
Model Checking Normative Agent Organisations�

Louise Dennis1, Nick Tinnemeier2, and John-Jules Meyer2

1 Department of Computer Science, University of Liverpool, Liverpool, U.K.

L.A.Dennis@csc.liv.ac.uk
2 Department of Information and Computing Sciences,

Utrecht University, Utrecht, The Netherlands

{nick,jj}@cs.uu.nl

Abstract. We present the integration of a normative programming language in
the MCAPL framework for model checking multi-agent systems. The result
is a framework facilitating the implementation and verification of multi-agent
systems coordinated via a normative organisation. The organisation can be pro-
grammed in the normative language while the constituent agents may be imple-
mented in a number of (BDI) agent programming languages.

We demonstrate how this framework can be used to check properties of the
organisation and of the individual agents in an LTL based property specification
language. We show that different properties may be checked depending on the
information available to the model checker about the internal state of the agents.
We discuss, in particular, an error we detected in the organisation code of our
case study which was only highlighted by attempting a verification with “white
box” agents.

1 Introduction

Since Yoav Shoham coined the term “agent-oriented programming” [19], many dedi-
cated languages, interpreters and platforms to facilitate the construction of multi-agent
systems have been proposed. Examples of such agent programming languages are Ja-
son [6], GOAL [13] and 2APL [8]. An interesting feature of the agent paradigm is the
possibility for building heterogeneous agent systems. That is to say, a system in which
multiple agents, implemented in different agent programming languages and possibly
by different parties, interact. Recently, the area of agent programming is shifting atten-
tion from constructs for implementing single agents, such as goals, beliefs and plans,
to social constructs for programming multi-agent systems, such as roles and norms.
In this view a multi-agent system is seen as a computational organisation that is con-
structed separately from the agents that will interact with it. Typically, little can be
assumed about the internals of these agents and the behaviour they will exhibit. When
little can be assumed about the agents that will interact with the organisation, a norm
enforcement mechanism – a process that is responsible for detecting when norms are
violated and responding to these violations by imposing sanctions – becomes crucial

� Work partially supported by EPSRC under grant EP/D052548 and by the CoCoMAS project
funded through the Dutch Organization for Scientific Research (NWO).

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 64–82, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Model Checking Normative Agent Organisations 65

to regulate their behaviour and to achieve and maintain the system’s global design
objectives [20].

One of the challenges in constructing multi-agent systems is to verify that the system
meets its overall design objectives and satisfies some desirable properties. For example,
that a set of norms actually enforces the intended behaviour and whether the agents that
will reside in the system will be able to achieve their goals. In this paper we report on
the extension of earlier work [11] of one of the authors on the automatic verification
of heterogeneous agent systems to include organisational (mostly normative) aspects
also, by incorporating the normative programming language as presented in [9]. The
resulting framework allows us to use automated verification techniques for multi-agent
systems consisting of a heterogeneous set of agents that interact with a norm governed
organisation. The framework in [11] is primarily targeted at a rapid implementation of
agent programming languages that are endowed with an operational semantics [16].
The choice for the integration of the normative programming language proposed in [9]
is mainly motivated by the presence of an operational semantics which facilitates the
integration with [11].

It should be noted that we are not the first to investigate the automatic verification
of multi-agent systems and computational organisations. There are already some no-
table achievements in this direction. Examples of work on model checking techniques for
multi-agent systems are [4,5,15]. In contrast to [11] the work on model checking agent
systems is targeted at homogeneous systems pertaining to the less realistic case in which
all agents are built in the same language. Most importantly, these works (including [11])
do not consider the verification of organisational concepts. Work related to the verifi-
cation of organisational aspects has appeared, for example, in [14,7,21,1], but in these
frameworks the internals of the agents are (intentionally) viewed as unknown. This is ex-
plained by the observation that in a deployedsystem little can be assumed about the agents
that will interact with it. Still, we believe that for verification purposes at design time it
would be useful to also take the agents’ architecture into account. Doing so allows us, for
example, to assert the correctness of a (prototype) agent implementation in the sense that
it will achieve its goals without violating a norm. In designing a normative organisation
a programmer puts norms into place to enforce desirable behaviour of the participating
agents. Implementing prototypical agents and employing them in the organisation allows
us to verify whether the actual behaviour accords with the intended behaviour of the sys-
tem as a whole. A proven prototypical implementation of a norm-abiding agent might
then be published to serve as a guideline for external agent developers.

The rest of the paper is structured as follows: In section 2 we give an overview of the
language for programming normative organisations (which we will name ORWELL
from now on) and discuss the general properties of the agent variant of the dining
philosophers problem we use as a running example throughout the paper. Section 3 de-
scribes the MCAPL framework for model checking multi-agent systems programmed
in a variety of BDI-style agent programming languages. Section 4 discusses the imple-
mentation of ORWELL in the MCAPL framework. Section 5 discusses a case study
we undertook to model check some properties in a number of different multi-agent
systems using the organisation.

66 L. Dennis, N. Tinnemeier, and J.-J. Meyer

2 ORWELL Programming Normative Agent Organisations

This section briefly explains the basic concepts involved in the approach to constructing
normative multi-agent organisations and how they can be programmed in ORWELL. A
more detailed description of its formal syntax and operational semantics together with
an example involving a conference management system can be found in [9].

