
Expressing Properties of Resource-Bounded

Systems: The Logics RTL� and RTL

Nils Bulling1 and Berndt Farwer2

1 Department of Informatics, Clausthal University of Technology, Germany
2 School of Engineering and Computing Sciences, Durham University, UK

Abstract. Computation systems and logics for modelling such systems
have been studied to a great extent in the past decades. This paper
introduces resources into the models of systems and discusses the
Resource-Bounded Tree Logics RTL and RTL�, based on the well-known
Computation Tree Logics CTL and CTL�, for reasoning about com-
putations of such systems. We present initial results on the complex-
ity/decidability of model checking.

1 Introduction

The basic idea of rational agents being autonomous entities perceiving changes in
their environment and acting according to a set of rules or plans in the pursuit of
goals does not take resources into account. However, many actions that an agent
would execute in order to achieve a goal can – in real life – only be carried out
in the presence of certain resources. Without sufficient resources some actions
are not available, leading to plan failure. The analysis of agents and (multi-
agent) systems with resources is still in its infancy and has been tackled almost
exclusively in a pragmatic and experimental way. This paper takes first steps
in modelling resource bounded systems (which can be considered as the single-
agent case of the scenario just described). Well-known computational models are
combined with a notion of resource to enable a more systematic and rigorous
specification and analysis of such systems. The main motivation of this paper
is to propose a fundamental formal setting. In the future we plan to focus on a
more practical aspect, i.e., how this setting can be used for the verification of
systems.

The proposed logic builds on Computation Tree Logic [6]. Essentially, the
existential path quantifier Eϕ (there is a computation that satisfies ϕ) is replaced
by 〈ρ〉γ where ρ represents a set of available resources. The intuitive reading of
the formula is that there is a computation feasible with the given resources ρ
that satisfies γ.

Finally, we turn to the decidability of model checking the proposed logics. We
show that RTL (Resource-Bounded Tree Logic), the less expressive version, has
a decidable model checking problem as well as restricted variants of the full logic
RTL� and its models.

The remainder of the paper is structured as follows. In Section 2 we recall the
computation tree logic CTL� and define multisets used as a representation for

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 22–45, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Expressing Properties of Resource-Bounded Systems 23

resources. Section 3 forms the main part of the paper. We introduce resources
into the computation tree logics and their models. Subsequently, in Section 4 we
show some properties of the logics. Section 5 includes the analysis of the model
checking complexity, and finally, we conclude with an outlook on future work in
Section 6.

2 Preliminaries

In this section we present the computation tree logics CTL and CTL� as well as
multisets which we will use to represent resources.

2.1 Computation Tree Logic and Transition Systems

A Kripke frame T = (Q ,→) consists of a finite set of states Q and a (serial)
binary relation →⊆ Q × Q between states. We say that a state q′ is reachable
from a state q if q → q′. A Kripke model is defined as M = (Q ,→,Props, π)
where (Q ,→) is a transition system, Props a non-empty set of propositions, and
π : Q → P(Props) a labelling function that indicates which propositions are
true in a given state. Such models represent the temporal behaviour of systems.
There are no restrictions on the number of times a transition is used.

A path λ of a transition system is an infinite sequence q0q1 · · · ∈ Qω of states
such that qi → qi+1 for all i = 0, 1, 2, Given a path λ we use λ[i] and λ[i, j]
to refer to state qi and to the path qiqi+1 . . . qj where j = ∞ is permitted,
respectively. A path starting in q is called q-path. The set of all paths in M is
denoted by ΛM and the set of all q-paths by ΛM(q).

Formulae of CTL� [8] are defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Eγ where γ ::= ϕ | ¬γ | γ ∧ γ | ϕU ϕ | ©ϕ

and p ∈ Props. Formulae ϕ (resp. γ) are called state (resp. path) formulae. There
are two temporal operators: © (in the next moment in time) and U (until). The
temporal operators ♦ (sometime in the future) and � (always in the future)
can be defined as abbreviations.

CTL� formulae are interpreted over Kripke structures; truth is given by the
satisfaction relation in the usual way: For state formulae we have

M, q |= p iff λ[0] ∈ π(p) and p ∈ Props;
M, q |= ¬ϕ iff M, q
|= ϕ;
M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ;
M, q |= Eϕ iff there is a path λ ∈ ΛM(q) such that M, λ |= ϕ;

and for path formulae

M, λ |= ϕ iff M, λ[0] |= ϕ;
M, λ |= ¬γ iff M, λ
|= γ;
M, λ |= γ ∧ δ iff M, λ |= γ and M, λ |= δ;
M, λ |= ©γ iff λ[1,∞], π |= γ; and

24 N. Bulling and B. Farwer

M, λ |= γ U δ iff there is an i ∈ N0 such that M, λ[i,∞] |= δ and M, λ[j,∞] |= γ
for all 0 ≤ j < i;

A less expressive fragment of CTL� called CTL [6] has become popular due to its
better computational properties. CTL restricts CTL� such that every temporal
operator must directly be preceded by a path quantifier. The formula E� ♦ p,
for instance, is a formula of the full language but not of the restricted version.

2.2 Multisets

We define some variations of multisets used in the following sections. We assume
that N0 = {0, 1, 2, . . .} and Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

Definition 1 (Z/Z
∞-multiset,X±

∞, X±, N0/N
∞
0 -multiset, X⊕

∞, X⊕). Let
X be a non-empty set.

(a) A Z-multiset Z : X−→Z over the set X is a mapping from the elements of
X to the integers.
A Z

∞-multiset Z : X−→Z∪{−∞,∞} over the set X is a mapping from the
elements of X to the integers extended by −∞ and ∞.
The set of all Z-multisets (resp. Z

∞-multisets) over X is denoted by X±

(resp. X±∞).
(b) An N0-multiset (resp. N

∞
0 -multiset) N over X is a Z-multiset (resp. Z

∞-
multiset) over X such that for each x ∈ X we have N(x) ≥ 0. The set of all
N0-multisets (resp. N

∞
0 -multisets) over X is denoted by X⊕ (resp. X⊕

∞).

Whenever we speak of a ‘multiset’ without further specification, the argument
is supposed to hold for any variant from Def. 1. In general, we overload the
standard set notation and use it also for multisets, i.e., ⊆ denotes multiset in-
clusion, ∅ is the empty multiset, etc. We assume a global set of resource types
R. The resources of an individual agent form a multiset over this set. Z-multiset
operations are straightforward extensions of N0-multiset operations.

Multisets are frequently written as formal sums, i.e., a multiset M : X−→N0

is written as
∑

x∈X M(x). Given two multisets M : X−→N0 and M′ : X−→N0

over the same set X , multiset union is denoted by +, and is defied as (M +
M′)(x) := M(x) + M′(x) for all x ∈ X . Multiset difference is defined only if
M has at least as many copies of each element as M′. Then, (M − M′)(x) :=
M(x)−M′(x) for all x ∈ X . For Z-multisets, + is defined exactly as for multisets,
but the condition is dropped for multiset difference, since for Z-multisets negative
multiplicities are possible. Finally, for Z

∞-multisets we assume the standard
arithmetic rules for −∞ and ∞ (for example, x+ ∞ = ∞, x−∞ = −∞, etc).

We define multisets with a bound on the number of elements of each type.

Definition 2 (Bounded multisets). Let k, l ∈ Z. We say that a multiset M
over a set X is k-bounded iff ∀x ∈ X (M(x) ≤ k). We use kX±

∞ to denote the
set of all k-bounded Z

∞-multisets over X; and analogously for the other types of
multisets.

Expressing Properties of Resource-Bounded Systems 25

Finally, we define the (positive) restriction of a multiset with respect to an-
other multiset, allowing us to focus on elements with a positive multiplicity.

Definition 3 ((Positive) restriction, M �N). Let M be a multiset over X
and let N be a multiset over Y . The (positive) restriction of M regarding N,
M �N, is the multiset M �N over X ∪ Y defined as follows:

M �N (x) :=

{
M(x) if N(x) ≥ 0 and x ∈ Y

0 otherwise.

