query language, providing constructs to make specifying queries more natural. Rel-
ative ordering of actions or states is much more difficult in CCALC than it is InstQL ,
nor does CCALC allow for the formulation of composite queries (condition literals).

As it stands InstQL is an intuitive and versatile query and abduction language for ac-
tion domains. The language is succinct and without redundancy (i.e. no operator can be
expressed as a function of other operators). However, from a software engineering point
of view, we could make the language more accessible by providing commonly used
constructs as part of the language. To this end, we plan to incorporate constructs such
as eventually(F), never(F), always(F), before(F), before(E), and an
if-construct to express conditions on events or fluents. For the same reasons, we plan
to add time specific happens(E,I) and hold(F,I) predicates and the possibility to
construct general logical expression without the need for condition statements.

At the moment InstQL only supports linear time. For certain domains, other ways of
representing time might be more appropriate. While linear time assumes implicit uni-
versal quantification over all paths in the transition function, branching time allows for
explicit existential and universal quantification of all paths and alternating time offers
selective quantification over those paths that are possible outcomes. While linear and
branching time are natural ways of describing time in closed domains, alternating time
is more suited to open domains.

In [7] we introduced the concept of multi-institutions; groups of institutions that
can influence each others’ state. In the near future we want to extend InstQL to multi-
institution specifications.

References

[1] Artikis, A., Sergot, M., Pitt, J.: Specifying electronic societies with the Causal Calculator.
In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 1–15.
Springer, Heidelberg (2003)

[2] Artikis, A., Sergot, M., Pitt, J.: Specifying norm-governed computational societies. ACM
Trans. Comput. Logic 10(1), 1–42 (2009)

[3] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, Cambridge (2003)

[4] Calvanese, D., Vardi, M.Y.: Reasoning about actions and planning in LTL action theories.
In: Proc. KR 2002 (2002)

[5] Cliffe, O.: Specifying and Analysing Institutions in Multi-Agent Systems using Answer Set
Programming. PhD thesis, University of Bath (2007)

InstQL: A Query Language for Virtual Institutions Using Answer Set Programming 121

[6] Cliffe, O., De Vos, M., Padget, J.: Answer set programming for representing and reasoning
about virtual institutions. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS
(LNAI), vol. 4371, pp. 60–79. Springer, Heidelberg (2007)

[7] Cliffe, O., De Vos, M., Padget, J.: Specifying and reasoning about multiple institutions. In:
Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson,
E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 63–81. Springer, Heidelberg (2007)

[8] Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: The KR system dlv: Progress
report, comparisons and benchmarks. In: Cohn, A.G., Schubert, L., Shapiro, S.C. (eds.)
KR 1998: Principles of Knowledge Representation and Reasoning, pp. 406–417. Morgan
Kaufmann, San Francisco (1998)

[9] Allen Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, pp. 995–1072. Elsevier, Amsterdam (1990)

[10] Emerson, E.A., Halpern, J.Y.: “sometimes” and “not never” revisited: on branching versus
linear time temporal logic. Journal of the ACM 33(1), 151–178 (1986)

[11] Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theo-
ries. Artificial Intelligence 153, 49–104 (2004)

[12] Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theo-
ries. Artificial Intelligence 153, 49–104 (2004)

[13] Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven Answer Set Solving.
In: Proceeding of IJCAI 2007, pp. 386–392 (2007)

[14] Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9(3-4), 365–386 (1991)

[15] Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell. 2, 193–210
(1998)

[16] Heljanko, K., Niemelä, I.: Bounded LTL model checking with stable models. In: Eiter, T.,
Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 200–212.
Springer, Heidelberg (2001)

[17] Hopton, L., Cliffe, O., De Vos, M., Padget, J. A.: Aql: A query language for action domains
modelled using answer set programming. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR
2009. LNCS, vol. 5753, pp. 437–443. Springer, Heidelberg (2009)

[18] Searle, J.R.: The Construction of Social Reality. The Penguin Press, Allen Lane (1995)
[19] Kowalski, R.A., Sadri, F.: Reconciling the event calculus with the situation calculus. Jour-

nal of Logic Programming 31(1-3), 39–58 (1997)
[20] Niemelä, I., Simons, P.: Smodels: An implementation of the stable model and well-founded

semantics for normal LP. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS
(LNAI), vol. 1265, pp. 420–429. Springer, Heidelberg (1997)

[21] Noriega, P.: Agent mediated auctions: The Fishmarket Metaphor. PhD thesis, Universitat
Autonoma de Barcelona (1997)

[22] Pnueli, A.: The Temporal Logic of Programs. In: 19th Annual Symp. on Foundations of
Computer Science (1977)

[23] Rodrı́guez, J.-A., Noriega, P., Sierra, C., Padget, J.: FM 96.5 A Java-based Electronic Auc-
tion House. In: Proceedings of 2nd Conference on Practical Applications of Intelligent
Agents and MultiAgent Technology (PAAM 1997), pp. 207–224 (1997) ISBN 0-9525554-
6-8

[24] Sergot, M.: C+++: An action language for modelling norms and institutions. Technical
Report 8, Department of Computing, Imperial College, London (2004)

[25] Sistla, A.P., Clarke, E.M.: The complexity of propostional linear temporal logics. Journal
of the ACM 32(3), 733–749 (1985)

	InstQL: A Query Language for Virtual Institutions Using Answer Set Programming
	Introduction
	Answer Set Programming
	Institutions
	The Dutch Auction: A Motivating Example
	The Case Study
	Queries

	InstQL
	Syntax
	Semantics
	The Dutch Auction Queries

	Reasoning
	Common Reasoning Tasks
	Modelling Linear Temporal Logic
	Institutional Designer and Reasoning Tools: InstSuite

	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