A multi-agent system, as we conceive it, consists of a set of heterogeneous agents
interacting with a normative organisation (henceforth organisation). Figure 1 depicts
a snapshot of such a multi-agent system. As mentioned before, by heterogeneous we
mean that agents are potentially implemented in different agent programming languages
by unknown programmers. An organisation encapsulates a domain specific state and
function, for instance, a database in which papers and reviews are stored and accompa-
nying functions to upload them. The domain specific state is modeled by a set of brute
facts, taken from Searle [18]. The agents perform actions that change the brute state to
interact with the organisation and exploit its functionality. The general structure of a
multi-agent system we adopt is indeed inspired by the agents and artifacts approach of
Ricci et al. [17] in which agents exploit artifacts to achieve their design objectives.

brute facts

institutional facts

counts-as

sanctions

actions

agents

organisation

Fig. 1. Agents interacting with a normative organisation

An important purpose of an organisation is to coordinate the behavior of its inter-
actants and to guide them in interacting with it in a meaningful way. This is achieved
through normative component that is defined by a simple account of counts-as rules
as defined by Grossi [12]. Counts-as rules normatively assess the brute facts and label
a state with a normative judgment marking brute states as, for example, good or bad.
An uploaded paper that exceeds the page limit would, for instance, be assessed as an
undesirable state. The normative judgments about the brute state are stored as institu-
tional facts, again taken from Searle [18]. To motivate the agents to abide by the norms,
certain normative judgments might lead to sanctions which are imposed on the brute
state, for example rejecting a paper that violates the page limit by removing it from the
database.

Model Checking Normative Agent Organisations 67

In what follows we explain all these constructs using the agent variant of the famous
dining philosophers problem in which five spaghetti-eating agents sit at a circular table
and compete for five chopsticks. The sticks are placed in between the agents and each
agent needs two sticks to eat. Each agent can only pickup the sticks on her immediate
left and right. When not eating the agents are deliberating. It is important to emphasize
that in this example the chopsticks are metaphors for shared resources and the problem
touches upon many interesting problems that commonly arise in the field of concurrent
computing, in particular deadlock and starvation. The problem in all its simplicity is,
however, also interesting in the context of multi-agent systems (which are characterised
by distribution and concurrency) in general, and organisation-oriented approaches in
particular. Solutions of how the agents can efficiently share the resources can be con-
sidered protocols, which as will be shown naturally translate into norms. There are
many known solutions to the dining philosophers problem and it is not our intention to
come up with a novel solution. We merely use it to illustrate the ORWELL language.

The ORWELL implementation of the dining agents is listed in code fragment 2.1
(and continued in code fragment 2.2.) The initial brute state of the organisation is spec-
ified by the facts component. The agents named ag1, . . . ,ag5 are numbered one to
five clockwise through facts of the form agent(A,I). Sticks are also identified by
a number such that the right stick of an agent numbered I is numbered I and its left
stick is numbered I%5+11. The fact that an agent I is holding a stick is modeled by
hold(I,X) with X ∈ {r,l} in which r denotes the right and l the left stick. The
fact that a stick I is down on the table is denoted by down(I) and a fact food(I)
denotes that there is food on the plate of agent I. We assume that initially no agent
is holding a stick (all sticks are on the table) and all agents are served with food. The
initial situation of the dining agents is shown graphically in figure 2. The specification
of the initial brute state is depicted in lines 1-4.

The brute facts change under the performance of actions by agents. The effects de-
scribe how the brute state may evolve under the performance of actions. They are used
by the organization to determine the resulting brute state after performance of the ac-
tion. They are defined by triples of the form {Pre}a{Post}, intuitively meaning that
when action a is executed and set of facts Pre is derivable by the current brute state, the
set of facts denoted by Post is to be accomodated in it. We use the notation φ to indicate
that a belief holds in the precondition, or should be added in the postcondition and −φ
to indicate that a belief does not hold (precondition) or should be removed (postcondi-
tion). Actions a are modeled by predicates of the form does(A,Act) in which Act
is a term denoting the action and A denotes the name of the agent performing it. The
dining agents, for example, can perform actions to pick up and put down their (left and
right) sticks and eat. The effect rules defining these actions are listed in lines 6-542. An
agent can only pickup a stick if the stick is on the table (e.g. lines 7-9 defining the action
of picking up a right stick), can only put down a stick when it is holding it (e.g. line
11 defining the action of putting down a right stick) and can eat when it has lifted both

1 Where % is arithmetic modulus.
2 It should be noted that the current ORWELL prototype has limited ability to reason about

arithmetic in rule preconditions. Hence the unecessary proliferation of some rules in this
example.

68 L. Dennis, N. Tinnemeier, and J.-J. Meyer

Code fragment 2.1 Dining agents implemented in ORWELL.

1: Brute Fact s :

2down (1) down (2) down (3) down (4) down (5)

3food (1) food (2) food (3) food (4) food (5)

4a g e n t (ag1 , 1) a g e n t (ag2 , 2) a g e n t (ag3 , 3) a g e n t (ag4 , 4) a g e n t (ag5 , 5)

5

6: E f f e c t Rules :

7{ a g e n t (A, I) , down (I)}
8does (A, pur)

9{−down (I) , ho ld (I , r) , re turn (u)}
10

11{ a g e n t (A, I) , −down (I)} does (A, pur) { re turn (d)}
12

13{ a g e n t (A, I) , ho ld (I , r)} does (A, pdr) {down (I) , −ho ld (I , r)}
14

15{ a g e n t (ag1 , 1) , down (2)}
16does (ag1 , p u l) {−down (2) , ho ld (1 , l) , re turn (u)}
17{ a g e n t (ag1 , 1) , −down (2)} does (ag1 , p u l) { re turn (d)}
18

19{ a g e n t (ag2 , 2) , down (3)}
20does (ag2 , p u l) {−down (3) , ho ld (2 , l) , re turn (u)}
21{ a g e n t (ag2 , 2) , −down (3)} does (ag2 , p u l) { re turn (d)}
22

23{ a g e n t (ag3 , 3) , down (4)}
24does (ag3 , p u l) {−down (4) , ho ld (3 , l) , re turn (u)}
25{ a g e n t (ag3 , 3) , −down (4)} does (ag3 , p u l) { re turn (d)}
26

27{ a g e n t (ag4 , 4) , down (5)}
28does (ag4 , p u l) {−down (5) , ho ld (4 , l) , re turn (u)}
29{ a g e n t (ag4 , 4) , −down (5)} does (ag4 , p u l) { re turn (d)}
30