So, the multiset M �N equals M for all elements contained in N which have
a non-negative quantity, and 0 for all others elements.

3 Modelling Resource-Bounded Systems

In this section we introduce resource-bounded models (RBMs) for modelling
system with limited resources. Then, we propose the logics RTL� and RTL
(resource-bounded tree logics), for the verification of such systems. Subsequently,
we introduce cover models and graphs and consider several properties and special
cases of RBMs.

3.1 Resource-Bounded Systems

A resource-bounded agent has at its disposal a (limited) repository of resources.
Performing actions reduces some resources and may produce others; thus, an
agent might not always be able to perform all of its available actions. In the
single agent case that we consider here this corresponds to the activation or
deactivation of transitions.

Definition 4 (Resources R, resource quantity (set), feasible)
An element of the non-empty and finite set R is called resource. A tuple (r, c) ∈
R × Z

∞ is called resource quantity and we refer to c as the quantity of r. A
resource-quantity set is a Z

∞-multiset ρ ∈ R±∞. Note that ρ specifies a resource
quantity for each r ∈ R.

Finally, a resource-quantity set ρ is called feasible iff ρ ∈ R⊕
∞; that is, if all

resources have a non-negative quantity.

We model resource-bounded systems by an extension of Kripke frames, allow-
ing each transition to consume and produce resources. We assign pairs (c,p)
of resource-quantity sets to each transition, denoting that a transition labelled
(c,p) produces p and consumes c.

Definition 5 (Resource-bounded model). A resource-bounded model
(RBM) is given by M = (Q ,→,Props, π,R, t) where

– Q, R, and Props are finite sets of states, resources, and propositions, re-
spectively;

26 N. Bulling and B. Farwer

– (Q ,→,Props, π) is a Kripke model; and
– t : Q × Q → R⊕ × R⊕ is a (partial) resource function, assigning to each

transition (i.e., tuple (q, q′) ∈→) a tuple of feasible resource-quantity sets.
Instead of t(q, q′) we sometimes write tq,q′ and for tq,q′ = (c,p) we use •tq,q′
(resp. t •q,q′) to refer to c (resp. p).

Hence, in order to make a transition from q to q′, where q → q′, the resources
given in •tq,q′ are required ; and in turn, tq,q′ • are produced after executing the
transition. Note, that we only allow finite productions and consumptions.

A path of an RBM is a path of the underlying Kripke structure. We also use
the other notions for paths introduced above.

The consumption and production of resources of a path can now be defined
in terms of the consumptions and productions of the transitions it comprises.
Intuitively, not every path of an RBM is feasible; consider, for instance, a system
consisting of a single state q only where q → q and t •q,q = •tq,q. It seems that the
transition “comes for free” as it produces the resources it consumes; however,
this is not the case. The path qqq . . . is not feasible as the initial transition is
not enabled due to the lack of initial resources. Hence, in order to enable it, at
least the resources given in •tq,q are necessary. Intuitively, a path is said to be
ρ-feasible if each transition in the sequence can be executed with the resources
available at the time of execution.

Definition 6 (ρ-feasible path, resource-extended path). A path λ =
q1q2q3 · · · ∈ ΛM(q) where q = q1 is called ρ-feasible if for all i ∈ N the resource-
quantity set

(
ρ+Σi−1

j=1(t
•
qjqj+1

− •tqjqj+1)
)

�•tqiqi+1
−•tqiqi+1 is feasible.

A resource-extended path is given by λ ∈ (Q ×R±
∞)ω such that the restriction of

λ to states, denoted λ|Q , is a path in the model and the second component keeps
track of the currently available resources; we use λ|R to refer to the projection
to the second component.

3.2 Resource-Bounded Tree Logic

We present a logic based on CTL� which can be used to verify systems with
limited resources. In the logic we replace the CTL� path quantifier E by 〈ρ〉
where ρ is a resource-quantity set. The intuitive reading of a formula 〈ρ〉γ is that
there is a(n) (infinite) ρ-feasible path λ on which γ holds. Note that E (there
is a path in the system) can be defined as 〈ρ∞〉 where ρ∞ is the resource set
assigning ∞ to each resource type. Formally, the language is defined as follows.

Definition 7 (LRTL�). Let R be a set of resources and let Props a set of propo-
sitions. The language LRTL� is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈ρ〉γ where γ ::= ϕ | ¬γ | γ ∧ γ | ϕU ϕ | ©ϕ

and p ∈ Props and ρ ∈ R±∞. Formulae ϕ (resp. γ) are called state (resp. path)
formulae.

Expressing Properties of Resource-Bounded Systems 27

Moreover, we define fragments of LRTL� in which the domain of ρ is restricted.
Let X be any set of multisets over R. Then LRTL�

X
restricts LRTL� in such a

way that ρ ∈ X. Finally, we define [ρ], the dual of 〈ρ〉, as ¬〈ρ〉¬.

Analogously to the language of CTL we define LRTL as the fragment of LRTL�

in which each temporal operator is immediately preceded by a path quantifier.

Definition 8 (LRTL). Let R be a set of resources and let Props a set of propo-
sitions. The language LRTL is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈ρ〉©ϕ | 〈ρ〉� ϕ | 〈ρ〉ϕU ϕ

where p ∈ Props, ρ ∈ R±∞. Fragments RTLX are defined in analogy to Def. 7.

As in the language of CTL we define ♦ ϕ as �U ϕ and we use the following
abbreviations for the universal quantifiers (they are not definable as duals in
LRTL as, for example, ¬〈ρ〉¬� ϕ is not an admissible LRTL-formula):

[ρ]©ϕ ≡ ¬〈ρ〉©¬ϕ,
[ρ]� ϕ ≡ ¬〈ρ〉♦ ¬ϕ,
[ρ]ϕU ψ ≡ ¬〈ρ〉((¬ψ)U (¬ϕ ∧ ¬ψ)) ∧ ¬〈ρ〉� ¬ψ,

Next, we give the semantics for both languages.

Definition 9 (Semantics, RTL�). Let M be an RBM, let q be a state in M,
and let λ ∈ ΛM. The semantics of LRTL�-formulae is given by the satisfaction
relation |= which is defined as follows:

M, q |= p iff λ[0] ∈ π(p) and p ∈ Props;
M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ
M, q |= 〈ρ〉ϕ iff there is a ρ-feasible path λ ∈ Λ(q) such that M, λ |= ϕ
M, λ |= ϕ iff M, λ[0] |= ϕ;

and for path formulae:

M, λ |= ¬γ iff not M, λ |= γ
M, λ |= γ ∧ ψ iff M, λ |= γ and M, λ |= ψ
M, λ |= � ϕ iff for all i ∈ N we have that λ[i,∞] |= ϕ;
M, λ |= ©ϕ iff λ[1,∞] |= ϕ; and
M, λ |= ϕU ψ iff there is an i ≥ 0 such that M, λ[i,∞] |= ψ and M, λ[j,∞] |= ϕ

for all 0 ≤ j < i;

We consider the logic RTL� as the tuple (LRTL� , |=) over all RBMs and analo-
gously for all other fragments. These clauses are also used to define the semantics
for LRTL (therefore, we also stated the clause for � ϕ).

Thus the meaning of [ρ]� p is that proposition p holds in every state on any
ρ-feasible path.

We now discuss some interpretations of the formula 〈ρ〉γ considering various
resource-quantity sets. For ρ ∈ R⊕ it is assumed that ρ consists of an initial
(positive) amount of resources which can be used to achieve γ where the quantity
of each resource is finite. ρ ∈ R⊕

∞ allows to ignore some resources (i.e., it is
assumed that there is an infinite quantity of them). Initial debts of resources
can be modelled by ρ ∈ R±

∞.

