
On the Implementation of Speculative

Constraint Processing

Jiefei Ma1, Alessandra Russo1, Krysia Broda1

Hiroshi Hosobe2, and Ken Satoh2

1 Imperial College London, United Kingdom
{jm103,ar3,kb}@doc.ic.ac.uk

2 National Institute of Informatics, Japan
{hosobe,ksatoh}@nii.ac.jp

Abstract. Speculative computation has been proposed for reasoning
with incomplete information in multi-agent systems. This paper presents
the first multi-threaded implementation for speculative constraint pro-
cessing with iterative revision for disjunctive answers in master-slave
multi-agent systems.

1 Introduction

In the context of distributed problem solving with multi-agent systems, commu-
nication among agents plays a very important role, as it enables coordination
and cooperation between agents. However, in practice communication is not al-
ways guaranteed. For example, the physical channel may delay/lose messages, or
agents may break down or take unexpectedly long time to compute answers. More-
over, agents are often unable to distinguish between the above situations. All such
problems/uncertainties can seriously affect the system performance, especially for
result-sharing applications. For example, in a multi-agent scheduling problem, if
some agents cannot respond to the queries of their local resources in time, then
the computation of the overall resource assignment will be impossible or delayed.

Speculative computation has been proposed in [1,2,3,4,5] as a solution to the
problem. In the proposal, a master agent prepares default answers to the ques-
tions that it can ask to the slaves. When communication is delayed or failed, the
master can use the default answers to continue the computation. If later a real
answer is returned (e.g. the communication channel or the slave agent is recov-
ered), the computation already done by the master, which is using the default
answers, will be revised. One of the main advantages of speculative computation
relies then on the fact that the computation process of an agent is never halted
when waiting for other agent’s responses. Examples of real life situations where
speculative computation is useful can be found in [1,2,3,4,5].

Within the last few years, speculative computation has gone through vari-
ous stages of development and extensions. In [1] an abductive-based algorithm
has been proposed for speculative computation with yes/no answers for master-
slave systems. In [2], the algorithm has been generalised for hierarchical multi-
agent systems where agents are assumed to be organised into a hierarchy of

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 178–195, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Implementation of Speculative Constraint Processing 179

master/slaves. The method proposed in [2] also considers only yes/no type of
answers. This approach has been extended in [3] to allow more general queries,
whereby an agent can ask possible values or constraints of given queries, but
within the context of master-slave systems. This speculative constraint process-
ing takes into account the possibility that the agent’s response may neither entail
nor contradict the default answer assumed during the computation. In this case
the two alternative computations – the one that uses the default and the one
that uses the agent’s response – are maintained active. The approach described
in [3] assumes, however, that only the master agent can perform speculative
computation, and that the answer of a slave agent is therefore final and cannot
be changed during the entire computation. This limitation has been further ad-
dressed in [4], where asked agents may provide disjunctive answers to a query at
different times, and may also change the answers they have sent previously. In
this context, a dynamic iterative belief revision mechanism has been deployed
to handle chain reactions of belief revisions among agents involved in a compu-
tational process.

Among the operationalmodels proposed for speculative computation [1,2,3,4,6],
the one in [4] is the most complex but also the most powerful. A practical imple-
mentation for it is very much desired, not only for proof-of-context testing and
benchmark investigation, but also for discovering further improvements and/or
extensions of the model. The contribution of this paper is to provide the first multi-
threaded implementation of a multi-agent system for speculative disjunctive con-
straint processing. The system allows the master agent to performs speculative
computation locally (using multi-threading or-parallelism), and to ask constraint
queries to the slave agents. The speculative master agent is associated with one
manager thread (MT) and a set of worker threads (WT). The description of the
implementation given in the paper re-organises the operational model proposed
in [4] to distinguish the tasks of the MT and WTs. A concurrency control mech-
anism has been introduced to maximise the concurrent execution of the MT and
WTs. This implementation design is shown to be good enough to allow for future
extensions of the speculative framework to, for instance, hierarchical multi-agent
systems.

The paper is organised as follows. Section 2 briefly reviews the operational
model of speculative constraint processing presented in [4]. Section 3 describes
the multi-threaded implementation in details, as well as the solutions to sev-
eral concurrent computation issues. Section 4 compares the implementation to
the pseudo-parallel approach, and suggests a hybrid-implementation for situa-
tions where computational resources (for multi-threading) are limited. Finally,
conclusion and future work are given in Section 5.

2 Speculative Disjunctive Constraint Processing

In this section we review the framework of speculative constraint processing and
its operational model that has been proposed in [4].

180 J. Ma et al.

2.1 Speculative Constraint Processing Framework

Definition 1. Let Σ be a finite set of constants. We call an element in Σ a slave
agent identifier. An atom is of the form either p(t1, ..., tn) or p(t1, ..., tn)@S,
where p is a predicate, ti(1 ≤ i ≤ n) is a term, and S is in Σ.

We call an atom with an agent identifier an “askable atom”, and an atom without
an identifier a “non-askable atom”.