31{ a g e n t (ag5 , 5) , down (1)}
32does (ag5 , p u l) {−down (1) , ho ld (5 , l) , re turn (u)}
33{ a g e n t (ag5 , 5) , −down (1)} does (ag5 , p u l) { re turn (d)}
34

35{ a g e n t (ag1 , 1) , ho ld (1 , l)}
36does (ag1 , p d l) {down (2) , −ho ld (1 , l)}
37

38{ a g e n t (ag2 , 2) , ho ld (2 , l)}
39does (ag2 , p d l) {down (3) , −ho ld (2 , l)}
40

41{ a g e n t (ag3 , 3) , ho ld (3 , l)}
42does (ag3 , p d l) {down (4) , −ho ld (3 , l)}
43

44{ a g e n t (ag4 , 4) , ho ld (4 , l)}
45does (ag4 , p d l) {down (5) , −ho ld (4 , l)}
46

47{ a g e n t (ag5 , 5) , ho ld (5 , l)}
48does (ag5 , p d l) {down (1) , −ho ld (5 , l)}
49

50{ a g e n t (A, I) , ho ld (I , r) , ho ld (I , l) , food (I)}
51does (A, e a t)

52{−food (I) , re turn (yes)}
53

54{ a g e n t (A, I) , −food (I)} does (A, e a t) { re turn (no)}

Model Checking Normative Agent Organisations 69

Code fragment 2.2 Dining agents implemented in ORWELL(cont.)

1: CountsAs Rules :

2{−ho ld (1 , r) , ho ld (1 , l) , food (1)} {True} => { v i o l (1)}
3{ ho ld (2 , r) , −ho ld (2 , l) , food (2)} {True} => { v i o l (2)}
4{−ho ld (3 , r) , ho ld (3 , l) , food (3)} {True} => { v i o l (3)}
5{ ho ld (4 , r) , −ho ld (4 , l) , food (4)} {True} => { v i o l (4)}
6{−ho ld (5 , r) , ho ld (5 , l) , food (5)} {True} => { v i o l (5)}
7{ a g e n t (A, I) ,− food (I) ,− ho ld (I , r) ,− ho ld (I , l)} {True} => { r eward (I)}
8

9: Sanct ion Rules :

10{ v i o l (A)} => {−food (A) , p u n i s h e d (A)}
11{ r eward (A)} => { food (A) , r ewarded (A)}

1

1

2

2

3

3
4

4

5

5

(a) The initial table arrangement. (b) A deadlock situation.

Fig. 2. The dining agents problem

sticks and has food on its plate (lines 50-52). Actions might have different effects de-
pending on the particular brute state. To inform agents about the effect of an action we
introduce special designated unary facts starting with predicate return to pass back
information (terms) to the agent performing the action. These facts are not asserted to
the brute state. Picking up a stick will thus return u (up) in case the stick is successfully
lifted (line 9) and d (down) otherwise (e.g. line 11). Similarly, the succes of perform-
ing an eat action is indicated by returning yes (line 52) or no (line 54). Note that we
assume that agents will only perform the eat action in case they have lifted their stick.
Ways for returning information (and handling failure) were not originally described in
[9] and are left for future research.

When every agent has decided to eat, holds a left stick and waits for a right stick, we
have a deadlock situation (see figure 2b for a graphical representation). One (of many)
possible solutions to prevent deadlocks is to implement a protocol in which the odd
numbered agents are supposed to pick-up their right stick first and the even numbered
agents their left. Because we cannot make any assumptions about the internals of the
agents we need to account for the sub-ideal situation in which an agent does not follow
the protocol. To motivate the agents to abide by the protocol we implement norms to
detect undesirable (violations) and desirable behaviour (code fragment 2.2). The norms

70 L. Dennis, N. Tinnemeier, and J.-J. Meyer

in our framework take on the form of elementary counts-as rules relating a set of brute
facts with a set of institutional facts (the normative judgment). The rules listed in lines
2, 4 and 6 state that a situation in which an odd numbered agent holds her left stick and
not her right while there is food on her plate counts as a violation. Rules listed in lines
3 and 5 implement the symmetric case for even numbered agents. The last rule marks
a state in which an agent puts down both sticks when there is no food on her plate as
good behaviour. It is important to emphasize that in general hard-wiring the protocol
by the action specification (in this case effect rules) such that violations are not possible
severely limits the agent’s autonomy [2]. It should also be noted that the antecedent of
a counts-as rule can also contain institutional facts (in this example these are irrelevant
and the institutional precondition is True).

Undesirable behaviour is punished and good behaviour is rewarded. This is
expressed by the sanction rules (lines 9-11) of code fragment 2.2. Sanction rules are
expressed as a kind of inverted counts-as rules relating a set of institutional facts with
a set of brute facts to be accommodated in the brute state. Bad behaviour, that is not
abiding by the protocol, is thus punished by taking away the food of the agent such
that it cannot successfully perform the eat action. Good behaviour, i.e. not unnecesarily
keeping hold of sticks, is rewarded with food.

3 The MCAPL Framework for Model Checking Agent
Programming Languages

The MCAPL framework is intended to provide a uniform access to model-checking
facilities to programs written in a wide range of BDI-style agent programming lan-
guages. The framework is outlined in [10] and described in more detail in [3].

Fig. 3 shows an agent executing within the framework. A program, originally pro-
grammed in some agent programming language and running within the MCAPL Frame-
work is represented. It uses data structures from the Agent Infrastructure Layer (AIL) to
store its internal state comprising, for instance, an agent’s belief base and a rule library.
It also uses an interpreter for the agent programming language that is built using AIL
classes and methods. The interpreter defines the reasoning cycle for the agent program-
ming language which interacts with a model checker, essentially notifying it when a new
state is reached that is relevant for verification.