28 N. Bulling and B. Farwer

q0

q1q2

p

r

t

(0
, 0

),
(0
, 1

)

(1, 1), (0, 2)

(0
, 3

),
(0
, 0

)

(3, 3), (0, 0)

(0, 0), (0, 2)

(q0, (1, 1))

(q0, (0, 4))

(q1, (0, 2))

(q2, (0, 1))

(q0, (0, 1))

(q0, (1,∞))

(q2, (1,∞))
(q1, (0,∞))

(q0, (0,∞))

(q0, (∞, 1))

(q1, (∞, 2))

(q0, (∞, ω))

(q1, (∞, ω)) (q2, (∞, ω))

(a) (b)

Fig. 1. In Figure (a) a simple RBM M is shown and (b) presents some corresponding
cover graphs

Example 1. Consider the RBM M in Figure 1(a). Each transition is labeled by
(c1, c2), (p1, p2) with the interpretation: The transition consumes ci and produces
pi quantities of resource ri for i = 1, 2. We encode the resource-quantity set by
(a1, a2) to express that there are ai quantities of resoure ri for i = 1, 2.

– If there are infinitely many resources available proposition t can become true
infinitely often: M, q0 |= 〈(∞,∞)〉� ♦ t

– We have M, q0
|= 〈(1, 1)〉� � as there is no (1, 1)-feasible path. The formula
〈(1,∞)〉� (p ∨ t) holds in q0.

– Is there a way that the system runs forever given specific resources? Yes, if
we assume, for instance, that there are infinitely many resources of r1 and
at least one resource of r2: M, q0 |= 〈(∞, 1)〉�

These simple examples show, that it is not always immediate whether a formula
is satisfied, sometimes a rather tedious calculation might be required.

3.3 Cover Graphs and Cover Models

In this section we introduce a transformation of RBMs into Kripke models.
This allows us, in general, to translate truth in RTL to truth in CTL as shown
in Section 4.1.

We say that a resource-quantity set covers another, if it has at least as many
resources of each type with at least one amount actually exceeding that of the
other resource-quantity set. We are interested in cycles of transition systems that
produce more resources than they consume, thereby giving rise to unbounded
resources of some type(s). This is captured by a cover graph for RBMs, extending
ideas from [11] and requiring an ordering on resource quantities.

Definition 10 (Resource ordering <). Let ρ and ρ′ be resource sets in R±∞.
We say ρ < ρ′ iff (∀r ∈ R (ρ(r) ≤ ρ′(r))) ∧ (∃r ∈ R (ρ(r) < ρ′(r))). We say ρ
has strictly less resources than ρ′ or ρ′ covers ρ.

The ordering is extended to allow values of ω by defining for x ∈ N that ∞+ω =
∞, ∞− ω = ∞, ω −∞ = −∞, ω + x = ω, ω − x = ω, and ω <∞.

Expressing Properties of Resource-Bounded Systems 29

Definition 11 (ρ-feasible transition,
ρ−→). We say that a transition q → q′

is ρ-feasible and write q
ρ−→q′ if for all r ∈ R we have that 0 < •tq,q′ (r) implies

•tq,q′(r) ≤ ρ(r).

So, given a specific amount of resources ρ a transition is said to be ρ-feasible
if it can be traversed given ρ. A node of the cover graph consists of tuples
(q, (xi)i=1,...,|R|) where q is a state of the RBM and (xi)i is a vector representing
the currently available resources. The variable xi denotes that there are xi units
of resource ri.

Definition 12 ((ρ, q)-cover graph of an RBM, path, λ|Q). Let M = (Q ,→,
Props, π,R, t), let q be a state in Q, and let ρ ∈ R±∞. Without loss of generality,
assume R = {r1, . . . , rn} and consider (xi)i as an abbreviation for the sequence
(xi)i=1,...,n. The (ρ, q)-cover graph CG(M, ρ, q) for M with initial state q ∈ Q
and an initial resource-quantity set ρ is the graph (V,E) defined as the least
fixed-point of the following specification:

1. (q, (ρ(ri))i) ∈ V (the root vertex).

2. For (q′, (xi)i) ∈ V and q′′ ∈ Q with q′
(xi)i−−−→q′′ then either:

(a) if there is a vertex (q′′, (x̂i)i) on the path from the root to (q′, (xi)i) in
V , with (x̂i)i < (xi − •tq′,q′′ (ri) + tq′,q′′

•(ri))i then (q′′, (x̃i)i) ∈ V
and ((q′, (xi)i), (q′′, (x̃i)i)) ∈ E where we define

x̃i :=

{
max{ω, xi − •tq′,q′′(ri) + tq′,q′′

•(ri)} if x̂i < xi,

xi − •tq′,q′′ (ri) + tq′,q′′
•(ri) otherwise;

(b) or else (q′′, (xi − •tq′,q′′(ri) + tq′,q′′
•(ri))i) ∈ V and

((q′, (xi)i), (q′′, (xi − •tq′,q′′(ri) + tq′,q′′
•(ri))i) ∈ E.

A path in CG(M, ρ, q) is an infinite sequence of pairwise adjacent states. Given
a path λ = (q1, (x1i)i)(q2, (x2i)i) . . . we use λ|Q to denote the path q1q2 . . . , i.e.,
the states of M are extracted from the states in V .

Cover graphs can be viewed as Kripke frames. It is obvious how they can be
extended to models given an RBM.

Definition 13 ((ρ, q)-cover model of an RBM). Let G = (V,E) be the (ρ, q)-
cover graph of an RBM M = (Q ,→,Props, π,R, t). The (ρ, q)-cover model of
M, CM(M, ρ, q), is given by (V,E,Props, π′) with π′((q, (xi)i)) := π(q) for all
(q, (xi)i) ∈ V .

Figure 2 shows the RBM M in (a) and its cover model CM(M, 0, q0) at the
very top of (b). In the cover model, ω denotes the reachability of unbounded
resources.

In Section 4.1 we analyse the relation between cover models and truth in RTL.
Unfortunately, as illustrated in the next example, “simple” cover models in their
current form are not yet suitable for that.

30 N. Bulling and B. Farwer

q0 q1

(0), (1)

(3), (0)

(1), (0)
p

(q0, (0)) (q0, (ω)) (q1, (ω))

(q0, (0))

(q0, (0))

(q0, (ω2))

(q0, (ωk)) (q1, (ω3
k)) (q1, (ωk−1

k)) (q1, (0))
p

p

M :

CM(M, 0, q0) :

CM2(M, 0, q0) :

CMk(M, 0, q0), k ≥ 3 :

(a)
(b)

Fig. 2. An RBM M (Fig. (a)), its cover model, 2-cover model, and κ-cover model
(Fig. (b))

Example 2. Let λ be the path of CM(M, 0, q0) from Figure 2(b) with λ|Q =
q0q0(q1)ω. Obviously, this path is not 0-feasible in the model M from Fig. 2(a).
The problem is, that subsequent selections of the transition q0 → q0 allows
to generate any finite amount of resources, thus is covered by ω, but any finite
amount is not enough for the subpath (q1)ω. This implies, that we cannot directly
use cover models as alternative models.

Note, however, that the following result is obvious by the definition of a cover
model: Every ρ-feasible path in the model is also a path in the corresponding
cover model. The other direction is the one that causes trouble.

Proposition 1. If λ is a ρ-feasible q-path in M then there is a (q, ρ)-path λ′ in
CM(M, ρ, q) such that λ = λ′|Q.

Proof. Let λ be a ρ-feasible q-path and ηi be the resources available at λ[i]
after λ[0, i], for i = 1, 2, . . . ; particularly, we have that η0 = ρ. By induction on
the number of transitions we show that there is a (q, ρ)-path λ′ in CM(M, ρ, q)
where (V,E) denotes the underlying graph such that λ = λ′|Q. By definition is
(λ[0], ρ(ri)i) ∈ V . For every state q′ with a ρ-feasible transition from λ[0] to q′

we have that (q′, . . .) ∈ V and an edge ((λ[0], ρ), (q′, . . .)) ∈ E (according to the
construction of the cover model). In particular, we have that (λ[1], ζ) ∈ V with
ζ ≥ω η1.