Definition 2. A framework for speculative constraint computation, in a master-
slave system, is a triple 〈Σ, Δ,P〉, where:

– Σ is a finite set of constants;
– Δ is a set of rules of the following form, called default rules w.r.t. Q@S:

Q@S ← C‖,
where Q@S is an askable atom, each of whose arguments is a variable, and
C is a set of constraints, called default constraints for Q@S;

– P is a constraint logic program, that is, a set of rules R of the form:

H ← C‖B1, B2, ..., Bn,

where:
• H is a non-askable atom; we refer to H as the head of R, denoted as

head(R);
• C is a set of constraints, called the constraints of R, and denoted as

const(R);
• each Bi of B1, ..., Bn is either an askable atom or a non-askable atom,

and we refer to B1, ..., Bn as the body of R denoted as body(R).

For the semantics of the above framework, we index the semantics of a constraint
logic program by a reply set, which specifies a reply for an askable atom.

Definition 3. A reply set is a set of rules in the form:

Q@S ← C‖,
where Q@S is an askable atom, each of whose arguments is a variable, and C is
a constraint over these variables.

Let 〈Σ, Δ,P〉 be a framework for speculative constraint computation, and R
be a reply set. A belief state w.r.t. R and Δ is a reply set defined as:

R∪ {“Q@S ← C‖” ∈ Δ | ¬∃ C′ s.t. “Q@S ← C′‖” ∈ R}
and denoted as BEL(R, Δ).

We introduce the above belief state since, if the answer is not returned, we use
a default rule for an unreplied askable atom.

On the Implementation of Speculative Constraint Processing 181

Definition 4. A goal is of the form ← C‖B1, ..., Bn, where C is a set of con-
straints and the Bi’s are atoms. We call C the constraint of the goal and
B1, ..., Bn the body of the goal.

Definition 5. A reduction of a goal ← C‖B1, ..., Bn w.r.t. a constraint logic
program P, a reply set R, and an atom Bi, is a goal ← C′‖B′ such that:

– there is a rule R in P ∪R s.t. C ∧ (Bi = head(R))∧ const(R) is consistent1.
– C′ = C ∧ (Bi = head(R)) ∧ const(R)
– B′ = {B1, ...Bi−1, Bi+1, ..., Bn} ∪ body(R)

Definition 6. A derivation of a goal G =← C‖Bs w.r.t. a framework for spec-
ulative constraint computation F = 〈Σ, Δ,P〉 and a reply set R is a sequence of
reductions “← C‖Bs”,...,“← C′‖∅”2 w.r.t. P and BEL(R, Δ), where in each
reduction step, an atom in the body of the goal in each step is selected. C′ is
called an answer constraint w.r.t. G, F , and R. We call a set of all answer
constraints w.r.t. G, F , and R the semantics of G w.r.t. F and R.

We refer the readers to [4] for a hotel room reservation example.

2.2 The Operational Model

We briefly describe the execution of the speculative framework. The detailed
description can be found in [4]. The execution is based on two phases: a process
reduction phase and a fact arrival phase. The process reduction phase is a nor-
mal execution of a program in a master agent, and the fact arrival phase is an
interruption phase when an answer arrives from a slave agent.

Figures 1–4 intuitively explain how processes are updated according to askable
atoms. In the tree, each node represents a process, but we only show constraints
associated with the process. The top node represents a constraint for the orig-
inal process, and the other nodes represent added constraints for the reduced
processes. Let us note that we specify true for non-top nodes without added
constraints, since the addition of the true constraint does not influence the solu-
tions of existing constraints. The leaves of the process tree represent the current
processes. Processes that are not in the leaves are deleted processes.

Figure 1 shows a situation of the processes represented as a tree when an ask-
able atom, whose reply has not yet arrived, is executed in the process reduction
phase. In this case, the current process, represented by the processed constraints
C, is split into two different kinds of processes: the first one is a process using
default information, Cd, and is called default process 3; and the other one is the
current process C itself, called original process, suspended at this point.

When, after some reduction of the default processes (represented in Fig. 2 by
dashed lines), the first answer comes from a slave agent, expressing constraint
1 A notation Bi = head(R) represents a conjunction of constraints equating the argu-

ments of atoms Bi and head(R).
2 ∅ denotes an empty goal.
3 In this figure, we assume that there is only one default for brevity.

182 J. Ma et al.

C������
�������

Cd true
suspended

Fig. 1. When Q@S is processed in process reduction phase

Cf for this askable literal, we update the default processes as well as the original
suspended process as follows:

– Default processes are reduced to two different kinds of processes: the first
kind is a process adding Cf to the problem to solve, and the other is the
current process itself which is suspended at this point.

– The original process is reduced to two different kinds of processes as well:
the first kind is a process adding ¬Cd ∧ Cf , and the other is the original
process, suspended at this point.

C������
�������

Cd true

��� ����
����

�
�

Cf true
suspended

Cf true
suspended

Cf ∧¬Cd true
suspended

Fig. 2. When the first answer Cf for Q@S arrives

Let ← C‖Bs be a goal containing Q@S. Suppose that it is reduced into
← C ∧ Cd‖Bs\{Q@S} by a default rule “Q@S ← Cd‖”. To retain the previ-
ous computation as much as possible, we process the query by the following
execution:

1. We add Cf to the constraint of every goal derived from the default process.
2. In addition to the above computation, we also start computing a new goal:

← C ∧ ¬Cd ∧ Cf‖Bs\{Q@S}

to guarantee completeness.