The Agent Infrastructure Layer (AIL) toolkit was introduced as a uniform frame-
work [11] for easing the integration of new languages into the existing execution and
verification engine. It provides an effective, high-level, basis for implementing opera-
tional semantics [16] for BDI-like programming languages. An operational semantics
describes the behavior of a programming language in terms of transitions between pro-
gram configurations. A configuration describes a state of the program and a transition
is a transformation of one configuration γ into another configuration γ′, denoted by
γ → γ′. The transitions that can be derived for a programming language are defined
by a set of derivation rules of the form P

γ→γ′ with the intuitive reading that transition
γ → γ′ can be derived when premise P holds. An execution trace in a transition system
is then a sequence of configurations that can be generated by applying transition rules
to an initial configuration. An execution thus shows a possible behavior of the system at

Model Checking Normative Agent Organisations 71

AIL classes/methods

APL Agent APL-AIL
Interpreter

AIL Data
Structures

JPF VM

AIL cllaasssseess//mmeethodsL

APL Agent APL-AIL
Interpreter

AIL Data L
Structures

JJJPPPFFF VVVMMMM

Unification & other optimised functions

Property Specification Language

Fig. 3. Outline of Approach

hand. All possible executions for an initial configuration show the complete behavior.
The key operations of many (BDI-)languages together with a set of standard transition
rules form the AIL toolkit that can be used by any agent programming language in its
own AIL-based interpreter. Of course, it is possible to add custom rules for specific
languages.

The agent system runs in the Java Pathfinder (JPF) virtual machine. This is a JAVA

virtual machine specially designed to maintain backtrack points and explore, for in-
stance, all possible thread scheduling options (that can affect the result of the verifica-
tion) [22]. Agent JPF (AJPF) is a customisation of JPF that is optimised for AIL-based
interpreters. Common to all language interpreters implemented using the AIL are the
AIL-agent data structures for beliefs, intentions, goals, etc., which are accessed by the
model checker and on which the modalities of a property specification language are de-
fined. For instance the belief modality of the property specification language is defined
in terms of the way logical consequence is implemented within the AIL.

The AIL can be viewed as a platform on which agents programmed in different pro-
gramming languages co-exist. Together with AJPF this provides uniform model check-
ing techniques for various agent-oriented programming languages and even
allows heterogeneous settings [11].

4 Modified Semantics for ORWELL for Implementation in the
AIL

In this work we apply the MCAPL framework to the ORWELL language and exper-
iment with the model checking of organisations. Although ORWELL is an organisa-
tional language rather than an agent programming language many of its features show

72 L. Dennis, N. Tinnemeier, and J.-J. Meyer

a remarkable similarity to concepts that are used in BDI agent programming languages.
The brute and insitutional facts, for example, can be viewed as knowledge bases. The
belief bases of typical BDI agent languages, which are used to store the beliefs of
an agent, are also knowledge bases. Further, the constructs used in modelling effects,
counts-as and sanctions are all types of rules that show similarities with planning rules
used by agents. This made it relatively straightforward to model ORWELL in the AIL.

The AIL framework assumes that agents in an agent programming language all pos-
sess a reasoning cycle consisting of several (≥ 1) stages. Each stage describes a coher-
ent activity of an agent, for example, generating plans for achieving goals and acting
by executing these plans. Moreover, each stage is a disjunction of transition rules that
define how an agent’s state may change during the execution of that stage. Only one
stage is active at a time and only rules that belong to that stage will be considered. The
agent’s reasoning cycle defines how the reasoning process moves from one stage to an-
other. The combined rules of the stages of the reasoning cycle define the operational
semantics of that language. The construction of an interpreter for a language involves
the implementation of these rules (which in some cases might simply make reference
to the pre-implemented rules) and a reasoning cycle.

Standard ORWELL [9] does not explicitly consider a reasoning cycle, but what can
be considered its reasoning cycle consists of one single transition rule that describes the
organisation’s response to actions performed by interacting agents. In words, when an
action is received, the application of this transition rule;

1. applies one effect rule,
2. then applies all applicable counts-as rules until no more apply and
3. then applies all applicable sanction rules.

The application of this rule thus performs a sequence of modifications to the agent state
which the AIL would most naturally present as separate transitions. We needed to refor-
mulate the original rule as a sequence of transition rules in a new form of the operational
semantics and include a step in which the organisation perceived the actions taken by
the agents interacting with it. Determining all the effects of applying the counts-as rules,
for example, was explained in [9] by the definition of a mathematical closure function
which was then used in its single transition rule. Although mathematically correct, such
a closure function is too abstract to serve as a basis for an actual implementation and
needed to be redefined in terms of transition rules for a natural implementation in the
AIL.

Figure 4 shows the reworked reasoning cycle for ORWELL. It starts with a per-
ception phase in which agent actions are perceived. Then it moves through two stages
which apply an effect rule (B & C), two for applying counts-as rules (D & E) and two
for applying sanction rules (F & G). Lastly there is a stage (H) where the results of
actions are returned to the agent taking them.

The splitting of the rule phases into two was dictated by the default mechanisms for
applying rules3 in the AIL, in which a set of applicable rules are first generated and
then one is chosen and processed. It would have been possible to combine this process

3 Called plans in the AIL terminology.

Model Checking Normative Agent Organisations 73

Fig. 4. The ORWELL Reasoning Cycle in the AIL

into one rule, but it was simpler, when implementing this prototype, to leave it in this
form, although it complicates the semantics.

Figures 5 to 8 show the operational semantics of ORWELL, reworked for
an AIL interpreter and simplified slightly to ignore the effects of unifica-
tion. The state of an organisation is represented by a large tuple of the form
〈i , I ,BF , IF ,ER,CAR,SR,AP ,A,RS〉 in which:

– i is the “current intention”;
– I is a set of additional “intentions”;
– BF is a set of brute facts;
– IF is a set of institutional facts;
– ER is a set of effect rules;
– CAR is a set of counts-as rules;
– SR is a set of sanction rules;
– AP is a set of applicable rules;
– A is a list of actions taken by the agents in the organisation;
– RS is an atomic formula with predicate name return for storing the result of the

action.