Now suppose the claim is proven up to position k. Let (λ[k], ζ) ∈ V with
ζ ≥ω ηk be the k+ 1st state on λ′. Following the same reasoning as above there
is a transition ((λ[k], ζ), (λ[k + 1], ζ′)) ∈ E with ζ′ ≥ω ηk+1. ��

In order to avoid the problem discussed in Example 2 we modify the cover
graph construction as follows. The construction changes for those transitions that
consume from the ω quantified resource type. Instead of using the rule “ω− k =
ω”, we (try to) expand the nodes for a fixed number of times ensuring that other
loop’s resource requirements can be met. But we abstain of introducing ω’s as
done in the cover graphs.

For the construction, we replace ω by κ new symbols ωlκ for l = 0, . . . κ − 1
and κ ∈ N0. For i ∈ N0 we define: ωlκ − i = 0 for l + i ≥ κ, ωlκ − i = ωl+iκ for
l + i < κ, ωlκ + i = ω

min{l−i,0}
κ , and we set ωκ = ω0

κ. The symbol ωκ is used

Expressing Properties of Resource-Bounded Systems 31

to represent that at least κ units of some resource type are produced, and ωlκ
indicates that there are κ− l resources left.

Identifying the symbol ωlκ with the number κ− l allows to extend the resource
ordering from Definition 10 in a natural way; e.g. we have i ≤ ωlκ iff i ≤ κ −
l. Moreover, this does also make it possible to lift the notation of ρ-feasible
transition etc. to this extended case. Finally, we define a class of cover models.

Definition 14 (CMκ(M, ρ, q)). The construction of the (ρ, q, κ)-cover graph is
defined as in Definition 12 but ω in 2. is replaced by ωκ; that is,

x̃i :=

{
max{ωκ, xi − •tq′,q′′(ri) + tq′,q′′

•(ri)} if x̂i < xi,

xi − •tq′,q′′(ri) + tq′,q′′
•(ri) otherwise;

The (ρ, q, κ)-cover model, CMκ(M, ρ, q), is defined analogously to Definition 13.

In Figure 2(b) we have also drawn the 2- and κ-cover model of the model M.
In the next example we show that this generalised cover models overcome the
problem discussed in Example 2.

Example 3. The “bad” path λ of Example 2 is neither possible in CM2(M, 0, q0)
nor in CMκ(M, 0, q0) for any κ ≥ 0. This is, because for any fixed κ the path
(q1)ω will eventually have consumed all resources from ωκ.

However, another problem arises. If the κ is chosen too small then we might
abort the construction too early. The cover model CM2(M, 0, q0) illustrates the
problem: Principally, it is possible to reach state q1 if the loop q0 → q0 is tra-
versed at least three times. However, as ω2 does not allow to “remember” more
than two units of resources state q1 is never visited.

In order to avoid this problem we need to find an appropriate κ such that a
theorem similar to Proposition 1 with respect to κ-cover models holds. Indeed,
such a κ is constructible but it is very complex (cf. the proof of Theorem 3).

We end the section with two results.

Proposition 2. Let ρ ∈ R±∞, let M be an RBM, let q be a state in M, and let
G denote the (ρ, q)- or (ρ, q, κ) cover graph of M. Then, for each node (q, (xi)i)
of G the property xi ≥ min{ρ(ri), 0} holds.

Proof. Suppose there is a node (q, (xi)i) in the cover graph G and an index i
such that xi < min{ρ(ri), 0}. We first consider the case in which the minimum
is equal to 0. Then, there must be a transition in G which causes a non-negative
quantity of ri to become negative. But such a transition is not feasible due to
the construction of G! The case in which the minimum is equal to ρ(ri) < 0
yields the same contradiction as a negative quantity of ri reduces even further
which is not allowed in the construction of G. ��

The proposition states that non-positive resource quantities cannot decrease
further. Theorem 1 states that cover models are finite; its proof is similar to the
corresponding proof for Karp-Miller graphs [11].

32 N. Bulling and B. Farwer

Theorem 1 (Finiteness of the (κ-)cover graph). Let ρ ∈ R±
∞ and κ ∈ N.

The (ρ, q)- and (ρ, q, κ)-cover graphs of the RBM M, q ∈ QM, are finite.

Proof. Let G denote the (ρ, q)-cover graph of M and let Q be the set of states
in M. Assume G is infinite (i.e., G has infinitely many nodes). Then, there is
an infinite path l = v1v2 . . . in G that contains infinitely many different states.
Since Q is finite there is some state, say q′ ∈ Q , of M and an infinite subsequence
of distinct states l′ = vi1vi2 . . . on l with vij = (q′, (xjk)k) and ij < ij+1 for all
j = 1, 2, Due to the construction of the cover graph, it cannot be the case
that (xjk)k ≤ (xj

′
k)k for any 1 ≤ j < j′; otherwise, an ω-node would have been

introduced and the infinite sequence would have collapsed. So, there must be two
distinct indices, o and p, with 1 ≤ o, p ≤ |R| such that, without loss of generality,
xjo < xj

′
o and xjp > xj

′
p . But by Prop. 2 we know that each xjk ≥ min{ρ(rk), 0};

hence, the previous property cannot hold for all indices o, p, j, j′ but for the
case in which ρ(r) = −∞ for some resource r. However, this would also yield a
contradiction as any non-negative resource quantity is bounded by 0. This proves
that such an infinite path cannot exist and that the cover graph therefore has
to be finite. ��

3.4 Resource-Bounded Models

In Section 5 we show that the model-checking problem is decidable for RTL.
Decidability of model checking for (full) RTL� over arbitrary RBMs is still open.
However, we identify interesting subclasses in which the problem is decidable.
Below we consider some restrictions which may be imposed on RBMs.

Definition 15 (Production free, zero (loop) free, k-bounded)
Let M = (Q ,→,Props, π,R, t) be an RBM.

(a) We say that M is production free if for all q, q′ ∈ Q we have that tq,q′ =
(c, ∅). That is, actions cannot produce resources they only consume them.

(b) We say that M is zero free if there are no states q, q′ ∈ Q with q
= q′ and
tq,q′ = (∅,p). That is, there are no transitions between distinct states which
do not consume any resources.

(c) We say that M is zero-loop free if there are no states q, q′ ∈ Q with tq,q′ =
(∅,p). That is, in addition to zero free models, loops without consumption of
resources are also not allowed.

(d) We say that M is (structurally) k-bounded for ρ ∈ kR±∞ iff the available
resources after any finite prefix of a ρ-feasible path are bounded by k, i.e.,
there is no reachable state in which the agent can have more than k resources
of any resource type.

In the following we summarise some results which are important for the model
checking results presented in Section 5.

Proposition 3. Let M be an RBM and let ρ ∈ R±∞ be a resource-quantity set.
Then, there is an RBM M′ and a ρ′ ∈ R±, both effectively constructible from
M and ρ, such that the following holds: A path is ρ-feasible in M if, and only if,
it is ρ′-feasible in M′.

Expressing Properties of Resource-Bounded Systems 33

Proof. Let ρ′ be equal to ρ but the quantity of each resource r with ρ(r) ∈
{−∞,∞} is 0 in ρ′ and let M′ equal M apart from the following exceptions. For
each transition (q, q′) with tqq′ = (c,p) in M do the following: Set c(r) = 0 in
M′ for each r with ρ(r) = ∞; or remove the transition (q, q′) completely in M′

if c(r) > 0 (in M) and ρ(r) = −∞ for some resource r. Obviously, ρ ∈ R±.
Now, the left-to-right direction of the result is straightforward as only transi-

tions were omitted in M′ which can not occur on any ρ-feasible path in M. The
right-to-left direction is also obvious as only resource quantities in M′ were set
to 0 from which an infinite amount is available in ρ and only those transitions
were removed which can never occur due to an infinite debt of resources. ��

The next proposition presents some properties of special classes of RBMs intro-
duced above. In general there may be infinitely many ρ-feasible paths. We study
some restrictions of RBMs that reduce the number of paths:

Proposition 4. Let M = (Q ,→,Props, π,R, t) be an RBM.