When an alternative answer, with the constraint Ca, comes from a slave agent
(Fig. 3), we need to follow the same procedure as when the first answer comes
(Fig. 2), except that now the processes handling only default information are
suspended. So, this is done by splitting the suspended default process(es), in
order to obtain the answer constraints that are logically equivalent to the answer
constraints of:

← C ∧ Cd ∧Ca‖Bs\{Q@S},

On the Implementation of Speculative Constraint Processing 183

C������
�������

Cd true

��� ����
����� �

�
Cf true Cf true Cf ∧¬Cd true

���
Ca

	
	

true
suspended

Ca true
suspended

���� �
�

Ca∧¬Cd true
suspended

Fig. 3. When the alternative answer Ca for Q@S arrives

as well as by splitting the suspended original process, in order to obtain the
answer constraints that are logically equivalent to the answer constraints of
← C ∧ ¬Cd ∧ Ca‖Bs\{Q@S} (Fig. 3). By gathering these answer constraints,
we can compute all answer constraints for the alternative reply.

On the other hand, when a revised answer with the constraint Cr arrives,
all processes using the first (or current) answer are split, in order to obtain the
answer constraints that are logically equivalent to the answer constraints of:

← C ∧ Cf ∧Cr‖Bs\{Q@S},

and the suspended original process is split as well, in order to obtain the answer
constraints that are logically equivalent to the answer constraints of← C∧¬Cf ∧
Cr‖Bs\{Q@S} (Fig. 4). By gathering these answer constraints, we can override
the previous reply by the revised reply.

C������
�������

Cd true

��� ����
����� �

�
Cf true

suspended
Cf true

suspended
Cf ∧¬Cd true

Cr Cr Cr Cr Cr Cr

���� �
�

Cr∧¬Cf true
suspended

Fig. 4. When the revised answer Cr for Q@S arrives

3 A Multi-threaded Implementation

In [4], the detailed operational model is described as a multi-processing computa-
tion. There are two types of processes – finished processes that represent success-
fully terminated computational branches, and ordinary processes that represent
non-terminated branches. An ordinary process can be either an original process
that is always suspended or an active process that searches down an open branch.

In practice the operational model can be implemented in two ways:

184 J. Ma et al.

1. we represent each process as a state, and use a single process/thread to
manipulate the states in a pseudo-multi-threading (serialised) fashion. This
is very close to the model description;

2. we execute each process using a real thread, so that different (non-suspended)
processes can execute concurrently.

The multi-threaded approach avoids overheads caused by state selection and
management that the serialised approach has, and allows or-parallelism which
will benefit the proof search. However, using one thread for each process may
not always be necessary and may cause extra overheads such as in inter-threads
communication. For example, original processes are always suspended and can
never be resumed, though it may spawn new processes that are not suspended.
Preferably they should be managed as states instead, for easy update when a
relevant answer is returned. This is also true for finished process. In this sec-
tion, we describe a practical implementation for the operational model, which
considers various efficiency aspects.

3.1 Overview

The model is implemented as a speculative computation module, and we refer to
it as a speculative agent. A set of agents (some of them may not be speculative
agents) can be deployed to one or more host machines on a network. Agents
interact with each other via messages (containing queries or answers). Since the
operational model proposed in [4] is for simple master-slave systems only, in this
paper we also assume that there can be only one master, i.e. the only speculative
agent, in the set of deployed agents, and the rest are the slaves. The master can
send queries to the slaves, but a slave cannot send queries to the master or other
slaves. Hence, only the master can perform constraint processing with iterative
revision for disjunctive answers. But bear in mind that our implementation is in
fact designed in a way that it can be easily extended for hierarchical multi-agent
systems similar to that defined in [2].

As illustrated in Fig. 5, each agent has the following internal components:

Communication Interface Module (COM): this is the only interface for
inter-agent communications. It accepts queries or answers sent by the agent’s
master or slaves, and forwards the agent’s answers or queries to the master
or the appropriate slaves. The reception list and the address book are used
for keeping track of the queries received and the master/slave addresses4.

Speculative Computation Unit (SCU): this is the central processing unit
of the agent that performs speculative computations for one or more queries.

Default Store (Δ) and Program (P): they are self-explained, and form the
static knowledge of the agent.

Answer Entry, Choice Point and Finish Point Stores (AES, CPS, FPS):
AES stores the answer entries that are created from either Δ or the returned

4 Both these features will be essential when the implementation is extended for hier-
archical multi-agent systems.

On the Implementation of Speculative Constraint Processing 185

Fig. 5. Agent Internal Components

answers from the slaves (i.e. the reply set R). CPS stores the computation
choice points (CP), each of which represents the state of a (suspended) original
process. FPS stores the finish points (FP), which contain the results of finished
processes. The three stores are used by SCU and form the dynamic knowledge
of the agent.

In the following sections, we describe how these components are implemented.

3.2 Implementing the Communication Interface Module (COM)

Agents communicate asynchronously via messages sent over TCP connections.
Each agent on the network is uniquely identified by a socket of the form IP:Port,
where IP is the network address of the agent’s host and Port is the port number
reserved for the agent on the host. Therefore, several agents may run simulta-
neously on a host.