74 L. Dennis, N. Tinnemeier, and J.-J. Meyer

We extend this tuple with one final element to indicate the phase of the reasoning cycle
from figure 4 that is currently in focus. This element will always occur as last element
of the tuple. In order to improve readability, we show only those parts of the agent tuple
actually changed or referred to by a transition rule. We use the naming conventions just
outlined to indicate which parts of the tuple we refer to, priming the names on the right
hand side of the transition where the value has changed. Where there may be confusion
we also show their value as an equality – i.e. i = (a, ε) means the current intention is
(a, ε), if this is changed to null then we will write i ′ = null on the right hand side of
the transition..

The concept of intention is common in many BDI-languages and is used to indi-
cate the intended means for achieving a goal or handling an event. Within the AIL,
intentions are data structures which associate events with the plans generated to handle
that event (including any instantiations of variables appearing in those plans). As plans
are executed the intention is modified accordingly so that it only stores that part of the
plan yet to be processed. Of course, the concept of intention is not originally used in
ORWELL. We slightly abuse this single agent concept to store the instantiated plans
associated with any applicable rules. Its exact meaning depends on which type of rule
(effect, counts-as or sanction) is considered. When an effect rule is applicable, an in-
tention stores the (unexecuted) postconditions of the rule associated with the action that
triggered the rule. When a counts-as or sanction rule is applicable an intention stores its
(unexecuted) postconditions together with a record of state that made the rule applicable
(essentially the conjunction of its instantiated preconditions). Also the concepts of ap-
plicable rules denoting which (effect, counts-as or sanction) rules are applicable (their
precondition is satisfied) in a specific situation are AIL specific and are not originally
part of ORWELL.

〈i ,A = a;A′,A〉 → 〈i ′ = (a, ε),A′,B〉 (1)

Fig. 5. The Operational Semantics for ORWELL as implemented in the AIL (Agent Actions)

Figure 5 shows the semantics for the initial stage. As agents take actions, these are
stored in a queue, A, within the organisation for processing4. The organisation processes
one agent action at a time. The reasoning cycle starts by selecting an action, a, for
processing. This is converted into an intention tuple (a, ε) where the first part of the
tuple stores the action (in this case) which created the intention and the second part of
the tuple stores the effects of any rule triggered by the intention, i.e. the brute facts to
be asserted and retracted. Initially the effects are indicated by a distinguished symbol ε,
which indicates that no effects have yet been calculated. We believe that when this rule
fires the current intention will be empty (i.e. all its effects will have been processed) but
we have not proved this fact.

Figure 6 shows the semantics for processing effect rules. These semantics are very
similar to those used for processing counts-as rules and sanction rules and, in many

4 We use ; to represent list cons.

Model Checking Normative Agent Organisations 75

{(a, Post) | {Pre}a{Post} ∈ ER ∧ BF |= Pre} = ∅
〈BF , i = (a, ε),AP ,B〉 → 〈BF , i ′ = null,AP ′ = ∅, H〉 (2)

{(a,Post) | {Pre}a{Post} ∈ ER ∧ BF |= Pre} = AP ′ AP ′ �= ∅
〈BF , i = (a, ε),AP , B〉 → 〈BF , i ′ = (a, ε),AP ′, C〉 (3)

(a, Post) ∈ AP

〈i = (a, ε),AP , C〉 → 〈i ′ = (a,Post),AP ′ = ∅,C〉 (4)

〈BF , i = (a, +bf ;Post),C〉 → 〈BF ′ = BF ∪ {bf }, i ′ = (a,Post),C〉 (5)

〈BF , i = (a,−bf ;Post),C〉 → 〈BF ′ = BF/{bf }, i ′ = (a,Post),C〉 (6)

〈i = (a, []),C〉 → 〈i ′ = (a, []), D〉 (7)

Fig. 6. The Operational Semantics for ORWELL as implemented in the AIL (Effect Rules)

cases the implementation uses the same code, simply customised to choose from differ-
ent sets of rules depending upon the stage of the reasoning cycle. Recall that an effect
rule is a triple {Pre}a{Post} consisting of a set of preconditions Pre, an action a taken
by an agent and a set of postconditions Post .

If the action matches the current intention and the preconditions hold , written
BF |= Pre (where BF are the brute facts of the organisation), then the effect rule
is applicable. Rule 2 pertains to the case in which no effect rule can be applied. This
could happen when no precondition is satisfied or if the action is simply undefined.
The brute state will remain unchanged, so there is no need for normatively assessing it.
Therefore, the organisation cycles on to stage H were an empty result will be returned.
Applicable effect rules are stored in the set of applicable rules AP (rule 3), of which
one applicable rule is chosen (rule 4) and its postconditions are processed (rules 5 and
6). The postconditions consist of a stack of changes to be made to the brute facts, +bf
indicates that the fact bf should be added and −bf indicates that a fact should be re-
moved. These are processed by rules 5 and 6 in turn until no more postconditions apply
(rule 7). Then it moves on to the next stage (stage D) in which the resulting brute state
is normatively assessed by the counts-as rules.

Figure 7 shows the semantics for handling counts-as rules. These are similar to the
semantics for effect rules except that the closure of all counts-as rules are applied. The
set G , is used to track the rules that have been applied. All applicable counts as rules
are made into intentions, these are selected one at a time and the rule postconditions are
processed. As mentioned before, a counts-as rule may contain institutional facts in its
precondition. Thus the application of a counts-as rule might trigger another counts-as
rule that was not triggered before. Therefore, when all intentions are processed the stage
returns to stage D, in order to see if any new counts-as rules have become applicable.