(a) Let ρ ∈ R± and let M be production and zero-loop free; then, there are no
ρ-feasible paths.

(b) Let ρ ∈ R± and let M be production and zero free. Then, for each ρ-feasible
path λ there is an (finite) initial segment λ′ of λ and a state q ∈ Q such that
λ = λ′ ◦ qqq

(c) Let ρ ∈ R± and let M be production free. Then, each ρ-feasible path λ has
the form λ = λ1 ◦ λ2 where λ1 is a finite sequence of states and λ2 is a path
such that no transition in λ2 consumes any resource.

(d) Let ρ ∈ R± and let M be k-bounded for ρ. Then there are only finitely
many state/resource combinations (i.e., elements of Q × R±) possible on
any ρ-feasible path.

Proof (Sketch).
(a) As there are no resources with an infinite amount and each transition is

production free and consumes resources some required resources must be ex-
hausted after finitely many steps.

(b) Apart from (a) loops may come for free and this is the only way how
ρ-feasible paths can result.

(c) Assume the contrary. Then, in any infinite suffix of a path there is a
resource-consuming transition that occurs infinitely often (as there are only
finitely many transitions). But then, as the model is production free, the path
cannot be ρ-feasible.

(d) We show that there cannot be infinitely many state/resource combinations
reachable on any ρ-feasible path. Since the condition of ρ-feasibility requires the
consumed resources to be present, there is no possibility of infinite decreasing
sequences of resource-quantity sets.This gives a lower bound for the initially
available resources ρ. The k-boundedness also gives an upper bound. ��

We show that k-boundedness is decidable for RBMs.

34 N. Bulling and B. Farwer

Proposition 5 (Decidability of k-boundedness). Given a model M and an
initial resource-quantity set ρ, the question whether M is k-bounded for ρ is
decidable.

Proof. First, we check that ρ ∈ kR⊕
∞. If this is not the case, then M is not

k-bounded for ρ. Then we construct the cover graph of M and check whether
there is a state (q, (xi)i) in it so that xi > k for some i. If this is the case M is
not k-bounded; otherwise it is. ��

We end this section with an easy result showing a sufficient condition for a model
to be k-bounded.

Proposition 6. Let ρ ∈ R±. Each production-free RBM is k-bounded for ρ
where k := max{i | ∃r ∈ R (ρ(r) = i)}.

4 Properties of Resource-Bounded Tree Logics

Before discussing specific properties of RTL and RTL� and showing the decid-
ability of the model-checking problem for RTL and for special cases of RTL� and
its models, we note that our logics conservatively extend CTL� and CTL. This is
easily seen by defining the path quantifier E as 〈ρ∞〉 and by setting tqq′ = (∅, ∅)
for all states q and q′ where ρ∞ denotes the resource set assigning ∞ to each
resource type. Hence, every Kripke model has a canonical representation as an
RBM. Moreover, given an RBM we can express the existence of a path (neglect-
ing resources) by E := 〈ρ∞〉. This allows to directly interpret CTL and CTL�

formulae over RBMs.

Proposition 7 (Expressiveness). CTL� (resp. CTL) can be embedded in
RTL� (resp. RTL) over Kripke models and RBMs.

Proof. Given a CTL� formula ϕ and a Kripke model M we replace every ex-
istential path quantifier in ϕ by 〈ρ∞〉 and denote the result by ϕ′. Then, we
extend M to the canonical RBM M′ if it is not already an RBM and have that
M, q |= ϕ iff M′, q |= ϕ′. ��

4.1 RTL and Cover Models

We show that if there is a satisfying path in any κ-cover model; then, there also
is a path in the corresponding RBM. Note however, this result does only hold
for positive formulae of the kind 〈ρ〉γ.

Let λ be a finite sequence of states. Then, we recursively define λn for n ∈ N0

as follows: λ0 := ε and λi := λi−1λ for i ≥ 1. That is, λn is the path which
results from putting λ n-times in sequence.

The following lemma states that for flat LRTL-path formulae1 it does not
matter whether a cycle is traversed just once or many times. It can be proved
by a simple induction on the path formula γ.
1 A formula is said to be flat if it does not contain any path quantifier.

Expressing Properties of Resource-Bounded Systems 35

Lemma 1. Let γ be an LRTL-path formula containing no more path quantifiers,
let M be an RBM and let λ be a path in M. Now, if λ̃ = q1 . . . qn is a finite
subsequence of λ with q1 = qn (note, that a single state is permitted as well),
then, λ can be written as λ1λ̃λ2 where λ1, λ2 are subsequences of λ and we have
that : M, λ |= γ if, and only if, M, λ1λ̃

nλ2 |= γ for all n ∈ {1, 2, . . .}.

The second lemma states that one can always extend a path in the κ-cover model
to a feasible path in the RBM by duplicating loops.

Lemma 2. Let λ be a path in CMκ(M, ρ, q), (q, ρ) and λ′ = λ|Q ; then, there
are tuples (ai, bi, ci) ∈ N

2
0 × N for i = 1, 2, . . . such that for all j = 1, 2, . . . we

have that aj ≤ bj < aj+1 and λ′[aj] = λ′[bj] and the path

(λ′[ai, bi]ci)i=1,2,... is ρ-feasible in M.

Proof. Let a (q, (ρ(ri))i)-path λ = l1l2 . . . in G := CMκ(M, ρ, q) = (V,E) be
given. We extend λ to a path λ′ (having the structure as stated in the lemma)
such that λ′|Q is ρ-feasible in M.

If λ|Q is ρ-feasible we just take λ′ as λ. So, suppose λ|Q = qi1qi2 . . . is not
ρ-feasible. Then, there is a transition in λ that is not feasible in M. Let l1 . . . lk+1

be the minimal length initial subpath of λ such that (l1 . . . lk+1)|Q is not feasible
in M and let lk = (q, (xi)i). According to the construction of cover graphs this
can only be caused by a resource rl such that xl = ωtκ for 0 ≤ t ≤ κ. Let
lo = (q′, (x′i)i) with 1 ≤ o ≤ k and o maximal be the state on λ at which x′l
was set to ωκ most recently. Then, there must be another state lp = (q′, (x′′i)i),
1 ≤ p < o and pmaximal, with (x′′i)i < (x′i)i and x′′l < x′l. The setting is depicted
in Figure 3.

lk = (q, (xi)i) lk+1

xl = ωiκ

lo = (q′, (x′i)i)lp = (q′, (x′′i)i)l1λ :
x′l = ωκ(x′′i)i < (x′i)i

x′′l < x′l
set to ωκ

step not feasibleloop

Fig. 3. Proof of Lemma 2

So, we extend λ to λ′ by duplicating the subsequence lplp+1 . . . lo in l and
adjusting the resources of the states preceding lp accordingly. Thus, we have
that λ′|Q = qi1 . . . qipqip+1 . . . qioqip . . . qioqio+1 We subsequently continue this
procedure (now applied to λ′) and do only duplicate transitions that are also
present in λ (i.e. not the new ones). It remains to show that this procedure does
not force some ci to become infinite.

Suppose that there is some ci that becomes infinite following this construction.
Then, there is a set of resources that requires the resources produced by λ[ai, bi];
and there is no other loop (or set of loops) that starts after λ[bi] that would also
provide the needed resources (otherwise these loops would be duplicated as the

36 N. Bulling and B. Farwer

construction looks for the latest possibility). In a κ-cover model, however, one can
only “remember” κ units of a resource; hence, one can have at most κ transitions
consuming of a specific resource until some other transition has to produce this
very resource again. Thus, in order to ensure that λ is a path in G there must be
a producing transition after λ[bi], in particular, a cycle introducing another ωκ-
node following the same line of argumentation as above, which contradicts our
supposition. Hence, we will actually obtain a path λ′ such that λ′|Q is ρ-feasible
and has the structure (λ|Q [ai, bi]ci)i=1,2,.... ��

Theorem 2. Let ρ ∈ R±∞, let M be an RBM, let q be a state in M. Then, for
any κ and any flat LRTL-formula 〈ρ〉γ we have that:

If CMκ(M, ρ, q), (q, ρ) |= Eγ then M, q |= 〈ρ〉γ.