During the design of an agent’s program, the sockets for the slaves may not
be known, or they may be changed during agent deployment. Therefore, each
agent uses aliases to identify its slaves locally. For example, in an askable atom
Q@S appearing in P or Δ, S is the alias of a slave. The address book stores the
mapping between the slave aliases and the slave sockets, and it can be generat-
ed/updated during agent (re-)deployment.

There are two types of messages for inter-agent communications:

– a query message of the form query(From, Q@S, Cmd), where From is the
socket of the sender, Q is a query, S is the recipient’s alias used by the sender,
and Cmd is a command of either start or stop. If the command is start,
it indicates a request for the recipient (i.e. the slave) to start a computation
for the query; otherwise if the command is stop, it asks the recipient to stop

186 J. Ma et al.

the computation for a query previously requested and to free the resources.
The “stop” signal (in this paper) is merely used for the execution control of
the agent.

– an answer message of the form answer(From, Q@S, ID, Ans), where From,
Q and S are described as above, Ans is a set of constraints as the answer
to the query, and ID is the answer identifier by the sender and is used to
distinguish between a revised answer and an alternative answer.

COM waits for any incoming message and handles it as follows:

– if it is an inter-agent message query(Master, Q@S, start) from the agent’s
socket, COM creates an entry <RID, Q@S, Master> in the reception list,
where RID is a new query entry ID, and then sends a message start(RID,
Q@S) to the manager thread (MT) in SPU (to be described soon);

– if it is an inter-agent message query(Master, Q@S, stop), COM removes
the entry <RID, Q@S, Master> from the reception list, and then sends a
message stop(RID) to MT;

– if it is an inter-agent message answer(Slave, Q@S, ID, Ans), COM simply
forwards it as answer(Q@S, ID, Ans) to MT;

– if it is an internal message answer(RID, Q, ID, Ans) from MT or from
one of the worker threads (WT) in SPU, COM looks up <RID, Q@S,
Master> from the reception list, and then sends the inter-agent message
answer(Self, Q@S, ID, Ans) to the master, where Self is the current
agent’s socket;

– if it is an internal message query(Q@S) from a WT, COM looks up the
slave’s socket from the address book using S, and then sends the inter-agent
message query(Self, Q@S, start) to the slave.

3.3 Implementing the Speculative Computation Unit (SCU)

SCU can be seen as a collection of concurrent threads. Specifically, there is a
persistent manager thread (MT) and zero or more worker threads (WT). MT is
responsible for updating/revising the choice points/finish points and for spawn-
ing new WT(s) when a new query or answer is received, and WTs are responsible
for constraint processing.

The three stores AES, CPS and FPS are used and maintained by both MT
and WTs. AES stores three types of answer entries (AE), all of which have
the form <AID, Q@S, Type, Ans>, where AID is the entry ID, Q@S is the query
and the slave alias, Type is the entry’s type and Ans is the set of constraints
associated with the entry:

– If Type is so, then this is a speculative original answer entry, and Ans is
equal to the conjunction of the negations of all the defaults in Δ for Q@S5 if
there is any default, and is equal to true otherwise;

– if Type is nso, then this is a non-speculative original answer entry and Ans
is true;

5 i.e.
∧

(Q@S←Cd‖)∈Δ ¬Cd.

On the Implementation of Speculative Constraint Processing 187

– If Type is d, then this is a default answer entry, and Ans is equal to a
corresponding default answer for Q@S in Δ;

– otherwise, Type is r(ID) and this is an ordinary answer entry, where ID and
Ans are from an answer returned by the slave S for Q.

CPS stores the states of original processes (or called choice points (CP)), each
of which has the form <QID, PID, G, C, WA, AA>, where QID is the (top level)
query and its ID, PID is the process ID, G and C are the set of remaining sub-
goals and the set of constraints collected so far respectively, WA and AA are the
set of awaiting answer entries and the set of assumed answer entries respectively.
QID is used by a process to “remember” what query its computation is for, and
hence has two components (RID-Qtop), where RID is the reception entry ID,
and Qtop is the initial query for the process. It is necessary to record Qtop so
that when a process finishes successfully (i.e. G becomes empty), the variable
bindings between the answer (i.e. set of constraints) and the initial query can
be preserved. Each element in WA and AA has the form (AID, Q@S), where AID
is the ID of an answer entry that the process is awaiting or is assuming for the
sub-goal Q@S. Note that it is also necessary to record Q@S here despite having
already recorded AID, because if later an assumed answer needs to be revised, the
correct variable bindings between the query sent (to the slave) and the answer
returned (from the slave) can be obtained.

FPS stores the states of finished processes (or called finish points (FP)), each of
which has the form <QID, PID, C, AA>, where QID, PID and AA are as described
above, and C is the final set of constraints collected, i.e. the answer, already sent
to the master for the query associated with QID.

Each WT represents an active process, and its state can be represented as
<QID, PID, G, C, AA>. It is just like a CP except that it does not have the
awaiting answer entry set (i.e. no WA).