Figure 8 shows the rules governing the application of sanction rules. These are
similar to the application of counts-as rules however, since sanction rules consider only

76 L. Dennis, N. Tinnemeier, and J.-J. Meyer

{(∧ Pre ,Post) | {Pre} ⇒ {Post} ∈ CAR/G ∧ BF ∪ IF |= Pre} = ∅
〈BF , IF ,AP , G,D〉 → 〈BF , IF ,AP ′ = ∅, G ′ = ∅, F〉 (8)

{(∧ Pre,Post) | {Pre} ⇒ {Post} ∈ CAR/G ∧ BF ∪ IF |= Pre} = AP ′ AP ′ �= ∅
〈BF , IF ,AP ,G, D〉 → 〈BF , IF ,AP ′,G ′ = AP ′ ∪ G, E〉

(9)

AP �= ∅
〈org , I ,AP , E〉 → 〈org , I ′ = AP ∪ I ,AP ′ = ∅, E〉 (10)

〈org , i = (
∧

Pre , []), I = i ′;I ′,E〉 → 〈org , i ′, I ′,E〉 (11)

〈org , IF , i = (
∧

Pre , +if ;Post),E〉 → 〈org , IF ′ = IF ∪ {if }, i ′ = (
∧

Pre ,Post),E〉 (12)

〈org , IF , i = (
∧

Pre,−if ;Post),E〉 → 〈org , IF ′ = IF/{if }, i ′ = (
∧

Pre,Post),E〉 (13)

I = ∅
〈org , i = (

∧
Pre , []), I ,E〉 → 〈org , i ′ = (

∧
Pre , []), I ,D〉 (14)

Fig. 7. The Operational Semantics for ORWELL as implemented in the AIL (Counts-As Rules)

{(∧ Pre ,Post) | {Pre} ⇒ {Post} ∈ SR ∧ IF |= Pre} = ∅
〈IF , I ,AP ,F〉 → 〈IF , I ′ = ∅, H〉 (15)

{(∧ Pre,Post) | {Pre} ⇒ {Post} ∈ SR ∧ IF |= Pre} = AP ′ AP ′ �= ∅
〈IF ,AP , F〉 → 〈IF ,AP ′,G〉 (16)

AP �= ∅
〈I ,AP ,G〉 → 〈I ′ = AP ∪ I ,AP ′ = ∅,G〉 (17)

〈i = (
∧

Pre, []), I = i ′;I ′,G〉 → 〈i ′, I ′,G〉 (18)

〈BF , i = (
∧

Pre, +bf ;Post),G〉 → 〈BF ′ = BF ∪ {bf }, i ′ = (
∧

Pre,Post),G〉 (19)

〈BF , i = (
∧

Pre ,−bf ;Post),G〉 → 〈BF ′ = BF/{bf }, i ′ = (
∧

Pre ,Post),G〉 (20)

I = ∅
〈i = (

∧
Pre , []), I ,G〉 → 〈i = (

∧
Pre, []), I ,H〉 (21)

Fig. 8. The Operational Semantics for ORWELL as implemented in the AIL (Sanction Rules)

Model Checking Normative Agent Organisations 77

return(X) ∈ BF RS = []

〈org ,BF ,RS ,H〉 → 〈org ,BF ′ = BF/{return(X)}, RS ′ = [X], A〉 (22)

return(X) �∈ BF RS = []

〈org ,BF ,RS ,H〉 → 〈org ,BF ,RS ′ = [none], A〉 (23)

Fig. 9. The Operational Semantics for ORWELL as implemented in the AIL (Finalise)

institutional facts and alter only brute facts there is no need to check for more applicable
rules once they have all applied.

Lastly, figure 9 shows the rules of the final stage. The final stage of the semantics
returns any results derived from processing the agent action. It does this by looking for
a term of the form return(X) in the Brute Facts and placing that result, X , in the result
store. The result store is implemented as a blocking queue, so, in this implementation,
the rules wait until the store is empty and then place the result in it. When individual
agents within the organisation take actions these remove a result from the store, again
waiting until a result is available.

Many of these rules are reused versions of customisable rules from the AIL toolkit.
For instance the AIL mechanims for selecting applicable “plans” were easily cus-
tomised to select rules and was used in stages B,D and F. Similarly we were able
to use AIL rules for adding and removing beliefs from an agent belief base to handle
the addition and removal of brute and institutional facts. We modeled ORWELL’s fact
sets as belief bases and extended the AIL’s belief handling methods to deal with the
presence of multiple belief bases.

It became clear that the ORWELL stages couldn’t be simply presented as a cycle. In
some cases we needed to loop back to a previous stage. We ended up introducing rules to
control phase changes explicitly (e.g. rule (21)) but these had to be used via an awkward
implementational mechanism which involved considering the rule that had last fired. In
future we intend to extend the AIL with a generic mechanism for doing this.

It was outside the scope of our exploratory work to verify that the semantics of OR-
WELL, as implemented in the AIL, conformed to the standard language semantics as
presented in [9]. However our aim is to discuss the verification of normative organisa-
tional programs and this implementation is sufficient for that, even if it is not an exact
implementation of ORWELL.

5 Model Checking Normative Agent Organisations

We implemented the ORWELL Organisation for the dining philosophers system shown
in code fragment 2.1 but modified, for time reasons, to consider only three agents rather
than five. We integrated this organisation into three multi-agent systems.

The first system (System A) consisted of three agents implemented in the GOAL lan-
guage. Part of the implementation of one of these agents is shown in code fragment 5.1.
This agent has a goal to have eaten (line 4), but initially believes it has not eaten (line 7).
It also believes that its left and right stick are both down on the table (also line 7). The
agent has capabilities (lines 9-14) to perform all actions provided by the organisation.

78 L. Dennis, N. Tinnemeier, and J.-J. Meyer

Code fragment 5.1 A protocol abiding GOAL agent.