Proof. The result follows from Lemma 1 and 2. Firstly, the path λ is extended
to a path λ′ such that λ′|Q is ρ-feasible according to Lemma 2; then, Lemma 1
shows that the truth of the flat path formula according to λ′ does not change.

��

Remark 1. Note, that the proof of Theorem 3 gives an algorithm that particu-
larly allows to construct a fixed index κ from an RBM and 〈ρ〉γ such that the
“reverse” of Theorem 2 holds: If CMκ(M, ρ, q), (q, ρ) |= Eγ then M, q |= 〈ρ〉γ.
This construction of κ however does already “solve” the model checking problem
and is computationally very expensive.

4.2 RTL� and Bounded Models

The case for RTL� is more sophisticated as the language is able to characterise
more complex temporal patterns. It is still open whether the general case is
decidable. In the following, we discuss the effects of various properties of RBMs
with respect to RTL�. For a given resource quantity it is possible to transform a
structurally k-bounded RBM into a production-free RBM such that satisfaction
of specific path formulae is preserved.

Proposition 8. Let ρ ∈ R±, let M be a structurally k-bounded RBM for ρ, and
let q be a state in M. Then, we can construct a finite, production-free RBM M′

such that for every LRTL�-path formula γ containing no more path quantifiers
the following holds:

M, q |= 〈ρ〉γ if, and only if, M′, q′ |= 〈∅〉γ.

Proof (Sketch). We essentially take M′ as the reachability graph of M. This
graph is build similar to the cover graph but no ω-nodes are introduced. Because
there are only finitely many distinct state/resource combinations in M (Prop. 4)
the model is finite and obviously also production free.

Let M, q |= 〈ρ〉γ and let λ be a ρ-feasible path satisfying γ. Then, the path
obtained from λ by coupling each state with its available resources is a path in
M′ satisfying γ. Conversely, let λ be a path in M′ satisfying γ. Then, λ|Q is a γ
satisfying ρ-feasible path in M due to the construction of M′. ��

Expressing Properties of Resource-Bounded Systems 37

The following corollary is needed for the model-checking results in Section 5.

Corollary 1. Let ρ ∈ R±, let M be a structurally k-bounded RBM for ρ, and
let q be a state in M. Then, we can construct a finite Kripke model such that for
every LRTL�-path formula γ containing no more path quantifiers the following
holds:

M, q |= 〈ρ〉γ if, and only if, M′, q′ |= Eγ.

Lemma 3 states that loops that do not consume resources can be reduced to
a fixed number of recurrences. For a path λ, we use λ[n] to denote the path
which is equal to λ but each subsequence of states q1q2 . . . qkq occurring in λ
with q′ := q1 = q2 = · · · = qk
= q and k > n where the transition q′ → q′

does not consume any resource (i.e. the first k states represent a consumption-
free loop that is traversed k times) is replaced by q1q2 . . . qnq. That is, states
qn+1qn+2 . . . qk are omitted. Note, that λ[n] is also well-defined for pure Kripke
models.

Lemma 3. (a) Let M be a Kripke model and γ be a path formula of CTL�

containing no path quantifiers and length |γ| = n. For every path λ in ΛM

we have that M, λ |= γ if, and only if, M, λ[n] |= γ.
(b) Let M be a production- and zero-free RBM and γ be an LRTL�-path formula

containing no path quantifiers and length |γ| = n. Then, for each path λ in
ΛM the following holds true: M, λ |= γ if, and only if, M, λ[n] |= γ.

Note that we might want to allow to re-enter loops n-times for cases in which
the formula has the form ©© . . .©♦ ϕ.

5 Model Checking Resource-Bounded Tree Logic

We are mainly interested in the verification of systems. Model checking refers to
the problem whether a formula ϕ is true in an RBM M and a state q in M. For
CTL� this problem is PSPACE-complete and for CTL, the fragment of CTL�

in which every temporal operator is directly preceded by a path quantifier, it is
P-complete [7]. So, we cannot hope for our problem to be computationally any
better than PSPACE in the general setting; actually, it is still open whether it
is decidable at all.

The following result shows that model checking RTL is decidable.

Theorem 3 (Model Checking RTL: Decidability). The model-checking
problem for RTL over RBMs is decidable.

Proof (Idea). A more elaborated proof sketch can be found in Appendix A. The
main idea is to encode an RBM as a Petri net and then use decision procedures
for Petri nets, more precisely a variant of the reachability problem. ��

In the following, we consider the decidability of fragments of the full logic over
special classes of RBMs (which of course, implies decidability of the restricted
version over the same class of models).

38 N. Bulling and B. Farwer

Proposition 9 (Decidability: Production -, zero free). The model-checking
problem for RTL�R± over production- and zero-free RBMs is decidable.

Proof (Sketch). According to Prop. 4 and Lemma 3 there are only finitely many
ρ-feasible paths of interest for ρ ∈ R±. This set can be computed step by step.
Then, for M, q |= 〈ρ〉γ where γ is a path formula one has to check whether γ
holds on one of these finitely many ρ-feasible paths starting in q. The model
checking algorithm proceeds bottom-up. ��

From Corollary 1 we know that we can use a CTL� model checker over k-bounded
models.

Proposition 10 (Decidability: k-bounded). The model-checking problem
for RTL�R± over k-bounded RBMs is decidable and PSPACE-hard.

By Prop. 6 and the observation that resources with an infinite quantity can be
neglected in a production-free RBM we can show the following theorem.

Theorem 4 (Decidability: production free). The model-checking problem
for RTL� over production-free RBMs is decidable and PSPACE-hard.

6 Conclusions, Related and Future Work

In this paper we have introduced resources into CTL� [6], which is arguably
among the most important logics for computer science. The paper showed de-
cidability results in the presence of some limiting constraints on the resource
allocation for transitions in Kripke models.

While most agent models do not come with an explicit notion of resources,
there is some recent work that take resources into account. [12] considers re-
sources in conjunction with reasoning about an agent’s goal-plan tree. Time,
memory, and communication bounds are studied as resources in [2]. In [1] the
abilities of agents under bounded memory are considered. Instead of asking for
an arbitrary winning strategy a winning strategy in their setting has to obey
given memory limitations.

A detailed analysis of the model checking complexity and the decidability
question for the general case is left for future research. We are particularly inter-
ested in finding constraints that would make the extended logic’s model-checking
problem efficiently decidable for a relevant class of MAS.

Moreover, we are interested in the reasoning about and modelling of abilities
of multiple agents having limited resources at their disposal. In [5] we consider
an extension of the resource-bounded setting introduced here in the context of
multi-agent systems (influenced by ATL [4] a logic for reasoning about strategic
abilities of agents). In that paper we show that the problem is undecidable in
general. On the other hand, if productions of resources are not allowed (as in
[2]) it was recently shown that the model checking problem is decidable [3].
The authors of [3] do also propose a sound and complete axiomatisation of their

Expressing Properties of Resource-Bounded Systems 39

resource-based extension of ATL (the logic is called resource-bounded alternating-
time temporal logic).

Another direction is offered by Linear Logic. Although Girard’s linear logic
[9] is not directly suitable for model checking, we will be looking into possible
combinations of linear logic fragments with our approach. One idea is to formalise
resources and their production/consumption by means of linear logic formulae
and hope to come up with an axiomatisation for our logic.