It is also important to keep track of what AE is currently assumed/awaited
by what WTs, CPs and FPs. Such usages of AE are recorded as subscriptions
in a directory as a part of AES. Each subscription has the form sub(AID, PID),
where AID is the answer entry ID and PID is the ID of a WT, CP or FP.

3.4 The Execution of the Manager Thread and the Worker Threads

The multi-threaded operational model is based on the pseudo-parallel (serialised)
operational model proposed in [4], but with improved “process management”
allowing true or-parallelism during the computation:

– In the serialised model, the computation interleaves with the process reduc-
tion phase and the fact arrival phase. When it enters the process reduction
phase, one active process is selected at a time for resolving a sub-goal. In
the multi-threaded model, each WT can enter the process reduction phase
and resolve sub-goals independently and concurrently to others. No process
selection is required.

– In the serialised model, when it enters the fact arrival phase, all the relevant
processes (active or suspended) are updated, and necessary new processes

188 J. Ma et al.

Fig. 6. Execution of MT

(a) Fact Arrival Phase (b) Process Reduction Phase

Fig. 7. Execution of WT

from original processes are created at the same time. In the multi-threaded
model, the fact arrival phase is splitted and is done by the MT and WTs sep-
arately. The MT is responsible for revising the answers from existing finished
processes (i.e. the finish points), updating original processes (i.e. the choice
points) and creating appropriate new WTs from choice points. The MT also
notifies relevant WTs about the newly returned answer via messaging, but
will not change the state of WTs directly. On the other hand, when a WT
receives such notification from MT, it will check for consistency of the new
answer independently from others, and create new choice point if needed
(e.g. in the case where it is assuming a default answer and an alternative
answer is received). Different WTs can update themselves concurrently.

The key execution steps for MT and WT are illustrated in Figure 6 and Figure 7.
The detailed descriptions are provided in Appendix A.1 and Appendix A.2.

On the Implementation of Speculative Constraint Processing 189

3.5 Resolving Concurrency Issues

Inside SPU, MT and WTs execute concurrently, and they all require read/write
access to the three stores AES, CPS and FPS. Potential conflicts between MT
and a WT, or between WTs may arise. Firstly, it is possible that after a WT
spawns several children WTs, and just before it can make all the answer entry
subscriptions for the children, MT receives an answer and notifies only some of
its children (e.g. the subscription process is not yet complete). Secondly when
two WTs encounter the same askable atom at the same time, and if there is no
original answer entry for that atom yet, then the original answer entry may be
created twice and the query may be sent twice by the two WTs. Hence, the three
stores are considered as “critical regions” and need to be protected. One näıve
solution is to make all the iteration steps performed by WT or MT atomic. But
this will greatly reduce the chance for concurrent processing and hence remove
almost all the benefits brought by the multi-threaded implementation. Therefore,
“fine grained” atomicity control is needed for the executions of MT and WTs.

Let’s consider the first problem. The potential conflict is between MT and
WT, and is not between WTs. Although several WTs may need to update the
subscriptions in the directory of AES, they only modify the ones associated with
their IDs or with their new born children’s IDs. As long as the children WTs do
not start working until their parent WT has made all the correct subscriptions
for them, there won’t be any conflict. Also, WTs can only create new choice
points in CPS and create new finish points in FPS according to their own states,
there is no potential conflict of updating CPS and FPS either. Therefore, the
execution of a MT’s message handling step cannot (safely) interleave with that of
the process reduction step or the fact arrival step of any WT, but the executions
of WTs’ steps can interleave without problems. To impose such control, we have
introduced an atomic counter6 called the “busy worker counter” (BC). Whenever
a WT starts to perform a fact arrival step or reduction step, it will increment
BC; and whenever it finishes one step, it will decrement BC. We also introduce
an atomic flag called the “waiting/working manager flag”(WF). Whenever MT
receives an answer, it will set WF to 1; and when MT finishes handling one
returned answer, it will clear WF to 0. The safe exclusive execution control
between MT and WTs using BC and WF are as follows7,

WT’s Execution Cycle MT’s Execution Cycle

1. (atomic step) waits for WF to be
cleared and then increments BC;

2. performs either fact arrival step or re-
duction step;

3. decrements BC

1. waits for a returned answer;

2. sets WF

3. waits for BC to reach 0;

4. handles returned answer;

5. clears WF

6 I.e. its value update is atomic.
7 Pseudo-code in Prolog is provided in Appendix B.

190 J. Ma et al.

Hence, whenever a WT performing a fact arrival step or process reduction step,
MT is not allowed to process any received answer; whenever MT has an answer
waiting to be processed or being processed, no WT can perform a new step.

Let’s now consider the second problem. The potential conflict is between two
WTs when they both try to collect/create answer entries for an askable goal.
The solution is relatively easy: we have introduced a mutex MAES and control
the WT’s execution as follows,

When a WT tries to collect answer entries for Q@S:

– if an original answer entry for Q@S exists in AES, continues as normal;

– otherwise, (1) locks MAES; (2) if AES still does not contain an original
answer entry for Q@S, then creates the original and default answer entries,
and then sends out the query; (3) unlocks MAES.