1: name : ag1

2

3: I n i t i a l Goals :

4e a t e n (yes)

5

6: I n i t i a l B e l i e f s :

7e a t e n (no) l e f t (d) r i g h t (d)

8

9: C a p a b i l i t i e s :

10p u l p u l {True} {− l e f t (d) , l e f t (R)}
11pur pur {True} {− r i g h t (d) , r i g h t (R)}
12p d l p d l {True} {− l e f t (u) , l e f t (d)}
13pd r pdr {True} {− r i g h t (u) , r i g h t (d)}
14e a t e a t {True} {−e a t e n (no) , e a t e n (R)}
15

16: C o n d i t i o n a l A c t i o n s :

17G e a t e n (yes) , B l e f t (d) , B r i g h t (d) |> do (pur)

18G e a t e n (yes) , B l e f t (d) , B r i g h t (u) |> do (p u l)

19G e a t e n (yes) , B l e f t (u) , B r i g h t (u) |> do (e a t)

20B e a t e n (yes) , B l e f t (u) |> do (p d l)

21B e a t e n (yes) , B r i g h t (u) |> do (pdr)

The return value of the organisation is accessed through the special designated variable
term R that can be used in the postcondition of the capability specification. The beliefs
of the agent will thus be updated with the effect of the action. The conditional actions
define what the agent should do in achieving its goals and are the key to a protocol
implementation. Whenever the agent has a goal to have eaten and believes it has not to
have lifted either stick it will start by picking up its right stick first (line 17). Then it
will pick up its left (line 18) and start eating when both are acquired (line 19). Note that
if the eat action is successfully performed the agent has accomplished its goal. When
the agent believes it has eaten and holds its sticks it will put them down again (lines
20 and 21). Other protocol abiding agents are programmed in a similar fashion pro-
vided that ag2 will pick up their left stick first instead of their right. Our expectation
was, therefore, that this multi-agent system would never incur any sanctions within the
organisation.

System B used a similar set of three GOAL agents, only in this case all three agents
were identical (i.e. they would all pick up their right stick first). We anticipated that this
group of agents would trigger sanctions.

Lastly, for System C, we implemented three Black Box agents which performed the
five possible actions almost at random5. The random agents could take no more than
five actions in a run of the program, though actions could be repetitions of previous

5 In order to reduce search we constrained the agents a little internally, so that they could not
perform a put down action before a pick up action, and they couldn’t eat until after they had
performed both pick up actions. The agents had no perceptions of the outside world and so the
actions were not necessarily successful.

Model Checking Normative Agent Organisations 79

ones. This system did not conform to the assumption that once an agent has picked up
a stick it will not put it down until it has eaten.

We investigated the truth of three properties evaluated on these three multi-agent
systems. In what follows � is the LTL operator, always. Thus �φ means that φ holds
in all states contained in every run of the system. � is the LTL operator, eventually
or finally. �φ means that φ holds at some point in every run of a system. The modal
operator B(ag, φ) stands for “ag believes φ” and is used by AJPF to interrogate the
knowledge base of an agent. In the case of ORWELL this interrogates the fact bases.

Property 1 states that it is always the case that if the organisation believes (i.e. stores
as a brute fact in its knowledge base) all agents are holding their right stick (or all
agents are holding their left stick) – i.e., the system is potentially in a deadlock – then
at least one agent believes it has eaten (i.e., one agent is about to put down it’s stick and
deadlock has been avoided).

�((
∧

i

B(org, hold(i, r)) ∨
∧

i

B(org, hold(i, l))) ⇒
∨

i

B(agi, eaten(yes))) (24)

Property 2 states that it is not possible for any agent which has been punished to be
given more food.

�
∧

i

¬(B(org, punished(i)) ∧ B(org, food(i))) (25)

Property 3 states after an agent violates the protocol it either always has no food or
it gets rewarded (for putting its sticks down). This property was expected to hold for
all systems irrespective of whether the agents wait until they have eaten before putting
down their sticks or not.

�
∧

i(B(org, hold(i, l)) ∧ ¬B(org, hold(i, r)))
=⇒

(�¬B(org, food(i)) ∨ �B(org, rewarded(i)))
(26)

The results of model checking the three properties on the three systems are shown
below. We give the result of model checking together with the time taken in hours (h),
minutes (m) or seconds (s) as appropriate and the number of states (st) generated by the
model checker:

System A System B System C
Property 1 True (40m, 8214 st) False (2m, 432st) False (16s, 46st)
Property 2 True (40m, 8214st) True (30m, 5622st) False (11s, 57st)
Property 3 True (1h 7m , 9878st) True (1h 2m, 10352st) True (15h, 256049 st)

It should be noted that transitions between states within AJPF generally involve the
execution of a considerable amount of JAVA code in the JPF virtual machine since
the system only branches the search space when absolutely necessary. There is scope,
within the MCAPL framework for controlling how often properties are checked. In our
case we had the properties checked after each full execution of the ORWELL reasoning

80 L. Dennis, N. Tinnemeier, and J.-J. Meyer

cycle. This was a decision made in an attempt to reduce the search space further. So
in some cases above a transition between two states represents the execution of all
the rules from stages A to H of the ORWELL reasoning cycle. Furthermore the JPF
virtual machine is slow, compared to standard JAVA virtual machines, partly because
of the extra burden it incurs maintaining the information needed for model checking.
This accounts for the comparatively small number of states examined for the time taken
when these results are compared with those of other model checking systems. Even
though we excluded as much as possible of the internal state of our random agents there
was clearly a much larger search space associated with them. We attribute this to the
much higher number of “illogical” states that occur - (when an agent tries to perform an
impossible action). We believe it likely that verifying an organisation containing agents
with known internal states will prove considerably more computationally tractable than
verifying organisations that contain entirely random agents.

In the process of conducting this experiment we discovered errors, even in the small
program we had implemented. For instance we did not, initially, return a result when
an agent attempted to pick up a stick which was held by another agent. This resulted
in a failure of the agents to instantiate the result variable and, in some possible runs,
to therefore assume that they had the stick and to attempt to pick up their other stick
despite that being a protocol violation. This showed the benefit of model checking an
organisation with reference to agents that are assumed to obey its norms.