References

1. Ågotnes, T., Walther, D.: A logic of strategic ability under bounded memory. J. of
Logic, Lang. and Inf. 18(1), 55–77 (2009)

2. Alechina, N., Logan, B., Nga, N.H., Rakib, A.: Verifying time, memory and com-
munication bounds in systems of reasoning agents. In: AAMAS 2008: Proceedings
of the 7th International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 736–743 (2008)

3. Alechina, N., Logan, B., Nga, N.H., Rakib, A.: Resource-bounded alternating-time
temporal logic. In: van der Hoek, W., Kaminka, G., Lespérance, Y., Luck, M.,
Sen, S. (eds.) Proceedings of the Ninth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2010), Toronto, Canada, IFAAMAS (to
appear, May 2010)

4. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49, 672–713 (2002)

5. Bulling, N., Farwer, B.: On the (Un-)Decidability of Model-Checking Resource-
Bounded Agents. In: Coelho, H., Wooldridge, M. (eds.) Proceedings of the 19th
European Conference on Artificial Intelligence (ECAI 2010), Porto, Portugal, Au-
gust 16-20 (to appear, 2010)

6. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems 8(2), 244–263 (1986)

8. Emerson, E.A., Halpern, J.Y.: Sometimes and not never revisited: On branching
versus linear time temporal logic. In: Proceedings of the Annual ACM Symposium
on Principles of Programming Languages, pp. 151–178 (1982)

9. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
10. Jančar, P.: Decidability of a temporal logic problem for petri nets. Theor. Comput.

Sci. 74(1), 71–93 (1990)
11. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and

System Sciences 3(2), 147–195 (1969)
12. Shaw, P., Farwer, B., Bordini, R.: Theoretical and experimental results on the goal-

plan tree problem (short paper). In: Proceedings of AAMAS 2008, pp. 1379–1382
(2008)

40 N. Bulling and B. Farwer

A Proof of the RTL Model Checking Result

Theorem 5. The model-checking problem for RTLR⊕∞ over RBMs is decidable.

Proof (Sketch). Firstly, we present the proof for feasible resource sets only.
Proposition 3 allows to focus on resource-quantity sets from R⊕. The main
idea is to encode an RBM as a Petri net and then use decision procedures
for Petri nets to solve the model checking problem. A Petri net is a tuple
N = (S, T,W,mI) where S and T are non-empty and disjoint sets of places
and transitions, W : (S × T) ∪ (T × S) → N0 represents arc weights that de-
termine how many tokens are needed by and how many tokens are produced by
each transition. Finally, mI : P → N0 is the initial marking, i.e., a distribution of
tokens on the places of the net. A transition t is said to be enabled in a marking
m : P → N0) if m(s) ≥ W (s, t) for all s ∈ S. In this case, we also say, that t is
m-enabled. Now, an m-enabled marking t may fire resulting in a new marking
m′ := m−W (·, t)+W (t, ·). Recursively, one defines the change that occurs given
a sequence σ of subsequently fired transitions; thus, a run is an infinite sequence
of subsequently enabled and firing transitions.

Now, we can encode an RBM M with respect to a given set Q′ ⊆ QM, and
a feasible resource set ρ as a Petri net NQ′,ρ(M) = (S, T,W,mI). The main
idea of encoding transitions is sketched in Figure 4. States q are encoded as
places pq and transitions between states as transitions between places. For each
resource type a new place is created. For the initial marking function mI we
have that mI(pq) = 1 for all q ∈ Q ′, mI(r) = ρ(r) for r ∈ R, and 0 otherwise.
A complete encoding of an RBM is shown in Figure 5. We denote (the unique)
transition between place pqi and pqj by tqiqj . (Note, that we are economical with
our notation and reuse t already known from RBMs.)

Lemma 4. Let ρ be a feasible resource set, M an RBM, and q ∈ QM. Then,
the following holds:
q0q1 . . . is a ρ-feasible path in (M, q) iff σ = tq0q1tq1q2 . . . a run in N{q0},ρ(M).

In order to model check specific formulae, we need to extend our encoding. For
example, consider the formula 〈ρ〉♦ ϕ where ϕ is a propositional formula and ρ

qi qj
(c1, c2)(p1, p2)

r1 r2

pqi

c2

pqj

tqi,j

c1 p1

p2

M N{qi},ρ(M)

Fig. 4. Petri-net encoding N{qi},ρ(M) of an RBM M. Tokens inside the places rk

represent the amount of that resource (i.e., ρ(r1) = 3 and ρ(r2) = 1). Outgoing paths
consume tokens and incoming paths produce tokens, labeled edges produce/consume
the amount the edge is annotated with. E.g., if there is a token in place pqi and ck
tokens in place rk then the token can be moved to pqj and pk tokens can be moved to
rk for k = 1, 2.

Expressing Properties of Resource-Bounded Systems 41

q0

q2

q1

ϕ

ϕ

pq0

r1

pq1

pq2

M

N{q0},ρ(M)

(c1, p1)

(c 2
, p

2
)

(c
3
, p

3
)

(c
4 , p

4)

c1

c2

c3

c4

p4

p3

p2

p1

Fig. 5. Example of a complete encoding of an RBM M where ρ(r1) = 3

a feasible resource set. We can decompose the model checking problem into two
parts:

1. Find a (finite) sequence of states feasible given ρ to a state in which ϕ holds;
and

2. then arbitrarily extend this (finite) sequence to an infinite ρ-feasible path.

To achieve this, we introduce a new place that tells us (by marking it with
a token) that ϕ has been made true. This place remains marked throughout
the subsequent executions of the net and hence serves as an indicator of item 1
having been satisfied. To achieve this, given a propositional formula ϕ we extend
the encoding N{q0},ρ(M) of M to an encoding N{q0},ρ(M, Q′, ϕ) where Q′ ⊆ Q
as explained in the following. The new Petri net is equal to N{q0},ρ(M) apart
from the following modifications (Figure 6 illustrates the construction):

1. N ′ has two new places pS and pϕ.
2. For each transition t in N(M) that corresponds to a transition q → q′ in M

such that q ∈ Q′ and q′ |=prop ϕ we construct a duplicate with the fresh name
t̂ and include the following arcs: pS is connected to t; t and t̂ are connected
to pϕ; and pϕ is also connected to t̂; i.e. W (pS , t) = W (t, pϕ) = W (pϕ, t̂) =
W (t̂, pϕ) = 1.

3. pS is initially marked.

The constructed Petri net N{q0},ρ(M, {q0}, ϕ) has the following properties.

Proposition 11

1. A transition t can only be enabled if there is a token in pS.
2. Once such a transition t has fired it can never be enabled again and there is

a token in pϕ
3. A transitions t̂ can only be enabled if there is a token in pϕ.
4. Once there is a token in pϕ it remains there forever.
5. pS and pϕ contain at most one token and there is a token in pS iff there is

no token in pϕ.

42 N. Bulling and B. Farwer

pq1pq0
t

t̂

pϕpS

ϕM

N{q0},ρ(M, {q0}, ϕ)

q0 q1

Fig. 6. The encoding N{q0},ρ(M, {q0}, ϕ) of an RBM M. The resource requirements
are left out here.

pq1pq0

tq0q1

t̂q0q1
pϕ

ϕM

q0

pS
q2

q1

pq2

tq0q2

N
�

{q0},ρ(M, {q0}, ϕ)

Fig. 7. The encoding N©
{q0},ρ(M, {q0}, ϕ) of an RBM M. The resource requirements

are left out here.

Additionally, for the next-operator we extend the construction and disable, in
the first step, transition that do not result in a state satisfying ϕ. These transition
are only enabled if there is a token in pϕ. The net is shown in Figure 7.

The next lemma provides the essential step to use decision procedures for
Petri nets in order to solve the model checking problem.

Lemma 5

(a) M, q0 |= 〈ρ〉♦ ϕ iff there is a run in N♦ on which there is a token in pϕ
at some moment where N♦ is the Petri net that equals N{q0},ρ(M, QM, ϕ)
with the exception that the initial token in pS is in pϕ instead iff q0 |=prop ϕ.