The operation of locking a mutex succeeds immediately if the mutex has not
been locked by any other thread yet; otherwise it causes the current thread to be
suspended. The suspended thread is revived only when the mutex is unlocked,
and then the revived thread tries again to lock the mutex. In the above example,
it is possible that while a thread is waiting to lock MAES, the thread already
locking MAES creates the answer entries. Therefore, in Step 2 checking again
whether an original answer entry exists is necessary.

4 Discussions

The described mutli-threaded implementation is implemented in YAP Prolog [7].
We chose YAP not only because it has the necessary CLP and multi-threading
supports, but also because it is considered as the one of the fastest Prolog engines
that is free and open source.

We have tested the implementation with meeting scheduling examples de-
scribed in [4] but with increased size. During the testing, we used YAP’s default
maximum number of WTs of 100 and were able to compute the correct answers
within the order of 1 second. For large problems, e.g. if a query would lead
to more than 10 (non-askable) sub-goals, each with more than 10 rules with
constraints that are always consistent, the number of WTs would exceed 100.
Our implementation is able to cope with such problems by setting a higher WT
number limit, e.g. 1000, at the expense of initial memory consumed by YAP8.

In practice, to strike a balance between the number of WTs and the mem-
ory consumption, our implementation can be adapted to use a hybrid approach,
which would implement two types of WTs: normal workers and super worker.
A normal worker would execute as an active process as described in the multi-
threaded model. A super worker would behave like the serialised model [4] and
manage several processes in a round-robin fashion. In this way, memory con-
sumption would be reduced whilst maintaining the effect of a high number of
8 100 maximum threads in YAP require about 2MB memory, 1000 threads require

about 4MB and 9999 threads require about 109MB.

On the Implementation of Speculative Constraint Processing 191

WTs. For example, let M be the maximum number of WTs that an agent’s SPU
can have, then there can be M−1 (at most) normal workers and 1 super worker.
During the computation, when there are N (N > M−1) active processes, M−1
of them are handled by the normal workers, and the rest of them are handled
by the super worker. When an active process terminates (either due to failure
or finish), the normal worker can release it and acquire another active process
state from the super worker to continue.

5 Conclusion

In this paper, we have presented a practical multi-threaded implementation for
speculative constraint processing with iterative revision for disjunctive answers,
and suggested a hybrid implementation for situation where multi-threading sup-
port is limited by resource constraint. Although the implementations are based
on the operational model described in [4], which is for simple master-slave sys-
tems where only the master can perform speculative computation, they are de-
signed to be extendable for hierarchical master-slave systems. As a future work,
we will prove the correctness of an extended operational model for a hierarchy
of master-slave agents and extend the current implementation to support this
more general type of multi-agent systems. We will also perform benchmarking
of the system with large examples, and apply it in real world applications, such
as planning and online booking systems.

Acknowledgment

This research was partially supported by the Ministry of Education, Science,
Sports and Culture, Japan, Grant-in-Aid for Scientific Research (B), 19300053,
and is continuing through participation in the International Technology Alliance
sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of
Defence.

References

1. Satoh, K., Inoue, K., Iwanuma, K., Sakama, C.: Speculative computation by ab-
duction under incomplete communication environments. In: ICMAS, pp. 263–270
(2000)

2. Satoh, K., Yamamoto, K.: Speculative computation with multi-agent belief revision.
In: AAMAS, pp. 897–904 (2002)

3. Satoh, K., Codognet, P., Hosobe, H.: Speculative constraint processing in multi-
agent systems. In: Lee, J.-H., Barley, M.W. (eds.) PRIMA 2003. LNCS (LNAI),
vol. 2891, pp. 133–144. Springer, Heidelberg (2003)

4. Ceberio, M., Hosobe, H., Satoh, K.: Speculative constraint processing with iterative
revision for disjunctive answers. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS
(LNAI), vol. 3900, pp. 340–357. Springer, Heidelberg (2006)

5. Satoh, K.: Speculative computation and abduction for an autonomous agent. IEICE
Transactions 88-D(9), 2031–2038 (2005)

192 J. Ma et al.

6. Inoue, K., Kawaguchi, S., Haneda, H.: Controlling speculative computation in multi-
agent environments. In: Proc. Second Int. Workshop on Computational Logic in
Multiagent Systems (CLIMA 2001), pp. 9–18 (2001)

7. YAP Prolog 5.1.3 manual (June 2008),
http://www.dcc.fc.up.pt/~vsc/Yap/index.html

A Execution Description of MT and WT

A.1 Execution of MT (Illustrated in Fig. 6)

MT processes each message it receives from COM:

– if the message is start(RID,Q), it spawns a new WT with initial state
〈QID,PIDnew , Q, ∅9, ∅10〉, where QID = (RID, Q), PIDnew is a new process
ID.