The experiments also show the benefits of allowing access to an agent’s state when
verifying an organisation in order to, for instance, check that properties hold under
assumptions such as that agents do not put down sticks until after they have eaten. The
more that can be assumed about the agents within an organisation the more that can be
proved and so the behaviour of the organisation with respect to different kinds of agent
can be determined.

6 Conclusions

In this paper we have explored the verification of multi-agent systems running within
a normative organisation. We have implemented a normative organisational language,
ORWELL, within the MCAPL framework for model checking multi-agent systems in
a fashion that allows us to model check properties of organisations.

We have investigated a simple example of an organisational multi-agent system
based on the dining philosophers problem and examined its behaviour in settings where
we make very few assumptions about the behaviour of the agents within the system and
in settings where the agents within the system are white box (i.e., the model checker
has full access to their internal state). We have been able to use these systems to ver-
ify properties of the organisation, in particular properties about the way in which the
organisation handles norms and sanctions.

An interesting result of these experiments has been showing that the use of white
box agents allows us to prove a wider range of properties about the way in which the
organisation behaves with respect to agents that obey its norms, or agents that, even
if they do not obey its norms, respect certain assumptions the organisation embodies
about their operation. In particular the white box system enabled us to detect a bug

Model Checking Normative Agent Organisations 81

in the organisational code which revealed that the organisation did not provide agents
which did obey its norms with sufficient information to do so. This bug would have
been difficult to detect in a system where there was no information about the internal
state of the constituent agents, since the property that revealed it did not hold in general.

In more general terms the verification of organisations containing white box agents
enables the verification that a given multi-agent system respects the norms of an
organisation.

References

1. Aştefănoaei, L., Dastani, M., Meyer, J.-J., Boer, F.S.: A verification framework for normative
multi-agent systems. In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI),
vol. 5357, pp. 54–65. Springer, Heidelberg (2008)

2. Aldewereld, H.: Autonomy versus Conformity an Institutional Perspective on Norms and
Protocols. PhD thesis, Utrecht University, SIKS (2007)

3. Bordini, R.H., Dennis, L.A., Farwer, B., Fisher, M.: Automated Verification of Multi-Agent
Programs. In: Proc. 23rd IEEE/ACM International Conference on Automated Software En-
gineering (ASE), pp. 69–78 (2008)

4. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Model Checking Rational Agents.
IEEE Intelligent Systems 19(5), 46–52 (2004)

5. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying Multi-Agent Programs by
Model Checking. Journal of Autonomous Agents and Multi-Agent Systems 12(2), 239–256
(2006)

6. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentS-
peak Using Jason. Wiley Series in Agent Technology. John Wiley & Sons, Chichester (2007)

7. Cliffe, O., Vos, M.D., Padget, J.A.: Answer set programming for representing and reason-
ing about virtual institutions. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS
(LNAI), vol. 4371, pp. 60–79. Springer, Heidelberg (2007)

8. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents and
Multi-Agent Systems 16(3), 214–248 (2008)

9. Dastani, M., Tinnemeier, N.A.M., Meyer, J.-J.C.: A programming language for normative
multi-agent systems. In: Dignum, V. (ed.) Multi-Agent Systems: Semantics and Dynamics
of Organizational Models, ch. 16. IGI Global (2008)

10. Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M.: A Flexible Framework for Verifying
Agent Programs. In: Proc. 7th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS). ACM Press, New York (2008) (Short paper)

11. Dennis, L.A., Fisher, M.: Programming verifiable heterogeneous agent systems. In: Hindriks,
K.V., Pokahr, A., Sardina, S. (eds.) ProMAS 2008. LNCS, vol. 5442, pp. 27–42. Springer,
Heidelberg (2009)

12. Grossi, D.: Designing Invisible Handcuffs. Formal Investigations in Institutions and Organi-
zations for Multi-agent Systems. PhD thesis, Utrecht University, SIKS (2007)

13. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent programming with
declarative goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI),
vol. 1986, pp. 228–243. Springer, Heidelberg (2001)

14. Huguet, M.-P., Esteva, M., Phelps, S., Sierra, C., Wooldridge, M.: Model checking electronic
institutions. In: MoChArt 2002, pp. 51–58 (2002)

15. Kacprzak, M., Lomuscio, A., Penczek, W.: Verification of Multiagent Systems via Un-
bounded Model Checking. In: Proc. 3rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 638–645. IEEE Computer Society, Los
Alamitos (2004)

82 L. Dennis, N. Tinnemeier, and J.-J. Meyer

16. Plotkin, G.D.: A structural approach to operational semantics. Technical Report DAIMI FN-
19, University of Aarhus (1981)

17. Ricci, A., Viroli, M., Omicini, A.: Give agents their artifacts: the A&A approach for engi-
neering working environments in MAS. In: AAMAS (2007)

18. Searle, J.R.: The Construction of Social Reality. Free Press, New York (1995)
19. Shoham, Y.: Agent-oriented programming. AI 60(1), 51–92 (1993)
20. Vázquez-Salceda, J., Aldewereld, H., Grossi, D., Dignum, F.: From human regulations to

regulated software agents’ behavior. AI & Law 16(1), 73–87 (2008)
21. Viganò, F.: A framework for model checking institutions. In: Edelkamp, S., Lomuscio, A.

(eds.) MoChArt IV 2006. LNCS (LNAI), vol. 4428, pp. 129–145. Springer, Heidelberg
(2007)

22. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model Checking Programs. Auto-
mated Software Engineering 10(2), 203–232 (2003)

	Model Checking Normative Agent Organisations
	Introduction
	ORWELL Programming Normative Agent Organisations
	The MCAPL Framework for Model Checking Agent Programming Languages
	Modified Semantics for ORWELL for Implementation in the AIL
	Model Checking Normative Agent Organisations
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