(b) M, q0 |= 〈ρ〉©ϕ iff there is a run in N©
{q0},ρ(M, {q0}, ϕ) on which there is a

token in pϕ at some moment.
(c) M, q0 |= 〈ρ〉� ϕ iff there is a run in N� on which there never is a token

in p¬ϕ where N� is the Petri net that equals N{q0},ρ(M, QM,¬ϕ) with the
exception that the initial token in pS is in p¬ϕ instead iff q0
|=prop ϕ.

Expressing Properties of Resource-Bounded Systems 43

It remains to link the “until” case to Petri nets. For this, we consider the problem
whether M, q0 |= 〈ρ〉ϕU ψ. Let Mϕ be the restriction of M to states in which ϕ
holds. Now, MU is the model that glues together Mϕ with M as follows: Every
state q in Mϕ is connected to a state q′ ∈ M if q →M q′ and q′ satisfies ψ. The
construction is illustrated in Figure 8.

q0

q2

q1

ϕ

ϕ

M

ψ

q0

q2

ϕ

ϕ

q0

q2

q1

ϕ

ϕ

ψ

ψ ψ

MU

Fig. 8. Extending the RBM M to MU for ϕU ψ

Lemma 6. Suppose q0 |=prop ϕ (the other cases are trivially decidable). M, q0 |=
〈ρ〉ϕU ψ iff there is a run in NU on which there is a token in pψ at some moment
where NU is the Petri net that equals N{q0},ρ(M

U , QMU , ψ) with the exception
that the initial token in pS is in pψ instead iff q0 |=prop ψ.

Proof (of Lemma). The construction ensures that only states satisfying ϕ are
visited until a state ψ is visited. The rest follows from Lemma 5(a). ��

Finally, we show that the Petri net part in the previous two lemmata can be
decided. Let a Petri net N and a pair (A, f) such that A ⊆ S and f : A → N0

be given. In [10] the following problem, here denoted by ExtReach, was shown
to be decidable:

Is there a run σ = t1t2 . . . where t1 is enabled by the initial markingm0 =
mI and firing t1 leads to the successor marking m1 and mj enables tj+1

whose fireing leads to mj+1 for all j > 1, such that there are infinitely
many indices i such that the marking mi that occurs after ti restricted
to the states in A equals f (i.e., mi|A = f for infinitely many i)?

We have the following reductions.

Lemma 7. Assume the same notation as in Lemma 5 and 6.

(a) There is a run in N© on which there is a token in pϕ at some moment iff
(N©, ({pϕ}, f1)) is in ExtReach where f1 is the constant function 1.

(b) There is a run in N♦ on which there is a token in pϕ at some moment iff
(N♦ , ({pϕ}, f1)) is in ExtReach where f1 is the constant function 1.

(c) There is a run in N� on which there never is a token in p¬ϕ iff
(N� , ({p¬ϕ}, f0)) is in ExtReach where f0 is the constant function 0.

(d) There is a run in NU on which there is a token in pψ at some moment iff
(NU , ({pψ}, f1)) is in ExtReach where f1 is the constant function 1.

44 N. Bulling and B. Farwer

Proof (of Lemma). (a) The following follows from Proposition 11. There is a run
on which there is a token in pϕ at some moment iff there is a run on which there
is a token in pϕ infinitely often iff there is a run on which there is exactly one
token in pϕ infinitely often iff (N©, ({pϕ}, f1)) is in ExtReach.

(b-d) These cases are handled analogously. ��

The ExtReach problem is solved by applying the reachability problem for Petri
nets. If a marking is reachable an appropriate sequence of transitions is con-
structed. This sequence can also be used to construct κ: One simply takes the
maximum of all markings of all resource types along this sequence. If the state
is not reachable, κ is chosen arbitrarily. ��

Finally, we also include non-feasible resource sets and get the main result.

Theorem 6 (Model CheckingRTL: Decidability). The model-checking
problem for RTL over RBMs is decidable.

Proof (Sketch). We extend the previous construction to be able to deal with
non-feasible resource sets.

For non-feasible initial resource sets, we can still have a feasible path, in case
no resources with negative amount are ever required in the run (note that such
resources can still be produced!).

We encode a non-feasible resource set by splitting each resource place r of the
Petri net into a place for a positive number of resources, r, and a place for a
negative number of resources, r−.

Further, we need to ensure in our net, that whenever resources are produced
a positive number of tokens is placed on the positive resource place (only if
no tokens are present in the negative resource place) or a number of tokens
is removed from the negative resource place. Combinations are possible, if the
number of resources produced is larger than the negative number of resources
currently available. In the latter case all resources are removed from the negative
resource place and the remaining difference is placed into the positive place.
Therefore, we introduce a special resource control state, rctrl, that “deactivates”
the new part of the construction once a non-negative amount of resources is
available.

In the following we will describe the construction in detail. Consider the tran-
sition of an RBM at the left-hand side of Figure 9. For simplicity, we only
consider a single resource-type r. The transition consumes zero units of r and
produces u units (note, that if the transition does also consume of this resource
type we take the standard construction from Theorem 5). Suppose, we would
like to model check a formula 〈ρ〉γ with ρ(r) = −d, that is, there is an initial
debt of d units of resource r. Firstly, we add a transition tqiqj from pqi to qqj

which is only enabled if there are d units in the resource control state rctrl and
a token on pqi . We add u transitions t1, . . . , tu; u − 1 places p1, . . . , pu−1; and
u− 1 intermediate transitions tp

1
, . . . , tp

u−1
. Their connections are shown in the

right-hand part of Figure 9. Each transition ti can only be enabled if there is a
debt of resources (i.e. tokens in r−). Such a transition takes one token from r−

Expressing Properties of Resource-Bounded Systems 45

(0, u)
qi qj

u

u− 1

d
d

d

pqi
pqj

d

r− rrctrl

p1 pu−1
t1 t2 tu

tp
1

tp
u−1

tqiqj

. . .

. . .

. . .
u− (u− 1)

Fig. 9. Example of a PN construction for non-feasible resource sets: The left-hand
RBM with a single resource r with ρ(r) = −d is converted to the right-hand PN

and moves it to the control state rctrl. Once, there are d tokens in the control
state the transitions tp

i

can be enabled (while ti can no longer be enabled) and
the remaining produced resources are added to the resource place r. The net has
the following properties.

Proposition 12

1. There are x tokens in r− iff there are d− x token in rctrl for x ∈ {0, . . . , d}.
(That is, r− and rctrl are complementary places.)

2. Transitions tqiqj and tp
1
, . . . , tp

u−1
can only fire if there are d tokens in rctrl.

3. The number of tokens in rctrl is bounded by d and it is monotonically in-
creasing.

4. The number of tokens in r− is monotonically decreasing.
5. If there is a token in place pqi and there are d tokens in rctrl only the tran-

sition tqiqj is enabled.
6. There can only be tokens in r if there are no tokens in r−.

The next lemma shows that the net works as intended. The result follows from
the previous proposition.

Lemma 8. Let there be a token in pqi , d′ ≤ d tokens in r−, d − d′ tokens in
rctrl, and no tokens in r. Let σ be the minimal length firing sequence such that
there is a token in pqj . Then, after executing σ there are max{0, d′ − u} tokens
in r−, min{d, d− d′ + u} tokens in rctrl, and max{0, u− d′} tokens in r.

On the other hand, if there is a token in pqi , d tokens in rctrl, zero tokens in
r− and k tokens in r then, after executing σ there are k+u tokens in r, d tokens
in rctrl, and zero tokens in r−. ��

	Expressing Properties of Resource-Bounded Systems: The Logics RTL� and RTL
	Introduction
	Preliminaries
	Computation Tree Logic and Transition Systems
	Multisets

	Modelling Resource-Bounded Systems
	Resource-Bounded Systems
	Resource-Bounded Tree Logic
	Cover Graphs and Cover Models
	Resource-Bounded Models

	Properties of Resource-Bounded Tree Logics
	RTL and Cover Models
	RTL* and Bounded Models

	Model Checking Resource-Bounded Tree Logic
	Conclusions, Related and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