– if the message is stop(RID), then

1. it removes all the choice points in CPS and all the finish points in FPS that
are associated with RID;

2. it broadcasts a message stop(RID) to all the WTs;

– if the message is answer(Q@S, ID, Cnew):

• if there exists an answer entry 〈AID, Q@S, r(ID), Cold〉 in AES, then the
received answer is a revised answer (following Fig. 4):

1. MT updates the existing answer entry to be 〈AID, Q@S, r(ID), Cnew〉;
2. for each WT subscribing AID, MT sends a message rev(AID,Q@S,Cnew)

to the WT (so that the WT can check Cnew for consistency);
3. for each FP of 〈QID, PID,Cfinal, AA〉 that is subscribing AID and

QID = (RID, Qtop), if Cfinal �= Cfinal ∧Cnew , then MT sends a message
answer(RID,Qtop, P ID, Cfinal ∧ Cnew) to COM;

4. for each CP of 〈QID, PID,G, C, WA,AA〉 that is subscribing AID,
if Call = C ∧ Cnew is consistent, then MT updates it to be
〈QID, PID,G, Call,
WA,AA〉; otherwise, MT removes the CP and the CP’s subscriptions;

5. let 〈AIDo, Q@S,O, Co〉 be an original answer entry for Q@S, where O is
either so or nso, for each choice point of 〈QID, PID, G, C, WA,AA〉 that
is subscribing AIDo and Call = C ∧ ¬Cold ∧ Cnew is consistent:
∗ if WA contains only (AIDo, Q@S), then MT creates a new WT with

〈QID, PIDnew, G, Call, AA ∪ {(AID, Q@S)}〉, and subscribes all the
answer entries in AA and that with AID for the new WT (i.e. for each
(AID′, Q′@S′) ∈ AA ∪ {(AID, Q@S)}, it adds sub(AID′, P IDnew)
to the directory in AES);

∗ otherwise, MT creates a new CP of 〈QID, PIDnew, G, Call,
WA \ {(AIDo, Q@S)}, AA ∪ {(AID, Q@S)}〉 in AES, and subscribes
all the answer entries in AA and in WA for the new CP;

• otherwise, it is a first/alternative answer (following Fig. 2 and Fig. 3):

1. MT creates a new answer entry 〈AIDnew, Q@S, r(ID), Cnew〉 in AES;
2. for each default answer entry 〈AIDd, Q@S, d, Cd〉 in AES:

9 This is the initially empty set of constraints.
10 This is the initially empty set of assumed answer entries.

http://www.dcc.fc.up.pt/~vsc/Yap/index.html

On the Implementation of Speculative Constraint Processing 193

∗ for each WT subscribing AIDd, MT sends a message alt(AIDnew,
AIDd, Q@S,Cnew) to it;

∗ for each FP of 〈QID,PID, Cfinal, AA〉 that is subscribing AIDd and
QID = (RID,Qtop), if Cfinal �= Cfinal ∧ Cnew , then MT sends a
message answer(RID,Qtop, P ID,Cfinal ∧ Cnew) to COM;

∗ for each CP of 〈QID,PID, G, C, WA,AA〉 that is subscribing AIDd,

(a) MT updates the CP to be 〈QID, PIDnew, G, C, WA ∪
{(AIDd, Q@S)},
AA \ {(AIDd, Q@S)}〉;

(b) if Call = C ∧ Cnew is consistent, then
· if WA contains only (AIDd, Q@S), then MT creates a new

WT with 〈QID, PIDnew, G, Call, AA∪{(AID,Q@S)}〉, and sub-
scribes all the answer entries in AA and that with AID for the
new WT;

· otherwise, MT creates a new CP of 〈QID,PIDnew, G, Call,
WA \ {(AIDd, Q@S)}, AA ∪ {(AID, Q@S)} \ {(AIDd, Q@S)}〉
in AES, and subscribes all the answer entries in AA ∪ WA ∪
{(AID, Q@S)} \ {(AIDd, Q@S)} for the new CP;

3. let 〈AIDo, Q@S,O, Co〉 be an original answer entry for Q@S, where O
is so or nso, for each choice point of 〈QID,PID, G, C, WA,AA〉 that is
subscribing AIDo and Call = C ∧ Co ∧ Cnew is consistent:
∗ if WA contains only (AIDo, Q@S), then MT creates a new WT with

〈QID, PIDnew, G, Call, AA ∪ {(AID, Q@S)}〉, and subscribes all the
answer entries in AA and that with AID for the new WT;

∗ otherwise, MT creates a new CP of 〈QID, PIDnew, G, Call,
WA \ {(AIDo, Q@S)}, AA ∪ {(AID, Q@S)}〉 in AES, and subscribes
all the answer entries in AA ∪ WA ∪ {(AID, Q@S)} \ {(AIDo,
Q@S)} for the new CP;

A.2 Execution of WT (Illustrated in Fig. 7)

The execution of a WT can be seen as a loop with the following steps performed at
each iteration (let its initial state at each iteration be 〈QID, PID,G, C, AA〉):

– If there is an internal message received by the WT (i.e. from MT), it enters the
Fact Arrival Phase:

• if the message is rev(AID,Q@S,Cr) where (AID,Q@S) ∈ AA (see Fig. 4),
let Call = C ∧ Cr: if Call is consistent, then the WT continues with
〈QID, PID,G, Call, AA〉. Otherwise, the WT removes all of its subscriptions
in AES and terminates;

• if the message is alt(AIDa, AIDd, Q@S, Ca) where AIDd is an ID of a default
answer entry (following Fig. 2),

1. it creates a new CP of 〈QID, PIDnew, G, C, {(AIDd, Q@S)},
AA \ {(AIDd, Q@S)}〉 in CPS, and subscribes for all the answer entries
in AA for the new CP;

2. if Call = C ∧ Ca is consistent, then the WT continues with
〈QID, PID,G, Call,
AA ∪ {(AIDa, Q@S)} \ {(AIDd, Q@S)}〉. Otherwise, it removes all of its
subscriptions and terminates;

194 J. Ma et al.

• if the message is stop(RID), and RID is equal to the query ID in QID, then
the WT removes all of its subscriptions and terminates;

– Otherwise, it enters the Process Reduction Phase and tries to select L from G:

• if G is empty and thus no L can be selected, the current computation succeeds:
1. let QID = (RID,Qtop), the current WT sends a message

answer(RID,Qtop,
P ID, C) to COM;

2. it creates a FP of 〈QID,PID, C, AA〉 and then terminates. Note that it
does not need to make answer entry subscriptions for the new FP or to
remove its subscriptions, because the new FP “inherits” them.

• if L is not an askable atom, for every rule R such that Cnew = C ∧ (L =
head(R)) ∧ const(R) is consistent, the current WT spawns a new WT with
state 〈QID,PIDnew, G \ {L} ∪ body(R), Cnew, AA〉 and subscribes all the an-
swer entries in AA for the new WT. Then the current WT removes all of its
subscriptions and terminates11.

• if L is an askable atom Q@S (where S must be ground): if there exists
(AID, Q′@S) ∈ AA such that Q and Q′ are identical (i.e. they are not vari-
ants), then the WT continues with 〈QID, PID,G \ {L}, C, AA〉12. Otherwise
(following Fig. 1),

1. it collects (AIDo, AIDS) from AES as follows:
∗ if there exists some ordinary answer entries for Q@S, let AIDo be the

non-speculative original answer entry ID for Q@S, and AIDS be the
set of ordinary answer entry IDs, whose associated answer constraints
are consistent with C;

∗ otherwise,
(a) if there exists no original answer entry for Q@S, then the WT

i. creates 〈AIDso
new, Q@S, so, Cso〉 in AES, where Cso is the con-

junction of the negations of all the default constraints for Q@S
in Δ if there is some default constraint, or is true if there is none;

ii. creates 〈AIDnso
new, Q@S,nso, Cnso〉 in AES, where Cnso is true;

iii. creates a default answer entry 〈AIDi
new, Q@S, d, Ci

d〉 for each
default constraint Ci

d for Q@S in Δ;
iv. sends a message query(Q@S) to COM;

(b) let AIDo be AIDso
new, and AIDS be the set of default answer entry

IDs, whose associated answer constraints are consistent with C;
2. for each answer entry 〈AID,Q@S,Type,Ca〉 such that AID ∈ AIDS, the

current WT spawns a new WT with state 〈QID,PIDnew , G\{Q@S}, C∧
Ca, AA ∪ {(AID, Q@S)}〉 and subscribes all the answer entries in AA ∪
{(AID, Q@S)} for the new WT;

3. the current WT creates a new CP of 〈QID,PIDnew, G \
{Q@S}, C, {(AIDo,
Q@S)}, AA〉 in CPS, and subscribes all the answer entries in AA plus
that with AIDo for the new CP;

4. the current WT removes all of its subscriptions and terminates13.

11 As an optimisation, if there are N > 0 possible new processes (states), then only
N − 1 new WTs are spawned, and the current WT continues as Nth process.

12 This is an optimisation to the original operational model, which prevents unnecessary
new processes (threads) to be created.

13 Optimisation similar to footnote 11 can be applied.

On the Implementation of Speculative Constraint Processing 195

B Pseudo-Code for the Implementation of Exclusive
Control between the Manager Thread and Worker
Threads

YAP Prolog only provides message queues and mutexes for multi-threading sup-
port [7].

% "m_bc " and "m_wf " are the

mutexes for BC and WF;

% "v_bc " is the counter for BC

% "mq_bc" is the message queue

for notifications about BC

% for WT

wt_loop :-

mutex_lock (m_wf),

mutex_lock (m_bc),

mutex_unlock (m_wf),

increment (v_bc),

mutex_unlock (m_bc),

// process reduction or fact

arrival step

mutex_lock (m_bc),

decrement (v_bc),

(v_bc (V), V == 0 ->

send_notification_to (mq_bc

)

;

true

),

mutex_unlock (m_bc),

wt_loop.

% for MT

mt_loop :-

// wait for received answer ,

mutex_lock (m_wf),

wait_for_zero_bc ,

// handle received answer

mutex_unlock (m_wf),

mt_loop.

wait_for_zero_bc :-

mutex_lock (m_bc),

clear_any_notification_in(mq_bc),

(v_bc (V), V > 0 ->

mutex_unlock (m_bc),

wait_for_notification_in(mq_bc),

wait_for_zero_bc

;

mutex_unlock (m_bc)

).

	On the Implementation of Speculative Constraint Processing
	Introduction
	Speculative Disjunctive Constraint Processing
	Speculative Constraint Processing Framework
	The Operational Model

	A Multi-threaded Implementation
	Overview
	Implementing the Communication Interface Module (COM)
	Implementing the Speculative Computation Unit (SCU)
	The Execution of the Manager Thread and the Worker Threads
	Resolving Concurrency Issues

	Discussions
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

